
Jonathan Katz and Yehuda Lindell

Introduction to Modern
Cryptography

c©2007 Jonathan Katz and Yehuda Lindell. All Rights Reserved

CRC PRESS

Boca Raton London New York Washington, D.C.

Preface

This book presents the basic paradigms and principles of modern cryptogra-
phy. It is designed to serve as a textbook for undergraduate- or graduate-level
courses in cryptography (in computer science or mathematics departments),
as a general introduction suitable for self-study (especially for beginning grad-
uate students), and as a reference for students, researchers, and practitioners.

There are numerous other cryptography textbooks available today, and the
reader may rightly ask whether another book on the subject is needed. We
would not have written this book if the answer to that question were anything
other than an unequivocal yes. The novelty of this book — and what, in our
opinion, distinguishes it from all other books currently on the market — is
that it provides a rigorous treatment of modern cryptography in an accessible
manner appropriate for an introduction to the topic. To be sure, the material
in this book is difficult (at least in comparison to some other books in this
area). Rather than shy away from this difficulty, however, we have chosen to
face it head-on, to lead the reader through the demanding (yet enthralling!)
subject matter rather than shield the reader’s eyes from it. We hope readers
(and instructors) will respond by taking up the challenge.

As mentioned, our focus is on modern (post-1980s) cryptography, which
is distinguished from classical cryptography by its emphasis on definitions,
precise assumptions, and rigorous proofs of security. We briefly discuss each
of these in turn (these principles are explored in greater detail in Chapter 1):

• The central role of definitions: A key intellectual contribution of
modern cryptography has been the recognition that formal definitions
of security are an essential first step in the design of any cryptographic
primitive or protocol. The reason, in retrospect, is simple: if you don’t
know what it is you are trying to achieve, how can you hope to know
when you have achieved it? As we will see in this book, cryptographic
definitions of security are quite strong and — at first glance — may
appear impossible to achieve. One of the most amazing aspects of cryp-
tography is that (under mild and widely-believed assumptions) efficient
constructions satisfying such strong definitions can be proven to exist.

• The importance of formal and precise assumptions: As will
be explained in Chapter 2, many cryptographic constructions cannot
currently be proven secure in an unconditional sense. Security often
relies, instead, on some widely-believed (albeit unproven) assumption.
The modern cryptographic approach dictates that any such assumptions

iii

iv

must be clearly and unambiguously defined. This not only allows for ob-
jective evaluation of the assumption, but, more importantly, enables
rigorous proofs of security as described next.

• The possibility of rigorous proofs of security: The previous two
ideas lead naturally to the current one, which is the realization that cryp-
tographic constructions can be proven secure with respect to a given def-
inition of security and relative to a well-defined cryptographic assump-
tion. This is the essence of modern cryptography, and was responsible
for the transformation of cryptography from an art to a science.

The importance of this idea cannot be over-emphasized. Historically,
cryptographic schemes were designed in a largely ad-hoc fashion, and
were deemed to be secure if the designers themselves could not find
any attacks. In contrast, modern cryptography promotes the design
of schemes with formal, mathematical proofs of security in well-defined
models. Such schemes are guaranteed to be secure unless the underly-
ing assumption is false (or the security definition did not appropriately
model the real-world security concerns). By relying on long-standing
assumptions (e.g., the assumption that “factoring is hard”), it is thus
possible to obtain schemes that are extremely unlikely to be broken.

A unified approach. The above contributions of modern cryptography are
felt not only within the “theory of cryptography” community. The importance
of precise definitions is, by now, widely understood and appreciated by those
in the security community (as well as those who use cryptographic tools to
build secure systems), and rigorous proofs of security have become one of
the requirements for cryptographic schemes to be standardized. As such, we
do not separate “applied cryptography” from “provable security”; rather, we
present practical and widely-used constructions along with precise statements
(and, most of the time, a proof) of what definition of security is achieved.

Guide to Using this Book

This guide is intended primarily for instructors seeking to adopt this book
for their course, though the student picking up this book on his or her own
may also find it useful.

Required background. This book uses definitions, proofs, and mathemat-
ical concepts, and therefore requires some mathematical maturity. In par-
ticular, the reader is assumed to have had some exposure to proofs at the
college level, say in an upper-level mathematics course or a course on discrete
mathematics, algorithms, or computability theory. Having said this, we have
made a significant effort to simplify the presentation and make it generally
accessible. It is our belief that this book is not more difficult than analogous
textbooks that are less rigorous. On the contrary, we believe that (to take one

v

example) once security goals are clearly formulated, it often becomes easier
to understand the design choices made in a particular construction.

We have structured the book so that the only formal prerequisites are a
course in algorithms and a course in discrete mathematics. Even here we rely
on very little material: specifically, we assume some familiarity with basic
probability and big-O notation, modular arithmetic, and the idea of equating
efficient algorithms with those running in polynomial time. These concepts
are reviewed in Appendix A and/or when first used in the book.

Suggestions for course organization. The core material of this book,
which we strongly recommend should be covered in any introductory course
on cryptography, consists of the following (starred sections are excluded in
what follows; see further discussion regarding starred material below):

• Chapters 1–4 (through Section 4.6), discussing classical cryptography,
modern cryptography, and the basics of private-key cryptography (both
private-key encryption and message authentication).

• Chapter 7, introducing concrete mathematical problems believed to be
“hard”, providing the number-theoretic background needed to under-
stand RSA, Diffie-Hellman, and El Gamal, and giving a flavor of how
number-theoretic assumptions are used in cryptography.

• Chapters 9 and 10, motivating the public-key setting and discussing
public-key encryption (including RSA-based schemes and El Gamal).

• Chapter 12, describing digital signature schemes.

• Sections 13.1 and 13.3, introducing the random oracle model and the
RSA-FDH signature scheme.

We believe that this core material — possibly omitting some of the more
in-depth discussion and some proofs — can be covered in a 30–35-hour under-
graduate course. Instructors with more time available could proceed at a more
leisurely pace, e.g., giving details of all proofs and going more slowly when
introducing the underlying group theory and number-theoretic background.
Alternately, additional topics could be incorporated as discussed next.

Those wishing to cover additional material, in either a longer course or a
faster-paced graduate course, will find that the book has been structured to
allow flexible incorporation of other topics as time permits (and depending on
the instructor’s interests). Specifically, some of the chapters and sections are
starred (*). These sections are not less important in any way, but arguably
do not constitute “core material” for an introductory course in cryptography.
As made evident by the course outline just given (which does not include any
starred material), starred chapters and sections may be skipped — or covered
at any point subsequent to their appearance in the book — without affecting
the flow of the course. In particular, we have taken care to ensure that none of

vi

the later un-starred material depends on any starred material. For the most
part, the starred chapters also do not depend on each other (and in the rare
cases when they do, this dependence is explicitly noted).

We suggest the following from among the starred topics for those wishing
to give their course a particular flavor:

• Theory: A more theoretically-inclined course could include material
from Sections 4.8 and 4.9 (dealing with stronger notions of security for
private-key encryption); Chapter 6 (introducing one-way functions and
hard-core bits, and constructing pseudorandom generators and pseu-
dorandom functions/permutations starting from any one-way permuta-
tion); Section 10.7 (constructing public-key encryption from trapdoor
permutations); Chapter 11 (describing the Goldwasser-Micali, Rabin,
and Paillier encryption schemes); and Section 12.6 (showing a signature
scheme that does not rely on random oracles).

• Applications: An instructor wanting to emphasize practical aspects
of cryptography is highly encouraged to cover Section 4.7 (describing
HMAC); Chapter 5 (discussing modern block ciphers and techniques
used in their design); and all of Chapter 13 (giving cryptographic con-
structions in the random oracle model).

• Mathematics: A course directed at students with a strong mathematics
background — or taught by someone who enjoys this aspect of cryp-
tography — could incorporate material from Chapter 5 (see above) as
well as Section 7.3.4 (elliptic-curve groups); Chapter 8 (algorithms for
factoring and computing discrete logarithms); and Chapter 11 (describ-
ing the Goldwasser-Micali, Rabin, and Paillier encryption schemes along
with all the necessary number-theoretic background).

Comments and Errata

Our goal in writing this book was to make modern cryptography accessible
to a wide audience outside the “theoretical computer science” community. We
hope you will let us know whether we have succeeded. In particular, we are
always more than happy to receive feedback on this book, especially construc-
tive comments telling us how the book can be improved. We hope there are
no errors or typos in the book; if you do find any, however, we would greatly
appreciate it if you let us know. (A list of known errata will be maintained
at http://www.cs.umd.edu/~jkatz/imc.html.) You can email your com-
ments and errata to jkatz@cs.umd.edu and lindell@cs.biu.ac.il; please
put “Introduction to Modern Cryptography” in the subject line.

vii

Acknowledgements

Jonathan Katz is deeply indebted to Zvi Galil, Moti Yung, and Rafail Os-
trovsky for their help, guidance, and support throughout his career. This book
would never have come to be without their contributions to his development,
and he thanks them for that. He would also like to thank his colleagues with
whom he has had numerous discussions on the “right” approach to writing a
cryptography textbook, and in particular Victor Shoup.

Yehuda Lindell wishes to first and foremost thank Oded Goldreich and Moni
Naor for introducing him to the world of cryptography. Their influence is felt
until today and will undoubtedly continue to be felt in the future. There are
many, many other people who have also had considerable influence over the
years and instead of mentioning them all, he will just say thank you — you
know who you are.

Both authors would like to extend their gratitude to those who read and
commented on earlier drafts of this book. We thank Salil Vadhan and Alon
Rosen who experimented with this text in an introductory course on cryp-
tography at Harvard and provided us with valuable feedback. We also thank
all of the following for their many comments and corrections: Adam Bender,
Yair Dombb, William Glenn, S. Dov Gordon, Carmit Hazay, Avivit Levy,
Matthew Mah, Jason Rogers, Rui Xue, Dicky Yan, and Hila Zarosim. We are
very grateful to all those who encouraged us to write this book and concurred
with our feeling that a book of this nature is badly needed.

Finally, we thank our (respective) wives and children for all their support
and understanding during the many hours, days, and months that we have
spent on this project.

Contents

Preface iii

I Introduction and Classical Cryptography 1

1 Introduction and Classical Ciphers 3
1.1 Cryptography and Modern Cryptography 3
1.2 The Setting of Private-Key Encryption 4
1.3 Historical Ciphers and Their Cryptanalysis 9
1.4 The Basic Principles of Modern Cryptography 18

1.4.1 Principle 1 – Formulation of Exact Definitions 18
1.4.2 Principle 2 – Reliance on Precise Assumptions 24
1.4.3 Principle 3 – Rigorous Proofs of Security 26

References and Additional Reading 27
Exercises . 27

2 Perfectly-Secret Encryption 29
2.1 Definitions and Basic Properties 29
2.2 The One-Time Pad (Vernam’s Cipher) 34
2.3 Limitations of Perfect Secrecy 37
2.4 * Shannon’s Theorem . 38
2.5 Summary . 40
References and Additional Reading 41
Exercises . 41

II Private-Key (Symmetric) Cryptography 45

3 Private-Key Encryption and Pseudorandomness 47
3.1 A Computational Approach to Cryptography 47

3.1.1 The Basic Idea of Computational Security 48
3.1.2 Efficient Algorithms and Negligible Success 54
3.1.3 Proofs by Reduction 58

3.2 A Definition of Computationally-Secure Encryption 59
3.2.1 A Definition of Security for Encryption 60
3.2.2 * Properties of the Definition 64

3.3 Pseudorandomness . 68
3.4 Constructing Secure Encryption Schemes 72

3.4.1 A Secure Fixed-Length Encryption Scheme 72

3.4.2 Handling Variable-Length Messages 75
3.4.3 Stream Ciphers and Multiple Encryptions 76

3.5 Security under Chosen-Plaintext Attacks (CPA) 81
3.6 Constructing CPA-Secure Encryption Schemes 85

3.6.1 Pseudorandom Functions 85
3.6.2 CPA-Secure Encryption Schemes from Pseudorandom

Functions . 88
3.6.3 Pseudorandom Permutations and Block Ciphers . . . 93
3.6.4 Modes of Operation 95

3.7 Security Against Chosen-Ciphertext Attacks (CCA) 100
References and Additional Reading 102
Exercises . 103

4 Message Authentication Codes and Collision-Resistant Hash
Functions 107
4.1 Secure Communication and Message Integrity 107
4.2 Encryption and Message Authentication 108
4.3 Message Authentication Codes – Definitions 109
4.4 Constructing Secure Message Authentication Codes 113
4.5 CBC-MAC . 119
4.6 Collision-Resistant Hash Functions 121

4.6.1 Defining Collision Resistance 122
4.6.2 Weaker Notions of Security for Hash Functions 124
4.6.3 A Generic “Birthday” Attack 125
4.6.4 The Merkle-Damg̊ard Transform 127
4.6.5 Collision-Resistant Hash Functions in Practice 129

4.7 * NMAC and HMAC . 132
4.7.1 Nested MAC (NMAC) 132
4.7.2 HMAC . 135

4.8 * Achieving Chosen-Ciphertext Secure Encryption 137
4.9 * Obtaining Privacy and Message Authentication 141
References and Additional Reading 147
Exercises . 148

5 Pseudorandom Objects in Practice: Block Ciphers 151
5.1 Substitution-Permutation Networks 154
5.2 Feistel Networks . 160
5.3 DES – The Data Encryption Standard 162

5.3.1 The Design of DES . 162
5.3.2 Attacks on Reduced-Round Variants of DES 165
5.3.3 The Security of DES 168

5.4 Increasing the Key Size for Block Ciphers 170
5.5 AES – The Advanced Encryption Standard 173
5.6 Differential and Linear Cryptanalysis – A Brief Look 176
5.7 Stream Ciphers from Block Ciphers 177

Additional Reading and References 178
Exercises . 179

6 * Theoretical Constructions of Pseudorandom Objects 181
6.1 One Way Functions . 182

6.1.1 Definitions . 182
6.1.2 Candidates . 185
6.1.3 Hard-Core Predicates 186

6.2 Overview of Constructions 188
6.3 Hard-Core Predicates from Every One-Way Function 190

6.3.1 The Most Simplistic Case 190
6.3.2 A More Involved Case 191
6.3.3 The Full Proof . 194

6.4 Constructions of Pseudorandom Generators 201
6.4.1 Pseudorandom Generators with Minimal Expansion . 201
6.4.2 Increasing the Expansion Factor 203

6.5 Constructions of Pseudorandom Functions 208
6.6 Constructions of Pseudorandom Permutations 212
6.7 Private-Key Cryptography – Necessary and Sufficient Assump-

tions . 214
6.8 A Digression – Computational Indistinguishability 220

6.8.1 Pseudorandomness and Pseudorandom Generators . . 221
6.8.2 Multiple Samples . 222

References and Additional Reading 225
Exercises . 226

III Public-Key (Asymmetric) Cryptography 229

7 Number Theory and Cryptographic Hardness Assumptions 231
7.1 Preliminaries and Basic Group Theory 233

7.1.1 Primes and Divisibility 233
7.1.2 Modular Arithmetic 235
7.1.3 Groups . 237
7.1.4 The Group Z∗N and the Chinese Remainder Theorem . 241
7.1.5 Using the Chinese Remainder Theorem 245

7.2 Primes, Factoring, and RSA 248
7.2.1 Generating Random Primes 249
7.2.2 * Primality Testing . 252
7.2.3 The Factoring Assumption 257
7.2.4 The RSA Assumption 258

7.3 Assumptions in Cyclic Groups 260
7.3.1 Cyclic Groups and Generators 260
7.3.2 The Discrete Logarithm and Diffie-Hellman Assump-

tions . 263
7.3.3 Working in (Subgroups of) Z∗p 267

7.3.4 * Elliptic Curve Groups 268
7.4 Applications of Number-Theoretic Assumptions in Cryptogra-

phy . 273
7.4.1 One-Way Functions and Permutations 273
7.4.2 Constructing Collision-Resistant Hash Functions . . . 276

References and Additional Reading 279
Exercises . 280

8 * Factoring and Computing Discrete Logarithms 283
8.1 Algorithms for Factoring . 283

8.1.1 Pollard’s p− 1 Method 284
8.1.2 Pollard’s Rho Method 286
8.1.3 The Quadratic Sieve Algorithm 288

8.2 Algorithms for Computing Discrete Logarithms 291
8.2.1 The Baby-Step/Giant-Step Algorithm 293
8.2.2 The Pohlig-Hellman Algorithm 294
8.2.3 The Discrete Logarithm Problem in ZN 296
8.2.4 The Index Calculus Method 297

References and Additional Reading 299
Exercises . 299

9 Private-Key Management and the Public-Key Revolution 301
9.1 Limitations of Private-Key Cryptography 301

9.1.1 The Key-Management Problem 301
9.1.2 A Partial Solution – Key Distribution Centers 303

9.2 The Public-Key Revolution 306
9.3 Diffie-Hellman Key Exchange 309
References and Additional Reading 315
Exercises . 315

10 Public-Key Encryption 317
10.1 Public-Key Encryption – An Overview 317
10.2 Definitions . 320

10.2.1 Security against Chosen-Plaintext Attacks 322
10.2.2 Security for Multiple Encryptions 325

10.3 Hybrid Encryption . 330
10.4 RSA Encryption . 338

10.4.1 “Textbook RSA” and its Insecurity 338
10.4.2 Attacks on RSA . 341
10.4.3 Padded RSA . 344

10.5 The El Gamal Encryption Scheme 345
10.6 Chosen-Ciphertext Attacks 351
10.7 * Trapdoor Permutations and Public-Key Encryption 355

10.7.1 Trapdoor Permutations 356
10.7.2 Public-Key Encryption from Trapdoor Permutations . 356

References and Additional Reading 360
Exercises . 361

11 * Additional Public-Key Encryption Schemes 363
11.1 The Goldwasser-Micali Encryption Scheme 364

11.1.1 Quadratic Residues Modulo a Prime 364
11.1.2 Quadratic Residues Modulo a Composite 366
11.1.3 The Quadratic Residuosity Assumption 370
11.1.4 The Goldwasser-Micali Encryption Scheme 371

11.2 The Rabin Encryption Scheme 374
11.2.1 Computing Modular Square Roots 375
11.2.2 A Trapdoor Permutation based on Factoring 379
11.2.3 The Rabin Encryption Scheme 383

11.3 The Paillier Encryption Scheme 385
11.3.1 The Structure of Z∗N2 386
11.3.2 The Paillier Encryption Scheme 388
11.3.3 Homomorphic Encryption 393

References and Additional Reading 394
Exercises . 395

12 Digital Signature Schemes 399
12.1 Digital Signatures – An Overview 399
12.2 Definitions . 401
12.3 RSA Signatures . 404

12.3.1 “Textbook RSA” and its Insecurity 404
12.3.2 Hashed RSA . 406

12.4 The “Hash-and-Sign” Paradigm 407
12.5 Lamport’s One-Time Signature Scheme 409
12.6 * Signatures from Collision-Resistant Hashing 413

12.6.1 “Chain-Based” Signatures 414
12.6.2 “Tree-Based” Signatures 417

12.7 Certificates and Public-Key Infrastructures 421
References and Additional Reading 428
Exercises . 429

13 Public-Key Cryptosystems in the Random Oracle Model 431
13.1 The Random Oracle Methodology 432

13.1.1 The Random Oracle Model in Detail 433
13.1.2 Is the Random Oracle Methodology Sound? 438

13.2 Public-Key Encryption in the Random Oracle Model 441
13.2.1 Security against Chosen-Plaintext Attacks 441
13.2.2 Security Against Chosen-Ciphertext Attacks 445
13.2.3 OAEP . 450

13.3 RSA Signatures in the Random Oracle Model 452
References and Additional Reading 456

Exercises . 457

Common Notation 459

References 463

A Mathematical Background 473
A.1 Identities and Inequalities . 473
A.2 Asymptotic Notation . 473
A.3 Basic Probability . 474
A.4 The “Birthday” Problem . 476

B Supplementary Algorithmic Number Theory 479
B.1 Integer Arithmetic . 481

B.1.1 Basic Operations . 481
B.1.2 The Euclidean and Extended Euclidean Algorithms . 482

B.2 Modular Arithmetic . 484
B.2.1 Basic Operations . 484
B.2.2 Computing Modular Inverses 485
B.2.3 Modular Exponentiation 485
B.2.4 Choosing a Random Group Element 487

B.3 * Finding a Generator of a Cyclic Group 492
B.3.1 Group-Theoretic Background 492
B.3.2 Efficient Algorithms 494

References and Additional Reading 495
Exercises . 495

Part I

Introduction and Classical
Cryptography

1

Chapter 1

Introduction and Classical Ciphers

1.1 Cryptography and Modern Cryptography

The Concise Oxford Dictionary (2006) defines cryptography as the art of
writing or solving codes. This definition may be historically accurate, but it
does not capture the essence of modern cryptography. First, it focuses solely
on the problem of secret communication. This is evidenced by the fact that
the definition specifies “codes”, elsewhere defined as “a system of pre-arranged
signals, especially used to ensure secrecy in transmitting messages”. Second,
the definition refers to cryptography as an art form. Indeed, until the 20th
century (and arguably until late in that century), cryptography was an art.
Constructing good codes, or breaking existing ones, relied on creativity and
personal skill. There was very little theory that could be relied upon and
there was not even a well-defined notion of what constitutes a good code.

In the late 20th century, this picture of cryptography radically changed. A
rich theory emerged, enabling the rigorous study of cryptography as a science.
Furthermore, the field of cryptography now encompasses much more than
secret communication, including message authentication, digital signatures,
protocols for exchanging secret keys, authentication protocols, electronic auc-
tions and elections, and digital cash. In fact, modern cryptography can be said
to be concerned with problems that may arise in any distributed computation
that may come under internal or external attack. Without attempting to pro-
vide a perfect definition of modern cryptography, we would say that it is the
scientific study of techniques for securing digital information, transactions,
and distributed computations.

Another very important difference between classical cryptography (say, be-
fore the 1980s) and modern cryptography relates to who uses it. Historically,
the major consumers of cryptography were military and intelligence organi-
zations. Today, however, cryptography is everywhere! Security mechanisms
that rely on cryptography are an integral part of almost any computer sys-
tem. Users (often unknowingly) rely on cryptography every time they access
a secured website. Cryptographic methods are used to enforce access control
in multi-user operating systems, and to prevent thieves from extracting trade
secrets from stolen laptops. Software protection methods employ encryption,
authentication, and other tools to prevent copying. The list goes on and on.

3

4 Introduction to Modern Cryptography

In short, cryptography has gone from an art form that dealt with secret
communication for the military to a science that helps to secure systems for
ordinary people all across the globe. This also means that cryptography is
becoming a more and more central topic within computer science.

The focus of this book is modern cryptography. Yet we will begin our
study by examining the state of cryptography before the changes mentioned
above. Besides allowing us to ease in to the material, it will also provide an
understanding of where cryptography has come from so that we can later see
how much it has changed. The study of ”classical cryptography” — replete
with ad-hoc constructions of codes, and relatively simple ways to break them
— serves as good motivation for the more rigorous approach we will be taking
in the rest of the book.1

1.2 The Setting of Private-Key Encryption

As noted above, cryptography was historically concerned with secret com-
munication. Specifically, cryptography was concerned with the construction
of ciphers (now called encryption schemes) for providing secret communica-
tion between two parties sharing some information in advance. The setting in
which the communicating parties share some secret information in advance is
now known as the private-key (or the symmetric-key) setting. Before describ-
ing some historical ciphers, we discuss the private-key setting and encryption
in more general terms.

In the private-key setting, two parties share some secret information called
a key, and use this key when they wish to communicate secretly with each
other. A party sending a message uses the key to encrypt (or “scramble”)
the message before it is sent, and the receiver uses the same key to decrypt
(or “unscramble”) and recover the message upon receipt. The message itself
is often called the plaintext, and the “scrambled” information that is actually
transmitted from the sender to the receiver is called the ciphertext ; see Fig-
ure 1.1. The shared key serves to distinguish the communicating parties from
any other parties who may be eavesdropping on their communication (which
is assumed to take place over a public channel).

We stress that in this setting, the same key is used to convert the plaintext
into a ciphertext and back. This explains why this setting is also known as the
symmetric-key setting, where the symmetry lies in the fact that both parties
hold the same key which is used for both encryption and decryption. This is

1Indeed, this is our primary intent in presenting this material, and, as such, this chapter
should not be taken as a representative historical account. The reader interested in the
history of cryptography should consult the references at the end of this chapter.

Introduction and Classical Ciphers 5

KK

?

FIGURE 1.1: The basic setting of private-key encryption

in contrast to the setting of asymmetric encryption (introduced in Chapter 9),
where the sender and receiver do not share any secrets and different keys are
used for encryption and decryption. The private-key setting is the classic one,
as we will see later in this chapter.

An implicit assumption in any system using private-key encryption is that
the communicating parties have some way of initially sharing a key in a secret
manner. (Note that if one party simply sends the key to the other over the
public channel, an eavesdropper obtains the key too!) In military settings, this
is not a severe problem because communicating parties are able to physically
meet in a secure location in order to agree upon a key. In many modern
settings, however, parties cannot arrange any such physical meeting. As we
will see in Chapter 9, this is a source of great concern and actually limits the
applicability of cryptographic systems that rely solely on private-key methods.
Despite this, there are still many settings where private-key methods suffice
and are in wide use; one example is disk encryption, where the same user (at
different points in time) uses a fixed secret key to both write to and read from
the disk. As we will explore further in Chapter 10, private-key encryption is
also widely used in conjunction with asymmetric methods.

The syntax of encryption. We now make the above discussion a bit more
formal. A private-key encryption scheme, or cipher, is comprised of three
algorithms: the first is a procedure for generating keys, the second a procedure
for encrypting, and the third a procedure for decrypting. These algorithms
have the following functionality:

1. The key-generation algorithm Gen is a probabilistic algorithm that out-
puts a key k chosen according to some distribution that is determined
by the scheme.

2. The encryption algorithm Enc takes as input a key k and a plaintext m
and outputs a ciphertext c. We denote the encryption of the plaintext
m using the key k by Enck(m).

6 Introduction to Modern Cryptography

3. The decryption algorithm Dec takes as input a key k and a ciphertext c
and outputs a plaintext m. We denote the decryption of the ciphertext
c using the key k by Deck(c).

The procedure for generating keys defines a key space K (i.e., the set of all
possible keys), and the encryption scheme is defined over some set of possible
plaintext messages denoted M and called the plaintext (or message) space.
Since any ciphertext is obtained by encrypting some plaintext under some key,
K and M define a set of all possible ciphertexts that we denote by C. Note
that an encryption scheme is fully defined by specifying the three algorithms
(Gen, Enc, Dec) and the plaintext spaceM.

The basic correctness requirement of any encryption scheme is that for every
key k output by Gen and every plaintext message m ∈ M, it holds that

Deck(Enck(m)) = m.

In words, an encryption scheme must have the property that decrypting a
ciphertext (with the appropriate key) yields the original message that was
encrypted.

Recapping our earlier discussion, an encryption scheme would be used by
two parties who wish to communicate as follows. First, Gen is run to obtain a
key k that the parties share. When one party wants to send a plaintext m to
the other, he would compute c := Enck(m) and send the resulting ciphertext c
over the public channel to the other party. Upon receiving c, the other party
computes m := Deck(c) to recover the original plaintext.

Keys and Kerckhoffs’ principle. As is clear from the above formulation,
if an eavesdropping adversary knows the algorithm Dec as well as the key k
shared by the two communicating parties, then that adversary will be able to
decrypt all communication between these parties. It is for this reason that the
communicating parties must share the key k secretly, and keep k completely
secret from everyone else. But maybe they should keep Dec a secret, too? For
that matter, perhaps all the algorithms constituting the encryption scheme
(i.e., Gen and Enc as well) should be kept secret? (Note that the plaintext
space M is typically assumed to be known, e.g., it may consist of English-
language sentences.)

In the late 19th century, Auguste Kerckhoffs gave his opinion on this matter
in a paper he published outlining important design principles for military
ciphers. One of the most important of these principles (known now simply as
Kerckhoffs’ principle) was the following:

The cipher method must not be required to be secret, and it must
be able to fall into the hands of the enemy without inconvenience.

In other words, the encryption scheme itself should not be kept secret, and
so only the key should constitute the secret information shared by the com-
municating parties.

Introduction and Classical Ciphers 7

Kerckhoffs’ intention was that an encryption scheme should be designed so
as to be secure even if an adversary knows the details of all the component
algorithms of the scheme, as long as the adversary doesn’t know the key
being used. Stated differently, Kerckhoffs’ principle demands that security
rely solely on the secrecy of the key. But why?

There are two primary arguments in favor of Kerckhoffs principle. The first
is that it is much easier for the parties to maintain secrecy of a short key
than to maintain secrecy of an algorithm. It is easier to share aa short (say,
100-bit) string and store this string securely than it is to share and securely
store a program that is thousands of times larger. Furthermore, details of an
algorithm can be leaked (perhaps by an insider) or learned through reverse
engineering; this is unlikely when the secret information takes the form of a
randomly-generated string.

A second argument is that in case the key is exposed, it is much easier for
the honest parties to change the key than to replace the algorithm being used.
Actually, it is good security practice to refresh a key frequently even when it
has not been exposed, and it would be much more cumbersome to replace the
software being used instead. Finally, in case many pairs of people (within a
company, say) need to encrypt their communication, it will be significantly
easier for all parties to use the same algorithm, but different keys, than for
everyone to use a different program (which would furthermore depend on the
party with whom they are communicating).

Today, Kerckhoffs’ principle is understood as not only advocating that se-
curity should not rely on secrecy of the algorithms being used, but also de-
manding that these algorithm be made public. This stands in stark contrast
with the notion of “security by obscurity” which is the idea that higher secu-
rity can be achieved by keeping a cryptographic algorithm obscure (or hidden)
from public view. Some of the advantages of “open cryptographic design”,
where the algorithm specifications are made public, include:

1. Published designs undergo public scrutiny and are therefore likely to
be stronger. Many years of experience have demonstrated that it is
very difficult to construct good cryptographic schemes. Therefore, our
confidence in the security of a scheme is much higher after it has been
extensively studied and has withstood many attack attempts.

2. It is better that security flaws are revealed by “ethical hackers” and
made public, than having the flaws be known only to malicious parties.

3. If the security of the system relies on the secrecy of the algorithm, then
reverse engineering of the code (or leakage by industrial espionage) poses
a serious threat to security. This is in contrast to the secret key which
is not part of the code, and so is not vulnerable to reverse engineering.

4. Public design enables the establishment of standards.

8 Introduction to Modern Cryptography

As simple and obvious as it may sound, the principle of open cryptographic de-
sign (i.e., Kerckhoffs’ principle) is ignored over and over again, with disastrous
effects. We stress that it is very dangerous to use a proprietary algorithm (i.e.,
a non-standardized algorithm that was designed in secret by some company),
and only publicly tried and tested algorithms should be used. Fortunately,
there are enough good algorithms that are standardized and not patented, so
that there is no reason whatsoever today to use something else.

We remark that Kerckhoffs outlined other principles as well, and one of
them states that a system must be practically, if not mathematically, indeci-
pherable. As we will see later in this book, modern cryptography is based on
this paradigm and — with the exception of perfectly secret encryption schemes
(that are dealt with in the next chapter) — all modern cryptographic schemes
can be broken in theory given enough time (say, thousands of years). Thus,
these schemes are mathematically, but not practically, decipherable.

Attack scenarios. We wrap up our general discussion of encryption with
a brief discussion of some basic types of attacks against encryption schemes
(these will be helpful in the next section). In order of severity, these are:

• Ciphertext-only attack: This is the most basic type of attack and refers to
the scenario where the adversary just observes a ciphertext and attempts
to determine the plaintext that was encrypted.

• Known-plaintext attack: Here, the adversary learns one or more pairs of
plaintexts/ciphertexts encrypted under the same key. The aim of the
adversary is then to determine the plaintext that was encrypted to give
some other ciphertext (for which it does not know the corresponding
plaintext).

• Chosen-plaintext attack: In this attack, the adversary has the ability to
obtain the encryption of any plaintext(s) of its choice. It then attempts
to determine the plaintext that was encrypted to give some other ci-
phertext.

• Chosen-ciphertext attack: The final type of attack is one where the ad-
versary is even given the capability to obtain the decryption of any
ciphertext(s) of its choice. The adversary’s aim, once again, is then to
determine the plaintext that was encrypted to give some other cipher-
text (whose decryption the adversary is unable to obtain directly).

Note that the first two types of attacks are passive in that the adversary
just receives some ciphertexts (and possibly some corresponding plaintexts as
well) and then launches its attack. In contrast, the last two types of attacks
are active in that the adversary can adaptively ask for encryptions and/or
decryptions of its choice.

The first two types of attacks described above are clearly realistic. A
ciphertext-only attack is the easiest to carry out in practice; the only thing

Introduction and Classical Ciphers 9

the adversary needs is to eavesdrop on the public communication line over
which encrypted messages are sent. In a known-plaintext attack it is assumed
that the adversary somehow also obtains the plaintext that was encrypted
in some of the ciphertexts that it viewed. This is often realistic because not
all encrypted messages are confidential, at least not indefinitely. As a trivial
example, two parties may always encrypt a “hello” message whenever they
begin communicating. As a more complex example, encryption may be used
to keep quarterly earnings results secret until their release date. In this case,
anyone eavesdropping and obtaining the ciphertext will later obtain the corre-
sponding plaintext. Any reasonable encryption scheme must therefore remain
secure when an adversary can launch a known-plaintext attack.

The two latter active attacks may seem somewhat strange and require jus-
tification. (When do parties encrypt and decrypt whatever an adversary
wishes?) We defer a more detailed discussion of these attacks to the place in
the text when security against these attacks is formally defined: Section 3.5
for chosen-plaintext attacks and Section 3.7 for chosen-ciphertext attacks.

We conclude by noting that different settings may require resilience to dif-
ferent types of attacks. It is not always the case that an encryption scheme se-
cure against the “strongest” type of attack should be used, especially because
it may be less efficient than an encryption scheme secure against “weaker”
attacks; the latter may be preferred if it suffices for the application at hand.

1.3 Historical Ciphers and Their Cryptanalysis

In our study of “classical cryptography” we will examine some historical ci-
phers and show that they are completely insecure. As stated earlier, our main
aims in presenting this material are (a) to highlight the weaknesses of an
“ad-hoc” approach to cryptography, and thus motivate the modern, rigorous
approach that will be discussed in the following section, and (b) to demon-
strate that “simple approaches” to achieving secure encryption are unlikely to
succeed and show why this is the case. Along the way, we will present some
central principles of cryptography which can be learned from the weaknesses
of these historical schemes.

In this section (and in this section only), plaintext characters are written in
lower case and ciphertext characters are written in UPPER CASE. When de-
scribing attacks on schemes, we always apply Kerckhoffs’ principle and assume
the scheme is known to the adversary (but the key being used is not).

Caesar’s cipher. One of the oldest recorded ciphers, known as Caesar’s
cipher, is described in “De Vita Caesarum, Divus Iulius” (“The Lives of the
Caesars, The Deified Julius”), written in approximately 110 C.E.:

There are also letters of his to Cicero, as well as to his intimates

10 Introduction to Modern Cryptography

on private affairs, and in the latter, if he had anything confidential
to say, he wrote it in cipher, that is, by so changing the order of
the letters of the alphabet, that not a word could be made out. If
anyone wishes to decipher these, and get at their meaning, he must
substitute the fourth letter of the alphabet, namely D, for A, and
so with the others.

That is, Julius Caesar encrypted by rotating the letters of the alphabet by 3
places: a was replaced with D, b with E, and so on. Of course, at the end of
the alphabet, the letters wrap around and so x was replaced with A, y with B

and z with C. For example, the short message begin the attack now, with
the spaces removed, would be encrypted as:

EHJLQWKHDWWDFNQRZ

making it unintelligible.
An immediate problem with this cipher is that the method is fixed. Thus,

anyone learning how Caesar encrypted his messages would be able to decrypt
effortlessly. This can be seen also if one tries to fit Caesar’s cipher into the
syntax of encryption described earlier: the key-generation algorithm Gen is
trivial (that it, it does nothing) and there is no secret key to speak of.

Interestingly, a variant of this cipher called ROT-13 (where the shift is 13
places instead of 3) is widely used in various online forums. It is understood
that this does not provide any cryptographic security, and ROT-13 is used
merely to ensure that the text (say, a movie spoiler) is unintelligible unless
the reader of a message consciously chooses to decrypt it.

The shift cipher and the sufficient key space principle. Caesar’s cipher
suffers from the fact that encryption is always done the same way, and there
is no secret key. The shift cipher is similar to Caesar’s cipher, but a secret
key is introduced.2 Specifically, the shift cipher uses as the key k a number
between 0 and 25; to encrypt, letters are rotated (as in Caesar’s cipher) but
by k places. Mapping this to the syntax of encryption described earlier, this
means that algorithm Gen outputs a random number k in the set {0, . . . , 25};
algorithm Enc takes a key k and a plaintext written using English letters and
shifts each letter of the plaintext forward k positions (wrapping around from z

to a); and algorithm Dec takes a key k and a ciphertext written using English
letters and shifts every letter of the ciphertext backward k positions (this time
wrapping around from a to z). The plaintext message spaceM is defined to be
all finite strings of characters from the English alphabet (note that numbers,
punctuation, or other characters are not allowed in this scheme).

A more mathematical description of this method can be obtained by viewing
the alphabet as the numbers 0, . . . , 25 (rather than as English characters).
First, some notation: if a is an integer and N is an integer greater than 1,

2In some books, “Caesar’s cipher” and “shift cipher” are used interchangeably.

Introduction and Classical Ciphers 11

we define [a mod N] as the remainder of a upon division by N . Note that
[a mod N] is an integer between 0 and N − 1, inclusive. We refer to the
process mapping a to [a mod N] as reduction modulo N ; we will have much
more to say about reduction modulo N beginning in Chapter 7.

Using this notation, encryption of a plaintext character mi with the key k
gives the ciphertext character [(mi+k) mod 26], and decryption of a ciphertext
character ci is defined by [(ci−k) mod 26]. In this view, the message spaceM
is defined to be any finite sequence of integers that lie in the range {0, . . . , 25}.

Is the shift cipher secure? Before reading on, try to decrypt the following
message that was encrypted using the shift cipher and a secret key k (whose
value we will not reveal):

OVDTHUFWVZZPISLRLFZHYLAOLYL.

Is it possible to decrypt this message without knowing k? Actually, it is
completely trivial! The reason is that there are only 26 possible keys. Thus,
it is easy to try every key, and see which key decrypts the ciphertext into
a plaintext that “makes sense”. Such an attack on an encryption scheme is
called a brute-force attack or exhaustive search. Clearly, any secure encryption
scheme must not be vulnerable to such a brute-force attack; otherwise, it
can be completely broken, irrespective of how sophisticated the encryption
algorithm is. This brings us to a trivial, yet important, principle called the
“sufficient key space principle”:

Any secure encryption scheme must have a key space that is not
vulnerable to exhaustive search.3

In today’s age, an exhaustive search may use very powerful computers, or
many thousands of PC’s that are distributed around the world. Thus, the
number of possible keys must be very large (at least 260 or 270).

We emphasize that the above principle gives a necessary condition for se-
curity, not a sufficient one. In fact, we will see next an encryption scheme
that has a very large key space but which is still insecure.

Mono-alphabetic substitution. The shift cipher maps each plaintext char-
acter to a different ciphertext character, but the mapping in each case is given
by the same shift (the value of which is determined by the key). The idea
behind mono-alphabetic substitution is to map each plaintext character to
a different ciphertext character in an arbitrary manner, subject only to the
fact that the mapping must one-to-one in order to enable decryption. The
key space thus consists of all permutations of the alphabet, meaning that the

3This is actually only true if the message space is larger than the key space (see Chapter 2
for an example where security is achieved when the size of the key space is equal to the size
of the message space). In practice, when very long messages are typically encrypted with
the same key, the key space must not be vulnerable to exhaustive search.

12 Introduction to Modern Cryptography

size of the key space is 26! (or approximately 288) if we are working with the
English alphabet. As an example, the key

a b c d e f g h i j k l m n o p q r s t u v w x y z
X E U A D N B K V M R O C Q F S Y H W G L Z I J P T

in which a maps to X, etc., would encrypt the message tellhimaboutme to
GDOOKVCXEFLGCD. A brute force attack on the key space for this cipher takes
much longer than a lifetime, even using the most powerful computer known
today. However, this does not necessarily mean that the cipher is secure. In
fact, as we will show now, it is easy to break this scheme even though it has
a very large key space.

Assume that English-language text is being encrypted (i.e., the text is
grammatically-correct English writing, not just text written using characters
of the English alphabet). It is then possible to attack the mono-alphabetic
substitution cipher by utilizing statistical patterns of the English language (of
course, the same attack works for any language). The two properties of this
cipher that are utilized in the attack are as follows:

1. In this cipher, the mapping of each letter is fixed, and so if e is mapped
to D, then every appearance of e in the plaintext will result in the ap-
pearance of D in the ciphertext.

2. The probability distribution of individual letters in the English (or any
other) language is known. That is, the average frequency counts of
the different English letters are quite invariant over different texts. Of
course, the longer the text, the closer the frequency counts will be to the
average. However, even relatively short texts (consisting of only tens of
words) have distributions that are “close enough” to the average.

The attack works by tabulating the probability distribution of the ciphertext
and then comparing it to the known probability distribution of letters in
English text (see Figure 1.2). The probability distribution being tabulated
in the attack is simply the frequency count of each letter in the ciphertext
(i.e., a table saying that A appeared 4 times, B appeared 11 times, and so on).
Then, we make an initial guess of the mapping defined by the key based on the
frequency counts. Specifically, since e is the most frequent letter in English,
we will guess that the most frequent character in the ciphertext corresponds to
the plaintext character e, and so on. Unless the ciphertext is quite long, some
of the guesses are likely to be wrong. However, even for quite short ciphertexts,
the guesses are good enough to enable relatively quick decryption (especially
utilizing knowledge of the English language, like the fact that between t and
e, the character h is likely to appear, and the fact that u always follows q).

Actually, it should not be very surprising that the mono-alphabetic substi-
tution cipher can be quickly broken, since puzzles based on this cipher appear
in newspapers (and are solved by some people before their morning coffee)!
We recommend that you try to decipher the following message — this should

Introduction and Classical Ciphers 13

FIGURE 1.2: Average letter frequencies in the English language

help convince you how easy the attack is to carry out (of course, you should
use Figure 1.2 to help you):

JGRMQOYGHMVBJWRWQFPWHGFFDQGFPFZRKBEEBJIZQQOCIBZKLFAFGQVFZFWWE

OGWOPFGFHWOLPHLRLOLFDMFGQWBLWBWQOLKFWBYLBLYLFSFLJGRMQBOLWJVFP

FWQVHQWFFPQOQVFPQOCFPOGFWFJIGFQVHLHLROQVFGWJVFPFOLFHGQVQVFILE

OGQILHQFQGIQVVOSFAFGBWQVHQWIJVWJVFPFWHGFIWIHZZRQGBABHZQOCGFHX

We conclude that, although the mono-alphabetic cipher has a very large
key space, it is still completely insecure. This is another important lesson.
Namely, although a large key space is necessary for any secure cipher, it is
very far from being sufficient.

An improved attack on the shift cipher. We can use character frequency
tables to give an improved attack on the shift cipher. Specifically, our previous
attack on the shift cipher required us to decrypt the ciphertext using each
possible key, and then check to see which key results in a plaintext that “makes
sense”. A drawback of this approach is that it is difficult to automate, since it
is difficult for a computer to check whether some plaintext “makes sense”. (We
do not claim this is impossible, as it can certainly be done using a dictionary
of valid English words. We only claim that it is not trivial.) Moreover, there
may be cases — we will see one below — where the plaintext characters are

14 Introduction to Modern Cryptography

distributed according to English-language text but the plaintext itself is not
valid English text.

As before, associate the letters of the English alphabet with the numbers
0, . . . , 25. Let pi, for 0 ≤ i ≤ 25, denote the probability of the ith letter in
normal English text. A simple calculation using known values of the pi gives

25∑

i=0

p2
i ≈ 0.065 . (1.1)

Now, say we are given some ciphertext and let qi denote the probability of the
ith letter in this ciphertext (qi is simply the number of occurrences of the ith
letter divided by the length of the ciphertext). If the key is k, then we expect
that qi+k should be roughly equal to pi for every i. (We use i + k instead of
the more cumbersome [i + k mod 26].) Equivalently, if we compute

Ij
def
=

25∑

i=0

pi · qi+j

for each value of j ∈ {0, . . . , 25}, then we expect to find that Ik ≈ 0.065
where k is again the key that is actually being used. This leads to a key-
finding attack that is easy to automate: compute Ij for all j, and then output
the value k for which Ik is closest to 0.065.

The Vigenère (poly-alphabetic shift) cipher. As we have described, the
statistical attack on the mono-alphabetic substitution cipher could be carried
out because the mapping of each letter was fixed. Thus, such an attack can
be thwarted by mapping different instances of the same plaintext character
to different ciphertext characters. This has the effect of “smoothing out”
the probability distribution of characters in the ciphertext. For example,
consider the case that e is sometimes mapped to G, sometimes to P, and
sometimes to Y. Then, the ciphertext letters G, P, and Y will most likely not
stand out as more frequent, because other less-frequent characters will be also
be mapped to them. Thus, counting the character frequencies will not offer
much information about the mapping.

The Vigenère cipher works by applying multiple shift ciphers in sequence.
That is, a short, secret word is chosen as the key, and then the plaintext is
encrypted by “adding” each plaintext character to the next character of the
key (as in the shift cipher), wrapping around in the key when necessary. For
example, an encryption of the message tellhimaboutme using the key cafe

would work as follows:

Plaintext: tellhimaboutme
Key: cafecafecafeca
Ciphertext: WFRQKJSFEPAYPF

(Note that the key need not be an actual English word.) This is exactly
the same as encrypting the first, fifth, ninth, and so on characters with the

Introduction and Classical Ciphers 15

shift cipher and key k = 3, the second, sixth, tenth, and so on characters
with key k = 1, the third, seventh, and so on characters with k = 6 and the
fourth, eighth, and so on characters with k = 5. Thus, it is a repeated shift
cipher using different keys. Notice that in the above example l is mapped
once to R and once to Q. Furthermore, the ciphertext character F is sometimes
obtained from e and sometimes from a. Thus, the character frequencies in
the ciphertext are “smoothed”, as desired.

If the key is a sufficiently-long word (chosen at random), then cracking this
cipher seems to be a daunting task. Indeed, it was considered by many to
be an unbreakable cipher, and although it was invented in the 16th century a
systematic attack on the scheme was only devised hundreds of years later.

Breaking the Vigenère cipher. The first observation in attacking the
Vigenère cipher is that if the length of the key is known, then the task is
relatively easy. Specifically, say the length of the key is t (this is sometimes
called the period). Then the ciphertext can be divided up into t parts where
each part can be viewed as being encrypted using a single instance of the
shift cipher. That is, let k = k1, . . . , kt be the key (each ki is a letter of the
alphabet) and let c1, c2, . . . be the ciphertext characters. Then, for every j
(1 ≤ j ≤ t) we know that the set of characters

cj , cj+t, cj+2t, . . .

were all encrypted by a shift cipher using key kj . All that remains is therefore
to check which of the 26 possible keys is the correct one, for each j. This is not
as trivial as in the case of the shift cipher, because by guessing a single letter
of the key it is not possible to determine if the decryption “makes sense”.
Furthermore, checking all possible keys would require a brute force search
through 26t different possible keys (which is infeasible for t greater than, say,
15). Nevertheless, we can still use the statistical attack method described
earlier. That is, for every set of the ciphertext characters relating to a given
key (that is, a given value of j), it is possible to build the frequency table of
the characters and then check which of the 26 possible shifts gives the “right”
probability distribution. Since this can be carried out separately for each key,
the attack can be carried out very quickly; all that is required is to build t
frequency tables (one for each of the subsets of the characters) and compare
them to the real probability distribution.

An alternate, somewhat easier approach, is to use the improved method for
attacking the shift cipher that we showed earlier. Recall that this improved
attack does not rely on checking for a plaintext that “makes sense”, but only
relies on the underlying probability distribution of characters in the plaintext.

Either of the above approaches give successful attacks when the key length
is known. It remains to show how to determine the length of the key.

