

Contemporary Cryptography

For a listing of recent titles in the Artech House Computer Security Library,
turn to the back of this book.

For quite a long time, computer security was a rather narrow field of study that was
populated mainly by theoretical computer scientists, electrical engineers, and applied
mathematicians. With the proliferation of open systems in general, and of the Internet
and the World Wide Web (WWW) in particular, this situation has changed fundamen-
tally. Today, computer and network practitioners are equally interested in computer
security, since they require technologies and solutions that can be used to secure applica-
tions related to electronic commerce. Against this background, the field of computer
security has become very broad and includes many topics of interest. The aim of this
series is to publish state-of-the-art, high standard technical books on topics related to
computer security. Further information about the series can be found on the WWW at
the following URL:

http://www.esecurity.ch/serieseditor.html

Also, if you’d like to contribute to the series by writing a book about a topic
related to computer security, feel free to contact either the Commissioning Editor or the
Series Editor at Artech House.

Contemporary Cryptography

Rolf Oppliger

a r t e c h h o u s e . c o m

Library of Congress Cataloging-in-Publication Data
Oppliger, Rolf.

Contemporary cryptography/Rolf Oppliger.
p. cm. —(Artech House computer security series)

Includes bibliographical references and index.
ISBN 1-58053-642-5
1. Cryptography. I. Title. II. Series.

Z103.O66 2005 2005043576
652′.8–dc22

British Library Cataloguing in Publication Data
Oppliger, Rolf

Contemporary cryptography. —(Artech House computer security series)
1. Data encryption (Computer science) 2. Cryptography
I. Title
005.8′2

ISBN 1-58053-642-5
Cover design by Yekaterina Ratner

© 2005 ARTECH HOUSE, INC.
685 Canton Street
Norwood, MA 02062

All rights reserved. Printed and bound in the United States of America. No part of this book may
be reproduced or utilized in any form or by any means, electronic or mechanical, including pho-
tocopying, recording, or by any information storage and retrieval system, without permission in
writing from the publisher. All terms mentioned in this book that are known to be trademarks or
service marks have been appropriately capitalized. Artech House cannot attest to the accuracy of
this information. Use of a term in this book should not be regarded as affecting the validity of
any trademark or service mark.

International Standard Book Number: 1-58053-642-5

10 9 8 7 6 5 4 3 2 1

v

To my family

vi

Contents

Foreword xv

Preface xix

References xxiii

Acknowledgments xxv

Chapter 1 Introduction 1
1.1 Cryptology 1
1.2 Cryptographic Systems 3

1.2.1 Classes of Cryptographic Systems 7
1.2.2 Secure Cryptographic Systems 8
1.2.3 Side Channel and Related Attacks 12

1.3 Historical Background Information 14
1.4 Outline of the Book 16

References 18

Chapter 2 Cryptographic Systems 21
2.1 Unkeyed Cryptosystems 21

2.1.1 One-Way Functions 21
2.1.2 Cryptographic Hash Functions 23
2.1.3 Random Bit Generators 25

2.2 Secret Key Cryptosystems 26
2.2.1 Symmetric Encryption Systems 27
2.2.2 Message Authentication Codes 28
2.2.3 PRBGs 30
2.2.4 PRFs 31

2.3 Public Key Cryptosystems 32
2.3.1 Asymmetric Encryption Systems 32
2.3.2 DSSs 35

vii

viii

2.3.3 Key Agreement 39
2.3.4 Entity Authentication 41
2.3.5 Secure Multiparty Computation 41

2.4 Final Remarks 42
References 42

I MATHEMATICAL FUNDAMENTALS 45

Chapter 3 Discrete Mathematics 47
3.1 Algebraic Basics 47

3.1.1 Preliminary Remarks 48
3.1.2 Algebraic Sructures 51
3.1.3 Homomorphisms and Isomorphisms 60
3.1.4 Permutations 61

3.2 Integer Arithmetic 63
3.2.1 Integer Division 63
3.2.2 Common Divisors and Multiples 65
3.2.3 Euclidean Algorithms 66
3.2.4 Prime Numbers 71
3.2.5 Factorization 77
3.2.6 Euler’s Totient Function 79

3.3 Modular Arithmetic 81
3.3.1 Modular Congruence 81
3.3.2 Modular Exponentiation 84
3.3.3 Chinese Remainder Theorem 86
3.3.4 Fermat’s Little Theorem 88
3.3.5 Euler’s Theorem 89
3.3.6 Finite Fields Modulo Irreducible Polynomials 89
3.3.7 Quadratic Residuosity 91
3.3.8 Blum Integers 98

3.4 Elliptic Curves 99
3.5 Final Remarks 101

References 102

Chapter 4 Probability Theory 103
4.1 Basic Terms and Concepts 103
4.2 Random Variables 109

4.2.1 Probability Distributions 111
4.2.2 Marginal Distributions 113

Contents ix

4.2.3 Conditional Probability Distributions 114
4.2.4 Expectation 115
4.2.5 Independence of Random Variables 117
4.2.6 Markov’s Inequality 118
4.2.7 Variance and Standard Deviation 119
4.2.8 Chebyshev’s Inequality 121

4.3 Final Remarks 122
References 123

Chapter 5 Information Theory 125
5.1 Introduction 125
5.2 Entropy 129

5.2.1 Joint Entropy 132
5.2.2 Conditional Entropy 133
5.2.3 Mutual Information 135

5.3 Redundancy 136
5.4 Key Equivocation and Unicity Distance 138
5.5 Final Remarks 139

References 140

Chapter 6 Complexity Theory 141
6.1 Preliminary Remarks 141
6.2 Introduction 143
6.3 Asymptotic Order Notation 146
6.4 Efficient Computations 147
6.5 Computational Models 150
6.6 Complexity Classes 154

6.6.1 Complexity Class P 154
6.6.2 Complexity Classes NP and coNP 154
6.6.3 Complexity Class PP and Its Subclasses 159

6.7 Final Remarks 163
References 164

II UNKEYED CRYPTOSYSTEMS 167

Chapter 7 One-Way Functions 169
7.1 Introduction 169
7.2 Candidate One-Way Functions 172

7.2.1 Discrete Exponentiation Function 173
7.2.2 RSA Function 176

x

7.2.3 Modular Square Function 179
7.3 Integer Factorization Algorithms 180

7.3.1 Special-Purpose Algorithms 181
7.3.2 General-Purpose Algorithms 183
7.3.3 State of the Art 185

7.4 Algorithms for Computing Discrete Logarithms 186
7.4.1 Generic Algorithms 187
7.4.2 Special-Purpose Algorithms 187
7.4.3 State of the Art 188

7.5 Hard-Core Predicates 188
7.6 Elliptic Curve Cryptography 190
7.7 Final Remarks 191

References 192

Chapter 8 Cryptographic Hash Functions 195
8.1 Introduction 195
8.2 Merkle-Damgård Construction 199
8.3 Exemplary Cryptographic Hash Functions 201

8.3.1 MD4 204
8.3.2 MD5 209
8.3.3 SHA-1 211

8.4 Final Remarks 214
References 216

Chapter 9 Random Bit Generators 219
9.1 Introduction 219
9.2 Realizations and Implementations 221

9.2.1 Hardware-Based Random Bit Generators 221
9.2.2 Software-Based Random Bit Generators 222
9.2.3 Deskewing Techniques 223

9.3 Statistical Randomness Testing 223
9.4 Final Remarks 224

References 225

III SECRET KEY CRYPTOSYSTEMS 227

Chapter 10 Symmetric Encryption Systems 229
10.1 Introduction 229

10.1.1 Examples 230
10.1.2 Classes of Symmetric Encryption Systems 232

Contents xi

10.1.3 Secure Symmetric Encryption Systems 233
10.1.4 Evaluation Criteria 235

10.2 Block Ciphers 236
10.2.1 DES 238
10.2.2 AES 255
10.2.3 Modes of Operation 269

10.3 Stream Ciphers 277
10.4 Perfectly Secure Encryption 281
10.5 Final Remarks 287

References 288

Chapter 11 Message Authentication Codes 291
11.1 Introduction 291
11.2 Computationally Secure MACs 294

11.2.1 MACs Using Symmetric Encryption Systems 295
11.2.2 MACs Using Keyed Hash Functions 296
11.2.3 MACs Using PRFs 300
11.2.4 MACs Using Families of Universal Hash Functions 304

11.3 Information-Theoretically Secure MACs 305
11.4 Final Remarks 307

References 307

Chapter 12 Pseudorandom Bit Generators 309
12.1 Introduction 309
12.2 Cryptographically Secure PRBG 313

12.2.1 Blum-Micali PRBG 316
12.2.2 RSA PRBG 317
12.2.3 BBS PRBG 317

12.3 Final Remarks 318
References 319

Chapter 13 Pseudorandom Functions 321
13.1 Introduction 321
13.2 Constructions 325

13.2.1 PRF-Based PRBG 325
13.2.2 PRBG-Based PRF 326

13.3 Random Oracle Model 327
13.4 Final Remarks 329

References 229

xii

IV PUBLIC KEY CRYPTOSYSTEMS 331

Chapter 14 Asymmetric Encryption Systems 333
14.1 Introduction 333
14.2 Basic Systems 336

14.2.1 RSA 336
14.2.2 Rabin 347
14.2.3 ElGamal 353

14.3 Secure Systems 359
14.3.1 Probabilistic Encryption 359
14.3.2 Optimal Asymmetric Encryption Padding 362

14.4 Identity-Based Encryption 363
14.5 Final Remarks 365

References 365

Chapter 15 Digital Signature Systems 369
15.1 Introduction 369
15.2 Basic Systems 372

15.2.1 RSA 373
15.2.2 ElGamal 378
15.2.3 DSA 384

15.3 Secure Systems 388
15.3.1 PSS 389
15.3.2 PSS-R 391

15.4 One-Time Signature Systems 393
15.5 Digital Signatures for Streams 395
15.6 Variations 399

15.6.1 Blind Signatures 399
15.6.2 Undeniable Signatures 400
15.6.3 Fail-Stop Signatures 400

15.7 Final Remarks 401
References 401

Chapter 16 Key Establishment 405
16.1 Introduction 405
16.2 Key Distribution Protocols 406

16.2.1 Merkle’s Puzzles 406
16.2.2 Shamir’s Three-Pass Protocol 408
16.2.3 Asymmetric Encryption-Based Key Distribution

Protocol 411

Contents xiii

16.3 Key Agreement Protocols 411
16.4 Quantum Cryptography 414

16.4.1 Basic Principles 414
16.4.2 Quantum Key Exchange Protocol 416

16.5 Final Remarks 419
References 420

Chapter 17 Entity Authentication 423
17.1 Introduction 423
17.2 Authentication Technologies 424

17.2.1 Proof by Possession 425
17.2.2 Proof by Knowledge 426
17.2.3 Proof by Property 430
17.2.4 Proof by Location 431

17.3 Zero-Knowledge Authentication Protocols 432
17.3.1 Preliminary Remarks 432
17.3.2 Fiat-Shamir 434
17.3.3 Guillou-Quisquater 436
17.3.4 Schnorr 438
17.3.5 Turning Interactive Proofs of Knowledge into DSSs 439

17.4 Final Remarks 440
References 440

Chapter 18 Secure Multiparty Computation 443
18.1 Introduction 443
18.2 Major Results 446
18.3 Final Remarks 446

References 447

V EPILOGUE 449

Chapter 19 Key Management 451
19.1 Introduction 451
19.2 Key Life Cycle 453

19.2.1 Key Generation 453
19.2.2 Key Distribution 453
19.2.3 Key Storage 454
19.2.4 Key Destruction 454

19.3 Secret Sharing 455
19.4 Key Recovery 457

xiv

19.5 Public Key Infrastructure 460
19.6 Final Remarks 463

References 464

Chapter 20 Conclusions 467
20.1 Unkeyed Cryptosystems 467
20.2 Secret Key Cryptosystems 469
20.3 Public Key Cryptosystems 470
20.4 Final Remarks 471

Chapter 21 Outlook 473
21.1 Theoretical Viewpoint 474
21.2 Practical Viewpoint 476

References 477

Appendix A Abbreviations and Acronyms 479

Appendix B Mathematical Notation 485

About the Author 491

Index 493

Foreword

Assume for a moment that everything in this book was known for decades but
not widely published. If I owned this book in the early 1980s, some governments
would consider me dangerous (certainly more dangerous than anyone reasonably
considers me now). The reason? Cryptography—the ability to encipher messages—
was considered an instrument of war and espionage. Some countries (the USA
included) considered export of cryptographic mechanisms to be in the same category
of crime as smuggling nuclear weapons! This was despite the fact that cryptology
has been studied and practiced for thousands of years around the world.

In 2005, a mere twenty years later, things are somewhat less extreme, and I
have shelves full of books on cryptography. However, many governments still fear
the spread of encryption and thus severely restrict (or prohibit) its use within their
borders. This is despite its regular use billions of times per day in everything from
banking networks to medical records to cable TV systems to Internet commerce over
the WWW, as well as governmental uses.

Why is knowledge of cryptography so often feared by those in authority? One
explanation may be that it is because cryptography can be used to hide criminal
behavior, espionage, and political activities. More generally, it helps to remove
information from the purview of the state, and this can be threatening to governments
whose survival is based on restricting citizens’ knowledge. Information can be used
or misused in so many ways it is no wonder that protecting it is of widespread
interest.

At its heart, cryptography is concerned with information, whether stored as
data, or communicated to others. In turn, information and communication undergird
nearly everything we do. Commerce is driven by communication of finance and
sales, research is based on data acquisition and reference, and government functions
on the collection and processing of records. Entertainment is encoded information,
whether presented as music, paintings, or the performance of a play. Civilization is
enabled by our ability to communicate information to each other, and to store it for
later use. Even something as commonplace as currency would be useless unless it
conveyed meaning of denomination and validity. Of course, personal relationships

xv

xvi

also require some level of communication, too—imagine conveying “I love you” to
those people special in your life without any shared means of communication!

At its very heart, life itself is based on information storage and processing: the
DNA in genes encodes information governing how organisms are constructed and
operate. Recently, there were reports from the world of physics about new conjec-
tures on the permanence of black holes that revolved around their effect on infor-
mation.1 Some students of psychology and philosophy believe that consciousness
and behavior are predetermined by the events of the past—basically, the complex
processing of information. Others believe that if we can simply capture the “infor-
mation state” of the brain in an appropriately-advanced computer, we can transfer
our “minds” outside our bodies.2

The more deeply you pursue this trail of information, the more connections
one finds. It is clear that our ability to store and communicate information is
fundamental to much more than most of us realize. Furthermore, knowing some
of that information at the right time can provide tremendous advantage, whether it
is in personal relationships, commercial enterprise, or acts by nation-state leaders.
It therefore follows that means of protecting that information from disclosure or
alteration are often as valuable as the information itself—if not more so.

It is here that cryptography comes into play. With good cryptography, we may
be able to protect sensitive information; without it, we are all disadvantaged. It
should thus be no surprise that so many organizations have tried to restrict cryp-
tography such that they were the sole practitioners. History continues to show that
such efforts seem destined to (eventually) fail. For uses good and ill, cryptography
is around to stay.

You hold in your hands a multifarious work that exists against that backdrop.
As with the role of information, the more you examine this book, the more facets
you will discover.

For instance, if you read this book carefully, you will find it to be a compre-
hensive and detailed tutorial on cryptographic algorithms and protocols, along with
supporting mathematics and statistics. As such, you can expand your knowledge
of an important area that is also related to computing and communications. What’s
more, you can inform yourself about a broad range of issues, from historically sig-
nificant ciphers to very current research results.

As with other works by Rolf Oppliger, this book is nicely organized and
the contents are clearly presented. Each section of the book contains numerous
references to important related literature. This combination provides an outstanding

1 See, for instance, “Hawking cracks black hole paradox” by Jenny Hogan in New Scientist, July 14,
2004.

2 cf. In the Age of Spiritual Machines: When Computers Exceed Human Intelligence by Ray Kurzweil,
Penguin Putnam, 2000.

Foreword xvii

reference work for anyone pursuing scholarly work in the field. Thus, this book is
one that will occupy a spot on your bookshelf—and ensure that it doesn’t collect
dust while there, as I have found so many other books do.

If you’re a teacher, you now have a powerful textbook that can be used to
prepare students for everything from basic comprehension of cryptographic concepts
to reasonably advanced research in the field. As such, this is a much-needed
instrument of pedagogy. This is the book colleagues and I wish we had over the
last decade when teaching our graduate cryptography class; luckily, now we have it,
and you do too.

Cryptography can be an enabler of subversion, of civil disobedience, and of
criminal enterprise. It can also be used to safeguard protection of basic human rights,
promote privacy, and enhance lawful commerce. Cryptography is an incredibly
powerful set of technologies. A sound understanding of cryptographic techniques
is not sufficient to guarantee information protection, but it is necessary, whether in
computer processing, telecommunications, or database management. As our reliance
on computing and network grows, our need for sound cryptography will also grow,
and we all will need to have a better understanding of its uses and limitations.

When Rolf set out to write this book, I doubt he considered how it might be
used by readers to do so many things. When you started reading it, you probably
didn’t have wide-ranging motives, either. And when I agreed to write the foreword,
I was unsure what the book would be like. But now I know what you will shortly
discover: Rolf has done a wonderful job of making so much important information
accessible. He is thus a dangerous person, at least in the sense of “dangerous” that
I employed at the beginning of this essay, and we should congratulate him for it.
Enjoy.

—Gene Spafford3

January 2005

3 Eugene H. Spafford is the Executive Director of the Center for Education and Research in Informa-
tion Assurance and Security at Purdue University in the USA. He is also a professor of Computer
Sciences, a professor of Electrical and Computer Engineering, a professor of Philosophy (courtesy),
and a professor of Communication (courtesy).

xviii

Preface

Necessity is the mother of invention,
and computer networks are the mother of modern cryptography.

— Ronald L. Rivest4

With the current ubiquity of computer networks and distributed systems in general,
and the Internet in particular, cryptography has become an enabling technology to
secure the information infrastructure(s) we are building, using, and counting on in
daily life. This is particularly true for modern cryptography.5 The important role of
(modern) cryptography is, for example, pointed out by the quote given above. As
explained later in this book, the quoted cryptographer—Ronald L. Rivest—is one
of the pioneers of modern cryptography and has coinvented the widely deployed
Rivest, Shamir, Adleman (RSA) public key cryptosystem.

Due to its important role, computer scientists, electrical engineers, and applied
mathematicians should all be educated in the basic principles and applications of
cryptography. Cryptography is a tool, and as such it can provide security only if it
is used properly. If it is not used properly, then it may fail to provide security in the
first place. It may even be worse than not using it at all, because users think that they
are protected, whereas in reality this is not the case (this may lead to incorrect user
behavior).

There are several books that can be used for educational purposes (e.g., [1–16]
itemized in chronological order). Among these books, I particularly recommend [5,
9, 10, 12, 14] to teach classes,6 [3] to serve as a handy reference for cryptographic
algorithms and protocols (also available electronically on the Internet),7 and [16] to
provide an overview about practically relevant cryptographic standards. After having

4 In: “Cryptography as Duct Tape,” a short note written to the Senate Commerce and Judiciary
Committees in opposition to mandatory key recovery proposals on June 12, 1997 (the note is
available electronically at http://theory.lcs.mit.edu/∼rivest/ducttape.txt).

5 In Chapter 1, we explain what modern cryptography really means and how it differs from classical
cryptography.

6 Prior to this book, I used to recommend [10] as a textbook for cryptography.
7 http://www.cacr.math.uwaterloo.ca/hac

xix

xx

spent a considerable amount of time compiling and writing a manuscript that can be
used to lecture and teach classes on contemporary cryptography, I decided to turn
the manuscript into a book and to publish it in Artech House’s computer security
series.8 The present book is the result of this endevour.

More often than not, mathematicians care about theoretical concepts and mod-
els without having applications in mind. On the other side, computer scientists and
electrical engineers often deal with applications without having studied and properly
understood the underlying mathematical fundamentals and principles. Against this
background, Contemporary Cryptography tries to build a bridge and fill the gap
between these two communities. As such, it is intended to serve the needs of math-
ematicians who want to be educated in contemporary cryptography as a possible
application of their field(s) of study, as well as computer scientists and electrical
engineers who want to be educated in the relevant mathematical fundamentals and
principles. Consequently, the target audience for Contemporary Cryptography in-
cludes all of them: mathematicians, computer scientists, and electrical engineers,
both in research and practice. Furthermore, computer practitioners, consultants, and
information officers should also gain insight into the fascinating and quickly evolv-
ing field.

Contemporary Cryptography is written to be comprehensive and tutorial in na-
ture. The book starts with two chapters that introduce the topic and briefly overview
the cryptographic systems (or cryptosystems) in use today. After a thorough intro-
duction of the mathematical fundamentals and principles that are at the heart of
contemporary cryptography (Part I), the cryptographic systems are addressed in de-
tail and defined in a mathematically precise sense. The cryptographic systems are
discussed in three separate parts, addressing unkeyed cryptosystems (Part II), secret
key cryptosystems (Part III), and public key cryptosystems (Part IV). Part IV also
includes cryptographic protocols that make use of public key cryptography. Finally,
the book finishes with an epilogue (Part V) and two appendixes.

Each chapter is intended to be comprehensive (on its own) and includes a list
of references that can be used for further study. Where necessary and appropriate, I
have also added some uniform resource locators (URLs) as footnotes to the text. The
URLs point to corresponding information pages on the World Wide Web (WWW).
While care has been taken to ensure that the URLs are valid now, unfortunately—due
to the dynamic nature of the Internet and the WWW—I cannot guarantee that these
URLs and their contents remain valid forever. In regard to the URLs, I apologize for
any information page that may have been removed or replaced since the writing and
publishing of the book. To make the problem less severe, I have not included URLs
I expect to be removed or replaced anytime soon.

8 http://www.esecurity.ch/serieseditor.html

Preface xxi

Readers who like to experiment with cryptographic systems are invited to
download, install, and play around with some of the many software packages that
have been written and are available for demonstrational and educational purposes.
Among these packages, I particularly recommend CrypTool. CrypTool is a demon-
stration and reference program for cryptography that is publicly and freely available9

and that provides insight into the basic working principles of the cryptographic al-
gorithms and protocols in use today.

If you want to implement and market some of the cryptographic techniques or
systems addressed in this book, then you must must be very cautious and note that
the entire field of cryptography is tied up in patents and corresponding patent claims.
Consequently, you must make sure that you have an appropriate license or a good
lawyer (or both).

In either case, regulations for the use and export of cryptographic products
(see, for example, Bert-Jaap Koops’ Crypto Law Survey)10 differ in different coun-
tries. For example, France had regulations for the use of cryptographic techniques
until recently, and some countries—especially in the Far East—still have. On the
other side, some countries require specific data to be encrypted according to certain
standards or best practices. This is particularly true for personal and medical data.
With regard to the export of cryptographic products, the situation is even more in-
volved. For example, since 1996 the U.S. export controls on cryptographic products
are administered by the Bureau of Industry and Security (BIS) of the Department of
Commerce (DoC). Rules governing exports and reexports of cryptographic products
are found in the Export Administration Regulations (EAR). If a U.S. company wants
to sell a cryptographic product overseas, it must have export approval according to
the EAR. In January 2000, the DoC published a regulation implementing the White
House’s announcement of a new framework for U.S. export controls on encryp-
tion items.11 The policy was in response to the changing global market, advances
in technology, and the need to give U.S. industry better access to these markets,
while continuing to provide essential protections for national security. The regu-
lation enlarged the use of license exceptions, implemented the changes agreed to at

9 http://www.cryptool.com or http://www.cryptool.org
10 http://rechten.uvt.nl/koops/cryptolaw
11 The announcement was made on September 16, 1999.

xxii

the Wassenaar Arrangement12 on export controls for conventional arms and dual-use
goods and technologies in December 1998, and eliminated the deemed export rule
for encryption technology. In addition, new license exception provisions were cre-
ated for certain types of encryption, such as source code and toolkits. Some countries
are exempted from the regulation (i.e., Cuba, Iran, Iraq, Libya, North Korea, Sudan,
and Syria). We are not going to address legal issues regarding the use and export of
cryptographic products in this book.13 But note again that you may talk to a lawyer
before you use and/or export cryptographic products.

Last, but not least, it is important to note that Contemporary Cryptography
addresses only the materials that are published and available in the open literature.
These materials are, for example, presented and discussed at the conferences14 held
by the International Association for Cryptologic Research (IACR).15 There may (or
may not) be additional and complementary materials available in the backyards of
secret services and intelligence agencies. These materials are subject to speculations
and rumors; sometimes they even provide the starting point for bestselling books
and movies. Contemporary Cryptography does not speculate about these materials.
It is, however, important to note and always keep in mind that these materials may
still exist and that their mere existence may make this book or parts of it obsolete
(once their existence becomes publicly known). For example, the notion of public
key cryptography was invented by employees of a British intelligence agency a few
years before it was published in the open literature (see Section 1.3). Also, the data
encryption standard (DES) was designed to make it resistant against differential
cryptanalysis—a cryptanalytical attack against symmetric encryption systems that
was discussed in the public literature almost two decades after the standardization
of the DES (see Section 10.2.1.4). There are certainly many other (undocumented)
examples to illustrate this point.

12 The Wassenaar Arrangement is a treaty originally negotiated in July 1996 and signed by 31 coun-
tries to restrict the export of dual-use goods and technologies to specific countries considered to be
dangerous. The countries that have signed the Wassenaar Arrangement include the former Coordi-
nating Committee for Multilateral Export Controls (COCOM) member and cooperating countries,
as well as some new countries such as Russia. The COCOM was an international munitions con-
trol organization that also restricted the export of cryptography as a dual-use technology. It was
formally dissolved in March 1994. More recently, the Wassenaar Arrangement was updated. The
participating countries of the Wassenaar Arrangement are Argentina, Australia, Austria, Belgium,
Bulgaria, Canada, Czech Republic, Denmark, Finland, France, Germany, Greece, Hungary, Ireland,
Italy, Japan, Luxembourg, The Netherlands, New Zealand, Norway, Poland, Portugal, Republic of
Korea, Romania, Russian Federation, Slovakia, Spain, Sweden, Switzerland, Turkey, Ukraine, the
United Kingdom, and the United States. Further information on the Wassenaar Arrangement can be
found at http://www.wassenaar.org.

13 There are usually no regulations for the import of cryptographic products.
14 The three major annual conferences are CRYPTO, EUROCRYPT, and ASIACRYPT.
15 http://www.iacr.org

Preface xxiii

I hope that Contemporary Cryptography serves your needs. Also, I would
like to take the opportunity to invite you as a reader to let me know your
opinions and thoughts. If you have something to correct or add, please let me
know. If I have not expressed myself clearly, please let me know. I appreci-
ate and sincerely welcome any comment or suggestion in order to update the
book in future editions and to turn it into an appropriate reference book that can
be used for educational purposes. The best way to reach me is to send a mes-
sage to rolf.oppliger@esecurity.ch. You can also visit the book’s home page at
http://www.esecurity.ch/Books/cryptography.html. I use this page to periodically
post errata lists, additional information, and complementary material related to the
topic of the book (e.g., slides that can be used to lecture and teach introductory
courses on contemporary cryptography). I’m looking forward to hearing from you
in one way or another.

References

[1] Koblitz, N.I., A Course in Number Theory and Cryptography, 2nd edition. Springer-Verlag, New
York, 1994.

[2] Schneier, B., Applied Cryptography: Protocols, Algorithms, and Source Code in C, 2nd edition.
John Wiley & Sons, New York, 1996.

[3] Menezes, A., P. van Oorschot, and S. Vanstone, Handbook of Applied Cryptography. CRC Press,
Boca Raton, FL, 1996.

[4] Luby, M., Pseudorandomness and Cryptographic Applications. Princeton Computer Science
Notes, Princeton, NJ, 1996.

[5] Buchmann, J.A., Introduction to Cryptography. Springer-Verlag, New York, 2000.

[6] Garrett, P.B., Making, Breaking Codes: Introduction to Cryptology. Prentice Hall PTR, Upper
Saddle River, NJ, 2001.

[7] Mollin, R.A., An Introduction to Cryptography. Chapman & Hall/CRC, Boca Raton, FL, 2001.

[8] Goldreich, O., Foundations of Cryptography: Volume 1, Basic Tools. Cambridge University Press,
Cambridge, UK, 2001.

[9] Delfs, H., and H. Knebl, Introduction to Cryptography: Principles and Applications. Springer-
Verlag, New York, 2002.

[10] Stinson, D., Cryptography: Theory and Practice, 2nd edition. Chapman & Hall/CRC, Boca
Raton, FL, 2002.

[11] Mollin, R.A., RSA and Public-Key Cryptography. Chapman & Hall/CRC, Boca Raton, FL, 2002.

[12] Smart, N., Cryptography, An Introduction. McGraw-Hill Education, UK, 2003.

[13] Ferguson, N., and B. Schneier, Practical Cryptography. John Wiley & Sons, New York, 2003.

xxiv

[14] Mao, W., Modern Cryptography: Theory and Practice. Prentice Hall PTR, Upper Saddle River,
NJ, 2003.

[15] Goldreich, O., Foundations of Cryptography: Volume 2, Basic Applications. Cambridge Univer-
sity Press, Cambridge, UK, 2004.

[16] Dent, A.W., and C.J. Mitchell, User’s Guide to Cryptography and Standards. Artech House
Publishers, Norwood, MA, 2004.

Acknowledgments

There are many people involved in the writing and publication of a book. I thank
all of them. In particular, I thank Kurt Bauknecht, Dieter Hogrefe, Hansjürg Mey,
and Günther Pernul for their ongoing interest and support for my scientific work;
Daniel Bleichenbacher, Pascal Junod, Javier Lopez, Rafal Lukawiecki, Ueli Maurer,
Hans Oppliger, Ruedi Rytz, Peter Stadlin for answering specific questions, reading
parts of the manuscript, and discussing some interesting questions with me; Ed
Dawson for reviewing the entire manuscript; and Gene Spafford for providing
the foreword. Once again, the staff at Artech House was enormously helpful in
producing and promoting the book. Among these people, I am particularly grateful
to Julie Lancashire, Tim Pitts, Tiina Ruonamaa, and Wayne Yuhasz. My most
important thanks go to my family—my wife Isabelle and our beloved children
Lara and Marc. Without their encouragement, support, patience, and love, this book
would not exist.

xxv

xxvi

Chapter 1

Introduction

In this chapter, we introduce the topic of the book (i.e., contemporary cryptography)
at a high level of abstraction. More specifically, we elaborate on cryptology (includ-
ing cryptography) in Section 1.1, address cryptographic systems (or cryptosystems)
in Section 1.2, provide some historical background information in Section 1.3, and
outline the rest of the book in Section 1.4.

1.1 CRYPTOLOGY

The term cryptology is derived from the Greek words “kryptós,” standing for
“hidden,” and “lógos,” standing for “word.” Consequently, the meaning of the term
cryptology is best paraphrased as “hidden word.” This paraphrase refers to the
original intent of cryptology, namely to hide the meaning of specific words and to
protect their confidentiality and secrecy accordingly. As will (hopefully) become
clear throughout the rest of the book, this viewpoint is far too narrow, and the
term cryptology is nowadays used for many other security-related purposes and
applications (in addition to the protection of the confidentiality and secrecy of
messages).

More specifically, cryptology refers to the mathematical science and field of
study that comprises both cryptography and cryptanalysis.

• The term cryptography is derived from the Greek words “kryptós” (see above)
and “gráphein,” standing for “write.” Consequently, the meaning of the term
cryptography is best paraphrased as “hidden writing.” According to Request
for Comments (RFC) 2828 [1], cryptography refers to the “mathematical sci-
ence that deals with transforming data to render its meaning unintelligible

1

2 Contemporary Cryptography

(i.e., to hide its semantic content), prevent its undetected alteration, or pre-
vent its unauthorized use. If the transformation is reversible, cryptography
also deals with restoring encrypted data to intelligible form.” Consequently,
cryptography refers to the process of protecting data in a very broad sense.

• The term cryptanalysis is derived from the Greek words “kryptós” (see
above) and “analýein,” standing for “to loosen.” Consequently, the meaning
of the term can be paraphrased as “loosen the hidden word.” This paraphrase
refers to the process of destroying the cryptographic protection, or—more
generally—to study the security properties and possibilities to break cryp-
tographic techniques and systems. Again referring to RFC 2828 [1], the term
cryptanalysis is used to refer to the “mathematical science that deals with
analysis of a cryptographic system in order to gain knowledge needed to break
or circumvent the protection that the system is designed to provide.” As such,
the cryptanalyst is the antagonist of the cryptographer, meaning that his or
her job is to break or at least circumvent the protection the cryptographer has
designed and implemented in the first place.

Many other definitions for the terms cryptology, cryptography, and cryptanaly-
sis are available and can be found in the relevant literature (or on the Internet, respec-
tively). For example, the term cryptography is sometimes said to refer to the study
of mathematical techniques related to all aspects of information security (e.g., [2]).
These aspects include (but are not restricted to) data confidentiality, data integrity,
entity authentication, data origin authentication, and/or nonrepudiation. Again, this
definition is very broad and comprises anything that is directly or indirectly related
to information security.

In some literature, the term cryptology is even said to include steganography
(in addition to cryptography and cryptanalysis).

• The term steganography is derived from the Greek words “steganos,” standing
for “impenetrable,” and “gráphein (see above). Consequently, the meaning of
the term is best paraphrased as “impenetrable writing.” According to Request
for Comments (RFC) 2828 [1], the term steganography refers to “methods
of hiding the existence of a message or other data. This is different than
cryptography, which hides the meaning of a message but does not hide
the message itself.” An example of a formerly used steganographic method
is invisible ink. Contemporary methods are more sophisticated and try to
hide additional information in electronic files. In general, this information is
arbitrary. It may, however, also be used to name the owner of a file or the
recipient thereof. In the first case, one refers to digital watermarking, whereas
in the second case one refers to digital fingerprinting. Digital watermarking

Introduction 3

and fingerprinting are currently very active areas of steganographic research
and development.

����������

��������	�
� �����	�	���
� ����	����	�
�

Figure 1.1 The relationship between cryptology, cryptography, cryptanalysis, and steganography.

The relationship between cryptology, cryptography, cryptanalysis, and stegano-
graphy is overviewed in Figure 1.1. In this book, we address cryptography in a rather
narrow sense (this narrow sense is illustrated with a box in Figure 1.1). We elabo-
rate on cryptanalysis only where necessary and appropriate, and we do not address
steganography at all. There are many other books that provide useful information
about steganography and steganographic technologies and techniques in general
(e.g., [3, 4]), and digital watermarking and digital fingerprinting in particular (e.g.,
[5, 6]).

1.2 CRYPTOGRAPHIC SYSTEMS

According to RFC 2828 [1], the term cryptographic system (or cryptosystem in
short) refers to “a set of cryptographic algorithms together with the key management
processes that support use of the algorithms in some application context.” Again, this
definition is fairly broad and comprises all kinds of cryptographic algorithms (and
protocols).

In some literature, the term cryptographic scheme is used to refer to a crypto-
graphic system. Unfortunately, it is seldom explained what the difference(s) between
a (cryptographic) scheme and a system really is (are). So for the purpose of this
book, we don’t make a distinction, and we use the term cryptographic system to
refer to either of them. We hope that this simplification is not too confusing. In the
realm of digital signatures, for example, people frequently talk about digital signa-
ture schemes. In this book, however, we are talking about digital signature systems
and actually mean the same thing.

4 Contemporary Cryptography

If one is talking about a cryptographic system, then one is often talking about
one or several algorithms. The term algorithm,1 in turn, is best defined as suggested
in Definition 1.1.

Definition 1.1 (Algorithm) An algorithm is a well-defined computational proce-
dure that takes a variable input and generates a corresponding output.

Consequently, an algorithm is simply a computational procedure that is well
defined and that turns a variable input into a corresponding output (according
to the computational procedure it defines). It is sometimes also required that an
algorithm halts within a reasonable amount of time (for any meaningful definition
of “reasonable”). In either case, Definition 1.1 is rather vague and mathematically
unprecise. It neither says what the computational model for the algorithm is, nor does
it say anything about the problem the algorithm is supposed to solve (e.g., computing
a mathematical function). Consequently, from a theoretical viewpoint, an algorithm
can be more precisely defined as a well-defined computational procedure for a well-
defined computational model for solving a well-defined problem. This definition,
however, is a little bit clumsy, and we use the simpler (and more intuitive) definition
given in Definition 1.1.

In either case, it is important to distinguish between deterministic and proba-
bilistic algorithms:

• An algorithm is deterministic if its behavior is completely determined by the
input. Consequently, the algorithm always generates the same output for the
same input (if it is executed multiple times).

• An algorithm is probabilistic (or randomized) if its behavior is not completely
determined by the input, meaning that the algorithm internally uses and
takes advantage of some randomly (or pseudo-randomly) generated values.
Consequently, a probabilistic algorithm may generate a different output each
time it is executed with the same input (if it is executed multiple times).
There are different types of probabilistic algorithms, and in Section 6.6.3 we
distinguish between Las Vegas, Monte Carlo, and Atlantic City algorithms.

An algorithm may be implemented by a computer program that is written in
a specific programming language (e.g., Pascal, C, or Java). Whenever we describe
algorithms in this book, we don’t use a specific programming language; we use
a formal notation instead. The notation used to describe algorithms is sketched
in Algorithm 1.1. The input and output parameters of an algorithm are written in
brackets at the beginning and at the end of the algorithm description. The body of

1 The term algorithm is derived from the name of the mathematician Mohammed ibn-Musa al-
Khwarizmi, who was part of the royal court in Baghdad and lived from about 780 to 850.

Introduction 5

the algorithm consists of a set of arbitrary computational steps that are executed
sequentially.

Algorithm 1.1 The notation used to describe algorithms.

(input parameters)
. . .

computational step
. . .

(output parameters)

If more than one entity is involved in an algorithm (or the computational
procedure it defines, respectively), then one is in the realm of protocols.2 As
suggested in Definition 1.2, a protocol can be viewed as a distributed algorithm.

Definition 1.2 (Protocol) A protocol is a distributed algorithm in which two or
more entities take part.

Alternatively, one could also define a protocol as a distributed algorithm in
which a set of entities takes part. In this case, it becomes immediately clear that
an algorithm also represents a protocol, namely one that is degenerated in a certain
sense (i.e., the set consists of only one entity). Hence, an algorithm can always be
viewed as a special case of a protocol. The major distinction between an algorithm
and a protocol is that only one entity is involved in the former, whereas typically
two or more entities are involved in the latter. This distinguishing fact is important
and must be kept in mind when one talks about algorithms and protocols (not only
cryptographic ones).

Similar to an algorithm, a protocol may be deterministic or probabilistic (de-
pending on whether the protocol internally uses and takes advantage of random val-
ues). In fact, many protocols overviewed and discussed in this book are probabilistic
in nature.

In this book, we are mainly interested in cryptographic algorithms and proto-
cols as suggested in Definitions 1.3 and 1.4.

Definition 1.3 (Cryptographic algorithm) A cryptographic algorithm is an algo-
rithm that employs and makes use of cryptographic techniques and mechanisms.

Definition 1.4 (Cryptographic protocol) A cryptographic protocol is a protocol
that employs and makes use of cryptographic techniques and mechanisms.

2 The term protocol originates from diplomacy.

6 Contemporary Cryptography

Remember the definition for a cryptographic system (or cryptosystem) given
in RFC 2828 and quoted on page 3. According to this definition, a cryptosystem
may comprise more than one algorithm, and the algorithms may not necessarily be
executed by the same entity (i.e., they may be executed by multiple entities in a dis-
tributed way). Consequently, this notion of a cryptosystem comprises the notion of
a cryptographic protocol as suggested in Definition 1.4. Hence, another way to look
at cryptographic algorithms and protocols is to say that a cryptographic algorithm
is a single-entity cryptosystem, whereas a cryptographic protocol is a multientity or
multiple entities cryptosystem. These terms, however, are less frequently used in the
literature. We don’t use them in this book either.

In either case, it is important to note that cryptographic applications may
consist of multiple (sub)protocols, that these (sub)protocols and their concurrent
executions may interact in some subtle ways, and that these interactions and interde-
pendencies may be exploited by various chosen-protocol attacks (see, for example,
[7] for the notion of a chosen-protocol attack). As of this writing, we are just at the
beginning of properly understanding chosen-protocol attacks and what they can be
used for in cryptanalysis. These attacks are not further addressed in this book.

In the cryptographic literature, it is quite common to use human names to refer
to the entities that take part and participate in a cryptographic protocol (e.g., a Diffie-
Hellman key exchange). For example, in a two-party protocol the participating
entities are usually called Alice and Bob. This is a convenient way of making things
unambiguous with relatively few words, since the pronoun she can then be used for
Alice, and he can be used for Bob. The disadvantage of this naming scheme is that
people assume that the names are referring to people. This need not be the case, and
Alice, Bob, and all other entities may be computer systems, cryptographic devices,
or anything else. In this book, we don’t follow the tradition of using Alice, Bob, and
the rest of the gang. Instead, we use single-letter characters, such as A, B, C, . . . , to
refer to the entities that take part and participate in a cryptographic protocol. This is
less fun (I guess), but more appropriate (I hope).

The cryptographic literature is also full of examples of more or less useful
cryptographic protocols. Some of these protocols are overviewed, discussed, and
put into perspective in this book. To formally describe a (cryptographic) protocol in
which two parties (i.e., A and B) take part, we use the notation sketched in Protocol
1.1. Some input parameters may be required on either side of the protocol (note that
the input parameters are not necessarily the same). The protocol then includes a set
of computational and communicational steps. Each computational step may occur
only on one side of the protocol, whereas each communicational step requires data
to be transferred from one side to the other. In this case, the direction of the data
transmission is indicated with a directed arrow. Finally, some parameters may be
output on either side of the protocol. These output parameters actually represent

Introduction 7

Protocol 1.1 The notation used for protocols.

A B
(input parameters) (input parameters)

.
computational step computational step

.
−→
. . .
←−

.
computational step computational step

.
(output parameters) (output parameters)

the result of the protocol execution. Similar to the input parameters, the output
parameters must not necessarily be the same on either side of the protocol execution.
In many cases, however, the output parameters are the same (and represent the result
and the common output of the protocol execution).

1.2.1 Classes of Cryptographic Systems

Cryptographic systems may or may not use secret parameters (e.g., cryptographic
keys). Furthermore, if secret parameters are used, then they may or may not be
shared between the participating entities. Consequently, there are at least three
classes of cryptographic systems that can be distinguished,3 and these classes are
characterized in Definitions 1.5–1.7.

Definition 1.5 (Unkeyed cryptosystem) An unkeyed cryptosystem is a crypto-
graphic system that uses no secret parameter.

Definition 1.6 (Secret key cryptosystem) A secret key cryptosystem is a crypto-
graphic system that uses secret parameters that are shared between the participating
entities.

Definition 1.7 (Public key cryptosystem) A public key cryptosystem is a crypto-
graphic system that uses secret parameters that are not shared between the partici-
pating entities.

In Chapter 2, we introduce and briefly overview some representatives of
unkeyed, secret key, and public key cryptosystems. These representatives are further

3 This classification scheme is due to Ueli Maurer.

8 Contemporary Cryptography

addressed in Parts II (unkeyed cryptosystems), III (secret key cryptosystems), and IV
(public key cryptosystems) of this book. In these parts, we also provide definitions
that are mathematically more precise.

1.2.2 Secure Cryptographic Systems

The goal of cryptography is to design, implement, deploy, and make use of crypto-
graphic systems that are secure in some meaningful way. In order to make precise
statements about the security of a cryptographic system, one must formally define
what the term “security” really means. Unfortunately, reality looks a little bit differ-
ent, and the literature is full of cryptographic systems that are claimed to be secure
without providing an appropriate definition for the term security. This is unfortunate,
because anything can be claimed to be secure, unless its meaning is defined and
precisely nailed down.

In general, a security definition must answer (at least) the following two
questions:

1. What are the capabilities of the adversary? An answer to this question must
specifiy, for example, the adversary’s computing power, available memory,
available time, types of feasible attacks, and access to a priori or side in-
formation. For some of these parameters, it must be specified whether they
are finite or not. Most importantly, it may be reasonable to assume that there
are adversaries with infinite computing power at their disposal, meaning that
they can perform infinitely many computations in a given amount of time.
The alternative is to consider adversaries with finite computing power at their
disposal. Obviously, these adversaries can only perform a finite number of
computations in a given amount of time. A similar distinction can be made
with respect to the available memory and available time. Note, however, that
it is reasonable to assume that no adversary has an infinite amount of time
at disposal. Furthermore, the types of feasible attacks depend on the crypto-
graphic system in question. For example, in Sections 10.1 and 14.1 we say
that ciphertext-only, known-plaintext, (adaptive) chosen-plaintext, and (adap-
tive) chosen-ciphertext attacks are relevant for (symmetric and asymmetric)
encryption systems. Other cryptosystems may be subject to other types of
attacks.

2. What is the task the adversary must solve in order to be successful (i.e.,
to break the security of the system)? In a typical setting, the adversary’s
task is to find (i.e., compute, guess, or otherwise determine) one or several
pieces of information he or she should not be able to know. For example,
if the adversary is able to determine the cryptographic key used to encrypt

Introduction 9

a message, then he or she must certainly be considered to be successful.
There are, however, also weaker notions of successful attacks. For example, in
modern cryptography one usually defines a theoretically perfect ideal system
and says that the adversary is successful if he or she can tell it apart from a real
system (i.e., decide whether he or she is interacting with a real system or an
ideal system). If he or she cannot tell the systems apart, then the real system
has all relevant properties of the ideal system (at least for a computationally
bounded observer), and hence the real system is arguably as secure as the ideal
one. Many security proofs follow this line of argumentation.

Strong security definitions are obtained when the adversary is assumed to be
as powerful as possible, whereas the task he or she must solve is assumed to be as
simple as possible. Taking these notes into account, a secure cryptographic system
can be defined as suggested in Definition 1.8.

Definition 1.8 (Secure cryptographic system) A cryptographic system is secure if
an adversary with specified capabilities is not able to break it, meaning that he or
she is not able to solve the specified task.

Depending on the adversary’s capabilities, there are two basic notions of
security for a cryptographic system.

Unconditional security: If the adversary is not able to solve the task even with
infinite computing power, then we talk about unconditional or information-
theoretic security. The mathematical theories behind this type of security are
probability theory and information theory, as briefly introduced in Chapters 4
and 5.

Conditional security: If the adversary is theoretically able to solve the task, but it
is computationally infeasible for him or her (meaning that he or she is not able
to solve the task given his or her resources, capabilities, and access to a priori
or side information), then we talk about conditional or computational secu-
rity. The mathematical theory behind this type of security is computational
complexity theory, as briefly introduced in Chapter 6.

Interestingly, there are cryptosystems known to be secure in the strong sense
(i.e., unconditionally secure), whereas there are no cryptosystems known to be
secure in the weak sense (i.e., computationally secure). Not even the existence of
conditionally or computationally secure cryptosystems has formally been proven
so far. The underlying problem is that it is generally not possible to prove lower
bounds for the computational complexity of a problem (this is an inherent weakness
of complexity theory as we know and use it today).

10 Contemporary Cryptography

In some literature, provable security is mentioned as yet another notion of
security (e.g., [8]). The idea of provable security goes back to the early days of
public key cryptography, when Whitfield Diffie and Martin E. Hellman proposed
a complexity-based proof (for the security of a public key cryptosystem) in their
seminal paper entitled “New Directions in Cryptography” [9].4 The idea is to
show that breaking a cryptosystem is computationally equivalent to solving a hard
problem. This means that one must prove the following two directions:

• If the hard problem can be solved, then the cryptosystem can be broken;

• If the cryptosystem can be broken, then the hard problem can be solved.

Diffie and Hellman proved the first direction for their key exchange protocol
(see Section 16.3). They did not prove the second direction.5 This is unfortunate,
because the second direction is the important direction from a security perspective.
If we can prove that an adversary who is able to break a cryptosystem is also able
to solve the hard problem, then we can argue that it is very unlikely that such
an adversary really exists and hence that the cryptosystem in question is likely
to be secure. Michael O. Rabin was the first person who found and proposed a
cryptosystem that can be proven to be computationally equivalent to a hard problem
(i.e., the integer factorization problem as captured in Definition 7.11) [11]. The
Rabin public key cryptosystem is further addressed in Section 14.2.2.

The notion of (provable) security has fueled a lot of research since the late
1970s and early 1980s. In fact, there are many (public key) cryptosystems shown
to be provably secure in exactly this sense. It is, however, important to note that a
complexity-based proof is not absolute and that it is only relative to the (assumed)
intractability of the underlying mathematical problem(s). This is a similar situation
to proving that a given problem isNP-complete. It proves that the problem is at least
as difficult as any other NP-complete problem, but it does not provide an absolute
proof of the computational difficulty of the problem.6

More recently (i.e., since about the 1990s), people have come up with a
methodology for designing cryptographic systems (typically security protocols) that
are provably secure in the “reductionist” sense mentioned earlier, and that consists
of the following two steps:

4 This paper is the one that officially gave birth to public key cryptography. There is a companion
paper entitled “Multiuser Cryptographic Techniques” that was presented by the same authors at the
National Computer Conference that took place on June 7–10, 1976, in New York City.

5 Ueli M. Maurer made the first serious attempt to prove the second direction [10].
6 Refer to Section 6.6.2.2 to get a more detailed overview aboutNP-completeness andNP-complete

problems.

Introduction 11

• First, an ideal system is designed in which all parties (including the adversary)
have access to a random function (also known as random oracle).7 This ideal
system is then proven to be secure in the sense given earlier.

• Second, one replaces the random oracle with a “good” and “appropriately
chosen” cryptographic hash function, such as MD5 or SHA-1, and provides
all parties (again, including the adversary) with a specification of this function.

Consequently, one obtains an implementation of the ideal system in the real
world where random oracles do not exist. Due to its use of random oracles, the
design methodology is commonly referred to as random oracle methodology. It
yields cryptographic systems that are provably secure in the random oracle model.
Unfortunately, it has been shown that it is possible to construct cryptographic
systems that are provably secure in the random oracle model, but that become
insecure whenever the cryptographic hash function used in the protocol (to replace
the random oracle) is specified and nailed down. This theoretical result is worrisome,
and since its publication many researchers have started to think controversially
about the random oracle methodology in general, and the random oracle model in
particular. At least it must be noted that formal analyses in the random oracle model
are not strong security proofs (because of the underlying ideal assumptions about
the randomness properties of the cryptographic hash functions). The random oracle
model is further addressed in Section 13.3. For the purpose of this book, we don’t
consider provable security (with or without the random oracle model) as a security
notion of its own; instead we treat it as a special case of conditional security.

In the past, we have seen many examples in which people have tried to improve
the security of a cryptographic system by keeping secret its design and internal
working principles. This approach is sometimes referred to as “security through
obscurity.” Many of these systems do not work and can be broken trivially.8 This
insight has a long tradition in cryptography, and there is a well-known cryptographic
principle—the Kerckhoffs’ principle9—that basically says that a cryptographic sys-
tem should be designed so as to be secure when the adversary knows all details of
the system, except for the values explicitly declared to be secret, such as a secret
cryptographic key [12]. We follow this principle in this book, and hence we only
address cryptosystems for which we can assume that the adversary knows all of the
details of the system.

The design of a secure cryptographic system is a difficult and challenging task.
One can neither rely on intuitions regarding the “typical” state of the environment in

7 The notion of a random function is introduced in Section 13.1.
8 Note that “security through obscurity” may work well outside the realm of cryptography.
9 The principle is named after Auguste Kerckhoffs who lived from 1835 to 1903.

12 Contemporary Cryptography

which the system operates (because the adversary will try to manipulate the environ-
ment into “untypical” states), nor can one be content with countermeasures designed
to withstand specific attacks (because the adversary will try to attack the systems in
ways that are different from the ones the designer envisioned). Cryptographic sys-
tems that are based on make-believe, adhoc approaches and heuristics are typically
broken sooner or later. Consequently, the design of a secure cryptographic system
should be based on firm foundations. It typically consists of the following two steps:

1. In the definitional step, the problem the cryptographic system is intended to
solve must be identified, precisely defined, and formally specified.

2. In the constructive step, a cryptographic system that satisfies the definition
distilled in step one, possibly while relying on intractability assumptions, must
be designed.

Again, it is important to note that most parts of modern cryptography rely
on intractability assumptions and that relying on such assumptions seems to be
unavoidable today (see Chapter 21). Still, there is a huge difference between relying
on an explicitly stated intractability assumption and just assuming (or rather hoping)
that an ad hoc construction satisfies some unspecified or vaguely specified goals.

1.2.3 Side Channel and Related Attacks

It is important to note (and always keep in mind) that an implementation of a
secure cryptographic system may not necessarily be secure. In fact, many attacks
can be mounted against a particular implementation of a (secure) cryptographic
system (rather than its mathematical properties). For example, there are attacks that
take advantage of and try to exploit the side channel information that a particular
implementation may leak. These attacks are called side channel attacks. Since about
the middle of the 1990s, people have found and come up with many possibilities to
mount side channel attacks. The following list is not comprehensive.

• Timing attacks take advantage of and try to exploit the correlation between
a cryptographic key and the running time of a (cryptographic) operation that
employs this key [13]. Consider, for example, the square-and-multiply algo-
rithm (i.e., Algorithm 3.3) that is frequently used in public key cryptography
to decrypt data or digitally sign messages. The running time of this algorithm
mainly depends on the number of ones in the argument that represents the
(private) exponent and key; hence the running time of the algorithm provides
some side channel information about the particular key in use. This is a very
general problem, and there are basically two possibilities to protect against
timing attacks. The first possibility is to make sure that a specific operation

Introduction 13

always takes a fixed amount of time (or at least an amount of time that is not
related to the cryptographic key in use). The second possibility is to pseudo-
randomly and reversably transform the data on which the cryptographic oper-
ation is applied (i.e., the data is blinded). Both possibilities have the disadvan-
tage that they lead to performance penalties.

• Differential fault analysis takes advantage of and exploits the fact that er-
rors on cryptographic operations that depend on a particular cryptographic
key may also leak some information about the key in use. The errors, in
turn, can be random, latent (e.g., due to a buggy implementation), or—most
interestingly—induced. In fact, people have tried all kinds of physical pressure
to induce such errors, and they have been surprisingly successful in analyzing
them (e.g., [14, 15]). Protection against differential fault analysis seems to be
more involved than protection against timing attacks.

• A conceptually similar but still very different side-channel attack is sometimes
called failure analysis. Failure analysis takes advantage of and exploits the
fact that many implementations of cryptographic operations return notifica-
tions (e.g., error messages) if they fail. Consequently, these implementations
provide a one-bit oracle that depends on the cryptographic operation and key
in use. It has been shown that such an oracle—when invoked a very large num-
ber of times—can eventually be used to misuse the key (e.g., [16]). Designing
and implementing cryptographic systems in a way that is resistant to failure
analysis is a currently very active area of research and development.

• Differential power analysis exploits the fact that any hardware device con-
sumes power, because this power consumption can be monitored and analyzed
while a cryptographic operation is going on. Based on the fact that the power
consumption varies significantly during the different steps of a cryptographic
operation, it may be possible to derive information about the cryptographic
key in use (e.g., [17]). In general, the smaller and the more specialized a hard-
ware device is, the more successful a differential power analysis is likely to
be. For example, differential power analysis has been shown to be particularly
successful against smartcards. There are a couple of possibilities to protect
against differential power analysis, such as keeping the power consumption
stable or blinding the data before the cryptographic operations are applied.

In addition to these side-channel attacks, many other attacks (against tam-
per resistant hardware devices) employ invasive measuring techniques (e.g., [18,
19]). This field of study has a long tradition in computer security. For example, the
U.S. government has invested a lot of time and money in the classified TEMPEST

14 Contemporary Cryptography

program10 to prevent sensitive information from leaking through electromagnetic
emanation. More recently, people have tried to exploit and employ diffuse visible
light from cathode-ray tube (CRT) displays11 and acoustic emanation12 for cryptan-
alytical purposes. From a practical point of view, all of the earlier mentioned types of
attacks (and many others that will be developed in the future) are relevant and must
be considered with care (e.g., [20]). For the purpose of this book, however, we only
mention some of the more important attacks, but we do not address them in detail.
You may refer to the referenced literature to get more information about them.

1.3 HISTORICAL BACKGROUND INFORMATION

Cryptography has a long and thrilling history that is addressed in many books (e.g.,
[21–23]). Since the very beginning of the spoken and—even more important—
written word, people have tried to transform “data to render its meaning unintelli-
gible (i.e., to hide its semantic content), prevent its undetected alteration, or prevent
its unauthorized use” [1]. According to this definition, these people have always em-
ployed cryptography and cryptographic techniques. The mathematics behind these
early systems may not have been very sophisticated, but they still employed cryp-
tography and cryptographic techniques. For example, Gaius Julius Caesar13 used
an encryption system in which every letter in the Latin alphabet was substituted
with the letter that is found three positions afterwards in the lexical order (i.e.,
“A” is substituted with “D,” “B” is substituted with “E,” and so on). This simple
additive cipher is known as Caesar cipher (see Section 10.1.1). Later on, people
employed encryption systems that use more involved mathematical transformations.
Many books on cryptography contain numerous examples of historically relevant
encryption systems—they are not repeated in this book.

Until World War II, cryptography was considered to be an art (rather than a
science) and was primarily used in the military and diplomacy. The following two
developments and scientific achievements turned cryptography from an art into a
science:

• During World War II, Claude E. Shannon14 developed a mathematical the-
ory of communication [24] and a related communication theory of secrecy

10 http://www.eskimo.com/∼joelm/tempest.html
11 http://www.cl.cam.ac.uk/TechReports/UCAM-CL-TR-577.pdf
12 http://www.wisdom.weizmann.ac.il/∼tromer/acoustic
13 Gaius Julius Caesar was a Roman emperor who lived from 102 BC to 44 BC.
14 Claude E. Shannon was a mathematician who lived from 1916 to 2001.

Introduction 15

systems [25] when he was working at AT&T Laboratories.15 After their pub-
lication, the two theories started a new branch of research that is commonly
referred to as information theory (refer to Chapter 5 for a brief introduction
on information theory).

• As mentioned earlier, Diffie and Hellman developed and proposed the idea of
public key cryptography at Stanford University in the 1970s.16 Their vision
was to employ trapdoor functions to encrypt and digitally sign electronic
documents. Informally speaking, a trapdoor function is a function that is easy
to compute but hard to invert, unless one knows and has access to some
specific trapdoor information. This information is the private key that must
be held by only one person. Diffie and Hellman’s work culminated in a key
agreement protocol (i.e., the Diffie-Hellman key exchange protocol described
in Section 16.3) that allows two parties that share no prior secret to exchange
a few messages over a public channel and to establish a shared (secret) key.
This key can then be used as a session key.

After Diffie and Hellman published their discovery, a number of public key
cryptosystems were developed and proposed. Some of these systems are still in use
today, such as the RSA [27] and ElGamal [28] public key cryptosystems. Other
systems, such as a number of public key cryptosystems based on the knapsack
problem17 have been broken and are no longer in use today. Some public key
cryptosystems are overviewed and discussed in Part IV of this book.

Since around the early 1990s, we have seen a wide deployment and massive
commercialization of cryptography. Today, many companies develop, market, and
sell cryptographic techniques, mechanisms, services, and products (implemented in
hardware or software) on a global scale. There are cryptography-related conferences

15 Similar studies were done by Norbert Wiener who lived from 1894 to 1964.
16 Similar ideas were pursued by Ralph C. Merkle at the University of California at Berkeley [26].

More recently, the British government announced that public key cryptography, including the
Diffie-Hellman key agreement protocol and the RSA public key cryptosystem, was invented at the
Government Communications Headquarters (GCHQ) in Cheltenham in the early 1970s by James
H. Ellis, Clifford Cocks, and Malcolm J. Williamson under the name non-secret encryption (NSE).
You may refer to the note “The Story of Non-Secret Encryption” written by Ellis in 1997 (available
at http://citeseer.nj.nec.com/ellis97story.html) to get the story. Being part of the world of secret
services and intelligence agencies, Ellis, Cocks, and Williamson were not allowed to openly talk
about their invention.

17 The knapsack problem is a well-known problem in computational complexity theory and applied
mathematics. Given a set of items, each with a cost and a value, determine the number of each item
to include in a collection so that the total cost is less than some given cost and the total value is
as large as possible. The name derives from the scenario of choosing treasures to stuff into your
knapsack when you can only carry so much weight.

16 Contemporary Cryptography

and trade shows18 one can attend to learn more about products that implement
cryptographic techniques, mechanisms, and services. The major goal of this book
is to provide some basic understanding for what is currently going on. If you want
to learn more about the practical use of cryptography to secure Internet and WWW
applications, you may refer to [29–31] or any other book about Internet and Web
security.19 These practical applications of cryptography are not addressed (repeated)
in this book.

1.4 OUTLINE OF THE BOOK

The rest of this book is organized as follows:

• In Chapter 2, Cryptographic Systems, we introduce, briefly overview, and
put into perspective the three classes of cryptographic systems (i.e., unkeyed
cryptosystems, secret key cryptosystems, and public key cryptosystems) and
some major representatives.

• In Chapter 3, Discrete Mathematics, we begin the part on mathematical
fundamentals (i.e., Part I) by discussing the aspects of discrete mathematics
that are relevant for contemporary cryptography.

• In Chapter 4, Probability Theory, we elaborate on probability theory as far as
it is relevant for contemporary cryptography.

• In Chapter 5, Information Theory, we use probability theory to quantify
information and to introduce the aspects of information theory that are used
in contemporary cryptography.

• In Chapter 6, Complexity Theory, we provide a brief introduction to complex-
ity theory as far as it is relevant for contemporary cryptography.

• In Chapter 7, One-Way Functions, we begin the part on unkeyed cryptosys-
tems (i.e., Part II) by elaborating on one-way functions and discussing some
candidate one-way functions that are frequently used in cryptography.

• In Chapter 8, Cryptographic Hash Functions, we overview and discuss cryp-
tographic hash functions and their use in contemporary cryptography.

• In Chapter 9, Random Bit Generators, we elaborate on random bit generators
and discuss some possible realizations and implementations.

18 The most important trade show is the RSA Conference held annually in ths United States, Europe,
and Asia. Refer to http://www.rsaconference.com for more information.

19 http://www.esecurity.ch/bookstore.html

Introduction 17

• In Chapter 10, Symmetric Encryption Systems, we begin the part on secret key
cryptosystems (i.e., Part III) by overviewing and discussing some symmetric
encryption systems.

• In Chapter 11, Message Authentication Codes, we address message authenti-
cation and explain how secret key cryptography can be used to generate and
verify message authentication codes (MACs).

• In Chapter 12, Pseudorandom Bit Generators, we explore the notion and elab-
orate on possible constructions for pseudorandom bit generators (PRBGs).

• In Chapter 13, Pseudorandom Functions, we introduce, discuss, and put into
perspective pseudorandom functions (PRFs).

• In Chapter 14, Asymmetric Encryption Systems, we begin the part on public
key cryptosystems (i.e., Part IV) by overviewing and discussing some asym-
metric encryption systems.

• In Chapter 15, Digital Signature Systems, we elaborate on digital signatures
and digital signature systems (DSSs) as an increasingly important application
of public key cryptography.

• In Chapter 16, Key Establishment, we address key establishment and elaborate
on corresponding key distribution and key agreement protocols.

• In Chapter 17, Entity Authentication, we elaborate on entity authentication in
general and (cryptographic) authentication protocols that implement a proof
by knowledge in particular.

• In Chapter 18, Secure Multiparty Computation, we address the problem of
how mutually distrusting parties can compute a function without revealing
their individual arguments to one another.

• In Chapter 19, Key Management, we begin the epilogue (i.e., Part V) by
discussing some aspects related to key management.

• In Chapter 20, Conclusions, we conclude with some remarks about the current
state of the art in cryptography.

• In Chapter 21, Outlook, we provide an outlook about possible and likely
developments and trends in the future.

Last but not least, the book includes two appendixes (i.e., a list of abbreviations
and acronyms and a summary of the mathematical notation used in the book), a page
about the author, and an index.

18 Contemporary Cryptography

Note that cryptography is a field of study that is far too broad to be addressed in
a single book and that you have to refer to additional material, such as the literature
referenced at the end of each chapter, if you want to learn more about a particular
topic. The aims of this book are to provide an overview, to give an introduction into
each of the previously mentioned topics and areas of research and development, and
to put everything into perspective. Most importantly, we want to ensure that you no
longer cannot see the forest for the trees.

References

[1] Shirey, R., Internet Security Glossary, Request for Comments 2828, May 2000.

[2] Menezes, A., P. van Oorschot, and S. Vanstone, Handbook of Applied Cryptography. CRC Press,
Boca Raton, FL, 1996.

[3] Wayner, P., Disappearing Cryptography, 2nd edition. Morgan Kaufmann Publishers, San Fran-
cisco, CA, 2002.

[4] Cole, E., Hiding in Plain Sight: Steganography and the Art of Covert Communication. John Wiley
& Sons, New York, 2003.

[5] Katzenbeisser, S., and F. Petitcolas (Eds.), Information Hiding Techniques for Steganography and
Digital Watermarking. Artech House Publishers, Norwood, MA, 2000.

[6] Arnold, M., M. Schmucker, and S.D. Wolthusen, Techniques and Applications of Digital Water-
marking and Content Protection. Artech House Publishers, Norwood, MA, 2003.

[7] Kelsey, J., B. Schneier, and D. Wagner, “Protocol Interactions and the Chosen Protocol Attack,”
Proceedings of the 5th International Workshop on Security Protocols, Springer-Verlag, 1997, pp.
91–104.

[8] Stinson, D., Cryptography: Theory and Practice, 2nd edition. Chapman & Hall/CRC, Boca
Raton, FL, 2002.

[9] Diffie, W., and M.E. Hellman, “New Directions in Cryptography,” IEEE Transactions on Infor-
mation Theory, IT-22(6), 1976, pp. 644–654.

[10] Maurer, U.M., “Towards the Equivalence of Breaking the Diffie-Hellman Protocol and Comput-
ing Discrete Logarithms,” Proceedings of CRYPTO ’94, Springer-Verlag, LNCS 839, 1994, pp.
271–281.

[11] Rabin, M.O., “Digitalized Signatures and Public-Key Functions as Intractable as Factorization,”
MIT Laboratory for Computer Science, MIT/LCS/TR-212, 1979.

[12] Kerckhoffs, A., “La Cryptographie Militaire,” Journal des Sciences Militaires, Vol. IX, January
1883, pp. 5-38, February 1883, pp. 161-191.

[13] Kocher, P., “Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and other
Systems,” Proceedings of CRYPTO ’96, Springer-Verlag, LNCS 1109, 1996, pp. 104–113.

Introduction 19

[14] Boneh, D., R. DeMillo, and R. Lipton, “On the Importance of Checking Cryptographic Protocols
for Faults,” Proceedings of EUROCRYPT ’97, Springer-Verlag, LNCS 1233, 1997, pp. 37–51.

[15] Biham, E., and A. Shamir, “Differential Fault Analysis of Secret Key Cryptosystems,” Proceed-
ings of CRYPTO ’97, Springer-Verlag, LNCS 1294, 1997, pp. 513–525.

[16] Bleichenbacher, D., “Chosen Ciphertext Attacks Against Protocols Based on the RSA Encryption
Standard PKCS #1,” Proceedings of CRYPTO ’98, Springer-Verlag, LNCS 1462, 1998, pp. 1–12.

[17] Kocher, P., J. Jaffe, and B. Jun, “Differential Power Analysis,” Proceedings of CRYPTO ’99,
Springer-Verlag, LNCS 1666, 1999, pp. 388–397.

[18] Anderson, R., and M. Kuhn, “Tamper Resistance — A Cautionary Note,” Proceedings of the 2nd
USENIX Workshop on Electronic Commerce, November 1996, pp. 1–11.

[19] Anderson, R., and M. Kuhn, “Low Cost Attacks on Tamper Resistant Devices,” Proceedings of
the 5th International Workshop on Security Protocols, Springer-Verlag, LNCS 1361, 1997, pp.
125–136.

[20] Anderson, R., “Why Cryptosystems Fail,” Communications of the ACM, Vol. 37, No. 11, Novem-
ber 1994, pp. 32–40.

[21] Kahn, D., The Codebreakers: The Comprehensive History of Secret Communication from Ancient
Times to the Internet. Scribner, New York, 1996.

[22] Bauer, F.L., Decrypted Secrets: Methods and Maxims of Cryptology, 2nd edition. Springer-Verlag,
New York, 2000.

[23] Levy, S., Crypto: How the Code Rebels Beat the Government—Saving Privacy in the Digital Age.
Viking Penguin, New York, 2001.

[24] Shannon, C.E., “A Mathematical Theory of Communication,” Bell System Technical Journal, Vol.
27, No. 3/4, July/October 1948, pp. 379–423/623–656.

[25] Shannon, C.E., “Communication Theory of Secrecy Systems,” Bell System Technical Journal,
Vol. 28, No. 4, October 1949, pp. 656–715.

[26] Merkle, R.C., “Secure Communication over Insecure Channels,” Communications of the ACM,
21(4), April 1978 (submitted in 1975), pp. 294–299.

[27] Rivest, R.L., A. Shamir, and L. Adleman, “A Method for Obtaining Digital Signatures and Public-
Key Cryptosystems,” Communications of the ACM, 21(2), February 1978, pp. 120–126.

[28] ElGamal, T., “A Public Key Cryptosystem and a Signature Scheme Based on Discrete Logarithm,”
IEEE Transactions on Information Theory, IT-31(4), 1985, pp. 469–472.

[29] Oppliger, R., Secure Messaging with PGP and S/MIME. Artech House Publishers, Norwood,
MA, 2001.

[30] Oppliger, R., Internet and Intranet Security, 2nd edition. Artech House Publishers, Norwood,
MA, 2002.

[31] Oppliger, R., Security Technologies for the World Wide Web, 2nd edition. Artech House Publish-
ers, Norwood, MA, 2003.

20 Contemporary Cryptography

Chapter 2

Cryptographic Systems

As mentioned in Section 1.2.1, there are three major classes of cryptographic sys-
tems: unkeyed cryptosystems, secret key cryptosystems, and public key cryptosys-
tems. In this chapter, we briefly introduce and provide some preliminary definitions
for the most important representatives of these classes in Sections 2.1–2.3 (the def-
initions are partly revised and refined in later parts of the book). We conclude with
some final remarks in Section 2.4.

2.1 UNKEYED CRYPTOSYSTEMS

According to Definition 1.5, unkeyed cryptosystems use no secret parameter. Ex-
amples include one-way functions, cryptographic hash functions, and random bit
generators. Let us have a preliminary look at these systems.

2.1.1 One-Way Functions

The notion of a one-way function plays a central role in contemporary cryptography.
Informally speaking, a function f : X → Y is one way if it is easy to compute
but hard to invert. In accordance with the terminology used in complexity theory
(see Chapter 6), the term easy means that the computation can be done efficiently,
whereas the term hard means that the computation is not known to be feasible in an
efficient way (i.e., no efficient algorithm to do the computation is known to exist).1

Consequently, one can define a one-way function as suggested in Definition 2.1 and
illustrated in Figure 2.1.

1 Note that it is not impossible that such an algorithm exists; it is just not known.

21

22 Contemporary Cryptography

� �
���
�
������������	���

�

� �

Figure 2.1 A one-way function.

Definition 2.1 (One-way function) A function f : X → Y is one way if f(x) can
be computed efficiently for all x ∈ X , but f−1(y) cannot be computed efficiently for
y ∈R Y .

In this definition,X represents the domain of the function f , Y represents the
range, and the expression y ∈R Y stands for “a y that is randomly chosen from
Y .” Consequently, it must be possible to efficiently compute f(x) for all x ∈ X ,
whereas it must not—or only with a negligible probability—be possible to compute
f−1(y) for a randomly chosen y ∈ Y . To be more precise, one must say that it may
be possible to compute f−1(y), but that the entity that wants to do the computation
does not know how to actually do it. In either case, Definition 2.1 is not precise in
a mathematically strong sense, because we have not yet defined what an efficient
computation really is. This must be postponed to somewhere after Chapter 6, when
we have introduced the fundamentals and basic principles of complexity theory. In
the meantime, it is sufficient to know that a computation is said to be efficient, if the
(expected) running time of the algorithm that does the computation is bounded by a
polynomial in the length of the input. The algorithm itself may be probabilistic.
Otherwise (i.e., if the expected running time is not bounded by a polynomial),
the algorithm requires super-polynomial (e.g., exponential) time and is said to be
inefficient. This notion of efficiency (and the distinction between polynomial and
super-polynomial running time algorithms) is fairly broad. It is, however, the best
we have at hand to work with.

An everyday example of a one-way function is a telephone book. Using
such a book, the function that assigns a telephone number to a name is easy to
compute (because the names are sorted alphabetically) but hard to invert (because
the telephone numbers are not sorted numerically). Furthermore, many physical
processes are inherently one way. If, for example, we smash a bottle into pieces,
it is generally infeasible (or at least prohibitively difficult) to put the pieces together
and reconstruct the bottle. Similarly, if we drop a bottle from a bridge, it falls down.

Cryptographic Systems 23

The reverse process does not frequently occur in the real world. Last but not least,
life is one way, and it is (currently) not known how to travel back in time.

In contrast to the real world, the idealized world of mathematics is less rich
with one-way functions. In fact, there are only a couple of functions conjectured
to be one way. As overviewed and discussed in Section 7.2, examples include
the discrete exponentiation function, the modular power function, and the modular
square function. But note that none of these functions has been shown to be one way
and that it is theoretically not even known whether one-way functions really exist.
These facts should be kept in mind when one discusses the usefulness and actual use
of one-way functions in cryptography.

There is a class of one-way functions that can be inverted efficiently if and—as
it is hoped—only if some extra information is known. This brings us to the notion
of a trapdoor (one-way) function as suggested in Definition 2.2.

Definition 2.2 (Trapdoor function) A one-way function f : X → Y is a trapdoor
function (or a trapdoor one-way function, respectively) if there exists some extra
information (i.e., the trapdoor) with which f can be inverted efficiently (i.e., f−1(y)
can be computed efficiently for y ∈R Y).

The mechanical analog of a trapdoor (one-way) function is a padlock. It can
be closed by everybody (if it is in an unlocked state), but it can be opened only
by somebody who holds or has access to the proper key. In this analogy, a padlock
without a keyhole would represent a one-way function (without trapdoor). This may
not be a very useful construct in the real world.

One-way functions and trapdoor functions are frequently used in public key
cryptography. In fact, they yield all kinds of asymmetric encryption systems, DSSs,
and key agreement protocols. They are further addressed in Chapter 7. We then also
explain why one has to consider families of such functions to be mathematically
correct (so a one-way or trapdoor function actually refers to a family of such
functions).

2.1.2 Cryptographic Hash Functions

Hash functions are frequently used and have many applications in computer science.
Informally speaking, a hash function is an efficiently computable function that takes
an arbitrarily sized input (string) and generates an output (string) of fixed size. This
idea is captured in Defintion 2.3.

Definition 2.3 (Hash function) Let Σin be an input alphabet and Σout be an output
alphabet. Any function h : Σ∗

in → Σn
out that can be computed efficiently is said to

be a hash function. It generates hash values of length n.

24 Contemporary Cryptography

In this definition, the domain of the hash function is Σ∗
in. This means that

it consists of all strings over Σ. In theory, these strings can be infinitely long. In
practice, however, one usually has to assume a maximum string length nmax for
technical reasons. In this case, a hash function is formally expressed as

h : Σnmax

in → Σn
out.

In either case, note that the hash function must be efficiently computable and
that we further explain the notion of an “efficient computation” in the context of
complexity theory in Chapter 6. Also, note that the two alphabets Σin and Σout can
be (and typically are) the same. In this case, Σ is used to refer to either of them. In
a typical (cryptographic) setting, Σ is the binary alphabet (i.e., Σ = {0, 1}) and n is
128 or 160 bits. In such a setting, a hash function h generates binary strings of 128
or 160 bits.

�������������	�
��
�����
�	�����	������
��
��

�������
�
	�	�
��
����	�
	�
�����	������		��������
��	��	�	�
�
�������
�������	�

��������� �!"�#!�$!�"#����%$�������$&�'(

Figure 2.2 A cryptographic hash function.

In cryptography, we are mainly interested in hash functions with specific
properties. Some of these properties (i.e., preimage resistance, second-preimage
resistance, and collision resistance) are formally introduced and discussed in Chapter
8. A one-way hash function is then a hash function that is preimage resistant and
second-preimage resistant (or weak collision resistant), whereas a collision resistant
hash function is a hash function that is preimage resistant and collision resistant (or
strong collision resistant). As suggested in Definition 2.4, either of these functions
is called cryptographic and can be used for cryptographic purposes (e.g., for data
integrity protection, message authentication, and digital signatures).

Cryptographic Systems 25

Definition 2.4 (Cryptographic hash function) A hash function h : Σ∗
in → Σn

out is
cryptographic if it is one way or collision resistant.

Most of the time, a cryptographic hash function h is used to hash arbitrarily
sized messages to binary strings of fixed size. This is illustrated in Figure 2.2,
where the ASCII-encoded message “This is a file that includes some important but
long statements. Consequently, we may need a short representation of this file.” is
hashed to 0xE423AB7D1767D13EF6EAEA6980 (in hexadecimal notation). The
resulting hash value represents a fingerprint or digest that is characteristic for the
message and uniquely identifies it. The collision resistance property implies that it
is difficult—or computationally infeasible—to find another message that hashes to
the same fingerprint.

Examples of cryptographic hash functions in widespread use today are MD5
(as used in Figure 2.2) and SHA-1. Cryptographic hash functions and their underly-
ing design principles are further addressed in Chapter 8.

2.1.3 Random Bit Generators

Randomness is one of the most fundamental ingredients of and prerequisites for the
security of a cryptographic system. In fact, the generation of secret and unpredictable
random quantities (i.e., random bits or random numbers) is at the heart of most
practically relevant cryptographic systems. The frequency and volume of these
quantities vary from system to system. If, for example, we consider secret key
cryptography, then we must have random quantities that can be used as secret keys.
In the most extreme case, we must have a random bit for every bit that we want
to encrypt in a perfectly secure way (see Section 10.4). If we consider public key
cryptography, then we must have random quantities to generate public key pairs.
In either case, a cryptographic system may be probabilistic, meaning that random
quantities must be generated for every use of the system. The required quantities
must then be random in the sense that the probability of any particular value being
selected must be sufficiently small to preclude an adversary from gaining advantage
through optimizing a search strategy based on such probability. This is where the
notion of a random bit generator as introduced in Definition 2.5 and illustrated in
Figure 2.3 comes into play.

Definition 2.5 (Random bit generator) A random bit generator is a device or al-
gorithm that outputs a sequence of statistically independent and unbiased bits.

Alternatively, a random bit generator is sometimes also defined as an idealized
model of a device that generates and outputs a sequence of statistically independent
and unbiased bits. In either case, it is important to note that a random bit generator

26 Contemporary Cryptography

���������������������������
�	����

�
�
�����	���

Figure 2.3 A random bit generator.

has no input (i.e., it only generates an output), and that because the output of
the random bit generator is a sequence of statistically independent and unbiased
bits, the bits occur with the same probability (i.e., Pr[0] = Pr[1] = 1/2), or—
more generally—all 2k different k-tuples occur approximately equally often for all
k ∈ N

+. There are many statistical tests that can be used to verify the (randomness)
properties of a given random bit generator.

There is no known deterministic (i.e., computational) realization or imple-
mentation of a random bit generator. There are, however, many nondeterministic
realizations and implementations. Many of these realizations and implementations
make use of physical events and phenomena. In fact, it is fair to say that a (true) ran-
dom bit generator requires a naturally occuring source of randomness.2 Designing
and implementing a device or algorithm that exploits this source of randomness to
generate binary sequences that are free of biases and correlations is a challenging
and highly demanding (engineering) task. As further addressed in Chapter 9, there
are solutions for this task. To be useful for cryptographic applications, the resulting
random bit generators must also be resistant to various types of passive and active
attacks.

2.2 SECRET KEY CRYPTOSYSTEMS

According to Definition 1.6, secret key cryptosystems use secret parameters that are
shared between the participating entities. Examples include symmetric encryption
systems, MACs, PRBGs, and PRFs. Again, let us have a preliminary look at these
systems.

2 See, for example, the leading quote of John von Neumann in Chapter 12.

Cryptographic Systems 27

2.2.1 Symmetric Encryption Systems

When one talks about cryptography, one is often referring to confidentiality protec-
tion using symmetric encryption systems (to encrypt and decrypt data). Encryption
is the process that turns a plaintext message into a ciphertext, and decryption is the
reverse process (i.e., the process that turns a ciphertext into a plaintext message).

As suggested in Definition 2.6, a symmetric encryption system consists of a set
of possible plaintext messages (i.e., the plaintext message space), a set of possible
ciphertexts (i.e., the ciphertext space), a set of possible keys (i.e., the key space), as
well as two families of encryption and decryption functions (or algorithms) that are
inverse to each other.

�� � �

!

Figure 2.4 The working principle of a symmetric encryption system.

Definition 2.6 (Symmetric encryption system) A symmetric encryption system or
cipher consists of the following five components:

• A plaintext message space M;3

• A ciphertext space C;

• A key space K;

• A family E = {Ek : k ∈ K} of encryption functions Ek : M→ C;

• A family D = {Dk : k ∈ K} of decryption functions Dk : C →M.

For every key k ∈ K and every message m ∈ M, the functions Dk and Ek

must be inverse to each other (i.e., Dk(Ek(m)) = Ek(Dk(m)) = m).

3 In some literature, the plaintext message space is denoted by P . In this book, however, we
conventionally use the letter “P” to refer to a probability distribution.

28 Contemporary Cryptography

In either case, the encryption functions may be probabilistic in the sense that
they also take into account some random input data (not expressed in Definition 2.6).
Typically, M = C = {0, 1}∗ (i.e., the set of binary strings of arbitrary but finite
length), and K = {0, 1}l for some fixed key length l (e.g., l = 128). The notion
of a function family (or family of functions, respectively) is formally introduced in
Section 3.1.1. In the meantime, it is sufficient to have an intuitive understanding for
the term.

The working principle of a symmetric encryption system is illustrated in
Figure 2.4. On the left side, the sender encrypts the message m ∈ M with his
or her implementation of the encryption function E (parametrized with the secret
key k). The resulting ciphertext Ek(m) = c ∈ C is sent to the recipient over a
potentially unsecure channel (drawn as a dotted line in Figure 2.4). On the right side,
the recipient decrypts c with his or her implementation of the decryption functionD
(again, parametrized with the secret key k). If the decryption is successful, then the
recipient is able to recover the plaintext message m.

Many examples of symmetric encryption systems are described in the litera-
ture. Some of these systems are relevant and used in practice, whereas others are
not (i.e., they are only theoretically or historically relevant, or they are used only in
small and typically closed communities). In Chapter 10, we overview and discuss
two symmetric encryption systems that are in widespread use today: the DES and
the advanced encryption standard (AES). We use them as examples and note that
many other symmetric encryption systems can be used instead. Unfortunately, all
practically relevant symmetric encryption systems are only conditionally or com-
putationally secure. We also elaborate on symmetric encryption systems that are
unconditionally or information-theoretically secure. These systems, however, are
not used in practice, because most of them require keys that are at least as long
as the plaintext messages that are encrypted. The key management of such a system
is prohibitively expensive for practical use.

2.2.2 Message Authentication Codes

It is not always necessary to encrypt messages and to protect their confidentiality.
Sometimes, it is sufficient to protect their authenticity and integrity, meaning that
it must be possible for the recipient of a message to verify its authenticity and
integrity (note that authenticity and integrity properties always go together when one
considers messages). In this case, one can add an authentication tag to a message
and have the recipient verify the tag before he or she accepts the message as being
genuine. A message and a tag computed from it are illustrated in Figure 2.5.

One possibility to compute and verify an authentication tag is to use public key
cryptography in general, and a DSS in particular (as explained later in this book).

Cryptographic Systems 29

"���	��

"���	�� #	�

Figure 2.5 A message and a tag computed from it.

This is, however, neither always necessary nor always desired, and sometimes one
wishes to use more lightweight mechanisms based on secret key cryptography. This
is where the notion of a MAC as suggested in Definition 2.7 comes into play.4

Definition 2.7 (Message authentication code) A MAC is an authentication tag
that can be computed and verified with a secret parameter (e.g., a secret crypto-
graphic key).

In the case of a message that is sent from one sender to a single recipient, the
secret parameter must be shared between the two entities. If, however, a message
is sent to multiple recipients, then the secret parameter must be shared between the
sender and all receiving entities. In this case, the distribution and management of
the secret parameter is a major issue (and probably the Achilles’ heel of the entire
encryption system).

Similar to a symmetric encryption system, one can introduce and formally
define a system to compute and verify MACs. In this book, we use the term message
authentication system to refer to such a system (contrary to most other terms used
in this book, this term is not widely used in the literature). As captured in Definition
2.8, a message authentication system consists of a set of possible messages (i.e.,
the message space), a set of possible authentication tags (i.e., the tag space), a set
of possible keys (i.e., the key space), as well as two families of related message
authentication and verification functions.

Definition 2.8 (Message authentication system) A message authentication system
consists of the following five components:

• A message space M;

4 In some literature, the term message integrity code (MIC) is used synonymously and interchange-
ably with MAC. However, this term is not used in this book.

30 Contemporary Cryptography

• A tag space T ;

• A key space K;

• A family A = {Ak : k ∈ K} of authentication functionsAk : M→ T ;

• A family V = {Vk : K ∈ K} of verification functions Vk : M × T →
{valid, invalid}. Vk(m, t) must yield valid if t is a valid authentication tag
for message m and key k (i.e., t = Ak(m)).

For every key k ∈ K and every messagem ∈ M, VK(m,AK(m)) must yield valid.

Typically, M = {0, 1}∗, T = {0, 1}ltag for some fixed tag length ltag , and
K = {0, 1}lkey for some fixed key length lkey (e.g., ltag = lkey = 128).

Many message authentication systems have been developed and proposed
in the literature. Some of these systems are unconditionally (i.e., information-
theoretically) secure, but most of them are conditionally (i.e., computationally)
secure. The most important message authentication systems are overviewed, dis-
cussed, and put into perspective in Chapter 11.

2.2.3 PRBGs

In Section 2.1.3 we mentioned that random bit generators are important building
blocks for many cryptographic systems, and that there is no deterministic (compu-
tational) realization or implementation of such a generator, but that there are non-
deterministic realizations and implementations making use of physical events and
phenomena. Unfortunately, these realizations and implementations are not always
appropriate, and there are situations in which one needs to deterministically generate
binary sequences that appear to be random (e.g., if one needs a random bit generator
but none is available, or if one must make statistical simulations or experiments
that can be repeated as needed). Also, one may have a short random bit sequence
that must be stretched into a long sequence. This is where the notion of a PRBG as
illustrated in Figure 2.6 and introduced in Definition 2.9 comes into play.5 Again, the
definition is not precise in a mathematically strong sense, because we have neither
defined the notion of an efficient algorithm nor have we specified what we really
mean by saying that a binary sequence “appears to be random.”

Definition 2.9 (Pseudorandom bit generator) A PRBG is an efficient determinis-
tic algorithm that takes as input a random binary sequence of length k (i.e., the
seed) and generates as output another binary sequence (i.e., the pseudorandom bit
sequence) of length l� k that appears to be random.

5 Note the subtle difference between Figures 2.3 and 2.5. Both generators output a binary sequence.
The random bit generator has no input, whereas the PRBG has a seed that serves as input.

Cryptographic Systems 31

������������������������������� $�%&

Figure 2.6 A PRBG.

Note that the pseudorandom bit sequence a PRBG outputs may be of infinite
length (i.e., l = ∞). Also note that in contrast to a random bit generator, a PRBG
represents a deterministic algorithm (i.e., an algorithm that can be implemented in
a deterministic way). This suggests that a PRBG is implemented as a finite state
machine and that the sequence of generated bits must be cyclic (with a potentially
very large cycle). This is why we cannot require that the bits in a pseudorandom
sequence are truly random, we can only require that they appear to be so (for a
computationally bounded adversary). Again, many statistical tests can be used to
verify the randomness properties of a binary sequence. Note, however, that passing
all of these tests is a necessary but usually not sufficient condition for a binary
sequence to be securely used for cryptographic applications.

PRBGs have many applications in cryptography. Examples include additive
stream ciphers, as well as cryptographic key generation and expansion. In fact, the
title of [1] suggests that the notion of pseudorandomness and (modern) cryptography
are closely related and deeply intertwined. The notion of a PRBG and some possible
constructions for cryptographically secure PRBGs are further addressed in Chapter
12.

2.2.4 PRFs

Contrary to PRBGs, PRFs do not generate an output that meets specific (random-
ness) requirements. Instead, PRFs try to model the input-output behavior of a ran-
dom function (i.e., a function f : X → Y that is randomly chosen from the set
of all mappings from domain X to range Y). Random functions are also known as
random oracles. For input value x ∈ X , a PRF computes an arbitrary output value
y = f(x) ∈ f(X) ⊆ Y . The only requirement is that the same input value x must
always be mapped to the same output value y. PRBGs and (families of) PRFs are
closely related to each other in the sense that a PRF family can be used to construct

32 Contemporary Cryptography

a PRBG, and a PRBG can be used to construct a PRF family (the corresponding
constructions are given in Section 13.2).

Because the notion and use of PRFs is a more advanced topic, we don’t
provide an informal definition at this point. Instead, we refer to Chapter 13, where
we introduce, discuss, and put into perspective random functions, PRFs, and some
applications of PRFs in modern cryptography.

2.3 PUBLIC KEY CRYPTOSYSTEMS

According to Definition 1.7, public key cryptosystems use secret parameters that are
not shared between the participating entities. Instead, each entity holds a set of secret
parameters (collectively referred to as the private key) and publishes another set of
parameters (collectively referred to as the public key) that don’t have to be secret
and can be published at will.6 A necessary (but usually not sufficient) condition
for a public key cryptosystem to be secure is that it is computationally infeasible
to compute the private key from the public key. In this book, k is frequently used
to refer to a public key, whereas k−1 is used to refer to the corresponding private
key. Because public key cryptography is computationally less efficient than secret
key cryptography, public key cryptosystems are mainly used for authentication
and key management. The resulting cryptosystems combine secret and public key
cryptography and are often called hybrid. In fact, hybrid cryptosystems are very
frequently used in practice.

Note that the fact that public key cryptosystems use secret parameters that are
not shared between the participating entities implies that the corresponding algo-
rithms must be executed by different entities. Consequently, such cryptosystems are
typically defined as sets of algorithms (that may be executed by different entities).
We adopt this viewpoint in this book. Examples of public key cryptosystems include
asymmetric encryption systems and DSSs, as well as cryptographic protocols for
key agreement, entity authentication, and secure multiparty computation. We have a
preliminary look at these examples.

2.3.1 Asymmetric Encryption Systems

Similar to a symmetric encryption system, an asymmetric encryption system can be
used to encrypt and decrypt (plaintext) messages. The major difference between a
symmetric and an asymmetric encryption system is that the former employs secret

6 It depends on the cryptosystem, whether it matters which set of parameters is used to represent the
private key and which set of parameters is used to represent the public key.

Cryptographic Systems 33

key cryptography and corresponding techniques, whereas the latter employs public
key cryptography and corresponding techniques.

As already mentioned in Section 2.1.1, an asymmetric encryption system
requires a family of trapdoor functions. Each public key pair yields a public key
that represents a one-way function and a private key that represents the inverse of
this function. To send a secret message to a recipient, the sender must look up the
recipient’s public key, apply the corresponding one-way function to the message,
and send the resulting ciphertext to the recipient. The recipient, in turn, is the only
person who is supposed to know the trapdoor (information) necessary to invert the
one-way function. Consequently, he or she is the only person who is able to properly
decrypt the ciphertext and to recover the original (plaintext) message accordingly.

In the literature, the encryption (decryption) algorithm is often denoted as E
(D), and subscripts are used to refer to the entities that hold the appropriate keys. For
example,EA refers to the encryption algorithm fed with the public key of A, whereas
DA refers to the decryption algorithm fed with the private key of A. Consequently,
it is implicitly assumed that the public key is used for encryption and the private
key is used for decryption. If the use of the keys is not clear, then the keys in use
may be subscript toE andD. In this case, for example,EkA refers to the encryption
algorithm fed with A’s public key, whereas Dk−1

A
refers to the decryption algorithm

fed with A’s private key.

�� � �

!

 %

'�

%

Figure 2.7 The working principle of an asymmetric encryption system.

The working principle of an asymmetric encryption system is illustrated in
Figure 2.7. On the left side, the sender applies the recipient B’s one-way function
(implemented by the encryption algorithm E parametrized with B’s public key kB)
to the plaintext message m, and sends the resulting ciphertext

c = EB(m) = EkB (m)

34 Contemporary Cryptography

to B. On the right side, B knows his or her private key k−1
B (representing the trapdoor

information) and can use this key to invert the one-way function and decrypt

m = DB(c) = Dk−1
B

(c).

An asymmetric encryption system is a public key cryptosystem. As such, it
can be specified by a set of three algorithms. This is done in Definition 2.10 and
illustrated in Figure 2.8.

$���
�� ��

$�
(��� ��

�����
����	�	�����

$���
�� ��

$�	
�����

�
�
������

$�	
�����

�
�
������

$�
(��� ��

&����	��

�������

!������

Figure 2.8 The three algorithms of an asymmetric encryption system.

Definition 2.10 (Asymmetric encryption system) An asymmetric encryption sys-
tem consists of the following three efficiently computable algorithms:

• Generate(1n) is a probabilistic key generation algorithm that takes as input
a security parameter 1n and generates as output a public key pair (consisting
of a public key k and a corresponding private key k−1).7

7 In most literature, the security parameter is denoted by 1k (i.e., k written in unary representation).
Because this notation may provide some confusion between k standing for the security parameter
and k standing for the public key, we don’t use it in this book. Instead, we use 1n to refer to the
security parameter.

Cryptographic Systems 35

• Encrypt(k,m) is a deterministic or probabilistic encryption algorithm that
takes as input a public key k and a plaintext message m, and that generates
as output a ciphertext c (i.e., c = Encrypt(k,m)).

• Decrypt(k−1, c) is a deterministic decryption algorithm that takes as input a
private key k−1 and a ciphertext c, and that generates as output a plaintext
message m (i.e., m = Decrypt(k−1, c)).

For every public key pair (k, k−1) and every plaintext message m, the algo-
rithms Encrypt(k, ·) and Decrypt(k−1, ·) must be inverse to each other, meaning
that

Decrypt(k−1,Encrypt(k,m)) = m.

If k and k−1 do not correspond to each other, then the ciphertext must decrypt
to gibberish.

In summary, an asymmetric encryption system can be fully specified by a triple
that consists of the algorithms Generate, Encrypt, and Decrypt. Many such systems
have been developed, proposed, and published in the literature. The most important
and widely deployed examples are overviewed, discussed, and put into perspective
in Chapter 14.

2.3.2 DSSs

Digital signatures can be used to protect the authenticity and integrity of data objects.
According to RFC 2828, a digital signature refers to “a value computed with a
cryptographic algorithm and appended to a data object in such a way that any
recipient of the data can use the signature to verify the data’s origin and integrity”
[2]. Similarly, the term digital signature is defined as “data appended to, or a
cryptographic transformation of, a data unit that allows a recipient of the data unit
to prove the source and integrity of the data unit and protect against forgery, e.g. by
the recipient” in ISO/IEC 7498-2 [3].

According to the last definition, there are two classes of digital signatures that
should be distinguished.

• If data representing the digital signature is appended to a data unit (or mes-
sage) then one refers to a digital signature with appendix.

• If a data unit is cryptographically transformed in a way that it represents both
the data unit (or message) that is signed and the digital signature, then one

36 Contemporary Cryptography

refers to a digital signature with message recovery. In this case, the data unit
is recovered when the signature is verified.

Digital signatures with appendix are, for example, specified in ISO/IEC 14888,
whereas digital signatures with message recovery are specified in ISO/IEC 9796.
Both ISO/IEC standards consist of multiple parts. They are not further addressed in
this book.

)	�
��*

�(�
�� ! �+�

�

 ,

'�

,

Figure 2.9 The working principle of a DSS.

�
��
��� ��

)��
�
�	�
��� ��

�����
����	�	�����

"���	��

�
��
��� ��

!
�
�	���
��	����

)	�
��-�
�(�
�

!
�
�	���
��	����

)��
�
�	�
��� ��

"���	��

&����	��

�
��

)��
��

Figure 2.10 The three algorithms of a DSS with appendix.

Cryptographic Systems 37

�
��
��� ��

)��
�
�	�
��� ��

�����
����	�	�����

"���	��

�
��
��� ��

!
�
�	���
��	����

"���	���-�
�(�
�

!
�
�	���
��	����

)��
�
�	�
��� ��

&����	��

�
��

����(��

Figure 2.11 The three algorithms of a DSS with message recovery.

A DSS can be used to digitally sign messages and verify digital signatures
accordingly.8 A DSS with appendix is used to generate and verify digital signatures
with appendix, whereas a DSS with message recovery is used to generate and
verify digital signatures giving message recovery. Note that any DSS with message
recovery can be turned into a DSS with appendix by hashing the message and then
signing the hash value.

In either case, the entity that digitally signs data units or messages is some-
times called signer or signatory, whereas the entity that verifies the digital signa-
tures is called verifier. In a typical setting, both the signatory and the verifier are
computing devices that are operated on behalf of human users.

The working principle of a DSS (with appendix or message recovery) is
illustrated in Figure 2.9. Having in mind the notion of a trapdoor function, it is simple
and straightforward to explain what is going on. On the left side, the signatory A uses
its private key k−1

A to invert the one-way function for messagem and to compute the
digital signature s as follows:

s = DA(m) = Dk−1
A

(m)

The signatory sends s to the verifier (if the digital signature is with appendix,
then m must also be sent along with s). On the right side, the verifier must use the

8 In the literature, a DSS is often called digital signature scheme (with the same abbreviation).

38 Contemporary Cryptography

signatory’s public key (i.e., kA) to compute the one-way function for s and to either
verify the digital signature (if the DSS is with appendix) or recover the original
message (if the DSS is giving message recovery). In either case, it is important to
note that only A can compute s (because only A is assumed to know k−1

A), whereas
everybody can verify s or recover m (because everybody has access to kA). In fact,
public verifiability is a basic property of digital signatures and corresponding DSSs.

Similar to an asymmetric encryption system, a DSS can be defined as a set
of three efficiently computable algorithms. A DSS with appendix is defined in
Definition 2.11, and its three algorithms are illustrated in Figure 2.10.

Definition 2.11 (DSS with appendix) A DSS with appendix consists of the follow-
ing three efficiently computable algorithms:

• Generate(1n) is a probabilistic key generation algorithm that takes as input
a security parameter 1n and generates as output a signing key k−1 and
a corresponding verification key k. Both keys represent the public key pair
(k, k−1).

• Sign(k−1,m) is a deterministic or probabilistic signature generation algo-
rithm that takes as input a signing key k−1 and a messagem (i.e., the message
to be signed), and that generates as output a digital signature s for m.9

• Verify(k,m, s) is a deterministic signature verification algorithm that takes as
input a verification key k, a message m, and a purported digital signature s
form, and that generates as output a binary decision (i.e., whether the digital
signature is valid). In fact, Verify(k,m, s) must yield valid if and only if s is
a valid digital signature for message m and verification key k.

So for every public key pair (k, k−1) and every possible message m,

Verify(k,m, Sign(k−1,m))

must yield valid.

Similarly, a DSS giving message recovery is defined in Definition 2.12, and
its three algorithms are illustrated in Figure 2.11.

Definition 2.12 (DSS with message recovery) A DSS giving message recovery con-
sists of the following three efficiently computable algorithms:

9 Optionally, the signing algorithm may also output a new (i.e., updated) signing key. Note, however,
that in a memoryless DSS, the signing key always remains the same. Consequently, this optional
output is not illustrated in Figure 2.10.

Cryptographic Systems 39

• Generate(1n) is a probabilistic key generation algorithm that takes as input
a security parameter 1n and generates as output a signing key k−1 and a
verification key k. Again, both keys represent the public key pair (k, k−1).

• Sign(k−1,m) is a deterministic or probabilistic signature generation algo-
rithm that takes as input a signing key k−1 and a message m, and that gener-
ates as output a digital signature s giving message recovery.

• Recover(k, s) is a deterministic message recovery algorithm that takes as
input a verification key k and a digital signature s, and that generates as
output either the message that is digitally signed or a notification indicating
that the digital signature is invalid. This means that Recover(k, s) must yield
m if and only if s is a valid digital signature for message m and verification
key k.

So for every public key pair (k, k−1) and every possible message m,

Recover(k, Sign(k−1,m))

must yield m.

Note that the Generate algorithms are basically the same for both a DSS with
appendix and a DSS giving message recovery, and that the Sign algorithms are at
least structurally the same. The major difference is with the Verify and Recover
algorithms.

With the proliferation of the Internet in general, and Internet-based electronic
commerce in particular, digital signatures and the legislation thereof have become
important and very timely topics. In fact, many DSSs with specific and unique
properties have been developed, proposed, and published in the literature. The
most important examples are overviewed, discussed, and put into perspective in
Chapter 15. Unfortunately, digital signatures (and their mathematical properties) are
sometimes also overrated as proofs or pieces of evidence.

2.3.3 Key Agreement

If two or more entities want to employ and make use of secret key cryptography,
then they must share a secret parameter or cryptographic key. Consequently, in
a large system many secret keys must typically be generated, stored, managed,
and destroyed in a highly secure way. If, for example, n entities want to securely
communicate with each other, then there are

40 Contemporary Cryptography

(
n
2

)
=
n(n− 1)

1 · 2 =
n2 − n

2

secret keys that must be generated, stored, managed, and destroyed. This number
grows in the order of n2, and hence the establishment of secret keys is a major
practical problem (and probably the Achilles’ heel) for the large-scale deployment
of secret key cryptography. For example, if n = 1, 000 entities want to securely
communicate with each other, then there are

(
1, 000

2

)
=

1, 0002 − 1, 000
2

= 499, 500

secret keys. Even for moderately large n, the generation, storage, and management
of so many keys is prohibitively expensive, and the predistribution of the keys is
infeasible.

Things get even more involved when one considers that keys are often used in
dynamic environments, where new entities join and other entities leave at will, and
that it is usually impossible, impractical, or simply too expensive to transmit keys
over secure channels (e.g., by a trusted courier). Consequently, one typically faces
a key establishment problem in computer networks and distributed systems. There
are basically two approaches to address (and hopefully solve) the key establishment
problem in computer networks and distributed systems:

• The use of a key distribution center (KDC);

• The use of a key establishment protocol.

A prominent and widely deployed example of a KDC is the Kerberos authen-
tication and key distribution system (see, for example, [4]). Unfortunately, KDCs
have many disadvantages. The most important disadvantage is that each entity must
unconditionally trust the KDC and share a secret master key with it. There are sit-
uations in which this level of trust is neither justified nor can be accepted by the
communicating entities. Consequently, the use of key establishment protocols (that
typically make use of public key cryptography in some way or another) provides a
viable alternative in many situations.

In a simple key establishment protocol, an entity randomly generates a key and
uses a secure channel to transmit it to the communicating peer entity (or entities).
This protocol is simple and straightforward; it is basically what a Web browser does

Cryptographic Systems 41

when it establishes a cryptographic key to be shared with a secure Web server.10

From a security point of view, however, one may face the problem that the security
of the secret key cryptographic system that is used with the cryptographic key is
then bound by the quality and the security of the key generation process (which is
typically a PRBG). Consequently, it is advantageous to have a mechanism in place in
which two or more entities can establish and agree on a commonly shared secret key.
This is where the notion of a key agreement protocol comes into play (as opposed to
a key distribution protocol). The single most important key agreement protocol for
two entities was suggested by Diffie and Hellman [6]. Key establishment protocols
(including, for example, the Diffie-Hellman key agreement protocol) are further
addressed in Chapter 16. They play a central role in many cryptographic security
protocols for the Internet.

2.3.4 Entity Authentication

In computer networks and distributed systems it is often required that entities must
authenticate each other. In theory, many technologies can be used for entity authenti-
cation. In computer networks and distributed systems, however, entity authentication
is most often implemented as a proof by knowledge. This means that the entity that
is authenticated knows something (e.g., a password, a passphrase, or a cryptographic
key) that allows him or her to prove his or her identity to another entity. An entity
authentication protocol is used for this purpose. More often than not, an entity au-
thentication protocol is combined with a key distribution protocol (yielding an entity
authentication and key distribution protocol).

In Chapter 17, we elaborate on entity authentication and corresponding pro-
tocols. Among these protocols, we mainly focus on the ones that have the zero-
knowledge property. Zero-knowledge authentication protocols are interesting, be-
cause it can be shown in a mathematically precise sense that they do not leak any
(partial) information about the secret that is used in the proof by knowledge. This
protects the prover against a verifier trying to illegitimately derive information about
the prover’s secret.

2.3.5 Secure Multiparty Computation

Let us assume that multiple entities want to compute the result of a function
evaluation without having to reveal their (local) input values to each other. There
are basically two cases to distinguish:

10 A secure Web server is a server that implements the secure sockets layer (SSL) or transport layer
security (TLS) protocol (see, for example, Chapter 6 of [5]).

42 Contemporary Cryptography

• If the entities have a trusted party at their disposal, then there is a trivial
solution for the problem: all entities securely transmit their input values to the
trusted party, and the trusted party, in turn, evaluates the function and provides
the result to all entities (it goes without saying that all communications must
take place over secure channels).

• If, however, the entities have no trusted party at their disposal, then the
situation is more involved. In this case, it is not at all obvious that the problem
can be solved at all.

In the second case, we are in the realm of secure multiparty computation.
We ask for cryptographic protocols that can be used by the entities to evaluate a
function and to effectively simulate a trusted party. Such protocols can be found
and have many (potential) applications, such as electronic voting and mental game
playing (i.e., playing a game over a communication network). In Chapter 18, we
briefly touch on secure multiparty computation and the major results that have been
found in theory.

2.4 FINAL REMARKS

In this chapter, we briefly introduced and provided some preliminary definitions
for the most important representatives of the three major classes of cryptosystems
distinguished in this book (i.e., unkeyed cryptosystems, secret key cryptosystems,
and public key cryptosystems). We want to note (again) that this classification
scheme is somewhat arbitrary, and that other classification schemes may be used
instead.

In either case, the cryptosystems that are preliminarily defined in this chapter
are refined, more precisely defined (in a mathematical sense), discussed, and put into
perspective in the later parts of the book. For all of these systems, we also elaborate
on the notion of security and try to find appropriate definitions and evaluation
criteria for secure systems. In fact, a major theme in contemporary cryptography
is to better understand and formally express the notion of security, and to prove
that a particular cryptosystem is secure in exactly this sense. In many cases, the
cryptographic community has been surprisingly successful in doing so. This is what
the rest of this book is basically all about. We have to begin with some mathematical
fundamentals first.

References

[1] Luby, M., Pseudorandomness and Cryptographic Applications. Princeton Computer Science
Notes, Princeton, NJ, 1996.

Cryptographic Systems 43

[2] Shirey, R., Internet Security Glossary, Request for Comments 2828, May 2000.

[3] ISO/IEC 7498-2, Information Processing Systems—Open Systems Interconnection Reference
Model—Part 2: Security Architecture, 1989.

[4] Oppliger, R., Authentication Systems for Secure Networks. Artech House Publishers, Norwood,
MA, 1996.

[5] Oppliger, R., Security Technologies for the World Wide Web, 2nd edition. Artech House Publish-
ers, Norwood, MA, 2003.

[6] Diffie, W., and M.E. Hellman, “New Directions in Cryptography,” IEEE Transactions on Infor-
mation Theory, IT-22(6), 1976, pp. 644–654.

44 Contemporary Cryptography

Part I

MATHEMATICAL
FUNDAMENTALS

45

Chapter 3

Discrete Mathematics

In this chapter, we begin the part on the mathematical fundamentals by discussing
the aspects of discrete mathematics that are relevant for contemporary cryptography.
More specifically, we introduce algebraic basics in Section 3.1, elaborate on integer
and modular arithmetic in Sections 3.2 and 3.3, introduce elliptic curves in Section
3.4, and conclude with some final remarks in Section 3.5. Note that this chapter
is intentionally kept short, and that many facts are stated without a proof. There
are many (introductory) books on discrete mathematics and algebra that contain the
missing proofs, put the facts into perspective, and provide much more background
information (e.g., [1–5]). Most importantly, Victor Shoup’s book about number
theory and algebra [6] is electronically available1 and is recommended reading for
anybody interested in discrete mathematics.

3.1 ALGEBRAIC BASICS

The term algebra refers to the mathematical field of study that deals with sets of
elements (e.g., sets of numbers) and operations on these elements.2 The operations
must satisfy specific rules (called axioms). These axioms are defined abstractly, but
most of them are motivated by existing mathematical structures (e.g., the set of
integers with the addition and multiplication operations).

1 http://shoup.net/ntb
2 For the purpose of this book, we assume familiarity with set theory at a basic level.

47

48 Contemporary Cryptography

3.1.1 Preliminary Remarks

Let S be a nonempty set and ∗ be a binary operation on the elements of this set.3 For
example, S may be one of the following sets of numbers (that are frequently used in
mathematics):

• The set N := {0, 1, 2, . . .} of natural numbers (also known as nonnegative or
positive integers). In some literature, the term N

+ is used to refer to N without
zero (i.e., N

+ := N \ {0}).

• The set Z := {. . . ,−2,−1, 0, 1, 2, . . .} of integer numbers, or integers in
short. In addition to the natural numbers, this set also comprises the negative
numbers.

• The set Q of rational numbers. Roughly speaking, a rational number is a
number that can be written as a ratio of two integers. More specifically, a
number is rational if it can be written as a fraction where the numerator and
denominator are integers and the denominator is not equal to zero. This can
be expressed as follows:

Q := {a
b
| a, b ∈ Z and b �= 0}

• The set R of real numbers. Each real number can be represented by a converg-
ing infinite sequence of rational numbers (i.e., the limit of the sequence refers
to the real number). There are two subsets within the set of real numbers:
algebraic numbers and transcendental numbers. Roughly speaking, an alge-
braic number is a real number that is the root of a polynomial equation with
integer coefficients, whereas a transcendental number is a real number that is
not the root of a polynomial equation with integer coefficients. Examples of
transcendental numbers are π and e. Real numbers are the most general and
most frequently used mathematical objects to model real-world phenomena.
A real number that is not rational is called irrational, and hence the set of
irrational numbers is R \ Q. In some literature, the term R

+ is also used to
refer to the real numbers that are nonnegative.

• The set C of complex numbers. Each complex number can be specified by a
pair (a, b) of real numbers, and hence C can be expressed as follows:

C := {a+ bi | a, b ∈ R and i =
√
−1}

3 The choice of the symbol ∗ is arbitrary. The operations most frequently used in algebra are addition
(denoted as +) and multiplication (denoted as ·).

Discrete Mathematics 49

The first element of (a, b) is called the real part of the complex number,
whereas the second element of (a, b) is called the imaginary part. This part is
usually written as a multiple of i =

√
−1, meaning that the imaginary part of

a+ bi is written as b (instead of bi).

� �

� �

�.�/
�

Figure 3.1 A function f : X → Y .

In this book, we assume some familiarity with functions and function families.
As illustrated in Figure 3.1, a function f : X → Y is a mapping from a domain X
to a codomain Y assigning to every x ∈ X a unique f(x) ∈ Y . The range of f is
the subset of values of Y that are actually reached by the function (i.e., f(X) ⊆ Y).
A function f : X → Y may be injective, surjective, or bijective.

• The function f is injective (or one to one) if for all x1, x2 ∈ X it holds that
x1 �= x2 ⇒ f(x1) �= f(x2) (i.e., if two preimages are different, then the
corresponding images are also different).

• The function f is surjective (or onto) if for all y ∈ Y there is an x ∈ X with
y = f(x), meaning that f(X) = Y (i.e., the codomain and the range are the
same).

• The function f is bijective if it is both injective and surjective.

If we consider a set of functions f : X → Y that takes a key as an additional
input parameter, then we are talking about function families. Formally, a function
family is a mapping

F : K × X → Y

where X and Y are the domain and codomain of the functions, and K is a set of
possible keys. For every k ∈ K , the map fk : X → Y is defined as fk(x) = f(k, x)

50 Contemporary Cryptography

and represents an instance of the family F . Consequently, F is a collection or
ensemble of mappings. Every key k ∈ K or map fk occurs with some probability,
and hence there is a probability distribution on K . If K = {0, 1}n and all keys are
uniformly distributed, then

k
u← K

refers to an n-bit key k that is randomly chosen from K . Furthermore,

f
u← F

refers to a function fk that is randomly chosen from F . This can be translated into
k

u← K; f ← fk (in this sequence). In other words, f is the function fk, where k is
a randomly chosen key.

We sometimes use the term RandX→Y to refer to the family of all functions
from the domain X to the codomain Y . If X = Y , then we are talking about the
family of all permutations on X , and we use the term PermX→X or P (X) to refer
to it. Permutations and families of permutations are further addressed in Section
3.1.4.

The fact that ∗ is a binary operation on S means that it actually defines a
function from S × S into S. If a, b ∈ S, then the use of ∗ can be expressed as
follows:

∗ : S×S −→ S

(a, b) �−→ a ∗ b

This expression suggests that two arbitrary elements a, b ∈ S are mapped
to a new element a ∗ b ∈ S. In this setting, the operation ∗ may have specific
properties. We are mainly interested in commutative and associative operations as
formally expressed in Definitions 3.1 and 3.2.

Definition 3.1 (Commutative operation) A binary operation ∗ is commutative if
a ∗ b = b ∗ a for all a, b ∈ S .

Definition 3.2 (Associative operation) A binary operation ∗ is associative if a∗(b∗
c) = (a ∗ b) ∗ c for all a, b, c ∈ S.

A commutative operation ∗ may have (left and right) identity elements as
formally introduced in Definitions 3.3–3.5.

Discrete Mathematics 51

Definition 3.3 (Left identity element) Let S be a set and ∗ a binary operation on
S. An element e ∈ S is called left identity element if e ∗ a = a for all a ∈ S.

Definition 3.4 (Right identity element) Let S be a set and ∗ a binary operation on
S. An element e ∈ S is called right identity element if a ∗ e = a for all a ∈ S.

Definition 3.5 (Identity element) Let S be a set and ∗ a binary operation on S.
An element e ∈ S is called identity element (or neutral element) if it is both a left
identity element and a right identity element (i.e., e ∗ a = a ∗ e = a for all a ∈ S).

Note that an identity element does not have to exist, but if it exists it must
be unique. This can easily be shown by assuming that e1 and e2 are both identity
elements. It then follows from the definition of an identity element that e1 =
e1 ∗ e2 = e2, and hence e1 = e2. Also note that we don’t require the operation
∗ to be commutative. For example, the identity matrix is the identity element of the
matrix multiplication, and this operation is not commutative.

If there exists an identity element e ∈ S with respect to ∗, then some elements
of S may also have inverse elements. This is captured in Definition 3.6.

Definition 3.6 (Inverse element) Let S be a set, ∗ be a binary operation with an
identity element e, and a be an element of S. If there exists an element b ∈ S with
a ∗ b = b ∗ a = e, then a is invertible and b is the inverse element (or inverse) of a.

Note that not all elements in a given set must be invertible and have inverse
elements with respect to the operation under consideration. As discussed below, the
question whether all elements are invertible is the distinguishing feature between a
group and a monoid or between a field and a ring, respectively.

3.1.2 Algebraic Sructures

An algebraic structure4 consists of a nonempty set S and one or more binary
operations. For the sake of simplicity, we sometimes omit the operation(s) and use
S to denote the entire structure. In this section, we overview and briefly discuss the
algebraic structures that are most frequently used in algebra. Among these structures,
groups, rings, and (finite) fields are particularly important for cryptography in
general, and public key cryptography in particular.

