ARTECH HOUSE

COMPUTER SECURITY SERIES

Contemporary

bryptography

ROLF OPPLIGER

Contemporary Cryptography

For quite a long time, computer security was a rather narrow field of study that was
populated mainly by theoretical computer scientists, electrical engineers, and applied
mathematicians. With the proliferation of open systems in general, and of the Internet
and the World Wide Web (WWW) in particular, this situation has changed fundamen-
tally. Today, computer and network practitioners are equally interested in computer
security, since they require technologies and solutions that can be used to secure applica-
tions related to electronic commerce. Against this background, the field of computer
security has become very broad and includes many topics of interest. The aim of this
series is to publish state-of-the-art, high standard technical books on topics related to
computer security. Further information about the series can be found on the WWW at
the following URL:

htep://www.esecurity.ch/serieseditor.html

Also, if you'd like to contribute to the series by writing a book about a topic
related to computer security, feel free to contact either the Commissioning Editor or the
Series Editor at Artech House.

For a listing of recent titles in the Artech House Computer Security Library,
turn to the back of this book.

Contemporary Cryptography
Rolf Oppliger

ARTECH
HOUSE

BOSTON | LONDON
artechhouse.com

Library of Congress Cataloging-in-Publication Data
Oppliger, Rolf.
Contemporary cryptography/Rolf Oppliger.

p. cm. —(Artech House computer security series)
Includes bibliographical references and index.
ISBN 1-58053-642-5
1. Cryptography. I Title. II. Series.

7.103.066 2005 2005043576
652'.8—dc22

British Library Cataloguing in Publication Data
Oppliger, Rolf
Contemporary cryptography. —(Artech House computer security series)
1. Data encryption (Computer science) 2. Cryptography
L. Title
005.8"2

ISBN 1-58053-642-5
Cover design by Yekaterina Ratner

© 2005 ARTECH HOUSE, INC.
685 Canton Street
Norwood, MA 02062

All rights reserved. Printed and bound in the United States of America. No part of this book may
be reproduced or utilized in any form or by any means, electronic or mechanical, including pho-
tocopying, recording, or by any information storage and retrieval system, without permission in
writing from the publisher. All terms mentioned in this book that are known to be trademarks or
service marks have been appropriately capitalized. Artech House cannot attest to the accuracy of
this information. Use of a term in this book should not be regarded as affecting the validity of
any trademark or service mark.

International Standard Book Number: 1-58053-642-5

10987654321

To my family

vi

Contents

Foreword

Preface

References

Acknowledgments

Chapter 1 Introduction

Chapter 2

1.1
1.2

1.3
1.4

Cryptology

Cryptographic Systems

1.2.1 Classes of Cryptographic Systems
1.2.2 Secure Cryptographic Systems
1.2.3 Side Channel and Related Attacks
Historical Background Information
Outline of the Book

References

Cryptographic Systems

2.1

2.2

23

Unkeyed Cryptosystems

2.1.1 One-Way Functions

2.1.2 Cryptographic Hash Functions
2.1.3 Random Bit Generators

Secret Key Cryptosystems

2.2.1 Symmetric Encryption Systems
2.2.2 Message Authentication Codes
2.2.3 PRBGs

2.24 PRFs

Public Key Cryptosystems

2.3.1 Asymmetric Encryption Systems
2.3.2 DSSs

vii

XV

X1X

xxiii

21
21
21
23
25
26
27
28
30
31
32
32
35

viii

24

233
234
2.3.5

Key Agreement
Entity Authentication
Secure Multiparty Computation

Final Remarks
References

I MATHEMATICAL FUNDAMENTALS

Chapter 3 Discrete Mathematics

3.1

32

33

34
35

Algebraic Basics

3.1.1 Preliminary Remarks

3.1.2 Algebraic Sructures

3.1.3 Homomorphisms and Isomorphisms
3.1.4 Permutations

Integer Arithmetic

3.2.1 Integer Division

3.2.2 Common Divisors and Multiples
3.2.3 Euclidean Algorithms

3.2.4 Prime Numbers

3.2.5 Factorization

3.2.6 Euler’s Totient Function
Modular Arithmetic

3.3.1 Modular Congruence

3.3.2 Modular Exponentiation

3.3.3 Chinese Remainder Theorem
3.3.4 Fermat’s Little Theorem

3.3.5 Euler’s Theorem

3.3.6 Finite Fields Modulo Irreducible Polynomials
3.3.7 Quadratic Residuosity

3.3.8 Blum Integers

Elliptic Curves

Final Remarks

References

Chapter 4 Probability Theory
Basic Terms and Concepts
Random Variables

4.1
4.2

4.2.1
422

Probability Distributions
Marginal Distributions

39
41
41
42
42

45

47
47
48
51
60
61
63
63
65
66
71
77
79
81
81
84
86
88
89
89
91
98
99
101
102

103
103
109
111
113

Contents X

4.2.3 Conditional Probability Distributions 114

4.2.4 Expectation 115

4.2.5 Independence of Random Variables 117

4.2.6 Markov’s Inequality 118

4.2.7 Variance and Standard Deviation 119

4.2.8 Chebyshev’s Inequality 121

4.3 Final Remarks 122
References 123

Chapter 5 Information Theory 125
5.1 Introduction 125

5.2 Entropy 129

5.2.1 Joint Entropy 132

5.2.2 Conditional Entropy 133

5.2.3 Mutual Information 135

5.3 Redundancy 136

5.4 Key Equivocation and Unicity Distance 138

5.5 Final Remarks 139
References 140

Chapter 6 Complexity Theory 141
6.1 Preliminary Remarks 141

6.2 Introduction 143

6.3 Asymptotic Order Notation 146

6.4 Efficient Computations 147

6.5 Computational Models 150

6.6 Complexity Classes 154

6.6.1 Complexity Class P 154

6.6.2 Complexity Classes NP and coN'P 154

6.6.3 Complexity Class PP and Its Subclasses 159

6.7 Final Remarks 163
References 164

II UNKEYED CRYPTOSYSTEMS 167
Chapter 7 One-Way Functions 169
7.1 Introduction 169

7.2 Candidate One-Way Functions 172

7.2.1 Discrete Exponentiation Function 173

7.2.2 RSA Function 176

7.3

7.4

7.5
7.6
7.7

7.2.3 Modular Square Function
Integer Factorization Algorithms
7.3.1 Special-Purpose Algorithms
7.3.2 General-Purpose Algorithms
7.3.3 State of the Art

Algorithms for Computing Discrete Logarithms
7.4.1 Generic Algorithms

7.4.2 Special-Purpose Algorithms
7.4.3 State of the Art

Hard-Core Predicates

Elliptic Curve Cryptography

Final Remarks

References

Chapter 8 Cryptographic Hash Functions

8.1
8.2
83

8.4

Introduction

Merkle-Damgard Construction
Exemplary Cryptographic Hash Functions
83.1 MD4

8.3.2 MD5

8.3.3 SHA-1

Final Remarks

References

Chapter 9 Random Bit Generators

9.1
9.2

9.3
9.4

Introduction

Realizations and Implementations

9.2.1 Hardware-Based Random Bit Generators
9.2.2 Software-Based Random Bit Generators
9.2.3 Deskewing Techniques

Statistical Randomness Testing

Final Remarks

References

III SECRET KEY CRYPTOSYSTEMS

Chapter 10 Symmetric Encryption Systems
10.1 Introduction

10.1.1 Examples
10.1.2 Classes of Symmetric Encryption Systems

179
180
181
183
185
186
187
187
188
188
190
191
192

195
195
199
201
204
209
211
214
216

219
219
221
221
222
223
223
224
225

227

229
229
230
232

10.2

10.3
10.4
10.5

Contents

10.1.3 Secure Symmetric Encryption Systems
10.1.4 Evaluation Criteria

Block Ciphers

10.2.1 DES

10.2.2 AES

10.2.3 Modes of Operation

Stream Ciphers

Perfectly Secure Encryption

Final Remarks

References

Chapter 11 Message Authentication Codes

11.1
11.2

11.3
11.4

Introduction

Computationally Secure MACs

11.2.1 MACs Using Symmetric Encryption Systems
11.2.2 MAC:s Using Keyed Hash Functions

11.2.3 MACs Using PRFs

11.2.4 MACs Using Families of Universal Hash Functions
Information-Theoretically Secure MACs

Final Remarks

References

Chapter 12 Pseudorandom Bit Generators

12.1
12.2

12.3

Introduction

Cryptographically Secure PRBG
12.2.1 Blum-Micali PRBG
12.2.2 RSA PRBG

12.2.3 BBS PRBG

Final Remarks

References

Chapter 13 Pseudorandom Functions

13.1
13.2

13.3
13.4

Introduction
Constructions

13.2.1 PRF-Based PRBG
13.2.2 PRBG-Based PRF
Random Oracle Model
Final Remarks

References

xi

233
235
236
238
255
269
277
281
287
288

291
291
294
295
296
300
304
305
307
307

309
309
313
316
317
317
318
319

321
321
325
325
326
327
329
229

Xii

IV PUBLIC KEY CRYPTOSYSTEMS

Chapter 14 Asymmetric Encryption Systems
14.1 Introduction
14.2 Basic Systems
14.2.1 RSA
14.2.2 Rabin
14.2.3 FElGamal
14.3 Secure Systems
14.3.1 Probabilistic Encryption
14.3.2 Optimal Asymmetric Encryption Padding
14.4 Identity-Based Encryption
14.5 Final Remarks
References

Chapter 15 Digital Signature Systems
15.1 Introduction
15.2 Basic Systems
15.2.1 RSA
15.2.2 FElGamal
15.2.3 DSA
15.3 Secure Systems
15.3.1 PSS
15.3.2 PSS-R
15.4 One-Time Signature Systems
15.5 Digital Signatures for Streams
15.6 Variations
15.6.1 Blind Signatures
15.6.2 Undeniable Signatures
15.6.3 Fail-Stop Signatures
15.7 Final Remarks
References

Chapter 16 Key Establishment
16.1 Introduction
16.2 Key Distribution Protocols
16.2.1 Merkle’s Puzzles
16.2.2 Shamir’s Three-Pass Protocol
16.2.3 Asymmetric Encryption-Based Key Distribution
Protocol

331

333
333
336
336
347
353
359
359
362
363
365
365

369
369
372
373
378
384
388
389
391
393
395
399
399
400
400
401
401

405
405
406
406
408

411

Contents

16.3 Key Agreement Protocols
16.4 Quantum Cryptography

16.4.1 Basic Principles

16.4.2 Quantum Key Exchange Protocol
16.5 Final Remarks

References

Chapter 17 Entity Authentication
17.1 Introduction
17.2 Authentication Technologies
17.2.1 Proof by Possession
17.2.2 Proof by Knowledge
17.2.3 Proof by Property
17.2.4 Proof by Location
17.3 Zero-Knowledge Authentication Protocols
17.3.1 Preliminary Remarks
17.3.2 Fiat-Shamir
17.3.3 Guillou-Quisquater
17.3.4 Schnorr
17.3.5 Turning Interactive Proofs of Knowledge into DSSs
17.4 Final Remarks
References

Chapter 18 Secure Multiparty Computation
18.1 Introduction
18.2 Major Results
18.3 Final Remarks
References

V EPILOGUE

Chapter 19 Key Management

19.1 Introduction

19.2 Key Life Cycle
19.2.1 Key Generation
19.2.2 Key Distribution
19.2.3 Key Storage
19.2.4 Key Destruction

19.3 Secret Sharing

19.4 Key Recovery

Xxiii

411
414
414
416
419
420

423
423
424
425
426
430
431
432
432
434
436
438
439
440
440

443
443
446
446
447

449

451
451
453
453
453
454
454
455
457

Xiv

19.5 Public Key Infrastructure
19.6 Final Remarks
References

Chapter 20 Conclusions
20.1 Unkeyed Cryptosystems
20.2 Secret Key Cryptosystems
20.3 Public Key Cryptosystems
20.4 Final Remarks

Chapter 21 Outlook
21.1 Theoretical Viewpoint
21.2 Practical Viewpoint
References

Appendix A Abbreviations and Acronyms
Appendix B Mathematical Notation
About the Author

Index

460
463
464

467
467
469
470
471

473
474
476
477

479

485

491

493

Foreword

Assume for a moment that everything in this book was known for decades but
not widely published. If I owned this book in the early 1980s, some governments
would consider me dangerous (certainly more dangerous than anyone reasonably
considers me now). The reason? Cryptography—the ability to encipher messages—
was considered an instrument of war and espionage. Some countries (the USA
included) considered export of cryptographic mechanisms to be in the same category
of crime as smuggling nuclear weapons! This was despite the fact that cryptology
has been studied and practiced for thousands of years around the world.

In 2005, a mere twenty years later, things are somewhat less extreme, and I
have shelves full of books on cryptography. However, many governments still fear
the spread of encryption and thus severely restrict (or prohibit) its use within their
borders. This is despite its regular use billions of times per day in everything from
banking networks to medical records to cable TV systems to Internet commerce over
the WWW, as well as governmental uses.

Why is knowledge of cryptography so often feared by those in authority? One
explanation may be that it is because cryptography can be used to hide criminal
behavior, espionage, and political activities. More generally, it helps to remove
information from the purview of the state, and this can be threatening to governments
whose survival is based on restricting citizens’ knowledge. Information can be used
or misused in so many ways it is no wonder that protecting it is of widespread
interest.

At its heart, cryptography is concerned with information, whether stored as
data, or communicated to others. In turn, information and communication undergird
nearly everything we do. Commerce is driven by communication of finance and
sales, research is based on data acquisition and reference, and government functions
on the collection and processing of records. Entertainment is encoded information,
whether presented as music, paintings, or the performance of a play. Civilization is
enabled by our ability to communicate information to each other, and to store it for
later use. Even something as commonplace as currency would be useless unless it
conveyed meaning of denomination and validity. Of course, personal relationships

XV

Xvi

also require some level of communication, too—imagine conveying “I love you” to
those people special in your life without any shared means of communication!

At its very heart, life itself is based on information storage and processing: the
DNA in genes encodes information governing how organisms are constructed and
operate. Recently, there were reports from the world of physics about new conjec-
tures on the permanence of black holes that revolved around their effect on infor-
mation." Some students of psychology and philosophy believe that consciousness
and behavior are predetermined by the events of the past—basically, the complex
processing of information. Others believe that if we can simply capture the “infor-
mation state” of the brain in an appropriately-advanced computer, we can transfer
our “minds” outside our bodies.?

The more deeply you pursue this trail of information, the more connections
one finds. It is clear that our ability to store and communicate information is
fundamental to much more than most of us realize. Furthermore, knowing some
of that information at the right time can provide tremendous advantage, whether it
is in personal relationships, commercial enterprise, or acts by nation-state leaders.
It therefore follows that means of protecting that information from disclosure or
alteration are often as valuable as the information itself—if not more so.

It is here that cryptography comes into play. With good cryptography, we may
be able to protect sensitive information; without it, we are all disadvantaged. It
should thus be no surprise that so many organizations have tried to restrict cryp-
tography such that they were the sole practitioners. History continues to show that
such efforts seem destined to (eventually) fail. For uses good and ill, cryptography
is around to stay.

You hold in your hands a multifarious work that exists against that backdrop.
As with the role of information, the more you examine this book, the more facets
you will discover.

For instance, if you read this book carefully, you will find it to be a compre-
hensive and detailed tutorial on cryptographic algorithms and protocols, along with
supporting mathematics and statistics. As such, you can expand your knowledge
of an important area that is also related to computing and communications. What’s
more, you can inform yourself about a broad range of issues, from historically sig-
nificant ciphers to very current research results.

As with other works by Rolf Oppliger, this book is nicely organized and
the contents are clearly presented. Each section of the book contains numerous
references to important related literature. This combination provides an outstanding

1 See, for instance, “Hawking cracks black hole paradox” by Jenny Hogan in New Scientist, July 14,
2004.

2 cf. Inthe Age of Spiritual Machines: When Computers Exceed Human Intelligence by Ray Kurzweil,
Penguin Putnam, 2000.

Foreword Xvii

reference work for anyone pursuing scholarly work in the field. Thus, this book is
one that will occupy a spot on your bookshelf—and ensure that it doesn’t collect
dust while there, as I have found so many other books do.

If you’re a teacher, you now have a powerful textbook that can be used to
prepare students for everything from basic comprehension of cryptographic concepts
to reasonably advanced research in the field. As such, this is a much-needed
instrument of pedagogy. This is the book colleagues and I wish we had over the
last decade when teaching our graduate cryptography class; luckily, now we have it,
and you do too.

Cryptography can be an enabler of subversion, of civil disobedience, and of
criminal enterprise. It can also be used to safeguard protection of basic human rights,
promote privacy, and enhance lawful commerce. Cryptography is an incredibly
powerful set of technologies. A sound understanding of cryptographic techniques
is not sufficient to guarantee information protection, but it is necessary, whether in
computer processing, telecommunications, or database management. As our reliance
on computing and network grows, our need for sound cryptography will also grow,
and we all will need to have a better understanding of its uses and limitations.

When Rolf set out to write this book, I doubt he considered how it might be
used by readers to do so many things. When you started reading it, you probably
didn’t have wide-ranging motives, either. And when I agreed to write the foreword,
I was unsure what the book would be like. But now I know what you will shortly
discover: Rolf has done a wonderful job of making so much important information
accessible. He is thus a dangerous person, at least in the sense of “dangerous” that
I employed at the beginning of this essay, and we should congratulate him for it.
Enjoy.

—Gene Spafford?
January 2005

3 Eugene H. Spafford is the Executive Director of the Center for Education and Research in Informa-
tion Assurance and Security at Purdue University in the USA. He is also a professor of Computer
Sciences, a professor of Electrical and Computer Engineering, a professor of Philosophy (courtesy),
and a professor of Communication (courtesy).

XVviil

Preface

Necessity is the mother of invention,
and computer networks are the mother of modern cryptography.

— Ronald L. Rivest*

With the current ubiquity of computer networks and distributed systems in general,
and the Internet in particular, cryptography has become an enabling technology to
secure the information infrastructure(s) we are building, using, and counting on in
daily life. This is particularly true for modern cryptography.® The important role of
(modern) cryptography is, for example, pointed out by the quote given above. As
explained later in this book, the quoted cryptographer—Ronald L. Rivest—is one
of the pioneers of modern cryptography and has coinvented the widely deployed
Rivest, Shamir, Adleman (RSA) public key cryptosystem.

Due to its important role, computer scientists, electrical engineers, and applied
mathematicians should all be educated in the basic principles and applications of
cryptography. Cryptography is a tool, and as such it can provide security only if it
is used properly. If it is not used properly, then it may fail to provide security in the
first place. It may even be worse than not using it at all, because users think that they
are protected, whereas in reality this is not the case (this may lead to incorrect user
behavior).

There are several books that can be used for educational purposes (e.g., [1-16]
itemized in chronological order). Among these books, I particularly recommend [5,
9, 10, 12, 14] to teach classes,® [3] to serve as a handy reference for cryptographic
algorithms and protocols (also available electronically on the Internet),” and [16] to
provide an overview about practically relevant cryptographic standards. After having

4 In: “Cryptography as Duct Tape,” a short note written to the Senate Commerce and Judiciary
Committees in opposition to mandatory key recovery proposals on June 12, 1997 (the note is
available electronically at http://theory.lcs.mit.edu/~rivest/ducttape.txt).