One approach is to use Kasiski’s method for solving this problem (this
attack was published in the mid 19th century). The first step in the attack
is to identify repeated patterns of length 2 or 3 in the ciphertext. These are

16 Introduction to Modern Cryptography

likely to be due to certain bigrams or trigrams that appear very often in the
English language. For example, consider the word “the” that appears very
often in English text. Clearly, “the” will be mapped to different ciphertext
characters, depending on its position in the text. However, if it appears twice
in the same relative position, then it will be mapped to the same ciphertext
characters. That is, if it appears in positions t+j and 2t+i (where i 6= j) then
it will be mapped to different characters each time. However, if it appears
in positions t + j and 2t + j, then it will be mapped to the same ciphertext
characters. In a long enough text, there is a good chance that “the” will be
mapped repeatedly to the same ciphertext.

Consider the following concrete example with the password beads (spaces
have been added for clarity):

Plaintext: the man and the woman retrieved the letter from the post office

Key: bea dsb ead sbe adsbe adsbeadsb ean sdeads bead sbe adsb eadbea

Ciphertext: VMF QTP FOH MJJ XSFCS SIMTNFZXF YIS EIYUIK HWPQ MJJ QSLV TGJKGF

Note that the word the is mapped sometimes to VMF, sometimes to MJJ and
sometimes to YIS. However, it is mapped twice to MJJ, and in a long enough
text it is likely that it would be mapped multiple times to each of the pos-
sibilities. The main observation of Kasiski is that the distance between such
multiple appearances (except for some coincidental ones) should be a multi-
ple of the period length. In the above example, the period length is 5 and
the distance between the two appearances of MJJ is 40 (8 times the period
length). Therefore, the greatest common divisor of all the distances between
the repeated sequences should yield the period length t.

An alternate approach called the index of coincidence method, is a bit more
algorithmic and hence easier to automate. Recall that if the key-length is t,
then the ciphertext characters

c1, c1+t, c1+2t, . . .

are encrypted using the same shift. This means that the frequencies of the
characters in this sequence are expected to be identical to the character fre-
quencies of standard English text except in some shifted order. In more detail:
let qi denote the frequency of the ith English letter in the sequence above (once
again, this is simply the number of occurrences of the ith letter divided by the
total number of letters in the sequence). If the shift used here is k1 (this is
just the first character of the key), then we expect qi+k1 to be roughly equal
to pi for all i, where pi is again the frequency of the ith letter in standard
English text. But this means that the sequence p0, . . . , p25 is just the sequence
q0, . . . , q25 shifted by k1 places. As a consequence, we expect that

∑25
i=0 q2

i

should be roughly equal to (see Equation (1.1))

25∑

i=0

p2
i ≈ 0.065 .

Introduction and Classical Ciphers 17

This leads to a nice way to determine the key length t. For τ = 1, 2, . . .,
look at the sequence of ciphertext characters c1, c1+τ , c1+2τ , . . . and tabulate
q0, . . . , q25 for this sequence. Then compute

Iτ
def
=

25∑

i=0

q2
i .

When τ = t we expect to see Iτ ≈ 0.065 as discussed above. On the other
hand, for τ 6= t we expect (roughly speaking) that all characters will occur
roughly as often in the sequence c1, c1+τ , c1+2τ , . . ., and so we expect qi ≈ 1/26
for all i. In this case we will obtain

Iτ ≈
25∑

i=0

1

26
≈ 0.038 ,

which is sufficiently different from 0.065 for this technique to work.

Ciphertext length and cryptanalytic attacks. Notice that the above
attacks on the Vigenère cipher requires a longer ciphertext than for previous
schemes. For example, a large ciphertext is needed for determining the period
if Kasiski’s method is used. Furthermore, statistics are needed for t different
parts of the ciphertext, and the frequency table of a message converges to
the average as its length grows (and so the ciphertext needs to be approxi-
mately t times longer than in the case of the mono-alphabetic substitution
cipher). Similarly, the attack that we use for mono-alphabetic substitution
also requires a longer ciphertext than for the shift cipher (which can work for
messages consisting of just a single word). This phenomenon is not coinciden-
tal, and the reason for it will become more apparent after we study perfect
secrecy in the next chapter.

Ciphertext-only vs. known-plaintext attacks. The attacks described
above are all ciphertext-only attacks (recall that this is the easiest type of
attack to carry out in practice). An important observation is that all the
above ciphers are trivially broken if the adversary is able to carry out a known-
plaintext attack. We leave the demonstration of this as an exercise.

Conclusions and discussion. We have presented only a few historical ci-
phers. Beyond their general historical interest, our aim in presenting them
is to learn some important lessons regarding cryptographic design. Stated
briefly, these lessons are:

1. Sufficient key space principle: Assuming sufficiently-long messages are
being encrypted, a secure encryption scheme must have a key space
that cannot be searched exhaustively in a reasonable amount of time.
However, a large key space does not imply security (e.g., the mono-
alphabetic substitution cipher has a large key space but is trivial to
break). Thus, a large key space is a necessary requirement, but not a
sufficient one.

18 Introduction to Modern Cryptography

2. Designing secure ciphers is a hard task: The Vigenère cipher remained
unbroken for a very long time, partially due to its presumed complexity
(essentially combining a number of keys together). Of course, far more
complex schemes were also used, like the German Enigma. Nevertheless,
this complexity does not imply security and all of these historical ciphers
can be completely broken. In general, it is very hard to design a secure
encryption scheme, and such design should be left to experts.

The history of classical encryption schemes is fascinating, both with respect to
the methods used as well as the influence of cryptography and cryptanalysis
on world history (in World War II, for example). Here, we have only tried to
give a taste of some of the more basic methods, with a focus on what modern
cryptography can learn from this history.

1.4 The Basic Principles of Modern Cryptography

In this book, we emphasize the scientific nature of modern cryptography.
In this section we will outline the main principles and paradigms that distin-
guish modern cryptography from the classical cryptography we studied in the
previous section. We identify three main principles:

1. Principle 1 — the first step in solving any cryptographic problem is the
formulation of a rigorous and precise definition of security.

2. Principle 2 — when the security of a cryptographic construction relies
on an unproven assumption, this assumption must be precisely stated.
Furthermore, the assumption should be as minimal as possible.

3. Principle 3 — cryptographic constructions should be accompanied with
a rigorous proof of security with respect to a definition formulated ac-
cording to principle 1, and relative to an assumption stated as in prin-
ciple 2 (if an assumption is needed at all).

We now discuss each of these principles in greater depth.

1.4.1 Principle 1 – Formulation of Exact Definitions

One of the key intellectual contributions of modern cryptography has been
the realization that formal definitions of security are essential prerequisites
for the design, usage, or study of any cryptographic primitive or protocol. Let
us explain each of these in turn:

1. Importance for design: Say we are interested in constructing a secure
encryption scheme. If we do not have a firm understanding of what it

Introduction and Classical Ciphers 19

is we want to achieve, how can we possibly know whether (or when)
we have achieved it? Having a definition in mind allows us to evaluate
the quality of what we build and leads us toward building the right
thing. In particular, it is much better to define what is needed first and
then begin the design phase, rather than to come up with a post facto
definition of what has been achieved once the design is complete. The
latter approach risks having the design phase end when the designers’
patience is tried (rather than when the goal has been met), or may
result in a construction that achieves more than is needed and is thus
less efficient than a better solution.

2. Importance for usage: Say we want to use an encryption scheme within
some larger system. How do we know which encryption scheme to use?
If given an encryption scheme, how can we tell whether it suffices for our
application? Having a precise definition of the security achieved by a
given scheme (coupled with a security proof relative to a formally-stated
assumption as discussed in principles 2 and 3) allows us to answer these
questions. Specifically, we can define the security that we desire in our
system (see point 1, above), and then verify whether the definition satis-
fied by a given encryption scheme suffices for our purposes. Alternately,
we can specify the definition that we need the encryption scheme to sat-
isfy, and look for an encryption scheme satisfying this definition. Note
that it may not be wise to choose the “most secure” scheme, since a
weaker notion of security may suffice for our application and we may
then be able to use a more efficient scheme.

3. Importance for study: Given two encryption schemes, how can we com-
pare them? Without any definition of security, the only point of com-
parison is efficiency; but efficiency alone is a poor criterion since a highly
efficient scheme that is completely insecure is of no use. Precise specifi-
cation of the level of security achieved by a scheme offers another point
of comparison. If two schemes are equally efficient but the first one
satisfies a stronger definition of security than the second, then the first
is preferable.4 Alternately, there may be a trade-off between security
and efficiency (see the previous two points), but at least with precise
definitions we can understand what this trade-off entails.

Perhaps most importantly, precise definitions enable rigorous proofs (as we
will discuss when we come to principle 3), but the above reasons stand irre-
spective of this.

It is a mistake to think that formal definitions are not needed since “we
have an intuitive idea of what security means” and it is trivial to turn such
intuition into a formal definition. For one thing, two people may each have

4Actually, we are simplifying a bit since things are rarely this simple.

20 Introduction to Modern Cryptography

a different intuition of what security means. Even one person might have
multiple intuitive ideas of what security means, depending on the context.
(In Chapter 3 we will study four different definitions of security for private-
key encryption, each of which is useful in a different scenario.) Finally, it
turns out that it is not easy, in general, to turn our intuition into a “good”
definition. For example, when it comes to encryption we know that we want
the encryption scheme to have the effect that only those who know the secret
key can read the encrypted message. How would you formalize such a thing?
The reader may want to pause to think about this before reading on.

In fact, we have asked students many times how security of encryption
should be defined, and have received the following answers (often in the fol-
lowing order):

1. Answer 1 — an encryption scheme is secure if no adversary can find
the secret key when given a ciphertext. Such a definition of encryption
completely misses the point. The aim of encryption is to protect the
message being encrypted and the secret key is just the means of achiev-
ing this. To take this to an absurd level, consider an encryption scheme
that ignores the secret key and just outputs the plaintext. Clearly, no
adversary can find the secret key. However, it is also clear that no
secrecy whatsoever is provided.5

2. Answer 2 — an encryption scheme is secure if no adversary can find
the plaintext that corresponds to the ciphertext. This definition already
looks better and can even be found in some texts on cryptography.
However, after some more thought, it is also far from satisfactory. For
example, an encryption scheme that reveals 90% of the plaintext would
still be considered secure under this definition, as long as it is hard
to find the remaining 10%. But this is clearly unacceptable in most
common applications of encryption. For example, employment contracts
are mostly standard text, and only the salary might need to be kept
secret; if the salary is in the 90% of the plaintext that is revealed then
nothing is gained by encrypting.

If you find the above counterexample silly, refer again to footnote 5.
The point once again is that if the definition as stated isn’t what was
meant, then a scheme could be proven secure without actually providing
the necessary level of protection. (This is a good example of why exact
definitions are important.)

3. Answer 3 — an encryption scheme is secure if no adversary can find any
of the plaintext that corresponds to the ciphertext. This already looks
like an excellent definition. However, other subtleties can arise. Going

5And lest you respond: “But that’s not what I meant!”, well, that’s exactly the point: it is
often not so trivial to formalize what one means.

Introduction and Classical Ciphers 21

back to the example of the employment contract, it may be impossible
to determine the actual salary. However, should the encryption scheme
be considered secure if it were somehow possible to learn whether the
encrypted salary is greater than or less than $100,000 per year? Clearly
not. This leads us to the next suggestion.

4. Answer 4 — an encryption scheme is secure if no adversary can de-
rive any meaningful information about the plaintext from the ciphertext.
This is already close to the actual definition. However, it is lacking
in one respect: it does not define what it means for information to be
“meaningful”. Different information may be meaningful in different ap-
plications. This leads to a very important principle regarding definitions
of security for cryptographic primitives: definitions of security should
suffice for all potential applications. This is essential because one can
never know what applications may arise in the future. Furthermore, im-
plementations typically become part of general cryptographic libraries
which are then used in may different contexts and for many different
applications. Security should ideally be guaranteed for all possible uses.

5. The final answer — an encryption scheme is secure if no adversary can
compute any function of the plaintext from the ciphertext. This provides
a very strong guarantee and, when formulated properly, is considered
today to be the “right” definition of security for encryption.

Of course, even though we have now hit upon the correct requirement for
secure encryption, conceptually speaking, it remains to state this requirement
mathematically and formally and this is in itself a non-trivial task. (One that
we will address in detail in Chapters 2 and 3.)

Moreover, our formal definition must also specify the attack model; i.e.,
whether we assume a ciphertext-only attack or a chosen-plaintext attack.
This illustrates another general principle that is used when formulating cryp-
tographic definitions. Specifically, in order to fully define security of some
cryptographic task, there are two distinct issues that must be explicitly ad-
dressed. The first is what is considered to be a break, and the second is what
is assumed regarding the power of the adversary. Regarding the break, this is
exactly what we have discussed above; i.e., an encryption scheme is consid-
ered broken if an adversary can learn some function of the plaintext from a
ciphertext. The power of the adversary relates to assumptions regarding the
the actions the adversary is assumed able to take, as well as the adversary’s
computational power. The former refers to considerations such as whether
the adversary is assumed only to be able to eavesdrop on encrypted messages
(i.e., a ciphertext-only attack), or whether we assume that the adversary
can also actively request encryptions of any plaintext that it likes. (i.e., a
chosen-plaintext attack). A second issue that must be considered is the com-
putational power of the adversary. For all of this book, except Chapter 2,
we will want to ensure security against any efficient adversary, by which we

22 Introduction to Modern Cryptography

mean any adversary running in polynomial time. (A full discussion of this
point appears in Section 3.1.2.) When translating this into concrete terms,
we might require security against any adversary utilizes decades of computing
time on a supercomputer.

In summary, any definition of security will take the following general form:

A cryptographic scheme for a given task is secure if no adversary
of a specified power can achieve a specified break.

We stress that the definition never assumes anything about the adversary’s
strategy. This is an important distinction: we are willing to assume some-
thing about what the adversary’s abilities are (e.g., that it is able to mount
a chosen-plaintext attack but not a chosen-ciphertext attack), but we are not
willing to assume anything about how it uses its abilities. We call this the
“arbitrary adversary principle”: security must be guaranteed for any adver-
sary within the class of adversaries with the specified power. This principle
is important because it is impossible to foresee what strategies might be used
in an adversarial attack (and history has proven that attempts to do so are
doomed to failure).

Mathematics and the real world. An important issue to note is that a
definition of security essentially means providing a mathematical formulation
of a real-world problem. If the mathematical definition does not appropriately
model the real world, then the definition may be meaningless. For example, if
the adversarial power that is defined is too weak (and in practice adversaries
have more power) or the break is such that it allows real attacks that were
not foreseen (like one of the early answers regarding encryption), then “real
security” is not obtained, even if a “mathematically secure” construction is
used. In short, a definition of security must accurately model the real world
security needs in order for it to deliver on its mathematical promise of security.

Examples of this occur in practice all the time. As an example, an encryp-
tion scheme that has been proven secure (relative to some definition like the
ones we have discussed above) might be implemented on a smart-card. It may
then be possible for an adversary to monitor the power usage of the smart-
card (e.g. how this power usage fluctuates over time) and use this information
to determine the key. There was nothing wrong with the security definition
or the proof that the scheme satisfies this definition; the problem was simply
that the definition did not accurately model a real-world implementation of
the scheme on a smart-card.

This should not be taken to mean that definitions (or proofs, for that mat-
ter) are useless! The definition — and the scheme that satisfies it — may
still be appropriate for other settings, such as when encryption is performed
on an end-host whose power usage cannot be monitored by an adversary.
Furthermore, one way to achieve secure encryption on a smart-card would
be to further refine the definition so that it takes power analysis into ac-
count. Alternately, perhaps hardware countermeasures for power analysis can

Introduction and Classical Ciphers 23

be developed, with the effect of making the original definition (and hence the
original scheme) appropriate for smart-cards. The point is that with a def-
inition you at least know where you stand, even if the definition turns out
not to accurately model the particular setting in which a scheme is used. In
contrast, with no definition it is not even clear what went wrong.

This possibility of a disconnect between a mathematical model and the
reality it is supposed to be modeling is not unique to cryptography but is
something pervasive throughout science. To take another example from the
field of computer science, consider the meaning of a mathematical proof that
there exist well-defined problems that computers cannot solve.6 On the one
hand, such a proof is of great interest. However, the immediate question that
arises is “what is a computer”? Specifically, a mathematical proof can only
be provided when there is some mathematical definition of what a computer
is (or to be more exact, what the process of computation is). The problem is
that computation is a real-world process, and there are many different ways
of computing. In order for us to be really convinced that the “unsolvable
problem” is really unsolvable, we must be convinced that our mathemati-
cal definition of computation captures the real-world process of computation.
How do we know when it does?

This inherent difficulty was noted by Alan Turing who studied questions of
what can and cannot be solved by a computer. We quote from his original
paper (the text in square brackets replaces original text in order to make it
more reader friendly):

No attempt has yet been made to show [that the problems that we
have proven can be solved by a computer] include [exactly those
problems] which would naturally be regarded as computable. All
arguments which can be given are bound to be, fundamentally, ap-
peals to intuition, and for this reason rather unsatisfactory math-
ematically. The real question at issue is “What are the possible
processes which can be carried out in [computation]?”

The arguments which I shall use are of three kinds.

(a) A direct appeal to intuition.

(b) A proof of the equivalence of two definitions (in case the new
definition has a greater intuitive appeal).

(c) Giving examples of large classes of [problems that can be
solved using a given definition of computation].

6Such a proof indeed exists and it relates to the question of whether or not it is possible
to check a computer program and decide whether it halts on a given input. This problem
is called the Halting problem and, loosely speaking, was proven by Alan Turing to be
unsolvable by computers. Those who have taken a course in Computability will be familiar
with this problem and its ramifications.

24 Introduction to Modern Cryptography

In some sense, Turing faced the exact same problem as us. He developed a
mathematical model of computation but needed to somehow be convinced that
the model was a good one. Likewise in cryptography, we can define security
and need to convinced of the fact that this implies real-world security. As
with Turing, we employ the following tools to become convinced of this fact:

1. Appeals to intuition: the first tool when contemplating a new definition
of security is to see whether it implies security properties that we in-
tuitively expect to hold. This is a minimum requirement, since (as we
have seen in our discussion of encryption) our initial intuition usually
results in a notion of security that is too weak.

2. Proofs of equivalence: it is often the case that a new definition of secu-
rity is justified by showing that it is equivalent to (or stronger than) a
definition that is older, more familiar, or more intuitively-appealing.

3. Examples: a useful way of being convinced that a definition of secu-
rity suffices is to show that the different real-world attacks that we are
familiar with are covered by the definition.

In addition to all of the above, and perhaps most importantly, we rely on the
test of time and the fact that with time, the scrutiny and investigation of both
researchers and practitioners testifies to the soundness of a definition.

1.4.2 Principle 2 – Reliance on Precise Assumptions

Most modern cryptographic constructions cannot be unconditionally proven
secure. This is due to the fact that their existence relies on questions in the
theory of computational complexity that seem far from being answered today.
The result of this unfortunate state of affairs is that security typically relies
upon some assumption. The second principle of modern cryptography states
that assumptions must be precisely stated. This is for two main reasons:

1. Validation of the assumption: By their very nature, assumptions are
statements that are not proven but are rather conjectured to be true.
In order to strengthen this conjecture, it is necessary for the assumption
to be studied. The basic understanding is that the more the assumption
is looked at without being successfully refuted, the more confident we
are that the assumption is true. Furthermore, study of an assumption
can provide positive evidence of its validity by showing that it is implied
by some other assumption that is also widely believed.

If the assumption being relied upon is not precisely stated and presented,
it cannot be studied and (potentially) refuted. Thus, a pre-condition to
raising our confidence in an assumption is having a precise statement of
what exactly is assumed.

Introduction and Classical Ciphers 25

2. Comparison of schemes: Often in cryptography, we may be presented
with two schemes that can both be proven to satisfy some definition but
each with respect to a different assumption. Assuming both schemes are
equally efficient, which scheme should be preferred? If the assumption
that one scheme is based on is weaker than the assumption the second
scheme is based on (i.e., the second assumption implies the first), then
the first scheme is to be preferred since it may turn out that the second
assumption is false while the first assumption is true. If the assumptions
used by the two schemes are incomparable, then the general rule is to
prefer the scheme that is based on the better-studied assumption (for
the reasons highlighted in the previous paragraphs).

3. Facilitation of a proof of security: As we have stated, and will discuss
in more depth in principle 3, modern cryptographic constructions are
presented together with proofs of security. If the security of the scheme
cannot be proven unconditionally and must rely on some assumption,
then a mathematical proof that “the construction is secure if the as-
sumption is true” can only be provided if there is a precise statement of
what the assumption is.

One observation is that it is always possible to just assume that a construc-
tion itself is secure. If security is well defined, this is also a precise assumption
(and the proof of security for the construction is trivial)! Of course, this is
not accepted practice in cryptography (for the most part) for a number of
reasons. First of all, as noted above, an assumption that has been tested
over the years is preferable to a new assumption that is introduced just to
prove a given construction secure. Second, there is a general preference for
assumptions that are simpler to state, since such assumptions are easier to
study and to refute. So, for example, an assumption of the type that some
mathematical problem is hard to solve is simpler to study and work with than
an assumption that an encryption schemes satisfies a complex (and possibly
unnatural) security definition. When a simple assumption is studied at length
and still no refutation is found, we have greater confidence in its being correct.
Another advantage of relying on “lower-level” assumptions (rather than just
assuming a scheme is secure) is that these low-level assumptions can typically
be shared amongst a number of constructions. If a specific instantiation of the
assumption turns out to be false, it can be replaced within the higher-level
constructions by another instantiation of that assumption.

The above methodology is used throughout this book. For example, Chap-
ters 3 and 4 show how to achieve secure communication (in a number of ways),
assuming that a primitive called a “pseudorandom function” exists. In these
chapters nothing is said at all about how such a primitive can be constructed.
In Chapter 5, we then show how pseudorandom functions are constructed
in practice, and in Chapter 6 we show that pseudorandom functions can be
constructed from even lower-level primitives.

26 Introduction to Modern Cryptography

1.4.3 Principle 3 – Rigorous Proofs of Security

The first two principles discussed above lead naturally to the current one.
Modern cryptography stresses the importance of rigorous proofs of security for
proposed schemes. The fact that exact definitions and precise assumptions are
used means that such a proof of security is possible. However, why is a proof
necessary? The main reason is that the security of a construction or protocol
cannot be checked in the same way that software is typically checked. For
example, the fact that encryption and decryption “work” and the ciphertext
looks garbled, does not mean that a sophisticated adversary is unable to break
the scheme. Without a proof that no adversary of the specified power can
break the scheme, we must rely on our intuition that this is the case. Of
course, intuition is in general very problematic. In fact, experience has shown
that intuition in cryptography and computer security is disastrous. There
are countless examples of unproven schemes that were broken (sometimes
immediately and sometimes years after being presented or even deployed).

Another reason why proofs of security are so important is related to the
potential damage that can result if an insecure system is used. Although
software bugs can sometimes be very costly, the potential damage to someone
breaking the encryption scheme or authentication mechanism of a bank is
huge. Finally, we note that although many bugs exist in software, things
basically work due to the fact that typical users do not try to get their software
to fail. In contrast, attackers use amazingly complex and intricate means
(utilizing specific properties of the construction) in order to attack security
mechanisms with the clear aim of breaking them. Thus, although proofs
of correctness are always desirable in computer science, they are absolutely
essential in the realm of cryptography and computer security. We stress that
the above observations are not just hypothetical, but are conclusions that
have been reached after years of empirical evidence and experience that teach
us that intuition in this field must not be trusted.

The reductionist approach. We conclude by noting that most proofs in
modern cryptography use what may be called the reductionist approach. Given
a theorem of the form

Given that Assumption X is true, Construction Y is secure ac-
cording to the given definition,

a proof typically shows how to reduce the problem given by Assumption X
to the problem of breaking Construction Y. More to the point, the proof
will typically show (via a constructive argument) how any adversary breaking
Construction Y can be used as a sub-routine to violate Assumption X. We
will have more to say about this in Section 3.1.3.

Introduction and Classical Ciphers 27

Summary – Rigorous vs. Ad-Hoc Approaches to Security

The combination of the above three principles constitutes a rigorous ap-
proach to cryptography and is distinct from the ad-hoc approach that is ex-
emplified in our study of classical cryptography and that is (unfortunately)
sometimes still employed. The ad-hoc approach may fail on any one of the
above three principles, but often ignores them all. Fortunately, as time goes
on, a higher awareness of the necessity of a rigorous approach can be seen.
Nevertheless, ad hoc implementations can still be found, especially by those
who wish to obtain a “quick and dirty” solution to a problem (or by those
who are just simply unaware). We hope that this book will contribute to
an awareness of the importance of the rigorous approach, and its success in
modern cryptography.

References and Additional Reading

In this chapter, we have studied just a few of the historical ciphers. There
are many others of both historical and mathematical interest, and we refer
to reader to textbooks by Stinson [124] or Trappe and Washington [125] for
further details. The role of these schemes in history (and specifically in the
history of war) is a fascinating subject that is covered in the book by Kahn [79].

We discussed the differences between the historical, non-rigorous approach
to cryptography (as exemplified by historical ciphers) and a rigorous approach
based on precise definitions and proofs. Shannon [113] was the first to take
the latter approach. Modern cryptography, which relies on (computational)
assumptions in addition to definitions and proofs, was begun in the seminal
paper by Goldwasser and Micali [70]; we will have more to say about this
approach in Chapter 3.

Exercises

1.1 Decrypt the ciphertext provided at the end of the section on mono-
alphabetic substitution.

1.2 Provide a formal definition of the Gen, Enc, and Dec algorithms for both
the mono-alphabetic substitution and Vigenère ciphers.

1.3 Consider an improved version of the Vigenère cipher, where instead
of using multiple shift ciphers, multiple mono-alphabetic substitution
ciphers are used. That is, the key consists of t random permutations of

28 Introduction to Modern Cryptography

the alphabet, and the plaintext characters in positions i, t+ i, 2t+ i, and
so on are encrypted using the ith permutation. Show how to break this
version of the cipher.

1.4 In an attempt to prevent Kasiski’s attack on the Vigenère cipher, the
following modification has been proposed. Given the period t of the
cipher, the plaintext is broken up into blocks of size t. Recall that within
each block, the Vigenère cipher works by encrypting the ith character
with the ith key (using a basic cipher). Letting the key be k1, . . . , kt,
this means the ith character in each block is encrypted by adding ki to
it, modulo 26. The proposed modification is to encrypt the ith character
in the jth block by adding ki + j modulo 26.

(a) Show that decryption can be carried out.

(b) Describe the effect of the above modification on Kasiski’s attack.

(c) Devise an alternate attack that works better than Kasiski’s attack.

1.5 Show that the shift, substitution, and Vigenère ciphers are all trivial to
break using a known-plaintext attack. (Assuming normal English text
is being encrypted in each case.) How much known plaintext is needed
to completely recover the key for each of the ciphers (without resorting
to any statistics)?

1.6 Show that the shift, substitution, and Vigenère ciphers are all trivial
to break using a chosen-plaintext attack. How much plaintext must
be encrypted in order for the adversary to completely recover the key?
Compare to the previous question.

Chapter 2

Perfectly-Secret Encryption

In the previous chapter, we presented historical encryption schemes (ciphers)
and showed how they can be completely broken with very little computa-
tional effort. In this chapter, we look at the other extreme and study en-
cryption schemes that are provably secure even against an adversary who has
unbounded computational power. Such schemes are called perfectly secret. We
will see under what conditions perfect secrecy can and cannot be achieved,
and why this is the case.

The material in this chapter belongs, in some sense, more to the world of
“classical cryptography” than to the world of “modern cryptography”. Be-
sides the fact that all the material introduced here was developed before the
revolution in cryptography that took place in the mid-’70s and early-’80s, the
constructions we study in this chapter rely only on the first and third prin-
ciples outlined in Section 1.4. That is, precise mathematical definitions will
be given and rigorous proofs will be shown, but it will not be necessary to
rely on any unproven assumptions. This is clearly advantageous. We will see,
however, that such an approach has inherent limitations. Thus, in addition
to serving as a good basis for understanding the principles underlying modern
cryptography, the results of this chapter also justify our later adoption of all
three of the aforementioned principles.

In this chapter, we assume a familiarity with basic probability. The relevant
notions are reviewed in Section A.3 of Appendix A.

2.1 Definitions and Basic Properties

We begin by briefly recalling some of the syntax that was introduced in
the previous chapter. An encryption scheme is defined by three algorithms
Gen, Enc, and Dec, as well as a specification of a message space M with
|M| > 1.1 The key-generation algorithm Gen is a probabilistic algorithm that
outputs a key k chosen according to some distribution. We denote by K the

1If |M| = 1 there is only one message and there is no point in communicating, let alone
encrypting.

29

30 Introduction to Modern Cryptography

key space, i.e., the set of all possible keys that can be output by Gen, and
require K to be finite. The encryption algorithm Enc takes as input a key
k ∈ K and a message m ∈ M, and outputs a ciphertext c; we denote this
by Enck(m). The encryption algorithm may be probabilistic, so that Enck(m)
might output a different ciphertext when run multiple times. To emphasize
this, we write c ← Enck(m) to denote the (possibly probabilistic) process by
which message m is encrypted using key k to give ciphertext c. (In case Enc

is deterministic, we may emphasize this by writing c := Enck(m).) We let C
denote the set of all possible ciphertexts that can be output by Enck(m), for
all possible choices of k ∈ K and m ∈ M (and for all random choices of Enc

in case it is randomized). The decryption algorithm Dec takes as input a key
k ∈ K and a ciphertext c ∈ C and outputs a message m ∈ M. Throughout
the book, we assume encryption schemes are perfectly correct ; that is, that
for all k ∈ K, m ∈ M, and any ciphertext c output by Enck(m), it holds
that Deck(c) = m with probability 1. This implies that we may assume Dec

is deterministic without loss of generality (since Deck(c) must give the same
output every time it is run). We will thus write m := Deck(c) to denote the
process of decrypting ciphertext c using key k.

In the definitions and theorems below, we refer to probability distributions
over K, M, and C. The distribution over K is simply the one that is defined
by running Gen and taking the output. For k ∈ K, we let Pr[K = k] denote
the probability that the key output by Gen is equal to k. (Formally, K is a
random variable denoting the value of the key.) Similarly, for m ∈ M we let
Pr[M = m] denote the probability that the message that is sent is equal to m.
That the message is being chosen according to some distribution (rather than
being fixed) is meant to model the fact that, at least from the point of view
of the adversary, different messages may have different probabilities of being
sent. (If the adversary knows what message is being sent, then it doesn’t need
to decrypt anything and there is no need for the parties to use encryption!)
As an example, the adversary may know that the encrypted message is ei-
ther attack tomorrow or don’t attack. Furthermore, the adversary may
even know (by other means) that with probability 0.7 the message will be a
command to attack and with probability 0.3 the message will be a command
not to attack. In this case, we have Pr[M = attack tomorrow] = 0.7 and
Pr[M = don’t attack] = 0.3.

We assume that the distributions over K andM are independent, i.e., that
the key and message are chosen independently. This is required because the
key is chosen and fixed (i.e., shared by the communicating parties) before the
message is known. Actually, recall that the distribution over K is fixed by the
encryption scheme itself (since it is defined by Gen) while the distribution over
M may vary depending on the parties who are using the encryption scheme.

For c ∈ C, we write Pr[C = c] to denote the probability that the ciphertext
is c. Note that, given Enc, the distribution over C is fixed by the distributions
over K and M.

Perfectly-Secret Encryption 31

The actual definition. We are now ready to define the notion of perfect
secrecy. Intuitively, we imagine an adversary who knows the probability dis-
tribution over M; that is, the adversary knows the likelihood that different
messages will be sent (as in the example given above). Then the adversary ob-
serves some ciphertext being sent by one party to the other. Ideally, observing
this ciphertext should have no effect on the knowledge of the adversary; in
other words, the a posteriori likelihood that some message m was sent (even
given the ciphertext that was seen) should be no different from the a priori
probability that m would be sent. This should hold for any m ∈ M. Further-
more, this should hold even if the adversary has unbounded computational
power. This means that a ciphertext reveals nothing about the underlying
plaintext, and thus an adversary who intercepts a ciphertext learns absolutely
nothing about the plaintext that was encrypted.

Formally:

DEFINITION 2.1 An encryption scheme (Gen, Enc, Dec) over a message
space M is perfectly secret if for every probability distribution over M, every
message m ∈M, and every ciphertext c ∈ C for which Pr[C = c] > 0:

Pr[M = m | C = c] = Pr[M = m].

(The requirement that Pr[C = c] > 0 is a technical one needed to prevent
conditioning on a zero-probability event.) Another way of interpreting Defi-
nition 2.1 is that a scheme is perfectly secret if the distributions over messages
and ciphertexts are independent.

A simplifying convention. In this chapter, we are going to consider only
probability distributions over M and C that assign non-zero probabilities to
all m ∈ M and c ∈ C.2 This significantly simplifies the presentation because
we often need to divide by Pr[M = m] or Pr[C = c], which is a problem if
they may equal zero. Likewise, as in Definition 2.1 we sometimes need to
condition on the event C = c or M = m. This too is problematic if those
events have zero probability.

We stress that this convention is only meant to simplify the exposition and
is not a fundamental limitation. In particular all the theorems we prove can
be appropriately adapted to the case of arbitrary distributions over M and
C (that may assign some messages or ciphertexts probability 0). See also
Exercise 2.6.

An equivalent formulation. The following lemma gives an equivalent for-
mulation of Definition 2.1.

2We remark that this holds always for k ∈ K because the distribution is defined by Gen and
so only keys that can be output by Gen are included in the set K to start with.

32 Introduction to Modern Cryptography

LEMMA 2.2 An encryption scheme (Gen, Enc, Dec) over a message space
M is perfectly secret if and only if for every probability distribution over M,
every message m ∈ M, and every ciphertext c ∈ C:

Pr[C = c |M = m] = Pr[C = c].

PROOF Fix a distribution overM and arbitrary m ∈ M and c ∈ C. Say

Pr[C = c |M = m] = Pr[C = c].

Multiplying both sides of the equation by Pr[M = m]/ Pr[C = c] gives

Pr[C = c |M = m] · Pr[M = m]

Pr[C = c]
= Pr[M = m].

Using Bayes’ theorem (see Theorem A.8), the left-hand-side is exactly equal
to Pr[M = m | C = c]. Thus, Pr[M = m | C = c] = Pr[M = m] and the
scheme is perfectly secret.

The other direction of the proof is left as an exercise.

We emphasize that in the above proof, we used the fact that both m ∈ M
and c ∈ C are assigned non-zero probabilities (and thus Pr[M = m] > 0 and
Pr[C = c] > 0, enabling us to divide by Pr[C = c] and condition on the event
M = m). This explains our convention stated earlier, by whichM and C only
contain messages/ciphertexts that occur with non-zero probability.

Perfect indistinguishability. We now use Lemma 2.2 to obtain another
equivalent and useful formulation of perfect secrecy. This formulation states
that the probability distribution over C is independent of the plaintext. That
is, let C(m) denote the distribution over the ciphertext when the message be-
ing encrypted is m ∈ M (this distribution depends on the choice of key, as
well as the randomness of the encryption algorithm in case it is probabilistic).
Then the claim is that for every m0, m1 ∈ M, the distributions C(m0) and
C(m1) are identical. This is just another way of saying that the ciphertext
contains no information about the plaintext. We refer to this formulation as
perfect indistinguishability because it implies that it is impossible to distin-
guish an encryption of m0 from an encryption of m1 (due to the fact that the
distribution over the ciphertext is the same in each case).

LEMMA 2.3 An encryption scheme (Gen, Enc, Dec) over a message space
M is perfectly secret if and only if for every probability distribution over M,
every m0, m1 ∈M, and every c ∈ C:

Pr[C = c |M = m0] = Pr[C = c |M = m1].

Perfectly-Secret Encryption 33

PROOF Assume that the encryption scheme is perfectly secret and fix
m0, m1 ∈ M and c ∈ C. By Lemma 2.2 we have that Pr[C = c | M = m0] =
Pr[C = c] and Pr[C = c |M = m1] = Pr[C = c]. Thus,

Pr[C = c |M = m0] = Pr[C = c] = Pr[C = c |M = m1],

completing the proof of the first direction.

Assume next that for every distribution over M, every m0, m1 ∈ M, and
every c ∈ C it holds that Pr[C = c | M = m0] = Pr[C = c | M = m1]. Fix

some distribution over M, and arbitrary m0 ∈ M and c ∈ C. Define γ
def
=

Pr[C = c | M = m0]. Since Pr[C = c | M = m] = Pr[C = c | M = m0] = γ
for all m, we have

Pr[C = c] =
∑

m∈M
Pr[C = c |M = m] · Pr[M = m]

=
∑

m∈M
γ · Pr[M = m]

= γ ·
∑

m∈M
Pr[M = m]

= γ

= Pr[C = c |M = m],

where the final equality holds for all m ∈M. So we have shown that Pr[C =
c] = Pr[C = c | M = m] for all c ∈ C and m ∈ M. Applying Lemma 2.2, we
conclude that the encryption scheme is perfectly secret.

Adversarial indistinguishability. We conclude this section by presenting
an additional equivalent definition of perfect secrecy. This definition is based
on an experiment involving an adversary A and its inability to distinguish the
encryption of one plaintext from the encryption of another, and we thus call it
adversarial indistinguishability. This definition will serve as our starting point
when we introduce the notion of computational security in the next chapter.

We define an experiment that we call PrivKeav since it considers the setting
of private-key encryption and an eavesdropping adversary (the adversary is
eavesdropping because it only receives a ciphertext c and then tries to de-
termine something about the plaintext). The experiment is defined for any
encryption scheme Π = (Gen, Enc, Dec) over message space M and for any
adversary A. We let PrivKeav

A,Π denote an execution of the experiment for a
given Π and A. The experiment is defined as follows:

The adversarial indistinguishability experiment PrivKeav
A,Π:

1. The adversary A outputs a pair of messages m0, m1 ∈M.

34 Introduction to Modern Cryptography

2. A random key k is generated by running Gen, and a random
bit b ← {0, 1} is chosen. (These are chosen by some imag-
inary entity that is running the experiment with A.) Then,
the ciphertext c← Enck(mb) is computed and given to A.

3. A outputs a bit b′.

4. The output of the experiment is defined to be 1 if b′ = b, and
0 otherwise. We write PrivKeav

A,Π = 1 if the output is 1 and in
this case we say that A succeeded.

One should think of A as trying to guess the value of b that is chosen in the
experiment, and A succeeds when its guess b′ is correct. Observe that it is
always possible for A to succeed in the experiment with probability one half
by just guessing b′ randomly. The question is whether it is possible for A
to do any better than this. The alternate definition we now give states that
an encryption scheme is perfectly secret if no adversary A can succeed with
probability any better than one half. We stress that, as is the case throughout
this chapter, there is no limitation whatsoever on the computational power
of A.

DEFINITION 2.4 (perfect secrecy — alternative definition): An encryp-
tion scheme (Gen, Enc, Dec) over a message space M is perfectly secret if for
every adversary A it holds that

Pr
[
PrivKeav

A,Π = 1
]

=
1

2
.

The following proposition states that Definition 2.4 is equivalent to Defini-
tion 2.1. We leave the proof of the proposition as an exercise.

PROPOSITION 2.5 Let (Gen, Enc, Dec) be an encryption scheme over
a message space M. Then, (Gen, Enc, Dec) is perfectly secret with respect to
Definition 2.1 if and only if it is perfectly secret with respect to Definition 2.4.

2.2 The One-Time Pad (Vernam’s Cipher)

In 1917, Vernam patented a cipher that obtains perfect secrecy. There
was no proof of this fact at the time (in fact, there was not yet a notion of
what perfect secrecy was). Rather, approximately 25 years later, Shannon
introduced the notion of perfect secrecy and demonstrated that the one-time
pad (sometimes known as Vernam’s cipher) achieves this level of security.

Perfectly-Secret Encryption 35

Let a⊕ b denote the bitwise exclusive-or (XOR) of two binary strings a and
b (i.e., if a = a1, . . . , a` and b = b1, . . . , b`, then a⊕ b = a1 ⊕ b1, . . . , a` ⊕ b`).
The one-time pad encryption scheme is defined as follows:

1. Fix an integer ` > 0. Then the message space M, key space K, and
ciphertext space C are all equal to {0, 1}` (i.e., the set of all binary
strings of length `).

2. The key-generation algorithm Gen works by choosing a string from K =
{0, 1}` according to the uniform distribution (i.e., each of the 2` strings
in the space is chosen as the key with probability exactly 2−`).

3. Encryption Enc works as follows: given a key k ∈ {0, 1}` and a message
m ∈ {0, 1}`, output c := k ⊕m.

4. Decryption Dec works as follows: given a key k ∈ {0, 1}` and a ciphertext
c ∈ {0, 1}`, output m := k ⊕ c.

Before discussing the security of the one-time pad, we note that for every
k and every m it holds that Deck(Enck(m)) = k ⊕ k ⊕ m = m and so the
one-time pad constitutes a legal encryption scheme.

Intuitively, the one-time pad is perfectly secret because given a ciphertext
c, there is no way an adversary can know which plaintext m it originated
from. In order to see why this is true, notice that for every possible m there
exists a key k such that c = Enck(m); namely, take k = m⊕ c. Furthermore,
each key is chosen with uniform probability and so no key is more likely than
any other. Combining the above, we obtain that c reveals nothing whatsoever
about which plaintext m was encrypted, because every plaintext is equally
likely to have been encrypted (of course, this is true as long as k is completely
hidden from the adversary). We now prove this intuition formally:

THEOREM 2.6 The one-time pad is a perfectly-secret encryption scheme.

PROOF We work directly with the original definition of perfect secrecy
(Definition 2.1), though with our convention that all messages occur with
non-zero probability. (For the one-time pad, this implies that all ciphertexts
occur with non-zero probability.) Fix some distribution overM and arbitrary
m0 ∈ M and c ∈ C. The key observation is that, for every m ∈M,

Pr[C = c |M = m] = Pr[M ⊕K = c |M = m]

= Pr[m⊕K = c] = Pr[K = m⊕ c] = 2−`.

36 Introduction to Modern Cryptography

A simple calculation (using Bayes’ theorem for the first equality) then gives

Pr[M = m0 | C = c] =
Pr[M = m0 ∧ C = c]

Pr[C = c]

=
Pr[C = c |M = m0] · Pr[M = m0]∑
m∈MPr[C = c |M = m] · Pr[M = m]

=
2−` · Pr[M = m0]∑

m∈M 2−` · Pr[M = m]

=
Pr[M = m0]∑

m∈MPr[M = m]
= Pr[M = m0] ,

as required by Definition 2.1.

We conclude that perfect secrecy is attainable. Unfortunately, the one-time
pad encryption scheme has a number of drawbacks. Most prominent is that
the key is required to be as long as the message. This limits applicability of
the scheme if we want to send very long messages (as it may be difficult to
securely store a very long key) or if we don’t know in advance an upper bound
on how long the message will be (since we can’t share a key of unbounded
length). Moreover, the one-time pad scheme — as the name indicates — is
only “secure” if used once (with the same key). Although we did not yet define
a notion of security when multiple messages are encrypted, it is easy to see
informally that encrypting more than one message leaks a lot of information.
In particular, say two messages m, m′ are encrypted using the same key k.
An adversary who obtains c = m⊕ k and c′ = m′ ⊕ k can compute

c⊕ c′ = m⊕m′

and thus learn something about the exclusive-or of the two messages. While
this may not seem very significant, it is enough to rule out any claims of perfect
secrecy when encrypting two messages. Furthermore, if the messages corre-
spond to English-language text, then given the exclusive-or of sufficiently-
many message pairs it is possible to perform frequency analysis (as in the
previous chapter, though more complex) and recover the messages themselves.

Finally, the one-time pad encryption scheme is only secure against a ciphertext-
only attack. Although we have again not yet defined security against stronger
attacks, it is easy to see that the one-time pad scheme is insecure against,
e.g., a known-message attack. An adversary who obtains the encryption c of
a known message m can compute the key k = c ⊕m and then decrypt any
subsequent ciphertexts computed using this same key.

Perfectly-Secret Encryption 37

2.3 Limitations of Perfect Secrecy

In this section, we show that one of the aforementioned limitations of the
one-time pad encryption scheme is inherent. Specifically, we prove that any
perfectly-secret encryption scheme must have a key space that is at least as
large as the message space. If the key space consists of fixed-length keys, and
the message space consists of all messages of some fixed length, this implies
that the key must be at least as long as the message. Thus, the problem of
a large key length is not specific to the one-time pad, but is inherent to any
scheme achieving perfect secrecy. (The other limitations mentioned above are
also inherent in the context of perfect secrecy; see, e.g., Exercise 2.9.)

THEOREM 2.7 Let (Gen, Enc, Dec) be a perfectly-secret encryption scheme
over a message space M, and let K be the key space as determined by Gen.
Then |K| ≥ |M|.

PROOF We show that if |K| < |M| then the scheme is not perfectly secret.
Assume |K| < |M|. Take the uniform distribution over M and let m ∈ M
be arbitrary. Let c be a ciphertext that corresponds to a possible encryption
of m; i.e., there exists a k ∈ K such that Enck(m) = c. (If Enc is randomized,
this means there is some non-zero probability that Enck(m) outputs c.) By
correctness, we know that Deck(c) = m.

Consider the setM(c) of all possible messages that correspond to c; that is

M(c)
def
= {m̂ | m̂ = Deck̂(c) for some k̂ ∈ K}.

We know that m ∈ M(c). Furthermore, |M(c)| ≤ |K| since for each message

m̂ ∈ M(c) we can identify at least one key k̂ ∈ K for which m̂ = Deck̂(c).
(Recall that we assume Dec is deterministic.) This means there is some m′ ∈
M with m′ 6= m such that m′ 6∈ M(c). But then

Pr[M = m′ | C = c] = 0 6= Pr[M = m′],

and so the scheme is not perfectly secret.

Perfect secrecy at a lower price? The above theorem shows an inherent
limitation of schemes that achieve perfect secrecy. Even so, it is often claimed
by individuals and/or companies that they have developed a radically new
encryption scheme that is unbreakable and achieves the security level of the
one-time pad without using long keys. The above proof demonstrates that
such claims cannot be true; the person claiming them either knows very little
about cryptography or is blatantly lying.

38 Introduction to Modern Cryptography

2.4 * Shannon’s Theorem

In his breakthrough work on perfect secrecy, Shannon also provided a char-
acterization of perfectly-secret encryption schemes. As we shall see below,
this characterization says that, assuming |K| = |M| = |C|, the key-generation
algorithm Gen must choose a secret key uniformly from the set of all possi-
ble keys (as in the one-time pad), and that for every plaintext message and
ciphertext there exists a single key mapping the plaintext to the ciphertext
(again, as in the one-time pad). Beyond being interesting in its own right, this
theorem is a powerful tool for proving (or contradicting) the perfect secrecy
of suggested schemes. We discuss this further below after the proof.

As before, we assume that the probability distributions overM and C are
such that all m ∈ M and c ∈ C are assigned non-zero probabilities. The
theorem here considers the special case when |M| = |K| = |C|, meaning that
the sets of plaintexts, keys, and ciphertexts are all of the same size. We have
already seen that |K| ≥ |M|. It is easy to see that |C| must also be at least
the size of |M| (because otherwise for every key, there must be two plaintexts
that are mapped to a single ciphertext, making it impossible to unambiguously
decrypt). Therefore, in some sense, the case of |M| = |K| = |C| is the “most
efficient”. We are now ready to state the theorem:

THEOREM 2.8 (Shannon’s theorem) Let (Gen, Enc, Dec) be an en-
cryption scheme over a message space M for which |M| = |K| = |C|. This
scheme is perfectly secret if and only if:

1. Every key k ∈ K is chosen with equal probability 1/|K| by algorithm Gen.

2. For every m ∈ M and every c ∈ C, there exists a single key k ∈ K such
that Enck(m) outputs c.

PROOF The intuition behind the proof of this theorem is as follows. First,
if a scheme fulfills item (2) then a given ciphertext c could be the result of
encrypting any possible plaintext m (this holds because for every m there
exists a key k mapping it to c). Combining this with the fact that exactly
one key maps each m to c, and by item (1) each key is chosen with the same
probability, perfect secrecy can be shown as in the case of the one-time pad.
For the other direction, the intuition is that if |M| = |K| = |C| then there
must be exactly one key mapping each m to each c. (Otherwise, either some m
is not mapped to a given c contradicting perfect secrecy, or some m is mapped
by more than one key to c, resulting in another m′ not being mapped to c
again contradicting perfect secrecy.) Once this fact is given, it must hold that
each key is chosen with equal probability or some plaintexts would be more
likely than others, contradicting perfect secrecy. The formal proof follows.