3.1.2.1 Semigroups

The simplest algebraic structure is a semigroup as formally introduced in Definition
3.7.

4 In some literature, an algebraic structure is also called algebra or algebraic system.

52 Contemporary Cryptography

Definition 3.7 (Semigroup) A semigroup is an algebraic structure 〈S, ∗〉 that con-
sists of a nonempty set S and an associative binary operation ∗. The semigroup must
be closed (i.e., for all a, b ∈ S, a ∗ b must also be an element of S).

Note that this definition does not require a semigroup to have an identity
element. For example, the set of even integers (i.e., {. . . ,−4,−2, 0, 2, 4, . . .}) with
the multiplication operation is a semigroup without identity element.5

3.1.2.2 Monoids

As suggested in Definition 3.8, a monoid is a semigroup with the additional property
(or requirement) that it must have an identity element.

Definition 3.8 (Monoid) A monoid is a semigroup 〈S, ∗〉 that has an identity ele-
ment e ∈ S with respect to ∗.

For example, 〈N, ·〉, 〈Z, ·〉, 〈Q, ·〉, and 〈R, ·〉 are monoids with the identity
element 1. Also, the set of even integers with the addition operation and the identity
element 0, as well as the set of all binary sequences of nonnegative and finite length
with the string concatenation operation and the empty string representing the identity
element, are monoids. If the empty string is excluded from the set in the second case,
then the resulting algebraic structure is only a semigroup.

3.1.2.3 Groups

As suggested in Definition 3.9, a group is a monoid in which every element is
invertible (and has an inverse element accordingly).

Definition 3.9 (Group) A group is a monoid 〈S, ∗〉 in which every element a ∈ S
has an inverse element in S (i.e., every element a ∈ S is invertible).

Because 〈S, ∗〉 is a group and the operation ∗ is associative, one can easily
show that the inverse element of an element must be unique (i.e., every element has
exactly one inverse element). Assume that b and c are both inverse elements of a. It
then follows that b = b ∗ e = b ∗ (a ∗ c) = (b ∗ a) ∗ c = e ∗ c = c, and hence the two
inverse elements of a must be the same.

Considering everything said so far, a group can also be defined as an algebraic
structure 〈S, ∗〉 that satisfies the following four axioms:

1. Closure axiom: ∀ a, b ∈ S : a ∗ b ∈ S;

5 The identity element with respect to multiplication would be 1 (which is not even).

Discrete Mathematics 53

2. Associativity axiom: ∀ a, b, c ∈ S : a ∗ (b ∗ c) = (a ∗ b) ∗ c;
3. Identity axiom: ∃ a unique identity element e ∈ S such that ∀ a ∈ S : a ∗ e =

e ∗ a = a;

4. Inverse axiom: ∀ a ∈ S : ∃ a unique inverse element a−1 ∈ S such that
a ∗ a−1 = a−1 ∗ a = e.

The operations most frequently used in groups are addition (+) and multi-
plication (·). Such groups are called additive groups and multiplicative groups. For
multiplicative groups, the symbol · is often omitted, and a · b is written as ab. For
additive and multiplicative groups, the identity elements are usually denoted as 0
and 1, whereas the inverse elements of element a are usually denoted as−a and a−1.
Consequently, a multiplicative group is assumed in the fourth axiom given here.

Commutative Groups

A distinction is often made between commutative and noncommutative groups. The
notion of a commutative group is formally introduced in Definition 3.10.

Definition 3.10 (Commutative group) A group 〈S, ∗〉 is commutative if the opera-
tion ∗ is commutative (i.e., a ∗ b = b ∗ a for all a, b ∈ S).

In the literature, commutative groups are also called Abelian groups. If a
group is not commutative, then it is called noncommutative or non-Abelian. For
example, 〈Z,+〉, 〈Q,+〉, and 〈R,+〉 are commutative groups with the identity
element 0. The inverse element of a is−a. Similarly, 〈Q\{0}, ·〉 and 〈R\{0}, ·〉 are
commutative groups with the identity element 1. In this case, the inverse element of
a is a−1. Furthermore, the set of real-valued n× n matrices is a commutative group
with respect to matrix addition, whereas the subset of nonsingular (i.e., invertible)
matrices is a noncommutative group with respect to matrix multiplication.

Finite Groups

Groups can be finite or infinite (depending on the number of elements). Finite groups
as captured in Definition 3.11 play a fundamental role in (public key) cryptography.

Definition 3.11 (Finite group) A group 〈S, ∗〉 is finite if it contains only finitely
many elements.

The order of a finite group 〈S, ∗〉 equals the cardinality of the set S (i.e., |S|).
Hence, another way to define a finite group is to say that 〈S, ∗〉 is finite if |S| <∞.
For example, the set of permutations of n elements is finite and has n! elements.

54 Contemporary Cryptography

It is a noncommutative group with respect to the composition of permutations (see
Section 3.1.4). More interestingly, 〈Zn,+〉 and 〈Z∗

n, ·〉 are finite groups that have
many cryptographic applications. As explained later in this chapter, Zn consists of
all integers from 0 to n− 1, whereas Z

∗
n consists of all integers between 1 and n− 1

that have no common divisor with n greater than 1.6

If 〈S, ∗〉 is a group, then for any element a ∈ S and for any positive integer
i ∈ N, ai ∈ S denotes the following element in S:

a ∗ a ∗ . . . ∗ a︸ ︷︷ ︸
i times

Due to the closure axiom (i.e., axiom 1), this element must again be in S.
Note that we use ai only as a shorthand representation for the element, and that the
operation between the group element a and the integer i is not the group operation.
For additive groups, ai is sometimes also written as i · a (or ia, respectively). But
note again that i · a only represents the resulting group element and that · is not the
group operation.

Cyclic Groups

If 〈S, ∗〉 is a finite group with identity element e (with respect to ∗), then the order of
an element a ∈ S, denoted as ord(a), is the least positive integer n such that aord(a)

equals e. This can be formally expressed as follows:

a ∗ a ∗ . . . ∗ a︸ ︷︷ ︸
ord(a) times

= e.

Alternatively speaking, the order of an element a ∈ S (in a multiplicative
group) is defined as follows:

ord(a) := min{n ≥ 1 | an = e}

If there exists an element a ∈ S such that the elements

a

6 Note that the star used in Z
∗
n has nothing to do with the star used in Definition 3.11. In the second

case, the star represents an arbitrary binary operation.

Discrete Mathematics 55

a ∗ a
a ∗ a ∗ a

. . .

a ∗ a ∗ . . . ∗ a︸ ︷︷ ︸
n times

are different and represent all elements of S, then the group 〈S, ∗〉 is called cyclic
and a is called a generator of the group (or a primitive root of the group’s identity
element, respectively). If a generates the group (in the sense that a is a generator
of the group), then we may write S = 〈a〉. If a finite group is cyclic, then there are
typically many generators. In fact, there are φ(n − 1) generators if n refers to the
order of the group.7

For example, 〈Zn,+〉 is a cyclic group with generator 1. This basically means
that every number of {0, 1, 2, 3, . . . , n− 1} can be generated by adding 1 modulo n
a certain number of times:

0 = 1 + 1 + . . .+ 1︸ ︷︷ ︸
n times

1 = 1
2 = 1 + 1
3 = 1 + 1 + 1

. . .

n− 1 = 1 + 1 + . . .+ 1︸ ︷︷ ︸
n−1 times

As illustrated in Figure 3.2, 〈Z∗
7, ·〉 is a cyclic group with generator 3 (i.e.,

〈Z∗
7, ·〉 = 〈3〉). This means that every element of Z

∗
7 = {1, 2, . . . , 6} can be

represented by 3 to the power of another element of Z
∗
7.

In either case, it is important to note that not all finite groups must be cyclic
(and hence not all finite groups must have a generator), but that all cyclic groups
must be Abelian. The converse of the second fact is not true, meaning that an Abelian
group must not necessarily be cyclic.

7 The function φ is called Euler’s totient function and is formally introduced in Section 3.2.6.

56 Contemporary Cryptography

�012

101�

3013

2011

4014

5015

Figure 3.2 The cyclic group 〈Z∗
7, ·〉.

Subgroups

When we elaborate on groups and their basic properties, it is sometimes useful to
consider subgroups. The notion of a subgroup is formally introduced in Definition
3.12.

Definition 3.12 (Subgroup) A subset H of a group G is a subgroup of G if it is
closed under the operation of G and also forms a group.

For example, the integers are a subgroup both of the rational and real numbers
(with respect to the addition operation). Furthermore, {0, 2, 4} is a subgroup of
〈Z6,+〉 with regard to addition modulo 6, and {0} and {1} are (trivial) subgroups
of every additive and multiplicative group.

An important class of subgroups of a finite group are those generated by an
element a, denoted as 〈a〉 := {aj | j ≥ 0}. The subgroup 〈a〉 has ord(a) elements.
Furthermore, we need the notion of cosets as captured in Definitions 3.13–3.15.

Definition 3.13 (Left coset) Let G be a group andH ⊆ G be a subset of G. For all
a ∈ G, the sets a ∗H := {a ∗ h | h ∈ H} are called left cosets of H .

Definition 3.14 (Right coset) Let G be a group and H ⊆ G be a subset of G. For
all a ∈ G, the sets H ∗ a := {a ∗ h | h ∈ H} are called right cosets of H .

Definition 3.15 (Coset) Let G be a (commutative) group and H ⊆ G. For all
a ∈ G, the sets a ∗H and H ∗ a are equal and are called cosets of H .

Discrete Mathematics 57

In the example given earlier (i.e., G = 〈Z6,+〉 and H = {0, 2, 4}), the
elements of G are partitioned into the following two left cosets of H :

1 +H = 3 +H = {1, 3, 5}
2 +H = 4 +H = {2, 4, 6}

The notion of a coset is important to prove Theorem 3.1 that is due to
Lagrange.8

Theorem 3.1 (Lagrange’s Theorem) If H is a subgroup of G, then |H | | |G| (i.e.,
the order of H divides the order of G).

Proof. If H = G, then |H | | |G| holds trivially. Consequently, we only consider the
case in which H ⊂ G. For any a ∈ G\H , the coset a ∗ H is a subset of G. The
following can be shown:

i) For any a �= a′, if a /∈ a′ ∗H then (a ∗H) ∩ (a′ ∗H) = ∅;
ii) |a ∗H | = |H |.
For (i), suppose there exists a b ∈ (a ∗ H) ∩ (a′ ∗ H). Then there exist

c, c′ ∈ H such that a ∗ c = b = a′ ∗ c′. Applying various group axioms, we have
a = a ∗ e = a ∗ (c ∗ c−1) = b ∗ c−1 = (a′ ∗ c′) ∗ c−1 = a′ ∗ (c′ ∗ c−1) ∈ a′ ∗H .
This contradicts our assumption (that a /∈ a′ ∗H).

For (ii), |a ∗H | ≤ |H | holds trivially (by the definition of a coset). Suppose
that the inequality is rigorous. This is only possible if there are b, c ∈ H with b �= c
and a ∗ b = a ∗ c. Applying the inverse element of a on either side of the equation,
we get b = c, contradicting to b �= c.

In summary, G is partitioned by H and the family of its mutually disjoint
cosets, each has the size |H |, and hence |H | | |G|. This proves the theorem.

�

Quotient Groups

Let G be a (commutative) group and H ⊆ G a subgroup of G. The quotient group
of G modulo H , denoted by G/H , is the set of all cosets a ∗H with a ranging over
G, and with the identity element being e∗H . For example, for every positive integer
n ∈ N

+, the set {0,±n,±2n, . . .} is a subgroup of Z under integer addition. The
quotient group

8 Joseph Louis Lagrange was a French mathematician who lived from 1736 to 1813.

58 Contemporary Cryptography

Z/nZ = {x+ nZ | x ∈ Z}

has the following n elements:

0 + nZ

1 + nZ

2 + nZ

. . .

n− 1 + nZ

Z/nZ is the formal and standard notation for the quotient group of Z modulo
nZ. However, for presentation convenience, we use the shorthand notation Zn in
place of Z/nZ for the purpose of this book.

As corollaries of Lagrange’s Theorem, one can show that the order of the
quotient group G/H equals |G|/|H | and that in a finite group the order of every
element divides the group order. Fermat’s Little Theorem (see Theorem 3.7) and
Euler’s Theorem (see Theorem 3.8) take advantage of the second fact and form the
mathematical basis for the widely deployed RSA public key cryptosystem.

There are two important algebraic structures that comprise two operations:
rings and fields. They are addressed next.

3.1.2.4 Rings

The simpler algebraic structure that comprises two operations is the ring. It is
formally introduced in Definition 3.16.

Definition 3.16 (Ring) A ring is an algebraic structure 〈S, ∗1, ∗2〉 with a set S and
two associative binary operations ∗1 and ∗2 that fulfill the following requirements:

1. 〈S, ∗1〉 is a commutative group with identity element e1;

2. 〈S, ∗2〉 is a monoid with identity element e2;

3. The operation ∗2 is distributive over the operation ∗1. This means that for all
a, b, c ∈ S the following two distributive laws must hold:

a ∗2 (b ∗1 c) = (a ∗2 b) ∗1 (a ∗2 c)
(b ∗1 c) ∗2 a = (b ∗2 a) ∗1 (c ∗2 a)

Discrete Mathematics 59

According to the first requirement, the operation ∗1 must be commutative (this
is not required for the operation ∗2). The ring is called commutative (noncommuta-
tive) if the operation ∗2 is (not) commutative.

For example, 〈Z,+, ·〉 and 〈Zn,+, ·〉 are commutative rings that are further
addressed in Sections 3.2 (entitled “Integer Arithmetic”) and 3.3 (entitled “Modular
Arithmetic”).9 Similarly, 〈Q,+, ·〉 and 〈R,+, ·〉 are commutative rings. Also, the set
of real-valued n×nmatrices form a ring with the zero matrix as the identity element
of addition and the identity matrix as the identity element of multiplication. Contrary
to the previous examples, this ring is noncommutative.

3.1.2.5 Fields

If we have a ring 〈S, ∗1, ∗2〉 and require that 〈S \ {e1}, ∗2〉 is a group (instead of a
monoid), then we have a field. This is formally expressed in Definition 3.17.

Definition 3.17 (Field) A ring 〈S, ∗1, ∗2〉 in which 〈S \ {e1}, ∗2〉 is a group is a
field.

Another way of saying that 〈S \ {e1}, ∗2〉 is a group is that every nonidentity
element (with respect to ∗1) must have an inverse element (with respect to ∗2).

A field 〈S, ∗1, ∗2〉 is finite if it contains only finitely many elements (i.e.,
|S| < ∞). Finite fields have many applications in cryptography. For example, they
are frequently used in public key cryptography. More surprisingly, they are also used
in new symmetric encryption systems, such as the AES addressed in Section 10.2.2.

All finite fields with n elements can be shown to be structurally equivalent
or isomorphic (see Section 3.1.3 for the notion of isomorphic algebraic structures).
Consequently, it is sufficient to consider and thoroughly examine only one finite field
with n elements. This field is called Galois field,10 denoted by Fn or GF (n). For
every prime number p, there is a finite field with p elements (i.e., Fp) and a series
of finite fields with pn elements for every positive integer n (see Section 3.3.6). In
the simplest case, p = 2 and F2 consists of only two elements, namely the identity
elements of the two binary operations (i.e., the zero element and the unity element).

Similar to Definition 3.12, we can introduce the notion of a subfield as
suggested in Definition 3.18.

Definition 3.18 (Subfield) A subset H of a field F is a subfield of F if it closed
under the operations of F and also forms a field.

9 If n is prime, then 〈Zn, +, ·〉 is a field.
10 The term was chosen in honor of Evariste Galois, who lived from 1811 to 1832. Galois is said to

have found all finite fields.

60 Contemporary Cryptography

Using the notion of a subfield, we can introduce the notion of a prime field.
This is suggested in Definition 3.19.

Definition 3.19 (Prime field) A prime field is a field that contains no proper sub-
field.

For example, Q is a(n infinite) prime field, whereas R is not a prime field (note
that Q is a proper subfield of R). If we only consider finite fields, then a prime field
must contain a prime number of elements, meaning that it must have a prime order.

3.1.3 Homomorphisms and Isomorphisms

In algebraic discussions and analyses, one often uses the notion of a homomorphism
or isomorphism as formally introduced in Definitions 3.20 and 3.21.

Definition 3.20 (Homomorphism) Let A and B be two algebraic structures. A
mapping f : A → B is called a homomorphism of A into B if it preserves the
operations of A. That is, if ◦ is an operation of A and • an operation of B, then
f(x ◦ y) = f(x) • f(y) must hold for all x, y ∈ A.

Definition 3.21 (Isomorphism) A homomorphism f : A → B is an isomorphism
if it is injective (“one to one”). In this case, we say that A and B are isomorphic
and we write A ∼= B.

Another way of saying that two algebraic structures are isomorphic is to say
that they are structurally equivalent. Furthermore, if an isomorphism of an algebraic
structure onto itself is considered, then one frequently uses the term automorphism
as formally introduced in Definition 3.22.

Definition 3.22 (Automorphism) An isomorphism f : A → A is an automor-
phism.

Against this background, a group homomorphism is a mapping f between
two groups 〈S1, ∗1〉 and 〈S2, ∗2〉 such that the group operation is preserved (i.e.,
f(a ∗1 b) = f(a) ∗2 f(b) for all a, b ∈ S1) and the identity element e1 of
〈S1, ∗1〉 is mapped to the identity element e2 of 〈S2, ∗2〉 (i.e., f(e1) = e2). If
f : 〈S1, ∗1〉 → 〈S2, ∗2〉 is injective (“one to one”), then the group homomorphism
is a group isomorphism (i.e., 〈S1, ∗1〉 ∼= 〈S2, ∗2〉).

It can be shown that every cyclic group with order n is isomorphic to 〈Zn,+〉.
Hence, if we know 〈Zn,+〉, then we know all structural properties of every cyclic
group of order n. Furthermore, it can be shown that 〈Z∗

n, ·〉 is cyclic if and only if n
is a prime, a power of a prime> 2, or twice the power of a prime> 2 (see Definition

Discrete Mathematics 61

3.26 for the notion of a prime). For example, 〈Z∗
11, ·〉 is a cyclic group, but 〈Z∗

12, ·〉
is not (i.e., it can be shown that no element of Z

∗
12 generates the entire group and

hence that the group has no generator). In either case, 〈Z∗
p, ·〉 is a cyclic group for

every prime number p, and this group is isomorphic to 〈Zp−1,+〉. For example,
the function f(x) = gx (mod p) defines an isomorphism between 〈Zp−1,+〉 and
〈Z∗

p, ·〉. This isomorphism is reflected by the equation gx+y = gx · gy.

3.1.4 Permutations

Permutations are important mathematical building blocks for symmetric encryption
systems in general, and block ciphers in particular (in Section 10.2 we argue that
a block cipher represents a family of permutations). In short, a permutation is a
bijective map whose domain and range are the same. This is formally expressed in
Definition 3.23.

Definition 3.23 (Permutation) Let S be a set. A map f : S → S is a permutation
if f is bijective (i.e., injective and surjective). The set of all permutations of S is
denoted by PermS→S , or P (S) in short.

If, for example, S = {1, 2, 3, 4, 5}, then an exemplary permutation of S can
be expressed as follows:

(
1 2 3 4 5
5 3 4 2 1

)

This permutation maps every element in the first row of the matrice to the
corresponding element in the second row (i.e., 1 is mapped to 5, 2 is mapped to 3,
and so on). Using this notation, it is possible to specify any permutation of a finite
set S.

In what follows, we use Sn to refer to {1, 2, . . . , n} for any integer n, and
we use Pn to refer to PermSn→Sn or P (Sn). If ◦ represents the concatenation
operator,11 then 〈Pn, ◦〉 is a noncommutative group for n ≥ 3. For example, P2 has
the two elements

(
1 2
1 2

)

and

11 The permutation A ◦B is the permutation that results by applying B and A (in this order).

62 Contemporary Cryptography

(
1 2
2 1

)

As can be shown, |Pn| = n! = 1 · 2 · . . . · n. For the first position, we have n
possibilities. For the second position, we have n−1 possibilities. This continues until
the last position, where we have only one possibility left. Consequently, there are
n · n−1 · . . . · 1 possibilities, and this value is equal to |Pn| = n!. More specifically,
the formula is proven by induction over n. Because P1 has 1! = 1 element, the
formula is correct for n = 1. We assume that the formula is correct for n − 1 (i.e.,
|Pn−1| = (n− 1)!) and show that the formula is then also correct for n. Therefore,
we look at the permutations of Pn that map 1 to an arbitrary x ∈ Sn. By using such
a permutation, the numbers 2, 3, . . . , n are mapped to 1, 2, . . . , x− 1, x+ 1, . . . , n,
and this function is bijective. There are (n − 1)! such functions. Furthermore, there
are n possibilities to map 1 to an x (i.e., x = 1, . . . , n). Consequently, there is a total
of |Pn| = n(n− 1)! = n! permutations of Sn.

Let S = {0, 1}n be the set of all binary strings of length n. A permutation of
S in which the bit positions are permuted is said to be a bit permutation. To specify
a bit permutation f , we must select a π ∈ Pn and set

f : {0, 1}n −→ {0, 1}n

b0 . . . bn−1 �−→ bπ(0) . . . bπ(n−1).

Every bit permutation can be described in this way, and hence there are n!
possible bit permutations for binary strings of length n.

There are bit permutations that are frequently used in cryptography, such as
cyclic shift left and cyclic shift right. A cyclic shift left for i positions maps the bit
string (b0, b1, . . . , bn−1) into

(bi mod n, b(i+1) mod n, . . . , b(i+n−1) mod n).

A cyclic shift right is defined similarly.
Last but not least, we sometimes use the notion of a family of permutations.

Roughly speaking, F is a family of permutations if the domain and range are the
same and each fk is a permutation (according to Definition 3.23).

Discrete Mathematics 63

3.2 INTEGER ARITHMETIC

Mathematics is the queen of sciences and number theory is the queen of
mathematics.

— Carl Friedrich Gauss12

As mentioned earlier, integer arithmetic elaborates on the ring 〈Z,+, ·〉 and its basic
properties.13 This special (and comparably narrow) field of study is sometimes
also referred to as number theory. According to the quote given above, number
theory is a very important and fundamental mathematical topic that has had (and
continues to have) a deep impact on natural sciences. One fascinating aspect of
number theory is that many of its problems and theorems can be easily expressed
and understood even by nonmathematicians, but they are hard to solve (generally
without being able to prove the hardness property). This is in contrast to many other
areas of mathematics (where the relevant problems cannot easily be understood by
nonexperts). For example, the integer factorization problem (see Section 7.2.2) is
explained in a few words, whereas number theorists have tried to solve it without
success for several centuries.

In this section, we look at the aspects of integer arithmetic or number theory
that are relevant for the topic of this book. More specifically, we address integer
division, common divisors and multiples, Euclidean algorithms, prime numbers,
factorization, and Euler’s totient function.

3.2.1 Integer Division

In an algebraic structure with the multiplication operation, one usually divides two
elements by multiplying the first element with the (multiplicatively) inverse element
of the second. This can be formally expressed as follows:

a

b
= ab−1

Obviously, this construction requires that element b has an inverse element.
This is always the case in a group (or field). If, however, the algebraic structure is
only a monoid (or ring), then there are elements that have no inverse, and hence it

12 Carl Friedrich Gauss was a German mathematician who lived from 1777 to 1855.
13 What makes the integers unique (as compared to other rings and integral domains) is the order

relation ≤.

64 Contemporary Cryptography

may not be possible to divide two arbitrarily chosen elements. For example, in the
ring 〈Z,+, ·〉 it is possible to divide 6 by 2, but it is not possible to divide 2 by 3.

For a, b ∈ Z, we say that a divides b, denoted as a|b, if there exists a c ∈ Z such
that b = ac. Alternatively speaking, a is a divisor of b and b is said to be a multiple
of a. In the examples given earlier 2|6, because 6 = 2 · 3, but 3 does not divide 2.
Also, 1 divides every integer and the largest divisor of any integer a ∈ Z\ {0} is |a|.
Furthermore, every integer a ∈ Z divides 0; thus 0 has no largest divisor. Theorem
3.2 enumerates some rules that can be used to compute with divisors.

Theorem 3.2 For all a, b, c, d, e ∈ Z, the following rules apply:

1. If a|b and b|c, then a|c.
2. If a|b, then ac|bc for all c.

3. If c|a and c|b, then c|da+ eb for all d and e.

4. If a|b and b �= 0, then |a| ≤ |b|.
5. If a|b and b|a, then |a| = |b|.

Proofs.

1. If a|b and b|c, then there exist f, g ∈ Z with b = af and c = bg. Consequently,
we can write c = bg = (af)g = a(fg) to express c as a multiple of a. The
claim (i.e., a|c) follows directly from this equation.

2. If a|b, then there exists f ∈ Z with b = af . Consequently, we can write
bc = (af)c = f(ac) to express bc as a multiple of ac. The claim (i.e., ac|bc)
follows directly from this equation.

3. If c|a and c|b, then there exist f, g ∈ Z with a = fc and b = gc. Consequently,
we can write da + eb = dfc + egc = (df + eg)c to express da + eb as
a multiple of c. The claim (i.e., c|da+ eb) follows directly from this equation.

4. If a|b and b �= 0, then there exists 0 �= f ∈ Z with b = af . Consequently,
|b| = |af | ≥ |a| and the claim (i.e., |a| ≤ |b|) follows immediately.

5. Let us assume that a|b and b|a. If a = 0 then b = 0, and vice versa. If a, b �= 0,
then it follows from 4. that |a| ≤ |b| and |b| ≤ |a|, and hence |b| = |a|.

�

Theorem 3.3 elaborates on the division operation and is commonly known as
Euclid’s division theorem for integers. We don’t prove the theorem in this book.

Discrete Mathematics 65

Theorem 3.3 (Euclid’s division theorem) For all n, d ∈ Z\{0} there exist unique
and efficiently computable q, r ∈ Z such that n = qd+ r and 0 ≤ r < |d|.

In this setting, d is called the divisor (i.e., n is divided by d), q the quotient, and
r the remainder. The remainder r can also be written as Rd(n), and we sometimes
use this notation.

For example, R7(16) = 2 (because 16 = 2 · 7 + 2), R7(−16) = 5 (because
−16 = −3 · 7 + 5), and R25(104) = 4 (because 104 = 4 · 25 + 4). Obviously,
Rd(n) = 0 means that d divides n (with remainder zero), and hence d is a
divisor of n. Furthermore, Rd(n + id) is equal to Rd(n) for all i ∈ Z, and hence
R7(1) = R7(8) = R7(15) = R7(22) = R7(29) = . . . = 1.

3.2.2 Common Divisors and Multiples

Two integers can have many common divisors, but only one of them can be the
greatest. Quite naturally, this divisor is called greatest common divisor. It is formally
introduced in Definition 3.24.

Definition 3.24 (Common divisors and greatest common divisor) For a, b ∈ Z \
{0}, c ∈ Z is a common divisor of a and b if c|a and c|b. Furthermore, c is the
greatest common divisor, denoted gcd(a, b), if it is the largest integer that divides a
and b.

Another possibility to define the greatest common divisor of a and b is to say
that c = gcd(a, b) if any common divisor of a and b also divides c. gcd(0, 0) = 0,
and gcd(a, 0) = |a| for all a ∈ Z \ {0}. If a, b ∈ Z \ {0}, then 1 ≤ gcd(a, b) ≤
min{|a|, |b|} and gcd(a, b) = gcd(±|a|,±|b|). Consequently, the greatest common
divisor of two integers can never be negative (even if one or both integers are
negative). Furthermore, two integers a, b ∈ Z \ {0} are relatively prime or co-prime
if their greatest common divisor is 1 (i.e., if gcd(a, b) = 1).

Similar to the (greatest) common divisor, it is possible to define the (least)
common multiple of two integers. This is formally introduced in Definition 3.25.

Definition 3.25 (Common multiples and least common multiple) For a, b ∈ Z \
{0}, c ∈ Z is a common multiple of a and b if a|c and b|c. Furthermore, c is the
least common multiple, denoted lcm(a, b), if it is the smallest integer that is divided
by a and b.

Another possibility to define the least common multiple of a and b is to say
that c = lcm(a, b) if c divides any common multiple of a and b.

The gcd and lcm operators can be generalized to more than two arguments.
In fact, gcd(a1, . . . , ak) is the largest integer that divides all ai (i = 1, . . . , k) and
lcm(a1, . . . , ak) is the smallest integer that is divided by all ai (i = 1, . . . , k).

66 Contemporary Cryptography

3.2.3 Euclidean Algorithms

In Section 3.2.5 we see how one can compute the greatest common divisor of two
integers if their prime factorization is known. It is, however, not necessary to know
the prime factorization of two integers to compute their greatest common divisor.
In fact, the Euclidean algorithm (or Euclid’s algorithm) can be used to compute
the greatest common divisor of two integers a, b ∈ Z \ {0} with unknown prime
factorization.14

Theorem 3.3 says that for two nonzero integers a ≥ b, we can always write

a = bq + r

for some quotient q �= 0 and remainder 0 ≤ r < b. Because by definition,
gcd(a, b) divides both a and b, the above equation shows that it must also divide r.
Consequently, gcd(a, b) equals gcd(b, r), and because the remainder r of a divided
by b is denoted by a mod b, we can say

gcd(a, b) = gcd(b, a mod b) = gcd(b, Rb(a)).

This equation can be recursively applied to compute gcd(a, b). For example,
gcd(100, 35) can be computed as follows:

gcd(100, 35) = gcd(35, R35(100))
= gcd(35, 30)
= gcd(30, R30(35))
= gcd(30, 5)
= gcd(5, R5(30))
= gcd(5, 0)
= 5.

This way of computing gcd(a, b) is at the core of the Euclidean algorithm. If
we consider the following series of k equations:

a = bq1 + r1

14 The Euclidean algorithm is one of the oldest algorithms known; it appeared in Euclid’s Elements
around 300 B.C.

Discrete Mathematics 67

b = r1q2 + r2

r1 = r2q3 + r3

. . .

rk−3 = rk−2qk−1 + rk−1

rk−2 = rk−1qk + rk

All quotients and remainders are integers. At the end, rk is equal to zero
and q1, q2, . . . , qk, r1, r2, . . . , rk−1 are nonzero. If rk = 0, then the last equation
implies that rk−1 divides rk−2. The last-but-one equation implies that it also divides
rk−3. This line of argumentation can be continued until the first equation, and hence
rk−1 divides a and b. None of the other remainders rk−2, rk−3, . . . , r1 has this
property.15 Consequently, rk−1 is the greatest common divisor of a and b, meaning
that rk−1 = gcd(a, b).

Algorithm 3.1 The Euclidean algorithm to compute the greatest common divisor of a and b.

(a, b ∈ Z, |a| ≥ |b|, a �= 0)

a← |a|
b← |b|
while b �= 0 do

t← a
a← b
b← t mod b

return a

(gcd(a, b))

The Euclidean algorithm is illustrated in Algorithm 3.1. It takes as input two
integers a and b with |a| ≥ |b| and a �= 0, and computes as output gcd(a, b).
First it replaces a and b with their absolute values (note that this does not change
the greatest common divisor). Then the previously mentioned rule that gcd(a, b) =
gcd(b, a mod b) is applied until b reaches zero. At this point in time, a represents
the greatest common divisor and is returned by the algorithm. Note that the loop can
also be represented by a recursive function call.

The Euclidean algorithm explained so far can be used to compute the greatest
common divisor of two integers a and b. During its execution, all intermediate results
(in particular all quotients qi and remainders ri) are discarded. This makes the
algorithm simple to implement in the first place. If, however, one does not throw
all intermediate results away but accumulates them during the execution of the

15 That’s why they are called remainders in the first place (not divisors). Only rk−1 is a divisor in the
last equation.

68 Contemporary Cryptography

algorithm, then one may obtain more information than simply the greatest common
divisor. In fact, the extended Euclidean algorithm can be used to compute two
integers x and y that satisfy (3.1):

xa+ yb = gcd(a, b) (3.1)

Note that the first equation of the previously mentioned series of k equations
can be written as

a+ b(−q1) = r1

If we multiply both sides of this equation with q2, we get

aq2 + b(−q1q2) = r1q2.

Combining this equation with the second equation of the series, we get

a(−q2) + b(1 + q1q2) = r2.

A similar calculation can be used to express each ri for i = 1, 2, . . . , k as a
linear combination of a and b. In fact,

axi + byi = ri (3.2)

where xi and yi are some integers. As explained earlier, we eventually reach the
point where rk = 0 and rk−1 represents gcd(a, b):

axk−1 + byk−1 = rk−1 = gcd(a, b).

In essence, the extended Euclidean algorithm specifies a way to accumulate
the intermediate quotients to compute xk−1 and yk−1. Like the Euclidean algorithm,
the extended Euclidean algorithm takes as input two integers a and b with |a| ≥ |b|
and a �= 0, and computes as output two integers x and y that satisfy (3.1).

If we set r−1 = a, r0 = b, x−1 = 1, y−1 = 0, x0 = 0, and y0 = 1, then the
ith equation of the previously mentioned series of k equations relates ri−1, ri, and
ri+1 in the following way:

Discrete Mathematics 69

ri+1 = ri−1 − riqi+1

Replacing ri−1 and ri in the right-hand side of this equation using (3.2), we
get

ri+1 = a(xi−1 − qi+1xi) + b(yi−1 − qi+1yi).

Algorithm 3.2 The extended Euclidean algorithm.

(a, b ∈ Z, |a| ≥ |b|, a �= 0)

i← 0
r−1 ← a
r0 ← b
x−1 ← 1
y−1 ← 0
x0 ← 0
y0 ← 1
while (ri = axi + byi �= 0) do

q ← ri−1 div ri

xi+1 ← xi−1 − qxi

yi+1 ← yi−1 − qyi

i← i + 1
return (xi−1, yi−1)

(x and y with xa + yb = gcd(a, b))

Comparing this equation with (3.2), we obtain

xi+1 = xi−1 − qi+1xi

yi+1 = yi−1 − qi+1yi

for i = 0, 1, . . . , k− 1, and this pair of equations provides us with a general method
for accumulating the intermediate quotients while computing the greatest common
divisor of a and b. The resulting extended Euclidean algorithm is illustrated in
Algorithm 3.2.

For example, the extended Euclidean algorithm can be used to determine x
and y that satisfy gcd(100, 35) = 5 = x · 100 + y · 35 in the example given earlier.

70 Contemporary Cryptography

In this case, a = 100 and b = 35. After the initialization phase of the algorithm, we
come to the first incarnation of the while-loop with i = 0. We compute

r0 = ax0 + by0 = 100 · 0 + 35 · 1 = 35.

Because this value is not equal to 0, we enter the loop. The variable q is set to
r−1 div r0. In our example, this integer division yields 100 div 35 = 2. Using q = 2,
we compute the following pair of values:

x1 = x−1 − qx0 = 1− 2 · 0 = 1
y1 = y−1 − qy0 = 0− 2 · 1 = −2

After having incremented iwith 1, we have i = 1 and come back to the second
incarnation of the while-loop. We compute

r1 = ax1 + by1 = 100 · 1 + 35 · (−2) = 100− 70 = 30.

Because this value is again not equal to 0, we enter the loop again. This time,
the variable q is set to r0 div r1 = 35 div 30 = 1. Using q = 1, we then compute the
following pair of values:

x2 = x0 − qx1 = 0− 1 = −1
y2 = y0 − qy1 = 1− (1 · (−2)) = 1 + 2 = 3

After having incremented i with 1, we have i = 2 and come back to the third
incarnation of the while-loop. We compute

r2 = ax2 + by2 = 100 · (−1) + 35 · 3 = −100 + 105 = 5.

Because this value is not equal to 0, we enter the loop. This time, the variable
q is set to r1 div r2 = 30 div 5 = 6. Using q = 6, we compute the following pair of
values:

Discrete Mathematics 71

x3 = x1 − qx2 = 1 + 6 = 7
y3 = y1 − qy2 = −2− 6 · 3 = −20

Finally, we increment i and come back to the fourth incarnation of the while-
loop with i = 3. When we compute

r3 = 100 · 7 + (−20) · 35

we immediately realize that this value equals 0. Consequently, we don’t enter the
while-loop anymore, but return (x, y) = (x2, y2) = (−1, 3) as the result of the
algorithm. It can easily be verified that this result is correct, because gcd(100, 35) =
5 = −1 · 100 + 3 · 35.

3.2.4 Prime Numbers

Prime numbers (or primes) as formally introduced in Definition 3.26 are frequently
used in mathematics.16

Definition 3.26 (Prime number) A natural number 1 < n ∈ N is called a prime
number (or prime) if it divisible only by 1 and itself.

Contrary to that, a natural number 1 < n ∈ N that is not prime is called
composite (note that 1 is neither prime nor composite). In this book, the set of all
prime numbers is denoted as P. The set P is infinitely large (i.e., |P| = ∞), and its
first 8 elements are 2, 3, 5, 7, 11, 13, 17, and 19.

Suppose that you want to find the set that consists of all primes less than a
certain threshold n (e.g., n = 20). In the third century B.C., Eratosthenes proposed
an algorithm to systematically find these primes, and this algorithm introduced the
notion of a sieve. The sieve starts by writing down the set of all natural numbers
between 2 and n. In our example n = 20, this may look as follows:

{2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}

Next, all numbers bigger than 2 (i.e., the smallest prime) which are multiples
of 2 are removed from the set (this means that all even numbers are removed). The
following set remains:

16 The first recorded definition of a prime was again given by Euclid. There is even some evidence that
the concept of primality was known earlier to Aristotle and Pythagoras.

72 Contemporary Cryptography

{2, 3, 5, 7, 9, 11, 13, 15, 17, 19}

This step is repeated for every prime number not bigger than
√
n. In our

example,
√

20 ≈ 4.472. This basically means that the step must be repeated only for
the prime number 3. The following set remains:

{2, 3, 5, 7, 11, 13, 17, 19}

What is left is the set of prime numbers less than 20. In this example, the
cardinality of the prime number set is 8. In general, the cardinality of the prime
number set is measured by the prime counting function π(n). This function is
introduced next.

3.2.4.1 Prime Counting Function

As mentioned earlier, the prime counting function π(n) counts the number of primes
that are less or equal to n ∈ N. This statement can be defined as follows:

π(n) := |{p ∈ P | p ≤ n}|

The following table illustrates the first couple of values of the prime counting
function π(n). Note that the function grows monotonically.

n 2 3 4 5 6 7 8 9 10 11 12 13 14 . . .
π(n) 1 2 2 3 3 4 4 4 4 5 5 6 6 . . .

In public key cryptography, one often uses very large prime numbers. Con-
sequently, one may ask whether there are arbitrarily sized prime numbers. This
question can be answered in the affirmative. In fact, it is easy to proof that there
are infinitely many primes. Assume that there are only finitely many primes, and let
them be p1 · · · pn. Consider the number m = p1 · · · pn + 1. Because m is bigger
than any prime, it must be composite, and hence it must be divisible by some prime.
We note, however, that m is not divisible by p1, as when we divide m by p1 we get
the quotient p2 · · · pn and a remainder of 1. Similarly, m is not divisible by any pi

for i = 2, . . . , n. Consequently, we get a contradiction and hence the assumption
(i.e., that there are only finitely many primes) must be wrong. This proves that there
are infinitely many primes.

Although there are infinitely many primes, it may still be the case that they
are sparse and that finding a large prime is prohibitively difficult. Consequently, a

Discrete Mathematics 73

somehow related question asks for the density of prime numbers. How likely does
an interval of a given size comprise a prime number? We can use the prime density
theorem addressed next to answer questions of this type.

3.2.4.2 Prime Density Theorem

Theorem 3.4 is called the prime density theorem. It says that arbitrarily sized prime
numbers do in fact exist, and that finding them is not difficult (even for very large
numbers). We give the theorem without a proof.

Theorem 3.4 (Prime density theorem)

lim
n→∞

π(n) ln(n)
n

= 1

In essence, the prime density theorem says that for sufficiently large n the
value π(n) is about n/ ln(n) and that roughly every ln(n)th number of the size of
n is prime. For example, ln(10100) ≈ 230. This means that about 1 in 230 (115)
integers (odd integers) with 100 decimal digits is a prime. More specifically, it is
known that

π(n) ≥ n

ln(n)

for 2 < n ∈ N and that

π(n) ≤ 1.10555
n

ln(n)

for 17 ≤ n ∈ N. Consequently, π(n) ≈ n/ln(n) is indeed a very good approxima-
tion for almost all n ∈ N.

There are several open conjectures on prime numbers. For example, it is
conjectured that there exist infinitely many twin primes (i.e., primes p for which
p+ 2 is also prime), and that every even number is the sum of two primes. We don’t
elaborate on these issues in this book.

3.2.4.3 Generating Large Primes

In cryptographic applications, one often needs large primes, and there are two
methods for generating them:

74 Contemporary Cryptography

• One can construct provable primes;

• One can randomly choose large odd numbers and apply primality (or compos-
iteness) tests.

There are only a few algorithms to construct provable primes (e.g., [7]), and
in practice one randomly chooses large odd numbers and applies primality (or
compositeness) tests. If a number turns out to be composite, then it is discarded and
the next odd number is taken into consideration. The primality decision problem as
captured in Definition 3.27 has attracted many mathematicians in the past.

Definition 3.27 (Primality decision problem) Given a positive integer n ∈ N,
decide whether n ∈ P (i.e., n is prime) or not (i.e., n is composite).

There are a couple of algorithms to address the primality decision problem.
Most of them are probabilistic.17 Only a few deterministic primality testing algo-
rithms are efficient (i.e., run in polynomial time). They are, however, much less
efficient than their probabilistic counterparts. From a theoretical viewpoint, however,
knowing efficient deterministic primality testing algorithms means that the primality
decision problem is in the complexity class P (as introduced in Definition 6.6) This
fact was proven in 2002.18

Numbers that are not truly known to be prime, but which have passed some
probabilistic primality tests, are called probable primes or pseudoprimes. Some-
times, the term “pseudoprime” is also used to refer to a nonprime (i.e., a composite
number) that has nevertheless passed a probabilistic primality test. For the purpose
of this book, however, a pseudoprime is a (prime or composite) number n that has
passed some specified probabilistic primality tests. Each of these tests makes use of
one or several randomly chosen auxiliary numbers 1 < a < n. If such an a tells us
that a is likely prime (composite), then a is a witness to the primality (composite-
ness) of n. A problem is that a significant fraction of numbers between 2 and n− 1
may be false witnesses (sometimes called liars) to the primality of n, meaning that
they tell us n is prime when it’s not. Thus, part of the issue is to be sure that a large
fraction of the numbers a in the range 1 < a < n are true witnesses to either the
primality or the compositeness of n. As discussed later, the fatal flaw in the Fermat
test is that there are composite numbers for which there are no witnesses. The other
two probabilistic primality tests have no such flaw.

17 The probabilistic primality testing algorithms can be converted into deterministic algorithms if the
Extended Riemann Hypothesis is true. Many mathematicians believe that this hypothesis is true,
and there is no simple evidence to the contrary.

18 http://www.cse.iitk.ac.in/primality.pdf

Discrete Mathematics 75

Trial Division

The simplest (deterministic) primality testing algorithm for a positive integer n ∈ N

is to test whether there exists a prime between 2 and
√
n that divides n. If such a

number exists, then n is not prime (i.e., it is composite) and the algorithm can abort.
If, however, such a number does not exist, then n is prime. In the literature, this
algorithm is commonly referred to as trial division. It requires a list of known prime
numbers between 2 and

√
n. As a consequence of the prime density theorem (i.e.,

Theorem 3.4), one must perform

√
n

ln
√
n

trial divisions to show that n is a prime. For example, in a typical cryptographic
setting, n is larger than 1075. In this case, one must perform

√
1075

ln
√

1075
> 3.5 · 1035

trial divisions. This is computationally infeasible, and hence the trial division al-
gorithm cannot be used for numbers of a certain size. All major primality testing
algorithms that work for large numbers are probabilistic.

Fermat Test

In the 17th century, Pierre de Fermat19 proved Theorem 3.7 (also known as Fermat’s
Little Theorem), which can be turned into a simple primality testing algorithm.
Fermat’s Little Theorem states that for any prime number p and any number a not
divisible by p, the equivalence ap−1 ≡ 1 (mod p) must hold. Consequently, one
can test the primality—or rather the compositeness—of n by randomly choosing
a value for a (not divisible by n) and computing an−1 (mod n). If this value is
not equal to 1, then n is definitively not a prime (and we have found a witness for
the compositeness of n, respectively). Unfortunately, the converse is not true and
finding an a for which an−1 ≡ 1 (mod n) does not imply that n is prime.20 In fact,
there is an entire class of composite numbers for which an−1 ≡ 1 (mod n) holds

19 Pierre de Fermat was a French mathematician who lived from 1607 to 1665.
20 For this reason, the Fermat test (and the two other tests mentioned later) is referred to as a

compositeness test.

76 Contemporary Cryptography

for all a. These numbers are called Carmichael numbers.21 Because it is not able
to correctly handle Carmichael numbers, the Fermat test is not widely deployed in
practice. Instead, either the Solovay-Strassen test or the Miller-Rabin test is used.

Solovay-Strassen Test

The Solovay-Strassen test is a probabilistic compositeness testing algorithm that
was developed by Robert Solovay and Volker Strassen in 1976. It can prove the
compositeness of a large number n with certainty, but it can prove the primality of
n only with a certain probability.

The Solovay-Strassen test makes use of some facts related to quadratic resid-
uosity that we introduce in Section 3.3.7. More specifically, the test employs and
takes advantage of the fact that if n is prime, then the Legendre symbol

(a
n

)

and

a
n−1

2 (mod n)

must be equal for every 1 ≤ a ≤ n − 1 (according to Euler’s criterion stated in
Theorem 3.9 on page 93). Consequently, if one finds an a for which the two values
are different, then n must be composite (and a is a witness for the compositeness of
n, respectively). Let n be a large odd number for which we want to decide whether
it is prime or composite. We execute the Solovay-Strassen test multiple times. In
each execution, we randomly choose an integer a between 1 and n− 1 and compute
both the Legendre symbol (a|n) and an−1/2 (mod n). If the two values are not the
same, then n is composite and a is a witness for the compositeness of n. In this case,
the algorithm can abort. Otherwise (i.e., if the two computed values are the same),
the algorithm must continue with the next value of a. If we execute the test k times
and two computed values are the same for all k values of a, then we can say that n
is prime with probability at least 1− 2−k.

Miller-Rabin Test

The Miller-Rabin test is another probabilistic compositeness testing algorithm that
was developed by Gary Miller and Michael O. Rabin in the late 1970s. Similar

21 It can be shown that a Carmichael number must be odd, square free, and divisible by at least 3 prime
numbers. For example, the smallest Carmichael number is 561 = 3 · 11 · 17.

Discrete Mathematics 77

to the Fermat and Solovay-Strassen tests, the Miller-Rabin test can prove the
compositeness of a large number n with certainty, but it can prove the primality
of n only with a certain probability.

The underlying idea of the Miller-Rabin test is that if n is a prime, then 1
should have only 2 square roots in Zn, namely ±1. Alternatively speaking, if n is
nonprime, then there are at least 2 elements x of Zn with x2 ≡ 1 (mod n) but
x �= ±1. That is, there will be more square roots of 1 than there should be. The
Miller-Rabin test itself is based on the properties of strong pseudoprimes. If we
want to test the primality of a large odd number n = 2rs + 1, then we randomly
choose an integer a between 1 and n− 1. If

as ≡ 1 (mod n)

or

a2js ≡ −1 (mod n)

for some 0 ≤ j ≤ r − 1, then n passes the test for this value of a (i.e., a is not
a witness for the compositeness of n). Unfortunately, a number that passes the test
is not necessarily prime. In fact, it can be shown that a composite number passes
the test for at most 1/4 of the possible values for a. Consequently, if k tests are
performed on a composite number n, then the probability that it passes each test is
at most 1/4k. This means that the error probability can be made arbitrarily small.

Note that the operation of the Miller-Rabin test is quite simple, though—
even simpler than that of the Solovay-Strassen test. Consequently, the Miller-Rabin
test is the primality (or compositeness) testing algorithm of choice for all practical
purposes.

3.2.5 Factorization

First of all, it can be shown that a prime p that divides the product ab of two natural
numbers a and b divides at least one of the two factors (i.e., a or b). To prove this
fact, we assume that p divides ab but not a and show that p must then divide b.
Because p is a prime, we have gcd(a, p) = 1 and hence there exist x, y ∈ N with
gcd(a, p) = 1 = ax+ py [refer to (3.1)]. This equation can be multiplied with b to
get b = abx+pby. Obviously, p divides abx and pby (the right side of the equation),
so p must also divide b (the left side of the equation).

This result can be generalized to more than two factors. In fact, if p divides a
product

78 Contemporary Cryptography

k∏
i=1

qi

of prime factors, then p must be equal to one of the prime factors q1, . . . , qk. This
result can be proven by induction over k (using the result given earlier).

One of the fundamental theorems of integer arithmetic says that every natural
number n ∈ N has a unique prime factorization. This is Theorem 3.5, and it was first
proved by Gauss in 1801. We provide the theorem without a proof.

Theorem 3.5 (Unique factorization) Every natural number n ∈ N can be factored
uniquely (up to a permutation of the prime factors):

n =
∏
p∈P

pep(n)

In this formula, ep(n) refers to the exponent of p in the factorization of n. For
almost all p ∈ P this value is zero, and only for finitely many primes p the value
ep(n) is greater than zero.

Theorem 3.5 says only that every natural number n ∈ N can be factored. Its
proof comprises an existence proof and a uniqueness proof. The existence proof is
a consequence of the definition of a prime number; it gives no clue about how to
efficiently find the prime factors. As further addressed in Section 7.3, no efficient
(i.e., polynomial time) is currently known to factorize integers.

Using this notation, the greatest common divisor and least common multiple
can be defined as follows:

gcd(a, b) =
∏
p∈P

pmin(ep(a),ep(b))

lcm(a, b) =
∏
p∈P

pmax(ep(a),ep(b))

The algorithms we learn in school to compute greatest common divisors and
least common multiples are directly derived from these equations. Note, however,
that these algorithms can only be used if the prime factorizations of a and b are
known.

Last but not least, the notion of a smooth integer is sometimes used, especially
in the realm of integer factorization algorithms. Informally speaking, an integer is

Discrete Mathematics 79

said to be smooth if it is the product of only small prime factors. More specifically,
we must say what a “small prime factor” is, and hence one has to define smoothness
with respect to a certain bound B. The notion of a B-smooth integer is captured in
Definition 3.28.

Definition 3.28 (B-smooth integer) Let B be an integer. An integer n is B-smooth
if every prime factor of n is less than B.

For example, the integer n = 43 · 52345 · 172 is 18-smooth (because 17 is the
largest prime factor of n).

3.2.6 Euler’s Totient Function

Euler’s totient function was first proposed by Leonhard Euler22 as a function that
counts the numbers that are smaller than n and have no other common divisor with
n other than 1 (i.e., they are co-prime with n). The function is formally defined as
follows:

φ(n) = |{a ∈ {0, . . . , n− 1} | gcd(a, n) = 1}|

The Euler’s totient function has the following properties:

• If p is prime, then every number smaller than p is co-prime with p. Conse-
quently, the equation φ(p) = p− 1 holds for every prime number.

• If p is prime and 1 ≤ k ∈ Z, then φ(pk) = pk − pk/p. This is because every
pth number between 1 and pk is not co-prime with pk (because p is a common
divisor of pi (for i = 1, . . . , k− 1) and pk) and we have to subtract pk/p from
pk accordingly. Note that pk − pk/p = pk − pk−1 = pk−1(p− 1), and hence
φ(pk) = (p− 1)pk−1 (this is the equation that is often found in textbooks).

• If n is the product of two primes p and q (i.e., n = pq), then φ(n) =
φ(p)φ(q) = (p − 1)(q − 1). This is because the numbers 0, p, 2p, . . . , (q −
1)p, q, 2q, . . . , (p− 1)q are not co-prime with n, and there are 1 + (q − 1) +
(p− 1) = p+ q− 1 of these numbers (they are all different from each other if
p �= q). Consequently,φ(n) = pq−(p+q−1) = pq−p−q+1 = (p−1)(q−1).

Putting the results together, we can determine φ(n) for any integer n that has
a known prime factorization (i.e., n =

∏
i q

ki

i):

22 Leonhard Euler was a Swiss mathematician who lived from 1707 to 1783.

80 Contemporary Cryptography

φ(n) =
∏

i

(qi − 1)qki−1
i

For example, in order to compute φ(45) we compute the factorization 45 =
32 · 5 and apply the formula given earlier. In fact, we have

φ(45) = (3 − 1) · 32−1 · (5− 1)1−1

= 2 · 31 · 4 · 50

= 2 · 3 · 4 · 1
= 24.

A final word is due to the difficulty of computing φ(n) as compared to finding
the factorization of n. For simplicity, we assume n to be the product of two primes
p and q (i.e., n = pq). In this case, we can show that computing φ(n) is equally
difficult to finding p and q. This means that if we can compute φ(n) for any n, then
we can also factor n.

Starting with φ(pq) = (p− 1)(q − 1) = pq− (p+ q) + 1 = n− (p+ q) + 1,
we can state (3.3):

p+ q = n− φ(pq) + 1 (3.3)

On the other hand, we can state that (p− q)2 = p2 − 2pq + q2 = p2 + 2pq +
q2−4pq = (p+q)2−4pq = (p+q)2−4n. Computing the square root on either side
of this equation, we get p−q =

√
(p+ q)2 − 4n. In this equation, we can substitute

p+ q with the right side of (3.3). The result is (3.4):

p− q =
√

(n− φ(pq) + 1)2 − 4n (3.4)

By adding (3.3) and (3.4), we get the following formula to compute (p+ q) +
(p− q) = p+ q + p− q = 2p:

2p = n− φ(pq) + 1 +
√

(n− φ(pq) + 1)2 − 4n

Discrete Mathematics 81

This means that we can compute 2p and—more interestingly—p if we know
φ(n). Assuming the difficulty of factorization, we can assume that computing φ(n)
for any n with unknown factorization is also difficult (otherwise we could construct
an efficient factorization algorithm by first computing φ(n)). This property is used,
for example, in the RSA public key cryptosystem.

3.3 MODULAR ARITHMETIC

Modular arithmetic elaborates on the ring23 〈Zn,+, ·〉 that consists of a complete
residue system modulo n (denoted as Zn) and the two operations + and ·. In this
setting, + refers to the addition modulo n, and · refers to the multiplication modulo
n. In this section, we look at the aspects of modular arithmetic that are relevant for
contemporary cryptography.

3.3.1 Modular Congruence

Two integers are congruent modulo a given natural number if they represent the same
value when computed modulo this number. This is formally expressed in Definition
3.29.

Definition 3.29 Let a, b ∈ Z and n ∈ N. a is congruent to b modulo n, denoted
a ≡ b (mod n), if n divides a− b (i.e., n|a− b).

For example, 7 ≡ 12 (mod 5), 4 ≡ −1 (mod 5), 12 ≡ 0 (mod 2), and
−2 ≡ 19 (mod 21).

It can be shown that congruence modulo n defines an equivalence relation
over Z. This means that for all n ∈ N and a, b, c ∈ Z

1. a ≡ a (mod n) (i.e., the relation is reflexive);

2. If a ≡ b (mod n), then b ≡ a (mod n) (i.e., the relation is symmetric);

3. If a ≡ b (mod n) and b ≡ c (mod n), then a ≡ c (mod n) (i.e., the relation
is transitive).

It is well known that an equivalence relation over a set (e.g., Z) partitions
the set into equivalence classes. In the case of Z, the equivalence classes are
also referred to as residue classes. Every a ∈ Z is congruent modulo n to some
b ∈ {0, . . . , n − 1}, and hence Rn(a) defines a residue class that consists of all
x ∈ Z that are congruent to a modulo n. This can be formally expressed as follows:

23 Note that 〈Zn, +, ·〉 is a field if n is a prime.

82 Contemporary Cryptography

Rn(a) := {x ∈ Z | a ≡ x (mod n)}

In the literature, a or a + nZ are sometimes also used to refer to Rn(a).
Furthermore, one frequently uses the term residue to actually refer to a residue class.
For example, the residue (class) of 0 modulo 2 is the set of even integers, whereas
the residue (class) of 1 modulo 2 is the set of odd integers. Similarly, the residue
classes modulo 4 are defined as follows:

0 = 0 + 4Z = R4(0) = {0, 0± 4, 0± 2 · 4, . . .} = {0,−4, 4,−8, 8, . . .}
1 = 1 + 4Z = R4(1) = {1, 1± 4, 1± 2 · 4, . . .} = {1,−3, 5,−7, 9, . . .}
2 = 2 + 4Z = R4(2) = {2, 2± 4, 2± 2 · 4, . . .} = {2,−2, 6,−6, 10, . . .}
3 = 3 + 4Z = R4(3) = {3, 3± 4, 3± 2 · 4, . . .} = {3,−1, 7,−5, 11, . . .}

As already mentioned in Section 3.1.2.3, Zn is used to represent Z/nZ,
and Z/nZ is used to represent the quotient group of Z modulo nZ. It consists
of all residue classes modulo n (there are n such classes, because all residues
0, 1, . . . , n − 1 can occur in the division with n). In fact, the set {0, . . . , n − 1}
is called a complete residue system modulo n. Note that other elements could also
be used to get a complete residue system modulo n, but that the ones mentioned
earlier simplify things considerably.

The modulo n operator defines a mapping f : Z → Zn, and this mapping
represents a homomorphism from Z onto Zn. This means that we can add and multi-
ply residues (or residue classes, respectively) similar to integers. The corresponding
rules are as follows:

Rn(a+ b) = Rn(Rn(a) +Rn(b))
Rn(a · b) = Rn(Rn(a) ·Rn(b))

Consequently, intermediate results of a modular computation can be reduced
(i.e., computed modulo m) at any time without changing the result. The following
examples are to make this point more clear.

R7(12 + 18) = R7(R7(12) +R7(18))

Discrete Mathematics 83

= R7(5 + 4)
= R7(9) = 2

R7(12 · 18) = R7(R7(12) · R7(18))
= R7(5 · 4)
= R7(20) = 6

R7(837 + 94) = R7(137 + 24)
= R7(1 + 16)
= R7(17) = 3

On the other hand, the fact that 〈Zn,+, ·〉 is (only) a ring implies that not
all elements of Zn must have inverse elements with regard to multiplication. For
example, the inverse element of 3 modulo 10 is 7 (i.e., 3 · 7 = 21 ≡ 1 (mod 10),
but the inverse of 4 modulo 10 does not exist.24 If there exists a b ∈ Zn such that
ab ≡ 1 (mod n), then b is called the multiplicative inverse of a modulo n and is
denoted as b = a−1 (mod n). One can show that a has a multiplicative inverse
modulo n if and only if gcd(a, n) = 1, meaning that a and n must be co-prime. In
this case, the multiplicative inverse modulo n can be computed using the extended
Euclidean algorithm (see Algorithm 3.2). If one replaces b with n in (3.1), then one
gets

xa+ yn = gcd(a, n) = 1. (3.5)

This equation is equivalent to xa ≡ 1 (mod n), and hence x is the multi-
plicative inverse of a modulo n. Contrary to that, if gcd(a, n) = k > 1, then one
can show that a cannot have an inverse modulo n.

If we look at all elements in Zn that are co-prime with n, then we get a subset
of Zn in which all elements are invertible. This subset is denoted Z

∗
n and is formally

defined as follows:

Z
∗
n := {x ∈ Zn | gcd(x, n) = 1}

24 Note that 4 and 10 have a common factor 2, and that 4 · a always contains a factor 2 and cannot be
1 (for all a ∈ Zn).

84 Contemporary Cryptography

〈Z∗
n, ·〉 is a commutative group that is frequently written as Z

∗
n. If n is prime,

then Zn \ {0} = Z
∗
n, and hence 〈Zn \ {0}, ·〉 is a group. Furthermore, the order of

Z
∗
n (i.e., |Z∗

n|) is equal to φ(n). This means that it can be computed using Euler’s
totient function (see Section 3.2.6).

3.3.2 Modular Exponentiation

A frequently used computation in cryptography is modular exponentiation. If, for
example, we want to compute

ab (mod n)

for a ∈ Z
∗
n and b ∈ N, then the simplest algorithm is to iteratively multiply a

modulo n b times. If b = 23, then the following sequence of equations yields the
correct result with 22 modular multiplications:

Rn(a2) = Rn(a · a)
Rn(a3) = Rn(a · Rn(a2))
Rn(a4) = Rn(a · Rn(a3))

. . .

Rn(a23) = Rn(a · Rn(a22))

This can be simplified considerably, and the following sequence of equations
yields the correct result but requires only 7 modular multiplications:

Rn(a2) = Rn(a · a)
Rn(a4) = Rn(Rn(a2) ·Rn(a2))
Rn(a5) = Rn(a ·Rn(a4))
Rn(a10) = Rn(Rn(a5) ·Rn(a5))
Rn(a11) = Rn(a ·Rn(a10))
Rn(a22) = Rn(Rn(a11) ·Rn(a11))
Rn(a23) = Rn(a ·Rn(a22))

Discrete Mathematics 85

This method can be generalized and the resulting square-and-multiply algo-
rithm as captured in Algorithm 3.3 works for modular exponentiation in any (mul-
tiplicative) group. Let 〈G, ·〉 be such a group, a an element in the group, and b a
positive integer (i.e., b ∈ N). If we want to compute ab in G, then we must have
a binary representation of the exponent b (i.e., b = bk−1 . . . b1b0) and process this
string bitwise from one end to the other. More specifically, we process the exponent
from the most significant bit (i.e., bk−1) to the least significant bit (i.e., b0). The
other direction is also possible and works similarly. In Algorithm 3.3, the variable
s is used to accumulate the result. The variable is initially set to 1. The exponent is
then processed from bk−1 to b0. For each exponent bit, the value of s is squared and
multiplied with a if the bit is equal to one. Finally, the algorithm returns s, and this
value represents ab in G.

Algorithm 3.3 The square-and-multiply algorithm.

(a ∈ G, b = bk−1 . . . b1b0 ∈ N)

s← 1
for i = k − 1 down to 0 do

s← s · s
if bi = 1 then s← s · a

return s

(ab)

Let’s have a look at an example. If we consider the group Z11 and want to
compute 722 (mod 11), then we must first write the exponent in binary notation
(i.e., b = (22)10 = (10110)2) and set s to 1. The computation according to
Algorithm 3.3 is as follows:

7(1)2 = 12 · 7 ≡ 7 (mod 11)
7(10)2 = 72 ≡ 5 (mod 11)

7(101)2 = 52 · 7 ≡ 3 · 7 ≡ 10 (mod 11)
7(1011)2 = (10)2 · 7 ≡ 7 (mod 11)

7(10110)2 = 72 ≡ 5 (mod 11)

In the first iteration, s is squared and multiplied with 7 modulo 11. The result
is 7. In the second iteration, this value is squared modulo 11. The result is 5. In the
third iteration, this value is squared and multiplied with 7 modulo 11. The result is
10 (or−1). In the fourth iteration, this value is squared and multiplied with 7 modulo

86 Contemporary Cryptography

11. The result is again 7. Finally, in the fifth and last iteration, this value is squared
modulo 11. The result is 5. Consequently, 722 (mod 11) equals 5.

3.3.3 Chinese Remainder Theorem

One sometimes has a system of congruences for an integer that must all be fulfilled
simultaneously. This is where the Chinese remainder theorem (CRT) as captured in
Theorem 3.6 comes into play (we provide the theorem without a proof).

Theorem 3.6 (Chinese remainder theorem) Let

x ≡ a1 (mod n1)
x ≡ a2 (mod n2)

. . .

x ≡ ak (mod nk)

be a system of k congruences with pairwise co-prime moduli n1, . . . , nk. The system
has a unique and efficiently computable solution x in Zn with n =

∏k
i=1 ni.

The fact that the solution is unique in Zn means that all other solutions are
not elements of Zn. In fact, the set of all solutions is the set of integers y such
that y ≡ x (mod n). Furthermore, the fact that there is an efficiently computable
solution x in Zn means that there is an efficient algorithm that finds the solution.
This algorithm is sometimes referred to as the Chinese remainder algorithm (CRA).

Let mi = n/ni for i = 1, . . . , k, and yi = m−1
i (mod ni), meaning that yi is

the multiplicative inverse element ofmi modulo ni. Because all moduli are assumed
to be pairwise co-prime, yi is well defined (for all i = 1, . . . , k). The solution x can
then be computed as follows:

x ≡
k∑

i=1

aimiyi (mod n)

For example, consider the following system of 3 congruences:

x ≡ 5 (mod 7)
x ≡ 3 (mod 11)
x ≡ 11 (mod 13)

Discrete Mathematics 87

In this example, n1 = 7, n2 = 11, n3 = 13 (note that these integers are
pairwise co-prime), and n = 7 · 11 · 13 = 1001. Furthermore, a1 = 5, a2 = 3, and
a3 = 10. To determine the solution x in Z1001, one must compute

m1 = 1001/7 = 143
m2 = 1001/11 = 91
m3 = 1001/13 = 77

and

y1 ≡ 143−1 (mod 1001) = 5
y2 ≡ 91−1 (mod 1001) = 4
y3 ≡ 77−1 (mod 1001) = 12

After this preparation, the solution x can be computed as follows:

x ≡
k∑

i=1

aimiyi (mod n)

≡ a1m1y1 + a2m2y2 + a3m3y3 (mod n)
≡ 5 · 143 · 5 + 3 · 91 · 4 + 10 · 77 · 12 (mod 1001)
≡ 3575 + 1092 + 9240 (mod 1001)
≡ 13907 (mod 1001)
= 894

Consequently, x = 894 is the solution in Z1001, and {i ∈ Z | 894 + i · 1001}
is the set of all solutions in Z.

The case k = 2 is so important in practice that we have a closer look at the
corresponding CRA. The system of congruences looks as follows:

x ≡ a1 (mod n1)
x ≡ a2 (mod n2)

Again, the moduli n1 and n2 must be co-prime (i.e., gcd(n1, n2) = 1). We
compute

88 Contemporary Cryptography

t ≡ n−1
2 (mod n1)

and

u ≡ (a2 − a1)t (mod n1).

The solution x modulo n can then computed as follows:

x = a1 + un2

The CRA can be used to speed up the implementation of many public key
cryptosystems, including, for example, the RSA public key cryptosystem.

3.3.4 Fermat’s Little Theorem

We have mentioned several times that 〈Zp,+, ·〉 represents a field for every prime
p (and hence 〈Z∗

p, ·〉 is a group in which every element is invertible). Theorem 3.7
applies to all elements in Z

∗
p. It is due to Pierre de Fermat, and hence it is known as

Fermat’s Little Theorem.

Theorem 3.7 (Fermat’s Little Theorem) If p is a prime and a ∈ Z
∗
p, then ap−1 ≡

1 (mod p).

Proof. Because φ(p) = p− 1 for every prime number p, Fermat’s Little Theorem is
just a special case of Euler’s Theorem.

�
Fermat’s Little Theorem has many applications. For example, it can be used

to find the multiplicative inverse of a modulo p. If we divide the equivalence
ap−1 ≡ 1 (mod p) by a on either side, we get

a(p−1)−1 ≡ ap−2 ≡ a−1 (mod p).

This means that one can find the multiplicative inverse element of a modulo p
by computing ap−2 (mod p). For example, if p = 7, then the multiplicative inverse
of 2 modulo 7 can be computed as follows: 2−1 ≡ 27−2 ≡ 25 ≡ 25 (mod 7) = 4.
Another application of Fermat’s Little Theorem was already mentioned in Section
3.2.4.3 in the context of primality (or compositeness) testing.

Discrete Mathematics 89

3.3.5 Euler’s Theorem

Fermat’s Little Theorem was generalized by Leonhard Euler to be applied in
any ring 〈Zn,+, ·〉 (with n being a composite). The fact that 〈Zn,+, ·〉 is a
ring implies that 〈Zn,+〉 is a group with identity element 0, and that 〈Zn, ·〉 is
a monoid with identity element 1. If we restrict the set of numbers to Z

∗
n =

{a ∈ Zn | gcd(a, n) = 1} (i.e., the set of elements of Zn that have inverse
elements), then 〈Z∗

n, ·〉 represents a multiplicative group and inverse elements ex-
ist for all of its elements. The order of the the group can be computed using
Euler’s totient function introduced in Section 3.2.6 (i.e., |Z∗

n| = φ(n)). For ex-
ample, φ(45) = 3 · (3 − 1)2−1 · (5 − 1) = 24, and this value equals |Z∗

45| =
|{1, 2, 4, 7, 8, 11, 13, 14, 16, 17, 19, 22, 23, 26, 28, 29, 31, 32, 34, 37, 38, 41, 43, 44}|
= 24.

In essence, Euler’s Theorem as stated in Theorem 3.8 says that any element a
in Z

∗
n is equivalent to 1 modulo n if it is multiplied φ(n) times.

Theorem 3.8 (Euler’s Theorem) If gcd(a, n) = 1, then aφ(n) ≡ 1 (mod n).

Proof. Because gcd(a, n) = 1, a (mod n) must be an element in Z
∗
n. Also,

|Z∗
n| = φ(n). According to a corollary of Lagrange’s Theorem, the order of every

element (in a finite group) divides the order of the group. Consequently, the order
of a (i.e., ord(a) as introduced in Section 3.1.2.3) divides φ(n), and hence if we
multiply amodulo n φ(n) times we always get a value that is equivalent to 1 modulo
n.

�

Because φ(n) = n − 1 if n is a prime, Euler’s Theorem is indeed a general-
ization of Fermat’s Little Theorem.

3.3.6 Finite Fields Modulo Irreducible Polynomials

Finite fields modulo irreducible polynomials are frequently used in contemporary
cryptography. The notion of a polynomial is introduced in Definition 3.30.

Definition 3.30 (Polynomial) Let A be an algebraic structure with addition and
multiplication (e.g., a ring or a field). A function p(x) is a polynomial in x over A if
it is of the form

p(x) =
n∑

i=0

aix
i = a0 + a1x+ a2x

2 + . . .+ anx
n

90 Contemporary Cryptography

where n is a positive integer (i.e., the degree of p(x), denoted as deg(p)), the
coefficients ai (0 ≤ i ≤ n) are elements in A, and x is a symbol not belonging
to A.

The set of all polynomials over A is denoted by A[x]. The elements of A[x]
are polynomials, and one can compute with these polynomials as if they were
integers. More specifically, one can add and multiply polynomials. Furthermore, if
f, g ∈ A[x] such that g �= 0, then one can write

f = gq + r

for q, r ∈ A[x] and deg(r) < deg(g). This equation reminds us of Euclid’s division
theorem (see Theorem 3.3), and hence we can also apply the Euclidean algorithms in
A[x]. In this case, r is the remainder of f divided by g, denoted by r ≡ f (mod g).
The set of all remainders of all polynomials in A[x] modulo g is denoted by A[x]g .

A polynomial f ∈ A[x] is irreducible over A if the following two conditions
are satisfied:

1. f has a positive degree;

2. f = gh with g, h ∈ A[x] implies that either g or h is a constant polynomial.

Otherwise, f is reducible over A. Note that the reducibility of a polynomial
depends on the algebraic structure A over which the polynomial is defined (i.e.,
a polynomial can be reducible over one algebraic structure and irreducible over
another).

Against this background, one can show that if F is a field and f is a nonzero
polynomial in F [x], then F [x]f is a ring. Furthermore, one can show that F [x]f is a
field if and only if f is irreducible over F . In this case, the number of elements in the
field F [x]f is pn (if p represents the number of elements in F and n represents the
degree of f). We conclude that for every prime p and every positive integer n, there
is a finite field with pn elements (as mentioned in Section 3.1.2.5), and we denote
this field by Fp[x]f . Under isomorphism, we can say that Fp[x]f is the finite field of
order pn.

For example, the polynomial f(x) = x8 +x4 +x3 +x+1 is irreducible over
F2. Consequently, the set of all polynomials modulo f over F2 forms a field with 28

elements (i.e., all polynomials over F2 of degree less than 8). So any element in the
field F2[x]f is of the form

b7x
7 + b6x

6 + b5x
5 + b4x

4 + b3x
3 + b2x

2 + b1x+ b0

Discrete Mathematics 91

where all bi ∈ Z2 (0 ≤ i ≤ 7). Thus, any element in this field can be represented as
a word of 8 binary digits (bits), or a byte. Conversely, any byte can also be viewed
as an element in the field F2[x]f . For example, the byte 11010111 can be viewed as
polynomial x6 + x4 + x2 + x+ 1.

3.3.7 Quadratic Residuosity

In integer arithmetic, an x ∈ Z is a perfect square if there is a y ∈ Z such that
x = y2. If such a y exists, then it is called a square root of x. For example, 25 is a
square with square root 5, whereas 20 is not a square. Similarly, all negative numbers
are not squares. If an integer x is a square, then it has precisely two square roots, and
these values can be computed efficiently from x (even if x is very large).

In modular arithmetic, things are more involved. Similar to perfect squares
and square roots in Z, we use the terms quadratic residues (corresponding to perfect
squares) and square roots in Z

∗
n. Quadratic residues play an important role in number

theory. For example, many integer factoring algorithms employ quadratic residues
(see Section 7.3), and quadratic residues also have applications in asymmetric
encryption systems and cryptographic protocols. The notions of a quadratic residue
and a square root are formally introduced in Definition 3.31.

Definition 3.31 (Quadratic residue and square root) An element x ∈ Z
∗
n is a

quadratic residue modulo n if there exists an element y ∈ Z
∗
n such that x =

y2 (mod n). If such a y exists, then it is called a square root of x modulo n.

The resulting set of quadratic residues in Z
∗
n, denoted by QRn, is formally

defined as follows:

QRn := {x ∈ Z
∗
n | ∃y ∈ Z

∗
n : y2 ≡ x (mod n)}

Note that QRn is a multiplicative subgroup of Z
∗
n. If x1, x2 ∈ QRn with

square roots y1 and y2, then the square root of x1x2 is y1y2 (because (y1y2)2 ≡
y2
1y

2
2 ≡ x1x2 (mod n)) and the square root of x−1

1 is y−1
1 (because (y−1

1)2 ≡
(y2

1)
−1 ≡ x−1

1 (mod n)). Also note that every element in Z
∗
n is either a quadratic

residue or a quadratic nonresidue. Consequently, the set of all quadratic nonresidues
in Z

∗
n is the complement of QRn (with respect to Z

∗
n). It is commonly referred to

as QNRn (i.e., QNRn = Z
∗
n \ QRn). In order to further discuss the properties of

quadratic residues, one must distinguish the situation in which n is a prime or n is a
composite number. These two cases are discussed separately.

92 Contemporary Cryptography

3.3.7.1 Prime

For every prime number p, 〈Zp,+, ·〉 is a field and 〈Z∗
p, ·〉 with Z

∗
p = Zp \ {0} is

the multiplicative group. In this group, quadratic residuosity is a comparable simple
construct that is not too different from integer arithmetic. For example, it can be
shown that any polynomial of degree two has at most two solutions, and that in Zp

every x ∈ QRp has exactly two square roots modulo p (if y is one of them, then
the other is −y = p − y). There are, however, also some things that are different
from integer arithmetic. For example, among integers, perfect squares are quite
sparse, and they get sparser and sparser for large n (i.e., there are only about

√
n

perfect squares in the interval [1, n]). Contrary to that, half of the elements of Z
∗
p

are quadratic residues (and elements of QRp accordingly). In fact, the following
equation holds for every odd prime (i.e., for every prime p > 2):

|QRp| =
p− 1

2

For example, in Z
∗
7 the elements {1, 2, 3, 4, 5, 6} can all be set to the power of

two to figure out quadratic residues:

x 1 2 3 4 5 6
x2 1 4 2 2 4 1

Note that only 1, 4, and 2 occur on the second line and represent quadratic
residues accordingly. Consequently, QR7 = {1, 2, 4} and QNR7 = Z

∗
7 \ QR7 =

{3, 5, 6}.25 Using the same algorithm, one can easily determine

QR19 = {1, 4, 5, 6, 7, 9, 11, 16, 17}

and

QNR19 = Z
∗
19 \QR19 = {2, 3, 8, 10, 12, 13, 14, 15, 18}

25 Even though it is known that half of the elements in Z
∗
p are quadratic nonresidues modulo p, there is

no deterministic polynomial-time algorithm known for finding one. A randomized algorithm for
finding a quadratic nonresidue is to simply select random integers a ∈ Z

∗
p until one is found

(using, for example, Euler’s criterion to decide whether a quadratic nonresidue has been found).
The expected number of iterations before a nonresidue is found is 2, and hence the algorithm takes
expected polynomial time.

Discrete Mathematics 93

for p = 19. Consequently, for every prime p > 2, Z
∗
p is partitioned into two equal-

size subsets QRp and QNRp (each subset comprises (p− 1)/2 elements).
Euler’s criterion (Theorem 3.9) can be used to efficiently decide whether an

x ∈ Z∗
p is a quadratic residue modulo p. We don’t prove the criterion is this book.

Theorem 3.9 (Euler’s criterion) Let p be a prime number. For any x ∈ Z∗
p ,

x ∈ QRp if and only if

x
p−1
2 ≡ 1 (mod p).

If Euler’s Criterion is not met, then

x
p−1
2 ≡ −1 (mod p).

Hence, Euler’s criterion provides a criterion to decide whether an element
x ∈ Z∗

p is a quadratic residue modulo p. If x(p−1)/2 ≡ 1 (mod p), then x ∈ QRp;
otherwise if x(p−1)/2 ≡ −1 (mod p), then x ∈ QNRp. In either case, the result
of Euler’s criterion is captured by the Legendre symbol. The Legendre symbol of x
modulo p is formally defined as follows:

(
x

p

)
=

{
+1 if x ∈ QRp

−1 otherwise (i.e., if x ∈ QNRp)

For p > 2, the Legendre symbol can be computed using Euler’s criterion:

(
x

p

)
≡ x

p−1
2 (mod p)

Consequently,
(

1
p

)
≡ 1

p−1
2 (mod p) = 1 and

(
−1
p

)
≡ (−1)

p−1
2 for every

prime p.
From Euler’s criterion we see that

(
x

p

)
=

(
y

p

)

for x ≡ y (mod p). Furthermore, we see that the Legendre symbol is multiplica-
tive, meaning that

94 Contemporary Cryptography

(
xy

p

)
=

(
x

p

)
·
(
y

p

)

This fact directly results from Euler’s criterion:

(
xy

p

)
≡ (xy)

p−1
2 (mod p)

≡ x
p−1
2 y

p−1
2 (mod p)

≡ x
p−1
2 (mod p) y

p−1
2 (mod p)

=
(
x

p

)
·
(
y

p

)

For example,

(
6
7

)
=

(
2
7

)
·
(

3
7

)
= 1 · (−1) = −1.

In fact, 6 is a quadratic nonresidue (i.e., 6 ∈ QNR7). Furthermore, for any

x ∈ Z
∗
p, it holds that

(
x2

p

)
= 1.

There is an efficient randomized algorithm that on input prime p and x ∈ Zp

tests whether x is a quadratic residue and, if so, returns the two square roots of x.
Things are getting even simpler if one assumes p ≡ 3 (mod 4). In this case,

it is particularly simple to compute the square root from x ∈ QRp:

y = x
p+1
4 (mod p) (3.6)

The expression makes sense, because p ≡ 3 (mod 4) and hence p+1
4 is an

integer. Also, it can be verified that y2 ≡ x (mod p):

y2 ≡ (x
p+1
4)2 (mod p)

≡ x
p+1
2 (mod p)

≡ x
p−1
2 · x 2

2 (mod p)

Discrete Mathematics 95

≡ x
p−1
2 · x (mod p)

≡ 1 · x ≡ x (mod p)

Euler’s criterion and the fact that x is a quadratic residue are used in the last
step.

If p ≡ 3 (mod 4), then for some r ∈ N p = 4r + 3 and p − 1 = 4r + 2
(i.e., p−1

2 = 4r+2
2 = 2r + 1). Consequently, the Legendre symbol for −1 can be

computed using Euler’s criterion:

(
−1
p

)
≡ (−1)

p−1
2 ≡ (−1)2r+1 ≡ −1 (mod p)

This means that −1 is a quadratic nonresidue modulo p (i.e., −1 ∈ QNRp).

3.3.7.2 Composite

If n is a composite, then the situation is more involved. First of all, it can be shown
that the quadratic residuosity problem (QRP) as captured in Definition 3.32 is hard.26

It is at the core of many cryptographic systems, including, for example, probabilistic
encryption as introduced and discussed in Section 14.3.1.

Definition 3.32 (Quadratic residuosity problem) Let n ∈ N be a composite posi-
tive integer and x ∈ Z

∗
n. The QRP is to decide whether x ∈ QRn.

It is conjectured that no efficient algorithm, on input n ∈ N (the product of two
large primes) and x ∈ Z

∗
n, can solve the QRP and decide whether x is a quadratic

residue modulo n. Furthermore, it can be shown that a square root of x can be
computed if and only if the factorization of n is known. This means that computing
square roots in Z

∗
n is as hard as factoring n, and hence computing square roots in

Z
∗
n and factoring n are computationally equivalent. Hence, if the factorization of n

is known, then extracting square roots becomes feasible (remember the discussion
in Section 3.3.3, when we said that there are functions modulo n that are simpler to
compute modulo the prime factors of n). In fact, one can show that x ∈ QRn if and
only if x ∈ QRp and x ∈ QRq, and that every x ∈ QRn has exactly 4 square roots
in Z

∗
n.

The Jacobi symbol (modulo n) is a generalization of the Legendre symbol
modulo p. For n = pq, it is defined as follows:

26 The QRP is a well-known hard problem in number theory and is one of the four main algorithmic
problems discussed by Gauss in his Disquisitiones Arithmeticae.

96 Contemporary Cryptography

(x
n

)
=

(
x

p

)
·
(
x

q

)

Contrary to the Legendre symbol, the Jacobi symbol of x modulo n is not
only 1 if x ∈ QRn; it is 1 either if x ∈ QRp and x ∈ QRq or if x /∈ QRp and
x /∈ QRq . Among these two possibilities, only the first refers to the situation in
which x ∈ QRn. Consequently, all quadratic residues have Jacobi symbol 1, but the
opposite is not necessarily true (as further addressed later).

More generally, let n ≥ 3 be odd with prime factorization n = pe1
1 p

e2
2 . . . pek

k .
Then the Jacobi symbol

(
x
n

)
is defined as follows:

(x
n

)
=

(
x

p1

)e1
(
x

p2

)e2

. . .

(
x

pk

)ek

Again, note that if n is prime, then the Jacobi symbol is just the Legendre
symbol. In any case,

(
x
n

)
is 0, 1, or −1, and

(
x
n

)
= 0 if and only if gcd(x, n) �= 1.

If x ≡ y (mod n), then the equation
(

x
n

)
=

(
y
n

)
holds.

Similar to the Legendre symbol,

(
1
n

)
= 1.

Furthermore,

(
−1
n

)
= (−1)(n−1)/2

and

(
2
n

)
= (−1)(n

2−1)/8.

The Jacobi symbol is multiplicative in both the numerator and the de-
nominator:

(xy
n

)
=

(x
n

)
·
(y
n

)

Discrete Mathematics 97

(x

mn

)
=

(x
m

)
·
(x
n

)

Consequently, for x ∈ Z
∗
n

(
x2

n

)
=

(
x
n

)
·
(

x
n

)
= 1.

Last but not least, Gauss’ law of quadratic reciprocity suggests that if
gcd(m,n) = 1 and m,n > 2, then

(m
n

) (n
m

)
= (−1)(m−1)(n−1)/4.

Thanks to these properties, there is an efficient27 (and recursive) algorithm
for computing

(
x
n

)
, which does not require the prime factorization of n. We don’t

elaborate on this algorithm. For the purpose of this book, it is sufficient to know that
an efficient algorithm for computing

(
x
n

)
exists.

As mentioned earlier, the fact that the Jacobi symbol of x modulo n is 1 does
not necessarily imply that x ∈ QRn. Let Jn be the set of all elements of Z

∗
n with

Jacobi symbol 1:

Jn = {x ∈ Z
∗
n |

(x
n

)
= 1}

Obviously, QRn ⊂ Jn and there are elements x ∈ Z
∗
n that are quadratic

nonresidue, but still have Jacobi symbol 1. These elements are called pseudosquares
modulo n, denoted as Q̃Rn (i.e., Q̃Rn = Jn \QRn).

Let n = pq be the product of two primes. Then Z
∗
n has φ(n) = (p− 1)(q− 1)

elements, and these elements can be partitioned into two equally large sets. One half
of the elements (i.e., Jn) has Jacobi symbol 1, and the other half of the elements
has Jacobi symbol−1. Jn can be further partitioned into two equally large sets (i.e.,
QRn and Q̃Rn) with |QRn| = |Q̃Rn| = (p − 1)(q − 1)/4. For example, if p = 3
and q = 7, then n = 3 · 7 = 21, Z

∗
21 = {1, 2, 4, 5, 8, 10, 11, 13, 16, 17, 19, 20}, and

φ(21) = 2 · 6 = 12. J21 has 6 elements and these elements can be partitioned as
follows :

J21 = {1, 4, 5, 16, 17, 20}
QR21 = {1, 4, 16}
Q̃R21 = {5, 17, 20}

27 The algorithm has a running time of O((ln n)3) bit operations.

98 Contemporary Cryptography

The example is illustrated in Figure 3.3. The elements of Z
∗
21 are drawn

in the circle. Each quarter of the square comprises 3 elements. The upper right

quarter represents QR21 and the lower left quarter represents Q̃R21. QNR21

comprises all elements of Z
∗
21 that are not elements of QR21 (i.e., QNR21 =

{2, 5, 8, 10, 11, 13, 17, 19, 20}).

0�

�

4�2

5�6

3�

����6'

3 7

��

��

�1

�8

����6' 0�'�

0�����1'
0�'�����1'

9�3�

9�3�
:

Figure 3.3 The elements of Z
∗
21 , QR21, and Q̃R21.

Consequently, in this example the QRP is to decide whether a particular

element of J21 is an element of QR21 or Q̃R21. It goes without saying that the
factorization of 21 must not be known. Many public key cryptosystems take their
security from the intractability of the QRP.

3.3.8 Blum Integers

Many (public key) cryptosystems use Blum integers as formally introduced in
Definition 3.33.28

Definition 3.33 (Blum integer) A composite number n is a Blum integer if n = pq
where p and q are distinct prime numbers satisfying p ≡ q ≡ 3 (mod 4).

28 One example is the Rabin asymmetric encryption system addressed in Section 14.2.2.

Discrete Mathematics 99

If n is a Blum integer, then it can be shown that x ∈ QRn has precisely
four square roots modulo n, exactly one of which is again an element of QRn. This
unique square root of x is called the principal square root of x modulo n. If we
revisit the example introduced earlier, then it is easy to see that n = 21 = 3 · 7 is a

Blum integer (i.e., 3 ≡ 7 ≡ 3 (mod 4)). Z
∗
21, J21, QR21, and Q̃R21 are specified

earlier. If we set x = 4, then we can determine the four square roots 2, 5, 16, and
19. Obviously, 16 is the principal square root of 4 modulo 21 (because it is again an
element of QR21).

If n is a Blum integer, then the function f : QRn → QRn defined by
f(x) = x2 (mod n) represents a trapdoor permutation. The trapdoor information
is the factorization of n; thus, knowing the prime factors of n, one can efficiently
compute the inverse function f−1:

f−1(x) = x((p−1)(q−1)+4)/8 (mod n)

This trapdoor permutation is used, for example, by the Rabin asymmetric
encryption system (see Section 14.2.2).

3.4 ELLIPTIC CURVES

Elliptic curve cryptography (ECC) is a hot topic in contemporary cryptography. We
elaborate on ECC in Section 7.6. The algebraic structures emplyoyed by ECC are
groups of points on elliptic curves defined over a finite field Fn. In applications,
n is typically an odd prime or a power of 2 (i.e., 2m for some m). To keep
things as simple as possible, we restrict our explanations to elliptic curves over
Zp = {0, 1, . . . , p − 1} where p is an odd prime number. Furthermore, we don’t
look at the general case. We restrict ourselves to a simple case in which an elliptic
curve over Zp can then be defined as

y2 ≡ x3 + ax+ b (mod p) (3.7)

with a, b ∈ Zp and 4a3 + 27b2 �≡ 0 (mod p). For any given a and b in Zp, (3.7) has
pairs of solutions x, y in Zp that can be expressed as follows:

E(Zp) = {(x, y) | x, y ∈ Zp and
y2 ≡ x3 + ax+ b (mod p) and
4a3 + 27b2 �≡ 0 (mod p)}

100 Contemporary Cryptography

The resulting set E(Zp) consists of all (x, y) ∈ Zp × Zp = Z
2
p that solve

equivalence (3.7). We can graphically interpret (x, y) as a point in the (x, y)-plane
(x representing the horizontal axis and y representing the vertical axis). Such an
(x, y) is representing a point on the respective elliptic curveE(Zp). In addition to the
points on the curve, one usually considers a point at infinity (typically denoted byO).
If we use E(Zp) to refer to an elliptic curve defined over Zp, then we automatically
mean to include O.

Let p = 23 and consider the elliptic curve y2 ≡ x3 + x+ 1 defined over Z23.
In the notation of equivalence (3.7), a and b are both set to 1. It can easily be verified
that 4a3 + 27b2 �≡ 0 (mod p), and hence the curve E(Z23) indeed represents an
elliptic curve. The points in E(Z23) are O and the following:

(0, 1) (0, 22) (1, 7) (1, 16) (3, 10) (3, 13) (4, 0)
(5, 4) (5, 19) (6, 4) (6, 19) (7, 11) (7, 12) (9, 7)
(9, 16) (11, 3) (11, 20) (12, 4) (12, 19) (13, 7) (13, 16)
(17, 3) (17, 20) (18, 3) (18, 20) (19, 5) (19, 18)

In order to make use of an elliptic curve, we must define an associative
operation. In ECC, this operation is called addition (mainly for historical reasons),
meaning that two points on an elliptic curve are said to be added.29 In the literature,
the addition rule is usually explained geometrically. In this book, however, we use a
sequence of algebraic formulae to describe the addition of two points:

1. P +O = O + P = P for all P ∈ E(Zq).

2. If P = (x, y) ∈ E(Zq), then (x, y) + (x,−y) = O. The point (x,−y) is
sometimes also denoted as −P and called the negative of P . Note that −P is
indeed a point on the elliptic curve (e.g., (3, 10) + (3, 13) = O).

3. Let P = (x1, y1) ∈ E(Zq) and Q = (x2, y2) ∈ E(Zq) with P �= −Q, then
P +Q = (x3, y3) where

x3 = λ2 − x1 − x2

y3 = λ(x1 − x3)− y1

and

λ =

{
y2−y1
x2−x1

if P �= Q
3x2

1+a
2y1

if P = Q

29 By contrast, the group operation in Z
∗
p is multiplication. The differences in the resulting additive

notation and multiplicative notation can sometimes be confusing.

Discrete Mathematics 101

The geometric interpretation of the plus operator is straightforward: the
straight line PQ intersects the elliptic curve at a third point R′ = (x3,−y3),
and R = P + Q is the reflection of R′ in the x-axis. Alternatively speak-
ing, if a straight line intersects the elliptic curve at three points P,Q,R, then
P +Q+R = 0.

Consider the elliptic curve defined earlier. Let P = (3, 10) and Q = (9, 7).
Then P +Q = (x3, y3) is computed as follows:

λ =
7− 10
9− 3

=
−3
6

=
−1
2

= 11 ∈ Z23

x3 = 112 − 3− 9 = 6− 3− 9 = −6 ≡ 17 (mod 23)
y3 = 11(3− (−6))− 10 = 11(9)− 10 = 89 ≡ 20 (mod 23)

Consequently, we have P +Q = (17, 20) ∈ E(Z23).
On the other hand, if we want to add P = (3, 10) to itself, then we have

P + P = 2P = (x3, y3), and this point is computed as follows:

λ =
3(32) + 1

20
=

5
20

=
1
4

= 6 ∈ Z23

x3 = 62 − 6 = 30 ≡ 7 (mod 23)
y3 = 6(3− 7)− 10 = −24− 10 = −11 ≡ 12 (mod 23)

Consequently, 2P = (7, 12), and the procedure can be iterated to compute
arbitrary multiples of point P (i.e., 3P, 4P, . . .).

For every elliptic curve E(Zp), the group of points on this particular curve
together with the point in infinity and the addition operation form a group,30 and this
group can then be used in ECC (see Section 7.6).

3.5 FINAL REMARKS

In this chapter, we overviewed and discussed the aspects of discrete mathematics
that are relevant for contemporary cryptography. Most importantly, we elaborated
on integer arithmetic and modular arithmetic. We also looked at some algorithms
that are frequently used, such as the Euclidean algorithms and the square-and-
multiply algorithm. While we elaborated on modular arithmetic, we also came

30 This result was proven by Henri Poincaré in 1901.

102 Contemporary Cryptography

across Fermat’s Little Theorem and Euler’s Theorem. Both theorems are based on
Lagrange’s Theorem and are frequently used in cryptography. Furthermore, they
have a straighforward application in the RSA public key cryptosystem. The same
is true for quadratic residuosity, which has a direct application in probabilistic
encryption and many indirect applications in cryptographic protocols. Last but
not least, we introduced the elliptic curves that are used in ECC. While ECC
is a hot topic today, it should not be overemphasized. It is useful to speed up
implementations and bring down key sizes (of public key cryptosystems). It does
not, however, provide cryptosystems that are inherently new or different from the
cryptosystems that were known before ECC was proposed and deployed.

References

[1] Koblitz, N.I., A Course in Number Theory and Cryptography, 2nd edition. Springer-Verlag, New
York, 1994.

[2] Koblitz, N.I., Algebraic Aspects of Cryptography. Springer-Verlag, New York, 1998.

[3] Rosen, K.H., Discrete Mathematics and Its Applications, 4th edition. McGraw Hill, 1998.

[4] Johnsonbaugh, R., Discrete Mathematics, 5th edition. Prentice Hall, 2000.

[5] Dossey, J.A., et al., Discrete Mathematics, 4th edition. Addison-Wesley, 2001.

[6] Shoup, V., A Computational Introduction to Number Theory and Algebra. Cambridge University
Press, Cambridge, UK, 2005.

[7] Maurer, U.M., “Fast Generation of Prime Numbers and Secure Public-Key Cryptographic Param-
eters,” Journal of Cryptology, Vol. 8, No. 3, 1995, pp. 123–155.

Chapter 4

Probability Theory

Probability theory plays a central role in information theory and contemporary
cryptography. In fact, the ultimate goal of a cryptographer is to make the probability
that an attack against the security of a cryptographic system succeeds equal—or
at least close—to zero. Probability theory provides the formalism for this kind of
reasoning.

In this chapter, we introduce and overview the basic principles of (discrete)
probability theory as far as they are relevant for information theory and contempo-
rary cryptography. More specifically, we introduce basic terms and concepts in Sec-
tion 4.1, elaborate on random variables in Section 4.2, and conclude with some final
remarks in Section 4.3. The chapter is intentionally kept short; further information
can be found in any textbook on probability theory (e.g., [1–4]).

4.1 BASIC TERMS AND CONCEPTS

The notion of a discrete probability space as formally introduced in Definiton 4.1
is at the core of probability theory and its application in information theory and
contemporary cryptography.

Definition 4.1 (Discrete probability space) A discrete probability space1 consists
of a finite or countably infinite set Ω called the sample space and a probability
measure Pr : Ω −→ R

+ with
∑

ω∈Ω Pr[ω] = 1.2

The elements of the sample space Ω are called simple events, indecomposable
events, or—as used in this book—elementary events.

1 In some literature, a discrete probability space is called a discrete random experiment.
2 Alternative notations for the probability measure Pr[·] are P(·), P[·], or Prob[·].

103

104 Contemporary Cryptography

If we run a (discrete) random experiment in a probability space, then every
elementary event of the sample space represents a possible outcome of the experi-
ment. The probability measure or probability distribution Pr[·] assigns a nonnegative
real value to every elementary event ω ∈ Ω, such that all (probability) values sum
up to one. There is no general and universally valid requirement on how to assign
probability values. In fact, it is often the case that many elementary events of Ω
occur with probability zero. If all |Ω| possible values occur with the same proba-
bility (i.e., Pr[ω] = 1/|Ω| for all ω ∈ Ω), then the probability distribution is called
uniform. Uniform probability distributions are frequently used in probability theory
and applications thereof.

As mentioned in Definition 4.1, sample spaces are assumed to be finite
or countably infinite for the purpose of this book (things get more involved if
this assumption is not made). The term discrete probability theory is sometimes
used to refer to the restriction of probability theory to finite or countably infinite
sample spaces. In this book, however, we only focus on discrete probability theory,
and hence the terms probability theory and discrete probability theory are used
synonymously and interchangeably. Furthermore, we say a “finite” sample space
when we actually mean a “finite or countably infinite” sample space.

For example, flipping a coin can be understood as a random experiment taking
place in a discrete probability space. The sample space is {head, tail} (or {0, 1} if
0 and 1 are used to encode head and tail, respectively) and the probability measure
assigns 1/2 to either head or tail (i.e., Pr[head] = Pr[tail] = 1/2). The resulting
probability distribution is uniform. If the coin is flipped five times, then the sample
space is {head, tail}5 (or {0, 1}5, respectively) and the probability measure assigns
1/25 = 1/32 to every possible outcome of the experiment. Similarly, rolling a dice
can be understood as a random experiment taking place in a discrete probability
space. In this case, the sample space is {1, . . . , 6} and the probability measure
assigns 1/6 to every possible outcome of the experiment (i.e., Pr[1] = . . . =
Pr[6] = 1/6). If the dice is rolled n times (or n dice are rolled simultaneously),
then the sample space is {1, . . . , 6}n and the probability measure assigns 1/6n to
every possible outcome of the experiment. In either case, the probability distribution
is uniform if the coins are unbiased and if the dice are fair.

Instead of looking at elementary events of a sample space, one may also look
at sets of elements. In fact, an event refers to a subset A ⊆ Ω of the sample space,
and its probability equals the sum of the probabilities of the elementary events of
which it consists. This is formally expressed as follows:

Pr[A] =
∑
ω∈A

Pr[ω]

Probability Theory 105

Pr[Ω] is conventionally set to one, and Pr[∅] is set to zero. Furthermore, one
frequently needs the complement of an eventA. It consists of all elements of Ω that
are not elements of A. The complement of A is denoted as A, and its probability
can be computed as follows:

Pr[A] =
∑

ω∈Ω\A
Pr[ω]

If we know Pr[A], then we can easily compute

Pr[A] = 1− Pr[A]

because Pr[A] and Pr[A] must sum up to one.

� �

�

�

�
�

�
�

�
�

�

�

�

�
�

�

�

�
��

�

�

� �

$�;�<

�

$�;�<

Figure 4.1 A discrete probability space.

A discrete probability space is illustrated in Figure 4.1. There is a sample
space Ω and a probability measure Pr[·] that assign a value between 0 and 1 to every
elementary event ω ∈ Ω or event A ⊆ Ω.

If, for example, we want to compute the probability of the event that, when
flipping five coins, we get three heads, then the sample space is Ω = {1, 0}5 and
the probability distribution is uniform. This basically means that every element

106 Contemporary Cryptography

ω ∈ Ω occurs with the same probability Pr[ω] = 1/25 = 1/32. Let A be the
subset of Ω = {1, 0}5 containing strings with exactly three ones and let us ask for
the probability Pr[A]. It can easily be shown that A consists of the following 10
elements:

00111 10110
01011 10101
01101 11001
01110 11010
10011 11100

Consequently, Pr[A] = 10/32 = 5/16. The example can be generalized to
n flips with a biased coin. If the coin flips are independent and the probability that
each coin turns out heads is 0 ≤ p ≤ 1, then the sample space is {1, 0}n and the
probability for a specific event ω in this space is

Pr[ω] = pk(1 − p)n−k

where k is the number of ones in ω. In the example given earlier, we had p = 1−p =
1/2, and the corresponding distribution over {1, 0}n was uniform. If p = 1 (p = 0),
then 0n (1n) has probability one and all other elements have probability zero.
Consequently, the interesting cases occur when p is greater than zero but smaller
than one (i.e., p ∈ (0, 1)). This brings us to the notion of a binominal distribution. If
we have such a distribution with parameter p and ask for the probability of the event
Ak that we get a string with k ones, then the probability Pr[Ak] can be computed as
follows:

Pr[Ak] =
(
n
k

)
pk(1− p)n−k

In this formula,

(
n
k

)
is read “n choose k” and can be computed as follows:

(
n
k

)
=

n!
k!(n− k)!

In this notation, n! refers to the factorial of integer n. It is recursively defined
with 0! = 1 and n! = (n− 1)!n.

Probability Theory 107

More generally, if we have two events A, B ⊆ Ω, then the probability of the
union eventA ∪ B is computed as follows:

Pr[A ∪ B] = Pr[A] + Pr[B]− Pr[A ∩ B]

Consequently, Pr[A ∪ B] ≤ Pr[A] + Pr[B] and Pr[A ∪ B] = Pr[A] + Pr[B]
if and only if A∩ B = ∅. The former inequality is known as the union bound.

Similarly, we may be interested in the joint event A ∩ B. Its probability is
computed as follows:

Pr[A ∩ B] = Pr[A] + Pr[B]− Pr[A ∪ B]

� �

Figure 4.2 A Venn diagram with two events.

Venn diagrams can be used to illustrate the relationship of specific events. A
Venn diagram is made up of two or more overlapping circles (each circle represents
an event). For example, Figure 4.2 shows a Venn diagram with two eventsA and B.
The intersection of the two circles represents A ∩ B, whereas the union represents
A∪ B.

The two eventsA andB are independent if Pr[A∩B] = Pr[A]·Pr[B], meaning
that the probability of one event does not influence the probability of the other.

The notion of independence can be generalized to more than two events. In
this case, it must be distinguished whether the events are pairwise or mutually
independent. Let A1, . . . ,An ⊆ Ω be n events in a given sample space Ω.

• A1, . . . ,An are pairwise independent if for every i, j ∈ {1, . . . , n}with i �= j
it holds that Pr[Ai ∩Aj] = Pr[Ai] · Pr[Aj].

108 Contemporary Cryptography

• A1, . . . ,An are mutually independent if for every subset of indices I ⊆
{1, 2, . . . , n} with I �= ∅ it holds that

Pr[
⋂
i∈I

Ai] =
∏
i∈I

Pr[Ai].

Sometimes it is necessary to compute the probability of an elementary event
ω given that an eventA with Pr[A] > 0 holds. The resulting conditional probability
is denoted as Pr[ω|A] and can be computed as follows:

Pr[ω|A] =

{
Pr[ω]
Pr[A] if ω ∈ A
0 otherwise

If ω ∈ A, then Pr[ω|A] must have a value that is proportional to Pr[ω], and the
factor of proportionality must be 1/Pr[A] (so that all probabilities sum up to one).
Otherwise (i.e., if ω /∈ A), it is impossible that ω holds, and hence Pr[ω|A] must be
equal to zero (independent from the probability of A).

The definition of Pr[ω|A] can be generalized to arbitrary events. In fact, if A
and B are two events, then the probability of event B given that eventA holds is the
sum of the probabilities of all elementary events ω ∈ B given that A holds. This is
formally expressed as follows:

Pr[B|A] =
∑
ω∈B

Pr[ω|A]

In the literature, Pr[B|A] is sometimes also defined as follows:

Pr[B|A] =
Pr[A ∩ B]

Pr[A]

Consequently, if two events A and B are independent and Pr[A] > 0
(Pr[B] > 0), then Pr[B|A] = Pr[A ∩ B]/Pr[A] = Pr[A] · Pr[B]/Pr[A] = Pr[B]
(Pr[A|B] = Pr[B∩A]/Pr[B] = Pr[B] ·Pr[A]/Pr[B] = Pr[A]). Put in other words:
if A and B are independent, then whether A holds or not is not influenced by the
knowledge that B holds or not, and vice versa. Consequently, one can also write

Pr[A|B] =
Pr[B ∩ A]

Pr[B]
(4.1)

Probability Theory 109

and put Pr[B|A] and Pr[A|B] into perspective. In this case, the formula

Pr[A|B] =
Pr[A]Pr[B|A]

Pr[B]

is known as Bayes’ theorem and is frequently used in probability theory. Further-
more, one can also formally express a law of total probability as suggested in Theo-
rem 4.1.

Theorem 4.1 (Law of total probability) If the events B1, . . . ,Bn represent a par-
tition of the sample space (i.e., ∪n

i=1Bi = Ω and Bi ∩ Bj = ∅ for all i �= i), then

Pr[A] =
n∑

i=1

Pr[A|Bi] · Pr[Bi]

must hold for every eventA ⊆ Ω.

Proof. Because

A = A ∩Ω =
n⋃

i=1

(A ∩ Bi)

where (A∩Bi) and (A∩Bj) are disjoint (and hence mutually exclusive) for i �= j,
the probabilities of the right-hand-side sum can be added up, in which each term
follows from (4.1).

�

The law of total probability is useful in practice. In fact, it is frequently
employed to compute the probability of an eventA, which is conditional given some
other mutually exclusive events, such as an event B and its complement B.

4.2 RANDOM VARIABLES

If we have a discrete probability space and run a random experiment, then we might
be interested in some values that depend on the outcome of the experiment (rather
than the outcome itself). If, for example, we roll two dice, then we may be interested
in their sum. Similarly, if we run a randomized algorithm, then we may be interested
in its output or its running time. This is where the notion of a random variable as
formally introduced in Definition 4.2 comes into play.

110 Contemporary Cryptography

Definition 4.2 (Random variable) Let (Ω,Pr) be a discrete probabiliy space with
sample space Ω and probability measure Pr[·]. Any function X : Ω → X from the
sample space to a measurable set X is a random variable. The set X , in turn, is the
range of the random variable X .

Consequently, a random variable is a function that on input an arbitrary
element of the sample space of a discrete probability space (or random experiment)
outputs an element of the range. In a typical setting, X is either a subset of the real
numbers (i.e., X ⊆ R) or a subset of the binary strings of a specific length n (i.e.,
X ⊆ {0, 1}n).3

If x is in the range of X (i.e., x ∈ X), then the expression (X = x) refers
to the event {ω ∈ Ω | X(ω) = x}, and hence Pr[X = x] is defined and something
potentially interesting to compute. If only one random variableX is considered, then
Pr[X = x] is sometimes also written as Pr[x].

If, for example, we roll two fair dice, then the sample space is Ω =
{1, 2, . . . , 6}2 and the probability distribution is uniform (i.e., Pr[ω1, ω2] = 1/62 =
1/36 for every (ω1, ω2) ∈ Ω). Let X be the random variable that associates
ω1 + ω2 to every (ω1, ω2) ∈ Ω. Then the range of the random variable X is
X = {2, 3, . . . , 12}. For every element of the range, we can compute the probability
thatX takes this value. In fact, by counting the number of elements in every possible
event, we can easily determine the following probabilities:

Pr[X = 2] = 1/36
Pr[X = 3] = 2/36
Pr[X = 4] = 3/36
Pr[X = 5] = 4/36
Pr[X = 6] = 5/36
Pr[X = 7] = 6/36

The remaining probabilities (i.e., Pr[X = 8], . . . ,Pr[X = 12]) can be
computed by observing that Pr[X = x] = Pr[X = 14 − x]. Consequently, we
have

Pr[X = 8] = Pr[X = 14− 8] = Pr[X = 6] = 5/36
Pr[X = 9] = Pr[X = 14− 9] = Pr[X = 5] = 4/36

3 In some literature, a random variable is defined as a function X : Ω→ R.

Probability Theory 111

Pr[X = 10] = Pr[X = 14− 10] = Pr[X = 4] = 3/36
Pr[X = 11] = Pr[X = 14− 11] = Pr[X = 3] = 2/36
Pr[X = 12] = Pr[X = 14− 12] = Pr[X = 2] = 1/36

It can easily be verified that all probabilities sum up to one:

1
36

+
2
36

+
3
36

+
4
36

+
5
36

+
6
36

+
5
36

+
4
36

+
3
36

+
2
36

+
1
36

=
36
36

= 1

We next look at some probability distributions of random variables.

4.2.1 Probability Distributions

If X : Ω → X is a random variable with sample space Ω and range X , then the
probability distribution of X (i.e., PX) is a mapping from X to R

+. It is formally
defined as follows:

PX : X −→ R
+

x �−→ PX(x) = P (X = x) =
∑

ω∈Ω:X(ω)=x

Pr[ω]

The probability distribution of a random variableX is illustrated in Figure 4.3.
Some events from the sample space Ω (on the left side) are mapped to x ∈ X (on
the right side), and the probability that x occurs as a map is P (X = x) = PX(x).

It is possible to define more than one random variable for a discrete random
experiment. If, for example, X and Y are two random variables with ranges X and
Y , then P (X = x, Y = y) refers to the probability that X takes on the value x ∈ X
and Y takes on the value y ∈ Y . Consequently, the joint probability distribution
of X and Y (i.e., PXY) is a mapping from X × Y to R

+. It is formally defined as
follows:

PXY : X × Y −→ R
+

(x, y) �−→ PXY (x, y) =
P (X = x, Y = y) =∑
ω∈Ω:X(ω)=x;Y (ω)=y

Pr[ω]

112 Contemporary Cryptography

� �

�

������	�	�����

�

��

�=

Figure 4.3 The probability distribution of a random variable X.

The joint probability distribution of two random variables X and Y is illus-
trated in Figure 4.4. Some events from the sample space Ω (on the left side) are
mapped to x ∈ X and y ∈ Y (on the right side), and the probability that x and y
occur as maps is P (X = x, Y = y) = PXY (x, y).

Similarly, for n random variables X1, . . . , Xn (with ranges X1, . . . ,Xn), one
can compute the probability that Xi takes on the value xi ∈ Xi for i = 1, . . . , n. In
fact, the joint probability distribution of X1, . . . , Xn (i.e., PX1...Xn) is a mapping
from X1 × . . .×Xn to R

+ that is formally defined as follows:

PX1...Xn : X1 × . . .×Xn −→ R
+

(x1, . . . , xn) �−→ PX1...Xn(x1, . . . , xn) =
P (X1 = x1, . . . , Xn = xn) =∑
ω∈Ω:X1(ω)=x1;...;Xn(ω)=xn

Pr[ω]

The joint probability distribution of n random variables X1, . . . , Xn is il-
lustrated in Figure 4.5. Some events from the sample space Ω (on the left side)
are mapped to x1 ∈ X1, . . . , xn ∈ Xn (on the right side), and the probabil-
ity that x1, . . . , xn actually occur as maps is P (X1 = x1, . . . , Xn = xn) =
PX1...Xn(x1, . . . , xn).

Probability Theory 113

� �

�

�����
����	�	�����
��

�
�

�

�

� �

�=

Figure 4.4 The joint probability distribution of two random variables X and Y .

4.2.2 Marginal Distributions

If X and Y are two random variables with joint probability distribution PXY , then
the two marginal distributions PX and PY are defined as follows:

PX(x) =
∑
y∈Y

PXY (x, y)

PY (y) =
∑
x∈X

PXY (x, y)

Again, the notion of a marginal distribution can be generalized to more
than two random variables. If X1, . . . , Xn are n random variables with ranges
X1, . . . ,Xn and joint probability distribution PX1...Xn , then for any m < n the
marginal distribution PX1...Xm is defined as follows:

PX1...Xm(x1, . . . , xm) =
∑

(xm+1,...,xn)∈Xm+1...Xn

PX1...Xn(x1, . . . , xn)

114 Contemporary Cryptography

�

�

��
�����
��

	���	
���

�� ��

��� ��

�
�
�

�

�=

�

Figure 4.5 The joint probability distribution of n random variables X1, . . . , Xn.

4.2.3 Conditional Probability Distributions

Let (Ω,Pr) be a discrete probability space and A an event with Pr[A] > 0. If X is a
random variable in that space, then the conditional probability distribution PX|A of
X given that eventA holds is defined as follows:

PX|A(x) = Pr[X = x|A]

Note that PX|A is a regular probability distribution and hence that the proba-
bilities PX|A(x) sum up to one:

∑
x∈X

PX|A(x) = 1

If the conditioning event involves another random variable Y defined on the
same sample space Ω, then the conditional probability distribution of X given that
Y takes on a value y is defined as

Probability Theory 115

PX|Y =y(x) =
PXY (x, y)
PY (y)

whenever PY (y) > 0. More specifically, the conditional probability distribution
PX|Y of X given Y is a two-argument function that is defined as follows:

PX|Y : X × Y −→ R
+

(x, y) �−→ PX|Y (x, y) = P (X = x|Y = y) =
P (X = x, Y = y)

P (Y = y)
=
PXY (x, y)
PY (y)

Note that the two-argument functionPX|Y (·, ·) is not a probability distribution
on X × Y , but that for every y ∈ Y , the one-argument function PX|Y (·, y) is
a probability distribution, meaning that

∑
x∈X PX|Y (x, y) must sum up to 1 for

every y with PY (y) > 0. Also note that PX|Y (x, y) is defined only for values with
P (Y = y) = PY (y) �= 0.

4.2.4 Expectation

The expectation of a random variable gives some information about its order of
magnitude, meaning that if the expectation is small (large), then large (small) values
are unlikely to occur. More formally, let X : Ω → X be a random variable and X
be a finite subset of the real numbers (i.e., X ⊂ R). Then the expectation or mean of
X (denoted as E[X]) can be computed as follows:

E[X] =
∑
x∈X

Pr[X = x] · x =
∑
x∈X

PX(x) · x (4.2)

The expectation is best understood in terms of betting. Let us consider the
situation in which a person is playing a game in which one can win one dollar or lose
two dollars. Furthermore, there is a 2/3 probability of winning, a 1/6 probability
of losing, and a 1/6 probability of a draw. This situation can be modeled using a
discrete probability space with a sample space Ω = {W,L,D} (withW standing for
“win,” L standing for “lose,” and D standing for “draw”) and a probability measure
that assigns Pr[W] = 2/3 and Pr[L] = Pr[D] = 1/6. Against this background, the
random variableX can be used to specify wins and losses—X(W) = 1,X(L) = 2,

116 Contemporary Cryptography

and X(D) = 0—and one may be interested in the expectation for X . Referring to
(4.2), the expectation of X (i.e., E[X]) can be computed as follows:

E[X] =
1
6
· (−2) +

1
6
· 0 +

2
3
· 1 =

1
3

Consequently, if one plays the game, then one can reasonably expect to win
one third of a dollar in the average (i.e., the game is more than fair). Another typical
application of a random variable’s expectation is the running time of a randomized
algorithm. Remember from Section 1.2 that a randomized algorithm depends on
internal random values and that a complete analysis of the algorithm would be
a specification of the running time of the algorithm for every possible sequence
of random values. This is clearly impractical, and one may analyze the expected
running time of the algorithm instead. This refers to a single value that may still
provide some useful information about the typical behavior of the algorithm.

In practice, the linearity of expectations is frequently used to compute the
expectation of a random variable X . The linearity of expectations basically means
that

E[aX] = aE[X]

for all a ∈ R. Similarly, if X1, X2, . . . , Xn are random variables over the same
sample space, then

E[X1 +X2 + . . .+Xn] = E[X1] + E[X2] + . . .+ E[Xn].

For example, we want to compute the expected number of heads when flip-
ping a coin n times. Without making use of the linearity of expectations, this com-
putation is quite involved. Making use of the linearity of expectations, however,
this computation becomes simple and straightforward. We define a random vari-
able X that is the sum of n random variables X1, X2, . . . , Xn, where Xi is 1 if
the ith coin flip is 1 (Xi is 0 otherwise). Then E[Xi] = 1

2 · 0 + 1
2 · 1 = 1

2 and
E[X] = E[X1 +X2 + . . .+Xn] = E[X1] + E[X2] + . . .+ E[Xn] = n · 1

2 = n
2 .