5 In Chapter 1, we explain what modern cryptography really means and how it differs from classical
cryptography.

6 Prior to this book, I used to recommend [10] as a textbook for cryptography.

7 http://www.cacr.math.uwaterloo.ca/hac

Xix

XX

spent a considerable amount of time compiling and writing a manuscript that can be
used to lecture and teach classes on contemporary cryptography, I decided to turn
the manuscript into a book and to publish it in Artech House’s computer security
series.® The present book is the result of this endevour.

More often than not, mathematicians care about theoretical concepts and mod-
els without having applications in mind. On the other side, computer scientists and
electrical engineers often deal with applications without having studied and properly
understood the underlying mathematical fundamentals and principles. Against this
background, Contemporary Cryptography tries to build a bridge and fill the gap
between these two communities. As such, it is intended to serve the needs of math-
ematicians who want to be educated in contemporary cryptography as a possible
application of their field(s) of study, as well as computer scientists and electrical
engineers who want to be educated in the relevant mathematical fundamentals and
principles. Consequently, the target audience for Contemporary Cryptography in-
cludes all of them: mathematicians, computer scientists, and electrical engineers,
both in research and practice. Furthermore, computer practitioners, consultants, and
information officers should also gain insight into the fascinating and quickly evolv-
ing field.

Contemporary Cryptography is written to be comprehensive and tutorial in na-
ture. The book starts with two chapters that introduce the topic and briefly overview
the cryptographic systems (or cryptosystems) in use today. After a thorough intro-
duction of the mathematical fundamentals and principles that are at the heart of
contemporary cryptography (Part 1), the cryptographic systems are addressed in de-
tail and defined in a mathematically precise sense. The cryptographic systems are
discussed in three separate parts, addressing unkeyed cryptosystems (Part II), secret
key cryptosystems (Part III), and public key cryptosystems (Part IV). Part IV also
includes cryptographic protocols that make use of public key cryptography. Finally,
the book finishes with an epilogue (Part V) and two appendixes.

Each chapter is intended to be comprehensive (on its own) and includes a list
of references that can be used for further study. Where necessary and appropriate, I
have also added some uniform resource locators (URLs) as footnotes to the text. The
URLSs point to corresponding information pages on the World Wide Web (WWW).
While care has been taken to ensure that the URLSs are valid now, unfortunately—due
to the dynamic nature of the Internet and the WWW—I cannot guarantee that these
URLSs and their contents remain valid forever. In regard to the URLs, I apologize for
any information page that may have been removed or replaced since the writing and
publishing of the book. To make the problem less severe, I have not included URLs
I expect to be removed or replaced anytime soon.

8 http://www.esecurity.ch/serieseditor.html

Preface XXi

Readers who like to experiment with cryptographic systems are invited to
download, install, and play around with some of the many software packages that
have been written and are available for demonstrational and educational purposes.
Among these packages, I particularly recommend CrypTool. CrypTool is a demon-
stration and reference program for cryptography that is publicly and freely available’
and that provides insight into the basic working principles of the cryptographic al-
gorithms and protocols in use today.

If you want to implement and market some of the cryptographic techniques or
systems addressed in this book, then you must must be very cautious and note that
the entire field of cryptography is tied up in patents and corresponding patent claims.
Consequently, you must make sure that you have an appropriate license or a good
lawyer (or both).

In either case, regulations for the use and export of cryptographic products
(see, for example, Bert-Jaap Koops’ Crypto Law Survey)'? differ in different coun-
tries. For example, France had regulations for the use of cryptographic techniques
until recently, and some countries—especially in the Far East—still have. On the
other side, some countries require specific data to be encrypted according to certain
standards or best practices. This is particularly true for personal and medical data.
With regard to the export of cryptographic products, the situation is even more in-
volved. For example, since 1996 the U.S. export controls on cryptographic products
are administered by the Bureau of Industry and Security (BIS) of the Department of
Commerce (DoC). Rules governing exports and reexports of cryptographic products
are found in the Export Administration Regulations (EAR). If a U.S. company wants
to sell a cryptographic product overseas, it must have export approval according to
the EAR. In January 2000, the DoC published a regulation implementing the White
House’s announcement of a new framework for U.S. export controls on encryp-
tion items.!! The policy was in response to the changing global market, advances
in technology, and the need to give U.S. industry better access to these markets,
while continuing to provide essential protections for national security. The regu-
lation enlarged the use of license exceptions, implemented the changes agreed to at

9 http://www.cryptool.com or http://www.cryptool.org
10 http://rechten.uvt.nl/koops/cryptolaw
11 The announcement was made on September 16, 1999.

XXii

the Wassenaar Arrangement'? on export controls for conventional arms and dual-use
goods and technologies in December 1998, and eliminated the deemed export rule
for encryption technology. In addition, new license exception provisions were cre-
ated for certain types of encryption, such as source code and toolkits. Some countries
are exempted from the regulation (i.e., Cuba, Iran, Iraq, Libya, North Korea, Sudan,
and Syria). We are not going to address legal issues regarding the use and export of
cryptographic products in this book.!* But note again that you may talk to a lawyer
before you use and/or export cryptographic products.

Last, but not least, it is important to note that Contemporary Cryptography
addresses only the materials that are published and available in the open literature.
These materials are, for example, presented and discussed at the conferences'* held
by the International Association for Cryptologic Research (IACR).!> There may (or
may not) be additional and complementary materials available in the backyards of
secret services and intelligence agencies. These materials are subject to speculations
and rumors; sometimes they even provide the starting point for bestselling books
and movies. Contemporary Cryptography does not speculate about these materials.
It is, however, important to note and always keep in mind that these materials may
still exist and that their mere existence may make this book or parts of it obsolete
(once their existence becomes publicly known). For example, the notion of public
key cryptography was invented by employees of a British intelligence agency a few
years before it was published in the open literature (see Section 1.3). Also, the data
encryption standard (DES) was designed to make it resistant against differential
cryptanalysis—a cryptanalytical attack against symmetric encryption systems that
was discussed in the public literature almost two decades after the standardization
of the DES (see Section 10.2.1.4). There are certainly many other (undocumented)
examples to illustrate this point.

12 The Wassenaar Arrangement is a treaty originally negotiated in July 1996 and signed by 31 coun-
tries to restrict the export of dual-use goods and technologies to specific countries considered to be
dangerous. The countries that have signed the Wassenaar Arrangement include the former Coordi-
nating Committee for Multilateral Export Controls (COCOM) member and cooperating countries,
as well as some new countries such as Russia. The COCOM was an international munitions con-
trol organization that also restricted the export of cryptography as a dual-use technology. It was
formally dissolved in March 1994. More recently, the Wassenaar Arrangement was updated. The
participating countries of the Wassenaar Arrangement are Argentina, Australia, Austria, Belgium,
Bulgaria, Canada, Czech Republic, Denmark, Finland, France, Germany, Greece, Hungary, Ireland,
Italy, Japan, Luxembourg, The Netherlands, New Zealand, Norway, Poland, Portugal, Republic of
Korea, Romania, Russian Federation, Slovakia, Spain, Sweden, Switzerland, Turkey, Ukraine, the
United Kingdom, and the United States. Further information on the Wassenaar Arrangement can be
found at http://www.wassenaar.org.

13 There are usually no regulations for the import of cryptographic products.

14 The three major annual conferences are CRYPTO, EUROCRYPT, and ASIACRYPT.

15 http://www.iacr.org

Preface xxiii

I hope that Contemporary Cryptography serves your needs. Also, I would
like to take the opportunity to invite you as a reader to let me know your
opinions and thoughts. If you have something to correct or add, please let me
know. If T have not expressed myself clearly, please let me know. I appreci-
ate and sincerely welcome any comment or suggestion in order to update the
book in future editions and to turn it into an appropriate reference book that can
be used for educational purposes. The best way to reach me is to send a mes-
sage to rolf.oppliger@esecurity.ch. You can also visit the book’s home page at
http://www.esecurity.ch/Books/cryptography.html. I use this page to periodically
post errata lists, additional information, and complementary material related to the
topic of the book (e.g., slides that can be used to lecture and teach introductory
courses on contemporary cryptography). I’'m looking forward to hearing from you
in one way or another.

References
[1] Koblitz, N.I., A Course in Number Theory and Cryptography, 2nd edition. Springer-Verlag, New
York, 1994.

[2] Schneier, B., Applied Cryptography: Protocols, Algorithms, and Source Code in C, 2nd edition.
John Wiley & Sons, New York, 1996.

[3] Menezes, A., P. van Oorschot, and S. Vanstone, Handbook of Applied Cryptography. CRC Press,
Boca Raton, FL, 1996.

[4] Luby, M., Pseudorandomness and Cryptographic Applications. Princeton Computer Science
Notes, Princeton, NJ, 1996.

[5S] Buchmann, J.A., Introduction to Cryptography. Springer-Verlag, New York, 2000.

[6] Garrett, P.B., Making, Breaking Codes: Introduction to Cryptology. Prentice Hall PTR, Upper
Saddle River, NJ, 2001.

[7]1 Mollin, R.A., An Introduction to Cryptography. Chapman & Hall/CRC, Boca Raton, FL, 2001.

[8] Goldreich, O., Foundations of Cryptography: Volume 1, Basic Tools. Cambridge University Press,
Cambridge, UK, 2001.

[9] Delfs, H., and H. Knebl, Introduction to Cryptography: Principles and Applications. Springer-
Verlag, New York, 2002.

[10] Stinson, D., Cryptography: Theory and Practice, 2nd edition. Chapman & Hall/CRC, Boca
Raton, FL, 2002.

[11] Mollin, R.A., RSA and Public-Key Cryptography. Chapman & Hall/CRC, Boca Raton, FL, 2002.
[12] Smart, N., Cryptography, An Introduction. McGraw-Hill Education, UK, 2003.

[13] Ferguson, N., and B. Schneier, Practical Cryptography. John Wiley & Sons, New York, 2003.

XX1V

[14] Mao, W., Modern Cryptography: Theory and Practice. Prentice Hall PTR, Upper Saddle River,
NJ, 2003.

[15] Goldreich, O., Foundations of Cryptography: Volume 2, Basic Applications. Cambridge Univer-
sity Press, Cambridge, UK, 2004.

[16] Dent, A.W., and C.J. Mitchell, User’s Guide to Cryptography and Standards. Artech House
Publishers, Norwood, MA, 2004.

Acknowledgments

There are many people involved in the writing and publication of a book. I thank
all of them. In particular, I thank Kurt Bauknecht, Dieter Hogrefe, Hansjiirg Mey,
and Giinther Pernul for their ongoing interest and support for my scientific work;
Daniel Bleichenbacher, Pascal Junod, Javier Lopez, Rafal Lukawiecki, Ueli Maurer,
Hans Oppliger, Ruedi Rytz, Peter Stadlin for answering specific questions, reading
parts of the manuscript, and discussing some interesting questions with me; Ed
Dawson for reviewing the entire manuscript; and Gene Spafford for providing
the foreword. Once again, the staff at Artech House was enormously helpful in
producing and promoting the book. Among these people, I am particularly grateful
to Julie Lancashire, Tim Pitts, Tiina Ruonamaa, and Wayne Yuhasz. My most
important thanks go to my family—my wife Isabelle and our beloved children
Lara and Marc. Without their encouragement, support, patience, and love, this book
would not exist.

XXV

XXVi

Chapter 1

Introduction

In this chapter, we introduce the topic of the book (i.e., contemporary cryptography)
at a high level of abstraction. More specifically, we elaborate on cryptology (includ-
ing cryptography) in Section 1.1, address cryptographic systems (or cryptosystems)
in Section 1.2, provide some historical background information in Section 1.3, and
outline the rest of the book in Section 1.4.

1.1 CRYPTOLOGY

The term cryptology is derived from the Greek words “kryptés,” standing for
“hidden,” and “16gos,” standing for “word.” Consequently, the meaning of the term
cryptology is best paraphrased as “hidden word.” This paraphrase refers to the
original intent of cryptology, namely to hide the meaning of specific words and to
protect their confidentiality and secrecy accordingly. As will (hopefully) become
clear throughout the rest of the book, this viewpoint is far too narrow, and the
term cryptology is nowadays used for many other security-related purposes and
applications (in addition to the protection of the confidentiality and secrecy of
messages).

More specifically, cryptology refers to the mathematical science and field of
study that comprises both cryptography and cryptanalysis.

2.9

e The term cryptography is derived from the Greek words “kryptds” (see above)
and “graphein,” standing for “write.” Consequently, the meaning of the term
cryptography is best paraphrased as “hidden writing.” According to Request
for Comments (RFC) 2828 [1], cryptography refers to the “mathematical sci-
ence that deals with transforming data to render its meaning unintelligible

2 Contemporary Cryptography

(i.e., to hide its semantic content), prevent its undetected alteration, or pre-
vent its unauthorized use. If the transformation is reversible, cryptography
also deals with restoring encrypted data to intelligible form.” Consequently,
cryptography refers to the process of protecting data in a very broad sense.

e The term cryptanalysis is derived from the Greek words “kryptds” (see
above) and “analyein,” standing for “to loosen.” Consequently, the meaning
of the term can be paraphrased as “loosen the hidden word.” This paraphrase
refers to the process of destroying the cryptographic protection, or—more
generally—to study the security properties and possibilities to break cryp-
tographic techniques and systems. Again referring to RFC 2828 [1], the term
cryptanalysis is used to refer to the “mathematical science that deals with
analysis of a cryptographic system in order to gain knowledge needed to break
or circumvent the protection that the system is designed to provide.” As such,
the cryptanalyst is the antagonist of the cryptographer, meaning that his or
her job is to break or at least circumvent the protection the cryptographer has
designed and implemented in the first place.

Many other definitions for the terms cryptology, cryptography, and cryptanaly-
sis are available and can be found in the relevant literature (or on the Internet, respec-
tively). For example, the term cryptography is sometimes said to refer to the study
of mathematical techniques related to all aspects of information security (e.g., [2]).
These aspects include (but are not restricted to) data confidentiality, data integrity,
entity authentication, data origin authentication, and/or nonrepudiation. Again, this
definition is very broad and comprises anything that is directly or indirectly related
to information security.

In some literature, the term cryptology is even said to include steganography
(in addition to cryptography and cryptanalysis).

o The term steganography is derived from the Greek words “steganos,” standing
for “impenetrable,” and “graphein (see above). Consequently, the meaning of
the term is best paraphrased as “impenetrable writing.” According to Request
for Comments (RFC) 2828 [1], the term steganography refers to “methods
of hiding the existence of a message or other data. This is different than
cryptography, which hides the meaning of a message but does not hide
the message itself.” An example of a formerly used steganographic method
is invisible ink. Contemporary methods are more sophisticated and try to
hide additional information in electronic files. In general, this information is
arbitrary. It may, however, also be used to name the owner of a file or the
recipient thereof. In the first case, one refers to digital watermarking, whereas
in the second case one refers to digital fingerprinting. Digital watermarking

Introduction 3

and fingerprinting are currently very active areas of steganographic research
and development.

Cryptology

Cryptography Cryptanalysis Steganography

Figure 1.1 The relationship between cryptology, cryptography, cryptanalysis, and steganography.

The relationship between cryptology, cryptography, cryptanalysis, and stegano-
graphy is overviewed in Figure 1.1. In this book, we address cryptography in a rather
narrow sense (this narrow sense is illustrated with a box in Figure 1.1). We elabo-
rate on cryptanalysis only where necessary and appropriate, and we do not address
steganography at all. There are many other books that provide useful information
about steganography and steganographic technologies and techniques in general
(e.g., [3, 4]), and digital watermarking and digital fingerprinting in particular (e.g.,
(5, 6]).

1.2 CRYPTOGRAPHIC SYSTEMS

According to RFC 2828 [1], the term cryptographic system (or cryptosystem in
short) refers to “a set of cryptographic algorithms together with the key management
processes that support use of the algorithms in some application context.” Again, this
definition is fairly broad and comprises all kinds of cryptographic algorithms (and
protocols).

In some literature, the term cryptographic scheme is used to refer to a crypto-
graphic system. Unfortunately, it is seldom explained what the difference(s) between
a (cryptographic) scheme and a system really is (are). So for the purpose of this
book, we don’t make a distinction, and we use the term cryptographic system to
refer to either of them. We hope that this simplification is not too confusing. In the
realm of digital signatures, for example, people frequently talk about digital signa-
ture schemes. In this book, however, we are talking about digital signature systems
and actually mean the same thing.

4 Contemporary Cryptography

If one is talking about a cryptographic system, then one is often talking about
one or several algorithms. The term algorithm,! in turn, is best defined as suggested
in Definition 1.1.

Definition 1.1 (Algorithm) An algorithm is a well-defined computational proce-
dure that takes a variable input and generates a corresponding output.

Consequently, an algorithm is simply a computational procedure that is well
defined and that turns a variable input into a corresponding output (according
to the computational procedure it defines). It is sometimes also required that an
algorithm halts within a reasonable amount of time (for any meaningful definition
of “reasonable”). In either case, Definition 1.1 is rather vague and mathematically
unprecise. It neither says what the computational model for the algorithm is, nor does
it say anything about the problem the algorithm is supposed to solve (e.g., computing
a mathematical function). Consequently, from a theoretical viewpoint, an algorithm
can be more precisely defined as a well-defined computational procedure for a well-
defined computational model for solving a well-defined problem. This definition,
however, is a little bit clumsy, and we use the simpler (and more intuitive) definition
given in Definition 1.1.

In either case, it is important to distinguish between deterministic and proba-
bilistic algorithms:

e An algorithm is deferministic if its behavior is completely determined by the
input. Consequently, the algorithm always generates the same output for the
same input (if it is executed multiple times).

e An algorithm is probabilistic (or randomized) if its behavior is not completely
determined by the input, meaning that the algorithm internally uses and
takes advantage of some randomly (or pseudo-randomly) generated values.
Consequently, a probabilistic algorithm may generate a different output each
time it is executed with the same input (if it is executed multiple times).
There are different types of probabilistic algorithms, and in Section 6.6.3 we
distinguish between Las Vegas, Monte Carlo, and Atlantic City algorithms.

An algorithm may be implemented by a computer program that is written in
a specific programming language (e.g., Pascal, C, or Java). Whenever we describe
algorithms in this book, we don’t use a specific programming language; we use
a formal notation instead. The notation used to describe algorithms is sketched
in Algorithm 1.1. The input and output parameters of an algorithm are written in
brackets at the beginning and at the end of the algorithm description. The body of

1 The term algorithm is derived from the name of the mathematician Mohammed ibn-Musa al-
Khwarizmi, who was part of the royal court in Baghdad and lived from about 780 to 850.

Introduction 5

the algorithm consists of a set of arbitrary computational steps that are executed
sequentially.

Algorithm 1.1 The notation used to describe algorithms.

(input parameters)

computational step

(output parameters)

If more than one entity is involved in an algorithm (or the computational
procedure it defines, respectively), then one is in the realm of protocols.> As
suggested in Definition 1.2, a protocol can be viewed as a distributed algorithm.

Definition 1.2 (Protocol) A protocol is a distributed algorithm in which two or
more entities take part.

Alternatively, one could also define a protocol as a distributed algorithm in
which a set of entities takes part. In this case, it becomes immediately clear that
an algorithm also represents a protocol, namely one that is degenerated in a certain
sense (i.e., the set consists of only one entity). Hence, an algorithm can always be
viewed as a special case of a protocol. The major distinction between an algorithm
and a protocol is that only one entity is involved in the former, whereas typically
two or more entities are involved in the latter. This distinguishing fact is important
and must be kept in mind when one talks about algorithms and protocols (not only
cryptographic ones).

Similar to an algorithm, a protocol may be deterministic or probabilistic (de-
pending on whether the protocol internally uses and takes advantage of random val-
ues). In fact, many protocols overviewed and discussed in this book are probabilistic
in nature.