Perfectly-Secret Encryption 39

Let (Gen, Enc, Dec) be an encryption scheme over M where |M| = |K| =
|C|. For simplicity, we assume Enc is deterministic. We first prove that if
(Gen, Enc, Dec) is perfectly secret, then items (1) and (2) hold. As in the
proof of Theorem 2.7, it is not hard to see that for every m ∈ M and c ∈ C,
there exists at least one key k ∈ K such that Enck(m) = c. (Otherwise,
Pr[M = m | C = c] = 0 6= Pr[M = m].) For a fixed m, consider now the set
{Enck(m)}k∈K. By the above, |{Enck(m)}k∈K| ≥ |C| (because for every c ∈ C
there exists a k ∈ K such that Enck(m) = c). In addition, since Enck(m) ∈ C
we trivially have |{Enck(m)}k∈K| ≤ |C|. We conclude that

|{Enck(m)}k∈K| = |C|.

Since |K| = |C|, it follows that |{Enck(m)}k∈K| = |K|. This implies that for
every m and c, there do not exist distinct keys k1, k2 ∈ K with Enck1(m) =
Enck2(m) = c. That is, for every m and c, there exists at most one key k ∈ K
such that Enck(m) = c. Combining the above (i.e., the existence of at least
one key and at most one key), we obtain item (2).

We proceed to show that for every k ∈ K, Pr[K = k] = 1/|K|. Let n = |K|
and M = {m1, . . . , mn} (recall, |M| = |K| = n), and fix a ciphertext c.
Then, we can label the keys k1, . . . , kn such that for every i (1 ≤ i ≤ n) it
holds that Encki(mi) = c. This labeling can be carried out because (as just
shown) for every c and mi there exists a unique k such that Enck(mi) = c, and
furthermore these keys are distinct for distinct mi, mj . By perfect secrecy we
have that for every i:

Pr[M = mi] = Pr[M = mi | C = c]

=
Pr[C = c |M = mi] · Pr[M = mi]

Pr[C = c]

=
Pr[K = ki] · Pr[M = mi]

Pr[C = c]
,

where the second equality is by Bayes’ theorem and the third equality holds
by the labelling above (i.e., ki is the unique key that maps mi to c). From
the above, it follows that for every i,

Pr[K = ki] = Pr[C = c].

Therefore, for every i and j, Pr[K = ki] = Pr[C = c] = Pr[K = kj] and so all
keys are chosen with the same probability. We conclude that keys are chosen
according to the uniform distribution, and Pr[K = ki] = 1/|K| as required.

We now prove the other direction of the theorem. Assume that every key
is obtained with probability 1/|K| and that for every m ∈M and c ∈ C there
exists a single key k ∈ K such that Enck(m) = c. This immediately implies
that for every m and c,

Pr[C = c |M = m] =
1

|K|

40 Introduction to Modern Cryptography

irrespective of the probability distribution overM. Thus, for every probability
distribution overM, every m, m′ ∈M, and every c ∈ C we have

Pr[C = c | M = m] =
1

|K| = Pr[C = c | M = m′]

and so by Lemma 2.3, the encryption scheme is perfectly secret.

Uses of Shannon’s theorem. Theorem 2.8 is of interest in its own right in
that it essentially gives a complete characterization of perfectly-secret encryp-
tion schemes. In addition, since items (1) and (2) have nothing to do with the
probability distribution over the set of plaintextsM, the theorem implies that
if there exists an encryption scheme that provides perfect secrecy for a spe-
cific probability distribution overM then it actually provides perfect secrecy
in general (i.e., for all probability distributions over M). Finally, Shannon’s
theorem is extremely useful for proving whether a given scheme is or is not
perfectly secret. Item (1) is easy to confirm and item (2) can be demonstrated
(or contradicted) without analyzing any probabilities (in contrast to working
with, say, Definition 2.1). For example, the perfect secrecy of the one-time
pad (Theorem 2.6) is trivial to prove using Shannon’s theorem. We warn,
however, that Theorem 2.8 only holds if |M| = |K| = |C|, and so one must
careful to apply it only in this case.

2.5 Summary

This completes our treatment of perfectly-secret encryption. The main les-
son of this chapter is that perfect secrecy is attainable, meaning that there exist
encryption schemes with the property that the ciphertext reveals absolutely
nothing about the plaintext even to an adversary with unlimited computa-
tional power. However, all such schemes have the limitation that the key
must be at least as long as the message. In practice, therefore perfectly-secret
encryption is rarely used. We remark that it is rumored that the “red phone”
linking the White House and the Kremlin during the Cold War was protected
using one-time pad encryption. Of course, the governments of the US and
USSR could exchange extremely long random keys without great difficulty,
and therefore practically use the one-time pad. However, in most settings
(especially commercial ones), the limitation regarding the key length makes
the one-time pad or any other perfectly-secret scheme unusable.

Perfectly-Secret Encryption 41

References and Additional Reading

The notion of perfectly-secret encryption was introduced and studied in
ground-breaking work by Shannon [113]. In addition to introducing the no-
tion, he proved that the one-time pad (originally introduced by Vernam [126])
is perfectly secret, and also proved the theorems characterizing perfectly-secret
schemes (and their implied limitations). Stinson [124] contains further dis-
cussion of perfect secrecy.

In this chapter we have briefly studied perfectly-secure encryption. There
are other cryptographic problems that can also be solved with “perfect secu-
rity”. A notable example is the problem of message authentication where the
aim is to prevent an adversary from modifying a message (in an undetectable
manner) en route from one party to another; we study this problem in depth
in Chapter 4. The reader interested in learning about perfectly-secure mes-
sage authentication is referred to the paper by Stinson [122], the survey by
Simmons [120], or the first edition of Stinson’s textbook [123, Chapter 10] for
further information.

Exercises

2.1 Prove the second direction of Lemma 2.2.

2.2 Prove or refute: For every encryption scheme that is perfectly secret
it holds that for every distribution over the message space M, every
m, m′ ∈M, and every c ∈ C:

Pr[M = m | C = c] = Pr[M = m′ | C = c].

2.3 When using the one-time pad (Vernam’s cipher) with the key k = 0`, it
follows that Enck(m) = k ⊕m = m and the message is effectively sent
in the clear! It has therefore been suggested to improve the one-time
pad by only encrypting with a key k 6= 0` (i.e., to have Gen choose k
uniformly at random from the set of non-zero keys of length `). Is this
an improvement? In particular, is it still perfectly secret? Prove your
answer. If your answer is positive, explain why the one-time pad is not
described in this way. If your answer is negative, reconcile this fact with
the fact that encrypting with 0` doesn’t change the plaintext.

2.4 In this exercise, we study conditions under which the shift, mono-alphabetic
substitution, and Vigenére ciphers are perfectly secret:

42 Introduction to Modern Cryptography

(a) Prove that if only a single character is encrypted, then the shift
cipher is perfectly secret.

(b) Describe the largest plaintext spaceM for which the mono-alphabetic
substitution cipher provides perfect secrecy. (Note: this space does
not need to contain words that “make sense”.)

(c) Show how to use the Vigenére cipher to encrypt any word of length
n so that perfect secrecy is obtained (note: you can choose the
length of the key). Prove your answer.

Reconcile the above with the attacks that were shown in the previous
chapter.

2.5 Prove or refute: Every encryption scheme for which the size of the key
space equals the size of the message space, and for which the key is
chosen uniformly from the key space, is perfectly secret.

2.6 Prove that if an encryption scheme (Gen, Enc, Dec) is perfectly secret for
a message space M assuming all messages in M are assigned non-zero
probability, then it is perfectly secret for any message spaceM′ ⊂M.

Hint: Use Shannon’s theorem.

2.7 Prove the first direction of Proposition 2.5. That is, prove that Defini-
tion 2.1 implies Definition 2.4.

Hint: Use Exercise 2.6 to argue that perfect secrecy holds for the uniform

distribution over any two plaintexts (and in particular, the two messages

output by A in the experiment). Then apply Lemma 2.3.

2.8 Prove the second direction of Proposition 2.5. That is, prove that Defi-
nition 2.4 implies Definition 2.1.

Hint: If a scheme Π is not perfectly secret with respect to Definition 2.1,

then Lemma 2.3 shows that there exist messages m0, m1 ∈ M and c ∈ C

for which Pr[C = c | M = m0] 6= Pr[C = c | M = m1]. Use these m0

and m1 to construct an A for which Pr[PrivKeav
A,Π = 1] > 1

2
.

2.9 Consider the following definition of perfect secrecy for the encryption
of two messages. An encryption scheme (Gen, Enc, Dec) over a message
spaceM is perfectly-secret for two messages if for all distributions over
M, all m, m′ ∈M, and all c, c′ ∈ C with Pr[C = c ∧ C ′ = c] > 0:

Pr [M = m ∧M ′ = m′ | C = c ∧ C ′ = c′] = Pr[M = m ∧M ′ = m′],

where m and m′ are sampled independently from the same distribution
overM. Prove that no encryption scheme satisfies this definition.

Hint: Take m 6= m′ but c = c′.

Perfectly-Secret Encryption 43

2.10 Consider the following definition of perfect secrecy for the encryption
of two messages. Encryption scheme (Gen, Enc, Dec) over a message
spaceM is perfectly-secret for two messages if for all distributions over
M, all m, m′ ∈ M with m 6= m′, and all c, c′ ∈ C with c 6= c′ and
Pr[C = c ∧ C ′ = c] > 0:

Pr[M = m ∧M ′ = m′ | C = c ∧ C ′ = c′]

= Pr[M = m ∧M ′ = m′ |M 6= M ′],

where m and m′ are sampled independently from the same distribu-
tion over M. Show an encryption scheme that provably satisfies this
definition. How long are the keys compared to the length of a message?

2.11 Say we require only that an encryption scheme (Gen, Enc, Dec) over a
message space M satisfy the following: for all m ∈ M, the probability
that Deck(Enck(m)) = m is at least 2−t. (This probability is taken over
choice of k as well as any randomness that may be used during encryp-
tion or decryption.) Show that perfect secrecy (as in Definition 2.1) can
be achieved with |K| < |M|.

2.12 Prove an analogue of Theorem 2.7 for the case of “almost perfect” se-
crecy. That is, let ε < 1 be a constant and say we only require that for
any distribution overM, any m ∈ M, and any c ∈ C;

|Pr[M = m | C = c]− Pr[M = m]| < ε.

Prove a lower bound on the size of the key space K relative to M for
any encryption scheme that meets this definition.

Hint: Consider the uniform distribution over M and fix a ciphertext c.

Then show that for a (1−ε) fraction of the messages m ∈ M, there must

exist a key mapping m to c.

Part II

Private-Key (Symmetric)
Cryptography

45

Chapter 3

Private-Key Encryption and
Pseudorandomness

In this chapter, we will study the notion of pseudorandomness — the idea
that things can “look” completely random (in a sense we precisely define)
even though they are not — and see how this can be used to achieve secure
encryption beating the bounds of the previous chapter. Specifically, we will
see encryption schemes whereby a short key (say, some hundreds of bits long)
can be used to securely encrypt many long messages (say, gigabytes in total);
such schemes are able to bypass the inherent limitations of perfect secrecy
because they achieve the weaker (but sufficient) notion of computational se-
crecy. Before commencing our discussion of private-key encryption, then, we
examine the computational approach to cryptography more generally in Sec-
tion 3.1. The computational approach will be used in the rest of the book,
and forms the basis of modern cryptography.

3.1 A Computational Approach to Cryptography

In the previous two chapters we have studied what can be called classical
cryptography. We began with a brief look at some historical ciphers, with
a focus on how they can be broken and what can be learned from these
attacks. In Chapter 2, we then proceeded to present cryptographic schemes
that can be mathematically proven secure (with respect to some particular
definition of security), even when the adversary has unlimited computational
power. Such schemes are called information-theoretically secure, or perfectly
secure, because their security is due to the fact that the adversary simply
does not have enough1 “information” to succeed in its attack, regardless of
the adversary’s computational power. In particular, as we have discussed,
the ciphertext in a perfectly-secret encryption scheme does not contain any
information about the plaintext (assuming the key is unknown).

1The term “information” has a rigorous, mathematical meaning. However, we use it here
in an informal manner.

47

48 Introduction to Modern Cryptography

Information-theoretic security stands in stark contrast to computational se-
curity that is the aim of most modern cryptographic constructions. Restrict-
ing ourselves to the case of private-key encryption (though everything we say
applies more generally), modern encryption schemes have the property that
they can be broken given enough time and computation, and so they do not
satisfy Definition 2.1. Nevertheless, under certain assumptions, the amount of
computation needed to break these encryption schemes would take more than
many lifetimes to carry out even using the fastest available supercomputers.
For all practical purposes, this level of security suffices.

Computational security is weaker than information-theoretic security. It
also currently2 relies on assumptions whereas no assumptions are needed to
achieve the latter (as we have seen in the case of encryption). Even granting
the fact that computational security suffices for all practical purposes, why do
we give up on the idea of achieving perfect security? The results of Section 2.3
give one reason why modern cryptography has taken this route. In that
section, we showed that perfectly-secret encryption schemes suffer from severe
lower bounds on the key length; namely, that the key must be as long as
the combined length of all messages ever encrypted using this key. Similar
negative results hold for other cryptographic tasks when information-theoretic
security is required. Thus, despite its mathematical appeal, it is necessary to
compromise on perfect security in order to obtain practical cryptographic
schemes. We stress that although we cannot obtain perfect security, this
does not mean that we do away with the rigorous mathematical approach;
definitions and proofs are still essential, and it is only that we now consider
weaker (but still meaningful) definitions of security.

3.1.1 The Basic Idea of Computational Security

Kerckhoffs is best known for his principle that cryptographic designs should
be made public. However, he actually spelled out six principles, the following
of which is very relevant to our discussion here:

A [cipher] must be practically, if not mathematically, indecipherable.

Although he could not have stated it in this way at the time, this principle
of Kerckhoffs essentially says that it is not necessary to use a perfectly-secret
encryption scheme, but instead it suffices to use a scheme that cannot be
broken in “reasonable time” with any “reasonable probability of success” (in
Kerckhoffs’ language, a scheme that is “practically indecipherable”). In more
concrete terms, it suffices to use an encryption scheme that can (in theory) be
broken, but that cannot be broken with probability better than 10−30 in 200

2In theory, it is possible that these assumptions might one day be removed (though this will
require, in particular, proving that P 6= NP). Unfortunately, however, our current state
of knowledge requires us to make assumptions in order to prove computational security of
any cryptographic construction.

Private-Key Encryption and Pseudorandomness 49

years using the fastest available supercomputer. In this section we present a
framework for making formal statements about cryptographic schemes that
are “practically unbreakable”.

The computational approach incorporates two relaxations of the notion of
perfect security:

1. Security is only preserved against efficient adversaries, and

2. Adversaries can potentially succeed with some very small probability (small
enough so that we are not concerned that it will ever really happen).

To obtain a meaningful theory, we need to precisely define what is meant
by the above. There are two common approaches for doing so: the concrete
approach and the asymptotic approach. We explain these now.

The concrete approach. The concrete approach quantifies the security of
a given cryptographic scheme by bounding the maximum success probability
of any adversary running for at most some specified amount of time. That is,
let t, ε be positive constants with ε ≤ 1. Then, roughly speaking:

A scheme is (t, ε)-secure if every adversary running for time at
most t succeeds in breaking the scheme with probability at most ε.

(Of course, the above serves only as a general template, and for the above
statement to make sense we need to define exactly what it means to “break”
the scheme.) As an example, one might want to use a scheme with the guaran-
tee that no adversary running for at most 200 years using the fastest available
supercomputer can succeed in breaking the scheme with probability better
than 10−30. Or, it may be more convenient to measure running time in terms
of CPU cycles, and to use a scheme such that no adversary running for at
most 280 cycles can break the scheme with probability better than 2−64.

It is instructive to get a feel for values of t, ε that are typical of modern
cryptographic schemes.

Example 3.1
Modern private-key encryption schemes are generally assumed to give almost
optimal security in the following sense: when the key has length n, an ad-
versary running in time t (measured in, say, computer cycles) can succeed in
breaking the scheme with probability t/2n. (We will see later why this is in-
deed optimal.) Computation on the order of t = 260 is barely in reach today.
Running on a 1GHz computer, 260 CPU cycles require 260/109 seconds, or
about 35 years. Using many supercomputers in parallel may bring this down
to a few years.

A typical value for the key length, however, might be n = 128. The differ-
ence between 260 and 2128 is a multiplicative factor of 268 which is a number
containing about 21 decimal digits. To get a feeling for how big this is, note

50 Introduction to Modern Cryptography

that according to physicists’ estimates the number of seconds since the big
bang is on the order of 258.

An event that occurs once every hundred years can be roughly estimated
to occur with probability 2−30 in any given second. Something that occurs
with probability 2−60 in any given second is 230 times less likely, and might
be expected to occur roughly once every 100 billion years. ♦

The concrete approach can be useful in practice, since concrete guarantees
of the above type are typically what users of a cryptographic scheme are
ultimately interested in. However, one must be careful in interpreting concrete
security guarantees. As one example, if it is claimed that no adversary running
for 5 years can break a given scheme with probability better than ε, we still
must ask: what type of computing power (e.g., desktop PC, supercomputer,
network of 100s of computers) does this assume? Does this take into account
future advances in computing power (which, by Moore’s Law, roughly doubles
every 18 months)? Does this assume “off-the-shelf” algorithms will be used or
dedicated software optimized for the attack? Furthermore, such a guarantee
says little about the success probability of an adversary running for 2 years
(other than the fact that it can be at most ε) and says nothing about the
success probability of an adversary running for 10 years.

From a theoretical standpoint, the concrete security approach is disadvan-
tageous since schemes can be (t, ε)-secure but never just secure. More to
the point, for what ranges of t, ε should we say that a (t, ε)-secure scheme
is “secure”? There is no clear answer to this, as a security guarantee that
may suffice for the average user may not suffice when encrypting classified
government documents.

The asymptotic approach. The asymptotic approach is the one we will
take in this book. This approach, rooted in complexity theory, views the
running time of the adversary as well as its success probability as functions
of some parameter rather than as concrete numbers. Specifically, a crypto-
graphic scheme will incorporate a security parameter which is an integer n.
When honest parties initialize the scheme (e.g., when they generate keys),
they choose some value n for the security parameter; this value is assumed to
be known to any adversary attacking the scheme. The running time of the ad-
versary (and the running time of the honest parties) as well as the adversary’s
success probability are all viewed as functions of n. Then:

1. We equate the notion of “efficient algorithms” with (probabilistic) algo-
rithms running in time polynomial in n, meaning that for some constants
a, c the algorithm runs in time a·nc on security parameter n. We require
that honest parties run in polynomial time, and will only be concerned
with achieving security against polynomial-time adversaries. We stress
that the adversary, though required to run in polynomial time, may be
much more powerful (and run much longer) than the honest parties.

Private-Key Encryption and Pseudorandomness 51

2. We equate the notion of “small probability of success” with success
probabilities smaller than any inverse-polynomial in n, meaning that
for every constant c the adversary’s success probability is smaller than
n−c for large enough values of n (see Definition 3.5). A function that
grows slower than any inverse polynomial is called negligible.

We sometimes use ppt to stand for probabilistic, polynomial-time. A definition
of asymptotic security thus takes the following general form:

A scheme is secure if every ppt adversary succeeds in breaking the
scheme with only negligible probability.

Although very clean from a theoretical point of view (since we can actually
speak of a scheme being secure or not), it is important to understand that the
asymptotic approach only “guarantees security” for large enough values of n,
as the following example should make clear.

Example 3.2
Say we have a scheme that is secure. Then it may be the case that an adversary
running for n3 minutes can succeed in “breaking the scheme” with probability
240 · 2−n (which is a negligible function of n). When n ≤ 40 this means that
an adversary running for 403 minutes (about 6 weeks) can break the scheme
with probability 1, so such values of n are not going to be very useful in
practice. Even for n = 50 an adversary running for 503 minutes (about 3
months) can break the scheme with probability roughly 1/1000, which may
not be acceptable. On the other hand, when n = 500 an adversary running for
more than 200 years breaks the scheme only with probability roughly 2−500.

♦

As indicated by the previous example, we can view a larger security param-
eter as providing a “greater” level of security. For the most part, the security
parameter determines the length of the key used by the honest parties, and we
thus have the familiar concept that the longer the key, the higher the security.
The ability to “increase security” by taking a larger value for the security
parameter has important practical ramifications, since it enables honest par-
ties to defend against increases in computing power as well as algorithmic
advances. The following gives a sense for how this might play out in practice.

Example 3.3
Let us see the effect that the availability of faster computers might have on
security in practice. Say we have a cryptographic scheme where honest parties
are required to run for 106 ·n2 cycles, and for which an adversary running for
108 ·n4 cycles can succeed in “breaking” the scheme with probability 220 ·2−n.
(The numbers in this example are designed to make calculations easier, and
are not meant to correspond to any existing cryptographic scheme.)

52 Introduction to Modern Cryptography

Say all parties are using a 1Ghz computer (that executes 109 cycles per
second) and n = 50. Then honest parties run for 106 · 2500 cycles, or 2.5
seconds, and an adversary running for 108 · (50)4 cycles, or roughly 1 week,
can break the scheme with probability only 2−30.

Now say a 16Ghz computer becomes available, and all parties upgrade.
Honest parties can increase n to 100 (which requires generating a fresh key)
and still improve their running time to 0.625 seconds (i.e., 106 · 1002 cycles
at 16 · 109 cycles/second). In contrast, the adversary now has to run for 107

seconds, or more than 16 weeks, to achieve success probability 2−80. The
effect of a faster computer has been to make the adversary’s job harder. ♦

The asymptotic approach has the advantage of not depending on any spe-
cific assumptions regarding, e.g., the type of computer an adversary will use
(this is a consequence of the Church-Turing thesis from complexity theory,
which basically states that the relative speeds of all sufficiently-powerful com-
puting devices are polynomially related). On the other hand, as the above
examples demonstrate, it is necessary in practice to understand exactly what
level of concrete security is implied by a particular asymptotically-secure
scheme. This is because the honest parties must pick a concrete value of n
to use, and so cannot rely on assurances of what happens “for large enough
values of n”. The task of determining the value of the security parameter to
use is complex and depends on the scheme in question as well as other con-
siderations. Fortunately, it is usually relatively easy to translate a guarantee
of asymptotic security into a concrete security guarantee.

Example 3.4
A typical proof of security for a cryptographic scheme might show that any
adversary running in time p(n) succeeds with probability at most p(n)/2n.
This implies that the scheme is (asymptotically) secure, since for any polyno-
mial p, the function p(n)/2n is eventually smaller than any inverse-polynomial
in n. Moreover, it immediately gives a concrete security result for any desired
value of n; e.g., the scheme with n fixed to 50 is (502, 502/250)-secure (note
that for this to be meaningful we need to know the units of time with respect
to which p is being measured). ♦

From here on, we use the asymptotic approach only. Nevertheless, as the
above example shows, all the results in this book can be cast as concrete
security results as well.

A technical remark. As we have mentioned, we view the running time of
the adversary and the honest parties as a function of n. To be consistent
with the standard convention in algorithms and complexity theory, where the
running time of an algorithm is measured as a function of the length of its
input, we will thus provide the adversary and the honest parties with the
security parameter in unary as 1n (i.e., a string of n 1’s) when necessary.

Private-Key Encryption and Pseudorandomness 53

Necessity of the Relaxations

As we have seen, computational security introduces two relaxations of the
notion of perfect security: first, security is guaranteed only against efficient
(i.e., polynomial-time) adversaries; second, a small (i.e., negligible) probability
of success is allowed. Both of these relaxations are essential for achieving
practical cryptographic schemes, and in particular for bypassing the negative
results for perfectly-secret encryption. Let us see why, somewhat informally.
Assume we have an encryption scheme where the size of the key space K is
much smaller than the size of the message spaceM (which, as we saw in the
previous chapter, means that the scheme cannot be perfectly secret). There
are two attacks, lying at opposite extremes, that apply regardless of how the
encryption scheme is constructed:

• Given a ciphertext c, the adversary can decrypt c using all keys k ∈ K.
This gives a list of all possible messages to which c can possibly corre-
spond. Since this list cannot contain all ofM (because |K| < |M|), this
leaks some information about the message that was encrypted.

Moreover, say the adversary carries out a known-plaintext attack and
learns that ciphertexts c1, . . . , c` correspond to the messages m1, . . . , m`,
respectively. The adversary can again try decrypting each of these ci-
phertexts with all possible keys until it finds a key k for which Deck(ci) =
mi for all i. This key will be unique with high3 probability, in which
case the adversary has found the key that the honest parties are using
(and so subsequent usage of this key will be insecure).

The type of attack is known as brute-force search and allows the adver-
sary to succeed with probability essentially 1 in time linear in |K|.

• Consider again the case where the adversary learns that ciphertexts
c1, . . . , c` correspond to the messages m1, . . . , m`. The adversary can
guess a key k ∈ K at random and check to see whether Deck(ci) = mi

for all i. If so, we again expect that with high probability k is the key
that the honest parties are using.

Here the adversary runs in polynomial time and succeeds with non-zero
(though very small) probability roughly 1/|K|.

It follows that if we wish to encrypt many messages using a single short key,
security can only be achieved if we limit the running time of the adversary (so
that the adversary does not have time to carry out a brute-force search) and
also allow a very small probability of success (without considering it a break).

An immediate consequence of the above attacks is that asymptotic security
is not possible if the key space is fixed, but rather the key space must depend

3Technically speaking, this need not be true; if it is not, however, then the scheme can be
broken using a modification of this attack.

54 Introduction to Modern Cryptography

on n. That is, a private-key encryption scheme will now be associated with
a sequence {Kn} such that the key is chosen from Kn when the security
parameter is n. The above attacks imply that if we want polynomial-time
adversaries to achieve only negligible success probability then the size of Kn

must grow super-polynomially in the security parameter n. Otherwise, brute-
force search could be carried out in polynomial time, and randomly guessing
the key would succeed with non-negligible probability.

3.1.2 Efficient Algorithms and Negligible Success

In the previous section we have outlined the asymptotic security approach
that we will be taking in this book. Students who have not had significant
prior exposure to algorithms or complexity theory may not be comfortable
with the notions of “polynomial-time algorithms”, “probabilistic (or random-
ized) algorithms”, or “negligible probabilities”, and often find the asymptotic
approach confusing. In this section we revisit the asymptotic approach in
more detail, and slightly more formally. Students who are already comfort-
able with what was described in the previous section are welcome to skip
ahead to Section 3.1.3 and refer back here as needed.

Efficient Computation

We have define efficient computation as that which can be carried out in
probabilistic polynomial time (sometimes abbreviated ppt). An algorithm A
is said to run in polynomial time if there exists a polynomial p(·) such that,
for every input x ∈ {0, 1}∗, the computation of A(x) terminates within at
most p(‖x‖) steps (here, ‖x‖ denotes the length of the string x). A prob-

abilistic algorithm is one that has the capability of “tossing coins”; this is
a metaphorical way of saying that the algorithm has access to a source of
randomness that yields unbiased random bits that are each independently
equal to 1 with probability 1

2 and 0 with probability 1
2 . Equivalently, we can

view a randomized algorithm as one which is given, in addition to its input,
a uniformly-distributed bit-string of “adequate length” on a special random
tape. When considering a probabilistic polynomial-time algorithm with run-
ning time p and an input of length n, a random string of length p(n) will
certainly be adequate as the algorithm can only use p(n) random bits within
the allotted time.

Those familiar with complexity theory or algorithms will recognize that the
idea of equating efficient computation with (probabilistic) polynomial-time
computation is not unique to cryptography. The primary advantage of work-
ing with (probabilistic) polynomial-time algorithms is that this gives a class of
algorithms that is closed under composition, meaning that a polynomial-time
algorithm A that runs another polynomial-time algorithm A′ as a sub-routine
will also run in polynomial-time overall. Other than this useful fact, there is
nothing inherently special about restricting adversaries to run in polynomial

Private-Key Encryption and Pseudorandomness 55

time, and essentially all the results we will see in this book could also be
formulated in terms of adversaries running in, say, time nO(log n) (with honest
parties still running in polynomial time).

Before proceeding we address the question of why we consider probabilistic
polynomial-time algorithms rather than just deterministic polynomial-time
ones. There are two main answers for this. First, randomness is essential to
cryptography (e.g., in order to choose random keys and so on) and so honest
parties must be probabilistic. Given that this is the case, it is natural to
consider adversaries that are probabilistic as well. A second reason for con-
sidering probabilistic algorithms is that the ability to toss coins may provide
additional power. Since we use the notion of efficient computation to model
realistic adversaries, it is important to make this class as large as possible
(while still being realistic).

As an aside, we mention that the question of whether or not probabilistic
polynomial-time adversaries are more powerful than deterministic polynomial-
time adversaries is unresolved. In fact, recent results in complexity the-
ory indicate that randomness does not help. Nevertheless, it does not hurt
to model adversaries as probabilistic algorithms, and this can only provide
stronger guarantees — that is, any scheme that is secure against proba-
bilistic polynomial-time adversaries is certainly secure against deterministic
polynomial-time adversaries as well.

Generating randomness. We have modeled all parties as probabilistic
polynomial-time algorithms because, as we have mentioned, cryptography is
only possible if randomness is available. (If secret keys cannot be generated
at random, then an adversary automatically knows the secret keys used by
the honest parties.) Given this fact, one may wonder whether it is possible to
actually “toss coins” on a computer and achieve probabilistic computation.

There are a number of ways “random bits” are obtained in practice. One
solution is to use a hardware random number generator that generates random
bit-streams based on certain physical phenomena like thermal/electrical noise
or radioactive decay. Another possibility is to use software random number
generators which generate random bit-streams based on unpredictable be-
havior such as the time between key-strokes, movement of the mouse, hard
disk access times, and so on. Some modern operating systems provide func-
tions of this sort. Note that, in either of these cases, the underlying un-
predictable event (whether natural or user-dependent) is unlikely to directly
yield uniformly-distributed bits, and so further processing of the initial bit-
stream is needed. Techniques for doing this are complex yet generally poorly
understood, and are outside the scope of this text.

One must careful in how random bits are chosen, and the use of badly-
designed or inappropriate random number generators can often leave a good
cryptosystem vulnerable to attack. Particular care must be taken to use a
random number generator that is designed for cryptographic use, rather than
a “general-purpose” random number generator which may be fine for some

56 Introduction to Modern Cryptography

applications but not cryptographic ones. As one specific example, using the
random() function in C is a bad idea since it is not very random at all.
Likewise, the current time (even to the millisecond) is not very random and
cannot serve as the basis for a secret key.

Negligible Success Probability

Modern cryptography allows schemes that can be broken with very small
probability to still be considered “secure”. In the same way that we consider
polynomial running times to be feasible, we consider inverse-polynomial prob-
abilities to be significant. Thus, if an adversary could succeed in breaking a
scheme with probability 1/p(n) for some (positive) polynomial p, then the
scheme would not be considered secure. However, if the probability that the
scheme can be broken is asymptotically smaller than 1/p(n) for every poly-
nomial p, then we consider the scheme to be secure. This is due to the fact
that the probability of adversarial success is so small that it is considered
uninteresting. We call such probabilities of success negligible, and have the
following definition.

DEFINITION 3.5 A function f is negligible if for every polynomial p(·)
there exists an N such that for all integers n > N it holds that f(n) < 1

p(n) .

An equivalent formulation of the above is to require that for all constants
c there exists an N such that for all n > N it holds that f(n) < n−c. For
shorthand, the above is also stated as follows: for every polynomial p(·) and
all sufficiently large values of n it holds that f(n) < 1

p(n) . This is, of course,

the same. We typically denote an arbitrary negligible function by negl.

Example 3.6

The functions 2−n, 2−
√

n, n− log n are all negligible. However, they approach
zero at very different rates. In order to see this, we will show for what values
of n each function is smaller than 10−6:

1. 220 = 1048576 and thus for n ≥ 20 we have that 2−n < 10−6.

2. 2
√

400 = 1048576 and thus for n ≥ 400 we have that 2−
√

n < 10−6.

3. 325 = 33554432 and thus for n ≥ 32 we have that n− log n < 10−6.

From the above you may have the impression that n− log n approaches zero
more quickly than 2−

√
n. However this is incorrect; for all n > 65536 it holds

that 2−
√

n < n− log n. Nevertheless, this does show that for values of n in
the hundreds or thousands, an adversarial success probability of n− log n is
preferable to an adversarial success probability of 2−

√
n. ♦

Private-Key Encryption and Pseudorandomness 57

A technical advantage of working with negligible success probabilities is that
they are also closed under composition. The following is an easy exercise.

PROPOSITION 3.7 Let negl1 and negl2 be negligible functions.

1. The function negl3 defined by negl3(n) = negl1(n)+negl2(n) is negligible.

2. For any positive polynomial p, the function negl4 defined by negl4(n) =
p(n) · negl1(n) is negligible.

The second part of the above proposition implies that if a certain event
occurs with only negligible probability in a certain experiment, then the
event occurs with negligible probability even if the experiment is repeated
polynomially-many times. For example, the probability that n coin flips
all come up “heads” is negligible. This means that even if we flip n coins
polynomially-many times, the probability that any of these times resulted in
n heads is still negligible. (Using the union bound, Proposition A.7.)

It is important to understand that events that occur with negligible proba-
bility can be safely ignored for all practical purposes (at least for large enough
values of n). This is important enough to repeat and highlight:

Events that occur with negligible probability are so unlikely to oc-
cur that they can be ignored for all practical purposes. Therefore,
a break of a cryptographic scheme that occurs with negligible prob-
ability is not considered a break.

Lest you feel uncomfortable with the fact that an adversary can break a given
scheme with some tiny (but non-zero) probability, note that with some tiny
(but non-zero) probability the honest parties will be hit by an asteroid while
executing the scheme! (More benign, but making the same point: with some
non-zero probability the hard drive of one of the honest parties will fail, thus
erasing the secret key.) See also Example 3.1. So it simply does not make
sense to worry about events that occur with sufficiently-small probability.

Asymptotic Security: A Summary

Recall that any security definition consists of two parts: a definition of
what is considered a “break” of the scheme, and a specification of the power
of the adversary. The power of the adversary can relate to many issues (e.g.,
in the case of encryption, whether we assume a ciphertext-only attack or a
chosen-plaintext attack); however, when it comes to the computational power
of the adversary, we will from now on model the adversary as efficient and thus
probabilistic polynomial-time. The definition is always formulated so that a
break that occurs with negligible probability is not considered a significant
break. Thus, the general framework of any security definition is as follows:

58 Introduction to Modern Cryptography

A scheme is secure if for every probabilistic polynomial-time ad-
versary A carrying out an attack of some specified type, the prob-
ability that A succeeds in this attack (where success is also well-
defined) is negligible.

Such a definition is asymptotic because it is possible that for small values of n
an adversary can succeed with high probability. In order to see this in more
detail, we will use the full definition of “negligible” in the above statement:

A scheme is secure if for every probabilistic polynomial-time adver-
sary A carrying out an attack of some specified type, and for every
polynomial p(·), there exists an integer N such that the probability
that A succeeds in this attack (where success is also well-defined)
is less than 1

p(n) for every n > N .

Note that nothing is guaranteed for values n ≤ N .

3.1.3 Proofs by Reduction

As we have seen, a cryptographic scheme that is computationally secure
(but not perfectly secure) can always be broken given enough time. To prove
unconditionally that some scheme is computationally secure would thus re-
quire proving a lower bound on the time needed to break the scheme; specif-
ically, it would be necessary to prove that the scheme cannot be broken by
any polynomial-time algorithm. Unfortunately, the current state of affairs
is such that we are unable to prove lower bounds of this type. In fact, an
unconditional proof of security for any modern encryption scheme would re-
quire breakthrough results in complexity theory that seem far out of reach
today.4 This might seem to leave us with no choice but to simply assume that
a given scheme is secure. As discussed in Section 1.4, however, this is a very
undesirable approach and one that history has taught us is very dangerous.

Instead of blithely assuming that a given cryptographic construction is se-
cure, our strategy instead will be to assume that some low-level problem is
hard to solve, and to then prove that the construction in question is secure
given this assumption. In Section 1.4.2 we have already explained in great
detail why this approach is preferable so we do not repeat those arguments
here.

The proof that a given construction is secure as long as some underlying
problem is hard generally proceeds by presenting an explicit reduction showing
how to convert any efficient adversary A that succeeds in “breaking” the
construction with non-negligible probability into an efficient algorithmA′ that

4For those familiar with basic complexity theory, and in particular the P versus NP ques-
tion, we remark that an unconditional proof of security for any encryption scheme in which
messages are longer than the key would imply a proof that P 6= NP, something that seems
far beyond reach today.

Private-Key Encryption and Pseudorandomness 59

succeeds in solving the problem that was assumed to be hard. (In fact, this
is the only sort of proof we use in this book.) Since this is so important,
we walk through a high-level outline of the steps of such a proof in detail.
We begin with an assumption that some problem X cannot be solved (in
some precisely-defined sense) by any polynomial-time algorithm except with
negligible probability. We want to prove that some cryptographic construction
Π is secure (again, in some sense that is precisely defined). To do this:

1. Fix some efficient (i.e., probabilistic polynomial-time) adversary A at-
tacking Π. Denote this adversary’s success probability by ε(n).

2. Construct an efficient adversary A′ that attempts to solve problem X

using adversary A as a sub-routine. An important point here is that A′
knows nothing about “how” A works; the only thing A′ knows is that
A is expecting to attack Π. So, given some input instance x of problem
X, our algorithm A′ will simulate for A an execution of Π such that:

(a) As far as A can tell, it is interacting with Π. More formally, the
view of A when it is run as a sub-routine by A′ should be dis-
tributed identically to (or at least close to) the view of A when it
interacts with Π itself.

(b) Furthermore, if A succeeds in “breaking” the execution of Π that
is being simulated by A′, this should allow A′ to solve the instance
x it was given, at least with inverse polynomial probability 1/p(n).

3. Taken together, 2(a) and 2(b) imply that if ε(n) is not negligible, then
A′ solves problem X with non-negligible probability ε(n)/p(n). Since
A′ is efficient, and runs the ppt adversary A as a sub-routine, this
implies an efficient algorithm solving X with non-negligible probability,
contradicting the initial assumption.

4. We conclude that, given the assumption regarding X, no efficient algo-
rithm A can succeed with probability ε that is not negligible. I.e., Π is
computationally secure.

This will become more clear when we see examples of such proofs in the
sections that follow.

3.2 A Definition of Computationally-Secure Encryption

Given the background of the previous section, we are ready to present a
definition of computational security for private-key encryption. First, we re-
define the syntax of a private-key encryption scheme; this will essentially be

60 Introduction to Modern Cryptography

the same as the syntax introduced in Chapter 2 except that we will now
explicitly take into account the security parameter. We will also now let
the message space be, by default, the set {0, 1}∗ of all (finite-length) binary
strings.

DEFINITION 3.8 A private-key encryption scheme is a tuple of proba-
bilistic polynomial-time algorithms (Gen, Enc, Dec) such that:

1. The key-generation algorithm Gen takes as input the security parameter
1n and outputs a key k; we write this as k ← Gen(1n) (thus emphasizing
the fact that Gen is a randomized algorithm). We will assume without
loss of generality that any key k output by Gen(1n) satisfies |k| ≥ n.

2. The encryption algorithm Enc takes as input a key k and a plaintext
message m ∈ {0, 1}∗, and outputs a ciphertext c.5 Since Enc may be
randomized, we write this as c← Enck(m).

3. The decryption algorithm Dec takes as input a key k and a ciphertext c,
and outputs a message m. We assume without loss of generality that
Dec is deterministic, and so write this as m := Deck(c).

It is required that for every n, every key k output by Gen(1n), and every
m ∈ {0, 1}∗, it holds that Deck(Enck(m)) = m.

If (Gen, Enc, Dec) is such that for k output by Gen(1n), algorithm Enck is
only defined for messages m ∈ {0, 1}`(n), then we say that (Gen, Enc, Dec) is
a fixed-length private-key encryption scheme with length parameter `.

3.2.1 A Definition of Security for Encryption

There are actually a number of different ways of defining security for private-
key encryption, with the main differences being with respect to the assumed
power of the adversary in its attack. We begin by presenting the most basic
notion of security — security against a weak form of ciphertext-only attack
where the adversary only observes a single ciphertext — and will consider
stronger definitions of security later in the chapter.

Motivating the definition. As discussed in Chapter 1, any definition of
security consists of two distinct components: a specification of the assumed
power of the adversary, and a description of what constitutes a “break” of
the scheme. We begin our definitional treatment by considering the case of
an eavesdropping adversary who observes the encryption of a single message

5As a technical condition, note that Enc is allowed to run in time polynomial in n + |m|
(i.e., the total length of its inputs). We will generally only be concerned with encrypting
messages of length polynomial in n, in which case this is irrelevant.

Private-Key Encryption and Pseudorandomness 61

or, equivalently, is given a single ciphertext that it wishes to “crack”. This
is a rather weak class of adversaries (and we will encounter stronger adver-
saries soon), but is exactly the type of adversary that was considered in the
previous chapter. Of course, as explained in the previous section, we are now
interested only in adversaries that are computationally bounded to running
in (probabilistic) polynomial time.

An important point to stress here is that although we have made two
substantial assumptions about the adversary’s capabilities (i.e., that it only
eavesdrops, and that it runs in polynomial time), we will make no assump-
tion whatsoever about the adversary’s strategy. This is crucial for obtaining
meaningful notions of security because it is impossible to predict all possible
strategies. We therefore protect against all strategies that can be carried out
by adversaries within the class we have defined.

Defining the “break” for encryption is not trivial, but we have already dis-
cussed this issue at length in Section 1.4.1 and the previous chapter. We
therefore just recall that the idea behind the definition is that the adver-
sary should be unable to learn any partial information about the plaintext
from the ciphertext. The definition of semantic security directly formalizes
exactly this notion, and was the first definition of security for encryption to
be proposed. Unfortunately, the definition of semantic security is complex
and difficult to work with, and we will not present it in this book. Fortu-
nately, there is an equivalent definition in terms of indistinguishability which
is somewhat simpler. Since the definitions are equivalent, we can work with
the simpler definition of indistinguishability while being convinced that the
security guarantees we obtain are those we expect from semantic security.

The definition of indistinguishability is syntactically almost identical to the
alternate definition of perfect secrecy given as Definition 2.4. (This serves
as further motivation that the definition of indistinguishability is a “good”
one.) Recall that Definition 2.4 considers an experiment PrivKeav

A,Π in which
an adversary A outputs two messages m0 and m1, and is given an encryption
of one of these messages, chosen at random, using a randomly-generated key.
The definition then states that a scheme Π is secure if, in experiment PrivKeav

A,Π,
no adversary A can determine which message is encrypted with probability
any different from 1/2.

Here, we keep the experiment PrivKeav
A,Π almost exactly the same (except for

some technical differences discussed below), but introduce two key modifica-
tions in the definition itself:

1. We now consider only adversaries running in polynomial time, whereas
Definition 2.4 considered even all-powerful adversaries.

2. We now concede that the adversary might determine the encrypted mes-
sage with probability negligibly better than 1/2.

As discussed extensively in the previous section, the above relaxations consti-
tute the core elements of computational security.

62 Introduction to Modern Cryptography

As for the differences in experiment PrivKeav
A,Π itself, one is purely syntactic

while the other is introduced for technical reasons. The most prominent dif-
ference is that we now parameterize the experiment by a security parameter n;
we then measure both the running time of adversary A as well as its success
probability as functions of n. We write PrivKeav

A,Π(n) to denote the experiment
being run with the given value of the security parameter, and write

Pr[PrivKeav
A,Π(n) = 1] (3.1)

to denote the probability that A outputs 1 in experiment PrivKeav
A,Π(n). It is

important to note that, fixing A and Π, Equation (3.1) is a function of n.
The second difference in experiment PrivKeav

A,Π is that we now require the
adversary to output two messages m0, m1 of equal length. From a theoretical
point of view, this restriction is necessary because of our requirement that an
encryption scheme should be able to encrypt arbitrary-length messages (and
the restriction could be removed if we were willing to forego this requirement,
as we did in the case of perfect secrecy); see Exercise 3.3. This restriction,
however, also turns out to be very appropriate for most encryption schemes
used in practice, where different-length messages result in different-length
ciphertexts, and so an adversary could trivially distinguish which message
was encrypted if it were allowed to output messages of different lengths.

We emphasize that most encryption schemes used in practice do not hide
the length of messages that are encrypted. In cases when the length of a
message might itself represent sensitive information (e.g., when it indicates
the number of digits in an employee’s salary), care should be taken to pad the
input to some fixed length before encrypting. We do not discuss this further.

Indistinguishability in the presence of an eavesdropper. We now give
the formal definition, beginning with the experiment outlined above. The ex-
periment is defined for any private-key encryption scheme Π = (Gen, Enc, Dec),
any adversary A, and any value n for the security parameter:

The adversarial indistinguishability experiment PrivKeav
A,Π(n):

1. The adversary A is given input 1n, and outputs a pair of
messages m0, m1 of the same length.

2. A random key k is generated by running Gen(1n), and a ran-
dom bit b ← {0, 1} is chosen. The ciphertext c ← Enck(mb)
is computed and given to A.

3. A outputs a bit b′.

4. The output of the experiment is defined to be 1 if b′ = b, and
0 otherwise. If PrivKeav

A,Π(n) = 1, we say that A succeeded.

If Π is a fixed-length scheme with length parameter `, the above experiment
is modified by requiring m0, m1 ∈ {0, 1}`(n).

Private-Key Encryption and Pseudorandomness 63

The definition of indistinguishability states that an encryption scheme is
secure if the success probability of any ppt adversary in the above experiment
is at most negligibly greater than 1/2. (Note that it is easy to succeed with
probability 1/2 by just outputting a random bit b′. The challenge is to do
better than this.) We are now ready for the definition.

DEFINITION 3.9 A private-key encryption scheme Π = (Gen, Enc, Dec)
has indistinguishable encryptions in the presence of an eavesdropper if for all
probabilistic polynomial-time adversaries A there exists a negligible function
negl such that

Pr
[
PrivKeav

A,Π(n) = 1
]
≤ 1

2
+ negl(n),

where the probability is taken over the random coins used by A, as well as the
random coins used in the experiment (for choosing the key, the random bit b,
and any random coins used in the encryption process).

The definition quantifies over all probabilistic polynomial-time adversaries,
meaning that security is required for all “feasible” strategies (where we equate
feasible strategies with those that can be carried out in polynomial time). The
fact that the adversary has only eavesdropping capabilities is implicit in the
fact that its input is limited to a (single) ciphertext, and the adversary does
not have any further interaction with the sender or the receiver. (As we will
see later, allowing additional interaction results in a significantly stronger ad-
versary.) Now, the definition states simply that any adversary A will succeed
in guessing which message was encrypted with at most negligibly better than
a naive guess (which is correct with probability 1/2).

An important point to notice is that the adversary is allowed to choose the
messages m0 and m1; thus, even though it knows these plaintext messages,
and knows that c is an encryption of one of them, it still (essentially) cannot
determine which one was encrypted. This is a very strong guarantee, and
one that has great practical importance. Consider, for example, a scenario
whereby the adversary knows that the message being encrypted is either “at-

tack today” or “don’t attack.” Clearly, we do not want the adversary to know
which message was encrypted, even though it already knows that it is one of
these two possibilities. There is no limitation on the length of the messages
m0 and m1 to be encrypted, as long as they are the same. Of course, since
the adversary is restricted to run in polynomial time, m0 and m1 have length
polynomial in n.