More generally, if f is a real-valued function whose domain includes X , then
f(X) is a real-valued random variable with an expected value that can be computed
as follows:

E[f(X)] =
∑
x∈X

f(x)PX(x)

Probability Theory 117

More specifically, if f is a convex function, then Jensen’s inequality applies:

E[f(X)] ≥ f(E[X])

Most of the basic inequalities in information theory follow directly from
Jensen’s inequality.

Last but not least, the conditional expected valueE[X |A] of a random variable
X given eventA can be computed as follows:

E[X |A] =
∑
x∈X

PX|A(x) · x

4.2.5 Independence of Random Variables

Let X and Y be two random variables over the same sample space Ω. X and Y are
independent if for all x ∈ X and y ∈ Y , the events (X = x) and (Y = y) are
independent. This is formally expressed in Definition 4.3.

Definition 4.3 (Independent random variables) Two random variables X and Y
are statistically independent (or independent in short) if and only if PXY (x, y) =
PX(x) · PY (y) for all x ∈ X and y ∈ Y .

Definition 4.3 basically says that the joint probability distribution of two
independent random variables X and Y is equal to the product of their marginal
distributions.

If two random variables X and Y are independent, then the conditional
probability distribution PX|Y of X given Y is

PX|Y (x, y) =
PXY (x, y)
PY (y)

=
PX(x)PY (y)

PY (y)
= PX(x)

for all x ∈ X and y ∈ Y with PY (y) �= 0. This basically means that knowing
the value of one random variable does not tell anything about the distribution of the
other (and vice versa). Furthermore, if X and Y are independent random variables,
then

E[XY] = E[X] · E[Y].

118 Contemporary Cryptography

There are two notions of independence for more than two random variables.
Roughly speaking, pairwise independence requires two arbitrarily chosen random
variables to be independent (see Definition 4.4), whereas mutual independence
requires all random variables to be independent (see Definition 4.5). In either case,
let X1, . . . , Xn be n random variables over the same sample space Ω.

Definition 4.4 (Pairwise independent random variables) X1, . . . , Xn are pair-
wise independent if for every i, j ∈ {1, 2, . . . , n} with i �= j, it holds that the two
random variables Xi and Xj are independent (i.e., PXiXj (xi, xj) = PXi (xi) ·
PXj (xj)).

Definition 4.5 (Mutually independent random variables) X1, . . . , Xn are mutu-
ally independent if for every subset of indices I ⊆ {1, 2, . . . , n} with I �= ∅, it holds
that

PXI1 ...XIm
(xI1 , . . . , xIm) = PXI1

(xI1) · . . . · PXIm
(xIm) =

m∏
i=1

PXIi
(xIi)

Note that the notion of mutual independence is stronger than the notion of
pairwise independence. In fact, a collection of random variables that is mutually
independent is also pairwise independent, whereas the converse must not be true
(i.e., a collection of random variables can be pairwise independent without being
mutually independent). For example, consider the situation in which two coins are
tossed. The random variable X refers to the result of the first coin, the random
variable Y refers to the result of the second coin, and the random variableZ refers to
the addition modulo 2 of the results of the two coins. Obviously, all random variables
have values of either 0 or 1. Then X , Y , and Z are pairwise independent, but they
are not mutually independent (because the value of Z is entirely determined by the
values of X and Y).

Similar to the case with two random variables, one can show that if n random
variables X1, X2, . . . , Xn are mutually independent, then

E[X1 ·X2 · . . . ·Xn] = E[X1] ·E[X2] · . . . ·E[Xn].

4.2.6 Markov’s Inequality

Markov’s inequality as specified in Theorem 4.2 puts into perspective the expecta-
tion of a random variable X and the probability that its value is larger than a certain
threshold value k. We provide the theorem without a proof.

Probability Theory 119

Theorem 4.2 (Markov’s inequality) If X is a nonnegative random variable, then

Pr[X ≥ k] ≤ E[X]
k

holds for every k ∈ R.

For example, if E[X] = 10, then

Pr[X ≥ 1, 000, 000]≤ 10
1, 000, 000

=
1

100, 000

This means that it is very unlikely that the value of X is greater than or equal
to 1, 000, 000 if its expectation is 10. This result is certainly supported by intuition.

Sometimes the order of magnitude given by Markov’s inequality is extremely
bad, but the bound is as strong as possible if the only information available about
X is its expectation. For example, suppose that X counts the number of heads in a
sequence of n coin flips (i.e., Ω = {0, 1}n with uniformly distributed elements). If
X is the number of ones in the string, then E[X] = n/2. In this example, Markov’s
inequality provides the following upper bound for Pr[X ≥ n]:

Pr[X ≥ n] ≤ E[X]
n

=
n/2
n

=
1
2

Obviously, the correct value is 2−n, and the result provided by Markov’s
inequality is totally off (it does not even depend on n). On the other hand, if n coins
are flipped and the flips are glued together (so that the only possible outcomes are n
heads or n tails, both with probability 1/2), then X counts the number of heads and
E[X] = n/2. In this case, the inequality is tight, and Pr[X ≥ n] is in fact 1/2. The
moral is that Markov’s inequality is useful because it applies to every nonnegative
random variable with known expectation. According to the examples given earlier,
the inequality is accurate when applied to a random variable that typically deviates
a lot from its expectation, and it is bad when applied to a random variable that is
concentrated around its expectation. In the latter case, more powerful methods are
required to achieve more accurate estimations. Most of these methods make use of
the variance or standard deviation as introduced next.

4.2.7 Variance and Standard Deviation

For a random variable X , one may consider the complementary random variable

120 Contemporary Cryptography

X ′ = |X − E[X]|

to provide some information about the likelihood that X deviates a lot from its
expectation. More specifically, if X ′ is expected to be small, then X is not likely
to deviate a lot from its expectation. Unfortunately,X ′ is not easier to analyze than
X , and hence X ′ is not particularly useful to consider as a complementary random
variable.

As a viable alternative, one may consider the complementary random variable

X ′′ = (X − E[X])2.

Again, if the expectation of X ′′ is small, then X is typically close to its
expectation. In fact, the expectation of the random variable X ′′ turns out to be a
useful measure in practice. It is called the variance of X , denoted as V ar[X], and it
is formally defined as follows:

V ar[X] = E[(X − E[X])2] =
∑
x∈X

PX(x) · (x − E[X])2

Alternatively, the variance of X can also be expressed as follows:

V ar[X] = E[(X − E[X])2]
= E[X2 − 2XE[X] + (E[X])2]
= E[X2]− 2E[XE[X]] + (E[X])2

= E[X2]− 2E[X]E[X] + (E[X])2

= E[X2]− 2(E[X])2 + (E[X])2

= E[X2]− (E[X])2

For example, let X be a random variable that is equal to zero with probability
1/2 and to 1 with probability 1/2. ThenE[X] = 1

2 ·0+ 1
2 ·1 = 1

2 ,X = X2 (because
0 = 02 and 1 = 12), and

V ar[X] = E[X2]− (E[X])2 =
1
2
− 1

4
=

1
4
.

Probability Theory 121

The variance of a random variable is useful because it is often easy to compute,
but it still gives rise to sometimes strong estimations on the probability that a random
variable deviates a lot from its expectation.

The value σ[X] =
√
V ar[X] is called the standard deviation ofX . In general,

one may expect the value of a random variableX to be in the intervalE[X]±σ[X].
If X is a random variable, then

V ar[aX + b] = a2V ar[X]

for every a, b ∈ R. Similarly, if X1, . . . , Xn are pairwise statistically independent
random variables over the same sample space, then

V ar[X1 + . . .+Xn] = V ar[X1] + . . .+ V ar[Xn].

For example, let X be again the random variable that counts the number of
heads in a sequence of n independent coin flips (with E[X] = n/2). Computing the
variance according to the definition given earlier is difficult. If, however, we view
the random variable X as the sum X1 + . . . + Xn (where all Xi are mutually
independent random variables such that for each i, Xi takes the value 1 with
probability 1/2 and the value zero with probability 1/2), then V ar[Xi] = 1

4 , and
hence V ar[X] = n · 1

4 = n
4 .

4.2.8 Chebyshev’s Inequality

Chebyshev’s inequality as specified in Theorem 4.3 can be used to provide an upper
bound for the probability that a random variable X deviates from its expectation
more than a certain threshold value k ∈ R. To make use of Chebyshev’s inequality,
the variance of X must be known.

Theorem 4.3 (Chebyshev’s inequality) If X is a random variable, then

Pr[|X − E[X]| ≥ k] ≤ V ar[X]
k2

holds for every k ∈ R.

Proof.

Pr[|X − E[X]| ≥ k] = Pr[(X − E[X])2 ≥ k2]

122 Contemporary Cryptography

≤ E[(X − E[X])2]
k2

=
V ar[X]
k2

In the first step, the argument of the probability function is squared on either side of
the relation (this does not change the probability value). In the second step, Markov’s
inequality is applied (for X − E[X]).

�

Let us test Chebyshev’s inequality on the example given earlier.X is a random
variable defined over the sample space Ω = {0, 1}n, Pr is the uniform distribution,
and X counts the number of ones in the elementary event. If we want to compute
Pr[X ≥ n] using V ar[X] = n/4, then we get

Pr[X ≥ n] ≤ Pr[|X − E[X]| ≥ n/2] ≤ 1
n
.

Obviously, this result is much better than the one we get from Markov’s
inequality. It linearly decreases with n, but it is still far apart from the correct value
2−n.

Using the standard deviation (instead of the variance) and setting k = c ·σ[X],
Chebyshev’s inequality can also be expressed as follows:

Pr[|X − E[X]| ≥ c · σ[X]] ≤ V ar[X]
c2(σ[X])2

=
(σ[X])2

c2(σ[X])2
=

1
c2

This form of Chebyshev’s inequality is frequently used in cryptography.

4.3 FINAL REMARKS

In this chapter, we introduced and overviewed the basic principles of (discrete) prob-
ability theory as far as they are relevant for information theory and contemporary
cryptography. First and foremost, we need the notion of a discrete probability space
(or random experiment, respectively). Such a space consists of a sample space Ω
and a probability measure Pr : Ω −→ R

+ (with
∑

ω∈Ω Pr[ω] = 1). We can then
define a random variable as a function X : Ω → X from the sample space to
a measurable set X (i.e., the range of the random variable). Random variables may

Probability Theory 123

have probability distributions, and if the range of a random variable is a subset of the
real numbers, then the random variable may also have an expectation and a variance
(or a standard deviation, respectively). All of these values are put into perspective
in some inequalities (e.g., Markov’s inequality and Chebyshev’s inequality) that are
frequently used in probability theory. In the following chapter, we use probability
theory and apply it to information theory.

References

[1] Ghahramani, S., Fundamentals of Probability, 2nd edition. Prentice-Hall, Upper Saddle River,
NJ, 1999.

[2] Chung, K.L., A Course in Probability Theory, 2nd edition. Academic Press, New York, 2000.

[3] Ross, S.M., A First Course in Probability, 6th edition. Prentice-Hall, Upper Saddle River, NJ,
2001.

[4] Jaynes, E.T., Probability Theory: The Logic of Science. Cambridge University Press, Cambridge,
UK, 2003.

124 Contemporary Cryptography

Chapter 5

Information Theory

As mentioned in Section 1.3, Claude E. Shannon developed a mathematical theory
of communication [1] and a related communication theory of secrecy systems [2]
that started a new branch of research commonly referred to as information theory.
Information theory has had (and continues to have) a deep impact on contemporary
cryptography.

In this chapter, we briefly overview and discuss the basic principles and results
of information theory as far as they are relevant for contemporary cryptography.
More specifically, we introduce the topic in Section 5.1, elaborate on the entropy
to measure the uncertainty of information in Section 5.2, address the redundancy
of languages in Section 5.3, introduce the key equivocation and unicity distance
in Section 5.4, and conclude with some final remarks in Section 5.5. Again, this
chapter is intentionally kept short; further information can be found in any book
about information theory (e.g., [3–5]).

5.1 INTRODUCTION

Information theory is concerned with the analysis of a communication system that
has traditionally been represented by a block diagram as illustrated in Figure 5.1.
The aim of the communication system is to communicate or transfer information
(i.e., messages) from a source (on the left side) to a destination (on the right side).
The following entities are involved in one way or another:

• The source is a person or machine that generates the messages to be commu-
nicated or transferred.

• The encoder associates with each message an object that is suitable for trans-
mission over the channel. In digital communications, the object is typically

125

126 Contemporary Cryptography

������ ������� �
	����

>�
��

!������ !���
�	�
��

Figure 5.1 A communication system.

a sequence of bits. In analog communication, however, the object can be a
signal represented by a continuous waveform.

• The channel is the medium over which the objects prepared by the encoder
are actually communicated or transferred.

• The channel may be subjected to noise. This noise, in turn, may cause some
objects to be modified or disturbed.

• The decoder operates on the output of the channel and attempts to associate a
message with each object it receives from the channel.

• Similar to the source, the destination can be a person or machine. In either
case, it receives the messages that are communicated or transferred.

Table 5.1
The Entities of a Communication System with Their Input and Output Parameters

Entity Input Output
Source Message
Encoder Message (Input) object
Channel (Input) object (Output) object
Decoder (Output) object Message
Destination Message

The entities of a communication system with their input and output parameters
are summarized in Table 5.1. Note that the objects mentioned earlier are divided into
(input) objects that are input to the channel and (output) objects that are output to
the channel.

The ultimate goal of information theory is to provide mathematically precise
answers to many practically relevant questions in information processing, such as
how you can optimally (i.e., most efficiently) compress and transmit information or
information-encoding data. Against this background, information theory can only be
applied if the question can be modeled by stochastic phenomena.

Information Theory 127

One of the major results of information theory is the so-called fundamental
theorem of information theory. It basically says that it is possible to transmit
information through a noisy channel at any rate less than channel capacity with an
arbitrarily small error probability. There are many terms (e.g., “information,” “noisy
channel,” “transmission rate,” and “channel capacity”) that need to be clarified
before the theorem can be applied in some meaningful way. Nevertheless, an inital
example may provide some preliminary ideas about the fundamental theorem of
information theory.

Imagine a source of information that generates a sequence of bits at the rate
of one bit per second. The bits 0 and 1 occur equally likely and are generated
independently from each other. Suppose that the bits are communicated over a noisy
channel. The nature of the noisy channel is unimportant, except that the probability
that a particular bit is received in error is 1/4 and that the channel acts on successive
inputs independently. The statistical properties of the corresponding noisy channel
are illustrated in Figure 5.2. We further assume that bits can be transmitted over the
channel at a rate not to exceed one bit per second.

� �

� �

�*4

�*4

1*4

1*4

Figure 5.2 The statistical properties of a noisy channel.

If an error probability of 1/4 is too high for a specific application, then one
must find ways of improving the reliability of the channel. One way that immediately
comes to mind is transmitting each source bit over the noisy channel more than once
(typically an odd number of times). For example, if the source generated a zero, then
one could transmit a sequence of three zeros, and if the source generated a one, then
one could send a sequence of three ones. At the destination, one receives a sequence
of three bits for each source bit (i.e., bit generated by the source). Consequently, one
faces the problem of how to properly decode each sequence (i.e., make a decision,
for each sequence received, as to the identity of the source bit). A reasonable way to
decide is by means of a majority selector, meaning that there is a rule that if more
ones than zeros are received, then the sequence is decoded as a one, and if more
zeros than ones are received, then the sequence is decoded as a zero. For example,
if the source generated a one, then a sequence of three ones would be transmitted
over the noisy channel. If the first and third bits were received incorrectly, then the

128 Contemporary Cryptography

received sequence would be 010 and the decoder would incorrectly decide that a
zero was transmitted.

In this example, one may calculate the probability that a given source bit is
received in error. It is the probability that at least 2 of a sequence of 3 bits is received
incorrectly, where the probability of a given bit being incorrect is 1/4 and the bits
are transmitted independently. The corresponding error probability Pr[error] (i.e.,
the probability of incorrectly receiving ≥ 2 bits) may be computed as follows:

Pr[error] =
(

3
2

) (
1
4

)2 3
4

+
(

1
4

)3

=
10
64

Obviously, 10/64 < 1/4, and the error probability is reduced considerably.
There is, however, a price to pay for this reduction: the sequence to be transmitted is
three times as long as the original one. This means that if one wants to synchronize
the source with the channel, then one must slow down the rate of the source to 1/3
bit per second (while keeping the channel rate fixed at 1 bit per second).

This procedure can be generalized. Let β < 1/2 be the error probability for
each bit and each bit be represented by a sequence of 2n + 1 bits.1 Hence, the
effective transmission rate of the source is reduced to 1/(2n+ 1) bits per second. In
either case, a majority selector is used at the receiving end. The probability Pr[error]
of incorrectly decoding a given sequence of 2n+1 bits is equal to the probability of
having n+ 1 or more bits in error. This probability can be computed as follows:

Pr[error] =
2n+1∑

k=n+1

(
2n+ 1
k

)
βk(1− β)2n+1−k

It can be shown that limn→∞ Pr[error] = 0, meaning that the probability of
incorrectly decoding a given sequence of 2n+ 1 bits can be made arbitrarily small
for sufficiently large n. Put in other words: one can reduce the error probability to
an arbitrarily small value at the expense of decreasing the effective transmission rate
toward zero.

The essence of the fundamental theorem of information theory is that in order
to achieve arbitrarily high reliability, it is not necessary to reduce the transmission
rate to zero, but only to a number called the channel capacity. The means by which
this is achieved is called coding, and the process of coding involves an encoder, as
illustrated in Figure 5.1. The encoder assigns to each of a specified group of source
signals (e.g., bits) a sequence of symbols called a code word suitable for transmission

1 This basically means that each source bit is represented by a bit sequence of odd length.

Information Theory 129

over the noisy channel. In the example given earlier, we have seen a very primitive
form of coding (i.e., the source bit 0 is assigned a sequence of zeros, whereas
the source bit 1 is assigned a sequence of ones). In either case, the code words
are transmitted over the noisy channel and received by a decoder, which attempts
to determine the original source signals. In general, to achieve reliability without
sacrificing speed of transmission in digital communications, code words must not
be assigned to single bits or bytes but instead to longer bit blocks. In other words,
the encoder waits for the source to generate a block of bits of a specified length
and then assigns a code word to the entire block. The decoder, in turn, examines
the received sequence and makes a decision as to the identity of the original source
bits. In practice, encoding and decoding are much more involved than this simple
example may suggest.

In order to make these ideas more concrete, we need a mathematical measure
for the information conveyed by a message, or—more generally—a measure of
information. This is where the notion of entropy comes into play.

5.2 ENTROPY

Let (Ω,Pr) be a discrete probability space (or random experiment, respectively)
and X : Ω → X a random variable with range X = {1, 2, . . . , 5} and uniformly
distributed elements. If we have no prior knowledge about X and try to guess the
correct value of X , then we have a probability of 1/|Ω| = 1/5 of being correct. If,
however, we have some prior knowledge and know, for example, that 1 ≤ X ≤ 2,
then we have a higher probability of correctly guessingX (i.e., 1/2 in this example).
In other words, there is less uncertainty about the second situation, and knowing that
1 ≤ X ≤ 2 has in fact reduced the uncertainty about the value of X . It thus appears
that if we could pin down the notion of uncertainty, we would also be able to measure
precisely the transfer of information.

Suppose that a discrete random experiment involves the observation of a
random variable X , and let X take on a finite number of possible values x1, . . . xn.
The probability that X takes on xi (i = 1, . . . , n) is Pr[X = xi] = PX(xi) and
is abbreviated as pi (note that all pi ≥ 0 and

∑n
i=1 pi = 1). Our goal is to come

up with a measure for the uncertainty associated with X . To achieve this goal, we
construct the following two functions:

• First, we define the function h on the interval [0, 1]. The value h(p) can
be interpreted as the uncertainty associated with an event that occurs with
probability p. If the event (X = xi) has probability pi, then we say that
h(pi) is the uncertainty associated with the event (X = xi) or the uncertainty
removed (or information conveyed) by revealing thatX has taken on value xi.

130 Contemporary Cryptography

• Second, we define the function Hn for n ∈ N probability values p1, . . . , pn.
The valueHn([p1, . . . , pn]) represents the average uncertainty associated with
the events (X = xi) for i = 1, . . . , n (or the average uncertainty removed by
revealing X , respectively). More specifically, we require that

Hn([p1, . . . , pn]) =
n∑

i=1

pih(pi).

In this book, we write H([p1, . . . pn]) instead of Hn([p1, . . . , pn]) most
of the time.

The function h is only used to introduce the function H . The function H
is then used to measure the uncertainty of a probability distribution or a random
variable. In fact, H(X) is called the entropy of the random variable X , and it
measures the average uncertainty of an observer about the value taken on by X .
The entropy plays a central role in data compression. In fact, it can be shown that
an optimal data compression technique can compress the output of an information
source arbitrarily close to its entropy, but that error-free compression below this
value is not possible.

In the literature, the function H is usually introduced by first setting up
requirements (or axioms), and then showing that the only function satisfying these
requirements is

H([p1, . . . , pn]) = −C
∑

i:1≤i≤n;pi>0

pi log pi

where C is an arbitrary positive number, and the logarithm base is any number
greater than one. In this case, we have

h(pi) = log
1
pi

= − log pi

and h(pi) measures the unexpectedness of an event with probability pi. The units
of H are usually called bits; thus the units are chosen so that there is one bit of
uncertainty associated with the toss of an unbiased coin. Unless otherwise specified,
we assume C = 1 and take logarithms to the base 2 for the rest of this book.

At this point it is important to note that the average uncertainty of a random
variableX (i.e.,H(X)) does not depend on the values the random variable assumes,

Information Theory 131

or on anything else related to X except the probabilities associated with all values.
That is why we said a few lines earlier that the entropy is defined for a random
variable or a probability distribution. If we want to express the entropy of a random
variable X , then we can use the following formula:

H(X) = −
∑

x∈X :PX(x) �=0

PX(x) log2 PX(x) (5.1)

Alternatively speaking, H(X) = E[− log2 PX(X)] = E[g(X)] with g(·) =
− log2 PX(·).

There are some intuitive properties of the entropy (as a measure of uncer-
tainty). For example, if we add some values to a random variable that are impossible
(i.e., their probability is zero), then the entropy does not change. This property can
be formally expressed as follows:

H([p1, . . . , pn]) = H([p1, . . . , pn, 0])

Furthermore, a situation involving a number of alternatives is most uncertain
if all possibilities are equally likely. This basically means that

0 ≤ H([p1, . . . , pn]) ≤ log2 n

with equality on the left side if and only if one value occurs with probability one
(and all other values occur with probability zero), and with equality on the right side
if and only if all values are equally likely (i.e., pi = 1/n). Similarly, we have

0 ≤ H(X) ≤ log2 |X |

with the same conditions for equality on either side as mentioned earlier. In particu-
lar, if X is uniformly distributed, then we haveH(X) = log2 |X |, and this equation
is often referred to as Hartley’s formula.

If we increase the number of alternatives, then we also increase the entropy of
the corresponding probability distribution. This property can be formally expressed
as follows:

H

([
1
n
, . . . ,

1
n

])
< H

([
1

n+ 1
, . . . ,

1
n+ 1

])

132 Contemporary Cryptography

If p =
∑k

i=1 pi and q =
∑l

i=1 qi, then the following equation holds and can
be used:

H([p1, . . . , pk, q1, . . . , ql]) = H([p, q]) + pH

([
p1

p
, . . . ,

pk

p

])

+ qH

([
q1
q
, . . . ,

ql
q

])

We now turn to the problem of characterizing the uncertainty associated with
more than one random variable (associated with the same discrete probability space
or random experiment). This is where the notion of a joint entropy comes into play.

5.2.1 Joint Entropy

First of all, it is important to note that a vector of random variables (associated
with the same discrete probability space or random experiment) can always be
viewed as a single random variable. If, for example, we have two random variables
X and Y with n and m possible outcomes, then X and Y have joint probability
PXY (xi, yj) = Pr[X = xi, Y = yj] = p(xi, yj) = pij for i = 1, . . . , n and
j = 1, . . . ,m. The resulting experiment has a total of nm possible outcomes, and
the outcome (X = xi, Y = yj) has probability pij = p(xi, yj).

Against this background, the joint entropy (or joint uncertainty) of X and Y ,
denoted as H(XY), is defined as follows:

H(XY) = −
n∑

i=1

m∑
j=1

p(xi, yj) log2 p(xi, yj)

More formally, H(XY) can be expressed as follows:

H(XY) = −
∑
(x,y)

PXY (x, y) log2 PXY (x, y) (5.2)

On the right side of (5.2), the index of the sum goes through all possible pairs
(x, y) with x ∈ X and y ∈ Y , or—equivalently—all (xi, yj) for i = 1, . . . , n and
j = 1, . . . ,m.

Equation (5.2) can be generalized to the joint entropy of more than two random
variables. In fact, the joint entropy of n random variables X1, X2, . . . , Xn can be
expressed as follows:

Information Theory 133

H(X1 · · ·Xn) = −
∑

(x1,...,xn)

PX1···Xn(x1, . . . , xn) log2 PX1···Xn(x1, . . . , xn)

In this equation, PX1···Xn refers to the joint probability distribution of
X1, . . . , Xn. Consequently, the joint entropy of X1, . . . , Xn equals the entropy of
the joint probability distribution PX1···Xn :

H(X1 · · ·Xn) = H(PX1···Xn)

There is a relation regarding the joint entropy ofn random variablesX1, . . . , Xn

and their individual entropies. In fact, it can be shown that

H(X1 · · ·Xn) ≤ H(X1) + . . .+H(Xn)

with equality if and only if X1, . . . , Xn are mutually independent.

5.2.2 Conditional Entropy

Equation (5.1) also covers the case where the probability distribution is conditioned
on an eventA with Pr[A] > 0. Consequently,

H(X |A) = H(PX|A)

= −
∑

x∈X :PX|A(x) �=0

PX|A(x) log2 PX|A(x)

Remember from Section 4.2.3 that PX|A is a regular probability distribution.
Let X and Y be two random variables. If we know the event Y = y, then we

can replace A with Y = y and rewrite the formula given above:

H(X |Y = y) = H(PX|Y =y)

= −
∑

x∈X :PX|Y =y(x) �=0

PX|Y =y(x) log2 PX|Y =y(x)

134 Contemporary Cryptography

Using the conditional entropy H(X |Y = y), we can define the conditional
entropy of the random variableX when given the random variable Y as the weighted
average of the conditional uncertainties of X given that Y = y:

H(X |Y) =
∑

y

PY (y)H(X |Y = y)

= −
∑

y

PY (y)
∑

x

PX|Y =y(x) log2 PX|Y =y(x)

= −
∑

y

∑
x

PY (y)
PXY (x, y)
PY (y)

log2 PX|Y (x, y)

= −
∑
(x,y)

PXY (x, y) log2 PX|Y (x, y)

In this series of equations, the indices of the sums are written in a simplified
way. In fact, x is standing for x ∈ X : PX|Y =y(x) �= 0, y is standing for
y ∈ Y : PY (y) �= 0, and—similar to (5.2)—(x, y) is standing for all possible
pairs (x, y) with x ∈ X and y ∈ Y or all (xi, yj) for i = 1, . . . , n and j = 1, . . . ,m.

Note that in contrast to the previously introduced entropies, such as H(X) =
H(PX), H(XY) = H(PXY), or H(X |Y = y) = H(PX|Y =y), the entropy
H(X |Y) is not the entropy of a specific probability distribution, but rather the
expectation of the entropiesH(X |Y = y). It can be shown that

0 ≤ H(X |Y) ≤ H(X)

with equality on the left if and only if X is uniquely determined by Y and with
equality on the right if and only if X and Y are (statistically) independent. More
precisely, it can be shown that

H(XY) = H(X) +H(Y |X) = H(Y) +H(X |Y),

(i.e., the joint entropy of X and Y is equal to the entropy of X plus the entropy of
Y given X , or the entropy of Y plus the entropy of X given Y). This equation
is sometimes referred to as chain rule and can be used repeatedly to expand
H(X1 · · ·Xn) as

H(X1 · · ·Xn) = H(X1) +H(X2|X1) + . . .+H(Xn|X1 · · ·Xn−1)

Information Theory 135

=
n∑

i=1

H(Xi|X1 · · ·Xi−1).

Note that the order in which variables are extracted is arbitrary. For example,
if we have 3 random variables X , Y , and Z , we can compute their joint entropy as
follows:

H(XY Z) = H(X) +H(Y |X) +H(Z|XY)
= H(X) +H(Z|X) +H(Y |XZ)
= H(Y) +H(X |Y) +H(Z|XY)
= H(Y) +H(Z|Y) +H(X |Y Z)
= H(Z) +H(X |Z) +H(Y |XZ)
= H(Z) +H(Y |Z) +H(X |Y Z)

Similarly, we can compute the joint entropy of X1 · · ·Xn given Y as follows:

H(X1 · · ·Xn|Y) = H(X1|Y) +H(X2|X1Y) + . . .+H(Xn|X1 · · ·Xn−1Y)

=
n∑

i=1

H(Xi|X1 · · ·Xi−1Y)

5.2.3 Mutual Information

The mutual information I(X ;Y) between two random variablesX and Y is defined
as the amount of information by which the entropy (uncertainty) of X is reduced by
learning Y . This can be formally expressed as follows:

I(X ;Y) = H(X)−H(X |Y)

The mutual information is symmetric in the sense that I(X ;Y) = H(X) −
H(X |Y) = H(Y)−H(Y |X) = I(Y ;X).

The conditional mutual information between X and Y , given the random
variable Z , is defined as follows:

I(X ;Y |Z) = H(X |Z)−H(X |Y Z)

136 Contemporary Cryptography

We have I(X ;Y |Z) = 0 if and only if X and Y are statistically independent
when given Z . Furthermore, the conditional mutual information between X and Y
is also symmetric, meaning that I(X ;Y |Z) = I(Y ;X |Z).

?.�/ ?.�/

?.��/

?.�-�/ ?.�-�/@.�A�/

Figure 5.3 A Venn diagram graphically representing information-theoretic quantities related to two

random variables.

Let X and Y be two random variables. Then the information-theoretic quan-
tities H(X), H(Y), H(XY), H(X |Y), H(Y |X), and I(X ;Y) can be graphically
represented by a Venn diagram, as shown in Figure 5.3.

5.3 REDUNDANCY

If L is a natural language with alphabet Σ, then one may be interested in the entropy
per letter, denoted by HL. In the case of the English language, Σ = {A,B, . . . , Z}
and |Σ| = 26. If every letter occured with the same probability and was independent
from the other letters, then the entropy per letter would be

log2 26 ≈ 4.70.

This value represents the absolute rate of the languageL and is an upper bound
for HL (i.e., HL ≤ 4.70). The actual value of HL, however, is smaller, because one
must consider the fact that letters are typically not uniformly distributed, that they
occur with frequencies (that depend on the language), and that they are also not
independent from each other. If X is a random variable that refers to the letters
of the English language (with their specific probabilities), then H(X) is an upper
bound for HL:

Information Theory 137

HL ≤ H(X) ≈ 4.14

Hence, instead of 4.7 bits of information per letter, we have around 4.14 bits
of information per letter if we take into account the (statistical) letter frequencies
of the English language. But this is still an overestimate, because the letters are not
independent. For example, in the English language a Q is always followed by a U,
and the bigram TH is likely to occur frequently. So one would suspect that a better
statistic for the amount of entropy per letter could be obtained by looking at the
distribution of bigrams (instead of letters). If X2 denotes the random variable of
bigrams in the English language, then we can refine the upper bound for HL:

HL ≤
H(X2)

2
≈ 3.56

This can be continued with trigrams and—more generally—n-grams. In the
most general case, the entropy of the language L is defined as follows:

HL = lim
n→∞

H(Xn)
n

The exact value of HL is hard to determine. All statistical investigations show
that

1.0 ≤ HL ≤ 1.5

for the English language (e.g., [6]). So each letter in an English text gives at most
1.5 bits of information. This implies that the English language (like all natural
languages) contains a high degree of redundancy. The redundancy of language L,
denoted by RL, is defined as follows:

RL = 1− HL

|Σ|

In the case of the English language, we have HL ≈ 1.25 and |Σ| = log2 26 ≈
4.7. So the redundancy of the English language is

138 Contemporary Cryptography

RL ≈ 1− 1.25
4.7

≈ 0.75.

This suggests that we are theoretically able to losslessly compress an English
text to one fourth its size. This means that a 10-MB file can be compressed to 2.5
MB. Note that redundancy in a natural language occurs because there are known and
frequently appearing letter sequences and that these letter sequences are the major
starting point for cryptanalysis.

5.4 KEY EQUIVOCATION AND UNICITY DISTANCE

In addition to the notion of redundancy, Shannon introduced and formalized a
couple of other concepts that can be used to analyze the security of deterministic
(symmetric) encryption systems. Let Mn and Cn be random variables that denote
the first n plaintext message and ciphertext bits, and K be a random variable that
denotes the key that is in use. An interesting question one may ask is how much
information aboutK is leaked as n increases. This brings us to the notion of the key
equivocation formally introduced in Definition 5.1.

Definition 5.1 (Key equivocation) The key equivocation is the function H(K|Cn)
(i.e., the entropy of the key as a function of the number of observed ciphertext bits).

We generally assume that the plaintext and the key are statistically indepen-
dent, meaning that H(M |K) = H(M). We can show that

H(K|Cn) = H(K) +H(Mn)−H(Cn)

for a deterministic cipher. This is because

H(K) +H(Mn) = H(KMn)
= H(KMnCn)
= H(KCn)
= H(Cn) +H(K|Cn).

In the first line, we exploit the fact that K and Mn are statistically indepen-
dent. In the second and third line, we exploit the fact that H(Cn|KMn) = 0 and
H(Mn|KCn) = 0.

Information Theory 139

We make the realistic assumption that the entropy of the plaintext grows
approximately proportional to its length. That is,

H(Mn) ≈ (1−RL)n,

where RL is the redundancy of the plaintext language.
Against this background, it is interesting to analyze the key equivocation when

n grows. For every n, there are possible keys (and it is hoped that the size of the set
of possible keys decreases as n increases). More specifically, there is one correct
key and a set of spurious keys (a spurious key is defined as a possible but not correct
key). The most interesting question is how largenmust be in order to be theoretically
able to uniquely determine the key. This is where the notion of the unicity distance
as introduced in Definition 5.2 comes into play.

Definition 5.2 (Unicity distance) The unicity distance nu is the approximate value
of n for which the key is uniquely determined by the ciphertext (i.e.,H(K|Cn) ≈ 0).

In other words, the unicity distance nu is the minimum value for n so that
the expected number of spurious keys equals zero. This is the average amount of
ciphertext that is needed before an adversary can determine the correct key (again,
assuming the adversary has infinite computing power). The unicity distance can be
approximately determined as follows:

nu ≈
H(K)
RL

If n ≥ nu ciphertext bits are given, it is then theoretically possible to uniquely
determine the key. For many practically relevant ciphers, nu is surprisingly small.

5.5 FINAL REMARKS

In this chapter, we overviewed and briefly discussed the basic principles and results
from information theory as far as they are relevant for contemporary cryptography.
Most importantly, we introduced and put into perspective the entropy of a probability
distribution or a random variable. The entropy is a fundamental measure of informa-
tion, and almost all information-theoretic security proofs make use of it in one way
or another. For example, in Section 10.4 we elaborate on perfectly secure encryption
systems, and we use information-theoretic arguments to prove security properties.

140 Contemporary Cryptography

Furthermore, we introduced the notion of redundancy of a (natural) language, as it is
often exploited when cryptanalysts try to attack an encryption system. Furthermore,
symmetric encryption systems are often analyzed using the key equivocation and
the unicity distance. If the unicity distance of a cipher is small, then relatively few
ciphertext bits are necessary to uniquely determine the key in use.

References

[1] Shannon, C.E., “A Mathematical Theory of Communication,” Bell System Technical Journal, Vol.
27, No. 3/4, July/October 1948, pp. 379–423/623–656.

[2] Shannon, C.E., “Communication Theory of Secrecy Systems,” Bell System Technical Journal,
Vol. 28, No. 4, October 1949, pp. 656–715.

[3] Ash, R.B., Information Theory. Dover Publications, Mineola, NY, 1990.

[4] Cover, T.M., and J.A. Thomas, Elements of Information Theory. John Wiley & Sons, New York,
1991.

[5] McEliece, R., Theory of Information and Coding, 2nd edition. Cambridge University Press,
Cambridge, UK, 2002.

[6] Shannon, C.E., “Prediction and Entropy of Printed English,” Bell System Technical Journal, Vol.
30, January 1951, pp. 50–64.

Chapter 6

Complexity Theory

In Section 1.2.2, we introduced the notion of conditional or computational security,
and we said that complexity theory (also known as computational complexity) is
the mathematical theory behind this type of security. In this chapter, we overview
and discuss the fundamentals and results from complexity theory as far as they are
relevant for contemporary cryptography. More specifically, we start with some pre-
liminary remarks in Section 6.1, introduce the topic in Section 6.2, briefly overview
an asymptotic order notation in Section 6.3, elaborate on efficient computations
in Section 6.4, address computational models in Section 6.5, focus on complexity
classes in Section 6.6, and conclude with some final remarks in Section 6.7. More
information about complexity theory and its applications is available in [1–3].

6.1 PRELIMINARY REMARKS

In theoretical computer science, one often uses a nonempty set of characters or
symbols that is referred to as alphabet and denoted as Σ. For example, the following
alphabet comprises all capital letters of the English language:

Σ = {A,B,C, . . . , Z}

The length of the alphabet Σ corresponds to the number of elements (i.e., |Σ|).
In the example given earlier, the length of the alphabet is |{A,B,C, . . . , Z}| = 26.

Another alphabet frequently used in computer science is the American Stan-
dard Code for Information Interchange (ASCII) character set. As illustrated in Table
6.1, the ASCII character set assigns a value between 0 (i.e., 0x00) and 127 (i.e.,
0x7F) to each character or symbol. Consequently, the length of the alphabet is

141

142 Contemporary Cryptography

27 = 128 (i.e., it uses only 7 bits of each byte). There is also an extended ASCII
character set with 28 = 256 characters or symbols (i.e., it uses all 8 bits of each
byte). For the purpose of this book, however, we don’t distinguish between the two
ASCII character sets.

Table 6.1
ASCII Character Set with Hexadecimal Values

0x00 0x10 0x20 0x30 0x40 0x50 0x60 0x70
+0 NUL DLE 0 @ P ‘ p
+1 SOH DC1 ! 1 A Q a q
+2 STX DC2 " 2 B R b r
+3 ETX DC3 # 3 C S c s
+4 EOT DC4 $ 4 D T d t
+5 ENQ NAK % 5 E U e u
+6 ACK SYN & 6 F V f v
+7 BEL ETB ’ 7 G W g w
+8 BS CAN (8 H X h x
+9 HT EM) 9 I Y i y
+A LF SUB * : J Z j z
+B VT ESC + ; K [k {
+C FF FS , < L \ l |
+D CR GS - = M] m }
+E SO RS . > N ˆ n ˜
+F SI US / ? O _ o DEL

Instead of directly using letters or ASCII characters, computer systems nor-
mally operate on binary digits (or bits). Consequently, the alphabet most frequently
used in computer science is Σ = {0, 1} and its length is |{0, 1}| = 2.

If an alphabet Σ is finite (which is almost always the case), then its length is
less than infinity (i.e., |Σ| = n < ∞). In this case, the n elements of Σ can also
be associated with the n elements (residue classes) of Zn = {0, 1, . . . , n − 1}.
Consequently, it is possible to work in Zn instead of any character set with n
elements. This simplifies things considerably. In particular, it allows us to work with
mathematical structures we know and with which we are familiar.

Let Σ be an alphabet. The term word (or string) over Σ refers to a finite
sequence of characters or symbols from Σ, including, for example, the empty word
ε. The length of a word w over Σ, denoted as |w|, corresponds to the number of
characters. The empty word has length zero (i.e., |ε| = 0). The set of all words over
Σ (again, including the empty word) is referred to as Σ∗. For every n ∈ N, Σn

refers to the set of all words of length n over Σ. For example, {0, 1}n denotes the
set of all n-bit sequences, and {0, 1}∗ denotes the set of all binary words. This can
be formally expressed as follows:

Complexity Theory 143

{0, 1}∗ =
⋃
n∈N

{0, 1}n

Using the binary alphabet, a positive integer n ∈ N can always be encoded as
a binary word bl−1 . . . b1b0 ∈ {0, 1}l of length l:

n =
l−1∑
i=0

bi2i

In complexity theory, a positive integer n ∈ N is frequently encoded using the
unary representation:

n = 1n = 11 · · ·1︸ ︷︷ ︸
n times

The relevant operation for words is the (string) concatenation, denoted as ‖ or
◦ (in this book, we use ‖ most of the time). If v, w ∈ Σ∗, then v ‖ w results from
concatenating v andw. The empty word ε is the neutral element of the concatenation
operation, hence v ‖ ε = ε ‖ v = v for every v ∈ Σ∗. It can be shown that 〈Σ∗, ‖〉
represents a monoid, as formally introduced in Section 3.1.2.2.

6.2 INTRODUCTION

Complexity theory is a central field of study in theoretical computer science. Ac-
cording to [4], the

main goal of complexity theory is to provide mechanisms for classify-
ing computational problems according to the resources needed to solve
them. The classification should not depend on a particular computa-
tional model, but rather should measure the intrinsic difficulty of the
problem. The computational may include time, storage space, random
bits, number of processors, etc., but typically the main focus is time,
and sometimes space.

The important points are (a) that the computational problems should be clas-
sified according to the resources needed to solve them, and (b) that this classification

144 Contemporary Cryptography

should be independent from a particular computational model. Consequently, com-
plexity theory has not much in common with benchmark testing as usually used in
the trade press to compare the computational power of different computer systems,
products, and models. Instead, complexity theory is used to determine the compu-
tational resources (e.g., time, space, and randomness) that are needed to compute a
function or solve a problem. The computational resources, in turn, can be determined
exactly or at approximately specifying lower and upper bounds.1 Alternatively, one
can consider the effects of limiting computational resources on the class of functions
(problems) that can be computed (solved) in the first place.

In complexity theory, there are many functions and problems to look at. For
example, for a positive integer n ∈ N, one can always look at the problem of decid-
ing whether n is prime (or composite). This problem is a decision problem and it is
solved by providing a binary answer (i.e., yes or no).2 An instance of this problem
would be whether n = 81 is prime (which is arguably wrong, because 81 = 9 · 9).
Consequently, a problem refers to a well-defined and compactly described large class
of instances characterized by some input and output parameters. Examples include
deciding primality (as mentioned earlier), factoring integers, or deciding graph iso-
morphisms. Against this background, it does not make a lot of sense to define the
computational difficulty or complexity of a problem instance. There is always a
trivial algorithm to solve the instance, namely the algorithm that simply outputs
the correct solution. Consequently, the computational difficulty or complexity of a
problem must always refer to a (potentially very) large class of instances. This fact
is very important to understanding complexity theory and its results. Unfortunately,
it also makes things considerably difficult to express and understand.

We said that results from complexity theory should be largely independent
from a particular computational model (refer to Section 6.5 for an overview about
the computational models in use today). Nevertheless, one must still have a model
in mind when one works in theoretical computer science and complexity theory. As
of this writing, the computational model of choice is the Turing machine.3 Looking
at Turing machines is sufficient, because there is a famous thesis in theoretical com-
puter science—called Church’s thesis4—that most results from complexity theory

1 To prove an upper bound is comparably simple. It suffices to give an algorithm together with an
analysis of its computational complexity. To prove a lower bound is much more involved, because
one must prove the nonexistence of an algorithm that is more efficient than the one one has in mind.
Consequently, it does not come as a big surprise that no significant lower bound has been proven for
the computational complexity of any practically relevant problem.

2 It was recently shown that there are deterministic polynomial-time algorithms to solve this problem
(see Section 3.2.4.3). Consequently, this problem is known to be in P (the notion of the complexity
class P is introduced later in this chapter).

3 Turing machines are named after Alan M. Turing, who lived from 1912 to 1954.
4 The thesis is named after Alonzo Church, who lived from 1903 to 1995.

Complexity Theory 145

hold regardless of the computational model in use (as long as it is “reasonable” in
one way or another). More specifically, the thesis says that any physical computing
device can be simulated by a Turing machine (in a number of steps polynomial in
the resources used by the computing device).

For the rest of this chapter, we associate the Turing machine M with the
function fM it computes, and we sometimes write M(x) instead of fM (x) for a
given input x. As mentioned earlier, there are several things a Turing machine M
can do, including, for example, computing a function, solving a search problem, or
making a decision:

• A Turing machine M can compute a function f : {0, 1}∗ → {0, 1}∗.
In this case, M is given input x ∈ {0, 1}∗, and it computes and outputs
fM (x) = y ∈ {0, 1}∗.

• A Turing machine M can solve a search problem S ⊆ {0, 1}∗ × {0, 1}∗.
In this case, M is given input x ∈ {0, 1}∗ that has a solution y (i.e.,
(x, y) ∈ S), and it computes and outputs a solution fM (x) = y′ ∈ {0, 1}∗
with (x, y′) ∈ S.

• A Turing machineM can solve a decision problem D ⊆ {0, 1}∗. In this case,
M is given input x ∈ {0, 1}∗, and it determines and outputs a bit saying
whether x ∈ D (i.e., fM (x) = 1 if and only if x ∈ D).

In theoretical computer science, a formal language L is usually defined as a
subset of Σ∗ with Σ = {0, 1}:

L ⊆ {0, 1}∗

Consequently, a decision problem can also be interpreted as a language mem-
bership problem when the problem instances are encoded as binary strings using
an arbitrary but fixed encoding. For example, all binary encoded prime numbers
represent a formal language, and the decision problem whether a number is prime
or not can also be understood as a membership problem for this particular language.

For the sake of simplicity, complexity theorists usually focus on decision
problems (i.e., problems that have either 1 (yes) or 0 (no) as an answer). This is
not too restrictive, because all computational problems can be phrased as decision
problems in such a way that an efficient algorithm for the decision problem yields
an efficient algorithm for the computational problem, and vice versa.

146 Contemporary Cryptography

6.3 ASYMPTOTIC ORDER NOTATION

In complexity theory, one is often interested in the asymptotic behavior of the com-
plexity of a computation as a function of the input size5 or some other parameter(s).
This is where asymptotic analysis and asymptotic order notation come into play.
In what follows, we only consider functions that are defined for positive integers
and take on real values that are positive for some n ≥ n0. Let f : N → R

+ and
g : N → R

+ be such functions. The following asymptotic bounds are frequently
used in complexity theory.

Asymptotic upper bound: If there exist a positive constant c and a positive integer
n0 such that 0 ≤ f(n) ≤ cg(n) for all n ≥ n0, then we write

f(n) = O(g(n)).

If g(n) is constant (and independent from n), then we write f(n) = O(1), or
f = O(1) in short. Note that this applies even if the constant is very large,
such as 2128. Furthermore, if 0 ≤ f(n) < cg(n) for all n ≥ n0, then we write

f(n) = o(g(n)).

Asymptotic lower bound: If there exist a positive constant c and a positive integer
n0 such that 0 ≤ cg(n) ≤ f(n) for all n ≥ n0, then we write

f(n) = Ω(g(n)).

Asymptotic tight bound: If there exist positive constants c1 and c2, and a positive
integer n0 such that c1g(n) ≤ f(n) ≤ c2g(n) for all n ≥ n0, then we write

f(n) = Θ(g(n)).

5 The input size is the size or length of the (binary) word that is needed to represent the input (for a
well-defined representation method).

Complexity Theory 147

Intuitively, f(n) = O(g(n)) means that f(n) doesn’t grow asymptotically
faster than g(n) within a constant multiple, whereas f(n) = Ω(g(n)) means that
f(n) grows asymptotically at least as fast as g(n) within a constant multiple. For
example, if f(n) = 2n2 + n+ 1, then 2n2 + n+ 1 ≤ 4n2 for all n ≥ 1, and hence
2n2 + n + 1 = O(n2). Similarly, 2n2 + n + 1 ≥ 2n2 for all n ≥ 1, and hence
2n2 + n+ 1 = Ω(n2). Consequently, 2n2 + n+ 1 = Θ(n2). Furthermore, f(n) =
o(g(n)) means that g(n) is an upper bound for f(n) that is not asymptotically tight,
or in other words, the function f(n) becomes insignificant relative to g(n) as n
gets larger. In practice, the expression o(1) is often used to denote a function f(n)
whose limit is 0 as n approaches ∞. In practice, the asymptotic upper bound (i.e.,
the O-notation) is most frequently used.

In complexity-theoretic discussions and considerations, one often uses func-
tions that are polynomials as suggested in Definition 3.30. Polynomials are useful
because they have the property that they are closed under addition, multiplication,
and composition. This basically means that one can add, multiply, and compose two
(or even more) polynomials, and that one still gets a(nother) polynomial.

In addition to polynomials, one often uses functions that are negligible or non-
negligible as suggested in Definitions 6.1 and 6.2.

Definition 6.1 (Negligible function) A function f(n) is negligible if for every con-
stant c ≥ 0 there exists a positive integer n0 such that f(n) < n−c for all n ≥ n0

(i.e., f(n) = o(n−c) for every positive constant c).

This basically means that f(n) diminishes to zero faster than the reciprocal of
any polynomial and hence that f(n) gets arbitrarily small for sufficiently large n.
For example, for any polynomial p(n), the function f(n) = p(n)/2n is negligible.

Definition 6.2 (Nonnegligible function) A function f(n) is nonnegligible (or no-
ticeable) if there exist a positive constant c and a positive integer n0 such that
f(n) > n−c for all n > n0 (i.e., f(n) = Ω(n−c)).

Referring to Figure 6.1, there are functions that are neither negligible nor
nonnegligible (noticeable). Examples include the sine and cosine functions.

6.4 EFFICIENT COMPUTATIONS

In practice, one is often interested in finding the most efficient (i.e., fastest) algorithm
to compute a function or solve a problem. Consequently, the notion of efficiency is
closely related to the running time of an algorithm. The running time of an algorithm
on a particular input, in turn, can be defined as the number of primitive operations

148 Contemporary Cryptography

>���
�
���
�����
���

>������
�
���
.���
��	���/
�����
���

B����
�����
	��	��
��
�
�������
�
���
�����������
�
���

.���
��	���/

Figure 6.1 Negligible, nonnegligible (noticeable), and other functions.

or “steps” that must be executed. Often a step is taken to mean a bit operation. For
some algorithms, however, it is more convenient to have a step mean something
more comprehensive, such as a comparison, a machine instruction, a machine clock
cycle, a modular multiplication, or anything else along these lines.

In either case, the running time of an algorithm can be measured in the worst
or average case:

• The worst-case running time of an algorithm is an upper bound on the running
time for any input, expressed as a function of the input size.

• The average-case running time of an algorithm is the average running time
over all inputs of a fixed size, also expressed as a function of the input size.

In modern cryptography, it is common to call a computation efficient if it
terminates within a worst-case running time that is polynomial in the input size.
Polynomial functions and polynomial-time algorithms as formally introduced in
Definitions 6.3 and 6.4 are defined along these lines.

Definition 6.3 (Polynomial function) A function f(n) is called polynomial if f(n) =
O(nc) for some c ∈ N. Otherwise, it is called super-polynomial.

In some literature, a polynomial function is called polynomially bounded,
and a super-polynomial function is called nonpolynomially bounded. In this book,
however, we don’t use these terms, and we say that a function is either polynomial
or super-polynomial.

If ε and c are constants with 0 < ε < 1 < c, then the following functions are
listed in increasing order of their asymptotic growth rates:

1 < ln lnn < lnn < e
√

ln n ln ln n < nε < nc < nlnn < cn < nn < cc
n

Complexity Theory 149

All function until nc are polynomial, whereas all other functions (i.e., nlnn,
cn, nn, and cc

n

) are super-polynomial.

Definition 6.4 (Polynomial-time algorithm) An algorithm is called polynomial-
time if its worst-case running time function is polynomial in the input size. Any
algorithm whose running time cannot be bounded by a polynomial is called super-
polynomial-time.

Consequently, the worst-case running time of a polynomial-time algorithm is
of the form O(nc), where n is the input size and c is a constant. The most important
examples of super-polynomial-time algorithms are exponential-time algorithms (i.e.,
algorithms that run in time exponential in the input size). The worst-case running
time of such an algorithm is of the form O(cn).

In complexity theory, one considers polynomial-time algorithms (be they
deterministic or probabilistic) as being efficient and super-polynomial-time (e.g.,
exponential-time) algorithms as being inefficient. This is particularly true if the
polynomials are of small degrees (e.g., c ≤ 10). In practice, however, a super-
polynomial-time algorithm may be quite practical for the input size of interest, and a
polynomial-time algorithm may be completely impractical. Note, for example, that
n1000 � nln ln ln n for all n that can ever be of relevance. Consequently, one has to
be careful when one applies complexity-theoretic arguments.

Last but not least, it is important to note that there are algorithms that
are super-polynomial-time but not exponential-time. Some of these algorithms are
subexponential-time as specified in Definition 6.5.

Definition 6.5 (Subexponential-time algorithm) An algorithm is subexponential-
time if its worst-case running time function is of the form eo(n), where n is the input
size.

A subexponential-time algorithm runs asymptotically much slower than a
polynomial-time algorithm, but it runs much faster than an exponential-time algo-
rithm. There are subexponential-time algorithms for many computational problems
that are relevant in cryptography, including, for example, integer factorization and
computing discrete logarithms. To discuss the efficiency of these algorithms, one
often uses the running time function Ln[a, c] that is defined as follows:

Ln[a, c] = O(e(c+o(1))(ln n)a(ln ln n)1−a

)

The function has two parameters (i.e., a and c). In general, the smaller a and c
are, the more efficient the corresponding algorithms are. The parameter a ∈ [0, 1] is

150 Contemporary Cryptography

particularly important, because it controls whether the running time is exponential
in lnn (if a = 1) or subexponential in lnn (if a < 1). The parameter c ∈ R is less
important for our purposes.

In the running time analyses of integer factoring algorithms and algorithms to
compute discrete logarithms, the following two cases occur frequently (a = 1/2 and
a = 1/3):

Ln[1/2, c] = O(e(c+o(1))
√

ln n
√

ln ln n)) = O(e(c+o(1))
√

ln n ln lnn))

Ln[1/3, c] = O(e(c+o(1))(ln n)1/3(ln ln n)2/3
)

The second case occurs with the most efficient algorithm to factorize integers
and compute discrete logarithms (see Chapter 7).

6.5 COMPUTATIONAL MODELS

In the theory of computation, the following computational models are usually
considered:

• Boolean circuits;

• Turing machines;

• Random access machines.6

As mentioned earlier, Church’s thesis says that all computational models
itemized here are equivalent, meaning that if a function (problem) is computable
(solvable) in one model, then it is also computable (solvable) in the other models.
It also means that the computational complexities are equal (up to polynomial
transformations). For example, simulating a random access machine by a Turing
machine generally squares the number of steps. Consequently, from a theoretical
point of view, it doesn’t really matter which model is used. As mentioned earlier, the
model that is most frequently used in theoretical computer science and complexity
theory is the Turing machine.

A Turing machine is an imaginary computing device that yields a primitive
but sufficiently general computational model. In fact, a Turing machine is more like
a computer program (software) than a computer (hardware) and can be realized

6 A random access machine is similar to a Turing machine. The major distinguishing feature is that
it provides access to arbitrary (i.e., randomly chosen) memory cells. As such, the random access
machine even more closely represents contemporary computer systems.

Complexity Theory 151

or implemented on many different physical computing devices. In short, a Turing
machine consists of a (finite-state) control unit and one (or several) tape(s), each
of them equipped with a tapehead (i.e., a read/write head). Each tape is marked off
into (memory) cells that can be filled with at most one symbol. The tapehead is able
to read and/or write exactly one cell, namely the one that is located directly below
it. Hence, the operations of the Turing machine are limited to reading and writing
symbols on the tapes and moving along the tapes to the left or to the right. As such,
the Turing machine represents a finite state machine (FSM). This basically means
that the machine has a finite number of states (so-called functional states) and is in
exactly one of these states at any given point in time.

The Turing machine solves a problem by having a tapehead scanning a string
of a finite number of symbols that are placed sequentially in the leftmost cells of one
tape (i.e., the input tape). Each symbol occupies one cell and the remaining cells to
the right on that tape are blank. This string is called an input of a problem instance.
The scanning starts from the leftmost cell of the tape that contains the input while
the machine is in a designated initial state. At any time, only one tapehead of the
Turing machine is accessing its tape. A step of access made by a tapehead on its tape
is called a move. If the machine starts from an initial state, makes one move after
another, completes scanning the input string, eventually causes a satisfaction of a
terminating condition and thereby terminates, then the machine is said to recognize
the input. Otherwise, the machine has no move to make at some point, and hence the
machine halts without recognizing the input. An input that is recognized by a Turing
machine is called an instance in a recognizable language.

Upon termination, the number of moves that a Turing machine M has taken
to recognize an input is said to be the running time or time complexity of M and
is denoted as TM . It goes without saying that TM can be expressed as a function
TM (n) : N → N where n is the length or size of the input (i.e., the number of
symbols that represent the input string when M is in the initial state). It is always
the case that TM (n) ≥ n, because the machine must at least read the input (typically
encoded using the unary representation). In addition to the time requirement, M
may also have a space requirement SM that refers to the number of tape cells that
the tapeheads of M have visited in writing access. The quantity SM can also be
expressed as a function SM (n) : N → N and is said to be the space complexity of
M .

In Definition 6.4 we introduced the notion of a polynomial-time algorithm.
Such an algorithm can be implemented, for example, by a polynomial-time Turing
machine. In fact, a Turing machine is called polynomial-time if its worst-case
running time function is polynomial in the input size. For all practical purposes,
polynomial-time Turing machines can perform computations that can also be carried
out on contemporary computer systems within reasonable amounts of time.

152 Contemporary Cryptography

Polynomial-time Turing machines work in a deterministic way, meaning that
they repeatedly execute one (or several) deterministic step(s). This need not be the
case, and there are at least two alternative types of Turing machines.

Nondeterministic Turing machine: This is a polynomial-time Turing machine
that works in a nondeterministic way.

Probabilistic Turing machine: This is a polynomial-time Turing machine that
works in a probabilistic way.

A nondeterministic Turing machine is arbitrary parallel, works in a nonde-
terministic way, and is able to solve a computational problem if such a solution
exists. The existence of a nondeterministic Turing machine is a purely theoretical
assumption, and it is generally not possible to build such a machine. Contrary to
that, a probabilistic Turing machine can be built. It works in a probabilistic (and
nondeterministic) way. Similar to a deterministic Turing machine, a probabilistic
Turing machine may have a plural of tapes. One of these tapes is called random tape
and contains uniformly distributed random symbols. During the scanning of an input
instance, the machine interacts with the random tape, picks up a random string, and
then proceeds like a deterministic Turing machine. The random string is called the
random input to the probabilistic Turing machine (in practice, the random input is
generated by a random or pseudorandom bit generator). With the involvement of
the random input, the recognition of an instance by a probabilistic Turing machine
is no longer a deterministic function of the instance, but is associated with a ran-
dom variable (i.e., a function of the Turing machine’s random input). This random
variable typically assigns error probabilities to the event of recognizing the problem
instance (this is explored further later). Remarkably, there are many problems for
which probabilistic Turing machines can be constructed that are more efficient, both
in terms of time and space, than the best known deterministic counterparts. Conse-
quently, probabilistic Turing machines are an important field of study in complexity
theory and have many cryptographic applications.

Last but not least, it is important to note that there are computational models
that are not equivalent to the models itemized at the beginning of this section (in
fact, they are more powerful). Examples include quantum computers and DNA
computers.

• A quantum computer is a computational device that makes use of quantum
mechanical principles to solve computational problems. A “conventional”
computer operates on bits that represent either 0 or 1. In contrast, a quantum
computer operates on quantum bits (qubits) that represent vectors in the two-
dimensional Hilbert space. More specifically, a qubit is a linear combination
or superposition of |0〉 and |1〉 (with |0〉 and |1〉 representing an orthonormal

Complexity Theory 153

basis). A qubit can be written in terms of function ψ = α|0〉 + β|1〉 with
α, β ∈ C and |α|2 + |β|2 = 1. It is a fundamental law of quantum mechanics
that once we measure the state of a qubit ψ, we either get |0〉 or |1〉 as a
result. More precisely, we measure |0〉 with probability |α|2 and |1〉 with
probability |β|2. The fundamental difference between bits and qubits is that
qubits may be in states between |0〉 and |1〉. Only by measuring the state
of a qubit, one can get one of the states |0〉 or |1〉. A quantum register of
length n is built of n qubits |qk〉 (k = 1, . . . , n). Each |qk〉 is of the form
αk|0〉 + βk|1〉. Due to superposition, a quantum register may be in all of the
2n possible states at the same time. A quantum computer may exploit this
fact and make use of such a quantum register to solve a particular problem.
In 1994, Peter W. Shor proposed randomized polynomial-time algorithms for
computing discrete logarithms and factoring integers on a quantum computer
[5, 6]. Although a group of researchers implemented Shor’s algorithm to factor
the integer 15 [7], it is not currently known whether a quantum computer
of practical size will ever be put in practice. Furthermore, no polynomial-
time algorithm for solving anyNP-complete problem7 has been found so far.
Further information about quantum computers can be found in [8].

• A DNA computer is a computational device that makes use of molecular bi-
ology to solve computational problems. More specifically, molecules of de-
oxyribonucleic acid (DNA) are used to encode problem instances, and stan-
dard protocols and enzymes are used to perform the steps of the corresponding
computations. In 1994, Leonard M. Adleman8 demonstrated the feasibility of
using a small DNA computer to solve an (arguably small) instance of the
directed Hamiltonian path problem, which is known to be NP-complete [9].
Further information about the DNA computer can be found in [10, 11].

It is neither presently known how to build a quantum or DNA computer of
a sufficiently large size, nor is it known to be possible at all (this is particularly
true for DNA computers). Nevertheless, should either quantum computers or DNA
computers ever become feasible and practical, they would have a tremendous
impact on theoretical computer science in general, and cryptography in particular.
In fact, many cryptographic systems that are computationally secure today would
become completely insecure and worthless (this is not true for unconditionally
secure systems).

7 Refer to Section 6.6.2.2 and Definition 6.11 for the notion of anNP-complete problem.
8 Leonard M. Adleman is one of the inventors of the RSA public key cryptosystem.

154 Contemporary Cryptography

6.6 COMPLEXITY CLASSES

In the previous section we introduced deterministic, nondeterministic, and proba-
bilistic polynomial-time Turing machines. These machines can be used to define
complexity classes. In short, deterministic polynomial-time Turing machines can
be used to define the complexity class P , nondeterministic polynomial-time Tur-
ing machines can be used to define the complexity class NP (and coNP), and
probabilistic polynomial-time Turing machines can be used to define the complexity
class PP and its subclasses. All of these classes are overviewed, discussed, and put
into perspective next. For the sake of simplicity, we only focus on Turing machines
and decision problems. Note, however, that it is also possible to formally define
the previously mentioned complexity classes on the basis of algorithms (instead of
Turing machines) and for problems other than decision problems.

6.6.1 Complexity Class P

As suggested in Definition 6.6, the complexity classP (“polynomial-time”) assumes
the existence of deterministic polynomial-time Turing machines.

Definition 6.6 (Complexity class P) The complexity class P refers to the class
of decision problems D ⊆ {0, 1}∗ that are solvable in polynomial time by a
deterministic Turing machine (i.e., there exists a deterministic polynomial-time
Turing machine M with M(x) = 1 if and only if x ∈ D).

Consequently, the complexity class P comprises all problems that can be
solved deterministically in polynomial time. Similar to Definition 6.6, one can define
the complexity class P to comprise the class of functions or search problems that are
computable or solvable in polynomial time. This is not done in this book.

6.6.2 Complexity Classes NP and coNP

As suggested in Definition 6.7, the complexity class NP (“nondeterministic
polynomial-time”) assumes the existence of nondeterministic Turing machines.

Definition 6.7 (Complexity class NP) The complexity class NP refers to the
class of decision problems D ⊆ {0, 1}∗ that are solvable in polynomial time by
a nondeterministic Turing machine (i.e., there exists a nondeterministic polynomial-
time Turing machineM with M(x) = 1 if and only if x ∈ D).

As mentioned earlier, nondeterministic Turing machines are purely theoretical
constructs, and it is currently not known how to build such a machine. Consequently,

Complexity Theory 155

another possibility to define the complexity class NP is captured in Definition 6.8.
It basically says that a decision problem is in NP if a yes answer can at least be
verified efficiently.

Definition 6.8 (Complexity class NP) The complexity class NP refers to the
class of decision problems D ⊆ {0, 1}∗ for which a yes answer can be verified
in polynomial time given some extra information, called a certificate or witness.

It must be emphasized that if a decision problem is in NP , then it may not be
the case that a certificate for a yes answer can be obtained easily. What is asserted
is only that such a certificate exists, and, if known, can be used to efficiently verify
the yes answer. For example, the problem of deciding whether a positive integer n
is composite (i.e., whether there exist integers 1 < p1, p2, . . . , pk ∈ N such that
n = p1p2 . . . pk) belongs to NP . This is because if n is composite, then this fact
can be verified in polynomial time if one is given a divisor a of n (in this case, the
certificate is a divisor pi for 1 ≤ i ≤ k).

It is not clear whether the existence of an efficient verification algorithm for
yes answers also implies the existence of an efficient verification algorithm for no
answers. Consequently, there is room for a complementary complexity class coNP
as suggested in Definition 6.9.

Definition 6.9 (Complexity class coNP) The complexity class coNP refers to the
class of decision problems D ⊆ {0, 1}∗ for which a no answer can be verified in
polynomial time given some extra information, called a certificate or witness.

It is conjectured that coNP �= NP . Note, however, that this is only a
conjecture, and that nobody has been able to prove it (or the converse) so far.

NP (coNP) refers to the class of decision problems for which a yes (no)
answer can be verified in polynomial time given an appropriate certificate. Contrary
to that, P consists of the class of decision problems for which an answer can be
found in polynomial time. Consequently, we know that

P ⊆ NP

and

P ⊆ coNP .

We do not know, however, whether the existence of an efficient verification
algorithm for decision problems (be it for yes or no answers) also implies the ability

156 Contemporary Cryptography

to efficiently provide an answer for such a problem. This question can be phrased
in the single most important open question in theoretical computer science and
complexity theory:

Is NP = P orNP �= P?

If this question is answered in the affirmative (i.e., NP = P), then every
problem (function) in NP is theoretically solvable (computable) in polynomial
time. It is, however, widely believed and conjectured that P �= NP . The P �=
NP conjecture is supported by our intuition that solving a problem is usually
more involved than verifying a solution. Empirical evidence toward the conjectured
inequality is given by the fact that literally thousands of problems in NP , coming
from a wide variety of mathematical and scientific disciplines, are not known to
be solvable in polynomial time (in spite of extensive research attempts aimed at
providing efficient algorithms to solve them).

If P = NP , then there is no computationally secure cryptographic system
in a mathematically strong sense. Nevertheless, there may still exist cryptographic
systems that are computationally secure for all practical purposes, provided that the
complexity ratio between using the system and breaking it is a polynomial of suffi-
ciently high degree. An example to illustrate this point is Merkle’s Puzzles addressed
in Section 16.2.1. Also, all unconditionally (i.e., information-theoretically) secure
cryptographic systems remain unaffected and secure even if P = NP .

6.6.2.1 Polynomial Reducibility

It is sometimes useful to compare the relative difficulties of two (or more) compu-
tational problems. This is where the notion of polynomial reducibility comes into
play. In short, a function f is polynomially reducible to a function g if there ex-
ists a(nother) function h that can be computed in polynomial time so that f(x) =
g(h(x)) for every input x. Hence, we can compute f by first computingh (in polyno-
mial time) and then computing g. If g is efficiently computable, then so is f (because
we only require a polynomial number of invocations of g). If, however, g is not
efficiently computable, then the notion of polynomial reducibility is not particularly
useful. The notion of a polynomial-time reduction for decision problems can now be
defined as suggested in Definition 6.10.

Definition 6.10 (Polynomial-time reduction) Let D1, D2 ⊆ {0, 1}∗ be two deci-
sion problems.D1 is said to polytime reduce toD2 (denoted asD1 ≤P D2), if there
is an algorithm that solves D1 which uses, as a subroutine, an algorithm for solving
D2, and which runs in polynomial time if this algorithm does.

Complexity Theory 157

In this case, the algorithm that solves D2 serves as an oracle.9 If D1 ≤P D2,
then D2 is at least as difficult as D1, or, equivalently, D1 is no harder than D2. If
both D1 ≤P D2 and D2 ≤P D1, then D1 and D2 are computationally equivalent.

Polynomial-time reductions are transitive. This basically means that ifD1 ≤P

D2 andD2 ≤P D3, thenD1 ≤P D3. Furthermore, if D1 ≤P D2 andD2 ∈ P , then
D1 ∈ P . In either case, polynomial-time reductions are important when it comes to
prove the NP-completeness of a problem.

6.6.2.2 NP-Completeness

Loosely speaking, a decision problem D is NP-complete if it is in NP and every
decision problem in NP polytime reduces to it. This idea is captured in Definition
6.11.

Definition 6.11 (NP-complete problem) A decision problem D ⊆ {0, 1}∗ is NP-
complete if D ∈ NP and D1 ≤P D for every decision problem D1 ∈ NP .

Note that this definition can’t be used to show that a decision problem D is
NP-complete. This is because it is difficult to show the second condition for every
D1 ∈ NP . If, however, we already know that a specific decision problem D1 is
NP-complete, then we can prove the NP-completeness of D by showing that it
is in NP and that it polytime reduces to D1. More specifically, the following three
steps can be used to prove that a decision problemD is NP-complete:

1. Prove that D ∈ NP ;

2. Select a decision problemD1 that is known to be NP-complete;

3. Prove that D1 ≤P D.

Consequently,NP-complete (decision) problems are “universal” in the sense
that providing a polynomial-time algorithm for solving one of them immediately
implies polynomial-time algorithms for solving all of them. More specifically, if
there exists a single NP-complete decision problem that can be shown to be in
P , then P = NP results immediately. Similarly, if there exists a single NP-
complete decision problem that can be shown in coNP , then coNP = NP
results immediately. Such a result would be extremely surprising, and a proof that a
problem is NP-complete generally provides strong evidence for the computational
intractability of it.

At first glance, it may be surprising that NP-complete problems exist. There
exist, however, many problems that are known to be NP-complete (e.g., [1]). In

9 Note that the notion of an oracle has become very important in contemporary cryptography.

158 Contemporary Cryptography

fact, there are thousands of NP-complete problems, coming from a wide range of
mathematical and scientific disciplines and fields of study. For example, deciding
whether a Boolean formula is satisfiable and deciding whether a directed graph
has a Hamiltonian cycle are both NP-complete decision problems. Furthermore, the
subset sum problem is NP-complete and has been used as a basis for many public
key cryptosystems in the past (i.e., knapsack-based cryptosystems). The subset sum
problem is that given a set of positive integers {a1, a2, . . . , an} and a positive integer
s, determine whether or not there is a subset of the ai that sum to s.

����

��
�

���

Figure 6.2 The conjectured relationship between P ,NP , coNP , and NPC.

The class of all NP-complete (decision) problems is sometimes also denoted
by NPC. Figure 6.2 illustrates the conjectured relationship between the complexity
classes P , NP , coNP , andNPC. Again, we know that P ⊆ NP and P ⊆ coNP ,
as well as NPC ⊆ NP . We do not know, however, whether P = NP , P =coNP,
or P = NP ∩ coNP . Most experts believe that the answers to the last three
questions is no (but nothing along these lines has been proven).

Last but not least, one sometimes attributes the term NP-hard to a problem
(not necessarily a decision problem). Referring to Definition 6.11, a problem is
called NP-hard if the second but not necessarily the first condition is satisfied,
meaning that any decision problem in NP polytime reduces to it (or there is at least
one NP-complete problem that polytime reduces to it, respectively). For example,
finding a satisfying assignment for a Boolean formula or finding a Hamiltonian
cycle in a directed graph are NP-hard problems. We can also revisit the subset sum
problem mentioned earlier. Given positive integers {a1, a2, . . . , an} and a positive
integer s, a computational version of the subset sum problem would ask for a subset
of the ai that sum up to s, provided that such a subset exists. This problem can also
be shown to be NP-hard.

Complexity Theory 159

It is obvious to see that an NP-complete problem must always be NP-hard,
whereas the converse may not be true (i.e., an NP-hard problem may not be NP-
complete). In fact, there are (decision) problems that are NP-hard but not NP-
complete. For example, the halting problem (i.e., the problem to decide whether a
given program with a given input will halt or run forever) is NP-hard but not NP-
complete. On one hand, one can show that there exists an NP-complete problem
(e.g., the satisfiability problem) that polytime reduces to the halting problem. On
the other hand, one can show that the halting problem is not in NP (because all
problems in NP must be decidable but the halting problem is not).

6.6.3 Complexity Class PP and Its Subclasses

As suggested in Definition 6.12, the complexity classPP (“probabilistic polynomial-
time”) comprises all decision problems that can be solved by probabilistic polynomial-
time Turing machines.

Definition 6.12 (Complexity class PP) The complexity class PP refers to the
class of decision problems D ⊆ {0, 1}∗ that are solvable in polynomial time by
a probabilistic Turing machine.

Probabilistic Turing machines implement probabilistic algorithms, and there
are basically three classes of such algorithms:

• A Las Vegas algorithm runs in expected polynomial time (related to the size
of its input) and outputs a result that is always correct. The fact that it runs in
expected polynomial time means that it may not provide a result at all.

• A Monte Carlo algorithm always runs in polynomial time but has only some
probability of providing a correct result. In the case of a decision problem,
a Monte Carlo algorithm is yes-biased if a yes answer is only correct with
some probability, whereas a no answer is always correct. Contrary to that, a
Monte Carlo algorithm is no-biased if a no answer is only correct with some
probability, whereas a yes answer is always correct.

• Similar to a Monte Carlo algorithm, an Atlantic City algorithm always runs in
polynomial time and has only some probability of providing correct results.
Contrary to a Monte Carlo algorithm, however, an Atlantic City algorithm
may err on either side, meaning that both possible answers (i.e., yes and no)
are only correct with some probability.

In Section 6.5, we argued that the recognition of a problem instance by a
probabilistic Turing machine is not a deterministic function of the problem instance

160 Contemporary Cryptography

but is associated with a random variable, and that this random variable typically
assigns error probabilities to the event of recognizing the instance. Consequently,
one has to consider the possibility that a probabilistic polynomial-time Turing
machine may introduce errors and that the machine may recognize a problem
instance only with certain error probabilities.

Let M be a probabilistic polynomial-time Turing machine, D ⊆ {0, 1}∗ a
decision problem, and x ∈ {0, 1}∗ an input for M . The following two probability
bounds are relevant for M :

Pr[M outputs Yes | x ∈ D] ≥ ε ∈ (
1
2
, 1]

Pr[M outputs Yes | x /∈ D] ≥ δ ∈ [0,
1
2
)

The first probability bound is for a correct answer and is sometimes called
completeness probability bound. The need for bounding this probability from below
is to limit the possibility to mistakenly output a no answer:

Pr[M outputs No | x ∈ D] < 1− ε

The second probability bound limits the probability thatM mistakenly outputs
yes. It is called the soundness probability bound, and the need for bounding it from
above is quite obvious.

Note that we have expressed the probability bounds for M with two constants
ε and δ taken from large intervals. This imprecision, however, does not cause any
problem (if necessary, we can always run M multiple times to narrow down the
intervals).

The complexity classPP has several subclasses which are defined by different
(completeness and soundness) probability bounds, using different values for ε and
δ, respectively.

6.6.3.1 Zero-Sided Errors

If we assume that a probabilistic polynomial-time Turing machineM does not make
any error on either side, then we can formally introduce the complexity class ZPP
as suggested in Definition 6.13.

Definition 6.13 (Complexity class ZPP) ZPP (“zero-sided-error probabilistic
polynomial time”) is a subclass of PP. It comprises all decision problems D ⊆

Complexity Theory 161

{0, 1}∗ for which there exists a probabilistic polynomial-time Turing machine M
such that for every input x ∈ {0, 1}∗

Pr[M outputs Yes | x ∈ D] = 1

and

Pr[M outputs Yes | x /∈ D] = 0.

This error-probability characterization means that the probabilistic polynomial-
time Turing machine M does not make any error at all. This seems to imply that
ZPP is equal to P . Interestingly, this is not the case, and there are problems that
can be solved with probabilistic Turing machines more efficiently than with deter-
ministic Turing machines (both work in polynomial time).

In some literature, ZPP is defined as a subclass of decision problems which
can be solved by a probabilistic polynomial-time Turing machine in an “always fast
and always correct” fashion.

6.6.3.2 One-Sided Errors

There are basically two possibilities for a probabilistic polynomial-time Turing
machine M to err on one side. The corresponding complexity classes PP-Monte
Carlo and PP-Las Vegas are introduced in Definitions 6.14 and 6.15.

Definition 6.14 (Complexity class PP-Monte Carlo) PP-Monte Carlo is a sub-
class of PP that comprises all decision problems D ⊆ {0, 1}∗ for which a
probabilistic polynomial-time Turing machine M exists such that for every input
x ∈ {0, 1}∗

Pr[M outputs Yes | x ∈ D] = 1

and

Pr[M outputs Yes | x /∈ D] ≤ δ

with δ ∈ (0, 1
2).10

10 Note that in this case δ must be different from 0. Otherwise, the subclass PP-Monte Carlo
degenerates to the special case ZPP .

162 Contemporary Cryptography

Probabilistic polynomial-time Turing machines with this error-probability
characterization have a one-sided error in the soundness side.

Definition 6.15 (Complexity class PP-Las Vegas) PP-Las Vegas is a subclass of
PP that comprises all decision problems D ⊆ {0, 1}∗ for which a probabilistic
polynomial-time Turing machine M exists such that for every input x ∈ {0, 1}∗

Pr[M outputs Yes | x ∈ D] ≥ ε

and

Pr[M outputs Yes | x /∈ D] = 0

with ε ∈ (1
2 , 1) (or ε ∈ (0, 1), respectively).

Probabilistic polynomial-time Turing machines with this error-probability
characterization have a one-sided error in the completeness side. In either case, the
complexity classes PP-Monte Carlo and PP-Las Vegas are complementary in the
sense that ZPP = PP-Monte Carlo ∩ PP-Las Vegas.

6.6.3.3 Two-Sided Errors

If we assume that a probabilistic polynomial-time Turing machine M may err on
either side, then we can formally introduce the complexity class BPP as suggested
in Definition 6.16.

Definition 6.16 (Complexity class BPP) BPP (“bounded-error probabilistic poly-
nomial time”) is a subclass of PP that comprises all decision problems D ⊆
{0, 1}∗ for which a probabilistic polynomial-time Turing machine M exists such
that for every input x ∈ {0, 1}∗

Pr[M outputs Yes | x ∈ D] ≥ ε

and

Pr[M outputs Yes | x /∈ D] ≤ δ

with ε ∈ (1
2 , 1) and δ ∈ (0, 1

2).

Complexity Theory 163

Note that we must require that ε �= 1 and δ �= 0. Otherwise, the subclass BPP
degenerates to ZPP, PP-Monte Carlo, or PP-Las Vegas.

The complexity class P and the various subclasses of PP can be ordered as
follows:

P ⊆ ZPP ⊆ PP −Monte Carlo
PP − Las Vegas ⊆ BPP ⊆ PP

The challenging question is whether the inclusions are strict or not. In either
case, algorithms that can solve problems in any of these complexity classes (not
only P) are called efficient, and the problems themselves are called tractable.
Problems that are not tractable in this sense are called intractable. But keep in
mind that polynomials can have vastly different degrees, and hence algorithms that
solve tractable problems can still have vastly different time complexities. Therefore,
an efficient algorithm for solving a tractable problem need not be efficient for
all practical purposes. Against this background, people sometimes use the term
practically efficient to refer to polynomial-time algorithms where the polynomials
have considerably small degrees.

6.7 FINAL REMARKS

In this chapter, we overviewed and discussed the fundamentals and results from
complexity theory as far as they are relevant for contemporary cryptography. It
should have become clear that complexity theory provides a useful mathematical
theory and tool to argue about the (computational) security of a cryptographic
system. In fact, complexity theory is one of the foundations (and probably the
most important foundation) for modern cryptography. The notion of an efficient
(polynomial-time) computation is at the core of complexity-theoretic considerations.
In fact, the complexity classes P , PP, and the subclasses of PP yield tractable
problems (i.e., problems for which efficient deterministic or probabilistic algorithms
are known). Contrary to that, the complexity classes NP and coNP comprise
intractable problems (i.e., problems for which efficient algorithms are not known).11

Against this background, the P �= NP conjecture plays a fundamental role in
complexity-theoretic cryptography.

In spite of its usefulness, there are also a couple of shortcomings and limi-
tations related to complexity theory that must be known and should be considered

11 Note that it is not known whether such algorithms are only not known or whether they do not exist
in the first place.

164 Contemporary Cryptography

with care (e.g., [12]). For example, it is impossible to elaborate on the computa-
tional complexity of a specific function (or algorithm that implements the function).
Instead, one always has to consider an infinite class of functions (or algorithms). This
is unfortunate and sometimes inappropriate, because many concrete cryptographic
systems employ functions that are fixed and for which an asymptotic extension is
not at all obvious. Furthermore, as mentioned earlier, the distinction between effi-
cient (i.e., polynomial-time) algorithms and inefficient (i.e., super-polynomial-time)
algorithms is vague. It sometimes leads to a situation in which a theoretically effi-
cient algorithm is practically so inefficient that it is infeasible to execute it on any
reasonably sized input. To make things worse, complexity theory deals with worst-
case complexity. This concept is questionable in cryptography, where breaking a
system must be hard for almost all problem instances, not just some of them. There
are some results addressing the average-case complexity of problems (e.g., [13]).
Note, however, that in cryptography even average-case complexity results are not
good enough, because problems must be hard for almost all instances. Furthermore,
instead of proving the hardness of finding an exact solution for a computational
problem, one may want to reason that even approximating the exact solution is in-
tractable (again, complexity theory is inappropriate for this kind of reasoning). As
already mentioned at the beginning of Section 6.2, an inherent difficulty of complex-
ity theory is related to the fact that the state of the art in lower bound proofs for the
computational complexity of a problem is poor. From a cryptographic viewpoint, it
would be nice to have (and prove) some nontrivial lower bounds (be they polyno-
mial or super-polynomial) for the complexity of breaking a concrete cryptographic
system. Unfortunately, we are far away from that. Finally, we noted that all compu-
tational models in use today are equivalent from a complexity-theoretic viewpoint.
The discussion about the right model of computation, however, was reopened when
Shor showed that certain problems can be solved in polynomial time on a quantum
computer and Adleman showed that the same may be true for a DNA computer (see
Section 6.5). A lot of research is currently being done (and large amounts of money
are being spent) in quantum and DNA computing; hence, it will be interesting to see
how these topics advance in the future.

References

[1] Garey, M.R., and D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-
Completeness. W. H. Freeman & Co., New York, 1979.

[2] Papadimitriou, C.H., Computational Complexity. Addison-Wesley, Reading, MA, 1993.

[3] Hopcroft, J.E., R. Motwani, and J.D. Ullman, Introduction to Automata Theory, Languages, and
Computation, 2nd edition. Addison-Wesley, Reading, MA, 2001.

[4] Menezes, A., P. van Oorschot, and S. Vanstone, Handbook of Applied Cryptography. CRC Press,
Boca Raton, FL, 1996.

Complexity Theory 165

[5] Shor, P.W., “Algorithms for Quantum Computation: Discrete Logarithms and Factoring,” Pro-
ceedings of the IEEE 35th Annual Symposium on Foundations of Computer Science (FOCS),
Santa Fe, NM, November 1994, pp. 124–134.

[6] Shor, P.W., “Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a
Quantum Computer,” SIAM Journal of Computing, October 1997, pp. 1484–1509.

[7] Vandersypen, L.M.K., et al., “Experimental Realization of Shor’s Quantum Factoring Algorithm
Using Nuclear Magnetic Resonance,” Nature, Vol. 414, 2001, pp. 883–887.

[8] Nielsen, M., and I.L. Chuang, Quantum Computation and Quantum Information. Cambridge
University Press, Cambridge, UK, 2000.

[9] Adleman, L.M., “Molecular Computation of Solutions to Combinatorial Problems,” Science, Vol.
266, November 1994, pp. 1021–1024.

[10] Lipton, R.J., “DNA Solution of Hard Computational Problems,” Science, Vol. 268, April 1995,
pp. 542–545.

[11] Păun, G., G. Rozenberg, and A. Salomaa, DNA Computing: New Computing Paradigms. Springer-
Verlag, New York, 1998.

[12] Maurer, U.M., Cryptography 2000 ±10, Springer-Verlag, New York, LNCS 2000, 2000, pp. 63–
85.

[13] Ajtai, M., “Generating Hard Instances of Lattice Problems,” Proceedings of 28th ACM Sympo-
sium of the Theory of Computing (STOC), Philadelphia, PA, May 1996, pp. 99–108.

166 Contemporary Cryptography

Part II

UNKEYED
CRYPTOSYSTEMS

167

Chapter 7

One-Way Functions

As mentioned several times so far, one-way functions and trapdoor functions play
a fundamental role in modern cryptography. In this chapter, we elaborate on these
functions. More specifically, we introduce the topic in Section 7.1, overview and
discuss some candidate one-way functions in Section 7.2, elaborate on integer
factorization algorithms and algorithms to compute discrete logarithms in Sections
7.3 and 7.4, address hard-core predicates in Section 7.5, briefly introduce the notion
of elliptic curve cryptography in Section 7.6, and conclude with final remarks in
Section 7.7.

7.1 INTRODUCTION

In Section 2.1.1 and Definition 2.1, we introduced the notion of a one-way function.
More specifically, we said that a function f : X → Y is one way if f(x) can
be computed efficiently for all x ∈ X , but f−1(y) cannot be computed efficiently
for y ∈R Y (see Figure 2.1). We also noted that this definition is not precise in
a mathematically strong sense and that we must first introduce some complexity-
theoretic basics (mainly to define more precisely what we mean by saying that we
can or we cannot compute efficiently). Because we have done this in Chapter 6, we
are now ready to better understand and more precisely define the notion of a one-way
function. This is done in Definition 7.1.

Definition 7.1 (One-way function) A function f : X → Y is one way if the
following two conditions are fulfilled:

• The function f is easy to compute, meaning that f(x) can be computed
efficiently for all x ∈ X . Alternatively speaking, there is a probabilistic
polynomial-time (PPT) algorithmA that outputs A(x) = f(x) for all x ∈ X .

169

170 Contemporary Cryptography

• The function f is hard to invert, meaning that it is not known how to efficiently
compute f−1(f(x)) for all x ∈ X or f−1(y) for y ∈R Y . Alternatively
speaking, there is no known PPT algorithm A that outputs A(f(x)) =
f−1(f(x)) for all x ∈ X or A(y) = f−1(y) for y ∈R Y .

X and Y are often set to {0, 1}∗. In either case, A is not required to find the
correct x; it is only required to find some inverse of y (if the function f is injective,
then the only inverse of y is x).

Another way to express the second condition in Definition 7.1 is to say that
any PPT algorithm A attempting to invert the one-way function on an element in its
range will succeed with no more than a negligible probability (i.e., smaller than any
polynomial in the size of the input, where the probability is taken over the elements
in the domain of the function and the internal coin tosses of A). The statement is
probabilistic (i.e.,A is not unable to invert the function, but it has a very low success
probability). More formally,

Pr[A(f(x), 1n) ∈ f−1(f(x))] ≤ 1
p(n)

for every PPT algorithmA, all x ∈ X , every polynomial p, and all sufficiently large
n (with n representing the binary length of x). In this notation, the algorithm A is
given f(x) and the security parameter 1n (expressed in unary representation). The
only purpose of the second argument is to allow A to run in time polynomial in the
length of x, even if f(x) is much shorter than x. This rules out the possibility that a
function is considered one way only because the inverting algorithm does not have
enough time to print the output. Typically, f is a length-preserving function, and in
this case the auxiliary argument 1n is redundant.

Note that the notation given earlier is not standard, and that there are many
notations used in the literature to express the same idea. For example, the following
notion is also frequently used in the literature.

Pr[(f(z) = y : x u← {0, 1}n; y ← f(x); z ← A(y, 1n)] ≤ 1
p(n)

It basically says the same thing: if x is selected uniformly from {0, 1}n, y is
assigned f(x), and z is assigned A(y, 1n), then the probability that f(z) equals y is
negligible.

A few words concerning the notion of negligible probability are in place. We
consider the success probability of a PPT algorithm A to be negligible if it is bound
by a polynomial fraction. It follows that repeating A polynomially (in the input

One-Way Functions 171

length) many times yields a new algorithm that also has a success probability that is
negligible. Put in other words, events that occur with negligible probability remain
negligible even if the experiment is repeated polynomially many times. This property
is important for complexity-theoretic considerations.

In some literature, a distinction is made between strong one-way functions (as
discussed earlier) and weak one-way functions, and it is then shown that the former
can be constructed from the latter. The major difference is that whereas one only
requires some nonnegligible fractions of the inputs on which it is hard to invert a
weak one-way function, a strong one-way function must be hard to invert on all but
a negligible fraction of the inputs. For the purpose of this book, we don’t delve into
the details of this distinction, and hence we don’t distinguish between strong and
weak one-way functions accordingly.

If X and Y are the same, then a one-way function f : X → X represents a
one-way permutation. Hence, one-way permutations are just special cases of one-
way functions, namely ones in which the domain and the range are the same.

Having in mind the notion of a one-way function, the notion of a trapdoor
function (or trapdoor one-way function) is simple to explain and understand. Ac-
cording to Definition 2.2, a one-way function f : X → Y is a trapdoor function if
there exist some extra information—called the trapdoor—with which f can be in-
verted efficiently—that is, there is a (deterministic or probabilistic) polynomial-time
algorithm A that outputs A(f(x)) = f−1(f(x)) for all x ∈ X or A(y) = f−1(y)
for y ∈R Y . Consequently, the notion of a trapdoor function can be defined by
prepending the words “unless some extra information (i.e., the trapdoor) is known”
in the second condition of Definition 7.1. More formally, a trapdoor function can be
defined as suggested in Definition 7.2.

Definition 7.2 (Trapdoor function) A one-way function f : X → Y is a trapdoor
function if there is a trapdoor information t and a PPT algorithm I that can be used
to efficiently compute x′ = I(f(x), t) with f(x′) = f(x).

Many cryptographic functions required to be one way (or preimage resistant)
output bitstrings of fixed size. For example, cryptographic hash functions are re-
quired to be one way and output strings of 128, 160, or more bits (see Chapter 8).
Given such a function, one may be tempted to ask how expensive it is to invert it
(i.e., one may ask for the computational complexity of inverting the hash function).
Unfortunately, the (complexity-theoretic) answer to this question is not particularly
useful. If the cryptographic hash function outputs n-bit values, then 2n tries are
always sufficient to invert the function or to find a preimage for a given hash value
(2n−1 tries are sufficient on the average). Because 2n is constant for any fixed n ∈ N,
the computational complexity to invert the hash function is O(1), and hence one
cannot say that inverting it is intractable. If we want to use complexity-theoretic

172 Contemporary Cryptography

arguments, then we cannot live with a constant n. Instead, we must make n variable,
and it must be possible to let n grow arbitrarily large. Consquently, we must work
with potentially infinite families1 of one-way functions (i.e., at least one for each n).
The notion of a family of one-way functions is formally captured in Definition 7.3.

Definition 7.3 (Family of one-way function) A family of functions F = {fi :
Xi → Yi}i∈I is a family of one-way functions if the following three conditions
are fulfilled:

• I is an infinite index set;

• Every i ∈ I selects a function fi : Xi → Yi from the family;

• Every fi : Xi → Yi is a one-way function according to Definition 7.1.

A family of one-way functions {fi : Xi → Yi}i∈I is a family of one-way
permutations if every fi is a permutation over the domain Xi (i.e., Yi = Xi).
Furthermore, it is a family of trapdoor functions if every fi is a trapdoor function
with trapdoor information ti.

In this book, we often talk about one-way functions and trapdoor functions
when we should actually be talking about families of such functions. We make
this simplification because we think that it is more appropriate and simpler to
understand. In either case, we want to emphasize that there is no function—or
family of functions—known to be one way (in a mathematically strong sense)
and that the current state of knowledge in complexity theory does not allow us to
prove the existence of one-way functions, even using more traditional assumptions
as P �= NP . Hence, only a few functions are conjectured to be one way. These
candidate one-way functions are overviewed and discussed next.

7.2 CANDIDATE ONE-WAY FUNCTIONS

There are a couple of functions that are conjectured to be one way. For example,
a symmetric encryption system that encrypts a fixed plaintext message yields such
a function.2 For example, the use of DES in this construction can be shown to be
one way assuming that DES is a family of pseudorandom functions. Another simple
example is the integer multiplication function f : (x, y) �→ xy for x, y ∈ Z. As
discussed later in this chapter, no efficient algorithm is known to find the prime
factors of a large integer.

1 In some literature, the terms “classes,” “collections,” or “ensembles” are used instead of “families.”
2 For example, UNIX systems use such a function to store the user passwords in protected form.

One-Way Functions 173

The following three functions, which are conjectured to be one way, have
many applications in (public key) cryptography:

• Discrete exponentiation function;

• RSA function;

• Modular square function.

The fact that these functions are conjectured to be one way means that we
don’t know how to efficiently invert them. The best algorithms we have at hand are
super-polynomial—that is, they have an exponential or subexponential running time
behavior (some of the algorithms are briefly overviewed in Sections 7.3 and 7.4).
The three candidate one-way functions are addressed next.

7.2.1 Discrete Exponentiation Function

From the real numbers, we know that the exponentiation and logarithm functions
are inverse to each other and that they can both be computed efficiently. This makes
us believe that this must be the case in all algebraic structures. There are, however,
algebraic structures in which we can compute the exponentiation function efficiently,
but in which no known algorithm can be used to efficiently compute the logarithm
function. For example, let p be a prime number and g be a generator (or primitive
root) of Z

∗
p. The function

Expp,g : Zp−1 −→ Z
∗
p

x �−→ gx

is then called discrete exponentiation function to the base g. It defines an isomor-
phism from the additive group 〈Zp−1,+〉 to the multiplicative group 〈Z∗

p, ·〉—that
is, Expp,g(x + y) = Expp,g(x) · Expp,g(y). Because Expp,g is bijective, it has an
inverse function that is defined as follows:

Logp,g : Z
∗
p −→ Zp−1

x �−→ logg x

It is called the discrete logarithm function. For any x ∈ Z
∗
p, the discrete

logarithm function computes the discrete logarithm of x to the base g, denoted by

174 Contemporary Cryptography

logg x. This value refers to the element of Zp−1 to which g must be set to the power
of in order to get x.

Expp,g is efficiently computable, for example, by using the square-and-
multiply algorithm (i.e., Algorithm 3.3). Contrary to that (and contrary to the log-
arithm function in the real numbers), no efficient algorithm is known to exist for
computing discrete logarithms for sufficiently large prime numbers p. All known al-
gorithms have a super-polynomial running time, and it is widely believed that Logp,g

is not efficiently computable.
Earlier in this chapter we said that—in order to use complexity-theoretic

arguments—we must consider families of one-way functions. In the case of the
discrete exponentiation function, we may use p and g as indexes for an index set
I . In fact, I can be defined as follows:

I := {(p, g) | p ∈ P; g a generator of Z
∗
p}

Using this index set, we can formally define the Exp family (i.e., the family of
discrete exponentiation functions)

Exp := {Expp,g : Zp−1 −→ Z
∗
p, x �−→ gx}(p,g)∈I

and the Log family (i.e., the family of discrete logarithm functions)

Log := {Logp,g : Z
∗
p −→ Zp−1, x �−→ logg x}(p,g)∈I .

If we want to employ the Exp family as a family of one-way functions, then
we must make sure that it is hard to invert, meaning that it is not known how
to efficiently compute discrete logarithms. This is where the discrete logarithm
assumption (DLA) as formally expressed in Definition 7.4 comes into play.

Definition 7.4 (Discrete logarithm assumption) Let Ik := {(p, g) ∈ I | |p| = k}
for k ∈ N,3 p(k) be a positive polynomial, and A(p, g, y) be a PPT algorithm. Then
the DLA says that there exists a k0 ∈ N, such that

3 This means that the index set I consists of disjoint subsets Ik (i.e., I =
�

k∈N
Ik). Consequently,

k may be considered the security parameter of i = (p, g) ∈ Ik.

One-Way Functions 175

Pr[A(p, g, y) = Logp,g(y) : (p, g) u← Ik; y u← Z
∗
p] ≤

1
p(k)

for all k ≥ k0.

In this terminology, the PPT algorithm A models an adversary who tries to
compute the discrete logarithm of y to the base g, or, equivalently, to invert the
discrete exponentiation function Expp,g. Furthermore, the term

y
u← Z

∗
p

suggests that y is uniformly distributed, meaning that all y ∈ Z
∗
p occur with the same

probability (i.e., Pr[y] = 1/|Z∗
p| = 1/(p − 1)). This is just another way of saying

that y ∈R Z
∗
p. Similarly, the term

(p, g) u← Ik

suggests that the pair (p, g) is uniformly distributed, meaning that all (p, g) ∈
Ik occur with the same probability. Consequently, the probability statement of
Definition 7.4 can be read as follows: if we randomly select both the index i =
(p, g) ∈ Ik with security parameter k and y = gx, then the probability that the PPT
algorithmA successfully computes and outputs Logp,g(y) is negligible (i.e., smaller
than any polynomial bound). This means that Expp,g cannot be inverted byA for all
but a negligible fraction of input values.

Even if the security parameter k is very large, there may be pairs (p, g) such
that A can correctly compute Logp,g(y) with a probability that is nonnegligible. For
example, if p − 1 has only small prime factors, then there is an efficient algorithm
due to Steve Pohlig and Martin E. Hellman that can be used to compute the discrete
logarithm function [1]. In either case, the number of such special pairs (p, g) is
negligibly small as compared to all keys with security parameter k. If (p, g) is
randomly (and uniformly) chosen from Ik, then the probability of obtaining such
a pair (i.e., a pair for which A can compute discrete logarithms) is negligibly small.

Under the DLA, the Exp family represents a family of one-way functions.
It is used in many public key cryptosystems, including, for example, the ElGamal
public key cryptosystem (see Sections 14.2.3 and 15.2.2) and the Diffie-Hellman key
exchange protocol (see Section 16.3). Furthermore, several problems are centered
around the DLA and the conjectured one-way property of the discrete exponential

176 Contemporary Cryptography

function. The most important problems are the discrete logarithm problem (DLP)
captured in Definition 7.5, the (computational) Diffie-Hellman problem (DHP) cap-
tured in Definition 7.6, and the Diffie-Hellman decision problem (DHDP) captured
in Definition 7.7. The problems can be specified in arbitrary cyclic groups.

Definition 7.5 (Discrete logarithm problem) Let G be a cyclic group, g be a gen-
erator of G, and h be an arbitrary element in G. The DLP is to determine an integer
x such that gx = h.

Definition 7.6 (Diffie-Hellman problem) LetG be a cyclic group, g be a generator
in G, and x and y be two integers smaller than the order of G (i.e., x, y < |G|). The
terms gx and gy then represent two elements in G. The DHP is to determine gxy

from gx and gy.

Definition 7.7 (Diffie-Hellman decision problem) Let G be a cyclic group, g be a
generator of G, and r, s, and t be three positive integers smaller than the order of G
(i.e., r, s, t < |G|). The terms gr, gs, gt, and grs then represent elements in G. The
DHP is to determine whether grs or gt solves the DHP for gr and gs. Alternatively
speaking, the DHDP is to distinguish the triples 〈gr, gs, grs〉 and 〈gr, gs, gt〉 when
they are given in random order.

When giving all of these problems, it may be interesting to know how they are
related. This is done by giving complexity-theoretic reductions from one problem to
another (see Definition 6.10 for the notion of a polynomial-time reduction). In fact,
in can be shown that DHP ≤P DLP (i.e., the DHP polytime reduces to the DLP) and
that DDHP ≤P DHP (i.e., the DDHP polytime reduces to the DHP) in an arbitrary
finite Abelian group. So the DLP is the hardest among the problems (i.e., if one is
able to solve the DLP, then one is trivially able to solve the DHP and the DDHP).
The exact relationship and the complexity of the corresponding proof (if it is known
in the first place) depend on the actual group in use. In many cyclic groups, the
DLP and the DHP have been shown to be computationally equivalent [2, 3]. There
are, however, groups in which one can solve the DDHP in polynomial time, but the
fastest known algorithm to solve the DHP requires subexponential time. In order to
better understand the DLP and the underlying DLA, it is worthwhile to have a look
at the currently available algorithms to compute discrete logarithms. This is done in
Section 7.4.

7.2.2 RSA Function

Let n be the product of two distinct primes p and q (i.e., n = pq), and e be relatively
prime to φ(n). Then the function

One-Way Functions 177

RSAn,e : Z
∗
n −→ Z

∗
n

x �−→ xe

is called the RSA function. It computes the eth power for x ∈ Z
∗
n. To compute the

inverse function, it is required to compute eth roots. If the inverse d of e modulo
φ(n) is known, then the following RSA function can be used to compute the inverse
of RSAn,e:

RSAn,d : Z
∗
n −→ Z

∗
n

x �−→ xd

RSAn,e can be efficiently computed by modular exponentiation. In order to
compute RSAn,d, however, one must know either d or the prime factors of n (i.e.,
p and q). As of this writing, no polynomial-time algorithm to compute RSAn,d is
known if p, q, or d are not known. Hence, RSAn,d can only be computed if any of
these values is known, and hence these values represent trapdoors for RSAn,e.

If we want to turn the RSA function into a family of one-way functions, then
we must define an index set I . This can be done as follows:

I := {(n, e) | n = pq; p, q ∈ P; p �= q; 0 < e < φ(n); (e, φ(n)) = 1}

Using this index set, the family of RSA functions can be defined as follows:

RSA := {RSAn,e : Z
∗
n −→ Z

∗
n, x �−→ xe}(n,e)∈I

This family of RSA functions is called the RSA family. Because each RSA
function RSAn,e represents a permutation over Z

∗
n, the RSA family represents a

family of one-way (or trapdoor) permutations.
It is assumed and widely believed that the RSA family is a family of trapdoor

permutations, meaning that RSAn,e is hard to invert (for sufficiently large and
properly chosen n). The RSA assumption formally expressed in Definition 7.8 makes
the one-way property of the RSA family explicit.

178 Contemporary Cryptography

Definition 7.8 (RSA assumption) Let Ik := {(n, e) ∈ I | n = pq; |p| = |q| = k}
for k ∈ N, p(k) ∈ Z[N] be a positive polynomial, andA(p, g, y) be a PPT algorithm.
Then the RSA assumption says that there exists a k0 ∈ N, such that

Pr[A(n, e, y) = RSAn,d(y) : (n, e) u← Ik; y u← Z
∗
n] ≤ 1

p(k)

for all k ≥ k0.

Again, the PPT algorithm A models the adversary who tries to compute
RSAn,d(y) without knowing the trapdoor information. The RSA assumption may
be interpreted in an analogous way to the DLA. The fraction of keys (n, e) in Ik , for
whichA has a significant chance to succeed, must be negligibly small if the security
parameter k is sufficiently large.

There is also a stronger version of the RSA assumption known as the strong
RSA assumption. The strong RSA assumption differs from the RSA assumption
in that the adversary can select the public exponent e: given a modulus n and a
ciphertext c, the adversary must compute any plaintext m and public exponent e
such that c = me (mod n). For the purpose of this book, we don’t use the strong
RSA assumption anymore.

If we accept the RSA assumption, then the RSA problem (RSAP) captured in
Definition 7.9 is intractable.

Definition 7.9 (RSA problem) Let (n, e) be a public key and c = me (mod n).
The RSAP is to determinem (i.e., the eth root of c modulo n) if the private key (n, d)
and the factorization of n (i.e., p and q) are not known.

The RSA assumption and the RSAP are at the core of many public key cryp-
tosystems, including, for example, the RSA public key cryptosystem (see Sections
14.2.1 and 15.2.1). Because the prime factors of n (i.e., p and q) represent a(nother)
trapdoor for RSAn,d (in addition to d), somebody who is able to factor n is also able
to compute RSAn,d and to invert RSAn,e accordingly. Consequently, one must make
the additional assumption that it is computationally infeasible (for the adversary one
has in mind) to factor n. This is where the integer factoring assumption (IFA) as
formally expressed in Definition 7.10 comes into play.

Definition 7.10 (Integer factoring assumption) Let Ik := {n ∈ I | n = pq; |p| =
|q| = k} for k ∈ N, p(k) be a positive polynomial, and A(n) be a PPT algorithm.
Then the IFA says that there exists a k0 ∈ N, such that

Pr[A(n) = p : n u← Ik] ≤ 1
p(k)

One-Way Functions 179

for all k ≥ k0.

If we accept the IFA, then the integer factoring problem (IFP) captured in
Definition 7.11 is intractable.

Definition 7.11 (Integer factoring problem) Let n be a positive integer (i.e., n ∈
N). The IFP is to determine the prime factors of n (i.e., to determine p1, . . . , pk ∈ P
and e1, . . . , ek ∈ N) such that

n = pe1
1 · · · pek

k .

The IFP is well defined, because every positive integer can be factored
uniquely up to a permutation of its prime factors (see Theorem 3.5). Note that the
IFP must not always be intractable, but that it must be possible to easily find an
instance of the IFP that is intractable.

Again using complexity-theoretic arguments, one can show that RSAP ≤P

IFP (i.e., the RSAP polytime reduces to the IFP). This means that one can invert
the RSA function if one can solve the IFP. The converse, however, is not known
to be true (i.e., it is not known whether there exists a simpler way to invert the
RSA function than to solve the IFP). In order to better understand the RSAP and the
underlying RSA assumption, it is worthwhile to have a look at the currently available
integer factorization algorithms. This is done in Section 7.3.

7.2.3 Modular Square Function

Similar to the exponentiation function, the square function can be computed and
inverted efficiently in the real numbers, but it is not known how to invert it efficiently
in a cyclic group. If, for example, we consider Z

∗
n, then modular squares can be

computed efficiently, but modular square roots can only be computed efficiently
if the prime factorization of n is known. In fact, it can be shown that computing
square roots in Z

∗
n and factoring n are computationally equivalent. Consequently,

the modular square function looks like a candidate one-way function. Unfortunately,
the modular square function (in its general form) is neither injective nor surjective.
It can, however, be made injective and surjective (and hence bijective) if the domain
and range are both restricted to QRn (i.e., the set of quadratic residues or squares
modulo n), with n being a Blum integer (see Definition 3.33). The function

Squaren : QRn −→ QRn

x �−→ x2

180 Contemporary Cryptography

is then called square function. It is bijective, and hence the inverse function

Sqrtn : QRn −→ QRn

x �−→ x1/2

exists and is called the square root function. Either function maps an element of
QRn to another element of QRn. The function represents a permutation.

To turn the square function into a one-way function (or one-way permutation,
respectively), we must have an index set I . Taking into account that n must be a
Blum integer, the index set can be defined as follows:

I := {n | n = pq; p, q ∈ P; p �= q; |p| = |q|; p, q ≡ 3 (mod4)}

Using this index set, we can define the following family of square functions:

Square := {Squaren : QRn −→ QRn, x �−→ x2}n∈I

This family is called the Square family, and the family of inverse functions can
be defined as follows:

Sqrt := {Sqrtn : QRn −→ QRn, x �−→ x1/2}n∈I

It is called the Sqrt family. The Square family of trapdoor permutations is
used by several public key cryptosystems, including, for example, the Rabin public
key cryptosystem (see Section 14.2.2). For every n ∈ I , the prime factors p and q
represent a trapdoor. Hence, if we can solve the IFP, then we can trivially invert the
Square family. We look at algorithms to solve the IFP next.

7.3 INTEGER FACTORIZATION ALGORITHMS

Many algorithms can be used to solve the IFP.4 They can be divided into two broad
categories:

4 http://mathworld.wolfram.com/PrimeFactorizationAlgorithms.html

One-Way Functions 181

• Special-purpose algorithms depend on and take advantage of special proper-
ties of the integer n to be factored, such as its size, the size of its smallest
prime factor p, or the prime factorization of p− 1.

• Contrary to that, general-purpose algorithms depend on nothing (i.e., they
work for all values of n).

In practice, algorithms of both categories are combined and used one after
another. If one is given a large integer n with no clue about the size of its prime
factors, then one usually employs special-purpose algorithms that are optimized
to find small prime factors before one turns to the less efficient general-purpose
algorithms.

7.3.1 Special-Purpose Algorithms

Examples of special-purpose algorithms include trial division, P±1, Pollard Rho,
and the elliptic curve method (ECM).

7.3.1.1 Trial Division

If n is composite, then at least one prime factor is at most
√
n. Consequently, one

can always factorize n by trying to divide it by all primes up to �
√
n�. This simple

algorithm is called trial division. Its running time is O(p), where p is the smallest
prime factor of n (i.e., the one that is found first). In the worst case, this equals to

O(
√
n) = O(eln

√
n) = O(eln(n1/2))

if the smallest prime factor of n is about
√
n (this occurs if n has two prime factors

of about the same size). Consequently, the worst-case running time function of the
trial division integer factorization algorithm is exponential in lnn. If, for example,
n is 1,024 bits long, then the algorithm requires

√
21024 = (21024)1/2 = 21024/2 = 2512

trial divisions in the worst case. This is certainly beyond what is feasible today, and
hence the trial division algorithm can only be used to factorize n if n is sufficiently
small (e.g., smaller than 1012) or smooth (i.e., it has only small prime factors). In
either case, the space requirements of the trial division algorithm are negligible.

182 Contemporary Cryptography

7.3.1.2 P±1

In the 1970s, John M. Pollard developed and proposed two special-purpose integer
factorization algorithms that are optimized to find small prime factors. The first
algorithm is known as P−1.

Let n be the integer to be factorized and p be some (yet unknown) prime factor
of n, for which p − 1 is B-smooth—that is, p − 1 is the product of possibly many
prime numbers that are smaller than or equal to B (see Definition 3.28). If k is the
product of all prime numbers that are smaller than or equal toB, then k is a multiple
of p− 1. Now consider what happens if we take a small integer (e.g. a = 2) and set
it to the power of k. Fermat’s Little Theorem (i.e., Theorem 3.7) tells us that

ak ≡ 1 (mod p),

and hence p divides ak − 1. On the other hand, p must also divide n (remember that
p is supposed to be a prime factor of n), and hence p divides the greatest common
divisor of ak − 1 and n (i.e., p | gcd(ak − 1, n)). Note that k might be very large,
but ak − 1 can always be reduced modulo n.

Note that one knows neither the prime factorization of p − 1 nor the bound
before one starts the algorithm. So one has to begin with an initially chosen bound
B and perhaps increase it during the execution of the algorithm. Consequently, the
algorithm is practical only ifB is not too large. For the typical size of prime numbers
in use today (e.g., for the RSA public key cryptosystem), the probability that one can
factorize n using Pollard’s P−1 algorithm is pretty small. Nevertheless, the mere
existence of the algorithm is a reason that some cryptographic standards require
RSA moduli to have prime factors p for which p − 1 has at least one large prime
factor. In the literature, such primes are frequently called strong.

In either case, the running time of Pollard’s P−1 algorithm is O(|t|), where t
is the largest prime power dividing p−1. Pollard’s P−1 algorithm was later modified
and a corresponding P+1 algorithm was proposed.

7.3.1.3 Pollard Rho

The second algorithm developed and proposed by Pollard in the 1970s is known
as Pollard Rho. The basic idea is to have the algorithm successively draw random
numbers less than n. If p is a (yet unknown) prime factor of n, then it follows from
the birthday paradox (see Section 8.1) that after about p1/2 =

√
p rounds one has

drawn xi and xj with xi �= xj and xi ≡ xj (mod p). If this occurs, one knows that
p divides the greatest common divisor of xi − xj and n (i.e., p | gcd(xi − xj , n)).

One-Way Functions 183

The Pollard Rho algorithm has a running time of

O(
√
p)

where p is the smallest prime factor of n, or

O(4
√
n) = O(n1/4) = O(eln(n1/4))

in the worst case. Consequently, the Pollard Rho algorithm is an algorithm that is
exponential in lnn, and as such it can only be used if p is small compared to n. For
the size of the integers that are used today, the algorithm is still impractical. It was,
however, used on the factorization of the eighth Fermat number

F8 = 228
+ 1 = 2256 + 1,

which unexpectedly turned out to have a small prime factor. In either case, the space
requirements of the Pollard Rho algorithm are small.

7.3.1.4 ECM

In the 1980s, Hendrik W. Lenstra developed and proposed the ECM [4]. It can
be best thought of as a generalization or randomized version of Pollard’s P−1
algorithm. The success of Pollard’s P−1 algorithm depends on n having a divisor
p such that p − 1 is smooth. If no such p exists, then the algorithm fails. The ECM
randomizes the choice, replacing the group Zp used in Pollard’s P−1 algorithm by
a random (or pseudorandom) elliptic curve over GF (p).

The ECM has a subexponential running time. Its average-case (worst-case)
running time is Lp[12 ,

√
2] (Ln[12 , 1]). The worst case occurs when p is roughly

√
n,

which is often the case when one uses RSA or some other public key cryptosystem.
So, although the ECM cannot be considered a threat against the standard RSA public
key cryptosystem that uses two primes, it must nevertheless be taken into account
when one implements the so-called multiprime RSA system, where the modulus
may have more than two prime factors.

7.3.2 General-Purpose Algorithms

Examples of general-purpose integer factorization include continued fraction, the
quadratic sieve (QS), and the number field sieve (NFS).

184 Contemporary Cryptography

7.3.2.1 Continued Fraction

The continued fraction algorithm was developed and proposed in the 1970s [5]. It
has a subexponential running time and was the the fastest integer factoring algorithm
in use for quite a long time (i.e., until the QS was developed).

7.3.2.2 QS

In the 1980s, Carl Pomerance developed and proposed the QS [6]. Like many other
general-purpose integer factorization algorithms, the QS is based on an idea that is
due to Fermat. If we have two integers x and y with

x �= ±y (mod n)

and

x2 ≡ y2 (mod n), (7.1)

then we can factorize n with a success probability of 1/2. Let n = pq, and we want
to use x and y to find p or q. First, we note that x2 ≡ y2 (mod n) means that

x2 − y2 = (x − y)(x+ y) = 0 (mod n).

Because n = pq, the four following cases are possible:

1. p|x− y and q|x+ y;

2. p|x+ y and q|x− y;

3. p|x− y and q|x− y (but neither p nor q divides x+ y);

4. p|x+ y and q|x+ y (but neither p nor q divides x− y).

All of these cases are equally probable and occur with a probability of 1/4. If
we then compute

d = gcd(x− y, n),

then d refers to p in case 1, q in case 2, n in case 3, and 1 in case 4. Hence, in cases
1 and 2 we have indeed found a prime factor of n. So the success probability is in
fact 1/2 (as mentioned earlier).

One-Way Functions 185

So the question (most general-purpose integer factorization algorithms try to
answer) is how to find two integers x and y that satisfy equivalence (7.1).

The general approach is to choose a set of t relatively small primes S =
{p1, p2, . . . , pt} (the so-called factor base) and to proceed with the following two
steps:

• First, one computes bi ≡ a2
i (mod n) for arbitrary ai, and this value is

expressed as the product of powers of the primes in S. In this case, bi can
be represented as a vector in a t-dimensional vector space. This step is called
the relation collection stage, and it is highly parallelizable.

• Second, if we have collected enough (e.g., t+ 1) values for bi, then a solution
of equivalence (7.1) can be found by performing the Gaussian elimination
on the matrix B = [bi]. This step is called the matrix step and cannot be
parallelized. It works on a huge (sparse) matrix and eventually comes up with
a nontrivial factor of n.