In this book, we are mainly interested in cryptographic algorithms and proto-
cols as suggested in Definitions 1.3 and 1.4.

Definition 1.3 (Cryptographic algorithm) A cryptographic algorithm is an algo-
rithm that employs and makes use of cryptographic techniques and mechanisms.

Definition 1.4 (Cryptographic protocol) A cryptographic protocol is a protocol
that employs and makes use of cryptographic techniques and mechanisms.

2 The term protocol originates from diplomacy.

6 Contemporary Cryptography

Remember the definition for a cryptographic system (or cryptosystem) given
in RFC 2828 and quoted on page 3. According to this definition, a cryptosystem
may comprise more than one algorithm, and the algorithms may not necessarily be
executed by the same entity (i.e., they may be executed by multiple entities in a dis-
tributed way). Consequently, this notion of a cryptosystem comprises the notion of
a cryptographic protocol as suggested in Definition 1.4. Hence, another way to look
at cryptographic algorithms and protocols is to say that a cryptographic algorithm
is a single-entity cryptosystem, whereas a cryptographic protocol is a multientity or
multiple entities cryptosystem. These terms, however, are less frequently used in the
literature. We don’t use them in this book either.

In either case, it is important to note that cryptographic applications may
consist of multiple (sub)protocols, that these (sub)protocols and their concurrent
executions may interact in some subtle ways, and that these interactions and interde-
pendencies may be exploited by various chosen-protocol attacks (see, for example,
[7] for the notion of a chosen-protocol attack). As of this writing, we are just at the
beginning of properly understanding chosen-protocol attacks and what they can be
used for in cryptanalysis. These attacks are not further addressed in this book.

In the cryptographic literature, it is quite common to use human names to refer
to the entities that take part and participate in a cryptographic protocol (e.g., a Diffie-
Hellman key exchange). For example, in a two-party protocol the participating
entities are usually called Alice and Bob. This is a convenient way of making things
unambiguous with relatively few words, since the pronoun she can then be used for
Alice, and he can be used for Bob. The disadvantage of this naming scheme is that
people assume that the names are referring to people. This need not be the case, and
Alice, Bob, and all other entities may be computer systems, cryptographic devices,
or anything else. In this book, we don’t follow the tradition of using Alice, Bob, and
the rest of the gang. Instead, we use single-letter characters, such as A, B, C, ..., to
refer to the entities that take part and participate in a cryptographic protocol. This is
less fun (I guess), but more appropriate (I hope).

The cryptographic literature is also full of examples of more or less useful
cryptographic protocols. Some of these protocols are overviewed, discussed, and
put into perspective in this book. To formally describe a (cryptographic) protocol in
which two parties (i.e., A and B) take part, we use the notation sketched in Protocol
1.1. Some input parameters may be required on either side of the protocol (note that
the input parameters are not necessarily the same). The protocol then includes a set
of computational and communicational steps. Each computational step may occur
only on one side of the protocol, whereas each communicational step requires data
to be transferred from one side to the other. In this case, the direction of the data
transmission is indicated with a directed arrow. Finally, some parameters may be
output on either side of the protocol. These output parameters actually represent

Introduction 7

Protocol 1.1 The notation used for protocols.

A B
(input parameters) (input parameters)
compute;t'i(.)nal step compute;t.i;mal step
—
compute;t'i(.)nal step computz;t.i;mal step
(output ;;e;;ameters) (output I;A;ameters)

the result of the protocol execution. Similar to the input parameters, the output
parameters must not necessarily be the same on either side of the protocol execution.
In many cases, however, the output parameters are the same (and represent the result
and the common output of the protocol execution).

1.2.1 Classes of Cryptographic Systems

Cryptographic systems may or may not use secret parameters (e.g., cryptographic
keys). Furthermore, if secret parameters are used, then they may or may not be
shared between the participating entities. Consequently, there are at least three
classes of cryptographic systems that can be distinguished,® and these classes are
characterized in Definitions 1.5-1.7.

Definition 1.5 (Unkeyed cryptosystem) An unkeyed cryptosystem is a crypto-
graphic system that uses no secret parameter.

Definition 1.6 (Secret key cryptosystem) A secret key cryptosystem is a crypto-
graphic system that uses secret parameters that are shared between the participating
entities.

Definition 1.7 (Public key cryptosystem) A public key cryptosystem is a crypto-
graphic system that uses secret parameters that are not shared between the partici-
pating entities.

In Chapter 2, we introduce and briefly overview some representatives of
unkeyed, secret key, and public key cryptosystems. These representatives are further

3 This classification scheme is due to Ueli Maurer.

8 Contemporary Cryptography

addressed in Parts I (unkeyed cryptosystems), III (secret key cryptosystems), and IV
(public key cryptosystems) of this book. In these parts, we also provide definitions
that are mathematically more precise.

1.2.2 Secure Cryptographic Systems

The goal of cryptography is to design, implement, deploy, and make use of crypto-
graphic systems that are secure in some meaningful way. In order to make precise
statements about the security of a cryptographic system, one must formally define
what the term “security” really means. Unfortunately, reality looks a little bit differ-
ent, and the literature is full of cryptographic systems that are claimed to be secure
without providing an appropriate definition for the term security. This is unfortunate,
because anything can be claimed to be secure, unless its meaning is defined and
precisely nailed down.

In general, a security definition must answer (at least) the following two
questions:

1. What are the capabilities of the adversary? An answer to this question must
specifiy, for example, the adversary’s computing power, available memory,
available time, types of feasible attacks, and access to a priori or side in-
formation. For some of these parameters, it must be specified whether they
are finite or not. Most importantly, it may be reasonable to assume that there
are adversaries with infinite computing power at their disposal, meaning that
they can perform infinitely many computations in a given amount of time.
The alternative is to consider adversaries with finite computing power at their
disposal. Obviously, these adversaries can only perform a finite number of
computations in a given amount of time. A similar distinction can be made
with respect to the available memory and available time. Note, however, that
it is reasonable to assume that no adversary has an infinite amount of time
at disposal. Furthermore, the types of feasible attacks depend on the crypto-
graphic system in question. For example, in Sections 10.1 and 14.1 we say
that ciphertext-only, known-plaintext, (adaptive) chosen-plaintext, and (adap-
tive) chosen-ciphertext attacks are relevant for (symmetric and asymmetric)
encryption systems. Other cryptosystems may be subject to other types of
attacks.

2. What is the task the adversary must solve in order to be successful (i.e.,
to break the security of the system)? In a typical setting, the adversary’s
task is to find (i.e., compute, guess, or otherwise determine) one or several
pieces of information he or she should not be able to know. For example,
if the adversary is able to determine the cryptographic key used to encrypt

Introduction 9

a message, then he or she must certainly be considered to be successful.
There are, however, also weaker notions of successful attacks. For example, in
modern cryptography one usually defines a theoretically perfect ideal system
and says that the adversary is successful if he or she can tell it apart from a real
system (i.e., decide whether he or she is interacting with a real system or an
ideal system). If he or she cannot tell the systems apart, then the real system
has all relevant properties of the ideal system (at least for a computationally
bounded observer), and hence the real system is arguably as secure as the ideal
one. Many security proofs follow this line of argumentation.

Strong security definitions are obtained when the adversary is assumed to be
as powerful as possible, whereas the task he or she must solve is assumed to be as
simple as possible. Taking these notes into account, a secure cryptographic system
can be defined as suggested in Definition 1.8.

Definition 1.8 (Secure cryptographic system) A cryptographic system is secure if
an adversary with specified capabilities is not able to break it, meaning that he or
she is not able to solve the specified task.

Depending on the adversary’s capabilities, there are two basic notions of
security for a cryptographic system.

Unconditional security: If the adversary is not able to solve the task even with
infinite computing power, then we talk about unconditional or information-
theoretic security. The mathematical theories behind this type of security are
probability theory and information theory, as briefly introduced in Chapters 4
and 5.

Conditional security: If the adversary is theoretically able to solve the task, but it
is computationally infeasible for him or her (meaning that he or she is not able
to solve the task given his or her resources, capabilities, and access to a priori
or side information), then we talk about conditional or computational secu-
rity. The mathematical theory behind this type of security is computational
complexity theory, as briefly introduced in Chapter 6.

Interestingly, there are cryptosystems known to be secure in the strong sense
(i.e., unconditionally secure), whereas there are no cryptosystems known to be
secure in the weak sense (i.e., computationally secure). Not even the existence of
conditionally or computationally secure cryptosystems has formally been proven
so far. The underlying problem is that it is generally not possible to prove lower
bounds for the computational complexity of a problem (this is an inherent weakness
of complexity theory as we know and use it today).

10 Contemporary Cryptography

In some literature, provable security is mentioned as yet another notion of
security (e.g., [8]). The idea of provable security goes back to the early days of
public key cryptography, when Whitfield Diffie and Martin E. Hellman proposed
a complexity-based proof (for the security of a public key cryptosystem) in their
seminal paper entitled “New Directions in Cryptography” [9].# The idea is to
show that breaking a cryptosystem is computationally equivalent to solving a hard
problem. This means that one must prove the following two directions:

e If the hard problem can be solved, then the cryptosystem can be broken;

o If the cryptosystem can be broken, then the hard problem can be solved.

Diffie and Hellman proved the first direction for their key exchange protocol
(see Section 16.3). They did not prove the second direction.’ This is unfortunate,
because the second direction is the important direction from a security perspective.
If we can prove that an adversary who is able to break a cryptosystem is also able
to solve the hard problem, then we can argue that it is very unlikely that such
an adversary really exists and hence that the cryptosystem in question is likely
to be secure. Michael O. Rabin was the first person who found and proposed a
cryptosystem that can be proven to be computationally equivalent to a hard problem
(i.e., the integer factorization problem as captured in Definition 7.11) [11]. The
Rabin public key cryptosystem is further addressed in Section 14.2.2.

The notion of (provable) security has fueled a lot of research since the late
1970s and early 1980s. In fact, there are many (public key) cryptosystems shown
to be provably secure in exactly this sense. It is, however, important to note that a
complexity-based proof is not absolute and that it is only relative to the (assumed)
intractability of the underlying mathematical problem(s). This is a similar situation
to proving that a given problem is A'P-complete. It proves that the problem is at least
as difficult as any other A'P-complete problem, but it does not provide an absolute
proof of the computational difficulty of the problem.®

More recently (i.e., since about the 1990s), people have come up with a
methodology for designing cryptographic systems (typically security protocols) that
are provably secure in the “reductionist” sense mentioned earlier, and that consists
of the following two steps:

4 This paper is the one that officially gave birth to public key cryptography. There is a companion

paper entitled “Multiuser Cryptographic Techniques” that was presented by the same authors at the

National Computer Conference that took place on June 7-10, 1976, in New York City.

Ueli M. Maurer made the first serious attempt to prove the second direction [10].

6 Refer to Section 6.6.2.2 to get a more detailed overview about A/P-completeness and N P-complete
problems.

W

Introduction 11

o First, an ideal system is designed in which all parties (including the adversary)
have access to a random function (also known as random oracle).” This ideal
system is then proven to be secure in the sense given earlier.

e Second, one replaces the random oracle with a “good” and “appropriately
chosen” cryptographic hash function, such as MD5 or SHA-1, and provides
all parties (again, including the adversary) with a specification of this function.

Consequently, one obtains an implementation of the ideal system in the real
world where random oracles do not exist. Due to its use of random oracles, the
design methodology is commonly referred to as random oracle methodology. It
yields cryptographic systems that are provably secure in the random oracle model.
Unfortunately, it has been shown that it is possible to construct cryptographic
systems that are provably secure in the random oracle model, but that become
insecure whenever the cryptographic hash function used in the protocol (to replace
the random oracle) is specified and nailed down. This theoretical result is worrisome,
and since its publication many researchers have started to think controversially
about the random oracle methodology in general, and the random oracle model in
particular. At least it must be noted that formal analyses in the random oracle model
are not strong security proofs (because of the underlying ideal assumptions about
the randomness properties of the cryptographic hash functions). The random oracle
model is further addressed in Section 13.3. For the purpose of this book, we don’t
consider provable security (with or without the random oracle model) as a security
notion of its own; instead we treat it as a special case of conditional security.

In the past, we have seen many examples in which people have tried to improve
the security of a cryptographic system by keeping secret its design and internal
working principles. This approach is sometimes referred to as “security through
obscurity.” Many of these systems do not work and can be broken trivially.® This
insight has a long tradition in cryptography, and there is a well-known cryptographic
principle—the Kerckhoffs’ principle?—that basically says that a cryptographic sys-
tem should be designed so as to be secure when the adversary knows all details of
the system, except for the values explicitly declared to be secret, such as a secret
cryptographic key [12]. We follow this principle in this book, and hence we only
address cryptosystems for which we can assume that the adversary knows all of the
details of the system.

The design of a secure cryptographic system is a difficult and challenging task.
One can neither rely on intuitions regarding the “typical” state of the environment in

7 The notion of a random function is introduced in Section 13.1.
8 Note that “security through obscurity” may work well outside the realm of cryptography.
9 The principle is named after Auguste Kerckhoffs who lived from 1835 to 1903.

12 Contemporary Cryptography

which the system operates (because the adversary will try to manipulate the environ-
ment into “untypical” states), nor can one be content with countermeasures designed
to withstand specific attacks (because the adversary will try to attack the systems in
ways that are different from the ones the designer envisioned). Cryptographic sys-
tems that are based on make-believe, adhoc approaches and heuristics are typically
broken sooner or later. Consequently, the design of a secure cryptographic system
should be based on firm foundations. It typically consists of the following two steps:

1. In the definitional step, the problem the cryptographic system is intended to
solve must be identified, precisely defined, and formally specified.

2. In the constructive step, a cryptographic system that satisfies the definition
distilled in step one, possibly while relying on intractability assumptions, must
be designed.

Again, it is important to note that most parts of modern cryptography rely
on intractability assumptions and that relying on such assumptions seems to be
unavoidable today (see Chapter 21). Still, there is a huge difference between relying
on an explicitly stated intractability assumption and just assuming (or rather hoping)
that an ad hoc construction satisfies some unspecified or vaguely specified goals.

1.2.3 Side Channel and Related Attacks

It is important to note (and always keep in mind) that an implementation of a
secure cryptographic system may not necessarily be secure. In fact, many attacks
can be mounted against a particular implementation of a (secure) cryptographic
system (rather than its mathematical properties). For example, there are attacks that
take advantage of and try to exploit the side channel information that a particular
implementation may leak. These attacks are called side channel attacks. Since about
the middle of the 1990s, people have found and come up with many possibilities to
mount side channel attacks. The following list is not comprehensive.

e Timing attacks take advantage of and try to exploit the correlation between
a cryptographic key and the running time of a (cryptographic) operation that
employs this key [13]. Consider, for example, the square-and-multiply algo-
rithm (i.e., Algorithm 3.3) that is frequently used in public key cryptography
to decrypt data or digitally sign messages. The running time of this algorithm
mainly depends on the number of ones in the argument that represents the
(private) exponent and key; hence the running time of the algorithm provides
some side channel information about the particular key in use. This is a very
general problem, and there are basically two possibilities to protect against
timing attacks. The first possibility is to make sure that a specific operation

Introduction 13

always takes a fixed amount of time (or at least an amount of time that is not
related to the cryptographic key in use). The second possibility is to pseudo-
randomly and reversably transform the data on which the cryptographic oper-
ation is applied (i.e., the data is blinded). Both possibilities have the disadvan-
tage that they lead to performance penalties.

o Differential fault analysis takes advantage of and exploits the fact that er-
rors on cryptographic operations that depend on a particular cryptographic
key may also leak some information about the key in use. The errors, in
turn, can be random, latent (e.g., due to a buggy implementation), or—most
interestingly—induced. In fact, people have tried all kinds of physical pressure
to induce such errors, and they have been surprisingly successful in analyzing
them (e.g., [14, 15]). Protection against differential fault analysis seems to be
more involved than protection against timing attacks.

e A conceptually similar but still very different side-channel attack is sometimes
called failure analysis. Failure analysis takes advantage of and exploits the
fact that many implementations of cryptographic operations return notifica-
tions (e.g., error messages) if they fail. Consequently, these implementations
provide a one-bit oracle that depends on the cryptographic operation and key
in use. It has been shown that such an oracle—when invoked a very large num-
ber of times—can eventually be used to misuse the key (e.g., [16]). Designing
and implementing cryptographic systems in a way that is resistant to failure
analysis is a currently very active area of research and development.

o Differential power analysis exploits the fact that any hardware device con-
sumes power, because this power consumption can be monitored and analyzed
while a cryptographic operation is going on. Based on the fact that the power
consumption varies significantly during the different steps of a cryptographic
operation, it may be possible to derive information about the cryptographic
key in use (e.g., [17]). In general, the smaller and the more specialized a hard-
ware device is, the more successful a differential power analysis is likely to
be. For example, differential power analysis has been shown to be particularly
successful against smartcards. There are a couple of possibilities to protect
against differential power analysis, such as keeping the power consumption
stable or blinding the data before the cryptographic operations are applied.

In addition to these side-channel attacks, many other attacks (against tam-
per resistant hardware devices) employ invasive measuring techniques (e.g., [18,
19]). This field of study has a long tradition in computer security. For example, the
U.S. government has invested a lot of time and money in the classified TEMPEST

14 Contemporary Cryptography

program'® to prevent sensitive information from leaking through electromagnetic
emanation. More recently, people have tried to exploit and employ diffuse visible
light from cathode-ray tube (CRT) displays'' and acoustic emanation'? for cryptan-
alytical purposes. From a practical point of view, all of the earlier mentioned types of
attacks (and many others that will be developed in the future) are relevant and must
be considered with care (e.g., [20]). For the purpose of this book, however, we only
mention some of the more important attacks, but we do not address them in detail.
You may refer to the referenced literature to get more information about them.

1.3 HISTORICAL BACKGROUND INFORMATION

Cryptography has a long and thrilling history that is addressed in many books (e.g.,
[21-23]). Since the very beginning of the spoken and—even more important—
written word, people have tried to transform “data to render its meaning unintelli-
gible (i.e., to hide its semantic content), prevent its undetected alteration, or prevent
its unauthorized use” [1]. According to this definition, these people have always em-
ployed cryptography and cryptographic techniques. The mathematics behind these
early systems may not have been very sophisticated, but they still employed cryp-
tography and cryptographic techniques. For example, Gaius Julius Caesar'? used
an encryption system in which every letter in the Latin alphabet was substituted
with the letter that is found three positions afterwards in the lexical order (i.e.,
“A” is substituted with “D,” “B” is substituted with “E,” and so on). This simple
additive cipher is known as Caesar cipher (see Section 10.1.1). Later on, people
employed encryption systems that use more involved mathematical transformations.
Many books on cryptography contain numerous examples of historically relevant
encryption systems—they are not repeated in this book.

Until World War II, cryptography was considered to be an art (rather than a
science) and was primarily used in the military and diplomacy. The following two
developments and scientific achievements turned cryptography from an art into a
science:

e During World War 1II, Claude E. Shannon'# developed a mathematical the-
ory of communication [24] and a related communication theory of secrecy

10 http://www.eskimo.com/~joelm/tempest.html

11 http://www.cl.cam.ac.uk/TechReports/UCAM-CL-TR-577.pdf

12 http://www.wisdom.weizmann.ac.il/~tromer/acoustic

13 Gaius Julius Caesar was a Roman emperor who lived from 102 BC to 44 BC.
14 Claude E. Shannon was a mathematician who lived from 1916 to 2001.