An equivalent formulation. Definition 3.9 states that an eavesdropping
adversary cannot detect which plaintext was encrypted with advantage signif-
icantly better than taking a random guess. An equivalent way of formalizing
the definition is to state that every adversary behaves the same way when it
receives an encryption of m0 and when it receives an encryption of m1 (for any
m0, m1 of the same length). Since A outputs a single bit, “behaving the same

64 Introduction to Modern Cryptography

way” means that it outputs 1 with almost the same probability in each case.
To formalize this, define PrivKeav

A,Π(n, b) to be as above, except that the fixed
bit b is used (rather than being chosen at random). In addition, denote the
output bit b′ of A in PrivKeav

A,Π(n, b) by output(PrivKeav
A,Π(n, b)). The following

definition essentially states that A cannot determine whether it is running in
experiment PrivKeav

A,Π(n, 0) or experiment PrivKeav
A,Π(n, 1).

DEFINITION 3.10 A private-key encryption scheme Π = (Gen, Enc, Dec)
has indistinguishable encryptions in the presence of an eavesdropper if for all
probabilistic polynomial-time adversaries A there exists a negligible function
negl such that
∣∣∣Pr[output(PrivKeav

A,Π(n, 0)) = 1]− Pr[output(PrivKeav
A,Π(n, 1)) = 1]

∣∣∣ ≤ negl(n).

The fact that this definition is equivalent to Definition 3.9 is left as an exercise.

3.2.2 * Properties of the Definition

We motivated the definition of secure encryption by saying that it should
be infeasible to learn any partial information about the plaintext from the
ciphertext. However, the actual definition of indistinguishability looks very
different. As we mentioned above, Definition 3.9 is indeed equivalent to se-
mantic security that formalizes the notion that partial information cannot be
learned. The actual definition of semantic security is quite involved. Rather
than presenting it in full and proving equivalence, we will prove two claims
that demonstrate that indistinguishability implies weaker versions of seman-
tic security. We will then present the essence of the definition of semantic
security (while sweeping some details under the rug). The reader is referred
to [66, Chapter 5.2] for a full definition and a full proof of equivalence.

We begin by showing that security under indistinguishability implies that
no single bit of a randomly chosen plaintext can be guessed with probability
that is significantly better than 1/2. Below, we denote by mi the ith bit of
m. For technical reasons in what follows, we set mi = 0 if i > ‖m‖.

CLAIM 3.11 Let (Gen, Enc, Dec) be a private-key encryption scheme that
has indistinguishable encryptions in the presence of an eavesdropper. Then
for all probabilistic polynomial-time adversaries A and all i, there exists a
negligible function negl such that:

Pr
[
A(1n, Enck(m)) = mi

]
≤ 1

2
+ negl(n),

where is chosen uniformly at random and the probability is taken over the
random coins of A, the choice of m and the key k, and any random coins
used in the encryption process.

Private-Key Encryption and Pseudorandomness 65

PROOF The idea behind the proof of this claim is that if it is possible to
guess the ith bit of m given Enck(m), then it is also possible to distinguish
between encryptions of plaintext messages m0 and m1 where the ith bit of
m0 equals 0 and the ith bit of m1 equals 1. Specifically, given a ciphertext
c try to compute the ith bit of the underlying plaintext. If this computa-
tion indicates that the ith bit is 0, then guess that m0 was encrypted; if it
indicates that the ith bit is 1, then guess that m1 was encrypted. Formally,
we show that if there exists an adversary A that can guess the ith bit of m
given Enck(m) with probability at least 1/2 + ε(n) for some function ε(·),
then there exists an adversary that succeeds in the indistinguishability exper-
iment for (Gen, Enc, Dec) with probability 1/2+ε(n). By the assumption that
(Gen, Enc, Dec) has indistinguishable encryptions, ε(·) must be negligible.

That is, let A be a probabilistic polynomial-time adversary and define ε(·)
as follows:

ε(n)
def
= Pr

[
A(1n, Enck(m)) = mi

]
− 1

2
,

where m is chosen uniformly from {0, 1}n. From now on, for visual clarity, we
no longer explicitly indicate the input 1n to A. Take n ≥ i, let In

0 be the set
of all strings of length n whose ith bit is 0, and let In

1 be the set of all strings
of length n whose ith bit is 1. It follows that:

Pr
[
A(Enck(m)) = mi

]
=

1

2
· Pr [A(Enck(m0)) = 0] +

1

2
· [A(Enck(m1)) = 1] ,

where m0 is chosen uniformly from In
0 and m1 is chosen uniformly from In

1 .
(The above equality holds because In

0 and In
1 each contain exactly half the

strings of {0, 1}n. Therefore, the probability of falling in each set is ex-
actly 1/2.)

Consider now the following adversary A′ who will eavesdrop on the encryp-
tion of a single message:

Adversary A′:
1. On input 1n, choose m0 ← In

0 and m1 ← In
1 uniformly at

random from the indicated sets. Output m0, m1.

2. Upon receiving a ciphertext c, invoke A on input c. Output
b′ = 0 if A outputs 0, and b′ = 1 if A outputs 1.

Note that A′ runs in polynomial time since A does.
Using the definition of experiment PrivKeav

A′,Π(n) (for n ≥ i), note that b′ = b
if and only if A outputs b upon receiving Enck(mb). So

Pr
[
PrivKeav

A′,Π(n) = 1
]

= Pr [A(Enck(mb)) = b]

=
1

2
· [A(Enck(m0)) = 0] +

1

2
· [A(Enck(m1)) = 1]

= Pr
[
A(Enck(m)) = mi

]

=
1

2
+ ε(n).

66 Introduction to Modern Cryptography

By the assumption that (Gen, Enc, Dec) has indistinguishable encryptions in
the presence of an eavesdropper, it follows that ε(·) must be negligible. (Note
that it does not matter what happens when n < i, since we are concerned
with asymptotic behavior only.) This completes the proof.

We now proceed to show that no ppt adversary can learn any function of
the plaintext, given the ciphertext. However, this is problematic to define. In
particular, let us consider the function f(m) = mi (i.e., f computes the ith

bit). We have already shown that if m is chosen uniformly at random, then
no adversary can predict mi with probability better than 1/2 given Enck(m).
The first step towards generalizing this result is to show that mi cannot be
predicted for any distribution over the plaintext messages. However, if m is
not uniformly distributed, then it may be possible to easily compute the ith

bit of m. For example, the distribution on m may be such that the ith bit of m
is fixed, in which case the ith bit is trivial to compute. Thus, what we actually
want to say is that if an adversary receiving c = Enck(m) can compute f(m)
for some function f , then there exists an adversary that can compute f(m)
with the same probability of being correct, without being given the ciphertext
(but only given the a priori distribution on m).

In the next claim we show the above when m is chosen uniformly at ran-
domly from some set S ⊆ {0, 1}n. Thus, if the plaintext is an email message,
we can take S to be the set of English-language messages with correct email
headers. Actually, since we are considering an asymptotic setting, we will ac-
tually work with an infinite set S ⊆ {0, 1}∗. Then for security parameter n, a

plaintext message is chosen uniformly from Sn
def
= S ∩ {0, 1}n (i.e., the subset

of strings of S having length n), which is assumed to never be empty. As a
technical condition, we also need to assume that it is possible to efficiently
sample strings uniformly from Sn; that is, that there exists some probabilistic
polynomial-time algorithm that, on input 1n, outputs a uniform element of
Sn. We refer to this by saying that the set S is efficiently sampleable. We also
restrict to functions f that can be computed in polynomial time.

CLAIM 3.12 Let (Gen, Enc, Dec) be a private-key encryption scheme that
has indistinguishable encryptions in the presence of an eavesdropper. Then
for every probabilistic polynomial-time adversary A there exists a probabilistic
polynomial-time algorithm A′ such that for every polynomial-time computable
function f and every efficiently-sampleable set S, there exists a negligible func-
tion negl such that:

∣∣∣Pr [A(1n, Enck(m)) = f(m)]− Pr [A′(1n) = f(m)]
∣∣∣ ≤ negl(n),

where m is chosen uniformly at random from Sn
def
= S ∩ {0, 1}n, and the

probabilities are taken over the choice of m and the key k, and any random
coins used by A, A′, and the encryption process.

Private-Key Encryption and Pseudorandomness 67

PROOF (Sketch) We present only an informal sketch of the proof of this
claim. Assume that (Gen, Enc, Dec) has indistinguishable encryptions. This
implies that no probabilistic polynomial-time adversary A can distinguish
between Enck(m) and Enck(1n), for any m ∈ {0, 1}n. Consider now the
probability that A successfully computes f(m) given Enck(m). We claim that
A should successfully compute f(m) given Enck(1n) with almost the same
probability. Otherwise, A could be used to distinguish between Enck(m) and
Enck(1n). (The distinguisher is easily constructed: choose m ∈ Sn uniformly
at random and output m0 = m, m1 = 1n. When given a ciphertext c that is
either an encryption of m or 1n, invoke A on c, and output 0 if and only if
A outputs f(m). If A outputs f(m) with probability that is non-negligibly
different depending on whether it is given an encryption of m or an encryption
of 1n, the described distinguisher violates Definition 3.10.)

The above observation yields the following algorithm A′ that does not re-
ceive c = Enck(m), but instead receives only 1n, yet computes f(m) equally
well: A′ chooses a random key k, invokes A on c ← Enck(1n), and outputs
whatever A outputs. By the above, we have that A outputs f(m) when run
as a sub-routine by A′ with almost the same probability as when it receives
Enck(m). Thus, A′ fulfills the property required by the claim.

** Semantic security. The full definition of semantic security is consid-
erably more general than the property proven in Claim 3.12. In particular,
arbitrary distributions over plaintext messages and arbitrary “external” in-
formation about the chosen plaintext are also taken into consideration. As
above, we will denote by f the function of the plaintext that the adversary is
attempting to compute. In addition, “external” knowledge the adversary may
have regarding the plaintext is represented by a function h, and we model this
“external” information by giving the adversary h(m) in addition to an encryp-
tion of m. Finally, rather than considering a specific set S (and a uniform
distribution over subsets of S), we consider arbitrary distributions. Specif-
ically, we will consider a distribution X = (X1, X2, . . .), where, for security
parameter n, the plaintext is chosen according to distribution Xn. We require
that X be efficiently sampleable, so that there is a ppt algorithm that, on
input 1n, outputs an element chosen according to distribution Xn. We also
require that, for all n, all strings in Xn have the same length.

DEFINITION 3.13 A private-key encryption scheme (Gen, Enc, Dec) is
semantically secure in the presence of an eavesdropper if for every probabilistic
polynomial-time algorithm A there exists a probabilistic polynomial-time algo-
rithm A′ such that for every efficiently-sampleable distribution X = (X1, . . .)
and all polynomial-time computable functions f and h, there exists a negligible

68 Introduction to Modern Cryptography

function negl such that

∣∣∣Pr[A(1n, Enck(m), h(m)) = f(m)]− Pr[A′(1n, h(m)) = f(m)]
∣∣∣ ≤ negl(n),

where m is chosen according to distribution Xn, and the probabilities are taken
over the choice of m and the key k, and any random coins used by A, A′, and
the encryption process.

Notice that the algorithm A (representing the real adversary) is given the
ciphertext Enck(m) as well as the history function h(m), where this latter
function represents whatever “external” knowledge of the plaintext m the ad-
versary may have (for example, this may represent information that is leaked
about m through other means). The adversary A then attempts to guess the
value of f(m). Algorithm A′ also attempts to guess the value of f(m), but is
given only h(m). The security requirement states that A’s success in guessing
f(m), when given the ciphertext, can be essentially matched by some algo-
rithm A′ who is not given the ciphertext. Thus, the ciphertext Enck(m) does
not reveal anything new about the value of f(m).

Definition 3.13 constitutes a very strong and convincing formulation of the
security guarantees that should be provided by an encryption scheme. Ar-
guably, it is much more convincing than indistinguishability (that only con-
siders two plaintexts, and does not mention external knowledge or arbitrary
distributions). However, it is technically easier to work with the definition of
indistinguishability (e.g., for proving that a given scheme is secure). Fortu-
nately, it has been shown that the definitions are equivalent :

THEOREM 3.14 A private-key encryption scheme has indistinguishable
encryptions in the presence of an eavesdropper if and only if it is semantically
secure in the presence of an eavesdropper.

(Looking ahead, we remark that a similar equivalence is known for all the
definitions of indistinguishability that we present in this chapter.) We can
therefore use indistinguishability as our working definition, while being as-
sured that the security guarantees achieved are those of semantic security.

3.3 Pseudorandomness

Having defined what it means for an encryption scheme to be secure, the
reader may expect us to launch directly into constructions of secure encryption
schemes. However, before doing so we introduce the notion of pseudorandom-

ness. This notion plays a fundamental role in cryptography in general, and

Private-Key Encryption and Pseudorandomness 69

private-key encryption in particular. Loosely speaking, a pseudorandom string
is a string that looks like a uniformly distributed string, as long as the entity
that is “looking” runs in polynomial time. Just as indistinguishability can be
viewed as a computational relaxation of perfect secrecy, pseudorandomness is
a computational relaxation of true randomness.

An important conceptual point is that, technically speaking, no fixed string
can be said to be “pseudorandom”. (In the same way that it does not make
much sense to refer to any fixed string as “random”.) Rather, pseudoran-
domness actually refers to a distribution on strings, and when we say that a
distribution D over strings of length ` is pseudorandom this means that D is
indistinguishable from the uniform distribution over strings of length `. (Ac-
tually, since we are in an asymptotic setting pseudorandomness really refers
to a sequence of distributions, one for each value of the security parameter.
We ignore this point in our current discussion.) More precisely, it is infeasible
for any polynomial-time algorithm to tell whether it is given a string sampled
according to D or an `-bit string chosen uniformly at random.

The specific types of distributions D we will be interested in here are those
defined by choosing a short random seed s ← {0, 1}n uniformly at random
and then outputting G(s) ∈ {0, 1}`. The distribution D thus defined outputs
the string y ∈ {0, 1}` with probability exactly

∣∣ {s ∈ {0, 1}n | G(s) = y}
∣∣

2n

which will, in general, not be the uniform distribution. Actually, we will only
be interested in the case of ` > n in which case the distribution will be very
far from uniform.

Even given the above discussion, we frequently abuse notation and call a
string sampled according to the uniform distribution a “random string”, and
a string sampled according to a pseudorandom distribution D as a “pseudo-
random string”. This is only useful shorthand, and it should be noted in
particular that if y = G(s) for some s then in fact y can occur as either a
random or a pseudorandom string.

Before proceeding, we provide some intuition as to why pseudorandomness
helps in the construction of secure private-key encryption schemes. On a sim-
plistic level, if a ciphertext looks random, then it is clear that no adversary
can learn any information from it about the plaintext. To some extent, this
is the exact intuition that lies behind the perfect secrecy of the one-time pad
(see Section 2.2). In that case, the ciphertext is actually uniformly distributed
(assuming the key is unknown) and thus reveals nothing about the plaintext.
(Of course, such statements only appeal to intuition and do not constitute a
formal argument.) The one-time pad worked by computing the xor of a ran-
dom string (the key) with the plaintext. If a pseudorandom string were used
instead, this should not make any noticeable difference to a polynomial-time
observer. Thus, security should still hold for polynomial-time adversaries.

70 Introduction to Modern Cryptography

As we will see below, this idea can be implemented. The reason that it is
better to use a pseudorandom string rather than a truly random string is due
to the fact that a long pseudorandom string can be generated from a relatively
short random seed (or key). Thus, a short key can be used to encrypt a long
message, something that is impossible when perfect secrecy is required.

Pseudorandom generators. We now proceed to formally define the notion
of a pseudorandom generator. Informally, as discussed above, a distribution D
is pseudorandom if no polynomial-time distinguisher can detect if it is given a
string sampled according to D or a string chosen uniformly at random. This is
formalized by requiring that every polynomial-time algorithm outputs 1 with
almost the same probability when given a truly random string and when given
a pseudorandom one (this output bit is interpreted as the algorithm’s “guess”).
A pseudorandom generator is a deterministic algorithm that receives a short
truly random seed and stretches it into a long string that is pseudorandom.
Stated differently, a pseudorandom generator uses a small amount of true
randomness in order to generate a large amount of pseudorandomness. In the
definition that follows, we set n to be the length of the seed that is input to
the generator and `(n) to be the output length. Clearly, the generator is only
interesting if `(n) > n (otherwise, it doesn’t generate any new “randomness”).

DEFINITION 3.15 Let `(·) be a polynomial and let G be a deterministic
polynomial-time algorithm such that upon any input s ∈ {0, 1}n, algorithm G
outputs a string of length `(n). We say that G is a pseudorandom generator if
the following two conditions hold:

1. Expansion: For every n it holds that `(n) > n.

2. Pseudorandomness: For all probabilistic polynomial-time distinguishers
D, there exists a negligible function negl such that:

∣∣Pr[D(r) = 1]− Pr[D(G(s)) = 1]
∣∣ ≤ negl(n),

where r is chosen uniformly at random from {0, 1}`(n), the seed s is
chosen uniformly at random from {0, 1}n, and the probabilities are taken
over the random coins used by D and the choice of r and s.

The function `(·) is called the expansion factor of G.

Discussion. An important point to notice is that the output of a pseudoran-
dom generator is actually very far from random. In order to see this, consider
the case that `(n) = 2n and so G doubles the length of its input. The distin-
guisher D receives a string of length 2n and must decide whether this string
is truly random (i.e., uniformly distributed), or just pseudorandom. Now, the
uniform distribution over {0, 1}2n is characterized by the fact that each of
the 22n possible strings is chosen with probability exactly 2−2n. In contrast,

Private-Key Encryption and Pseudorandomness 71

consider the distribution generated by G. Since G receives an input of length
n, the number of different possible strings in its range is at most 2n. Thus,
the probability that a random string of length 2n is in the range of G is at
most 2n/22n = 2−n (just take the total number of strings in the range of G
and divide it by the number of strings of length 2n). That is, most strings of
length 2n do not occur as outputs of G.

This in particular means that it is trivial to distinguish between a random
string and a pseudorandom string given an unlimited amount of time. Con-
sider the following exponential-time D that works as follows: upon input some
string w, distinguisher D outputs 1 if and only if there exists an s ∈ {0, 1}n
such that G(s) = w. (This computation is carried out by searching all of
{0, 1}n and computing G(s) for every s ∈ {0, 1}n. This computation can be
carried out because the specification of G is known; only its random seed is
unknown.) Now, if w was generated by G, it holds that D outputs 1 with
probability 1. In contrast, if w is uniformly distributed in {0, 1}2n then the
probability that there exists an s with G(s) = w is at most 2−n, and so D
outputs 1 in this case with probability at most 2−n. Then

∣∣Pr[D(r) = 1]− Pr[D(G(s)) = 1]
∣∣ = 1− 2−n,

which is huge. This type of attack is called a brute force attack because it
just tries all possible seeds. The advantage of such an “attack” is that it is
applicable to all generators and irrespective of how they work.

The above discussion shows that the distribution generated by G is actually
very far from random. Nevertheless, the key point is that polynomial-time
distinguishers don’t have time to carry out the above procedure. Furthermore,
if G is indeed a pseudorandom generator, then it is guaranteed that there
do not exist any polynomial-time procedures that succeed in distinguishing
random and pseudorandom strings. This means that pseudorandom strings
are just as good as truly random ones, as long as the seed is kept secret and
we are considering only polynomial-time observers.

The seed and its length. The seed for a pseudorandom generator must
be chosen uniformly at random, and be kept entirely secret from the dis-
tinguisher. Another important point, and one that is clear from the above
discussion of brute-force attacks, is that s must be long enough so that no
“efficient algorithm” has time to traverse all possible seeds. Technically, this
is taken care of by the fact that all algorithms are assumed to run in polyno-
mial time and thus cannot search through all 2n possible seeds when n is large
enough. (This relies on the fact that our definitions of security are asymp-
totic.) In practice, however, the seed must be taken to be of some concrete
length. Based on the above, s must be long enough so that it is impossible to
efficiently try all possible seeds.

Existence of pseudorandom generators. The first question one should
ask is whether any entity satisfying Definition 3.15 even exists. Unfortunately,

72 Introduction to Modern Cryptography

we do not know how to unequivocally prove the existence of pseudorandom
generators. Nevertheless, we believe that pseudorandom generators exist, and
this belief is based on the fact that they can be constructed (in a provable
sense) under the rather weak assumption that one-way functions exist. This
will be discussed in greater detail in Chapter 6. For now, suffices it to say that
there are certain long-studied problems that have no known efficient algorithm
and that are widely assumed to be unsolvable in polynomial-time. An example
of such a problem is integer factorization: i.e., the problem of finding the prime
factors of a given number. What is important for our discussion here is that
one-way functions, and hence pseudorandom generators, can be constructed
under the assumption that these problems really are “hard”.

In practice, various constructions believed to act as pseudorandom genera-
tors are known. In fact, as we will see later in this chapter and in Chapter 5,
constructions exist that are believed to satisfy even stronger requirements.

3.4 Constructing Secure Encryption Schemes

3.4.1 A Secure Fixed-Length Encryption Scheme

We are now ready to construct a fixed-length encryption scheme that has
indistinguishable encryptions in the presence of an eavesdropper. The en-
cryption scheme we construct is very similar to the one-time pad encryption
scheme (see Section 2.2), except that a pseudorandom string is used as the
“pad” rather than a random string. Since a pseudorandom string “looks ran-
dom” to any polynomial-time adversary, the encryption scheme can be proven
to be computationally-secure.

The encryption scheme. Let G be a pseudorandom generator with expan-
sion factor ` (that is, |G(s)| = `(|s|)). Recall that an encryption scheme is
defined by three algorithms: a key-generation algorithm Gen, an encryption
algorithm Enc, and a decryption algorithm Dec. The scheme is described in
Construction 3.16, and is depicted graphically in Figure ??.

We now prove that the given encryption scheme has indistinguishable en-
cryptions in the presence of an eavesdropper, under the assumption that G is a
pseudorandom generator. Notice that our claim is not unconditional. Rather,
we reduce the security of the encryption scheme to the properties of G as a
pseudorandom generator. This is a very important proof technique that was
described in Section 3.1.3 and will be discussed further after the proof itself.

THEOREM 3.17 If G is a pseudorandom generator, then Construc-
tion 3.16 is a private-key encryption scheme that has indistinguishable en-
cryptions in the presence of an eavesdropper.

Private-Key Encryption and Pseudorandomness 73

CONSTRUCTION 3.16

Let G be a pseudorandom generator with expansion factor `. Define a
private-key encryption scheme for messages of length ` as follows:

• Gen: on input 1n, choose k ← {0, 1}n uniformly at random and
output it as the key.

• Enc: on input a key k ∈ {0, 1}n and a message m ∈ {0, 1}`(n),
output the ciphertext

c := G(k)⊕m.

• Dec: on input a key k ∈ {0, 1}n and a ciphertext c ∈ {0, 1}`(n),
output the plaintext message

m := G(k) ⊕ c.

A private-key encryption scheme from any pseudorandom generator.

PROOF Let Π denote Construction 3.16. We show that if there exists a
probabilistic polynomial-time adversary A for which Definition 3.9 does not
hold, then we can construct a probabilistic polynomial-time algorithm that
distinguishes the output of G from a truly random string. The intuition behind
this claim is that if Π used a truly random string in place of the pseudorandom
string G(k), then the resulting scheme would be identical to the one-time pad
encryption scheme and A would be unable to correctly guess which message
was encrypted with probability any better than 1/2. So, if Definition 3.9 does
not hold then A must (implicitly) be distinguishing the output of G from a
random string. The reduction we now show makes this explicit.

Let A be a probabilistic polynomial-time adversary, and define ε as

ε(n)
def
= Pr

[
PrivKeav

A,Π(n) = 1
]
− 1

2
. (3.2)

We use A to construct a distinguisher D for the pseudorandom generator G,
such that D “succeeds” with probability ε(n). The distinguisher is given a
string w as input, and its goal is to determine whether w was chosen uni-
formly at random (i.e., w is a “random string”) or whether w was generated
by choosing a random k and computing w := G(k) (i.e., w is a “pseudoran-
dom string”). D emulates the eavesdropping experiment for A (in a manner
described below), and observes whether A succeeds or not. If A succeeds then
D guesses that w must have been a pseudorandom string, while if A does not
succeed then D guesses that w was a random string. In detail:

Distinguisher D:
D is given as input a string w ∈ {0, 1}`(n). (We assume n can be
determined from `(n).)

1. Run A(1n) to obtain the pair of messages m0, m1 ∈ {0, 1}`(n).

74 Introduction to Modern Cryptography

2. Choose a random bit b← {0, 1}. Set c := w ⊕mb.

3. Give c to A and obtain output b′. Output 1 if b′ = b, and
output 0 otherwise.

Before analyzing the behavior of D, we define a modified encryption scheme

Π̃ = (G̃en, Ẽnc, D̃ec) that is exactly the one-time pad encryption scheme, ex-
cept that we now incorporate a security parameter that determines the length

of messages to be encrypted. That is, G̃en(1n) outputs a completely random
key k of length `(n), and the encryption of a message m ∈ `(n) using the key
k ∈ {0, 1}`(n) is the ciphertext c := k ⊕ m. (Decryption can be performed
as usual, but is inessential to what follows.) By the perfect secrecy of the
one-time pad, we have that

Pr
[
PrivKeav

A,Π̃
(n) = 1

]
=

1

2
. (3.3)

The main observations are as follows:

1. If w is chosen uniformly at random from {0, 1}`(n), then the view of A
when run as a sub-routine by D is distributed identically to the view of
A in experiment PrivKeav

A,Π̃
(n). This is because A is given a ciphertext

c = w ⊕mb where w ∈ {0, 1}`(n) is a completely random string.

2. If w is equal to G(k) for k ← {0, 1}n chosen uniformly at random, then
the view of A when run as a sub-routine by D is distributed identically
to the view of A in experiment PrivKeav

A,Π(n). This is because A is given
a ciphertext c = w ⊕ mb where w = G(k) for a uniformly-distributed
value k ← {0, 1}n.

It therefore follows that for w ← {0, 1}`(n) chosen uniformly at random,

Pr[D(w) = 1] = Pr
[
PrivKeav

A,Π̃
(n) = 1

]
=

1

2
,

where the second equality follows from Equation (3.3). In contrast, when
w = G(k) for k ← {0, 1}n chosen uniformly at random we have

Pr[D(w) = 1] = Pr[D(G(k)) = 1] = Pr
[
PrivKeav

A,Π(n) = 1
]

=
1

2
+ ε(n)

(by definition of ε). Therefore,

|Pr[D(w) = 1]− Pr[D(G(s)) = 1]| = ε(n)

where, above, w is chosen uniformly from {0, 1}`(n) and s is chosen uniformly
from {0, 1}n. Since G is a pseudorandom generator (by assumption), it must
be the case that ε is negligible. Because of the way ε was defined (see Equa-
tion (3.2)), this concludes the proof that Π has indistinguishable encryptions
in the presence of an eavesdropper.

Private-Key Encryption and Pseudorandomness 75

It is easy to get lost in the details of the proof and wonder whether anything
has been gained as compared to the one-time pad; after all, Construction 3.16
also encrypts an `-bit message by XORing it with an `-bit string! The point
of the construction, of course, is that the `-bit string G(k) can be much
longer than the key k. In particular, using the above encryption scheme it
is possible to encrypt a file that is megabytes long using only a 128-bit key.
This is in stark contrast with Theorem 2.7 that states that for any perfectly-
secret encryption scheme, the key must be at least as long as the message
being encrypted. Thus, we see that the computational approach enables us
to achieve much more than when perfect secrecy is required.

Reductions — a discussion. We do not prove unconditionally that Con-
struction 3.16 is secure. Rather, we prove that it is secure under the assump-
tion that G is a pseudorandom generator. This approach of reducing the
security of a construction to some underlying primitive is of great importance
for a number of reasons. First, as we have already noted, we do not know
how to prove the existence of an encryption scheme satisfying Definition 3.9
and such a proof seems far out of reach today. Given this, reducing the se-
curity of a higher-level construction to a lower-level primitive has a number
of advantages (this is discussed further in Section 1.4.2). One of these advan-
tages is the fact that, in general, it is easier to design a lower-level primitive
than a higher-level one; it is similarly easier, in general, to be convinced that
something satisfies a lower-level definition than a higher-level one. This does
not mean that constructing a pseudorandom generator is “easy”, only that it
might be easier than construction an encryption scheme (from scratch). (Of
course, in the present case the encryption scheme does almost nothing except
to XOR the output of a pseudorandom generator and so this isn’t really true.
However, we will see more complex constructions and in these cases the ability
to reduce the task to a simpler one is of great importance.)

3.4.2 Handling Variable-Length Messages

The construction of the previous section has the disadvantage of allowing
encryption only of fixed-length messages. (I.e., for each particular value n of
the security parameter, only messages of length `(n) can be encrypted.) This
deficiency is easy to address by using a variable output-length pseudorandom
generator (defined next) in Construction 3.16.

Variable output-length pseudorandom generators. In some applica-
tions, we do not know ahead of time how many bits of pseudorandomness will
be needed. Thus, what we actually want is a pseudorandom generator that
can output a pseudorandom string of any desired length. More specifically,
we would like G to receive two inputs: the seed s and the length of the output
` (the length of ` is given in unary for the same reason the security parameter
is given in unary); it should then output a pseudorandom string of length `.
We now present the formal definition:

76 Introduction to Modern Cryptography

DEFINITION 3.18 A deterministic polynomial-time algorithm G is a
variable output-length pseudorandom generator if the following hold:

1. Let s be a string and ` > 0 be an integer. Then G(s, 1`) outputs a string
of length `.

2. For all s, `, `′ with ` < `′, the string G(s, 1`) is a prefix of G(s, 1`′).

3. Define G`(s)
def
= G(s, 1`(|s|)). Then for every polynomial `(·) it holds

that G` is a pseudorandom generator with expansion factor `.

We remark that any standard pseudorandom generator (as in Definition 3.15)
can be converted into a variable output-length one.

Given the above definition, we now modify encryption in Construction 3.16
in the natural way: encryption of a message m using the key k is done by
computing the ciphertext c := G(k, 1|m|) ⊕ m; decryption of a ciphertext c
using the key k is done by computing the message m := G(k, 1|c|) ⊕ c. We
leave it as an exercise to prove that this scheme also has indistinguishable
encryptions in the presence of an eavesdropper.

3.4.3 Stream Ciphers and Multiple Encryptions

In the cryptographic literature, an encryption scheme of the type presented
in the previous two sections is often called a stream cipher. This is due to
the fact that encryption is carried out by first generating a stream of pseudo-
random bits, and then encrypting by XORing this stream with the plaintext.
Unfortunately, there is a bit of confusion as to whether the term “stream
cipher” refers to the algorithm that generates the stream (i.e., the pseudo-
random generator G) or to the entire encryption scheme. This is a crucial
issue because the way a pseudorandom generator is used determines whether
or not a given encryption scheme is secure. In our opinion, it is best to use
the term stream cipher to refer to the algorithm that generates the pseudoran-
dom stream, and thus a “secure” stream cipher should satisfy the definition
of a variable output-length pseudorandom generator. Using this terminology,
a stream cipher is not an encryption scheme per se, but rather a tool for con-
structing encryption schemes.6 The importance of this discussion will become
more clear when we discuss the issue of multiple encryptions, below.

Stream ciphers in practice. There are a number of practical constructions
of stream ciphers available, and these are typically extraordinarily fast. A
popular example is the stream cipher RC4 which is widely considered to be
secure when used appropriately (see below). We remark that the security

6Soon we will introduce the notion of a block cipher. In that context, it is accepted that this
term refers to the tool itself and not how it is used in order to achieve secure encryption.
We therefore prefer to use the term “stream cipher” analogously.

Private-Key Encryption and Pseudorandomness 77

of practical stream ciphers is not yet very well understood, particularly in
comparison to block ciphers (introduced later in this chapter). This is borne
out by the fact that there is no standardized, popular stream cipher that has
been used for many years and whose security has not come into question. For
example, “plain” RC4 (that was considered secure at one point and is still
widely deployed) is now known to have a number of significant weaknesses.
For one, the first few bytes of the output stream generated by RC4 have been
shown to be biased. Although this may seem benign, it was also shown that
this weakness can be used to feasibly break the WEP encryption protocol used
in 802.11 wireless networks. (WEP is a standardized protocol for protecting
wireless communications. The WEP standard has since been updated to fix
the problem.) If RC4 is to be used, the first 1024 bits or so of the output
stream should be discarded.

Linear feedback shift registers (LSFRs) have, historically, also been popular
as stream ciphers. However, they have been shown to be horribly insecure (to
the extent that the key can be completely recovered given sufficiently-many
bytes of the output) and so should never be used today.

In general, we advocate the use of block ciphers in constructing secure
encryption schemes. Block ciphers are efficient enough for all but the most
resource-constrained environments, and seem to be more “robust” than stream
ciphers. For completeness, we remark that a stream cipher can be easily
constructed from a block cipher, as described in Section 3.6.4 below. The
disadvantage of this approach as compared to a dedicated stream cipher is
that the latter is much more efficient.

Security for Multiple Encryptions

Definition 3.9, and all our discussion until now, has dealt with the case when
the adversary receives a single ciphertext. In reality, however, communicating
parties send multiple ciphertexts to each other and an eavesdropper will see
many of these. It is therefore of great importance to ensure that the encryption
scheme being used is secure even in this setting.

Let us first give a definition of security. As in the case of Definition 3.9,
we first introduce an appropriate experiment that is defined for an encryption
scheme Π, and adversary A, and a security parameter n:

The multi-message indistinguishability experiment PrivKmult
A,Π(n):

1. The adversary A is given input 1n, and outputs a pair of
vectors of messages m0, m1 such that each vector contains the
same number of messages, and for all i it holds that |mi

0| =
|mi

1|, where mi
b denotes the ith element of mb.

2. A random key k is generated by running Gen(1n), and a
random bit b ← {0, 1} is chosen. For all i, the ciphertext

78 Introduction to Modern Cryptography

ci ← Enck(mi
b) is computed and the vector of ciphertexts c is

given to A.

3. A outputs a bit b′.

4. The output of the experiment is defined to be 1 if b′ = b, and
0 otherwise.

The definition itself remains unchanged, except that it now refers to the
above experiment. That is:

DEFINITION 3.19 A private-key encryption scheme Π = (Gen, Enc, Dec)
has indistinguishable multiple encryptions in the presence of an eavesdropper if
for all probabilistic polynomial-time adversaries A there exists a negligible
function negl such that

Pr
[
PrivKmult

A,Π(n) = 1
]
≤ 1

2
+ negl(n),

where the probability is taken over the random coins used by A, as well as the
random coins used in the experiment (for choosing the key and the random bit
b, as well as for the encryption itself).

An crucial point is that security for a single encryption (as in Definition 3.9)
does not imply security under multiple encryptions.

CLAIM 3.20 There exist private-key encryption schemes that are secure
with respect to Definition 3.9 but that are not secure with respect to Defini-
tion 3.19.

PROOF We do not have to look far to find an encryption scheme fulfilling
the claim. Specifically, Construction 3.16, that was proven secure for a single
encryption in Theorem 3.17, is not secure when used for multiple encryptions.
This should not come as a surprise because we have already seen that the
one-time pad is only secure when used once, and Construction 3.16 works in
a similar way.

Concretely, consider the following adversary A attacking the encryption
scheme (in the sense defined by experiment PrivKmult): A outputs the vectors
m0 = (0n, 0n) and m1 = (0n, 1n). That is, the first vector contains two
plaintexts, where each plaintext is just a length-n string of zeroes. In contrast,
in the second vector the first plaintext is all zeroes and the second is all ones.
Now, let c = (c1, c2) be the vector of ciphertexts that A receives. If c1 = c2,
then A outputs 0; otherwise, A outputs 1.

We now analyze A’s success in guessing b. The main point is that Construc-
tion 3.16 is deterministic, so that if the same message is encrypted multiple
times then the same ciphertext results each time. Now, if b = 0 then the same

Private-Key Encryption and Pseudorandomness 79

message is encrypted each time (since m1
0 = m2

0); then c1 = c2 and hence A
always outputs 0 in this case. On the other hand, if b = 1 then a different
message is encrypted each time (since m1

1 6= m2
1) and c1 6= c2; here, A always

outputs 1. We conclude that A outputs b′ = b with probability 1 and so the
encryption scheme is not secure with respect to Definition 3.19.

Necessity of probabilistic encryption. In the proof of Claim 3.20 we
have shown that Construction 3.16 is not secure for multiple encryptions.
The only feature of that construction used in the proof was that encrypting
a message always yields the same ciphertext, and so we actually obtain that
any deterministic scheme must be insecure for multiple encryptions. This is
important enough to state as a theorem.

THEOREM 3.21 Let Π = (Gen, Enc, Dec) be an encryption scheme for
which Enc is a deterministic function of the key and the message. Then Π
does not satisfy Definition 3.19.

To construct an encryption scheme secure with respect to Definition 3.19,
then, we will have to (at a minimum) ensure that even when the same message
is encrypted multiple times, we obtain a different ciphertext each time. (At
first sight this may seem like an impossible task to achieve. However, we will
see later how to achieve this.)

Multiple encryptions using a stream cipher — a common error.
Unfortunately, incorrect implementations of cryptographic constructions are
very frequent. One common error is to use a stream cipher (in its naive form
as in Construction 3.16) in order to encrypt multiple plaintexts. For just one
example, this error appears in an implementation of encryption in Microsoft
Word and Excel; see [132]. In practice, such an error can be devastating. We
emphasize that this is not just a “theoretical artefact” due to the fact that
encrypting the same message twice yields the same message. Even if the same
message is never encrypted twice, various attacks are possible.

Secure multiple encryptions using a stream cipher. There are typically
two ways in which a stream cipher/pseudorandom generator can be used in
practice to securely encrypt multiple plaintexts:

1. Synchronized mode: In this mode, the communicating parties use a dif-
ferent part of the stream output by the stream cipher in order to encrypt
each message. This mode is “synchronized” because both parties need
to know which parts of the stream have already been used in order to
prevent re-use, which (as we have already shown) is not secure.

This mode is useful in a setting where parties are communicating in a
single session. In this setting, the first party uses the first part of the
stream in order to send its first message. The second party obtains

80 Introduction to Modern Cryptography

the ciphertext, decrypts, and then uses the next part of the stream in
order to encrypt its reply. The important point to notice here is that
since each part of the stream is used only once, it is possible to view
the concatenation of all of the messages sent by the parties as a single
(long) plaintext. Security of the scheme therefore follows immediately
from Theorem 3.17.

This mode is not suitable in all applications because the parties are
required to maintain state between encryptions (in particular, to tell
them which portion of the stream to use next). For this reason, security
of this encryption method does not contradict Theorem 3.21 (as it is
technical no longer an encryption scheme as per Definition 3.8.

2. Unsynchronized mode: In this mode, encryptions are carried out inde-
pendently of one another and the parties do not need to maintain state.
In order to achieve security, however, our notion of a pseudorandom gen-
erator must be significantly strengthened. Now, we view a pseudoran-
dom generator as taking two inputs: a seed s and an initial vector IV of
length n. The requirement, roughly speaking, is that G(s, IV) is pseudo-
random even when IV is known (but s is kept secret). Furthermore, for
two randomly-chosen initial vectors IV1 and IV2, the streams G(s, IV1)
and G(s, IV2) are pseudorandom even when viewed together and with
their respective IV s. We stress that the same seed s is used each time.
The above could be formalized in a similar way to Definition 3.15, by re-
quiring that no polynomial-time distinguisher D can tell the difference
between (IV1, G(s, IV1), IV2, G(s, IV2)) and (IV1, r1, IV2, r2) where r1

and r2 are independently-chosen, uniformly-distributed strings of the
appropriate length.

Given a generator as above, encryption can be defined as

Enck(m) := 〈IV, G(k, IV)⊕m〉

where IV is chosen at random. (For simplicity, we focus on encrypting
fixed-length messages.) The IV is chosen fresh (i.e., uniformly at ran-
dom) for each encryption and thus each stream is pseudorandom, even
if previous streams are known. Note that the IV is sent as part of the
plaintext in order to enable the recipient to decrypt; i.e., given (IV, c),
the recipient can compute m := c⊕G(k, IV).

Many stream ciphers in practice are assumed to have the augmented
pseudorandomness property sketched informally above and can thus be
used in unsynchronized mode. However, we warn that a standard pseu-
dorandom generator may not have this property, and that this assump-
tion is a strong one (in fact, such a generator is almost a pseudorandom
function; see Section 3.6.1).

These two modes are depicted in Figure 3.1.

Private-Key Encryption and Pseudorandomness 81

FIGURE 3.1: Synchronized mode versus unsynchronized mode

3.5 Security under Chosen-Plaintext Attacks (CPA)

Until now we have considered a relatively weak adversary who only pas-
sively eavesdrops on the communication between two honest parties. (Of
course, our actual definition of PrivKeav allows the adversary to choose the
plaintexts that are to be encrypted. Nevertheless, beyond this capability the
adversary is completely passive.) In this section, we formally introduce a more
powerful type of adversarial attack, called a chosen-plaintext attack (CPA). As
compared to Definition 3.9, the definition of a break remains the same but
the adversary’s capabilities are strengthened.

The basic idea behind a chosen-plaintext attack is that the adversary A is
allowed to ask for encryptions of multiple messages that it chooses “on-the-
fly” in an adaptive manner. This is formalized by allowing A to interact freely
with an encryption oracle, viewed as a “black-box” that encrypts messages of
A’s choice (these encryptions are computed using the secret key k unknown
to A). Following standard notation in computer science, we denote by AO(·)

the computation of A given access to an oracle O, and thus in this case we
denote the computation of A with access to an encryption oracle by AEnck(·).
When A queries its oracle by providing it with a plaintext message m as
input, the oracle returns a ciphertext c← Enck(m) as the reply. When Enc is
randomized, the oracle uses fresh random coins each time it answers a query.

The definition of security requires that A should not be able to distinguish
the encryption of two arbitrary messages, even when A is given access to
an encryption oracle. We present the definition and afterwards discuss what
real-world adversarial attacks the definition is meant to model.

82 Introduction to Modern Cryptography

We first define an experiment for any private-key encryption scheme Π =
(Gen, Enc, Dec), any adversary A, and any value n for the security parameter:

The CPA indistinguishability experiment PrivK
cpa
A,Π(n):

1. A random key k is generated by running Gen(1n).

2. The adversary A is given input 1n and oracle access to Enck(·),
and outputs a pair of messages m0, m1 of the same length.

3. A random bit b ← {0, 1} is chosen, and then a ciphertext
c ← Enck(mb) is computed and given to A. We call c the
challenge ciphertext.

4. The adversary A continues to have oracle access to Enck(·),
and outputs a bit b′.

5. The output of the experiment is defined to be 1 if b′ = b,
and 0 otherwise. (In case PrivK

cpa
A,Π(n) = 1, we say that A

succeeded.)

DEFINITION 3.22 A private-key encryption scheme Π = (Gen, Enc, Dec)
has indistinguishable encryptions under a chosen-plaintext attack (or is CPA-

secure) if for all probabilistic polynomial-time adversaries A there exists a
negligible function negl such that

Pr
[
PrivK

cpa
A,Π(n) = 1

]
≤ 1

2
+ negl(n),

where the probability is taken over the random coins used by A, as well as the
random coins used in the experiment.

Before proceeding to discuss the definition, we remark that any scheme
that is secure under chosen-plaintext attacks is clearly secure in the presence
of an eavesdropping adversary. This holds because PrivKeav is a special case
of PrivKcpa where the adversary doesn’t use its oracle at all.

At first sight, it may appear that Definition 3.22 is impossible to achieve.
In particular, consider an adversary that outputs (m0, m1) and then receives
c← Enck(mb). Since the adversary has oracle access to Enck(·), it can request
that this oracle encrypt the messages m0 and m1 and A can thus obtain
c0 ← Enck(m0) and c1 ← Enck(m1). It can then compare c0 and c1 to its
“challenge ciphertext” c; if c = c0 then it knows that b = 0, and if c = c1 then
it knows that b = 1. Why doesn’t this strategy allow A to determine b with
probability 1?

The answer is that indeed, as with security under multiple encryptions,
no deterministic encryption scheme can be secure against chosen-plaintext
attacks. Rather, any CPA-secure encryption scheme must be probabilistic.

Private-Key Encryption and Pseudorandomness 83

That is, it must use random coins as part of the encryption process in order
to ensure that two encryptions of the same message are different.7

Chosen-plaintext attacks in the real world. Definition 3.22 is at least
as strong as our earlier Definition 3.9, and so certainly no security is lost
by working with this newer definition. In general, however, there may be
a price for using a definition that is too strong if it causes us to use less
efficient schemes or to reject highly-efficient schemes that would suffice for
“real-world applications”. We should therefore ask ourselves whether chosen-
plaintext attacks represent a realistic adversarial threat that we should be
worried about.

In fact, chosen-plaintext attacks (in one form or another) are a realistic
threat in many scenarios. We demonstrate this by first looking at some mil-
itary history from World War II. In May 1942, US Navy cryptanalysts had
discovered that Japan was planning an attack on Midway island in the Cen-
tral Pacific. They had learned this by intercepting a communication message
containing the ciphertext fragment “AF” that they believed corresponded to
the plaintext “Midway island”. Unfortunately, their attempts to convince
Washington planners that this was indeed the case were futile; the general
belief was that Midway could not possibly be the target. The Navy crypt-
analysts then devised the following plan. They instructed the US forces at
Midway to send a plaintext message that their freshwater supplies were low.
The Japanese intercepted this message and immediately reported to their su-
periors that “AF” was low on water. The Navy cryptanalysts now had their
proof that “AF” was indeed Midway, and the US forces dispatched three air-
craft carriers to the location. The result is that Midway was saved, and the
Japanese incurred great losses. It is even said that this battle was the turning
point in the war by the US against Japan in the Pacific. (See [87, 131] for
more information.)

Coming back to the relevance of this for us here, note that the Navy crypt-
analysts here carried out exactly a chosen-plaintext attack. They essentially
were able to “request” (albeit in a roundabout way) the Japanese to encrypt
the word “Midway” in order to learn information about another ciphertext
that they had previously intercepted. If the Japanese encryption scheme had
been secure against chosen-plaintext attacks, this strategy by the US crypt-
analysts would not have worked (and history may have turned out very differ-
ently!). We stress that the Japanese never intended to act as an “encryption
oracle” for the US and thus were they to analyze the necessity for CPA se-
curity, it is unlikely that they would have concluded that it was necessary.8

7As we have seen, if the encryption process maintains state between successive encryptions
(as in the synchronized mode for stream ciphers), random coin tosses may not be necessary.
As per Definition 3.8, we typically consider only stateless schemes (which are preferable).
8It is a worthwhile mental exercise to think whether you would have anticipated such an
attack.

84 Introduction to Modern Cryptography

We therefore strongly encourage always using encryption that is secure under
chosen plaintext attacks.

We warn against thinking that chosen-plaintext attacks are only relevant
to military applications. In fact there are many cases when an adversary can
influence what is encrypted by an honest party (even if it is more unusual for
the adversary to be in complete control over what is encrypted). Consider
the following example: many servers communicate with each other today in a
secured way (i.e., using encryption). However, the messages that these servers
send to each other are based on internal and external requests that they re-
ceive, which are in turn chosen by users that may actually be attackers. These
attackers can therefore influence the plaintext messages that the servers en-
crypt, sometimes to a great extent. Such systems must therefore be protected
by using an encryption scheme that is secure against chosen-plaintext attacks.

CPA security for multiple encryptions. The extension of Definition 3.22
to the case of multiple encryptions is straightforward and is the same as the
extension of Definition 3.9 to Definition 3.19. That is, we define an experiment
which is exactly the same as PrivKcpa except that A outputs a pair of vectors
of plaintexts. Then, we require that no polynomial-time A can succeed in the
experiment with probability that is non-negligibly greater than 1/2.

Importantly, CPA security for a single encryption automatically implies
CPA security for multiple encryptions. (This stands in contrast to the case
of eavesdropping adversaries; see Claim 3.20.) We state the claim here with-
out proof (a similar claim, but in the public-key setting, is proved in Sec-
tion 10.2.2):

CLAIM 3.23 Any private-key encryption scheme that has indistinguishable
encryptions under a chosen-plaintext attack also has indistinguishable multiple

encryptions under a chosen-plaintext attack.

This is a significant technical advantage of the definition of CPA security,
since it suffices to prove that a scheme is secure for a single encryption and
we then obtain “for free” that it is secure for multiple encryptions as well.