Obviously, the choice of the number of primes of S is very important for the
performance of the QS. If it is too small, then the relation collection stage may take
very long (because a very small proportion of numbers factor over a small set of
primes). If, however, it is too large (and too many primes are put into S), then the
matrix may become too large to be reduced efficiently.

In either case, the QS has a subexponential running time of Ln[12 , c] for some
constant c. As mentioned later, a variation of the QS was used in 1994 when RSA-
129 was successfully factorized.

7.3.2.3 NFS

The NFS was developed and proposed in the 1990s (e.g., [7]). It is conceptually
similar to the QS and is currently the fastest general-purpose integer factorization
algorithm. It has a running time of Ln[13 , c] for c = 1.923 and was used in 1999
to factorize RSA-155 (see the following section). Furthermore, there are several
variations of it, including, for example, the special number field sieve (SNFS) and
the general number field sieve (GNFS).

7.3.3 State of the Art

When the RSA public key cryptosystem was published, a famous challenge was
posted in the August 1977 issue of Scientific American [8]. In fact, US$100 were
offered to anyone who could decrypt a message that was encrypted using a 129-
digit integer acting as modulus. The number became known as RSA-129, and it was

186 Contemporary Cryptography

not factored until 1994 (with a distributed implementation of a variation of the QS
algorithm [9]). Just to give an impression of the size of such an integer, RSA-129
and its prime factors are reprinted here:

RSA− 129 = 1143816257578888676692357799761466120102182967212
4236256256184293570693524573389783059712356395870
5058989075147599290026879543541

= 3490529510847650949147849619903898133417764638493
387843990820577
∗
3276913299326670954996198819083446141317764296799
2942539798288533

Today, the RSA Factoring Challenge is sponsored by RSA Laboratories to
learn more about the actual difficulty of factoring large integers of the type used in
the RSA public key cryptosystem.5 In 1999, a group of researchers completed the
factorization of the 155-digit (512-bit) RSA Challenge Number, and in December
2003, researchers at the University of Bonn (Germany) completed the factorization
of the 174-digit (576-bit) RSA Challenge Number. The next numbers to factor (in
the RSA Factoring Challenge) are 640, 704, 768, 896, 1,024, 1,536, and 2,048 bits
long.

In the past, a couple of proposals have been made to use specific hardware
devices to speed up integer factoring algorithms. For example, TWINKLE is a
device that can be used to speed up the first step in the QS algorithm—that is, find
pairs (x, y) of distinct integers that satisfy equivalence (7.1) [10]. TWIRL is a more
recent proposal [11].

7.4 ALGORITHMS FOR COMPUTING DISCRETE LOGARITHMS

There are basically two categories of algorithms to solve the DLP (and to compute
discrete logarithms accordingly):

• Algorithms that attempt to exploit special characteristics of the group in which
the DLP must be solved;

5 http://www.rsasecurity.com/rsalabs/challenges/factoring/

One-Way Functions 187

• Algorithms that do not attempt to exploit special characteristics of the group
in which the DLP must be solved.

Algorithms of the first category are often called special-purpose algorithms,
whereas algorithms of the second category are called generic algorithms. Let’s start
with the second category of algorithms.

7.4.1 Generic Algorithms

Let G be a cyclic group and g be a generator in this group. The difficulty of
computing discrete logarithms to the base g in G then depends on whether we know
the order of the group (i.e., |G|). If we don’t know |G|, then the Baby-step giant-
step algorithm is the best we can do. It has a running time of O(

√
|G| log |G|) and

memory requirements ofO(
√
|G|). If, however, we know |G|, then we can do better.

In this case, we can use Pollard’s ρ-algorithm, which is slightly more efficient than
the Baby-step giant-step algorithm. In fact, Pollard’s ρ-algorithm has a running-time
complexity ofO(

√
|G|) and requires almost no memory. It has been shown that this

running time is a lower bound for any general-purpose algorithm to compute discrete
logarithms in a cyclic group (if the factorization of the group order is not known)
[12].

If, in addition to |G|, we also know the factorization of |G|, then we can use
the Pohlig-Hellman algorithm, which has a running time ofO(

√
q log q) (where q is

the largest prime factor of |G|). This result implies, for example, that in DLP-based
cryptosystems for Z

∗
p, p − 1 must have at least one large prime factor (as already

mentioned in Section 7.2.1).

7.4.2 Special-Purpose Algorithms

If we are talking about special-purpose algorithms, then we are talking about specific
groups. If, for example, we are talking about Z

∗
p, then there are basically two

algorithms to solve the DLP in a subexponential running time.

• The index calculus algorithm has a running time of Lp[12 , c] for some small
constant c;

• The NFS algorithm can also be used to compute discrete logarithms. Remem-
ber that it has a running time of Lp[13 , 1.923].

Consequently, the NFS algorithm is the algorithm of choice to solve the DLP
in Z

∗
p.

188 Contemporary Cryptography

7.4.3 State of the Art

Given that the NFS algorithm can be used to factor integers and compute discrete
logarithms in Z

∗
p, we note that the state of the art in computing discrete logarithms

in Z
∗
p is comparable to the state of the art in factoring integers. This suggests that we

must also work with 1,024-bit prime numbers p. Special care must be taken that p−1
does not have only small prime factors. Otherwise, the Pohlig-Hellman algorithm [1]
can be used to efficiently compute discrete logarithms.

If we are not working in Z
∗
p, then the special-purpose algorithms mentioned

earlier do not work, and the state of the art in computing discrete logarithms is worse
than the state of the art in factoring integers. In this case, we have to use general-
purpose algorithms (that do not have subexponential running times). This fact is, for
example, exploited by elliptic curve cryptography.

7.5 HARD-CORE PREDICATES

The fact that f is a one-way function does not mean that f(x) necessarily hides
all information about x. Nevertheless, it seems likely that there is at least some
information (e.g., one bit) about x that is hard to guess from f(x), given that x in its
entirety is hard to compute. One may ask if it is possible to point to specific bits of
x that are hard to compute and how hard to compute they are. These questions can
be answered in the affirmative. A number of results are known that give a particular
bit of x, which is hard to guess given f(x) for some particular one-way functions.

A hard-core predicate for f is a predicate about x that cannot be computed
from f(x). More formally, a hard-core predicate B can be defined as suggested in
Definition 7.12 and illustrated in Figure 7.1.

Definition 7.12 (Hard-core predicate) Let f : X → Y be a one-way function. A
hard-core predicate of f is a Boolean predicate B : X → {0, 1}, such that the
following two conditions hold:

• B(x) can be computed efficiently for all x ∈ X . Alternatively speaking, there
is a PPT algorithm A that on input x outputs B(x) for all x ∈ X .

• It is not known how to efficiently compute B(x) for all y = f(x) ∈ Y .
Alternatively speaking, there is no known PPT algorithmA that on input f(x)
outputs B(x) for all x ∈ X .

Again, there are many possibilities to express the same properties. For exam-
ple, the second condition can also be expressed as follows: for every PPT A and for
all constants c, there exists a k0 such that

One-Way Functions 189

�

�

�

��0��.�/

C�+�D%.�/
���
�
������������	���

���
�
������������	���

�

�

Figure 7.1 A hard-core predicate of a one-way function.

Pr[A(f(x)) = B(x)] <
1
2

+
1
kc

for all k > k0, where the probability is taken over over the random coin tosses of
A and random choices of x of length k (i.e., the success probability of A is only
negligibly smaller than 1/2). It is simple and straightforward to extend the notion of
a hard-core predicate for a family of one-way functions.

Historically, the notion of a hard-core predicate was first captured by Manuel
Blum and Silvio Micali in a paper on pseudorandom number generation [13]. In fact,
they showed that the most significant bit (MSB) is a hard-core predicate for the Exp
family. This is in contrast to the RSA family, for which the least significant bit (LSB)
represents a hard-core predicate [14]. In the context of probabilistic encryption,
Oded Goldwasser and Micali showed that Square has a hard-core predicate, as well
[15]. Andrew C. Yao6 generalized the notion of a hard-core predicate and showed
that given any one-way function f , there is a predicate B(x) that is as hard to guess
from f(x) as to invert f [16].

6 In 2000, Andrew Chi-Chih Yao won the Turing Award for his seminal work on the theory of
computation in general, and pseudorandom number generation, cryptography, and communication
complexity in particular.

190 Contemporary Cryptography

7.6 ELLIPTIC CURVE CRYPTOGRAPHY

Most public key cryptosystems get their security from the assumed intractability
of inverting a one-way function (as discussed earlier). Against this background, it
is important to note that inverting a one-way function is not necessarily equally
difficult in all algebraic structures one may think of. If we look at inverting the
discrete exponentiation function in Z

∗
p, then there are known algorithms that are sub-

exponential. This need not be the case in all possible groups (in which the function
is assumed to be one way). In fact, ECC has become popular (and important)
mainly because groups have been found in which subexponential algorithms to
invert the discrete exponentiation function (i.e., compute discrete logarithms) are
not known to exist.7 This basically means that one has to use a general-purpose (and
exponential-time) algorithm to compute discrete logarithms and break the security
of the corresponding public key cryptosystem accordingly. Note, however, that it is
not known whether subexponential algorithms in these groups exist; we simply don’t
know them.

The fact that subexponential algorithms are not known to exist has the positive
side effect (from the cryptographer’s viewpoint) that the resulting elliptic curve cryp-
tosystems are equally secure with smaller key sizes than their conventional counter-
parts. This is important for implementations in which key sizes and performance are
important issues (e.g., smartcards). For example, to reach the security level of 1,024
(2,048) bits in a conventional public key cryptosystem (e.g., RSA), it is estimated
that 163 (224) bits are sufficient for an elliptic curve cryptosystem (e.g., [17]). This
is a nonnegligible factor that can speed up implementations considerably.

Most elliptic curve cryptosystems are based on the elliptic curve discrete
logarithm problem (ECDLP) in such a group. Similar to the DLP, the ECDLP can
be defined as suggested in Definition 7.13. Again, the ECDLP is assumed to be
computationally intractable.

Definition 7.13 (Elliptic Curve Discrete Logarithm Problem) Let E(Fq) be an
elliptic curve over Fq , P be a point on E(Fq) of order n, and Q be another point
on E(Fq). The ECDLP is to determine an integer x (with 0 ≤ x < n), such that
Q = xP .

Based on the intractability assumption of the ECDLP, Neal Koblitz [18] and
Victor Miller [19] independently proposed using elliptic curves to implement public
key cryptosystems based on the DLP. This proposal dates back to the mid 1980s,
and since then many public key cryptosystems have been reformulated in an elliptic

7 An interesting online tutorial about elliptic curves in general, and ECC in particular, is available at
http://www.certicom.com/resources/ecc tutorial/ecc tutorial.html.

One-Way Functions 191

curve setting. Examples include Diffie-Hellman, ElGamal, and DSA. Today, many
books address ECC and elliptic curve cryptosystems in detail (e.g., [20–23]). You
may refer to any of these books if you want to get more involved in elliptic curves
and ECC.

Since 1985, the ECDLP has received considerable attention from leading
mathematicians around the world. It is currently believed that the ECDLP is much
harder than integer factorization or DLP. More specifically, there is no algorithm
known that has a subexponential running time in the worst case. A few vulnera-
bilities and potential attacks should be considered with care and kept in mind when
elliptic curves are used. For example, it was shown that the ECDLP can be reduced to
the DLP in extension fields of Fq , where the index-calculus methods can be applied
[24]. However, this reduction algorithm is only efficient for a special class of elliptic
curves known as supersingular curves. Moreover, there is a simple test to ensure that
an elliptic curve is not supersingular and hence not vulnerable to this attack. Conse-
quently, it is possible to avoid them in the first place. Some other vulnerabilities and
potential attacks can be found in the literature.

A distinguishing feature of ECC is that each user may select a different elliptic
curve E(Fq)—even if all users use the same underlying finite field Fq . From a
security viewpoint, this flexibility is advantageous (because the elliptic curve can be
changed periodically). From a practical viewpoint, however, this flexibility is also
disadvantageous (because it makes interoperability much more difficult and because
it has led to a situation in which the field of ECC is tied up in patents). Note that there
is (more or less) only one way to implement a conventional public key cryptosystem,
such as RSA, but usually many ways to implement an elliptic curve cryptosystem.
In fact, one can work with different finite fields, different elliptic curves over
these fields, and a wide variety of representations of the elements on these curves.
Each choice has advantages and disadvantages, and one can construct an efficient
curve for each application. Consequently, the relevant standardization bodies, such
as the Institute of Electrical and Electronics Engineers (IEEE),8 ISO/IEC JTC1,
the American National Standards Institute (ANSI), and the National Institute of
Standards and Technology (NIST), are working hard to come up with ECC standards
and recommendations that are commonly accepted and widely deployed.9

7.7 FINAL REMARKS

In this chapter, we elaborated on one-way functions and trapdoor functions. More
specifically, we defined the notion of a family of one-way functions or trapdoor

8 http://grouper.ieee.org/groups/1363
9 http://www.certicom.com/resources/standards/eccstandards.html

192 Contemporary Cryptography

functions, and we overviewed and discussed some functions that are conjectured to
be one way or trapdoor. More specifically, we looked at the discrete exponentiation
function, the RSA function, and the modular square function. We further looked
at hard-core predicates and algorithms for factoring integers or computing discrete
logarithms. Curiously, factoring integers and computing discrete logarithms seem
to have essentially the same difficulty (and computational complexity), at least as
indicated by the current state-of-the-art algorithms.

Most public key cryptosystems in use today are based on one (or several) of the
conjectured one-way functions mentioned earlier. This is also true for ECC, which
works in cyclic groups in which known special-purpose algorithms to compute dis-
crete logarithms do not work. From a practical viewpoint, ECC is interesting because
it allows us to use smaller keys (compared to other public key cryptosystems). This is
advantageous especially when it comes to implementing cryptographic systems and
applications in environments that are restricted in terms of computational resources
(e.g., smartcards). For the purpose of this book, however, we don’t make a major
distinction between public key cryptosystems that are based on the DLP and public
key cryptosystems that are based on the ECDLP.

In either case, it is sometimes recommended to use cryptosystems that com-
bine different candidate one-way functions in one way or another. If one of these
functions then turns out not to be one way, then the other functions still remain and
keep on securing the cryptosystem. Obviously, this strategy becomes useless if all
functions turn out not to be one way.

References

[1] Pohlig, S., and M.E. Hellman, “An Improved Algorithm for Computing Logarithms over GF(p),”
IEEE Transactions on Information Theory, Vol. 24, January 1978, pp. 106–110.

[2] Maurer, U.M., “Towards the Equivalence of Breaking the Diffie-Hellman Protocol and Com-
puting Discrete Logarithms,” Proceedings of CRYPTO ’94, Springer-Verlag, LNCS 839, 1994,
271–281.

[3] Maurer, U.M., and S. Wolf, “The Diffie-Hellman Protocol,” Designs, Codes, and Cryptography,
Special Issue on Public Key Cryptography, Vol. 19, No. 2-3, 2000, pp. 147–171.

[4] Lenstra, H.W., “Factoring Integers with Elliptic Curves,” Annals of Mathematics, Vol. 126, 1987,
pp. 649–673.

[5] Morrison, M.A., and J. Brillhart, “Method of Factoring and the Factorization of F7,” Mathematics
of Computation, Vol. 29, 1975, pp. 183–205.

[6] Pomerance, C., “The Quadratic Sieve Factoring Algorithm,” Proceedings of EUROCRYPT ’84,
Springer-Verlag, 1984, pp. 169–182.

[7] Lenstra, A.K., and H.W. Lenstra, The Development of the Number Field Sieve. Springer-Verlag,
LNCS 1554, New York, 1993.

One-Way Functions 193

[8] Gardner, M., “A New Kind of Cipher That Would Take Millions of Years to Break,” Scientific
American, Vol. 237, pp. 120–124.

[9] Atkins, D., “The Magic Words Are Squeamish Ossifrage,” Proceedings of ASIACRYPT ’94,
Springer-Verlag, LNCS 917, 1995, pp. 263–277.

[10] Shamir, A., “Factoring Large Numbers with the TWINKLE Device,” Proceedings of CHES ’99,
Springer-Verlag, LNCS 1717, 1999, pp. 2–12.

[11] Shamir, A., and E. Tromer, “Factoring Large Numbers with the TWIRL Device,” Proceedings of
CRYPTO 2003, Springer-Verlag, LNCS 2729, 2003, pp. 1–26.

[12] Shoup, V., “Lower Bounds for Discrete Logarithms and Related Problems,” Proceedings of
EUROCRYPT ’97, Springer-Verlag, LNCS 1233, 1997, pp. 256–266.

[13] Blum, M., and S. Micali, “How to Generate Cryptographically Strong Sequences of Pseudo-
Random Bits,” SIAM Journal of Computing, Vol. 13, No. 4, November 1984, pp. 850–863.

[14] Alexi, W.B., et al., “RSA/Rabin Functions: Certain Parts Are as Hard as the Whole,” SIAM
Journal of Computing, Vol. 17, No. 2, April 1988, pp. 194–209.

[15] Goldwasser, S., and S. Micali, “Probabilistic Encryption,” Journal of Computer and System
Sciences, Vol. 28, No. 2, April 1984, pp. 270–299.

[16] Yao, A.C., “Theory and Application of Trapdoor Functions,” Proceedings of 23rd IEEE Sympo-
sium on Foundations of Computer Science, IEEE Press, Chicago, 1982, pp. 80–91.

[17] Lenstra, A.K., and E.R. Verheul, “Selecting Cryptographic Key Sizes,” Journal of Cryptology,
Vol. 14, No. 4, 2001, pp. 255–293.

[18] Koblitz, N., “Elliptic Curve Cryptosystems,” Mathematics of Computation, Vol. 48, No. 177,
1987, pp. 203–209.

[19] Miller, V., “Use of Elliptic Curves in Cryptography,” Proceedings of CRYPTO ’85, LNCS 218,
Springer-Verlag, 1986, pp. 417–426.

[20] Koblitz, N.I., A Course in Number Theory and Cryptography, 2nd edition. Springer-Verlag, New
York, 1994.

[21] Blake, I., G. Seroussi, and N. Smart, Elliptic Curves in Cryptography, Cambridge University
Press, Cambridge, UK, 2000.

[22] Washington, L.C., Elliptic Curves: Number Theory and Cryptography. Chapman & Hall/CRC,
Boca Raton, FL, 2003.

[23] Hankerson, D., A. Menezes, and S.A. Vanstone, Guide to Elliptic Curve Cryptography. Springer-
Verlag, New York, NY, 2004.

[24] Menezes, A., T. Okamoto, and S.A. Vanstone, “Reducing Elliptic Curve Logarithms to Loga-
rithms in a Finite Field,” IEEE Transactions on Information Theory, Vol. 39, 1993, pp. 1639–
1646.

194 Contemporary Cryptography

Chapter 8

Cryptographic Hash Functions

In this chapter, we elaborate on cryptographic hash functions. More specifically,
we introduce the basic principles and properties of such functions in Section 8.1,
address a basic construction (i.e., the Merkle-Damgård construction) in Section 8.2,
overview exemplary cryptographic hash functions in Section 8.3, and conclude with
some final remarks in Section 8.4.

8.1 INTRODUCTION

As mentioned in Section 2.1.2 and formally expressed in Defintion 2.3, a hash
function is an efficiently computable function h : Σ∗

in → Σn
out that takes an

arbitrarily sized1 input word x ∈ Σ∗
in (with Σin representing the input alphabet)

and generates an output word y ∈ Σn
out (with Σout representing the output alphabet)

of size n. Furthermore, a cryptographic hash function is a hash function that has
specific properties. There are basically three properties that are relevant from a
cryptographic viewpoint.

• A hash function h is preimage resistant if it is computationally infeasible to
find an input word x ∈ Σ∗

in with h(x) = y for a given (and randomly chosen)
output word y ∈R Σn

out.

• A hash function h is second-preimage resistant or weak collision resistant if
it is computationally infeasible to find a second input word x′ ∈ Σ∗

in with
x′ �= x and h(x′) = h(x) for a given (and randomly chosen) input word
x ∈R Σ∗

in.

1 Remember from Section 2.1.2 that one usually has to assume a maximum length nmax for input
words. In this case, the hash function is formally expressed as h : Σnmax

in → Σn
out.

195

196 Contemporary Cryptography

• A hash function h is collision resistant or strong collision resistant if it is
computationally infeasible to find two input words x, x′ ∈ Σ∗

in with x′ �= x
and h(x′) = h(x).

There are some comments to make at this point:

• In some literature, collision resistant hash functions are also called collision
free. This term is inappropriate, because collisions always occur if one uses
hash functions (i.e., functions that hash arbitrarily sized arguments to a fixed
size). Consequently, the term collision free is not used as an attribute to
cryptographic hash functions in this book.

• In a complexity-theoretic setting, one cannot say that finding a collision for
a given hash function is a difficult problem. In fact, finding a collision (for
a given hash function) is a problem instance rather than a problem (refer to
Section 6.2 for a discussion about the difference between a problem and a
problem instance). This is because there is always an efficient algorithm that
finds a collision, namely one that simply outputs two input words that hash
to the same value. Thus, the concept of collision resistance only makes sense
if one considers a sufficiently large class (or family) of hash functions from
which one is chosen at random. An algorithm to find collisions must then work
for all hash functions of the class, including the one that is chosen at random.

• A collision resistant hash function must be second-preimage resistant. Oth-
erwise it is possible to find a second preimage for an arbitrarily chosen input
word, and this second preimage then yields a collision. The converse, however,
is not true—that is, a second-preimage resistant hash function must not be
collision resistant (that’s why we used the terms weak collision resistant and
strong collision resistant in the first place). Consequently, collision resistance
implies second-preimage resistance, but not vice versa.

• A (strong or weak) collision resistant hash function must not be preimage
resistant. For example, let g be a collision resistant hash function with an n-
bit output and h a pathological (n + 1)-bit hash function that is defined as
follows:2

h(x) =
{

1 || x if | x |= n
0 || g(x) otherwise

2 This example is taken from Ueli Maurer’s seminar entitled “Cryptography—Fundamentals and
Applications.”

Cryptographic Hash Functions 197

On the one hand, h is collision resistant. If h(x) begins with a one, then
there is no collision at all. If h(x) begins with a zero, then finding a collision
means finding a collision for g (which is assumed to be computationally
infeasible). On the other hand, h is not preimage resistant. For all h(x)
that begin with a one, it is trivial to find a preimage (just drop the leading
one) and to invert h accordingly. Consequently, h is a hash function that is
collision resistant but not preimage resistant, and we conclude that preimage
resistance and collision resistance are inherently different properties that must
be distinguished accordingly.

In practice, Σin and Σout are often set to {0, 1}, and a hash function then
represents a map from {0, 1}∗ to {0, 1}n. A question that occurs immediately is
how large to choose the parameter n. A lower bound for n is obtained by the
birthday attack. This attack is based on the birthday paradox that is well known
in probability theory. It says that the probability of two persons in a group sharing
the same birthday is greater than 1/2 if the group is chosen at random and has
more than 23 members. To obtain this result, we employ a sample space Σ that
consists off all n-tuples over the 365 days of the year (i.e., | Σ |= 365n). Let Pr[A]
be the probability that at least two out of n persons have the same birthday. This
value is difficult to compute directly. It is much simpler to compute Pr[A] (i.e., the
probability that all persons have different birthdays) and to derive Pr[A] from this
value. In fact, Pr[A] can be computed as follows (for 0 ≤ n ≤ 365):

Pr[A] = 1− Pr[A]

= 1− | A |
| Σ |

= 1− 365 · 364 · . . . · (365− n) · 1
365n

= 1− 365!
(365− n)!

· 1
365n

= 1− 365!
(365− n)!365n

Pr[A] is equal to 1 for n > 365 (in this case, it is not possible that all n
persons have different birthdays). In either case, Pr[A] grows surprisingly fast and n
must only be 23 to reach a probability greater or equal to 1/2. If n = 23, then

Pr[A] = 1− 365!
(365− 23)!36523

198 Contemporary Cryptography

= 1− 365!
(342)!36523

= 1− 365 · 364 · · ·343
36523

≈ 0.508

This result is somehow paradoxical. If we fix a date and ask for the number
of persons that are required to make the probability that at least one person has this
date as his or her birthday, then n must be much larger. In fact, in this case n has to
be �362/2� = 183.

Applying this argument to hash functions means that finding two persons with
the same birthday reveals a collision, whereas finding a person with a given birthday
reveals a second preimage. Hence, due to the birthday paradox, one can argue
that collision resistance is much more difficult to achieve than second-preimage
resistance. More specifically, one can show that for any collision resistant hash
function with an n-bit output, no attack finding a collision betters a birthday attack
with a worst-case running time of

O(
√

2n) = O(2n/2)

That’s why the birthday attack is sometimes also referred to as square root
attack. This result implies that a collision resistant hash function must produce
outputs that are twice as long as one would usually suggest to make an exhaustive
search computationally infeasible. For example, if we assume that searching a key
space of 264 is computationally infeasible, then we must use a hash function that
outputs at least 2 · 64 = 128 bits.

In addition to preimage, second-preimage, and collision resistance, there are
also some other properties of hash functions mentioned (and sometimes discussed)
in the literature.

• A hash function h is noncorrelated if its input bits and output bits are not
correlated in one way or another.

• A hash function h is generalized collision resistant if it is computationally
infeasible to find two input words x and x′ with x′ �= x such that h(x) and
h(x′) are similar in some specific sense (e.g., they are equal in some bits).

• A hash function h is weakened collision resistant if it is computationally
infeasible to find two input words x and x′ with x′ �= x and h(x) = h(x′)
such that x and x′ are similar in some specified sense (e.g., they are equal in
some bits).

Cryptographic Hash Functions 199

These properties are just mentioned for completeness; they are not further used
in this book.

Having the previously mentioned properties (i.e., preimage, second-preimage,
and collision resistance) in mind, one can define one-way hash functions (OWHFs),
collision resistant hash functions (CRHFs), and cryptographic hash functions as
suggested in Definitions 8.1 and 8.2.

Definition 8.1 (One-way hash function) An OWHF is a hash function h : Σ∗
in →

Σn
out that is preimage resistant and second-preimage resistant.

Definition 8.2 (Collision resistant hash function) A CRHF is a hash function h :
Σ∗

in → Σn
out that is preimage resistant and collision resistant.

Note that a CRHF is always an OWHF (whereas the converse may not be
true). Also note that alternative terms sometimes used in the literature are weak one-
way hash functions for OWHFs and strong one-way hash functions for CRHFs. As
suggested in Definition 2.4, we use the term cryptographic hash function to refer to
either of them.

8.2 MERKLE-DAMGÅRD CONSTRUCTION

Most cryptographic hash functions in use today follow a construction that was
independently proposed by Ralph C. Merkle and Ivan B. Damgård in the late 1980s
[1, 2].3 According to their construction, an iterated hash function h is computed by
repeated application of a collision resistant compression function f : Σm −→ Σn

with m,n ∈ N and m > n to successive blocks x1, . . . , xn of a message x.4

As illustrated in Figure 8.1, the compression function f takes two input
arguments:

1. A b-bit message block;

2. An l-bit chaining value (sometimes referred to as Hi for i = 0, . . . , n).

In a typical setting, l is 128 or 160 bits and b is 512 bits. The output of the
compression function can be used as a new l-bit chaining value, which is input to
the next iteration of the compression function. Referring to the notation introduced
earlier, m = b + l and n = l.

3 Both papers were presented at CRYPTO ’89.
4 Note that the input alphabet Σin and the output alphabet Σout are assumed to be the same (denoted

as Σ).

200 Contemporary Cryptography

�
���
�����
��

���
��

Figure 8.1 A compression function f .

Against this background, an iterated hash function h can then be constructed,
as illustrated in Figure 8.2. In this figure, f represents the compression function and
g represents an output function.5 The message x is padded to a multiple of b bits
and divided into a sequence of n b-bit message blocks x1, . . . , xn. The compression
function f is then repeatedly applied, starting with an initial value (IV = H0) and
the first message block x1, and continuing with each new chaining value Hi and
successive message block xi+1 for i = 1, . . . , n − 1. After the last message block
xn has been processed, the final chaining value Hn is subject to the output function
g, and the output of this function is the output of the iterated hash function h for x
(i.e., h(x)).

�
@)0?

�� �3

� �

��

�
.�/
� ?� ?�

Figure 8.2 An iterated hash function h.

Hence, an iterative hash function h for x = x1x2 . . . xn can be recursively
computed according to the following set of equations:

H0 = IV

5 It goes without saying that g can also be the identity function.

Cryptographic Hash Functions 201

Hi = f(Hi−1, xi) for i = 1, . . . , n
h(x) = g(Hn)

As mentioned earlier, the message to be hashed must be padded to a multiple
of b bits. One possibility is to pad x with zeros. Padding with zeros, however, may
also introduce ambiguity about x. For example, the message 101110 padded to 8 bits
would be 10111000 and it is then unclear how many trailing zeros were present in
the original message. Several methods are available to resolve this problem. Merkle
proposed to append the bit length of x at the end of x. To make the additional length
field easy to find, it is right-justified in the final block. Following this proposal, the
padding method of choice in currently deployed hash functions is to append a one,
a variable number of zeros, and the binary encoding of the length of the original
message to the end of the message.

Merkle and Damgård showed that in their construction, finding a collision for
h (i.e., finding two input words x and x′ with x �= x′ and h(x) = h(x′)) is at least
as hard as finding a collision for the underlying compression function f . This also
means that if f is a collision resistant compression function, and h is an iterated
hash function making use of f , then h is a cryptographic hash function that is also
collision resistant. Put in other words, the iterated hash function inherits the collision
resistance property from the underlying compression function.

In the literature, there are many proposals for collision resistant compression
functions that can be turned into collision resistant cryptographic hash functions
according to the Merkle-Damgård construction. Some examples can, for example,
be found in [1, 2].

8.3 EXEMPLARY CRYPTOGRAPHIC HASH FUNCTIONS

The driving force for cryptographic hash functions was public key cryptography
in general, and digital signature systems in particular. Consequently, the company
RSA Security, Inc., played a crucial role in the development and deployment of
many practically relevant cryptographic hash functions. The first cryptographic
hash function developed by RSA Security, Inc., was acronymed MD (standing for
message digest). It was proprietary and never published. MD2 specified in RFC 1319
[3] was the first published cryptographic hash function in widespread use (it was,
for example, used in the secure messaging products of RSA Security, Inc.). When
Merkle proposed a cryptographic hash function called SNEFRU that was several

202 Contemporary Cryptography

times faster than MD2,6 RSA Security, Inc., responded to the challenge with MD47

specified in RFC 1320 [4] (see Section 8.3.1). MD4 took advantage of the fact that
newer processors could do 32-bit operations, and it was therefore able to be faster
than SNEFRU. In 1991, SNEFRU and some other cryptographic hash functions
were successfully attacked8 using differential cryptanalysis [5]. Furthermore, some
weaknesses were found in a version of MD4 with two rounds instead of three [6].
This did not officially break MD4, but it made RSA Security, Inc., sufficiently
nervous that it was decided to strengthen MD4. MD5 was designed and specified
in RFC 1320 [7] (see Section 8.3.2). MD5 is assumed to be more secure than MD4,
but it is also a little bit slower. Due to some recent results, MD4 must be considered
to be insecure [8], and MD5 must be considered to be partially broken [9].9 In 2004,
a group of Chinese researchers found and published collisions for MD4, MD5, and
some other cryptographic hash functions.10 Nevertheless, MD4 and MD5 are still
useful study objects for the design principles of cryptographic hash functions.

Table 8.1
Secure Hash Algorithms as Specified in FIPS 180-2

Algorithm Message Size Block Size Word Size Hash Value Size
SHA-1 < 264 bits 512 bits 32 bits 160 bits
SHA-224 < 264 bits 512 bits 32 bits 224 bits
SHA-256 < 264 bits 512 bits 32 bits 256 bits
SHA-384 < 2128 bits 1,024 bits 64 bits 384 bits
SHA-512 < 2128 bits 1,024 bits 64 bits 512 bits

In 1993, the U.S. NIST proposed the Secure Hash Algorithm (SHA), which
is similar to MD5, but even more strengthened and also a little bit slower. Probably
after discovering a never-published weakness in the orginal SHA proposal,11 the
NIST revised it and called the revised version SHA-1. As such, SHA-1 is specified in
the Federal Information Processing Standards Publication (FIPS PUB) 180-1 [12],12

also known as Secure Hash Standard (SHS). In 2002, FIPS PUB 180 was revised

6 The function was proposed in 1990 in a Xerox PARC technical report entitled A Software One Way
Function.

7 There was an MD3 cryptographic hash function, but it was superseded by MD4 before it was ever
published or used.

8 The attack was considered successful because it was shown how to systematically find a collision
(i.e., two messages with the same hash value).

9 One problem with MD5 is that the compression function is known to have collisions (e.g., [10]).
10 http://eprint.iacr.org/2004/199.pdf
11 At CRYPTO ’98, Florent Chabaud and Antoine Joux published a weakness of SHA-0 [11]. This

weakness was fixed by SHA-1, so it is reasonable to assume that they found the original weakness.
12 SHA-1 is also specified in informational RFC 3174 [13].

Cryptographic Hash Functions 203

Table 8.2
Truth Table of the Logical Functions Employed by MD4

X Y Z f g h
0 0 0 0 0 0
0 0 1 1 0 1
0 1 0 0 0 1
0 1 1 1 1 0
1 0 0 0 0 1
1 0 1 0 1 0
1 1 0 1 1 0
1 1 1 1 1 1

a second time and the resulting FIPS PUB 180-213 superseded FIPS PUB 180-1
beginning February 1, 2003. In addition to superseding FIPS 180-1, FIPS 180-2
also added three new algorithms that produce and output larger hash values (see
Table 8.1). The SHA-1 algorithm specified in FIPS 180-2 is the same algorithm
as specified in FIPS 180-1, although some of the notation has been modified to
be consistent with the notation used in SHA-256, SHA-384, and SHA-512. As
summarized in Table 8.1, SHA-1, SHA-256, SHA-384, and SHA-512 produce and
output hash values of different sizes (160, 256, 384, and 512 bits), and their maximal
message sizes, block sizes, and word sizes also vary considerably. In February 2004,
the NIST published a change notice for FIPS 180-2 to include SHA-224.14 SHA-224
is identical to SHA-256, but uses different initial hash values and truncates the final
hash value to its leftmost 224 bits. It is also included in Table 8.1.

In addition to the cryptographic hash functions proposed by RSA Security,
Inc., and the NIST, there are at least two competing proposals developed entirely in
Europe (i.e., RIPEMD-128 and RIPEMD-160 [15, 16]). These cryptographic hash
functions are not further addressed in this book.

MD4, MD5, and RIPEMD-128 produce hash values of 128 bits, whereas
RIPEMD-160 and SHA-1 produce hash values of 160 bits. The newer versions of
SHA produce hash values that are even longer. From a security viewpoint, long hash
values are preferred (because they reduce the likelihood of collisions in the first
place). Consequently, it is recommended to replace MD5 with SHA-1 (or any other
hash function from the SHA family) where possible and appropriate. MD4, MD5,
and SHA-1 are overviewed and discussed next.

13 http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf
14 SHA-224 is also specified in informational RFC 3874 [14].

204 Contemporary Cryptography

Algorithm 8.1 The MD4 hash function (overview).

(m = m0m1 . . . ms−1)

Construct M = M [0]M [1] . . . M [N − 1]
A← 0x67452301
B ← 0xEFCDAB89
C ← 0x98BADCFE
D ← 0x10325476
for i = 0 to N/16− 1 do

for j = 0 to 15 do X[j] = M [i · 16 + j]
A′ ← A
B′ ← B
C′ ← C
D′ ← D
Round 1 (Algorithm 8.2)
Round 2 (Algorithm 8.3)
Round 3 (Algorithm 8.4)
A← A + A′
B ← B + B′
C ← C + C′
D← D + D′

(h(m) = A ‖ B ‖ C ‖ D)

8.3.1 MD4

As mentioned earlier, MD4 was proposed in 1990 and is specified in RFC 1320
[4].15 It represents a Merkle-Damgård construction that hashes a message in 512-bit
blocks (i.e., b = 512) and that produces an output of 128 bits (i.e., l = 128). As
also mentioned earlier, MD4 was designed to be efficiently implementable on 32-
bit processors. It assumes a little-endian architecture, meaning that a 4-byte word
a1a2a3a4 represents the following integer:

a4224 + a3216 + a228 + a1

In a big-endian architecture, the same 4-byte word a1a2a3a4 would represent
the integer

a1224 + a2216 + a328 + a4.

15 The original version of MD4 was published in October 1990 in RFC 1196. A slightly revised version
of it was published in April 1992 (at the same time as MD5) in RFC 1320.

Cryptographic Hash Functions 205

Algorithm 8.2 Round 1 of the MD4 hash function.

1. A← (A + f(B, C, D) + X[0])←↩ 3
2. D← (D + f(A, B, C) + X[1])←↩ 7
3. C ← (C + f(D, A, B) + X[2])←↩ 11
4. B ← (B + f(C, D, A) + X[3])←↩ 19
5. A← (A + f(B, C, D) + X[4])←↩ 3
6. D← (D + f(A, B, C) + X[5])←↩ 7
7. C ← (C + f(D, A, B) + X[6])←↩ 11
8. B ← (B + f(C, D, A) + X[7])←↩ 19
9. A← (A + f(B, C, D) + X[8])←↩ 3
10. D ← (D + f(A, B, C) + X[9])←↩ 7
11. C ← (C + f(D, A, B) + X[10])←↩ 11
12. B ← (B + f(C, D, A) + X[11])←↩ 19
13. A← (A + f(B, C, D) + X[12])←↩ 3
14. D ← (D + f(A, B, C) + X[13])←↩ 7
15. C ← (C + f(D, A, B) + X[14])←↩ 11
16. B ← (B + f(C, D, A) + X[15])←↩ 19

Let m = m0m1 . . .ms−1 be an s-bit message that is to be hashed with MD4.
In a first step, an array

M = M [0]M [1] . . .M [N − 1]

is constructed, where each M [i] represents a 32-bit word and N ≡ 0 mod 16.
Consequently, the length of M equals a multiple of 32 · 16 = 512 bits. It is
constructed in two steps:

• First, the messagem is padded so that its bit length is congruent to 448 modulo
512. Therefore, a single one is appended, and then zero bits are appended so
that the bit length of the padded message becomes congruent to 448 modulo
512 (i.e., at least one bit and at most 512 bits must be appended). Note that
padding is always performed, even if the length of the message is already
congruent to 448 modulo 512. Also note that the padded message is 64 bits
short of being a multiple of 512 bits.

• Second, a 64-bit binary representation of s (i.e., the length of the original
message before the padding bits were added) is appended to the result of the
first step. In the unlikely case that s is greater than 264, then only the low-order
64 bits of s are used (i.e., s is computed modulo 264). In either case, the 64
bits fill up the last message block from 448 to 512 bits.

206 Contemporary Cryptography

Algorithm 8.3 Round 2 of the MD4 hash function.

1. A← (A + g(B, C, D) + X[0] + c1)←↩ 3
2. D← (D + g(A, B, C) + X[4] + c1)←↩ 5
3. C ← (C + g(D, A, B) + X[8] + c1)←↩ 9
4. B ← (B + g(C, D, A) + X[12] + c1)←↩ 13
5. A← (A + g(B, C, D) + X[1] + c1)←↩ 3
6. D← (D + g(A, B, C) + X[5] + c1)←↩ 5
7. C ← (C + g(D, A, B) + X[9] + c1)←↩ 9
8. B ← (B + g(C, D, A) + X[13] + c1)←↩ 13
9. A← (A + g(B, C, D) + X[2] + c1)←↩ 3
10. D ← (D + g(A, B, C) + X[6] + c1)←↩ 5
11. C ← (C + g(D, A, B) + X[10] + c1)←↩ 9
12. B ← (B + g(C, D, A) + X[14] + c1)←↩ 13
13. A← (A + g(B, C, D) + X[3] + c1)←↩ 3
14. D ← (D + g(A, B, C) + X[7] + c1)←↩ 5
15. C ← (C + g(D, A, B) + X[11] + c1)←↩ 9
16. B ← (B + g(C, D, A) + X[15] + c1)←↩ 13

E�
�
�	������	�� �������������� .�/

��'�5�3��
�� 24��
��

3

"���
�������5�3��
��

Figure 8.3 The structure of a message preprocessed to be hashed using MD4.

At this point, the resulting message has a structure as illustrated in Figure 8.3.
It has a length that is an exact multiple of 512 bits. Consequently, it can be broken
up into 32-bit words, and the resulting number of words (i.e., N) is still divisible by
16.

A 128-bit MD4 hash value can be constructed using Algorithm 8.1. In short,
the hash value is constructed as the concatenation of four words (or registers) A, B,
C, andD. First, the arrayM is constructed as discussed earlier, and the four registers
are initialized with constant values. The array M is then processed iteratively. In
each iteration, 16 words of M are taken and stored in an array X . The values of the
four registers are stored for later reuse. In the main part of the algorithm, three rounds
of hashing are performed (i.e., Round 1, Round 2, and Round 3). Each round consists
of one operation on each of the 16 words in X (described later). The operations
done in the three rounds produce new values for the four registers. Finally, the four
registers are updated by adding back the values that were stored previously (the
addition is always performed modulo 232).

Cryptographic Hash Functions 207

Algorithm 8.4 Round 3 of the MD4 hash function.

1. A← (A + h(B, C, D) + X[0] + c2)←↩ 3
2. D← (D + h(A, B, C) + X[8] + c2)←↩ 9
3. C ← (C + h(D, A, B) + X[4] + c2)←↩ 11
4. B ← (B + h(C, D, A) + X[12] + c2)←↩ 15
5. A← (A + h(B, C, D) + X[2] + c2)←↩ 3
6. D← (D + h(A, B, C) + X[10] + c2)←↩ 9
7. C ← (C + h(D, A, B) + X[6] + c2)←↩ 11
8. B ← (B + h(C, D, A) + X[14] + c2)←↩ 15
9. A← (A + h(B, C, D) + X[1] + c2)←↩ 3
10. D← (D + h(A, B, C) + X[9] + c2)←↩ 9
11. C ← (C + h(D, A, B) + X[5] + c2)←↩ 11
12. B ← (B + h(C, D, A) + X[13] + c2)←↩ 15
13. A← (A + h(B, C, D) + X[3] + c2)←↩ 3
14. D← (D + h(A, B, C) + X[11] + c2)←↩ 9
15. C ← (C + h(D, A, B) + X[7] + c2)←↩ 11
16. B ← (B + h(C, D, A) + X[15] + c2)←↩ 15

The three rounds used in the MD4 hash function are different. The following
operations are employed in the three rounds (X and Y denote input words, and each
operation produces an output word):

X ∧ Y Bitwise and of X and Y (AND)
X ∨ Y Bitwise or of X and Y (OR)
X ⊕ Y Bitwise exclusive or of X and Y (XOR)
¬X Bitwise complement of X (NOT)

X + Y Integer addition of X and Y modulo 232

X ←↩ s Circular left shift of X by s positions (0 ≤ s ≤ 31)

Note that all of these operations are very fast and that the only arithmetic
operation is addition modulo 232. As mentioned earlier, MD4 assumes a little-endian
architecture.16 Consequently, if an MD4 hash value must be computed on a big-
endian machine, then the addition operation is a little bit more involved and must be
implemented accordingly.

Rounds 1, 2, and 3 of the MD4 hash algorithm use the following three auxiliary
functions f , g, and h:

f(X,Y, Z) = (X ∧ Y) ∨ ((¬X) ∧ Z)

16 Rivest chose to assume a little-endian architecture mainly because he observed that big-endian
architectures are generally faster and can therefore better afford the processing penalty (of reversing
each word for processing).

208 Contemporary Cryptography

g(X,Y, Z) = (X ∧ Y) ∨ (X ∧ Z) ∨ (Y ∧ Z)
h(X,Y, Z) = X ⊕ Y ⊕ Z

Each function takes as input three 32-bit words and produces as output a 32-
bit word. The truth table is illustrated in Table 8.2 on page 203. The function f is
sometimes known as the selection function, because if the nth bit of X is 1, then it
selects the nth bit of Y for the nth bit of the output. Otherwise (i.e., if the nth bit
of X is 0), it selects the nth bit of Z for the nth bit of the output. The function g is
sometimes known as the majority function, because the nth bit of the output is 1 if
and only if at least two of the three input words’ nth bits are 1. Last but not least,
the function h simply adds all input words modulo 2.

Algorithm 8.5 The MD5 hash function (overview).

(m = m0m1 . . . ms−1)

Construct M = M [0]M [1] . . . M [N − 1]
A← 0x67452301
B ← 0xEFCDAB89
C ← 0x98BADCFE
D ← 0x10325476
for i = o to N/16− 1 do

for j = 0 to 15 do X[j] = M [i · 16 + j]
A′ ← A
B′ ← B
C′ ← C
D′ ← D
Round 1 (Algorithm 8.6)
Round 2 (Algorithm 8.7)
Round 3 (Algorithm 8.8)
Round 4 (Algorithm 8.9)
A← A + A′
B ← B + B′
C ← C + C′
D← D + D′

(h(m) = A ‖ B ‖ C ‖ D)

The complete descriptions of rounds 1, 2, and 3 of the MD4 hash algorithm
are given in Algorithms 8.2–8.4. The constants c1 and c2 employed in rounds 2 and
3 refer to c1 = �230

√
2� = 0x5A827999 and c2 = �230

√
3� = 0x6ED9EBA1.

A reference implementation of the MD4 hash algorithm (in the C program-
ming language) is provided in Appendix A of RFC 1320 [4].

Cryptographic Hash Functions 209

Algorithm 8.6 Round 1 of the MD5 hash function.

1. A← (A + f(B, C, D) + X[0] + T [1])←↩ 7
2. D← (D + f(A, B, C) + X[1] + T [2])←↩ 12
3. C ← (C + f(D, A, B) + X[2] + T [3])←↩ 17
4. B ← (B + f(C, D, A) + X[3] + T [4])←↩ 22
5. A← (A + f(B, C, D) + X[4] + T [5])←↩ 7
6. D← (D + f(A, B, C) + X[5] + T [6])←↩ 12
7. C ← (C + f(D, A, B) + X[6] + T [7])←↩ 17
8. B ← (B + f(C, D, A) + X[7] + T [8])←↩ 22
9. A← (A + f(B, C, D) + X[8] + T [9])←↩ 7
10. D ← (D + f(A, B, C) + X[9] + T [10])←↩ 12
11. C ← (C + f(D, A, B) + X[10] + T [11])←↩ 17
12. B ← (B + f(C, D, A) + X[11] + T [12])←↩ 22
13. A← (A + f(B, C, D) + X[12] + T [13])←↩ 7
14. D ← (D + f(A, B, C) + X[13] + T [14])←↩ 12
15. C ← (C + f(D, A, B) + X[14] + T [15])←↩ 17
16. B ← (B + f(C, D, A) + X[15] + T [16])←↩ 22

8.3.2 MD5

As mentioned earlier, MD5 is a strengthened version of MD4. It was proposed in
1991 and is specified in RFC 1321 [7]. There are only a few differences between
MD4 and MD5, the most obvious being that MD5 uses four rounds (instead of
three). This is advantageous from a security viewpoint. It is, however, also disad-
vantageous from a performance viewpoint. In fact, the additional round decreases
the performance of the hash function about 30% (as compared to MD4).

The MD5 hash function is conceptually and structurally similar to MD4. In
fact, the padding of the message m works exactly the same way. Again, there are
some auxiliary functions. The selection function f and the function h are defined
the same way as for MD4. The majority function g has changed from

g(X,Y, Z) = (X ∧ Y) ∨ (X ∧ Z) ∨ (Y ∧ Z)

to

g(X,Y, Z) = ((X ∧ Z) ∨ (Y ∧ (¬Z))

to make it less symmetric. In addition, there is a new function i that is defined as
follows:

210 Contemporary Cryptography

Algorithm 8.7 Round 2 of the MD5 hash function.

1. A← (A + g(B, C, D) + X[1] + T [17])←↩ 5
2. D ← (D + g(A, B, C) + X[6] + T [18])←↩ 9
3. C ← (C + g(D, A, B) + X[11] + T [19])←↩ 14
4. B ← (B + g(C, D, A) + X[0] + T [20])←↩ 20
5. A← (A + g(B, C, D) + X[5] + T [21])←↩ 5
6. D ← (D + g(A, B, C) + X[10] + T [22])←↩ 9
7. C ← (C + g(D, A, B) + X[15] + T [23])←↩ 14
8. B ← (B + g(C, D, A) + X[4] + T [24])←↩ 20
9. A← (A + g(B, C, D) + X[9] + T [25])←↩ 5
10. D ← (D + g(A, B, C) + X[14] + T [26])←↩ 9
11. C ← (C + g(D, A, B) + X[3] + T [27])←↩ 14
12. B ← (B + g(C, D, A) + X[8] + T [28])←↩ 20
13. A← (A + g(B, C, D) + X[13] + T [29])←↩ 5
14. D ← (D + g(A, B, C) + X[2] + T [30])←↩ 9
15. C ← (C + g(D, A, B) + X[7] + T [31])←↩ 14
16. B ← (B + g(C, D, A) + X[12] + T [32])←↩ 20

i(X,Y, Z) = Y ⊕ (X ∨ (¬Z))

The truth table of the logical functions f , g, h, i is illustrated in Table 8.3.
Furthermore, the MD5 hash function uses a 64-element table T constructed from
the sine function. Let T [i] be the ith element of the table, then

T [i] = �4, 294, 967, 296 · | sin(i)|�

where i is in radians. Because 4, 294, 967, 296 is equal to 232 and | sin(i)| is a
number between 0 and 1, each element of T is an integer that can be represented in
32 bits. Consequently, the table T provides a “randomized” set of 32-bit patterns,
which should eliminate any regularities in the input data. The elements of T as
employed by the MD5 hash function are listed in Table 8.4.

The MD5 hash function is overviewed in Algorithm 8.5. It is structurally sim-
ilar to the MD4 hash function. The four rounds of MD5 are specified in Algorithms
8.6–8.9.

Again, a reference implementation of the MD5 hash function (in the C
programming language) is provided in Appendix A of the relevant RFC 1321 [7].

Cryptographic Hash Functions 211

Algorithm 8.8 Round 3 of the MD5 hash function.

1. A← (A + h(B, C, D) + X[5] + T [33])←↩ 4
2. D← (D + h(A, B, C) + X[8] + T [34])←↩ 11
3. C ← (C + h(D, A, B) + X[11] + T [35])←↩ 16
4. B ← (B + h(C, D, A) + X[14] + T [36])←↩ 23
5. A← (A + h(B, C, D) + X[1] + T [37])←↩ 4
6. D← (D + h(A, B, C) + X[4] + T [38])←↩ 11
7. C ← (C + h(D, A, B) + X[7] + T [39])←↩ 16
8. B ← (B + h(C, D, A) + X[10] + T [40])←↩ 23
9. A← (A + h(B, C, D) + X[13] + T [41])←↩ 4
10. D ← (D + h(A, B, C) + X[0] + T [42])←↩ 11
11. C ← (C + h(D, A, B) + X[3] + T [43])←↩ 16
12. B ← (B + h(C, D, A) + X[6] + T [44])←↩ 23
13. A← (A + h(B, C, D) + X[9] + T [45])←↩ 4
14. D ← (D + h(A, B, C) + X[12] + T [46])←↩ 11
15. C ← (C + h(D, A, B) + X[15] + T [47])←↩ 16
16. B ← (B + h(C, D, A) + X[2] + T [48])←↩ 23

8.3.3 SHA-1

The SHA-1 hash function is conceptually and structurally similar to MD4 and MD5.
The two most important differences are that SHA-1 was designed to run optimally
on computer systems with a big-endian architecture (rather than a little-endian
architecture) and that it employs five registers (instead of four) and hence outputs
hash values of 160 bits.

The SHA-1 hash function uses a sequence of functions f0, f1, . . . , f79 that are
defined as follows:

ft(X,Y, Z) =




Ch(X,Y, Z) = (X ∧ Y)⊕ ((¬X) ∧ Z) 0 ≤ t ≤ 19
Parity(X,Y, Z) = X ⊕ Y ⊕ Z 20 ≤ t ≤ 39
Maj(X,Y, Z) = (X ∧ Y)⊕ (X ∧ Z)⊕ (Y ∧ Z) 40 ≤ t ≤ 59
Parity(X,Y, Z) = X ⊕ Y ⊕ Z 60 ≤ t ≤ 79

The truth table of the logical functions employed by SHA-1 is illustrated in
Table 8.5.

Furthermore, the function uses a sequence of 80 constant 32-bit words K0,
K1, . . . , K79 that are defined as follows:

212 Contemporary Cryptography

Algorithm 8.9 Round 4 of the MD5 hash function.

1. A← (A + i(B, C, D) + X[0] + T [49])←↩ 6
2. D← (D + i(A, B, C) + X[7] + T [50])←↩ 10
3. C ← (C + i(D, A, B) + X[14] + T [51])←↩ 15
4. B ← (B + i(C, D, A) + X[5] + T [52])←↩ 21
5. A← (A + i(B, C, D) + X[12] + T [53])←↩ 6
6. D← (D + i(A, B, C) + X[3] + T [54])←↩ 10
7. C ← (C + i(D, A, B) + X[10] + T [55])←↩ 15
8. B ← (B + i(C, D, A) + X[1] + T [56])←↩ 21
9. A← (A + i(B, C, D) + X[8] + T [57])←↩ 6
10. D← (D + i(A, B, C) + X[15] + T [58])←↩ 10
11. C ← (C + i(D, A, B) + X[6] + T [59])←↩ 15
12. B ← (B + i(C, D, A) + X[13] + T [60])←↩ 21
13. A← (A + i(B, C, D) + X[4] + T [61])←↩ 6
14. D← (D + i(A, B, C) + X[11] + T [62])←↩ 10
15. C ← (C + i(D, A, B) + X[2] + T [63])←↩ 15
16. B ← (B + i(C, D, A) + X[9] + T [64])←↩ 21

Table 8.3
Truth Table of the Logical Functions Employed by MD5

X Y Z f g h i
0 0 0 0 0 0 1
0 0 1 1 0 1 0
0 1 0 0 1 1 0
0 1 1 1 0 0 1
1 0 0 0 0 1 1
1 0 1 0 1 0 1
1 1 0 1 1 0 0
1 1 1 1 1 1 0

Kt =




�230
√

2� = 0x5A827999 0 ≤ t ≤ 19
�230

√
3� = 0x6ED9EBA1 20 ≤ t ≤ 39

�230
√

5� = 0x8F1BBCDC 40 ≤ t ≤ 59
�230

√
10� = 0xCA62C1D6 60 ≤ t ≤ 79

Note that the first two values correspond to c1 and c2 employed by MD4.
The preprocessing of the message to be hashed is identical to the one employed

by MD4 and MD5. Because the SHA-1 hash function was designed to run on a big-
endian architecture, the final two 32-bit words specifying the bit length s is appended
with the most significant word preceding the least significant word.

Cryptographic Hash Functions 213

Table 8.4
The Elements of Table T Employed by the MD5 Hash Function

T [1]=0xD76AA478 T [17]=0xF61E2562 T [33]=0xFFFA3942 T [49]=0xF4292244
T [2]=0xE8C7B756 T [18]=0xC040B340 T [34]=0x8771F681 T [50]=0x432AFF97
T [3]=0x242070DB T [19]=0x265E5A51 T [35]=0x6D9D6122 T [51]=0xAB9423A7
T [4]=0xC1BDCEEE T [20]=0xE9B6C7AA T [36]=0xFDE5380C T [52]=0xFC93A039
T [5]=0xF57C0FAF T [21]=0xD62F105D T [37]=0xA4BEEA44 T [53]=0x655B59C3
T [6]=0x4787C62A T [22]=0x02441453 T [38]=0x4BDECFA9 T [54]=0x8F0CCC92
T [7]=0xA8304613 T [23]=0xD8A1E681 T [39]=0xF6BB4B60 T [55]=0xFFEFF47D
T [8]=0xFD469501 T [24]=0xE7D3FBC8 T [40]=0xBEBFBC70 T [56]=0x85845DD1
T [9]=0x698098D8 T [25]=0x21E1CDE6 T [41]=0x289B7EC6 T [57]=0x6FA87E4F
T [10]=0x8B44F7AF T [26]=0xC33707D6 T [42]=0xEAA127FA T [58]=0xFE2CE6E0
T [11]=0xFFFF5BB1 T [27]=0xF4D50D87 T [43]=0xD4EF3085 T [59]=0xA3014314
T [12]=0x895CD7BE T [28]=0x455A14ED T [44]=0x04881D05 T [60]=0x4E0811A1
T [13]=0x6B901122 T [29]=0xA9E3E905 T [45]=0xD9D4D039 T [61]=0xF7537E82
T [14]=0xFD987193 T [30]=0xFCEFA3F8 T [46]=0xE6DB99E5 T [62]=0xBD3AF235
T [15]=0xA679438E T [31]=0x676F02D9 T [47]=0x1FA27CF8 T [63]=0x2AD7D2BB
T [16]=0x49B40821 T [32]=0x8D2A4C8A T [48]=0xC4AC5665 T [64]=0xEB86D391

In addition to ft and Kt, there is a message scheduleW that comprises eighty
32-bit words. The schedule is initialized as follows:

Wt =
{
M [t] 0 ≤ t ≤ 15
(Wt−3 ⊕Wt−8 ⊕Wt−14 ⊕Wt−16) ←↩ 1 16 ≤ t ≤ 79

After preprocessing is completed, the message is hashed iteratively using
Algorithm 8.10. First, the five registers are initialized (the first four registers are
indentically initialized as in the case of MD4, and the fifth register is initialized
with 0xC3D2E1F0). Afterwards, each message block M [1], M [1], . . . , M [N] is
processed iteratively, where the result of each iteration is used in the next iteration.
Finally, the result is the concatenation of the values of the five registers. It is a 160-bit
hash value that may serve as message digest for message m.

From a security viewpoint, there are two remarks to make at this point:

• First, a SHA-1 hash value is 32 bits longer than an MD5 hash value. This
is advantageous, because it means that SHA-1 is potentially more resistant
against brute-force attacks. This is even more true for the SHA variants
itemized in Table 8.1.

214 Contemporary Cryptography

Table 8.5
Truth Table of the Logical Functions Employed by SHA-1

X Y Z Ch = f0...19 Parity = f20...39 Maj = f40...59 Parity = f60...79

0 0 0 0 0 0 0
0 0 1 1 1 0 1
0 1 0 0 1 0 1
0 1 1 1 0 1 0
1 0 0 0 1 0 1
1 0 1 0 0 1 0
1 1 0 1 0 1 0
1 1 1 1 1 1 1

• Second, SHA-1 appears not to be vulnerable to the attacks against MD4 and
MD5. However, little is publicly known about the design criteria for SHA-1,
so its strength is somehow difficult to evaluate.

On the other hand, SHA-1 involves more steps (80 as compared to 64) and
must process a 160-bit register compared to the 128-bit register of MD4 and MD5.
Consequently, SHA-1 executes a little bit more slowly.

8.4 FINAL REMARKS

In this chapter, we elaborated on cryptographic hash functions. Most of these
functions that are practically relevant (e.g., MD5 and SHA-1) follow the Merkle-
Damgård construction. This also applies to some more recent alternatives, such as
Whirlpool.17 The fact that cryptographic hash function follows the Merkle-Damgård
construction basically means that a collision resistant compression function is iter-
ated multiple times (one iteration for each block of the message). Each iteration
can only start if the preceding iteration has finished. This suggests that the resulting
cryptographic hash function may become a performance bottleneck. For example,
Joe Touch showed that the currently achievable hash rates of MD5 are insufficient
to keep up with high-speed networks [17]. The problem is the iterative nature of
MD5 and its block chaining structure, which prevent parallelism. As also shown in
[17], it is possible to modify the MD5 algorithm to accommodate a slightly higher
throughput. Alternatively, it is possible to design and come up with cryptographic
hash functions that are inherently more qualified to provide support for parallelism.

Although most cryptographic hash functions in use today follow the Merkle-
Damgård construction, the design of the underlying compression functions still

17 http://planeta.terra.com.br/informatica/paulobarreto/WhirlpoolPage.html

Cryptographic Hash Functions 215

Algorithm 8.10 The SHA-1 hash function (overview).

(m = m0m1 . . . ms−1)

Construct M = M [0]M [1] . . . M [N − 1]
A← 0x67452301
B ← 0xEFCDAB89
C ← 0x98BADCFE
D← 0x10325476
E ← 0xC3D2E1F0
for i = 0 to N do

Prepare the message schedule W
A′ ← A
B′ ← B
C′ ← C
D′ ← D
E′ ← E
for t = 0 to 79 do

T ← (A←↩ 5) + ft(B, C, D) + E + Kt + Wt

E ← D
D ← C
C ← B ←↩ 30
B ← A
A← T

A← A + A′
B ← B + B′
C ← C + C′
D ← D + D′
E ← E + E′

(h(m) = A ‖ B ‖ C ‖ D ‖ E)

looks more like an art than a science. For example, finding collisions in such
functions has recently become a very active area of research (e.g., [18]). Remember
from Section 8.3 that collisions were recently found for MD4, MD5, and some other
cryptographic hash functions. Also, as this book went to press, a group of Chinese
researchers claimed to have found an attack that requires only 269 (instead of 280)
hash operations to find a collision in SHA-1.18

As of this writing, there are hardly any design criteria that can be used to
design and come up with new compression functions (for cryptographic hash func-
tions that follow the Merkle-Damgård construction) or entirely new cryptographic
hash functions. This lack of design criteria is somehow in contrast to the relative
importance of cryptographic hash functions in almost all cryptographic systems
and applications. Consequently, an interesting and challenging area of research and

18 http://theory.csail.mit.edu/∼yiqun/shanote.pdf

216 Contemporary Cryptography

development would try to specify design criteria for compression functions (if the
Merkle-Damgård construction is used) or entirely new cryptographic hash functions
(if the Merkle-Damgård construction is not used). For example, universal hashing
as originally proposed in the late 1970s by Larry Carter and Mark Wegman [19,
20] provides an interesting design paradigm for new cryptographic hash functions.
Instead of using a single hash function, universal hashing considers families of hash
functions. The hash function in use is then chosen randomly from the family. We
briefly revisit the topic when we address MACs using families of universal hash
functions in Section 11.2.4.

References

[1] Merkle, R.C., “One Way Hash Functions and DES,” Proceedings of CRYPTO ’89, Springer-
Verlag, LNCS 435, 1989, pp. 428–446.

[2] Damgård, I.B., “A Design Principle for Hash Functions,” Proceedings of CRYPTO ’89, Springer-
Verlag, LNCS 435, 1989, pp. 416–427.

[3] Kaliski, B., The MD2 Message-Digest Algorithm, Request for Comments 1319, April 1992.

[4] Rivest, R.L., The MD4 Message-Digest Algorithm, Request for Comments 1320, April 1992.

[5] Biham, E., and A. Shamir, “Differential Cryptanalysis of Snefru, Khafre, REDOC-II, LOKI, and
Lucifer,” Proceedings of CRYPTO ’91, Springer-Verlag, LNCS 576, 1991, pp. 156–171.

[6] den Boer, B., and A. Bosselaers, “An Attack on the Last Two Rounds of MD4,” Proceedings of
CRYPTO ’91, Springer-Verlag, LNCS 576, 1991, pp. 194–203.

[7] Rivest, R.L., The MD5 Message-Digest Algorithm, Request for Comments 1321, April 1992.

[8] Dobbertin, H., “Cryptanalysis of MD4,” Journal of Cryptology, Vol. 11, No. 4, 1998, pp. 253–
271.

[9] Dobbertin, H., “The Status of MD5 After a Recent Attack,” CryptoBytes, Vol. 2, No. 2, Summer
1996.

[10] den Boer, B., and A. Bosselaers, “Collisions for the Compression Function of MD5,” Proceedings
of EUROCRYPT ’93, Springer-Verlag, LNCS 765, 1993, pp. 293–304.

[11] Chabaud, F., and A. Joux, “Differential Collisions in SHA-0,” Proceedings of CRYPTO ’98,
Springer-Verlag, LNCS 1462, 1998, pp. 56–71.

[12] U.S. Department of Commerce, National Institute of Standards and Technology, Secure Hash
Standard, FIPS PUB 180-1, April 1995.

[13] Eastlake, D., and P. Jones, US Secure Hash Algorithm 1 (SHA1), Request for Comments 3174,
September 2001.

[14] Housley, R., A 224-Bit One-Way Hash Function: SHA-224, Request for Comments 3874, Sep-
tember 2004.

Cryptographic Hash Functions 217

[15] Dobbertin, H., A. Bosselaers, and B. Preneel, “RIPEMD-160: A Strengthened Version of
RIPEMD,” Proceedings of the 3rd International Workshop on Fast Software Encryption, Springer-
Verlag, LNCS 1039, 1996, pp. 71–82.

[16] Preneel, B., A. Bosselaers, and H. Dobbertin, “The Cryptographic Hash Function RIPEMD-160,”
CryptoBytes, Vol. 3, No. 2, 1997, pp. 9–14.

[17] Touch, J., Report on MD5 Performance, Request for Comments 1810, June 1995.

[18] Biham, E., and R. Chen, “Near-Collisions of SHA-0,” Proceedings of CRYPTO 2004, Springer-
Verlag, LNCS 3152, 2004.

[19] Carter, J.L., and M.N. Wegman, “Universal Classes of Hash Functions,” Journal of Computer and
System Sciences, Vol. 18, 1979, pp. 143–154.

[20] Carter, J.L., and M.N. Wegman, “New Hash Functions and Their Use in Authentication and Set
Equality,” Journal of Computer and System Sciences, Vol. 22, 1981, pp. 265–279.

218 Contemporary Cryptography

Chapter 9

Random Bit Generators

Random numbers should not be generated with a method chosen at
random.

— Donald E. Knuth

In this chapter, we elaborate on random bit generators. More specifically, we
introduce the topic in Section 9.1, overview and discuss some possible realizations
and implementations of random bit generators in Section 9.2, address statistical
randomness testing in Section 9.3, and conclude with final remarks in Section 9.4.

9.1 INTRODUCTION

The term randomness is commonly used to refer to nondeterminism. If we say
that something is random, then we mean that we cannot determine its outcome,
or—equivalently—that its outcome is nondeterministic. Whether randomness really
exists or not is primarily a philosophical question. Somebody who believed that
everything is determined or behaves in a deterministic way would typically argue
that randomness does not exist in the first place. According to the present knowl-
edge in physics, however, randomness exists inherently in physical processes. For
example, randomness is a prerequisite and plays a crucial role in quantum physics.
For the purpose of this book, we don’t address the philosophical question and simply
assume that randomness exists.

If we assume the existence of randomness, then we may ask whether it is
possible to measure it in one way or another. For example, we may ask for a given
value whether it is random. Is 13 random? Is 27 random? Is 13 more random than 27?

219

220 Contemporary Cryptography

Unfortunately, these questions don’t make a lot of sense unless they are considered
in a specific context.

In theory, there exists a measure of randomness for a finite sequence of values.
In fact, the Kolmogorov complexity measures the minimal length of a program
for a Turing machine1 that is able to generate the sequence. Unfortunately, the
Kolmogorov complexity is inherently noncomputable (i.e., it is not known how to
compute the Kolmogorov complexity for a given sequence of values), and hence
it is not particularly useful. If we know that a (pseudorandom) bit sequence was
generated with a linear feedback shift register (LFSR), then we could use the linear
complexity to measure its randomness. In fact, the linear complexity measures the
size (i.e., number of bits) of the shortest LFSR that can produce the sequence. The
measure therefore speaks to the difficulty of generating—and perhaps analyzing—
the bit sequence. There is an algorithm due to Berlekamp and Massey [1] that can
be used to compute the linear complexity. Note, however, that the linear complexity
(and hence also the Berlekamp-Massey algorithm) assumes that the (pseudorandom)
bit sequence is generated with an LFSR. Consequently, it is possible that a bit
sequence has a large linear complexity but can still be generated easily with some
other means.

Without arguing about the existence of randomness and without trying to
measure the randomness of a given sequence of values (e.g., bits or numbers), we
elaborate on the question of how random bits can be generated in the rest of this
chapter. According to Definition 2.5, a random bit generator is a device or algorithm
that outputs a sequence of statistically independent and unbiased bits. This basically
means that the bits occur with the same probability (i.e., Pr[0] = Pr[1] = 1/2), and
that all 2k possible k-tuples occur approximately equally often (i.e., with probability
1/2k for all k ∈ N).

If we can generate random bits, then we can also generate (uniformly distrib-
uted) random numbers of any size. If, for example, we want to construct an n-bit
random number a, then we set b1 = 1, use the random bit generator to generate
n− 1 random bits b2, . . . , bn, and set

a =
n∑

i=1

bi2n−i. (9.1)

Similarly, if we want to construct a number that is randomly selected from the
interval [0,m] form ∈ N, then we set n to the length ofm (i.e., n = �logm�+1) and
use the random bit generator to generate n random bits b1, . . . , bn. If a constructed
according to (9.1) is smaller or equal to m, then we use it. If, however, a is bigger

1 Refer to Section 6.5 for an introduction to Turing machines.

Random Bit Generators 221

than m, then we don’t use it and generate another number instead. Consequently,
in what follows we only elaborate on the generation of random bits, and we
consider the construction of random numbers from random bits to be simple and
straightforward.

According to the leading quote of this chapter, random numbers (and random
bits) should not be generated with a method chosen at random, and hence the
question of how to actually generate random bits arises immediately. This question
is addressed next.

9.2 REALIZATIONS AND IMPLEMENTATIONS

In informational RFC 1750 [2], it is recommended that special hardware is used to
generate truly random bits. There are, however, also some situations in which special
hardware is not available, and software must be used to generate random bits instead.
Consequently, there is room for both hardware-based and software-based random bit
generators. Some general ideas about how to realize and implement such generators
are overviewed next. Afterwards, the notion of deskewing techniques is introduced
and very briefly explained.

9.2.1 Hardware-Based Random Bit Generators

Hardware-based random bit generators exploit the randomness that occurs in phys-
ical processes and phenomena. According to [3], examples of such processes and
phenomena include:

• The elapsed time between emission of particles during radioactive decay;

• The thermal noise from a semiconductor diode or resistor;

• The frequency instability of a free-running oscillator (e.g., [4]);

• The amount a metal insulator semiconductor capacitor is charged during a
fixed period of time (e.g., [5]);

• The air turbulence within a sealed disk drive that causes random fluctuations
in disk drive sector read latency times (e.g., [6, 7]);

• The sound from a microphone or video input from a camera.

It goes without saying that other physical processes and phenomena may be
employed by hardware-based random bit generators.

Hardware-based random bit generators could be easily integrated into contem-
porary computer systems. This is not yet the case, and hardware-based random bit

222 Contemporary Cryptography

generators are neither readily available nor widely deployed. There are, however,
some existing hardware devices that may be used to serve as sources of randomness.
The last two examples itemized earlier illustrate this possibility.

9.2.2 Software-Based Random Bit Generators

First of all, it is important to note that designing a random bit generator in software
is even more difficult than doing so in hardware. According to [3], processes upon
which software-based random bit generators may be based include:

• The system clock (e.g., [8]);

• The elapsed time between keystrokes or mouse movements;

• The content of input/output buffers;

• The input provided by the user;

• The values of operating system variables, such as system load or network
statistics.

Again, this list is not exclusive, and many other processes may also be used
by software-based random bit generators.

In either case, the behavior of the processes may vary considerably depending
on various factors, such as the computer platform, the operating system, and the
actual software release in use. It may also be difficult to prevent an adversary from
observing or manipulating these processes. For example, if an adversary has a rough
idea of when a random bit sequence was generated, he or she can guess the content
of the system clock at that time with a high degree of accuracy. Consequently, care
must be taken when the system clock and the identification numbers of running
processes are used to generate random bit sequences. This type of problem first
gained publicity in 1995, when it was found that the encryption in Netscape browsers
could be broken in around a minute due to the limited range of values provided
by such a random bit generator. Because the values used to generate session keys
could be established without too much difficulty, even U.S. domestic browsers with
128-bit session keys carried only 47 bits of entropy in their session keys at most
[9]. Shortly afterwards, it was found that the Massachusetts Institute of Technology
(MIT) implementations of Kerberos version 4 (e.g., [10]) and the magic cookie key
generation mechanism of the X windows system suffered from similar weaknesses.

Sometimes, it is possible to use external (i.e., external to the computer system
that needs the randomness) sources of randomness. For example, a potential source
of randomness is the unpredictable behavior of the stock market. This source, how-
ever, has some disadvantages of its own. For example, it is sometimes predictable

Random Bit Generators 223

(e.g., during a crash), it can be manipulated (e.g., by spreading rumors or by placing
a large stock transaction), and it is never secret.

In [2], it is argued that the best overall strategy for meeting the requirement
for unguessable random bits in the absence of a single reliable source is to obtain
random input from a large number of uncorrelated sources and to mix them with
a strong mixing function. A strong mixing function, in turn, is one that combines
two or more inputs and produces an output where each output bit is a different
complex nonlinear function of all input bits. On average, changing an input bit will
change about half of the output bits. But because the relationship is complex and
nonlinear, no particular output bit is guaranteed to change when any particular input
bit is changed. A trivial example for such a function is addition modulo 232. More
general strong mixing functions (for more than two inputs) can be constructed using
other cryptographic systems, such as cryptographic hash functions or symmetric
encryption systems.

9.2.3 Deskewing Techniques

Any source of random bits may be defective in that the output bits may be biased
(i.e., the probability of the source emitting a one is not equal to 1/2) or correlated
(i.e., the probability of the source emitting a one depends on previously emitted bits).
There are many deskewing techniques for generating truly random bit sequences
from the output bits of such a defective random bit generator. For example, if a
random bit generator outputs biased but uncorrelated bits, then one can group the
output sequence into pairs of bits, with a 10 pair transformed to a 1, a 01 pair
transformed to a 0, and 00 and 11 pairs discarded. The resulting binary sequence is
both unbiased and uncorrelated. This simple technique is due to John von Neumann
[11]. It was later generalized to achieve an output rate near the source entropy [12].
Handling a correlated bit source is more involved. Manuel Blum showed how to
produce unbiased uncorrelated bits from a biased correlated source [13].2 These
results were later generalized in many respects.

9.3 STATISTICAL RANDOMNESS TESTING

While it is impossible to give a mathematical proof that a generator is indeed a ran-
dom bit generator, statistical randomness tests may help detect certain kinds of weak-
nesses in the generator. This is accomplished by taking a sample output sequence of
the random bit generator and subjecting it to various (statistical randomness) tests.

2 Note, however, that this does not imply that the resulting bits have good randomness properties; it
only means that they are unbiased and uncorrelated.

224 Contemporary Cryptography

Each test determines whether the sequence possesses a certain attribute that a truly
random sequence would be likely to exhibit. An example of such an attribute is that
the sequence has roughly the same number of zeros as ones. The conclusion of each
test is not definite, but rather probabilistic. If the sequence is deemed to have failed
any one of the statistical tests, then the generator may be rejected as being non-
random. Otherwise, the generator may be subjected to further testing. On the other
hand, if the sequence passes all statistical randomness tests, then the generator is
accepted as being random.3

Many statistical randomness tests are described in the literature, and we are not
going to delve into this topic for the purpose of this book. Nevertheless, we want to
note that Ueli Maurer proposed a universal statistical test that can be used instead of
many statistical randomness tests [14]. The basic idea behind Maurer’s universal sta-
tistical test is that it should not be possible to significantly compress (without loss of
information) the output sequence of a random bit generator. Alternatively speaking,
if a sample output sequence of a bit generator can be significantly compressed, then
the generator should be rejected as being defective. Instead of actually compressing
the sequence, Maurer’s universal statistical test can be used to compute a quantity
that is related to the length of the compressed sequence. The universality of Maurer’s
universal statistical test arises because it is able to detect any one of a very general
class of possible defects a bit generator may have. A drawback is that it requires
a much longer sample output sequence in order to be effective. Provided that the
required output sequence can be generated efficiently, however, this drawback is not
particularly worrisome.

9.4 FINAL REMARKS

Random bit generators are at the core of most systems that employ cryptographic
techniques in one way or another. If, for example, a secret key cryptosystem is used,
then a random bit generator should be used to generate and establish a shared secret
between the communicating peer entities. If a public key cryptosystem is used, then
a random bit generator should be used to generate a public key pair. Furthermore,
if the cryptosystem is probabilistic, then a random bit generator should be used for
each and every encryption or digital signature generation.

In this chapter, we elaborated on random bit generators and overviewed
and discussed some possible realizations and implementations thereof. There are

3 More precisely, the term accepted should be replaced by not rejected, because passing the tests
merely provides probabilistic evidence that the generator produces sequences that have specific
properties of random sequences.

Random Bit Generators 225

hardware-based and software-based random bit generators. In either case, de-
skewing techniques may be used to improve the defectiveness of a specific random
bit generator, and statistical randomness testing (e.g., Maurer’s universal statistical
test) may be used to evaluate the quality of its output. In practice, it is often required
that a random bit generator conforms to a security level specified in FIPS PUB 140-2
[15].4

From an application viewpoint, it is important to be able to generate some
truly random bits (using a random bit generator) and use them to seed a PRBG as
introduced in Section 2.2.3. The PRBG is then used to generate a potentially infinite
sequence of pseudorandom bits. It depends on a secret key (i.e., a seed), and hence
it represents a secret key cryptosystem. PRBGs are further addressed in Chapter 12.

References

[1] Massey, J., “Shift-Register Synthesis and BCH Decoding,” IEEE Transactions on Information
Theory, IT-15(1), 1969, pp. 122–127.

[2] Eastlake, D., S. Crocker, and J. Schiller, “Randomness Recommendations for Security,” Request
for Comments 1750, December 1994.

[3] Menezes, A., P. van Oorschot, and S. Vanstone, Handbook of Applied Cryptography. CRC Press,
Boca Raton, FL, 1996.

[4] Fairfield, R.C., R.L. Mortenson, and K.B. Koulhart, “An LSI Random Number Generator (RNG),”
Proceedings of CRYPTO ’84, 1984, pp. 203–230.

[5] Agnew, G.B., “Random Sources for Cryptographic Systems,” Proceedings of EUROCRYPT ’87,
Springer-Verlag, LNCS 304, 1988, pp. 77–81.

[6] Davis, D., R. Ihaka, and P. Fenstermacher, “Cryptographic Randomness from Air Turbulance in
Disk Drives,” Proceedings of CRYPTO ’94, Springer-Verlag, LNCS 839, 1994, pp. 114–120.

[7] Jakobsson, M., et al., “A Practical Secure Physical Random Bit Generator,” Proceedings of the
ACM Conference on Computer and Communications Security, 1998, pp. 103–111.

[8] Lacy, J.B., D.P. Mitchell, and W.M. Schell, “CryptoLib: Cryptography in Software,” Proceedings
of the USENIX Security Symposium IV, USENIX Association, October 1993, pp. 1–17.

[9] Goldberg, I., and D. Wagner, “Randomness and the Netscape Browser—How Secure Is the World
Wide Web?” Dr. Dobb’s Journal, January 1996.

[10] Dole, B., S. Lodin, and E.H. Spafford, “Misplaced Trust: Kerberos 4 Session Keys,” Proceedings
of the ISOC Network and Distributed System Security Symposium, 1997, pp. 60–70.

[11] von Neumann, J., “Various Techniques for Use in Connection with Random Digits,” In von
Neumann’s Collected Works, Vol. 5, Pergamon Press, New York, NY, 1963, pp. 768–770.

4 http://csrc.nist.gov/publications/fips/fips140-2/fips1402.pdf

226 Contemporary Cryptography

[12] Elias, P., “The Efficient Construction of an Unbiased Random Sequence,” Annals of Mathematical
Statistics, Vol. 43, No. 3, 1972, pp. 865–870.

[13] Blum, M., “Independent Unbiased Coin Flips from a Correlated Biased Source: A Finite State
Markov Chain,” Proceedings of the 25th IEEE Symposium on Foundations of Computer Science,
IEEE, 1984, Singer Island, FL, pp. 425–433.

[14] Maurer, U.M., “A Universal Statistical Test for Random Bit Generators,” Journal of Cryptology,
Vol. 5, 1992, pp. 89–105.

[15] U.S. Department of Commerce, National Institute of Standards and Technology, Security Re-
quirements for Cryptographic Modules, FIPS PUB 140-2, May 2001.

Part III

SECRET KEY
CRYPTOSYSTEMS

227

Chapter 10

Symmetric Encryption Systems

In this chapter, we elaborate on symmetric encryption systems. More specifically, we
introduce the topic in Section 10.1, address block ciphers, stream ciphers, and per-
fectly (i.e., information-theoretically) secure encryption systems in Sections 10.2–
10.4, and conclude with some final remarks in Section 10.5. Note that symmetric
encryption systems are the most widely deployed cryptographic systems in use to-
day and that many books on cryptography elaborate only on these systems. Conse-
quently, this chapter is important and rather long.

10.1 INTRODUCTION

According to Definition 2.6, a symmetric encryption system (or cipher) consists of
the following five components:

• A plaintext message space M;

• A ciphertext space C;

• A key space K;

• A family E = {Ek : k ∈ K} of encryption functions Ek : M−→ C;

• A family D = {Dk : K ∈ K} of decryption functionsDk : C −→M.

In every practically relevant symmetric encryption system

Dk(Ek(m)) = m

229

230 Contemporary Cryptography

must hold for every plaintext message m ∈ M and every key k ∈ K (otherwise, a
ciphertext may not be decryptable, and hence the symmetric encryption system may
not be useful in the first place).1 In addition to this definition, a symmetric encryption
system may be randomized in the sense that the encryption function takes additional
random input. In fact, it turns out that randomized symmetric encryption systems are
advantageous from a security viewpoint (as discussed later in this chapter).

10.1.1 Examples

Many symmetric encryption systems use specific alphabets and corresponding plain-
text message, ciphertext, and key spaces. If, for example, the alphabet is Σ =
{A, . . . , Z}, then the spaces consist of all words that can be constructed with the
capital letters from A to Z . These letters can be associated with the 26 elements of
Z26 = {0, 1, . . . , 25}. In fact, there is a bijective map from {A, . . . , Z} into Z26,
and hence we can work either with Σ = {A, . . . , Z} or Z26 = {0, . . . , 25}.

Let Σ ∼= Z26 = {0, . . . , 25} and M = C = K = Z26. The encryption
function of an additive cipher is defined as follows:

Ek : M−→ C
m �−→ m+ k (mod 26) = c

Similarly, the decryption function is defined as follows:

Dk : C −→M
c �−→ c− k (mod 26) = m

In the additive cipher, the decryption key is the additive inverse of the en-
cryption key. Consequently, it is simple for anybody knowing the encryption key to
determine the decryption key (that’s why the encryption system is called symmetric
in the first place). In Section 1.3, we briefly mentioned the Caesar cipher. This is an
example of an additive cipher with a fixed key k = 3.

Similar to the additive cipher, one can define a multiplicative cipher or com-
bine an additive and a multiplicative cipher in an affine cipher.2 In the second case,

1 This condition is specific for symmetric encryption systems. In asymmetric encryption systems, the
keys that select an encryption function and a decryption function from the corresponding families
are not equal and may not be efficiently computable from one another. This point is further addressed
in Chapter 14.

2 The multiplicative cipher works similar to the additive cipher. It uses multiplication instead of
addition. Also, to make sure that one can decrypt all the time, one must work with {1, 2, . . . , 26}
instead of {0, 1, . . . , 25}.

Symmetric Encryption Systems 231

the key space K consists of all pairs (a, b) ∈ Z
2
26 with gcd(a, 26) = 1. As such, the

key space has φ(26) · 26 = 312 elements and is far too small for practical use. It
can, however, be used for demonstrational purposes. In fact, the encryption function
of an affine cipher is defined as follows:

E(a,b) : M−→ C
m �−→ am+ b (mod 26) = c

Similarly, the decryption function is defined as follows:

D(a,b) : C −→M
c �−→ a−1(c− b) (mod 26) = m

Obviously, the multiplicative inverse of a (i.e., a−1) in Z26 is needed to
decrypt c. Remember from Chapter 3 that the extended Euclid algorithm (i.e.,
Algorithm 3.2) can be used to efficiently compute this element.

An affine cipher can be broken with two known plaintext-ciphertext pairs. If,
for example, the adversary knows (F,Q) = (5, 16) and (T,G) = (19, 6),3 then he
or she can set up the following system of two equivalences:

a5 + b ≡ 16 (mod 26)
a19 + b ≡ 6 (mod 26)

The first equivalence can be rewritten as b ≡ 16 − 5a (mod 26) and used in
the second equivalence: 19a + b ≡ 19a + 16 − 5a ≡ 14a + 16 ≡ 6 (mod 26).
Consequently, 14a ≡ −10 ≡ 16 (mod 26), or 7a ≡ 8 (mod 13), respectively.
By multiplying either side with the multiplicative inverse element of 7 modulo 26
(which is 2), one gets a ≡ 16 ≡ 3 (mod 13), and hence a = 3 and b = 1. The
adversary can now efficiently compute D(a,b) similar to the legitimate recipient of
the encrypted message.

Σ = {A, . . . , Z} ∼= Z26 is a good choice for human beings. If, however,
computer systems are used for encryption and decryption, then it is advantageous
and more appropriate to use Σ = Z2 = {0, 1} ∼= F2 and to set the plaintext message,

3 This means that the letter “F” is mapped to the letter “Q” and the letter “T” is mapped to the letter
“G.”

232 Contemporary Cryptography

ciphertext, and key spaces to {0, 1}∗. More often than not, the key space is set to
{0, 1}l (instead of {0, 1}∗) for a reasonably sized key length l.

Additive, multiplicative, and affine ciphers are the the simplest examples of
monoalphabetic substitution ciphers. In a monoalphabetic substitution cipher, each
letter of the plaintext alphabet is replaced by another letter of the ciphertext alphabet.
The replacement is fixed, meaning that a plaintext letter is always replaced by the
same ciphertext letter. Consequently, monoalphabetic substitution ciphers can easily
be attacked using frequency analysis. An early attempt to increase the difficulty of
frequency analysis attacks on substitution ciphers was to disguise plaintext letter
frequencies by homophony. In a homophonic substitution cipher, plaintext letters
can be replaced by more than one ciphertext letter. Usually, the highest frequency
plaintext letters are given more equivalents than lower frequency letters. In this way,
the frequency distribution is flattened, making analysis more difficult. Alternatively,
polyalphabetic substitution ciphers flatten the frequency distribution of ciphertext
letters by using multiple ciphertext alphabets. All of these substitution ciphers are
overviewed and discussed in the literature. Most of them, including, for example,
the Vigenère cipher,4 are quite easy to break. You may refer to any book about
(classical) cryptography if you want to get into these historically relevant ciphers
and the cryptanalysis thereof (some books are mentioned in the Preface and Chapter
1). For the purpose of this book, we don’t look into these ciphers. Instead, we focus
on ciphers that are considered to be secure and hence are practically relevant. We
begin with a classification of such symmetric encryption systems.

10.1.2 Classes of Symmetric Encryption Systems

Every practically relevant symmetric encryption system processes plaintext mes-
sages unit by unit. A unit, in turn, may be either a bit or a block of bits (e.g., one or
several bytes). Furthermore, the symmetric encryption system may be implemented
as an FSM, meaning that the ith ciphertext unit depends on the ith plaintext unit, the
secret key, and some internal state. Depending on the existence and use of internal
state, block ciphers and stream ciphers are usually distinguished.

Block ciphers: In a block cipher, the encrypting and decrypting devices have no
internal state (i.e., the ith ciphertext unit only depends on the ith plaintext
unit and the secret key). There is no memory involved, except for the internal
memory that is used by the implementation of the cipher. Block ciphers are
further addressed in Section 10.2.

4 The Vigenère cipher is a polyalphabetic substitution cipher that was published in 1585 (and
considered unbreakable until 1863) and was widely deployed in previous centuries.

Symmetric Encryption Systems 233

Stream ciphers: In a stream cipher, the encrypting and decrypting devices have
internal state (i.e., the ith ciphertext unit depends on the ith plaintext unit, the
secret key, and the internal state). Consequently, stream ciphers represent the-
oretically more advanced and more powerful symmetric encryption systems
than block ciphers (in practice, things are more involved and the question
of whether block ciphers or stream ciphers are more advanced is discussed
controversially). There are two major classes of stream ciphers that differ in
their state transition function (i.e., in the way they manipulate the internal
state and compute the next state). In a synchronous stream cipher, the next
state does not depend on the previously generated ciphertext units, whereas in
a nonsynchronous stream cipher, the next state also depends on some (or all)
of the previously generated ciphertext units. Synchronous stream ciphers are
also called additive stream ciphers, and nonsynchronous stream ciphers are
also called self-synchronizing stream ciphers. In this book, we use these terms
synonymously and interchangeably. Stream ciphers are further addressed in
Section 10.3.

The distinction between block ciphers and stream ciphers is less precise than
one might expect. In fact, there are modes of operation that turn a block cipher into
a stream cipher (be it synchronous or nonsynchronous). Some of these modes are
overviewed and briefly discussed in Section 10.2.3.

10.1.3 Secure Symmetric Encryption Systems

In Section 1.2.2, we said that we must formally define the term security before we
can make precise statements about the security of a cryptographic system, such as
a symmetric encryption system. More specifically, we must specify and nail down
the adversary’s capabilities and the task he or she is required to solve in order to be
successful (i.e., to break the security of the system). This brings us to the following
list of attacks that are usually distinguished in the literature.

Ciphertext-only attacks: In a ciphertext-only attack, the adversary knows one or
several ciphertext units and tries to determine the corresponding plaintext
message units or the key(s) that has (have) been used for encryption. In
the second case, the adversary is able to decrypt any ciphertext unit that
is encrypted with the key(s). An encryption system that is (known to be)
vulnerable to a ciphertext-only attack is totally insecure and should not be
used.

Known-plaintext attacks: In a known-plaintext attack, the adversary knows one
or several ciphertext and plaintext pairs, and tries either to determine the key(s)

234 Contemporary Cryptography

that has (have) been used for encryption or to decrypt a ciphertext for which
he or she does not yet know the corresponding plaintext.

Chosen-plaintext attacks: In a chosen-plaintext attack, the adversary has access
to the encryption function (or the device that implements the function, re-
spectively) and can encrypt any plaintext message unit of his or her choice.
He or she tries either to determine the key(s) that has (have) been used for
encryption or to decrypt ciphertext units for which he or she does not yet know
the corresponding plaintext message units. In a typical setting, the adversary
has to choose the plaintext units in advance (i.e., before the attack begins). In
an adaptive chosen-plaintext attack, however, the adversary can dynamically
choose plaintext message units while the attack is going on. Needless to say,
adaptive chosen-plaintext attacks are generally at least as powerful as their
(nonadaptive) counterparts.

Chosen-ciphertext attacks: In a chosen-ciphertext attack, the adversary has ac-
cess to the decryption function (or the device that implements the function,
respectively) and can decrypt any ciphertext unit of his or her choice. He or
she tries either to determine the key(s) that has (have) been used for decryption
or to encrypt plaintext message units for which he or she does not yet know
the corresponding ciphertext units. Again, in a typical setting, the adversary
has to choose the ciphertext units in advance, whereas in an adaptive chosen-
ciphertext attack, the adversary can dynamically choose ciphertext units while
the attack is going on. An adaptive chosen-ciphertext attack is again more
powerful than its (nonadaptive) counterpart.

In general, there are many possibilities to implement these attacks. For ex-
ample, if an adversary knows the symmetric encryption system that is in use, he
or she can implement a ciphertext-only attack simply by trying every possible key
to decrypt a given ciphertext unit. This attack can even be parallelized (if many
processors participate in the key search). Let |K| be the size of the key space (i.e., the
number of possible keys), t be the time it takes to test a candidate key, and p be the
number of processors performing the key search. Then each processor is responsible
for approximately |K|/p keys, and hence it takes time |K|t/p to test them all. On
the average, one can expect to find the correct key about halfway through the search,
making the expected time approximately

|K|t
2p

. (10.1)

This attack is known as brute-force attack or exhaustive key search. The attack
is possible whenever the adversary is able to decide whether he or she has found a

Symmetric Encryption Systems 235

correct plaintext message unit (or a correct key, respectively). For example, it may
be the case that the plaintext message is text written in a specific language or that
it otherwise contains enough redundancy to tell it apart from illegitimate plaintext
messages. Suppose, for example, that the adversary does not know the plaintext
message (for a given ciphertext), but that he or she knows that the plaintext message
is coded with one ASCII character per byte. This means that each byte has a leading
zero bit. This is usually enough redundancy to tell legitimate plaintext messages
apart from illegitimate ones.

If the adversary knows a plaintext mesage (that is encrypted), then he or she
can implement a known-plaintext attack. In the realm of affine ciphers, we already
introduced an exemplary known-plaintext attack. Such attacks are generally simpler
and more likely to occur than one might expect. Note, for example, that many
communication protocols have specific fields whose values are either known or can
be easily guessed (for example, if they are padded with zero bytes).

In practice, (adaptive) chosen-plaintext and (adaptive) chosen-ciphertext at-
tacks are considerably more difficult to implement (than ciphertext-only and known-
plaintext attacks), mainly because they seem to require access to the encryption
or decryption function (or the device that implements the function, respectively).
Nevertheless, they must still be considered and kept in mind when one discusses
the security of an encryption system (chosen-ciphertext attacks have in fact become
important for asymmetric encryption systems, as addressed in Section 14.1). This
is also true for side-channel attacks, mentioned in Section 1.2.2 but not further ad-
dressed in this book.

10.1.4 Evaluation Criteria

In order to evaluate the goodness of a symmetric encryption system, it is necessary to
have a set of well-defined evaluation criteria. Referring to Shannon,5 the following
five criteria may be used.

Amount of secrecy: The ultimate goal of a symmetric encryption system is to keep
plaintext messages secret. Consequently, the amount of secrecy provided by
a symmetric encryption system is an important criterion. It is particularly
interesting to be able to measure (and quantify in one way or another)
the amount of secrecy a symmetric encryption system is able to provide.
Unfortunately, we are far away from having or being able to develop such
a measure.

5 Refer to Section 1.3 for references to Shannon’s original work.

236 Contemporary Cryptography

Size of key: Symmetric encryption systems employ secret keys that must be se-
curely generated, distributed, managed, and memorized. It is therefore desir-
able (from an implementation and performance viewpoint) to have keys that
are as small as possible.

Complexity of enciphering and deciphering operations: To allow an efficient
implementation, the enciphering and deciphering operations should not be too
complex (again, they should be as simple as possible).

Propagation of errors: Different symmetric encryption systems and different modes
of operation have different characteristics with regard to the propagation of
errors. Sometimes propagation of errors is desirable, and sometimes it is not.
Consequently, the nature and the characteristics of the application determines
the requirements with regard to error propagation. In many situations, it is
desirable to have small error propagation.

Expansion of messages: In some symmetric encryption systems, the size of a
message is increased by the encryption, meaning that the ciphertext is larger
than the corresponding plaintext message. This is not always desirable, and
sometimes symmetric encryption systems are designed to minimize message
expansion. If, for example, encrypted data must be fed into a fixed-length field
of a communication protocol, then the symmetric encryption system must not
expand the plaintext message.

This list is not comprehensive, and many other and complementary evaluation
criteria may be important in a specific environment or application setting. Further-
more, not all criteria introduced by Shannon are still equally important today. For
example, the “size of key” and the “complexity of enciphering and deciphering op-
erations” criteria are not so important anymore (because there are computer systems
that manage keys and run the enciphering and deciphering operations).

10.2 BLOCK CIPHERS

As mentioned before, every practical symmetric encryption system processes plain-
text messages unit by unit, and in the case of a block cipher a unit is called a block.
Consequently, a block cipher maps plaintext message blocks of a specific length
into ciphertext blocks of the same length, and hence M = C = Σn (for a specific
alphabet Σ and a specific block length n). For example, the additive, multiplicative,
and affine ciphers mentioned earlier are block ciphers with alphabet Σ = Z26 and
block length 1.

Symmetric Encryption Systems 237

In Section 3.1.4 (and Definition 3.23), we introduced the notion of a permuta-
tion. In short, we said that a permutation on set S is a bijective function f : S → S.
In the case of block ciphers, the set is Σn, and E = {Ek : k ∈ K} is a family
of bijective encryption functions Ek : Σn → Σn. This means that the encryption
functions of a block cipher actually represent permutations of Σn (or that a block
cipher is a family of permutations, respectively). If we fix the block length n and
work with the plaintext message and ciphertext spaces M = C = Σn, then the key
space potentially comprises all permutations over Σn (i.e., K = P (Σn)). For every
key π ∈ P (Σn), the encryption and decryption functions are defined as follows:

Eπ : Σn −→ Σn

w �−→ π(w)

Dπ : Σn −→ Σn

w �−→ π−1(w)

There are |P (Σn)| = (Σn)! possible permutations that can be used as block
ciphers with block length n. If, for example, Σ = {0, 1}, then there are (2n)!
possible permutations. The function f(n) = (2n)! grows tremendously (see Table
10.1 for the first 10 values). For a typical block length n of 64 bits, f(n) returns

264! = 18, 446, 744, 073, 709, 551, 616!

This number is so huge that it requires more than 269 bits only to encode it.
Consequently, if we wanted to specify a particular permutation, then we would have
to introduce a numbering and use an index number that is approximately of that
size. This 269-bit number would then serve as a secret key for the communicating
entities. It is, however, doubtful whether the entities would be able to manage such
a long key. Instead, symmetric encryption systems are usually designed to take
a reasonably long key6 and generate a one-to-one mapping that looks random to
someone who does not know the secret key. So it is reasonable to use only some
possible permutations of Σn (out of P (Σn)) as encryption and decryption functions
and to use comparably small keys to refer to them. To analyze the security of
such a block cipher, one has to study the algebraic properties of the underlying
permutations. If, for example, the order of such a permutation is small, then one
can easily decrypt a ciphertext by encrypting it multiple times.

6 A reasonably long key has more like 69 bits than 269 bits.

238 Contemporary Cryptography

Table 10.1
The Growth Rate of f(n) = (2n)! for n = 1, . . . , 10

n (2n)!

1 21! = 2! = 2
2 22! = 4! = 24
3 23! = 8! = 40′320
4 24! = 16! = 20′922′789′888′000
5 25! = 32! ≈ 2.63 · 1035

6 26! = 64! ≈ 1.27 · 1089

7 27! = 128! ≈ 3.86 · 10215

8 28! = 256! ≈ 8.58 · 10506

9 29! = 512! ≈ 3.48 · 101166

10 210! = 1024! ≈ 5.42 · 102639

In the design of symmetric encryption systems, permutations and substitutions
are usually used and combined to provide confusion and diffusion.

• The purpose of confusion is to make the relation between the key and the
ciphertext as complex as possible.

• The purpose of diffusion is to spread the influence of a single plaintext bit over
many ciphertext bits. In a block cipher, diffusion propagates bit changes from
one part of a block to other parts of the block.

Symmetric encryption systems that combine permutations and substitutions
in multiple rounds (to provide a maximum level of confusion and diffusion) are
sometimes also referred to as substitution-permutation ciphers. Many practically
relevant symmetric encryption systems, including, for example, the DES overviewed
and discussed next, are substitution-permutation ciphers. When we describe DES
and a few other symmetric encryption systems in this chapter, we are not as formal
and formally correct as one could possibly be. Instead, we adopt some terminology
and notation used in the original descriptions and specifications of the encryption
systems (mainly to make it simpler for the reader to get into these documents).

10.2.1 DES

The DES was developed by IBM in the 1970s7 and was adopted by the National
Bureau of Standards (NBS) as FIPS PUB 46 in 1977. Nowadays, the FIPS PUBS are
developed and maintained by the NIST. The standard was reaffirmed in 1983, 1988,

7 The symmetric encryption system was called Lucifer internally at IBM.

Symmetric Encryption Systems 239

1993, and 1999, and it was officially withdrawn in July 2004.8 The DES specification
that was reaffirmed in 1999 (i.e., FIPS PUB 46-3 [1]) is publicly and freely available
on the Internet.9 It specifies both the DES and the Triple Data Encryption Algorithm
(TDEA), which may be used to protect highly sensitive data (see Section 10.2.1.6).
From a security viewpoint, the TDEA is certainly the preferred choice. In either
case, cryptographic modules that implement FIPS 46-3 should also conform to the
requirements specified in FIPS 140-1 [2]. As of this writing, there is an increasingly
large number of DES implementations (both in hardware and software) that conform
to the various levels specified in this standard.

DES is the major representative of a Feistel cipher.10 These ciphers are
overviewed first. Afterwards, the DES encryption and decryption algorithms are
described, and the security of the DES is briefly analyzed. Finally, a variant of DES
(named DESX) and TDEA are overviewed, discussed, and put into perspective.

10.2.1.1 Feistel Ciphers

A Feistel cipher is a block cipher with a particular structure (known as Feistel
network). The alphabet is Σ = Z2 = {0, 1}, and the block length is 2t (for a
reasonably sized t ∈ N

+). The Feistel cipher runs in r ∈ N
+ rounds. For every

k ∈ K, r round keys k1, . . . , kr must be generated and used on a per-round basis.
The encryption function Ek starts by splitting the plaintext message block m

into two halves of t bits each. Let L0 be the left half, and R0 be the right half (i.e.,
m = (L0, R0)). A sequence of pairs (Li, Ri) for i = 1, . . . , r is then recursively
computed as follows:

(Li, Ri) = (Ri−1, Li−1 ⊕ fki(Ri−1)) (10.2)

This means that Li = Ri−1 and Ri = Li−1 ⊕ fki(Ri−1). For example, if
i = 1, then L1 and R1 are computed as follows:

L1 = R0

R1 = L0 ⊕ fk1(R0)

8 http://csrc.nist.gov/Federal-register/July26-2004-FR-DES-Notice.pdf
9 http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf
10 Feistel ciphers are named after the IBM researcher Horst Feistel who was involved in the original

design of Lucifer and DES. Feistel lived from 1915 to 1990 and was one of the first nongovernment
cryptographers.

240 Contemporary Cryptography

Similarly, if i = 2, then L2 and R2 are computed as follows:

L2 = R1

R2 = L1 ⊕ fk2(R1)

This continues until, in the last round, Lr and Rr are computed as follows:

Lr = Rr−1

Rr = Lr−1 ⊕ fkr (Rr−1)

The pair (Lr, Rr) in reverse order then represents the ciphertext block. Hence,
the encryption of plaintext message m using key k can formally be expressed as
follows:

Ek(m) = Ek(L0, R0) = (Rr , Lr)

The recursive formula (10.2) can also be written as follows:

(Li−1, Ri−1) = (Ri ⊕ fki(Li), Li)

This means that it is possible to recursively compute Li−1 and Ri−1 from
Li, Ri, and ki and to determine (L0, R0) from (Rr, Lr) using the round keys
in reverse order (i.e., kr, . . . , k1) accordingly. Consequently, a Feistel cipher can
always be decrypted using the same (encryption) algorithm and applying the round
keys in reverse order. This property simplifies the implementation of the decryption
function considerably (in fact, the encryption and decryption functions are the
same). Note that it is possible to design and come up with iterative block ciphers
that are not Feistel ciphers, yet whose encryption and decryption (after a certain
reordering or recalculation of variables) are structurally the same. One example is
the International Data Encryption Algorithm (IDEA) employed by many security
products, including, for example, former versions of Pretty Good Privacy (PGP).
Also, Feistel ciphers have important applications in public key cryptography as
well. For example, the optimal asymmetric encryption padding scheme addressed
in Section 14.3.2 is basically a two-round Feistel cipher. It is difficult to make

Symmetric Encryption Systems 241

statements about the security of a Feistel cipher, unless one considers a particular
round function f . Let’s elaborate on the DES encryption and decryption functions
or algorithms next.

10.2.1.2 Encryption Algorithm

DES is a Feistel cipher with t = 32 and r = 16. This means that the block length
of DES is 64 bits, and hence M = C = {0, 1}64, and that the DES encryption
and decryption algorithms operate in 16 rounds. Furthermore, DES keys are 64-bit
strings with the additional property that the last bit of each byte is set to odd parity.
This means that the sum modulo 2 of all bits in a byte must be odd and that the parity
bit is set accordingly. This can be formally expressed as follows:

K = {(k1, . . . , k64) ∈ {0, 1}64 |
8∑

i=1

k8j+i ≡ 1 (mod 2) for j = 0, . . . , 7}

For example, F1DFBC9B79573413 is a valid DES key. Its odd parity can be
verified using the following table:

F1 1 1 1 1 0 0 0 1
DF 1 1 0 1 1 1 1 1
BC 1 0 1 1 1 1 0 0
9B 1 0 0 1 1 0 1 1
79 0 1 1 1 1 0 0 1
57 0 1 0 1 0 1 1 1
34 0 0 1 1 0 1 0 0
13 0 0 0 1 0 0 1 1

Consequently, the first seven bits of a DES key byte determine the last bit, and
the size of the resulting key space is 256 (instead of 264). As mentioned earlier, the
round keys derived from the DES key are the same for encryption and decryption;
they are only used in reverse order.

The DES encryption algorithm is specified in Algorithm 10.1 and illustrated
in Figure 10.1. To encrypt plaintext message block m using key k, the algorithm
operates in three steps:

1. The initial permutation (IP) as illustrated in Table 10.2 is applied to m. If
m = m1m2m3 . . .m64 ∈M = {0, 1}64, then IP (m) = m58m50m42 . . .m7 ∈
M.

242 Contemporary Cryptography

Algorithm 10.1 The DES encryption algorithm.

(m, k)

m← IP (m)
L0 ← leftmost 32 bits of m
R0 ← rightmost 32 bits of m
for i = 1 to 16 do

Li ← Ri−1

Ri ← Li−1 ⊕ fki
(Ri−1)

c← IP−1(R16, L16)

(c)

2. A 16-round Feistel cipher is applied to IP (m). The corresponding round
function f is addressed later.

3. The inverse initial permutation (IP−1) as illustrated in Table 10.3 is applied.
If (L16, R16) is the output of step 2, then c = IP−1(R16, L16).

Table 10.2
The Initial Permutation IP of the DES

58 50 42 34 26 18 10 2
60 52 44 36 28 20 12 4
62 54 46 38 30 22 14 6
64 56 48 40 32 24 16 8
57 49 41 33 25 17 9 1
59 51 43 35 27 19 11 3
61 53 45 37 29 21 13 5
63 55 47 39 31 23 15 7

The DES round function f operates on blocks of 32 bits and uses a 48-bit
key ki in each round (i.e., fki : {0, 1}32 → {0, 1}32 for every ki ∈ {0, 1}48).
The working principle of the DES round function f is illustrated in Figure 10.2.
First, the 32-bit argument R is expanded to 48 bits using the expansion function
E : {0, 1}32 → {0, 1}48. As shown in Table 10.4, the expansion function basically
works by doubling some bits. If R = r1r2 . . . r31r32, then E(R) = r32r1 . . . r32r1.
Afterward, the string E(R) is added modulo 2 to the 48-bit key k. The result is split
into 8 blocks B1, . . . , B8 of 6 bits each (i.e., E(R) ⊕ k = B1B2B3B4B5B6B7B8

andBi ∈ {0, 1}6 for i = 1, . . . , 8). Next, each 6-bit blockBi is transformed into a 4-
bit blockCi for i = 1, . . . , 8 using a function Si : {0, 1}6 −→ {0, 1}4 (this function
is called S-box and explained later). For i = 1, . . . , 8, we have Ci = Si(Bi), and
hence C = C1C2 . . . C8. Each Ci (i = 1, . . . , 8) is 4 bits long, so the total length

Symmetric Encryption Systems 243

@$

�

F

24��
�

� ��

F�

�

=

��

G�

F3

�

=

�3

G3

F�2

=

��2

��2 F�2

@$'�

�

���
��

Figure 10.1 The DES encryption algorithm.

of C is 32 bits. It is subject to the permutation P , as specified in Table 10.5. If
C = c1c2 . . . c32, then P (C) = c16c7 . . . c25. The result is fk(R), and it is the
output of the round function f .

The S-boxes S1, . . . , S8 of the DES are illustrated in Table 10.6. Each S-
box can be represented by a table that consists of 4 rows and 16 columns. If
B = b1b2b3b4b5b6 is input to Si, then the binary string b1b6 ∈ {0, 1}2 represents a
number between 0 and 3 (this number is the row index for the table), whereas the
binary string b2b3b4b5 ∈ {0, 1}4 represents a number between 0 and 15 (this number
is the column index for the table). The output of Si(B) is the number found in the
table (on the row that corresponds to the row index and the column that corresponds
to the column index), written in binary notation. For example, if B = 011001, then
the row index is b1b6 = 01 = 1 and the column index is b2b3b4b5 = 1100 = 12.

244 Contemporary Cryptography

�

�

�.�/

13��
� 47��
�

=

%� %3 %7

2��
�

�� �3 �7
4��
�

�� �3 �7

$

���.�/

13��
�

47��
�

�'�����

Figure 10.2 The DES round function f .

Consequently, S5(011001) refers to the decimal number 3 that can be written as a
sequence of bits (i.e., 0011). This sequence is the output of the S-box.

Last but not least, we must explain how the 16 round keys k1, . . . , k16 ∈
{0, 1}48 are derived from the DES key k ∈ {0, 1}64. We therefore define vi for
i = 1, . . . , 16:

vi =
{

1 if i ∈ {1, 2, 9, 16}
2 otherwise (i.e., if i ∈ {3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15})

We also use two functions called PC1 and PC2.11 PC1 maps a 64-bit
string (i.e., a DES key k) to two 28-bit strings C and D (i.e., PC1 : {0, 1}64 →

11 The acronym PC stands for permuted choice.

Symmetric Encryption Systems 245

Table 10.3
The Inverse Initial Permutation IP−1 of the DES

40 8 48 16 56 24 64 32
39 7 47 15 55 23 63 31
38 6 46 14 54 22 62 30
37 5 45 13 53 21 61 29
36 4 44 12 52 20 60 28
35 3 43 11 51 19 59 27
34 2 42 10 50 18 58 26
33 1 41 9 49 17 57 25

Table 10.4
The Expansion Function E of the DES

32 1 2 3 4 5 4 5 6 7 8 9
8 9 10 11 12 13 12 13 14 15 16 17

16 17 18 19 20 21 20 21 22 23 24 25
24 25 26 27 28 29 28 29 30 31 32 1

{0, 1}28 × {0, 1}28), and PC2 maps two 28-bit strings to a 48-bit string (i.e.,
PC2 : {0, 1}28 × {0, 1}28 → {0, 1}48).

• The function PC1 is illustrated in Table 10.7. The upper half of the table
specifies the bits that are taken from k to construct C, and the lower half
of the table specifies the bits that are taken from k to construct D. If k =
k1k2 . . . k64, then C = k57k49 . . . k36 and D = k63k55 . . . k4. Note that the
8 parity bits k8, k16, . . . , k64 are not considered and occur neither in C nor in
D.

• The function PC2 is illustrated in Table 10.8. The two 28-bit strings that are
input to the function are concatenated to form a 56-bit string. If this string is
b1b2 . . . b56, then the function PC2 turns this string into b14b17 . . . b32. Note

Table 10.5
The Permutation P of the DES

16 7 10 21 29 12 28 17
1 15 23 26 5 18 31 20
2 8 24 14 32 27 3 9

19 13 30 6 22 11 4 25

246 Contemporary Cryptography

Table 10.6
The S-Boxes S1 to S8 of the DES

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
S1 0 14 4 13 1 2 15 11 8 3 10 6 12 5 9 0 7

1 0 15 7 4 14 2 13 1 10 6 12 11 9 5 3 8
2 4 1 14 8 13 6 2 11 15 12 9 7 3 10 5 0
3 15 12 8 2 4 9 1 7 5 11 3 14 10 0 6 13

S2 0 15 1 8 14 6 11 3 4 9 7 2 13 12 0 5 10
1 3 13 4 7 15 2 8 14 12 0 1 10 6 9 11 5
2 0 14 7 11 10 4 13 1 5 8 12 6 9 3 2 15
3 13 8 10 1 3 15 4 2 11 6 7 12 0 5 14 9

S3 0 10 0 9 14 6 3 15 5 1 13 12 7 11 4 2 8
1 13 7 0 9 3 4 6 10 2 8 5 14 12 11 15 1
2 13 6 4 9 8 15 3 0 11 1 2 12 5 10 14 7
3 1 10 13 0 6 9 8 7 4 15 14 3 11 5 2 12

S4 0 7 13 14 3 0 6 9 10 1 2 8 5 11 12 4 15
1 13 8 11 5 6 15 0 3 4 7 2 12 1 10 14 9
2 10 6 9 0 12 11 7 13 15 1 3 14 5 2 8 4
3 3 15 0 6 10 1 13 8 9 4 5 11 12 7 2 14

S5 0 2 12 4 1 7 10 11 6 8 5 3 15 13 0 14 9
1 14 11 2 12 4 7 13 1 5 0 15 10 3 9 8 6
2 4 2 1 11 10 13 7 8 15 9 12 5 6 3 0 14
3 11 8 12 7 1 14 2 13 6 15 0 9 10 4 5 3

S6 0 12 1 10 15 9 2 6 8 0 13 3 4 14 7 5 11
1 10 15 4 2 7 12 9 5 6 1 13 14 0 11 3 8
2 9 14 15 5 2 8 12 3 7 0 4 10 1 13 11 6
3 4 3 2 12 9 5 15 10 11 14 1 7 6 0 8 13

S7 0 4 11 2 14 15 0 8 13 3 12 9 7 5 10 6 1
1 13 0 11 7 4 9 1 10 14 3 5 12 2 15 8 6
2 1 4 11 13 12 3 7 14 10 15 6 8 0 5 9 2
3 6 11 13 8 1 4 10 7 9 5 0 15 14 2 3 12

S8 0 13 2 8 4 6 15 11 1 10 9 3 14 5 0 12 7
1 1 15 13 8 10 3 7 4 12 5 6 11 0 14 9 2
2 7 11 4 1 9 12 14 2 0 6 10 13 15 3 5 8
3 2 1 14 7 4 10 8 13 15 12 9 0 3 5 6 11

that only 48 bits are taken into account and that b9, b18, b22, b25, b35, b38, b43,
and b54 are discarded.

To derive the 16 round keys k1, . . . , k16 from the DES key k, (C0, D0)
are first initialized with PC1(k) according to the construction given earlier. For
i = 1, . . . 16, Ci is then set to the string that results from a cyclic shift left of Ci−1

for vi positions, and Di is set to the string that results from a cyclic shift left of
Di−1 for vi positions. Finally, the round key ki is the result of concatenating Ci and
Di, and applying the function PC2 to the result (i.e., ki = PC2(Ci ‖ Di). The
resulting key schedule calculation is illustrated in Figure 10.3.

In the literature, many numeric examples can be found to illustrate the working
principles of the DES encryption algorithm or to verify the correct input-output
behavior of a specific DES implementation, respectively.

10.2.1.3 Decryption Algorithm

As mentioned earlier, the DES is a Feistel cipher and as such the decryption
algorithm is the same as the encryption algorithm. This means that Algorithm 3.1
can also be used for decryption. The only difference is that the key schedule must

Symmetric Encryption Systems 247

Table 10.7
The Function PC1 of the DES

57 49 41 33 25 17 9
1 58 50 42 34 26 18

10 2 59 51 43 35 27
19 11 3 60 52 44 36
63 55 47 39 31 23 15
7 62 54 46 38 30 22

14 6 61 53 45 37 29
21 13 5 28 20 12 4

Table 10.8
The Function PC2 of the DES

14 17 11 24 1 5
3 28 15 6 21 10

23 19 12 4 26 8
16 7 27 20 13 2
41 52 31 37 47 55
30 40 51 45 33 48
44 49 39 56 34 53
46 42 50 36 29 32

be reversed, meaning that the DES round keys must be used in reverse order (i.e.,
k16, . . . , k1) to decrypt a given ciphertext.12

10.2.1.4 Security Considerations

Since its standardization in the 1970s, the DES has been subject to a lot of public
scrutiny. For example, people found that there are 4 weak keys and 12 semiweak
keys.