Introduction 15

systems [25] when he was working at AT&T Laboratories.'> After their pub-
lication, the two theories started a new branch of research that is commonly
referred to as information theory (refer to Chapter 5 for a brief introduction
on information theory).

As mentioned earlier, Diffie and Hellman developed and proposed the idea of
public key cryptography at Stanford University in the 1970s.'¢ Their vision
was to employ trapdoor functions to encrypt and digitally sign electronic
documents. Informally speaking, a trapdoor function is a function that is easy
to compute but hard to invert, unless one knows and has access to some
specific trapdoor information. This information is the private key that must
be held by only one person. Diffie and Hellman’s work culminated in a key
agreement protocol (i.e., the Diffie-Hellman key exchange protocol described
in Section 16.3) that allows two parties that share no prior secret to exchange
a few messages over a public channel and to establish a shared (secret) key.
This key can then be used as a session key.

After Diffie and Hellman published their discovery, a number of public key

cryptosystems were developed and proposed. Some of these systems are still in use
today, such as the RSA [27] and ElGamal [28] public key cryptosystems. Other
systems, such as a number of public key cryptosystems based on the knapsack
problem!” have been broken and are no longer in use today. Some public key
cryptosystems are overviewed and discussed in Part IV of this book.

Since around the early 1990s, we have seen a wide deployment and massive

commercialization of cryptography. Today, many companies develop, market, and
sell cryptographic techniques, mechanisms, services, and products (implemented in
hardware or software) on a global scale. There are cryptography-related conferences

15 Similar studies were done by Norbert Wiener who lived from 1894 to 1964.
16 Similar ideas were pursued by Ralph C. Merkle at the University of California at Berkeley [26].

17

More recently, the British government announced that public key cryptography, including the
Diffie-Hellman key agreement protocol and the RSA public key cryptosystem, was invented at the
Government Communications Headquarters (GCHQ) in Cheltenham in the early 1970s by James
H. Ellis, Clifford Cocks, and Malcolm J. Williamson under the name non-secret encryption (NSE).
You may refer to the note “The Story of Non-Secret Encryption” written by Ellis in 1997 (available
at http://citeseer.nj.nec.com/ellis97story.html) to get the story. Being part of the world of secret
services and intelligence agencies, Ellis, Cocks, and Williamson were not allowed to openly talk
about their invention.

The knapsack problem is a well-known problem in computational complexity theory and applied
mathematics. Given a set of items, each with a cost and a value, determine the number of each item
to include in a collection so that the total cost is less than some given cost and the total value is
as large as possible. The name derives from the scenario of choosing treasures to stuff into your
knapsack when you can only carry so much weight.

16

Contemporary Cryptography

and trade shows'® one can attend to learn more about products that implement
cryptographic techniques, mechanisms, and services. The major goal of this book
is to provide some basic understanding for what is currently going on. If you want
to learn more about the practical use of cryptography to secure Internet and WWW
applications, you may refer to [29-31] or any other book about Internet and Web
security.!® These practical applications of cryptography are not addressed (repeated)
in this book.

1.4 OUTLINE OF THE BOOK

The rest of this book is organized as follows:

18

In Chapter 2, Cryptographic Systems, we introduce, briefly overview, and
put into perspective the three classes of cryptographic systems (i.e., unkeyed
cryptosystems, secret key cryptosystems, and public key cryptosystems) and
some major representatives.

In Chapter 3, Discrete Mathematics, we begin the part on mathematical
fundamentals (i.e., Part I) by discussing the aspects of discrete mathematics
that are relevant for contemporary cryptography.

In Chapter 4, Probability Theory, we elaborate on probability theory as far as
it is relevant for contemporary cryptography.

In Chapter 5, Information Theory, we use probability theory to quantify
information and to introduce the aspects of information theory that are used
in contemporary cryptography.

In Chapter 6, Complexity Theory, we provide a brief introduction to complex-
ity theory as far as it is relevant for contemporary cryptography.

In Chapter 7, One-Way Functions, we begin the part on unkeyed cryptosys-
tems (i.e., Part IT) by elaborating on one-way functions and discussing some
candidate one-way functions that are frequently used in cryptography.

In Chapter 8, Cryptographic Hash Functions, we overview and discuss cryp-
tographic hash functions and their use in contemporary cryptography.

In Chapter 9, Random Bit Generators, we elaborate on random bit generators
and discuss some possible realizations and implementations.

The most important trade show is the RSA Conference held annually in ths United States, Europe,
and Asia. Refer to http://www.rsaconference.com for more information.
19 http://www.esecurity.ch/bookstore.html

Introduction 17

o In Chapter 10, Symmetric Encryption Systems, we begin the part on secret key
cryptosystems (i.e., Part IIT) by overviewing and discussing some symmetric
encryption systems.

o In Chapter 11, Message Authentication Codes, we address message authenti-
cation and explain how secret key cryptography can be used to generate and
verify message authentication codes (MACs).

o In Chapter 12, Pseudorandom Bit Generators, we explore the notion and elab-
orate on possible constructions for pseudorandom bit generators (PRBGs).

e In Chapter 13, Pseudorandom Functions, we introduce, discuss, and put into
perspective pseudorandom functions (PRFs).

o In Chapter 14, Asymmetric Encryption Systems, we begin the part on public
key cryptosystems (i.e., Part IV) by overviewing and discussing some asym-
metric encryption systems.

e In Chapter 15, Digital Signature Systems, we elaborate on digital signatures
and digital signature systems (DSSs) as an increasingly important application
of public key cryptography.

o In Chapter 16, Key Establishment, we address key establishment and elaborate
on corresponding key distribution and key agreement protocols.

e In Chapter 17, Entity Authentication, we elaborate on entity authentication in
general and (cryptographic) authentication protocols that implement a proof
by knowledge in particular.

o In Chapter 18, Secure Multiparty Computation, we address the problem of
how mutually distrusting parties can compute a function without revealing
their individual arguments to one another.

e In Chapter 19, Key Management, we begin the epilogue (i.e., Part V) by
discussing some aspects related to key management.

e In Chapter 20, Conclusions, we conclude with some remarks about the current
state of the art in cryptography.

e In Chapter 21, Outlook, we provide an outlook about possible and likely
developments and trends in the future.

Last but not least, the book includes two appendixes (i.e., a list of abbreviations
and acronyms and a summary of the mathematical notation used in the book), a page
about the author, and an index.

18

Contemporary Cryptography

Note that cryptography is a field of study that is far too broad to be addressed in

a single book and that you have to refer to additional material, such as the literature
referenced at the end of each chapter, if you want to learn more about a particular
topic. The aims of this book are to provide an overview, to give an introduction into
each of the previously mentioned topics and areas of research and development, and
to put everything into perspective. Most importantly, we want to ensure that you no
longer cannot see the forest for the trees.

(1]
(2]

(3]

[4]

[5]

(6]

(71

(8]

[91

[10]

[11]

[12]

[13]

References

Shirey, R., Internet Security Glossary, Request for Comments 2828, May 2000.

Menezes, A., P. van Oorschot, and S. Vanstone, Handbook of Applied Cryptography. CRC Press,
Boca Raton, FL, 1996.

Wayner, P., Disappearing Cryptography, 2nd edition. Morgan Kaufmann Publishers, San Fran-
cisco, CA, 2002.

Cole, E., Hiding in Plain Sight: Steganography and the Art of Covert Communication. John Wiley
& Sons, New York, 2003.

Katzenbeisser, S., and F. Petitcolas (Eds.), Information Hiding Techniques for Steganography and
Digital Watermarking. Artech House Publishers, Norwood, MA, 2000.

Arnold, M., M. Schmucker, and S.D. Wolthusen, Techniques and Applications of Digital Water-
marking and Content Protection. Artech House Publishers, Norwood, MA, 2003.

Kelsey, J., B. Schneier, and D. Wagner, “Protocol Interactions and the Chosen Protocol Attack,”
Proceedings of the 5th International Workshop on Security Protocols, Springer-Verlag, 1997, pp.
91-104.

Stinson, D., Cryptography: Theory and Practice, 2nd edition. Chapman & Hall/CRC, Boca
Raton, FL, 2002.

Diffie, W., and M.E. Hellman, “New Directions in Cryptography,” IEEE Transactions on Infor-
mation Theory, IT-22(6), 1976, pp. 644—654.

Maurer, U.M., “Towards the Equivalence of Breaking the Diffie-Hellman Protocol and Comput-
ing Discrete Logarithms,” Proceedings of CRYPTO ’94, Springer-Verlag, LNCS 839, 1994, pp.
271-281.

Rabin, M.O., “Digitalized Signatures and Public-Key Functions as Intractable as Factorization,”
MIT Laboratory for Computer Science, MIT/LCS/TR-212, 1979.

Kerckhoffs, A., “La Cryptographie Militaire,” Journal des Sciences Militaires, Vol. IX, January
1883, pp. 5-38, February 1883, pp. 161-191.

Kocher, P., “Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and other
Systems,” Proceedings of CRYPTO ’96, Springer-Verlag, LNCS 1109, 1996, pp. 104-113.

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

Introduction 19

Boneh, D., R. DeMillo, and R. Lipton, “On the Importance of Checking Cryptographic Protocols
for Faults,” Proceedings of EUROCRYPT ’97, Springer-Verlag, LNCS 1233, 1997, pp. 37-51.

Biham, E., and A. Shamir, “Differential Fault Analysis of Secret Key Cryptosystems,” Proceed-
ings of CRYPTO 97, Springer-Verlag, LNCS 1294, 1997, pp. 513-525.

Bleichenbacher, D., “Chosen Ciphertext Attacks Against Protocols Based on the RSA Encryption
Standard PKCS #1,” Proceedings of CRYPTO ’98, Springer-Verlag, LNCS 1462, 1998, pp. 1-12.

Kocher, P., J. Jaffe, and B. Jun, “Differential Power Analysis,” Proceedings of CRYPTO ’99,
Springer-Verlag, LNCS 1666, 1999, pp. 388-397.

Anderson, R., and M. Kuhn, “Tamper Resistance — A Cautionary Note,” Proceedings of the 2nd
USENIX Workshop on Electronic Commerce, November 1996, pp. 1-11.

Anderson, R., and M. Kuhn, “Low Cost Attacks on Tamper Resistant Devices,” Proceedings of
the 5th International Workshop on Security Protocols, Springer-Verlag, LNCS 1361, 1997, pp.
125-136.

Anderson, R., “Why Cryptosystems Fail,” Communications of the ACM, Vol. 37, No. 11, Novem-
ber 1994, pp. 32-40.

Kahn, D., The Codebreakers: The Comprehensive History of Secret Communication from Ancient
Times to the Internet. Scribner, New York, 1996.

Bauer, F.L., Decrypted Secrets: Methods and Maxims of Cryptology, 2nd edition. Springer-Verlag,
New York, 2000.

Levy, S., Crypto: How the Code Rebels Beat the Government—Saving Privacy in the Digital Age.
Viking Penguin, New York, 2001.

Shannon, C.E., “A Mathematical Theory of Communication,” Bell System Technical Journal, Vol.
27, No. 3/4, July/October 1948, pp. 379-423/623-656.

Shannon, C.E., “Communication Theory of Secrecy Systems,” Bell System Technical Journal,
Vol. 28, No. 4, October 1949, pp. 656-715.

Merkle, R.C., “Secure Communication over Insecure Channels,” Communications of the ACM,
21(4), April 1978 (submitted in 1975), pp. 294-299.

Rivest, R.L., A. Shamir, and L. Adleman, “A Method for Obtaining Digital Signatures and Public-
Key Cryptosystems,” Communications of the ACM, 21(2), February 1978, pp. 120-126.

ElGamal, T., “A Public Key Cryptosystem and a Signature Scheme Based on Discrete Logarithm,”
IEEE Transactions on Information Theory, IT-31(4), 1985, pp. 469—-472.

Oppliger, R., Secure Messaging with PGP and S/MIME. Artech House Publishers, Norwood,
MA, 2001.

Oppliger, R., Internet and Intranet Security, 2nd edition. Artech House Publishers, Norwood,
MA, 2002.

Oppliger, R., Security Technologies for the World Wide Web, 2nd edition. Artech House Publish-
ers, Norwood, MA, 2003.

20

Contemporary Cryptography

Chapter 2

Cryptographic Systems

As mentioned in Section 1.2.1, there are three major classes of cryptographic sys-
tems: unkeyed cryptosystems, secret key cryptosystems, and public key cryptosys-
tems. In this chapter, we briefly introduce and provide some preliminary definitions
for the most important representatives of these classes in Sections 2.1-2.3 (the def-
initions are partly revised and refined in later parts of the book). We conclude with
some final remarks in Section 2.4.

2.1 UNKEYED CRYPTOSYSTEMS

According to Definition 1.5, unkeyed cryptosystems use no secret parameter. Ex-
amples include one-way functions, cryptographic hash functions, and random bit
generators. Let us have a preliminary look at these systems.

2.1.1 One-Way Functions

The notion of a one-way function plays a central role in contemporary cryptography.
Informally speaking, a function f : X — Y is one way if it is easy to compute
but hard to invert. In accordance with the terminology used in complexity theory
(see Chapter 6), the term easy means that the computation can be done efficiently,
whereas the term hard means that the computation is not known to be feasible in an
efficient way (i.e., no efficient algorithm to do the computation is known to exist).!
Consequently, one can define a one-way function as suggested in Definition 2.1 and
illustrated in Figure 2.1.

1 Note that it is not impossible that such an algorithm exists; it is just not known.

21

22 Contemporary Cryptography

X Y

Efficiently computable

Figure 2.1 A one-way function.

Definition 2.1 (One-way function) A function f : X — Y is one way if f(z) can
be computed efficiently for all x € X, but f~*(y) cannot be computed efficiently for
yERY.

In this definition, X represents the domain of the function f, Y represents the
range, and the expression y €r Y stands for “a y that is randomly chosen from
Y Consequently, it must be possible to efficiently compute f(z) for all z € X,
whereas it must not—or only with a negligible probability—be possible to compute
f~Y(y) for a randomly chosen y € Y. To be more precise, one must say that it may
be possible to compute f~*(y), but that the entity that wants to do the computation
does not know how to actually do it. In either case, Definition 2.1 is not precise in
a mathematically strong sense, because we have not yet defined what an efficient
computation really is. This must be postponed to somewhere after Chapter 6, when
we have introduced the fundamentals and basic principles of complexity theory. In
the meantime, it is sufficient to know that a computation is said to be efficient, if the
(expected) running time of the algorithm that does the computation is bounded by a
polynomial in the length of the input. The algorithm itself may be probabilistic.
Otherwise (i.e., if the expected running time is not bounded by a polynomial),
the algorithm requires super-polynomial (e.g., exponential) time and is said to be
inefficient. This notion of efficiency (and the distinction between polynomial and
super-polynomial running time algorithms) is fairly broad. It is, however, the best
we have at hand to work with.

An everyday example of a one-way function is a telephone book. Using
such a book, the function that assigns a telephone number to a name is easy to
compute (because the names are sorted alphabetically) but hard to invert (because
the telephone numbers are not sorted numerically). Furthermore, many physical
processes are inherently one way. If, for example, we smash a bottle into pieces,
it is generally infeasible (or at least prohibitively difficult) to put the pieces together
and reconstruct the bottle. Similarly, if we drop a bottle from a bridge, it falls down.

Cryptographic Systems 23

The reverse process does not frequently occur in the real world. Last but not least,
life is one way, and it is (currently) not known how to travel back in time.

In contrast to the real world, the idealized world of mathematics is less rich
with one-way functions. In fact, there are only a couple of functions conjectured
to be one way. As overviewed and discussed in Section 7.2, examples include
the discrete exponentiation function, the modular power function, and the modular
square function. But note that none of these functions has been shown to be one way
and that it is theoretically not even known whether one-way functions really exist.
These facts should be kept in mind when one discusses the usefulness and actual use
of one-way functions in cryptography.

There is a class of one-way functions that can be inverted efficiently if and—as
it is hoped—only if some extra information is known. This brings us to the notion
of a trapdoor (one-way) function as suggested in Definition 2.2.

Definition 2.2 (Trapdoor function) A one-way function f : X — Y is a trapdoor
function (or a trapdoor one-way function, respectively) if there exists some extra
information (i.e., the trapdoor) with which f can be inverted efficiently (i.e., f =1 (y)
can be computed efficiently for y €r Y').

The mechanical analog of a trapdoor (one-way) function is a padlock. It can
be closed by everybody (if it is in an unlocked state), but it can be opened only
by somebody who holds or has access to the proper key. In this analogy, a padlock
without a keyhole would represent a one-way function (without trapdoor). This may
not be a very useful construct in the real world.

One-way functions and trapdoor functions are frequently used in public key
cryptography. In fact, they yield all kinds of asymmetric encryption systems, DSSs,
and key agreement protocols. They are further addressed in Chapter 7. We then also
explain why one has to consider families of such functions to be mathematically
correct (so a one-way or trapdoor function actually refers to a family of such
functions).

2.1.2 Cryptographic Hash Functions

Hash functions are frequently used and have many applications in computer science.
Informally speaking, a hash function is an efficiently computable function that takes
an arbitrarily sized input (string) and generates an output (string) of fixed size. This
idea is captured in Defintion 2.3.

Definition 2.3 (Hash function) Let Y;,, be an input alphabet and ¥+ be an output
alphabet. Any function h : ¥}, — X7, that can be computed efficiently is said to
be a hash function. It generates hash values of length n.

24 Contemporary Cryptography

In this definition, the domain of the hash function is X},,. This means that
it consists of all strings over X. In theory, these strings can be infinitely long. In
practice, however, one usually has to assume a maximum string length 7,,,, for
technical reasons. In this case, a hash function is formally expressed as

bS5,

In either case, note that the hash function must be efficiently computable and
that we further explain the notion of an “efficient computation” in the context of
complexity theory in Chapter 6. Also, note that the two alphabets 3;,, and ¥,,; can
be (and typically are) the same. In this case, X is used to refer to either of them. In
a typical (cryptographic) setting, 3 is the binary alphabet (i.e., ¥ = {0,1}) and n is
128 or 160 bits. In such a setting, a hash function h generates binary strings of 128
or 160 bits.

This is a file that includes some important but long statements.
Consequently, we may need a short representation of this file.

E4 23 AB 7D 17 67 D1 3E F6 EA EA 69 80

Figure 2.2 A cryptographic hash function.

In cryptography, we are mainly interested in hash functions with specific
properties. Some of these properties (i.e., preimage resistance, second-preimage
resistance, and collision resistance) are formally introduced and discussed in Chapter
8. A one-way hash function is then a hash function that is preimage resistant and
second-preimage resistant (or weak collision resistant), whereas a collision resistant
hash function is a hash function that is preimage resistant and collision resistant (or
strong collision resistant). As suggested in Definition 2.4, either of these functions
is called cryptographic and can be used for cryptographic purposes (e.g., for data
integrity protection, message authentication, and digital signatures).

Cryptographic Systems 25

Definition 2.4 (Cryptographic hash function) A hash function h : ¥, — X7, is
cryptographic if it is one way or collision resistant.

Most of the time, a cryptographic hash function & is used to hash arbitrarily
sized messages to binary strings of fixed size. This is illustrated in Figure 2.2,
where the ASCII-encoded message “This is a file that includes some important but
long statements. Consequently, we may need a short representation of this file.” is
hashed to 0xE423AB7D1767D13EF6EAEA6980 (in hexadecimal notation). The
resulting hash value represents a fingerprint or digest that is characteristic for the
message and uniquely identifies it. The collision resistance property implies that it
is difficult—or computationally infeasible—to find another message that hashes to
the same fingerprint.