Fixed-length vs. arbitrary-length messages. Another advantage of work-
ing with the definition of CPA-security is that it allows us to treat fixed-
length encryption schemes without much loss of generality. In particular,
we claim that given any CPA-secure fixed-length encryption scheme Π =
(Gen, Enc, Dec) it is possible to construct a CPA-secure encryption scheme
Π′ = (Gen′, Enc′, Dec′) for arbitrary-length messages quite easily. For sim-
plicity, say Π has length parameter 1 so that it only encrypts messages that
are 1-bit long (though everything we say extends in the natural way for any
length parameter). Leave Gen′ the same as Gen. Define Enc′k for any message
m (having some arbitrary length `) in the following way:

Enc′k(m) = Enck(m1), . . . , Enck(m`),

Private-Key Encryption and Pseudorandomness 85

where m = m1 · · ·m` and mi ∈ {0, 1} for all i. Decryption is done in the
natural way. We claim that Π′ is CPA-secure if and only if Π is. A proof is
left as an easy exercise for the reader.

Notwithstanding the above, there may in practice be more efficient ways
to encrypt messages of arbitrary length than by adapting a fixed-length en-
cryption scheme in the above manner. We treat other ways of encrypting
arbitrary-length messages in Section 3.6.4.

3.6 Constructing CPA-Secure Encryption Schemes

In this section we will construct encryption schemes that are secure against
chosen-plaintext attacks. We begin by introducing the important notion of
pseudorandom functions.

3.6.1 Pseudorandom Functions

As we have seen, pseudorandom generators can be used to obtain security in
the presence of eavesdropping adversaries. The notion of pseudorandomness is
also instrumental in obtaining security against chosen-plaintext attacks. Now,
however, instead of considering pseudorandom strings, we consider pseudoran-
dom functions. We will specifically be interested in pseudorandom functions
mapping n-bit strings to n-bit strings. As in our earlier discussion of pseu-
dorandomness, it does not make much sense to say that any fixed function
f : {0, 1}n → {0, 1}n is pseudorandom (in the same way that it makes little
sense to say that any fixed function is random). Thus, we must technically
refer to the pseudorandomness of a distribution on functions. An easy way to
do this is to consider keyed functions, defined next.

A keyed function F is a two-input function F : {0, 1}∗ × {0, 1}∗ → {0, 1}∗,
where the first input is called the key and denoted k, and the second input is
just called the input. In general the key k will be chosen and then fixed, and
we will then be interested in the (single-input) function Fk : {0, 1}∗ → {0, 1}∗
defined by Fk(x)

def
= F (k, x). For simplicity, we will assume that F is length-

preserving so that the key, input, and output lengths of F are all the same; i.e.,
we assume that the function F is only defined when the key k and the input
x have the same length, in which case |Fk(x)| = |x| = |k|. So, by fixing a key
k ∈ {0, 1}n we obtain a function Fk(·) mapping n-bit strings to n-bit strings.
We say F is efficient if there is a deterministic polynomial-time algorithm
that computes F (k, x) given k and x as input. We will only be interested in
function F that are efficient.

A keyed function F induces a natural distribution on functions given by
choosing a random key k ← {0, 1}n and then considering the resulting single-

86 Introduction to Modern Cryptography

input function Fk . Intuitively, we call F pseudorandom if the function Fk

(for randomly-chosen key k) is indistinguishable from a function chosen uni-
formly at random from the set of all functions having the same domain and
range; that is, if no polynomial-time adversary can distinguish whether it is
interacting — in a sense we will more carefully define soon — with Fk (for
randomly-chosen key k) or f (where f is chosen at random from the set of all
functions mapping n-bit strings to n-bit strings).

Since the notion of choosing a function at random is less familiar than the
notion of choosing a string at random, it is worth spending a bit more time on
this idea. From a mathematical point of view, we can consider the set Funcn

of all functions mapping n-bit strings to n-bit strings; this set is finite (as we
will see in a moment), and so randomly selecting a function mapping n-bit
strings to n-bit strings corresponds exactly to choosing an element uniformly
at random from this set. How large is the set Funcn? A function f is exactly
specified by its value on each point in its domain; in fact, we can view any
function (over a finite domain) as a large look-up table that stores f(x) in
the row of the table labeled by x. For fn ∈ Funcn, the look-up table for fn

has 2n rows (one for each point of the domain {0, 1}n) and each row contains
an n-bit string (since the range of fn is {0, 1}n). Any such table can thus be
represented using exactly n · 2n bits. Moreover, the functions in Funcn are
in one-to-one correspondence with look-up tables of this form; meaning that
they are in one-to-one correspondence with all strings of length n · 2n. We
conclude that the size of Funcn is 2n·2n

.
Viewing a function as a look-up table provides another useful way to think

about selecting a function fn ∈ Funcn uniformly at random. Indeed, this is
exactly equivalent to choosing each row of the look-up table of fn uniformly
at random. That is, the values fn(x) and fn(y) (for x 6= y) are completely
independent and uniformly distributed.

Coming back to our discussion of pseudorandom functions, recall that we
wish to construct a keyed function F such that Fk (for k ← {0, 1}n chosen
uniformly at randomly) is indistinguishable from fn (for fn ← Funcn chosen
uniformly at random). Note that the former is chosen from a distribution over
(at most) 2n distinct functions, whereas the latter is chosen from a distribu-
tion over all 2n·2n

functions in Funcn. Despite this, the “behavior” of these
functions must look the same to any polynomial-time distinguisher.

A first attempt at formalizing the notion of a pseudorandom function would
be to proceed in the same way as in Definition 3.15. That is, we could re-
quire that every polynomial-time distinguisher D that receives a description
of the pseudorandom function Fk outputs 1 with “almost” the same proba-
bility as when it receives a description of a random function fn. However,
this definition is inappropriate since the description of a random function has
exponential length (i.e., given by its look-up table which has length n · 2n),
while D is limited to running in polynomial time. So, D would not even have
sufficient time to examine its entire input.

The actual definition therefore gives D oracle access to the function in

Private-Key Encryption and Pseudorandomness 87

question (either Fk or fn); D is allowed to query the oracle at any point x, in
response to which the oracle returns the value of the function evaluated at x.
We treat this oracle as a black-box in the same way as when we provided the
adversary with oracle access to the encryption procedure in the definition of a
chosen-plaintext attack. (Although here the oracle is computing a determin-
istic function, and so always returns the same result when queried twice on
the same input.) We are now ready to present the formal definition.

DEFINITION 3.24 Let F : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ be an efficient,
length-preserving, keyed function. We say F is a pseudorandom function if
for all probabilistic polynomial-time distinguishers D, there exists a negligible
function negl such that:

∣∣∣Pr[DFk(·)(1n) = 1]− Pr[Dfn(·)(1n) = 1]
∣∣∣ ≤ negl(n),

where k ← {0, 1}n is chosen uniformly at random and fn is chosen uniformly
at random from the set of functions mapping n-bit strings to n-bit strings.

Notice that D interacts freely with its oracle. Thus, it can ask queries
adaptively, choosing the next input based on the previous outputs received.
However, since D runs in polynomial time, it can only ask a polynomial
number of queries. Notice also that a pseudorandom function must inherit
any efficiently checkable property of a random function. For example, even if
x and x′ differ in only a single bit, the outputs Fk(x) and Fk(x′) must (with
overwhelming probability over choice of k) look completely uncorrelated. This
gives a hint as to why pseudorandom functions are useful for constructing
secure encryption schemes.

An important point in the definition is that the distinguisher D is not
given the key k. It is meaningless to require that Fk be pseudorandom if k
is known, since it is trivial to distinguish an oracle for Fk from an oracle for
fn given k: simply query the oracle at the point 0n to obtain the answer y,
and compare this to the result y′ = Fk(0n) that can be computed using the
known value k. An oracle for Fk will always return y = y′, while an oracle for
a random function will have y = y′ with probability only 2−n. In practice,
this means that once k is revealed then all claims to the pseudorandomness
of Fk no longer hold. To take a concrete (though made-up) example: say F
is pseudorandom. Then given oracle access to Fk (for random k), it will be
hard to find an input x for which Fk(x) = 0n (since it would be hard to find
such an input for a truly random function fn). But if k is known then finding
such an input may be easy.

On the existence of pseudorandom functions. As with pseudorandom
generators, it is important to ask whether such entities exist (and under what
assumptions). For now we just note that there exist efficient primitives called
block ciphers that are believed to act as pseudorandom functions. From a

88 Introduction to Modern Cryptography

theoretical point of view, pseudorandom functions exist if and only if pseu-
dorandom generators exist, and so pseudorandom functions can in fact be
constructed based on any of the hard problems from which pseudorandom
generators can be constructed. We will discuss these issues further in Chap-
ters 5 and 6. We remark that the existence of pseudorandom functions is very
surprising, and the fact that these can be constructed based on hard problems
of a certain type represents one of the truly amazing contributions of modern
cryptography.

Using pseudorandom functions in cryptography. Pseudorandom func-
tions turn out to be a very useful building block for a number of different
cryptographic constructions. We use them below to obtain CPA-secure en-
cryption and in Chapter 4 to construct message authentication codes. One
of the reasons that they are so useful is that they enable a clean and elegant
analysis of the constructions that use them. That is, given a scheme that is
based on a pseudorandom function, a general way of analyzing the scheme is
to first prove its security under the assumption that a truly random function
is used instead. This step relies on a probabilistic analysis and has nothing to
do with computational bounds or hardness. Next, the security of the original
scheme is derived by proving that if an adversary can break the scheme when
a pseudorandom function is used, then it must implicitly be distinguishing
the function from random.

3.6.2 CPA-Secure Encryption Schemes from Pseudorandom
Functions

We focus here on constructing a fixed-length encryption scheme that is
CPA-secure. By what we have said at the end of Section 3.5, this implies the
existence of a CPA-secure encryption scheme for arbitrary-length messages.
In Section 3.6.4 we will consider more efficient ways of handling messages of
arbitrary length.

A naive attempt at constructing a secure encryption scheme from a pseudo-
random function is to define Enck(m) = Fk(m). On the one hand, we expect
that this “reveals no information about m” (since fn(m) for a random func-
tion fn is simply a random n-bit string). However, performing encryption in
this way gives a deterministic encryption scheme and so it cannot be CPA-
secure. Concretely, given c = Enck(mb) it is possible to request an encryption
of Enck(m0) and Enck(m1); since Enck(·) = Fk(·) is a deterministic function,
one of the encryptions will equal c and thus reveal the value of b.

Our actual construction is probabilistic. Specifically, we encrypt by apply-
ing the pseudorandom function to a random value r (rather than the plaintext
message) and XORing the result with the plaintext. (See Construction 3.25
and Figure ??.) This can again be viewed as an instance of XORing a pseu-
dorandom “pad” with a plaintext message, with the major difference being
the fact that an independent pseudorandom string is used each time (since

Private-Key Encryption and Pseudorandomness 89

the pseudorandom function is applied to a different input each time). Actu-
ally, this is not quite true since it is possible that a random value used for
encryption repeats and is used more than once; we will have to explicitly take
this into account in our proof.

CONSTRUCTION 3.25

Let F be a pseudorandom function. Define a private-key encryption
scheme for messages of length n as follows:

• Gen: on input 1n, choose k ← {0, 1}n uniformly at random and
output it as the key.

• Enc: on input a key k ∈ {0, 1}n and a message m ∈ {0, 1}n, choose
r← {0, 1}n uniformly at random and output the ciphertext

c := 〈r, Fk(r)⊕m〉.

• Dec: on input a key k ∈ {0, 1}n and a ciphertext c = 〈r, s〉, output
the plaintext message

m := Fk(r)⊕ s.

A CPA-secure encryption scheme from any pseudorandom function.

Intuitively, security holds because Fk(r) looks completely random to an
adversary who observes a ciphertext 〈r, s〉 — and thus the encryption scheme
is similar to the one-time pad — as long as the value r was not used in some
previous encryption (specifically, as long as it was not used by the encryption
oracle when answering one of the adversary’s queries). Moreover, this “bad
event” (namely, a repeating value of r) occurs with only negligible probability.

THEOREM 3.26 If F is a pseudorandom function, then Construction 3.25
is a fixed-length private-key encryption scheme with length parameter `(n) = n
that has indistinguishable encryptions under a chosen-plaintext attack.

PROOF The proof here follows a general paradigm for working with pseu-
dorandom functions. First, we analyze the security of the scheme in an ideal-
ized world where a truly random function fn is used in place of Fk, and show
that the scheme is secure in this case. Next, we claim that if the scheme were
insecure when Fk was used then this would imply the possibility of distin-
guishing Fk from a truly random function.

Let Π̃ = (G̃en, Ẽnc, D̃ec) be an encryption scheme that is exactly the same
as Π = (Gen, Enc, Dec) in Construction 3.25, except that a truly random

function fn is used in place of Fk . That is, G̃en(1n) chooses a random function

90 Introduction to Modern Cryptography

fn ← Funcn, and Ẽnc encrypts just like Enc except that fn is used instead
of Fk . (This is not a legal encryption scheme because it is not efficient.
Nevertheless, this is a mental experiment for the sake of the proof, and is well
defined for this purpose.) We claim that for every adversary A that makes at
most q(n) queries to its encryption oracle, we have

Pr
[
PrivK

cpa

A,Π̃
(n) = 1

]
≤ 1

2
+

q(n)

2n
. (3.4)

(Note that we make no assumptions here regarding the computational power
of A.) To see this, recall that every time a message m is encrypted (ei-
ther by the encryption oracle or when the challenge ciphertext in experiment
PrivK

cpa

A,Π̃
(n) is computed), a random r ∈ {0, 1}n is chosen and the cipher-

text is set equal to 〈r, fn(r) ⊕m〉. Let rc denote the random string used
when generating the challenge ciphertext c = 〈rc, fn(rc)⊕mb〉. There are
two subcases:

1. The value rc is used by the encryption oracle to answer at least one
of A’s queries: In this case, A may easily determine which of its mes-
sages was encrypted. This is so because whenever the encryption oracle
returns a ciphertext 〈r, s〉 in response to a request to encrypt the mes-
sage m, the adversary learns the value of fn(r) (since fn(r) = s⊕m).

However, since A makes at most q(n) queries to its oracle and each
oracle query is answered using a value r chosen uniformly at random,
the probability of this event is at most q(n)/2n.

2. The value rc is never used by the encryption oracle to answer any of A’s
queries: In this case, A learns nothing about the value of fn(rc) from
its interaction with the encryption oracle (since fn is a truly random
function). That means that, as far as A is concerned, the value fn(rc)
that is XORed with mb is chosen uniformly at random, and so the
probability that A outputs b′ = b in this case is exactly 1/2 (as in the
case of the one-time pad.)

Let Repeat denote the event that rc is used by the encryption oracle to
answer at least one of A’s queries. We have

Pr[PrivK
cpa

A,Π̃
(n) = 1] = Pr[PrivK

cpa

A,Π̃
(n) = 1 ∧ Repeat]

+ Pr[PrivK
cpa

A,Π̃
(n) = 1 ∧ Repeat]

≤ Pr[Repeat] + Pr[PrivK
cpa

A,Π̃
(n) = 1 | Repeat]

≤ q(n)

2n
+

1

2
,

as stated in Equation (3.4).

Private-Key Encryption and Pseudorandomness 91

Now, fix some ppt adversary A and define the function ε by

ε(n)
def
= Pr

[
PrivK

cpa
A,Π(n) = 1

]
− 1

2
. (3.5)

The number of oracle queries made by A is upper bounded by its running-
time. Since A runs in polynomial-time, the number of oracle queries it makes
is upper bounded by some polynomial q(·). Note that Equation (3.4) also
holds with respect to this A. Thus, at this point, we have the following:

Pr[PrivK
cpa

A,Π̃
(n) = 1] ≤ 1

2
+

q(n)

2n

and

Pr[PrivK
cpa
A,Π(n) = 1] =

1

2
+ ε(n).

If ε is not negligible, then the difference between these is not negligible, ei-
ther. Intuitively, such a “gap” (if present) would enable us to distinguish the
pseudorandom function from a truly random function. Formally, we prove
this via reduction.

We use A to construct a distinguisher D for the pseudorandom function F .
The distinguisher D is given oracle access to some function, and its goal is
to determine whether this function is “pseudorandom” (i.e., equal to Fk for
randomly-chosen k ← {0, 1}n) or “random” (i.e., equal to fn for randomly-
chosen fn ← Funcn). To do this, D emulates the CPA indistinguishability
experiment for A (in a manner described below), and observes whether A
succeeds or not. If A succeeds then D guesses that its oracle must be a
pseudorandom function, while if A does not succeed then D guesses that its
oracle must be a random function. In detail:

Distinguisher D:
D is given as input 1n and has access to an oracle O.

1. Run A(1n). Whenever A queries its encryption oracle on a
message m, answer this query in the following way:

(a) Choose r ← {0, 1}n uniformly at random.

(b) Query O(r) and obtain response s′.

(c) Return the ciphertext 〈r, s′ ⊕m〉 to A.

2. When A outputs messages m0, m1 ∈ {0, 1}n, choose a ran-
dom bit b← {0, 1} and then:

(a) Choose r ← {0, 1}n uniformly at random.

(b) Query O(r) and obtain response s′.

(c) Return the challenge ciphertext 〈r, s′ ⊕mb〉 to A.

3. Continue answering any encryption oracle queries of A as
before. Eventually, A outputs a bit b′. Output 1 if b′ = b,
and output 0 otherwise.

92 Introduction to Modern Cryptography

The key points are as follows:

1. If D’s oracle is a pseudorandom function, then the view of A when
run as a sub-routine by D is distributed identically to the view of A
in experiment PrivK

cpa
A,Π(n). This holds because a key k is chosen at

random and then every encryption is carried out by choosing a random
r, computing s′ = Fk(r), and setting the ciphertext equal to 〈r, s′ ⊕m〉,
exactly as in Construction 3.25. Thus,

Pr
[
DFk(·)(1n) = 1

]
= Pr

[
PrivK

cpa
A,Π(n) = 1

]
,

where k ← {0, 1}n is chosen uniformly at random in the above.

2. If D’s oracle is a random function, then the view of A when run as a sub-
routine by D is distributed identically to the view of A in experiment
PrivK

cpa

A,Π̃
(n). This can be seen exactly as above, with the only difference

being that a random function fn is used instead of Fk. Thus,

Pr
[
Dfn(·)(1n) = 1

]
= Pr

[
PrivK

cpa

A,Π̃
(n) = 1

]
,

where fn ← Funcn is chosen uniformly at random in the above.

Since F is a pseudorandom function and D runs in probabilistic polynomial
time, there exists a negligible function negl such that

∣∣∣Pr
[
DFk(·)(1n) = 1

]
− Pr

[
Dfn(·)(1n) = 1

]∣∣∣ ≤ negl(n).

Combining this with the above observations and Equations (3.4) and (3.5),
we have that

negl(n) ≥
∣∣∣Pr
[
DFk(·)(1n) = 1

]
− Pr

[
Dfn(·)(1n) = 1

]∣∣∣

=
∣∣∣Pr
[
PrivK

cpa
A,Π(n) = 1

]
− Pr

[
PrivK

cpa

A,Π̃
(n) = 1

]∣∣∣

≥ Pr
[
PrivK

cpa
A,Π(n) = 1

]
− Pr

[
PrivK

cpa

A,Π̃
(n) = 1

]

≥ 1

2
+ ε(n)− 1

2
− q(n)

2n

= ε(n)− q(n)

2n
,

from which we see that ε(n) ≤ negl(n) + q(n)/2n. Since q is polynomial this
means that ε is negligible, completing the proof.

As discussed in Section 3.5, any CPA-secure fixed-length encryption scheme
automatically yields a CPA-secure encryption scheme for messages of arbitrary
length. Applying the approach discussed there to the fixed-length scheme we

Private-Key Encryption and Pseudorandomness 93

have just constructed, the encryption of a message m = m1, . . . , m`, where
each mi is an n-bit block, is given by

〈r1, Fk(r1)⊕m1, r2, Fk(r2)⊕m2, . . . , r`, Fk(r`)⊕m`〉.

The scheme can handle messages whose length is not an exact multiple of n
by truncation; we omit the details. We have:

COROLLARY 3.27 If F is a pseudorandom function, the scheme sketched
above is a private-key encryption scheme for arbitrary-length messages that
has indistinguishable encryptions under a chosen-plaintext attack.

Efficiency of Construction 3.25. The CPA-secure encryption scheme in
Construction 3.25, and its extension to arbitrary-length messages in the corol-
lary above, has the drawback that the length of the ciphertext is (at least)
double the length of the plaintext. This is because each block of size n is
encrypted using an n-bit random string which must be included as part of the
ciphertext. In Section 3.6.4 we will show how long plaintexts can be encrypted
more efficiently.

3.6.3 Pseudorandom Permutations and Block Ciphers

Let F : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ be an efficient, length-preserving, keyed
function. We call F a keyed permutation if for every k, the function Fk(·) is
one-to-one (and therefore, since F is length-preserving, a bijection). We say a
keyed permutation is efficient if there is a polynomial-time algorithm comput-
ing Fk(x) given k and x, as well as a polynomial-time algorithm computing
F−1

k (x) given k and x.

We define what it means for a keyed permutation F to be pseudorandom
in a manner analogous to Definition 3.24 but with two differences. First, we
require that Fk (for a randomly-chosen k) be indistinguishable from a ran-
dom permutation rather than a random function. This is merely an aesthetic
choice since random permutations and random functions are anyway indis-
tinguishable using polynomially-many queries. The second difference is more
significant, and is motivated by the fact that cryptographic schemes using a
keyed permutation may utilize the inverse F−1

k in addition to Fk. Thus, we
require Fk to be indistinguishable from a random permutation even if the dis-
tinguisher is given oracle access to the inverse of the permutation.9 Formally:

9In some other works, a pseudorandom permutation is defined by considering a distin-
guisher that is only given access to the permutation (and not its inverse) as in the case of
Definition 3.24, and the stronger variant we define in Definition 3.28 is called a strong or
super pseudorandom permutation.

94 Introduction to Modern Cryptography

DEFINITION 3.28 Let F : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ be an efficient,
keyed permutation. We say F is a pseudorandom permutation if for all prob-
abilistic polynomial-time distinguishers D, there exists a negligible function
negl such that:

∣∣∣Pr[DFk(·),F−1
k (·)(1n) = 1]− Pr[Dfn(·),f−1

n (·)(1n) = 1]
∣∣∣ ≤ negl(n),

where k ← {0, 1}n is chosen uniformly at random and fn is chosen uniformly
at random from the set of permutations on n-bit strings.

A pseudorandom permutation can be used in place of a pseudorandom
function in any cryptographic construction. This is due to the fact that to
any polynomial-time observer, a pseudorandom permutation cannot be dis-
tinguished from a pseudorandom function. Intuitively this is due to the fact
that a random function fn looks identical to a random permutation unless a
distinct pair of values x and y are found for which fn(x) = fn(y) (since in
such a case the function cannot be a permutation). The probability of finding
such points x, y using a polynomial number of queries is, however, low. We
leave a proof of the following for an exercise:

PROPOSITION 3.29 If F is a pseudorandom permutation then it is also
a pseudorandom function.

We noted earlier that a stream cipher can be modeled as a pseudorandom
generator. The analogue for the case of pseudorandom permutations is a block
cipher. Unfortunately, it is often not stated that a block cipher is actually as-
sumed to be a pseudorandom permutation. Explicitly modeling block ciphers
as pseudorandom permutations enables us to formally analyze many practical
constructions that rely on block ciphers. These constructions include encryp-
tion schemes (as studied here), message authentication codes (to be studied
in Chapter 4), authentication protocols, and more.

We stress that, as with stream ciphers, block ciphers themselves are not
secure encryption schemes. Rather, they are building blocks or tools that
can be used to construct secure encryption schemes. For example, using a
block cipher in Construction 3.25 yields a CPA-secure private-key encryption
scheme. In contrast, an encryption scheme that works by just computing
c = Fk(m) where Fk is a pseudorandom permutation (block cipher) yields a
scheme that is not CPA secure as we have already mentioned earlier.

We will study constructions of block ciphers in Chapter 5. We remark that
the convention that we have taken here that the lengths of the key, input,
and output are all the same does not necessarily hold for constructions in
practice. Rather, the input and output lengths — typically called the block
size — are the same (which must be the case since it is a permutation), but
the key length can be smaller or larger than the block size, depending on the
construction.

Private-Key Encryption and Pseudorandomness 95

3.6.4 Modes of Operation

A mode of operation is essentially a way of encrypting arbitrary-length
messages using a block cipher (i.e., pseudorandom permutation). In Corol-
lary 3.27 we have already seen one example of a mode of encryption, albeit
one that is not very efficient in terms of the length of the ciphertext. In
this section, we will see a number of modes of encryption having improved
ciphertext expansion (defined to be the difference between the length of the
ciphertext and the length of the message).

Note that arbitrary-length messages can be unambiguously padded to a
total length that is a multiple of any desired block size by appending a 1
followed by sufficiently-many 0s (and adding a block in case the length of the
message is already a multiple of the block size). For most of the constructions
in this section, we will therefore just assume that the length of the plaintext
message is exactly a multiple of the block size. Throughout this section, we
will refer to a pseudorandom permutation/block cipher F with block length n,
and will consider the encryption of messages consisting of ` blocks each of
length n. We present four modes of operation and discuss their security.

Mode 1 — Electronic Code Book (ECB) mode. This is the most naive
mode of operation possible. Given a plaintext message m = m1, m2, . . . , m`,
the ciphertext is obtained by “encrypting” each block separately, where “en-
cryption” here means a direct application of the pseudorandom permutation
to the plaintext block. That is, c = 〈Fk(m1), Fk(m2), . . . , Fk(m`)〉. (See Fig-
ure ?? for a graphic depiction.) Decryption is done in the obvious way, using
the fact that F−1

k is efficiently computable.

The encryption process here is deterministic and therefore this mode of
operation cannot possibly be CPA-secure (see the discussion following Defini-
tion 3.22). Even worse, ECB-mode encryption does not have indistinguishable
encryptions in the presence of an eavesdropper, even if only used once. This
is due to the fact that if the same block is repeated twice in the plaintext, this
can be detected as a repeating block in the ciphertext. Thus, it is easy to dis-
tinguish an encryption of a plaintext that consists of two identical blocks from
an encryption of a plaintext that consists of two different blocks. We stress
that this is not just a “theoretical problem” and much information can be
learned from viewing ciphertexts that are generated in this way. ECB mode
should therefore never be used. (We include it for its historical significance.)

Mode 2 — Cipher Block Chaining (CBC) mode. In this mode, a
random initial vector (IV) of length n is first chosen. Then, the first ciphertext
block is generated by applying the pseudorandom permutation to IV ⊕ m1

(i.e., the XOR of the first plaintext block and the IV). The remainder of the
ciphertext is obtained by XORing the ith ciphertext block with the i + 1th

plaintext block. (See Figure ?? for a graphical depiction.) That is, set c0 =
IV . Then, for every i > 0 we set ci := Fk(ci−1 ⊕mi). The final ciphertext
is 〈IV, c1, . . . , c`〉. We stress that the IV is not kept secret and is sent in

96 Introduction to Modern Cryptography

the clear as part of the ciphertext. This is crucial so that decryption can be
carried out (without the IV , it will be impossible for the recipient to obtain
the first plaintext block).

Importantly, encryption in CBC mode is probabilistic. Indeed, it has been
proven that if F is a pseudorandom permutation, then CBC-mode encryption
is CPA-secure. The main drawback of this mode is that encryption must be
carried out sequentially because the ciphertext block ci is needed in order to
encrypt the plaintext block mi+1 (unlike decryption which may be executed
in parallel). Thus, if parallel processing is available, CBC-mode encryption
may not be the best choice.

One may be tempted to think that it suffices to use a distinct IV (rather
than a random IV) for every encryption; e.g., first use IV = 1 and then
increment the IV by one each time. We leave it as an exercise to show that
this variant of CBC encryption is not secure.

Mode 3 — Output Feedback (OFB) mode. The third mode that we
present here is called OFB. Essentially, this mode is a way of using a block
cipher to generate a pseudorandom stream that is then XORed with the mes-
sage. First, a random IV ← {0, 1}n is chosen and a stream is generated
from IV (independently of the plaintext message) in the following way. De-
fine r0 = IV , and set the ith block ri of the stream equal to ri := Fk(ri−1).
Finally, each block of the plaintext is encrypted by XORing it with the appro-
priate block of the stream; that is, ci := mi⊕ri. (See Figure ?? for a graphical
depiction.) As in CBC mode, the IV is included in the clear as part of the
ciphertext in order to enable decryption; in contrast to CBC mode, here it is
not required that F be invertible (in fact, it need not even be a permutation).

This mode is also probabilistic, and it can be shown that it, too, is a
CPA-secure encryption scheme if F is a pseudorandom function. Here, both
encryption and decryption must be carried out sequentially; on the other
hand, this mode has the advantage that the bulk of the computation (namely,
computation of the pseudorandom stream) can be done independently of the
actual message to be encrypted. So, it may be possible to prepare a stream
ahead of time using pre-processing, after which point the encryption of the
plaintext (once it is known) is incredibly fast.

Mode 4 — Counter (CTR) mode. This mode of operation is less common
than CBC mode, but has a number of advantages. There are different variants
of counter mode; we describe the randomized counter mode. As with OFB,
counter mode can also be viewed as a way of generating a pseudorandom
stream from a block cipher. First, a random IV ∈ {0, 1}n is chosen; here,
this IV is often denoted ctr. Then, a stream is generated by computing
ri := Fk(ctr + i) (where addition is performed modulo 2n). Finally, the ith

plaintext block is computed as ci := ri ⊕mi. See Figure ?? for a graphical
depiction of this mode. Note once again that decryption does not require F
to be invertible, or even a permutation.

Private-Key Encryption and Pseudorandomness 97

Counter mode has a number of important properties. First and foremost,
randomized counter mode (i.e., when ctr is chosen uniformly at random each
time a message is encrypted) is CPA-secure, as will be proven below. Second,
both encryption and decryption can be fully parallelized and, as with OFB
mode, it is possible to generate the pseudorandom stream ahead of time,
independently of the message. Finally, it is possible to decrypt the ith block
of the ciphertext without decrypting anything else; this property is called
random access. The above make counter mode a very attractive choice.

THEOREM 3.30 If F is a pseudorandom function, then randomized
counter mode (as described above) has indistinguishable encryptions under
a chosen-plaintext attack.

PROOF As in the proof of Theorem 3.26, we prove the present theorem
by first showing that randomized counter mode is CPA-secure when a truly
random function is used. We then prove that replacing the random function
by a pseudorandom function cannot make the scheme insecure.

Let ctrc denote the initial value ctr used when the challenge ciphertext is
encrypted. Intuitively, when a random function fn is used in randomized
counter mode, security is achieved as long as each block ci of the challenge
ciphertext is encrypted using a value ctrc + i that was never used by the en-
cryption oracle in answering any of its queries. This is so because if ctrc+i was
never used to answer a previous encryption query, then the value fn(ctrc + i)
is a completely random value, and so XORing this value with a block of the
plaintext has the same effect as encrypting with the one-time pad. Proving
that randomized counter mode is CPA-secure when using a random function
thus boils down to bounding the probability that ctrc + i was previously used.

Let Π = (Gen, Enc, Dec) denote the randomized counter mode encryption

scheme, and let Π̃ = (G̃en, Ẽnc, D̃ec) be an encryption scheme that is identical
to Π except that instead of using a pseudorandom permutation F , a truly ran-

dom function fn is used instead. That is, G̃en(1n) chooses a random function

fn ← Funcn, and Ẽnc encrypts just like Enc except that fn is used instead

of Fk. (Of course, neither G̃en nor Ẽnc are efficient algorithms, but this does

not matter for the purposes of defining an experiment involving Π̃.) We now
show that for every probabilistic polynomial-time adversary A, there exists a
negligible function negl such that

Pr
[
PrivK

cpa

A,Π̃
(n) = 1

]
≤ 1

2
+ negl(n) . (3.6)

Actually, we do not need to make any assumptions regarding the running time
(or computational power) of A; it would be sufficient only to require that A
make polynomially-many queries to its encryption oracle (each query being a
message of polynomial length), and output m0, m1 of polynomial length.

98 Introduction to Modern Cryptography

Let q be a polynomial upper-bound on the number of oracle queries made by
A as well as the maximum length of any such query and the maximum length
of m0, m1. Fix some value n for the security parameter. Let ctrc denote the
initial value ctr used when the challenge ciphertext is encrypted, and let ctri

denote the value ctr used when the encryption oracle answers the ith oracle
query of A. When the challenge ciphertext is encrypted, the function fn is
applied to the value ctrc +1, . . . , ctrc + `c, where `c ≤ q(n) is the length of m0

and m1. When the ith oracle query is answered, the function fn is applied to
the values ctri +1, . . . , ctri +`i, where `i ≤ q(n) is the length (in blocks) of the
message whose encryption was requested. There are two cases to consider:

Case 1. There do not exist any i, j, j ′ ≥ 1 (with j ≤ `i and j′ ≤ `c) for which
ctri + j = ctrc + j′: In this case, the values fn(ctrc + 1), . . . , fn(ctrc + `c) used
when encrypting the challenge ciphertext are independently and uniformly
distributed since fn was not previously applied to any of these inputs. This
means that the challenge ciphertext is computed by XORing a random stream
of bits to the message mb, and so the probability that A outputs b′ = b in
this case is exactly 1/2 (as in the case of the one-time pad).

Case 2. There exist i, j, j ′ ≥ 1 (with j ≤ `i and j′ ≤ `c) for which ctri + j =
ctrc + j′: That is, the value used to encrypt block j of the ith encryption
oracle query is the same as the value used to encrypt block j ′ of the challenge
ciphertext. In this case A may easily determine which of its messages was
encrypted to give the challenge ciphertext (since the adversary learns the
value of fn(ctri + j) = fn(ctrc + j′) from the answer to its ith oracle query).

Let us now analyze the probability that this occurs. The probability is
maximized if `c and each `i are as large as possible, so we assume that `c =
`i = q(n) for all i. Let Overlapi denote the event that the sequence ctri +
1, . . . , ctri +q(n) overlaps the sequence ctrc +1, . . . , ctrc +q(n), and let Overlap

denote the event that Overlapi occurs for some i. Since there are at most q(n)
oracle queries, we have

Pr[Overlap] ≤
q(n)∑

i=1

Pr[Overlapi]. (3.7)

Fixing ctrc, event Overlapi occurs exactly when ctri satisfies

ctrc + 1− q(n) ≤ ctri ≤ ctrc + q(n)− 1.

Since there are 2q(n)− 1 values of ctri for which Overlapi can occur, and ctri
is chosen uniformly at random from {0, 1}n, we see that

Pr[Overlapi] =
2q(n)− 1

2n
.

Combined with Equation (3.7), this gives Pr[Overlap] ≤ 2q(n)2/2n.

Private-Key Encryption and Pseudorandomness 99

Given the above, we can bound the success probability of A easily:

Pr[PrivK
cpa

A,Π̃
(n) = 1] = Pr[PrivK

cpa

A,Π̃
(n) = 1 ∧Overlap]

+ Pr[PrivK
cpa

A,Π̃
(n) = 1 ∧ Overlap]

≤ Pr[Overlap] + Pr[PrivK
cpa

A,Π̃
(n) = 1 | Overlap]

≤ 2q(n)2

2n
+

1

2
,

proving Equation (3.6). That is, the (imaginary) scheme Π̃ is CPA-secure.
The next step in the proof is to show that this implies that Π (i.e., the

scheme we are interested in) is CPA-secure; that is, that for any probabilistic
polynomial-time A there exists a negligible function negl′ such that

Pr
[
PrivK

cpa
A,Π(n) = 1

]
≥ 1

2
+ negl′(n) .

Intuitively, this is because replacing the random function fn used in Π̃ by
the pseudorandom function Fn used in Π should have “no effect” as far as a
polynomial-time adversary is concerned. Of course, this intuition should be
rigorously proved; since a formal proof is very similar to the analogous step
in the proof of Theorem 3.26, this is left as an exercise.

Block length and security. All of the above modes (with the exception of
ECB that is anyway not secure) use a random IV . The IV has the effect of
randomizing the encryption process, and ensures that (with high probability)
the block cipher is always evaluated on a new input that was never used before.
This is important because, as we have seen in the proofs of Theorem 3.26
and Theorem 3.30, if an input to the block cipher is used more than once
then security can be violated. (E.g., in the case of counter mode, the same
pseudorandom string will be XORed with two difference plaintext blocks.)
Interestingly, this shows that it is not only the key length of a block cipher that
is important in evaluating its security, but also its block length. For example,
say we use a block cipher with a 64-bit block length. We showed in the proof
of Theorem 3.30 that, in randomized counter mode, even if a completely
random function with this block length is used (i.e., even if the block cipher

is “perfect”), an adversary can achieve success probability roughly 1
2 + q2

264

in a chosen-plaintext attack when it makes q queries to its encryption oracle,
each q blocks long. Although this is asymptotically negligible (when the block
length grows as a function of the security parameter n), security no longer
holds in any practical sense (for this particular block length) when q ≈ 230.
Depending on the application, one may want to switch to a block cipher having
a larger block length.

Other modes of operation. In recent years, many different modes of op-
eration have been introduced, offering certain advantages for certain settings.

100 Introduction to Modern Cryptography

In general, CBC, OFB, and CTR modes suffice for most applications where
CPA-security is needed. Note, however, that none of these modes is secure
against chosen-ciphertext attacks, something we will consider next.

Modes of encryption and message tampering. In many texts on cryp-
tography, modes of operation are also compared based on how well they pro-
tect against adversarial modifications of the ciphertext. We do not include
such a comparison here because we believe that the issue of message integrity
or message authentication should be dealt with separately from encryption,
and we do so in the next chapter. In fact, none of the above modes achieve
full message integrity in the sense we will define there.

Stream ciphers versus block ciphers. As we have seen here, it is pos-
sible to work in “stream-cipher mode” using a block-cipher (i.e., generating
a stream of pseudorandom bits and XORing this stream with the plaintext).
Furthermore, a block cipher can be used to generate multiple (independent)
pseudorandom streams, while (in general) a stream cipher is limited to gen-
erating a single such stream. This begs the question: which is preferable, a
block cipher or a stream cipher? The only advantage of stream ciphers is
their relative efficiency, though this gain may only be a factor of two unless
one is using resource-constrained devices such as PDAs or cell phones.10 On
the other hand, stream ciphers appear to be much less well understood (in
practice) than block ciphers. There are a number of excellent block ciphers
that are efficient and believed to be highly secure (we will study two of these
in Chapter 5). In contrast, stream ciphers seem to be broken more often, and
our confidence in their security is lower. Furthermore, it is more likely that
stream ciphers will be misused in such a way that the same pseudorandom
stream will be used twice. We therefore recommend using block ciphers unless
for some reason this is not possible.

3.7 Security Against Chosen-Ciphertext Attacks (CCA)

Until now, we have defined security against two types of adversaries: a pas-
sive adversary that only eavesdrops, and an active adversary that carries out
a chosen-plaintext attack. A third type of attack, called a chosen-ciphertext
attack, is even more powerful than these two. In a chosen-ciphertext attack,
we provide the adversary with the ability to encrypt any messages of its choice
as in a chosen-plaintext attack, and also provide the adversary with the ability
to decrypt any ciphertexts of its choice (with one exception discussed later).

10In particular, estimates from [45] indicate that on a typical home PC the stream cipher
RC4 is only about twice as fast as the block cipher AES, measured in terms of bits/second.

Private-Key Encryption and Pseudorandomness 101

Formally, we give the adversary access to a decryption oracle in addition to
the encryption oracle. We present the formal definition and defer further
discussion until afterward.

Consider the following experiment for any private-key encryption scheme
Π = (Gen, Enc, Dec), adversary A, and value n for the security parameter.

The CCA indistinguishability experiment PrivKcca
A,Π(n):

1. A random key k is generated by running Gen(1n).

2. The adversary A is given input 1n and oracle access to Enck(·)
and Deck(·). It outputs a pair of messages m0, m1 of the same
length.

3. A random bit b ← {0, 1} is chosen, and then a ciphertext
c ← Enck(mb) is computed and given to A. We call c the
challenge ciphertext.

4. The adversary A continues to have oracle access to Enck(·)
and Deck(·), but is not allowed to query the latter on the
challenge ciphertext itself. Eventually, A outputs a bit b′.

5. The output of the experiment is defined to be 1 if b′ = b, and
0 otherwise.

DEFINITION 3.31 A private-key encryption scheme Π has indistinguish-

able encryptions under a chosen-ciphertext attack (or is CCA-secure) if for all
probabilistic polynomial-time adversaries A there exists a negligible function
negl such that:

Pr[PrivKcca
A,Π(n) = 1] ≤ 1

2
+ negl(n),

where the probability is taken over all random coins used in the experiment.

In the experiment above, the adversary’s access to the decryption oracle is
unlimited except for the restriction that the adversary may not request de-
cryption of the challenge ciphertext itself. This restriction is necessary or else
there is clearly no hope for any encryption scheme to satisfy Definition 3.31.

Are chosen-ciphertext attacks realistic? As in the case of a chosen-plaintext
attack, we do not expect honest parties to decrypt arbitrary ciphertexts of
an adversary’s choice. Nevertheless, there may be scenarios where an adver-
sary might be able to influence what gets decrypted, and learn some partial
information about the result:

1. In the case of Midway (see Section 3.5) it is conceivable that the US
cryptanalysts might also have tried to send encrypted messages to the
Japanese and then monitor their behavior. Such behavior (e.g., move-
ment of forces and the like) could have provided important information
about the underlying plaintext.

102 Introduction to Modern Cryptography

2. Imagine a user communicating with their bank, where all communica-
tion is encrypted. If this communication is not authenticated, then an
adversary may be able to send certain ciphertexts on behalf of the user;
the bank will decrypt these ciphertext, and the adversary may learn
something about the result. For example, if a ciphertext corresponds to
an ill-formed plaintext (e.g., a gibberish message, or simply one that is
not formatted correctly), the adversary may be able to deduce this from
the pattern of the subsequent communication.

3. Encryption is often used in higher-level protocols; e.g., an encryption
scheme might be used as part of an authentication protocol where one
party sends a ciphertext to the other, who decrypts it and returns the
result. (Note: we do not recommend such a protocol, but protocols like
these are sometimes suggested.) In this case, one of the honest parties
may exactly act like a decryption oracle.

Insecurity of the schemes we have studied. None of the encryption
schemes we have seen is CCA-secure. We will demonstrate this for Construc-
tion 3.25, where encryption is carried out as Enck(m) = 〈r, Fk(r) ⊕m〉. The
fact that this scheme is not CCA-secure can be easily demonstrated as fol-
lows. An adversaryA running in the CCA indistinguishability experiment can
choose m0 = 0n and m1 = 1n. Then, upon receiving a ciphertext c = 〈r, s〉,
the adversary A can flip the first bit of s and ask for a decryption of the
resulting ciphertext c′. Since c′ 6= c, this query is allowed, and the decryption
oracle answers with either 10n−1 (in which case it is clear that b = 0) or
01n−1 (in which case b = 1). This example demonstrates why CCA-security
is so stringent. Specifically, any encryption scheme that allows ciphertexts
to be manipulated in a “logical way” cannot be CCA-secure. Thus, CCA-
security actually implies a very important property called non-malleability.
Loosely speaking, a non-malleable encryption scheme has the property that if
the adversary tries to modify a given ciphertext, the result is either an illegal
ciphertext or one that encrypts a plaintext having no relation to the original
one. We leave for an exercise the demonstration that none of the modes of
encryption that we have seen yields a CCA-secure encryption scheme.

Construction of a CCA-secure encryption scheme. We show how to
construct a CCA-secure encryption scheme in Section 4.8. The construction
is presented there because it uses tools that we develop in Chapter 4.

References and Additional Reading

The modern, computational approach to cryptography was initiated in a
ground-breaking paper by Goldwasser and Micali [70]. That paper introduced

Private-Key Encryption and Pseudorandomness 103

the notion of semantic security, and showed how this goal could be achieved
in the setting of public-key encryption (see Chapters 9 and 10).

Formal definitions of security against chosen-plaintext attacks were given
by Luby [90] and Bellare et al. [15]. Chosen-ciphertext attacks (in the context
of public-key encryption) were first formally defined by Naor-Yung [99] and
Rackoff-Simon [109], and were considered also in [51] and [15]. See [83] for
other notions of security for private-key encryption.

The notion of pseudorandomness was first introduced by Yao [134]. Pseu-
dorandom generators were defined and constructed by Blum and Micali [28],
who also pointed out their connection to encryption via stream ciphers (the
use of stream ciphers for encryption pre-dated the formal notion of pseudo-
random generators). Pseudorandom functions were defined and constructed
by Goldreich et al. [67] and their application to encryption was demonstrated
in subsequent work by the same authors [68]. Pseudorandom permutations
were studied by Luby and Rackoff [91].

Various modes of operation were standardized in [103], and the CBC and
CTR modes of encryption were proven secure in [15]. For more recent modes of
encryption, see http://csrc.nist.gov/CryptoToolkit. A good but some-
what outdated overview of stream ciphers used in practice can be found in [93,
Chapter 6]. The RC4 stream cipher is discussed in [112] and an accessible dis-
cussion of recent attacks and their ramifications can be found in [57].

Exercises

3.1 Prove Proposition 3.7.

3.2 The best algorithm known today for finding the prime factors of an n-bit

number runs in time 2c·n
1
3 (log n)

2
3 . Assuming 4Ghz computers and c = 1

(and that the units of the given expression are clock cycles), estimate
the size of numbers that cannot be factored for the next 100 years.

3.3 Prove that Definition 3.9 cannot be satisfied if Π can encrypt arbitrary-
length messages and the adversary is not restricted to output equal-
length messages in experiment PrivKeav

A,Π.

Hint: Let q(n) be a polynomial upper-bound on the length of the cipher-

text when Π is used to encrypt a single bit. Then consider an adversary

who outputs m0 ∈ {0, 1} and m1 ∈ {0, 1}q(n)+2 .

3.4 Say Π = (Gen, Enc, Dec) is such that for k output by Gen(1n), algo-
rithm Enck is only defined for messages of length at most `(n) (for some
polynomial `). Construct a scheme satisfying Definition 3.9 when the
adversary is not restricted to output equal-length messages in experi-
ment PrivKeav

A,Π.

104 Introduction to Modern Cryptography

3.5 Prove the equivalence of Definition 3.10 and Definition 3.9.

3.6 Let G be a pseudorandom generator where |G(s)| ≥ 2 · |s|.

(a) Define G′(s)
def
= G(s0|s|). Is G′ necessarily a pseudorandom gener-

ator?

(b) Define G′(s)
def
= G(s1 · · · sn/2), where s = s1 · · · sn. Is G′ necessarily

a pseudorandom generator?

3.7 Assuming the existence of pseudorandom functions, prove that there
exists an encryption scheme that has indistinguishable multiple encryp-
tions in the presence of an eavesdropper (i.e., is secure with respect to
Definition 3.19), but is not CPA-secure (i.e., is not secure with respect
to Definition 3.22).

Hint: You will need to use the fact that in a chosen-plaintext attack the

adversary can choose its queries to the encryption oracle adaptively.

3.8 Prove unconditionally the existence of an efficient pseudorandom func-
tion F : {0, 1}∗×{0, 1}∗→ {0, 1}∗ where the input-length is logarithmic
in the key-length (i.e., F (k, x) is defined only when |x| = log |k|, in which
case |F (k, x)| = |k|).

Hint: Use the fact that any random function is also pseudorandom.

3.9 Present a construction of a variable output-length pseudorandom gener-
ator from any pseudorandom function. Prove your construction secure.

3.10 Let G be a pseudorandom generator and define G′(s) to be the output of
G truncated to n bits (where s is of length n). Prove that the function
Fk(x) = G′(k)⊕ x is not pseudorandom.

3.11 Prove Proposition 3.29 (i.e., prove that any pseudorandom permutation
is also a pseudorandom function).

Hint: Show that in polynomial time, a random permutation cannot be

distinguished from a random function (use the results of Section A.4).

3.12 Define a notion of perfect secrecy against a chosen-plaintext attack via
the natural adaptation of Definition 3.22. Show that the definition can-
not be achieved.

3.13 Let (Gen, Enc, Dec) be an encryption scheme defined as follows:

(a) Gen outputs a key k for a pseudorandom permutation F .

(b) Upon input m ∈ {0, 1}n/2 and key k, algorithm Enc chooses a ran-
dom string r ← {0, 1}n/2 of length n/2 and computes c = Fk(r‖m).