• A DES key k is weak if DESk(DESk(m)) = m for all m ∈ M = {0, 1}64,
meaning that the DES encryption with k is inverse to itself (i.e., if m is
encrypted twice with a weak key, then the result is again m).

• The DES keys K1 and K2 are semiweak if DESk1(DESk2(m)) = m for all
m ∈ M = {0, 1}64, meaning that the DES encryptions with k1 and k2 are
inverse to each other.

12 Test vectors for DES encryption and decryption can be found, for example, in a NIST document
available at http://csrc.nist.gov/publications/nistpubs/800-17/800-17.pdf.

248 Contemporary Cryptography

$��

�� !�

�� !�

�3 !3

��2 !�2

���
���
���
���
���
�

F�����

�� F�����

��

F�����

�� F�����

��

$�3 �

$�3 �2

Figure 10.3 The DES key schedule calculation.

Because of their strange properties, weak and semiweak DES keys should not
be used in practice. Because there are only 16 = 24 such keys, the probability of
randomly generating one is only

24

256
= 2−52 ≈ 2.22 · 10−16.

This probability is not particularly worrisome. It’s certainly equally insecure
to use a very small (large) key, as an adversary is likely to start searching for keys
from the bottom (top). Consequently, there is no need to worry much about weak
and semiweak keys in a specific application setting.

Symmetric Encryption Systems 249

More interestingly, several cryptanalytical attacks have been developed in an
attempt to break the security of DES. Examples include differential cryptanalysis [3]
and linear cryptanalysis [4]. Using differential cryptanalysis to break DES requires
247 chosen plaintexts, whereas linear cryptanalysis requires 243 known plaintexts.13

In either case, the amount of chosen or known plaintext is far too large to be
practically relevant. The results, however, are theoretically interesting and have
provided principles and criteria for the design of secure block ciphers (people have
since admitted that defending against differential cryptanalysis was one of the design
goals for DES [5]).

From a practical viewpoint, the major vulnerability and security problem of
DES is its relatively small key length (and key space). Note that a DES key is
effectively 56 bits long, and hence the key space comprises only 256 elements.
Consequently, a key search is successful after 256 trials in the worst case and
256/2 = 255 trials on the average. Furthermore, the DES encryption has the
following property:

DESk(m) = DESk(m) (10.3)

This property can be used in a known-plaintext attack to narrow down the key
space with another factor of two. If the adversary knows two plaintext-ciphertext
pairs (m, c1) with c1 = DESk(m) and (m, c2) with c2 = DESk(m), then he or
she can compute for every key candidate k′ the value c = DESk′ (m) and verify
whether this value matches c1 or c2.

• If c = c1, then k′ is the correct key. In fact, k = k′ follows from c =
DESk′ (m) and c1 = DESk(m).

• If c = c2, then k′ is the correct key. In fact, k = k′ follows from c =
DESk′ (m), c2 = DESk(m), and (10.3).

So in every trial with key candidate k′, the adversary can also verify the
complementary key candidate k′. As mentioned earlier, this narrows down the key
space with a factor of two. Against this background, it can be concluded that an
exhaustive key search is successful after 254 trials on the average.

The feasibility of an exhaustive key search was first publicly discussed in 1977
[6]. Note that an exhaustive key search needs a lot of time but almost no memory.
On the other hand, if one has a lot of memory and is willing to precompute the
ciphertext c for any given plaintext message m and all possible keys k, then one can
store the pairs (c, k) and quickly find the correct key in a known-plaintext attack.
Consequently, there is a lot of room for time-memory tradeoffs (e.g.,[7]).

13 Both cryptanalytical attacks require less plaintexts if one reduces the number of rounds.

250 Contemporary Cryptography

In either case, many people have discussed the possibility to design and
actually build dedicated machines to do an exhaustive key search for DES. For
example, Michael J. Wiener proposed such a design in 1993 [8]. He came to the
conclusion that a US$1,000,000 version of such a machine would be capable of
finding a DES key in 3.5 hours on the average. In 1997, he modified his estimates
with a factor of 6 (i.e., a US$1,000,000 version of the machine would be capable
of finding a DES key in 35 minutes on the average and a US$10,000 version of the
machine would be capable of finding a DES key in 2.5 days on the average [9]).
These numbers are worrisome (for the security of DES against an exhaustive key
search).

It was not until 1998 that a hardware-based search machine named Deep Crack
was built by the Electronic Frontier Foundation (EFF) [10].14 Deep Crack costs
US$200,000 to build and consists of 1,536 processors, each capable of searching
through 60 million keys per second. Referring to (10.1), the time to do an exhaustive
key search is then

|K|t
2p

=
256

60, 000, 000 · 2 · 1, 536
=

255

60, 000, 000 · 1, 536
≈ 390, 937 seconds.

Consequently, Deep Crack is able to recover a DES key in approximately
6,516 minutes, 109 hours, or 4.5 days.

More interestingly, one can also spend the idle time of networked computer
systems to look for DES keys and run an exhaustive key search. If enough computer
systems participate in the search, then a DES key can be found without having to
build a dedicated machine such as Deep Crack. For example, in January 1999, the
participants of the Distributed.Net project15 broke a DES key in only 23 hours. More
than 100,000 computer systems participated, received, and did a little part of the
work. This allowed a rate of 250 billion keys being checked every second.

Against this background, it is obvious that the relatively small key length
and the corresponding feasibility of an exhaustive key search is the most serious
vulnerability and security problem of the DES. There are only a few possibilities
to protect a block cipher with a small key length, such as DES, against this type of
attack. For example, one can frequently change keys, eliminate known plaintext, or
use a complex key setup procedure. An interesting idea to slow down an exhaustive
key search attack is due to Rivest and is known as all-or-nothing encryption [11]. It
yields an encryption mode for block ciphers that makes sure that one must decrypt
the entire ciphertext before one can determine even one plaintext message block.

14 http://www.eff.org/descracker.html
15 http://www.distributed.net

Symmetric Encryption Systems 251

This means that an exhaustive key search attack against an all-or-nothing encryption
is slowed down by a factor equal to the number of ciphertext blocks.

The simplest method to protect a block cipher against exhaustive key search
attacks is to work with sufficiently long keys. It goes without saying that modern
ciphers with key lengths of 128 bits and more are resistant to exhaustive key search
attacks with current technology. In a 1996 paper16 written by a group of well-known
and highly respected cryptographers, it was argued that keys should be at least 75 bits
long and that they should be at least 90 bits long if data must be protected adequately
for the next 20 years (i.e., until 2016). Note that these numbers only provide a lower
bound for the key length; there is no reason not to work with longer keys in the first
place.17

In practice, there are three possibilities to address (and possibly solve) the
problem of the small key length of DES:

1. The DES may be modified in a way that compensates for its relatively small
key length;

2. The DES may be iterated multiple times;

3. An alternative symmetric encryption system with a larger key length may be
used.

The first possibility leads us to a modification of DES that is known as DESX
(addressed later). The second possibility leads us to the TDEA addressed in Section
10.2.1.6. Last but not least, the third possibility leads us to the AES as addressed in
Section 10.2.2 (the AES has a key length of 128, 192, or even 256 bits).

10.2.1.5 DESX

In order to come up with a modification of DES that compensates for its relatively
small key length, Rivest developed and proposed a simple technique called DESX.
DESX is practically relevant, because it was the first symmetric encryption system
employed by the Encrypted File System (EFS) in the Microsoft Windows 2000
operating system.

The DESX construction is illustrated in Figure 10.4. In addition to the DES
key k, the DESX construction employs two additional 64-bit keys, k1 and k2.18 They

16 http://www.schneier.com/paper-keylength.html
17 It is sometimes argued that long keys slow down the encryption and decryption algorithms consid-

erably. This argument is wrong. In most symmetric encryption systems, the secret key is expanded
by a highly efficient key schedule algorithm, and this algorithm is largely independent from how
many key bits are provided in the first place.

18 Note that k1 and k2 must be different. Otherwise, the binary additions modulo 2 (i.e., XOR
operations) would cancel themselves out.

252 Contemporary Cryptography

!��= =� �

 � 3

Figure 10.4 The DESX construction.

are added modulo 2 to the plaintext message m before and after the DES encryption
takes place. Consequently, the DESX encryption of a plaintext message m using
keys k, k1, and k2 can be formally expressed as follows:

c = k2 ⊕DESk(m⊕ k1)

DESX requires a total of 56 + 64 + 64 = 184 bits of keying material. As
such, it improves resistance against exhaustive key search considerably (e.g., [12]).
It does not, however, improve resistance against other cryptanalytical attacks, such
as differential or linear cryptanalysis (protection against such attacks has not been a
design goal of DESX).

10.2.1.6 TDEA

As mentioned earlier, a possibility to address (or solve) the small key length problem
is to iterate DES multiple times. There are two points to make:

• First, multiple iterations with the same key are not much more secure than a
single encryption. This is because an adversary can also iterate the encryption
functions multiple times. If, for example, DES is iterated twice (with the same
key), then each step of testing a key is also twice as much work (because the
adversary has to do a double encryption). A factor of two for the adversary is
not considered much added security, especially because the legitimate users
have their work doubled, as well. Consequently, multiple iterations must
always be done with different keys to improve security.

• Second, it was shown that the DES encryption functions are not closed with
regard to concatenation (i.e., they do not provide a group) [13]. If the DES
encryption functions provided a group, then there would exist a DES key k3

for all pairs (k1, k2) of DES keys, such thatDESk3 = DESk1 ◦DESk2 . This
would be unfortunate, and the iterated use of the DES would not provide any
security advantage.

Symmetric Encryption Systems 253

!���

 �+�����+

�
!��

#	����� #	����3� 3
52

��

 �+�����+ � 3
52

�

�H H

Figure 10.5 The meet-in-the-middle attack against double DES.

Against this background, the first (meaningful) possibility to iterate the DES
is the double encryption with two independent keys. However, it was first shown
by Diffie and Hellman that double encryption is not particularly useful due to the
existence of a meet-in-the-middle attack. Assume an adversary has a few plaintext-
ciphertext pairs (mi, ci), where ci is derived from a double encryption of mi with
k1 and k2, and he or she wants to find k1 and k2. The meet-in-the-middle attack is
illustrated in Figure 10.5; it operates in the following four steps:

1. The adversary computes a first table (i.e., Table 1) with 256 entries. Each entry
consists of a possible DES key ki and the result of applying that key to encrypt
the plaintext messagem1. Table 1 is sorted in numerical order by the resulting
ciphertexts. Hence, the entry (ci, ki) refers to the ciphertext that results from
encryptingm1 with ki for i = 1, . . . , 256.

2. The adversary computes a second table (i.e., Table 2) with 256 entries. Each
entry consists of a possible DES key kj and the result of applying that key to
decrypt the ciphertext c1. Table 2 is sorted in numerical order by the resulting
plaintexts. Hence, the entry (mj , kj) refers to the plaintext that results from
decrypting c1 with kj for j = 1, . . . , 256.

3. The adversary searches through the sorted tables to find matching entries.
Each matching entry ci = pj yields ki as a key candidate for k1 and kj as a
key candidate for k2 (because ki encryptsm1 to a value to which kj decrypts
c1).

254 Contemporary Cryptography

4. If there are multiple matching pairs (which there almost certainly will be),19

the adversary tests the candidate pairs (k1, k2) against m2 and c2. If multiple
candidate pairs still work for m2 and c2, then the same test procedure is
repeated for m3 and c3. This continues until a single candidate pair remains.
Note that the correct candidate pair always works, whereas an incorrect
candidate pair will almost certainly fail to work on any particular (mi, ci)
pair.

The meet-in-the-middle attack is not particularly worrisome, because it re-
quires two tables with 256 entries each (there are some improvements not addressed
in this book). The mere existence of the attack, however, is enough reason to iterate
DES three times, and to do triple DES (3DES) accordingly. It may be that double
DES would be good enough, but because triple DES is not much harder, it is usually
done in the first place. As mentioned earlier, FIPS PUB 46-3 specifies the TDEA,
and this specification also conforms to ANSI X9.52.

A TDEA key consists of three keys that are collectively referred to as a key
bundle (i.e., k = (k1, k2, k3). The TDEA encryption function works as follows:

c = Ek3(Dk2(Ek1(m)))

Consequently, a TDEA or 3DES encryption is sometimes also referred to as
EDE (standing for “encrypt-decrypt-encrypt”). The reason for the second iteration
of DES being a decryption (instead of an encryption) is that a 3DES implementation
can then easily be turned into a single-key DES implementation by feeding all three
iterations with the same key k. If we then compute c = Ek3(Dk2(Ek1(m))), we
actually compute c = Ek(Dk(Ek(m))) = Ek(m).

Similarly, the TDEA decryption function works as follows:

m = Dk1(Ek2(Dk3(c)))

FIPS PUB 46-3 specifies the following three options for the key bundle
k = (k1, k2, k3):

• Keying option 1: k1, k2, and k3 are independent keys;

• Keying option 2: k1 and k2 are independent keys and k3 = k1;

19 There are 264 possible plaintext and ciphertext blocks, but only 256 entries in each table. Conse-
quently, each 64-bit block appears with a probability of 1/256 in each of the tables, and of the 256

blocks that appear in the first table, only 1/256 of them also appear in the second table. That means
that there should be 248 entries that appear in both tables.

Symmetric Encryption Systems 255

• Keying option 3: All keys are equal (i.e., k1 = k2 = k3). As mentioned earlier,
the 3DES implementation then represents a single-key DES implementation.

Note that iterating a block cipher multiple times can be done with any block
cipher and that there is nothing DES-specific about this construction. It is, however,
less frequently used with other symmetric encryption systems (mainly because many
other systems have been designed to use longer keys in the first place).

10.2.2 AES

In the time between 1997 and 2000, the NIST carried out an open competition
with the aim to standardize the AES as a successor for the DES. Contrary to the
DES standardization effort in the 1970s, many parties from industry and academia
participated in the AES competition. In fact, there were 15 submissions qualifying as
serious AES candidates, and among these submissions, NIST selected five finalists:
MARS,20 RC6, Rijndael,21 Serpent,22 and Twofish.23 On October 2, 2000, the NIST
decided to propose Rijndael as the AES.24 According to [15], the NIST could not
distinguish between the security of the finalist algorithms, and Rijndael was selected
mainly because of its ease of implementation in hardware and its strong performance
on nearly all platforms. The AES is officially specified in FIPS PUB 197 [16].25

Table 10.9
The Three Official Versions of the AES

Nb Nk Nr

AES-128 4 4 10
AES-192 4 6 12
AES-256 4 8 14

According to the requirements specified by the NIST, the AES is a block cipher
with a block length of 128 bits and a variable key length of 128, 192, or 256 bits.26

20 http://www.research.ibm.com/security/mars.html
21 The Rijndael algorithm was developed and proposed by the two Belgium cryptographers Joan

Daemen and Vincent Rijmen. Its design and some background information is described in [14].
More recent information is available at http://www.iaik.tu-graz.ac.at/research/krypto/AES. A nice
animation of the AES encryption algorithm is made available at the book’s home page.

22 http://www.cl.cam.ac.uk/∼rja14/serpent.html
23 http://www.schneier.com/twofish.html
24 Refer to the NIST Report on the Development of the Advanced Encryption Standard (AES) available

at http://csrc.nist.gov/CryptoToolkit/aes/round2/r2report.pdf.
25 http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
26 Rijndael was originally designed to handle additional block sizes and key lengths (that are, however,

not adopted in the current AES specification).

256 Contemporary Cryptography

The corresponding AES versions are referred to as AES-128, AES-192, and AES-
256. The number of rounds depends on the key length (i.e., 10, 12, or 14 rounds).
Table 10.9 summarizes the three official versions of the AES. Nb refers to the block
length (in number of 32-bit words),Nk to the key length (in number of 32-bit words),
and Nr to the number of rounds. Note that the official versions of the AES all work
with a block size of Nb · 32 = 4 · 32 = 128 bits.

While FIPS PUB 197 explicitly defines the allowed values forNb,Nk, andNr,
future reaffirmations may include changes or additions to these values. Implementors
of the AES should therefore make their implementations as flexible as possible (this
is a general recommendation that does not only apply for the AES).

10.2.2.1 Preliminary Remarks

Similar to most other symmetric encryption systems, the AES is byte oriented,
meaning that the basic unit for processing is a byte (i.e., a sequence of 8 bits). Each
byte may be written in binary or hexadecimal notation.

• In binary notation, a byte is written as {b7b6b5b4b3b2b1b0} with bi ∈ {0, 1} =
Z2

∼= F2 for i = 0, . . . , 7. Hence, a byte also represents an element of F28 .

• In hexadecimal notation, a byte is written as 0xXY with X,Y ∈ {0, . . . , 9, A,
. . . , F }. In this case, X refers to {b7b6b5b4} and Y refers to {b3b2b1b0}.

Alternatively, the 8 bits can be interpreted as coefficients of a polynomial:

b7x
7 + b6x

6 + b5x
5 + b4x

4 + b3x
3 + b2x

2 + b1x+ b0 =
7∑

i=0

bix
i (10.4)

Consequently, the byte {10100011} = 0xA3 can be written as polynomial
x7 + x5 + x + 1 (for every bit equal to one, the corresponding coefficient in the
polynomial is set to one). This means that we can add and multiply either bytes or
polynomials. Let’s have a closer look at addition and multiplication.

Addition: If we consider bytes, then the addition is achieved by adding modulo 2
the bits in the bytes representing the two elements of F28 (e.g., {01010111}⊕
{10000011} = {11010100}). If we consider polynomials, then the addition
is achieved by adding modulo 2 the coefficients for the corresponding powers
in the polynomials representing the two elements (e.g., (x6 + x4 + x2 + x +
1) + (x7 + x+ 1) = x7 + x6 + x4 + x2).

Multiplication: If we consider bytes, then there is no simple operation that rep-
resents the multiplication. If, however, we consider polynomials, then the

Symmetric Encryption Systems 257

multiplication is achieved by multiplying polynomials over Z2 modulo an
irreducible polynomial of degree 8. In the case of the AES, the irreducible
polynomial is

f(x) = x8 + x4 + x3 + x+ 1.

The modular reduction by f(x) ensures that the result is a binary polynomial
of degree less than 8 and—according to (10.4)—that it can hence be repre-
sented in a single byte. Note that the multiplication is associative and that
the polynomial 1 (i.e., {00000001} or 0x01 in the byte representation) is the
multiplicative identity element for the multiplication operation.

Remember from Section 3.3.6 that Z2[x]f is a field if f(x) is an irreducible
polynomial over Z2. In the case of the AES, the degree of f is 8, and hence Z2[x]f
is isomorph to F28 . In the sequel, we use the term AES field to refer to this field. The
fact that the AES field is a field means that every onzero element b(x) (i.e., every
nonzero polynomial over Z2 with degree less than 8) has a multiplicative inverse
b−1(x) and that this element can be found using the extended Euclid algorithm.

Multiplying the polynomial defined in (10.4) with the polynomial x (or
{00000010}or 0x02 in the byte representation) results in the following polynomial:

b7x
8 + b6x

7 + b5x
6 + b4x

5 + b3x
4 + b2x

3 + b1x
2 + b0x =

7∑
i=0

bix
i+1

Again, this polynomial must be reduced modulo f(x). If b7 = 0, then the
result is already in reduced form. Otherwise, if b7 = 1, then the reduction is
accomplished by subtracting (i.e., adding modulo 2) the polynomial f(x). It follows
that multiplication by x can be implemented efficiently at the byte level as a shift
left and a subsequent conditional addition modulo 2 with f(x).

10.2.2.2 State

Internally, the AES operates on a two-dimensional array s of bytes, called the State.
The State consists of 4 rows and Nb columns (where Nb is the block length divided
by 32). In the current AES specification, Nb is always 4 (for all official versions of
the AES). Note, however, that this need not be the case and that there may be future
versions of the AES that work with larger values for Nb.

258 Contemporary Cryptography

Each entry in the State refers to a byte sr,c or s[r, c] (where 0 ≤ r < 4 refers
to the row number and 0 ≤ c < 4 refers to the column number). Note that the
four bytes sr,0, sr,1, sr,2, and sr,3 (s0,c, s1,c, s2,c, and s3,c) in row r (column c) of
the State form a 32-bit word. Consequently, the State can also be viewed as a one-
dimensional array of four 32-bit words (be it rows or columns).

@����������

��	���	��	�

E�����������

�

�

��

�

�

�

�

�

�

�

�

�

�

�

�

�

�

3

1

4

5

2

6

7

8

��

��

�3

�1

�4

�5

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

���

���

����

���

���

���

���

���

���

���

���

���

���

���

���

���

�

3

1

4

5

2

6

7

8

��

��

�3

�1

�4

�5

�+�

�+�

3+�

1+�

�+� �+3 �+1

�+�

3+�

1+�

�+3

3+3

�+1

3+1

1+11+3

Figure 10.6 Input bytes, State array, and output bytes of the AES.

As illustrated in Figure 10.6, the 16 input bytes in0, . . . , in15 are copied
into the State at the beginning of the AES encryption or decryption process. The
encryption or decryption process is then conducted on the State, and the State’s final
bytes are copied back to the output bytes out0, . . . , out15. More formally speaking,
the input array in is copied into the State according to

sr,c = inr+4c

for 0 ≤ r < 4 and 0 ≤ c < 4 at the beginning of the encryption (or decryption)
process. Similarly, the State is copied back into the output array out according to

Symmetric Encryption Systems 259

outr+4c = sr,c

for 0 ≤ r < 4 and 0 ≤ c < 4 at the end of the encryption (or decryption). The AES
encryption, key expansion, and decryption algorithms are overviewed next.

10.2.2.3 Encryption Algorithm

The AES specification uses the term cipher to refer to the encryption algorithm. This
term, however, is not used in this book (note that we use the term cipher to refer to
a full-fledged symmetric encryption system and not only to an encryption algorithm
or function).

As mentioned earlier, the 16 input bytes in0, . . . , in15 are copied into the State
s at the beginning of the AES encryption algorithm. After an initial application of the
AddRoundKey() transformation, the State is transformed by implementing a round
function Nr =10, 12, or 14 times (depending on the key length in use), with a final
round that slightly differs from the previous Nr − 1 rounds (i.e., the final round
does not include a MixColumns() transformation). The content of the State is finally
taken to represent the output of the AES encryption algorithm.

The round function, in turn, consists of the following four transformations:

1. The bytes of the State are substituted according to a given substitution table
(this transformation is called SubBytes() in the AES specification);

2. The rows of the State are shifted left by different offsets (this transformation
is called ShiftRows() in the AES specification);

3. The data within each column of the State are mixed (this transformation is
called MixColumns() in the AES specification);

4. A round key is added to the State (this transformation is called AddRound-
Key() in the AES specification). This is where the secret key and the key
schedule derived from it come into play.

The AES encryption algorithm is illustrated in Algorithm 10.2. Note that the
SubBytes() and ShiftRows() transformations commute—that is, a SubBytes() trans-
formation immediately followed by a ShiftRows() transformation is equivalent to a
ShiftRows() transformation immediately followed by a SubBytes() transformation.
Also note that w[i] refers to the ith word in the key schedule and that w[i, j] refers
to the j − i+ 1 words between wi and wj in the key schedule.

260 Contemporary Cryptography

Algorithm 10.2 The AES encryption algorithm.

(in)

s← in
s← AddRoundKey(s, w[0, Nb − 1])
for r = 1 to (Nr − 1) do

s← SubBytes(s)
s← ShiftRows(s)
s← MixColumns(s)
s← AddRoundKey(s, w[rNb, (r + 1)Nb − 1])

s← SubBytes(s)
s← ShiftRows(s)
s← AddRoundKey(s, w[NrNb, (Nr + 1)Nb − 1])
out← s

(out)

Table 10.10
The S-Box of the AES Encryption Algorithm

0 1 2 3 4 5 6 7 8 9 A B C D E F
0 63 7C 77 7B F2 6B 6F C5 30 01 67 2B FE D7 AB 76
1 CA 82 C9 7D FA 59 47 F0 AD D4 A2 AF 9C A4 72 C0
2 B7 FD 93 26 36 3F F7 CC 34 A5 E5 F1 71 D8 31 15
3 04 C7 23 C3 18 96 05 9A 07 12 80 E2 EB 27 B2 75
4 09 83 2C 1A 1B 6E 5A A0 52 3B D6 B3 29 E3 2F 84
5 53 D1 00 ED 20 FC B1 5B 6A CB BE 39 4A 4C 58 CF
6 D0 EF AA FB 43 4D 33 85 45 F9 02 7F 50 3C 9F A8
7 51 A3 40 8F 92 9D 38 F5 BC B6 DA 21 10 FF F3 D2
8 CD 0C 13 EC 5F 97 44 17 C4 A7 7E 3D 64 5D 19 73
9 60 81 4F DC 22 2A 90 88 46 EE B8 14 DE 5E 0B DB
A E0 32 3A 0A 49 06 24 5C C2 D3 AC 62 91 95 E4 79
B E7 C8 37 6D 8D D5 4E A9 6C 56 F4 EA 65 7A AE 08
C BA 78 25 2E 1C A6 B4 C6 E8 DD 74 1F 4B BD 8B 8A
D 70 3E B5 66 48 03 F6 0E 61 35 57 B9 86 C1 1D 9E
E E1 F8 98 11 69 D9 8E 94 9B 1E 87 E9 CE 55 28 DF
F 8C A1 89 0D BF E6 42 68 41 99 2D 0F B0 54 BB 16

SubBytes() Transformation

The SubBytes() transformation implements a nonlinear substitution cipher. Each
byte sr,c of the State is substituted with another byte s′r,c according to the sub-
stitution table (called S-box) illustrated in Table 10.10. For input byte 0xXY, the
high-order byte (i.e., 0xX) refers to the vertical axis, and the low-order byte (i.e.,
0xY) refers to the horizontal axis. The output byte is the one found in the S-box in
row 0xX and column 0xY. For example, the input byte 0x52 (i.e., 01010010) is
mapped to the output byte 0x00 (i.e., 00000000).

Contrary to many other symmetric encryption systems (inlcuding, for exam-
ple, the DES), the S-box of the AES has a well-documented design. It is constructed
by composing the following two transformations:

Symmetric Encryption Systems 261

1. The input byte sr,c is mapped to the multiplicative inverse in the AES field
(the element 0x00 is mapped to itself). The resulting byte is referred to as b.

2. The following affine transformation modulo 2 is applied for all bits bi (0 ≤
i < 8) of b:

b′i = bi ⊕ b(i+4) mod 8 ⊕ b(i+5) mod 8 ⊕
b(i+6) mod 8 ⊕ b(i+7) mod 8 ⊕ ci

In this formula, ci refers to the ith bit of a byte c with the hexadecimal
value 63 (i.e., 01100011). This transformation can be expressed in matrix
form as follows:




b′0
b′1
b′2
b′3
b′4
b′5
b′6
b′7




=




1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1



·




b0
b1
b2
b3
b4
b5
b6
b7




+




1
1
0
0
0
1
1
0




The resulting byte b′ is the output byte s′r,c of the transformation.

In summary, the SubBytes() transformation can be written as

s′r,c = A · s−1
r,c + c

where A and c represent the matrix and the vector of bytes specified earlier. Note
that the nonlinerarity of the SubBytes() transformation comes from the inversion
s−1

r,c only (if the transformation were applied on sr,c directly, then the corresponding
SubBytes() transformation would be linear). Also note that the invertibility of the
SubBytes() transformation requires that A is an invertible matrix (i.e., its rows
and columns must be linearly independent in the AES field). This is obviously
the case, and hence the SubBytes() transformation is invertible (the corresponding
InvSubBytes() transformation is addressed later).

262 Contemporary Cryptography

ShiftRows() Transformation

The ShiftRows() transformation cyclically shifts left the bytes in row r (0 ≤ r ≤ 3)
for r bytes. This means that the bytes in the first row (i.e., r = 0) are not shifted at
all, the bytes in the second row (i.e., r = 1) are cyclically shifted left one byte, the
bytes in the third row (i.e., r = 2) are cyclically shifted left two bytes, and the bytes
in the fourth row (i.e., r = 3) are cyclically shifted left three bytes. Consequently,
for 0 ≤ r < 4 and 0 ≤ c < Nb = 4, the ShiftRows() transformation can be formally
expressed as follows:

s′r,c = sr,c+shift(r,Nb) mod Nb
(10.5)

In this formula, the shift value shift(r,Nb) depends only on the row number
r (remember that Nb is always equal to 4):

shift(1, 4) = 1
shift(2, 4) = 2
shift(3, 4) = 3

For example, s′2,1 = s2,1+shift(2,4) mod 4 = s2,1+2 mod 4 = s2,3. The
ShiftRows() transformation is illustrated in Figure 10.7. Note that the elements of
s′ are the same as the elements of s, and that only their ordering changes when the
State is being tranformed.

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�+�

�+�

3+�

1+�

�+� �+3 �+1

�+�

3+�

1+�

�+3

3+3

�+1

3+1

1+11+3

�I

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�+�

�+�

3+3

1+1

�+� �+3 �+1

�+3

3+1

1+�

�+1

3+�

�+�

3+�

1+31+�

Figure 10.7 The ShiftRows() transformation of the AES encryption algorithm.

Symmetric Encryption Systems 263

MixColumns() Transformation

The MixColumns() transformation operates on each column of the State individu-
ally. This means that the transformation is repeated four times (once for each column
of the State). More specifically, we consider the four bytes s0,c, s1,c, s2,c, and s3,c

of column c (0 ≤ c < 4) of the State, denoted by s0, s1, s2, and s3 (the column
number is omitted for clarity in exposition), and we use these bytes to represent the
coefficients of a four-term polynomial

s(x) = s3x
3 + s2x

2 + s1x+ s0

over F28 . In a short representation, s(x) can also be written as [s0, s1, s2, s3].
Because the coefficients of s(x) are bytes (i.e., elements of F28), the polynomial
s(x) is over F28 , and hence it is not an element of the AES field.

Against this background, the MixColumns() transformation on a column is
defined by multiplying the corresponding column polynomial s(x) with a fixed
polynomial c(x) of degree 3. Again, a polynomial is used to reduce the product
and to make sure that the resulting polynomial is of degree 3. The fixed polynomial
c(x) is

c(x) = c3x
3 + c2x

2 + c1x+ c0

with c3 =0x03 (i.e., {00000011}), c2 =0x01 (i.e., {00000001}), c1 =0x01 (i.e.,
{00000001}), and c0 =0x02 (i.e., {00000010}), and the polynomial to reduce the
product is x4+1. Note that this polynomial is reducible in F2 (i.e., x4+1 = (x+1)4)
and that the only reason for the multiplication being performed modulo x4 + 1 is to
make sure that the operation outputs a polynomial of degree 3 at most (i.e., to achieve
a transformation from a value that matches into a column to another value that also
matches into a column).

In essence, the MixColumns() transformation maps s(x) to the following
polynomial:

c(x) · s(x) (mod x4 + 1)

Alternatively speaking, the MixColumns() transformation can also be achieved
by implementing the following linear algebraic transformation for each column c
(0 ≤ c < 4):

264 Contemporary Cryptography



s′0,c

s′1,c

s′2,c

s′3,c


 =



0x02 0x03 0x01 0x01
0x01 0x02 0x03 0x01
0x01 0x01 0x02 0x03
0x03 0x01 0x01 0x02


 ·



s0,c

s1,c

s2,c

s3,c




This can also be expressed as follows:

s′0,c = (0x02 · s0,c)⊕ (0x03 · s1,c)⊕ s2,c ⊕ s3,c

s′1,c = s0,c ⊕ (0x02 · s1,c)⊕ (0x03 · s2,c)⊕ s3,c

s′2,c = s0,c ⊕ s1,c ⊕ (0x02 · s2,c)⊕ (0x03 · s3,c)
s′3,c = (0x03 · s0,c)⊕ s1,c ⊕ s2,c ⊕ (0x02 · s3,c)

Because the polynomial c(x) is relatively prime to x4 + 1 in F2[x], an
inverse polynomial c(x)−1 (mod x4 + 1) exists, and hence the MixColumns()
transformation is invertible.

AddRoundKey() Transformation

In the AddRoundKey() transformation, a word of the key schedule w is added
modulo 2 to each column of the State. This means that

[s′0,c, s
′
1,c, s

′
2,c, s

′
3,c] = [s0,c, s1,c, s2,c, s3,c]⊕ w[rNb + c]

for 0 ≤ c < Nb and 0 ≤ r ≤ Nr. Because the AddRoundKey() transformation only
consists of a bitwise addition modulo 2, it is its own inverse.

10.2.2.4 Key Expansion Algorithm

The AES key expansion algorithm takes a secret key k and generates a key schedule
w that is employed by the AddRoundKey() transformation. The key k comprises
4Nk bytes or 32Nk bits. In the byte-wise representation, ki refers to the ith byte of
k (0 ≤ i < 4Nk). The key schedule w is Nb(Nr + 1) words long (the algorithm
requires an initial set ofNb words, and each of the Nr rounds requiresNb additional
words of key data). This means that w consists of a linear array of 4-byte words.
Again, we use w[i] for 0 ≤ i < Nb(Nr + 1) to refer to the ith word in this array.

Symmetric Encryption Systems 265

Algorithm 10.3 The AES key expansion algorithm.

(k)

RCon[1]← 0x01000000
RCon[2]← 0x02000000
RCon[3]← 0x04000000
RCon[4]← 0x08000000
RCon[5]← 0x10000000
RCon[6]← 0x20000000
RCon[7]← 0x40000000
RCon[8]← 0x80000000
RCon[9]← 0x1B000000
RCon[10]← 0x36000000
for i = 0 to (Nk − 1) do

w[i]← [k4i, k4i+1, k4i+2, k4i+3]
for i = Nk to (Nb(Nr + 1)− 1) do

t← w[i− 1]
if (i mod Nk = 0)

then t← SubWord(RotWord(t)) ⊕ RCon[i/Nk]
else if (Nk > 6 and i mod Nk = 4)

then t← SubWord(t)
w[i]← w[i−Nk]⊕ t

(w)

The AES key expansion algorithm is summarized in Algorithm 10.3. We
assume that Nk is included in k, so we don’t have to consider Nk as additional
parameter. The algorithm employs a round constant word array, RCon[i] for 0 <
i ≤ Nr. The array contains the values given by [xi−1,0x00,0x00,0x00], with
xi−1 being powers of x (x is 0x02) in the field F28 .27 In addition to RCon, the
algorithm employs two auxiliary functions:

• SubWord() takes a 4-byte input word and applies the S-box of the SubBytes()
transformation to each of the 4 bytes to produce an output word.

• RotWord() takes a 4-byte input word and performs a cyclic shift left (i.e., if
the input word is [a0, a1, a2, a3], then the output word is [a1, a2, a3, a0]).

The AES key expansion algorithm works as follows: First, the round constant
word array RCon is initialized as described before. Then the first Nk words of the
key schedule are filled with the bytes of the original key. The rest of the key schedule
is filled in a second for-loop. In this loop, every word w[i] is set to the sum modulo
2 of the previous word w[i − 1] and the word that is located Nk positions earlier

27 Note that the index i starts at 1 (not 0).

266 Contemporary Cryptography

(i.e., w[i−Nk]). For words in positions that are a multiple of Nk, a transformation
is applied to [wi−1] prior to the addition modulo 2, followed by an addition modulo
2 with the round constant word RCon[i]. This transformation basically consists of
a cyclic shift of the bytes in a word (i.e., RotWord()), followed by the application
of a table lookup to all 4 bytes of the word (i.e., SubWord()). It is important to note
that the AES key expansion algorithm for Nk = 8 is different than for Nk = 6 (i.e.,
AES-192) and Nk = 4 (i.e., AES-128). If Nk = 8 and i − 4 is a multiple of Nk,
then SubWord() is applied to w[i− 1] prior to the addition modulo 2.

10.2.2.5 Decryption Algorithm

The transformations used by the AES encryption algorithm can be inverted and
implemented in reverse order to produce a straightforward AES decryption algo-
rithm. The individual transformations used in the AES decryption algorithm are
called InvShiftRows(), InvSubBytes(), InvMixColumns(), and AddRoundKey(). As
mentioned earlier, the AddRoundKey() transformation is its own inverse, as it only
involves a bitwise addition modulo 2. Also, note that the SubBytes() and ShiftRows()
transformations commute, and that this is also true for their inverse InvSubBytes()
and InvShiftRows() transformations. The AES decryption algorithm is formally ex-
pressed in Algorithm 10.4, and the three inverse transformations are addressed next.

Algorithm 10.4 The AES decryption algorithm.

(in)

s← in
s← AddRoundKey(s, w[NrNb, (Nr + 1)Nb − 1])
for r = Nr − 1 downto 1 do

s← InvShiftRows(s)
s← InvSubBytes(s)
s← AddRoundKey(s, w[rNb, (r + 1)Nb − 1])
s← InvMixColumns(s)

s← InvShiftRows(s)
s← InvSubBytes(s)
s← AddRoundKey(s, w[0, Nb − 1])
out← s

(out)

InvShiftRows() Transformation

The InvShiftRows() transformation is the inverse of the ShiftRows() transformation.
As such, the bytes in the last three rows of the State are cyclically shifted right over

Symmetric Encryption Systems 267

shift(r,Nb) bytes (note that the shift function is the same for both the encryption
and decryption algorithms). Similar to (10.5), the InvShiftRows() transformation can
be specified as

s′r,(c+shift(r,Nb)) mod Nb
= sr,c

for 0 ≤ r < 4 and 0 ≤ c < Nb = 4. It is illustrated in Figure 10.8.

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�+�

�+�

3+�

1+�

�+� �+3 �+1

�+�

3+�

1+�

�+3

3+3

�+1

3+1

1+11+3

�I

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�+�

�+1

3+3

1+�

�+� �+3 �+1

�+�

3+1

1+3

�+�

3+�

�+3

3+�

1+�1+1

Figure 10.8 The InvShiftRows() transformation of the AES decryption algorithm.

Table 10.11
The Inverse S-Box of the AES Decryption Algorithm

0 1 2 3 4 5 6 7 8 9 A B C D E F
0 52 09 6A D5 30 36 A5 38 BF 40 A3 9E 81 F3 D7 FB
1 7C E3 39 82 9B 2F FF 87 34 8E 43 44 C4 DE E9 CB
2 54 7B 94 32 A6 C2 23 3D EE 4C 95 0B 42 FA C3 4E
3 08 2E A1 66 28 D9 24 B2 76 5B A2 49 6D 8B D1 25
4 72 F8 F6 64 86 68 98 16 D4 A4 5C CC 5D 65 B6 92
5 6C 70 48 50 FD ED B9 DA 5E 15 46 57 A7 8D 9D 84
6 90 D8 AB 00 8C BC D3 0A F7 E4 58 05 B8 B3 45 06
7 D0 2C 1E 8F CA 3F 0F 02 C1 AF BD 03 01 13 8A 6B
8 3A 91 11 41 4F 67 DC EA 97 F2 CF CE F0 B4 E6 73
9 96 AC 74 22 E7 AD 35 85 E2 F9 37 E8 1C 75 DF 6E
A 47 F1 1A 71 1D 29 C5 89 6F B7 62 0E AA 18 BE 1B
b FC 56 3E 4B C6 D2 79 20 9A DB C0 FE 78 CD 5A F4
C 1F DD A8 33 88 07 C7 31 B1 12 10 59 27 80 EC 5F
D 60 51 7F A9 19 B5 4A 0D 2D E5 7A 9F 93 C9 9C EF
E A0 E0 3B 4D AE 2A F5 B0 C8 EB BB 3C 83 53 99 61
F 17 2B 04 7E BA 77 D6 26 E1 69 14 63 55 21 0C 7D

InvSubBytes() Transformation

The InvSubBytes() transformation is the inverse of the SubBytes() transformation. It
is obtained by applying the inverse of the affine transformation specified in 10.2.2.3,

268 Contemporary Cryptography

followed by taking the multiplicative inverse in F28 . The corresponding inverse S-
box is illustrated in Table 10.11. It is simple to verify that the S-boxes specified in
Tables 10.10 and 10.11 are inverse to each other. For example, the S-box maps 0xA3
to 0x0A, whereas the inverse S-box maps 0x0A back to 0xA3.

InvMixColumns() Transformation

The InvMixColumns() transformation is the inverse of the MixColumns() transfor-
mation. Similar to the MixColumns() transformation, it operates on the State column
by column, treating each column as a 4-term polynomial s(x) over F28 . More specif-
ically, the polynomial s(x) is multiplied modulo x4 + 1 with polynomial

c−1(x) = c′3x
3 + c′2x

2 + c′1x+ c′0,

where c′3 =0x0B (i.e., {00001011}), c′2 =0x0D (i.e., {00001101}), c′1 =0x09
(i.e., {00001001}), and c′0 =0x0E (i.e., {00001110}). Consequently, the InvMix-
Columns() transformation maps s(x) to the following polynomial:

c−1(x) · s(x) (mod x4 + 1)

Alternatively, this can be expressed as



s′0,c

s′1,c

s′2,c

s′3,c


 =



0x0E 0x0B 0x0D 0x09
0x09 0x0E 0x0B 0x0D
0x0D 0x09 0x0E 0x0B
0x0B 0x0D 0x09 0x0E


 ·



s0,c

s1,c

s2,c

s3,c




or

s′0,c = (0x0E · s0,c)⊕ (0x0B · s1,c)⊕ (0x0D · s2,c)⊕ (0x09 · s3,c)
s′1,c = (0x09 · s0,c)⊕ (0x0E · s1,c)⊕ (0x0B · s2,c)⊕ (0x0D · s3,c)
s′2,c = (0x0D · s0,c)⊕ (0x09 · s1,c)⊕ (0x0E · s2,c)⊕ (0x0B · s3,c)
s′3,c = (0x0B · s0,c)⊕ (0x0D · s1,c)⊕ (0x09 · s2,c)⊕ (0x0E · s3,c)

Symmetric Encryption Systems 269

10.2.2.6 Security Analysis

Since its submission to the AES competition, and especially since its standardization
in FIPS PUB 197 [16], the AES has been subject to a lot of public scrutiny. There
is good and bad news. The good news is that the encryption system is designed
in a way that lower bounds for the complexity of differential cryptanalysis, linear
cryptanalysis, and some related attacks can be provided (e.g., [14]). Consequently,
the AES encryption system is resistant against these attacks. The bad news, however,
is that many new cryptanalytical techniques have been developed (and will probably
continue to be developed) to eventually break the AES symmetric encryption system.
In fact, cryptanalyzing AES is an active field of study, and it will be interesting to
learn about future results.28 From a cryptanalyst’s viewpoint, the AES is attractive,
because it is supposed to become widely deployed in the future and because the
symmetric encryption system has a rather simple mathematical structure.

10.2.3 Modes of Operation

There are several modes of operation for a block cipher with block length n. In FIPS
PUB 81 [17], a couple of such modes are specified for DES.29 The standard was
published in 1980 and is electronically available on the Internet.30 Note that some of
the modes specified in FIPS PUB 81 turn a block cipher into a stream cipher.

10.2.3.1 Electronic Code Book Mode

The simplest and most straightforward mode of operation is the electronic code book
(ECB) mode (see Figure 10.9). In this mode, an arbitrarily long plaintext message
m ∈ M is split into t n-bit blocks (n representing the block length). If the total
length of the plaintext message is not a multiple of n bits, then it must be padded
with some random bits. The plaintext message block mi (1 ≤ i ≤ t) is encrypted
with the secret key k by the sending device (on the left side). The resulting ciphertext
block ci is transmitted to the decrypting device, where it is decrypted with the same
key k (on the right side). Consequently, the ECB mode is defined as

ci = Ek(mi)
mi = Dk(ci)

28 http://www.cryptosystem.net/aes
29 Note that the specification of the modes of operation are not specific for DES; instead, they work

for any block cipher with block length n.
30 http://csrc.nist.gov/publications/fips/fips81/fips81.htm

270 Contemporary Cryptography

�

�

 �

�

�

!

Figure 10.9 The working principle of the ECB mode.

for 1 ≤ i ≤ t. The major advantages of the ECB mode are simplicity and the
lack of message expansion and error propagation. There are, however, also some
important disadvantages that should be kept in mind and considered with care when
one intends to use a symmetric encryption system in ECB mode:

• In ECB mode, identical plaintext message blocks are mapped to identical
ciphertext blocks (if the key is the same). This is disadvantageous, because
a multiple-block ciphertext can then reveal statistical information about the
corresponding plaintext message, even if it is not possible to decrypt the entire
ciphertext. In fact, this type of statistical information is what cryptanalysts are
usually looking for and what they try to exploit in one way or another.

• The ECB mode does not protect a sequence of ciphertext blocks. This means
that an adversary can modify a long message simply by deleting or reordering
single blocks in it. If an adversary has ciphertext blocks that are encrypted with
the same key, then he or she can also insert them into the ciphertext. Note that
in neither of these cases does the adversary need to be able to decrypt any of
the ciphertext blocks used in the attack.

The disadvantages are severe (compared to the advantages), and hence the
ECB mode should not be used to encrypt multiple-block plaintext messages.

10.2.3.2 Cipherblock Chaining Mode

The cipherblock chaining (CBC) mode of operation was designed to remove some
of the disadvantages of the ECB mode. In CBC mode, the encryption of the plaintext
message block mi depends not only on mi and the key k, but also on all previous

Symmetric Encryption Systems 271

message blocksm1, . . . ,mi−1, as well as an initialization vector (IV) that must not
be kept secret. The resulting encryption function is context sensitive, meaning that
identical plaintext message blocks are usually mapped to different ciphertext blocks.

= �
�

�

'�

�

=!

�

'�

�

Figure 10.10 The working principle of the CBC mode.

Again, let m ∈ M be an arbitrarily long plaintext message that is split into t
n-bit blocksm1,m2, . . . ,mt. The working principle of the CBC mode is illustrated
in Figure 10.10. In a first step, c0 is initialized with the IV (this step is not illustrated
in the figure). For i = 1, . . . , t, the plaintext message blockmi is then added modulo
2 to ci−1 (i.e., the ciphertext block from the previous round) and the sum is encrypted
with key k to produce the ciphertext block ci (on the left side). Consequently, the
encryption function can be recursively defined as follows:

c0 = IV

ci = Ek(mi ⊕ ci−1) for 1 ≤ i ≤ t

Due to the use of an IV, the ciphertext is one block longer than the plaintext
message. Consequently, the CBC mode is not length preserving and leads to a
message expansion of one block (i.e., the actual message expansion depends on the
block length of the encryption system in use). In either case, the resulting ciphertext
blocks ci (i = 0, . . . , t)31 are transmitted to the decrypting device and put in a queue
(used for decryption). Again, the queue is initialized with c0 = IV . To decrypt ci
(i = 1, . . . , t), the decrypting device decrypts ci with key k and adds the result
modulo 2 to ci−1 (on the right side). The result yields the plaintext message block
mi. Hence, the decryption function can be recursively defined as follows:

c0 = IV

31 The ciphertext block c0 must not be transmitted if the decrypting device is initialized with the same
IV.

272 Contemporary Cryptography

mi = Dk(ci)⊕ ci−1 for 1 ≤ i ≤ t

As can be verified easily, this recursive definition yields a correct plaintext
message block mi:

mi = Dk(ci)⊕ ci−1

= Dk(Ek(mi ⊕ ci−1))⊕ ci−1

= mi ⊕ ci−1 ⊕ ci−1

= mi

The major advantage of the CBC mode is that it removes the previously men-
tioned disadvantages of the ECB mode. There are, however, also a few disadvantages
that must be kept in mind when one uses a symmetric encryption system in CBC
mode. For example, the CBC mode comes along with a message expansion of one
block. Furthermore, the fact that ciphertext blocks are chained also means that errors
are propagated, and that one has to deal with error propagation and the consequences
of incorrectly transmitted ciphertext blocks (i.e., transmisson errors). If, for example,
ciphertext block ci is transmitted with an error, then ci and the subsequent block (i.e.,
ci+1) decrypt incorrectly. All other ciphertext blocks (i.e., c1, . . . , ci−1, ci+2, . . . , ct)
decrypt correctly, unless there are other transmission errors. Note that the fact that an
incorrectly transmitted ciphertext block only affects two blocks suggests that com-
municating entities can start with different IVs, and that the difference only affects
the first ciphertext block (this property is important if two entities don’t share a
common IV).

Having the advantages and disadvantages of the ECB and CBC modes in mind,
it is obvious that the CBC mode is usually the preferred choice in block cipher
encryption.32

10.2.3.3 Cipher Feedback Mode

As mentioned earlier, there are modes of operation that turn a block cipher into a
stream cipher. One of these modes is the cipher feedback (CFB) mode. It basically
uses the block cipher to generate a sequence of pseudorandom bits, and these bits
are then added modulo 2 to the plaintext bits to produce the ciphertext bits.

Let n be the block length of the block cipher, IV ∈ {0, 1}n be an n-bit
initialization vector, and 1 ≤ r ≤ n be the number of bits that are simultaneously

32 It should always be made sure that a block cipher with block length n is rekeyed after the encryption
of at most 2n/2 blocks.

Symmetric Encryption Systems 273

encrypted in each round (typically r = 1 for one bit or r = 8 for one byte). The
plaintext message m ∈ M is then split into t blocks of r bits each, and hence the
plaintext block sequence m1, . . . ,mt is the one that is actually encrypted in CFB
mode.

=

�

�

�

�

�

=

�

�

�

�
E

@
 @

E

Figure 10.11 The working principle of the CFB mode.

As illustrated in Figure 10.11, the encrypting and decrypting devices use two
registers each (i.e., an input register I and an output register O). The input registers
are both initialized with the IV (i.e., I0 = IV on either side of the communication
channel). In step i (1 ≤ i ≤ t), the encrypting device encrypts the input register
Ii with the key k (using the underlying block cipher), and the result is written into
the output register Oi. The r leftmost and most significant bits of Oi are then added
modulo 2 to the plaintext message block mi (optionally, it is possible to use the
remaining n − r bits of Oi to encrypt subsequent plaintext blocks). The resulting
r-bit ciphertext block ci is sent to the decrypting device and fed back into the input
register from the right. The decrypting device reverses the process. This means that
ciphertext block ci is decrypted by adding it modulo 2 to the leftmost and most
significant r bits of Oi. Oi, in turn, results from an encryption of the contents of the
input register.

The major advantage of the CFB mode is that it turns a block cipher into a
stream cipher. Consequently, it is possible to encrypt blocks that are smaller than
the block length of the block cipher (i.e., r < n). This is important for applications
that normally don’t require the transmission of large messages. Examples include
applications that are character oriented, such as terminal access protocols (e.g.,
Telnet or rlogin). In this case, r is typically set to 8 bits.

274 Contemporary Cryptography

There are also a couple disadvantages that should be kept in mind when using
a symmetric encryption system in CFB mode:

• The major disadvantage is performance. Note that a full encryption of n bits
is required to encrypt only r bits. The impact of this disadvantage depends
on the symmetric encryption system in use and the size of r as compared to
the block length n. For example, if DES is used in CFB mode and r is 8 bits
(meaning that the encryption is character oriented), then the performance is
n/r = 64/8 = 8 times slower than “normal” DES (whether it is operated in
the ECB or CBC mode). Consequently, there is a tradeoff to make to choose
an optimal value for r (and this tradeoff may depend on the application one
has in mind). Note that it is at least possible to use the n− r bits of the output
register to encrypt subsequent plaintext blocks or bits.

• The size of r also influences the error propagation properties of the encryption.
Note that an incorrectly transmitted ciphertext block disturbs the decryption
process until it “falls out” of the input register. Consequently, the larger r is,
the fewer errors are propagated.

• As mentioned earlier, the encryption is a simple addition modulo 2, and
the block cipher is only used to generate the key stream. This generation,
however, also depends on the ciphertext bits that are fed back into the input
register (that’s why the mode is called cipher feedback in the first place).
Consequently, it is not possible to precompute the key stream.

The last point (i.e., the impossibility to precompute the key stream) is the
major difference between the CFB and the mode addressed next.

10.2.3.4 Output Feedback Mode

The output feedback (OFB) mode is conceptually similar to the CFB mode. As
illustrated in Figure 10.12 (and contrary to the CFB mode), the key stream is
generated independently from the ciphertext blocks in the OFB mode. This suggests
that the OFB mode has no error propagation. In some application settings, this is
advantageous, and only the OFB mode is used for this purpose. In other application
settings, the lack of error propagation is disadvantageous, and the CFB mode is used
instead. From a performance viewpoint, the OFB mode is advantageous because the
key stream can be computed independently from the plaintext or ciphertext. This
means that the key stream can be precomputed and that the encryption throughput
can be made very large.

In OFB mode, it is important to change the IV regularly (e.g., [18]). This
is particularly true if two plaintext messages are encrypted with the same key k.

Symmetric Encryption Systems 275

=

�

�

�

�

�

=

�

�

�

�
E

@
 @

E

Figure 10.12 The working principle of the OFB mode.

Otherwise, the same key stream is generated, and this fact can be exploited by an
adversary. If, for example, two plaintext message blocks mi and m′

i are encrypted
with the same r-bit key k, then the resulting ciphertext blocks are ci = mi ⊕ k and
c′i = m′

i ⊕ k. Consequently, it is possible to add the two ciphertext blocks modulo 2
and remove the effect of the encryption accordingly:

ci ⊕ c′i = (mi ⊕ k)⊕ (m′
i ⊕ k)

= mi ⊕m′
i ⊕ k ⊕ k

= mi ⊕m′
i ⊕ 0

= mi ⊕m′
i

If mi is known, then m′
i can be computed immediately (and vice versa). Even

if mi is not known, the statistical properties of the plaintext language in use can
eventually be exploited to illegitimately determine m′

i or parts thereof.
Finally, note that—contrary to the ECB and CBC modes—in the CFB and

OFB modes, both the sending and receiving devices use only the encryption function
of the underlying encryption system. This means that these modes of operation can
also be used if the encryption function is replaced with a one-way function (this
may be important if symmetric encryption systems are not available or if their use is
restricted in one way or another, respectively).

276 Contemporary Cryptography

10.2.3.5 Other Modes of Operation

In addition to FIPS PUB 81, ANSI X9.52-1998 entitled Triple Data Encryption
Algorithm Modes of Operation specifies the following seven different modes of
operation for the TDEA:

• The TDEA ECB (TECB) mode;

• The TDEA CBC (TCBC) mode;

• The TDEA CBC Interleaved (TCBC-I) mode;

• The TDEA CFB (TCFB) mode;

• The TDEA CFB Pipelined (TCFB-P) mode;

• The TDEA OFB (TOFB) mode;

• The TDEA OFB Interleaved (TOFB-I) mode.

As their names suggest, the TECB, TCBC, TCFB, and TOFB modes are based
upon the ECB, CBC, CFB, and OFB modes (obtained by substituting the DES
encryption and decryption operations with the TDEA encryption and decryption
operations).

To accommodate the AES and to add a parallelizable mode, NIST Special
Publication 800-38A33 introduced a new mode of operation (in addition to ECB,
CBC, CFB, and OFB). This new mode of operation is called counter (CTR) mode.
Similar to the CFB and OFB modes, the CTR mode yields a stream cipher. In
essence, a key stream is generated and added modulo 2 (i.e., XORed) to the plaintext
to produce the ciphertext. The key stream, in turn, is generated by encrypting a
counter that is incremented by one after each encryption. Consequently, the major
property of CTR mode is that there is no feedback or chaining; therefore, one can
perform several encryptions in parallel.

In addition to the standardized modes of operation, researchers have proposed
many new modes to NIST.34 Among the more interesting are the modes that can
be parallelized and the ones that combine encryption, authentication, and integrity
protection for little more than the cost of encryption (e.g., the mode proposed in
[19]). Working on modes of operation is maybe less glamorous, but it is certainly
more fundamental than the work on the underlying block ciphers. Unfortunately, the
current patent licensing status of most of these modes is unclear, as different parties
are claiming patent coverage of various modes. As of this writing, using one of these
modes should be considered with care (or discussed with a patent attorney).

33 http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf
34 http://csrc.nist.gov/CryptoToolkit/modes/proposedmodes

Symmetric Encryption Systems 277

10.3 STREAM CIPHERS

Stream ciphers have played and continue to play an important role in cryptography.
In fact, many (proprietary) symmetric encryption systems used in military are stream
ciphers.35 Remember from Section 10.1 that stream ciphers use internal state and
that the ith ciphertext unit depends on the ith plaintext unit, the secret key, and
some state. Also remember that it is common to distinguish between synchronous (or
additive) stream ciphers and nonsynchronous (or self-synchronizing) stream ciphers.
Having the modes of operation for block ciphers in mind, it is obvious that operating
a block cipher in CFB mode yields a nonsynchronous (self-synchronizing) stream
cipher (i.e., the next state depends on previously generated ciphertext units), whereas
operating a block cipher in OFB mode yields a synchronous (additive) stream cipher
(i.e., the next state does not depend on previously generated ciphertext units). Due
to their lack of error propagation, most stream ciphers in use today are synchronous
(or additive). They try to copy Vernam’s one-time pad (see Section 10.4), adding
modulo 2 the plaintext message bitwise to a key stream.

Let Σ = Z2 = {0, 1}, M = C = Σ∗, and K = Σn for some reasonably sized
key length n. To encrypt an l-bit plaintext message m = m1 . . .ml ∈ M using an
additive stream cipher, a secret key k ∈ K must be expanded into a stream of l key
bits k1, . . . , kl. The encryption function is then defined as follows:

Ek(m) = m1 ⊕ k1, . . . ,ml ⊕ kl = c1, . . . , cl

Similarly, the decryption function is defined as follows:

Dk(c) = c1 ⊕ k1, . . . , cl ⊕ kl = m1, . . . ,ml

The main question in the design of an additive stream cipher is how to expand
k into a potentially infinite key stream (ki)i≥1. This is where the notion of a feedback
shift register (FSR) comes into play.

As illustrated in Figure 10.13, an FSR consists of a register, a feedback func-
tion, and an internal clock. At every clock signal, the feedback function computes a
new value from the register cells, and this new value is fed into the register from the
left. Consequently, the contents of all register cells are shifted to the right, and the

35 The popularity of stream ciphers, however, is also controversial (to say the least). At the Cryptogra-
pher’s Panel of the RSA Conference 2004, for example, Adi Shamir gave a short but very interesting
talk entitled “The Death of the Stream Cipher.” In this talk, Shamir noticed and tried to explain why
stream ciphers are losing popularity against block ciphers. Nevertheless, stream ciphers have been,
and continue to be, important for military and commercial encryption systems.

278 Contemporary Cryptography

B����	� ������
��

���
����

��������������� . �/

Figure 10.13 An FSR.

content of the rightmost register cell is the output of the FSR (for this clock cycle).
This procedure is repeated for every clock cycle. Consequently, the FSR may be
used to generate a sequence of (pseudorandom) output values. Because the length
of the register and the alphabet in use are finite, the FSR represents an FSM and
can be illustrated with a State diagram. If the register has n cells and the alphabet
comprises q characters or symbols, then the FSR represents an FSM with qn states at
most. This also means that the FSR has a maximal period of qn (needless to say that
a large period is preferred from a security viewpoint). The mathematical or graph-
theoretical instrument of choice to investigate on FSRs is the Good-deBruijn graph.
This is not further addressed in this book.

�E�

���
����

��������������� . �/

Figure 10.14 An exemplary LFSR.

In practice, LFSRs are most widely deployed. An FSR is linear if it operates
in a field and the feedback function is linear over this field. Note that a function
f : X → Y is linear if f(x1 + x2) = f(x1) + f(x2) for all x1, x2 ∈ X and
f(αx) = αf(x) for all x ∈ X and α ∈ R. If we consider an FSR in Z2

∼= F2,
then the feedback function is linear if and only if it represents the modulo 2 sum of

Symmetric Encryption Systems 279

a subset of the register cells (i.e., if any only if it can be realized by XOR gates). An
exemplary LFSR is illustrated in Figure 10.14. In this example, three register cells
are added modulo 2 and fed from the left into the register.

LFSRs have the advantage that they are mathematically structured and can be
studied and formally analyzed accordingly. To study and formally analyze an n-cell
LFSR, one usually expresses its state as a polynomial

a(x) = an−1x
n−1 + . . .+ a1x

1 + a0

of degree n− 1 in F2[x], and its feedback coefficients as another polynomial

c(x) = cnx
n + cn−1x

n−1 + . . .+ c1x
1 + c0

of degree n in F2[x]. One then looks at F2[x]c—that is, the ring of polynomials with
degree less than or equal to n−1 and the two operations addition and multiplication
modulo c(x). This ring has 2n elements and is a (finite) field if and only if c(x)
is irreducible over F2 (see Section 3.3.6). In this case, F2[x]∗c is the multiplicative
group of F2[x]c and has 2n − 1 elements. This is the algebraic structure of choice
to study and formally analyze LFSRs (e.g., [20]). Note, however, that the output of
an LFSR should never be directly used as a key stream. Otherwise, one can use the
Berlekamp-Massey algorithm (see Section 9.1) to reconstruct the entire key stream
using only very few known key stream bits.

In 1987, Rivest proposed an additive stream cipher that is based on an entirely
different design paradigm (than LFSRs) and that has been widely deployed in many
commercial applications, including, for example, Microsoft Windows and Oracle
SQL. More importantly, the stream cipher is used in the Wired Equivalent Privacy
(WEP) protocol used in many wireless networks, as well as the SSL and TLS
protocols used on the Web (see, for example, Chapter 6 of [21] for an overview
and discussion of the SSL/TLS protocol). The stream cipher was named RC436 and
is currently one of the most widely deployed stream ciphers. The design of RC4
was kept (and is still being kept) as a trade secret of RSA Security, Inc.37 In 1994,
however, the source code of an RC4 implementation was anonymously posted to
the Cypherpunks mailing list. The correctness of this unofficial posting was later
confirmed by comparing its outputs to those produced by licensed implementations.
Because the RC4 stream cipher is treated as a trade secret, the algorithm that was

36 The acronym RC stands for “Ron’s Code.” Note that RC2, RC5, and RC6 are block ciphers that are
not closely related to RC4.

37 http://www.rsasecurity.com

280 Contemporary Cryptography

anonymously posted is commonly referred to as ARCFOUR. It is the term we use in
this book.

ARCFOUR is a synchronous (additive) stream cipher—that is, a sequence
of pseudorandom bytes (i.e., a key stream) is generated independently from the
plaintext message or ciphertext, and this sequence is added modulo 2 to the plaintext
message byte sequence. The cipher takes a variable-length key that may range from
1 to 256 bytes (i.e., 2,048 bits). To generate the key stream, ARCFOUR employs
an array S of 256 bytes of State information (called S-box). The elements of S are
labeled S[0], . . . , S[255]. They are initialized as follows: three steps:

1. All elements of S are initialized with their index:

S[0] = 0
S[1] = 1

. . .

S[255] = 255

2. Another array S2 of 256 bytes is allocated and filled with the key, repeating
bytes as necessary.

3. The S-box is then initialized as suggested in Algorithm 10.5. Note that this
algorithm only operates on S (i.e., there is no other input or output parameter
than S). Also note that S[i] ↔ S[j] means that the S-box entries S[i] and S[j]
are swapped.

Algorithm 10.5 The S-Box initialization algorithm of ARCFOUR.

(S)

for i = 0 to 255 do
j ← (j + S[i] + S2[i]) mod 256
S[i]↔ S[j]

(S)

After S is initialized (according to Algorithm 10.2), i and j are set to zero
(all entries of S2 are also set to zero). Algorithm 10.6 is then used to generate a
potentially infinite sequence of key bytes. The algorithm takes S as input parameter
and outputs a key byte k. If a plaintext message (ciphertext) of l bytes must be
encrypted (decrypted), then the algorithm must be iterated l times, and each key byte
ki (i = 1, . . . , l) must be added modulo 2 to the corresponding plaintext message
(ciphertext) byte.

Symmetric Encryption Systems 281

Algorithm 10.6 The key generation algorithm of ARCFOUR.

(S, i, j)

i← (i + 1) mod 256
j ← (j + S[i]) mod 256
S[i]↔ S[j]
t← (S[i] + S[j]) mod 256
k ← S[t]

(k)

In spite of its simplicity, ARCFOUR had turned out to be quite resistant to
many cryptanalytical attacks. In 2001, however, it was discovered that the random-
ness properties of the first bytes in the key stream generated by ARCFOUR are poor
and that this fact can be exploited in an attack against the WEP protocol [22, 23].
Since then, people are worried about the security of ARCFOUR (at least in some
specific environments).

10.4 PERFECTLY SECURE ENCRYPTION

As mentioned several times so far, the field of information-theoretically secure
encryption was pioneered by Shannon in the late 1940s [24, 25].38 The aim was
to come up with an encryption system that is perfectly secure in the sense that it is
impossible for an adversary to derive any information about a plaintext message
from a given ciphertext.39 This must be true even if the adversary has the best
available computer technology at hand and even if he or she is not limited in
computational resources (e.g., time and memory). Having such an absolute notion
of security in mind, it is not at all obvious that perfect security exists at all. There is
good and bad news. The good news is that perfect secrecy is possible and technically
feasible. The bad news is that perfect secrecy is usually too expensive for almost all
practical applications.

As illustrated in Figure 10.15, Shannon introduced a model of a symmetric
encryption system. In this model, a source (left side) wants to transmit a plaintext
message m to the destination (right side) over an unsecure communications channel
(dotted line). To secure the message during its transmission, the source has an en-
cryption device and the destination has a decryption device. The devices implement

38 Refer to Chapter 5 for a brief introduction to information theory.
39 This means that one has a ciphertext-only attack in mind when one talks about perfect secrecy and

information-theoretically secure encryption.

282 Contemporary Cryptography

������ �������

,��	� ��

!������ !���
�	�
��

G���������

�� �

Figure 10.15 Shannon’s model of a symmetric encryption system.

an encryption and decryption algorithm40 and are both fed with the same secret key
k generated by a key source. It is assumed that there exists a secure channel between
the key source and the encryption and decryption devices. The encryption device
turns the plaintext message m into a ciphertext c, and the decryption device does
the opposite. It is assumed that the adversary has only access to the ciphertext c and
that he or she has no information about the secret key other than that obtained by
observing c. In this situation, the adversary tries to obtain useful information about
the plaintext message m or the secret key k.

A cryptographic technique not covered by Shannon’s model is probabilistic
or randomized encryption. Figure 10.16 shows a model of a randomized symmetric
encryption system. In addition to the components of the original Shannon model, this
model includes a random source that generates a random input s for the encryption
process. The random input may either be used as an additional nonsecret “key” that
is transmitted to the destination, and multiplexed with the ciphertext, or it may be
used to randomize the plaintext, in which case the adversary does not obtain the
randomizer in the clear. In either case, it is important to note that the decryption
process cannot be randomized and hence that the decryption process need not be fed
with s.

An encryption (process) that takes place in a symmetric encryption system
(M, C,K, E ,D) can also be viewed as a discrete random experiment. In this case,
M and K represent real-valued random variables that are distributed according
to PM : M → R

+ and PK : K → R
+ (see Definition 4.2 for the notion

of a random variable). Note that PM typically depends on the plaintext language
in use, whereas PK is often uniformly distributed over all possible keys (i.e., all

40 More specifically, they implement the families E and D of encryption and decryption functions.

Symmetric Encryption Systems 283

������ �������

,��	� ��

!������ !���
�	�
��

G���������

�� �

�	�����������

�

Figure 10.16 A randomized symmetric encryption system.

keys are equiprobable). In either case, it is reasonable to assume that M and K
are independent (random variables). In addition to M and K , there is a third
random variable C that is distributed according to PC : C → R

+. This random
variable models the ciphertext, and hence its probability distribution is completely
determined by PM and PK . The random variableC is the one that a passive attacker
will recognize, and—based on its analysis—he or she will try to derive information
about M or K . More specifically, he or she will try to find plaintext messages (or
keys) that are more likely than others.

If an adversary is able to eavesdrop on a communications line and analyze the
ciphertexts transmitted on it, he or she is also able, in principle at least, to determine
the a posteriori probabilities of the various plaintext messages. If these probabilities
are equal to the a priori probabilities of the plaintext messages, then the symmetric
encryption system is said to provide perfect secrecy. In this case, intercepting the
ciphertext(s) has given the adversary no information about the plaintext message(s)
actually transmitted. This means that the a posteriori probability of a plaintext
message, given that a ciphertext is observed, is identical to the a priori probability
of the message (i.e., observing the ciphertext does not help the adversary). This idea
(to formally define a perfectly secure symmetric encryption system) is captured in
Definition 10.1.

Definition 10.1 (Perfectly secure symmetric encryption system) A symmetric en-
cryption system (P , C,K, E ,D) is perfectly secure if H(M |C) = H(M) for every
probability distribution PM .

For example, let M = {0, 1} with PM (0) = 1/4 and PM (1) = 3/4,
K = {A,B} with PK(A) = 1/4 and PK(B) = 3/4, and C = {a, b}. Then
the probability that the plaintext 0 is encrypted with key A is PMK(0, A) =

284 Contemporary Cryptography

PM (0) · PK(A) = 1/4 · 1/4 = 1/16. Furthermore, the encryption function works
as follows

EA(0) = a

EA(1) = b

EB(0) = b

EB(1) = a

In this example, the probability that ciphertext a occurs is PC(a) = Pr[0, A]+
Pr[1, B] = 1/4 · 1/4 + 3/4 · 3/4 = 1/16 + 9/16 = 10/16 = 5/8,
and the probability that ciphertext b occurs is PC(b) = Pr[1, A] + Pr[0, B] =
3/4 · 1/4 + 1/4 · 3/4 = 3/16 + 3/16 = 6/16 = 3/8. Furthermore, the following
conditional probabilities can be computed for all m ∈ M and c ∈ C:

Pr[0|a] = 1/10
Pr[1|a] = 9/10
Pr[0|b] = 1/2
Pr[1|b] = 1/2

These numbers show that the encryption is not perfectly secure. For example,
if the adversary observes the ciphertext a, he or she can be pretty sure (with a
probability of 9/10) that the corresponding plaintext is 1 (he or she cannot be
similarly sure if the ciphertext b is observed). The encryption system can be made
perfectly secure if PK(A) = PK(B) = 1/2.

In his seminal work, Shannon showed for nonrandomized symmetric encryp-
tion systems that a necessary (but usually not sufficient) condition for such a system
to be perfectly secure is that the entropy of K is at least as large as the entropy of
M (this means that the secret key must be at least as long as the total amount of
plaintext that must be transmitted). This important result is formally expressed in
Theorem 10.1.

Theorem 10.1 (Shannon’s Theorem) In a perfectly secure symmetric encryption
system H(K) ≥ H(M).

Proof.

H(M) = H(M |C) ≤ H(MK|C)

Symmetric Encryption Systems 285

= H(K|C) +H(M |CK)
= H(K|C)
≤ H(K)

In the first line, we employ the definition of perfect secrecy, namely that H(M) =
H(M |C) and the fact that H(MK|C) is at least H(M |C). In the second line, we
use the basic expansion rule for uncertainties (generalized to conditional uncertain-
ties). In the third line, we use the fact that H(M |CK) = 0 for any symmetric
encryption system (i.e., it is required that a plaintext can be uniquely decrypted if a
ciphertext and a key are known). The inequality stated in the theorem then follows
immediately.

�
A practical encryption scheme that can be proven information-theoretically

secure (using, for example, Shannon’s Theorem) was proposed by Gilbert Vernam in
1917 [26]. Vernam’s one-time pad consists of a randomly generated and potentially
infinite stream of key bits k = k1, k2, k3, . . . that is shared between the sender and
the recipient. To encrypt the plaintext message m = m1,m2, . . . ,mn, the sender
adds each bit mi (1 ≤ i ≤ n) modulo 2 with a key bit ki:

ci = mi ⊕ ki for i = 1, . . . , n

The ciphertext c = c1, c2, c3, . . . , cn is sent from the sender to the recipient.
It is then up to the recipient to recover the plaintext by adding each ciphertext bit ci
modulo 2 with the corresponding key bit ki:

pi = ci ⊕ ki = (pi ⊕ ki)⊕ ki = pi ⊕ (ki ⊕ ki) = pi ⊕ 0 = pi for i = 1, . . . , n

Consequently, the plaintext is recovered by adding each ciphertext bit with
the corresponding key bit. Vernam’s one-time pad is perfect when the key is truly
random and used only once. In this case, the ciphertext gives no information about
the plaintext.

In addition to perfect security as expressed in Definition 10.1, Shannon also
introduced the notion of ideal security. The idea of ideal security is that an adversary
does not get any information about a key from a ciphertext of arbitrary length.
Alternatively speaking, no matter how much ciphertext an adversary knows, the
entropy of K is not decreased. This idea is captured and formally expressed in
Definition 10.2.

286 Contemporary Cryptography

Definition 10.2 (Ideal security) An encryption system (P , C,K, E ,D) is ideally
secure if H(K|Cn) = H(K) for all n ∈ N.

Ideally secure encryption systems are not further addressed in this book.

������ �������

,��	� ��

!������ !���
�	�
��

G���������

�� �

�	�����������

�

$���
���	����
J��

�

Figure 10.17 A randomized symmetric encryption system that employs a public randomizer.

In summary, Shannon’s Theorem says that unless two entities initially share
a secret key that is at least as long as the plaintext message to be transmitted,
the adversary will always obtain some information about the message. This result
has caused many cryptographers to believe that perfect security (or secrecy) is
impractical. This pessimism can be relativized by pointing out that Shannon’s
analysis assumes that, except for the secret key, the adversary has access to exactly
the same information as the communicating entities and that this apparently innocent
assumption is much more restrictive than is generally realized. For example, Ueli
Maurer showed that it is possible to develop randomized symmetric encryption
systems that employ public randomizers as illustrated in Figure 10.17 to provide
perfect security (even if the secret keys are much smaller than the plaintext messages
that are encrypted) [27]. The output of a public randomizer is assumed to be publicly
accessible (also to the adversary) but impossible to modify. It can be modeled
as a random variable R. There are basically two different ways of implementing
a public randomizer: broadcasting and storing. A source (e.g., a satellite) could
broadcast random data or storage devices that contain the same random data could be
distributed. In the first case, it is possible to come up with a randomized symmetric
encryption system that employs a public randomizer and that is perfectly secure
under the sole assumption that the noise on the main channel (i.e., the channel

Symmetric Encryption Systems 287

from the source to the destination) is at least to some extent independent of the
noise on the channel from the sender to the adversary. This system demonstrates
that a mere difference in the signals received by the legitimate receiver and by
the adversary, but not necessarily with an advantage to the legitimate receiver, is
sufficient for achieving security. From Maurer’s results, one may also conclude
that, for cryptographic purposes, a given communication channel that is noisy is not
necessarily bad. In addition, such a channel should not be turned into an error-free
channel by means of error-correcting codes, but rather that cryptographic coding and
error-control coding should be combined.

10.5 FINAL REMARKS

In this chapter, we elaborated on symmetric encryption systems and had a closer
look at some exemplary systems (i.e., the block ciphers DES and AES, and the
stream cipher ARCFOUR). These systems are arbitrarily chosen and only reflect
their wide deployment. In fact, the DES has been widely deployed for financial
applications, whereas the AES is slowly but steadily replacing DES. RC4 is widely
deployed because it is built into many commercial off-the-shelf (COTS) products
(e.g., Web browsers and mail clients). There are many other symmetric encryption
systems developed and proposed in the literature that are not addressed in this book.
Examples include the other AES finalists (i.e., the competitors of Rijndael), MISTY1
[28, 29], Camellia [30], and SHACAL-2 from the New European Schemes for
Signatures, Integrity and Encryption (NESSIE) project, as well as some more recent
proposals (e.g., [31]). It goes without saying that all of these systems represent good
alternatives.

All symmetric encryption systems in use today look somehow similar in the
sense that they all employ a mixture of more or less complex functions that are
iterated multiple times (i.e., in multiple rounds) to come up with something that
is inherently hard to understand and analyze. There are also many details in a
cryptographic design that may look mysterious or arbitrary to some extent. For
example, the S-boxes of DES look arbitrary, but they are not and are well chosen to
protect against differential cryptanalysis (which was published almost two decades
after the DES specification). Against this background, one may get the impression
that it is simple to design and come up with a new symmetric encryption system.
Unfortunately, this is not the case, and the design of a symmetric encryption system
that is secure and efficient is still a very tricky business. Legions of systems had
been proposed, implemented, and deployed before a formerly unknown successful
attack was discovered and applied to break them. Such a discovery then often
brings the end to several symmetric encryption systems. For example, the discovery

288 Contemporary Cryptography

of differential cryptanalysis in the public brought the end to many symmetric
encryption systems (and other cryptosystems), including, for example, the fast data
encipherment algorithm and some variations thereof.

Unless one enters the field of information-theoretically secure encryption sys-
tems, the level of security (and assurance) a symmetric encryption system may pro-
vide is inherently difficult to determine and quantify. How resistant is a symmetric
encryption system against known and yet-to-be-discovered cryptanalytical attacks?
This question is difficult to answer mainly because it is not possible to say what
cryptanalytical attacks are known and what cryptanalytical attacks will be discov-
ered in the future. In this situation, it is simple to put in place and distribute rumors
about possible weaknesses and vulnerabilities of encryption systems. Many of these
rumors are placed for marketing reasons (rather than for security reasons). For exam-
ple, there are people not selling AES encryption devices who argue that the very fact
that the NIST has standardized the AES suggests that it contains trapdoors. There
are other people (typically the ones selling AES encryption devices) who argue that
the fact that the AES has been subject to public scrutiny suggests that it does not
contain any trapdoor. Who is right? Who is able to say who is right? Why would
you trust this somebody? The point we want to make at the end of this chapter
is that fairly little is known about the real security of symmetric encryption sys-
tems (except for information-theoretically secure encryption systems). After many
decades of research and development, the design of symmetric encryption systems
is still more an art than a science. This is in contrast, for example, to the design of
asymmetric encryption systems and many other public key cryptosystems (where it
is often possible to prove security properties in a mathematically rigorous sense).

References

[1] U.S. Department of Commerce, National Institute of Standards and Technology, Data Encryption
Standard (DES), FIPS PUB 46-3, October 1999.

[2] U.S. Department of Commerce, National Institute of Standards and Technology, Security Re-
quirements for Cryptographic Modules, FIPS PUB 140-1, January 1994.

[3] Biham, E., and A. Shamir, Differential Cryptanalysis of DES. Springer-Verlag, 1993.

[4] Matsui, M., “Linear Cryptanalysis of DES Cipher,” Proceedings of EUROCRYPTO ’93, Springer-
Verlag, New York, NY, 1994, pp. 386–397.

[5] Coppersmith, D., “The Data Encryption Standard (DES) and Its Strength Against Attacks,” IBM
Journal of Research and Development, Vol. 38, No. 3, 1994, pp. 243-250.

[6] Diffie, W., and M.E. Hellman, “Exhaustive Cryptanalysis of the NBS Data Encryption Standard,”
IEEE Computer, Vol. 10, No. 6, 1977, pp. 74–84.

Symmetric Encryption Systems 289

[7] Hellman, M.E., “A Cryptanalytic Time-Memory Tradeoff,” IEEE Transactions on Information
Theory, Vol. 26, No. 4, July 1980, pp. 401–406.

[8] Wiener, M.J., “Efficient DES Key Search,” presented at the rump session of the CRYPTO ’93
conference and reprinted in Stallings, W. (Ed.), Practical Cryptography for Data Internetworks,
IEEE Computer Society Press, 1996, pp. 31–79.

[9] Wiener, M.J., “Efficient DES Key Search—An Update,” CryptoBytes, Vol. 3, No. 2, Autumn
1997, pp. 6–8.

[10] Electronic Frontier Foundation (EFF), Cracking DES: Secrets of Encryption Research, Wiretap
Politics & Chip Design. O’Reilly & Associates, Sebastopol, CA, 1998.

[11] Rivest, R.L., “All-or-Nothing Encryption and the Package Transform,” Proceedings of 4th Inter-
national Workshop on Fast Software Encryption, Springer-Verlag, LNCS 1267, 1997, pp. 210–
218.

[12] Kilian, J., and P. Rogaway, “How to Protect DES Against Exhaustive Key Search,” Proceedings
of CRYPTO ’96, Springer-Verlag, 1996, pp. 252–267.

[13] Campbell, K.W., and M.J. Wiener, “DES Is Not a Group,” Proceedings of CRYPTO ’92, Springer-
Verlag, 1993, pp. 512–520.

[14] Daemen, J., and V. Rijmen, The Design of Rijndael. Springer-Verlag, New York, 2002.

[15] Burr, W.E., “Selecting the Advanced Encryption Standard,” IEEE Security & Privacy, Vol. 1, No.
2, March/April 2003, pp. 43–52.

[16] U.S. Department of Commerce, National Institute of Standards and Technology, Specification for
the Advanced Encryption Standard (AES), FIPS PUB 197, November 2001.

[17] U.S. Department of Commerce, National Institute of Standards and Technology, DES Modes of
Operation, FIPS PUB 81, December 1980.

[18] Dawson, E., and L. Nielsen, “Automated Cryptanalysis of XOR Plaintext Strings,” Cryptologia,
Vol. XX, No. 2, April 1996, pp. 165–181.

[19] Rogaway, P., et al., “OCB: A Block-Cipher Mode of Operation for Efficient Authenticated
Encryption,” Proceedings of the ACM Conference on Computer and Communications Security,
ACM Press, 2001, pp. 196–205.

[20] Rueppel, R.A., Analysis and Design of Stream Ciphers. Springer-Verlag, New York, 1986.

[21] Oppliger, R., Security Technologies for the World Wide Web, 2nd edition. Artech House Publish-
ers, Norwood, MA, 2003.

[22] Fluhrer, S., I. Mantin, and A. Shamir, “Weaknesses in the Key Scheduling Algorithm of RC4,”
Proceedings of the Eighth Annual Workshop on Selected Areas in Cryptography , Springer-Verlag,
LNCS 2259, August 2001, pp. 1–24.

[23] Stubblefield, A., J. Ioannidis, and A.D. Rubin,“Using the Fluhrer, Mantin, and Shamir Attack to
Break WEP,” Technical Report TD-4ZCPZZ, AT&T Labs, August 2001.

[24] Shannon, C.E., “A Mathematical Theory of Communication,” Bell System Technical Journal, Vol.
27, No. 3/4, July/October 1948, pp. 379–423/623–656.

290 Contemporary Cryptography

[25] Shannon, C.E., “Communication Theory of Secrecy Systems,” Bell System Technical Journal,
Vol. 28, No. 4, October 1949, pp. 656–715.

[26] Vernam, G.S., “Cipher Printing Telegraph Systems for Secret Wire and Radio Telegraphic
Communications,” Journal of the American Institute for Electrical Engineers, Vol. 55, 1926, pp.
109–115.

[27] Maurer, U.M., “Secret Key Agreement by Public Discussion,” IEEE Transaction on Information
Theory, Vol. 39, No. 3, 1993, pp. 733–742.

[28] Matsui, M., “New Block Encryption Algorithm MISTY,” Proceedings of the Fourth International
Fast Software Encryption Workshop (FSE ’97), Springer-Verlag, LNCS 1267, 1997, pp. 54–68.

[29] Otha, H., and M. Matsui, A Description of the MISTY1 Encryption Algorithm, Request for
Comments 2994, November 2000.

[30] Aoki, K., et al., “Camellia: A 128-Bit Block Cipher Suitable for Multiple Platforms—Design and
Analysis,” Proceedings of the Seventh Annual Workshop on Selected Areas in Cryptography (SAC
2000), Springer-Verlag, LNCS 2012, August 2000, pp. 39–56.

[31] Junod, P., and S. Vaudenay, “FOX: a new family of block ciphers,” Proceedings of the Eleventh
Annual Workshop on Selected Areas in Cryptography (SAC 2004), Springer-Verlag, LNCS 3357,
2004, pp. 114–129.

Chapter 11

Message Authentication Codes

In this chapter, we elaborate on MACs and systems to compute and verify MACs.
More specifically, we introduce the topic in Section 11.1, overview, discuss, and put
into perspective computationally secure and information-theoretically secure MACs
in Sections 11.2 and 11.3, and conclude with some final remarks in Section 11.4.

11.1 INTRODUCTION

There are basically two technologies that can be used to authenticate messages:

• Public key cryptography and digital signatures;

• Secret key cryptography and MACs.

Digital signatures are further addressed in Chapter 15. In this chapter, we focus
only on MACs. As introduced in Section 2.2.2, a MAC is an authentication tag
that is computed and verified with a secret key. This means that the sender and the
recipient(s) must share a secret key and that this key must be used to compute and
verify a MAC for a message. Consequently, a MAC depends on both the message
it authenticates and the secret key that only the legitimate sender and the legitimate
recipient(s) are assumed to know.

Note that there is a fundamental difference between message authentication
using MACs and message authentication using digital signatures. If one uses MACs,
then the same secret key that is used to compute the MAC must also be used to verify
it. This is different with digital signatures. If one uses digital signatures, then the
key to generate a digital signature and the key to verify it are different (the former
represents the private key and the latter represents the public key). There are two
implications we want to emphasize at this point:

291

292 Contemporary Cryptography

• Digital signatures can be used to provide nonrepudiation services, whereas
MACs cannot be used for this purpose;

• A digital signature can typically be verified by everybody,1 whereas a MAC
can be verified only by somebody who knows the secret key (or can perform
specific attacks).

These differences are fundamental, and it must be decided for a specific appli-
cation whether digital signatures or MACs better meet the security requirements.

In Definition 2.8, we said that a message authentication system consists of the
following five components:

• A message space M;

• An authentication tag space T ;

• A key space K;

• A family A = {Ak : k ∈ K} of authentication functionsAk : M−→ T ;

• A family V = {Vk : k ∈ K} of verification functions Vk : M × T −→
{valid, invalid}. Vk(m, t) must return valid if and only if t is a valid
authentication tag for message m ∈ M and key k ∈ K (i.e., t = Ak(m)).

Furthermore, we noted that in a typical setting M = {0, 1}∗, T = {0, 1}ltag

for some fixed tag length ltag , and K = {0, 1}lkey for some fixed key length lkey ,
and that ltag = lkey = 128 bits is frequently used in practice.

Informally speaking, a message authentication system is secure if an adversary
has no better possibility to generate a valid MAC than to guess. To more specifically
define the notion of a secure message authentication system, we must first say what
types of attacks are feasible and what an adversary is required to perform in order
to be successful (i.e., to break the security of the system). The following types of
attacks must be distinguished:

• In a known-message attack, the adversary knows one (or several) message(s)
and corresponding MAC(s);

• In a chosen-message attack, the adversary not only knows certain message-
MAC pairs, but he or she is also able to obtain such pairs in one way or
another. In fact, he or she is able to obtain the MAC(s) of one (or several)
message(s) of his or her choice. Again, one must distinguish whether the
adversary can adaptively choose the message(s) for which he or she is able

1 Note that there are also digital signature systems that limit the verifiability of the signatures
to specific entities. The corresponding signatures are sometimes also referred to as undeniable
signatures.

Message Authentication Codes 293

to obtain the MAC(s). In this case, the attack represents an adaptive chosen-
message attack.

It goes without saying that chosen-message attacks are more powerful than
known-message attacks and that adaptive chosen-message attack are more powerful
than their nonadaptive counterparts.

Furthermore, an adversary may be required to perform different tasks in order
to be successful (i.e., to break the security of the system). The tasks lead to different
notions of security.

• If the adversary is able to determine the secret key in use, then he or she totally
breaks the system. The result is a total break.

• If the adversary is able to determine a MAC for a (typically meaningful)
message selected by him or her, then he or she selectively forges a MAC.
The result is a selective forgery.

• If the adversary is able to determine a MAC for any (not necessarily mean-
ingful) message, then he or she existentially forges a MAC. The result is an
existential forgery.

Obviously, a message authentication system is absolutely worthless if it does
not provide protection against a total break, and a message authentication system
that provides protection against an existential forgery is inherently more secure than
one that provides protection against a selective forgery.

Note that it is always possible to guess a MAC. If, for example, an authenti-
cation tag space has n elements, then a MAC can be guessed with a probability of
1/n (this probability is always greater than 0 for all n ∈ N). More specifically, if
a MAC is n bits long, then it can be guessed with a probability of 2−n = 1/2n.
This probability can be made arbitrarily small by increasing the tag length. From an
adversary’s viewpoint, the major question is whether he or she is able to verify his
or her guesses.

• If the adversary is able to verify a guess, we are in the realm of verifiable
MACs. In this case, the adversary can always try all 2n possible n-bit MACs
and find a correct MAC after 2n−1 guesses on the average.

• If the adversary is not able to verify a guess, we are in the realm of non-
verifiable MACs. In this case, the adversary can only guess and hope that he
or she has found a correct MAC.

Whether a MAC is verifiable largely depends on whether the message it
authenticates is known to the adversary. If the adversary does not know the message,
then it is impossible for him or her to decide whether a specific MAC is correct.

294 Contemporary Cryptography

Note that nonverifiable MACs are inherently more secure than their verifiable
counterparts (because it is not possible to find a correct MAC with a brute-force
attack). Also note that there is evidence that nonverifiable MACs really exist (even
if one assumes that the adversary knows the message to which a MAC is referring)
because, in principle, the verification of a MAC requires knowledge of the secret
key. From an adversary’s viewpoint, however, it is sometimes possible to use an
entity that knows the key as an oracle. Consider, for example, an entity that knows
the key and provides an online service only if a request message is authenticated
with a MAC. In this case, the adversary can send (adaptively) chosen messages to
the server and look whether the server responds (in this case, the MAC is valid) or
not (in this case, the MAC is invalid). This type of chosen-message attack is often
considered when one analyzes the security of cryptographic protocols.

As mentioned earlier, a message authentication system is secure if an adver-
sary has no better possibility to forge a MAC than to guess. More specifically, even if
we assume that an adversary is able to perform an adaptive chosen-message attack,
we want to be sure that it is impossible or computationally infeasible for him or her
to (existentially or selectively) forge a MAC. In the first case (i.e., if it is impossible
for him or her to forge a MAC), then the message authentication system (or the
MACs, respectively) is (are) called information-theoretically secure. In the second
case (i.e., if it is computationally infeasible for him or her to forge a MAC), then the
message authentication system (or the MACs, respectively) is (are) called computa-
tionally secure. Because computationally secure MACs are more widely deployed
in practice, we begin with them.

11.2 COMPUTATIONALLY SECURE MACS

There are many possibilities to design and come up with MACs that are computa-
tionally secure. Examples include:

• MACs that use symmetric encryption systems;

• MACs that use keyed hash functions;

• MACs that use pseudorandom functions (PRFs);

• MACs that use universal hash functions.

In addition to these four classes that are overviewed and briefly discussed next,
some outdated proposals are standardized but not widely deployed. For example,
the message authenticator algorithm (MAA) as specified in ISO 8731-2 [1] was
published in 1984. Until today, no significant structural weakness has been found in

Message Authentication Codes 295

the MAA. Its major problem is that it generates MACs of only 32 bits length. This
is unacceptable for most applications in use today. Consequently, we don’t address
this MAC construction in this book.

11.2.1 MACs Using Symmetric Encryption Systems

A standard method for message authentication is to use a symmetric encryption sys-
tem (e.g., DES), encrypt the plaintext message in CBC mode (see Section 10.2.3.2),
use the last ciphertext block as MAC, and send it along with the (plaintext) message
to the recipient(s). In this case, the last ciphertext block is sometimes also called
CBC residue or CBC MAC. The use of CBC MACs is, for example, standardized
in ANSI X9.9 [2], FIPS PUB 113 [3], and ISO/IEC 9797 [4]. Unfortunately, the
terminology is not used consistently. For example, the algorithm to compute a CBC
MAC is sometimes called data authentication algorithm (DAA) and the MAC itself
is sometimes called data authentication code (DAC). These terms are not used in
this book.

In order to compute and verify a CBC MAC, one must know the secret key
k. If somebody not knowing the key (e.g., an adversary) modified the message, then
the CBC MAC would no longer be valid, and he or she would have to adapt the CBC
MAC accordingly (otherwise, the message modification could easily be detected).
If the CBC MAC is generated using a block cipher with block length n, then he or
she has a success probability of 1/2n. This probability is sufficiently small for large
block lengths. A more fomal analysis of the CBC MAC construction is provided
in [5]. Furthermore, a general birthday attack against iterated MACs, including, for
example, MAA and CBC MAC, is described in [6].

Sometimes, people argue that the encryption of a message also protects its
authenticity and integrity, and hence that one must not authenticate a message
that is encrypted (using, for example, an additive stream cipher). This line of
argumentation is inherently flawed, and it is generally recommended and good
practice to authenticate a message even if it is encrypted. If one uses a block
cipher in CBC mode, this means that one has to encrypt the message twice with
two independent keys (in one step the message is CBC encrypted to generate the
ciphertext, and in the other step the message is CBC encrypted to generate the
CBC MAC). Alternatively, one may also use two keys that are not independent
(e.g., derived from a master key or derived from each other). There are no known
weaknesses or vulnerabilities in this approach, but few advantages either. It is
generally neither much more difficult to distribute and manage a pair of keys than
a single key, nor is it computationally more efficient. A more efficient approach is
to replace the CBC MAC with a MAC that uses a keyed hash function. In this case,
one uses a cryptographic hash function to compute a hash value from the message,

296 Contemporary Cryptography

appends the hash value to the message, and encrypts the result with the block cipher
in CBC mode. In this case, two passes are still required, but only one pass comprises
the computation of a hash value. Some alternative constructions that don’t require
an encryption in CBC mode are addressed next.

11.2.2 MACs Using Keyed Hash Functions

The idea to use cryptographic hash functions to protect the authenticity and integrity
of data and program files dates back to the late 1980s [7]. In the early 1990s,
people started to think more seriously about the possibility of using cryptographic
hash functions (instead of symmetric encryption systems) to efficiently authenticate
messages. In fact, there are a couple of arguments in favor of using cryptographic
hash functions:

• There are a number of cryptographic hash functions in widespread use (refer
to Chapter 8 for an overview);

• Cryptographic hash functions can be implemented efficiently in hardware
and/or software;

• Many implementations of cryptographic hash functions are publicly and freely
available;

• Cryptographic hash functions are free to use (meaning, for example, that they
are not subject to patent claims and/or export controls);

• Cryptographic hash functions have well-defined security properties, such as
preimage resistance, second-preimage resistance, and collision resistance.

Some of these arguments have become obsolete (e.g., export restrictions),
whereas others still apply (e.g., widespread availability and use) and will likely apply
in the forseeable future (e.g., efficiency).

Against this background, Li Gong and Gene Tsudik first proposed an encryption-
free message authentication based on keyed one-way hash functions instead of a
symmetric encryption system [8, 9].2 More specifically, Tsudik proposed and dis-
cussed the following three methods to authenticate a message m ∈ M using a
one-way hash function h and a secret key k ∈ K:

• In the secret prefix method, k is a prefix tom and h is applied to the composite
message (i.e., MACk(m) = h(k ‖ m));

2 An earlier version of [9] was presented at IEEE INFOCOM ’92.

Message Authentication Codes 297

• In the secret suffix method, k is a suffix tom and h is applied to the composite
message (i.e., MACk(m) = h(m ‖ k));

• In the envelope method, there are two keys k1 and k2 that are a prefix and a suf-
fix tom. Again, h is applied to the composite message (i.e.,MACk1,k2(m) =
h(k1 ‖ m ‖ k2)).

The three methods and some variations thereof are overviewed and briefly
discussed next. The first two methods are insecure. They were, however, still used
in version 2 of the simple network management protocol (SNMP).

If one uses an iterated hash function (e.g., MD5 or SHA-1), then another
method to key the hash function is to use the IV, meaning that the otherwise fixed
IV is replaced by k. If the IV (and hence the key k) is l bits long (according to the
notation introduced in Section 8.2), then this method is bascially the same as the
secret prefix method addressed first.

11.2.2.1 Secret Prefix Method

As mentioned earlier, the secret prefix method consists of prepending a secret key
k ∈ K to the message m ∈ M before it is hashed with the cryptographic hash
function h. The construction is as follows:

MACk(m) = h(k ‖ m)

If h is an iterated hash function, then the secret prefix method is insecure.
Anybody who knows a single message-MAC pair can selectively forge a MAC for
a message that has the known message as a prefix. If one considers Figure 8.2 and
the way an iterated hash function h is constructed (using a compression function f),
then one easily notices that ti+1 = h(k ‖ m1 ‖ m2 ‖ . . . ‖ mi+1) can be computed
from ti = h(k ‖ m1 ‖ m2 ‖ . . . ‖ mi) as follows:

ti+1 = h(ti ‖ mi+1)

Consequently, if one knows ti and mi+1, then one can compute ti+1 without
knowing k. Consequently, the messages for which a MAC can be selectively forged
are restricted to those having a message with a known MAC as a prefix. This
restriction is not very strong.

Tsudik was aware of this type of message extension or padding attack, and he
suggested three possibilities to protect against it:

298 Contemporary Cryptography

• Only part of the hash value is taken as output (e.g., only 64 bits);

• The messages are always of fixed length;

• An explicit length field is included at the beginning of a message.

Neither of these possibilities is very comfortable, and hence the secret prefix
method is seldom used in practice.

11.2.2.2 Secret Suffix Method

Because of the message extension attack against the secret prefix method, the secret
suffix method seems to be the preferred choice. As mentioned earlier, the secret
suffix method consists of appending the key k to the message m before it is hashed
with the cryptographic hash function h. The construction is as follows:

MACk(m) = h(m ‖ k)

If h is an iterated hash function, then the secret suffix method has a structural
problem.3 Whether this problem is serious or not depends on the compression
function (of the hash function in use). The structural problem is due to the fact
that the MAC is a function of some known values4 and the key, assuming the key
is passed entirely to the last iteration of the compression function. Consequently, an
adversary may see the result of applying the compression function to many different
known values and the same key. This means that he or she may perform a known-
message attack against the compression function. While it is unlikely that currently
used compression functions reveal information about the key, other cryptographic
hash functions may not fare as well, and one may go for a more secure design in the
first place.

11.2.2.3 Envelope Method

The envelope method combines the prefix and suffix methods. As mentioned earlier,
the envelope method consists of prepending a key k1 and appending another key k2

to the message m before it is hashed with the cryptographic hash function h. The
construction is as follows:

3 The secret prefix method has the same problem, but only when the message is very short (i.e., if
there is only one iteration of the compression function).

4 The known values are (1) the next-to-last chaining value, which by assumption depends only on the
message, (2) the last part of the message, and (3) some padding.

Message Authentication Codes 299

MACk1,k2(m) = h(k1 ‖ m ‖ k2)

Until the middle of the 1990s, people thought that this method would be secure
and that breaking it would require a simultaneous exhaustive key search for k1

and k2 (see, for example, [9] for a corresponding line of argumentation). In 1995,
however, it was shown that this is not the case and that there are more efficient
attacks against the envelope method than to do a simultaneous exhaustive key search
for k1 and k2 [6]. Since then, the envelope method is slowly being replaced by some
alternative methods, as addressed next.

11.2.2.4 Alternative Methods

After Tsudik had published his results, many cryptographers turned their interest to
the problem of using keyed one-way hash functions for message authentication and
finding proofs for their security claims (e.g., [6, 10, 11]). Most importantly, Mihir
Bellare, Ran Canetti, and Hugo Krawczyk developed a pair of message authenti-
cation schemes—the nested MAC (NMAC) and the hashed MAC (HMAC)—that
can be proven to be secure as long as the underlying hash function is reasonably
strong (in a cryptographic sense) [12]. From a practical point of view, the HMAC
construction has become particularly important [13]. In a slightly modified form, it
was, for example, specified in informational RFC 2104 [14] and has been adopted
by many standardization bodies working in the field.

The HMAC construction uses the following pair of 64-byte strings:

• The string ipad (standing for “inner pad”) consists of the byte 0x36 (i.e.,
00110110) repeated 64 times;

• The string opad (standing for “outer pad”) consists of the byte 0x5C (i.e.,
01011100) repeated 64 times.

Consequently, ipad and opad are 64 · 8 = 512 bits long. Let h be a crypto-
graphic hash function, k be the secret key,5 and m be the message to be authenti-
cated. The HMAC construction is as follows:

HMACk(m) = h(k ⊕ opad ‖ h(k ⊕ ipad ‖ m))

5 The recommended minimal length of the key is l bits.

300 Contemporary Cryptography

This construction looks more involved than it actually is. It begins by append-
ing zero bytes (i.e., 0x00) to the end of k to create a 64-byte or 512-bit string.6

If, for example, k is 128 bits long, then 48 zero bytes are appended. The resulting
48 · 8 = 384 bits and the 128 key bits sum up to a total of 512 bits. This key is
then added modulo 2 to ipad, and the message m is appended to this value. At this
point in time, the cryptographic hash function h is applied a first time to the entire
data stream generated so far. The key (again, appended with zero bytes) is next added
modulo 2 to opad, and the result of the first application of h is appended to this value.
To compute the final hash value, h is applied a second time (note that this time the
argument for the hash function is comparably short). Last but not least, the output of
the HMAC construction may be truncated to a value that is shorter than l (e.g., 80 or
96 bits). In fact, it was shown that some analytical advantages result from truncating
the output [6]. In either case, k ⊕ ipad and k ⊕ opad are intermediate results of the
HMAC construction that can be precomputed at the time of generation of the key
k, or before its first use. This precomputation allows the HMAC construction to be
implemented very efficiently.

The appeal of the HMAC construction is that its designers have been able to
prove a mathematical relationship between the strength of the construction and the
strength of the underlying hash function. In fact, it has been shown that a passive
attacker can break the HMAC construction only if he or she is able to successfully
attack the underlying hash function in a certain way and that the probability of such
an attack can be made sufficiently small.

11.2.3 MACs Using PRFs

In 1995, Mihir Bellare, Roch Guérin, and Phillip Rogaway proposed a method for
message authentication using families of finite PRFs [15]. The notion of a PRF
was introduced in Section 2.2.4 and is further addressed in Chapter 13. In short,
a function f : X → Y is pseudorandom if it is randomly chosen from the set of
all mappings from domain X to range Y . A family of PRFs can, for example, be
constructed with a block cipher (e.g., DES) or a compression function of an iterated
hash function. In the first case,DESk(m) yields a family of finite PRF (k represents
the seed and m represents the argument) with n = 64.

The MAC constructions developed and proposed by Bellare, Guérin, and
Rogaway are collectively called XOR MACs (because they make use of many parallel
XOR operations). In [15], it was argued that XOR MACs have many efficiency and
security advantages (compared to the MAC constructions addressed so far). Roughly
speaking, an XOR MAC is computed in three steps:

6 If the key is longer than 64 bytes, then it must be truncated to the appropriate length.

Message Authentication Codes 301

1. The message m is block encoded, meaning that it is encoded as a collection
of n message blocks (i.e., m = m1 ‖ m2 ‖ . . . ‖ mn);

2. A finite PRF is applied to each message block, creating a set of PRF images;

3. The PRF images are added modulo 2, building the XOR MAC.

Note that there are different choices for a block encoding in step 1 and a finite
PRF in step 2, and that each of these choices yields a different XOR MAC construc-
tion. In fact, a randomized (and stateless) XOR MAC constructionXMACRF,b and
a deterministic (and stateful)7 XOR MAC constructionXMACCF,b can be defined
for every family F of finite PRFs and every block size b. Both constructions can be
shown to be secure if the underlying family F of finite PRFs is secure.8

As mentioned earlier, the two MAC constructions can be instantiated using
the DES. For any 56-bit DES key k and l-bit message block mi (i = 1, . . . , n),
let fk(mi) be the first 48 bits of DESk(mi).9 Consequently, fk specifies a pseudo-
random function that is keyed with k, and this key is shared between the sender and
recipient of the message m to be authenticated. We assume the length of M (i.e.,
| m |) is a multiple of 32 bits.10 The message m can then be viewed as a sequence
of n 32-bit blocks, m = m1 ‖ m2 ‖ . . . ‖ M [n] with | mi |= 32. Furthermore, let
〈i〉 denote the binary representation of the message block index i for i = 1, . . . , n.

11.2.3.1 Randomized XOR MAC

The randomized XOR MAC (XMACR) to authenticate message m is computed as
follows:

1. A random 63-bit string r is selected as a seed;

2. The value z is computed as follows:

z = fk(0 ‖ r) ⊕
fk(1 ‖ 〈1〉 ‖ m1)⊕
fk(1 ‖ 〈2〉 ‖ m2)⊕
. . .

fk(1 ‖ 〈n〉 ‖ mn)

7 In a stateful MAC the sender maintains information, such as a counter, which he or she updates each
time a message is authenticated.

8 In formalizing this, security of a family of finite PRFs means that it is indistinguishable from a
family of random functions in the sense of [16].

9 Note that fk outputs only 48 bits and not the full 64-bit ciphertext block. The output is truncated
because DES is a pseudorandom permutation, while what we want is a pseudorandom function.

10 This can easily be achieved by a suitable padding.

302 Contemporary Cryptography

3. The XMACR of m using k is the pair (r, z).

The sender transmits both m and the XMACR of m (i.e., (r, z)) to the
recipient, and the recipient receives m′ and (r′, z′). The recipient then computes

z = fk(0 ‖ r′)⊕
fk(1 ‖ 〈1〉 ‖ m′

1)⊕
fk(1 ‖ 〈2〉 ‖ m′

2)⊕
. . .

fk(1 ‖ 〈n〉 ‖ m′
n)

and accepts the XMACR if and only if z = z′.

11.2.3.2 Counter-Based XOR MAC

The counter-based XOR MAC (XMACC) construction uses a 63-bit counter c
(instead of a random string r). The counter is initially set to zero and is incremented
for each message. The XMACC for message m is computed as follows:

1. The counter c is incremented by 1;

2. The value z is computed as follows:

z = fk(0 ‖ c)⊕
fk(1 ‖ 〈1〉 ‖ m1)⊕
fk(1 ‖ 〈2〉 ‖ m2)⊕
. . .

fk(1 ‖ 〈n〉 ‖ mn)

3. The XMACC of m using k is the pair (c, z).

Again, the sender transmits bothm and (c, z) to the recipient, and the recipient
receives m′ and (c′, z′). The recipient then computes

z = fk(0 ‖ c′)⊕
fk(1 ‖ 〈1〉 ‖ m′

1)⊕
fk(1 ‖ 〈2〉 ‖ m′

2)⊕
. . .

fk(1 ‖ 〈n〉 ‖ m′
n)

Message Authentication Codes 303

and accepts the XMACC if and only if z = z′.

11.2.3.3 Discussion

Similar to other MAC constructions, such as HMAC, the security of XOR MACs
can be formally analyzed and quantified. In fact, an adversary’s inability to forge an
XOR MAC can be expressed in terms of his or her (presumed) inability to break the
underlying PRF.

The major advantage of XOR MACs (compared to other MAC constructions)
is parallelizability, meaning that all n invocations of the PRF (to generate or verify
an XOR MAC) can be done in parallel. As mentioned later, this fact is important and
may be a prerequisite for message authentication in high-speed networks. Similarly,
message authentication can proceed even if the message blocks arrive out of order.
It is only required that each message block mi comes along with its index i.
Out-of-order MAC verification is in fact a very useful property in contemporary
networks, such as the Internet (because of packet losses and retransmission delays).
Furthermore, an XOR MAC is incremental in the sense of [17]. Suppose, for
example, that the message block mi is modified to a new 32-bit value m′

i. Then,
for a long messagem, one can update the XOR MAC much faster than it would take
to recompute it. For example, let (r, z) be an XMACR for message m and let m′ be
m with message block i replaced by m′

i. To compute an XMACR for m′, one can
randomly select r′ and compute

z′ = z ⊕ fk(0 ‖ r) ⊕ fk(0 ‖ r′)⊕ fk(1 ‖ 〈i〉 ‖ mi)⊕ fk(1 ‖ 〈i〉 ‖ m′
i).

The pair (r′, z′) then represents the XMACR for m′. Note that this works
because adding a value twice modulo 2 entirely removes its impact.

One disadvantage of XOR MACs is performance. This disadvantage, however,
largely depends on the family of finite PRFs in use. In the case of DES (as discussed
earlier), the number of DES computations for an XOR MAC is twice that of a CBC
MAC (because XOR MACs operate on 32-bit blocks instead of 64-bit blocks). So
an XOR MAC may be twice as slow as a CBC MAC.

In summary, XOR MACs have many properties that make them an appropriate
choice in many situations, especially if one considers high-speed networks that do
not guarantee an absolutely reliable data transmission. If the computer systems
communicating over the network are powerful, then the performance degradation
with a factor of two (as in the case of DES) is not particularly worrisome.

304 Contemporary Cryptography

11.2.4 MACs Using Families of Universal Hash Functions

At the end of Chapter 8, we mentioned that universal hashing as originally proposed
in [18] provides an interesting design paradigm for cryptographic hash functions in
general, and message authentication in particular [19]. After the initial work of Larry
Carter and Mark Wegman, the use of universal hashing for message authentication
was further explored by Gilles Brassard [20] and many other researchers (see, for
example, [21]). Most of these constructions use two-universal families of hash
functions. In short, a family H of hash functions h : X → Y is two-universal if
for every x, y ∈ X with x �= y

Prh∈H [h(x) = h(y)] ≤ 1
|Y | .

As of this writing, the most important MAC that uses families of universal
hash functions is known as universal MAC (UMAC) [22]. The output of the UMAC
construction is a 32-, 64- or 96-bit authentication tag (depending on the user’s
preference). A 64-bit authentication tag is recommended for most applications.

Let H be a two-universal family of hash functions and F be a PRF family
(see Chapter 13) that generates outputs of the same length. A secret key k is used to
select a hash function hk fromH and a PRF fk from F . The hash function hk is then
used to hash a given message into a short string, and the short string is encrypted by
adding it modulo 2 to a string that is generated with the PRF fk and a random value
(i.e., nonce) r. Consequently, the authentication tag UMACk(m) is constructed as
follows:

UMACk(m) = fk(r) ⊕ hk(m)

In this notation, r refers to the nonce that must change with every authen-
tication tag. The recipient needs to know which nonce was used by the sender,
so some method of synchronizing nonces needs to be used. This can be done by
explicitly sending the nonce along with the message and the tag (in this case, r
and UMACk(m) must be sent together) or agreeing upon the use of some other
nonrepeating value such as message number. The nonce need not be kept secret, but
care needs to be taken to ensure that, over the lifetime of the shared secret key k, a
different nonce is used with each message m.

Message Authentication Codes 305

11.3 INFORMATION-THEORETICALLY SECURE MACS

As mentioned before, a MAC is information-theoretically secure if it is impossible
to forge a MAC. Let us begin with a simple and pathological example. We consider
the situation in which we want to authenticate the outcome of a random coin flipping
experiment. The outcome of the experiment is a single bit saying either H (standing
for “head”) or T (standing for “tail”). The secret key is assumed to consist of two
randomly chosen bits (i.e., 00, 01, 10, or 11) and the MAC consists of one single bit.
An exemplary message authentication system scheme is illustrated in Table 11.1.
The rows in the table refer to the four possible keys. If, for example, the secret key
shared between the sender and the recipient is 01 (i.e., the key found in the second
row) and the outcome of the experiment is a head, then HO is transmitted. Similarly,
if the outcome of the experiment is a tail, then we transmit T1 (for the same secret
key 01).

Table 11.1
An Exemplary Message Authentication System

H0 H1 T0 T1
00 H - T -
01 H - - T
10 - H T -
11 - H - T

If we talk about information-theoretically secure message authentication sys-
tems and MACs, then we must be sure that every key can be used only once (this is
similar to the one-time pad in the case of information-theoretically secure symmet-
ric encryption systems). In the example given earlier, this means that we need 2n
bits of keying material to authenticate n outcomes of the random experiment in an
information-theoretically secure way. If, for example, we wanted to authenticate the
sequence TTHTH using the five keys 00, 10, 11, 11, and 01, then we would actually
transmit T0, T0, H1, T1, and H0. We hence need a 10-bit key to authenticate a 5-bit
message.

In this example, the bit length of the MAC is one. Consequently, an adversary
can guess a MAC with a probability of 2−1 = 1/21 = 1/2. To show that the
message authentication system is secure, we must show that an adversary has no
better possibility to forge a MAC (for a message of his or her choice) than to guess.
We consider the case in which the adversary wants to forge a MAC for the message
H (for the message T, the line of argumentation is similar). Assuming all four keys
occur with equal probability (i.e., probability 1/4), the MAC is 0 for two out of
four possibilities (i.e., 00 and 01) and 1 for the other two possibilities (i.e., 10 and

306 Contemporary Cryptography

11). Consequently, the adversary has a 2/4 = 1/2 chance of correctly guessing the
MAC, and there is nothing else he or she can do to increase his or her odds.

Note that this line of argumentation (about the security of a message authenti-
cation system or MAC) also applies if the sender provides a message with a correct
MAC and the adversary wants to modify the message (and its MAC). Going back to
our example, let us assume that the adversary has received H0, that he or she wants
to change the message from H to T, and that he or she wants to generate a valid MAC
for the new message (without actually knowing the secret key). If the adversary has
received H0, then the only possible keys are 00 and 01 (according to Table 11.1):

• If 00 is the proper key, then the message T must be authenticated with 0, and
the adversary must change the message to T0.

• Similarly, if 01 is the proper key, then the message T must be authenticated
with 1, and the adversary must change the message to T1.

In either case, the adversary has a probability of 1/2 to correctly guess the
proper key and to correctly change the message accordingly. Again, there is nothing
the adversary can do to increase the probability.

In lossy and unreliable networks, one may be concerned about the error
probability of a message authentication system. In this case, it is always possible to
reduce the error probability of a message authentication system simply by appending
s MACs instead of just one. Consequently, the message m is accompanied by s
MACs. If each of these MACs requires n key bits, then the total amount of key bits
sums up to s ·n. Also, if each MAC has an error probability of ε, then the total error
probability of nMACs is εs. In the example given earlier, ε = 1/2 and the total error
probability is (1/2)s.

Similar to information-theoretically secure encryption systems, information-
theoretically secure message authentication systems and corresponding MACs re-
quire keys of a specific size. It has been shown that it is possible to construct
information-theoretically secure message authentication systems and corresponding
MACs that require relatively short keys. The disadvantage of all of these schemes is
that a different key must be used for every message. If this is not acceptable, then
one can also generate the keys using a cryptographically strong PRBG (see Chapter
12). In this case, however, the resulting scheme is at most computationally secure.
This is similar to the approximation of a one-time pad using a PRBG in the case of
symmetric encryption systems.

Message Authentication Codes 307

11.4 FINAL REMARKS

In this chapter, we elaborated on possibilities to authenticate messages and to
compute and verify MACs. We focused on the notion of security (in the context
of message authentication), and we overviewed and discussed several message
authentication systems that are computationally or information-theoretically secure.
From a practical viewpoint, computationally secure message authentication systems
and MACs are important. More specifically, most applications and standards that
require message authentication in one way or another employ MACs that use keyed
hash function (this is because cryptographic hash functions are assumed to be more
efficient than symmetric or asymmetric systems). Most importantly, the HMAC
construction is part of most Internet security protocols in use today, including, for
example, the IPsec and SSL/TLS protocols (e.g., [23]). In a typical implementation,
the HMAC construction is based on an iterated cryptographic hash function, such
as MD5 or SHA-1. As already mentioned in Section 8.4, these functions have
the problem that they operate strongly sequential, and hence that they are not
parallelizable. This may lead to performance problems in high-speed networks.

Against this background, there is a strong incentive to go for message authen-
tication systems and MAC constructions that can be parallelized. The XOR MACs
were historically the first proposal that went into this direction. Today, the UMAC
construction is the one that looks most promising for the future. Another possibil-
ity that may be worthwhile to consider is probabilistic message authentication. The
basic idea is that not all bits of a message are input to the authentication function.
The more efficient an authentication function must be, the more bits are considered.
Consequently, there is a tradeoff to make between the security requirements of a
MAC and its efficiency.

References

[1] ISO 8731-2, Banking—Approved Algorithms for Message Authentication—Part 2: Message Au-
thenticator Algorithm, 1992.