Examples of cryptographic hash functions in widespread use today are MD5
(as used in Figure 2.2) and SHA-1. Cryptographic hash functions and their underly-
ing design principles are further addressed in Chapter 8.

2.1.3 Random Bit Generators

Randomness is one of the most fundamental ingredients of and prerequisites for the
security of a cryptographic system. In fact, the generation of secret and unpredictable
random quantities (i.e., random bits or random numbers) is at the heart of most
practically relevant cryptographic systems. The frequency and volume of these
quantities vary from system to system. If, for example, we consider secret key
cryptography, then we must have random quantities that can be used as secret keys.
In the most extreme case, we must have a random bit for every bit that we want
to encrypt in a perfectly secure way (see Section 10.4). If we consider public key
cryptography, then we must have random quantities to generate public key pairs.
In either case, a cryptographic system may be probabilistic, meaning that random
quantities must be generated for every use of the system. The required quantities
must then be random in the sense that the probability of any particular value being
selected must be sufficiently small to preclude an adversary from gaining advantage
through optimizing a search strategy based on such probability. This is where the
notion of a random bit generator as introduced in Definition 2.5 and illustrated in
Figure 2.3 comes into play.

Definition 2.5 (Random bit generator) A random bit generator is a device or al-
gorithm that outputs a sequence of statistically independent and unbiased bits.

Alternatively, a random bit generator is sometimes also defined as an idealized
model of a device that generates and outputs a sequence of statistically independent
and unbiased bits. In either case, it is important to note that a random bit generator

26 Contemporary Cryptography

Random

bit . ——0010111010011000010110
generator

Figure 2.3 A random bit generator.

has no input (i.e., it only generates an output), and that because the output of
the random bit generator is a sequence of statistically independent and unbiased
bits, the bits occur with the same probability (i.e., Pr[0] = Pr[l] = 1/2), or—
more generally—all 2% different k-tuples occur approximately equally often for all
k € NT. There are many statistical tests that can be used to verify the (randomness)
properties of a given random bit generator.

There is no known deterministic (i.e., computational) realization or imple-
mentation of a random bit generator. There are, however, many nondeterministic
realizations and implementations. Many of these realizations and implementations
make use of physical events and phenomena. In fact, it is fair to say that a (true) ran-
dom bit generator requires a naturally occuring source of randomness.” Designing
and implementing a device or algorithm that exploits this source of randomness to
generate binary sequences that are free of biases and correlations is a challenging
and highly demanding (engineering) task. As further addressed in Chapter 9, there
are solutions for this task. To be useful for cryptographic applications, the resulting
random bit generators must also be resistant to various types of passive and active
attacks.

2.2 SECRET KEY CRYPTOSYSTEMS

According to Definition 1.6, secret key cryptosystems use secret parameters that are
shared between the participating entities. Examples include symmetric encryption
systems, MACs, PRBGs, and PRFs. Again, let us have a preliminary look at these
systems.

2 See, for example, the leading quote of John von Neumann in Chapter 12.

Cryptographic Systems 27

2.2.1 Symmetric Encryption Systems

When one talks about cryptography, one is often referring to confidentiality protec-
tion using symmetric encryption systems (to encrypt and decrypt data). Encryption
is the process that turns a plaintext message into a ciphertext, and decryption is the
reverse process (i.e., the process that turns a ciphertext into a plaintext message).

As suggested in Definition 2.6, a symmetric encryption system consists of a set
of possible plaintext messages (i.e., the plaintext message space), a set of possible
ciphertexts (i.e., the ciphertext space), a set of possible keys (i.e., the key space), as
well as two families of encryption and decryption functions (or algorithms) that are
inverse to each other.

k kK

m— E g - D —m

Figure 2.4 The working principle of a symmetric encryption system.

Definition 2.6 (Symmetric encryption system) A symmetric encryption system or
cipher consists of the following five components:

o A plaintext message space M3

A ciphertext space C;

A key space IC;
A family E = {E}, : k € K} of encryption functions Ej, : M — C;
A family D = {Dy, : k € K} of decryption functions Dy, : C — M.

For every key k € K and every message m € M, the functions Dy, and Ej,
must be inverse to each other (i.e., Di(Ei(m)) = Ex(Dg(m)) = m).

3 In some literature, the plaintext message space is denoted by P. In this book, however, we
conventionally use the letter “P” to refer to a probability distribution.

28 Contemporary Cryptography

In either case, the encryption functions may be probabilistic in the sense that
they also take into account some random input data (not expressed in Definition 2.6).
Typically, M = C = {0,1}* (i.e., the set of binary strings of arbitrary but finite
length), and C = {0, 1}! for some fixed key length I (e.g., I = 128). The notion
of a function family (or family of functions, respectively) is formally introduced in
Section 3.1.1. In the meantime, it is sufficient to have an intuitive understanding for
the term.

The working principle of a symmetric encryption system is illustrated in
Figure 2.4. On the left side, the sender encrypts the message m € M with his
or her implementation of the encryption function F (parametrized with the secret
key k). The resulting ciphertext E;(m) = ¢ € C is sent to the recipient over a
potentially unsecure channel (drawn as a dotted line in Figure 2.4). On the right side,
the recipient decrypts ¢ with his or her implementation of the decryption function D
(again, parametrized with the secret key k). If the decryption is successful, then the
recipient is able to recover the plaintext message m.

Many examples of symmetric encryption systems are described in the litera-
ture. Some of these systems are relevant and used in practice, whereas others are
not (i.e., they are only theoretically or historically relevant, or they are used only in
small and typically closed communities). In Chapter 10, we overview and discuss
two symmetric encryption systems that are in widespread use today: the DES and
the advanced encryption standard (AES). We use them as examples and note that
many other symmetric encryption systems can be used instead. Unfortunately, all
practically relevant symmetric encryption systems are only conditionally or com-
putationally secure. We also elaborate on symmetric encryption systems that are
unconditionally or information-theoretically secure. These systems, however, are
not used in practice, because most of them require keys that are at least as long
as the plaintext messages that are encrypted. The key management of such a system
is prohibitively expensive for practical use.

2.2.2 Message Authentication Codes

It is not always necessary to encrypt messages and to protect their confidentiality.
Sometimes, it is sufficient to protect their authenticity and integrity, meaning that
it must be possible for the recipient of a message to verify its authenticity and
integrity (note that authenticity and integrity properties always go together when one
considers messages). In this case, one can add an authentication tag to a message
and have the recipient verify the tag before he or she accepts the message as being
genuine. A message and a tag computed from it are illustrated in Figure 2.5.

One possibility to compute and verify an authentication tag is to use public key
cryptography in general, and a DSS in particular (as explained later in this book).

Cryptographic Systems 29

Message

Message Tag

Figure 2.5 A message and a tag computed from it.

This is, however, neither always necessary nor always desired, and sometimes one
wishes to use more lightweight mechanisms based on secret key cryptography. This
is where the notion of a MAC as suggested in Definition 2.7 comes into play.*

Definition 2.7 (Message authentication code) A MAC is an authentication tag
that can be computed and verified with a secret parameter (e.g., a secret crypto-
graphic key).

In the case of a message that is sent from one sender to a single recipient, the
secret parameter must be shared between the two entities. If, however, a message
is sent to multiple recipients, then the secret parameter must be shared between the
sender and all receiving entities. In this case, the distribution and management of
the secret parameter is a major issue (and probably the Achilles’ heel of the entire
encryption system).

Similar to a symmetric encryption system, one can introduce and formally
define a system to compute and verify MACs. In this book, we use the term message
authentication system to refer to such a system (contrary to most other terms used
in this book, this term is not widely used in the literature). As captured in Definition
2.8, a message authentication system consists of a set of possible messages (i.e.,
the message space), a set of possible authentication tags (i.e., the tag space), a set
of possible keys (i.e., the key space), as well as two families of related message
authentication and verification functions.

Definition 2.8 (Message authentication system) A message authentication system
consists of the following five components:

e A message space M;

4 In some literature, the term message integrity code (MIC) is used synonymously and interchange-
ably with MAC. However, this term is not used in this book.

30 Contemporary Cryptography

A tag space 7 ;

A key space KC;
A family A = { Ay, : k € K} of authentication functions A, : M — 7

A family V. = {V}, : K € K} of verification functions Vi, : M x T —
{valid, invalid}. Vi,(m,t) must yield valid if t is a valid authentication tag
Sfor message m and key k (i.e., t = Ax(m)).

For every key k € K and every message m € M, Vi (m, Ax (m)) must yield valid.

Typically, M = {0,1}*, T = {0, 1}!*es for some fixed tag length l;4, and
K = {0, 1}!*ev for some fixed key length lyey (€., liag = lkey = 128).

Many message authentication systems have been developed and proposed
in the literature. Some of these systems are unconditionally (i.e., information-
theoretically) secure, but most of them are conditionally (i.e., computationally)
secure. The most important message authentication systems are overviewed, dis-
cussed, and put into perspective in Chapter 11.

2.2.3 PRBGs

In Section 2.1.3 we mentioned that random bit generators are important building
blocks for many cryptographic systems, and that there is no deterministic (compu-
tational) realization or implementation of such a generator, but that there are non-
deterministic realizations and implementations making use of physical events and
phenomena. Unfortunately, these realizations and implementations are not always
appropriate, and there are situations in which one needs to deterministically generate
binary sequences that appear to be random (e.g., if one needs a random bit generator
but none is available, or if one must make statistical simulations or experiments
that can be repeated as needed). Also, one may have a short random bit sequence
that must be stretched into a long sequence. This is where the notion of a PRBG as
illustrated in Figure 2.6 and introduced in Definition 2.9 comes into play.’ Again, the
definition is not precise in a mathematically strong sense, because we have neither
defined the notion of an efficient algorithm nor have we specified what we really
mean by saying that a binary sequence “appears to be random.”

Definition 2.9 (Pseudorandom bit generator) A PRBG is an efficient determinis-
tic algorithm that takes as input a random binary sequence of length k (i.e., the
seed) and generates as output another binary sequence (i.e., the pseudorandom bit
sequence) of length | > k that appears to be random.

5 Note the subtle difference between Figures 2.3 and 2.5. Both generators output a binary sequence.
The random bit generator has no input, whereas the PRBG has a seed that serves as input.

Cryptographic Systems 31

Seed—— PRBG +——— ...0010111010011000010110

Figure 2.6 A PRBG.

Note that the pseudorandom bit sequence a PRBG outputs may be of infinite
length (i.e., [= o00). Also note that in contrast to a random bit generator, a PRBG
represents a deterministic algorithm (i.e., an algorithm that can be implemented in
a deterministic way). This suggests that a PRBG is implemented as a finite state
machine and that the sequence of generated bits must be cyclic (with a potentially
very large cycle). This is why we cannot require that the bits in a pseudorandom
sequence are truly random, we can only require that they appear to be so (for a
computationally bounded adversary). Again, many statistical tests can be used to
verify the randomness properties of a binary sequence. Note, however, that passing
all of these tests is a necessary but usually not sufficient condition for a binary
sequence to be securely used for cryptographic applications.

PRBGs have many applications in cryptography. Examples include additive
stream ciphers, as well as cryptographic key generation and expansion. In fact, the
title of [1] suggests that the notion of pseudorandomness and (modern) cryptography
are closely related and deeply intertwined. The notion of a PRBG and some possible
constructions for cryptographically secure PRBGs are further addressed in Chapter
12.

2.2.4 PRFs

Contrary to PRBGs, PRFs do not generate an output that meets specific (random-
ness) requirements. Instead, PRFs try to model the input-output behavior of a ran-
dom function (i.e., a function f : X — Y that is randomly chosen from the set
of all mappings from domain X to range Y). Random functions are also known as
random oracles. For input value x € X, a PRF computes an arbitrary output value
y = f(z) € f(X) C Y. The only requirement is that the same input value 2 must
always be mapped to the same output value y. PRBGs and (families of) PRFs are
closely related to each other in the sense that a PRF family can be used to construct

32 Contemporary Cryptography

a PRBG, and a PRBG can be used to construct a PRF family (the corresponding
constructions are given in Section 13.2).

Because the notion and use of PRFs is a more advanced topic, we don’t
provide an informal definition at this point. Instead, we refer to Chapter 13, where
we introduce, discuss, and put into perspective random functions, PRFs, and some
applications of PRFs in modern cryptography.

2.3 PUBLIC KEY CRYPTOSYSTEMS

According to Definition 1.7, public key cryptosystems use secret parameters that are
not shared between the participating entities. Instead, each entity holds a set of secret
parameters (collectively referred to as the private key) and publishes another set of
parameters (collectively referred to as the public key) that don’t have to be secret
and can be published at will.® A necessary (but usually not sufficient) condition
for a public key cryptosystem to be secure is that it is computationally infeasible
to compute the private key from the public key. In this book, & is frequently used
to refer to a public key, whereas k! is used to refer to the corresponding private
key. Because public key cryptography is computationally less efficient than secret
key cryptography, public key cryptosystems are mainly used for authentication
and key management. The resulting cryptosystems combine secret and public key
cryptography and are often called hybrid. In fact, hybrid cryptosystems are very
frequently used in practice.

Note that the fact that public key cryptosystems use secret parameters that are
not shared between the participating entities implies that the corresponding algo-
rithms must be executed by different entities. Consequently, such cryptosystems are
typically defined as sets of algorithms (that may be executed by different entities).
‘We adopt this viewpoint in this book. Examples of public key cryptosystems include
asymmetric encryption systems and DSSs, as well as cryptographic protocols for
key agreement, entity authentication, and secure multiparty computation. We have a
preliminary look at these examples.

2.3.1 Asymmetric Encryption Systems

Similar to a symmetric encryption system, an asymmetric encryption system can be
used to encrypt and decrypt (plaintext) messages. The major difference between a
symmetric and an asymmetric encryption system is that the former employs secret

6 It depends on the cryptosystem, whether it matters which set of parameters is used to represent the
private key and which set of parameters is used to represent the public key.

Cryptographic Systems 33

key cryptography and corresponding techniques, whereas the latter employs public
key cryptography and corresponding techniques.

As already mentioned in Section 2.1.1, an asymmetric encryption system
requires a family of trapdoor functions. Each public key pair yields a public key
that represents a one-way function and a private key that represents the inverse of
this function. To send a secret message to a recipient, the sender must look up the
recipient’s public key, apply the corresponding one-way function to the message,
and send the resulting ciphertext to the recipient. The recipient, in turn, is the only
person who is supposed to know the trapdoor (information) necessary to invert the
one-way function. Consequently, he or she is the only person who is able to properly
decrypt the ciphertext and to recover the original (plaintext) message accordingly.

In the literature, the encryption (decryption) algorithm is often denoted as F
(D), and subscripts are used to refer to the entities that hold the appropriate keys. For
example, F 4 refers to the encryption algorithm fed with the public key of A, whereas
D 4 refers to the decryption algorithm fed with the private key of A. Consequently,
it is implicitly assumed that the public key is used for encryption and the private
key is used for decryption. If the use of the keys is not clear, then the keys in use
may be subscript to E and D. In this case, for example, Ey, , refers to the encryption
algorithm fed with A’s public key, whereas Dkgl refers to the decryption algorithm
fed with A’s private key.

-1

Ky K,

m— E [~ D [—m

Figure 2.7 The working principle of an asymmetric encryption system.

The working principle of an asymmetric encryption system is illustrated in
Figure 2.7. On the left side, the sender applies the recipient B’s one-way function
(implemented by the encryption algorithm E parametrized with B’s public key kp)
to the plaintext message m, and sends the resulting ciphertext

¢ = Eg(m) = Ei,(m)

34 Contemporary Cryptography

to B. On the right side, B knows his or her private key k5 ! (representing the trapdoor
information) and can use this key to invert the one-way function and decrypt

m = Dpg(c) = Dk;(c).

An asymmetric encryption system is a public key cryptosystem. As such, it
can be specified by a set of three algorithms. This is done in Definition 2.10 and
illustrated in Figure 2.8.

Public key
Security parameter —— (Generate

Private key

Public key \
Encrypt I Ciphertext
Plaintext /
Private key
> Decrypt —— Plaintext
Ciphertext

Figure 2.8 The three algorithms of an asymmetric encryption system.

Definition 2.10 (Asymmetric encryption system) An asymmetric encryption sys-
tem consists of the following three efficiently computable algorithms:

e Generate(1™) is a probabilistic key generation algorithm that takes as input
a security parameter 1™ and generates as output a public key pair (consisting
of a public key k and a corresponding private key k=)

7 In most literature, the security parameter is denoted by 1% (i.e., k written in unary representation).
Because this notation may provide some confusion between k standing for the security parameter
and k standing for the public key, we don’t use it in this book. Instead, we use 1™ to refer to the
security parameter.

Cryptographic Systems 35

e Encrypt(k,m) is a deterministic or probabilistic encryption algorithm that
takes as input a public key k and a plaintext message m, and that generates
as output a ciphertext c (i.e., ¢ = Encrypt(k, m)).

o Decrypt(k~1, c) is a deterministic decryption algorithm that takes as input a
private key k=1 and a ciphertext ¢, and that generates as output a plaintext
message m (i.e., m = Decrypt(k~1, ¢c)).

For every public key pair (k,k=1) and every plaintext message m, the algo-
rithms Encrypt(k,-) and Decrypt(k~1,-) must be inverse to each other, meaning
that

Decrypt(k ™, Encrypt(k, m)) = m.

Ifk and k=" do not correspond to each other, then the ciphertext must decrypt
to gibberish.

In summary, an asymmetric encryption system can be fully specified by a triple
that consists of the algorithms Generate, Encrypt, and Decrypt. Many such systems
have been developed, proposed, and published in the literature. The most important
and widely deployed examples are overviewed, discussed, and put into perspective
in Chapter 14.

2.3.2 DSSs

Digital signatures can be used to protect the authenticity and integrity of data objects.
According to RFC 2828, a digital signature refers to “a value computed with a
cryptographic algorithm and appended to a data object in such a way that any
recipient of the data can use the signature to verify the data’s origin and integrity”
[2]. Similarly, the term digital signature is defined as “data appended to, or a
cryptographic transformation of, a data unit that allows a recipient of the data unit
to prove the source and integrity of the data unit and protect against forgery, e.g. by
the recipient” in ISO/IEC 7498-2 [3].

According to the last definition, there are two classes of digital signatures that
should be distinguished.

o If data representing the digital signature is appended to a data unit (or mes-
sage) then one refers to a digital signature with appendix.

e [f a data unit is cryptographically transformed in a way that it represents both
the data unit (or message) that is signed and the digital signature, then one

36 Contemporary Cryptography

refers to a digital signature with message recovery. In this case, the data unit
is recovered when the signature is verified.

Digital signatures with appendix are, for example, specified in ISO/IEC 14888,
whereas digital signatures with message recovery are specified in ISO/IEC 9796.
Both ISO/IEC standards consist of multiple parts. They are not further addressed in
this book.

-1

K, K,

m— D [ms | B

Figure 2.9 The working principle of a DSS.

Signing key
Security parameter ——— (Generate <
Verification key

Signing key

\
Message /

Slgn —— Digital signature

Verification key

T

Message —— Verify - Valid | invalid

Digital signature

Figure 2.10 The three algorithms of a DSS with appendix.

Cryptographic Systems 37

Signing key
Security parameter ———| (Generate <
Verification key

Signing key \
Message —

S|gn I Digital signature

Verification key \

Recover ——— Message | invalid
Digital signature —

Figure 2.11 The three algorithms of a DSS with message recovery.

A DSS can be used to digitally sign messages and verify digital signatures
accordingly.® A DSS with appendix is used to generate and verify digital signatures
with appendix, whereas a DSS with message recovery is used to generate and
verify digital signatures giving message recovery. Note that any DSS with message
recovery can be turned into a DSS with appendix by hashing the message and then
signing the hash value.