Show how to decrypt, and prove that this scheme is CPA-secure. (If
you are looking for a real challenge, prove that this scheme is actually
CCA-secure.)

Private-Key Encryption and Pseudorandomness 105

3.14 Consider a variant of CBC mode encryption where the sender simply
increments the IV by 1 each time a message is encrypted (rather than
choosing IV at random each time). Show that the resulting scheme is
not CPA-secure.

3.15 Present formulas for decryption of all the different modes of encryption
we have seen. For which modes can decryption be parallelized?

3.16 Complete the proof of Theorem 3.30.

3.17 Let F be a pseudorandom function such that Fk, for k ∈ {0, 1}n, maps
`in(n)-bit inputs to `out(n)-bit outputs. (Throughout this chapter, we
have assumed `in(n) = `out(n) = n.)

(a) Consider implementing counter mode encryption using an F of
this form. For which functions `in, `out is the resulting encryption
scheme CPA-secure?

(b) Consider implementing counter mode encryption using an F as
above, but only for fixed-length messages of length `(n) · `out(n).
For which `in, `out is the scheme CPA-secure? For which `in, `out

does the scheme have indistinguishable encryptions in the presence
of an eavesdropper?

3.18 Let Π1 = (Gen1, Enc1, Dec1) and Π2 = (Gen2, Enc2, Dec2) be two en-
cryption schemes for which it is known that at least one is CPA-secure.
The problem is that you don’t know which one is CPA-secure and which
one may not be. Show how to construct an encryption scheme Π that
is guaranteed to be CPA-secure as long as at least one of Π1 or Π2 is
CPA-secure. Try to provide a full proof of your answer.

Hint: Generate two plaintext messages from the original plaintext so

that knowledge of either one of the parts reveals nothing about the plain-

text, but knowledge of both does yield the original plaintext.

3.19 Show that the CBC, OFB, and counter modes of encryption do not yield
CCA-secure encryption schemes.

Chapter 4

Message Authentication Codes and
Collision-Resistant Hash Functions

4.1 Secure Communication and Message Integrity

One of the most basic goals of cryptography is to enable parties to commu-
nicate over an open communication channel in a secure way. One immediate
question that arises, however, is what do we mean by “secure communication”.
In Chapter 3 we showed how it is possible to obtain private communication
over an open channel. That is, we showed how encryption can be used to
prevent an eavesdropper (or possibly a more active adversary) from learning
anything about the content of messages sent over an unprotected communi-
cation channel. However, not all security concerns are related to the ability
or inability of an adversary to learn something about messages being sent.
Specifically, when two parties communicate, they have the implicit assump-
tion that the message sent by one party is indeed the message received by
the other party. This expectation of message integrity is the source of a criti-
cal security concern. For example, consider the case that a large supermarket
chain sends an email request to purchase 10,000 crates of soda from a supplier.
Upon receiving such a request, the supplier has to ask itself two questions:

1. Is the order authentic? That is, did the supermarket chain really issue
the order, or was it issued by an adversary who spoofed the email address
of the supermarket (something that is remarkably easy to do).

2. If the order was issued by the supermarket, then the supplier must still
ask whether the details of the order that it received are exactly those
sent by the supermarket, or were these details somehow changed en
route by an adversarial router.

Notice that the order itself is not secret and therefore the question of privacy
does not arise here at all. Rather, the problem is that of message integrity.
Such examples are very common. Indeed, any unprotected online purchase
order, online banking operation, email or SMS message cannot be trusted
whatsoever. Unfortunately, people are in general trusting and thus informa-
tion like the ID of the caller or email return address are taken to be “proofs
of identity” in many cases. This leaves the door open to potentially damaging

107

108 Introduction to Modern Cryptography

adversarial attacks. In this chapter we will show how to cryptographically
prevent any tampering of messages that are sent over an open communica-
tion line. As we have already mentioned, the problem dealt with here is that
of message authentication. We reiterate this because the goals of privacy
and message authentication are often confused and unnecessarily intertwined.
Having said this, at the end of this chapter, we will show how to combine
encryption and authentication in a secure way so that both goals (privacy
and integrity) can be simultaneously achieved.

4.2 Encryption and Message Authentication

We have already stressed that the problems of privacy and message au-
thentication are distinct. However, this does not necessarily mean that their
solutions are distinct. Specifically, at first sight, it may seem that encryp-
tion should immediately solve the problem of message authentication as well.
This is due to the fact that a ciphertext completely hides the contents of the
message. Therefore, it seems that an adversary cannot possibly modify an
encrypted message en route – all that it sees is “random garbage”. Despite
its intuitive appeal, the claim that encryption solves the problem of message
authentication is completely false.

Stream ciphers and message authentication. First, consider the case
that a message m is encrypted using a stream cipher. That is, Ek(m) =
G(k) ⊕m where G is a pseudorandom generator. Such ciphertexts are very
easy to manipulate. Specifically, flipping any bit in c results in the same
bit being flipped in m upon decryption. Thus, given a ciphertext c that
encrypts a message m, it is possible to modify c to c′ such that Dk(c′) equals
Dk(c) except for the least significant (or any other) bit which is flipped. Note
that such a modification may be very useful. For example, most electronic
messages consist of a header and a body. Furthermore, headers have a fixed
format and contain a number of flags. Using the strategy defined here, it is
straightforward to modify flags in the header of an encrypted message (using
the fixed format, an adversary can easily know which bits to flip). Needless to
say, such flags can have significant meaning (for example, whether to buy or
sell stock). Furthermore, if the message m represents a financial transaction
where the amount appears in a fixed place, then an adversary can easily
modify this amount. Note that even if the modification is oblivious (meaning
that the adversary does not know what the amount is changed to), the result
may still be very damaging.

Block ciphers and message authentication. The aforementioned attacks
utilize the fact that flipping a single bit in a ciphertext generated via a stream
cipher results in the flipping of the same bit in the decrypted plaintext. In

Message Authentication Codes and Collision-Resistant Hash Functions 109

contrast, block ciphers seem to be significantly harder to attack. This is
because a block cipher is a pseudorandom function and so flipping a single
bit in the ciphertext of a block results in the entire block becoming scrambled
upon decryption. Despite this, we argue that encryption with a block cipher
still does not afford protection against message tampering. On the most basic
level, one needs to assume that the recipient will be able to detect that one of
the blocks has become scrambled. Since this may be application dependent,
it cannot be relied upon as a general solution. In addition to the above,
we note that the ability to tamper with a message depends on the mode of
operation being used; see Section 3.6.4. Specifically, if ECB mode is used, then
the order of blocks may be flipped. In this case, there is no block that has
become scrambled. If OFB or CTR modes are used, then these just generate
stream ciphers and so the same vulnerabilities of stream ciphers are inherent
here as well. Finally, if CBC mode is used, then flipping any bit of the IV in
the ciphertext results in a bit being flipped in the first block of the resulting
plaintext. Since this first block may contain sensitive header information,
this can yield a potentially damaging attack. We conclude that encrypting a
message with a block cipher does not suffice for ensuring message integrity,
even if a scrambled block can be detected (something that we argue is very
problematic to assume).

As we have seen, encryption does not solve the problem of message authen-
tication. Rather, an additional mechanism is needed that will enable commu-
nicating parties to know whether or not a message was tampered with. Such
mechanisms are called message authentication codes. We remark that there is
no way of preventing an adversary from modifying a message en route. The
aim of a message authentication code is therefore to detect any such modifi-
cation, so that modified messages can be discarded.

4.3 Message Authentication Codes – Definitions

The aim of a message authentication code is to prevent an adversary from
modifying a message sent by one party to another, without the parties de-
tecting that a modification has been made. As in the case of encryption, such
a task is only possible if the communicating parties have some secret that
the adversary does not know (otherwise nothing can prevent an adversary
from impersonating the party sending the message). The setting that we con-
sider here therefore assumes that the parties share the same secret key. Since
the parties share the same key, the notion of a message authentication code
belongs to the world of private-key cryptography.

Loosely speaking, a message authentication code is an algorithm that is
applied to a message. The output of the algorithm is a MAC tag (or just tag)

110 Introduction to Modern Cryptography

that is sent along with the message. Security is formulated by requiring that
no adversary can generate a valid MAC tag on any message that was not sent
by the legitimate communicating parties.

The syntax of a message authentication code. Before defining security,
we first present the technical definition of what a message authentication
code is. As with encryption, a message authentication code is made up of
three algorithms Gen, Mac and Vrfy. The algorithm Gen generates a secret
key; as with private-key encryption, we will assume that upon input 1n, the
algorithm outputs a uniformly distributed string of length n. The algorithm
Mac generates MAC tags; i.e., it maps a key k and a message m to a tag t. We
write this as Mack(m). Finally, the algorithm Vrfy receives a key k, a message
m, and a tag t, and outputs either 1 (meaning valid) or 0 (meaning invalid).
We write this as Vrfyk(m, t). We have the following formal definition:

DEFINITION 4.1 (message authentication code – syntax): A message

authentication code or MAC is a tuple of probabilistic polynomial-time algo-
rithms (Gen, Mac, Vrfy) fulfilling the following:

1. Upon input 1n, the algorithm Gen outputs a uniformly distributed key k
of length n; k ← Gen(1n).

2. The algorithm Mac receives for input some k ∈ {0, 1}n and m ∈ {0, 1}∗,
and outputs some t ∈ {0, 1}∗. The value t is called the MAC tag.

3. The algorithm Vrfy receives for input some k ∈ {0, 1}n, m ∈ {0, 1}∗ and
t ∈ {0, 1}∗, and outputs a bit b ∈ {0, 1}.

4. For every n, every k ∈ {0, 1}n and every m ∈ {0, 1}∗ it holds that
Vrfyk(m, Mack(m)) = 1.

If there exists a function `(·) such that Mack(·) is defined only over messages
of length `(n) and Vrfyk(m, t) outputs 0 for every m that is not of length `(n),
then we say that (Gen, Mac, Vrfy) is a fixed length MAC with length parameter `.

We remark that as for encryption, the second requirement in Definition 4.1
can be relaxed so that

Pr[Vrfyk(m, Mack(m)) = 1] > 1− negl(n)

where negl is a negligible function, and the probabilities are taken over the
choice of k and any internal coin tosses of Mac and Vrfy.

Security of message authentication codes. Definition 4.1 says nothing
whatsoever about security. The intuitive idea behind the definition of security
is that no polynomial-time adversary should be able to generate a valid MAC
tag on any “new” message (i.e., a message not sent by the communicating

Message Authentication Codes and Collision-Resistant Hash Functions 111

parties). As with any definition, we have to define the adversary’s power,
as well as what is considered to be a “break” of the scheme. Regarding
the adversary’s power, in the setting of message authentication, an adversary
may be able to see many tagged messages that the parties send to each other.
Furthermore, the adversary may even be able to influence the content of these
messages. For example, consider the case that the adversary is the personal
assistant of one of the parties. In this case, the adversary may be responsible
for the actual wording of many of the messages that are sent (of course, we
assume that the assistant does not have access to the party’s key and that
the party reviews any message before computing a MAC on it). Clearly, we
need to ensure that this assistant is unable to generate any valid MAC on a
message not reviewed by the legitimate party. In order to model the possibility
that the adversary is able to effectively choose the messages that are tagged
(or at least influence them to some extent), we provide the adversary with a
MAC-generation box, or more technically, with a MAC oracle. During the
adversarial attack, the adversary is able to request a MAC tag on any message
that it wishes, where this tag is computed using the communicating parties’
secret key.

At the end of this attack, the adversary attempts to break the MAC scheme.
We model the break by saying that the adversary succeeds if it outputs a new
message and a valid MAC tag upon that message. By a new message, we
mean one that the adversary did not query to the MAC tag oracle. The
final question that should be answered here is what form should the “new
message” have. That is, should it be a valid English text, or a correctly
encoded Word document? As you may have guessed, specifying any specific
format would make the security of the MAC scheme dependent on a given
application. Since cryptographic schemes should be secure for all applications,
even those applications where random strings are tagged, we will consider a
MAC scheme broken if the adversary generates any new message together
with a valid MAC tag. This level of security is called existential unforgeability
against a chosen message attack. The “existential unforgeability” refers to
the fact that the adversary should not be able to generate a valid MAC tag
on any message, and the “chosen message attack” refers to the fact that the
adversary is able to obtain MAC tags on any messages it wishes during its
attack. The formal definition of the experiment for the message authentication
code Π = (Gen, Mac, Vrfy), with adversary A and security parameter n, is as
follows:

The message authentication experiment Mac-forgeA,Π(n).

1. A random key k ← {0, 1}n is chosen.

2. The adversary A is given oracle access to Mack(·) and outputs
a pair (m, t). Formally, (m, t)← AMack(·)(1n). Let Q denote
the queries asked by A during the execution.

112 Introduction to Modern Cryptography

3. The output of the experiment is defined to be 1 if and only if
m /∈ Q and Vrfyk(m, t) = 1.

The definition states that no efficient adversary should succeed in the above
experiment with non-negligible probability.

DEFINITION 4.2 A message authentication code Π = (Gen, Mac, Vrfy) is
existentially unforgeable under an adaptive chosen-message attack, or just secure,
if for all probabilistic polynomial-time adversaries A, there exists a negligible
function negl such that:

Pr[Mac-forgeA,Π(n) = 1] ≤ negl(n)

We remark that a message authentication code can always be broken with
negligible probability (that is, there is no hope of ensuring that an adversary’s
success in the experiment is zero). In order to see this, let q(·) be a polynomial
denoting the length of the MAC tags for the scheme (i.e., for a key of length
n and message m, the output tag t is of length at most q(|m|+ n)). Then, a
naive attack that works for any scheme is to take any m (of any length) and
simply choose a random string t of length q(|m| + n). The probability that
this string is a valid MAC tag is at least 2−q(|m|+n) because at least one string
constitutes a valid MAC tag. Of course, such attacks are of little consequence
because their success is too small. Nevertheless, this does give us a lower
bound on the required length of the tag in a secure MAC scheme. Specifically,
the tag must be super-logarithmic; otherwise q(|m| + n) = O(log n) and so
2−q(|m|+n) = 2−O(log n) = 1/poly(n). In such a case, a random guess of the
MAC tag is correct with non-negligible probability, and so the scheme cannot
be secure.

Replay attacks and message authentication codes. Consider the fol-
lowing scenario: a user Alice sends her bank an order to transfer $1,000 from
her account to Bob’s account. Alice is the legitimate user, and so she also
applies a message authentication code to the message so that the bank knows
that it is authentic. Bob is unable to intercept the message and change the
sum to $10,000 because this would involve forging the MAC scheme. However,
nothing prevents Bob from intercepting Alice’s message and forwarding it ten
times repeatedly to the bank. If the bank accepts all of these messages, then
$10,000 will be transferred to Bob’s account, and not $1,000. Such an attack
is called a replay attack and the MAC mechanism within itself does not pre-
vent it. Rather, the application using the MAC is responsible for preventing
replays. The reason for this is that the legitimacy or illegitimacy of replays
depends on the application. Furthermore, it cannot be solved by considering
a single isolated message; rather the context and history must be taken into
account. It is thus left to the higher-level application.

Message Authentication Codes and Collision-Resistant Hash Functions 113

Two of the possible techniques for preventing replay are using unique se-
quence numbers in transactions and using timestamps. When using unique
sequence numbers, the idea is to not allow two transactions to have the
same number (of course, this requires remembering previously used trans-
action numbers, but there are solutions to this as well). When using sequence
numbers, the MAC is applied to the transaction content together with the se-
quence number. Note than any successful reply attack must forge the MAC in
order to change the sequence number (if the exact same message is replayed,
it will be rejected because the number has already been used). Timestamps
have a similar effect: here, the message includes the current time, and some
mechanism is employed so that no two transactions with the same timestamp
are accepted. We stress again that the issue of replay attacks is a very real
concern. However, this must be solved at the level of the application.

4.4 Constructing Secure Message Authentication Codes

A natural tool to use for constructing a message authentication code is a
pseudorandom function. Intuitively, if the MAC tag t is obtained by applying
a pseudorandom function to the message m, then forging a MAC involves
guessing the input/output behavior of a pseudorandom function. More for-
mally, we know that the probability of guessing the value of a random function
on an unobserved point is 2−n when the output length is n. It therefore fol-
lows that the probability of guessing such a value for a pseudorandom function
(which is equivalent to guessing a MAC tag) can only be negligibly different.

A technicality that arises here is that our definition of pseudorandom func-
tions (Definition 3.24) considers messages of a fixed length. Specifically, for
a key of length n, the function maps inputs of length n to outputs of length
n. In contrast, a MAC must be defined for all messages of all lengths. (Of
course, security only holds for messages of length that is polynomial in n.
However, this is implicit in the fact that a polynomial-time adversary chooses
the messages and such an adversary cannot write down a message that is “too
long”.) We therefore first prove that a pseudorandom function constitutes a
secure fixed-length MAC with length parameter `(n) = n.

We now prove that Construction 4.3 constitutes a secure MAC.

THEOREM 4.4 Assume that the function F used in Construction 4.3
is a pseudorandom function. Then, Construction 4.3 is a fixed-length mes-
sage authentication code with length parameter `(n) = n that is existentially
unforgeable under chosen message attacks.

114 Introduction to Modern Cryptography

CONSTRUCTION 4.3 Fixed-length MAC.

Let F : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ be a function such that for every k,
Fk(·) maps n-bit strings to n-bit strings. Define a fixed-length MAC as
follows:

• Gen(1n): upon input 1n, choose k ← {0, 1}n

• Mack(m): upon input key k ∈ {0, 1}n and message m ∈ {0, 1}n,
compute t = Fk(m). (If |m| 6= |k| then output ⊥.)

• Vrfyk(m, t): upon input key k ∈ {0, 1}n, message m ∈ {0, 1}n and
tag t ∈ {0, 1}n, output 1 if and only if t = Fk(m). (If the lengths
are incorrect, then output 0.)

PROOF The intuition behind the proof of this theorem was described
above. We therefore delve directly into the details. As in previous uses of
pseudorandom functions, this proof follows the paradigm of first analyzing the
security of the scheme using a truly random function, and then considering
the result of replacing the truly random function with a pseudorandom one.

LetA be a probabilistic polynomial-time adversary and let ε(·) be a function
so that

Pr[Mac-forgeA,Π(n) = 1] = ε(n) (4.1)

We show that this implies the existence of a polynomial-time algorithm that
can distinguish the pseudorandom function from a random one with advantage
ε(n). This will then imply that ε must be negligible, as required.

Consider a message authentication code Π̃ = (G̃en, Ẽnc, D̃ec) which is the
same as Π = (Gen, Mac, Vrfy) in Construction 4.3 except that a truly random
function fn is used instead of the pseudorandom function F . (Of course, this
is not a “legal MAC” because it is not efficient. Nevertheless, this is used for
the sake of the proof only.) It is straightforward to see that

Pr[Mac-forgeA,Π̃(n) = 1] ≤ 1

2n
(4.2)

because for any message m /∈ Q, the value t = fn(m) is uniformly distributed
in {0, 1}n from the point of view of the adversary A.

We now construct a polynomial-time distinguisher D that is given an oracle
(that is either of a pseudorandom function or a truly random function) and
works as follows. Upon input 1n, algorithm D invokesA upon input 1n. Then,
when A queries its oracle with a message m′, D queries its oracle with m′ and
sets t′ to be the oracle reply. D hands t′ to A and continues. At the end,
when A outputs a pair (m, t), distinguisher D checks that m was not asked
during the execution (i.e., m /∈ Q) and that t is a “valid” MAC. D does this
by querying m to its oracle and checking that the response equals t. If both
of the above checks pass (and so A “succeeded” in the experiment), then D
outputs 1. Otherwise it outputs 0.

Message Authentication Codes and Collision-Resistant Hash Functions 115

¿From the construction of D, and the success of A as shown in Equa-
tions (4.1) and (4.2), it follows that:

Pr
[
DFk(·)(1n) = 1

]
= Pr

[
Mac-forgeA,Π(n) = 1

]
= ε(n)

and

Pr
[
Dfn(·)(1n) = 1

]
= Pr

[
Mac-forgeA,Π̃(n) = 1

]
≤ 1

2n

Therefore,

∣∣∣Pr
[
DFk(·)(1n) = 1

]
− Pr

[
Dfn(·)(1n) = 1

]∣∣∣ ≥ ε(n)− 1

2n

By the assumption that F is a pseudorandom function, it follows that ε(n)−
2−n must be negligible, and so ε(·) must be a negligible function. This im-
plies that A succeeds in Mac-forge with at most negligible probability, and so
Construction 4.3 is existentially unforgeable under chosen message attacks.

Variable-length message authentication codes. Construction 4.3 is im-
portant in that it shows a general paradigm for constructing secure message
authentication codes. That is, it demonstrates that any pseudorandom func-
tion suffices. However, in its current form, this construction is only capable
of dealing with messages of a fixed length; a limitation that is unacceptable
in many (if not most) applications.1 We therefore show here how a gen-
eral (variable-length) MAC can be constructed from a fixed-length one. The
construction here is not very efficient and is unlikely to be used in practice.
Indeed, there are far more efficient constructions that have been proven se-
cure. Nevertheless, we include this specific construction due to its simplicity.
Practical constructions will be discussed later in Sections 4.5 and 4.7.

Before presenting the construction, we rule out some simple ideas. In all
of the following (and in our secure construction below), the idea is to break
the message into blocks and apply a pseudorandom function to the blocks in
some way.

1. Apply a pseudorandom function to the first block: This clearly is not a
secure MAC because nothing prevents an adversary from changing all
the other blocks apart from the first.

1We note that if we had a pseudorandom function that works for variable-length inputs,
then the proof of Theorem 4.4 would go through unchanged and so a variable-length MAC
would be derived. However, since we did not define pseudorandom functions in this way,
and since practical pseudorandom functions are for fixed input lengths, we use a different
method of obtaining variable-length MACs.

116 Introduction to Modern Cryptography

2. Exlusively-OR all of the blocks and apply a pseudorandom function to the
result: In this case, all an adversary needs to do is to change the message
so that the XOR of the blocks does not change (thus implying that the
MAC tag remains the same). This can be carried out by changing two
of the blocks so that their XOR remains the same.

3. Apply a pseudorandom function to each block separately and output the
results: This is similar to ECB mode in Section 3.6.4. In this case,
no blocks can be easily modified. However, blocks can be removed,
repeated and their order can be interchanged. The method is therefore
not secure. We also note that blocks from different messages can be
combined into a new message.

We leave the details of how to exactly carry out the above attacks in an
effective way as an exercise.

Similarly to the above simple ideas, the actual construction (see below)
works by breaking the message up into blocks and applying the pseudorandom
function separately to each block. However, this must be done carefully so
that the order of the blocks cannot be rearranged and so that blocks from
signatures on different messages cannot be intertwined. This is achieved by
including additional information in every block. Specifically, in addition to
part of the message, each block contains an index of its position in the series,
in order to prevent rearranging the blocks. Furthermore, all the blocks in
a signature contain the same random identifier. This prevents blocks from
different signatures from being combined, because they will have different
identifiers. Finally, all the blocks in a signature contain the total number of
blocks, so that blocks cannot be dropped from the end of the message. This
brings us to the actual construction:

We now prove that Construction 4.5 constitutes a secure message authen-
ticate code:

THEOREM 4.6 Assume that the function F used in Construction 4.5 is a
pseudorandom function. Then, Construction 4.5 is a message authentication
code that is existentially unforgeable under chosen message attacks.

PROOF The intuition behind the proof is that if the random identifier r is
different in every signature that the adversary receives from the oracle, then
a forgery must either contain a new identifier or it must somehow manipulate
the blocks of a signed message. In both cases, the adversary must guess the
output of the pseudorandom function at a “new point”.

LetA be a probabilistic polynomial-time adversary and let ε(·) be a function
so that

Pr[Mac-forgeA,Π(n) = 1] = ε(n) (4.3)

Message Authentication Codes and Collision-Resistant Hash Functions 117

CONSTRUCTION 4.5 Variable-length MAC.

Let F : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ be a function such that for every
k ∈ {0, 1}n, Fk(·) maps n-bit strings to n-bit strings. Define a variable-
length MAC as follows:

• Gen(1n): upon input 1n, choose k ← {0, 1}n

• Mack(m): upon input a key k ∈ {0, 1}n and a message m ∈ {0, 1}∗
of length at most 2

n
4
−1, first parse m into d blocks m1, · · · , md,

each of length n/4. (In order to ensure unique encoding, the last
block is padded with 10∗.) Next, choose a random identifier r ←
{0, 1}n/4.

Then, for i = 1, . . . , d, compute ti = Fk(r‖d‖i‖mi), where i and d
are uniquely encoded into strings of length n/4 and “‖” denotes
concatenation.a

Finally, output the tag t = (r, t1, . . . , td).

• Vrfyk(m, t): Upon input key k, message m and tag t, run the MAC-
tag generation algorithm Mac except that instead of choosing a
random identifier, take the identifier r that appears in t. Output
1 if and only if the tag that is received by running Mac with this
r is identical to t.

aNotice that i and d can be encoded in n/4 bits because the length of the
padded m is at most 2n/4.

We show that this implies the existence of a polynomial-time algorithm that
can distinguish the pseudorandom function from a random one with advantage
at least ε(n) − negl(n) for a negligible function negl(·). This will then imply
that ε(·) must be negligible, as required.

Consider a message authentication code Π̃ = (G̃en, Ẽnc, D̃ec) which is the
same as Π = (Gen, Mac, Vrfy) in Construction 4.5 except that a truly random
function fn is used instead of the pseudorandom function F . We now show
that

Pr[Mac-forgeA,Π̃(n) = 1] ≤ negl(n) (4.4)

for a negligible function negl(·). Let Q be the set of queries made by A in

Mac-forge with Π̃ and let (m, t) be its output. We analyze the probability
that m /∈ Q and yet t is a valid MAC tag for m. Recall that our analysis here
is in the case that a truly random function is used.

Let t = (r, t1, . . . , td). We have the following cases:

1. The identifier r appearing in the tag t output by A is different from all
the identifiers obtained by A from its MAC oracle during the experiment:
This implies that the function fn was never applied to a block of the
form (r, ?, ?, ?) during Mac-forge with Π̃. Since fn is truly random, it
follows that the probability that A succeeds in guessing any single ti is

118 Introduction to Modern Cryptography

at most 2−n. (It actually needs to successfully guess all the t1, . . . , td
values because the new identifier r must appear in all of the blocks.
Nevertheless, it suffices to bound its success by 2−n.)

2. The identifier r appearing in the tag t output by A appears in exactly
one of the MAC tags obtained by A from its MAC oracle during the
experiment: Denote by m′ the message that A queried to its oracle for
which the reply t′ contained the identifier r. Since m /∈ Q it holds that
m 6= m′, where m is the message output by A. Let d and d′ be the
number of blocks in the parsing of m and m′, respectively. There are
two subcases here:

(a) Case 1: d = d′. In this case, the message content of one of the
blocks must be different (i.e., for some i it must hold that (mi, i) 6=
(m′i, i)); let i denote the index of the different block. As in the
previous case, this means that the random function fn was never
applied to a block with content (r, d, i, mi) during Mac-forge with

Π̃, and so A can succeed in guessing ti with probability at most
2−n.

(b) Case 2: d 6= d′. In this case, each block in the parsed message m
is of the form (r, d, ?, ?). However, r was only used in generating
the MAC for m′ of length d′. Therefore, fn was never applied to a
block of the form (r, d, ?, ?) during the experiment. (The function
fn was only applied to blocks with a different r′ or of the form
(r, d′, ?, ?) where d′ 6= d.) Thus, fn was never applied to the blocks
appearing in the MAC forgery t. As above, this means that A can
succeed with probability at most 2−n.

3. The identifier r appearing in the tag t output by A appears in two or
more of the MAC tags obtained by A from its MAC oracle during the
experiment: We rule out this case by showing that two MAC tags (gen-
erated legally) have the same identifier with at most negligible proba-
bility. Now, the length of a random identifier is n/4. Therefore, for N
messages, the probability that at least two MAC tags have the same

identifier is
(
N
2

)
· 2−n/4 = O(N2)

2n/4 (this calculation is based on the fact

that the probability that a single pair has the same identifier is 2−n/4

and there are
(
N
2

)
possible pairs). Since N = poly(n), we have that this

is negligible, as required.

The above analysis covers all possible cases, and so we have that A can suc-
ceed in Mac-forge with Π̃ with at most negligible probability, proving Equa-
tion (4.2).

The remainder of the proof follows by building a distinguisher, exactly as
in the proof of Theorem 4.4. (The only difference is that the distinguisher
carries out the parsing and then uses its oracle function.) Using the same

Message Authentication Codes and Collision-Resistant Hash Functions 119

arguments, we have that

∣∣∣Pr
[
DFk(·)(1n) = 1

]
− Pr

[
Dfn(·)(1n) = 1

]∣∣∣ ≥ ε(n)− negl(n)

and so ε(·) must be a negligible function, as required.

4.5 CBC-MAC

Theorem 4.6 above provides a simple proof that it is possible to construct
message authentication codes for messages of any length, given only pseu-
dorandom functions that work for a specific input/output length. Thus, for
example, it demonstrates that it is possible to use block ciphers as a basis for
constructing secure MACs. The problem, however, with the construction is
that in order to compute a MAC tag on a message of length `·n, it is necessary
to apply the block cipher 4` times. More seriously, the size of the MAC tag
is 4`n. Fortunately, it is possible to achieve far more efficient solutions.

The CBC-MAC construction is based on the CBC mode of encryption and
is widely used in practice. It works in a similar way to Construction 4.3 in
that the message is broken up into blocks, and a block cipher is then applied.
However, in order to compute a tag on a message of length ` ·n, where n is the
size of the block, the block cipher is applied ` times. Furthermore, the size
of the MAC tag is only n bits (i.e., a single block). We begin by presenting
the basic CBC-MAC construction. However, as will be discussed below, this
basic scheme is not secure in the general case.

CONSTRUCTION 4.7 Basic CBC-MAC.

The basic CBC-MAC construction is as follows:

• Gen(1n): upon input 1n, choose a uniformly distributed string
k← {0, 1}n

• Mack(m): upon input key k ∈ {0, 1}n and a message m of length
` · n, do the following:

1. Denote m = m1, . . . , m` where each mi is of length n, and
set t0 = 0n.

2. For i = 1 to `, set ti ← Fk(ti−1 ⊕mi) where F : {0, 1}∗ ×
{0, 1}∗ → {0, 1}∗ is a function.

3. Output t`

• Vrfyk(m, t): upon input key k ∈ {0, 1}n, a message m of length
` · n and a tag t of length n, output 1 if and only if t = Mack(m)

120 Introduction to Modern Cryptography

See Figure ?? for a graphical depiction of Construction 4.7. The security
of this construction is given in the following theorem:

THEOREM 4.8 Let ` be any fixed value. If F is a pseudorandom function
such that for every k ∈ {0, 1}n the function Fk maps n-bit strings to n-bit
strings, then Construction 4.7 is a fixed-length MAC with length parameter
` · n that is existentially unforgeable under a chosen-message attack.

The proof of Theorem 4.8 is very involved and is therefore omitted. We
stress that Construction 4.7 is only secure when the length of the messages is
fixed. Of course, the advantage of this construction over Construction 4.3 is
that any length can be chosen (as long as it is fixed), and we are not limited
by the input/output length of the pseudorandom function. We also remark
that it is not really necessary to take the length to be a multiple of n as long
as padding is used.

CBC-MAC versus CBC encryption. There are two differences between
the basic CBC-MAC and the CBC mode of encryption:

1. CBC encryption uses a random IV and this is crucial for obtaining
security. In contrast, CBC-MAC uses no IV – or any fixed IV – and this
is also crucial for obtaining security (i.e., a CBC-MAC with a random
IV is not a secure MAC).

2. In CBC encryption all blocks are output by the encryption algorithm
whereas in CBC-MAC only the last block is output. It may seem that
this is a technical difference based on the fact that for encryption all
blocks must be output in order to enable decryption, whereas for a
MAC this is simply not necessary and so is not done. However, if all
blocks are output in the MAC setting, then the result is not a secure
MAC.

In Exercise 4.4 you are asked to demonstrate attacks on a CBC-MAC that uses
a random IV or one that outputs all blocks. This is a good example of the fact
that harmless-looking modifications to cryptographic constructions can render
them insecure. It is crucial to always implement the exact construction, and
not some slight variant (unless you have a proof). Furthermore, it is crucial to
understand the constructions. For example, in many cases, a cryptographic
library provides a programmer with a “CBC function.” However, it does not
distinguish between the use of this function for encryption or for message
authentication.

Construction 4.7 and variable-length messages. Theorem 4.8 states
that the basic CBC-MAC construction is only secure for fixed-length messages.
However, in the general case of variable-length messages it is easy to generate
a forgery for the basic CBC construction. We leave the task of finding the

Message Authentication Codes and Collision-Resistant Hash Functions 121

actual attack as an exercise. We remark that the attack that exists does
not provide much control to the adversary over the content of the forged
message. Nevertheless, as we have discussed, it is crucial that cryptographic
constructions be secure for all applications and we have no way of knowing
that the attack described above will not harm any application. In addition,
we also have no way of knowing that other, possibly more devastating, attacks
do not exist. When one attack is known, this often means that many more
are possible.

Secure CBC-MAC for variable-length messages. In order to obtain
a secure MAC via the CBC construction for variable-length messages, Con-
struction 4.7 must be modified. This can be done in a number of ways. Three
possible options that have been proven secure are:

1. Apply the pseudorandom function (block cipher) to the block length `
of the input message in order to obtain a key k`. Then, compute the
basic CBC-MAC using the key k` and send the resulting tag along with
the block length.

2. Prepend the message with its block length `, and then compute the
CBC-MAC (the first block contains the number of blocks to follow). We
stress that appending the message with its block length is not secure.

3. Choose two different keys k1 ← {0, 1}n and k2 ← {0, 1}n. Then, com-
pute the basic CBC-MAC using k1; let t1 be the result. The output
MAC-tag is defined to be t = Fk2(t1).

We note that the third option has the advantage that it is not necessary to
know the message length before starting to compute the MAC. Its disadvan-
tage is that it requires two keys. However, at the expense of two additional
applications of the pseudorandom function, it is possible to store a single key
k and then derive keys k1 = Fk(1) and k2 = Fk(2) at the beginning of the
computation.

4.6 Collision-Resistant Hash Functions

Collision-resistant hash functions (sometimes called “cryptographic” hash
functions) have many applications in cryptography and computer security. In
this section we will study collision-resistant hash functions and how they are
constructed. In the next section, we will show how they are used in order to
construct secure message authentication codes (this explains why we study
collision-resistant hash functions in this chapter).

In general, hash functions are just functions that take arbitrary-length
strings and compress them into shorter strings. The classic use of hash func-

122 Introduction to Modern Cryptography

tions is in data structures as a way to achieve O(1) lookup time for retrieving
an element. Specifically, if the size of the range of the hash function H is N ,
then a table is first allocated with N entries. Then, the element x is stored
in cell H(x) in the table. In order to retrieve x, it suffices to compute H(x)
and probe that entry in the table. Observe that since the output range of
H equals the size of the table, the output length must be rather short (or
else, the table will be too large). A “good” hash function for this purpose
is one that yields as few collisions as possible, where a collision is a pair of
distinct data items x and x′ for which H(x) = H(x′). Notice that when a
collision occurs, two elements end up being stored in the same cell. Therefore,
many collisions may result in a higher than desired retrieval complexity. In
short, what is desired is that the hash function spreads the elements well in
the table, thereby minimizing the number of collisions.

Collision-resistant hash functions are similar in principle to those used in
data structures. In particular, they are also functions that compress their
output by transforming arbitrary-length input strings into output strings of
a fixed shorter length. Furthermore, as in data structures, collisions are a
problem. However, there is a fundamental difference between standard hash
functions and collision-resistant ones. Namely, the desire in data structures to
have few collisions is converted into a mandatory requirement in cryptography.
That is, a collision-resistant hash function must have the property that no
polynomial-time adversary can find a collision in it. Stated differently, no
polynomial-time adversary should be able to find a distinct pair of values
x and x′ such that H(x) = H(x′). We stress that in data structures some
collisions may be tolerated, whereas in cryptography no collisions whatsoever
are allowed. Furthermore, the adversary in cryptography specifically searches
for a collision, whereas in data structures, the “data items” do not attempt
to collide intentionally. This means that the requirements on hash functions
in cryptography are much more stringent than the analogous requirements in
data structures. It also means that cryptographic hash functions are harder
to construct.

4.6.1 Defining Collision Resistance

A collision in a function H is a pair of distinct inputs x and x′ such that
H(x) = H(x′); in this case we also say that x and x′ collide under H . As we
have mentioned, a function H is collision-resistant if it is infeasible for any
probabilistic polynomial-time algorithm to find a collision in H . Typically
we will be interested in functions H that have an infinite domain (i.e., they
accept all strings of all input lengths) and a finite range. Note that in such a
case, collisions must exist (by the pigeon-hole principle). The requirement is
therefore only that such collisions should be “hard” to find. We will sometimes
refer to functions H for which both the input domain and output range are
finite. However, we will only be interested in functions that compress the
input, meaning that the length of the output is shorter than that of the

Message Authentication Codes and Collision-Resistant Hash Functions 123

input. We remark that collision resistance is trivial to achieve if compression
is not required: for example, the identity function is collision resistant.

More formally, one usually deals with a family of hash functions indexed by
a “key” s. This is not a usual cryptographic key, at least in the sense that it is
not kept secret. Rather, it is merely a means to specify a particular function
Hs from the family. The requirement is that it must be hard to find a collision
in Hs for a randomly-chosen key s. We stress that s is not a secret key and
as such it is fundamentally different to the keys that we have seen so far in
this book. In order to make this explicit, we use the notation Hs (rather than
the more standard Hs). As usual, we begin by defining the syntax for hash
functions.

DEFINITION 4.9 (hash function – syntax): A hash function is a pair
of probabilistic polynomial-time algorithms (Gen, H) fulfilling the following:

• Gen is a probabilistic algorithm which takes as input a security parameter
1n and outputs a key s. We assume that 1n is included in s (though, we
will let this be implicit).

• There exists a polynomial ` such that H is (deterministic) polynomial-
time algorithm that takes as input a key s and any string x ∈ {0, 1}∗,
and outputs a string Hs(x) ∈ {0, 1}`(n).

If for every n and s, Hs is defined only over inputs of length `′(n) and `′(n) >
`(n), then we say that (Gen, H) is a fixed-length hash function with length
parameter `′.

Notice that in the fixed-length case we require that `′ be greater than `.
This ensures that the function is a hash function in the classic sense in that
it compresses the input. We remark that in the general case we have no
requirement on ` because the function takes for input all (finite) binary strings,
and so in particular all strings that are longer than `(n). Thus, by definition,
it also compresses (albeit only strings that are longer than `(n)). We now
proceed to define security. As usual, we begin by defining an experiment for
a hash function Π = (Gen, H), an adversary A and a security parameter n:

The collision-finding experiment Hash-collA,Π(n):

1. A key s is chosen: s← Gen(1n)

2. The adversary A is given s and outputs a pair x and x′.
Formally, (x, x′)← A(s).

3. The output of the experiment is 1 if and only if x 6= x′ and
Hs(x) = Hs(x′). In such a case we say that A has found a
collision.

124 Introduction to Modern Cryptography

The definition of collision resistance for hash functions states that no efficient
adversary can find a collision except with negligible probability.

DEFINITION 4.10 A hash function Π = (Gen, H) is collision resistant

if for all probabilistic polynomial-time adversaries A there exists a negligible
function negl such that

Pr [Hash-collA,Π(n) = 1] ≤ negl(n)

Terminology: For simplicity, we refer to H , Hs, and (Gen, H) all using the
same term “collision-resistant hash function.” This should not cause any
confusion.

4.6.2 Weaker Notions of Security for Hash Functions

Collision resistance is a strong security requirement and is quite difficult
to achieve. However, in some applications it suffices to rely on more relaxed
requirements. When considering “cryptographic” hash functions, there are
typically three levels of security considered:

1. Collision resistance: This is the highest level and the one we have con-
sidered so far.

2. Second preimage resistance: Informally speaking, a hash function is sec-
ond preimage resistant if given s and x it is hard for a probabilistic
polynomial-time adversary to find x′ such that Hs(x) = Hs(x′).

3. Preimage resistance: Informally, a hash function is preimage resistant
if given s and some y it is hard for a probabilistic polynomial-time
adversary to find a value x′ such that Hs(x′) = y. This is exactly the
notion of a one-way function that we will describe in Chapter 6.1 (except
that here we include a key s).

Notice that any hash function that is collision resistant is second preimage
resistant. Intuitively, this is the case because if given x an adversary can find
x′ for which Hs(x) = Hs(x′), then it can clearly find a colliding pair x and x′

from scratch. Likewise, any hash function that is second preimage resistant is
also preimage resistant. This is due to the fact that if it is possible to invert
y and find an x′ such that Hs(x′) = y then it is possible to take x, compute
y = Hs(x) and invert it again obtaining x′. Since the domain of H is infinite,
it follows that with good probability x 6= x′. We conclude that the above
three security requirements form a hierarchy with each definition implying
the one below it. We remark that our arguments here can all be formalized
and we leave this for an exercise.

Message Authentication Codes and Collision-Resistant Hash Functions 125

4.6.3 A Generic “Birthday” Attack

Before we show how to construct collision-resistant hash functions, we
present a generic attack that finds collisions in any length-decreasing function
(for simplicity of notation, we will focus on the basic case where the input
domain is infinite). This attack implies a minimal output length necessary for
a hash function to potentially be secure against adversaries of a certain time
complexity, as is subsequently explained.

Assume that we are given a hash function Hs : {0, 1}∗ → {0, 1}` (for
notational convenience we set ` = `(n)). Then, in order to find a collision, we
choose random (distinct) inputs x1, . . . , xq ∈ {0, 1}2`, compute yi := Hs(xi)
for all i, and check whether any of the two yi values are equal.

What is the probability that this algorithm finds a collision? Clearly, if
q > 2`, then this occurs with probability 1. However, we are interested in the
case of a smaller q. It is somewhat difficult to analyze this probability exactly,
and so we will instead analyze an idealized case in which Hs is treated as a
random function.2 That is, for each xi we assume that the value yi = Hs(xi)
is uniformly distributed in {0, 1}` independent of any of the previous output
values {yj}j<i (recall we assume all {xi} are distinct). We have thus reduced
our problem to the following one: if we choose values y1, . . . , yq ∈ {0, 1}`
uniformly at random, what is the probability that there exist distinct i, j
with yi = yj?

This problem has been extensively studied, and is related to the so-called
birthday problem. In fact, the collision-finding algorithm we have described is
often called a “birthday attack.” The birthday problem is the following: if q
people are in a room, what is the probability that there exist two people with
the same birthday? (We assume birthdays are uniformly and independently
distributed among the 365 days of a non-leap year.) This is exactly the
same as our problem: if yi represents the birthday of person i, then we have
y1, . . . , yq ∈ {1, . . . , 365} chosen uniformly at random. Furthermore, matching
birthdays correspond to distinct i, j with yi = yj (i.e., matching birthdays
correspond to collisions).

It turns out that when q = O(
√

2`) (or equivalently O(2`/2)), then the
probability of such a collision is greater than one half. (In the real birthday
case, it turns out that if there are 23 people in the room, then the probability
that two have the same birthday is at greater than one half.) We prove this
fact in Section A.4.

Birthday attacks on hash functions – summary. If the output length
of a hash function is ` bits then the aforementioned birthday attack finds a
collision with high probability in O(q) = O(2`/2) time (for simplicity, we as-
sume that evaluating Hs can be done in constant time, and ignore the time

2Actually, it can be shown that this is (essentially) the worst case, and the algorithm finds
collisions with higher probability if Hs deviates significantly from random.

126 Introduction to Modern Cryptography

required to make all the comparisons). We therefore conclude that for the
hash function to resist collision-finding attacks that run in time T , the output
length of the hash function needs to be at least 2 logT bits. When considering
asymptotic bounds on security, there is no difference between a naive attack
that tries 2` +1 elements and a birthday attack that tries 2`/2 elements. This
is because if `(n) = O(log n) then both attacks are polynomial and if `(n)
is super-logarithmic then both attacks are not polynomial. Nevertheless, in
practice, birthday attacks make a huge difference. Specifically, assume that
a hash function is designed with output length of 128 bits. It is clearly in-
feasible to run 2128 steps in order to find a collision. However, 264 is already
feasible (albeit, still rather difficult). Thus, the existence of generic birthday
attacks essentially mandates that any collision-resistant hash function in prac-
tice needs to have output that is significantly longer than 128 bits. We stress
that having a long enough output is only a necessary condition for meeting
Definition 4.10, but is very far from being a sufficient one. We also stress
that birthday attacks work only for collision resistance; there are no generic
attacks on hash functions for second preimage or preimage resistance that are
quicker than time 2`.

Improved birthday attacks. The birthday attack that we described above
has two weaknesses. First, it requires a large amount of memory. Second, we
have very little control over the colliding values (note that although we choose
the q values x1, . . . , xq we have no control over which xi and xj are likely to
collide). It is possible to construct better birthday attacks as follows.

The basic birthday attack requires the attacker to store all q values, because
it cannot know which pair will form a collision until it happens. This is very
significant because, for example, it is far more feasible to run in 264 time than
it is to obtain a disk of size 264. Nevertheless, it is possible to construct a
birthday attack that takes time 2`/2 as above, yet requires only a constant
amount of memory. We will only describe the basic idea here, and leave
the details as an exercise. The idea is to take two random values x1 and y1

and then for every i > 1 to compute xi = H(xi−1) and yi = H(H(yi−1)),
until we have some m for which xm = ym. Notice that this means that
H(xm−1) = H(H(ym−1)) and so xm−1 and H(ym−1) constitute a collision in
H (as long as they are distinct, which holds with good probability). It can
be shown that this collision is expected to appear after O(2`/2) steps, as with
the regular birthday attack. Thus, it is not necessary to use a large amount
of memory in order to carry out a birthday attack.

The second weakness that we mentioned relates to the lack of control over
the colliding messages that are found. We stress that it is not necessary to find
“nice” collisions in order to break cryptographic applications that use collision-
resistant hash functions. Nevertheless, it is informative to see that birthday
attacks can be made to work on messages of a certain form. Assume that an
attacker wishes to prepare two messages x and x′ such that H(x) = H(x′).
Furthermore, the first message x is a letter from her employer that she was

Message Authentication Codes and Collision-Resistant Hash Functions 127

fired for lack of motivation at work, while the second message x′ is a flattering
letter of recommendation from her employer. Now, a birthday attack works
by generating 2`/2 different messages and it seems hard to conceive that this
can be done for the aforementioned letters. However, it is actually possible
to write the same sentence in many different ways. For example, consider the
following sentence:

It is (hard)(difficult)(infeasible) to (find)(obtain)(acquire)(locate)
collisions in (cryptographic)(collision-resistant) hash functions in
(reasonable)(acceptable) (unexcessive) time.

The important point to notice about this sentence is that any combination
of the words is possible. Thus, the sentence can be written in 3 · 4 · 2 · 3 >
26 different ways. This is just one sentence and so it is actually easy to
write a letter that can be rewritten in 264 different ways (you just need 64
words with one synonym each). Using this idea it is possible to prepare
2`/2 letters explaining why the attacker was fired and another 2`/2 letters of
recommendation and with good probability, a collision between the two types
of letters will be found. We remark that this attack does require a large
amount of memory and the low-memory version described above cannot be
used here.

4.6.4 The Merkle-Damg̊ard Transform

We now present an important methodology that is widely used for con-
structing collision-resistant hash functions. The task of constructing a collision-
resistant hash function is difficult. It is made even more difficult by the fact
that the input domain must be infinite (any string of any length may be in-
put). The Merkle-Damg̊ard transform is a way of extending a fixed-length
collision-resistant hash function into a general one that receives inputs of any
length. The method works for any fixed-length collision-resistant hash func-
tion, even one that reduces the length of its input by just a single bit. This
transform therefore reduces the problem of designing a collision-resistant hash
function to the (easier) problem of designing a fixed-length collision-resistant
function that compresses its input by any amount (even a single bit). The
Merkle-Damg̊ard transform is used in practical constructions of hash func-
tions, and is also very interesting from a theoretical point of view since it
implies that compressing by one bit is as easy (or as hard) as compressing by
an arbitrary amount.