[2] American National Standards Institute, American National Standard for Financial Message
Authentication, ANSI X9.9, April 1982.

[3] U.S. Department of Commerce, National Institute of Standards and Technology, Computer Data
Authentication, FIPS PUB 113, May 1985.

[4] ISO/IEC 9797, Information Technology—Security Techniques—Data Integrity Mechanism Using
a Cryptographic Check Function Employing a Block Cipher Algorithm, 1994.

[5] Bellare, M., J. Kilian, and P. Rogaway, “The Security of Cipher Block Chaining,” Proceedings of
CRYPTO ’94, Springer-Verlag, LNCS 839, 1994, pp. 341–358.

308 Contemporary Cryptography

[6] Preneel, B., and P. van Oorschot, “MDx-MAC and Building Fast MACs from Hash Functions,”
Proceedings of CRYPTO ’95, Springer-Verlag, LNCS 963, 1995, pp. 1–14.

[7] Cohen, F., “A Cryptographic Checksum for Integrity Protection,” Computers & Security, Vol. 6,
No. 5, 1987, pp. 505–510.

[8] Gong, L., “Using One-Way Functions for Authentication,” ACM SIGCOMM Computer Commu-
nication Review, Vol. 19, No. 5, October 1989, pp. 8–11.

[9] Tsudik, G., “Message Authentication with One-Way Hash Functions,” ACM SIGCOMM Com-
puter Communication Review, Vol. 22, No. 5, October 1992, pp. 29–38.

[10] Kaliski, B., and M. Robshaw, “Message Authentication with MD5,” CryptoBytes, Vol. 1, No. 1,
Spring 1995, pp. 5–8.

[11] Preneel, B., and P. van Oorschot, “On the Security of Two MAC Algorithms,” Proceedings of
EUROCRYPT ’96, Springer-Verlag, 1996.

[12] Bellare, M., R. Canetti, and H. Krawczyk, “Keying Hash Functions for Message Authentication,”
Proceedings of CRYPTO ’96, Springer-Verlag, LNCS 1109, 1996, pp. 1–15.

[13] Bellare, M., R. Canetti, and H. Krawczyk, “The HMAC Construction,” CryptoBytes, Vol. 2, No.
1, Spring 1996, pp. 12–15.

[14] Krawczyk, H., M. Bellare, and R. Canetti, HMAC: Keyed-Hashing for Message Authentication,
Request for Comments 2104, February 1997.

[15] Bellare, M., R. Guerin, and P. Rogaway, “XOR MACs: New Methods for Message Authentication
Using Block Ciphers,” Proceedings of CRYPTO ’95, Springer-Verlag, 1995.

[16] Goldreich, O., S. Goldwasser, and S. Micali, “How to Construct Random Functions,” Journal of
the ACM, Vol. 33, No. 4, 1986, pp. 210–217.

[17] Bellare, M., O. Goldreich, and S. Goldwasser, “Incremental Cryptography: The Case of Hashing
and Signing,” Proceedings of CRYPTO ’94, Springer-Verlag, 1994.

[18] Carter, J.L., and M.N. Wegman, “Universal Classes of Hash Functions,” Journal of Computer and
System Sciences, Vol. 18, 1979, pp. 143–154.

[19] Wegman, M.N., and J.L. Carter, “New Hash Functions and Their Use in Authentication and Set
Equality,” Journal of Computer and System Sciences, Vol. 22, 1981, pp. 265–279.

[20] Brassard, G., “On Computationally Secure Authentication Tags Requiring Short Secret Shared
Keys,” Proceedings of CRYPTO ’82, 1982, pp. 79–86.

[21] Shoup, V., “On Fast and Provably Secure Message Authentication Based on Universal Hashing,”
Proceedings of CRYPTO ’96, Springer-Verlag, LNCS 1109, 1996, pp. 313–328.

[22] Black, J. et al., “UMAC: Fast and Secure Message Authentication,” Proceedings of CRYPTO ’99,
Springer-Verlag, LNCS 1666, 1999, pp. 216–233.

[23] Oppliger, R., Internet and Intranet Security, 2nd edition. Artech House Publishers, Norwood,
MA, 2002.

Chapter 12

Pseudorandom Bit Generators

Anyone who considers arithmetical methods of producing random digits
is, of course, in a state of sin.

— John von Neumann1

In Chapter 9, we concluded that it is often important to be able to generate truly
random bits (using, for example, a random bit generator), to use these bits to seed
a PRBG, and to use the PRBG to generate a potentially infinite pseudorandom bit
sequence. Consequently, PRBGs have many applications in practice. In this chapter,
we elaborate on PRBGs. More specifically, we introduce the topic in Section 12.1,
address cryptographically secure PRBGs in Section 12.2, and conclude with some
final remarks in Section 12.3.

12.1 INTRODUCTION

According to Section 2.2.3 and Definition 2.9, a PRBG is an efficient deterministic
algorithm that, given as input a truly random binary sequence of length k (i.e., the
seed), generates and outputs a binary sequence of length l � k (i.e., the pseudo-
random bit sequence) that appears to be random. Note that we require the algorithm
that represents the PRBG to be deterministic, and hence the existence of PRBGs
seems to contradict the quote of John von Neumann given above. If, however, one
understands von Neumann’s quote to refer to the seed of a PRBG (and hence to a
random bit generator), it still applies. The seed for a PRBG must be generated non-
deterministically, and hence the existence and use of a PRBG does not eliminate the

1 In: Des MacHale, Comic Sections: The Book of Mathematical Jokes, Humour, Wit, and Wisdom,
Boole Press, Dublin, Ireland, 1993.

309

310 Contemporary Cryptography

need for a natural source of randomness. It is rather a “randomness expander” that
must still be given a truly random seed to begin with.

In practice, many additive stream ciphers are based on a PRBG. For example,
the practically relevant and widely deployed additive stream cipher ARCFOUR
(RC4) addressed in Section 10.3 basically represents a PRBG.

��	��
���
����

�

�

B�"

�

�
=�

���+����+����+����� 3 1

Figure 12.1 An idealized model of an FSM-based PRBG.

Due to its deterministic nature, a PRBG must be implemented as an FSM,
and this FSM generates a binary sequence that is cyclic (with a potentially very
large cycle). Figure 12.1 illustrates an idealized model of an FSM-based PRBG. The
model comprises

• A state register;

• A next-state function f ;

• An output function g.

The state register is initialized with a seed s0, and the next-state function f
computes si+1 from si for i ≥ 0. For each si, the function g computes an output
value xi for the PRBG (typically a bit or a series of bits). Consequently, the PRBG
generates and outputs a sequence

(xi)i≥1 = x1, x2, x3, . . .

In this idealized model, the function f operates recursively on the state
register, and there is no other input to the PRBG than the seed. Some PRBGs used
in practice slightly deviate from this idealized model by allowing the state to be

Pseudorandom Bit Generators 311

reseeded periodically. This may be modeled by having a function f that takes into
account additional sources of randomness (this possibility is not illustrated in Figure
12.1). In this case, however, the distinction between a random bit generator and a
PRBG gets fuzzy.

There are many security requirements for PRBGs. For example, an obvious
(minimal) security requirement is that the length of the seed (i.e., |s0|) must be suffi-
ciently large so that a search over all 2|s0| elements of the space of all possible seeds
is computationally infeasible for the adversary. Furthermore, the bit sequence gen-
erated by a PRBG must pass all relevant statistical randomness tests (as mentioned
in Section 9.3). Note, however, that passing statistical randomness tests is only a
necessary but usually not sufficient condition for a PRBG to be secure in a cryp-
tographically strong sense. For example, the following PRBGs pass most statistical
randomness tests but are still not sufficiently secure for cryptographic purposes:

1. PRBGs that employ LFSRs as introduced and briefly discussed in Section
10.3;

2. PRBGs that employ the binary expansion of algebraic numbers, such as
√

3
or
√

5;

3. Linear congruential generators that take as input a seed x0 = s0 and three
integer parameters a, b, and n, and that use the linear recurrence

xi = axi−1 + b (mod n)

to recursively generate an output sequence (xi)i≥1.

LFSRs have well-known shortcomings and weaknesses when used as PRBGs.
The same is true for the binary expansion of algebraic numbers. Last but not
least, linear congruential generators are frequently used for simulation purposes
and probabilistic algorithms (see, for example, Chapter 3 of [1]), but they are
predictable—that is, it is possible to infer the parameters a, b, and n given just a few
output values xi (e.g., [2, 3]). This makes them particularly useless for cryptographic
applications.

Contrary to these examples, there are PRBGs that can be used for crypto-
graphic purposes. For example, if we have a one-way function f , then we can always
construct a conceptually simple PRBG by selecting a seed s0 and applying f to the
sequence of values

s1 = s0 + 1

312 Contemporary Cryptography

s2 = s0 + 2
s3 = s0 + 3
. . .

Talking in terms of an FSM, the state register is initialized with the seed s0,
the next-state function is the function that increments s by one (i.e., si+1 = si + 1
for i ≥ 0), and the output function is the one-way function. The output sequence of
such a PRBG is as follows:

f(s0), f(s0 + 1), f(s0 + 2), f(s0 + 3), . . .

Depending on the properties of the one-way function f , it may be necessary
to keep only a few bits of the (i + 1)th output value f(s + i) for i ≥ 0 (mainly to
destroy possible correlations between successive values). Examples of suitable one-
way functions include block ciphers, such as DES or AES (see Chapter 10), with a
secret key, or cryptographic hash functions, such as MD5 or SHA-1 (see Chapter 8).

Algorithm 12.1 ANSI X9.17 PRBG.

(s, k, n)

I ← Ek(D)
for i = 1 to n do

xi ← Ek(I ⊕ s)
s← Ek(xi ⊕ I)
output xi

(x1, x2, . . . , xn)

A practically relevant PRBG is specified in ANSI X9.17 [4] and illustrated in
Algorithm 12.1. It defines a way to pseudorandomly generate encryption keys and
initialization vectors for use with DES. In the specification of Algorithm 12.1, Ek

denotes a TDEA or 3DES encryption with keying option 2, according to Section
10.2.1.6 (in this option, only two DES keys are used, and in Algorithm 12.1 k
refers to both of them). The algorithm takes as input a random (and secret) seed
value s, a 3DES key k, and an integer n. It then produces and outputs a sequence
of n pseudorandom 64-bit strings x1, x2, . . . , xn. D is an internally used 64-bit
representation of the date and time (in a resolution that is as fine as possible), and I
is an intermediate value that is determined in an initialization step at the beginning
of the algorithm.

Pseudorandom Bit Generators 313

Other practically relevant PRBGs are, for example, specified in FIPS PUB 186
[5]. Although such ad hoc methods to generate pseudorandom bit sequences have not
proven to be secure in a cryptographical sense, they appear sufficiently secure for
most (cryptographic) applications. Unfortunately, only a few publications elaborate
on the exact cryptographical strength of such a PRBG (e.g., [6]). For example, some
PRBGs (including the ANSI X9.17 PRBG) have the property that once the internal
state has been compromised, an adversary is forever after able to predict the output
bit sequence of the PRBG. From a theoretical point of view, this is a minor concern
and does not disturb the overall security of the PRBG (because one assumes that the
adversary is not able to read out the internal state of the PRBG). From a practical
point of view, however, this is a major concern and may require reseeding the PRBG
periodically.

One branch of research tries to find PRBG constructions that are resistant
against all known attacks. The resulting PRBGs are relevant and called practically
strong. Note, however, that a practically strong PRBG is not necessarily secure in
a cryptographical sense and that it is only assumed to be secure against a specific
set of attacks that is known at some point in time. On the positive side, practically
strong PRBGs are usually very efficient and can be implemented entirely in software.
Possible constructions for practically strong PRBGs are given in [7] and [8]. For the
purpose of this book, we don’t further address practically strong PRBGs. Instead,
we elaborate on PRBGs that are secure in a cryptographically strong sense; they are
called cryptographically secure.2

12.2 CRYPTOGRAPHICALLY SECURE PRBG

From a theoretical point of view, there are many possibilities to formally define
what “secure in a cryptographically strong sense” or “cryptographically secure”
means with respect to PRBGs. Historically, the first possibility was formalized
by Manuel Blum and Silvio Micali in the early 1980s [9]. They called a PRBG
cryptographically secure if an adversary cannot guess the next bit in a sequence from
the prefix of the sequence better than guessing at random, and they also proposed
the first method for designing such a cryptographically secure PRBG based on the
DLA (see Definition 7.4). Leonore Blum, Manuel Blum, and Michael Shub proposed
another PRBG, called the BBS PRBG or squaring generator, which is simpler to
implement and provably secure assuming that the QRP (see Definition 3.32) is hard
[10]. Later it was shown that the assumption that the QRP is hard can be replaced
by the weaker assumption that the IFP is hard [11]. A related PRBG is obtained by
using the RSA function. All three PRBGs are addressed later.

2 Cryptographically secure PRBGs are sometimes also called cryptographically strong.

314 Contemporary Cryptography

In addition to these constructions of cryptographically secure PRBGs, Andrew
C. Yao showed that they are all perfect in the sense that no PPT algorithm can guess
with a probability significantly greater than 1/2 whether an input string of length k
was randomly selected from {0, 1}k or generated by such a PRBG [12]. Note that
this notion of a perfect PRBG is conceptually similar to the Turing Test3 used in
artificial intelligence [13]. One can rephrase Yao’s result by saying that a PRBG
that passes the Blum-Micali next-bit test is perfect in the sense that it passes all
polynomial-time statistical tests.

The Blum-Micali and BBS PRBGs, together with the proof of Yao, represent
a major achievement in the development of cryptographically secure PRBGs. More
recently, it was shown that the existence of a one-way function is equivalent to
the existence of a cryptographically secure PRBG (i.e., a PRBG that passes all
polynomial-time statistical tests) [14].

On a high level of abstraction, one can say that a PRBG is called cryptograph-
ically secure if the (pseudorandom) bit sequence it generates and outputs cannot be
distinguished (by any PPT algorithm) from a true random bit sequence of the same
length. In analogy, one may not care if a pseudorandom bit sequence is random
or not; all one may care about is whether a difference can be observed between
the pseudorandomly generated bit sequence and a true random bit sequence (of the
same length). Consequently, the notion of effective similarity (as, for example, used
in [12, 15]) or computational indistinguishability are fundamental for the definition
of cryptographically secure PRBGs. To make these ideas more precise, let

X = {Xn} = {Xn}n∈N = {X1, X2, X3, . . .}

and

Y = {Yn} = {Yn}n∈N = {Y1, Y2, Y3, . . .}
3 The Turing Test is meant to determine if a computer program has intelligence. According to Alan

M. Turing, the test can be devised in terms of a game (a so-called imitation game). It is played
with three people, a man (A), a woman (B), and an interrogator (C) who may be of either sex. The
interrogator stays in a room apart from the other two. The object of the game for the interrogator is
to determine which of the other two is the man and which is the woman. He knows them by labels
X and Y, and at the end of the game he says either “X is A and Y is B” or “X is B and Y is A.”
The interrogator is allowed to put questions to A and B. When talking about the Turing Test today,
what is generally understood is the following: the interrogator is connected to one person and one
machine via a terminal, and therefore can’t see her counterparts. Her task is to find out which of
the two candidates is the machine and which is the human only by asking them questions. If the
machine can “fool” the interrogator, it is intelligent.

Pseudorandom Bit Generators 315

be two probability ensembles. For every n ∈ N
+, Xn and Yn refer to probability

distributions on {0, 1}n. By saying t ∈ Xn (t ∈ Yn), we mean that t ∈ {0, 1}n,
and t is selected according to the probability distribution Xn (Yn). We then say that
X is poly-time indistinguishable from Y if for every PPT algorithm D and every
polynomial p, there exists a n0 ∈ N

+ such that for all n > n0

|Prt∈Xn [D(t) = 1]− Prt∈Yn [D(t) = 1]| ≤ 1
p(n)

.

This means that for sufficiently large t, no PPT algorithm D can tell whether
it was sampled according to Xn or Yn. In some literature, the PPT algorithm D is
also called polynomial-time statistical test or distinguisher (the letter “D” is chosen
to refer to a distinguisher). In either case, it is important to note that such a definition
cannot make sense for a single string t (as it can be drawn from either distribution).

In computational complexity theory, it is assumed and widely believed that
computationally indistinguishable probability ensembles exist. This assumption is
sometimes referred to as the general indistinguishability assumption.

Having the general indistinguishability assumption in mind, we say that {Xn}
is pseudorandom if it is poly-time indistinguishable from {Un}, where Un denotes
the uniform probability distribution on {0, 1}n. More specifically, this means that
for every PPT algorithm D and every polynomial p, there exists a n0 ∈ N

+ such
that for all n > n0

|Prt∈Xn [D(t) = 1]− Prt∈Un [D(t) = 1]| ≤ 1
p(n)

.

We are now ready to formally define the notion of a cryptographically secure
PRBG. This is done in Definition 12.1.

Definition 12.1 (Cryptographically secure PRBG) Let G be a PRBG with stretch
function l : N → N (i.e., l(n) > n for all n ∈ N). G is cryptographically secure if it
satisfies the following two conditions:

• |G(s)| = l(|s|) for every s ∈ {0, 1}∗;

• {G(Un)} is pseudorandom (i.e., it is poly-time indistinguishable from {Ul(n)}).

The first condition captures the stretching property of the PRBG (i.e., the fact
that the output of the PRBG is larger than its input), and the second condition cap-
tures the property that the generated pseudorandom bit sequence is computationally

316 Contemporary Cryptography

indistinguishable from (and hence practically the same as) a true random bit se-
quence. Combining the two conditions yields a PRBG that is secure and can be used
for cryptographic purposes. Referring to the fundamental results of Blum, Micali,
and Yao (mentioned earlier), a PRBG is cryptographically secure if it passes the
next-bit test (and hence all polynomial-time statistical tests) possibly under some
intractability assumption.

If one has a one-way function f with hard-core predicate B, then a crypto-
graphically secure PRBG G with seed s0 can be constructed as follows:

G(s0) = B(s0), B(f(s0)), B(f2(s0)), . . . , B(f l(|s0|)−1(s0))

Talking in terms of an FSM-based PRBG, the state register is initialized with
s0, the next-state function f is the one-way function, and the output function g com-
putes the hard-core predicate B. This idea is employed by many cryptographically
secure PRBGs. The three most important examples—the Blum-Micali, RSA, and
BBS PRBGs—are overviewed and briefly discussed next.

12.2.1 Blum-Micali PRBG

The Blum-Micali PRBG [9] as specified in Algorithm 12.2 employs the fact that the
discrete exponentiation function is a (conjectured) one-way function (see Section
7.2.1) and that the MSB is a hard-core predicate of it. The PRBG takes as input
a large prime p and a generator g of Z

∗
p. It is initialized by randomly selecting a

seed x0 = s0 from Z
∗
p. The PRBG then generates an output bit bi by computing

xi = gxi−1 (mod p) and setting bi = msb(xi) for i ≥ 1. A potentially infinite bit
sequence (bi)i≥1 can be generated along this way. It is the output of the Blum-Micali
PRBG.

Algorithm 12.2 The Blum-Micali PRBG.

(p, g)

x0 ∈R Z
∗
p

for i = 1 to∞ do
xi ← gxi−1 (mod p)
bi ← msb(xi)
output bi

(bi)i≥1

The security of the Blum-Micali PRBG is based on the DLA (see Definition
7.4). This means that anybody who is able to compute discrete logarithms can also
break the security of the Blum-Micali PRBG.

Pseudorandom Bit Generators 317

12.2.2 RSA PRBG

The RSA PRBG as specified in Algorithm 12.3 employs the fact that the RSA
function is a (conjectured) one-way function (see Section 7.2.2) and that the LSB
is a hard-core predicate of it. Similar to the RSA public key cryptosystem, the RSA
PRBG takes as input a large integer n (that is the product of two large primes p and q)
and e (that is a randomly chosen integer between 2 and φ(n)−1 with gcd(e, φ(n)) =
1). The PRBG is then initialized by randomly selecting a seed x0 = s0 from Z

∗
n.

It then generates an output bit bi by computing xi = xe
i−1 (mod n) and setting

bi = lsb(xi) for i ≥ 1. Again, a potentially infinite bit sequence (bi)i≥1 can be
generated along this way. It is the output of the RSA PRBG.

Algorithm 12.3 The RSA PRBG.

(n, e)

x0 ∈R Z
∗
n

for i = 1 to∞ do
xi ← xe

i−1 (mod n)

bi ← lsb(xi)
output bi

(bi)i≥1

If, for example, e = 3, then generating an output bit requires only one modular
multiplication and one modular squaring. This is efficient. The efficiency of the RSA
PRBG can be further improved by extracting the j least significant bits of xi (instead
of only the LSB), where j = c log logn for a constant c.

In either case, the security of the RSA PRBG is based on the IFA (see
Definition 7.10). This means that anybody who is able to factorize large integers
can also break the security of the RSA PRBG.

12.2.3 BBS PRBG

The BBS PRBG [10] as specified in Algorithm 12.4 employs the fact that the
modular square function restricted to Blum integers is a (conjectured) one-way
function (see Section 7.2.2), and that—similar to the RSA function—the LSB is
a hard-core predicate of it. The BBS PRBG takes as input a Blum integer n (i.e.,
an integer n that is the product of two primes p and q, each of them congruent to
3 modulo 4). Similar to the RSA PRBG, the BBS PRBG is initialized by randomly
selecting a seed x0 = s0 from Z

∗
n. It then generates an output bit bi by computing

xi = x2
i−1 (mod n) and setting bi = lsb(xi) for i ≥ 1. A potentially infinite bit

sequence (bi)i≥1 is the output of the BBS PRBG.

318 Contemporary Cryptography

Algorithm 12.4 The BBS PRBG.

(n)

x0 ∈R Z
∗
n

for i = 1 to∞ do
xi ← x2

i−1 (mod n)

bi ← lsb(xi)

output bi

(bi)i≥1

Alternatively speaking, the BBS PRBG takes as input a large Blum integer n
and generates the following binary output sequence (using a randomly chosen seed
x0):

G(x0) = lsb(x0), lsb(x0
2 mod n), . . . , lsb(x0

2l(|x0|)−1
mod n)

From a practical viewpoint, the BBS PRBG is the cryptographically secure
PRBG of choice used in many applications. There are basically two reasons:

• First, the BBS PRBG is efficient. It requires only one modular squaring for the
generation of an output bit. Furthermore, the efficiency of the PRBG can be
improved by extracting the j = c log logn least significant bits of xi (instead
of only the LSB).

• Second, the BBS PRBG has the practically relevant property that xi can be
computed directly for i ≥ 1 if one knows the prime factors p and q of n:

xi = x
(2i) mod ((p−1)(q−1))
0

In either case (and similar to the RSA PRBG), the security of the BBS PRBG
is based on the IFA (see Definition 7.10 on page 178).

12.3 FINAL REMARKS

In this chapter, we introduced the notion of a PRBG and elaborated on the require-
ments for a PRBG to be cryptographically secure. In short, a cryptographically se-
cure PRBG is an efficient deterministic algorithm that is able to stretch a binary
input sequence into a longer output sequence, and for which no PPT algorithm can

Pseudorandom Bit Generators 319

be specified that is able to distinguish the output of the PRBG from the output of a
true random bit generator with a success probability that is nonnegligibly larger than
1/2. Put in other words, there is no PPT algorithm that can distinguish the output of
a PRBG and the output of a random bit generator (of the same length) considerably
better than guessing.

In practice, PRBGs are important because they are used in many applications
to replace true random bit generators. This is advantageous because PRBGs use
much less randomness than true random bit generators (they still need randomness
and hence the quote of von Neumann still applies). Also, in an interactive setting, it is
possible to eliminate all random steps from the online computation and replace them
with the generation of pseudorandom bits based on a seed selected and fixed offline
(or at set-up time). The underlying assumption is that a cryptographic system that is
secure when the parties use a true random bit generator remains secure when they use
(only) a PRBG. For cryptographically secure PRBGs, we can have a “good feeling”
about this assumption; for practically relevant (or strong) PRBGs, we can at least
hope that the assumption holds. As soon as there is evidence that the assumption may
not hold, there is a strong incentive to replace these PRBGs with cryptographically
secure ones. In either case, if one has the choice, then there is good reason to go
for PRBGs that are cryptographically secure. In either case, it is a good idea to
periodically reseed the PRBG (even if it is a cryptographically secure one).

References

[1] Knuth, D.E., The Art of Computer Programming—Volume 2: Seminumerical Algorithms, 3rd edi-
tion. Addison-Wesley, Reading, MA, 1997.

[2] Plumstead, J., “Inferring a Sequence Generated by a Linear Congruence,” Proceedings of the 23rd
IEEE Symposium on Foundations of Computer Science, IEEE, Chicago, 1982, pp. 153–159.

[3] Krawczyk, H., “How to Predict Congruential Generators,” Journal of Algorithms, Vol. 13, No. 4,
1992, pp. 527–545.

[4] American National Standards Institute, American National Standard X9.17: Financial Institution
Key Management, Washington, DC, 1985.

[5] U.S. National Institute of Standards and Technology (NIST), Digital Signature Standard (DSS),
FIPS PUB 186, May 1994.

[6] Kelsey, J., et al., “Cryptanalytic Attacks on Pseudorandom Number Generators,” Proceedings of
the Fifth International Workshop on Fast Software Encryption, Springer-Verlag, March 1998, pp.
168–188.

[7] Gutmann, P., “Software Generation of Practically Strong Random Numbers,” Proceedings of the
Seventh USENIX Security Symposium, June 1998, pp. 243–255.

320 Contemporary Cryptography

[8] Kelsey, J., B. Schneier, and N. Ferguson, “Yarrow-160: Notes on the Design and Analysis of
the Yarrow Cryptographic Pseudorandom Number Generator,” Proceedings of the 6th Annual
Workshop on Selected Areas in Cryptography, Springer-Verlag, August 1999.

[9] Blum, M., and S. Micali, “How to Generate Cryptographically Strong Sequences of Pseudo-
Random Bits,” SIAM Journal of Computing, Vol. 13, No. 4, November 1984, pp. 850–863.

[10] Blum, L., M. Blum, and M. Shub, “A Simple Unpredictable Pseudo-Random Number Generator,”
SIAM Journal of Computing, Vol. 15, May 1986, pp. 364–383.

[11] Alexi, W., et al., “RSA/Rabin Functions: Certain Parts Are as Hard as the Whole,” SIAM Journal
of Computing, Vol. 17, No. 2, April 1988, pp. 194–209.

[12] Yao, A.C., “Theory and Application of Trapdoor Functions,” Proceedings of the 23rd IEEE
Symposium on Foundations of Computer Science, 1982, pp. 80–91.

[13] Turing, A.M., “Computing Machinery and Intelligence,” Mind, Vol. 59, No. 236, 1950, pp. 433–
460.

[14] Hastad, J., et al., “A Pseudorandom Generator from Any One-Way Function,” SIAM Journal of
Computing, Vol. 28, No. 4, 1999, pp. 1364–1396.

[15] Goldwasser, S., and S. Micali, “Probabilistic Encryption,” Journal of Computer and System
Sciences, Vol. 28, No. 2, 1984, pp. 270–299.

Chapter 13

Pseudorandom Functions

After having looked at PRBGs in the previous chapter, we now elaborate on PRFs in
this chapter. PRBGs and PRFs are somehow related but still conceptually different.
While a PRBG is an algorithm that generates and outputs a bit sequence that is
computationally indistinguishable from the output of a random bit generator, a PRF
is a function that is computationally indistinguishable from a random function (i.e., a
function that is randomly chosen from the set of all functions with a specific domain
and range). Consequently, we are interested in the output of a PRBG, whereas we
are interested in the way a PRF was chosen in the first place. Interestingly, a PRF
family can be used to construct a PRBG, and a PRBG can be used to construct a
PRF family (this fact was already mentioned in Section 2.2.4). In this chapter, we
thoroughly introduce the topic in Section 13.1, overview and discuss the contructions
mentioned earlier in Section 13.2, elaborate on the random oracle model in Section
13.3, and conclude with some final remarks in Section 13.4.

13.1 INTRODUCTION

To properly understand the statement that a PRF is computationally indistinguish-
able from a random function, we must first introduce the notion of a random func-
tion. Roughly speaking, a random function (also known as random oracle) f is an
arbitrary mapping from X to Y (i.e., f : X → Y), meaning that it maps an input
value x ∈ X to an arbitrary output value f(x) ∈ Y . The only requirement is that the
same input value x must always be mapped to the same output value f(x).

As illustrated in Figure 13.1, a random function is best thought of as a black
box that implements a function with a specific input-output behavior. This behavior
can be observed by everybody, meaning that anybody can feed input values x ∈ X
into the box and observe the output values f(x) ∈ Y that are sent out. Again, the

321

322 Contemporary Cryptography

� � �.�/

Figure 13.1 A random function f .

only requirement is that if a specific input value x is fed multiple times into the box,
then the output value f(x) must always be the same.

Another way to think about a random function f is as a large random table T
with entries of the form T [x] = (x, f(x)) for all x ∈ X . The table can either be
statically determined or dynamically generated:

• If T is statically determined, then somebody must have flipped coins (or used
another source of random bits) to determine f(x) for all x ∈ X and put these
values into the table.

• If T is dynamically generated, then there must be a program that initializes
the table with empty entries and that proceeds as follows for every input value
x: it checks whether T [x] is empty. If it is empty, then it randomly chooses
f(x) from Y , writes this value into T [x], and returns it as a result. If T [x] is
not empty, then it returns the corresponding value as a result.

Note that a random function is neither something useful in practice nor
something that is intended to be implemented in the first place. It is only a conceptual
and theoretical construct. Also note that the term random function is somehow
misleading. In fact, it may lead one to believe that some functions are more random
than others or—more generally—that randomness is a property that can be attributed
to a function or the output it eventually provides. This is not the case. The attribute
random in the term random function refers only to the way it was chosen. In fact, a
random function f : X → Y is a function that is randomly chosen fromRandX→Y

(i.e., the set of all functions of X to Y). Consequently, even a constant function can
occur as a random function (even though one would intuitively think that a constant
function is not random at all).

Similarly, we use the term random permutation to refer to a function f : X →
X that is randomly chosen from PermX→X , and hence the identity function can
also occur as random permutation. Most of the things we say in this chapter about
PRFs also apply to pseudorandom permutations (PRPs) in an analog way.

The fact that a PRF is computationally indistinguishable from a random
function means that somebody who has only black box access to a function (in
the sense that he or she can only observe the input-output behavior of a box that

Pseudorandom Functions 323

implements the function) is not able to tell whether it is a random function or a PRF.
To make this idea more precise (in a mathematically strong sense), we consider an
experiment. LetF : K×X → Y be a PRF family that is publicly known. Imagine an
adversary who is locked up in a room with a computer system connected to another
computer system located somewhere outside the room (and out of sight). The outside
computer system implements a function g : X → Y that is either a random function
or an instance of F (and hence a PRF).

• If g is a random function, then it is drawn at random from RandX→Y (i.e.,
g

r← RandX→Y).

• If g is a PRF, then it is drawn at random from the PRF family F , namely
g

r← F . More specifically, a key k is chosen according to k
r← K and g is

then set to the instance fk of the PRF family F .

In this setting, the adversary’s job is to decide whether g is a random function
or an instance of the PRF family F . He or she can adaptively choose input values
x ∈ X and observe the corresponding output values f(x) ∈ Y . If the PRF family F
is good (bad), then the probability that the adversary can make a correct decision is
only negligibly (nonnegligibly) better than 1/2. Hence, the quality of a PRF family
can be measured by the difficulty of telling its instances apart from true random
functions.

To further formalize this idea, we must again make use of a distinguisher.
This time, however, the distinguisher is a PPT algorithm that has oracle access to
some function and that makes a decision whether this function is random or pseudo-
random. In the rest of this chapter, we use the term Dg to refer to a distinguisher
D with oracle access to function g (be it a random function or an instance of a PRF
family). In either case, the output of Dg is one bit. We then consider the following
two experiments:

1) Experiment ExpRand,D

f
r← RandX→Y

b← Df

output b

2) Experiment ExpF,D

k
r← K

b← Dfk

output b

In ExpRand,D, a (random) function f is randomly chosen from RandX→Y

and the distinguisherD with oracle access to f returns bit b. This bit, in turn, is D’s

324 Contemporary Cryptography

decision whether f is random or pseudorandom. In ExpF,D, a key k is randomly
chosen from K to fix a function fk ∈ F , and the distinguisher D with oracle
access to fk returns bit b. Again, this bit is D’s decision whether fk is random
or pseudorandom. Each experiment has a certain probability of returning 1. The
probabilities are taken over all random choices made in the experiments (i.e., in the
first experiment, the probability is taken over all choices of f and all internal random
choices of Df , whereas in the second experiment, the probability is taken over all
choices of k and all internal random choices of Dfk). To qualify a distinguisher
D (with regard to its ability to distinguish between a random function and a PRF),
one looks at the difference between the two probabilities. Note that if D is a good
distinguisher, then it returns 1 more often in one experiment than in the other.
Consequently, the prf-advantage of D for F can be defined as followed:

Advprf
F,D = Pr[ExpF,D = 1]− Pr[ExpRand,D = 1]

It goes without saying that different distinguishers may have different prf-
advantages. For example, one distinguisher may achieve a greater prf-advantage
than another simply by asking more or more intelligent questions or by using a
better strategy to process the replies. Also, it is reasonable to assume that the more
input-output examples that can be observed, the better the ability to tell the two
types of functions apart. Consequently, the quality of a function family F must also
be measured as a function of the resources allowed to a distinguisher. For any given
resource limitation, we may be interested in the prf-advantage achieved by the best
(i.e., most intelligent) distinguisher (among all distinguishers that are restricted to
the given resource limitations). We associate to F a prf-advantage that on input of
any values of the resource parameters returns the maximum prf-advantage that an
adversary restricted to these resources is able to obtain. Consequently, for any given
t, q, and µ, we define the prf-advantage of F as

Advprf
F (t, q, µ) = maxD{Advprf

F,D}

where the maximum is taken over all D having time complexity t and making at
most q oracle queries, the sum of the lengths of these queries being at most µ bits.
The main reason for using the prf-advantage of F as a measure for the quality of
F is that it does not specify anything about the kinds of strategies that can be used
by a distinguisher. In fact, it can do anything as long as it stays within the specified
resource bounds.

So far, we have only assigned a prf-advantage to a function family F . We have
neither specified the requirements for F to be a PRF family, nor have we said what

Pseudorandom Functions 325

we mean by saying that F is secure. Intuitively, we would say that F is a secure PRF
family if its prf-advantage is negligible for all practically relevant input parameters,
and we would then say that input parameters are practically relevant if they refer to
resources that are polynomially bound. The notion of a secure PRF can be defined
along these lines. In fact, this definitional framework is frequently used in modern
cryptography. It basically consists of the following steps:

• First, one defines experiments that involve an adversary.

• Second, one specifies an advantage function associated to an adversary. For
a specific adversary, the advantage function returns the probability that he or
she “breaks” the scheme (i.e., provides a correct answer).

• Third, one specifies an advantage function associated to the cryptographic sys-
tem in question. This function takes input resource parameters and returns the
maximum probability of “breaking” the system if the adversary is restricted
to the specified resource parameters.

If the advantage function returns a sufficiently small maximum probability for
all reasonable resource parameters, then one considers the cryptographic system to
be secure for practical purposes.

13.2 CONSTRUCTIONS

As mentioned earlier, a PRF family can be used to construct a PRBG, and a PRBG
can be used to construct a PRF family. Let us overview and briefly discuss these
constructions.

13.2.1 PRF-Based PRBG

If we ask whether it is possible to construct a PRBG using a PRF family, then we
can answer in the affirmative. In fact, the corresponding construction is fairly trivial.
Let F be a PRF family with key space K . If we randomly choose k ∈R K , fix the
PRF fk, iteratively apply fk to a counter value (starting, for example, with zero),
then we generate the following sequence of values:

fk(0)
fk(1)
fk(2)

326 Contemporary Cryptography

fk(3)
. . .

If we take these values as the output values of a PRBG (seeded with k), then
the resulting PRF-based PRBG can be specified as follows:

G(k) = fk(0), fk(1), fk(2), fk(3), . . . = (fk(i))i≥0

If we assume the PRF family F to be secure (in the sense mentioned earlier),
then the corresponding PRF-based PRBG G(k) can also be shown to be crypto-
graphically secure. The efficiency of this PRBG mainly depends on the efficiency of
the underlying PRF family (i.e., the PRF-based PRBG is efficient if the instances of
the underlying PRF family can be implemented efficiently).

13.2.2 PRBG-Based PRF

More suprisingly, if we ask whether it is possible to construct a PRF family using
a PRBG, then we can also answer in the affirmative. The first construction was
proposed by Oded Goldreich, Shafi Goldwasser, and Silvio Micali in the 1980s [1].

LetG(s) be a PRBG with stretching function l(n) = 2n,G0(s) (G1(s)) be the
first (last) n bits of G(s) for s ∈ {0, 1}n, X = Y = {0, 1}n, and x = σn · · ·σ2σ1

the bitwise representation of x. A simple PRBG-based PRF fs : X → Y can then
be constructed as follows:

fs(x) = fs(σn · · ·σ2σ1) = Gσn(· · ·Gσ2(Gσ1 (s)) · · ·)

Let’s consider a toy example. For n = 2, we can use the following PRBG
G(s):

G(00) = 1001
G(01) = 0011
G(10) = 1110
G(11) = 0100

For s = 10 and x = 01, we have

Pseudorandom Functions 327

fs(σ2σ1) = f10(01) = G0(G1(10)) = 11.

To compute this value, we must first compute G1(10) = 10 (i.e., the last
two bits of G(10) = 1110) and then G0(10) = 11 (i.e., the first two bits of
G(10) = 1110). Hence, the output of the PRF is 11.

If the PRBG G(s) is cryptographically secure, then the function fs as defined
earlier can be shown to be a PRF. Considering the fact that s is an element {0, 1}n,
the set of all functions fs yields a PRF family. The efficiency of this PRF family
mainly depends on the efficiency of the underlying PRBG (i.e., the PRBG-based
PRFs are efficient if the underlying PRBG can be implemented efficiently).

13.3 RANDOM ORACLE MODEL

In Section 1.2.2, we introduced the notion of provable security and mentioned
that the random oracle methodology is frequently used to design cryptographic
systems (typically security protocols) that are provably secure in the so-called
random oracle model. The methodology was proposed by Mihir Bellare and Philip
Rogaway in the early 1990s to provide “a bridge between cryptographic theory
and cryptographic practice” [2]. In fact, they formalized a heuristic argument that
was already expressed in [1, 3, 4]. The random oracle methodology consists of the
following steps:1

• First, an ideal system is designed in which all parties (including the adversary)
have access to a random function (or a random oracle, respectively).

• Second, one proves the security of this ideal system.

• Third, one replaces the random function with a PRF (e.g., a cryptographic
hash function) and provides all parties (again, including the adversary) with a
specification of this function.

As a result, one obtains an implementation of the ideal system in the real
world. Bellare and Rogaway showed the usefulness of this methodology to design
and analyze the security properties of asymmetric encryption, digital signature, and
zero-knowledge proof systems. Meanwhile, many researchers have used the random
oracle model to analyze the security properties of various cryptographic systems
used in practice. Note, however, that a formal analysis in the random oracle model
is not a security proof (because of the underlying ideal assumption) but that it still

1 In some literature, steps 1 and 2 are collectively referred to step one.

328 Contemporary Cryptography

provides some useful evidence for the security of a cryptographic system. In fact,
Bellare and Rogaway claimed that the random oracle model can serve as the basis for
efficient cryptographic systems with security properties that can at least be analyzed
to some extent. Because people do not often want to pay more than a negligible price
for security, such an argument for practical systems seems to be more useful than
formal security proofs for inefficient systems.

There are basically two problems when it comes to an implementation of an
ideal system (in step three of the random oracle methodology).

• First, it is impossible to implement a random function by a (single) cryp-
tographic hash function. In a random function f , the preimages and images
are not related to each other, meaning that x does not reveal any information
about f(x) and f(x) does not reveal any information about x. If the random
function were implemented by a (single) cryptographic hash function h, then
the preimage x would leak a lot of information about the image h(x). In fact,
h(x) would be completely determined by x. This problem can easily be solved
by using a (large) family of cryptographic hash functions and choosing one at
random [5].

• Second, it was shown that random oracles cannot be implemented crypto-
graphically. More specifically, it was shown in [6] that there exists a(n artifi-
cially designed) DSS that is secure in the random oracle model but that gets
insecure when the random oracle is implemented by a family of cryptographic
hash functions.

The second problem is particularly worrisome, and since the publication of [6]
many researchers have started to think controversially about the usefulness of the
random oracle methodology in general, and the random oracle model in particular.
Following a line of argumentation that is due to Doug Stinson,2 the

correct way to interpret a proof of security for a protocol P in the
random oracle model is to view it as a proof of security against certain
types of attacks on the protocol P . More precisely, the proof shows that
the protocol P is secure against what might be termed “hash-generic”
attacks. This means that any attack which treats the hash function as a
random function will not be successful (regardless of whether the hash
function is actually a random function). In other words, it is better to
think of a proof in the random oracle model as a proof in which we make
an assumption about the attacking algorithm rather than an assumption
about the hash function.

2 http://www.cacr.math.uwaterloo.ca/∼dstinson/CO 685/randomoracle.html

Pseudorandom Functions 329

Consequently, a security proof in the random oracle model makes sure that
the protocol is secure against hash-generic attacks. It is of course possible that an
adversary can break the protocol for some particular cryptographic hash functions
(or even for the entire family of cryptographic hash functions) by somehow taking
advantage of how the hash function(s) is (are) computed. Nevertheless, a proof in the
random oracle model can still be regarded as evidence of security when the random
oracle is replaced by a particular cryptographic hash function (this was the original
claim of Bellare and Rogaway). It should be stressed at this point that no practical
protocol proven secure in the random oracle model has been broken when used with
a cryptographic hash function, such as SHA-1. The protocol used in [6] was not a
natural protocol for a “reasonable” cryptographic application (i.e., it was designed
explicitly for the purposes of the proof).

13.4 FINAL REMARKS

In this chapter, we elaborated on PRFs and their close relationship to PRBGs. In
particular, we showed that it is possible to construct a PRBG if one has a PRF family
and that it is possible to contruct a PRF family if one has a PRBG. The constructions
we gave are conceptually simple and straightforward. To be used in practice, one
would certainly go for constructions that are more efficient.

Having introduced the notion of a PRF family, we then introduced, over-
viewed, and put into perspective the random oracle methodology that is frequently
used in modern cryptography to design cryptographic systems and to analyze their
security properties in the so-called random oracle model. Mainly due to a negative
result [6], people have started to think controversially about the random oracle
model and to look for alternative approaches to analyze the security properties of
cryptographic systems. In fact, security proofs avoiding the random oracle model
are popular and have appeared in many recent cryptographic publications.

References

[1] Goldreich, O., S. Goldwasser, and S. Micali, “How to Construct Random Functions,” Journal of
the ACM, Vol. 33, No. 4, October 1986, pp. 792–807.

[2] Bellare, M., and P. Rogaway, “Random Oracles Are Practical: A Paradigm for Designing Efficient
Protocols,” Proceedings of First Annual Conference on Computer and Communications Security,
ACM Press, New York, 1993, pp. 62–73.

[3] Fiat, A., and A. Shamir, “How To Prove Yourself: Practical Solutions to Identification and
Signature Problems,” Proceedings of CRYPTO ’86, Springer-Verlag, LNCS 263, 1987, pp. 186–
194.

330 Contemporary Cryptography

[4] Goldreich, O., S. Goldwasser, and S. Micali, “On the Cryptographic Applications of Random
Functions,” Proceedings of CRYPTO ’84, Springer-Verlag, LNCS 196, 1984, pp. 276–288.

[5] Canetti, R., “Towards Realizing Random Oracles: Hash Functions That Hide All Partial Informa-
tion,” Proceedings of CRYPTO ’97, Springer-Verlag, LNCS 1294, 1997, pp. 455–469.

[6] Canetti, R., O. Goldreich, and S. Halevi, “The Random Oracles Methodology, Revisited,” Pro-
ceedings of 30th STOC, ACM Press, New York, 1998, pp. 209–218.

Part IV

PUBLIC KEY
CRYPTOSYSTEMS

331

Chapter 14

Asymmetric Encryption Systems

In this chapter, we elaborate on asymmetric encryption systems. More specifically,
we introduce the topic in Section 14.1, overview and discuss some basic and secure
systems in Sections 14.2 and 14.3, address identity-based encryption in Section 14.4,
and conclude with final remarks in Section 14.5.

14.1 INTRODUCTION

In Section 2.3.1, we introduced the idea of using a family of trapdoor functions to
come up with an encryption system that is asymmetric in nature (because the en-
cryption and decryption algorithms use different keys). Furthermore, we defined an
asymmetric encryption system to consist of three efficiently computable algorithms
(i.e., Generate, Encrypt, and Decrypt) with Encrypt and Decrypt being inverse to
each other (see Definition 2.10).

The working principle of an asymmetric encryption system is illustrated in
Figure 2.7. If the sender wants to encrypt a plaintext message m that is longer
than the maximum message length, then m must be split into a sequence of
message blocks m1,m2, . . . ,mn (each block must be shorter than or equal to the
maximal message length), and each message block must be encrypted and decrypted
individually (or sequentially in a specific mode of operation, respectively). In this
chapter, we only consider the situation in which we must encrypt a single message
blockm. But keep in mind that this message block may only be part of a potentially
very long message.

Similar to a symmetric encryption system, one may wonder whether a given
asymmetric encryption system is secure. Information-theoretic or perfect security
does not make a lot of sense in the realm of an asymmetric encryption system,
because we assume the Encrypt algorithm to work with a fixed key of finite length.

333

334 Contemporary Cryptography

Consequently, an adversary who is given a ciphertext can always use the recipient’s
public key (which is publicly known) and perform a brute-force attack to find the
plaintext message. If we assume a computationally unbound adversary, then this
attack is always successful (at least if we assume the plaintext message to represent
some reasonable or meaningful message).

Referring to Section 1.2.2, we must specify the adversary’s capabilities and
the task he or she is required to solve in order to be successful before we can
meaningfully discuss the security properties of an asymmetric encryption system.

• With regard to the first point (i.e., the adversary’s capabilities), one usually
assumes an adversary who is polynomially bound with respect to his or her
computing power (or some other resources, such as available memory or
time).

• With regard to the second point (i.e., the task he or she is required to solve in
order to be successful), there are several possibilities, and these possibilities
lead to different notions of security (as addressed later).

In Section 10.1, we introduced and distinguished between ciphertext-only,
known-plaintext, (adaptive) chosen-plaintext, and (adaptive) chosen-ciphertext at-
tacks. Again, ciphertext-only and known-plaintext attacks are very important and
certainly the types of attacks one wants to protect against. Because the encryption
key is public in an asymmetric encryption system, (adaptive) chosen-plaintext at-
tacks are always possible and trivial to perform (just take the public key and encrypt
arbitrary plaintext messages with it). This is not the case with (adaptive) chosen-
ciphertext attacks. Because the private key is kept secret, it may not be possible for
an adversary to decrypt a ciphertext of his or her choice (unless he or she has ac-
cess to a decryption device or oracle).1 Consequently, protection against (adaptive)
chosen-ciphertext attacks is important for asymmetric encryption systems, and the
design of systems that are resistant against these types of attacks is an important and
timely research area.

Taking all of these considerations into account, there are several notions of
security for an asymmetric encryption system. The most commonly used notion can
be described as “semantic security against adaptive chosen-ciphertext attacks.” We
already know what an adaptive chosen-ciphertext attack is (the term was originally
introduced in [1]), so it remains to be seen what “semantic security” means. The
term semantic security was introduced and formalized in the context of probabilis-
tic encryption in [2] (see Section 14.3.1 for a brief overview and discussion of

1 Remember that an oracle is an efficient (i.e., PPT) algorithm that takes an arbitrary input and that is
able to generate a correct output. The algorithm itself is not known, and hence the oracle must be
considered a black box.

Asymmetric Encryption Systems 335

probabilistic encryption). It is sometimes also described as indistinguishability of
ciphertexts. It basically means that ciphertexts can’t be distinguished in the sense
that they can be attributed to plaintext messages that are more likely than others.
Semantic security (or indistinguishability of ciphertexts) is particularly useful when
one considers message spaces that are sparse (i.e., message spaces that contain only
a few possible messages, such as “yes” and “no” or “buy” and “sell”). This situation
is not unlikely for many practical applications of asymmetric encryption.

In order to better understand the notion of semantic security against adaptive
chosen-ciphertext attacks, let us consider the following experiment: somebody has
specified two plaintext messages m0 and m1 (e.g., m0 = 0 and m1 = 1) and en-
crypted both messages (using, of course, the same key). The resulting ciphertexts are
published in random order. Furthermore, we assume a polynomially bound adver-
sary who has access to a decryption oracle. This means that he or she can adaptively
choose ciphertexts and have them decrypted by the oracle at will (needless to say
that the adversary is not allowed to ask for the decryption of any of the encrypted
messages m0 and m1). The adversary’s job is to decide which ciphertext belongs
to which plaintext message. If the adversary has no significantly better chance than
guessing (to do the job), even if he or she can ask the oracle polynomially often,
then we say that the encryption system in use is semantically secure. Alternatively
speaking, the success probability of the adversary in the experiment only negligibly
deviates from 1/2.

Note that semantic security against adaptive chosen-ciphertext attacks only
makes sense for probabilistic (asymmetric) encryption systems (i.e., encryption
systems that don’t employ a deterministic encryption algorithm). Otherwise, an
adversary can always compute himself or herself the ciphertexts of m0 and m1.
Consequently, many practically relevant asymmetric encryption systems (that are
deterministic in nature) cannot be semantically secure. Examples include the RSA
and Rabin asymmetric encryption systems discussed in the next section. These
systems, however, can still be made semantically secure by applying an appropriate
padding scheme prior to encryption. We revisit this possibility when we elaborate
on the optimal asymmetric encryption padding (OAEP) scheme in Section 14.3.2.

Semantic security against adaptive chosen-ciphertext attacks is the commonly
accepted notion of security for (asymmetric) encryption systems. There are, how-
ever, also some other notions of security one may think of and come up with.
For example, a more intricate notion of security is nonmalleability [3]. Roughly
speaking, an asymmetric encryption system is nonmalleable if it is computationally
infeasible to modify a ciphertext so that it has a predictable effect on the plaintext
message. For example, when given the ciphertext of a bid in an auction, it must be
computationally infeasible for a polynomially bound adversary to come up with a
ciphertext of a smaller bid (at least not with a success probability that is greater

336 Contemporary Cryptography

than without being given the ciphertext). It has been shown that the notion of non-
malleability is equivalent to the notion of semantic security against adaptive chosen-
ciphertext attacks [4]. This means that an asymmetric encryption system that is non-
malleable is also semantically secure against adaptive chosen-ciphertext attacks, and
vice versa. Consequently, the two notions of security are often used synonymously
and interchangeably in the literature. For the purpose of this book, however, we use
the term semantic security against adaptive chosen-ciphertext attacks most of the
times.

14.2 BASIC SYSTEMS

A couple of asymmetric encryption systems were developed and proposed in the late
1970s and early 1980s (when public key cryptography was discovered and started
to take off). We overview and briefly discuss the RSA, Rabin, and ElGamal asym-
metric encryption systems. For all of these systems, we address the key generation,
encryption, and decryption algorithms, and we provide a brief security analysis.

For the sake of simplicity, we assume that public keys are always published
in certified form (we discuss the implications of this assumption at the end of this
chapter and in Section 19.5).

14.2.1 RSA

The RSA public key cryptosystem was jointly invented by Ronald L. Rivest, Adi
Shamir, and Leonard M. Adleman at MIT in 1977. A U.S. patent application
was filed on December 14, 1977, and a corresponding article was published in
the Communications of the ACM in February 1978 [5].2 On September 20, 1983,
the U.S. patent 4,405,829 entitled “Cryptographic Communications System and
Method” was assigned to MIT. It was one of the most important patents ever
granted for an invention related to cryptography.3 After 17 years, the patent expired
in September 2000. Recognizing the relevance of their work, Rivest, Shamir, and
Adleman were granted the prestigious ACM Turing Award in 2002.

2 The RSA public key cryptosystem was first described in Martin Gardner’s column in the August
1977 issue of the Scientific American. In this article, a 129-digit (i.e., 426-bit) number was
introduced to illustrate the computational intractability of the IFP, and the security of the RSA public
key cryptosystem accordingly. This number was referred to as RSA-129. In 1991, RSA Security,
Inc., used it to launch an RSA Factoring Challenge. RSA-129 was successfully factored in March
1994 (see Section 7.3).

3 Note that the RSA patent was a U.S. patent, and that the RSA public key cryptosystem was not
patented outside the U.S.

Asymmetric Encryption Systems 337

The RSA public key cryptosystem is based on the RSA family of trapdoor
permutations as overviewed and discussed in Section 7.2.2. Contrary to many other
public key cryptosystems, RSA yields both an asymmetric encryption system and a
DSS. This means that basically the same set of algorithms can be used to encrypt and
decrypt messages, as well as to digitally sign messages and verify digital signatures
accordingly. The function provided actually depends on the cryptographic key in
use.

• If the recipient’s public key is used to encrypt a plaintext message, then the
RSA public key cryptosystem yields an asymmetric encryption system. In this
case, the recipient’s private key must be used to decrypt the ciphertext.

• If the sender’s private key is used to encrypt a plaintext message (or a hash
value thereof), then the RSA key cryptosystem yields a DSS. In this case, the
sender’s public key must be used to verify the digital signature.

In this chapter, we only look at the RSA asymmetric encryption system. The
RSA DSS is addressed in Section 15.2.1.

14.2.1.1 Key Generation Algorithm

Before the RSA asymmetric encryption system can be employed, the Generate
algorithm must be used to generate a public key pair. The algorithm is probabilistic
in nature. It takes as input a security parameter (that represents the bit length of the
RSA modulus), and it generates as output a public key pair. It consists of two steps:

• First, the algorithm randomly selects4 two prime numbers p and q of roughly
the same size and computes the RSA modulus n = pq. Given the current
state of the art in integer factorization, a modulus size of 1,024 or 2,024 bits
is appropriate and recommended. This means that both primes must be about
512 or 1,024 bits long.

• Second, the algorithm randomly selects an integer 1 < e < φ(n) with
gcd(e, φ(n)) = 1,5 and computes another integer 1 < d < φ(n) with

4 It is not possible to randomly select large primes (from the set of all prime numbers P). Instead,
large integers are randomly chosen and probabilistic primality testing algorithms are then used to
decide whether these integers are prime (see Section 3.2.4.3).

5 Note that e must be odd and greater than 2 (it is not possible to set e = 2, because φ(n) =
(p − 1)(q − 1) is even and gcd(e, φ(n)) = 1 must hold) and that the smallest possible value for
e is 3. The use of e = 3 should be considered with care, because a corresponding implementation
may be subject to a low exponent attack, as mentioned in Section 14.2.1.4.

338 Contemporary Cryptography

de ≡ 1 (mod φ(n))

using, for example, the extended Euclid algorithm (i.e., Algorithm 3.2).6

The output of the Generate algorithm is a public key pair that consists of
a public key (n, e) and a corresponding private key (n, d).7 The public key is
mainly used for encryption, whereas the private key is mainly used for decryption.
Consequently, e is sometimes also referred to as public or encryption exponent,
whereas d is referred to as private or decryption exponent.

Let us consider a toy example to illustrate what is going on in the RSA
Generate algorithm (and the other algorithms of the RSA asymmetric encryption
system). In the first step, the RSA Generate algorithm selects p = 11 and q = 23,
and then computes n = 11 · 23 = 253 and φ(253) = 10 · 22 = 220. In the
second step, the RSA Generate algorithm selects e = 3 and uses the extended
Euclid algorithm to compute d = 147 modulo 220 (note that 3 · 147 = 441 ≡
1 (mod 220), and hence d = 147 really represents the multiplicative inverse
element of e = 3 modulo 220). Then (253, 3) represents the public key, and
(253, 147) represents the private key.

14.2.1.2 Encryption Algorithm

In its basic form, the RSA Encrypt algorithm is deterministic. It takes as input a
public key (n, e) and a plaintext message m ∈ Zn, and it generates as output the
ciphertext

c = RSAn,e(m) ≡ me (mod n).

To compute c, the RSA Encrypt algorithm must employ a modular exponen-
tiation algorithm, such as, for example, the square-and-multiply algorithm (i.e., Al-
gorithm 3.3). In either case, the computation can be done efficiently.

If we want to encrypt the plaintext message m = 26 in our toy example, then
we compute

c ≡ me (mod n) ≡ 263 (mod 253) = 119.

6 Note that gcd(e, φ(n)) = 1 suggests that an integer d with de ≡ 1 (modφ(n)) exists.
7 Note that the modulus n need not be a part of the private key. It is, however, often useful and

convenient to include it in the private key.

Asymmetric Encryption Systems 339

Then 119 represents the ciphertext for the plaintext message 26. As such, it is
transmitted to the recipient(s).

In either case, it is important to note that the public key (n, e) is publicly
available, and hence anybody can use it to compute RSAn,e(m) and to encrypt
an arbitrary plaintext message m. Consequently, RSA encryption provides neither
data origin authentication nor data integrity. Complementary mechanisms must be
employed to provide these types of security services.

14.2.1.3 Decryption Algorithm

The RSA Decrypt algorithm is deterministic. It takes as input a private key (n, d)
and a ciphertext c, and it generates as output the corresponding plaintext message

m = RSAn,d(c) ≡ cd (mod n).

Again, a modular exponentiation algorithm must be used to compute m, and
this computation can be done efficiently.

The correctness of the decryption algorithm results from Fermat’s Little
Theorem (i.e., Theorem 3.7) and Euler’s Theorem (i.e., Theorem 3.8). In fact,
Fermat’s Little Theorem says that for everym ∈ Zn with gcd(m, p) = 1

mkφ(p) ≡ mφ(p) ≡ mp−1 ≡ 1 (mod p).

If we multiply either side with m, then we get

mkφ(p)+1 ≡ m (mod p).

This equivalence holds for all m ∈ Zn (it trivially holds for all m ≡
0 (mod p)). The same arguments apply for q, and hence we have

mkφ(p)+1 ≡ m (mod q)

for all m ∈ Zn. Putting the last two equivalences together, it follows that

mkφ(n)+1 ≡ med ≡ m (mod n),

340 Contemporary Cryptography

and hence cd (mod n) properly decrypts to m.
In our toy example, the ciphertext c = 119 is decrypted as follows:

m ≡ cd (mod n) = 119147 (mod 253) = 26

Consequently, we have properly decrypted our originally encrypted plaintext
message m = 26.

If the RSA Decrypt algorithm has access to the prime factors p and q (in
addition to d), then the CRT (i.e., Theorem 3.6) can be used to speed up the
decryption process considerably. Instead of directly computing m ≡ cd (mod n),
one can compute

mp ≡ cd (mod p)

and

mq ≡ cd (mod q),

and then use the CRT to compute m ∈ Zn, which satisfies m ≡ mp (mod p) and
m ≡ mq (mod q). In our toy example, we have

mp ≡ cd (mod p) ≡ 119147 (mod 11) = 4

and

mq ≡ cd (mod q) ≡ 119147 (mod 23) = 3.

We can then use the CRT to compute m ∈ Z253, which satisfies m ≡
4 (mod 11) and m ≡ 3 (mod 11), and the resulting plaintext message is again
m = 26.

In addition to the CRT, there are several other possibilities and techniques
to speed up the RSA decryption (and signature generation) algorithm. Examples
include batch RSA, multifactor RSA, and rebalanced RSA as overviewed and
discussed in [6]. These possibilities and techniques are important when it comes
to an implementation of the RSA asymmetric encryption system, especially if one
uses low-power computational devices. They are, however, beyond the scope of this
book.

Asymmetric Encryption Systems 341

14.2.1.4 Security Analysis

Since its invention in 1977, the security of the RSA public key cryptosystem has
been subject to a lot of public scrutiny. Many people have challenged and analyzed
the security of RSA (e.g., [7]). While no devastating vulnerability or weakness has
been found so far, almost three decades of cryptanalytical research have still given
us a broad insight into its security properties and have provided us with valuable
guidelines for the proper implementation and usage of RSA. In this section, we
give a brief security analysis of the RSA asymmetric encryption system. We start
with some general remarks before we turn to specific attacks and provide some
conclusions and recommendations for the practical use of RSA.

General Remarks

If we ask whether the RSA asymmetric encryption system is secure, we must first
define what we mean with the term secure. Because an adversary can always mount
a chosen plaintext attack against an asymmetric encryption system, we must require
that the RSA asymmetric encryption system is secure under such an attack, meaning
that an adversary who is able to mount a chosen plaintext attack is not able to
decrypt a given ciphertext, or, equivalently, that it is computationally infeasible for
him or her to invert an RSA trapdoor permutation (without knowledge of the private
key that represents the trapdoor). This is known as the RSAP (see Definition 7.9),
and it is assumed to be intractable (if the modulus n is sufficiently large and the
plaintext messagem is an integer between 0 and n−1). Note that the two conditions
mentioned in parentheses are very important from a security point of view:

• If nwere small, then an adversary could try all elements of Zn until the correct
m was found.8

• Similarly, if the plaintext message m was known to be from a small subset of
[0, n− 1], then an adversary could also try all elements from this subset until
the correct m was found.

But even if n is sufficiently large and m is between 0 and n − 1, then the
adversary can still try to find the correct m (by a brute-force attack). In this case,
however, the adversary must employ a search algorithm that has a running time of
n, which is exponential in the input length logn. Consequently, such a brute-force

8 This basically means that he or she can compute m′e (mod n) for every possible plaintext
message m′ ∈ Zn. If the resulting value matches c, then he or she has found the correct plaintext
message.

342 Contemporary Cryptography

attack is prohibitively expensive in terms of computational power even for a very
strong adversary.

Next, it is important to note that the security of the RSA asymmetric encryp-
tion system is intimately related to the IFA (see Definition 7.10) and the intractability
assumption of the IFP (see Definition 7.11). Clearly, the RSAP is not harder to solve
than the IFP, because an adversary who can factorize n (using, for example, a brute-
force attack) can also compute the private exponent d from the public key (n, e).9

However, it is not known whether the converse is also true (i.e., whether an algorithm
to solve the IFP can be efficiently constructed from an algorithm to solve the RSAP).
There is some evidence that such a construction may not exist if the public exponent
is very small, such as e = 3 or e = 17 [8]. This result suggests that—for very
small public exponents—the RSAP may be easier to solve than the IFP. For arbitrary
public exponents, however, the question of computational equivalence between the
RSAP and the IFP remains unanswered.

Having in mind the notion of polynomial-time reductions (see Definition
6.10), we can say that the RSAP polytime reduces to the IFP (i.e., RSAP ≤P

IFP), but that the converse is not known to be true. This suggests that the RSAP
and the IFP are not computationally equivalent, or at least that we cannot prove
such a relationship (this is why we don’t prove a theorem about a computational
equivalence relationship between the RSAP and some other problem assumed to be
intractable, as we do for the other basic systems). The best we can do is to prove that
the following problems or tasks are computationally equivalent:

• Factorize n;

• Compute φ(n) from n;

• Determine d from (n, e).

This means that an adversary who knows φ(n) or d can also factorize n. It also
means that there is no point in hiding the factorization of n (i.e., the prime factors
p and q) from an entity that already knows d. In either case, we conclude that if an
efficient algorithm to factorize n, compute φ(n), or determine d existed, then the
RSA asymmetric encryption system would be insecure.

Even if the RSA asymmetric encryption system were secure in the sense
discussed earlier (i.e., that the RSAP is computationally equivalent to the IFP), then
it could still be true that it “leaks” partial information about the plaintext messages
that are encrypted. For example, it may be the case that certain plaintext message
bits are easy to predict from a given ciphertext. Consequently, one may ask whether
the RSA asymmetric encryption system provides security to every individual bit of

9 Refer to Section 7.3 for an overview about the current state of the art of integer factorization
algorithms.

Asymmetric Encryption Systems 343

a plaintext message. This question can be answered in the affirmative. In fact, it
has been shown that all plaintext message bits are protected by the RSA function
in the sense that having a nontrivial advantage for predicting a single message bit
would enable an adversary to invert the RSA function entirely. This result about
the bit security of the RSA asymmetric encryption system can be proven by a
reduction technique. More specifically, one must show that an efficient algorithm
for solving the RSAP can be constructed from an algorithm for predicting one
(or more) plaintext message bit(s). Note, however, that the bit-security proof of
the RSA asymmetric encryption system is a double-edged sword, because the
security reduction used in the proof also provides a possibility to attack a “leaky”
implementation. In fact, if an implementation of the RSA Decrypt algorithm leaked
some bits of a plaintext message, then this leakage could be (mis)used to solve the
RSAP and to decrypt a ciphertext without knowing the private key.

Specific Attacks

Several attacks are known and must be considered with care when it comes to an
implementation of the RSA asymmetric encryption system. In addition to the attacks
mentioned next, there is always the risk of having side-channel attacks against a
specific implementation. Refer to Section 1.2.2 for a corresponding overview and
discussion. Side-channel attacks are not further addressed in this book.

Common modulus attacks: To avoid generating a different modulus n = pq for
every user, it is tempting to work with a common modulus n for all (or at least
several) users. In this case, a trusted authority must generate the public key pairs and
provide user i with a public key (n, ei) and a corresponding private key (n, di). At
first sight, this seems to work, because a ciphertext c ≡ mei (mod n) encrypted for
user i cannot be decrypted by user j (as user j does not know the private exponent
di). Unfortunately, this argument is incorrect, and the use of a common modulus is
completely insecure. There are common modulus attacks that can be mounted from
both an insider and an outsider:

• Remember from the previous discussion that knowing the private key dj is
computationally equivalent to knowing the prime factors of n (or knowing
φ(n), respectively). Consequently, insider j can use dj to factorize n, and the
prime factors of n can then be used to efficiently compute di from ei.

• Even more worrisome, an outsider can also mount a common modulus attack
against a messagem that is encrypted with the public keys of two users having
the same modulus n. Let (n, e1) be the public key of the first user and (n, e2)
be the public key of the second user. The message m is then encrypted as

344 Contemporary Cryptography

c1 ≡ me1 (mod n)

for the first user and

c2 ≡ me2 (mod n)

for the second user. The outside adversary sees c1 and c2, and can compute
the following pair of values:

t1 ≡ e−1
1 (mod e2)

t2 = (t1e1 − 1)/e2

Equipped with t1 and t2, the adversary can then recover the message m
as ct11 c

−t2
2 . This is because

ct11 c
−t2
2 = me1t1m−e2t2

= m1+e2t2m−e2t2

= m1+e2t2−e2t2

= m1 = m.

Due to the common modulus attacks, it is important that a modulus n is never
used by more than one entity. This also means that the prime numbers used to
generate the moduli must be unique for all users.

Attacks that exploit the multiplicative structure of the RSA function: There are
several attacks against the RSA public key cryptosystem that exploit the multiplica-
tive structure (or homomorphic property) of the RSA function. If, for example, two
plaintext messages m1 and m2 are encrypted with the same public key (n, e), then
one gets c1 ≡ me

1 (mod n) and c2 ≡ me
2 (mod n). In this case, one can construct

the following ciphertext:

c = c1c2 ≡ (m1m2)e (mod n)

This means that anybody who knows two ciphertexts c1 and c2 can easily con-
struct (by a single modular multiplication) the ciphertext for the plaintext message

Asymmetric Encryption Systems 345

m = m1m2 without knowing it. More interestingly, consider the situation in which
an adversary wants to decrypt c ≡ me (mod n) with a chosen-ciphertext attack.
He or she therefore computes c′ ≡ cre (mod n), has c′ (which is different from c)
be decrypted by the decryption oracle, and deduces m from rm (mod n) returned
by the decryption oracle (by a modular division). The multiplicative structure of the
RSA function is even more worrisome when the RSA DSS is used. Consequently,
good practices in security engineering must take care of the multiplicative structure
of the RSA function and protect against corresponding exploits. One possibility is
to require plaintext messages to have a certain (nonmultiplicative) structure. This
means that the product of two valid plaintext messages no longer yields a valid
plaintext message. Another possibility is to randomly pad the plaintext message
prior to encryption. This randomizes the ciphertext and eliminates the homomorphic
property accordingly. Again, we revisit this possibility in Section 14.3.2 when we
elaborate on OAEP.

Low exponent attacks: To improve the performance of the RSA asymmetric
encryption system, one may consider the use of small (public or private) exponents.
The line of argumentation goes as follows: if one employed a small public exponent
e, then the encryption (or signature verification) process would be fast, and if one
employed a small private exponent d, then the decryption (or signature generation)
would be fast. Unfortunately, this line of argumentation must be considered with
care, and there are a couple of low exponent attacks that are possible.

On one hand, Michael Wiener showed in 1990 that the choice of a small private
exponent d can lead to a total break of the RSA asymmetric encryption system [9].
This result was later improved by various authors (e.g., [10]). Given the current state
of the art, the private exponent d should be at least 300 bits long for a typical 1,024-
bit RSA modulus n. In practice, people frequently use a public exponent e that is
3, 17, or 216 + 1 = 65, 537. In these cases, it is guaranteed that the corresponding
private exponent d is nearly as long as n and hence that the attacks that exploit small
private exponents do not work.

On the other hand, it was already mentioned earlier that using small public
exponents (e.g., e = 3 or e = 17) may lead to the problem that the RSAP eventually
becomes simpler to solve than the IFP [8]. Consequently, one may not want to
work with public exponents that are too small. Furthermore, there is a very specific
problem if one uses a small public exponent e to encrypt a small message m. In fact,
if m < e

√
n, then c = me, and hence m can be decrypted as follows (note that there

is no modular arithmetic involved in this computation):

m = e
√
c

346 Contemporary Cryptography

Last but not least, there is another low exponent attack if a plaintext message
m is encrypted for multiple recipients that share a common public exponent e (with
different moduli). More specifically, let m be a plaintext message that is encrypted
r ≥ 2 times and all r recipients have the same public exponent e (but different
moduli ni for i = 1, . . . , r). Then an adversary who knows the ciphertexts ci ≡
me (mod ni) for i = 1, . . . , r can use the CRT to compute c with c ≡ ci (mod ni)
for i = 1, . . . , r and 0 ≤ c <

∏r
i=1 ni. Obviously, c is equal to me, so m can be

efficiently determined by computing the eth root of c. The low exponent attack is
relevant only for small values of e. If, for example, e = 3, n1 = 143, n2 = 391,
n3 = 899, and m = 135, then the adversary can solve the following system of three
equivalences:

c1 ≡ me (mod n1) = 1353 (mod 143) = 60
c2 ≡ me (mod n2) = 1353 (mod 391) = 203
c3 ≡ me (mod n3) = 1353 (mod 899) = 711

Using the CRT, he or she can compute c = 2, 460, 375, and hence m =
3
√

2, 460, 375 = 135. There are several generalizations of this attack.

Conclusions and Recommendations

The question that is most frequently asked when it comes to an implementation or
use of the RSA asymmetric encryption system is related to the size of the modulus
n. Obviously, n must be at least as large as to make it impossible to use an existing
algorithm to factorize n. As of this writing, there is general consensus that at least
1,024-bit moduli should be used (this recommendation is also supported by the
NIST). Note, however, that the value of the data must be taken into account when
one recommends specific security parameters. So it is not uncommon to recommend
2,048-bit moduli for the asymmetric encryption of more valuable data. If one has
fixed the size of the modulus, then one has implicitly also fixed the size of the prime
factors p and q (because they should be of roughly similar size). If, for example, one
wants to work with a 1,024-bit modulus n, then p and q must be about 512 bits long
each. Unless one uses short moduli (where Pollard’s P−1 algorithm can be applied),
there is no urgent need to work only with strong primes.

The question that is less frequently asked (but is also important from a security
viewpoint) is related to the size of the public and private exponents. As discussed
earlier, working with small private exponents is dangerous. So d should not be
smaller than a certain threshold (i.e., d < N0.292 according to [10]). If, for example,
n is 1,024 bits long, then d should not be smaller than 300 bits. On the other hand, it

Asymmetric Encryption Systems 347

is not clear how much the RSA asymmetric encryption system is weakened (in the
sense that there may be simpler ways to break the RSA problem than to solve the
IFP) if a very small public exponent e is used. Consequently, one should be cautious
with very small public exponents and use them only if necessary. For all practical
purposes, the use of e = 216 + 1 = 65, 537 seems to be appropriate.

In either case, the RSA asymmetric encryption system should not be used
natively (i.e., in raw form). Instead, messages should be preprocessed and encoded
prior to applying the RSA function. The use of OAEP (see Section 14.3.2) is highly
recommended for this purpose.

14.2.2 Rabin

As mentioned earlier, the RSAP is not known to be computationally equivalent to
the IFP. This means that it is theoretically possible to break the security of the RSA
public key cryptosystem without solving the IFP. This possibility is worrisome,
and—since the beginning of public key cryptography—people have been looking
for public key cryptosystems that can be shown to be computationally equivalent to
a hard problem, such as the IFP. As mentioned in Section 1.2.2, Michael O. Rabin
was the first person who found and proposed such a system in 1979 [11].10 The
Rabin asymmetric encryption system is based on the Square family of trapdoor
permutations overviewed and discussed in Section 7.2.3. As addressed later, the
security of the Rabin system can be proven to be computationally equivalent to the
IFP, meaning that there is provably no easier way to break the Rabin system than to
solve the IFP.

14.2.2.1 Key Generation Algorithm

The Rabin Generate algorithm takes as input a security parameter, and it generates
as output a Blum integer of about this size. More specifically, it randomly selects
two primes p and q that are both equivalent to 3 modulo 4 and that are each about
half of the size specified by the security parameter. It then computes n = pq, and
outputs the modulus n to represent the public key and the prime factors (p, q) of n
to represent the private key.

Let us consider a toy example to illustrate what is going on (in this and in the
other algorithms of the Rabin asymmetric encryption system). The Rabin Generate
algorithm randomly selects p = 11 and q = 23 (note that 11 and 23 are both
equivalent to 3 modulo 4), computes the Blum integer n = pq = 11 · 23 = 253, and
outputs the public key 253 and the private key (11, 23).

10 At this time, Rabin was also working at MIT (like Rivest, Shamir, and Adleman).

348 Contemporary Cryptography

14.2.2.2 Encryption Algorithm

Similar to the RSA asymmetric encryption system, the Rabin system can be used
to encrypt and decrypt plaintext messages that represent numbers and elements of
Zn = {0, . . . , n− 1}.

The Rabin Encrypt algorithm is deterministic. It takes as input a public key n
and a plaintext message m ∈ Zn, and it generates as output the ciphertext

c = Squaren(m) ≡ m2 (mod n).

The ciphertext c is then transmitted to the recipient. Note that the Rabin
Encrypt algorithm takes only one modular squaring,11 and hence it is extremely
efficient.

If, in our toy example, the plaintext message is m = 158, then the Rabin
Encrypt algorithm computes c = m2 (mod n) = 1582 (mod 253) = 170, and the
resulting ciphertext c = 170 is sent to the recipient.

14.2.2.3 Decryption Algorithm

The Rabin Decrypt algorithm is also deterministic. It takes as input a private key
(p, q) and a ciphertext c, and it generates as output the square root of c representing
the plaintext message m. Note that the recipient can find a square root of c modulo
n only if he or she knows the prime factors p and q of n (this property is proven
later). Also note that there is no single square root of c modulo n, but that there are
four of them. Let m1, m2, m3, and m4 be the four square roots of c modulo n. The
recipient must then decide which mi (1 ≤ i ≤ 4) to go with (i.e., which square root
represents the correct plaintext message). This ambiguity is a major disadvantage
of the Rabin asymmetric encryption system (both from a practical and theoretical
viewpoint).

Computing square roots modulo n is simple if n is a Blum integer (this is why
we have required that n is a Blum integer in the first place). In this case, one usually
first computes the square roots of c modulo p and q. Let mp be the square roots of
c modulo p and mq be the square roots of c modulo q . According to (3.6), mp and
mq can be computed as follows:

mp = c
p+1
4 (mod p)

11 By comparison, the RSA Encrypt algorithm with e = 3 takes one modular multiplication and one
modular squaring, and for larger e many more modular operations (i.e., multiplication or squaring)
must be performed.

Asymmetric Encryption Systems 349

mq = c
q+1
4 (mod q)

It can easily be verified that

m2
p ≡ c(p+1)/2 ≡ mp+1 ≡ mφ(n)m2 ≡ m2 ≡ c (mod p)

and

m2
q ≡ c(q+1)/2 ≡ mq+1 ≡ mφ(n)m2 ≡ m2 ≡ c (mod q).

Consequently,±mp are the two square roots of c in Zp, and ±mq are the two
square roots of c in Zq . There is a total of four possibilities to combine ±mp and
±mq, and these possibilities result in four different systems with two congruence
relations each. The systems are as follows:

1) m1 ≡ +mp (mod p)
m1 ≡ +mq (mod q)

2) m2 ≡ −mp (mod p)
m2 ≡ −mq (mod q)

3) m3 ≡ +mp (mod p)
m3 ≡ −mq (mod q)

4) m4 ≡ −mp (mod p)
m4 ≡ +mq (mod q)

Each system yields a possible square root of c modulo n, and we use
m1,m2,m3, and m4 to refer to them. Note that only one solution mi (i = 1, 2, 3,
or 4) represents the original plaintext message m. To determine this message, it is
necessary to solve the four congruence relation systems and to select one of the
corresponding solutions (i.e., m1, m2, m3, or m4).

350 Contemporary Cryptography

The simplest way to find the four solutions is to use the CRA as introduced
in Section 3.3.3. First, one uses the extended Euclid algorithm to compute yp ≡
p−1 (mod q) and yq ≡ q−1 (mod p). These computations do not depend on the
plaintext message or ciphertext. They only depend on the prime factorization of n,
and hence they can be done once and for all during the key generation process. Using
yp and yq , one can then compute the following values r and s:

r = yppmq + yqqmp (mod n)
s = yppmq − yqqmp (mod n)

The four square roots of c in Zn are ±r and ±s. They represent the four
possible solutions m1, m2, m3, and m4. It is now up to the recipient to decide
which solution is the correct one (i.e., which solution represents the correct plaintext
message).

In our toy example, the recipient gets the ciphertext c = 170 and wants to
decrypt it with the public key (p, q) = (11, 23). He or she therefore computes
yp = −2 and yq = 1, and computes the square roots mp and mq as follows:

mp = c(p+1)/4 (mod p) = c3 (mod 11) = 4

mq = c(q+1)/4 (mod q) = c6 (mod 23) = 3

Using these values, the recipient can determine r and s:

r = yppmq + yqqmp(mod n) = −2 · 11 · 3 + 1 · 23 · 4 (mod n) = 26
s = yppmq − yqqmp(mod n) = −2 · 11 · 3− 1 · 23 · 4 (mod n) = 95

Consequently, the square roots of c = 170 modulo 253 are 26, 95, 158, and
227, and one of these values must be the correct plaintext message (in this example
it is 158).

An obvious drawback of the Rabin asymmetric encryption system is that the
recipient must select the correct plaintext message m from four possible values.
This ambiguity in decryption can be overcome by adding redundancy to the original
plaintext message prior to encryption. Then, with high probability, exactly one of
the four square roots of c modulo n possesses this redundancy, and the recipient
can easily (and automatically) select this value to represent the original plaintext
message.

Asymmetric Encryption Systems 351

14.2.2.4 Security Analysis

A major advantage of the Rabin asymmetric encryption system is that it is based
on the Square family and that the problem of inverting a trapdoor permutation from
this family can be shown to be computationally equivalent to solving the IFP. This
is expressed in Theorem 14.1.

Theorem 14.1 Breaking the Rabin asymmetric encryption system is computation-
ally equivalent to solving the IFP.

Proof. To prove the theorem, one must show (a) that somebody who can solve the
IFP can also break the Rabin asymmetric encryption system (by inverting a trapdoor
permutation), and (b) that somebody who can break the Rabin system can also solve
the IFP.

Direction (a) is obvious—that is, somebody who can solve the IFP for n can
easily break the Rabin system by factorizing n and (mis)using the private key (p, q)
to find square roots for a given ciphertext c ∈ Zn.

Direction (b) is less obvious. For this directon, we must show that somebody
who can break the Rabin system by inverting the trapdoor permutation (i.e., comput-
ing square roots) can also factorize n and solve the IFP, accordingly. We assume an
adversary who has a Rabin oracle ORabin that takes as input a ciphertext c and that
returns as output a possible plaintext m (that represents a square root of c modulo
n). The adversary can use this oracle to solve the IFP, and to factorize n. He or she
therefore selects x ∈R Zn. If gcd(x, n) �= 1, then the adversary has already found
a prime factor of n and is done. Otherwise (if gcd(x, n) = 1), then the adversary
computes

c ≡ x2 (mod n)

and

m = ORabin(c).

Note that m must be one of the four square roots of c. Also note that m and
x may be different, but that they must at least fulfill one of the following pairs of
congruences:

1. m ≡ x (mod p) and m ≡ x (mod q): In this case, m = x and gcd(m −
x, n) = gcd(0, n) = n, and this is not useful to find a prime factor of n.

352 Contemporary Cryptography

2. m ≡ −x (mod p) and m ≡ −x (mod q): In this case, m = n − x and
gcd(m− x, n) = 1, and this is not useful to find a prime factor of n.

3. m ≡ x (mod p) and m ≡ −x (mod q): In this case, p divides m − x but
q does not divide m − x. This is useful to find a prime factor of n. In fact,
p = gcd(m− x, n).

4. m ≡ −x (mod p) andm ≡ x (mod q): In this case, p does not dividem−x
but q divides m − x. Again, this is useful to find a prime factor of n. In fact,
q = gcd(m− x, n) = q.

In summary, we have two cases that are useful to find a prime factor of n
(i.e., cases 3 and 4) and two cases that are not (i.e., cases 1 and 2). Consequently,
the adversary can find a prime factor of n in each iteration of the algorithm with
a probability of 1/2. In k iterations, the prime factors of n can be found with a
probability of 1− (1/2)k, so we conclude that the adversary can can solve the IFP.

�

The outline of the proof may be better understood if one looks at a simple
example. Let n = 253 and ORabin the Rabin oracle that finds square roots modulo
253. The adversary randomly selects x = 17 and verifies that gcd(17, 253) = 1. He
or she then computes

c ≡ x2 (mod n) ≡ 172 (mod 253) = 36

and

m = ORabin(36).

The oracle returns one of the four square roots of 36 modulo 253 (i.e., 6, 17,
236, or 247). In two of the four cases, the adversary can determine a prime factor of
253. For 6 and 247, he or she gets gcd(6−17, 253) = 11 and gcd(247−17, 253) =
23. These are the prime factors of 253.

We mentioned earlier that one can add redundancy to the original plaintext
message prior to encryption for easy identification among the four possible square
roots and to simplify (or automate) the decryption process accordingly. Suppose
that the Rabin asymetric encryption system is modified this way. If the adversary
has access to a Rabin oracle ORabin that takes advantage of redundancy to always
select the correct plaintext message from the four square roots of a given ciphertext,
then he or she can no longer use ORabin to factorize n. This is because the oracle

Asymmetric Encryption Systems 353

always returns the square root that really represents the original plaintext message.
This means that for c ≡ x2 (mod n) and m = ORabin(c), the only solution is
m = x. In this case, however, one cannot find p or q. Consequently, if the plaintext
message has to be of a special form, then Theorem 14.1 does no longer apply,
meaning that breaking this modified Rabin asymmetric encryption system is no
longer computationally equivalent to solving the IFP.

Theorem 14.1 is important from a security point of view. It suggests that
breaking the Rabin asymmetric encryption system is computationally equivalent
to solving the IFP, and hence that the Rabin system can be broken if and only if
the corresponding modulus n can be factorized. Unfortunately, the theorem and its
proof also suggest that the Rabin system is vulnerable to chosen-ciphertext attacks.
An adversary who can perform a chosen-ciphertext attack has access to a Rabin
oracle ORabin—that is, he or she can select x ∈R Zn, compute c ≡ x2 (mod n),
and ask the oracle for m = ORabin(c). According to the proof of Theorem 14.1,
the adversary can then use c and m to factorize n with a success probability of
1/2. So the construction used in the proof of Theorem 14.1 can also be employed
by an adversary to break the Rabin system with a chosen-ciphertext attack. On the
other hand, if one employs redundancy to protect the Rabin system against chosen-
ciphertext attacks, then one can no longer prove that breaking the Rabin system is
computationally equivalent to solving the IFP. So the user of the Rabin asymmetric
encryption system has the choice:

• Either he or she goes for a system that is provably as difficult to break as it is
to solve the IFP, but that is vulnerable to chosen-ciphertext attacks;

• Or he or she goes for a system that is not provably as difficult to break as it is
to solve the IFP, but that is also not vulnerable to chosen-ciphertext attacks (at
least not the one described earlier).

This choice is not an easy one. From a practical point of view, however, the
use of redundancy to automate the decryption process is often preferred.

14.2.3 ElGamal

As already mentioned in Section 1.3, Diffie and Hellman introduced public key
cryptography in 1976 [12]. In Section 16.3, we overview and discuss the protocol
they proposed to have two entities agree on a secret key over a public channel. In
its native form, the Diffie-Hellman key exchange protocol can be used neither to
encrypt and decrypt data nor to digitally sign messages and verify digital signatures.
It was not until 1984 that Taher ElGamal12 found a way to turn the Diffie-Hellman

12 Taher ElGamal was a Ph.D. student of Hellman at Stanford University.

354 Contemporary Cryptography

key exchange protocol into a full-fledged public key cryptosystem (i.e., a public key
cryptosystem that can be used to encrypt and decrypt messages as well as to digitally
sign messages and verify digital signatures) [13].13

In this section, we overview and discuss the ElGamal asymmetric encryption
system. The ElGamal DSS is addressed in Section 15.2.2.

14.2.3.1 Key Generation Algorithm

The ElGamal Generate algorithm is the same as the one employed by the Diffie-
Hellman key exchange protocol (see Section 16.3). One needs a cyclic group
in which the DLP is (assumed to be) intractable. In this section, we use the
multiplicative group of a finite field of prime order (i.e., Z

∗
p) to describe the ElGamal

asymmetric encryption system. Note, however, that there are many other cyclic
groups that can be used instead.

To make use of the ElGamal asymmetric encryption system, every user must
have a large prime p and a generator g of Z

∗
p. The ElGamal Generate algorithm then

works in two steps:

• First, a private exponent x is randomly selected from Z
∗
p;

• Second, a public exponent y ≡ gx (mod p) is computed.

It is up to the user to make y publicly available (in addition to p and g). The
triple (p, g, y) then represents the public ElGamal key, whereas x represents the
private ElGamal key.

Note that the parameters p and g can be the same for all users. In this case, they
represent system parameters. The advantage of this approach is that the sum of the
lengths of all public keys can be effectively minimized. The disadvantage, however,
is that weak or vulnerable parameters affect all users. In either case, the private and
public ElGamal keys are assumed to be used for a comparably long period of time
(this is in contrast to the keys used in the Diffie-Hellman key exchange protocol).

Again, we consider a toy example that we revisit for each algorithm to
illustrate the ElGamal asymmetric encryption system. Let p = 27 and g = 7 be
system parameters. The ElGamal Generate algorithm randomly selects the private
key x = 6 and computes the public key y ≡ 76 (mod 27) = 10.

14.2.3.2 Encryption Algorithm

We assume that a user wants to use the ElGamal asymmetric encryption system
to send an encrypted message m ∈ Zp to another user and that the recipient’s

13 A preliminary version of [13] was presented at the CRYPTO ’84 conference.

Asymmetric Encryption Systems 355

public key (p, g, y) is available to the sender. The ElGamal Encryt algorithm is
probabilistic. It consists of three steps:

• First, an integer k is randomly selected from Z
∗
p.14

• Second, the recipient’s public key y and k are used to computeK ≡ yk (mod
p).15

• Third, k and K are used to compute the following pair of values:

c1 ≡ gk (mod p)
c2 ≡ Km (mod p)

(c1, c2) then represents the ciphertext for message m.

It is important not to reuse k multiple times. If k were used more than once,
then knowledge of one plaintext messagem1 would enable an adversary to compute
another plaintext message m2. Let

(c(1)1 , c
(1)
2) = (gk (mod p),Km1 (mod p))

and

(c(2)1 , c
(2)
2) = (gk (mod p),Km2 (mod p))

be the ciphertexts of m1 and m2 (that are both encrypted with the same key k). It
then follows that

m1/m2 ≡ c
(1)
2 /c

(2)
2 (mod p),

and hence that m2 can be computed if m1 is known. Consequently, we need a fresh
and unique k ∈R Z

∗
p for the encryption of every plaintext message (this requirement

also applies if the ElGamal public key cryptosystem is used as a DSS).

14 This value plays the role of the sender’s private exponent in the Diffie-Hellman key exchange
protocol.

15 This value basically plays the role of the outcome of the Diffie-Hellman key exchange protocol.
In the ElGamal asymmetric encryption system, however, it is used to mask (i.e., hide) the message
(using the multiplication modulo p operation).

356 Contemporary Cryptography

The ElGamal Encryt algorithm requires only two modular exponentiations to
encrypt a plaintext message, and hence it is efficient. The efficiency can be further
improved by making use of precomputation. Note that k and K are independent
from the plaintext message that is encrypted and that they can be precomputed and
securely stored before they are used. This is also true for c1. If k, K , and c1 are
precomputed, then it takes only one modular multiplication to encrypt a plaintext
message. This is arguably much more efficient than the modular exponentiation it
takes to encrypt a plaintext message using the RSA asymmetric encryption system.

In either case, the size of the ciphertext is double the size of the plaintext mes-
sage (i.e., there is a message expansion with a factor two). This is disadvantageous
from a practical viewpoint. From a theoretical (and security) viewpoint, the fact that
the ElGamal Encryt algorithm is probabilistic means that the same plaintext message
is encrypted differently in every encryption process. This is advantageous, because it
protects against a probable plaintext attack. In such an attack, the adversary suspects
that the plaintext message is m and then tries to encrypt m and checks whether the
resulting ciphertext c matches a specific ciphertext.

If, in our toy example, the plaintext message to be encrypted is m = 7,
then the ElGamal Encryt randomly selects k = 3 (in step 1), computes K =
103 (mod 27) = 1 (in step 2), and concludes with c1 ≡ 73 (mod 27) = 19
and c2 ≡ 1 · 7 (mod 27) = 7 (in step 3). Consequently, (19, 7) is the ciphertext
transmitted to the recipient.

14.2.3.3 Decryption Algorithm

Upon reception of (c1, c2), the recipient must use the ElGamal Decryt algorithm to
recover the plaintext message m. The algorithm consists of two steps:

• First, K is retrieved by computingK ≡ cx1 (mod p). This works, because

cx1 ≡ (gk)x ≡ (gx)k ≡ yk ≡ K (mod p).

• Second, K is used to unmask the plaintext message m:

m ≡ c2/K (mod p)

Note that it is also possible to decrypt (c1, c2) by first retrieving

x′ = p− 1− x

Asymmetric Encryption Systems 357

and then computing

cx
′

1 c2 ≡ gkx′
Km (mod p)

≡ gk(p−1−x)Km (mod p)
≡ gk(p−1−x)ykm (mod p)
≡ (gp−1)k(gx)−kykm (mod p)
≡ y−kykm (mod p)
≡ m (mod p).

Similar to the RSA asymmetric encryption system, the ElGamal system re-
quires a modular exponentiation to decrypt a ciphertext. In the case of the ElGamal
asymmetric encryption system, however, there is no possibility to use the CRT to
speed up the decryption algorithm.

In our toy example, the recipient receives (19, 7) and wants to recover the
plaintext message m. The ElGamal Decrypt algorithm therefore computes K ≡
196 (mod 27) = 1 and m ≡ 7/1 ≡ 7 (mod 27) = 7.

14.2.3.4 Security Analysis

The security of the ElGamal asymmetric encryption system is based on the DLA
(see Definition 7.4)—that is, the assumed intractability of computing discrete log-
arithms. In fact (and as suggested in Theorem 14.2), one can prove that breaking
the ElGamal asymmetric encryption system (by computing a discrete logarithm) is
computationally equivalent to solving the DHP (see Definition 7.6). One cannot,
however, prove that breaking the ElGamal asymmetric encryption system is com-
putationally equivalent to solving the DLP (remember from Section 7.2.1 that the
intractability assumption for the DHP is stronger than the intractability assumption
for the DLP).

Theorem 14.2 Breaking the ElGamal asymmetric encryption system is computa-
tionally equivalent to solving the DHP.

Proof. To prove the theorem, one must show (a) that somebody who can solve
the DHP can also break the ElGamal asymmetric encryption system, and (b) that
somebody who can break the ElGamal system can also solve the DHP. To simplify
the notation, we use an arbitrary cyclic groupG with order p and generator g for the
purpose of this proof.

For direction (a) we must show that somebody who can solve the DHP can
also break the ElGamal system. We therefore assume an adversary who has access

358 Contemporary Cryptography

to a DHP oracle ODHP . The DHP oracle, in turn, takes as input ga and gb, and
returns as output gab for all a, b ∈ G:

ODHP (ga, gb) = gab

The adversary can use this oracle to break the ElGamal system—that is,
to decrypt a given ciphertext (c1, c2) that is encrypted for user A. Therefore, the
adversary must invoke the DHP oracle with yA = gxA and c1 = gk, and wait for
the oracle to respond with gxAk (i.e., ODHP (gxA , gk) = gxAk). Then he or she
must compute the inverse element of this result and use g−xAk to recover message
m according to the following formula:

m = g−xAkc2

Consequently, the adversary can decrypt a given ciphertext if he or she is given
access to a DHP oracle. This means that one can break the ElGamal system if one
can solve the DHP.

For direction (b) we must show that somebody who can break the ElGamal
system can also solve the DHP. We therefore assume an adversary who has an
ElGamal oracle OElGamal that takes as input ga, gb, and gabm, and that returns
as output m:

OElGamal(ga, gb, gabm) = m

The adversary can use this oracle to solve the DHP (i.e., to compute gab from
ga and gb). He or she must therefore invoke the ElGamal oracle with yA = gxA ,
c1 = gk, and c2 = gxAkm, and wait for the oracle to respond with m (i.e.,
OElGamal(yA, c1, c2) = m). The adversary now knows m and can compute m−1

modulo p. Because c2 = gxAkm, he or she can finally determine gxAk according to
the following formula:

gxAk = c2m
−1

Consequently, the adversary can solve the DHP if he or she is given access to
an ElGamal oracle.

�

Asymmetric Encryption Systems 359

Because breaking the ElGamal asymmetric encryption system is computation-
ally equivalent to solving the DHP, we know from Section 7.4.3 that we must work
with moduli that are at least 1,024 bits long. Furthermore, special care must be taken
not to use primes with special properties (i.e., properties for which discrete loga-
rithms are known to be efficiently computable in the corresponding cyclic groups).

14.3 SECURE SYSTEMS

In Section 14.1, we looked at different notions of security for asymmetric encryption
systems, and we introduced and briefly discussed the notion of semantic security. In
this section, we elaborate on two asymmetric encryption systems that can be shown
to be semantically secure: probabilistic encryption and OAEP (as already mentioned
in Section 14.2.1.4).

14.3.1 Probabilistic Encryption

The notion of probabilistic encryption was developed and proposed in the early
1980s by Shafi Goldwasser and Silvio Micali at MIT [2]. The implementation they
suggested is based on the QRP (see Definition 3.32). It is widely believed that the
QRP is computationally equivalent to the IFP and hence that solving the QRP is
computationally intractable for sufficiently large integers n.

In Section 3.3.7, we said that

x ∈ QRp ⇔
(
x

p

)
= 1

for every prime number p. So if we work with a prime number p, then the Legendre
symbol of x modulo p is 1 if and only if x is a quadratic residue modulo p. We also
said that the Legendre symbol of x modulo p can be efficiently computed using, for
example, Euler’s criterion (see Theorem 3.9).

Things are more involved if one does not work with prime numbers. In fact, if
we work with a composite integer n, then

x ∈ QRn ⇒
(x
n

)
= 1

but

x ∈ QRn �

(x
n

)
= 1.

360 Contemporary Cryptography

This means that if x is a quadratic residue modulo n, then the Jacobi symbol
of x modulo n must be 1, but the converse is not true (i.e., even if the Jacobi symbol
of x modulo n is 1, x must not be a quadratic residue modulo n). If, however, the
Jacobi symbol of x modulo n is −1, then we know that x is a quadratic nonresidue
modulo n:

x ∈ QNRn ⇐
(x
n

)
= −1

Again referring to Section 3.3.7, Q̃Rn = Jn \ QRn refers to the set of all
pseudosquares modulo n. If n = pq, then

|QRn| = |Q̃Rn| = (p− 1)(q − 1)/4.

This means that half of the elements in Jn are quadratic residues and the other
half are pseudosquares modulo n. So if an arbitrary element of Jn is given, it is
computationally difficult to decide whether it is a square or a pseudosquare modulo
n. Probabilistic encryption as proposed by Goldwasser and Micali takes advantage
of this computational difficulty.

14.3.1.1 Key Generation Algorithm

Similar to the RSA public key cryptosystem, the Generate algorithm employed by
probabilistic encryption takes as input a security parameter and generates as output
two primes p and q and a modulus n = pq of about the security parameter’s size.
Furthermore, the algorithm selects a pseudosquare y ∈ Q̃Rn. The pair (n, y) then
represents the public key, and (p, q) represents the private key. So each user holds as
secret the factorization of his or her modulus n.

14.3.1.2 Encryption Algorithm

The Encrypt algorithm employed by probabilistic encryption must specify how a
k-bit plaintext message m = m1m2 . . .mk is encrypted so that only the recipient
(or somebody holding the recipient’s private key) is able to decrypt it. As its name
suggests, the Encrypt algorithm is probabilistic. It takes as input a public key (n, y)
and a message m, and it generates as output the ciphertext c.

For every message bit mi (i = 1, . . . , k), the Encrypt algorithm chooses
xi ∈R Z

∗
n and computes ci as follows:

Asymmetric Encryption Systems 361

ci ≡
{
x2

i (mod n) if mi = 0
yx2

i (mod n) if mi = 1

Ifmi = 0, then ci ≡ x2
i (mod n) represents a quadratic residue modulo n. If,

however,mi = 1, then ci ≡ yx2
i (mod n) represents a pseudosquare modulo n.

In either case, each message bit mi (i = 1, . . . , k) is encrypted with an
element of Z

∗
n, and the resulting ciphertext c is the k-tuple c = (c1, . . . , ck).

14.3.1.3 Decryption Algorithm

The Decrypt algorithm employed by probabilistic encryption takes as input the k-
tuple c = (c1, . . . , ck) with elements of Z

∗
n and a private key (p, q), and it generates

as output the k-bit plaintext message m. Again, it proceeds sequentially on every
ciphertext bit ci (i = 1, . . . , k). For ci, the Decrypt algorithm evaluates the Legendre
symbol

ei =
(
ci
p

)

and computes

mi =
{

0 if ei = 1
1 otherwise

This means that mi is set to 0 if ci ∈ QRn (remember from the Encrypt
algorithm that ci is set to a quadratic residue if mi = 0). Otherwise, mi is set to 1.
Finally, the plaintext message m is set to m = m1m2 . . .mk.

14.3.1.4 Security Analysis

As mentioned earlier, probabilistic encryption as proposed by Goldwasser and
Micali can be shown to semantically secure [2]. Because this is the best notion of
security we currently have at hand for (asymmetric) encryption systems, there is not
much to add from a theoretical point of view.

From a practical point of view, the fact that every plaintext message bitmi (i =
1, . . . , k) is encrypted with an element of Z

∗
n results in a considerable message

expansion. Consequently, probabilistic encryption has been improved to minimize

362 Contemporary Cryptography

message expansion (e..g, [14]). In fact, message expansion can be reduced to a
constant number of bits, and hence these improved probabilistic encryption systems
are comparable to RSA, both in terms of performance and message expansion. They
are not addressed in this book.

14.3.2 Optimal Asymmetric Encryption Padding

As mentioned in Section 14.2.1.4, the multiplicative structure (or homomorphic
property) of the RSA function leads to a vulnerability of the RSA asymmetric
encryption system that can be exploited with an adaptive chosen-ciphertext attack.
One possibility to eliminate this vulnerability is to randomly pad the plaintext
message prior to encryption. The public key cryptography standard (PKCS) #1 is
a standardized and widely deployed padding scheme for RSA.

In 1998, Daniel Bleichenbacher found a chosen-ciphertext attack against
PKCS #1 version 1.5 that also applied to Web servers implementing the SSL
v3.0 protocol [15]. The Bleichenbacher attack basically refers to a failure analysis,
as introduced in Section 1.2.3. In short, the adversary sends adaptively chosen
ciphertexts to an SSL server, and the server responds for every ciphertext with one
bit saying whether the decrypted data structure conforms to PKCS #1 version 1.5.
So the Web server basically acts as a one-bit oracle for PKCS #1 conformance. If
the adversary can query the oracle a sufficiently large number of times, then he or
she can illegitimately perform one operation with the private key of the server (e.g.,
an RSA decryption or digital signature generation). This operation can then be used,
for example, to decrypt a session key that was previously transmitted from a client to
the server in encrypted form. The Bleichenbacher attack is theoretically interesting
and has had a deep impact on the way people think about formal security arguments
in general, and encryption systems that can be shown to be secure against chosen-
ciphertext attacks in particular.

Before Bleichenbacher published his attack, Mihir Bellare and Philip Rog-
away had developed and proposed a padding scheme that protects against chosen-
ciphertext attacks [16]. As already mentioned in Section 14.1, this scheme is
acronymed OAEP. It is illustrated in Figure 14.1. In this figure, h and g represent
cryptographic hash functions, m represents the plaintext message, and r represents
a random(ly chosen) binary string that is used to mask the message. The output of
the OAEP padding scheme are two binary strings—s and t—that are concatenated
to form the output of the OAEP padding scheme. So the OAEP padding scheme can
be formally expressed as follows:

Asymmetric Encryption Systems 363

� �

�

��

=

=

Figure 14.1 OAEP padding scheme.

OAEP(m) = (s, t) = m⊕ g(r)︸ ︷︷ ︸
s

‖ r ⊕ h(m⊕ g(r))︸ ︷︷ ︸
t

This value can then be taken as input for an asymmetric encryption system,
such as the RSA asymmetric encryption system. The resulting system is sometimes
referred to as RSA-OAEP.

Bellare and Rogaway argued that OAEP provides semantic security against
chosen-ciphertext attacks in the random oracle model. Hence, quite naturally, OAEP
was adopted in PKCS #1 version 2.0. In 2001, however, Victor Shoup showed that
the security arguments provided by Bellare and Rogaway are formally incorrect
[17]. A formal and complete proof of the semantic security against adaptive chosen-
ciphertext attacks provided by RSA-OAEP was given in [18]. Unfortunately, this
security proof does not guarantee security for key sizes used in practice (due to
the inefficiency of the security reduction). Consequently, a few alternative padding
schemes have been proposed in the literature that admit more efficient proofs and
provide adequate security for key sizes used in practice (see, for example, [19]). The
development and formal treatment of padding schemes for asymmetric encryption
is still a hot research topic in contemporary cryptography.

14.4 IDENTITY-BASED ENCRYPTION

In an asymmetric encryption system, every user has a public key pair, and the keys
the pair consist of look somehow arbitrary and random. Consequently, one usually

364 Contemporary Cryptography

faces the problem that one cannot easily attribute a specific public key to a specific
entity (i.e., user) and that one has to work with public key certificates. A public
key certificate, in turn, is a data structure that is issued by a trusted (or trustworthy)
certification authority (CA), that states that a specific public key really belongs to a
specific entity, and that itself is digitally signed by the certificate-issuing CA. If there
are multiple CAs in place, then one frequently talks about public key infrastructures
(PKIs). In general, public key certificates, CAs, and PKIs are very complex topics,
and we are just at the beginning of understanding all issues involved.16

In the early 1980s, Shamir came up with the idea that if one chose a public
key to uniquely identify the entity that holds the key, then one would no longer
have to care about public key certification in the first place. Instead, a public key
would then be self evident in the sense that it automatically becomes clear to whom
it belongs (or at least to whom it was issued in the first place). Shamir coined
the term identity-based encryption for this idea. The major advantage of identity-
based encryption is that neither public key certificates nor directory services are
needed (because messages are encrypted with keys that are directly derivable from
information characterizing the recipients). The disadvantage, however, is related
to the fact that a trusted authority is needed to generate public key pairs and to
distribute them to the appropriate entities. Note that in a conventional asymmetric
encryption system, all entities can generate their own public key pairs using the
Generate algorithm. In an identity-based encryption system, this cannot be the case
because the public keys must have specific values and it must not be possible for
anybody (except the trusted authority) to determine the private key that belongs to
a specific public key (otherwise, this person could determine the private keys of
everybody). Consequently, in an identity-based encryption system, all entities must
provide their identities to the trusted authority, and the trusted authority must provide
them with their appropriate public key pair.

In [21], Shamir introduced the idea of identity-based encryption and also
proposed an identity-based digital signature system. Almost two decades later,
Dan Boneh and Matthew K. Franklin developed and proposed an identity-based
encryption (IBE) system [22]. They suggested using the IBE system as an alternative
to commonly used secure messaging technologies and solutions that are based on
public key certificates.17

16 See, for example, Chapter 7 of [20].
17 In fact, Boneh co-founded Voltage Security, Inc., (http://www.voltage.com) to market the IBE

system.

Asymmetric Encryption Systems 365

14.5 FINAL REMARKS

In this chapter, we elaborated on asymmetric encryption systems. More specifically,
we overviewed and discussed basic systems (i.e., RSA, Rabin, and ElGamal), and
secure systems (i.e., probabilistic encryption and OAEP), and we addressed the
notion of IBE.

In addition to the asymmetric encryption systems addressed so far, there are
other systems that have been developed and proposed in the literature. Some of these
systems have been broken and become obsolete. For example, we mentioned in Sec-
tion 6.6.2.2 that the NP-complete subset sum problem has served as a basis for
many public key cryptosystems. All of these knapsack-based public key cryptosys-
tems proposed in the past have been broken. In fact, knapsack-based cryptosystems
are good candidates to illustrate the fact that it is a necessary but usually not suffi-
cient condition that a public key cryptosystem is based on a mathematical problem
that is assumed to be intractable. Breaking a knapsack-based public key cryptosys-
tem is generally possible without solving the underlying subset sum problem.

Nevertheless, there are still a few asymmetric encryption systems that have
turned out to be resistant against various types of cryptanalytical attacks. An example
is the McEliece public key cryptosystem developed and published in the late 1970s
[23]. In spite of their resistance against cryptanalytical attacks, these asymmetric
encryption systems are not further addressed in this book.

Early in Section 14.2, we said that we assume verification keys to be published
in some certified form. This simple and innocent assumption has huge implications
on the practical side. How does one make sure that all entities have public keys?
How does one publish them, and how does one certify them? Finally, how does
one make sure that public keys can be revoked and that status information about a
public key is publicly available in a timely fashion? All of these questions related
to digital certificates are typically addressed (and solved) by a PKI. Unfortunately,
the establishment and operation of a PKI is more involved than it looks at first sight
(see, for example, Chapter 7 of [20]). We revisit and more specifically address the
notion of a PKI in Section 19.5.

References

[1] Rackoff, C., and D.R. Simon, “Non-Interactive Zero-Knowledge Proof of Knowledge and Chosen
Ciphertext Attack,” Proceedings of CRYPTO ’91, Springer-Verlag, LNCS 576, 1992, pp. 433–
444.

[2] Goldwasser, S., and S. Micali, “Probabilistic Encryption,” Journal of Computer and System
Sciences, Vol. 28, No. 2, April 1984, pp. 270–299.

366 Contemporary Cryptography

[3] Dolev, D., C. Dwork, and M. Naor, “Non-Malleable Cryptography,” SIAM Journal on Computing,
Vol. 30, No. 2, 2000, pp. 391–437.

[4] Bellare, M., et al., “Relations Among Notions of Security for Public-Key Encryption Schemes,”
Proceedings of CRYPTO ’98, Springer-Verlag, LNCS 1462, 1998, pp. 26–45.

[5] Rivest, R.L., A. Shamir, and L. Adleman, “A Method for Obtaining Digital Signatures and Public-
Key Cryptosystems,” Communications of the ACM, 21(2), February 1978, pp. 120–126.

[6] Boneh, D., and H. Shacham, “Fast Variants of RSA,” CryptoBytes, Vol. 5, No. 1, 2002, pp. 1–9.

[7] Boneh, D., “Twenty Years of Attacks on the RSA Cryptosystem,” Notices of the American
Mathematical Society (AMS), Vol. 46, No. 2, 1999, pp. 203–213.

[8] Boneh, D., and R. Venkatesan, “Breaking RSA May Not Be Equivalent to Factoring,” Proceed-
ings of EUROCRYPT ’98, Springer-Verlag, LNCS 1403, 1998, pp. 59–71.

[9] Wiener, M., “Cryptanalysis of Short RSA Secret Exponents,” IEEE Transaction on Information
Theory, Vol. 36, No. 3, 1990, pp. 553–558.

[10] Boneh, D., and G. Durfee, “Cryptanalysis of RSA with Private Exponent d < N0.292 ,”
Proceedings of EUROCRYPT ’99, Springer-Verlag, LNCS 1592, 1999, pp. 1–11.

[11] Rabin, M.O., “Digitalized Signatures and Public-Key Functions as Intractable as Factorization,”
MIT Laboratory for Computer Science, MIT/LCS/TR-212, 1979.

[12] Diffie, W., and M.E. Hellman, “New Directions in Cryptography,” IEEE Transactions on Infor-
mation Theory, IT-22(6), 1976, pp. 644–654.

[13] ElGamal, T., “A Public Key Cryptosystem and a Signature Scheme Based on Discrete Logarithm,”
IEEE Transactions on Information Theory, IT-31(4), 1985, pp. 469–472.

[14] Blum, M., and S. Goldwasser “An Efficient Probabilistic Public Key Encryption Scheme Which
Hides All Partial Information,” Proceedings of CRYPTO ’84, Springer-Verlag, 1985, pp. 289–299.

[15] Bleichenbacher, D., “Chosen Ciphertext Attacks Against Protocols Based on the RSA Encryption
Standard PKCS #1,” Proceedings of CRYPTO ’98, Springer-Verlag, LNCS 1462, 1998, pp. 1–12.

[16] Bellare, M., and P. Rogaway, “Optimal Asymmetric Encryption,” Proceedings of EUROCRYPT
’94, Springer-Verlag, LNCS 950, 1994, pp. 92–111.

[17] Shoup, V., “OAEP Reconsidered,” Proceedings of CRYPT0 ’01, Springer-Verlag, LNCS 2139,
2001, pp. 239–259.

[18] Fujisaki, E., et al., “RSA-OAEP Is Secure Under the RSA Assumption ,” Journal of Cryptology,
Vol. 17, No. 2, Spring 2004, pp. 81–104.

[19] Pointcheval, D., “How to Encrypt Properly with RSA,” CryptoBytes, Vol. 5, No. 1, 2002,
pp. 10–19.

[20] Oppliger, R., Security Technologies for the World Wide Web, 2nd edition. Artech House Publish-
ers, Norwood, MA, 2003.

[21] Shamir, A., “Identity-Based Cryptosystems and Signatures,” Proceedings of CRYPTO ’84,
Springer-Verlag, 1984, pp. 47–53.

Asymmetric Encryption Systems 367

[22] Boneh, D., and M. Franklin, “Identity Based Encryption from the Weil Pairing,” SIAM Journal of
Computing, Vol. 32, No. 3, 2003, pp. 586–615.

[23] McEliece, R.J., “A Public-Key Cryptosystem Based on Algebraic Coding Theory,” Deep Space
Network Progress Report 42-44, Jet Propulsion Lab., California Institute of Technology, 1978,
pp. 114–116.

368 Contemporary Cryptography

Chapter 15

Digital Signature Systems

In this chapter, we elaborate on digital signatures and DSSs. More specifically, we
introduce the topic in Section 15.1, elaborate on basic and secure systems in Sections
15.2 and 15.3, overview and discuss one-time signature systems, digital signatures
for streams, and variations of “normal” DSSs in Sections 15.4–15.6, and conclude
with some final remarks in Section 15.7. Note that all books on cryptography
(including the ones itemized in the Preface) address digital signatures and DSSs
and that there are even a few books that focus entirely on this topic (e.g., [1, 2]).

15.1 INTRODUCTION

In Section 2.3.2, we introduced, briefly discussed, and put into perspective digital
signatures and corresponding DSSs with appendix or message recovery. According
to Definitions 2.11 and 2.12, a DSS consists of three efficiently computable algo-
rithms (i.e., Generate, Sign, and Verify or Recover). In short, the Generate algorithm
is used to generate public key pairs (that consist of a signing key and a corresponding
verification key), the Sign algorithm is used to generate digital signatures, and the
Verify or Recover algorithm is used to verify the digital signatures in one way or
another. In either case, a DSS must be correct and secure to be useful in practice.

• Correctness means that valid signatures must be accepted. For DSSs with
appendix, this means that Verify(k,m, Sign(k−1,m)) must return valid for
all public key pairs (k, k−1) and all messages m. Similarly, for DSSs with
message recovery, this means that Recover(k, Sign(k−1,m)) must return m
for all public key pairs (k, k−1) and all messages m.

• Security means that it must be impossible or computationally infeasible (for
an adversary) to forge a signature (i.e., to compute, without knowledge of the

369

370 Contemporary Cryptography

signing key k−1, a valid signature for a given verification key k and message
m).

The correctness requirement is simple and straightforward, and it does not lend
itself to multiple interpretations. This is not true for the security requirement. In fact,
there are many ways to read and interpret the security requirement. For example,
it is possible to say that a DSS is secure if it is computationally infeasible for an
adversary to compute, without knowledge of the signing key, a digital signature
for a specific message m. This is certainly something one would require from a
DSS. In fact, all systems overviewed and discussed in this chapter are secure in this
sense. Another way to read and interpret the security requirement is that it must
be computationally infeasible for an adversary to compute a valid signature for
any (random-looking and not necessarily meaningful) message. This is obviously
much more difficult to achieve, and not all systems overviewed and discussed in this
chapter are secure in this sense. There are even more ways to read and interpret the
security requirement.

To be a little bit more specific about the security requirement, we remember
from Section 1.2.2 that every security definition must specify both the adversary’s
capabilities and the task the adversary is required to solve in order to be successful
(i.e., to break the security of the system). The terminology most frequently used
in this area was originally developed and introduced by Shafi Goldwasser, Silvio
Micali, and Ron Rivest in the 1980s [3]. It is still in use today, and we adopt it in
this book.

With respect to the adversary’s capabilities, it is first of all important to note
that we are in the realm of public key cryptography, where unconditional security
does not exist. Consequently, we have to make assumptions about the computing
power of the adversary we have in mind against whom we want to protect. The
assumption most frequently made in modern cryptography is that the adversary has
computing power at his or her disposal that is polynomially bound (with respect to
the length of the input for the underlying mathematical problem). Furthermore, we
have to specify what type of attack the adversary is able to mount. There are two
major classes of such attacks.

• In a key-only attack, the adversary knows only the signatory’s verification key.
In particular, he or she has no information about the message(s) that is (are)
signed.

• In a message attack, the adversary knows the signatory’s verification key and
has some information about the message(s) that is (are) signed or is at least
able to retrieve this information in some way or another.

Digital Signature Systems 371

For all practical purposes, it is reasonable to assume that the adversary can
mount message attacks. In fact, there are a couple of subclasses of message attacks
that are distinguished in the literature.

• In a known message attack, the adversary knows t ≥ 1 messagesm1,m2, . . . ,
mt and their digital signatures s1, s2, . . . , st. The messages are known to the
adversary, but they are not chosen by him or her.