In either case, the entity that digitally signs data units or messages is some-
times called signer or signatory, whereas the entity that verifies the digital signa-
tures is called verifier. In a typical setting, both the signatory and the verifier are
computing devices that are operated on behalf of human users.

The working principle of a DSS (with appendix or message recovery) is
illustrated in Figure 2.9. Having in mind the notion of a trapdoor function, it is simple
and straightforward to explain what is going on. On the left side, the signatory A uses
its private key k;;l to invert the one-way function for message m and to compute the
digital signature s as follows:

s=Da(m) = Dkzl(m)

The signatory sends s to the verifier (if the digital signature is with appendix,
then m must also be sent along with s). On the right side, the verifier must use the

8 In the literature, a DSS is often called digital signature scheme (with the same abbreviation).

38 Contemporary Cryptography

signatory’s public key (i.e., k1) to compute the one-way function for s and to either
verify the digital signature (if the DSS is with appendix) or recover the original
message (if the DSS is giving message recovery). In either case, it is important to
note that only A can compute s (because only A is assumed to know k;l), whereas
everybody can verify s or recover m (because everybody has access to k 4). In fact,
public verifiability is a basic property of digital signatures and corresponding DSSs.

Similar to an asymmetric encryption system, a DSS can be defined as a set
of three efficiently computable algorithms. A DSS with appendix is defined in
Definition 2.11, and its three algorithms are illustrated in Figure 2.10.

Definition 2.11 (DSS with appendix) A DSS with appendix consists of the follow-
ing three efficiently computable algorithms:

o Generate(1™) is a probabilistic key generation algorithm that takes as input
a security parameter 1" and generates as output a signing key k—' and
a corresponding verification key k. Both keys represent the public key pair
(k,k~1).

o Sign(k=1,m) is a deterministic or probabilistic signature generation algo-
rithm that takes as input a signing key k="' and a message m (i.e., the message
to be signed), and that generates as output a digital signature s for m.°

o Verify(k, m, s) is a deterministic signature verification algorithm that takes as
input a verification key k, a message m, and a purported digital signature s
for m, and that generates as output a binary decision (i.e., whether the digital
signature is valid). In fact, Verify(k, m, s) must yield valid if and only if s is
a valid digital signature for message m and verification key k.

So for every public key pair (k, k') and every possible message m,

Verify(k,m, Sign(k~*, m))
must yield valid.

Similarly, a DSS giving message recovery is defined in Definition 2.12, and
its three algorithms are illustrated in Figure 2.11.

Definition 2.12 (DSS with message recovery) A DSS giving message recovery con-
sists of the following three efficiently computable algorithms:

9 Optionally, the signing algorithm may also output a new (i.e., updated) signing key. Note, however,
that in a memoryless DSS, the signing key always remains the same. Consequently, this optional
output is not illustrated in Figure 2.10.

Cryptographic Systems 39

o Generate(1™) is a probabilistic key generation algorithm that takes as input
a security parameter 1™ and generates as output a signing key k= and a
verification key k. Again, both keys represent the public key pair (k,k™1).

o Sign(k=1,m) is a deterministic or probabilistic signature generation algo-
rithm that takes as input a signing key k=1 and a message m, and that gener-
ates as output a digital signature s giving message recovery.

o Recover(k, s) is a deterministic message recovery algorithm that takes as
input a verification key k and a digital signature s, and that generates as
output either the message that is digitally signed or a notification indicating
that the digital signature is invalid. This means that Recover(k, s) must yield
m if and only if s is a valid digital signature for message m and verification
key k.

So for every public key pair (k, k1) and every possible message m,

Recover(k, Sign(k™*,m))
must yield m.

Note that the Generate algorithms are basically the same for both a DSS with
appendix and a DSS giving message recovery, and that the Sign algorithms are at
least structurally the same. The major difference is with the Verify and Recover
algorithms.

With the proliferation of the Internet in general, and Internet-based electronic
commerce in particular, digital signatures and the legislation thereof have become
important and very timely topics. In fact, many DSSs with specific and unique
properties have been developed, proposed, and published in the literature. The
most important examples are overviewed, discussed, and put into perspective in
Chapter 15. Unfortunately, digital signatures (and their mathematical properties) are
sometimes also overrated as proofs or pieces of evidence.

2.3.3 Key Agreement

If two or more entities want to employ and make use of secret key cryptography,
then they must share a secret parameter or cryptographic key. Consequently, in
a large system many secret keys must typically be generated, stored, managed,
and destroyed in a highly secure way. If, for example, n entities want to securely
communicate with each other, then there are

40 Contemporary Cryptography

<g):n(?.—21) :n22—n

secret keys that must be generated, stored, managed, and destroyed. This number
grows in the order of n2, and hence the establishment of secret keys is a major
practical problem (and probably the Achilles’ heel) for the large-scale deployment
of secret key cryptography. For example, if n = 1,000 entities want to securely
communicate with each other, then there are

1,000% — 1
(1,000)_ 000 — 1,000 _ 00 <0

2 2

secret keys. Even for moderately large n, the generation, storage, and management
of so many keys is prohibitively expensive, and the predistribution of the keys is
infeasible.

Things get even more involved when one considers that keys are often used in
dynamic environments, where new entities join and other entities leave at will, and
that it is usually impossible, impractical, or simply too expensive to transmit keys
over secure channels (e.g., by a trusted courier). Consequently, one typically faces
a key establishment problem in computer networks and distributed systems. There
are basically two approaches to address (and hopefully solve) the key establishment
problem in computer networks and distributed systems:

e The use of a key distribution center (KDC);

e The use of a key establishment protocol.

A prominent and widely deployed example of a KDC is the Kerberos authen-
tication and key distribution system (see, for example, [4]). Unfortunately, KDCs
have many disadvantages. The most important disadvantage is that each entity must
unconditionally trust the KDC and share a secret master key with it. There are sit-
vations in which this level of trust is neither justified nor can be accepted by the
communicating entities. Consequently, the use of key establishment protocols (that
typically make use of public key cryptography in some way or another) provides a
viable alternative in many situations.

In a simple key establishment protocol, an entity randomly generates a key and
uses a secure channel to transmit it to the communicating peer entity (or entities).
This protocol is simple and straightforward; it is basically what a Web browser does

Cryptographic Systems 41

when it establishes a cryptographic key to be shared with a secure Web server.'”

From a security point of view, however, one may face the problem that the security
of the secret key cryptographic system that is used with the cryptographic key is
then bound by the quality and the security of the key generation process (which is
typically a PRBG). Consequently, it is advantageous to have a mechanism in place in
which two or more entities can establish and agree on a commonly shared secret key.
This is where the notion of a key agreement protocol comes into play (as opposed to
a key distribution protocol). The single most important key agreement protocol for
two entities was suggested by Diffie and Hellman [6]. Key establishment protocols
(including, for example, the Diffie-Hellman key agreement protocol) are further
addressed in Chapter 16. They play a central role in many cryptographic security
protocols for the Internet.

2.3.4 Entity Authentication

In computer networks and distributed systems it is often required that entities must
authenticate each other. In theory, many technologies can be used for entity authenti-
cation. In computer networks and distributed systems, however, entity authentication
is most often implemented as a proof by knowledge. This means that the entity that
is authenticated knows something (e.g., a password, a passphrase, or a cryptographic
key) that allows him or her to prove his or her identity to another entity. An entity
authentication protocol is used for this purpose. More often than not, an entity au-
thentication protocol is combined with a key distribution protocol (yielding an entity
authentication and key distribution protocol).

In Chapter 17, we elaborate on entity authentication and corresponding pro-
tocols. Among these protocols, we mainly focus on the ones that have the zero-
knowledge property. Zero-knowledge authentication protocols are interesting, be-
cause it can be shown in a mathematically precise sense that they do not leak any
(partial) information about the secret that is used in the proof by knowledge. This
protects the prover against a verifier trying to illegitimately derive information about
the prover’s secret.

2.3.5 Secure Multiparty Computation

Let us assume that multiple entities want to compute the result of a function
evaluation without having to reveal their (local) input values to each other. There
are basically two cases to distinguish:

10 A secure Web server is a server that implements the secure sockets layer (SSL) or transport layer
security (TLS) protocol (see, for example, Chapter 6 of [5]).

42 Contemporary Cryptography

e If the entities have a trusted party at their disposal, then there is a trivial
solution for the problem: all entities securely transmit their input values to the
trusted party, and the trusted party, in turn, evaluates the function and provides
the result to all entities (it goes without saying that all communications must
take place over secure channels).

e If, however, the entities have no trusted party at their disposal, then the
situation is more involved. In this case, it is not at all obvious that the problem
can be solved at all.

In the second case, we are in the realm of secure multiparty computation.
We ask for cryptographic protocols that can be used by the entities to evaluate a
function and to effectively simulate a trusted party. Such protocols can be found
and have many (potential) applications, such as electronic voting and mental game
playing (i.e., playing a game over a communication network). In Chapter 18, we
briefly touch on secure multiparty computation and the major results that have been
found in theory.

24 FINAL REMARKS

In this chapter, we briefly introduced and provided some preliminary definitions
for the most important representatives of the three major classes of cryptosystems
distinguished in this book (i.e., unkeyed cryptosystems, secret key cryptosystems,
and public key cryptosystems). We want to note (again) that this classification
scheme is somewhat arbitrary, and that other classification schemes may be used
instead.

In either case, the cryptosystems that are preliminarily defined in this chapter
are refined, more precisely defined (in a mathematical sense), discussed, and put into
perspective in the later parts of the book. For all of these systems, we also elaborate
on the notion of security and try to find appropriate definitions and evaluation
criteria for secure systems. In fact, a major theme in contemporary cryptography
is to better understand and formally express the notion of security, and to prove
that a particular cryptosystem is secure in exactly this sense. In many cases, the
cryptographic community has been surprisingly successful in doing so. This is what
the rest of this book is basically all about. We have to begin with some mathematical
fundamentals first.

References

[1] Luby, M., Pseudorandomness and Cryptographic Applications. Princeton Computer Science
Notes, Princeton, NJ, 1996.

(2]
(3]

[4]

(51

(6]

Cryptographic Systems 43

Shirey, R., Internet Security Glossary, Request for Comments 2828, May 2000.

ISO/IEC 7498-2, Information Processing Systems—Open Systems Interconnection Reference
Model—Part 2: Security Architecture, 1989.

Oppliger, R., Authentication Systems for Secure Networks. Artech House Publishers, Norwood,
MA, 1996.

Oppliger, R., Security Technologies for the World Wide Web, 2nd edition. Artech House Publish-
ers, Norwood, MA, 2003.

Diffie, W., and M.E. Hellman, “New Directions in Cryptography,” IEEE Transactions on Infor-
mation Theory, IT-22(6), 1976, pp. 644—654.

44

Contemporary Cryptography

Part I

MATHEMATICAL
FUNDAMENTALS

45

Chapter 3

Discrete Mathematics

In this chapter, we begin the part on the mathematical fundamentals by discussing
the aspects of discrete mathematics that are relevant for contemporary cryptography.
More specifically, we introduce algebraic basics in Section 3.1, elaborate on integer
and modular arithmetic in Sections 3.2 and 3.3, introduce elliptic curves in Section
3.4, and conclude with some final remarks in Section 3.5. Note that this chapter
is intentionally kept short, and that many facts are stated without a proof. There
are many (introductory) books on discrete mathematics and algebra that contain the
missing proofs, put the facts into perspective, and provide much more background
information (e.g., [1-5]). Most importantly, Victor Shoup’s book about number
theory and algebra [6] is electronically available! and is recommended reading for
anybody interested in discrete mathematics.

3.1 ALGEBRAIC BASICS

The term algebra refers to the mathematical field of study that deals with sets of
elements (e.g., sets of numbers) and operations on these elements.” The operations
must satisfy specific rules (called axioms). These axioms are defined abstractly, but
most of them are motivated by existing mathematical structures (e.g., the set of
integers with the addition and multiplication operations).

1 http://shoup.net/ntb
2 For the purpose of this book, we assume familiarity with set theory at a basic level.

47

48

Contemporary Cryptography

3.1.1 Preliminary Remarks

Let S be a nonempty set and * be a binary operation on the elements of this set.> For
example, S may be one of the following sets of numbers (that are frequently used in
mathematics):

3

e The set N:= {0, 1,2,...} of natural numbers (also known as nonnegative or

positive integers). In some literature, the term N7 is used to refer to N without
zero (i.e., Nt := N\ {0}).

The set Z := {...,—2,—1,0,1,2,...} of integer numbers, or integers in
short. In addition to the natural numbers, this set also comprises the negative
numbers.

The set Q of rational numbers. Roughly speaking, a rational number is a
number that can be written as a ratio of two integers. More specifically, a
number is rational if it can be written as a fraction where the numerator and
denominator are integers and the denominator is not equal to zero. This can
be expressed as follows:

Q::{%|a,b62andb7é0}

The set R of real numbers. Each real number can be represented by a converg-
ing infinite sequence of rational numbers (i.e., the limit of the sequence refers
to the real number). There are two subsets within the set of real numbers:
algebraic numbers and transcendental numbers. Roughly speaking, an alge-
braic number is a real number that is the root of a polynomial equation with
integer coefficients, whereas a transcendental number is a real number that is
not the root of a polynomial equation with integer coefficients. Examples of
transcendental numbers are 7 and e. Real numbers are the most general and
most frequently used mathematical objects to model real-world phenomena.
A real number that is not rational is called irrational, and hence the set of
irrational numbers is R \ Q. In some literature, the term R™ is also used to
refer to the real numbers that are nonnegative.

The set C of complex numbers. Each complex number can be specified by a
pair (a, b) of real numbers, and hence C can be expressed as follows:

C:={a+bi|a,beRandi=+-1}

The choice of the symbol * is arbitrary. The operations most frequently used in algebra are addition
(denoted as +) and multiplication (denoted as -).

Discrete Mathematics 49

The first element of (a, b) is called the real part of the complex number,
whereas the second element of (a, b) is called the imaginary part. This part is
usually written as a multiple of i = /—1, meaning that the imaginary part of
a + bi is written as b (instead of b7).

X Y

Figure 3.1 A function f : X — Y.

In this book, we assume some familiarity with functions and function families.
As illustrated in Figure 3.1, a function f : X — Y is a mapping from a domain X
to a codomain 'Y assigning to every € X a unique f(z) € Y. The range of f is
the subset of values of Y that are actually reached by the function (i.e., f(X) C Y).
A function f : X — Y may be injective, surjective, or bijective.

e The function f is injective (or one to one) if for all x1, o € X it holds that
x1 # x2 = f(z1) # f(x2) (.e., if two preimages are different, then the
corresponding images are also different).

e The function f is surjective (or onto) if for all y € Y there is an z € X with
y = f(x), meaning that f(X) = Y (i.e., the codomain and the range are the
same).

e The function f is bijective if it is both injective and surjective.

If we consider a set of functions f : X — Y that takes a key as an additional
input parameter, then we are talking about function families. Formally, a function
family is a mapping

F:KxX—->Y

where X and Y are the domain and codomain of the functions, and K is a set of
possible keys. For every k € K, the map fj, : X — Y is defined as f(x) = f(k,)

50 Contemporary Cryptography

and represents an instance of the family F'. Consequently, F' is a collection or
ensemble of mappings. Every key £ € K or map fi occurs with some probability,
and hence there is a probability distribution on K. If K = {0, 1}" and all keys are
uniformly distributed, then

LK

refers to an n-bit key £ that is randomly chosen from K. Furthermore,

fEF

refers to a function f that is randomly chosen from F'. This can be translated into
k& K; f « fi (in this sequence). In other words, f is the function f,, where k is
a randomly chosen key.

We sometimes use the term Rand™ —Y to refer to the family of all functions
from the domain X to the codomain Y. If X = Y, then we are talking about the
family of all permutations on X, and we use the term PermX—~% or P(X) to refer
to it. Permutations and families of permutations are further addressed in Section
3.14.

The fact that * is a binary operation on S means that it actually defines a
function from S x S into S. If a,b € 5, then the use of *x can be expressed as
follows:

*: %8 — S

(a,b) —— axb

This expression suggests that two arbitrary elements a,b € S are mapped
to a new element a x b € S. In this setting, the operation * may have specific
properties. We are mainly interested in commutative and associative operations as
formally expressed in Definitions 3.1 and 3.2.

Definition 3.1 (Commutative operation) A binary operation * is commutative if
axb=bxaforalla,be §.

Definition 3.2 (Associative operation) A binary operation x is associative if ax (bx
¢) = (axb)*cforalla,b,c€S.

A commutative operation * may have (left and right) identity elements as
formally introduced in Definitions 3.3-3.5.

Discrete Mathematics 51

Definition 3.3 (Left identity element) Ler S be a set and = a binary operation on
S. An element e € S is called left identity element if e x a = a forall a € S.

Definition 3.4 (Right identity element) Let S be a set and x a binary operation on
S. An element e € S is called right identity element if a x e = a foralla € S.

Definition 3.5 (Identity element) Let S be a set and * a binary operation on S.
An element e € S is called identity element (or neutral element) if it is both a left
identity element and a right identity element (i.e., e xa = ax e = aforall a € S).

Note that an identity element does not have to exist, but if it exists it must
be unique. This can easily be shown by assuming that e; and es are both identity
elements. It then follows from the definition of an identity element that e; =
e1 ¥ e = eg, and hence e; = es. Also note that we don’t require the operation
* to be commutative. For example, the identity matrix is the identity element of the
matrix multiplication, and this operation is not commutative.

If there exists an identity element e € S with respect to *, then some elements
of S may also have inverse elements. This is captured in Definition 3.6.

Definition 3.6 (Inverse element) Let S be a set, x be a binary operation with an
identity element e, and a be an element of S. If there exists an element b € S with
a*b="bxa = e, then a is invertible and b is the inverse element (or inverse) of a.

Note that not all elements in a given set must be invertible and have inverse
elements with respect to the operation under consideration. As discussed below, the
question whether all elements are invertible is the distinguishing feature between a
group and a monoid or between a field and a ring, respectively.

3.1.2 Algebraic Sructures

An algebraic structure* consists of a nonempty set S and one or more binary
operations. For the sake of simplicity, we sometimes omit the operation(s) and use
S to denote the entire structure. In this section, we overview and briefly discuss the
algebraic structures that are most frequently used in algebra. Among these structures,
groups, rings, and (finite) fields are particularly important for cryptography in
general, and public key cryptography in particular.

3.1.2.1 Semigroups

The simplest algebraic structure is a semigroup as formally introduced in Definition
3.7.

4 In some literature, an algebraic structure is also called algebra or algebraic system.

52 Contemporary Cryptography

Definition 3.7 (Semigroup) A semigroup is an algebraic structure (S, x) that con-
sists of a nonempty set S and an associative binary operation x. The semigroup must
be closed (i.e., for all a,b € S, a * b must also be an element of S).

Note that this definition does not require a semigroup to have an identity
element. For example, the set of even integers (i.e., {...,—4,—2,0,2,4,...}) with
the multiplication operation is a semigroup without identity element.’

3.1.2.2 Monoids

As suggested in Definition 3.8, a monoid is a semigroup with the additional property
(or requirement) that it must have an identity element.

Definition 3.8 (Monoid) A monoid is a semigroup (S, *) that has an identity ele-
ment e € S with respect to .

For example, (N, -}, (Z,-), (Q,-), and (R,-) are monoids with the identity
element 1. Also, the set of even integers with the addition operation and the identity
element 0, as well as the set of all binary sequences of nonnegative and finite length
with the string concatenation operation and the empty string representing the identity
element, are monoids. If the empty string is excluded from the set in the second case,
then the resulting algebraic structure is only a semigroup.