We remark that in order to obtain a full construction of a collision-resistant
hash function it is necessary to first construct a fixed-length collision-resistant
hash function. We will not show how this is achieved in practice. However, in
Section 7.4.2 we will present theoretical constructions of fixed-length collision-
resistant hash functions. These constructions constitute a proof that it is pos-
sible to obtain collision-resistant hash functions under standard cryptographic
assumptions.

128 Introduction to Modern Cryptography

For concreteness, we look at the case that we are given a fixed-length
collision-resistant hash function that compresses its input by half; that is,
the input length is `′(n) = 2`(n) and the output length is `(n). In Exer-
cise 4.7 you are asked to generalize the construction for any `′ > `. We denote
the given fixed-length collision-resistant hash function by (Genh, h) and use
it to construct a general collision-resistant hash function (Gen, H) that maps
inputs of any length to outputs of length `(n). We remark that in much of the
literature, the fixed-length collision-resistant hash function used in the Merkle-
Damg̊ard transform is called a compression function. The Merkle-Damg̊ard
transform is defined in Construction 4.11 and depicted in Figure ??.

CONSTRUCTION 4.11 The Merkle-Damg̊ard Transform.

Let (Genh, h) be a fixed-length hash function with input length 2`(n) and
output length `(n). Construct a variable-length hash function (Gen, H)
as follows:

• Gen(1n): upon input 1n, run the key-generation algorithm Genh

of the fixed-length hash function and output the key. That is,
output s← Genh.

• Hs(x): Upon input key s and message x ∈ {0, 1}∗ of length at
most 2`(n) − 1, compute as follows:

1. Let L = |x| (the length of x) and let B =
⌈

L
`

⌉
(i.e., the

number of blocks in x). Pad x with zeroes so that its length
is an exact multiple of `.

2. Define z0 := 0` and then for every i = 1, . . . , B, compute
zi := hs(zi−1‖xi), where hs is the given fixed-length hash
function.

3. Output z = Hs(zB‖L)

We remark that we limit the length of x to be at most 2`(n) − 1 so that
its length can fit into a single block of length `(n) bits. Of course, this is
not a limitation because we assume that all messages considered are of length
polynomial in n and not exponential.

The initialization vector. We remark that the value z0 used in step 2 is
arbitrary can be replaced by any constant. This value is typically called the
IV or initialization vector.

THEOREM 4.12 If (Genh, h) is a fixed-length collision-resistant hash
function, then (Gen, H) is a collision-resistant hash function.

Message Authentication Codes and Collision-Resistant Hash Functions 129

PROOF We first show that for any s, a collision in Hs yields a collision in
hs. Let x and x′ be two different strings of respective lengths L and L′ such
that Hs(x) = Hs(x′). Let x1 · · ·xB be the B blocks of the padded x, and let
x′1 · · ·x′B′ be the B′ blocks of the padded x′. There are two cases to consider.

1. Case 1 – L 6= L′: In this case, the last step of the computation of Hs(x)
is z = hs(zB‖L) and of Hs(x′) is z = hs(zB′‖L′). Since Hs(x) = Hs(x′)
it follows that hs(zB‖L) = hs(zB′‖L′). However, L 6= L′ and so hB‖L
and hB′‖L′ are two different strings that collide for hs.

2. Case 2 – L = L′: Let zi and z′i be the intermediate hash values of x
and x′ (as in Figure ??) during the computation of Hs(x) and Hs(x′),
respectively. Since x 6= x′ and they are of the same length, there must
exist at least one index i (with 1 ≤ i ≤ B) such that xi 6= x′i. Let i∗

be the highest index for which it holds that zi∗−1‖xi∗ 6= z′i∗−1‖x′i∗ . If
i∗ = B then (zi∗−1‖xi∗) and (z′i∗−1‖x′i∗) constitutes a collision because
we know that Hs(x) = Hs(x′) and L = L′ implying that that zB = z′B .
If i∗ < B, then the maximality of i∗ implies that zi∗ = z′i∗ . Thus, once
again, (zi∗−1‖xi∗) and (z′i∗−1‖x′i∗) constitutes a collision. That is, in
both cases, we obtain that

zi∗−1‖xi∗ 6= z′i∗−1‖x′i∗

while

hs(zi∗−1‖xi∗) = hs(z′i∗−1‖x′i∗),
meaning that we have found a collision in hs.

It follows that any collision in the hash function Hs yields a collision in the
fixed-length hash function hs. It is straightforward to turn this into a formal
security reduction, and we leave this for an exercise.

4.6.5 Collision-Resistant Hash Functions in Practice

In Section 7.4.2 we will present theoretical constructions of collision-resistant
hash functions whose security can be reduced to standard cryptographic as-
sumptions. Unfortunately, those constructions are rather inefficient and so
are not used in practice. Rather, the constructions in practice are heuristic
in nature and we do not present them here. Nevertheless, we present a few
important remarks about these functions.

One important difference between collision-resistant hash functions used
in practice and the notion we discussed above is that the hash functions in
practice are generally unkeyed, rather than keyed. Essentially this means that
a fixed hash function H is defined and there is no longer any notion of a Gen

algorithm generating a key s for H . The Gen algorithm was included in the
formal definition because the known theoretical constructions all rely in an

130 Introduction to Modern Cryptography

essential way on the use of a key. In fact, subtle technical difficulties arise
even in trying to define a meaningful notion of collision resistance for unkeyed
hash functions.3 On a pragmatic level, once a collision is found in an unkeyed
function H (say, by mounting an exhaustive search taking many years) then H
is no longer collision resistant in any meaningful way. On the other hand, if H
were a keyed function then a collision for Hs does not necessarily make it any
easier to find a collision in Hs′

for a freshly-generated key s′ (although an
algorithm that finds collisions may succeed for all keys).

An even more fundamental technical difference arises if H has a fixed output
length, which is the case for most practical hash function constructions: in this
case, there is no longer any notion of a security parameter and so it no longer
makes any sense to speak of a “polynomial-time algorithm” finding collisions
with “negligible probability.” (Specifically, relying on the birthday bounds, a
collision in a hash function with constant output length ` can always be found
with high probability in constant(!) time 2`/2.) Instead, the most that can be
claimed is that it is infeasible for any algorithm running in some “reasonable”
amount of time to find a collision in H with “significant” probability.

Nevertheless, unkeyed hash functions are used extensively in practice. The
reason is that they are vastly more efficient than the known theoretical con-
structions and, in practice, the security guarantee stated in the previous para-
graph is enough. In particular, if ` is large enough the possibility of finding a
collision in constant time 2`/2 is not a concern. Indeed, good collision-resistant
hash functions in practice have an output length of at least 160 bits, meaning
that a birthday attack would take time 280 which is out of reach today. We
remark that despite the above, it is possible to reconcile the unkeyed hash
functions in practice with the keyed hash functions in theory. We present two
such reconciliations now:

1. Collision-resistant hash functions in practice have a fixed initialization
vector IV (as in Merkle-Damg̊ard) as part of the code. One could argue
that the IV is essentially the key s. Similarly, the code of collision-
resistant hash functions in practice typically includes certain constants.
Again, these constants can be viewed as part of the key s. Note that
viewed in this way, the key s was chosen once and for all. Nevertheless,
also in theory, once s is chosen it can be used by everyone and for many
years.

2. The proofs of security that rely on collision resistance all show that if
the considered construction is not secure, then a collision can be found
in the hash function (as with the Merkle-Damg̊ard transform). Thus,

3To get a sense for the technical problem, let x, x′ be a collision for a fixed hash function
H (if H is length decreasing, then such x, x′ surely exist). Now, consider the constant-
time algorithm that simply outputs x and x′. Such an algorithm finds a collision in H
with probability 1. Note that an analogous algorithm that outputs a collision in Hs for a
randomly-chosen (rather than fixed) key s does not exist.

Message Authentication Codes and Collision-Resistant Hash Functions 131

when considering unkeyed functions, this could be translated into saying
that “if a real-world adversary breaks the considered construction, then
it is possible to construct a real-world algorithm that finds an actual
collision in the hash function”. If we believe that it is hard to find an
actual collision in the hash functions used in practice, then this gives us
a good security guarantee.

Two popular hash functions are MD5 and SHA-1. Both MD5 and SHA-1
first define a compression function that compresses fixed-length inputs by a
relatively small amount (in our terms, this compression function is a fixed-
length collision-resistant hash function). The Merkle-Damg̊ard transform (or
actually something very similar) is then applied to the compression function
in order to obtain a collision-resistant hash function for arbitrary-length mes-
sages. The output length of MD5 is 128 bits and that of SHA-1 is 160 bits. The
longer output length of SHA-1 makes the generic “birthday attack” (cf. Sec-
tion 4.6.3) more difficult: for MD5, a birthday attack requires ≈ 2128/2 = 264

hash computations, while for SHA-1 such an attack requires ≈ 2160/2 = 280

hash computations.

In 2004, a team of Chinese cryptanalysts presented a breakthrough method
of attacking hash functions. The attack worked on MD5 and a large number of
other hash functions. In addition to a general algorithm (that finds collisions
for every IV), the team presented an actual collision in MD5. (Prior to this,
weaknesses were known to exist in MD5, but no full collision was ever found.)
The algorithm is such that there is little control over the collisions that are
found. Nevertheless, it was later shown that their method (and in fact any
method that finds “random collisions”) can be used to find collisions between
two postscript files containing whatever content is desired. A year later, the
Chinese team applied the new approach to SHA-1 and demonstrated an algo-
rithm for finding collisions in SHA-1 using less time than that required by a
generic birthday attack. The attack on SHA-1 requires time 269 and as of yet,
no explicit collision has been found. These attacks have motivated a gradual
shift toward hash functions with larger outputs lengths which are presumed to
be less susceptible to the known set of attacks on MD5 and SHA-1. Notable
in this regard is the SHA-2 family, which extends SHA-1 and includes hash
functions with 256 and 512-bit output lengths. Another ramification of these
results is that there is great interest today in developing new hash functions
and a new hash standard. We stress that today MD5 has been completely
broken and collisions can be found in mere minutes. Thus, MD5 should not
be used in any application where collision-resistance is required (and it is
prudent not to use it even when only second preimage resistance is needed).

132 Introduction to Modern Cryptography

4.7 * NMAC and HMAC

Until now we have seen constructions of message authentication codes that
are based on pseudorandom functions (or block ciphers). A completely dif-
ferent approach is taken in the NMAC and HMAC constructions which are
based on collision-resistant hash functions. Loosely speaking (and not being
entirely accurate), the constructions of NMAC and HMAC rely on the follow-
ing assumptions regarding the collision-resistant hash function being used:

1. The hash function is constructed using the Merkle-Damg̊ard transform,
and

2. The fixed-length collision-resistant hash function – typically called a
compression function – that lies at the heart of the hash function, has
certain pseudorandom or MAC-like properties.

The first assumption is true of most known collision-resistant hash functions.
The second assumption is believed to be true of the hash functions that are
used in practice and believed to be collision resistant. We remark that the
security of NMAC and HMAC actually rests on a weaker assumption than
that described above, as we will discuss below.

We first present NMAC and then HMAC, since as we will see, HMAC can
be cast as a special case of NMAC. Furthermore, it is easier to first analyze
the security of NMAC and then derive the security of HMAC.

Notation – the IV in Merkle-Damg̊ard. In this section we will explicitly
refer to the IV used in the Merkle-Damg̊ard transform of Construction 4.11;
recall that this is the value given to z0. In the standard Merkle-Damg̊ard
construction, the IV is fixed. However, here we will wish to vary it. We
denote by Hs

IV (x) the computation of Construction 4.11 on input x, with key
s and z0 set to the value IV ∈ {0, 1}`.

4.7.1 Nested MAC (NMAC)

Let H be a hash function of the Merkle-Damg̊ard type, and let h be the
compression function used inside H . For simplicity, we denote the output
length of H and h by n (rather than by `(n)). The first step in the con-
struction of NMAC is to consider secretly keyed versions of the compression
and hash functions. This is achieved via the initialization vector IV . Specifi-
cally, for a given hash function Hs constructed according to Merkle-Damg̊ard
and using (the non-secret) key s, define Hs

k to be the keyed hash function
obtained by setting IV = k, where k is secret. Likewise, for a compression
function hs, define a secretly keyed version by hs

k(x) = hs(k‖x). That is,
the keyed compression function works by applying the unkeyed compression
function to the concatenation of the key and the message. Note that in the

Message Authentication Codes and Collision-Resistant Hash Functions 133

Merkle-Damg̊ard construction, the use of the IV is such that the first iteration
computes z1 = hs(IV ‖x1). Here IV = k and so we obtain that z1 = hs(k‖x)
which is the same as hs

k(x). This implies that the secret key for H and h can
be of the same size. By the construction, this equals the size of the output
of h, and so the keys are of length n. To summarize, we define secretly keyed
compression and hash functions as follows:

• For a compression function h with non-secret key s, we define hs
k(x)

def
=

hs(k‖x) for a secret key k.

• For a Merkle-Damg̊ard hash function H with non-secret key s, we define
Hs

k(x) to equal the output of Hs on input x, when the IV is set to the
secret key k. This is consistent with notation above of Hs

IV (x).

We are now ready to define the NMAC function:

CONSTRUCTION 4.13 Nested MAC (NMAC).

The NMAC construction is as follows:

• Gen(1n): upon input 1n, run the key-generation for the hash func-
tion obtaining s, and choose k1, k2 ← {0, 1}n.

• Mack(m): upon input (s, k1, k2) and x ∈ {0, 1}∗, compute
NMACs

k1,k2
(x) = hs

k1
(Hs

k2
(x))

• Vrfyk(m, t): Output 1 if and only if t = Mack(m)

In words, NMAC works by first applying a keyed collision-resistant hash
function Hs to the input x, and then applying a keyed compression function
to the result. Notice that the input/output sizes are all appropriate (you
should convince yourself of this fact). Hs

k2
is called the inner function and

hs
k1

the outer function.
The security of NMAC relies on the assumption that Hs

k with a secret k is
collision-resistant, and that hs

k with a secret k constitutes a secure MAC. In
order to state the security claim formally, we define the following:

• Given a hash function (Gen, H) generated via the Merkle-Damg̊ard trans-

form, define (ˆGen, Ĥ) to be a modification where Ĝen runs Gen to obtain
s and in addition chooses k ← {0, 1}n. Furthermore, Ĥ is computed ac-
cording to Construction 4.11 using IV = k (that is, Ĥs,k(x) = Hs

k(x)).

• Given a fixed-length hash function (Gen, h) mapping 2n bits to n bits,

define (ˆGen, ĥ) to be a modification where Ĝen runs Gen to obtain s

and in addition chooses k ← {0, 1}n. Furthermore, ĥs,k(x) = hs(k‖x).

Define a message authentication code based on (ˆGen, ĥ) by computing

Macs,k(x) = ĥs,k(x) and Vrfy in the natural way.

134 Introduction to Modern Cryptography

We have the following theorem:

THEOREM 4.14 Let (Gen, h) be a fixed-length hash function and let
(Gen, H) be a hash function derived from it using the Merkle-Damg̊ard trans-

form. Assume that the secretly-keyed (ˆGen, Ĥ) defined as above is collision-

resistant, and that the secretly keyed (ˆGen, ĥ) as defined above is a secure
fixed-length message authentication code. Then, NMAC described in Con-
struction 4.13 is a secure (arbitrary-length) message authentication code.

We will not present a formal proof of this theorem here. Rather, an almost
identical proof is given later in Section 12.4 in the context of digital signatures
(see Theorem 12.5). It is a straightforward exercise to translate that proof
into one that works here as well.

For now, we will be content to sketch the idea behind the proof of The-
orem 4.14. Assume, by contradiction, that a polynomial-time adversary A
manages to forge a MAC. Recall that A is given an oracle and can ask for a
MAC on any message it wishes. Then, it is considered to successfully forge if
it outputs a valid MAC tag on any message that it did not ask its oracle. Let
m∗ denote the message for which A produces a forgery and let Q denote the
set of queries it made to its oracle (i.e., the set of messages that for which it
obtained a MAC tag). There are two possible cases:

1. Case 1 – there exists a message m ∈ Q such that Hs
k2

(m∗) = Hs
k2

(m):
in this case, the MAC tag for m equals the MAC tag for m∗ and so
clearly A can successfully forge. However, this case directly contradicts
the assumption that Hk is collision resistant because A found distinct
m and m∗ for which Hs

k2
(m∗) = Hs

k2
(m).

2. Case 2 – for every message m ∈ Q it holds that Hs
k2

(m∗) 6= Hs
k2

(m):
Define Q′ = {Hs

k2
(m) | m ∈ Q}. The important observation here is

that the message m∗ for which the MAC forgery is formed is such that
Hs

k2
(m∗) /∈ Q′. Thus, we can consider the attack by A to be a MAC

attack on hs
k1

where the messages are all formed as Hs
k2

(m) for some m,
and the message for which the forgery is generated is Hs

k2
(m∗). In this

light, we have that A successfully generates a MAC forgery in the fixed-
length message authentication code hs

k. This contradicts the assumption
that hs

k is a secure MAC.

Once again, for a formal proof of this fact, see the proof of Theorem 12.5 (the
only modifications necessary are to replace “signature scheme” with “message
authentication code”).

Security assumptions. We remark that if the inner hash function is as-
sumed to be collision resistant (in the standard sense), then no secret key k2

is needed. The reason why NMAC (and HMAC below) were designed with
secret keying for the inner function is that it allows us to make a weaker

Message Authentication Codes and Collision-Resistant Hash Functions 135

assumption on the security of Hs. Specifically, even if it is possible to find
collisions in Hs, it does not mean that it is possible to find collisions in the
secretly keyed version Hs

k . Furthermore, even if it is possible to find collisions,
notice that the attacker cannot compute millions of hashes by itself but must
query its MAC oracle (in real life, this means that it must obtain these values
from the legitimately communicating parties). To make its life even harder,
the attacker does not even receive Hs

k2
(x); rather it receives hs

k1
(Hs

k2
(x)) that

at the very least hides much of Hs
k2

(x).
Despite the above, it is not clear that the assumption that Hs

k is collision
resistant is significantly “better” than the assumption that Hs is collision
resistant. For example, the new attacks on MD5 and other hash functions
that we mentioned above work for any IV . Furthermore, the prefix of any
message in a Merkle-Damg̊ard hash function can essentially be looked at as
an IV . Thus, if it is possible to obtain a single value Hs

k(x) for some x,
then one can define IV = Hs

k(x). Then, a collision in Hs
IV can be used to

derive a collision in Hs
k , even though a secret key k is used. We reiterate that

in NMAC, the adversary actually only receives hs
k1

(Hs
k2

(x)) and not Hs
k2

(x).
Nevertheless, the statement of security in Theorem 4.14 does not use this fact
(and currently it is not known how to utilize it).

4.7.2 HMAC

The only disadvantage of NMAC is that the IV of the underlying hash
function must be modified. In practice this can be annoying because the IV
is fixed by the function specification and so existing cryptographic libraries
do not enable an external IV input. Essentially, HMAC solves this problem
by keying the compression and hash functions by concatenating the input to
the key. Thus, the specification of HMAC refers to an unkeyed hash function
H . Another difference is that HMAC uses a single secret key, rather than two
secret keys.

As in NMAC, let H be a hash function of the Merkle-Damg̊ard type, and
let h be the compression function used inside H . For the sake of concreteness
here, we will assume that h compresses its input by exactly one half and so its
input is of length 2n (the description of HMAC depends on this length and
so must be modified for the general case; we leave this for an exercise). The
HMAC construction uses two (rather arbitrarily chosen) fixed constants opad

and ipad. These are two strings of length n (i.e., the length of a single block
of the input to H) and are defined as follows. The string opad is formed by
repeating the byte 36 in hexadecimal as many times as needed; the string ipad

is formed in the same way using the byte 5C. The HMAC construction, with
an arbitrary fixed IV , is as follows (recall that ‘‖’ denotes concatenation):

We stress that “k ⊕ ipad ‖ x” means that k is exclusively-ored with ipad

and the result is concatenated with x. Construction 4.15 looks very different
from Construction 4.13. However, as we will see, it is possible to view HMAC
as a special case of NMAC. First, assume that hs

k with a secret k behaves like

136 Introduction to Modern Cryptography

CONSTRUCTION 4.15 HMAC.

The HMAC construction is as follows:

• Gen(1n): upon input 1n, run the key-generation for the hash func-
tion obtaining s, and choose k← {0, 1}n.

• Mack(m): upon input (s, k) and x ∈ {0, 1}∗, compute

HMACs
k(x) = Hs

IV

(
k ⊕ opad ‖ HIV

(
k ⊕ ipad ‖ x

))

and output the result.

• Vrfyk(m, t): output 1 if and only if t = Mack(m).

a pseudorandom function (note that SHA-1 is often used as a pseudorandom
generator in practice and so this is believed to be the case). Now, the first step
in the computation of the inner hash Hs

IV (k ⊕ ipad ‖ x) is z1 = hs(IV ‖ k ⊕
ipad). Likewise, the first step in the computation of the outer hash is z ′1 =
hs(IV ‖ k⊕opad). Looking at h as a pseudorandom function, this implies that
hs(IV ‖ k⊕ ipad) and hs(IV ‖ k⊕opad) are essential different pseudorandom
keys k1 and k2. Thus, denoting k1 = hs(IV ‖ k⊕ ipad) and k2 = hs(IV ‖ k⊕
opad) we have

HMACs
k(x) = Hs

IV

(
k ⊕ opad ‖ H

(
k ⊕ ipad ‖ x

))
= Hs

k1
(Hs

k2
(x)).

Notice now that the outer application of H is to the output of Hs
k2

(x) and so
is just a single computation of hs. We therefore conclude that

HMACk(x) = hs
k1

(Hs
k2

(x))

which is exactly NMAC. In order to formally restate the theorem of NMAC
for HMAC, we just need to assume that the key derivation of k1 and k2 using
ipad and opad yields two pseudorandom keys, and everything else remains the
same. We formally state this by defining the function G by

G(k) = hs(IV ‖k ⊕ opad) ‖ hs(IV ‖k ⊕ ipad)

and requiring that it be a pseudorandom generator with expansion factor 2n
(see Definition 3.15 in Chapter 3). Observe that the generator doubles its
length and so produces two pseudorandom keys each of length n from a single
random key of length n. Keying the hash functions as we have described
above, we have the following:

THEOREM 4.16 Assume that (Gen, H), (ˆGen, Ĥ), (Gen, h) and (ˆGen, ĥ)
are all as in Theorem 4.14. In addition, assume that G as defined above is a
pseudorandom generator. Then, HMAC described in Construction 4.15 is a
secure (arbitrary-length) message authentication code.

Message Authentication Codes and Collision-Resistant Hash Functions 137

HMAC in practice. HMAC is an industry standard and is widely used in
practice. It is highly efficient and easy to implement, and is supported by a
proof of security (based on assumptions that are believed to hold for all hash
functions in practice that are considered collision resistant). The importance
of HMAC is partially due to the timeliness of its appearance. When HMAC
was presented, many practitioners refused to use CBC-MAC (with the claim
that is is “too slow”) and instead used heuristic constructions that were often
insecure. For example, a MAC was defined as H(k‖x) where H is a collision-
resistant hash function. It is not difficult to show that when H is constructed
using Merkle-Damg̊ard, this is not a secure MAC at all.

4.8 * Achieving Chosen-Ciphertext Secure Encryption

In Section 3.7, we introduced the notion of CCA security. In this section we
will use message authentication codes (and CPA secure encryption) in order
to construct a CCA-secure private-key encryption scheme.

Constructing CCA-secure encryption schemes. In order to achieve
CCA-security, we will construct an encryption scheme with the property that
the adversary will not be able to obtain any valid ciphertext that was not
generated by the legitimate parties. This will have the effect that the de-
cryption oracle will be rendered useless. Given this intuition, it is clear why
message authentication codes help. Namely, our construction works by first
encrypting the plaintext message, and then applying a MAC to the resulting
ciphertext. This means that only messages generated by the communicating
parties will be valid (except with negligible probability).

Let ΠE = (GenE , Enc, Dec) be a CPA-secure encryption scheme and ΠM =
(GenM , Mac, Vrfy) a secure message authentication code. The construction is
as follows:

CONSTRUCTION 4.17 CCA-secure encryption.

Define a CCA-secure encryption scheme as follows:

• Gen′(1n): upon input 1n, choose k1, k2 ← {0, 1}n

• Enc′k(m): upon input key (k1, k2) and plaintext message m, com-
pute c = Enck1 (m) and t = Mack2 (c) and output the pair (c, t)

• Dec′k(c, t): upon input key (k1, k2) and ciphertext (c, t), first verify
that Vrfyk2

(c, t) = 1. If yes, then output Deck1(c); if no, then
output ⊥.

138 Introduction to Modern Cryptography

Before stating and proving the security of this construction, we introduce
an additional requirement on the MAC scheme, called unique tags. Simply,
a message authentication code has unique tags if for every k and every m,
there is a single value t such that Mack(m) = t. Note that the fixed-length
MAC of Construction 4.3 has unique tags, whereas the variable-length MAC
of Construction 4.5 does not. Nevertheless, this is not really a limitation
because both the CBC-MAC and HMAC constructions have unique tags. We
are now ready to state the theorem.

THEOREM 4.18 Assume that ΠE = (GenE , Enc, Dec) is a CPA-secure
encryption scheme and that ΠM = (GenM , Mac, Vrfy) is a secure message
authentication code with unique tags. Then, Construction 4.17 is a CCA-
secure encryption scheme.

PROOF The idea behind the proof of this theorem is as follows. Since
(GenM , Mac, Vrfy) is a secure message authentication code, we can assume
that all queries to the decryption oracle are invalid, unless the queried ci-
phertext was previously obtained by the adversary from its encryption oracle.
Therefore, the security of the scheme Π′ = (Gen′, Enc′, Dec′) in Construc-
tion 4.17 is reduced to the CPA-security of (GenE , Enc, Dec) (because the
decryption oracle is effectively useless). In more detail, we first prove that
except with negligible probability, the only valid queries made by the adver-
sary to the decryption oracle are ciphertexts that were previously obtained
from the encryption oracle. Then, given this claim, we prove that if the
CCA-secure scheme is not secure, then neither is the underlying CPA-scheme
(GenE , Enc, Dec). This is due to the fact that an adversary for the CPA-secure
scheme can actually simulate a decryption oracle for the CCA adversary. This
simulation works by returning ⊥ if the received ciphertext was never queried
before, and returning the appropriate message if the ciphertext was generated
by querying the encryption oracle. The validity of this simulation follows from
the above claim. We now proceed to the formal proof.

Let A be any probabilistic polynomial-time CCA adversary attacking Con-
struction 4.17. Define valid-queryA,Π′(n) to be the event that in the experi-
ment PrivKcca

A,Π′(n), the adversary A generates a query (c, t) to the decryption
oracle that was not obtained from the encryption oracle and does not result
in an oracle reply ⊥. We claim that Pr[valid-queryA,Π′(n)] is at most neg-
ligible. Intuitively, this is due to the fact that if the oracle does not reply ⊥,
then t is a valid MAC tag for c. Thus, if (c, t) was not obtained by querying
the encryption oracle, this means that A must have forged a MAC. Formally,
we prove that if the probability that valid-query occurs is non-negligible,
then we can construct an adversary Amac that breaks the MAC as follows.
Let q(·) be a polynomial that upper-bounds the running-time of A (and thus
the number of oracle queries it makes). Then, adversary Amac, interacting in
Mac-forgeAmac,ΠM

(n), chooses a random key k1 for Enc and a random value

Message Authentication Codes and Collision-Resistant Hash Functions 139

i ← {1, . . . , q(n)}, and invokes the CCA-adversary A. Adversary Amac then
simulates the encryption and decryption oracles for A. The way it does this is
to use k1 and its MAC-generating oracle to simulate the encryption oracle for
A. Regarding the decryption oracle, all but the ith query will be assumed to
be invalid, and Amac will “hope” that the ith query is valid. In this case, Amac

will hope to have obtained a forged tag. More specifically, when A queries
the encryption oracle with m, adversary Amac computes c = Enck1(m) and
requests a tag t for c. Adversary Amac then returns the pair (c, t) to A as its
oracle reply. In contrast, in every decryption oracle query (c, t) from A apart
from the ith one, adversary Amac first checks if (c, t) was ever generated from
an encryption query. If yes, Amac returns the plaintext m that was queried
by A when (c, t) was generated. If not, Amac returns ⊥. In contrast, for the
ith decryption oracle query (c, t), adversary Amac outputs (c, t) as its MAC
forgery and halts. (We remark that the generation of the challenge cipher-
text from the pair (m0, m1) is also carried out by Amac for A as in the CCA
experiment.)

Clearly Amac runs in probabilistic polynomial-time. We now analyze the
probability that Amac generates a good forgery, and so succeeds in Mac-forge.
By our contradicting assumption, with non-negligible probability, adversary
A generates a query (c, t) to the decryption oracle that was not obtained
from the encryption oracle, and does not return ⊥. We remark that since
(GenM , Mac, Vrfy) has unique tags, it follows that the query c was never asked
by Amac to its MAC-tag oracle (because (c, t) was not obtained from an en-
cryption query and there is only a single possible t that is a valid MAC tag
for c). Therefore, such a pair (c, t) is a “good forgery” for Amac. Now, if all
the decryption oracle queries generated by A up until the ith one were indeed
invalid, then the simulation by Amac for A up until the ith query is perfect.
Furthermore, the probability that the ith query is the first valid one generated
by A is at least 1/q(n) because A makes at most q(n) oracle queries, and one
of these is the first valid one. Therefore, the probability that Amac succeeds in
Mac-forge is at least 1/q(n) times the probability that the valid-query event
occurs. Since Amac can succeed in Mac-forge with at most negligible proba-
bility, it follows that valid-query occurs with at most negligible probability.
That is, we have that for some negligible function negl,

Pr
[
valid-queryA,Π′(n)

]
< negl(n).

Given that valid-query occurs with at most negligible probability, we now
show that Construction 4.17 is CCA-secure. In this part of the proof, we
reduce the security to the CPA-security of (GenE , Enc, Dec). Specifically, let
A be any probabilistic polynomial-time adversary for PrivKcca. We use A to
construct an adversary Aenc for the CPA experiment with (GenE , Enc, Dec).
Adversary Aenc chooses a key k2 and invokes the adversary A. Whenever A
asks an encryption query m, adversary Aenc queries its encryption oracle with
m and receives back some c. Then Aenc computes t = Mack2(c) and hands A
the pair (c, t). Whenever A asks for a decryption query (c, t), Aenc checks if

140 Introduction to Modern Cryptography

(c, t) was generated in a previous encryption query. If yes, Aenc hands A the
value m that was queried when (c, t) was generated. If no, Aenc hands A the
response ⊥. When A outputs a pair (m0, m1), adversary Aenc outputs the
same pair and receives back a challenge ciphertext c. As above, Aenc hands
A the challenge ciphertext (c, t) where t = Mack2(c). Notice that Aenc does
not need a decryption oracle because it assumes that any new query is always
invalid. Furthermore, Aenc runs in probabilistic polynomial-time because it
just invokes A and adds MAC tags (that are efficiently computable because
Aenc chose k2). It is straightforward to see that the success of Aenc in PrivKcpa

when valid-query does not occur equals the success of A in PrivKcca when
valid-query does not occur. That is,

Pr[PrivK
cpa
Aenc ,ΠE

(n) = 1 ∧ ¬valid-queryA,Π′(n)]

= Pr[PrivKcca
A,Π′(n) = 1 ∧ ¬valid-queryA,Π′(n)]]

implying that

Pr[PrivK
cpa
Aenc,ΠE

(n) = 1] (4.5)

≥ Pr[PrivK
cpa
Aenc,ΠE

(n) = 1 ∧ ¬valid-queryA,Π′(n)]

= Pr[PrivKcca
A,Π′(n) = 1 ∧ ¬valid-queryA,Π′(n)]

Assume now by contradiction that there exists a non-negligible function ε
such that

Pr[PrivKcca
A,Π′(n) = 1] =

1

2
+ ε(n).

By the fact that Pr[valid-queryA,Π′(n)] is negligible, we have that it is
smaller than ε(n)/2. This in turn implies that

Pr[PrivKcca
A,Π′(n) = 1 ∧ valid-queryA,Π′(n)] < ε(n)/2

and so

Pr[PrivKcca
A,Π′(n) = 1] = Pr[PrivKcca

A,Π′(n) = 1 ∧ ¬valid-queryA,Π′(n)]

+ Pr[PrivKcca
A,Π′(n) = 1 ∧ valid-queryA,Π′(n)]

< Pr[PrivKcca
A,Π′(n) = 1 ∧ ¬valid-queryA,Π′(n)] +

ε(n)

2
.

Rearranging the above, and using the fact that A succeeds in PrivKcca with
probability 1/2 + ε(n), we have that

Pr[PrivKcca
A,Π′(n) = 1 ∧ ¬valid-queryA,Π′(n)] > Pr[PrivKcca

A,Π′(n) = 1]− ε(n)

2

=
1

2
+

ε(n)

2
.

Combining this with Equation (4.5), we have that

Pr[PrivK
cpa
Aenc ,ΠE

(n) = 1] >
1

2
+

ε(n)

2

Message Authentication Codes and Collision-Resistant Hash Functions 141

implying that Aenc succeeds in PrivKcpa with non-negligible advantage over
1/2. Since this contradicts the CPA-security of ΠE = (GenE , Enc, Dec), we
conclude that Construction 4.17 is CCA-secure.

CCA-security and unique tags. If the MAC scheme does not have unique
tags, then it may be easy to break the CCA scheme by simply modifying the
MAC tag of the challenge ciphertext so that it is different to the given one,
but is still valid. In such a case, it is possible to query the decryption oracle
with the modified ciphertext, and the plaintext mb will be returned. This
seems rather artificial and actually demonstrates that full CCA-security may
be an overkill, possibly motivating the search for meaningful relaxations of
the notion. In any case, in the private-key encryption setting we have highly
efficient constructions (i.e., Construction 4.17) and thus there is no reason to
use relaxations.

CCA-security in real life. In some sense, Construction 4.17 is somewhat
unsatisfying. It appears to bypass the meaning of CCA-security by preventing
the adversary from ever using its decryption oracle. However, this is exactly
the point! If in real life the adversary ever manages to achieve the effect of a
decryption oracle, then it can only be used to obtain decryptions of ciphertexts
sent by the legitimate parties. (We remark that this is unavoidable in any
case. Furthermore, in real life, the decryption oracle that an adversary can
obtains is typically limited and an adversary would usually not be able to learn
anything by feeding captured ciphertexts. See the discussion on CCA-security
in Section 3.7.)

4.9 * Obtaining Privacy and Message Authentication

In Chapter 3, we studied how it is possible to encrypt messages, thereby
guaranteeing privacy. Until now in this chapter, we have showed how to
generate secure message authentication codes, thereby guaranteeing data au-
thenticity or integrity. However, sometimes we actually need both privacy
and authentication. It may be tempting to think that if we use a secure en-
cryption scheme and a secure MAC, then any combination of them should
provide both privacy and authentication. However, this is unfortunately not
at all the case. In general, even excellent cryptographic tools can be applied
in a way so that the result is not secure. The unfortunate state of affairs is
actually that it is very hard to combine cryptographic tools correctly. Thus,
unless a specific combination has been proven secure, it is unwise to use it.

There are three common approaches to combining encryption and message
authentication. We will consider each of the three. Let (GenE , Enc, Dec) be

142 Introduction to Modern Cryptography

an encryption scheme and let (GenE , Mac, Vrfy) be a message authentication
code. We will denote by k1 an encryption key, and by k2 a MAC key. The
three approaches are:

1. Encrypt-and-authenticate: In this method, encryption and message au-
thentication are computed and sent separately. That is, given a message
m, the final message is the pair (c, t) where:

c = Enck1(m) and t = Mack2(m)

2. Authenticate-then-encrypt: Here a MAC tag t is first computed, and
then the message and tag are encrypted together. That is, the message
is c, where:

c = Enck1(m, t) and t = Mack2(m)

Note that t is not sent separately to c, but is rather incorporated into
the plaintext.

3. Encrypt-then-authenticate: In this case, the message m is first encrypted
and then a MAC tag is computed over the encrypted message. That is,
the message is the pair (c, t) where:

c = Enck1(m) and t = Mack2(c)

In this section we analyze each of these approaches. We stress that our anal-
ysis follows an all or nothing approach. That is, we require a scheme that
will provide both privacy and authentication for every possible secure encryp-
tion scheme and message authentication code. Thus, our analysis will reject
any combination for which there exists even a single counter-example. For
example, we will show that “encrypt and authenticate” is not necessarily se-
cure. This does not mean that for every encryption scheme and MAC, the
combination is not secure. Rather it means that there exists an encryption
scheme and MAC for which the combination is not secure. The reason that
we insist that security should hold for all schemes is due to the fact that it
should be possible to replace any secure encryption scheme with another one
(and likewise MAC) without affecting the security of applications that use
the scheme. We remark that such replacements are common in practice when
cryptographic libraries are modified or updated, or standards are modified (as
in the transition from 3DES to AES – see Section 5).

Encryption only versus encryption and authentication. Before pro-
ceeding, we briefly discuss the issue of when encryption alone is enough, and
when it is necessary to both encrypt and authenticate. Clearly, when both
privacy and integrity are needed, then combined encryption and authentica-
tion is essential. Thus, most online tasks, and clearly any online purchase
or bank transaction, needs to be encrypted and authenticated. In general,
however, it is not always clear when authentication is needed in addition to

Message Authentication Codes and Collision-Resistant Hash Functions 143

secrecy. For example, when encrypting files on a disk, is it necessary to also
authenticate them? At first sight, one may think that since disk encryption
is used to prevent an attacker from reading secret files, there is no need to
authenticate. However, it may be possible to inflict significant damage if fi-
nancial reports and so on are modified (e.g., thereby causing a company to
mistakenly publish false reports). We believe that it is best practice to al-
ways encrypt and authenticate by default; encryption-only should not be used
unless you are absolutely sure that no damage can be caused by undetected
modification of your files. There are also surprising cases where the lack of
authentication can result in a breach of privacy, especially when it comes to
network traffic.

The building blocks. The first question to be considered when discussing
combinations of encryption schemes and message authentication codes, is
what level of security is required from the encryption scheme and message
authentication code that are used in the combination. We will consider the
case that the encryption scheme is indistinguishable under chosen-plaintext
attacks and the message authentication code is existentially unforgeable under
chosen-message attacks. As will be shown below, this suffices for obtaining
chosen-ciphertext security together with existential unforgeability.

Security requirements. In order to analyze which of the combinations of
encryption and authentication are secure, we have to first define what we mean
by a “secure combination”. The best approach for this is to model in general
what we mean by a secure communication channel and then prove that a
given combination meets this definition. Unfortunately, providing a formal
definition of a secure channel is beyond the scope of this book. We therefore
provide a more “naive” definition that simply refer to indistinguishability in
the presence of chosen-ciphertext attacks and existential unforgeability in the
presence of chosen-message attacks. Nevertheless, the definition and analysis
suffice for understanding the key issues at hand.

Let (GenE , Enc, Dec) be an encryption scheme and let (GenE , Mac, Vrfy)
be a message authentication code. A combination of (GenE , Enc, Dec) and
(GenE , Mac, Vrfy) is a tuple of algorithms (Gen′, EncMac′, Dec′, Vrfy′) as fol-
lows:

• Key generation Gen′: upon input 1n, the key-generation algorithm G
chooses k1, k2 ← {0, 1}n, and outputs (k1, k2).

• The combination algorithm EncMac′: the combination algorithm re-
ceives a pair of keys (k1, k2) and a message m and outputs a value c
that is derived by applying some combination of Enck1(·) and Mack2(·).

• Verification algorithm Vrfy′: the verification algorithm receives a pair
of keys (k1, k2) and a value c, and applies some combination of Enck1(·)
and Mack2(·). At the end, Vrfy′ outputs 1 or 0. (Notice that unlike in

144 Introduction to Modern Cryptography

the MAC setting, Vrfy′ does not receive a plaintext message as well as
a tag. Rather, all the necessary information is contained in c.)

• Decryption algorithm Dec′: the decryption algorithm receives a pair of
keys (k1, k2) and a value c, and applies some combination of Enck1(·)
and Mack2(·). At the end, Dec′ outputs some value m.

The non-triviality requirement is that for every n and every pair of keys
k1, k2 ∈ {0, 1}n, and for every value m ∈ {0, 1}∗,

Dec′k1,k2
(EncMac′k1,k2

(m)) = m and Vrfy′k1,k2
(EncMac′k1,k2

(m)) = 1

As we have mentioned, our definition of security is simple. We require that
the combination (Gen′, EncMac′, Dec′, Vrfy′) is both a CCA-secure encryption
scheme and a secure MAC. Notice that we actually “boost” security, because
we begin only with a CPA-secure encryption scheme. We have the following
definition:

DEFINITION 4.19 We say that (Gen′, EncMac′, Dec′, Vrfy′) is a secure

combination of encryption and authentication if (Gen′, EncMac′, Dec′) has in-
distinguishable encryptions under chosen-ciphertext attacks and the scheme
(Gen′, EncMac′, Vrfy′) is existentially unforgeable under chosen message at-
tacks.

Definition 4.19 essentially says that a combination is secure if it does not
harm the encryption security or the message authentication security. That is,
each goal holds separately. We now analyze the three approaches for combin-
ing encryption and authentication mentioned above.

Encrypt-and-authenticate. As we have mentioned, in this approach an en-
cryption and message authentication code are computed and sent separately.
That is, given a message m, the final message is the pair (c, t) where

c = Enck1(m) and t = Mack2(m)

This combination does not yield a secure encryption scheme. In order to see
this, first notice that at least by definition, a secure MAC does not necessarily
imply privacy. Specifically, if (GenE , Mac, Vrfy) is a secure message authenti-
cation code, then so is the scheme defined by Mac′k(m) = (m, Mack(m)). The
important point is that Mac′ reveals the message m completely. Therefore,
for any encryption scheme, the combination (Enck1(m), Mac′k2

(m)) completely
reveals m and is therefore not indistinguishable. Note that this is true even
if (GenE , Enc, Dec) is itself CCA-secure, rather than only being CPA-secure.

This example is enough because by our requirements, a secure combination
must be secure for any instantiation of the underlying building blocks. Nev-
ertheless, a counter-example for this combination exists for message authenti-
cation codes used in practice. In Exercise 4.15 you are asked to demonstrate
this fact.

Message Authentication Codes and Collision-Resistant Hash Functions 145

Authenticate-then-encrypt. In this approach, a MAC tag t = Mack2(m)
is first computed, and then the pair (m, t) is encrypted. Finally, the ciphertext
Enck1(m, Mack2(m)) is sent. We will now show that this combination is also
not necessarily secure. The counter-example here is somewhat contrived but
as we will discuss below, it suffices to show that the method should not be
used. The counter-example uses the following encryption scheme:

• Let Transform(m) be as follows: any 0 in m is transformed to 00, and
any 1 in m is transformed arbitrarily to 01 or 10.4 The decoding of
a message works by mapping 00 back to 0, and 01 and 10 back to 1.
However, a pair of bits 11 will result in decoding the message back to ⊥
(irrespective of the other bits).

• Define Enc′k(m) = Enck(Transform(m)), where Enc is a stream cipher
that works by generating a new pseudorandom stream for each message
to encrypt, and then XORs the stream with the input message. For
example, this can be obtained by using a pseudorandom function (secure
block cipher) in CTR mode, with a new random IV for each encryption.
Note that both the encryption schemes Enc and Enc′ are CPA secure.

We now show that the combination of the above encryption scheme with any
MAC is not secure in the presence of chosen-ciphertext attacks. In fact, the
attack that we will show works as long as an adversary can find out if a given
ciphertext is valid, even if it cannot obtain full decryptions. (As we have
discussed in Section 4.8, such an attack is very realistic.)

Let A be an adversary for the CCA-experiment that works as follows. Given
a challenge ciphertext c = Enc′k1

(Transform(m, Mack2(m))), the attacker sim-
ply flips the first two bits of c (i.e., takes their complement), and verifies if
the resulting ciphertext is valid. (Technically, in the CCA setting this query
can be made to the decryption oracle. However, the adversary only needs
to know if the ciphertext is valid or not, and so a weaker oracle would also
suffice.) If the ciphertext is valid, then the adversary knows that the first bit
of the message sent equals 1. This is due to the fact that if the first bit of m
equals 1, then the first two bits of Transform(m) can be 01 or 10. Thus, the
complement of these two bits still maps to the same initial bit 1. In contrast
if the ciphertext is not valid, then the adversary knows that the first bit of
m equals 0. This is due to the fact that 0 is mapped to 00 and so flipping
these bits results in 11, which is an incorrect encoding. Thus, the plaintext is
⊥ 6= m but the MAC is still computed over m.

We remark that flipping bits in the ciphertext results in exactly the same
effect in the plaintext due to the fact that Enc′ is based on a stream cipher.

4We remark that this encoding is contrived. However, encodings of initial inputs are often
used and we would not like the security of a cryptographic scheme to depend on which
encoding is used, if any.

146 Introduction to Modern Cryptography

We also note that this attack can be carried out on each bit separately, if
desired, with the result being a full decryption of the ciphertext.

We stress that this counter-example demonstrates that the authenticate-
then-encrypt combination is not always secure. However, there are some
instantiations that are secure (for example, the specific encryption scheme
and MAC used within SSL are secure); see [86]. Nevertheless, as mentioned
above, it is bad practice to use a methodology whose security depends on
specific implementations.

Encrypt-then-authenticate. In this approach, an encryption is first com-
puted, and then the MAC is computed over the ciphertext. That is, the
message is the pair (c, t) where

c = Enck1(m) and t = Mack2(c)

We have the following theorem:

THEOREM 4.20 Let (GenE , Enc, Dec) be any encryption scheme that
is secure under a chosen plaintext attack, and let (GenM , Mac, Vrfy) be any
message authentication code that is existentially unforgeable under chosen-
message attacks. Then, (Gen′, EncMac′, Dec′, Vrfy′) derived by the encrypt-
then-authenticate methodology with these schemes is a secure combination of
encryption and authentication.

Note that (GenE , Enc, Dec) is only CPA-secure, but the combination is
CCA-secure. This should not come as a surprise given Construction 4.17 that
follows the encrypt-then-authenticate methodology and is CCA-secure. We
do not present the proof of this theorem and leave it as an exercise. The fact
that the combination is CCA-secure has already been proven in Theorem 4.18.
The fact that it is a secure MAC can be proven by a rather straightforward
reduction to the MAC scheme (in a similar way to the first half of the proof
of Theorem 4.18).

Secure combinations versus CCA-security. We note that although we
use the same construction for achieving CCA-security and combining privacy
and encryption, the security goals in both cases are different. Namely, in
the setting of CCA-security, we are not necessarily interested in obtaining
authentication. Rather, we wish to ensure privacy even in a strong adversar-
ial setting where the adversary is able to obtain some information about a
plaintext from a given ciphertext. In contrast, when considering secure com-
binations, we are interested in both goals of CCA-security and authenticity.
Clearly, as we have defined it, a secure combination provides CCA-security.
However, the opposite direction is not necessarily true.

Independent keys. We conclude by stressing a basic principle of security

Message Authentication Codes and Collision-Resistant Hash Functions 147

and cryptography: different security goals should always use different keys.5

That is, if an encryption scheme and a message authentication scheme are
both needed, then independent keys should be used for each one. In order to
illustrate this here, consider what happens to the encrypt-then-authenticate
methodology when the same key k is used both for the encryption scheme
(GenE , Enc, Dec) and for the message-authentication code (GenE , Mac, Vrfy).
We provide a concrete example using a pseudorandom-permutation based
encryption scheme and a pseudorandom-permutation based MAC. That is, let
F be a pseudorandom permutation. Then, it follows that both F and F−1 are
pseudorandom permutations. Define Enck(m) = Fk(r‖m) for m ∈ {0, 1}n/2

and a random r ← {0, 1}n/2, and define Mack(c) = F−1
k (c). (This encryption

scheme is different from the one we defined in Construction 3.25. Nevertheless,
using a similar analysis it can be shown to be CPA-secure. In fact, it is even
CCA-secure.) Clearly, Enc is CPA-secure and Mac is a secure MAC. However,
the combined encryption and authentication of a message m with the same
key k yields:

Enck(m), Mack(Enck(m)) = Fk(m‖r), F−1
k (Fk(m‖r)) = Fk(m‖r), (m‖r)

Thus, the message m is revealed in the output.