• In a generic chosen message attack, the adversary is able to obtain digital
signatures s1, s2, . . . , st for a chosen list of t ≥ 1 messages m1,m2, . . . ,mt.
In such an attack, the list of messages must be fixed and independent from the
signatory and his or her signing key. Furthermore, it must be chosen before
the attack is mounted. This is why the chosen message attack is called generic
(it is generic in the sense that it is not directed against a particular signatory’s
signing key).

• The directed chosen message attack is similar to the generic chosen message
attack, except that the list of t ≥ 1 messages m1,m2, . . . ,mt to be signed
is chosen with respect to the signatory’s verification key k. Consequently, the
attack is directed against a particular signatory’s signing key. It is, however,
still a nonadaptive attack.

• In an adaptive chosen message attack, the adversary is able to obtain digital
signatures s1, s2, . . . , st for a chosen list of t ≥ 1 messages m1,m2, . . . ,mt.
In such an attack, the list of messages depends on the signatory’s signing
key and can be adaptively chosen while the attack is going on. Alternatively
speaking, one can say that the adversary has access to a signature generation
oracle. For every message m he or she provides, the oracle returns a valid
digial signature s for m.

The message attacks are itemized in order of increasing severity, with the
adaptive chosen message attack being the strongest and most severe attack an
adversary can mount. While an adaptive chosen message attack may be impossible
to mount in practice, a well-designed DSS should nonetheless be designed to protect
against it.

With respect to the task the adversary is required to solve, there are at least
four possibilities one may discover.

• In a total break, the adversary must be able to determine the signatory’s
signing key k−1. This is a total break, because the adversary can then use the
signing key to generate valid signatures for all messages of his or her choice.
A DSS that does not provide protection against a total break is sometimes also
called totally breakable.

372 Contemporary Cryptography

• In a universal forgery, the adversary must be able to find an efficient algorithm
that is functionally equivalent to the signatory’s Generate algorithm (but does
not require the signatory’s signing key).1 A DSS that does not protect against
a universal forgery is sometimes also called universally breakable.

• In a selective forgery, the adversary is able to forge a digital signature for a
particular message (that is chosen before the attack is mounted). A DSS that
does not protect against a selective forgery is sometimes also called selectively
breakable.

• In an existential forgery, the adversary is able to forge a digital signature for at
least one (possibly random-looking and not necessarily meaningful) message.
A DSS that does not protect against an existential forgery is sometimes also
called existentially breakable.

The types of security breaks are itemized in order of decreasing severity,
meaning that a total break is the most severe break and an existential forgery is
the least severe break. Many DSSs used in practice are existentially breakable. If,
for example, a DSS is built from a family of trapdoor permutations (e.g., the RSA or
Rabin DSS), then every possible value represents a valid signature for a (probably
random-looking and not very meaningful) message. This problem and ways to solve
it are discussed later in this chapter.

The adversary’s capabilities (i.e., types of attack) and the task an adversary
is required to solve can be combined to come up with different notions of security
for DSSs. For example, we can say that a DSS is totally breakable even if we allow
only key-only attacks. Such a DSS is not very useful in practice. When people talk
about (provably) secure DSSs, then they usually refer to DSSs that protect against
existential forgery, even if one assumes an adversary who is able to mount adaptive
chosen message attacks. This notion of security is further addressed in Section 15.3.
We first begin with some basic DSSs (that are not secure in this strong sense).

15.2 BASIC SYSTEMS

In this section, we overview and discuss some basic DSSs that are practically
relevant. More specifically, we elaborate on RSA, ElGamal, and the DSA. RSA
and ElGamal are fundamentally different DSSs, whereas the DSA can also be
understood as a variation of ElGamal. For each of these DSSs, we describe the

1 Note that the distinction between a total break and a universal forgery is somehow vague. It
would also be possible to say that a total break occurs if an adversary is either able to compute
the signatory’s private (signing) key or find an efficient signature generation algorithm that is
functionally equivalent to the signatory’s true signature generation algorithm.

Digital Signature Systems 373

key generation, signature generation, and signature verification algorithms, and we
provide a brief security analysis. Again, we assume that all verification keys are
published in certified form (we already made this assumption in Section 14.2).

15.2.1 RSA

As already pointed out by Diffie and Hellman in their seminal paper [4], a family
of trapdoor functions can also be used to digitally sign messages and verify digital
signatures accordingly. As mentioned in Section 14.2.1, the RSA family represents
a family of trapdoor permutations, and hence the RSA public key cryptosystem as
proposed in [5] also yields a DSS (with appendix or message recovery).

15.2.1.1 Key Generation Algorithm

The RSA Generate algorithm as described in Section 14.2.1.1 is the same for the
RSA asymmetric encryption system and the RSA DSS. It takes as input a security
parameter, and it generates as output a public key pair that consists of a public
key (n, e) and a corresponding private key (n, d) of appropriate size. In the case
of the RSA DSS, the public key represents the verification key and the private key
represents the signing key.

Let us consider a toy example to illustrate the working principle of the RSA
DSS. We use the same numbers as in Section 14.2.1. Consequently, p = 11, q = 23,
n = 253, φ(n) = 10 · 22 = 220, the (private) signing key is (n, d) = (253, 147),
and the (public) verification key is (n, e) = (253, 3).

15.2.1.2 Signature Generation Algorithm

The RSA Sign algorithm is deterministic and can be used to digitally sign a message
m. If RSA is used as a DSS with message recovery, then m must be sufficiently
small (i.e., smaller than n if interpreted as integer). If RSA is used as a DSS with
appendix, then m must either be sufficiently small or hashed to a bit sequence of
fixed size. In practice, it is highly recommended to use RSA only to digitally sign
hash values. The cryptographic hash functions that can be used are overviewed and
discussed in Chapter 8.

In its basic form, the RSA Sign algorithm takes as input a signing key (n, d)
and a message m ∈ Zn, and it generates as output the digital signature

s = RSAn,d(m) ≡ md (mod n).

374 Contemporary Cryptography

The algorithm is simple and efficient. In fact, it requires only one modular ex-
ponentiation that can be done, for example, using the square-and-multiply algorithm
(see Algoritm 3.3).

As mentioned above, the RSA DSS is most frequently used in conjunction
with a cryptographic hash function (it then yields a DSS with appendix). In this
case, the RSA Sign algorithm consists of the following two steps:

• First, the cryptographic hash function h is used to compute h(m)—that is, the
hash value of the message.

• Second, the digital signature s for h(m) is computed as follows:

s = RSAn,d(h(m)) ≡ h(m)d (mod n).

In this case, it is necessary to expand h(m) to the size of the modulus n.
This can be done implicitly, by prepending zeros to h(m), or explicitly, by using a
message expansion function. In practice, the second approach is preferred, and there
are many message expansion functions that can be used. For example, a message
expansion function that is frequently used in practice is specified in PKCS #1
(currently in version 2.1).2 According to this standard, hPKCS#1(m) is constructed
as follows:

hPKCS#1(m) = 0x 00 01 FF FF . . .FF FF 00‖ h(m)

Consequently, h(m) is padded by prepending a zero byte, a byte representing
one, a series of bytes representing 255, and another zero byte. In fact, there are
so many bytes representing 255 inserted that the total bit length of hPKCS#1(m)
equals the bit length of the modulus n. Other standards use other ad hoc expansion
functions. In [6], Mihir Bellare and Phillip Rogaway proposed the probabilistic
signature scheme (PSS) that uses random values to expand h(m). Furthermore, they
specified a probabilistic signature scheme with message recovery (PSS-R). PSS and
PSS-R can be shown to be secure in the random oracle model (see Section 15.3).

After the RSA Sign algorithm has generated a digital signature s, it must be
transmitted to the verifier. If RSA is used as a DSS with message recovery, then it
is sufficient to transmit s. If, however, RSA is used as a DSS with appendix, then s
must be transmitted together with the message m.

Let us assume that the signatory wants to digitally sign the message m = 26
(or h(m) = 26, respectively) in our toy example. In this case, the RSA Sign
algorithm computes

2 ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-1/pkcs-1v2-1.pdf

Digital Signature Systems 375

d ≡ md (mod n) ≡ 26147 (mod 253) = 104.

Then 104 represents the digital signature for 26, and 26 may be either the
message or the hash value thereof.

15.2.1.3 Signature Verification Algorithm

For the purpose of signature verification, one must distinguish whether the RSA DSS
is used with appendix or with message recovery. In either case, the corresponding
algorithm (i.e., Verify or Recover) is deterministic and efficient (i.e., it requires only
a modular exponentiation and optionally the invocation of a cryptographic hash
function).

DSS with Appendix

If RSA is used as a DSS with appendix, then the Verify algorithm must be employed
to verify the digital signature s that is transmitted together with the message m.
The algorithm takes as input a verification key (n, e), a message m, and a digital
signature s, and it generates as output one bit that indicates whether s is a valid
signature for m with respect to (n, e). The RSA Verify algorithm operates in two
steps:

• First, it computes

m′ = RSAn,e(s) ≡ se (mod n).

• Second, it compares m′ either with m or h(m). The signature is valid if and
only if equality holds (i.e., m′ = m or m′ = h(m)).

In our toy example, the RSA Verify algorithm computes

m′ = RSA253,3(104) ≡ 1043 (mod 253) = 26

and returns valid (because m′ = 26 matches the message m = 26 that is originally
transmitted together with the signature s).

376 Contemporary Cryptography

DSS with Message Recovery

If RSA is used as a DSS with message recovery, then the Recover algorithm takes
as input a verification key (n, e) and a digital signature s, and it generates as output
either the message m or a notification indicating that s is not a valid signature form
with respect to (n, e). The RSA Recover algorithm operates in two steps:

• First, it computes

m = RSAn,e(s) ≡ se (mod n).

• Second, it decides whetherm is a valid message. In the positive case, it returns
m, and in the negative case, it returns a notification that indicates that s is not
a valid signature for m with respect to (n, e).

The second step is important. If every message represented a valid message,
then an adversary could trivially find an existential forgery by selecting s ∈ Zn and
claiming that it is an RSA signature (if somebody verifies the signature, he or she
computes m ≡ se (mod n), and hence s is indeed a valid signature for m). If m
represented a meaningful message, then the signatory would be in trouble (i.e., he or
she may be held accountable for the message and cannot repudiate having signed it).
Consequently, it is important that random messages are unlikely to be meaningful,
or—alternatively speaking—that the probability that a randomly chosen message is
meaningful is negligible. There are basically two possibilities to achieve this.

• One can use a natural language to construct messages to be signed. Natural
languages have generally enough redundancy so that a randomly chosen string
(over the alphabet in use) is not likely to be meaningful.

• One can use a specific (redundancy) structure for messages to be signed. If, for
example, one digitally signs m ‖ m instead of m, then one can easily verify
the structure of the message after its recovery (i.e., it must then consist of two
equal halves). It goes without saying that more efficient redundancy structures
are used in practice.

In our toy example, the RSA Recover algorithm computes

m = RSA253,3(104) ≡ 1043 (mod 253) = 26

and decides whether m is a valid message. If, for example, valid messages must be
congruent to 6 modulo 20, then m = 26 is a valid message and is returned as a
result.

Digital Signature Systems 377

15.2.1.4 Security Analysis

In Section 14.2.1.4, we analyzed the security of the RSA asymmetric encryption
system. Most things we said there also apply for the RSA DSS. This is particularly
true for the properties of the RSA family of trapdoor permutations. If, for example,
somebody is able to factorize the modulus n, then he or she is also able to deter-
mine the signing key and to generate digital signatures at will. Consequently, the
modulus n must be so large that its factorization is computationally infeasible for
the (polynomially bound) adversary one has in mind and against which one wants to
protect.

Also, the multiplicative property of the RSA function is particularly dangerous
when RSA is used as a DSS. If m1 and m2 are two messages with signatures s1 and
s2, then

s = s1s2 ≡ (m1m2)d (mod n)

is a valid signature for m = m1m2 (mod n). Consequently, we reemphasize that
good practices in security engineering must take care of the multiplicative structure
of the RSA function and protect against corresponding attacks. Remember from
our previous discussion that one can either require that messages have a certain
(nonmultiplicative) structure or randomly pad the messages prior to the generation
of the digital signatures.

In many applications, RSA is used as an asymmetric encryption system and as
a DSS. Consequently, it may be necessary to apply both the RSA Encrypt algorithm
and the RSA Sign algorithm to a particular message m. The question that arises
immediately is whether the order of the operations matters. More specifically, does
one have to encryptm before it is digitally signed, or does one have to digitally sign
it prior to encryption? In the general case, the answer is not clear, and it matters what
the purpose of the cryptographic protection really is. In many practically relevant
situations, however, the second possibility is the preferred choice. Consequently, it
is often recommended to use the RSA DSS to digitally sign a message and then use
the RSA asymmetric encryption system to encrypt the result. In this case, one must
be concerned about the relative sizes of the moduli in use.

Assume that user A wants to digitally sign and then encrypt message m for
user B. Also assume that (nA, dA) is A’s private RSA signing key and (nB, eB)
is B’s public RSA encryption key. If nA ≤ nB , then the application of the two
algorithms is simple and straightforward (i.e., the output of the RSA Sign algorithm
is smaller than or equal to the modulus nA, and this value can then be used as
input for the RSA Encrypt algorithm). If, however, nA > nB , then the output of
the RSA Sign algorithm may be larger than what is allowed as input for the RSA

378 Contemporary Cryptography

Encrypt algorithm. Obviously, one can split the output of the RSA Sign algorithm
into two input blocks for the RSA Encrypt algorithm and then encrypt each block
individually. Unfortunately, there are situations where this type of reblocking is not
feasible. In these situations, one may consider one of the following three possibilities
to avoid the reblocking problem in the first place:

• One can prescribe the form of the moduli to make sure that the reblocking
problem does not occur.

• One can enforce that the operation using the smaller modulus is applied first.
In this case, however, it may happen that a message is first encrypted and then
digitally signed.

• One can equip each user with two public key pairs. One pair has a “small”
modulus and is used by the RSA Sign algorithm, and the other pair has a
“large” modulus and is used by the RSA Encrypt algorithm.

The first possibility is not recommended, because it is difficult to prescribe the
form of the moduli in some binding way. The second possibility is not recommended
either, because conditional reordering can change the meaning of the cryptographic
protection one wants to implement. So the third possibility is often the preferred
choice. Unfortunately, using two public key pairs per user also increases the key
management overhead.

In summary, the RSA DSS can be considered reasonably secure. This is
particularly true if the modulusn is sufficiently large. In fact, nmust be at least large
enough to make it computationally infeasible to factorize it with any known integer
factorization algorithm. As we said before (in the context of the RSA asymmetric
encryption system), this means that n should be at least 1,024 bits long. Because
digital signatures are often valuable (digital) goods, it is often recommended to use
longer moduli, such as 2,048 bits. Also, for all practical purposes, it is recommended
to use RSA as a DSS with appendix and to use a cryptographic hash function
accordingly. It is obvious that one then has to select a cryptographic hash function
(e.g., MD5 or SHA-1). It is less obvious that one also has to select an expansion
function, such as hPKCS#1(m) or the one employed by the PSS and the PSS-R.
The choice of an appropriate expansion function is particularly important if one
wants to prove or show security claims for the resulting DSS. We revisit this topic
in Section 15.3.

15.2.2 ElGamal

In Section 14.2.3, we introduced the ElGamal asymmetric encryption system and
mentioned that the ElGamal public key cryptosystem as suggested in [7] also yields

Digital Signature Systems 379

a DSS. Contrary to the RSA public key cryptosystem, the ElGamal public key cryp-
tosystem uses different algorithms to encrypt and decrypt messages, or to digitally
sign messages and verify digital signatures, respectively. This is disadvantageous
from the developer’s point of view (because he or she must implement more algo-
rithms). Furthermore, ElGamal signatures are typically twice as long as RSA sig-
natures (see Section 15.2.2.2). For both reasons, the ElGamal DSS is not as widely
deployed in practice as the RSA DSS.

In its basic form, the ElGamal DSS is with appendix. This is also true for the
many generalizations and variations of the ElGamal DSS that have been developed
and proposed in the literature (e.g., [8]). There is, however, also an ElGamal
variation that yields a DSS with message recovery [9]. Due to the names of their
developers, this DSS is sometimes also referred to as the Nyberg-Rueppel DSS.

Similar to the ElGamal asymmetric encryption system, the security of the
ElGamal DSS is based on the DLA and the intractability assumption of the DLP.
Consequently, one needs a cyclic group in which the DLP is (assumed to be)
intractable. For example, ElGamal introduced and originally proposed the DSS in
the multiplicative group Z

∗
p (for a sufficiently large prime number p). We also use

this group to overview and discuss the ElGamal DSS next. Note, however, that there
are many other cyclic groups that can be used instead of Z

∗
p. In ECC, for example,

one uses E(Fq) as introduced in Section 7.6.

15.2.2.1 Key Generation Algorithm

The ElGamal Generate algorithm is the same as the one employed by the ElGamal
asymmetric encryption system (see Section 14.2.3.1). For every user, it generates
a public ElGamal verification key (p, g, y) and a corresponding private ElGamal
signing key x. The modulus p and the generator g may be system parameters (i.e.,
they may be the same for all users and not be part of the verification key).

We consider a toy example to illustrate the ElGamal DSS. Let p = 17 and
g = 2 be system parameters. For a particular user, the ElGamal Generate algorithm
randomly selects x = 4 and computes y ≡ 24 (mod 17) = 16. So the private
ElGamal signing key is 4 and the corresponding public ElGamal verification key is
16.

15.2.2.2 Signature Generation Algorithm

Contrary to the RSA Sign algorithm, the ElGamal Sign algorithm is probabilistic and
requires a cryptographic hash function. The cryptographic hash function, in turn, is
used to turn a message into a hash value that is then digitally signed.

380 Contemporary Cryptography

Algorithm 15.1 The ElGamal Sign algorithm.

(p, g, x, m)

k ∈R Z
∗
p

r ≡ gk (mod p)
s ≡ (k−1(h(m) − xr)) (mod (p − 1))

(r, s)

The ElGamal Sign algorithm is specified in Algorithm 15.1. It takes as input
a private ElGamal signing key x (together with the system parameters p and g) and
a message m, and it generates as output the digital signature for m. The digital
signature, in turn, consists of two numbers—r and s—that are both elements of Z

∗
p.

The algorithm consists of three steps:

• First, a number k must be randomly selected from Z
∗
p such that gcd(k, p−1) =

1.3 This suggests that k has an inverse element k−1 in Z
∗
p (i.e., kk−1 ≡

1 (mod p − 1)), and hence that k−1 modulo p − 1 can be determined using
the extended Euclid algorithm (i.e., Algorithm 3.2).

• Second, k must be used to compute r ≡ gk (mod p).

• Third, the message m must be hashed with h, and the result h(m) must be
used to compute s ≡ (k−1(h(m)− xr)) (mod (p− 1)).

Note that the algorithm can be sped up considerably by using precomputation.
In fact, it is possible to select k ∈R Z

∗
p and precompute

r ≡ gk (mod p)

and

k−1 (mod p− 1).

Both values do not depend on a particular messagem. If one has precomputed
k, r, and k−1, then one can digitally sign a message m by hashing it and computing
s ≡ (k−1(h(m)− xr)) (mod (p− 1)). This can be done very efficiently.

In either case, the ElGamal digital signature for m consists of the pair (r, s).
Because m, r, and s are all numbers smaller than p, an ElGamal digital signature

3 As already mentioned in Section 14.2.3.4 and further explained in Section 15.2.2.4, a value k must
never be used more than once (otherwise, the system is insecure).

Digital Signature Systems 381

is at most twice as long as the message that is signed (or the hash value thereof,
respectively). As mentioned earlier, the basic ElGamal DSS is a DSS with appendix,
meaning that the signatory must transmit both the messagem and the signature (r, s)
to the verifier.

In our toy example, we assume that the signatory wants to digitally sign a
message m with a hash value h(m) = 6. The ElGamal Sign algorithm randomly
selects k = 3 and computes r ≡ 23 (mod 17) = 8, k−1 ≡ 3−1 (mod 16) = 11,
and s ≡ 11(6 − 4 · 8) (mod 16) ≡ −14 (mod 16) = 2. Consequently, the
ElGamal signature for h(m) = 6 is (8, 2), and the numbers that are actually
transmitted are 6, 8, and 2.

15.2.2.3 Signature Verification Algorithm

Like all signature verification algorithms, the ElGamal Verify algorithm is determin-
istic. It takes as input a verification key (p, g, y), a message m, and an ElGamal
signature (r, s), and it generates as output one bit saying whether (r, s) is a valid
ElGamal signature form with respect to (p, g, y). The algorithm verifies the relation

1 ≤ r ≤ p− 1

and the equivalence

gh(m) ≡ yrrs(mod p). (15.1)

The signature is valid if and only if both verification checks are positive.
Otherwise, the signature is rejected and considered to be invalid. Note that the
verification equivalence (15.1) works, because

yrrs ≡ gxrgkk−1(h(m)−xr) (mod p)
≡ gxrg(h(m)−xr) (mod p)
≡ gxrg−xrgh(m) (mod p)
≡ gh(m) (mod p).

Also note that it is mandatory to verify 1 ≤ r ≤ p−1. Otherwise, it is possible
to construct a new signature from a known signature [10]. Let, for example, (r, s)
be the ElGamal signature of a message m and m′ be another message for which

382 Contemporary Cryptography

an adversary wants to generate a valid signature. In this case, the adversary first
generates4

u ≡ h(m′)h(m)−1 (mod (p− 1))

and then computes

s′ ≡ su (mod (p− 1))

and r′ that satisfies the following system of two equivalences:

r′ ≡ ru (mod (p− 1))
r′ ≡ r (mod p)

Obviously, the CRT and the CRA can be used to compute r′ (see Section
3.3.3). The pair (r′, s′) then represents the ElGamal signature for m′ (or h(m′),
respectively). In fact, one can show that

yr′
(r′)s′ ≡ yrursu (mod p)

≡ gu(xr+ks) (mod p)

≡ gh(m′) (mod p).

On the other hand, one can show that then r′ ≥ p, and hence 1 ≤ r ≤ p − 1
does not apply.

In either case, it is necessary to use a cryptographic hash function h and not
to directly sign a message m. If m were signed directly (i.e., without first hashing
it), then it would be possible to existentially forge a digital signature. In fact, if m is
signed directly, then the signature verification equivalence is gm ≡ yrrs(mod p).
In this case, it is possible to select r, s, and m in a way that the equivalence is
satisfied. More specifically, one can randomly select two integers u and v with
gcd(v, p− 1) = 1, and compute r, s, and m as follows:

r ≡ guyv (mod p)
s ≡ −rv−1(mod (p− 1))
m ≡ su (mod(p− 1))

4 Note that it is required that there exists a multiplicative inverse of h(m) modulo p− 1.

Digital Signature Systems 383

With these values, one has

yrrs ≡ yrgsuysv (mod p)
≡ yrgsuy−r (mod p)
≡ gm (mod p),

and hence the verification equivalence (15.1) is satisfied. If one uses a cryptographic
hash function h (i.e., one digitally signs h(m) instead of m), then one can still
generate signatures for hash values. Due to the one-way property of cryptographic
hash functions, however, it is not possible to compute m from h(m). Similar to the
multiplicative property of the RSA function, one can also solve this problem with
the use of redundancy.

In our toy example, the ElGamal Verify algorithm verifies that 8 ≤ 16 and
26 ≡ 168 · 82 (mod 17). Both verification checks are positive, and hence (8, 2)
represents a valid ElGamal signature for a message m with h(m) = 6.

15.2.2.4 Security Analysis

In Section 14.2.3.4, we analyzed the security of the ElGamal asymmetric encryp-
tion system. Some parts of this analysis also apply for the ElGamal DSS. More
specifically, we showed in Theorem 14.2 that breaking the ElGamal system is com-
putationally equivalent to solving the DHP. Consequently, one must select the cyclic
group and the system parameters so that the DHP is computationally intractable.
If, for exmaple, Z

∗
p is used as a cyclic group (as done earlier), then p should be at

least 1,024 bits long. Furthermore, one should select p so that efficient algorithms to
compute discrete logarithms do not work. For example, it is necessary to select p so
that p − 1 does not have only small prime factors (otherwise the Pohlig-Hellman
algorithm [11] can be applied to efficiently compute discrete logarithms). There
are other constraints that should be kept in mind when properly implementing the
ElGamal DSS. The constraints can be found in the relevant literature (they are not
repeated in this book).

Last but not least, we elaborate on the requirement that the ElGamal Sign
algorithm must use a fresh and unique k ∈ Z

∗
p for every digital signature it generates

(this requirement is analog to the one used in the ElGamal asymmetric encryption
system). If this requirement was not made, then it would be possible to retrieve the
signing key from only two valid digital signatures. Let s1 and s2 be two ElGamal
signatures for messages m1 and m2 that are generated with the same k:

s1 = (k−1(h(m1)− xr)) (mod(p− 1))

384 Contemporary Cryptography

s2 = (k−1(h(m2)− xr)) (mod(p− 1))

If k is the same, then r ≡ gk (mod p) is also the same for both signatures.
Consequently, one has

s1 − s2 ≡ (k−1(h(m1)− xr)− k−1(h(m2)− xr)) (mod(p− 1))
≡ (k−1h(m1)− k−1xr − k−1h(m2) + k−1xr) (mod(p− 1))
≡ (k−1h(m1)− k−1h(m2)) (mod(p− 1))
≡ (k−1(h(m1)− h(m2))) (mod(p− 1)).

If h(m1) − h(m2) is invertible modulo p − 1, then one can compute k.
Furthermore, given k, s1, r, and h(m1), one can retrieve the private key x. Note
that s1 ≡ (k−1(h(m1)− xr)) (mod (p− 1)), and hence

x ≡ (r−1(h(m1)− ks1)) (mod (p− 1)).

This is unfortunate, and we stress the requirement that a fresh and unique k is
randomly chosen from Z

∗
p for every ElGamal signature that is generated.

15.2.3 DSA

In the early 1990s, Claus-Peter Schnorr proposed a modification of the basic El-
Gamal DSS that can be used to optimize the signature generation and signature
verification algorithms considerably [12]. The idea is to do the modular arithmetic
not in a group of order p−1 (e.g., Z∗

p), but in a much smaller subgroup of prime order
q with q | p − 1. As a consequence, the computations can be done more efficiently
and the resulting digital signatures can be made much shorter (as compared to the
basic ElGamal DSS).

Based on the ElGamal DSS and the proposed modification of Schnorr, the
NIST developed the digital signature algorithm (DSA) and specified a correspond-
ing digital signature standard in FIPS PUB 186 [13]. Since its publication in 1994,
FIPS PUB 186 has been revised twice.5 The acronym ECDSA refers to the elliptic
curve analog of the DSA. That is, instead of working in a subgroup of Z

∗
p, one

works in a group of points on an elliptic curve over a finite field (see Section 7.6).

5 The first revision was made in December 1998 and led to the publication of FIPS PUB 186-
1. The second and latest revision was made in January 2000 and led to the publication of FIPS
PUB 186-2. It is electronically available at http://csrc.nist.gov/publications/fips/fips186-2/fips186-
2-change1.pdf.

Digital Signature Systems 385

The ECDSA is being standardized within the ANSI X9F1 and IEEE P1363. Also,
in the latest revision of FIPS PUB 186, a couple of elliptic curves are recommended
for governmental use.

15.2.3.1 Key Generation Algorithm

The DSA Generate algorithm takes as input a security parameter and generates as
output a private DSA signing key and a corresponding public DSA verification key.
In a first step, the algorithm determines two prime moduli:

• A prime modulus p that is 512 + 64t bits long (for t ∈ {0, . . . , 8});

• A prime modulus q that divides p − 1 and that is 160 bits long (i.e., 2159 <
q < 2160).

Note that the requirement that q divides p− 1 implies that Z
∗
p has a subgroup

of order q (i.e., the subgroup has approximately 2160 elements). Such a subgroup
of Z

∗
p can be determined by using a positive integer h with 1 < h < p − 1 and

h(p−1)/q (mod p) > 1, and computing a generator g of a subgroup of order q as
follows:

g ≡ h(p−1)/q (mod p)

The numbers p, q, and g can then be considered as system parameters that are
shared and can be the same for all users (or at least a specific subset of all users).

For every user, the DSA Generate algorithm must then randomly select a
private DSA signing key x ∈ Zq and compute the corresponding public DSA
verification key y ≡ gx (mod p). If they are not system parameters, then p, q, and
g are also part of the verification key.

We consider a toy example to illustrate the DSA. Let p = 23, q = 11, and
g = 2 be system parameters. Note that q = 11 is prime and divides p− 1 = 22. For
a particular user, the DSA Generate algorithm randomly selects x = 3 and computes
y ≡ 23 (mod 23) = 8. So the private DSA signing key is 3 and the corresponding
public DSA verification key is 8.

15.2.3.2 Signature Generation Algorithm

The DSA Sign algorithm is illustrated in Algorithm 15.2. It requires and makes use
of a cryptographic hash function h. In the current version of the DSA, it is intended
to use SHA-1 (see Section 8.3.3) as h. The algorithm consists of three steps:

386 Contemporary Cryptography

Algorithm 15.2 The DSA Sign algorithm.

(p, q, g, x, m)

k ∈R Z
∗
q

r ≡ (gk (mod p)) (mod q)
s ≡ (k−1(h(m) + xr)) (mod q)

(r, s)

• First, a number k must be randomly selected from Z
∗
q .

• Second, k must be used to compute r ≡ (gk (mod p)) (mod q).

• Third, the message m must be hashed with h, and the result h(m) must be
used to compute s ≡ (k−1(h(m) + xr)) (mod q). In this case, k−1 is the
inverse of k modulo q.

The pair (r, s) with r and s elements of Zq represents the digital signature for
m (or h(m), respectively). Note that r and s are both 160-bit numbers. This is in
contrast to an ElGamal signature, in which r and s are both of the size of p and m
(e.g., 1,024 bits). Consequently, a DSA signature is about 320 bits long, which is
more than six times shorter than a corresponding ElGamal signature.

In our toy example, we assume that the signatory wants to digitally sign a
message m with a hash value h(m) = 6. The DSA Sign algorithm then randomly
selects k = 7, computes r ≡ (27 (mod 23)) (mod 11) = 2, determines 7−1 (mod
11) = 8, and computes s ≡ (8(6 + 3 · 2)) (mod 11) = 8. Consequently, the DSA
signature for h(m) = 6 is (2, 8).

15.2.3.3 Signature Verification Algorithm

The DSA Verify algorithm is deterministic and can be used to verify DSA signatures.
It takes as input a verification key (p, q, g, y), a message m, and a DSA signature
(r, s), and it generates as output one bit saying whether (r, s) is a valid DSA
signature for m with respect to (p, q, g, y). The algorithm first verfies that r, s ∈ Zq

(i.e., 0 < r′ < q and 0 < s′ < q). If r or s is not in Zq , then the signature
is considered to be invalid and must be rejected accordingly. If, however, the two
conditions are satisfied, then the algorithm must compute the following values:

w ≡ s−1 (mod q)
u1 ≡ h(m)w (mod q)
u2 ≡ rw (mod q)

Digital Signature Systems 387

v ≡ (gu1yu2 (mod p)) (mod q)

The signature is valid if and only if v equals r. To see why this signature
verification equation works, we start with s ≡ (k−1(h(m) + xr)) (mod q), and
hence h(m) ≡ (ks − xr) (mod q). If we multiply both sides by w and rearrange
the congruence, then we get wh(m) + xrw ≡ k (mod q). This congruence is the
same as u1 + xu2 ≡ k (mod q). Raising g to both sides of this congruence yields
(gu1yu2 (mod p)) (mod q) = (gk (mod p)) (mod q), and hence, v = r.

Obviously, it is also possible to represent the verification check in one line. In
this case, the algorithm must verify that the following equation holds:

r = (gh(m)s−1 (mod q)yrs−1 (mod q) (mod p)) (mod q)

In our toy example, the DSA Verify algorithm must first verify 0 < 2 < 11
and 0 < 8 < 11, and then compute

w ≡ 8−1 (mod 11) = 7
u1 ≡ 6 · 7 (mod 11) ≡ 42 (mod 11) = 9
u2 ≡ 2 · 7 (mod 11) ≡ 14 (mod 11) = 3
v ≡ 2983 (mod 23) (mod 11) ≡ 512 · 512 (mod 23) (mod 11) = 2

Consequently, this value of v equals r, and hence the signature is considered
to be valid.

15.2.3.4 Security Analysis

Because the DSA is a modified version of the ElGamal DSS, most things we said in
Section 15.2.2.4 also apply for the DSA. Similar to the ElGamal DSS, the security of
the DSA relies on the DLA and the DLP in a cyclic group. Contrary to the ElGamal
DSS, however, the DSA relies on the DLP in a cyclic subgroup of Z

∗
p with prime

order q. This problem can only be solved by using a generic algorithm. As mentioned
in Section 7.4, the best we can expect from such a generic algorithm is a running time
that is of the order of the square root of the order of the subgroup. If, for example,
the subgroup has the order 2160 (as in the case of the DSA), then the best we can
expect from an algorithm to compute discrete logarithms is a running time that is of
the order of

√
2160 = 2160/2 = 280.

388 Contemporary Cryptography

This is certainly beyond the computational power of the adversary one has in
mind. Consequently, it is not possible to solve the DLP in the cyclic subgroup of Z

∗
p

with prime order q (for sufficiently large values of q).

15.3 SECURE SYSTEMS

As mentioned in the Introduction of this chapter, the security requirement of a DSS
is somehow difficult to interpret and even more difficult to define in a mathematically
precise way. In [3], Goldwasser, Micali, and Rivest proposed a definition for a
secure DSS that is still in widespread use today. They modeled an adversary as a
PPT algorithm that can mount adaptive chosen-message attacks. They then argued
that a DSS is secure if all possible adversaries can existentially forge a digital
signature only with a success probability that is negligible. If such a statement can
be mathematically proven (under some standard intractability assumption), then the
DSS is called provably secure.

Historically, the first provably secure DSS was the one proposed by Gold-
wasser, Micali, and Rivest. Due to the initials of its developers, this DSS is some-
times also referred to as GMR DSS. It is basically a one-time signature system (see
Section 15.4) that is based on the existence of a “claw-free” pair of permutations
(this assumption is potentially weaker than the IFA). Unfortunately, the efficiency
of the GMR DSS and its derivates is too poor to be considered for practical use. In
1994, however, Cynthia Dwork and Moni Naor proposed a provably secure DSS—
the so-called Dwork-Naor DSS—that is quite efficient [14].6 Both the GMR DSS
and the Dwork-Naor DSS can be proven secure without assuming a cryptographic
hash function to behave like a random oracle (i.e., the security proofs are not in the
random oracle model).

For all practical purposes, we now have very efficient DSSs that can be shown
secure in the random oracle model. In fact, Mihir Bellare and Philip Rogaway
introduced the random oracle model and a DSS that can be shown secure in it
around the same time when Dwork and Naor developed their DSS [15]. Bellare and
Rogaway originally argued that a hash-then-decrypt DSS that uses, for example,
MD5, PKCS #1, and RSA has the problem that the set of points

{hPKCS#1(m) |m ∈ {0, 1}∗}

has a size at most 2128 and hence is a very sparse and structured subset of Z
∗
n.

This may be disadvantageous and may lend itself to cryptanalytical attacks (note

6 The DSS was originally proposed at CRYPTO ’94.

Digital Signature Systems 389

that such attacks are not yet known, but that they may exist and be found at some
point in time in the future). Consequently, they suggested hashing a messagem onto
the full domain Z

∗
n (of the RSA function) before signing, and they constructed and

proposed a corresponding full-domain-hash (FDH) function

hFDH : {0, 1}∗ → Z
∗
n.

The function is understood to hash arbitrarily sized strings “uniformly” into
Z
∗
n. In either case, the FDH signature of m is the digital signature for hFDH .

Assuming that hFDH is ideal (i.e., it behaves like a random function) and RSA is a
trapdoor permutation, the security of the FDH DSS can then be shown in the random
oracle model. In [6], Bellare and Rogaway improved the FDH DSS and proposed the
PSS and the PSS-R. These are the secure DSSs that are addressed next. We elaborate
on the PSS and the PSS-R constructions for the RSA DSS. Similar constructions for
the Rabin DSS can be found in [6]. In either case, standardization efforts related to
the PSS and PSS-R are underway in several forums, including, for example, ANSI
X9F1, IEEE P1363, ISO/IEC JTC1 SC27, and PKCS.

15.3.1 PSS

The PSS is a DSS with appendix. In its RSA version, the PSS Generate algorithm is
the same as the RSA key generation algorithm. On input of a security parameter,
it outputs a signing key (n, d) and a corresponding verification key (n, e). The
PSS is further parametrized by k0 and k1, which are both numbers between 1 and
k = logn− 1 (typically, k = 1, 024 and k0 = k1 = 128). In addition, the PSS Sign
and Verify algorithms make use of two hash functions h and g.

• The hash function h : {0, 1}∗ → {0, 1}k1 is called the compressor. It hashes
arbitrarily long bit sequences to sequences of k1 bits.

• The hash function g : {0, 1}k1 → {0, 1}k−k1−1 is called the generator. Let
g1 be the function that on input w ∈ {0, 1}k1 returns the first k0 bits of g(w),
and let g2 be the function that on input w ∈ {0, 1}k1 returns the remaining
k − k0 − k1 − 1 bits of g(w).

For the security analyis in the random oracle model, we must make the as-
sumption that h and g are ideal, meaning that they behave like random functions. For
all practical purposes, however, h and g must be implemented with cryptographic
hash functions.

The PSS Sign algorithm is specified in Algorithm 15.3 and illustrated in Figure
15.1 (note that the figure only illustrates how the message is prepared for the RSA

390 Contemporary Cryptography

Algorithm 15.3 The PSS Sign algorithm.

(n, d, m)

r ∈R {0, 1}k0

w ← h(m ‖ r)
r∗ ← g1(w)⊕ r
y ← 0 ‖ w ‖ r∗ ‖ g2(w)
s← yd (mod n)

(s)

� �

� K �L ��.K/3

��.K/�

=

�3

��

Figure 15.1 The PSS Sign algorithm.

signature generation). It takes as input a signing key (n, d) and a message m, and it
generates as output a signature s. As its name suggests, the PSS is probabilistic (i.e.,
a k0-bit random value r is used to digitally sign m).

The PSS Verify algorithm is deterministic, and it is specified in Algorithm
15.4. It takes as input a verification key (n, e), a messagem, and a signature s, and it
generates as output one bit b saying whether s is a valid signature for messagemwith
respect to (n, e). Note that in step 2, y can be broken up into the four components b,
w, r∗, and γ, because every component has a fixed and known length (i.e., b is one
bit long, w is k1 bits long, r∗ is k0 bits long, and γ is k − k0 − k1 − 1 bits long).
Also note that b is set to true (or valid) if and only if all three conditions (i.e., b = 0,
h(m ‖ r) = w, and g2(w) = γ) are true.

As mentioned earlier, the PSS is very efficient. In fact, the PSS Sign and
Verify algorithms both take only one application of h, one application of g, and
one application of the RSA function. This is only slightly more expensive than the
basic RSA DSS.

Digital Signature Systems 391

Algorithm 15.4 The PSS Verify algorithm.

(n, e, m, s)

y← se (mod n)
break up y as b ‖ w ‖ r∗ ‖ γ
r ← r∗ ⊕ g1(w)
b← (b = 0 and h(m ‖ r) = w and g2(w) = γ)

(b)

15.3.2 PSS-R

PSS-R is a DSS with message recovery. This means that the Sign algorithm must
fold the message m into the signature s in such a way that it can be recovered by
the Recover algorithm. When the length of the message is sufficiently small, then
one can in fact fold the entire message into the signature. In PSS-R, if the security
parameter is k = 1, 024, then one can fold up to 767 message bits into a single
signature.

Similar to the PSS, the PSS-R is parametrized by k0 and k1. The PSS-
R Generate algorithm is the same as before. Also, the PSS-R Sign and Recover
algorithms make use of the compressor h, generator g, g1, and g2 as defined earlier.
We assume that the messages to be signed have length l = k−k0−k1−1. Suggested
choices are k = 1, 024, k0 = k1 = 128, and l = 767. In this case, we produce a
k-bit enhanced signature from which the verifier can recover the l-bit message and
simultaneously check its authenticity.

Algorithm 15.5 The PSS-R Sign algorithm.

(n, d, m)

r ∈R {0, 1}k0

w ← h(m ‖ r)
r∗ ← g1(w)⊕ r
m∗ ← g2(w)⊕m
y ← 0 ‖ w ‖ r∗ ‖ m∗
s← yd (mod n)

(s)

The PSS-R Sign algorithm is specified in Algorithm 15.5 and illustrated in
Figure 15.2 (again, the figure illustrates how the message is prepared for the RSA
signature generation). The input and output parameters of the PSS-R Sign algorithm
are the same as of the PSS Sign algorithm. In the PSS-R Sign algorithm, however,

392 Contemporary Cryptography

� �

� K �L

��.K/3

��.K/�

=

�3

��

�L

=

Figure 15.2 The PSS-R Sign algorithm.

the last part of y is g2(w) ⊕ m (instead of only g2(w)). This means that g2(w) is
used to mask the message.

Algorithm 15.6 The PSS-R Recover algorithm.

(n, e, s)

y ← se (mod n)
break up y as b ‖ w ‖ r∗ ‖ m∗
r ← r∗ ⊕ g1(w)
m← m∗ ⊕ g2(w)
if (b = 0 and h(m ‖ r) = w)

then output m
else output invalid

(m | invalid)

The PSS-R Recover algorithm is specified in Algorithm 15.6. Again, this
algorithm is similar to the PSS Recover algorithm. The major difference is that in
the PSS-R Recover algorithm the message m must be recovered from m∗. This can
be done by adding modulo 2 g2(w) tom∗. Also, the output of the algorithm depends
on a condition. If b = 0 and h(m ‖ r) = w, then the PSS-R Recover algorithm
outputsm. Otherwise, it outputs one bit saying that the signature s is invalid. In this
case, the message is not recovered by the algorithm.

Digital Signature Systems 393

Again, the PSS-R is very efficient and only slightly more expensive than the
basic RSA DSS. So for all practical purposes, there is no reason not to use the PSS
or PSS-R instead of the basic RSA DSS.

15.4 ONE-TIME SIGNATURE SYSTEMS

A one-time signature system is a DSS that can be used to digitally sign single
messages. This means that a new verification key is typically required for every
message that is signed (otherwise, it is often the case that digital signatures can be
forged). On one hand, the advantages of one-time signature systems are simplicity
and efficiency (consequently, they are useful in application environments, where
low computational complexity is required). On the other hand, the disadvantages
of one-time signature systems are related to the size of the verification key(s) and
the corresponding key management overhead. If, however, one-time signatures are
combined with techniques to authenticate verification keys, then it is possible to
sign multiple messages with one verification key, and hence the resulting one-time
signature systems become practical.

In 1978, Michael O. Rabin was the first person who proposed a one-time
signature system. The system employs a symmetric encryption system and is far
too inefficient to be used in practice. In 1979, Leslie Lamport proposed a one-time
signature system that is efficient, because it employs a one-way function instead of
a symmetric encryption system and can be used in practice [16].

Let f be a one-way function and m be a message to be signed. The length of
m is assumed to be bound by n. For example, n may be 128 or 160 bits, and any
message longer than this must first be hashed using a cryptographic hash function.
To digitally signm using the Lamport one-time signature system, the signatory must
have a private key that consists of n pairs of randomly chosen preimages for f :

[u10, u11], [u20, u21], . . . , [un0, un1]

Each preimage uij (i = 1, . . . , n; j = 0, 1) may, for example, be a string of 64
bits. In an efficient implementation, the 2n arguments are typically generated using
a PRBG with an appropriate seed. The public key then consists of the 2n images
f(uij):

[f(u10), f(u11)], [f(u20), f(u21)], . . . , [f(un0), f(un1)]

Furthermore, in an efficient implementation, the 2n images f(uij) are hashed
to a single value p representing a new (master) public key:

394 Contemporary Cryptography

�

����

�

�

�.�����/

��

��

��� �3� �3�

�.����/3��.�����/3��.����/�� �.����/���.�����/��

��� ���

�������������������������

Figure 15.3 Lamport’s one-time signature system.

p = h(f(u10), f(u11), f(u20), f(u21), . . . , f(un0), f(un1))

In this notation, h represents a cryptographic hash function. To digitally sign
message m, each bit mi is signed individually using [ui0, ui1]. The index i runs
from 1 to n. More specifically, the signature for mi is the pair [uimi , f(uimi)],
where mi represents the complement of mi. So if mi = 0, then this bit is signed
with [ui0, f(ui1)], and if mi = 1, then it is signed with [ui1, f(ui0)]. The resulting
signature s consists of [uimi , f(uimi

)] for all n bits of the message:

s = [u1m1 , f(u1m1)], [u2m2 , f(u2m2)], . . . , [unmn , f(unmn
)]

The signature s can be verified by computing all images f(uij), hashing all of
these values to p′, and comparing p′ with the public key p. The signature is valid if
and only if p′ = p.

Digital Signature Systems 395

The Lamport one-time signature system is illustrated in Figure 15.3. As
mentioned earlier, a PRBG and a seed are typically used to generate the 2n values
u10, u11, u20, u21, . . . , un0, un1, and a cryptographic hash function h is typically
used to compute the public key p.

There are several possibilities to generalize and improve the efficiency of
the Lamport one-time signature system. These generalizations and improvements,
however, are beyond the scope of this book. Neverthelss, it is important to note
that the Lamport one-time signature system and variations thereof are used in many
cryptographic applications. For example, it can be used to protect against the double-
spending problem in anonymous offline digital cash systems (e.g., [17]).

15.5 DIGITAL SIGNATURES FOR STREAMS

Most DSSs in use today are message oriented, meaning that they are used to sign
messages or message blocks and to verify the signatures that are attached to them
accordingly. A problem first addressed by Rosario Gennaro and Pamkaj Rohatgi in
1997 is how one can digitally sign streams7 [18]. There are several approaches and
corresponding solutions one can find.

• The simplest approach is to split the digital stream into a sequence of blocks,
to digitally sign each block individually, and to have the recipient verify the
digital signature of each block before he or she consumes it. This approach
works for every stream (even if it is infinitely long). However, it has the
disadvantage that it forces the sender to generate a digital signature and
the recipient to verify a signature for every block in the stream. This is
computationally expensive (for both the sender and the verifier).

• A less expensive approach can be used if the digital stream that must be
signed is finite and known in advance to the sender. In this case, the sender
can split the stream into a sequence of blocks, create a table that contains a
cryptographic hash value for every block in the stream, and digitally sign the
table. The digital stream is then transmitted with the prepended table to the
recipient. The recipient, in turn, can verify the digital signature for the table,
temporarily store the table in the positive case, and verify the hash value for
every block in the stream with the entry in the table. This apporach has the

7 A digital stream (or stream in short) is a potentially very long (or even infinite) message or sequence
of bits that a sender sends to one (or multiple) recipient(s) and the recipient(s) is (are) required
to consume at more or less the input rate (i.e., without excessive delays). Examples of digital
streams include digitized audio or video files, data feeds, and software modules that are dynamically
downloaded if needed (e.g., Java applets).

396 Contemporary Cryptography

disadvantage (in addition to the fact that it only works for streams that are
finite and known in advance to the sender) that it requires potentially very
large tables to be managed.

• One can address the table management problem of the previous approach by
using a hybrid scheme, in which the digital stream to be signed is split into
consecutive pieces and each piece is treated individually, meaning that it is
preceded by a small digitally signed table.

• Another approach is to use a Merkle authentication tree [19] to even more
efficiently authenticate the blocks of a digital stream.

When Gennaro and Rohatgi first addressed the problem of digitally signing
streams [18], they followed a chaining strategy, meaning that the digital stream is
divided into blocks and each block carries some authentication information for the
next block of the stream (i.e., the authentication information of block i is used to
authenticate block i + 1). This way the sender only needs to digitally sign the first
block, and the properties of this signature propagate to the rest of the stream through
the authentication information. Of course, the key problem is then to perform the
authentication of all blocks in a way that is as efficient as possible. Gennaro and
Rohatgi distinguished the following two cases:

• The digital stream is finitely long, and the sender knows the entire stream in
advance. In this case, Gennaro and Rohatgi proposed a solution that is known
as offline solution.

• The digital stream is (potentially) infinitely long, and the sender does not know
the entire stream in advance. In this case, Gennaro and Rohatgi proposed a
solution that is known as online solution.

Because digital streams can also be seen as messages (with specific proper-
ties), we use m to refer to such a stream. In the descriptions that follow, m refers to
the digital stream that must be signed, and m′ refers to the signed stream (i.e., m′ is
the stream that is actually transmitted to the recipient). Note that m and m′ may be
infinitely long, that the blocks of m and m′ may not be equally long (the blocks of
m′ are typically longer than the blocks of m, because they comprise authentication
information), and that an initial block m′

0 must usually be prepended to m′ (such a
block is not present in m). Let us overview and briefly discuss the offline and online
solutions of Gennaro and Rohatgi next.

• In the offline solution, the digital stream m is assumed to be finitely long and
the entire stream is known to the sender in advance—that is, m comprises
k blocks (i.e., m = m1,m2, . . . ,mk) and m′ comprises k + 1 blocks (i.e.,

Digital Signature Systems 397

m′ = m′
0,m

′
1, . . . ,m

′
k). The basic idea is to include in every block m′

i the
hash value of the subsequent block m′

i+1 (in addition to mi) and to prepend a
blockm′

0 that includes a digital signature for the hash value ofm′
1. The sender

then computes m′ as follows:

m′
k = [mk]

m′
i = [mi, h(m′

i+1)] for i = k − 1, . . . , 1
m′

0 = [h(m′
1), s]

Consequently, m′
k contains mk, m′

i contains mi and the hash value of
the subsequent block m′

i+1 for i = k − 1, . . . , 1, and m′
0 contains the hash

value of h(m′
1) and a digital signature s for this hash value. If k−1 refers to the

sender’s signing key, then s refers to Sign(k−1, h(m′
1)). Note that all blocks

ofm′ may be padded to meet a specific block length ofm′ (this is particularly
true for m′

0 and m′
k). Also note that digitally signing a stream with the off-

line solution requires a backward pass on the stream (this is why we must
make the assumption that the stream is finitely long and known in advance
to the sender). The structure of a signed digital stream is illustrated in Figure
15.4. In either case, the digital stream m′ is the one that is transmitted to the
recipient.

� �

�I �I

=�

=�

.�I���/
=�
.�I���/
=3

Figure 15.4 A signed digital stream according to the offline solution of Gennaro and Rohatgi.

On receiving m′
0, the recipient must verify that s is a valid signature

for h(m′
1) with respect to the verification key k of the sender—that is,

he or she must verify that Verify(k, h(m′
1), s) retuns valid. Afterwards,

on receiving m′
i = [mi, h(m′

i+1)] for i = 1, . . . , k − 1, the recipient
must accept block m′

i as valid if and only if it hashes to the same value
that was transmitted in the preceding block m′

i−1 (note that m′
i−1 includes

398 Contemporary Cryptography

h(m′
i−1+1) = h(m′

i)). Consequently, the recipient must verify a digital
signature only at the beginning of the stream and a hash value for every
subsequent block. The resulting offline solution is efficient for both the sender
and the recipient.

• In the online solution, the digital stream m is assumed to be (potentially)
infinitely long and the sender does not know the entire stream in advance—
that is, m comprises a sequence of blocks (i.e., m = m1,m2,m3, . . .) and
m′ comprises another sequence of blocks (i.e., m′ = m′

0,m
′
1,m

′
2, . . .). The

basic idea of the online solution is to use a “normal” DSS only to digitally
sign the first block of the stream and to use a fast one-time signature system
to digitally sign all subsequent blocks. More specifically, let (k, k−1) be the
sender’s public key pair of a “normal” DSS and (ki, k

−1
i) be the ith public key

pair of a one-time signature system. The sender then computes the following
sequence of blocks:

m′
0 = [k0, s]

m′
i = [mi, ki, si] for i ≥ 1

The first block m′
0 contains only a verification key k0 of a one-time

signature system and a digital signature s = Sign(k−1, k0) for k0. All
subsequent blocks m′

i (i ≥ 1) contain mi, ki, and a one-time signature
si = Sign(k−1

i−1, h(mi ‖ ki)). The resulting stream m′ is sent to the recipient.
On receiving m′

0 = [k0, s], the recipient verifies that s is a valid signature
for k0 with respect to the verification key k of the sender—that is, he or
she must verify that Verify(k, k0, s) returns valid. Afterward, on receiving
m′

i = [mi, ki, si], the recipient must verify that si is a valid one-time signature
for h(mi ‖ ki) with respect to the verification key of the previous block (i.e.,
ki−1). Consequently, the recipient has to verify a single digital signature at the
beginning of the stream and then one one-time signature for every subsequent
block of the stream. Again, the resulting online solution is efficient for both the
sender and the recipient. The major disadvantage of the solution is message
expansion, meaning that m′ is considerably larger than m (this disadvantage
also applies for the offline solution).

Since the late 1990s, the problem of digitally signing streams has been more
seriously addressed in the research community. The use of streams and stream-
oriented network communication protocols is certainly the driving force behind this
development. It is assumed that digital signatures for streams are becoming more
and more important in the future.

Digital Signature Systems 399

15.6 VARIATIONS

Several variations of “normal” DSSs can be used in practice. In this section, we
briefly overview and put into perspective blind signatures, undeniable signatures,
and fail-stop signatures. More variations are proposed and discussed in the relevant
literature.8

15.6.1 Blind Signatures

The idea of blind signatures was developed and originally proposed by David Chaum
in the early 1980s [20, 21]. In short, a blind signature is a digital signature with the
additional property that the signatory does not obtain any information about the
message it signs or the signature it actually generates. The message is blinded in a
way that can be reversed by the recipient of the blind signature.

Protocol 15.1 Protocol to issue blind RSA signatures.

B A

(n, e, m) (n, d)

r ∈R Z
∗
n

t ≡ mre (mod n)
t−→

u ≡ td ≡ t1/e ≡ mdr (mod n)
u←−

s ≡ u/r ≡ mdr/r ≡ md (mod n)

(s)

For example, the RSA DSS as introduced in Section 15.2.1 can be turned into
a blind RSA DSS. Let A be a signatory with public RSA verification key (n, e)
and B be a recipient of a blind signature from A. Protocol 15.1 can then be used
to have A issue a blind RSA signature s for a message m chosen by B. On B’s
side, the protocol takes as input the verification key of A and the message m to be
signed, and it generates as output the RSA digital signature s form. On A’s side, the
protocol only takes the signing key of A as input. B first randomly chooses an r from
Z∗

n and uses this random value to blind the message m. Blinding is performed by
multiplying the message with r to the power of e modulo n. The resulting blinded
message t is transmitted to A and digitally signed there. Digital signing is performed
by setting t to the power of d modulo n. The resulting message u is sent back to B,

8 A good and comprehensive bibliography on digital signatures and corresponding DSS is maintained
by Guilin Wang. It is available at http://www.i2r.a-star.edu.sg/icsd/staff/guilin/bible.htm.

400 Contemporary Cryptography

and B is now able to unblind the message. Unblinding is performed by dividing u
by r or multiplying u with the multiplicative inverse of r modulo n. This inverse, in
turn, can be found because r is a unit (and hence invertible) in Zn.

To prove the blindness property of the blind RSA DSS, one has to show that
the pair (t, u) is statistically independent of the pair (m, s). Because re (mod n) is
a random group element of Z

∗
n, t and m are statistically independent. Furthermore,

because u is determined by t and s is determined by m, (t, u) and (m, s) are
statistically independent as well.

At first sight, one would argue that blind signatures are not particularly
useful, because a signatory always wants to know what it signs. Surprisingly,
this is not always the case, and there are many applications for blind signatures
and corresponding DSSs. Examples include anonymous digital cash and electronic
voting. After Chaum published his results in the early 1980s, almost all DSS have
been extended in one way or another to also provide the possibility to issue blind
signatures.

15.6.2 Undeniable Signatures

The notion of an undeniable signature was developed and originally proposed by
David Chaum and Hans van Antwerpen at the end of the 1980s [22]. In short,
undeniable signatures are digital signatures that cannot be verified with a public key.
Instead, they must be verified interactively, meaning that an undeniable signature can
only be verified with the aid of the signatory and that the Verify algorithm is therefore
replaced with a signature verification protocol that is executed between the verifier
and the signatory. Because a dishonest signatory can always refuse participation in
a signature verification protocol, an undeniable signature system must come along
with a disavowal protocol that can be used to prove that a given signature is a forgery.

15.6.3 Fail-Stop Signatures

The notion of a fail-stop signature was developed and originally proposed by Birgit
Pfitzmann in the early 1990s [23] (see [24] for a more formal treatment). Fail-stop
signatures can be briefly characterized as digital signatures that allow the signatory
to prove that a signature purportedly (but not actually) signed by itself is a forgery.
This is done by showing that the underlying assumption on which the DSS is
based has been compromised. After such a proof has been published, the system
can be stopped (that’s why the signatures are called fail-stop in the first place).
Fail-stop signatures are theoretically interesting, but they are practically not very
important. Note that it is much more likely that a signing key is compromised than
the underlying assumption is broken.

Digital Signature Systems 401

15.7 FINAL REMARKS

In this chapter, we elaborated on digital signatures and DSSs, and we overviewed
and discussed some exemplary systems (i.e., RSA, ElGamal, DSA, PSS, and PSS-
R). Note that many other DSSs—with or without specific properties—are described
and discussed in the literature. There are even a few DSSs that can be constructed
from zero-knowledge authentication protocols (see Section 17.3).

In either case, it is hoped that digital signatures and DSSs provide the digital
counterpart to handwritten signatures and that they can be used to provide non-
repudiation services (i.e., services that make it impossible or useless for communi-
cating peers to repudiate their participation). Against this background, many coun-
tries and communities have put forth new legislation regarding the use of digital sig-
natures. Examples include the Directive 1999/93/EC of the European Parliament and
of the Council of December 13, 1999, on a Community Framework for Electronic
Signatures and the Electronic Signatures in Global and National Commerce Act in
the United States (commonly known as E-SIGN). But although many countries have
digital signature laws, it is important to note that these laws have not been seriously
challenged in court and that it is not clear what the legal status of digital signatures
really is. The fact that digital signatures are based on mathematical formulas intu-
itively makes us believe that the evidence they provide is particularly strong. This
belief is seductive and often wrong (e.g., [25–27]).

References

[1] Pfitzmann, B., Digital Signature Schemes: General Framework and Fail-Stop Signatures. Springer-
Verlag, LNCS 1100, 1996.

[2] Hammond, B., et al., Digital Signatures. RSA Press, Osborne/McGraw-Hill, Emeryville, CA,
2002.

[3] Goldwasser, S., S. Micali, and R.L. Rivest, “A Digital Signature Scheme Secure Against Adaptive
Chosen-Message Attacks,” SIAM Journal of Computing, Vol. 17, No. 2, April 1988, pp. 281–308.

[4] Diffie, W., and M.E. Hellman, “New Directions in Cryptography,” IEEE Transactions on Infor-
mation Theory, IT-22(6), 1976, pp. 644–654.

[5] Rivest, R.L., A. Shamir, and L. Adleman, “A Method for Obtaining Digital Signatures and Public-
Key Cryptosystems,” Communications of the ACM, 21(2), February 1978, pp. 120–126.

[6] Bellare, M., and P. Rogaway, “The Exact Security of Digital Signatures—How to Sign with RSA
and Rabin,” Proceedings of EUROCRYPT ’96, Springer-Verlag, LNCS 1070, 1996, pp. 399–414.

[7] ElGamal, T., “A Public Key Cryptosystem and a Signature Scheme Based on Discrete Logarithm,”
IEEE Transactions on Information Theory, IT-31(4), 1985, pp. 469–472.

402 Contemporary Cryptography

[8] Horster, P., M. Michels, and H. Petersen, “Meta-ElGamal Signature Schemes,” Proceedings of
2nd ACM Conference on Computer and Communications Security, ACM Press, New York, 1994,
pp. 96–107.

[9] Nyberg, K., and R.A. Rueppel, “Message Recovery for Signature Schemes Based on the Discrete
Logarithm Problem,” Designs, Codes and Cryptography, Vol. 7, 1996, pp. 61–81.

[10] Bleichenbacher, D., “Generating ElGamal Signatures Without Knowing the Secret Key,” Pro-
ceedings of EUROCRYPT ’96, Springer-Verlag, LNCS 1070, 1996, pp. 10–18.

[11] Pohlig, S., and M.E. Hellman, “An Improved Algorithm for Computing Logarithms over GF (p)
and its Cryptographic Significance,” IEEE Transactions on Information Theory, IT-24, 1978,
pp. 108–110.

[12] Schnorr, C.P., “Efficient Signature Generation by Smart Cards,” Journal of Cryptology, Vol. 4,
1991, pp. 161–174.

[13] U.S. National Institute of Standards and Technology (NIST), Digital Signature Standard (DSS),
FIPS PUB 186, May 1994.

[14] Dwork, C., and M. Naor, “An Efficient Existentially Unforgeable Signature Scheme and Its
Applications,” Journal of Cryptology, Vol. 11, No. 3, 1998, pp. 187–208.

[15] Bellare, M., and P. Rogaway, “Random Oracles Are Practical: A Paradigm for Designing Efficient
Protocols,” Proceedings of 1st ACM Conference on Computer and Communications Security,
ACM Press, New York, 1993, pp. 62–73.

[16] Lamport, L. , Constructing Digital Signatures from a One-Way Function, Technical Report CSL-
98, SRI International, October 1979.

[17] Chaum, D., A. Fiat, and M. Naor, “Untraceable Electronic Cash,” Proceedings of CRYPTO ’88,
Springer-Verlag, LNCS 403, 1988, pp. 319–327.

[18] Gennaro, R., and P. Rohatgi, “How to Sign Digital Streams,” Proceedings of CRYPTO ’97,
Springer-Verlag, LNCS 1294, pp. 180–197.

[19] Merkle, R., “Protocols for Public Key Cryptosystems,” Proceedings of the IEEE Symposium on
Security and Privacy, Oakland, CA, April 1980, pp. 122–134.

[20] Chaum, D., “Blind Signatures for Untraceable Payments,” Proceedings of CRYPTO ’82, Plenum
Press, New York, 1983, pp. 199–203.

[21] Chaum, D., “Blind Signature System,” Proceedings of CRYPTO ’83, Plenum Press, New York,
1984, p. 153.

[22] Chaum, D., and H. van Antwerpen, “Undeniable Signatures,” Proceedings of CRYPTO ’89,
Springer-Verlag, LNCS 435, 1990, pp. 212–216.

[23] Pfitzmann, B., “Fail-Stop Signatures: Principles and Applications,” Proceedings of the 8th World
Conference on Computer Security, Audit and Control (COMPSEC ’91), 1991, pp. 125-134.

[24] Pedersen, T.P., and B. Pfitzmann, “Fail-Stop Signatures,” SIAM Journal on Computing, Vol. 26,
No. 2, 1997, pp. 291–330.

Digital Signature Systems 403

[25] Oppliger, R., and R. Rytz, “Digital Evidence: Dream and Reality,” IEEE Security & Privacy, Vol.
1, No. 5, September/October 2003, pp. 44–48.

[26] Maurer, U.M., “Intrinsic Limitations of Digital Signatures and How to Cope with Them,”
Proceedings of the 6th Information Security Conference (ISC ’03), Springer-Verlag, LNCS 2851,
pp. 180–192.

[27] Maurer, U.M., “New Approaches to Digital Evidence,” Proceedings of the IEEE, Vol. 92, No. 6,
June 2004, pp. 933–947.

404 Contemporary Cryptography

Chapter 16

Key Establishment

In this chapter, we elaborate on some cryptographic protocols that two entities can
use to establish a shared secret key. More specifically, we introduce the topic in
Section 16.1, elaborate on key distribution and key agreement protocols in Sections
16.2 and 16.3, address quantum cryptography in Section 16.4, and conclude with
some final remarks in Section 16.5. Note that this chapter is not complete in
the sense that there are many key establishment protocols that are not addressed.
A comprehensive overview is given in [1]. Also note that the problem of key
establishment can also be considered if more than two entities are involved. In
this case, however, the corresponding cryptographic key establishment protocols are
much more involved (see, for example, [2]). Again, these protocols are not addressed
in this book.

16.1 INTRODUCTION

In Section 2.3.3, we argued that the establishment of secret keys is a major problem
and the Achilles’ heel for the large-scale deployment of secret key cryptography, and
that there are basically two approaches to address the key establishment problem:

1. The use of a KDC, such as Kerberos [3];

2. The use of a key establishment protocol.

We further made a distinction between a key distribution protocol and a key
agreement protocol (both of them representing key establishment protocols).

• A key distribution protocol can be used to securely transmit a secret key (that
is generated locally or otherwise obtained) from one entity to another.

405

406 Contemporary Cryptography

• A key agreement protocol can be used by two entities to establish and mu-
tually agree on a secret key. Alternatively speaking, the key is derived from
information provided by both entities.

, %

, %G���	��������

G����
���
���
��

Figure 16.1 Key distribution versus key agreement.

Figure 16.1 illustrates the notion of a key distribution as compared to a key
agreement. In the first case, a secret key is distributed from entity A to entity B,
whereas in the second case, A and B establish and mutually agree on a secret key.
So in the first case, the relationship between A and B is unidirectional, whereas the
relationship is bidirectional in the second case.

As already mentioned in Section 2.3.3, key agreement protocols are advanta-
geous from a security viewpoint, and hence they should be the preferred choice.
Unfortunately, key agreement protocols also tend to be more involved than key
distribution protocols. In either case, the most important key distribution and key
agreement protocols are overviewed and briefly discussed next.

16.2 KEY DISTRIBUTION PROTOCOLS

Only a few key distribution protocols are in use today. In this section, we elaborate
on Merkle’s Puzzles, Shamir’s three-pass protocol, and an asymmetric encryption-
based key distribution protocol. The former two protocols are only theoretically
(or historically) relevant, whereas the asymmetric encryption-based key distribution
protocol is the key distribution protocol of choice for practical use. In fact, it is
employed in almost all network security protocols in use today in one way or another.

16.2.1 Merkle’s Puzzles

In 1975, Ralph C. Merkle developed and proposed an idea that is conceptually sim-
ilar and very closely related to public key cryptography and asymmetric encryption

Key Establishment 407

as we know it today [4].1 The idea is simple and has become known as Merkle’s
Puzzles.

Protocol 16.1 Merkle’s Puzzles.

A B

(n) (n)

Generate Pi = (i, Ki) for i = 1, . . . , n
Permute P1, . . . , Pn

Pπ(1),...,Pπ(n)−→
Randomly select Pi

Solve Pi
i←−

(Ki) (Ki)

Let A and B be two entities that can communicate with each other over a public
but authentic channel. A and B can then use Protocol 16.1 to establish a shared secret
key K . The protocol takes a security parameter n on either side and then proceeds
with the following three steps:

• First, A generates n puzzles P1, . . . , Pn, randomly permutes the puzzles
(using permutation π), and sends Pπ(1), . . . , Pπ(n) to B. Each puzzle Pi

consists of an index i and a randomly chosen secret key Ki (i.e., Pi =
(i,Ki)). Solving a puzzle is technically feasible but requires a nonnegligible
computational effort (as explained later).

• Second, B randomly selects a puzzle Pi from Pπ(1), . . . , Pπ(n) and solves it.
The solution is (i,Ki), and B sends back to A the index i (the transmission is
in the clear).

• Third, A can use i to extract the secret key Ki, and this key can then be used
as a shared secret key between A and B.

Having a closer look at the protocol, one realizes that B gets Ki after having
solved one single puzzle (i.e., Pi), whereas an adversary gets Ki only after having
solved all n puzzles and having found the puzzle with the appropriate index i (on
the average, the adversary has to solve half of the puzzles). For sufficiently large
n, this is computationally infeasible for the adversary, and hence Merkle’s Puzzles
provide a theoretically interesting possibility to have two entities establish a secret
key between them.

1 Note that this article appeared in the Communications of the ACM in 1978 (i.e., three years after it
was submitted to the magazine).

408 Contemporary Cryptography

One possibility to generate a puzzle Pi is to symmetrically encrypt (i,Ki)
with a key that has a fixed part and a variable part. If, for example, the variable
part is 30 bits, then solving a puzzle requires 230 tries in the worst case (or 229

tries on the average). This is the computational effort of B. If an adversary wants to
compromise the key, then the computational effort is n · 230 in the worst case (or
n/2 · 229 = n · 228 on the average). The computational security of Merkle’s Puzzles
is based on the difference between 230 (for B) and n · 230 (for an adversary). Again,
for a sufficiently large n, this difference can be made significant.

As mentioned earlier, Merkle’s Puzzles are theoretically (or historically) rel-
evant. From a more practical point of view, however, Merkle’s Puzzles have the
problem that the amount of data that must be transmitted from A to B is proportional
to the security parameter n. This is prohibitively expensive for a reasonably sized
security parameter n.

16.2.2 Shamir’s Three-Pass Protocol

Another theoretically and historically relevant key distribution protocol proposal is
due to Adi Shamir. Let A and B be two entities that share no secret key initially but
have a way to encrypt and decrypt messages using a specific encryption system (i.e.,
they can use different encryption systems). If the two encryption systems commute,
then A and B can use Shamir’s three-pass protocol illustrated in Protocol 16.2 to
securely send a secret message (e.g., a secret key) from A to B.

Protocol 16.2 Shamir’s three-pass protocol.

A B

(KA) (KB)

K ∈R K
K1 = EKA

(K)
K1−→
K2←− K2 = EKB

(K1)

K3 = DKA
(K2)

K3−→
K = DKB

(K3)

(K) (K)

A first randomly selects a key K from the key space K and encrypts this key
with his or her encryption system and his or her key KA. The resulting value

K1 = EKA(K)

Key Establishment 409

is transmitted to B. B, in turn, uses his or her encryption system and his or her key
KB to compute

K2 = EKB (K1)
= EKB (EKA(K)).

This double encrypted value is returned to A. A then uses KA to decrypt K2,
and compute

K3 = DKA(K2)
= DKA(EKB (EKA(K)))
= DKA(EKA(EKB (K)))
= EKB (K)

accordingly. This value is sent to B, and B uses KB to decryptK3:

K = DKB (K3) = DKB(EKB (K))

Both entities can now output the key K and use it for a symmetric encryption
system.

Unfortunately, it is currently not known how to instantiate Shamir’s three-pass
protocol efficiently (i.e., using only symmetric encryption systems). Because one
needs symmetric encryption systems that commute, an obvious choice would be
additive binary stream ciphers, such as the one-time pad introduced in Section 10.4.
In this case, however, one faces the problem that all encryptions cancel themselves
out and that the protocol becomes completely insecure. Let rA be the sequence of
random bits that A uses to compute K1 and K3, and rB be the sequence of random
bits that B uses to compute K2. K1, K2, and K3 can then be expressed as follows:

K1 = rA ⊕K

K2 = rB ⊕K1 = rB ⊕ rA ⊕K

K3 = rA ⊕K2 = rA ⊕ rB ⊕ rA ⊕K = rB ⊕K

K1, K2, and K3 are the values an adversary can observe when he or she
mounts a passive wiretapping attack. In this case, the adversary can add K1 and
K2 modulo 2 to retrieve rB :

410 Contemporary Cryptography

K1 ⊕K2 = rA ⊕K ⊕ rB ⊕ rA ⊕K

= rA ⊕ rA ⊕K ⊕K ⊕ rB

= rB

This value can then be added to K3 modulo 2 to determineK:

rB ⊕K3 = rB ⊕ rB ⊕K = K

Consequently, although we use a perfectly secure symmetric encryption sys-
tem (i.e., the one-time pad), the resulting key distribution protocol is completely
insecure.

Shamir’s three-pass protocol can be instantiated using modular exponentia-
tion in Z

∗
p. This idea is due to James L. Massey and Jim K. Omura, and hence

the resulting key distribution protocol is sometimes also referred to as the Massey-
Omura protocol. Let A and B be two entities that want to run the Massey-Omura
protocol. A has an encryption exponent eA and a corresponding decryption exponent
dA ≡ (eA)−1 (mod p−1), and B has an encryption exponent eB and a correspond-
ing decryption exponent dB that is the multiplicative inverse modulo p − 1 (i.e.,
dB ≡ (eB)−1 (mod p − 1)). Shamir’s three-pass protocol can then be instantiated
with the following values for K1, K2, and K3:

K1 ≡ KeA (mod p)
K2 ≡ (KeA)eB ≡ KeAeB (mod p)
K3 ≡ ((KeA)eB)dA

≡ ((KeA)dA)eB

≡ (KeAdA)eB

≡ KeB (mod p)

Finally, B can use dB to retrieve K:

K ≡ (KeB)dB ≡ KeBdB ≡ K (mod p)

Unfortunately, this instantiation of Shamir’s three-pass protocol employs mod-
ular exponentiation, and hence there is no immediate advantage related to the use of
an asymmetric encryption system in the first place.

Key Establishment 411

16.2.3 Asymmetric Encryption-Based Key Distribution Protocol

Asymmetric encryption-based key distribution and corresponding protocols are
simple and straightforward. As illustrated in Protocol 16.3, such a protocol can be
used by two entities—A and B—that share no secret key initially. B is assumed
to have a public key pair of an asymmetric encryption system (EB refers to the
encryption function that is keyed with kB , and DB refers to the corresponding
decryption function that is keyed with k−1

B). A randomly selects a secret key K
from an appropriate key space K, encrypts it with EB , and transmits EB(K) to B.
B, in turn, uses DB to decrypt K . A and B now both share the secret key K .

Protocol 16.3 An asymmetric encryption-based key distribution protocol.

A B

(kB) (k−1
B)

K ∈R K
EB(K)−→

K = DB(EB(K))

(K) (K)

Many cryptographic security protocols for the Internet make use of asymmet-
ric encryption-based key distribution in one way or another. We already mentioned in
Section 2.3.3 that the SSL/TLS protocol works this way (see, for example, Chapter
6 of [5]). Another example is some keying option in the Internet key exchange (IKE)
protocol used in the IPsec protocol suite (see, for example, [6]).

16.3 KEY AGREEMENT PROTOCOLS

As mentioned in Sections 1.3 and 14.2.3, Whitfield Diffie and Martin E. Hellman
published their landmark paper entitled “New Directions in Cryptography” in 1976
[7]. The paper introduced the basic idea of public key cryptography and provided
some evidence for its feasibility by proposing a key agreement protocol. In fact, the
Diffie-Hellman key exchange protocol can be used by two entities that have no prior
relationship to agree on a secret key by communicating over a public but authentic
channel. As such, the mere existence of the Diffie-Hellman key exchange protocol
sounds like a paradox.

The Diffie-Hellman key exchange protocol can be implemented in any group
in which the DLP (see Definition 7.5) is intractable, such as the multiplicative
group of a finite field Zp (i.e., Z

∗
p). The Diffie-Hellman key exchange protocol

412 Contemporary Cryptography

Protocol 16.4 The Diffie-Hellman key exchange protocol using Z
∗
p .

A B

(p, g) (p, g)

xa ∈R {0, . . . , p− 2} xb ∈R {0, . . . , p− 2}
ya ≡ gxa (mod p) yb ≡ gxb (mod p)

ya−→
yb←−

Kab ≡ yxa
b (mod p) Kba ≡ y

xb
a (mod p)

(Kab) (Kba)

using this group is illustrated in Protocol 16.4. Let p be a large prime and g be
a generator of Z

∗
p. A and B know p and q, and want to use the Diffie-Hellman

key exchange protocol to agree on a shared secret key K . A randomly selects
a private exponent xa ∈ {0, . . . , p − 2}, computes the corresponding public
exponent ya ≡ gxa (mod p), and sends ya to B. B, in turn, randomly selects a
private exponent xb ∈ {0, . . . , p− 2}, computes the corresponding public exponent
yb ≡ gxb (mod p), and sends yb to A. A then computes

Kab ≡ yxa

b ≡ gxbxa (mod p)

and B computes

Kba ≡ yxb
a ≡ gxaxb (mod p).

Because the exponents commute, Kab is equal to Kba. It is the output of the
Diffie-Hellman key exchange protocol and can be used as a secret key K .

Let us consider two toy examples to illustrate the working principle of the
Diffie-Hellman key exchange protocol:

• Let p = 17 and g = 3 (i.e., g = 3 generates Z
∗
17). A randomly selects xa = 7,

computes ya ≡ 37 (mod 17) = 11, and sends the resulting value 11 to B.
B, in turn, randomly selects xb = 4, computes yb ≡ 34 (mod 17) = 13, and
sends the resulting value 13 to A. A now computes yxa

b ≡ 137 (mod 17) =
4, and B computes yxb

a ≡ 114 (mod 17) = 4. Consequently, K = 4 is the
shared secret that can be used as a session key.

• Let p = 347 and g = 11 (i.e., g = 11 generates Z
∗
347). A randomly

selects xa = 240, computes ya ≡ 11240 (mod 347) = 49, and sends the

Key Establishment 413

resulting value 49 to B. B, in turn, randomly selects xb = 39, computes
yb ≡ 1139 (mod 347) = 285, and sends the resulting value 285 to A. A
now computes yxa

b ≡ 285240 (mod 347) = 268, and B computes yxb
a ≡

4939 (mod 347) = 268. Consequently,K = 268 is the shared secret that can
be used as a session key.

Note that an adversary eavesdropping on the communication channel between
A and B knows p, g, ya, and yb, but does not know xa and xb. The problem of
determining K ≡ gxaxb (mod p) from ya and yb (without knowing xa or xb) is
known as the DHP (see Definition 7.6). As already explained in Section 7.2.1, the
DHP is as difficult to solve as the DLP, but it is still an open question whether it is
always (i.e., in every group) necessary to compute a discrete logarithm to solve an
instance of the DHP.

Also note that the Diffie-Hellman key exchange protocol can be transformed
into a (probabilistic) asymmetric encryption system. For a plaintext messagem (that
represents an element of the cyclic group), A randomly selects an xa, computes
the common key Kab (using B’s public exponent and following the Diffie-Hellman
key exchange protocol), and combines m with Kab to obtain the ciphertext c. The
special case where c = mKab refers to the ElGamal asymmetric encryption system
addressed in Section 14.2.3.

Like any other protocol that employs public key cryptography, the Diffie-
Hellman key exchange protocol is vulnerable to the man-in-the-middle attack. Note
what happens if an adversary C is able to place himself or herself between A and B
and provide both with messages of his or her choice. In this case, C can provide A
and B with faked public exponents. More specifically, C can provide A with y′b (of
which he or she knows the private exponent x′b) and B with y′a (of which he or she
knows the private exponent x′a). In this case, A computesKab′ ≡ y′xa

b (mod p) and
thinks that he or she shares this key with B, and B computes Kb′a ≡ y′xb

a (mod p)
and thinks that he or she shares this key with A. In reality, they both don’t share any
key with each other, but they both share a key with C. If, for example, A wanted
to send a secret message to B, A would use the key he or she thinks is being
shared with B to encrypt the message, and send it to B accordingly. C would be
sitting in the line and grab the message. Equipped with Kab′ , C would be able to
decrypt the message, eventually modify it, reencrypt it with Kb′a, and forward it to
B. B, in turn, would successfully decrypt the message using Kb′a and think that the
message is authentically coming from A. The only way to protect the communicating
entities against this type of attack is to make sure that the public exponents are
authentic. So, in practice, the native Diffie-Hellman key exchange protocol is usually
combined with a mutual authentication protocol to come up with an authenticated
key exchange protocol. Examples include the station-to-station (STS) protocol [8]

414 Contemporary Cryptography

and—more importantly—the IKE protocol mentioned earlier. In these protocols, the
public exponents used in the Diffie-Hellman key exchange are authenticated using
RSA signatures. Consequently, digital certificates and PKIs must be used to securely
deploy authenticated key exchange protocols.

As mentioned earlier, the Diffie-Hellman key exchange protocol can be used
in any group (other than Z

∗
p) in which the DLP is intractable. There are basically two

reasons for using other groups.

Performance: There may be groups in which the Diffie-Hellman key exchange
protocol (or the modular exponentiation function) can be implemented more
efficiently in hardware or software.

Security: There may be groups in which the DLP is more difficult to solve.

The two reasons are not independent from each other. If, for example, one has
a group in which the DLP is more difficult to solve, then one can work with much
smaller keys (for a similar level of security). This is the major advantage of ECC
as addressed in Section 7.6. The ECDLP is more difficult to solve (than the DLP in
Z
∗
p), and hence one can work with smaller keys.

16.4 QUANTUM CRYPTOGRAPHY

In this section, we provide a brief overview about quantum cryptography. We
introduce the basic principles and elaborate on the quantum key exchange protocol
that may provide an alternative for the establishment of secret keys.

16.4.1 Basic Principles

In cryptography, it is usually taken for granted that a communication channel can be
eavesdropped and that data transmitted on this channel can be attacked passively.
In Section 10.4, we saw that unconditional security (in an information-theoretic
sense) can only be achieved if the entropy of the secret key is greater than or equal
to the entropy of the plaintext message (i.e., if the key is at least as long as the
plaintext message). This is usually too expensive for all practical purposes, and
hence essentially all practically relevant symmetric encryption systems are “only”
computationally secure.

Against this background, it is sometimes argued that quantum cryptography
yields an alternative way to provide unconditional security. In short, quantum cryp-
tography uses the basic laws of quantum physics to make sure that eavesdropping
cannot go undetected. Consequently, quantum cryptography takes its security from

Key Establishment 415

quantum physics (instead of information theory). More specifically, quantum cryp-
tography makes use and takes advantage of the Heisenberg uncertainty principle
of quantum physics to provide a secure quantum channel. Roughly speaking, the
Heisenberg uncertainty principle states that certain pairs of physical properties are
related in such a way that measuring one property prevents an adversary from si-
multaneously knowing the value of the other. In particular, when measuring the
polarization of a photon, the choice of what direction to measure affects all mea-
surements. For example, suppose you measure the polarization of a photon using
a vertical filter. Classically, you would assume that if the photon passes through, it
is vertically polarized, and therefore if you placed in front of the photon another
filter with some angle t to the vertical, then the photon would not pass through.
However, quantum mechanics states that, in fact, there is a certain probability that
the photon passes through the second filter as well, and this probability depends
on the angle t. As t increases, the probability of the photon passing through the
second filter decreases until it reaches 0 at t = 90 deg (i.e., the second filter is
horizontal). When t = 45 deg, the chance of the photon passing through the second
filter is exactly 1/2. In measuring the polarization of photons, we refer to a pair of
orthogonal polarization states, such as 0 deg and 90 deg or 45 deg and 135 deg, as a
(polarization) basis. A pair of bases is said to be conjugate if the measurement of the
polarization in the first basis completely randomizes the measurement in the second
basis (as in the previous example above with t = 45 deg). Consequently, the 0/90-
deg and 45/135-deg bases are conjugate. Note that if someone else gives the photon
an initial polarization (either horizontal or vertical, but you don’t know which) and
you use a filter in the 45/135-deg basis to measure the photon, you cannot determine
any information about the initial polarization of the photon.

As further explained later, these principles can be used to establish a quantum
channel that cannot be attacked passively without detection, meaning that the
fact that someone is trying to eavesdrop on the channel can be detected by the
communicating entities. In fact, the adversary cannot gain even partial information
about the data being transmitted without altering it in a random and uncontrollable
way that is likely to be detected. As such, the quantum channel can be used to
transmit secret information or to agree on a secret key. It cannot be used, however,
to implement digital signatures and to provide nonrepudiation services accordingly.
Anyway, the quantum channel is provably secure even against an opponent with
superior technology and unlimited computational power (and even if P = NP).

The field of quantum cryptography was pioneered by Stephen Wiesner in the
early 1970s [9]. Wiesner had two applications in mind:

• Making money that is impossible to counterfeit;

416 Contemporary Cryptography

• Multiplexing two or three messages in such a way that reading one destroys
the other(s).

The first feasible quantum cryptosystems were designed in the early 1980s by
Charles H. Bennett and Gilles Brassard [10]. The most important quantum cryp-
tosystem is the quantum key exchange (see Section 16.4.2). Their first apparatus
that implemented a quantum key exchange was capable of transmitting a secret key
over a distance of approximately 30 cm. Note that a major disadvantage of quantum
cryptography in practice is the fact that quantum transmissions are necessarily weak
and cannot be amplified in transit (an amplifier is like an adversary from a quantum
system’s perspective). This severely limits the distance that can be overcome with a
quantum channel. Since the early work of Bennett and Brassard, many researchers
have turned towards quantum cryptography2 and many improvements have been
made. In 1993, for example, a 10 km quantum channel was built, and today it
is possible to overcome a distances of 67 km.3 Furthermore, many other quantum
cryptographic protocols have been developed and proposed, such as quantum pro-
tocols for oblivious transfer and bit commitment (again, refer to the bibliography of
quantum cryptography referenced in footnote 2).

16.4.2 Quantum Key Exchange Protocol

Let A be the sender and B the receiver on a quantum channel. A may send out
photons in one of four polarizations: 0, 45, 90, or 135 deg (we use the symbols
−→, ↗, ↑, and ↖ to refer to these polarizations). At the other end of the quantum
channel, B is to measure the polarizations of the received photons. According to the
laws of quantum mechanics, the receiving device can distinguish between rectilinear
polarizations (i.e., 0 and 90 deg), or it can quickly be reconfigured to discriminate
between diagonal polarizations (i.e., 45 and 135 deg); it cannot, however, distinguish
both types of polarization simultaneously (this is because the rectilinear and diagonal
polarizations’ bases are conjugate, meaning that the measurement of the polarization
in the first basis completely randomizes the measurement in the second basis).

In this setting, A and B can use the quantum key exchange protocol proposed
by Bennett and Brassard to agree on a shared secret key. In a first step, A chooses
a random bitstring and a random sequence of polarization bases (i.e., rectilinear or
diagonal). A sends B a sequence of photons, each representing one bit of the bitstring
in the polarization basis chosen for that bit position. For example, a horizontal or
45-deg photon can be used to represent a zero, whereas a vertical or 135-deg photon

2 Refer to http://www.cs.mcgill.ca/˜crepeau/CRYPTO/Biblio-QC.html for a bibliography of quantum
cryptography.

3 The company id Quantique SA (http://www.idquantique.com) is selling corresponding devices.

Key Establishment 417

can be used to represent a one. Note at this point that an adversary who wants to
measure the polarization of the photons sent from A to B does not know the bases in
which they must be measured. If the measurement is made with the correct bases, the
measurement yields a correct result. If, however, the measurement is made with the
wrong bases, the measurement will randomly change the polarization of the mea-
sured photons (by the laws of quantum mechanics). Consequently, without knowing
the polarization bases originally chosen by A, the adversary has only a negligible
chance of correctly guessing them and correctly measuring the polarization of the
photons accordingly. More likely, he or she is going to cause errors that can be
detected in the aftermath. Also note at this point that B does not know either which
bases to use for the measurements (from the quantum channel’s perspective, there
is no difference between B and an adversary). As B receives the photons, he or she
decides, randomly for each photon and independently of A, whether to measure the
photon’s rectilinear or diagonal polarization. B then interprets each result as a zero
or one, depending on the outcome of the measurement. Following this strategy, B
obtains meaningful data from only about half the photons he or she detects (those
for which he or she guesses the correct polarization base). Unfortunately, B does
not know which ones are correctly measured and which ones are measured with
the wrong polarization base. B’s information is further degraded by the fact that, in
practice, some of the photons will be lost in transit or would fail to be counted by B’s
imperfect detectors. In either case, B records the results of his or her measurements
and keeps them secret.

Subsequent steps of the quantum key exchange protocol may take place over a
public channel. Let us assume that this channel is only susceptible to passive attacks
(e.g., eavesdropping), and that it is not susceptible to active attacks (e.g., injection,
alteration, or deletion of messages). This basically means that we assume a public
channel that is authentic. This assumption can be made obsolete by having A and B
share a secret key that can be used for message origin authentication. In this case,
the quantum key exchange protocol will still work as a method of “key expansion”
rather than key generation.

A and B can now use the public channel to determine, by exchange of
messages, which photons were successfully received and of these which were
measured by B in the correct polarization base. B therefore publicly announces the
type of measurements (but not the results), and A tells B which measurements were
of the correct type. All of these announcements occur on the public channel. A and
B keep all cases in which B’s measurements were of the correct type. These cases
are then translated into ones and zeros, representing the agreed secret key. If the
quantum transmission has been undisturbed, A and B should now agree on the bits
encoded by these photons, even though this fact has never been discussed over the
public channel.

418 Contemporary Cryptography

Last but not least, it remains to be seen how A and B can decide whether
their resulting bitstrings are identical (indicating with high probability that no
eavesdropping has occured on the quantum channel) or different (indicating that the
quantum channel has been subject to eavesdropping). A simple and straightforward
solution is for A and B to publicly compare some of the bits on which they think they
should agree. The position of these bits must be chosen randomly after the quantum
transmission has been completed. Obviously, this process sacrifices the secrecy of
these bits. Because the bit positions used in this comparison are only a random subset
of the correctly received bits, eavesdropping on more than a few photons is likely
to be detected. If all comparisons agree, A and B can conclude that the quantum
channel has been free of significant eavesdropping. Therefore, most of the remaining
bits can safely be used as a one-time pad for subsequent communication over the
public channel. When this one-time pad is used up, the protocol can be repeated
arbitrarily often.

Table 16.1 illustrates an exemplary execution of the quantum key exchange
protocol. Lines 1 and 2 illustrate the bits and the polarization bases that are randomly
chosen by A (+ refers to a rectilinear basis and x refers to a diagonal basis). Line 3
illustrates the polarization of the photons that are actually sent from A to B. Again,
the polarization can be 0 (i.e.,−→), 45 (i.e.,↗), 90 (i.e., ↑), or 135 (i.e.,↖) deg. If A
has chosen a rectilinear basis, a zero is encoded as−→ and a one is encoded as ↑. If,
however, A has chosen a diagonal basis, a zero is encoded as↗ and a one is encoded
as ↖. The photons as polarized in line 3 are sent from A to B and are expected to
reach B. Line 4 illustrates the polarization bases that are randomly chosen by B, and
line 5 illustrates the binary values that are measured and decoded by B. Note that
not all of these values must be correct (only the ones that are measured with the
correct polarization basis). In line 5, the values that are not necessarily correct are
written in italics. Also, B may miss the reception of specific photons. In line 5, for
example, B has missed measuring the polarization of the second photon. Anyway,
the bitstring that is received by B is 010000110, and A and B must now find out
which bits they can use. In line 6, B publicly announces the bases in which he or
she measured the received photons, and in line 7 A says which bases were correctly
guessed. In the example, five bases were correctly guessed by B. This information
is presumably shared. Line 8 illustrates the corresponding bitstring (i.e., 01001). In
line 9, B reveals some bits chosen at random, and in line 10, A confirms these bits (if
they are correct). In line 11, the remaining bits are illustrated; they may now serve
as shared secret bits.

The eavesdropping-detection subprotocol as described earlier is rather waste-
ful because a significant proportion of the bits (2/5 in the example given here) are
sacrificed to obtain a good probability that eavesdropping is detected even if at-
tempted on only a few photons. Moreover, the probability that the resulting strings

Key Establishment 419

Table 16.1
An Exemplary Execution of the Quantum Key Exchange Protocol

1) 0 0 1 0 1 1 0 1 1 0
2) + x x + x + + x x +
3) −→ ↗ ↖ −→ ↖ ↑ −→ ↖ ↖ −→
4) + + x + + x + + x x
5) 0 1 0 0 0 0 1 1 0
6) + x + + x + + x x
7) OK OK OK OK OK
8) 0 1 0 0 1
9) 1 0
10) OK OK
11) 0 0 1

of A and B agree completely cannot be made arbitrarily close to one, unless most of
the bits are sacrificed. Both of these difficulties can be resolved by a protocol that
is commonly referred to serve the need of privacy amplification. This topic is not
further addressed (it is beyond the scope of this book).

Last but not least, we note that the quantum key exchange protocol as dis-
cussed so far is also subject to the man-in-the-middle attack. An adversary can claim
to be B and use the quantum key exchange protocol to establish a key with A. Thus,
there must be out-of-band authentication mechanisms that A can use to properly
authenticate B.

16.5 FINAL REMARKS

In this chapter, we elaborated on some cryptographic protocols that two entities
can execute to establish a secret key. Among these protocols, key agreement pro-
tocols are particularly useful, because they allow both entities to participate in the
generation of the secret key. If this is not the case (such as in the case of a key
distribution protocol), then the quality of the secret key is bound by the quality of
the entity that actually generates the key. If this entity employs a cryptographically
weak PRBG, then the resulting secret keys may be weak. This happened, for ex-
ample, when the first implementations of the SSL protocol were found vulnerable
because the Netscape browser implemented such a cryptographically weak PRBG
(see Section 9.2 and the reference given therein). Contrary to that, all PRBGs of
all entities involved in a key agreement must be cryptographically weak, so that the
resulting secret key is weak.

420 Contemporary Cryptography

The Diffie-Hellman key exchange protocol is omnipresent in security appli-
cations. Whenever two entities must establish a secret key, the Diffie-Hellman key
exchange protocol can be used and provides an elegant solution. In the future, it
is possible and likely that alternative key agreement protocols are developed and
deployed. This is particularly true if more than two entities are involved.

In the second part of the chapter, we introduced the basic principles of
quantum cryptography and elaborated on the quantum key exchange protocol. This
protocol is interesting, because it is unconditionally secure and does not depend on a
computational intractability assumption. Instead, it depends on the laws of quantum
physics. As such, the security of the quantum key exchange protocol is independent
from any progress that is made in solving mathematical problems (e.g., the IFP or
the DLP). Quantum cryptography is currently not practical for actual applications. It
may, however, be used in the future, especially because public key cryptography and
corresponding cryptosystems may be attacked by quantum computers (see Section
6.5). In fact, this is the principle benefit of quantum cryptography. In either case,
quantum cryptography is a timely and very active area of research and development
(see, for example, [11]).

References

[1] Boyd, C., and A. Mathuria, Protocols for Key Establishment and Authentication. Springer-Verlag,
New York, 2003.

[2] Hardjono, T., and L.R. Dondeti, Multicast and Group Security. Artech House Publishers, Nor-
wood, MA, 2003.

[3] Oppliger, R., Authentication Systems for Secure Networks. Artech House Publishers, Norwood,
MA, 1996.

[4] Merkle, R., “Secure Communication over Insecure Channels,” Communications of the ACM,
21(4), April 1978, pp. 294–299.

[5] Oppliger, R., Security Technologies for the World Wide Web, 2nd edition. Artech House Publish-
ers, Norwood, MA, 2003.

[6] Frankel, S., Demystifying the IPsec Puzzle. Artech House Publishers, Norwoord, MA, 2001.

[7] Diffie, W., and M.E. Hellman, “New Directions in Cryptography,” IEEE Transactions on Infor-
mation Theory, IT-22(6), 1976, pp. 644–654.

[8] Diffie, W., P. van Oorshot, and M.J. Wiener, “Authentication and Authenticated Key Exchanges,”
Designs, Codes and Cryptography, Vol. 2, No. 2, 1992, pp. 107–125.

[9] Wiesner, S., “Conjugate Coding,” SIGACT News, Vol. 15, No. 1, 1983, pp. 78–88, original
manuscript written in 1970.

Key Establishment 421

[10] Bennett, C.H., and G. Brassard, “Quantum Cryptography: Public Key Distribution and Coin Toss-
ing,” Proceedings of the International Conference on Computers, Systems and Signal Processing,
Bangalore, India, 1984, pp. 175–179.

[11] Bouwmeester, D., A. Ekert, and A. Zeilinger, The Physics of Quantum Information: Quan-
tum Cryptography, Quantum Teleportation, Quantum Computation. Springer-Verlag, New York,
2000.

422 Contemporary Cryptography

Chapter 17

Entity Authentication

In this chapter, we elaborate on entity authentication in general, and (cryptographic)
authentication protocols that implement a proof by knowledge in particular. More
specifically, we introduce the topic in Section 17.1, overview and discuss authen-
tication technologies in Section 17.2, elaborate on zero-knowledge authentication
protocols in Section 17.3, and conclude with some final remarks in Section 17.4.

17.1 INTRODUCTION

Generally speaking, an entity identifies itself if it claims to have a specific identity,
and it authenticates itself if it proves in one way or another that the claimed identity
really belongs to it. Consequently, identification refers to the process by which
an entity—let’s call it the claimant or prover—claims to have a specific identity,
whereas entity authentication refers to the process by which the claimant proves
to another entity—let’s call it the verifier—that the claimed identity really belongs
to it. At the end, the verifier is assured of the claimed identity of the prover.
Note that in some literature, the terms identification and entity authentication are
used synonymously and interchangeably. In this book, however, we make a clear
distinction between the two terms (and the corresponding processes). Anybody can
identify himself or herself as anybody (and claim to have a particular identity).
Contrary to that, it may not be feasible to authenticate as anybody else (if the
authentication mechanisms are strong enough).

Entity authentication can be unilateral (if only one entity authenticates itself
to another) or mutual (if the entities authenticate to each other). In either case, the
verifier must know an authentic reference parameter (e.g., a shared secret key, a
public key certificate, or some biometric information) relative to which the entity
authentication is performed.

423

424 Contemporary Cryptography

Many entity authentication protocols can also be used to establish a secret key
to be shared between the claimant and the verifier, and this key can then serve as a
session key. The resulting protocols are called authentication and key distribution
protocols or authenticated key distribution protocols. These protocols are very
important in practice. A comprehensive overview and analysis of authentication and
key distribution protocols is beyond the scope of this book. You may refer to [1].

The major security objective of an entity authentication protocol is to make it
impossible (or at least computationally infeasible) for an adversary to impersonate
a claimant, even if he or she has witnessed or has been involved in a large number
of protocol executions with both the claimant and the verifier. An impersonation
attack must always take place online, but it may be possible to prepare some parts
of it offline. Consequently, it is common to distinguish between offline and online
attacks.

• In an offline attack, the adversary must not directly communicate with the
verifier to prepare the attack. Instead, he or she can analyze information
acquired from previous protocol executions and retrieve information that he
or she can (mis)use to impersonate the claimant at some later point in time.

• In an online attack, the adversary must directly communicate with the verifier
to prepare the attack. Consequently, every preparation step for the attack must
be carried out with the verifier.

Obviously, offline attacks are much more powerful and hence are much more
difficult to protect against (than online attacks). In fact, it is possible to protect
against online attacks by limiting and setting an upper bound for the number of
attempts an entity can try to authenticate itself, introducing a time delay between the
individual attempts, or, if the attacker must be physically present to mount the attack,
by threatening to apply some physical measures (e.g., exit locks). In the following
section, we look at some technologies that can be used for entity authentication.
More information is available, for example, in [2].

17.2 AUTHENTICATION TECHNOLOGIES

It is common to divide the technologies that can be used for (entity) authentication
into four categories, depending on whether it is based on:

• Something the claimant possesses (proof by possession);

• Something the claimant knows (proof by knowledge);

• Some biometric characteristics of the claimant (proof by property);

Entity Authentication 425

• Somewhere the claimant is located (proof by location).

The last category of authentication technologies is nonstandard. It is, however,
assumed that the use of information about the current location of a communicating
entity will become more and more important in the future, and it is therefore
considered as a category of its own for the purpose of this book.

Some exemplary authentication techniques are overviewed and briefly dis-
cussed next. Note that the techniques are not mutually exclusive, and that they com-
plement each other quite nicely. So, in practice, two or more techniques (of different
categories) are usually combined in some way or another.

17.2.1 Proof by Possession

In a proof by possession, the claimant proves to the verifier his or her identity
by showing possession of a physical token. On the verifier side, the proof can be
verified manually or automatically. In the second case, a corresponding detecting
device (hardware or software) is required. Examples of physical tokens include:

• Physical keys;

• Identification cards;

• Magnetic stripe cards;

• Smart cards;

• Universal serial bus (USB) tokens.

Physical keys have been in use for many centuries (in varying forms). Contrary
to this, all other examples itemized above are relatively new. For example, the use of
smart cards to store and make use of cryptographic keys has evolved in the last two
decades (e.g., [3]). USB tokens are even more recent possibilities to store and make
use of cryptographic keys.

The major advantage of a proof by possession is that it is relatively simple and
straightforward to use by human beings, whereas the major disadvantage is related to
the difficult production, distribution, and management of the physical tokens and the
corresponding detecting devices (if the proofs must be verified automatically). As
a result of this disadvantage, large-scale deployment is often prohibitively complex
and expensive.

426 Contemporary Cryptography

17.2.2 Proof by Knowledge

In a proof by knowledge, the claimant proves to the verifier his or her identity by
showing knowledge of some secret information, such as a password, a personal
identification number (PIN), or a cryptographic key. This information, in turn,
may either be static or dynamically changing. Roughly speaking, static information
can be used to implement weak authentication, whereas dynamically changing
information can be used to implement strong authentication. Note that in either case,
the secret information may be too large or include too much entropy to be memorized
by human users. Consequently, the use of some auxiliary technology to store
and make available the secret information is widely deployed. Examples include
magnetic-stripe cards, smart cards, USB tokens, and personal digital assistants
(PDAs) that store secret information (in possibly encrypted form). Note, however,
that in contrast to the use of these technologies in a proof by possession, these
technologies are only used to extend the capacities of the human users (or their
memories) in a proof by knowledge. The existence of the physical device by itself
need not be verified.

It is possible and makes a lot of sense to combine a proof by possession with a
proof by knowledge. For example, if we want to withdraw money from an automatic
teller machine (ATM), then we routinely insert our ATM card and enter a PIN into
the terminal associated with the ATM. In this case, the insertion of the ATM card
represents a proof by possession, whereas the fact that the user enters his or her PIN
represents a proof by knowledge. An adversary who wants to illegitimely withdraw
money from an ATM must have both the ATM card and the user’s PIN.

17.2.2.1 Static Information

As mentiond earlier, examples of static information that may be used in a proof by
knowledge include passwords, passphrases, PINs, and cryptographic keys. As of this
writing, passwords are by far the most widely deployed authentication technology
used in computer networks and distributed systems. This is because they are simple
to implement and use. Unfortunately, however, passwords and the way they are
managed have the following two major security problems:

1. Users tend to select passwords that are easy to remember. Consequently, such
passwords are not uniformly distributed and are often simple to guess [4,
5]. Password guessing is the process of correctly guessing the password of
a legitimate user. Dan Klein analyzed the feasibility of password-guessing
attacks for approximately 15,000 user accounts in 1990. As a result, he found
that he could guess 2.7% of the passwords in the first 15 minutes and 21%

Entity Authentication 427

within the first week [6]. It is assumed that these numbers have not changed
much since their publication. To make things worse, there are many tools
available on the Internet that can be used to automate password guessing (e.g.,
L0phtCrack or @stake LC 5).1

2. The transmission of passwords (which may be well chosen or not) is exposed
to passive eavesdropping and subsequent replay attacks. This is because
the passwords are often transmitted in the clear. Also, if passwords are not
transmitted in the clear but “encrypted” using a well-known one-way function,
it is still possible to launch a password-guessing attack by simply “encrypting”
password candidates with the one-way function and checking whether the
result matches the string that has been transmitted in the first place. So if
passwords are encrypted for transmission, then it must be made sure that a
password is encrypted differently each time it is encrypted and transmitted.
This is, for example, usually the case if a cryptographic security protocol,
such as the SSL/TLS protocol, is used.

Obviously, these security problems do not only apply to passwords and are
equally true for any other static information that may be employed in a proof by
knowledge (e.g., PINs or passphrases). Consequently, the use of static information
in a proof by knowledge is not recommended for contemporary computer networks
and distributed systems. In fact, the information is too easy to intercept and reuse.
While this vulnerability has been known for a very long time, it was not until 1994
that it was demonstrated on a large scale with the discovery of planted password
collecting routines at some critical points on the Internet.2 To improve the level of
security of a proof by knowledge, one must use information that is dynamically
changing over time.

17.2.2.2 Dynamically Changing Information

The basic idea of using dynamically changing information in a proof by knowledge
is that each authentication process requires a unique piece of (authentication) infor-
mation and that this piece of information cannot be (mis)used at some later point in
time. Consequently, if an attacker is able to eavesdrop on an authentication protocol
execution and grab the relevant authentication information, he or she will not be able
to (mis)use this information in a replay attack (i.e., the information will not be valid
a second time).

The use of dynamically changing information is not new. In fact, we have
been using transaction authentication numbers (TANs) for quite a long time. In

1 http://www.atstake.com/products/lc
2 CERT Advisory CA-94:01, “Ongoing Network Monitoring Attacks,” 1994.

428 Contemporary Cryptography

short, a TAN is a piece of authentication information that can be used for one
single authentication process or transaction. It is randomly chosen by the verifier
and provided to the claimant using some secure channel (i.e., a trusted courier). The
use of TANs is simple and straightforward, and as such there are many applications
for them. For example, banks have been using TANs (together with passwords)
to authenticate users and account owners for years. Similarly, many e-government
applications can provide client authentication using TANs (e.g., code voting for
remote Internet voting [7]). If the number of authentication processes or transactions
increases beyond a certain threshold, the generation, distribution, and management
of TANs becomes difficult (i.e., the use of TANs does not scale well). In this
case, it is generally a good idea to use cryptographic techniques to come up with
authentication schemes that make use of secure channels or dynamically changing
information [8]. For example, on the Internet it is common practice today to use
the SSL/TLS protocol [9, 10] to securely transmit a password from a claimant
(typically a browser) to a verifier (typically a Web server). There are some theoretical
attacks against passwords transmitted over SSL/TLS channels if specific symmetric
encryption systems are used in specific modes of operation (e.g., [11, 12]), but for
all practical puposes passwords transmitted over SSL/TLS channels can be made
sufficiently secure.

One-Time Password Schemes

As its name suggests, a one-time password is a password that can be used only
once, meaning that it can be used for only one single authentication process. As
such, a one-time password is conceptually similar to a TAN. The major difference is
that TANs are generated randomly by the verifier and distributed to the claimant
using some secure channel, whereas one-time passwords are typically generated
dynamically and deterministically on either side (i.e., by the claimant and verifier).
As such, a one-time password scheme is an authentication scheme that uses one-time
passwords. There are many one-time password schemes and corresponding systems
available today.

• SecurID tokens marketed by RSA Security, Inc., are the most important and
most widely deployed one-time password systems in use today. The design
and algorithms of the SecurID tokens are not published. It is known, however,
that every SecurID token contains a cryptographic processor that implements
a symmetric encryption system, a secret key, a local clock that is synchronized
with the verifier (i.e., an ACE/server), and a small display. The one-time
passwords are generated by the token reading out the time from the local
clock and encrypting the corresponding value with the secret key. At each

Entity Authentication 429

time interval (e.g., each minute), the SecurID token generates a new one-time
password and displays it. If the holder of the SecurID token (i.e., the user)
wants to authenticate himself or herself, he or she reads from the token’s
display the currently valid one-time password and types it in at the login
prompt (typically together with a static password). Due to the proprietary
nature, there are only a few security analyses related to the SecurID tokens
and the cryptographic algorithms they implement (e.g., [13]).

• An alternative one-time password scheme that does not require the imple-
mentation of a cryptosystem was originally proposed by Leslie Lamport in
the early 1980s [14]. In this scheme, the claimant (i.e., the user) begins with a
secret password pw. A one-way function h is then used to generate a sequence
of t one-time passwords:

pw, h(pw), h(h(pw)), . . . , ht(pw)

This sequence is then used by the claimant in the reverse order, meaning
that ht(pw) is used first and that ht−1(pw), ht−2(pw), . . . , h(h(pw)), and
h(pw) are then used afterwards. In fact, the (one-time) password for the ith

authentication process (for 1 ≤ i ≤ t) is ht−i(pw). This password is used by
the claimant to authenticate himself or herself to the verifier. Lamport’s one-
time password scheme was implemented at Bell Communications Research
(Bellcore) in a one-time password system called S/Key [15]. S/Key employed
the one-time function MD4. More recently, the use of MD4 was replaced with
MD5 in a similar system called one-time passwords in everything (OPIE)
developed at the U.S. Naval Research Laboratory (NRL). S/Key and OPIE
both conform to the one-time password system specified in [16].

In addition to SecurID tokens, S/Key, and OPIE, many other one-time pass-
word systems are commercially or freely available on the Internet. Many of them are
proprietary, and hence they are not addressed in this book.

Challenge-Response Mechanisms

One-time password schemes and corresponding systems are simple and straightfor-
ward. The major advantage is that they do not require an interaction between the
claimant and the verifier. The claimant simply provides a piece of authentication
information to the verifier, and the verifier can verify the validity of it (without in-
teracting with the claimant). The major disadvantage, however, is that the claimant
and verifier must be synchronized in some way or another.

430 Contemporary Cryptography

Like one-time password schemes, challenge-response mechanisms are au-
thentication schemes that make use of dynamically changing information. Unlike
one-time password schemes, however, challenge-response mechanisms require the
claimant and verifier to interact but generally do not require them to be synchro-
nized. In a challenge-response mechanism, the verifier provides the claimant with a
challenge (e.g., a randomly chosen number that is sometimes also called a nonce),
and the claimant must compute and provide a valid response. This can be repeated
multiple times (if necessary). In either case, there must be some cryptographic key
material on either side of the protocol execution (i.e., to compute and verify the
claimant’s response).

For example, a DSS can be used to implement a simple challenge-response
mechanism. If the claimant holds a private key and the verifier holds the correspond-
ing public key (or public key certificate), then the verifier can challenge the claimant
with a randomly chosen number and the claimant can respond with the digital sig-
nature for that number. Because the verifier holds the public key (certificate), he
or she can easily verify the validity of the claimant’s response. Note, however, that
this exemplary challenge-response mechanism is far too simple to be used for real
applications. It would be too dangerous for a claimant to digitally sign arbitrary
values that claim to be legitimate challenges. What would happen, for example, if
the claimant were challenged with a cryptographic hash value computed from the
message string “I owe you $1,000”? In this case, the claimant would respond with
the digital signature for a message he or she would not have signed in the first place.
Consequently, the design and analysis of challenge-response mechanisms are tricky
and must be considered with care.

There is a special class of challenge-response mechanisms and authentication
protocols that have a property called zero knowledge. Using such a protocol, a
claimant can prove knowledge of a secret (e.g., a cryptographic key) while revealing
no information whatsover about the secret [17]. It is possible and very likely that
zero-knowledge authentication protocols will become important and more widely
deployed in the future. They are further addressed in Section 17.3.

17.2.3 Proof by Property

In a proof by property, the claimant proves his or her identity by proving some
biometric characteristics. The biometric characteristics, in turn, are measured and
compared with a reference pattern by the verifier. Historically, the first biometric
characteristics that were used for authentication were fingerprints. Today, it is
possible to use other characteristics, such as facial images, retinal images, and voice
patterns (e.g., [18, 19]). In the recent past, biometric authentication technologies
have been well received on the security market. In either case, they are appropriate

Entity Authentication 431

to authenticate local users; they are less appropriate to authenticate remote users for
at least three reasons:

• First and foremost, all terminals and end systems must be equipped with
devices that are able to read biometric characteristics from users.

• Second, all communication lines between the readers and the verifier must be
made secure (i.e., physically or cryptographically protected).

• Third, the use of biometric characteristics requires some form of liveness
testing, and this type of testing is usually difficult and expensive.

In either case, biometric authentication is a high-end technology (that is diffi-
cult and expensive if done properly). Also, there are some privacy concerns related
to the widespread use of biometric authentication technologies and techniques.

17.2.4 Proof by Location

In a proof by location, the claimant proves his or her identity by proving his or her
current location. If, for example, an entity is assumed to be local but is physically
located somewhere remote, then something is likely to be wrong. There are various
possibilities to implement a proof by location.

• For example, a dial-back system implements a proof by location, because the
claimant is called back by the verifier using some predefined number (i.e., a
number that is bound to a specific network access point).

• An address-based authentication scheme also implements a proof by loca-
tion (if one considers the fact that a network address specifies a network
access point, and that this network access point is geographically located
somewhere). Address-based authentication is, for example, implemented by
the Berkeley r-tools (i.e., rlogin, rsh, and rcp). It is also implemented
by systems that match the source address of incoming IP packets with huge
databases (of ISPs and corresponding IP address ranges) to decide whether
the packets are legitimate or not.

• In a more sophisticated location-based authentication scheme, the verifier can
also check the information provided by the global positioning system (GPS)
on the claimant’s side.

Dial-back systems and simple address-based authentication schemes are in
widespread use today. More sophisticated address-based authentication schemes and
GPS-based authentication schemes are not (yet) widely deployed. It is, however,
possible and very likely that such schemes will become important in the future (to

432 Contemporary Cryptography

complement other authentication technologies and mechanisms). More recently, for
example, people have started to think about the possibility to use and take advantage
of the information that is available in cellular phone networks to complement user
authentication. Needless to say that there are some nontrivial privacy concerns that
must be addressed before such a technology may become feasible.

17.3 ZERO-KNOWLEDGE AUTHENTICATION PROTOCOLS

Most entity authentication protocols in use today implement a proof by knowledge,
but leak some (partial) information about the secret information known and used
by the claimant. If, for example, a DSS is used to digitally sign randomly chosen
challenges, then the corresponding authentication protocol leaks digital signatures
for the values that serve as challenges. Whether this poses a problem depends on
the application context. If, for example, the claimant uses the same signing key to
digitally sign challenges and electronic documents, then the verifier can challenge
the claimant with the hash value of a document he or she wants the claimant to sign.
The claimant then thinks to digitally sign a challenge, whereas in reality he or she
digitally signs the document.3

If one wants to make sure that an authentication protocol does not leak
any information, then one must consider the use of zero-knowledge proofs and
corresponding zero-knowledge authentication protocols. This field of study was
pioneered by Shafi Goldwasser, Silvio Micali, and Charles Rackoff in the 1980s
[20]. After the discovery of public key cryptography in the 1970s, the development
of zero-knowledge proofs and zero-knowledge authentication protocols was the next
fundamental step in modern cryptography. Loosely speaking, a zero-knowledge
proof is a proof that yields nothing but the validity of the assertion. That is, a verifier
obtaining such a proof only gains conviction in the validity of the assertion. This
can be formulated by saying that anything that is feasibly computable from a zero-
knowledge proof is also feasibly computable from the valid assertion alone. This
formulation automatically leads to the simulation paradigm discussed later. Let’s
begin with some preliminary remarks about proofs and proof systems.

17.3.1 Preliminary Remarks

Formally speaking, a statement is a finite sequence of symbols (i.e., a string) taken
from a finite alphabet. There are syntactic rules that specify how statements can be
formed, and there are semantic rules that specify whether a given statement is true.

3 Obviously, this problem can be addressed by using separate public key pairs for authentication and
digital signatures. Sometimes, it is even recommended to use a third public key pair for encryption.

Entity Authentication 433

If a statement is true (false), then there may be a proof that further explains why
(i.e., according to which semantic rules) the statement is true (false). If such a proof
exists, then it can typically also be represented and expressed as a string.

A conventional (i.e., noninteractive) proof system is a system in which state-
ments and proofs can be expressed and efficiently verified. This means that part of
the system is an efficient (proof verification) algorithm that takes as input a statement
and a proof and that generates as output a binary decision (i.e., the statement is true
or false). If the output is true, then the proof is valid for the statement. If, however,
the output is false, then the proof is not valid for the statement. In addition to the
efficiency requirement for the proof verification algorithm, one usually requires that
a particular proof system is also complete and sound.

Completeness: A proof system is complete if for every valid proof the proof
verification algorithm outputs true (i.e., the proof is accepted).

Soundness: A proof system is sound if for every invalid proof the proof verification
algorithm outputs false (i.e., the proof is rejected).

We mention but do not further address the results of Kurt Gödel,4 who showed
in the early 1930s that there are theories for which there is no proof system that is
complete and consistent, meaning that there are theories in which some statements
may not have a proof [21].