3.1.2.3 Groups

As suggested in Definition 3.9, a group is a monoid in which every element is
invertible (and has an inverse element accordingly).

Definition 3.9 (Group) A group is a monoid (S, *) in which every element a € S
has an inverse element in S (i.e., every element a € S is invertible).

Because (5, *) is a group and the operation # is associative, one can easily
show that the inverse element of an element must be unique (i.e., every element has
exactly one inverse element). Assume that b and c are both inverse elements of a. It
then follows that b = bxe = bx* (a*c) = (b*a) *c = e x c = ¢, and hence the two
inverse elements of @ must be the same.

Considering everything said so far, a group can also be defined as an algebraic
structure (S, *) that satisfies the following four axioms:

1. Closure axiom: ¥ a,b€ S : axb € S,

5 The identity element with respect to multiplication would be 1 (which is not even).

Discrete Mathematics 53

2. Associativity axiom: ¥ a,b,c € S: a* (bxc) = (axb) *¢;

3. Identity axiom: 3 aunique identity element e € S suchthatVa € S:axe =
e*xa=a;

4. Inverse axiom: ¥ a € S : 3 a unique inverse element ' € S such that

axa l=alxa=e.

The operations most frequently used in groups are addition (+) and multi-
plication (). Such groups are called additive groups and multiplicative groups. For
multiplicative groups, the symbol - is often omitted, and a - b is written as ab. For
additive and multiplicative groups, the identity elements are usually denoted as O
and 1, whereas the inverse elements of element a are usually denoted as —a and @~ *.
Consequently, a multiplicative group is assumed in the fourth axiom given here.

Commutative Groups

A distinction is often made between commutative and noncommutative groups. The
notion of a commutative group is formally introduced in Definition 3.10.

Definition 3.10 (Commutative group) A group (S,) is commutative if the opera-
tion * is commutative (i.e., a x b = bx a forall a,b € S).

In the literature, commutative groups are also called Abelian groups. If a
group is not commutative, then it is called noncommutative or non-Abelian. For
example, (Z,+), (Q,4+), and (R,+) are commutative groups with the identity
element 0. The inverse element of a is —a. Similarly, (Q\ {0}, -) and (R\ {0}, -) are
commutative groups with the identity element 1. In this case, the inverse element of
a is a~!. Furthermore, the set of real-valued n x n matrices is a commutative group
with respect to matrix addition, whereas the subset of nonsingular (i.e., invertible)
matrices is a noncommutative group with respect to matrix multiplication.

Finite Groups

Groups can be finite or infinite (depending on the number of elements). Finite groups
as captured in Definition 3.11 play a fundamental role in (public key) cryptography.

Definition 3.11 (Finite group) A group (S, *) is finite if it contains only finitely
many elements.

The order of a finite group (.S, *) equals the cardinality of the set S (i.e., |S|).
Hence, another way to define a finite group is to say that (S, *) is finite if |S| < oco.
For example, the set of permutations of n elements is finite and has n! elements.

54 Contemporary Cryptography

It is a noncommutative group with respect to the composition of permutations (see
Section 3.1.4). More interestingly, (Z,,,+) and (Z,-) are finite groups that have
many cryptographic applications. As explained later in this chapter, Z,, consists of
all integers from O to n — 1, whereas Z;, consists of all integers between 1 and n — 1
that have no common divisor with n greater than 1.6

If (S, %) is a group, then for any element a € S and for any positive integer

i €N, a' € S denotes the following element in S

axax*x...*xa
—_————

7 times

Due to the closure axiom (i.e., axiom 1), this element must again be in S.
Note that we use a* only as a shorthand representation for the element, and that the
operation between the group element a and the integer ¢ is not the group operation.
For additive groups, a’ is sometimes also written as i - a (or ia, respectively). But
note again that 7 - @ only represents the resulting group element and that - is not the
group operation.

Cyclic Groups
If (S, *) is a finite group with identity element e (with respect to *), then the order of

an element ¢ € S, denoted as ord(a), is the least positive integer n such that qord(a)
equals e. This can be formally expressed as follows:

axax*x...xa=e.
—_———

ord(a) times
Alternatively speaking, the order of an element a € S (in a multiplicative
group) is defined as follows:
ord(a) :=min{n >1|a" =e}

If there exists an element a € .S such that the elements

a

6 Note that the star used in Z7 has nothing to do with the star used in Definition 3.11. In the second
case, the star represents an arbitrary binary operation.

Discrete Mathematics 55

a*xa

a*xax*xa

axax*x...*xa
—_————

n times

are different and represent all elements of .S, then the group (S,) is called cyclic
and a is called a generator of the group (or a primitive root of the group’s identity
element, respectively). If a generates the group (in the sense that a is a generator
of the group), then we may write S = (a). If a finite group is cyclic, then there are
typically many generators. In fact, there are ¢(n — 1) generators if n refers to the
order of the group.’

For example, (Z,,, +) is a cyclic group with generator 1. This basically means
that every number of {0, 1,2,3,...,n — 1} can be generated by adding 1 modulo n
a certain number of times:

0 = I+1+...+1
—_——

n times

1
= 1+1
3 = 1+41+1

n—1 = 1+4+1+4+...+1
~—_———

n—1 times

As illustrated in Figure 3.2, (Z%,-) is a cyclic group with generator 3 (i.e.,
(Z%,-) = (3)). This means that every element of Z% = {1,2,...,6} can be
represented by 3 to the power of another element of Z5.

In either case, it is important to note that not all finite groups must be cyclic
(and hence not all finite groups must have a generator), but that all cyclic groups
must be Abelian. The converse of the second fact is not true, meaning that an Abelian
group must not necessarily be cyclic.

7 The function ¢ is called Euler’s totient function and is formally introduced in Section 3.2.6.

56 Contemporary Cryptography

5=3 3=3

4=3" 2=3

6=3°

Figure 3.2 The cyclic group (Z%, -).

Subgroups

When we elaborate on groups and their basic properties, it is sometimes useful to
consider subgroups. The notion of a subgroup is formally introduced in Definition
3.12.

Definition 3.12 (Subgroup) A subset H of a group G is a subgroup of G if it is
closed under the operation of G and also forms a group.

For example, the integers are a subgroup both of the rational and real numbers
(with respect to the addition operation). Furthermore, {0,2,4} is a subgroup of
(Zg,+) with regard to addition modulo 6, and {0} and {1} are (trivial) subgroups
of every additive and multiplicative group.

An important class of subgroups of a finite group are those generated by an
element a, denoted as (a) := {a? | j > 0}. The subgroup (a) has ord(a) elements.
Furthermore, we need the notion of cosets as captured in Definitions 3.13-3.15.

Definition 3.13 (Left coset) Let G be a group and H C G be a subset of G. For all
a € G, thesets ax H := {axh | h € H} are called left cosets of H.

Definition 3.14 (Right coset) Let G be a group and H C G be a subset of G. For
all a € G, the sets H x a := {a* h | h € H} are called right cosets of H.

Definition 3.15 (Coset) Let G be a (commutative) group and H C G. For all
a € G, the sets a « H and H * a are equal and are called cosets of H.

Discrete Mathematics 57

In the example given earlier (i.e., G = (Zg,+) and H = {0,2,4}), the
elements of G are partitioned into the following two left cosets of H:

1+H=3+H=1{1,3,5}
2+H=4+H=1{2,4,6}

The notion of a coset is important to prove Theorem 3.1 that is due to
Lagrange.®

Theorem 3.1 (Lagrange’s Theorem) If H is a subgroup of G, then |H| | |G| (i.e.,
the order of H divides the order of G).

Proof. If H = G, then |H| | |G| holds trivially. Consequently, we only consider the
case in which H C G. For any a € G\ H, the coset a * H is a subset of G. The
following can be shown:

iyForanya # a',ifa ¢ o’ * H then (ax H) N (a/ x H) = 0;

i) lax H| = |H|.

For (i), suppose there exists a b € (a x H) N (a’ * H). Then there exist
¢, € Hsuchthata xc = b = o’ * ¢. Applying various group axioms, we have
a=axe=ax(cxc) =bxcl=(dx)xct=ax('*c!)eadxH.
This contradicts our assumption (that a ¢ o’ * H).

For (ii), |a * H| < |H| holds trivially (by the definition of a coset). Suppose
that the inequality is rigorous. This is only possible if there are b, c € H with b # ¢
and a * b = a * c. Applying the inverse element of a on either side of the equation,
we get b = ¢, contradicting to b # c.

In summary, G is partitioned by H and the family of its mutually disjoint
cosets, each has the size | H|, and hence |H| | |G/|. This proves the theorem.

g
Quotient Groups

Let G be a (commutative) group and H C G a subgroup of G. The quotient group
of G modulo H, denoted by G/ H, is the set of all cosets a * H with a ranging over
G, and with the identity element being e « H. For example, for every positive integer
n € N*, the set {0, +n, +2n, ...} is a subgroup of Z under integer addition. The
quotient group

8 Joseph Louis Lagrange was a French mathematician who lived from 1736 to 1813.

58 Contemporary Cryptography

Z/nZ ={x+nZ|x €L}

has the following n elements:

0 + nZ

+ nZ

2 + nZ
n—1 4+ nZ

Z/nZ is the formal and standard notation for the quotient group of Z modulo
nZ. However, for presentation convenience, we use the shorthand notation Z,, in
place of Z/nZ for the purpose of this book.

As corollaries of Lagrange’s Theorem, one can show that the order of the
quotient group G/H equals |G|/|H| and that in a finite group the order of every
element divides the group order. Fermat’s Little Theorem (see Theorem 3.7) and
Euler’s Theorem (see Theorem 3.8) take advantage of the second fact and form the
mathematical basis for the widely deployed RSA public key cryptosystem.

There are two important algebraic structures that comprise two operations:
rings and fields. They are addressed next.

3.1.2.4 Rings
The simpler algebraic structure that comprises two operations is the ring. It is

formally introduced in Definition 3.16.

Definition 3.16 (Ring) A ring is an algebraic structure (S, *1, *2) with a set S and
two associative binary operations 1 and %o that fulfill the following requirements:

1. (S, *1) is a commutative group with identity element e;;
2. (S, *q) is a monoid with identity element es;

3. The operation x5 is distributive over the operation 1. This means that for all
a, b, c € S the following two distributive laws must hold:

(a*20) %1 (ax2c)

(bx1c)*aa = (bxza)*1 (c*x2a)

a *g (b*1 c)

Discrete Mathematics 59

According to the first requirement, the operation x; must be commutative (this
is not required for the operation *2). The ring is called commutative (noncommuta-
tive) if the operation x5 is (not) commutative.

For example, (Z,+,-) and (Z,, +,) are commutative rings that are further
addressed in Sections 3.2 (entitled “Integer Arithmetic”) and 3.3 (entitled “Modular
Arithmetic”).? Similarly, (Q, +, -) and (R, +, -) are commutative rings. Also, the set
of real-valued n x n matrices form a ring with the zero matrix as the identity element
of addition and the identity matrix as the identity element of multiplication. Contrary
to the previous examples, this ring is noncommutative.

3.1.2.5 Fields

If we have a ring (.5, *1, *2) and require that (S \ {e1}, *2) is a group (instead of a
monoid), then we have a field. This is formally expressed in Definition 3.17.

Definition 3.17 (Field) A ring (S, *1,*2) in which (S \ {e1},*2) is a group is a
field.

Another way of saying that (S \ {e1}, *2) is a group is that every nonidentity
element (with respect to ;) must have an inverse element (with respect to *2).

A field (S, x1,*2) is finite if it contains only finitely many elements (i.e.,
|S| < o0). Finite fields have many applications in cryptography. For example, they
are frequently used in public key cryptography. More surprisingly, they are also used
in new symmetric encryption systems, such as the AES addressed in Section 10.2.2.

All finite fields with n elements can be shown to be structurally equivalent
or isomorphic (see Section 3.1.3 for the notion of isomorphic algebraic structures).
Consequently, it is sufficient to consider and thoroughly examine only one finite field
with n elements. This field is called Galois field,'° denoted by F,, or GF(n). For
every prime number p, there is a finite field with p elements (i.e., IF,,) and a series
of finite fields with p™ elements for every positive integer n (see Section 3.3.6). In
the simplest case, p = 2 and [Fy consists of only two elements, namely the identity
elements of the two binary operations (i.e., the zero element and the unity element).

Similar to Definition 3.12, we can introduce the notion of a subfield as
suggested in Definition 3.18.

Definition 3.18 (Subfield) A subset H of a field F is a subfield of F if it closed
under the operations of F' and also forms a field.

9 If nis prime, then (Zy,, +, -) is a field.
10 The term was chosen in honor of Evariste Galois, who lived from 1811 to 1832. Galois is said to
have found all finite fields.

60 Contemporary Cryptography

Using the notion of a subfield, we can introduce the notion of a prime field.
This is suggested in Definition 3.19.

Definition 3.19 (Prime field) A prime field is a field that contains no proper sub-
field.

For example, Q is a(n infinite) prime field, whereas R is not a prime field (note
that Q is a proper subfield of R). If we only consider finite fields, then a prime field
must contain a prime number of elements, meaning that it must have a prime order.

3.1.3 Homomorphisms and Isomorphisms

In algebraic discussions and analyses, one often uses the notion of a homomorphism
or isomorphism as formally introduced in Definitions 3.20 and 3.21.

Definition 3.20 (Homomorphism) Let A and B be two algebraic structures. A
mapping f : A — B is called a homomorphism of A into B if it preserves the
operations of A. That is, if o is an operation of A and e an operation of B, then
flxoy) = f(x) e f(y) must hold for all x,y € A.

Definition 3.21 (Isomorphism) A homomorphism f : A — B is an isomorphism
if it is injective (“one to one”). In this case, we say that A and B are isomorphic
and we write A = B.

Another way of saying that two algebraic structures are isomorphic is to say
that they are structurally equivalent. Furthermore, if an isomorphism of an algebraic
structure onto itself is considered, then one frequently uses the term automorphism
as formally introduced in Definition 3.22.

Definition 3.22 (Automorphism) An isomorphism f : A — A is an automor-
phism.

Against this background, a group homomorphism is a mapping f between
two groups (S1,*1) and (Sa, *2) such that the group operation is preserved (i.e.,
flax1 b) = f(a) *2 f(b) for all a,b € Sp) and the identity element e; of
(S1,*1) is mapped to the identity element es of (Sa,*q) (ie., f(e1) = eq). If
f 1+ (S1,*1) — (Sa,x*2) is injective (“one to one”), then the group homomorphism
is a group isomorphism (i.e., {S1, *1) = (Sa, *2)).

It can be shown that every cyclic group with order n is isomorphic to (Z,,, +).
Hence, if we know (Z,,, +), then we know all structural properties of every cyclic
group of order n. Furthermore, it can be shown that (Z7, -) is cyclic if and only if n
is a prime, a power of a prime > 2, or twice the power of a prime > 2 (see Definition

Discrete Mathematics 61

3.26 for the notion of a prime). For example, (Z7,, -) is a cyclic group, but (Z7,, -)
is not (i.e., it can be shown that no element of Zj, generates the entire group and
hence that the group has no generator). In either case, (Zy,) is a cyclic group for
every prime number p, and this group is isomorphic to (Z,_1,+). For example,
the function f(z) = ¢” (mod p) defines an isomorphism between (Z,_1,+) and
(Zy,, -). This isomorphism is reflected by the equation grTY = g - gv.

3.1.4 Permutations

Permutations are important mathematical building blocks for symmetric encryption
systems in general, and block ciphers in particular (in Section 10.2 we argue that
a block cipher represents a family of permutations). In short, a permutation is a
bijective map whose domain and range are the same. This is formally expressed in
Definition 3.23.

Definition 3.23 (Permutation) Let S be a set. Amap f : S — S is a permutation
if f is bijective (i.e., injective and surjective). The set of all permutations of .S is
denoted by Perm®~5, or P(S) in short.

If, for example, S = {1,2, 3,4, 5}, then an exemplary permutation of .S can
be expressed as follows:

1 2 3 4 5
(5 3 4 2 1)

This permutation maps every element in the first row of the matrice to the
corresponding element in the second row (i.e., 1 is mapped to 5, 2 is mapped to 3,
and so on). Using this notation, it is possible to specify any permutation of a finite
set S.

In what follows, we use .S, to refer to {1,2,...,n} for any integer n, and
we use P, to refer to PermS~—% or P(S,,). If o represents the concatenation

operator,'! then (P, o) is a noncommutative group for n > 3. For example, P, has
the two elements

N DN
N—

and

11 The permutation A o B is the permutation that results by applying B and A (in this order).

62 Contemporary Cryptography

(2 7)

As can be shown, |P,| =n! =1-2-...- n.For the first position, we have n
possibilities. For the second position, we have n—1 possibilities. This continues until
the last position, where we have only one possibility left. Consequently, there are
n-n—1-...- 1 possibilities, and this value is equal to | P,,| = n!. More specifically,
the formula is proven by induction over n. Because P; has 1! = 1 element, the
formula is correct for n = 1. We assume that the formula is correct for n — 1 (i.e.,
|Pn—1] = (n — 1)!) and show that the formula is then also correct for n. Therefore,
we look at the permutations of P, that map 1 to an arbitrary z € S,,. By using such

a permutation, the numbers 2,3, ...,n are mappedto 1,2, ..., — 1,z +1,...,n,
and this function is bijective. There are (n — 1)! such functions. Furthermore, there
are n possibilities to map 1 to an x (i.e.,z = 1,...,n). Consequently, there is a total

of |P,| = n(n — 1)! = n! permutations of S,,.

Let S = {0, 1}™ be the set of all binary strings of length n. A permutation of
S in which the bit positions are permuted is said to be a bit permutation. To specify
a bit permutation f, we must selecta m € P,, and set

fo{o,1m — {o0,1)"

bo...bn,1 [— bw(0)~~-b7r(n—1)~

Every bit permutation can be described in this way, and hence there are n!
possible bit permutations for binary strings of length n.

There are bit permutations that are frequently used in cryptography, such as
cyclic shift left and cyclic shift right. A cyclic shift left for ¢ positions maps the bit
string (bo, b1, ..., b,—1) into

(bz mod n s b(iJrl) mod nsy -+ v b(iJrnfl) mod n)

A cyclic shift right is defined similarly.

Last but not least, we sometimes use the notion of a family of permutations.
Roughly speaking, F' is a family of permutations if the domain and range are the
same and each f, is a permutation (according to Definition 3.23).

Discrete Mathematics 63

3.2 INTEGER ARITHMETIC

Mathematics is the queen of sciences and number theory is the queen of
mathematics.

— Carl Friedrich Gauss!?

As mentioned earlier, integer arithmetic elaborates on the ring (Z, +, -) and its basic
properties.!? This special (and comparably narrow) field of study is sometimes
also referred to as number theory. According to the quote given above, number
theory is a very important and fundamental mathematical topic that has had (and
continues to have) a deep impact on natural sciences. One fascinating aspect of
number theory is that many of its problems and theorems can be easily expressed
and understood even by nonmathematicians, but they are hard to solve (generally
without being able to prove the hardness property). This is in contrast to many other
areas of mathematics (where the relevant problems cannot easily be understood by
nonexperts). For example, the integer factorization problem (see Section 7.2.2) is
explained in a few words, whereas number theorists have tried to solve it without
success for several centuries.

In this section, we look at the aspects of integer arithmetic or number theory
that are relevant for the topic of this book. More specifically, we address integer
division, common divisors and multiples, Euclidean algorithms, prime numbers,
factorization, and Euler’s totient function.