Contrary to a conventional proof, an interactive proof is a(n interactive)
protocol that can be used by a prover to prove a statement to a verifier. Formally
speaking, the prover and the verifier are probabilistic algorithms or probabilistic
Turing machines. The verifier is assumed to be polynomially bound, whereas one
usually doesn’t make such an assumption on the prover’s side. Needless to say,
an interactive proof that is efficient for the prover is practically more useful than
an interactive proof that is inefficient. If the soundness requirement assumes a
polynomially bound prover (in addition to the polynomially bound verifier), then
the protocol is called an interactive argument (instead of an interactive proof). In
either case, the prover and the verifier must exchange messages during the execution
of the protocol, and at the end the verifier must decide whether the proof is valid
(i.e., accepted) or not (i.e., rejected).

Again, we require that an interactive proof and a corresponding interactive
proof system is complete and sound. Because we are now in a probabilistic world,
we must say that the interactive proof system is complete if the verifier accepts every
true statement with an overwhelmingly large probability, and that the interactive
proof system is sound if the verifier rejects every false statement (i.e., if the
verifier accepts a false statement only with a probability that is negligibly small).

4 Kurt Gödel was a German mathematician who lived from 1906 to 1978.

434 Contemporary Cryptography

The soundness requirement, in turn, must hold for every possible prover strategy.
Consequently, an interactive proof system should allow a prover to convince a
verifier of the validity of a true statement (completeness requirement), whereas
no prover strategy should be able to fool the verifier to accept a false statement
(soundness requirement).

It is obvious that interactive proofs are usually more powerful than conven-
tional ones (i.e., they sometimes allow the proof of statements that cannot be proven
conventionally). More specifically, it has been shown that when both randomization
and interaction are allowed, then the proofs that can be verified in polynomial time
are exactly those that can be generated with polynomial space [22].

Remember from Section 12.2 that two probability ensembles are poly-time
indistinguishable if no PPT algorithm (acting as a polynomial-time statistical test
or distinguisher) can tell them apart. Having this notion of computational indistin-
guishability in mind, one can say that an interactive proof between prover P and a
verifier V is computationally zero knowledge if for every PPT algorithm V ′, repre-
senting a dishonest verifier, there exists an efficient program S, called the simulator,
whose output T ′ is computationally indistinguishable from the communication T
taking place between P and V ′ in a real protocol execution.

Zero knowledge implies the highest possible security for the prover P . Any-
thing a verifier can compute after performing the protocol with P , he or she can
also compute by himself or herself, in a way that is identical or at least statistically
indistinguishable from what would happen if the actual protocol has been performed.
More importantly, anybody can simulate transcripts of protocol executions that are
statistically indistinguishable from a real execution of the protocol. We overview and
discuss three exemplary zero-knowledge authentication protocols next.

17.3.2 Fiat-Shamir

Soon after Goldwasser, Micali, and Rackoff had introduced the notion of a zero-
knowledge proof, Amos Fiat and Adi Shamir5 found a way to implement a zero-
knowledge protocol for authentication and/or digital signature generation and ver-
ification [23]. The Fiat-Shamir authentication protocol takes its security from the
fact that computing square roots and factoring a modulus are computationally
equivalent—that is, a square root modulo n can be efficiently computed if and only
if the factorization of n is known (see Section 3.3.7).6

Similar to the RSA public key cryptosystem, let p and q be two primes and
n be their product (i.e., n = pq). Let the prover hold a private key x ∈ Z

∗
n and

a corresponding public key yA ≡ x2
A (mod n). The Fiat-Shamir authentication

5 Adi Shamir is a co-inventor of the RSA public key cryptosystem.
6 The Rabin asymmetric encryption system is based on the same principle.

Entity Authentication 435

protocol then works in rounds, where each round can be formally expressed as
illustrated in Protocol 17.1. In this setting, A is the prover and B is the verifier.

Protocol 17.1 A round in the Fiat-Shamir authentication protocol.

A B

(n, x) (n, y)

r ∈R Z
∗
n

t = r2 (mod n)
t−→
c←− c ∈R {0, 1}

s ≡ rxc (mod n)
s−→

s2 ?≡ tyc (mod n)

(accept or reject)

In every round, A randomly selects r ∈R Z
∗
n and computes t = r2 (mod n).

This value is sent to B. B, in turn, randomly selects a bit c ∈R {0, 1} and uses it
to challenge A. If c = 0, then A must respond with s = r and B must verify that
s2 ≡ t (mod n). If, however, c = 1, then A must respond with s = rx (mod n)
and B must verify that s2 ≡ ty (mod n). In either case, the authentication is
accepted or rejected (depending on the outcome of the corresponding verification
step). The protocol is complete, because

s2 ≡ r2(xc)2 ≡ t(x2)c ≡ tyc (mod n).

To show that it is also sound, one must look at the adversary and ask what he
or she can do in every single round. Obviously, the adversary can randomly select a
t ∈R Z

∗
n, wait for B to provide a challenge c ∈R {0, 1}, and guess an appropriate

value for s. Fortunately (from A’s viewpoint), the success probability of this attack is
negligibly small (for any reasonably sized n). There are, however, also more subtle
attacks one may think of. If, for example, an adversary were able to properly predict
the challenge c, then he or she could prepare himself or herself to provide the correct
response.

• If c = 0, then the protocol can be executed as normal (i.e., he or she can
randomly select r and send t = r2 (mod n) and s = r to the verifier);

• If c = 1, then the adversary can randomly select s ∈R Z
∗
n and compute t =

s2/y (mod n). These values are then sent to the verifier in the appropriate
protocol steps.

436 Contemporary Cryptography

In either case, it is not possible for the adversary to prepare himself or herself
for both cases (otherwise, he or she could extract the private key x). If, for example,
the adversary were able to prepare s0 for c = 0 (i.e., s0 = r) and s1 for c = 1 (i.e.,
s1 = rx), then he or she could easily compute x = s1/s0.

Consequently, the attacker has a probability of 1/2 to cheat in every protocol
round. This suggests that the protocol must be executed in multiple rounds (until an
acceptable cheating probability is reached). If, for example, the protocol is repeated
k times (where k is a security parameter), then the cheating probability is 1/2k.

The Fiat-Shamir authentication protocol has the zero-knowledge property,
because it is possible to efficiently simulate the protocol execution transcripts and
to compute t, c, and s (with the same probability distributions) without interacting
with the prover. Furthermore, there are several variations of the basic Fiat-Shamir
authentication protocol:

• The k rounds can be performed in parallel to reduce the number of rounds. In
this case, the values t, c, and s are replaced with vectors of k values each. This
variation was actually the one proposed by Fiat and Shamir in their original
paper [23]. It is not zero knowledge, because the simulation cannot be done
efficiently.

• Another parallel version is for A to have z different private keys x1, . . . , xz

(and hence public keys y1, . . . , yz) [24]. As before, the first message is
t = r2 (mod n), but now the challenge consists of z bits c1, . . . , cz and the
prover must respond with s = r

∑z
i=1 x

ci

i (mod n). In this case, the cheating
probability is at most 2−z .

Other variations are described and discussed in the literature. For example,
the basic Fiat-Shamir authentication protocol can be generalized in a way that eth

powers (where e is a prime) are used (instead of squares), and the challenge c is
a value between 0 and e − 1 (instead of 0 or 1). The resulting protocol is due to
Louis C. Guillou and Jean-Jacques Quisquater [25]. Similar to RSA, it is assumed
that extracting eth roots requires factoring a large integer, and hence it is assumed to
be computationally infeasible.

17.3.3 Guillou-Quisquater

Similar to the Fiat-Shamir authentication protocol, the Guillou-Quisquater authenti-
cation protocol works in rounds. A round is illustrated in Protocol 17.2. Again, A is
the prover and B is the verifier.

In every round, A proves that he or she knows the private key x that refers
to the public key y ≡ xe (mod n). A randomly selects an r ∈R Z

∗
n and computes

Entity Authentication 437

Protocol 17.2 A round in the Guillou-Quisquater authentication protocol.

A B

(n, x) (n, y)

r ∈R Z
∗
n

t = re (mod n)
t−→
c←− c ∈R {0, . . . , e− 1}

s ≡ rxc (mod n)
s−→

se ?≡ tyc (mod n)

(accept or reject)

t = re (mod n). This value is sent to B. B, in turn, randomly selects a number
between 0 and e − 1 and challenges A with it. A computes s ≡ rxc (mod n) and
sends s to B. B must now verify that se ≡ tyc (mod n). Based on this verification,
he or she either accepts or rejects the proof of knowledge.

The protocol is complete, because

se ≡ (rxc)e ≡ re(xe)c ≡ tyc (mod n).

The protocol is sound, because an attacker can either guess s or prepare
himself or herself for one challenge c (before he or she sends out commitment t).
In the first case, the success probability (i.e., the probability to correctly guess s)
is negligible for any reasonably sized n. In the second case, the attacker guesses
c, randomly selects s, computes t ≡ sey−c (mod n), and uses this value as
commitment. If B really used c as a challenge, then the attacker could respond with
s. B, in turn, could compute tyc ≡ sey−cyc ≡ se (mod n) and accept the proof.
Of course, if the guess was wrong and B provides a different challenge, then the
attacker can only guess s.

One may wonder whether an attacker can prepare himself or herself for
different challenges to improve his or her odds. Let us assume that an attacker can
prepare himself or herself for two challenges c1 and c2 and sends a corresponding t
to B. In this case, the following pair of equivalences must hold:

se
1 ≡ tyc1 (mod n)
se
2 ≡ tyc2 (mod n)

438 Contemporary Cryptography

Dividing the two equivalences yields (s1/s2)e ≡ yc1−c2 ≡ (xc1−c2)e (mod
n), and hence s1/s2 ≡ xc1−c2 (mod n). Because gcd(e, c1 − c2) = 1 (note that
e is prime), the attacker can use the Euclid extended algorithm to compute u and v
with u(c1 − c2) + ve = 1. He or she can then compute A’s private key x as follows:

(s1/s2)uyv ≡ xu(c1−c2)xve ≡ x (mod n)

Consequently, if an attacker knew to prepare himself or herself for at least two
challenges, he or she could extract eth roots without knowing the group order φ(n).
Against this background, it is reasonable to assume that the attacker can prepare
himself or herself for one challenge at most, and hence the success probability is
1/e. If e is sufficiently large, this probability can be made sufficiently small.

17.3.4 Schnorr

The Fiat-Shamir and Guillou-Quisquater protocols are based on the difficulty of
computing eth roots in a finite group of unknown order (e = 2 in the case of Fiat-
Shamir). There are other protocols that are based on the discrete logarithm problem
(e.g., [26, 27]). In such a protocol, the prover shows that he or she knows the discrete
logarithm of his or her public key.

In this section, we briefly look at Claus P. Schnorr’s proposal [27]. Unfortu-
nately, the Schnorr protocol cannot be shown to have the zero-knowledge property in
a mathematically strong sense (i.e., it is currently not known how to build a simulator
that can generate (t, c, s)).

Protocol 17.3 A round in the Schnorr authentication protocol.

A B

(p, g, x) (p, g, y)

r ∈R Z
∗
p

t = gr (mod p)
t−→
c←− c ∈R {0, . . . , 2k − 1}

s ≡ r + cx (mod p − 1)
s−→

gs ?≡ tyc (mod p)

(accept or reject)

In the Schnorr authentication protocol, it is assumed that there is a trusted
party that acts as key authentication center (KAC). The KAC publishes a large prime
p that represents the modulus and a generator g of Z

∗
p. The prover A receives a

Entity Authentication 439

private key x, the public key y ≡ gx (mod p), and a public key certificate from
the KAC. He or she can use the Schnorr protocol to authenticate to the verifier B
in multiple rounds. A round of the Schnorr authentication protocol is illustrated in
Protocol 17.3. A randomly selects r ∈R Z

∗
p, computes t = gr (mod p), and sends

this value to B. B, in turn, randomly selects c between 0 and 2k − 1 (k representing
the security parameter) and uses this value to challenge A. A must respond with
s ≡ r + cx (mod p− 1), and B must verify that gs ≡ tyc (mod p).

The protocol is complete, because

gs ≡ grgcx ≡ tyc (mod p).

The protocol is sound, because the adversary can either guess or prepare
himself or herself for one particular challenge. If the adversary were able to prepare
himself or herself for two challenges c1 and c2, then he or she could also determine
the A’s private key x. From gs1 ≡ tyc1 (mod p) and gs2 ≡ tyc2 (mod p), it
follows that gs1−s2 ≡ yc1−c2 ≡ gx·(c1−c2) (mod p), and hence x ≡ (s1 − s2) ·
(c1 − c2)−1 (mod p− 1). The success probability is 2−k. For any reasonably sized
k (e.g., 20 to 70 bits), this probability is sufficiently small.

The efficiency of the Schnorr authentication protocol doesn’t look impressive
at first sight. Note that computation of the commitment t is similar to the computa-
tion of an RSA digital signature (if p and n are equally sized). The major advantage
of the Schnorr authentication protocol, however, is related to the fact that the com-
putation of the commitment can be preprocessed, meaning that A can use offline
computing power to precompute many values for t that he or she can use later on.
The computation he or she has to do during the interaction with B is restricted to a
modular addition and a modular multiplication (both of them being efficient). This
is particularly advantageous for smart card implementations.

17.3.5 Turning Interactive Proofs of Knowledge into DSSs

Any (zero-knowledge) interactive proof of knowledge can be turned into a digital
signature system. In this case, there is no possibility for the verifier to challenge
the signatory. Instead, the challenge must be computed from the message m to be
signed. It must, however, be ensured that only c can be computed, once the signer
has committed to a specific value t. Consequently, c = h(m, t) with h being a
cryptographic hash function. In this setting, m is digitally signed with a pair (t, s),
and the digital signature can be verified similar to the protocol that implements the
interactive proof of knowledge. The resulting DSS is quite efficient.

440 Contemporary Cryptography

17.4 FINAL REMARKS

In this chapter, we elaborated on entity authentication in general, and (cryptographic)
authentication protocols that implement a proof by knowledge in particular. Among
these protocols, the ones that employ static (authentication) information on the
claimant’s side are the preferred choice from a security viewpoint (because they
are not vulnerable against eavesdropping and replay attacks). For example, one-
time password schemes and challenge-response mechanisms are perfectly fine in
many applications and application settings. Some of these authentication protocols
even have the zero-knowledge property. As such, they are able to optimally protect
the prover’s secret authentication information. Unfortunately, the possibility to effi-
ciently simulate a zero-knowledge authentication protocol execution transcript also
makes it infeasible to provide nonrepudiation services with respect to authentication.
In either case, it is reasonable to expect that zero-knowledge authentication protocols
will play an increasingly large role in future entity authentication technologies and
systems.

References

[1] Boyd, C., and A. Mathuria, Protocols for Key Establishment and Authentication. Springer-Verlag,
New York, 2003.

[2] Smith, R.E., Authentication: From Passwords to Public Keys. Addison-Wesley Professional,
Reading, MA, 2001.

[3] Jurgensen, T.M., and S.B. Guthery, Smart Cards: The Developer’s Toolkit. Prentice Hall PTR,
Upper Saddle River, NJ, 2002.

[4] Morris, R., and K. Thompson, “Password Security: A Case History,” Communications of the
ACM, Vol. 22, 1979, pp. 594–597.

[5] Feldmeier, D.C., and P.R. Karn, “UNIX Password Security—Ten Years Later,” Proceedings of
CRYPTO ’89, 1990, pp. 44–63.

[6] Klein, D.V., “Foiling the Cracker: A Survey of, and Improvements to, Password Security,”
Proceedings of USENIX UNIX Security Symposium, August 1990, pp. 5–14.

[7] Oppliger, R., “How to Address the Secure Platform Problem for Remote Internet Voting,”
Proceedings of 5th Conference on “Sicherheit in Informationssystemen” (SIS 2002), October
2002, pp. 153–173.

[8] Haller, N., and R. Atkinson, On Internet Authentication, Request for Comments 1704, October
1994.

[9] Dierks, T., and C. Allen, The TLS Protocol Version 1.0, Request for Comments 2246, January
1999.

Entity Authentication 441

[10] Oppliger, R., Security Technologies for the World Wide Web, 2nd edition. Artech House Publish-
ers, Norwood, MA, 2003.

[11] Vaudenay, S., “Security Flaws Induced by CBC Padding—Applications to SSL, IPSEC, WTLS
. . . ,” Proceedings of EUROCRYPT ’02, Springer-Verlag, LNCS 2332, 2002, pp. 534–545.

[12] Canvel, B., et al., “Password Interception in a SSL/TLS Channel,” Proceedings of CRYPTO ’03,
Springer-Verlag, LNCS 2729, 2003, pp. 583–599.

[13] Biryukov, A., J. Lano, and B. Preneel, “Cryptanalysis of the Alleged SecurID Hash Function,”
Proceedings of 10th Annual Workshop on Selected Areas in Cryptography (SAC ’03), August
2003, Ontario, CA, Springer-Verlag, LNCS 3006, 2004, pp. 130–144.

[14] Lamport, L., “Password Authentication with Insecure Communication,” Communications of the
ACM, Vol. 24, 1981, pp. 770–772.

[15] Haller, N., The S/KEY One-Time Password System, Request for Comments 1760, February 1995.

[16] Haller, N., and C. Metz, A One-Time Password System, Request for Comments 1938, May 1996.

[17] Quisquater, J.J., and L. Guillou, “How to Explain Zero-Knowledge Protocols to Your Children,”
Proceedings of CRYPTO ’89, 1990, pp. 628–631.

[18] Ashbourn, J.D.M., Biometrics—Advanced Identify Verification: The Complete Guide. Springer-
Verlag, New York, 2000.

[19] Woodward Jr., J.D., N.M. Orlans, and P.T. Higgins, Biometrics. Osborne/McGraw-Hill, Emeryville,
CA, 2002.

[20] Goldwasser, S., S. Micali, and C. Rackoff, “The Knowledge Complexity of Interactive Proof
Systems,” SIAM Journal of Computing, Vol. 18, No. 1, 1989, pp. 186–208.

[21] Gödel, K., “Über formal unentscheidbare Sätze der Principia Mathematica und verwandter
Systeme I,” Monatshefte der Mathematischen Physik, Vol. 38, 1931, pp. 173–198.

[22] Shamir, A., “IP = PSPACE,” Journal of the ACM, Vol. 39, Issue 4, October 1992, pp. 869–877.

[23] Fiat, A., and A. Shamir, “How To Prove Yourself: Practical Solutions to Identification and
Signature Problems,” Proceedings of CRYPTO ’86, Springer, LNCS 263, 1987, pp. 186–194.

[24] Feige, U., and A. Shamir, “Zero Knowledge Proofs of Knowledge in Two Rounds,” Proceedings
of CRYPTO ’89, Springer-Verlag, LNCS 435, 1989, pp. 526–544.

[25] Guillou, L.C., and J.J. Quisquater, “A Practical Zero-Knowledge Protocol Fitted to Security
Microprocessor Minimizing both Transmission and Memory,” Proceedings of EUROCRYPT ’88,
Springer-Verlag, LNCS 330, 1988, pp. 123–128.

[26] Beth, T., “Efficient Zero-Knowledge Identification Schemes for Smart Cards,” Proceedings of
EUROCRYPT ’88, Springer-Verlag, LNCS 330, 1988, pp. 77–84.

[27] Schnorr, C.P., “Efficient Identification and Signatures for Smart Cards,” Proceedings of CRYPTO
’89, Springer-Verlag, 1989, pp. 239–251.

442 Contemporary Cryptography

Chapter 18

Secure Multiparty Computation

In this chapter, we address secure multiparty computation (MPC) (i.e., the problem
of how mutually distrusting parties can compute a function without revealing their
individual input values to each other). We introduce the topic in Section 18.1, sum-
marize the major results in Section 18.2, and conclude with some final remarks in
Section 18.3. This chapter is intentionally kept short. Oded Goldreich has written
a primer entitled Secure Multi-Party Computation1 that is comprehensive and rec-
ommended reading for anybody interested or working in this area of research (the
material is also included in Chapter 7 of [1]).

18.1 INTRODUCTION

From a very high level of abstraction, almost all (cryptographic) problems can be
solved by specifying and actually implementing a random process that mapsn inputs
to n outputs. The inputs to the process can be thought of as local inputs of n parties,
whereas the n outputs can be thought of as their local outputs. In either case, it has
to be distinguished whether there is a(n inside or outside) party that is trusted by all
parties.

• If such a (trusted) party exists, then it can be used to implement the process.
In this case, the n parties can send their local inputs to the trusted party, and
the trusted party can then compute the outcome of the process and send each
party its local output. It goes without saying that all communications between
the n parties and the trusted party must take place over secure channels.

1 http://www.wisdom.weizmann.ac.il/∼oded/pp.html

443

444 Contemporary Cryptography

• If, however, such a (trusted) party does not exist, then the situation is more
involved. The question that arises immediately is whether and to what extent
the trusted party can be simulated by the n (mutually distrusting) parties. This
is what secure function evaluation as originally introduced by Andrew C. Yao2

in the early 1980s [2] and MPC are all about: finding cryptographic protocols
that can be used to simulate (and hence replace) trusted parties.

For the sake of simplicity, we consider only the case where the specified
random process is deterministic (e.g., computing a function) and the n local outputs
(for the n parties) are essentially the same. In this case, we consider an arbitrary n-
ary function and n parties that wish to obtain the evaluation of the function on their
private inputs. More specifically, we allow a set

P = {P1, P2, . . . , Pn}

of n players to compute an arbitrary agreed function of their private inputs, even if
an adversary may corrupt and control some of the players in various ways (see the
following). Two communication models must be distinguished:

• In a synchronous communication model, any pair of players can communi-
cate synchronously over a secure channel. Sometimes, it is assumed that a
broadcast channel is available that guarantees the consistency of the received
values if a player sends a value to several players. In practice, however, such
a broadcast channel seldom exists. If one is needed, then it must be simulated
by a quite inefficient Byzantine agreement protocol (e.g., [3]).

• In the asynchronous communication model, any pair of players can only
communicate asynchronously. This suggests that one does not have guarantees
about the arrival times of sent messages. This complicates things considerably.

Security in MPC means that the players’ inputs remain secret during the
evaluation of the function and that the results of the computation (i.e., function
evaluation) are guaranteed to be correct. More specifically, security in MPC is
defined relative to an ideal-world specification involving a trusted party. If anything
an adversary can achieve in the real world (i.e., the world in which the MPC protocol
is executed) can also be achieved in the ideal world (i.e., the world in which there
exists a trusted party), then we are talking about a secure multiparty computation. A
secure multiparty computation does not, for example, protect against the possibility
of having players provide wrong inputs. Such a manipulation is possible in either
world (i.e., in the real world and in the ideal world). There is nothing a cryptographic

2 Andrew C. Yao received the ACM Turing Award in 2000.

Secure Multiparty Computation 445

protocol can do against it.3 In either case, we must say a few more things about the
adversary and his or her capabilities. First and foremost, we must specify whether
his or her computing power is restricted:

• If the adversary has unrestricted computing power and can still not cheat
or violate the security of an MPC, then we are in the realm of information-
theoretic security.

• If, however, the adversary has restricted computing power and the security of
the MPC relies on (unproven) intractability assumptions, then we are in the
realm of cryptographic security.

Similar to other cryptographic systems, there are MPC protocols that provide
information-theoretic security and protocols that provide cryptographic security.

Furthermore, the potential misbehavior of some of the players is typically
modeled by considering a central adversary with an overall cheating strategy who
can corrupt some of the players. There are basically three types of corruption:

• In a passive corruption, the adversary learns the entire information of the
corrupted player but the player continues to perform the protocol correctly
(such players are sometimes called semihonest).

• In an active corruption, the adversary learns the entire information of the
corrupted player and takes full control of the corrupted player. This also means
that the adversary can make the corrupted player deviate arbitrarily from the
protocol.

• In a fail corruption, the adversary can let the player stop the protocol execution
but does not learn its information. This allows the adversary to model denial-
of-service attacks against one (or several) player(s).

It is only recently that people have started to look at fail corruption as a type
of corruption of its own. Many theoretical results that were achieved in the late
1980s only distinguish between passive and active corruptions (see Section 18.2).
It goes without saying that if no active corruptions are considered, then the only
security issue is the secrecy of the players’ inputs. In most papers on secure MPC, the
adversary’s corruption capability is specified by a threshold t—that is, the adversary
is assumed to be able to corrupt up to t players (but not more). In this setting, a
distinction can be made between passive, active, and fail corruptions. For each of
these types of corruption, one can work with a different threshold.

3 This fact must be kept in mind and considered with care when one discusses the use of protocols for
secure MPC for applications like electronic voting.

446 Contemporary Cryptography

18.2 MAJOR RESULTS

In the late 1980s, a couple of fundamental results about secure MPC were found and
published. Most importantly, Oded Goldreich, Silvio Micali, and Avi Wigderson
proved that cryptographically secure MPC is possible if and only if t < n/2
(t < n) players are corrupted actively (passively) [4]. Similarly, Michael Ben-
Or, Goldreich, and Wigderson, as well as David Chaum, Claude Crépeau, and
Ivan B. Damgård, proved that information-theoretic secure MPC is possible in the
synchronous communication model if and only if t < n/3 (t < n/2) players are
corrupted actively (passively) [5, 6]. If a physical broadcast channel is available,
then the last result regarding active corruption can be improved to t < n/2 [7, 8].

These fundamental results were published at a time in which intensive elec-
tronic multiparty interactions seemed only a remote possibility. This may explain
the impression that, while generating considerable interest within the community
that deals with the theory of computation, the results went almost unnoticed in the
community that deals with applied cryptography. This situation has changed fun-
damentally, and intensive electronic multiparty interactions are possible today using
the Internet. Against this background, many cryptographers have started to reactivate
the field and to work again on secure MPC. For example, the previously mentioned
results for the information-theoretic setting were improved in the late 1990s by con-
sidering a mixed model in which an adversary can corrupt up to ta players actively,
up to tp players passively, and up to tf players using a fail corruption (see, for exam-
ple, [9, 10] for specific results). As of this writing, secure MPC has become a very
active area of cryptographic research, and many results and findings are published
in the relevant literature.

18.3 FINAL REMARKS

In this chapter, we briefly touched on secure MPC and summarized the major results
that have been achieved. The results suggest that unless a substantial perecentage of
the players are corrupted, secure MPC is possible (in either an information-theoretic
or cryptographic sense).

There are many applications for MPC. If, for example, n parties want to
compute a function without revealing their individual input values, then a protocol
for secure MPC can be employed. The following problems are often mentioned for
two parties:

Millionaires’ problem: Two millionaires want to determine who is richer without
involving a trusted person and without revealing any information about each
other’s wealth (except who is richer).

Secure Multiparty Computation 447

Software protection problem: A software vendor wants to let a user use the
functionality of a software without sending the software to the user and
without having the user send his or her data to the software vendor for
processing.

More specifically, many cryptographic protocols can be seen as special cases
of a secure MPC. This is particularly true if more than two players are involved (in
the two-player scenario, the major results are not particularly useful). For specific
tasks like collective contract signing, online auctions, or electronic voting, there exist
efficient protocols. These protocols, however, are beyond the scope of this book.
We conclude with the remark that MPC in general, and secure MPC in particular,
provides a very powerful paradigm to reduce the level of trust one must put into a
particular party.

References

[1] Goldreich, O., Foundations of Cryptography: Volume 2, Basic Applications. Cambridge Univer-
sity Press, Cambridge, UK, 2004.

[2] Yao, A.C., “Protocols for Secure Computations,” Proceedings of the 23rd IEEE Symposium on
the Foundations of Computer Science (FOCS), IEEE Press, 1982, pp. 160–164.

[3] Lamport, L., R. Shostak, and M. Pease, “The Byzantine Generals Problem,” ACM Transactions
on Programming Languages and Systems, Vol. 4, 1982, pp. 382–401.

[4] Goldreich, O., S. Micali, and A. Wigderson, “How to Play Any Mental Game or a Completeness
Theorem for Protocols with Honest Majority,” Proceedings of the 19th ACM Symposium on the
Theory of Computing (STOC), ACM Press, 1987, pp. 218–229.

[5] Ben-Or, M., O. Goldwasser, and A. Wigderson, “Completeness Theorems for Non-Cryptographic
Fault-Tolerant Distributed Computation,” Proceedings of the 20th ACM Symposium on the Theory
of Computing (STOC), ACM Press, 1988, pp. 1–10.

[6] Chaum, D., C. Crépeau, and I.B. Damgård, “Multiparty Unconditionally Secure Protocols,”
Proceedings of the 20th ACM Symposium on the Theory of Computing (STOC), ACM Press,
1988, pp. 11–19.

[7] Rabin, T., and M. Ben-Or, “Verifiable Secret Sharing and Multiparty Protocols with Honest
Majority,” Proceedings of the 21st ACM Symposium on the Theory of Computing (STOC), ACM
Press, 1989, pp. 73–85.

[8] Beaver, D., “Secure Multi-Party Protocols and Zero-Knowledge Proof Systems Tolerating a
Faulty Minority,” Journal of Cryptology, Vol. 4, No. 2, 1991, pp. 75–122.

[9] Fitzi, M., M. Hirt, and U.M. Maurer, “Trading Correctness for Privacy in Unconditional Multi-
Party Computation,” Proceedings of CRYPTO ’98, Springer-Verlag, LNCS 1462, 1998.

[10] Hirt, M., and U.M. Maurer, “Player Simulation and General Adversary Structures in Perfect
Multi-Party Computation,” Journal of Cryptology, Vol. 13, No. 1, 2000, pp. 31–60.

448 Contemporary Cryptography

Part V

EPILOGUE

449

Chapter 19

Key Management

In this chapter, we elaborate on the key management process. More specifically, we
introduce the topic in Section 19.1, overview and discuss the major phases of a key
life cycle in Section 19.2, address secret sharing, key recovery, and PKIs in Sections
19.3–19.5, and conclude with some final remarks in Section 19.6. Consequently,
this chapter touches on all important questions related to key management. A more
thorough and comprehensive treatment of the questions is beyond the scope of this
book. It would deserve a book of its own.1

19.1 INTRODUCTION

According to RFC 2828, the term key management refers to “the process of han-
dling and controlling cryptographic keys and related material (such as initialization
values) during their life cycle in a cryptographic system, including ordering, gener-
ating, distributing, storing, loading, escrowing, archiving, auditing, and destroying
the material” [1]. This definition is fairly broad. The important things to remember
are

• That key management is a process;

• That the key management process is about the handling and controlling of
cryptographic keys and related material (e.g., IVs);

• That there is a life cycle for the cryptographic keys;

• That there are many activities and tasks that must be addressed in such a key
life cycle.

1 Unfortunately, such a book is not (yet) available, and there is no reference to be made at this point.

451

452 Contemporary Cryptography

In the definition given earlier, the life cycle for cryptographic keys comprises
many activities and tasks. For the purpose of this book, we use a slightly simplified
key life cycle that is illustrated in Figure 19.1. In this cycle, we distinguish between
key generation, key distribution, key storage, and key destruction. Key generation,
key distribution, and key destruction refer to discrete points in time, whereas key
storage refers to an entire period of time (between the key generation and key
destruction). The four activities and tasks are further addressed in the following
section.

G��������	�
��

G����
���
���
��

G�������	��

G�����������
��

Figure 19.1 A simplified key life cycle.

In almost every security system that employs cryptography and cryptographic
techniques, the key management process represents the Achilles’ heel (we already
made this point in Section 2.3.3). There are at least two conclusions one may draw
from this fact:

• First, if one is in charge of designing a security system, then one is well
advised to start with the key management process first. A properly designed
key management process must be at the core of every security system.

• Second, if one is in charge of breaking a security system, then one is also
well advised to start with the key management process first. Most attacks
against cryptographic security systems that have been published in the past are
basically attacks that exploit vulnerabilities or weaknesses in the underlying
key management processes.

Consequently, the key management process is the most important part of a
security system that employs cryptography and cryptographic techniques. This is

Key Management 453

true for the security professional who designs the security system as well as the
adversary who tries to break it.

Because the key management process is so comprehensive and complex, there
is usually no single standard to which one can refer. Instead, there are many stan-
dards that address specific questions and problems related to the key management
process. Some of the standards are overviewed, discussed, and put into perspective
in [2]; they are not repeated in this book.

19.2 KEY LIFE CYCLE

Every cryptographic key has a life cycle. As mentioned earlier, in a simplified key
life cycle, one can distinguish between key generation, distribution, storage, and
destruction. These activities and tasks are overviewed and briefly discussed next.

19.2.1 Key Generation

Unless one is in the realm of unkeyed cryptosystems, the use of a cryptographic sys-
tem always requires the generation of cryptographic keys and related material (e.g.,
IVs) in one way or another. The generation of this material, in turn, requires the use
of a random bit generator as addressed in Chapter 9. Either the random bit generator
is used directly to generate the cryptographic keys or the random bit generator is
used indirectly to seed a PRBG (that then generates the cryptographic keys that are
needed for the cryptographic system in use). In either case, it is mandatory to know
and properly understand the possible realizations and implementations for hardware-
based or software-based random bit generators (see Section 9.2), as well as the ways
to test the statistical randomness properties of the output of these generators (see
Section 9.3).

19.2.2 Key Distribution

In an ideal world, the cryptographic keys are used where they are generated. In this
case, the distribution of the cryptographic keys is not a problem. In all other cases,
however, the distribution of the cryptographic keys must be considered carefully.
In fact, it must be ensured that cryptographic keys cannot be attacked passively or
actively during their distribution. This is an important and challenging engineering
task. In fact, many key distribution protocols and systems have been developed,
proposed, implemented, and deployed in the past (see, for example, [3]). There are
many subtle details that must be considered and addressed with care.

454 Contemporary Cryptography

19.2.3 Key Storage

Almost all cryptographic keys must be used for a comparably long period of time
(i.e., between the generation of the key and its destruction). In this case, the keys
must be securely stored, meaning that they must be stored in a way that they
cannot be attacked passively or actively. Again, this is an important and challenging
engineering task. Compared to the key distribution problem, the key storage problem
is theoretically and practically even more involved. One reason is that the storage of
a cryptographic key can only be considered in the context of a specific operating
system. So the key storage problem and the operating system security problem
are not independent from each other, and the first problem depends on the second
(unfortunately, we all know that the security of contemporary operating systems is
not in particularly good shape). Consequently, there are many low-level details that
must be considered when one wants to provide a (secure) solution for the key storage
problem.

If there is no single place to store a key, then one may use a secret sharing
scheme as addressed in the following section to store the key in a decentralized and
distributed way. As of this writing, these schemes are not as widely deployed as one
would expect considering their theoretical practicality and usefulness. It is possible
and likely that this will change in the future.

19.2.4 Key Destruction

If a cryptographic key is stored in electronic form, then it is possible and very likely
that it must be destroyed at some point in time. Unfortunately, the key destruction
problem is not as simple to solve as one would expect at first sight. There are
basically two reasons:

• First, it is technically difficult to delete data that has been stored electronically.
In practice, it is usually required to overwrite the memory locations (where the
keys have been stored) with randomly chosen bit patterns multiple times.

• Second, there may be (many) temporary copies of the cryptographic keys in
use that are held somewhere in the available memory.

Again, the question whether the key destruction problem can be solved mainly
depends on the operating system in use. There is no general answer that applies for
all operating systems.

Key Management 455

19.3 SECRET SHARING

As already mentioned above, there are situations in which it may be useful to split
a secret value (e.g., a cryptographic key) into multiple parts and to have different
parties hold and manage these parts. If, for example, one wants to have n parties
share a secret value s, then one can randomly choose n − 1 keys s1, . . . , sn−1,
compute

sn = s⊕ s1 ⊕ . . .⊕ sn−1,

and distribute s1, . . . , sn to the n parties. The secret value s can then only be
reconstructed if all n parties provide their parts. Consequently, such a secret splitting
system requires that all parties are available and reliable, and that they all behave
honestly in one way or another. If only one party is not available, loses its part, or
refuses to provide it, then the secret value s can no longer be reconstructed. Needless
to say, this is a major drawback and shortcoming of a secret splitting scheme and its
practicality.

In a secret sharing system, it is generally not required that all parties are
available and reliable, and that they all behave honestly. Instead, the reconstruction
of the secret value s requires only the parts of a well-defined subset of all parts
(in this case, the parts are called shares). More specifically, a secret sharing system
allows an entity, called the dealer, to share a secret value s among a set of n players,
P = {P1, . . . , Pn}, such that only a qualified subset of the players can reconstruct
s from their shares. It is usually required that all nonqualified subsets of the players
get absolutely no information about s (as mentioned later, the secret sharing system
is then called perfect). The secret and the shares are usually elements of the same
domain, most often a finite field.

Formally, the set of qualified subsets is a subset of the power set 2P and
is called the access structure Γ of the secret sharing system. If, for example,
Γ = {{P1, . . . , Pn}} (i.e., only all players are qualified), then the secret sharing
system is a secret splitting system as described earlier. More generally, a k-out-of-n
secret sharing scheme can be defined as suggested in Definition 19.1.

Definition 19.1 (K-out-of-n secret sharing system) A k-out-of-n secret sharing
scheme is a secret sharing system in which the access structure is

Γ = {M ⊆ 2P : |M | ≥ k}.

Furthermore, a k-out-of-n secret sharing scheme is perfect if k − 1 players
who collaborate (and pool their shares) are not able to reconstruct s (or retrieve any
information about s).

456 Contemporary Cryptography

In 1979, Adi Shamir developed and proposed a perfect k-out-of-n secret
sharing system based on polynomial interpolation [4]. The scheme employs the fact
that that a polynomial f(x) of degree k−1 (over a field) can be uniquely interpolated
from k points. This means that a polynomial of degree 1 can be interpolated from 2
points, a polynomial of degree 2 can be interpolated from 3 points, and so on. The
corresponding interpolation algorithm has been around for a long time. It is usually
attributed to Lagrange. Let

f(x) = r0 + r1x+ . . .+ rk−1x
k−1 =

k−1∑
i=0

rix
i (19.1)

be a polynomial of degree k − 1 that passes through the k points

(x1, f(x1) = y1)
(x2, f(x2) = y2)

. . .

(xk, f(xk) = yk).

The Lagrange interpolating polynomial P (x) is then given by

P (x) =
k∑

i=1

Pi(x),

where

Pi(x) = yi

k∏
j=1;j �=i

x− xj

xi − xj
.

Written explicitly,

P (x) = P1(x) + P2(x) + . . .+ Pk(x)

= y1
(x− x2)(x − x3) · · · (x− xk)

(x1 − x2)(x1 − x3) · · · (x1 − xk)

Key Management 457

+y2
(x− x1)(x− x3) · · · (x− xk)

(x2 − x1)(x2 − x3) · · · (x2 − xk)
+ . . .

+yk
(x− x1)(x− x2) · · · (x− xk−1)

(xk − x1)(xk − x2) · · · (xk − xk−1)
.

In Shamir’s k-out-of-n secret sharing system, the secret (to be shared) repre-
sents the coefficient r0. The dealer randomly selects k − 1 coefficients r1, . . . , rk−1

to define a polynomial according to formula (19.1). For every player Pi, the dealer
then assigns a fixed nonzero field element xi and computes yi = f(xi). The pair
(xi, f(xi)) is then taken for Pi’s share.

Anybody who is given k shares can compute the secret r0 by evaluating the
Lagrange interpolating polynomial at point zero (i.e., s = r0 = P (0)). Anybody
who is given fewer than k shares cannot compute the secret. More precisely, anybody
who is given fewer than k shares does not obtain any (partial) information about the
secret. This means that Shamir’s k-out-of-n secret sharing system is perfect.

K-out-of-n secret sharing systems are interesting from a theoretical view-
point. This is particularly true if the systems are perfect. From a more practical
viewpoint, however, there are at least two problems that must be addressed and
considered with care:

• If a malicious player is not honest and provides a wrong share, then the secret
that is reconstructed is also wrong.

• If the dealer is malicious or untrusted, then the players may want to have a
guarantee that they can in fact put together the correct secret.

A verifiable secret sharing system can be used to overcome these problems.
For example, Shamir’s k-out-of-n secret sharing system can be made verifiable by
having the dealer make commitments to the coefficients of the polynomial f(x) and
providing the players with help-shares they can use to verify shares. We don’t delve
deeper into secret sharing systems and verifiable secret sharing systems in this book.
Note, however, that (verifiable) secret sharing systems play a central role in many
cryptographic systems and applications, such as electronic cash or electronic voting.
Most importantly, verifiable secret sharing systems are at the core of many protocols
to implement secure MPC (see Chapter 18).

19.4 KEY RECOVERY

If one uses cryptographic techniques for data encryption, then one may also be
concerned about the fact that (encryption and decryption) keys get lost. What

458 Contemporary Cryptography

happens, for example, if all data of a company are securely encrypted and the
decryption key is lost? How can the company recover its data? The same questions
occur if only the data of a specific employee are encrypted. What happens if the
corresponding decryption key gets lost? What happens if the employee himself
or herself gets lost? It is obvious that a professional use of cryptography and
cryptographic techniques for data encryption must take into account a way to recover
keys.

According to RFC 2828, the term key recovery refers to “a process for
learning the value of a cryptographic key that was previously used to perform some
cryptographic operation” [1]. Alternatively, one may also use the term to refer to
“techniques that provide an intentional, alternate (i.e., secondary) means to access
the key used for data confidentiality service” [1]. There are basically two classes of
key recovery techniques:

Key escrow: According to RFC 2828, key escrow is “a key recovery technique for
storing knowledge of a cryptographic key or parts thereof in the custody of one
or more third parties called escrow agents, so that the key can be recovered
and used in specified circumstances” [1]. In this context, escrow agents are
also frequently called trusted third parties (TTPs).

Key encapsulation: According to RFC 2828, key encapsulation is “a key recovery
technique for storing knowledge of a cryptographic key by encrypting it with
another key and ensuring that only certain third parties called recovery agents
can perform the decryption operation to retrieve the stored key. Key encapsu-
lation typically allows direct retrieval of the secret key used to provide data
confidentiality” [1]. Key encapsulation is used in many communication secu-
rity protocols that do not have key recovery as their primary goal. Examples
include swIPe [5] and simple key-management for Internet protocols (SKIP)
[6] (see, for example, Chapter 14 of [7]).

The basic principles of key escrow and key encapsulation are illustrated in
Figure 19.2. In key escrow, the cryptographically protected data is sent from A to B,
whereas the key recovery data is sent to a TTP. In key encapsulation, either data is
sent directly from A to B. Another way to look at things is to say that key escrow
refers to out-band key recovery, whereas key encapsulation refers to in-band key
recovery. These terms, however, are less frequently used in the literature.

Key recovery in general, and key escrow in particular, became hotly debated
research topics in the mid 1990s (see, for example, [8] for a taxonomy referring
to and taking into account all of the proposals that were made). The discussion
was even intensified when the U.S. government published the escrowed encryption
standard (EES) [9] and released a corresponding implementation in the Clipper chip.

Key Management 459

, %

##$G��������K

,
G������	����	�
��

%

G�������(�����	�	

��������	�

�	���
�����������	�	

Figure 19.2 Key escrow and key encapsulation.

The EES was basically a secret splitting scheme with two governmental bodies
acting as escrow agents. This was the major problem of the EES. People were
concerned about the possibility of having the government illegitimitely decrypting
their communications (without any restriction in time). Also, it was argued that
key escrow on transmitted data is neither necessary nor particularly useful (because
either end of the communication can always provide the data in unencrypted form).

The controversy about the EES and the Clipper chip suddenly came to an end
when it was shown that the original design of the EES was deeply flawed [10] (you
may also refer to [11] for the entire story about the EES, the Clipper chip, and the
crypto debate). The flaw was an authentication field that was too short to provide
protection against a brute-force attack.

In 1997, a group of recognized cryptographers wrote and published an influen-
tial paper entitled The Risks of Key Recovery, Key Escrow, and Trusted Third-Party
Encryption [12]. This paper provides a good summary about all relevant arguments
against key recovery that is controlled by external TTPs, such as governmental agen-
cies. As a result of the relaxation of the U.S. export controls on cryptography (as
briefly addressed in the Preface), the situation is more relaxed today, and many com-
mercial products implement key recovery mechanisms and services for voluntary
use.

460 Contemporary Cryptography

19.5 PUBLIC KEY INFRASTRUCTURE

According to RFC 2828, the term certificate refers to “a document that attests
to the truth of something or the ownership of something” [1]. Historically, the
term certificate was coined and first used by Loren M. Kohnfelder to refer to a
digitally signed record holding a name and a public key [13]. As such, the certificate
attests to the legitimate ownership of a public key and attributes a public key to a
particular entity, such as a person, a hardware device, or anything else. The resulting
certificates are frequently called public key certificates. According to RFC 2828, a
public key certificate is a special case of a digital certificate, namely one “that binds
a system entity’s identity to a public key value, and possibly to additional data items”
[1]. As such, it is a digitally signed data structure that attests to the ownership of a
public key.

More generally and in accordance with RFC 2828, a certificate can not only be
used to attest to the legitimate ownership of a public key (in the case of a public key
certificate), but also to attest to the truth of any property attributable to a certificate
owner. This more general class of certificates is commonly referred to as attribute
certificates. In short, the major difference between a public key certificate and an
attribute certificate is that the former includes a public key (i.e., the public key that
is certified), whereas the latter includes a list of attributes (i.e., the attributes that
are certified). In either case, the certificates are issued (and possibly revoked) by
authorities that are recognized and trusted by some community of users. In the case
of public key certificates, these authorities are called certification authorities (CAs).2

In the case of attribute certificates, however, these authorities are called attribute
authorities (AAs).

In short, a PKI consists of one (or several) CA(s). According to RFC 2828, a
PKI is “a system of CAs that perform some set of certificate management, archive
management, key management, and token management functions for a community
of users” [1] that employ public key cryptography.3 Another way to look at a
PKI is as an infrastructure that can be used to issue, validate, and revoke public
keys and public key certificates. As such, a PKI comprises a set of agreed-upon
standards, CAs, structures among multiple CAs, methods to discover and validate
certification paths, operational and management protocols, interoperable tools, and
supporting legislation. In the last couple of years, PKIs have experienced a hype, and
many companies and organizations have announced plans to provide certification

2 In the past, CAs were often called TTPs. This is particularly true for CAs that are operated by
government bodies.

3 The last part of the sentence is particularly important, because in the past many people felt they
had to enter the field of PKIs without having a legitimate reason (if, for example, they are not using
public key cryptography in the first place).

Key Management 461

services to the general public. Unfortunately, only a few of these companies and
organizations have succeeded and actually provide such services that can be taken
seriously.

Many standardization bodies are working in the field of public key certificates
and PKIs. Most importantly, the Telecommunication Standardization Sector of the
International Telecommunication Union (ITU-T) has released and is periodically
updating a recommendation that is commonly referred to as ITU-T X.509 [14], or
X.509 in short. The current version of ITU-T X.509 is version 3. Meanwhile, the
ITU-T X.509 has also been adopted by many other standardization bodies, including,
for example, the ISO/IEC JTC1 [15].

The format of an X.509v3 certificate is specified in the abstract syntax notation
one (ASN.1),4 and the resulting certificates are encoded according to specific encod-
ing rules5 to produce a series of bits and bytes suitable for transmission. Anyway, an
X.509 public-key certificate contains the following data items:

1. A version number (identifying version 1, version 2, or version 3);

2. A serial number (i.e., a unique integer value assigned by the issuer);

3. An object identifier (OID) that specifies the signature algorithm that is used to
sign the public key certificate;

4. The distinguished name (DN)6 of the issuer (i.e., the name of the CA that
actually signed the certificate);

5. A validity period that specifies an interval in which the certificate is valid;

6. The DN of the subject (i.e., the owner of the certificate);

7. Information related to the public key of the subject (i.e., the key and the OID
of the algorithm);

8. Some optional information related to the issuer (defined for versions 2 and 3
only);

9. Some optional information related to the subject (defined for versions 2 and 3
only);

10. Some optional extensions (defined for version 3 only).

4 ASN.1 is officially specified in ITU-T X.680 and ISO/IEC 8824.
5 There are three standardized encoding rules, namely the basic encoding rules (BER), the distin-

guished encoding rules (DER), and the packet encoding rules (PER). Obviously, anybody can spec-
ify and use their own set of encoding rules.

6 The DN is assumed to uniquely identify an entity (i.e., a public key certificate owner or a CA) in a
globally unique namespace.

462 Contemporary Cryptography

All three versions of X.509 certificates contain the items 1 through 7 listed.
Only version 2 and version 3 certificates may additionally contain items 8 and 9,
whereas only version 3 may contain item 10.

The trust model employed by ITU-T X.509 is hierarchical.7 This basically
means that a user must define a number of root CAs and corresponding root
certificates (i.e., certificates that are trusted by default) from which trust may extend.
Typically, a root certificate is self-signed, meaning that the root CA has issued its
own certificate (i.e., the subject and issuer are identical). Note that from a theoretical
point of view, self-signed certificates are not particularly useful. Anybody can
claim something and issue a certificate for this claim. Consequently, a self-signed
certificate basically says: “Here is my public key, trust me.”

Having established a number of root CAs and corresponding root certificates,
a user can try to find a certification path (or certification chain) that leads from a root
certificate to a leaf certificate (i.e., a certificate that is issued for a user or system).
Formally speaking, a certification path or chain is defined in a tree or wood of CAs
(root CAs and intermediate CAs) and refers to a sequence of one or more certificates
that lead from a root certificate to a leaf certificate. Each certificate certifies the
public key of its successor. Finally, the leaf certificate is typically issued for a person
or a system. Let’s assume that CAroot is a root certificate and B is an entity for
which a certificate must be verified. In this case, a certification path or chain with n
intermediate CAs (i.e., CA1, CA2, . . . , CAn) would look as follows:

CAroot (CA1 �
CA1 (CA2 �
CA2 (CA3 �

. . .

CAn−1 (CAn �
CAn (B �

The simplest model one may think of is a certification hierarchy representing a
tree with a single root CA. However, more general structures and graphs (including
mutually certifying CAs, cross-certificates, and multiple root CAs) are possible, as
well. A PKI structure or graph among multiple CAs generally provides one or more
certification paths between two entities.

7 Note, however, that ITU-T X.509 does not embody a hierarchic trust model. The existence of cross-
certificates, as well as forward and reverse certificates, makes the X.509 model a mesh, analogous
in some ways to PGP’s web of trust. The X.509 model is often erroneously characterized as a
hierarchic trust model because it is usually mapped to the directory information tree (DIT), which
is hierarchic, more like name schemes.

Key Management 463

ITU-T X.509 can be used in many ways. Consequently, every nontrivial group
of users who want to work with X.509 certificates has to produce a profile that nails
down the features left undefined in X.509. The difference between a specification
(i.e., ITU-T X.509) and a profile is that a specification does not generally set any
limitations on what combinations can and cannot appear in various certificate types,
whereas a profile sets various limitations, for example, by requiring that signing
and confidentiality keys be different. Many standardization bodies work in the field
of “profiling” ITU-T X.509 for specific application environments.8 For example,
the Internet Engineering Task Force (IETF) has chartered the PKI X.509 (PKIX)9

working group (WG) to profile the use of ITU-T X.509 on the Internet. The IETF
PKIX WG is a dynamic and very active WG that has published many documents.

19.6 FINAL REMARKS

In this chapter, we elaborated on key management (i.e., the process of handling
and controlling cryptographic keys and related material during their life cycle in
a cryptographic system). Key management is a very complex process, and it does
not come as a surprise that it is the Achilles’ heel of almost every system that
employs cryptography and cryptographic techniques. The key life cycle includes
many important phases, and we had a closer look at key generation, distribution,
storage, and destruction.

If there are keys that are so valuable that there is no single entity that is
trustworthy enough to serve as a key repository, then one may look into secret
splitting schemes or—more importantly—secret sharing systems. In fact, secret
sharing systems are likely to be widely deployed in future systems that employ
cryptography and cryptographic techniques. The same is true for key recovery. If
data encryption techniques are implemented and widely deployed, then mechanisms
and services for key recovery are valuable and in many situations unavoidable.
Following this line of argumentation, the first products that implement and make use
of key recovery features already appeared on the marketplace a few years ago. For
example, the commercial versions of PGP have support key recovery on a voluntary
basis. This trend is likely to continue in the future. Last but not least, we briefly
elaborated on digital certificates and PKIs. This is a very difficult topic, both from a
theoretical and practical point of view. In this book, we only scratched the surface.

8 To “profile” ITU-T X.509—or any general standard or recommendation—basically means to fix the
details with regard to a specific application environment. The result is a profile that elaborates on
how to use and deploy ITU-T X.509 in the environment.

9 http://www.ietf.org/html.charters/pkix-charter.html

464 Contemporary Cryptography

More information about digital certificates and PKIs is available, for example, in
Chapter 7 of [16] and [17–20].

References

[1] Shirey, R., Internet Security Glossary, Request for Comments 2828, May 2000.

[2] Dent, A.W., and C.J. Mitchell, User’s Guide to Cryptography and Standards. Artech House
Publishers, Norwood, MA, 2004.

[3] Boyd, C., and A. Mathuria, Protocols for Key Establishment and Authentication. Springer-Verlag,
New York, 2003.

[4] Shamir, A., “How to Share a Secret,” Communications of the ACM, Vol. 22, 1979, pp. 612–613.

[5] Ioannidis, J., and M. Blaze, “The Architecture and Implementation of Network-Layer Security
Under UNIX,” Proceedings of USENIX UNIX Security Symposium IV, October 1993, pp. 29–39.

[6] Caronni, G., et al., “SKIP—Securing the Internet,” Proceedings of WET ICE ’96, Workshops on
Enabling Technologies: Infrastructure for Collaborative Enterprises, June 1996, pp. 62–67.

[7] Oppliger, R., Internet and Intranet Security, 2nd edition. Artech House Publishers, Norwood,
MA, 2002.

[8] Denning, D.E., and D.K. Branstad., “A Taxonomy for Key Escrow Encryption Systems,” Com-
munications of the ACM, Vol. 39, No. 3, March 1996, pp. 34–40.

[9] U.S. Department of Commerce, National Institute of Standards and Technology, Escrowed
Encryption Standard, FIPS PUB 185, February 1994.

[10] Blaze, M., “Protocol Failure in the Escrowed Encryption Standard,” Proceedings of the 2nd ACM
Conference on Computer and Communications Security, Fairfax, VA, November 1994, pp. 59–67.

[11] Hoffman, L.J. (Ed.), Building in Big Brother: The Cryptographic Policy Debate. Springer-Verlag,
New York, 1995.

[12] Abelson, H., et al., “The Risks of Key Recovery, Key Escrow, and Trusted Third-Party Encryp-
tion,” May 1997, available at http://www.cdt.org/crypto/risks98.

[13] Kohnfelder, L.M., “Towards a Practical Public-Key Cryptosystem,” Bachelor’s thesis, Massa-
chusetts Institute of Technology, Cambridge, MA, May 1978.

[14] ITU-T, Recommendation X.509: The Directory—Authentication Framework, 1988.

[15] ISO/IEC 9594-8, Information Technology—Open Systems Interconnection—The Directory—Part
8: Authentication Framework, 1990.

[16] Oppliger, R., Security Technologies for the World Wide Web, 2nd edition. Artech House Publish-
ers, Norwood, MA, 2003.

[17] Feghhi, J., J. Feghhi, and P. Williams, Digital Certificates: Applied Internet Security. Addison-
Wesley Longman, Reading, MA, 1999.

[18] Ford, W., and M.S. Baum, Secure Electronic Commerce: Building the Infrastructure for Digital
Signatures & Encryption, 2nd edition. Prentice Hall PTR, Upper Saddle River, NJ, 2000.

Key Management 465

[19] Adams, C., and S. Lloyd, Understanding PKI: Concepts, Standards, and Deployment Consider-
ations, 2nd edition. New Riders Publishing, Indianapolis, IN, 2002.

[20] Choudhury, S., Public Key Infrastructure: Implementation and Design. John Wiley & Sons, New
York, 2002.

466 Contemporary Cryptography

Chapter 20

Conclusions

In this book, we overviewed, discussed, and put into perspective many cryptographic
systems in use today. In doing so, we made a distinction between the following three
classes of cryptosystems:

• Unkeyed cryptosystems (see Definition 1.5);

• Secret key cryptosystems (see Definition 1.6);

• Public key cryptosystem (see Definition 1.7).

We also noted that this distinction is somehow arbitrary and that other classi-
fication schemes may be used instead. Nevertheless, we think that the classification
scheme is still useful and appropriate (especially for educational purposes). We reuse
it in this chapter to provide some conclusions.

20.1 UNKEYED CRYPTOSYSTEMS

Unkeyed cryptosystems play a fundamental role in contemporary cryptography and
are used in many higher level cryptographic systems and applications. In Part II of
the book, we had a closer look at one-way functions, cryptographic hash functions,
and random bit generators.

• One-way functions (and trapdoor functions) are at the core of modern cryp-
tography. This may come as a surprise, especially if one considers the fact
that no function has been shown to be one way in a mathematically strong
sense and that even the existence of one-way functions has not been proven so
far. In fact, there are only a few candidate one-way functions (i.e., functions

467

468 Contemporary Cryptography

that are conjectured to be one way) in widespread use: the discrete exponen-
tiation function, the RSA function, and the modular square function. All of
these functions are overviewed and discussed in Section 7.2. The fact that it is
currently not known how to efficiently invert these functions gives us a good
feeling when we use these functions in higher level cryptographic systems and
applications. Unfortunately, we don’t know how justified this feeling really
is. If somebody found an algorithm to efficiently invert a candidate one-way
function, then many deployed cryptographic systems and applications would
become totally useless.

• In many cryptographic systems and applications, cryptographic hash functions
(i.e., hash functions that are one way and weak or strong collision resistant)
are used and play a fundamental role. This is particularly true for digital
signatures with appendix and corresponding DSSs. If one can make the
idealized assumption that a cryptographic hash function behaves like a random
function, then one is often able to prove security properties for cryptographic
systems that one is not able to prove without making this assumption (the
corresponding proofs are then valid in the so-called random oracle model). In
spite of their fundamental role in cryptography, there are not many practically
relevant cryptographic hash functions to choose from (see Section 8.3 for a
corresponding overview). In fact, most cryptographic hash functions in use
today follow the Merkle-Damgård construction (i.e., they iteratively apply
a compression function to the blocks of a message). There are only a few
alternative proposals to design cryptographic hash functions. One possibility
that is being looked into more seriously for message authentication is universal
hashing. It is possible and likely that more alternatives for the design of
cryptographic hash functions will be developed and proposed in the future.

• Most cryptographic systems in use today employ random bits (or random
numbers, respectively) in one way or another. Consequently, random bit gen-
erators have many applications and play a fundamental role in contemporary
cryptography. There are various types of hardware-based and software-based
random bit generators that are used in practice (see Section 9.2 for a cor-
responding overview). In either case, it is important to test the statistical
randomness properties of the output of a random bit generator before it is
actually used. Many random bit generators have statistical deficiencies that
are surprisingly simple to find and exploit.

Conclusions 469

20.2 SECRET KEY CRYPTOSYSTEMS

Secret key cryptosystems are the cryptographic systems one usually thinks of
first when one talks about cryptography. This is particularly true for symmetric
encryption systems. These systems have been in use for ages to protect the secrecy
of messages. In Part III of the book, we had a closer look at symmetric encryption
systems, MACs, PRBGs, and PRFs.

• Symmetric encryption systems have a long and thrilling history. The level
of security they provide varies considerably. As was shown by Shannon in
the late 1940s, a symmetric encryption system can only be unconditionally
secure and provide perfect secrecy if the key is at least as long as the plaintext
message (see Theorem 10.1). The one-time pad is an example of an uncondi-
tionally secure symmetric encryption system. Unfortunately, the key length re-
quirement of an unconditionally secure symmetric encryption system restricts
its practicality and usefulness considerably. There are, however, a couple of
modifications of the basic Shannon model that can be used to provide uncon-
ditionally secure symmetric encryption that is efficient (these modifications
are only briefly touched on in Section 10.4). But for all practical purposes,
the symmetric encryption systems in use today are “only” conditionally se-
cure. As such, they can be broken theoretically by mounting an exhaustive
key search. Consequently, it is important to make the key space so large that
an exhaustive key search is not feasible. This is certainly the case if the key
has a size of 100 bits or more (in this case, the key space is 2100). Examples
of conditionally secure symmetric encryption systems are the DES and the
AES (see Section 10.2). There are several modes of operations in which these
systems (and others) can be operated.

• Contrary to symmetric encryption systems, MACs can be used to protect the
authenticity and integrity of messages. As compared to digital signatures,
MACs can usually be generated and verified more efficiently. On the negative
side, however, MACs cannot be used to provide nonrepudiation services
(this is because both the sender and the recipient hold a secret key that is
needed to generate the MAC).1 There are constructions for computationally
secure or information-theoretically secure MACs. For all practical purposes,
computationally secure MACs are the preferred choice. More specifically, the
HMAC construction is employed in almost every Internet security protocol in
use today, whereas the UMAC construction is a possible successor that is very
efficient.

1 Note, however, that it is sometimes required that nonrepudiation services cannot be provided.

470 Contemporary Cryptography

• PRBGs can be used to stretch a relatively short seed value into a potentially
very long pseudorandom bit sequence. Whenever random bits are needed, it is
usually efficient to use a random bit generator to generate a seed for a PRBG
and to then use the PRBG to generate a sequence of pseudorandom bits. The
PRBG is secure if its output is computationally indistinguishable from the
output of a true random bit generator. In fact, the notion of computational in-
distinguishability has turned out to be very useful in theoretical considerations
(and proofs) of other cryptographic systems.

• Contrary to PRBGs, PRFs do not generate an output that meets specific (ran-
domness) requirements. Instead, PRFs try to model the input-output behavior
of random functions. PRBGs and (families of) PRFs are closely related to
each other in the sense that a PRF family can be used to construct a PRBG,
and a PRBG can be used to construct a PRF family (see Section 13.2).

20.3 PUBLIC KEY CRYPTOSYSTEMS

Public key cryptosystems have been developed since the late 1970s and are typically
associated with modern cryptography. In fact, DSSs and key establishment protocols
were the two major driving forces behind the invention and development of public
key cryptography in general, and public key cryptosystems in particular. In Part
IV of the book, we had a closer look at asymmetric encryption systems, DSSs,
and cryptographic protocols for key establishment, entity authentication, and secure
MPC.

• Asymmetric encryption systems are typically used to protect the secrecy
of only small messages. If, for example, an entity has to transmit a secret
key (i.e., a key from a symmetric encryption system) to another entity, then
the use of an asymmetric encryption system is efficient: the sender simply
encrypts the key with the public key of the recipient. Asymmetric encryption
systems have the inherent problem that chosen-plaintext attacks are trivial to
mount (because the public keys are by definition publicly known), and that
many practical applications require security against chosen-ciphertext attacks.
Furthermore, unless one employs an IBE system (see Section 14.4), the use
of an asymmetric encryption system always requires digital certificates and
PKIs. We briefly touched on this requirement in Section 19.5.

• Many public key cryptosystems can be used as an asymmetric encryption
system or a DSS. In fact, the possibility to digitally sign electronic documents
and verify digital signatures is very powerful, and it is often argued that it is a
prerequisite for the successful deployment of electronic commerce. This line

Conclusions 471

of argumentation may be a little bit exaggerated, but digital signatures and
DSSs certainly play a crucial role in the provision of nonrepudiation services.
Consequently, digital signatures, DSSs, and digital signature legislation are
very important and timely topics from a practical point of view.

• Many cryptographic protocols have been developed, proposed, implemented,
and partly deployed. Among these protocols, the Diffie-Hellman key exchange
protocol is by far the most important protocol in use today. This is quite
astonishing if one considers the fact that the Diffie-Hellman key exchange
protocol (see Section 16.3) was actually the first public key cryptosystem
ever published in the open literature. In addition, many other cryptographic
protocols can be used for entity authentication, secure MPC, and many other
tasks and problems. In fact, several problems that seem to be impossible to
solve at first sight have quite elegant solutions if one considers the use of
public key cryptography. These solutions, in turn, are part of the fascination
many people have with cryptography.

20.4 FINAL REMARKS

In practice, unkeyed, secret key, and public key cryptosystems are often combined to
complement each other. For example, we saw that a random bit generator can be used
to seed a PRBG and that symmetric and asymmetric encryption can be combined
in hybrid encryption systems. In fact, public key cryptosystems are often used for
authentication and key distribution, whereas secret key cryptosystems are often used
for bulk data encryption and message authentication (if performance is a major
issue). Consequently, real applications often combine all types of cryptosystems
(including unkeyed cryptosystems) to come up with a mix that can be implemented
in an efficient and secure way.

Last but not least, we note that it is sometimes argued that public key cryp-
tography is inherently more secure than secret key cryptography. This argument is
fundamentally flawed, and there are secure and insecure public key and secret key
cryptosystems. If one has to decide what cryptosystem to use, then one has to look
at the requirements from an application point of view. If, for example, it is required
that data can be authenticated efficiently, then a MAC is usually a good choice. If,
however, it is required that the sender cannot later repudiate having sent a particular
message, then a DSS is usually more appropriate. Consequently, there is no single
best cryptosystem to be used for all applications. Instead, it is important to under-
stand the working principles, advantages, and disadvantages, as well as the short-
comings and limitations of all practically relevant and deployed cryptosystems, and
to design and implement a security architecture that is appropriate for the application

472 Contemporary Cryptography

one has in mind. This is not an easy task, and it should be dealt with professionally
by security architects.

Chapter 21

Outlook

It would appear that we have reached the limits of what is possible to
achieve with computer technology, although one should be careful with
such statements, as they tend to sound pretty silly in 5 years.

— John von Neumann1

After having overviewed, discussed, and put into perspective the state of the art in
cryptography, it may be worthwhile to elaborate a little bit on possible or likely
trends and developments in the future. In spite of John von Neumann’s quote given
above, we try to provide an outlook that goes beyond the next five years. Note,
however, that the outlook is subjective and based on the author’s own assessment.
Other people working in the field may have a different perception and may come
to different conclusions (especially if they work for companies that market specific
security technologies, mechanisms, services, or products).

We have both a theoretical and a practical viewpoint to offer. Before we
begin, however, we want to note that cryptography as a field of study and area of
research has become mature and is establishing itself as an independent science. An
increasing number of universities provide courses and diplomas on cryptography and
information security. As a consequence of this development, we have experienced
and will continue to see a significant level of diversification and specialization in
cryptographic research. In the past, we have seen cryptographers who were able
to talk about every topic that is directly or indirectly related to cryptography. This
is more and more seldom the case. Today, there are cryptographers who are only
able to talk about integer factorization algorithms and algorithms to solve the DLP,

1 John von Neumann lived from 1903 to 1957.

473

474 Contemporary Cryptography

cryptographers who are only able to talk about stream ciphers, cryptographers who
are only able to talk about block ciphers, cryptographers who are only able to talk
about modes of operation for these block ciphers, cryptographers who only work
on RSA, cryptographers who only work on ECC, and so on. There are plenty of
cryptographical fields of study that are populated with small research communities.
This development goes hand in hand with the maturity level of a particular science. If
somebody wants to get into cryptographic research, then he or she must first select a
particular problem on which to work. Sometimes these problems are so specific that
it is difficult to see the forest for the trees.

21.1 THEORETICAL VIEWPOINT

From a theoretical viewpoint, a central theme in cryptographic research is provabil-
ity. How can one define security, and how can one prove that a given cryptographic
system is secure in exactly this sense? Shannon introduced information theory to
precisely define the notion of perfect secrecy (see Definition 10.1). Other researchers
have done similar things for PRBGs, asymmetric encryption systems, DSSs, and
many other cryptographic systems.

In modern cryptography, one often assumes that a particular (mathematical)
problem is intractable, and one then shows that a cryptographic system is secure as
long as this intractability assumption holds. For example, assuming that the DHP
is intractable, we showed that the ElGamal public key cryptosystem is secure (see
Theorem 14.2). Furthermore, it is sometimes assumed that a cryptographic hash
function behaves like a random function (in addition to the intractability assumption
of the underlying mathematical problem), and one is then able to show that a
cryptographic system is secure in the random oracle model (see Section 13.3 for
a corresponding overview). There are other ideas to define the notion of security
with respect to a particular cryptographic system or class of such systems (e.g.,
computational indistinguishability). Furthermore, formal methods play a central role
when one elaborates on the security of complex cryptographic protocols. In many
areas, we are only at the beginning of understanding and defining the notion of
security in a mathematically precise sense. But this is what modern cryptography
is all about: finding definitions for security and proving that certain cryptographic
systems meet these definitions.

Against this background, it is important to note that it has not been possible
to provide an absolute proof for the security of a cryptographic system. We are
only able to prove the security (properties) of a cryptographic system if we make
assumptions. Some of these assumptions are implicit (and appear too trivial to be
mentioned in the first place). For example, when we talk about encryption systems,

Outlook 475

we often make the implicit assumption that telepathy does not exist or does not work
(otherwise, encrypting data does not make a lot of sense). Similarly, we assume that
randomness exists (otherwise, secret keys cannot exist in principle). Other assump-
tions are less obvious. As mentioned earlier, we often work with intractability as-
sumptions when we prove the security of a cryptographic system. These intractabil-
ity assumptions are often related to a specific adversary and assumptions about his
or her capabilities and computational power. For example, if we assume that an
adversary is an illiterate (i.e., he or she cannot read and write), then it is fairly trivial
to come up with a secure encryption system.2 More realistic assumptions are related
to the computing power, available time, and available memory. Last but not least,
we often make assumptions about the correct behavior of system entities and human
users. These assumptions are particularly difficult to make, and many cryptographic
security protocols can be broken if an adversary does not play by the rules. These
considerations must also be taken into account when one tries to work with formal
methods.

According to [1], all assumptions that are made implicitly and explicitly must
be taken into account and considered with care when one considers cryptography
and security proofs. It is particularly important to note

• That every security proof for a cryptographic system is only relative to certain
assumptions;

• That assumptions should be made explicit;

• That assumptions should always be as weak as possible.

A major future goal for cryptographic research is to reduce the necessary
assumptions to a set of realistic assumptions, while preserving the practicality of
the systems. This is particularly true for computational intractability assumptions.

After a talk I gave on Internet security,3 I was asked whether the fact that
almost nothing in cryptography can be proven in a mathematically strong and
absolute sense wasn’t potentially dangerous and worrisome. I had to answer in the
affirmative and confess that the current types of reasoning about the security of
cryptographic systems are not satisfactory but simply the best we currently have
at hand. We would like to see absolute proofs for the security of cryptographic
systems (instead of proofs that are relative to specific computational intractability
assumptions). Similarly, we would like to have functions that can be shown to be

2 This is why the Caesar cipher mentioned in Sections 1.3 and 10.1.1 was secure. It was used in a
time when most people were illiterate.

3 The talk was entitled “Sicherheit im Internet” and was held on November 21, 1996, at the
Swiss Association for the Security of Information Services (CLUSIS) meeting on “Sicherheit und
Gefahren des Internet” in Zürich (Switzerland).

476 Contemporary Cryptography

one way and proofs that one-way functions really exist. Furthermore, we would
like to get rid of the random oracle model and be able to prove security properties
of cryptographic systems without having to make the idealized assumption that
cryptographic hash functions behave like random functions. Unfortunately, we are
not there (yet), and it is questionable whether we will ever be there. In either case, it
will be interesting to see where the cryptographic research community is heading to
in the future.

21.2 PRACTICAL VIEWPOINT

From a practical viewpoint, it is unavoidable that standardization and profiling
activities will become more and more important in the future. There are simply
too many and too complex cryptographic systems (i.e., cryptographic algorithms
and protocols) and modes of operation from which to choose. Anybody not actively
working in the field is likely to be overtaxed. The DES is a success story mainly
because its promoters (i.e., the U.S. NIST) realized the need for a standardized
symmetric encryption system in the 1970s. In the late 1990s, the NIST wanted to
repeat (and improve) the success story by standardizing the AES. In a couple of
years from now, people will use products that implement the AES (similar to how
they use products that implement the DES or 3DES today).

There are many complementary standards for cryptographic systems and their
use. Examples include:

• HMAC for message authentication (see Section 11.2.2);

• OAEP for asymmetric encryption (see Section 14.3.2);

• PSS and PSS-R for digital signatures (see Section 15.3).

The more we can prove about the security properties of these standardized
cryptographic systems, the better the odds that they are successful and get widely
deployed. The most we can hope is that the complexity of the cryptographic sys-
tems will be hidden in the reference implementation and programming libraries that
provide some cryptographic application programming interface (API). Examples in-
clude the CryptoAPI and the Base Cryptographic Provider of Microsoft Corporation,
and the Java Cryptography Extension of Sun Microsystems, Inc.4

In addition to the U.S. NIST, several other (national and international) stan-
dardization bodies, forces, and groups work on cryptography. Examples include the
ANSI, the IEEE, the IETF, and the W3C. Unfortunately, many of these bodies have

4 http://java.sun.com/products/jce

Outlook 477

problems of their own, and hence the current state in international standardization
is not particularly good. This is worrisome but must be addressed elsewhere. In the
meantime, industry-sponsored standardization activities, like the specification of the
PKCS, are important to fill the gap. Again, a comprehensive overview about the
standards that are relevant in applied and practical cryptography is provided in [2].

References

[1] Maurer, U.M., Cryptography 2000 ±10, Springer-Verlag, New York, LNCS 2000, 2000, pp. 63–
85.

[2] Dent, A.W., and C.J. Mitchell, User’s Guide to Cryptography and Standards. Artech House
Publishers, Norwood, MA, 2004.

478 Contemporary Cryptography

Appendix A

Abbreviations and Acronyms

AA attribute authority
ACM Association for Computing Machinery
AES advanced encryption standard
ANSI American National Standards Institute
API application programming interface
ASCII American Standard Code for Information Interchange
ASN.1 abstract syntax notation one
ATM automatic teller machine

BBS Blum, Blum, Shub
B.C. Before Christ
Bellcore Bell Communications Research
BER basic encoding rules
BIS Bureau of Industry and Security
bit binary digit
BXA Bureau of Export Administration

CA certification authority
CBC cipherblock chaining
CFB cipher feedback
CLUSIS Association for the Security of Information Services
cm centimeter
COCOM Coordinating Committee for Multilateral Export Controls
COTS commercial off-the-shelf
CRA Chinese remainder algorithm
CRHF collision resistant hash function

479

480

CRT Chinese remainder theorem
cathode-ray tube

CTR counter

DAA data authentication algorithm
DAC data authentication code
DEA data encryption algorithm
DER distinguished encoding rules
DES data encryption standard
DHDP Diffie-Hellman decision problem
DHP Diffie-Hellman problem
DIT directory information tree
DLA discrete logarithm assumption
DLP discrete logarithm problem
DN distinguished name
DNA deoxyribonucleic acid
DoC Department of Commerce
DSA digital signature algorithm
DSS digital signature system

EAR Export Administration Regulations
ECB electronic code book
ECC elliptic curve cryptography
ECDLP elliptic curve DLP
ECDSA elliptic curve digital signature algorithm
ECM elliptic curve method
EES escrowed encryption standard
EFF Electronic Frontier Foundation
EFS encrypted file system

FDH full-domain-hash
FIPS federal information processing standards
FSM finite state machine
FSR feedback shift register
FSUIT Federal Strategy Unit for Information Technology

GCHQ Government Communications Headquarters
GMR Goldwasser, Micali, Rivest
GNFS general NFS
GPS global positioning system

Abbreviations and Acronyms 481

GSM Groupe Speciale Mobile

HMAC hashed MAC

IACR International Association for Cryptologic Research
IBE identity-based encryption
IBM International Business Machines
ICSI International Computer Science Institute
IDEA international data encryption algorithm
IEC International Electrotechnical Committee
IEEE Institute of Electrical and Electronics Engineers
IETF Internet Engineering Task Force
IFA integer factoring assumption
IFIP International Federation for Information Processing
IFP integer factoring problem
IKE Internet key exchange
IP Internet Protocol

initial permutation
IPsec IP security
ISO International Organization for Standardization
ISOC Internet Society
ISP Internet service provider
IT information technology
ITU International Telecommunication Union
ITU-T ITU Telecommunication Standardization Sector
IV initialization vector

JTC1 Joint Technical Committee 1

KAC key authentication center
KDC key distribution center
km kilometer

LFSR linear feedback shift register
LNCS Lecture Notes in Computer Science
LSB least significant bit

MAA message authenticator algorithm
MAC message authentication code
MD message digest

482

MIC message integrity code
MIT Massachusetts Institute of Technology
MPC multiparty computation
MSB most significant bit

NBS National Bureau of Standards
NESSIE new European schemes for signatures, integrity and encryption
NFS number field sieve
NIST National Institute of Standards and Technology
NMAC nested MAC
NRL Naval Research Laboratory
NSE non-secret encryption

OAEP optimal asymmetric encryption padding
OFB output feedback
OID object identifier
OPIE one-time passwords in everything
OWHF one-way hash function

PC permuted choice
personal computer

PD Privatdozent
PDA personal digital assistant
PER packet encoding rules
PGP Pretty Good Privacy
PIN personal identification number
PKCS public key cryptography standard
PKI public key infrastructure
PKIX PKI X.509
PPT probabilistic polynomial-time
PRBG pseudorandom bit generator
PRF pseudorandom function
PRP pseudorandom permutation
PSS probabilistic signature scheme
PSS-R probabilistic signature scheme with message recovery

QRP quadratic residuosity problem
QS quadratic sieve
qubit quantum bit

Abbreviations and Acronyms 483

RA registration authority
RC Ron’s Code
RFC request for comments
RSA Rivest, Shamir, Adleman
RSAP RSA problem

SHA secure hash algorithm
SHS secure hash standard
SKIP simple key-management for Internet protocols
SNFS special NFS
SNMP simple network management protocol
SSL secure sockets layer
STS station-to-station

TAN transaction authentication number
TCBC TDEA CBC
TCBC-I TDEA CBC interleaved
TCFB TDEA CFB
TCFB-P TDEA CFB pipelined
TDEA triple data encryption algorithm
TECB TDEA ECB
TLS transport layer security
TOFB TDEA OFB
TOFB-I TDEA OFB interleaved
TTP trusted third party

UMAC universal MAC
URL uniform resource locator
U.S. United States
USB universal serial bus

W3C World Wide Web Consortium
WEP wired equivalent privacy
WG working group
WWW World Wide Web

XMACC counter-based XOR MAC
XMACR randomized XOR MAC

484

Appendix B

Mathematical Notation

∀ quantifier “for all”
∃ quantifier “there exists”
≡ congruence relation
:= definition∑

sum∏
product

� end of proof
∞ infinity
O point at infinity
S set
|S| cardinality of S (i.e., number of elements)
2S power set of S (i.e., set of all subsets of S)
∅ empty set (i.e., |∅| = 0)
P (S) set of all permutations on S (i.e., PermS→S)
x ∈ S x is an element of S
x /∈ S x is not an element of S
x ∈R S x is a random (i.e., randomly chosen) element of S
x ∈ (a, b) x is an element from the open interval (a, b)
x ∈ [a, b] x is an element from the closed interval [a, b]
A ∪B union of sets A and B
A ∩B intersection of sets A and B
A \B difference of sets A and B
A ⊆ B set A is a subset of set B (or B is a superset of A)
N natural numbers
N

+ positive natural numbers (i.e., N
+ := N \ {0}

Z integer numbers (i.e., integers)

485

486

Z
+ positive integers

Z
− negative integers

Zn integers modulo n
Z
∗
n multiplicative group of integers modulo n

(x|p) Legendre symbol of x modulo p
(x|n) Jacobi symbol of x modulo p
Jn elements of Z

∗
n with Jacobi symbol 1

QRn set of quadratic residues modulo n
QNRn set of quadratic nonresidues modulo n

Q̃Rn set of pseudosquares modulo n
Q rational numbers
R real numbers
R

+ positive real numbers
R

− negative real numbers
π transcendental number that expresses the ratio of the circumference

of a perfect circle to its diameter (π = 3.14159 . . .)
e transcendental number that represents the base of the natural

logarithm (e = 2.71828 . . .)
C complex numbers
i

√
−1

F finite field
Fq finite field with q elements (i.e., |Fq| = q)
E(Fq) elliptic curve over Fq

P set of all primes
∗ binary operation
+ addition
− subtraction
· multiplication
/ division
x← X value assignment (i.e., x is assigned a value from X)
x

u← X value assignment according to the uniform distribution
¬X bitwise negation of the Boolean variable X (NOT)
X ∧ Y bitwise and of the Boolean variablesX and Y (AND)
X ∨ Y bitwise or of the Boolean variablesX and Y (OR)
X ⊕ Y bitwise exclusive of the Boolean variables X and Y (XOR)
X ←↩ s circular left shift of Boolean variable X by s positions
X ↪→ s circular right shift of Boolean variable X by s positions
a = b a is equal to b
a < b a is smaller than b
a(b a is much smaller than b

Mathematical Notation 487

a > b a is greater than b
a� b a is much greater than b
�x� greatest integer less than or equal to x (i.e., floor of x)
�x� smallest integer greater than or equal to x (i.e., ceiling of x)
div integer division
mod modulo operator
a | b integer a divides integer b
a � b integer a does not divide integer b
gcd(a1, . . . , ak) greatest common divisor of integers a1, . . . , ak

lcm(a1, . . . , ak) least common multiple of integers a1, . . . , ak

n! factorial of integer n (with 0! = 1)
π(n) prime counting function of integer n
φ(n) Euler’s totient function of integer n
L formal language
Σ alphabet
Σin input alphabet
Σout output alphabet
{0, 1} binary alphabet
w word (i.e., string over an alphabet)
|w| length of w
ε empty word
Σn set of all words of length n over alphabet Σ
Σ∗ set of all words over alphabet Σ
◦ or ‖ string concatenation
f function
X → Y mapping from domain X to codomain Y
f(X) ⊆ Y range of f
f−1 inverse function
F function family
fk instance of function family F
RandX→Y family of all functions of X to Y
PermX→X family of all permutations on X
h hash function
H hash function family
p(n) polynomial in n
deg(p(n)) degree of polynomial p(n)
Ln[a, c] running time function
ord(x) order of group element x
ordn(x) order of x modulo n
Ω sample space (i.e., finite or countably infinite set)

488

ω elementary event
Un uniform probability distribution on {0, 1}n

A event
A complement of eventA
Pr probability measure
Pr[A] probability of event A
Pr[ω|A] conditional probability of ω given that A holds
Pr[A|B] conditional probability of A given that B holds
X random variable
PX probability distribution of X
PXY joint probability distribution of X and Y
PX1...Xn joint probability distribution of X1, . . . , Xn

PX|A conditional probability distribution of X given that A holds
PX|Y conditional probability distribution of X given that Y holds
E[X] expectation (or mean) of X
E[X |A] conditional expected value of X given that A holds
V ar[X] variance of X
σ[X] standard deviation of X
H(X) entropy of X
H(XY) joint entropy of X and Y
H(X |Y = y) conditional entropy of X when Y = y
H(X |Y) conditional entropy of X when given Y
I(X ;Y) mutual information between X and Y
HL entropy of language L
RL redundancy of language L
nu unicity distance
M Turing machine
SM space complexity of Turing machine M
TM time complexity of Turing machine M
P “polynomial-time” complexity class
NP , coNP “nondeterministic polynomial-time” complexity classes
PP “probabilistic polynomial-time” complexity class
ZPP “zero-sided error probabilistic polynomial-time” complexity class
PP-Monte Carlo and
PP-Las Vegas “one-sided error probabilistic polynomial-time” complexity classes
BPP “bounded-error probabilistic polynomial-time” complexity class
Af distinguisher A that is given oracle access to function f
OP oracle for problem P
M (plaintext) message space
C ciphertext space

Mathematical Notation 489

K key space
E family {Ek : k ∈ K} of encryption functions Ek : M→ C
D family {Dk : K ∈ K} of decryption functionsDk : C →M
T authentication tag space
A family {Ak : k ∈ K} of authentication functionsAk : M→ T
V family {Vk : K ∈ K} of verification functions Vk : M×T

→ {valid, invalid}
Γ access structure (employed by a secret sharing scheme)

490

About the Author

Rolf Oppliger received M.Sc. and Ph.D. degrees in computer science from the Uni-
versity of Berne, Switzerland, in 1991 and 1993, respectively. After spending one
year as a postdoctoral researcher at the International Computer Science Institute
(ICSI) in Berkeley, California, he joined the Swiss Federal Strategy Unit for In-
formation Technology (FSUIT) in 1995 and continued his research and teaching
activities at several universities in Switzerland and Germany. In 1999, he received
the venia legendi1 for computer science from the University of Zürich, Switzer-
land, founded eSECURITY Technologies Rolf Oppliger 2 to provide scientific and
state-of-the-art consulting, education, and engineering services related to informa-
tion technology (IT) security, and started to serve as an editor for Artech House’s
computer security series.3 He has published numerous scientific papers and articles,
as well as 10 books on security-related topics. He is a member of the Association for
Computing Machinery (ACM), the Institute of Electrical and Electronics Engineers
(IEEE) Computer Society, the International Association for Cryptologic Research
(IACR), and the International Federation for Information Processing (IFIP) Techni-
cal Committee 11 (TC11) Working Group 4 (WG4) on network security.

1 The venia legendi (also known as Habilitation) is the formal statement of a university that an
academician is qualified to act as university lecturer or principal investigator. It is mainly used
in German-speaking (European) countries. The formal status of an academician holding a venia
legendi is the one of a Privatdozent (PD). The status of a PD is similar and comparable to the one of
an adjunct professor in many other countries.

2 http://www.esecurity.ch, http://www.rolf-oppliger.com, or http://www.rolf-oppliger.ch
3 http://www.esecurity.ch/serieseditor.html

491

492

Index

a posteriori, 283
a priori, 283
Abelian, 53
absolute rate, 136
abstract syntax notation one, 461
access structure, 455, 489
ACE/server, 428
Achilles’ heel, 29, 40, 452
ACM Turing Award, 336
acoustic emanation, 14
active corruption, 445
adaptive chosen message attack, 371
adaptive chosen-ciphertext attack, 234
adaptive chosen-message attack, 293
adaptive chosen-plaintext attack, 234
additive cipher, 230
additive groups, 53
additive stream ciphers, 233
address-based authentication scheme, 431
adjunct professor, 491
advanced encryption standard, 28
adversary’s capabilities, 370
AES, 469
AES field, 257
affine cipher, 230
algebra, 47, 51
algebraic number, 48
algebraic structure, 51
algebraic system, 51
algorithm, 4
all-or-nothing encryption, 250
alphabet, 141, 487

American Standard Code for Information Inter-
change, 141

application programming interface, 476
ARCFOUR, 280
art, 14
associative, 50
associativity axiom, 53
asymmetric encryption system, 23, 32, 34, 333,

470
asynchronous, 444
Atlantic City, 4
Atlantic City algorithm, 159
attribute authorities, 460
attribute certificates, 460
authenticated key distribution protocols, 424
authentication and key distribution protocols,

424
authentication and key distribution system, 40
authentication functions, 30
authentication tag, 28
authenticity, 28
automatic teller machine, 426
automorphism, 60
axioms, 47

B-smooth, 79, 182
Baby-step giant-step algorithm, 187
Base Cryptographic Provider, 476
basic encoding rules, 461
basis, 415
batch RSA, 340
Bayes’ theorem, 109

493

494 Index

BBS PRBG, 313, 317
Bell Communications Research, 429
Bellcore, 429
bijective, 49
binary digits, 142
binominal distribution, 106
birthday attack, 197
birthday paradox, 182, 197
bit permutation, 62
bit security, 343
bits, 142
Bleichenbacher attack, 362
blind signature, 399
block cipher, 232
block length, 236
Blum integer, 98
Blum-Micali PRBG, 316
brute-force attack, 234, 341
Bureau of Industry and Security, xxi
Byzantine agreement protocol, 444

Caesar cipher, 14, 475
Camellia, 287
candidate one-way functions, 467
cardinality, 485
Carmichael numbers, 76
cathode-ray tube, 14
CBC MAC, 295
CBC residue, 295
cells, 151
certificate, 155, 460
certification authority, 364, 460
certification chain, 462
certification path, 462
chain rule, 134
challenge, 430
challenge-response mechanisms, 430
channel, 126
channel capacity, 128
characters, 141
Chinese remainder algorithm, 86
Chinese remainder theorem, 86
chosen-ciphertext, 334
chosen-ciphertext attack, 234, 470
chosen-message attack, 292
chosen-plaintext, 334
chosen-plaintext attack, 234, 470
chosen-protocol attacks, 6

Church’s thesis, 144
cipher, 27, 229, 259
cipher feedback, 272
cipherblock chaining, 270
ciphertext, 27
ciphertext space, 27
ciphertext-only, 334
ciphertext-only attack, 233
claimant, 423
Clipper, 458
Closure axiom, 52
co-prime, 65
code word, 128
coding, 128
codomain, 49
collision free, 196
collision resistant, 196
collision resistant hash function, 24, 199
commercial off-the-shelf, 287
common divisor, 65
common multiple, 65
communication system, 125
commutative, 50, 53, 59
complete, 433
complete residue system modulo n, 82
completeness probability bound, 160
complex numbers, 48, 486
complexity theory, 21, 143
composite, 71
compositeness test, 75
compressor, 389
computational complexity, 141
computational complexity theory, 9
computational indistinguishability, 314, 470,

474
computational security, 9, 141
computationally equivalent, 157
computationally indistinguishable, 470
computationally secure, 28, 294
computationally zero knowledge, 434
compute a function, 145
computer networks, xix
computer program, 4
computer security series, xx
conditional, 9
conditional entropy, 488
conditional expected value, 117
conditional probability, 108

Index 495

conditional probability distribution, 114
conditional security, 9
confidentiality protection, 27
confusion, 238
congruence relation, 485
congruent, 81
conjugate, 415
constructive step, 12
continued fraction, 183, 184
control unit, 151
Coordinating Committee for Multilateral Ex-

port Controls, xxii
correctness, 369
cosets, 56
counter, 276
counter-based XOR MAC, 302
CRHF, 199
cryptanalysis, 2
CryptoAPI, 476
cryptographic, 24, 25
cryptographic algorithm, 5
cryptographic hash function, 21, 195, 199, 467
cryptographic protocol, 5
cryptographic scheme, 3
cryptographic security, 445
cryptographic system, xx, 3
cryptographically secure, 315
cryptographically strong, 313
cryptography, 1
cryptology, 1
CrypTool, xxi
cryptosystem, xx, 3
cyclic, 55
cyclic shift left, 62
cyclic shift right, 62

data authentication algorithm, 295
data authentication code, 295
data encryption standard, xxii
data integrity protection, 24
dealer, 455
decoder, 126
decrypt, 27
decryption, 27
decryption exponent, 338
decryption functions, 27
Deep Crack, 250
definitional step, 12

denial-of-service attacks, 445
deoxyribonucleic acid, 153
Department of Commerce, xxi
DES, 469
deskewing techniques, 223
destination, 126
DESX, 251
deterministic, 4, 5
DHP, 176
dial-back system, 431
difference of sets, 485
differential cryptanalysis, xxii, 249
differential fault analysis, 13
differential power analysis, 13
Diffie-Hellman decision problem, 176
Diffie-Hellman key exchange, 471
Diffie-Hellman key exchange protocol, 353,

411
Diffie-Hellman problem, 176
diffusion, 238
digest, 25
digital certificates, 365
digital fingerprinting, 2
digital signature, 35
digital signature algorithm, 384
digital signature scheme, 3, 37
digital signature standard, 384
digital signature system, 3, 17
digital signature with appendix, 35
digital signature with message recovery, 36
digital signatures, 24, 291
digital stream, 395
digital watermarking, 2
diplomacy, 5
directed chosen message attack, 371
directory information tree, 462
disavowal protocol, 400
discrete exponentiation function, 23, 173, 468
discrete logarithm, 173
discrete logarithm assumption, 174
discrete logarithm function, 173
discrete logarithm problem, 176
discrete mathematics, 47
discrete probability space, 103, 122
discrete probability theory, 104
discrete random experiment, 103
distinguished encoding rules, 461
distinguished name, 461

496 Index

distinguisher, 315, 323, 434
distributed systems, xix
Distributed.Net project, 250
divides, 64
divisor, 64, 65
DLP, 176
DNA computer, 153
domain, 22, 24, 49
DSS giving message recovery, 38
DSS with appendix, 37, 38
DSS with message recovery, 37
DSSs, 17, 23, 470
Dwork-Naor DSS, 388

easy, 21
ECDLP, 190
ECDSA, 384
effective similarity, 314
efficient, 163
electromagnetic emanation, 14
electronic code book, 269
electronic commerce, 470
electronic voting, 42
elementary event, 103, 488
ElGamal asymmetric encryption system, 413
elliptic curve, 486
elliptic curve cryptography, 99
elliptic curve discrete logarithm problem, 190
elliptic curve method, 181
empty set, 485
encoder, 125, 128
encrypt, 27
Encrypted File System, 251
encryption, 27
encryption exponent, 338
encryption functions, 27
entity authentication, 423, 470
entity authentication and key distribution pro-

tocol, 41
entity authentication protocol, 41
entropy, 130, 488
envelope, 297
equivalence classes, 81
equivalence relation, 81
escrow agents, 458
escrowed encryption standard, 458
eSECURITY Technologies Rolf Oppliger, 491
Euclidean algorithm, 66

Euler’s Theorem, 339
Euler’s totient function, 487
event, 104
exhaustive key search, 234
existential forgery, 293, 372
existentially breakable, 372
existentially forges, 293
Exp family, 174
expectation, 115, 488
expected running time, 22
export, xxi
Export Administration Regulations, xxi
export controls, xxi
extended Euclid algorithm, 380
extended Euclidean algorithm, 68
extended Riemann hypothesis, 74

factor base, 185
factorial, 487
fail corruption, 445
fail-stop signature, 400
failure analysis, 13
families, 172
family of functions, 28
family of one-way functions, 172
family of one-way permutations, 172
family of permutations, 62
family of trapdoor functions, 172
fast data encipherment algorithm, 287
feedback shift register, 277
Feistel cipher, 239
Feistel network, 239
Fermat’s Little Theorem, 88, 339
Fiat-Shamir, 434
field, 59
fingerprint, 25
finite, 53, 59
finite fields modulo irreducible polynomials,

89
finite state machine, 31, 151
formal language, 487
formal methods, 474
full-domain-hash, 389
function, 49
function family, 28, 49, 487
fundamental theorem of information theory,

127

Index 497

Galois field, 59
Gauss’ law of quadratic reciprocity, 97
general indistinguishability assumption, 315
general number field sieve, 185
general-purpose algorithms, 181
generalized collision resistant, 198
generator, 55, 389
generic, 371
generic algorithms, 187
generic chosen message attack, 371
global positioning system, 431
GMR DSS, 388
Good-deBruijn graph, 278
greatest common divisor, 65
group, 52
group homomorphism, 60
group isomorphism, 60

Habilitation, 491
halting problem, 159
hard, 21
hard-core predicate, 188
Hartley’s formula, 131
hash function, 23, 195, 487
hash function family, 487
hashed MAC, 299
Heisenberg uncertainty principle, 415
HMAC, 476
HMAC construction, 469
homomorphic property, 344, 362
homophonic substitution cipher, 232
hybrid, 32, 471
hybrid cryptosystems, 32

ideally secure, 286
identification, 423
identification cards, 425
identity axiom, 53
identity element, 51
identity-based encryption, 364
IFP, 179
IKE protocol, 414
imaginary part, 49
in-band key recovery, 458
indecomposable events, 103
independent, 107, 117
index calculus algorithm, 187
indistinguishability of ciphertexts, 335

infinity, 485
information theory, 9, 15, 103, 125
information-theoretic security, 9, 445
information-theoretically secure, 28, 294
initial state, 151
initialization vector, 271
injective, 49
input, 151
instance, 151
integer arithmetic, 63
integer factoring assumption, 178
integer factoring problem, 63, 179
integer numbers, 48, 485
integers, 48, 485
integrity, 28
interactive argument, 433
interactive proof, 433
interactive proof system, 433
International Computer Science Institute, 491
international data encryption algorithm, 240
Internet, xix
Internet Engineering Task Force, 463
Internet key exchange, 411
interpolation algorithm, 456
intersection of sets, 485
intractable, 163
intractable problems, 163
inverse, 51
inverse axiom, 53
inverse element, 51
invertible, 51
invisible ink, 2
IPsec protocol, 411
irrational, 48
irreducible, 90
isomorphic, 60
isomorphism, 60
issuer, 461
iterated hash function, 199

Jacobi symbol, 95, 486
Java, 4
Java Cryptography Extension, 476
Jensen’s inequality, 117
joint entropy, 132, 488
joint event, 107
joint probability distribution, 111, 112, 488

498 Index

k-out-of-n secret sharing scheme, 455
Kerberos, 40, 405
Kerckhoffs’ principle, 11
key agreement protocol, 23, 41, 405, 406
key destruction problem, 454
key distribution center, 40
key distribution protocol, 41, 405
key encapsulation, 458
key equivocation, 138
key escrow, 458
key establishment, 470
key establishment problem, 405
key establishment protocol, 40, 405
key length, 28
key management, 451
key recovery, 458
key space, 27, 29, 30
key-only attack, 370
knapsack problem, 15
knapsack-based public key cryptosystems, 365
known-message attack, 292, 371
known-plaintext, 334
known-plaintext attack, 233
Kolmogorov complexity, 220

L0phtCrack, 427
Lagrange interpolating polynomial, 456
Lamport one-time signature system, 393
Las Vegas, 4
Las Vegas algorithm, 159
law of total probability, 109
least common multiple, 65
least significant bit, 85, 189
left cosets, 56
left identity element, 51
Legendre symbol, 93, 486
liars, 74
linear, 278
linear complexity, 220
linear congruential generators, 311
linear cryptanalysis, 249
linear feedback shift register, 220
Log family, 174
low exponent attack, 346
Lucifer, 238

MAC, 17, 26, 29, 291, 469
magnetic stripe cards, 425, 426

majority function, 208
man-in-the-middle attack, 413, 419
marginal distributions, 113
MARS, 255
Massey-Omura protocol, 410
matrix step, 185
McEliece public key cryptosystem, 365
MD, 201
MD2, 201
MD4, 202
MD5, 202, 429
mean, 115, 488
meet-in-the-middle attack, 253
mental game playing, 42
Merkle’s Puzzles, 407
message attack, 370
message authentication, 24
message authentication code, 17, 29
message authentication system, 29, 292
message authenticator algorithm, 294
message digest, 201
message expansion function, 374
message extension, 297
message integrity code, 29
message space, 29
Miller-Rabin test, 76
MISTY1, 287
modular arithmetic, 81
modular power function, 23
modular square function, 23, 173, 468
monoalphabetic substitution ciphers, 232
monoid, 52
Monte Carlo, 4
Monte Carlo algorithm, 159
most significant bit, 85, 189
move, 151
multientity, 6
multifactor RSA, 340
multiparty computation, 443
multiple, 64
multiple entities cryptosystem, 6
multiplicative cipher, 230
multiplicative groups, 53
multiplicative inverse, 83
multiplicative structure, 344, 362
multiprime RSA, 183
mutual, 423
mutual information, 135, 488

Index 499

mutually independent, 108

natural numbers, 48, 485
negligible, 147
nested MAC, 299
network access point, 431
neutral element, 51
next-state function, 310
no-biased, 159
noise, 126
non-Abelian, 53
non-secret encryption, 15
nonce, 304, 430
noncommutative, 53, 59
noncorrelated, 198
nondeterministic Turing machine, 152
nonmalleability, 335
nonmalleable, 335
nonnegative, 48
nonnegligible, 147
nonpolynomially bounded, 148
nonrepudiation services, 471
nonsynchronous, 233
nonverifiable, 293
noticeable, 147
number field sieve, 183
number theory, 63
Nyberg-Rueppel DSS, 379

OAEP, 335, 345, 347, 362, 476
object identifier, 461
offline attack, 424
offline solution, 396
one to one, 49
one way, 21, 22, 169
one-time pad, 469
one-time password, 428
one-time password scheme, 428
one-time passwords in everything, 429
one-time signature system, 393
one way, 169
one-way function, 21
one-way functions, 21, 467
one-way hash function, 24
one-way hash functions, 199
one-way permutation, 171
online attack, 424
online solution, 396, 398

onto, 49
OPIE, 429
optimal asymmetric encryption padding, 240,

335
oracle, 334
out-band key recovery, 458
output feedback, 274
output function, 310
OWHF, 199

packet encoding rules, 461
padding attack, 297
pairwise independent, 107
Pascal, 4
passive corruption, 445
passphrases, 426
password guessing, 426
passwords, 426
patent claims, xxi
patents, xxi
perfect, 285, 455
perfect security, 333
perfectly secure, 283
permutation, 61, 237
permuted choice, 244
personal digital assistant, 426
personal identification number, 426
physical keys, 425
PINs, 426
PKCS #1, 362
PKI, 365
plaintext message, 27
plaintext message space, 27
players, 455
Pohlig-Hellman algorithm, 187
point at infinity, 485
Pollard Rho, 181, 182
Pollard’s ρ-algorithm, 187
poly-time indistinguishable, 315, 434
polyalphabetic substitution ciphers, 232
polynomial, 22, 89, 148, 487
polynomial interpolation, 456
polynomial-time, 149, 151
polynomial-time reduction, 176
polynomial-time statistical test, 315, 434
polynomially bounded, 148
polynomially reducible, 156
polytime reduce, 156

500 Index

positive integers, 48
power set, 485
practically efficient, 163
practically strong, 313
PRBG, 30
PRBG-based PRF, 326
PRBGs, 17, 26, 469
preimage resistant, 195
Pretty Good Privacy, 240
prf-advantage, 324
PRF-based PRBG, 326
PRFs, 17, 26, 469
prime, 71
prime counting function, 72, 487
prime density theorem, 73
prime field, 60
prime number, 71
primitive root, 55
principal square root, 99
privacy amplification, 419
Privatdozent, 491
private ElGamal key, 354
private key, 32
probabilistic, 4, 5
probabilistic encryption, 359
probabilistic signature scheme, 374
probabilistic signature scheme with message

recovery, 374
probabilistic Turing machine, 152
probability distribution, 104, 111, 488
probability measure, 104
probability theory, 9, 103
probable plaintext attack, 356
probable primes, 74
profiling, 476
programming language, 4
proof, 433
proof by knowledge, 41, 424, 426
proof by location, 425, 431
proof by possession, 424, 425
proof by property, 424, 430
proof system, 433
protocol, 5
provability, 474
provable security, 10
provably secure, 388
prover, 423
pseudoprimes, 74

pseudorandom, 315
pseudorandom bit generators, 17
pseudorandom bit sequence, 30, 470
pseudorandom functions, 17, 294
pseudorandom permutations, 322
pseudosquares, 97
PSS, 374, 476
PSS-R, 374, 476
public ElGamal key, 354
public key, 32, 461
public key certificates, 364, 460
public key cryptography, xxii, 33
public key cryptography standard, 362
public key cryptosystem, 7, 32, 470, 467
public key infrastructures, 364

QRP, 95
quadratic nonresidue, 486
quadratic residue, 91, 486
quadratic residuosity, 76
quadratic residuosity problem, 95
quadratic sieve, 183
quantifier, 485
quantum bits, 152
quantum channel, 415
quantum computer, 152
quantum computers, 420
quantum cryptography, 414
quantum physics, 414, 415
qubits, 152
quotient, 65

r-tools, 431
Rabin asymmetric encryption system, 347
Rabin public key cryptosystem, 10
random, 322
random bit generators, 21, 25, 30, 467, 468
random experiment, 122
random function, 11, 31, 321, 322, 470
random input, 152
random oracle, 11, 31, 321
random oracle methodology, 11
random oracle model, 11, 468, 474
random permutation, 322
random tape, 152
random variable, 110, 122, 488
randomized, 4
randomized XOR MAC, 301

Index 501

range, 22, 49, 110
rational numbers, 48, 486
RC4, 279
RC6, 255
real numbers, 48, 486
real part, 49
rebalanced RSA, 340
recovery agents, 458
reducible, 90
redundancy, 137, 488
reexports, xxi
reflexive, 81
regulations, xxi
relation collection stage, 185
relatively prime, 65
remainder, 65
Request for Comments, 2
residue classes, 81
response, 430
RFC, 2
right cosets, 56
right identity element, 51
Rijndael, 255
ring, 58
RIPEMD-128, 203
RIPEMD-160, 203
Rivest, Shamir, Adleman, xix
round function, 259
RSA, xix
RSA assumption, 177
RSA Factoring Challenge, 186, 336
RSA family, 177, 337
RSA function, 173, 177, 468
RSA PRBG, 317
RSA problem, 178
RSA public key cryptosystem, 336
RSA Security, Inc., 428
RSA-129, 185, 336
RSAP, 178, 341
running time, 22, 147, 151, 487
running time function, 149

s-box, 242, 260
S/Key, 429
sample space, 103, 487
science, 14
second-preimage resistant, 195
secret key cryptography, 33

secret key cryptosystem, 7, 26, 467, 469
secret parameters, 32
secret prefix, 296
secret sharing scheme, 454, 489
secret sharing system, 455
secret splitting scheme, 459
secret splitting system, 455
secret suffix, 297
secure, 9, 341, 388
secure function evaluation, 444
secure hash algorithm, 202
secure hash standard, 202
secure MPC, 457, 470
secure multiparty computation, 42, 444
secure sockets layer, 41
secure Web server, 41
SecurID tokens, 428
security, 8, 233, 369
seed, 30, 470
selection function, 208
selective forgery, 293, 372
selectively breakable, 372
selectively forges, 293
self-synchronizing stream ciphers, 233
semantic rules, 432
semantic security, 334, 359
semantically secure, 335
semigroup, 52
semihonest, 445
semiweak, 247
serial number, 461
Serpent, 255
session key, 424
set of all permutations, 61
set theory, 47
SHA-1, 202
SHACAL-2, 287
Shamir’s three-pass protocol, 408
shares, 455
side channel attacks, 12
sieve, 71
signatory, 37
signature algorithm, 461
signer, 37
simple events, 103
simple key-management for Internet protocols,

458
simple network management protocol, 297

502 Index

simulation paradigm, 432
simulator, 434
single-entity cryptosystem, 6
SKIP, 458
smart cards, 425, 426
smooth, 79
SNEFRU, 201
Solovay-Strassen test, 76
solve a decision problem, 145
solve a search problem, 145
sound, 433
soundness probability bound, 160
source, 125
space complexity, 151, 488
special number field sieve, 185
special-purpose algorithms, 181, 187
spurious keys, 139
Sqrt family, 180
square, 91
Square family, 180, 347, 351
square function, 180
square root, 91
square root attack, 198
square root function, 180
square-and-multiply algorithm, 12, 85, 338,

374
squaring generator, 313
SSL, 362
SSL protocol, 419
SSL/TLS protocol, 411, 427, 428
standard deviation, 121, 488
standardization, 476
state, 258
state register, 310
statement, 432
station-to-station, 413
statistically independent, 117
steganography, 2
stream, 395
stream cipher, 233
string, 142
string concatenation, 487
strong, 182
strong authentication, 426
strong collision resistant, 196
strong one-way hash functions, 199
strong RSA assumption, 178
structurally equivalent, 60

subexponential-time, 149
subfield, 59
subgroup, 56
subject, 461
subset, 485
substitution-permutation ciphers, 238
super-polynomial, 22, 148
super-polynomial-time, 149
superposition, 152
superset, 485
supersingular curves, 191
surjective, 49
swIPe, 458
Swiss Federal Strategy Unit for Information

Technology, 491
symbols, 141
symmetric, 81
symmetric encryption system, 26, 27, 229, 469
synchronous, 233, 444
syntactic rules, 432

tag space, 29, 30
tape, 151
tapehead, 151
TEMPEST, 13
time complexity, 151, 488
timing attack, 12
tokens, 425
total break, 293, 371
totally breakable, 371
totally breaks, 293
tractable, 163
tractable problems, 163
transaction authentication numbers, 427
transcendental number, 48, 486
transitive, 81
transport layer security, 41
trapdoor, 23, 171
trapdoor function, 15, 23, 171
trapdoor one-way function, 23, 171
trial division, 75, 181
triple data encryption algorithm, 239
triple DES, 254
trusted party, 42
trusted third parties, 458
Turing machine, 488
TWINKLE, 186
TWIRL, 186

Index 503

Twofish, 255

UMAC construction, 469
unary representation, 143
unconditional, 9
unconditional security, 9
undeniable signature, 292, 400
unicity distance, 139, 488
uniform, 104
uniform probability distribution, 488
uniform resource locators, xx
unilateral, 423
union bound, 107
union event, 107
union of sets, 485
universal forgery, 372
universal hashing, 215, 304, 468
universal MAC, 304
universal serial bus, 425
universal statistical test, 224
universally breakable, 372
unkeyed cryptosystem, 7, 21, 467
USB, 425
USB tokens, 426

validity period, 461
variance, 120, 488
venia legendi, 491
verifiable MACs, 293
verifiable secret sharing system, 457
verification functions, 30
verifier, 37, 423
Vernam’s one-time pad, 285
version, 461
Vigenère cipher, 232

Wassenaar Arrangement, xxii
weak, 247
weak authentication, 426
weak collision resistant, 195, 196
weak one-way hash functions, 199
weakened collision resistant, 198
Web browser, 40
Whirlpool, 214
Wired Equivalent Privacy, 279
witness, 74, 155
word, 142

X.509, 461
XOR MACs, 300

yes-biased, 159

zero knowledge, 41, 430
zero-knowledge authentication, 401
zero-knowledge authentication protocols, 41,

432
zero-knowledge proofs, 432

	Cover
	Contemporary Cryptography
	Contents vii
	Foreword xv
	Preface xix
	References xxiii
	Acknowledgments
	Chapter 1 Introduction 1
	1.1 CRYPTOLOGY 1
	1.2 CRYPTOGRAPHIC SYSTEMS 3
	1.3 HISTORICAL BACKGROUND INFORMATION 14
	1.4 OUTLINE OF THE BOOK 16
	References 18

	Chapter 2 Cryptographic Systems 21
	2.1 UNKEYED CRYPTOSYSTEMS 21
	2.2 SECRET KEY CRYPTOSYSTEMS 26
	2.3 PUBLIC KEY CRYPTOSYSTEMS 32
	2.4 FINAL REMARKS 42
	References 42

	Part I MATHEMATICAL FUNDAMENTALS 45
	Chapter 3 Discrete Mathematics 47
	3.1 ALGEBRAIC BASICS 47
	3.2 INTEGER ARITHMETIC 63
	3.3 MODULAR ARITHMETIC 81
	3.4 ELLIPTIC CURVES 99
	3.5 FINAL REMARKS 101
	References 102

	Chapter 4 Probability Theory 103
	4.1 BASIC TERMS AND CONCEPTS 104
	4.2 RANDOM VARIABLES 109
	4.3 FINAL REMARKS 122
	References 123

	Chapter 5 Information Theory 125
	5.1 INTRODUCTION 125
	5.2 ENTROPY 129
	5.3 REDUNDANCY 136
	5.4 KEY EQUIVOCATION AND UNICITY DISTANCE 138
	5.5 FINAL REMARKS 139
	References 140

	Chapter 6 Complexity Theory 141
	6.1 PRELIMINARY REMARKS 141
	6.2 INTRODUCTION 143
	6.3 ASYMPTOTIC ORDER NOTATION 146
	6.4 EFFICIENT COMPUTATIONS 147
	6.5 COMPUTATIONAL MODELS 150
	6.6 COMPLEXITY CLASSES 154
	6.7 FINAL REMARKS 163
	References 164

	Part II UNKEYED CRYPTOSYSTEMS 167
	Chapter 7 One-Way Functions 169
	7.1 INTRODUCTION 169
	7.2 CANDIDATE ONE-WAY FUNCTIONS 172
	7.3 INTEGER FACTORIZATION ALGORITHMS 180
	7.4 ALGORITHMS FOR COMPUTING DISCRETE LOGARITHMS 186
	7.5 HARD-CORE PREDICATES 188
	7.6 ELLIPTIC CURVE CRYPTOGRAPHY 190
	7.7 FINAL REMARKS 191
	References 192

	Chapter 8 Cryptographic Hash Functions 195
	8.1 INTRODUCTION 195
	8.2 MERKLE-DAMG ARD CONSTRUCTION 199
	8.3 EXEMPLARY CRYPTOGRAPHIC HASH FUNCTIONS 201
	8.4 FINAL REMARKS 214
	References 216

	Chapter 9 Random Bit Generators 219
	9.1 INTRODUCTION 219
	9.2 REALIZATIONS AND IMPLEMENTATIONS 221
	9.3 STATISTICAL RANDOMNESS TESTING 223
	9.4 FINAL REMARKS 224
	References 225

	Part III SECRET KEY CRYPTOSYSTEMS 227
	Chapter 10 Symmetric Encryption Systems 229
	10.1 INTRODUCTION 229
	10.2 BLOCK CIPHERS 236
	10.3 STREAM CIPHERS 277
	10.4 PERFECTLY SECURE ENCRYPTION 281
	10.5 FINAL REMARKS 287
	References 288

	Chapter 11 Message Authentication Codes 291
	11.1 INTRODUCTION 291
	11.2 COMPUTATIONALLY SECURE MACS 294
	11.3 INFORMATION-THEORETICALLY SECURE MACS 305
	11.4 FINAL REMARKS 307
	References 307

	Chapter 12 Pseudorandom Bit Generators 309
	12.1 INTRODUCTION 309
	12.2 CRYPTOGRAPHICALLY SECURE PRBG 313
	12.3 FINAL REMARKS 318
	References 319

	Chapter 13 Pseudorandom Functions 321
	13.1 INTRODUCTION 321
	13.2 CONSTRUCTIONS 325
	13.3 RANDOM ORACLE MODEL 327
	13.4 FINAL REMARKS 329
	References 329

	Part IV PUBLIC KEY CRYPTOSYSTEMS 331
	Chapter 14 Asymmetric Encryption Systems 333
	14.1 INTRODUCTION 333
	14.2 BASIC SYSTEMS 336
	14.3 SECURE SYSTEMS 359
	14.4 IDENTITY-BASED ENCRYPTION 363
	14.5 FINAL REMARKS 365
	References 365

	Chapter 15 Digital Signature Systems 369
	15.1 INTRODUCTION 369
	15.2 BASIC SYSTEMS 372
	15.3 SECURE SYSTEMS 388
	15.4 ONE-TIME SIGNATURE SYSTEMS 393
	15.5 DIGITAL SIGNATURES FOR STREAMS 395
	15.6 VARIATIONS 399
	15.7 FINAL REMARKS 401
	References 401

	Chapter 16 Key Establishment 405
	16.1 INTRODUCTION 405
	16.2 KEY DISTRIBUTION PROTOCOLS 406
	16.3 KEY AGREEMENT PROTOCOLS 411
	16.4 QUANTUM CRYPTOGRAPHY 414
	16.5 FINAL REMARKS 419
	References 420

	Chapter 17 Entity Authentication 423
	17.1 INTRODUCTION 423
	17.2 AUTHENTICATION TECHNOLOGIES 424
	17.3 ZERO-KNOWLEDGE AUTHENTICATION PROTOCOLS 432
	17.4 FINAL REMARKS 440
	References 440

	Chapter 18 Secure Multiparty Computation 442
	18.1 INTRODUCTION 443
	18.2 MAJOR RESULTS 446
	18.3 FINAL REMARKS 446
	References 447

	Part V EPILOGUE 449
	Chapter 19 Key Management 451
	19.1 INTRODUCTION 451
	19.2 KEY LIFE CYCLE 453
	19.3 SECRET SHARING 455
	19.4 KEY RECOVERY 457
	19.5 PUBLIC KEY INFRASTRUCTURE 460
	19.6 FINAL REMARKS 463
	References 464

	Chapter 20 Conclusions 467
	20.1 UNKEYED CRYPTOSYSTEMS 467
	20.2 SECRET KEY CRYPTOSYSTEMS
	20.3 PUBLIC KEY CRYPTOSYSTEMS 470
	20.4 FINAL REMARKS 471

	Chapter 21 Outlook 473
	21.1 THEORETICAL VIEWPOINT 474
	21.2 PRACTICAL VIEWPOINT 476
	References 477

	Appendix A Abbreviations and Acronyms 479
	Appendix B Mathematical Notation 485
	About the Author 491
	Index 493