3.2.1 Integer Division

In an algebraic structure with the multiplication operation, one usually divides two
elements by multiplying the first element with the (multiplicatively) inverse element
of the second. This can be formally expressed as follows:

a -1
— =ab
b
Obviously, this construction requires that element b has an inverse element.
This is always the case in a group (or field). If, however, the algebraic structure is
only a monoid (or ring), then there are elements that have no inverse, and hence it

12 Carl Friedrich Gauss was a German mathematician who lived from 1777 to 1855.
13 What makes the integers unique (as compared to other rings and integral domains) is the order
relation <.

64

Contemporary Cryptography

may not be possible to divide two arbitrarily chosen elements. For example, in the
ring (Z, +, -) it is possible to divide 6 by 2, but it is not possible to divide 2 by 3.

For a, b € Z, we say that a divides b, denoted as alb, if there exists a ¢ € Z such

that b = ac. Alternatively speaking, a is a divisor of b and b is said to be a multiple
of a. In the examples given earlier 2|6, because 6 = 2 - 3, but 3 does not divide 2.
Also, 1 divides every integer and the largest divisor of any integer a € Z\ {0} is |a|.
Furthermore, every integer a € Z divides 0; thus 0 has no largest divisor. Theorem
3.2 enumerates some rules that can be used to compute with divisors.

Theorem 3.2 Forall a,b,c,d, e € Z, the following rules apply:

1. Ifalband b|c, then alc.
2. Ifalb, then aclbe for all c.
3. If ¢|la and c|b, then c|da + eb for all d and e.
4. Ifalband b # 0, then |a| < |b].
5. Ifa|bandbla, then |a| = |b|.
Proofs.

1.

. Ifa

If a|b and b|c, then there exist f, g € Z with b = af and ¢ = bg. Consequently,
we can write ¢ = bg = (af)g = a(fg) to express ¢ as a multiple of a. The
claim (i.e., a|c) follows directly from this equation.

b, then there exists f € Z with b = af. Consequently, we can write
be = (af)c = f(ac) to express be as a multiple of ac. The claim (i.e., ac|bc)
follows directly from this equation.

If ¢|a and c|b, then there exist f, g € Z witha = fcand b = gc. Consequently,
we can write da + eb = dfc + egc = (df + eg)ctoexpressda + ebas
a multiple of c. The claim (i.e., c|da + eb) follows directly from this equation.

If a|b and b # 0, then there exists 0 # f € Z with b = af. Consequently,
|b| = |af| > |a| and the claim (i.e., |a| < |b|) follows immediately.

. Let us assume that a|b and b|a. If @ = 0 then b = 0, and vice versa. If a, b # 0,

then it follows from 4. that |a| < |b] and |b| < |al|, and hence |b| = |a.

O

Theorem 3.3 elaborates on the division operation and is commonly known as

Euclid’s division theorem for integers. We don’t prove the theorem in this book.

Discrete Mathematics 65

Theorem 3.3 (Euclid’s division theorem) Foralln,d € 7\ {0} there exist unique
and efficiently computable q,r € Z such thatn = gd + r and 0 < r < |d|.

In this setting, d is called the divisor (i.e., n is divided by d), ¢ the quotient, and
r the remainder. The remainder r can also be written as R4(n), and we sometimes
use this notation.

For example, R7(16) = 2 (because 16 = 2 - 7 + 2), R7(—16) = 5 (because
—16 = —3 -7+ 5), and Ro5(104) = 4 (because 104 = 4 - 25 + 4). Obviously,

Ri(n) = 0 means that d divides n (with remainder zero), and hence d is a
divisor of n. Furthermore, R4(n + id) is equal to Rq(n) for all ¢ € Z, and hence
R:(1) = R7(8) = R7(15) = R7(22) = R7(29) = ... = 1.

3.2.2 Common Divisors and Multiples

Two integers can have many common divisors, but only one of them can be the
greatest. Quite naturally, this divisor is called greatest common divisor. It is formally
introduced in Definition 3.24.

Definition 3.24 (Common divisors and greatest common divisor) Fora,b € Z\
{0}, ¢ € Z is a common divisor of a and b if c|a and c|b. Furthermore, c is the
greatest common divisor, denoted ged(a, b), if it is the largest integer that divides a
and b.

Another possibility to define the greatest common divisor of a and b is to say
that ¢ = gcd(a, b) if any common divisor of a and b also divides ¢. gcd(0,0) = 0,
and gcd(a,0) = |a| forall a € Z \ {0}. If a,b € Z\ {0}, then 1 < gcd(a,b) <
min{|al, |b|} and ged(a,b) = ged(=£|al, £|b]). Consequently, the greatest common
divisor of two integers can never be negative (even if one or both integers are
negative). Furthermore, two integers a, b € Z \ {0} are relatively prime or co-prime
if their greatest common divisor is 1 (i.e., if ged(a,b) = 1).

Similar to the (greatest) common divisor, it is possible to define the (least)
common multiple of two integers. This is formally introduced in Definition 3.25.

Definition 3.25 (Common multiples and least common multiple) For a,b € Z \
{0}, ¢ € Z is a common multiple of a and b if a|c and b|c. Furthermore, c is the
least common multiple, denoted lcm(a, b), if it is the smallest integer that is divided
by a and b.

Another possibility to define the least common multiple of a and b is to say
that ¢ = lem(a, b) if ¢ divides any common multiple of a and b.

The gcd and lem operators can be generalized to more than two arguments.
In fact, gcd(aq, . . ., a) is the largest integer that divides all a; (i = 1,...,k) and
lem(aq, ..., ak) is the smallest integer that is divided by all a; (: = 1,..., k).

66 Contemporary Cryptography

3.2.3 Euclidean Algorithms

In Section 3.2.5 we see how one can compute the greatest common divisor of two
integers if their prime factorization is known. It is, however, not necessary to know
the prime factorization of two integers to compute their greatest common divisor.
In fact, the Euclidean algorithm (or Euclid’s algorithm) can be used to compute
the greatest common divisor of two integers a,b € Z \ {0} with unknown prime
factorization.'*

Theorem 3.3 says that for two nonzero integers a > b, we can always write

a=bg+r

for some quotient ¢ # 0 and remainder 0 < r < b. Because by definition,
gcd(a, b) divides both a and b, the above equation shows that it must also divide r.
Consequently, ged(a, b) equals ged(b,), and because the remainder 7 of a divided
by b is denoted by @ mod b, we can say

ged(a,b) = ged(b, a mod b) = ged(b, Ry(a)).

This equation can be recursively applied to compute gcd(a, b). For example,
gcd(100, 35) can be computed as follows:

gcd(100,35) = ged(35, R35(100))
= gcd(35,30)
= gcd(30, R30(35))
= gcd(30,5)
= gcd(5, R5(30))
(5,

= gcd(5,0)

o

This way of computing ged(a, b) is at the core of the Euclidean algorithm. If
we consider the following series of k equations:

a = bg+m

14 The Euclidean algorithm is one of the oldest algorithms known; it appeared in Euclid’s Elements
around 300 B.C.

Discrete Mathematics 67

b = rig+r
N = Toq3+7T3
Tk—3 = Tk—2Qk—1+Tkp—1
Tk—2 = Tk—1qx + 7Tk

All quotients and remainders are integers. At the end, 7 is equal to zero
and q1,92,...,qk, 71,72, ..., k—1 are nonzero. If r, = 0, then the last equation
implies that ;1 divides r;_o. The last-but-one equation implies that it also divides
r,—3. This line of argumentation can be continued until the first equation, and hence
ri_1 divides a and b. None of the other remainders r;_o,7%_3,...,71 has this
property.'> Consequently, r,_; is the greatest common divisor of a and b, meaning
that r,_1 = ged(a, b).

Algorithm 3.1 The Euclidean algorithm to compute the greatest common divisor of a and b.

(a,b €7, |a] > |bl,a £ 0)
a < |al

b« [b]

while b # 0 do

t—a

a<—b
b« t mod b
return a

(gcd(a, b))

The Euclidean algorithm is illustrated in Algorithm 3.1. It takes as input two
integers a and b with |a] > |b] and @ # 0, and computes as output gcd(a, b).
First it replaces a and b with their absolute values (note that this does not change
the greatest common divisor). Then the previously mentioned rule that ged(a, b) =
gcd(b,a mod b) is applied until b reaches zero. At this point in time, a represents
the greatest common divisor and is returned by the algorithm. Note that the loop can
also be represented by a recursive function call.

The Euclidean algorithm explained so far can be used to compute the greatest
common divisor of two integers a and b. During its execution, all intermediate results
(in particular all quotients g; and remainders r;) are discarded. This makes the
algorithm simple to implement in the first place. If, however, one does not throw
all intermediate results away but accumulates them during the execution of the

15 That’s why they are called remainders in the first place (not divisors). Only 7, _ is a divisor in the
last equation.

68 Contemporary Cryptography

algorithm, then one may obtain more information than simply the greatest common
divisor. In fact, the extended Euclidean algorithm can be used to compute two
integers x and y that satisfy (3.1):

za + yb = ged(a, b) (3.1)

Note that the first equation of the previously mentioned series of k equations
can be written as

a+b(—q)=m

If we multiply both sides of this equation with g2, we get

aqz + b(—q1q2) = r1q2.

Combining this equation with the second equation of the series, we get

a(—gq2) + b(1 4+ q1q2) = 7.

A similar calculation can be used to express each r; fori = 1,2,... k as a
linear combination of ¢ and b. In fact,

ax; + by, =1; (3.2)

where x; and y; are some integers. As explained earlier, we eventually reach the
point where r;, = 0 and ry,_ represents gcd(a, b):

axp—1 + byr—1 = r—1 = ged(a, b).

In essence, the extended Euclidean algorithm specifies a way to accumulate
the intermediate quotients to compute x;_1 and y_1. Like the Euclidean algorithm,
the extended Euclidean algorithm takes as input two integers a and b with |a| > |b]
and a # 0, and computes as output two integers x and y that satisfy (3.1).

Ifwesetr_1 =a,79 =b,x_1=1,y_1 = 0,29 = 0, and yo = 1, then the
i*" equation of the previously mentioned series of k equations relates r;_1, 7;, and
ri+1 in the following way:

Discrete Mathematics 69

Ti+1 = Ti—1 — TiGi+1

Replacing r;—1 and r; in the right-hand side of this equation using (3.2), we

get
Tiv1 = a(Ti—1 — Git17i) + b(Yio1 — qiv1Yi)-
Algorithm 3.2 The extended Euclidean algorithm.
(a,b €Z,a| > |b],a #0)
i—0
r_1<—a
ro<— b
rx_1 <1
y—1 <0
xg — 0
yo 1
while (r; = ax; + by; # 0) do
q—ri—1divr;
Titl < Ti—1 — 4T;
Yitl — Yi—1 — qYs
1+—1+1
return (;—1,Yi—1)
(x and y with za 4+ yb = ged(a, b))
Comparing this equation with (3.2), we obtain
Tit1 = Ti—1 — ¢i+1T5
Yitrl = Yi—1— qi+1VYi
fori =0,1,...,k— 1, and this pair of equations provides us with a general method

for accumulating the intermediate quotients while computing the greatest common
divisor of a and b. The resulting extended Euclidean algorithm is illustrated in
Algorithm 3.2.

For example, the extended Euclidean algorithm can be used to determine x
and y that satisfy gcd(100,35) = 5 = x - 100 + y - 35 in the example given earlier.

70 Contemporary Cryptography

In this case, a = 100 and b = 35. After the initialization phase of the algorithm, we
come to the first incarnation of the while-loop with ¢ = 0. We compute

ro = axo + byo =100-0+ 35 -1 = 35.
Because this value is not equal to 0, we enter the loop. The variable g is set to

r_1 div . In our example, this integer division yields 100 div 35 = 2. Using ¢ = 2,
we compute the following pair of values:

Ty = T_1—qro=1—2-0=1
i = Y-1—qp=0-2-1=-2

After having incremented ¢ with 1, we have ¢ = 1 and come back to the second
incarnation of the while-loop. We compute

r1 =axy +by; =100-1435-(—2) =100 — 70 = 30.

Because this value is again not equal to 0, we enter the loop again. This time,
the variable q is set to ro div 1 = 35 div 30 = 1. Using ¢ = 1, we then compute the
following pair of values:

ro = wxg—qr;=0—1=-1
Yo Yo—qn=1—-(1-(-2))=142=3

After having incremented ¢ with 1, we have ¢ = 2 and come back to the third
incarnation of the while-loop. We compute

ry = azy + byy = 100 - (—1) + 35 -3 = —100 + 105 = 5.

Because this value is not equal to 0, we enter the loop. This time, the variable
q is set to 1 div 2 = 30 div 5 = 6. Using ¢ = 6, we compute the following pair of
values:

Discrete Mathematics 71

Tz = T1—qro=146=7
Y3 = Y1—qy2=-2-6-3=-20

Finally, we increment ¢ and come back to the fourth incarnation of the while-
loop with ¢ = 3. When we compute

rg =100 -7 4 (—20) - 35

we immediately realize that this value equals 0. Consequently, we don’t enter the
while-loop anymore, but return (z,y) = (x2,y2) = (—1,3) as the result of the
algorithm. It can easily be verified that this result is correct, because ged(100, 35) =
5=—-1-100+ 3 - 35.

3.2.4 Prime Numbers

Prime numbers (or primes) as formally introduced in Definition 3.26 are frequently
used in mathematics.'®

Definition 3.26 (Prime number) A natural number 1 < n € N is called a prime
number (or prime) if it divisible only by 1 and itself.

Contrary to that, a natural number 1 < n € N that is not prime is called
composite (note that 1 is neither prime nor composite). In this book, the set of all
prime numbers is denoted as P. The set P is infinitely large (i.e., |P| = c0), and its
first 8 elements are 2,3,5,7,11,13,17,and 19.

Suppose that you want to find the set that consists of all primes less than a
certain threshold n (e.g., n = 20). In the third century B.C., Eratosthenes proposed
an algorithm to systematically find these primes, and this algorithm introduced the
notion of a sieve. The sieve starts by writing down the set of all natural numbers
between 2 and n. In our example n = 20, this may look as follows:

{2,3,4,5,6,7,8,9,10,11, 12,13, 14, 15,16, 17, 18, 19, 20}

Next, all numbers bigger than 2 (i.e., the smallest prime) which are multiples
of 2 are removed from the set (this means that all even numbers are removed). The
following set remains:

16 The first recorded definition of a prime was again given by Euclid. There is even some evidence that
the concept of primality was known earlier to Aristotle and Pythagoras.

72 Contemporary Cryptography

{2,3,5,7,9,11,13,15,17, 19}

This step is repeated for every prime number not bigger than /n. In our
example, v/ 20 ~ 4.472. This basically means that the step must be repeated only for
the prime number 3. The following set remains:

{2,3,5,7,11,13,17,19}

What is left is the set of prime numbers less than 20. In this example, the
cardinality of the prime number set is 8. In general, the cardinality of the prime
number set is measured by the prime counting function 7(n). This function is
introduced next.

3.24.1 Prime Counting Function

As mentioned earlier, the prime counting function 7r(n) counts the number of primes
that are less or equal to n € N. This statement can be defined as follows:

m(n) :={peP|p<n}

The following table illustrates the first couple of values of the prime counting
function 7(n). Note that the function grows monotonically.

7 8 9 10 11 12 13 14
4 4 4 4 5 5 6 6

n |2 3 4 5 6
an) |1 2 2 3 3

In public key cryptography, one often uses very large prime numbers. Con-
sequently, one may ask whether there are arbitrarily sized prime numbers. This
question can be answered in the affirmative. In fact, it is easy to proof that there
are infinitely many primes. Assume that there are only finitely many primes, and let
them be p; - - - p,,. Consider the number m = p; - --p, + 1. Because m is bigger
than any prime, it must be composite, and hence it must be divisible by some prime.
We note, however, that m is not divisible by p;, as when we divide m by p; we get
the quotient ps - - - p, and a remainder of 1. Similarly, m is not divisible by any p;
for ¢+ = 2,...,n. Consequently, we get a contradiction and hence the assumption
(i.e., that there are only finitely many primes) must be wrong. This proves that there
are infinitely many primes.

Although there are infinitely many primes, it may still be the case that they
are sparse and that finding a large prime is prohibitively difficult. Consequently, a

Discrete Mathematics 73

somehow related question asks for the density of prime numbers. How likely does
an interval of a given size comprise a prime number? We can use the prime density
theorem addressed next to answer questions of this type.

3.2.4.2 Prime Density Theorem

Theorem 3.4 is called the prime density theorem. It says that arbitrarily sized prime
numbers do in fact exist, and that finding them is not difficult (even for very large
numbers). We give the theorem without a proof.

Theorem 3.4 (Prime density theorem)

In essence, the prime density theorem says that for sufficiently large n the
value 7(n) is about nn/ In(n) and that roughly every In(n)** number of the size of
n is prime. For example, In(10'%°) ~ 230. This means that about 1 in 230 (115)
integers (odd integers) with 100 decimal digits is a prime. More specifically, it is
known that

n

m(n) = In(n)

for 2 < n € N and that

n

In(n)

for 17 < n € N. Consequently, 7(n) ~ n/In(n) is indeed a very good approxima-
tion for almost all n € N.

There are several open conjectures on prime numbers. For example, it is
conjectured that there exist infinitely many twin primes (i.e., primes p for which
p+ 2 is also prime), and that every even number is the sum of two primes. We don’t
elaborate on these issues in this book.

m(n) < 1.10555

3.24.3 Generating Large Primes

In cryptographic applications, one often needs large primes, and there are two
methods for generating them:

74 Contemporary Cryptography

e One can construct provable primes;

e One can randomly choose large odd numbers and apply primality (or compos-
iteness) tests.

There are only a few algorithms to construct provable primes (e.g., [7]), and
in practice one randomly chooses large odd numbers and applies primality (or
compositeness) tests. If a number turns out to be composite, then it is discarded and
the next odd number is taken into consideration. The primality decision problem as
captured in Definition 3.27 has attracted many mathematicians in the past.

Definition 3.27 (Primality decision problem) Given a positive integer n € N,
decide whether n € P (i.e., n is prime) or not (i.e., n is composite).

There are a couple of algorithms to address the primality decision problem.
Most of them are probabilistic.'” Only a few deterministic primality testing algo-
rithms are efficient (i.e., run in polynomial time). They are, however, much less
efficient than their probabilistic counterparts. From a theoretical viewpoint, however,
knowing efficient deterministic primality testing algorithms means that the primality
decision problem is in the complexity class P (as introduced in Definition 6.6) This
fact was proven in 2002.'3

Numbers that are not truly known to be prime, but which have passed some
probabilistic primality tests, are called probable primes or pseudoprimes. Some-
times, the term “pseudoprime” is also used to refer to a nonprime (i.e., a composite
number) that has nevertheless passed a probabilistic primality test. For the purpose
of this book, however, a pseudoprime is a (prime or composite) number n that has
passed some specified probabilistic primality tests. Each of these tests makes use of
one or several randomly chosen auxiliary numbers 1 < a < n. If such an a tells us
that a is likely prime (composite), then a is a witness to the primality (composite-
ness) of n. A problem is that a significant fraction of numbers between 2 and n — 1
may be false witnesses (sometimes called liars) to the primality of n, meaning that
they tell us n is prime when it’s not. Thus, part of the issue is to be sure that a large
fraction of the numbers a in the range 1 < a < n are true witnesses to either the
primality or the compositeness of n. As discussed later, the fatal flaw in the Fermat
test is that there are compos