References and Additional Reading

The definition of security for message authentication codes was adapted
by Bellare et al. [17] from the definition of security for digital signatures
given by Goldwasser et al. [71] (see Chapter 12). The basic paradigm of
using pseudorandom functions for message authentication was introduced by
Goldreich et al. [68], and Construction 4.5 for extending a fixed-length MAC
to a variable-length MAC was shown by Goldreich in [66]. An alternative
of extending a fixed-length MAC to a variable-length MAC using collision-
resistant hash functions is presented in the context of digital signatures in
Section 12.4. CBC-MAC was standardized in the early ’80s [133, 9] and
was later formally analyzed and proven secure by Bellare et al. [17] the proofs
include both the fixed-length case and the secure extensions to variable-length
messages). The NMAC and HMAC constructions were introduced by Bellare
et al. [14] and later became a standard [104].

Collision-resistant hash functions were formally defined by Damg̊ard [46].
The Merkle-Damg̊ard transform was introduced independently by Damg̊ard
and Merkle [47, 96]. For further information about SHA-1 and MD5, see, e.g.,

5We note that it is sometimes possible to use the same key for different goals; however, an
explicit proof is needed for such cases.

148 Introduction to Modern Cryptography

the textbook by Kaufman, et al. [84]. Note, however, that their treatment
pre-dates the recent attacks by Wang et al. [129, 128]. For other interest-
ing applications of collision-resistant hash functions in computer security, see
Kaufman et al. [84] (but beware that in many cases the security arguments
are heuristic only). There are many hash functions that appear in the litera-
ture; many have been broken and some have not. Up-to-date information is
maintained at the “Hash Function Lounge”.6

The notion of chosen-ciphertext attacks was first formally considered by
Naor and Yung [99] and then by Rackoff and Simon [109]. The method of en-
crypting and then applying a MAC for achieving CCA-security was described
by Dolev et al. [52]. Analyses of the different ways of applying encryption and
message authentication for simultaneously achieving privacy and authentica-
tion were given by [18] and Krawczyk [86].

Exercises

4.1 Consider the following fixed-length MAC scheme with length parame-
ter `(n) = 2n − 2 that uses a pseudorandom function F . Algorithm
Gen chooses k ← {0, 1}n. Upon input m ∈ {0, 1}2n−2, algorithm Mac

outputs t = Fk(0‖m0)‖Fk(1‖m1). Algorithm Vrfy is defined in the nat-
ural way. Is (Gen, Mac, Vrfy) existentially unforgeable under a chosen
message attack? Prove your answer.

4.2 Consider a “CCA-type” extension of the definition of secure message
authentication codes where the adversary is provided with both a Mac

and Vrfy oracle.

(a) Provide a formal definition and explain why such a notion may
make sense.

(b) Show that when the Mac scheme is deterministic, your definition
is equivalent to Definition 4.2.

(c) Show that when the Mac scheme may be probabilistic, the defini-
tions are not equivalent. (That is, show that there exists a prob-
abilistic scheme that is secure by Definition 4.2 but not by your
definition.)

4.3 Prove that Construction 4.5 remains secure for each of the following
modifications:

6http://paginas.terra.com.br/informatica/paulobarreto/hflounge.html.

Message Authentication Codes and Collision-Resistant Hash Functions 149

(a) Instead of using a pseudorandom function, use any fixed-length
MAC with the appropriate parameters.

(b) Instead of including d in every block, set ti = Fk(r‖b‖i‖mi) where
b is a single bit such that b = 0 in all blocks but the last one, and
b = 1 in the last block. What is the advantage of this modification?

(c) Instead of outputting (r, t1, . . . , td), output (r,⊕d
i=1ti). What is

the advantage of this modification? (This is a more challenging
modification to prove.)

4.4 Prove that the basic CBC-MAC construction is not secure if a random
IV is used or if all the blocks are output (rather than one). Demonstrate
this even for the case of fixed-length messages. Try and find a real-life
scenario where the attack on the case of a random IV can be utilized.

4.5 Show that the basic CBC-MAC construction is not secure when consid-
ering messages of different lengths.

4.6 Provide formal definitions for second preimage resistance and preimage
resistance. Then formally prove that any hash function that is collision
resistant is second preimage resistant, and any hash function that is
second preimage resistant is preimage resistant.

4.7 Generalize the Merkle-Damg̊ard construction so that it can work for
any function that compresses by at least one bit. You should refer to a
general input length `′ and general output length `.

4.8 Let (Gen1, H1) and (Gen2, H2) be two hash functions. Define (Gen, H)
so that Gen runs Gen1 and Gen2 obtaining s1 and s2, respectively. Then,
Hs1,s2(x) = Hs1(x)‖Hs2(x).

(a) Prove that if at least one of (Gen1, H1) and (Gen2, H2) are colli-
sion resistant, then (Gen, H) is collision resistant. Why is such a
construction useful?

(b) Show that an analogous claim cannot be made regarding second
preimage and preimage resistance.

Hint: You may use contrived functions to demonstrate this.

4.9 Let (Gen, H) be a collision-resistant hash function. Is the function
(Gen, Ĥ) defined by Ĥs(x) = Hs(Hs(x)) necessarily collision resistant?

4.10 Provide a formal proof of Theorem 4.12 (i.e., describe and prove the
formal reduction).

4.11 For each of the following modifications to the Merkle-Damg̊ard trans-
form, determine whether the result is collision resistant or not. If yes,
provide a proof; if not, demonstrate an attack.

150 Introduction to Modern Cryptography

(a) Modify the construction so that the input length is not included at
all (i.e., output zB and not hs(zB‖L)).

(b) Modify the construction so that instead of outputting z = hs(zB‖L),
the algorithm outputs z = (zB‖L).

(c) Instead of using a fixed IV , choose IV ← {0, 1}n and define z0 =
IV . Then, set the output to be z = (IV, hs(zB‖L)).

(d) Instead of using a fixed IV , just start the computation from x1.
That is, define z1 = x1 and compute zi = hs(zi−1‖xi) for i =
2, . . . , B.

4.12 Provide a full and detailed specification of HMAC for arbitrary length
inputs and outputs `′ and ` of the underlying compression function.
Describe the instantiation of HMAC with SHA-1.

4.13 Before HMAC was invented, it was quite common to define a MAC by
Mack(m) = Hs(k‖m) where H is a collision-resistant hash function.
Show that this is not a secure MAC when H is constructed via the
Merkle-Damg̊ard transform.

4.14 Show that Construction 4.17 is CCA-secure even when the MAC of
Construction 4.5 is used (recall that this MAC does not have unique
tags). Try and come up with a general requirement for the MAC used
that includes those with unique tags and Construction 4.5.

Hint: The standard notion of a MAC forgery is that as m must not

have been queried to the oracle. Thus, if A queries m and receives back

t, then it is not considered a forgery if it outputs (m, t′) where t′ 6= t

and Vrfyk(m, t) = 1. Consider a stronger notion of forgery that state

that A must not even be able to output (m, t′) as above. That is, even

after seeing one valid MAC tag t for a message m it should be hard to

generate another valid MAC tag for m.

4.15 Show that for both the CBC-MAC and HMAC constructions, the encrypt-
and-authenticate method is not secure. In particular, show that it is not
CPA-secure or even indistinguishable for multiple messages and eaves-
dropping adversaries. Describe where this attack can be used in real
life. (You are not allowed to use encodings as for the authenticate-then-
encrypt method; there is a much simpler attack here.)

4.16 Prove Theorem 4.20.

Hint: The fact that the combination is CCA-secure has already been

proven in Theorem 4.18. The fact that it is a secure MAC can be proven

by a rather straightforward reduction to the MAC scheme, in a similar

way to the first half of the proof of Theorem 4.18.

Chapter 5

Pseudorandom Objects in Practice:
Block Ciphers

In previous chapters, we have studied how pseudorandom permutations (or
block ciphers, as they are often called) can be used to construct secure en-
cryption schemes and message authentication codes. However, one question
of prime importance that we have not yet studied is how pseudorandom per-
mutations are constructed in the first place. In fact, an even more basic
questions to ask is whether they even exist. We stress that the mere exis-
tence of pseudorandom functions and permutations (under widely-believed
assumptions) is within itself amazing. In Chapter 6 we study this question
from a theoretical point of view and show under what (minimal) assumptions
it is possible to construct pseudorandom permutations. In contrast, in this
chapter, we show how block ciphers (i.e., pseudorandom permutations) are
constructed in practice. We stress that unlike previously studied material,
there will be no formal proof or justification about why the constructions in
this chapter are secure. The reason for this is that the constructions presented
here are in fact heuristic and have no proof of security. Furthermore, there is
no known reduction of the security of these constructions to some other prob-
lem. Nevertheless, a number of the block ciphers that are used in practice
have withstood many years of public scrutiny and attempted cryptanalysis.
Given this fact, it is reasonable to just assume that these tried and tested
block ciphers are indeed pseudorandom permutations, and thus can be used
in our proven constructions of secure encryption and message authentication
codes.

One may wonder why it makes sense to rigorously prove the security of an
encryption scheme based on pseudorandom permutations, when in the end
the pseudorandom permutation is instantiated with a completely heuristic
construction. There are actually a number of reasons why this methodology
makes sense. We outline three of these reasons:

• A pseudorandom permutation is a relatively low-level primitive, mean-
ing that its security requirements are simple to understand and relatively
simple to test.1 This makes cryptanalysis of a candidate pseudorandom

1We remark that our categorization of a pseudorandom permutation as “low-level” is a rel-

ative one. Relative to the assumptions used in Chapter 6, pseudorandom permutations are

151

152 Introduction to Modern Cryptography

permutation easier, thus raising our confidence in its security if it is not
broken. (Compare the task of testing if a function behaves pseudoran-
domly to the task of testing if an encryption scheme provides security
in the presence of chosen-ciphertext attacks. We argue that the latter
is often more complex to analyze.)

• If a specific construction of a pseudorandom permutation is used and
later broken, it can be more easily replaced than if the high-level appli-
cation is broken. That is, if an encryption scheme uses a pseudorandom
permutation with a specific length (say 128 bits), then the permutation
can be replaced with any other construction of the same length without
any change to the input/output format of the higher-level encryption
scheme.

• Pseudorandom permutations have many applications (encryption, mes-
sage authentication and others). By proving the security of higher
level constructions that use pseudorandom permutations, we limit the
amount of heuristics used to a single realm. This also means that cryp-
tographers who design practical schemes can focus on constructing good
pseudorandom permutations, without thinking about the specific appli-
cation they will be used for.

We will now proceed to show how pseudorandom permutations are constructed
in practice.

Block ciphers as encryption schemes or pseudorandom permuta-
tions. In many textbooks and other sources on cryptography, block ciphers
are presented as encryption schemes. In contrast, we stress here that despite
their name, block ciphers should be viewed as pseudorandom permutations
and not as encryption schemes. Stated differently, we strongly advocate view-
ing block ciphers as basic building blocks for encryption (and other) schemes,
and not as encryption schemes themselves. From here on in this chapter we
will use the name “block cipher” in conformance with their popular name.
We hope that this will not cause confusion regarding what they really are.

We remark that this view is very widespread today and modern block ci-
phers are constructed with the aim of being pseudorandom permutations. In
order to see this, we diverge for a moment to the Advanced Encryption Stan-
dard (AES). The AES is a block cipher that was adopted in 2001 as a standard
by the National Institute of Standards and Technology in the USA. Due to its
importance, we will study it later in this chapter. At this point, we will just
note that it was chosen after a lengthy competition in which many algorithms
were submitted and analyzed. The call for candidate algorithms for the AES
stated the following under the section on “evaluation criteria”:

very high level. However, relative to encryption schemes via modes of operation and mes-
sage authentication codes, we consider the building block of a pseudorandom permutation
to be rather low level.

Pseudorandom Objects in Practice: Block Ciphers 153

The security provided by an algorithm is the most important fac-
tor in the evaluation. Algorithms will be judged on the following
factors:

1. Actual security of the algorithm compared to other submitted
algorithms (at the same key and block size).

2. The extent to which the algorithm output is indistinguishable
from a random permutation on the input block.

3. Soundness of the mathematical basis for the algorithm’s se-
curity.

4. Other security factors raised by the public during the evalu-
ation process, including any attacks which demonstrate that
the actual security of the algorithm is less than the strength
claimed by the submitter.

Notice that the second factor explicitly states that the AES must be a pseu-
dorandom permutation. Thus, as we have stated, modern block ciphers are
intended to be pseudorandom permutations. As such, they are suited for use
in all of the constructions that use pseudorandom permutations and functions
that we have seen so far in this book.

Block ciphers in practice and Definition 3.28. Although we are going to
consider block ciphers as pseudorandom permutations, practical constructions
of block ciphers do not quite meet the definition. Specifically, practical block
ciphers are typically only defined for one (or a few) different key and block
lengths. This is in contrast to Definition 3.28 that refers to all possible key
and block lengths. Nevertheless, we believe that the appropriate way to deal
with this discrepancy is to consider only the lengths specified by the block
cipher, and then to ensure that these lengths (or more exactly the values n
taken) are large enough to maintain pseudorandomness in the presence of
modern adversaries using modern powerful computers (and a large amount of
computing time).

The aim and outline of this chapter. We stress that the aim of this
chapter is not to teach how to construct secure block ciphers. On the con-
trary, we strongly believe that new (and proprietary) block ciphers should
neither be constructed nor used. There are excellent standardized block ci-
phers that are not patented, are highly efficient, and have undergone intensive
scrutiny regarding their security (this is true of both DES and AES that we
describe later in the chapter). Rather, the aim of this section is to provide a
feeling or intuition as to how modern block ciphers are constructed and why.
We will look at two different types of high-level constructions: substitution-
permutation networks (first introduced by Shannon) and Feistel structures
(introduced by Feistel). Following this, we will describe the DES and AES
block ciphers, but will not provide full detailed descriptions. In particular,
the descriptions that we provide here are not fully accurate and are definitely

154 Introduction to Modern Cryptography

not specifications that can be used for implementation. Given that our aim is
to provide intuition as to how modern block ciphers are constructed, we don’t
feel that much is gained by providing full detailed specifications.

5.1 Substitution-Permutation Networks

As we have mentioned, the main property of a block cipher is that it should
behave like a random permutation. Of course, a truly random permutation
would be perfect. However, for a block cipher with input and output length
of n bits, the size of the table needed for holding the random permutation is
n · 2n (actually, this is the size of the table needed for a random function, but
it is not much smaller for a random permutation). Thus, we need to somehow
construct a concise function that behaves like a random one.

The confusion-diffusion paradigm. In addition to his work on perfect se-
crecy, Shannon introduced a basic paradigm for constructing concise random-
looking functions. The basic idea is to break the input up into small parts
and then feed these parts through different small random functions. The
outputs of these random functions are then mixed together, and the process
is repeated again (for a given number of times). Each application of random
functions followed by mixing is called a round of the network (the construction
is often called a “network” and we keep this name for consistency with other
sources). Note that by using small random functions, the lack of structure
that is inherent to a random function is introduced into the construction, but
without the heavy expense.2 This paradigm introduced by Shannon is often
called the confusion-diffusion approach (in fact, Shannon himself coined these
terms in his original paper). Small random functions introduce “confusion”
into the construction. However, in order to spread the confusion throughout,
the results are mixed together, achieving “diffusion”.

In order to see why diffusion is necessary, consider a block-cipher Fk that
works by simply applying small random functions to each 8-bit portion of
the input. Now, let x and x′ be values that differ only in the first bit. It
follows that Fk(x) and Fk(x′) differ only in the first byte (because in all
other bytes x equals x′). In a truly random function Fk(x) and Fk(x′) should
look completely different, because each output value in a random function is
chosen uniformly and independently of all other output values. However, in

2Sixteen random functions with input/output of 8 bits each can be stored in only 16 · 8 · 28

bits, or 32 Kbits. This is in contrast with a random functions with input/output of 128 bits,
that requires 128 ·2128 bits to store. We note that this latter number has 40 digits, whereas
it is estimated that the number of atoms in Earth is a number with 49 digits. Thus, we
could never even build a disk large enough to store such a table.

Pseudorandom Objects in Practice: Block Ciphers 155

this imaginary block cipher where diffusion is not used, they are the same
except for in the first byte. Thus, such a block cipher is very far from a
pseudorandom function. The repeated use of confusion and diffusion ensures
that any small changes in the input will be mixed throughout and so the
outputs of similar inputs will look completely different.

Substitution-permutation networks. A substitution-permutation net-
work is a direct implementation of this paradigm. The “substitution” portion
refers to small random functions (much like the mono-alphabetic substitution
cipher studied in Section 1.3 that is actually a random 1–1 and onto function
of the alphabet), and “permutation” refers to the mixing of the outputs of
the random functions. In this context, “permutation” refers to a reordering
of the output bits (not to a 1–1 and onto function as we typically use it in
this book). The small substitution functions are called S-boxes and we call
the permutations that follow them mixing permutations. One question that
you may be asking yourselves is where does the secret key come in? There are
a number of possible answers to this, and different substitution-permutation
networks can use different methods. One possibility is to have the key spec-
ify the S-boxes and mixing permutations. Another possibility is to mix the
key into the computation in between each round of substitution-permutation
(recall that the substitution-permutation operation is repeated many times).
In this latter case, the S-boxes and mixing permutations are publicly known
(in accordance with Kerckhoffs’ principle; see Section 1.3). Our presentation
here is in accordance with the latter approach, where the key is mixed into
the intermediate results between each round. This is often just by a simple
XOR operation. That is, the key is XORed with the intermediate result after
each round of the network computation. We remark that typically it is not
the same key that is XORed each time. Rather, different keys are used. To
be more exact, the key to the block cipher is referred to as a master key,
and subkeys for each round are derived from it; this derivation procedure is
known as the key schedule. We remark that the key schedule is often very
simple and may work by just taking subsets of the bits, although complex
schedules can also be defined. See Figure ?? for the high-level structure of a
substitution-permutation network, and Figure ?? for a closer look at a single
round of such a network.

An important point to notice is that we have not specified at all how the
S-boxes and mixing permutations should be chosen. We have also not speci-
fied whether the S-boxes and mixing permutations are the same or different
in each round. We will not present design principles for the construction of
“good” S-boxes (with one exception below), and likewise will not describe
how the subkeys should be derived from the master key and how the mix-
ing permutations should be chosen. We do stress that these choices are what
determines whether the block cipher is trivially breakable or very secure. Nev-
ertheless, as we have mentioned, our aim in this chapter is not to teach how to
construct block ciphers. The contrary is true: we strongly believe that non-

156 Introduction to Modern Cryptography

experts (meaning those who do not have many many many years of experience
in this) should never attempt such a task.

Despite the above there are two design choices that we will mention. The
first is necessary for making the block cipher a permutation (i.e., a 1–1 and
onto function), and the other is a basic requirement for security. Both choices
relate to the S-boxes.

Design choice 1 – invertibility of the S-boxes. In a substitution-
permutation network, the S-boxes must be invertible. In other words, they
must be 1–1 and onto functions. The reason for this is that otherwise the
block cipher will not be a permutation (i.e., it will not be 1–1 and onto). In
order to see that making the S-boxes 1–1 and onto suffices, we show that
given this assumption it is possible to fully determine the input given any
output and the key. Specifically, we show that every round can be uniquely
inverted (yielding that the entire network can be inverted by working from
the end back to the beginning). For the sake of this description, we define a
round to consist of three stages: XORing of the subkey with the input to the
round, passing the input through the S-boxes, and mixing the result via the
mixing permutation. The mixing permutation can easily be inverted because
the permutation determines for every bit i in the input, the bit j where it
appears in the output (thus the jth bit is just reversed to the ith bit). Given
the output of the permutation, we therefore obtain the input to the permu-
tation, which is exactly the output of the S-boxes. Given the fact that the
S-boxes are 1–1 and onto functions, these too can be inverted by looking at
the table that defines them. We therefore obtain the input to the S-boxes.
Finally, the subkey can be XORed with this input and we obtain the value
from the beginning of the round (note that the required subkey can be derived
from the master key in the same way when inverting the block cipher as when
computing it). We therefore have the following claim:

CLAIM 5.1 In a substitution-permutation network F in which the S-boxes
are all 1–1 and onto (and of polynomial-size), there exists an efficient proce-
dure for computing F−1(y). Furthermore, for every key k and every input x,
F−1

k (Fk(x)) = x.

In addition to the requirement that the S-boxes be uniquely invertible,
it is clear that they must be random looking. One might therefore think
that the best strategy is to simply choose them completely randomly, under
the constraint that they be 1–1 and onto. However, this is actually not the
best strategy, because truly random S-boxes do not provide the strongest
protection against advanced cryptanalytic techniques (like differential and
linear cryptanalysis that we briefly discuss below in Section 5.6).

Design choice 2 – the avalanche effect. An important property in any
block cipher is that small changes to the input must result in large changes

Pseudorandom Objects in Practice: Block Ciphers 157

to the output. Otherwise, the outputs of the block cipher on similar inputs
will not look independent (whereas in a random permutation, the outputs of
similar inputs are independently distributed). In order to ensure that this
is the case, block ciphers are designed to have an avalanche effect, meaning
that small changes in the input propagate quickly to very large changes in the
intermediate values (and thus outputs). It is easy to demonstrate that the
avalanche effect holds in a substitution-permutation network, provided that
the following two properties hold:

1. The S-boxes are designed so that any change of at least a
single bit to the input to an S-box results in a change of at
least two bits in the output.

2. The mixing permutations are designed so that the output bits
of any given S-box are spread into different S-boxes in the
next round.

We remark that the first property is not necessarily obtained by small random
functions or permutations. For example, consider the case that the S-box has
input/output length of 4 bits (this may seem very small but the size of a table
for an 8-bit S-box is often too large). Now, for any 4-bit input, there are 5
values that differ from the input by 1 or less bits (the input itself plus four
other values obtained by flipping a single bit of the input). In contrast, there
are 16 possible output values. Thus, the probability that a random output
differs from the input by 1 or less bits is 5

16 > 1
4 . Given that a number of

S-boxes may be used (e.g., DES has 8 of them), randomly chosen S-boxes are
not likely to have this property.

Returning to the avalanche effect, let us assume that all the S-boxes and
mixing permutations are chosen with the aforementioned properties. Consider
now what happens when the block cipher is applied to two inputs that differ
by only a single bit. For the sake of concreteness, assume that the S-boxes
have input/output size of 4 bits, and that the block size is 128 bits. We track
the computation of two similar inputs round by round:

1. After the first round of the network, the intermediate values differ in
two places. This is due to the fact that the two inputs differ in only
a single bit and so all the input values are the same except for in one
S-box. Given the above S-box property, it follows that the outputs of
this S-box differ in two places.

2. By the second property, the permutation at the end of the first round
spreads the two different bits into different regions of the intermediate
string. Therefore, it follows that at the beginning of the second round,
there are two S-boxes that receive inputs that differ by one bit. Fol-
lowing the same argument as previously, we have that at the end of the
second round, the intermediate values differ in 4 bits.

158 Introduction to Modern Cryptography

3. Continuing with the same argument, we have that the intermediate
values differ by 8 bits after the 3rd round, 16 bits after the 4th round,
32 bits after the 5th round, 64 bits after the 6th round and 128 bits (i.e.,
everywhere) after the 7th round. Of course, we don’t really mean that
the bits are all different, but rather that they have all been affected and
so no similarity remains.

We conclude that after i rounds, 2i bits have been affected (thus for a 128 bit
block, 7 rounds are required to complete the avalanche effect).

Pseudorandomness of substitution-permutation networks. As we
have discussed, there is no formal justification for why such a design yields
a pseudorandom permutation. Nevertheless, experience of many years shows
that the confusion-diffusion paradigm works, as long as great care is taken in
the choice of the S-boxes, the mixing permutations and the key schedule. The
Advanced Encryption Standard (AES), described below in Section 5.5, has a
similar structure to the substitution-permutation network described above,
and is widely believed to be a very strong pseudorandom permutation.

Attacks on reduced-round substitution-permutation networks. In
order to obtain more of an insight into substitution-permutation networks,
we will demonstrate attacks on block ciphers of this type that have very
few rounds. These attacks are straightforward, but are worthwhile seeing.
They also show why a number of rounds are needed. Recall that according
to Definition 3.28 (pseudorandom permutations), the adversary is given an
oracle that is either a random permutation or the given block cipher (with a
randomly chosen key). The aim of the adversary is to guess what function is
computed by its oracle. Clearly, if an adversary can obtain the secret key of
the block cipher, then it can distinguish it from a random permutation. Such
an attack is called a complete break because once the secret key is learned, no
security remains.

1. Attack on a single-round substitution-permutation network: We demon-
strate this attack in a weaker adversarial model than above. Namely,
we assume only that the adversary is given one input/output pair (and
not that it can choose the inputs upon which the block cipher is com-
puted). Let x be the input and y the output. We will demonstrate how
the adversary can easily learn the secret key k for which y = Fk(x),
where F denotes the single-round substitution-permutation network.
The adversary begins by inverting the mixing permutation, and then
the S-boxes. It can do this because the specification of the permuta-
tion and S-boxes is public. The intermediate value that the adversary
receives from these inversions is exactly x⊕ k (by the design of a single
substitution-permutation round). Since the adversary also has the in-
put x, it immediately derives the secret key k. This is therefore a trivial
complete break.

Pseudorandom Objects in Practice: Block Ciphers 159

2. Attack on a two-round substitution-permutation network: In this case,
we also show a complete break. In order to demonstrate the attack,
we consider concrete parameters. Let the block size be 64 bits and let
each S-box have input/output of size 4 bits (as we have mentioned, 8
is usually too large). Furthermore, let the key k be of length 128 bits
where the first half of the key is used in the first round and the second
half in the second round (let ka and kb denote these two 64 bit parts of
the key). We use independent keys here to simplify the description of
the attack below, but this only makes the attack “harder”.

Now, let x be the input and y the output (each of 64 bits). Denote
z = z1, . . . , z16, where each zi is of length 4 bits (we will use this notation
for x, y, ka and kb). The adversary begins by peeling off the last round,
as in the attack on the single-round block cipher. Denote by w the
value that it receives after inverting the mixing permutation and S-
boxes of the second round. Denote α = w1⊕kb

1 (of course, the adversary
does not know kb but it wishes to learn it). The important observation
here is that when working from the input to the output, the value of
α is influenced by at most 4 different S-boxes (because in the worst
case, each bit of input comes from a different S-box in the first round).
Furthermore, since the mixing permutation of the first round is known,
the adversary knows exactly which of the S-boxes influence it. Next,
notice that at most 16 bits of the key ka influence the computation of
these four S-boxes. It follows that the adversary can guess 16 bits of ka

and the four-bit portion kb
1 of the key kb, and then verify the guess with

the input-output (x, y). This verification is carried out by XORing the
relevant 16 bits of the input x with the relevant 16 bits of ka, and then
computing the appropriate 4 first-round S-boxes and 4 bits of the first-
round mixing permutation. The value α obtained is then compared
with w1 ⊕ kb

1 (where kb
1 is also part of the guess). If equality is not

obtained, then this guess of 16 bits of ka and kb
1 is certainly incorrect.

If equality is obtained, then this guess may be correct. However, it may
also be incorrect (and equality is obtained by chance). Nevertheless, it
is possible to use a number of input/output pairs and verify the guess
of the key portion with all of the pairs.3 For the sake of concreteness,
assume that 8 pairs are used. It follows that the adversary learns the 4
bits of kb

1 in time 8 · 220 = 223. This can be repeated for all 16 portions
of kb and we obtain a total complexity of 16 · 223 = 227. We remark
that in this process all of ka is also learned and so the entire 128-bit key

3Since there are 220 possible guesses of the key portion, and verification takes place with
just 4 bits, we obtain that 216 different keys are expected to pass the test with a single
input/output pair. Assuming random behavior of the block cipher, we obtain that with 5
different (preferably random) input/output pairs, the verification takes place with 20 bits
and so just a single key is expected to pass the test. Given 10 different input/output pairs,
it is unlikely that the test will leave more than one possibility for the key portion.

160 Introduction to Modern Cryptography

k = (ka, kb) is learned in only time 227. (In fact, the complexity will be
even less because all of ka will be learned after only 4 or so repetitions
of the above procedure, and only kb will remain unknown.)

We recommend sketching two rounds of a substitution-permutation net-
work and tracing the steps of the above attack.

There is an important lesson to be learned from the above attack. Ob-
serve that the attack is made possible since different parts of the key
can be isolated from the other parts (it is much quicker to carry out 16
attacks of time 220 than a single attack of time 2128 or even 264). Thus,
the diffusion step in the construction is also needed to make sure that
all of the bits of the key affect all of the bits of the output. Two rounds
of the network are not enough for this to happen.

3. Attack on a three-round substitution-permutation network: We present a
weaker attack here; instead of attempting to learn the key, we just show
that it is easy to distinguish a three-round block cipher from a pseu-
dorandom permutation. This attack is based on the observation that
the avalanche effect is not complete after only three rounds (of course,
this depends on the block size and S-box size, but with reasonable pa-
rameters this will be the case). Thus, the adversary just needs to ask
for the function to be computed on two strings that differ on only one
bit. A three-round block cipher will have the property that many bits
of the output of both inputs will be the same. Thus, it is clearly not a
pseudorandom function.

5.2 Feistel Networks

A Feistel network is an alternative way of constructing a block cipher. The
low-level building blocks (S-boxes, mixing permutations and key schedule) are
the same; the difference is in the high-level design. The advantage of Feistel
networks over substitution permutation networks is that they enable the use of
S-boxes that are not necessarily invertible. This is important because a good
block cipher has chaotic behavior (and as such it looks random). However, re-
quiring that all of the components of the construction be invertible inherently
introduces structure, which contradicts the need for chaos. A Feistel net-
work is thus a way of constructing an invertible function from non-invertible
components. This seems like a contradiction in terms (if you cannot invert
the components, how can you invert the overall structure). Nevertheless, the
Feistel design ingeniously overcomes this obstacle.

A Feistel network refers to an internal f -function that does not need to be
invertible. This function receives a subkey and typically contains components

Pseudorandom Objects in Practice: Block Ciphers 161

like S-boxes and mixing permutations. In any case, the framework of a Feis-
tel network can deal with any internal f -function, irrespective of its design.
The input x to a Feistel network is separated into two halves, x1 and x2, and
each half is passed separately through the f -function. Thus, for an n-block
cipher, the f -function has input/output length of n/2. (We stress again that
although the input and output lengths are the same, the function is not nec-
essarily invertible and so, in particular, is not necessarily 1–1 and onto.) The
mathematical definition of a Feistel network is given as follows:

1. For input x, denote by x1 and x2 the first and second halves of x,
respectively.

2. Let v1 = x1 and v2 = x2.

3. For i = 1 to r (where r is the number of rounds in the network):

(a) Let w1 = v2 and w2 = v1⊕ fi(v2), where fi denotes the f -function
in the ith round of the network.

(b) Let v1 = w1 and v2 = w2.

4. The output y is (v1, v2).

See Figure ?? for a 4-round Feistel network (it is easier to understand how it
works by looking at the diagram, and then only afterwards at the mathemat-
ical definition above).

Inverting a Feistel network. Recall that the f -function is not necessarily
invertible and may not even be 1–1. Thus in order to invert the block cipher,
we cannot rely on the ability to compute f−1. Rather, the block cipher can be
inverted while computing the f -function in a forward manner only. In order
to see this, let (αi, βi) be the intermediate values at the beginning of round
i and let (αi+1, βi+1) be the intermediate values at the beginning of round
i + 1. Then, it holds that:

αi = βi+1 ⊕ fi(αi+1) and βi = αi+1 (5.1)

This can easily be seen by following the network in Figure ?? (note that
the value on a wire in a network is the same irrespective of the direction from
which it is computed). Furthermore, by looking at the mathematical definition
above and setting v1 = αi and v2 = βi we have that αi+1 = w1 = βi and
βi+1 = w2 = v1 ⊕ fi(v2) = αi ⊕ fi(βi). However, since αi+1 = βi this is the
same as saying that αi = βi+1⊕fi(αi+1), fulfilling Equation (5.1). Of course,
the important observation in Equation (5.1) is that αi and βi can be efficiently
computed from αi+1 and βi+1, as long as fi is efficiently computable. Given
that this is possible in any round, we have that all of the rounds of the network
can be inverted, thus yielding an efficient procedure for inverting the entire
block cipher. We therefore have the following claim:

162 Introduction to Modern Cryptography

CLAIM 5.2 In a Feistel network F in which the f -function can be effi-
ciently computed, there exists an efficient procedure for computing F−1(y).
Furthermore, for every key k and every input x, F−1

k (Fk(x)) = x.

We remark that typically the f -function in a Feistel network is constructed
from S-boxes and mixing permutations, exactly as in a substitution-permutation
network. The main difference is thus that in a Feistel network, the S-boxes
need not be invertible. When this is indeed the case (i.e., the S-boxes and
mixing permutations are used in a similar way), attacks on Feistel networks
with very few rounds can be designed in the same way as described above for
substitution-permutation networks.

5.3 DES – The Data Encryption Standard

The Data Encryption Standard, or DES, was developed in the 1970s at
IBM (with some help from the National Security Agency), and adopted in
1976 as a Federal Information Processing Standard (FIPS) for the US. In its
basic form, DES is no longer secure due to its short key size. Nevertheless,
it is still widely in use today in the form of triple DES (triple DES is a
block cipher that is based on DES and is described below in Section 5.4).
The DES block cipher has undergone great scrutiny; arguably more than any
other encryption algorithm in history. The common consensus is that it is
extremely secure. Indeed, the best known attack on DES in practice is a
brute force (or exhaustive key) search on its key space (i.e., attack by trying
all possible keys and seeing which key decrypts the message correctly). As we
will see below, there are important theoretical attacks on DES that require less
computation than such a brute force attack. However, they provide no real
threat in practice. The DES algorithm was recently replaced by the Advanced
Encryption Standard (AES). Nevertheless, as we have mentioned, it is still
widely used in the form of triple DES. In this section, we will describe the
details of the DES construction. We stress that we will not provide the full
specification, and some parts of the design will be omitted from our description
(e.g., the permutation on the key before the key schedule). Rather, our aim
is to present the basic ideas behind the construction.

5.3.1 The Design of DES

The DES block cipher is a 16-round Feistel network with a block size of 64
bits and a key length of 56 bits. Recall that in a Feistel network the internal f -
function works on half a block at a time. Thus, the input and output length of
the DES internal f -function is 32 bits. Furthermore, as is to be expected, the

Pseudorandom Objects in Practice: Block Ciphers 163

DES f -function is non-invertible, thereby utilizing the advantage of a Feistel
network over a substitution-permutation network. In each of the 16 rounds
of DES the same internal f -function is used. However, a different subkey is
derived in each round. Each subkey is of length 48 bits, and is composed of
a subset of the 56 bits of the master key (in each round, a different subset is
chosen and so there is a different subkey). The way the subkeys are chosen is
called the key schedule. We will not show exactly how the key schedule works.
Rather, it suffices for us to note that an initial permutation is applied to the
bits of the key. Following this, it is divided into two halves of length 28 bits
each. Then, in each round, the left 24 bits of the subkey are taken as a subset
of the left 28 bits in the (permuted) master key, and the right 24 bits of the
subkey are taken as a subset of the right 28 bits in the (permuted) master
key. We stress that the initial permutation and the choice of which subsets
are taken in each round are fixed and public. The only secret is the key itself.

We note that before and after the Feistel network, DES actually applies a
fixed and known permutation to the input and its inverse to the output; this
permutation is known as the initial permutation and is denoted IP . This slows
down software implementations of DES (the computation of this permutation
takes about one third of the running time, in contrast to hardware where it
takes almost no time). As with the permutation on the key, we will ignore
these permutations in our description and analysis below because they play
no security role beyond slowing down attackers who use software.

The internal DES f-function. The f -function is constructed using the
same basic building blocks of S-boxes and mixing permutations described
above for substitution-permutation networks. The exact construction works
as follows. The first step in the f -function is to mix the 48-bit subkey with the
32-bit input. This mixing is carried out via a bitwise exclusive-or. However,
this operation works on two strings of the same size. Thus, the 32-bit input
to the f -function is first passed through an expansion function E : {0, 1}32 →
{0, 1}48 that takes inputs of size 32 and produces outputs of size 48. The
expansion is very simple and works by just duplicating half of the input bits.
The 48-bit output of the expansion function is then exclusively-ored with the
subkey. In summary, the first step in the f -function is to compute E(x) ⊕ k,
where x is the 32-bit input and k is the 48-bit subkey of the round.

This intermediate 48-bit result is then divided into 8 blocks of size 6 bits
each. Each block is passed through an S-box that takes inputs of length 6
bits and produces outputs of length 4 bits. There are 8 S-boxes, denoted
S1, . . . , S8. Notice that the S-boxes are not invertible because the output is
shorter than the input. This is the non-invertible part of the DES internal f -
function. As with the S-boxes in a substitution-permutation network, these
small functions (lookup tables) have non-linear and random behavior and
provide the “confusion” portion of the block cipher. Notice that the output
of the S-box computations consists of 8 blocks, each of length 4 bits. Thus, we
obtain an intermediate value of length 32 bits; exactly the size of the output

164 Introduction to Modern Cryptography

of the f -box. The last step in the computation is the “diffusion” step. That
is, the outputs from the S-boxes are all passed through a mixing permutation.
We stress once again that the expansion function E, the lookup tables defining
the S-boxes and the final mixing permutation are all known and fixed. The
only unknown value is the master key. See Figure ?? for a diagram of the
construction.

The S-boxes. The definition of the S-boxes is a crucial element of the
DES construction. In fact, even though the DES S-boxes look very random,
they were very carefully designed (reportedly, with the help of the National
Security Agency). Studies on DES have shown that if the S-boxes are chosen
truly at random, then DES becomes much easier to break. These attacks use
advanced cryptanalytic techniques called differential cryptanalysis (see below
for a brief description). This should serve as a warning to anyone who wishes
to design a block cipher; seemingly arbitrary choices are not arbitrary at all,
and if not made correctly render the entire construction insecure. Due to their
importance, we will describe some basic properties of the DES S-boxes:

1. Each box can be described as a table with 4 row and 16 columns, where
each entry in the table contains 4 bits. (The 64 entries correspond to
the 26 possible inputs of length 6 bits.)

2. The first and last input bits are used to choose the table row and bits 2
to 5 are used to choose the table column.

3. Each row in the table is a permutation of 0, 1, 2, . . . , 15.

4. Changing one input bit, always changes at least two output bits.

We will use some of the above properties in our analysis of reduced-round
DES below.

The DES avalanche effect. As we have discussed above in the context of
substitution-permutation networks, the avalanche effect is one of the crucial
properties of any secure block cipher (i.e., pseudorandom permutation). The
fourth property of the DES S-boxes described above ensures that DES has
a strong avalanche effect. In order to see this, we will trace the difference
between the intermediate values in a DES computation of two inputs that
differ by just a single bit. If the difference between the inputs is in the half
of the input that does not enter the internal f -function in the first round,
then after this round the intermediate values still differ by only a single bit
(note that the other half of the input is the same and so it remains the same
after running it through f). Now, in the second round of DES, the half of
the input with the single-bit difference is run through the internal f -function.
Assuming that the bit is not duplicated in the expansion function, we have
that the intermediate values before applying the S-boxes still differ by a single
bit. By property 4 above, we have that the intermediate values after the S-box
computation differ in at least two bits. The mixing permutation then spreads

Pseudorandom Objects in Practice: Block Ciphers 165

these two bits into different areas of the block. In the next third round,
each of these two bits enters a different S-box and so by following the same
arguments as above, the results differ in at least 4 bits. As with a substitution-
permutation network we have an exponential avalanche and so after the 4th

round the values differ in 8 bits, after the 5th round the difference is 16
bits and after the 6th round the difference is 32 bits, thereby completing the
avalanche. Notice that DES has 16 rounds, and so the avalanche is completed
very early on in the computation. This ensures that the computation of
DES on similar inputs yields completely different and independent-looking
outputs. We remark that the success of the DES avalanche effect is also due
to the choice of the mixing permutation. In fact, it has been shown that a
random mixing permutation yields a far weaker avalanche effect, and results
in DES being much easier to break.

The DES standard. A complete description of the DES standard can be
obtained from the FIPS (Federal Information Processing Standards Publica-
tions) website of NIST (National Institute of Standards and Technology).

5.3.2 Attacks on Reduced-Round Variants of DES

A useful exercise for understanding more about the DES construction and
its security is to look at its behavior with only a few rounds. We will look
at DES with one, two and three rounds (recall that the real DES has 16
rounds). Some of the attacks are similar to those discussed for substitution-
permutation networks. However, here we will see how they are applied to a
concrete block cipher rather than to a general design. In the attacks below,
we will show how to obtain the secret key from input/output pairs. Clearly
DES with 3 rounds or less cannot be a pseudorandom function because the
avalanche effect is not yet completed in 3 rounds (exactly as in the attack on
a three-round Substitution-Permutation Network). Thus, our aim is to show
something much stronger; i.e., that the secret key can be fully determined.

In all of the attacks below, we assume that the adversary has a number
of pairs (x, y) where y = DESk(x), and k is the secret key. (We will not
need the fact that the adversary can adaptively choose the values x for which
it will receive y = DESk(x)). Since DES is a Feistel network, the internal
f -function works on half a block at a time. We denote the left half of the
input by x1 and the right half by x2. Likewise, we denote the left half of the
output by y1 and the right half of the output by y2.

Single-round DES. In a single round of DES, we have that y1 = x2 and
y2 = x1 ⊕ f1(x2) where f1 is the internal f -function in the first and only
round (see the definition of a Feistel network above). We therefore know
the complete input and output to f1. Specifically, the input to f1 is x2 and
the output is y2 ⊕ x1. The first step is to apply the inverse of the mixing
permutation to the output. This yields the intermediate value that contains
the outputs from all the S-boxes, where the first 4 bits are the output from

166 Introduction to Modern Cryptography

S1, the next 4 bits are the output from S2 and so on. This means that we
have the exact output of each S-box. As we have seen, each row of an S-box
is a permutation over 0, . . . , 15 in binary form. Therefore, given the output of
an S-box, the only uncertainty remaining is from which row it came. Stated
differently, each value appears only once in each row. Thus, given the output
value, the row number completely determines the 6-bit input to the S-box.
Since there are 4 rows, it follows that there are only 4 possible input values
that could have occurred. Each of these possible input values is the XOR of
E(x2) with the 48-bit key (where E is the expansion function). Now, since
x2 is known, we conclude that for each 6-bit portion of the 48-bit key, there
are 4 possible values. This is true for each of the 8 S-boxes, and so we have
reduced the possible number of keys from 248 to 48 = 216 (because each of the
8 portions have 4 possibilities). This is already a very small number and so
we can just try all of the possibilities on a different input/output pair (x′, y′).
We therefore obtain the full key in very little time.

Two-round DES. In two rounds of DES, with internal functions f1 and f2

in the first and second rounds, respectively, we have the following:

1. The input to f1 is x2 and the output is y1⊕x1. (This follows because in
the Feistel computation with two rounds, the output f1(x2) is XORed
with x1 and then appears as the left half of the output.)

2. The input to f2 is y1 and the output is y2 ⊕ x2.

(We strongly recommend drawing a 2-round Feistel network in order to verify
the above.) We therefore know the inputs and outputs the both f1 and f2.
Thus, the same method can be used as above for single-round DES. Note
that this attack works even if a completely different 48-bit key is used in each
round.

Three-round DES. See Figure ?? for a diagram of DES reduced to only
three rounds. In order to describe the attack, we have denoted the interme-
diate values on the wires during the computation, as in Figure ??. As usual,
the input string to the cipher is denoted x = (x1, x2) and the output string is
denoted y = (y1, y2). Note that α1 = x2 and β2 = y1. Thus the only unknown
values amongst α1, α2, β1, β2 are α2 and β1 (where in fact α2 = β1).

In the case of 3-round DES, we do not have the input and output of the
internal f -function in each round. For example, let us consider f2. In this
case, we know the output because tracing the wires we can see that it equals
α1⊕ β2, where as we have mentioned α1 = x2 and β2 = y1. Thus, the output
of f2 is x2⊕ y1 and so is known. In contrast, we do not know the input value
to f2. By tracing the wires we see that the input to f2 equals x1 ⊕ f1(x2)
or equivalently y2 ⊕ f3(y1), but neither of these values are known. (Note
that we can trace the wires in either direction and this makes no difference.)
A similar exercise yields that for both f1 and f3 we know the inputs, but
not the outputs. Thus, the attack that we used to break DES with one and

Pseudorandom Objects in Practice: Block Ciphers 167

two rounds will not work here. Rather, instead of relying on full knowledge
of the input and output of one of the f -functions, we will use knowledge of
a certain relation between the inputs and outputs of f1 and f3. We begin
by describing the relation that we will use. Observe that the output of f1

equals x1 ⊕ α2 = x1 ⊕ β1. Furthermore, the output of f3 equals β1 ⊕ y2.
Taking the XOR of the output of f1 with the output of f3 we obtain the value
(x1⊕β1)⊕ (β1⊕y2) = x1⊕y2. Since both x1 and y2 are known, we have that
the exclusive-or of the outputs of f1 and f3 is known. Furthermore, the input
to f1 is x2 (and so is known) and the input to f3 is y1 (and so is known). We
conclude that from the overall input and output we can determine the inputs
to the internal functions f1 and f3 and the XOR of their outputs. We now
describe an attack that finds the secret key based on this information.

Recall that in DES, the subkeys in each round are generated by rotating
each half of the key (we are ignoring the initial permutation on the key, which
makes no difference to the security). This means that the left half of the key
affects the S-boxes S1, . . . , S4 only, and the right half of the key affects the
S-boxes S5, . . . , S8 only. Since the permutation after the S-boxes is fixed, we
also know which bits come out of which S-box.

Since the length of the entire key is 56 bits, it follows that there are 228

possible half-keys (for each half). The idea behind the attack is to separately
traverse the key-space for each half of the key. If we can verify the guess of
a half key, then this is possible. Now, let kL be a guess for the left half of
the key. We know the input x2 into f1 and so using the guess kL as the key
and x2 as the input, we can compute the output of S1, . . . , S4 in f1. This
implies that we can compute half of the output of f1 (the mixing permutation
spreads out the 16 computed bits, but we know exactly which bits these are).
Likewise, we can compute the same locations for the output of f3 by using
input y1 and the same guessed half-key kL. Finally, we can compute the XOR
of these output values and see if they match the appropriate bits in x1 ⊕ y2

which is known (recall that x1 ⊕ y2 equals the XOR of the outputs of f1 and
f3). If they are not equal, then we know that the guessed half key is incorrect.
If they are equal, then we take the half-key as a candidate. We stress that
there are likely to be many candidates. In particular, since we consider 16 bits
of output, an incorrect key is accepted with probability approximately 2−16

(assuming random behavior of DES). There are 228 keys and so approximately
212 keys are expected to cause equality and thus be accepted as candidates
for the left half of the key.

The above method is carried out separately for each half of the key. The
result is that in time 2 · 228 we obtain approximately 212 candidates for the
left half and 212 candidates for the right half. Since each combination of the
left half and right half is possible, we remain with 224 candidate keys overall
and can run a brute-force search over them all. The total complexity of the
attack is 228 + 228 + 224 which is less than 230. We remark that an attack of
complexity 230 can easily be carried out on standard personal computers.

168 Introduction to Modern Cryptography

5.3.3 The Security of DES

As we discussed in Section 1.3, no encryption scheme can be secure if it
is possible to traverse the entire key space. This is due to the fact that it is
possible to try to decrypt a ciphertext using all possible keys. If the ciphertext
is long enough (e.g., longer than the key), then with high probability only
one key will map the given plaintext to the ciphertext. (Note, of course,
that multiple plaintext/ciphertext pairs can be used to achieve the effect of a
“long enough” ciphertext.) The same observation is true of block ciphers (as
pseudorandom permutations and a building block for encryption schemes).
Specifically, in the setting of pseudorandom permutations the adversary can
query its oracle (see Definition 3.28) and obtain a number of pairs (x, y) where
y is the output of the block cipher on input x (and a secret key). Thus, given
enough time, the adversary can always determine the secret key by finding
the unique key that maps the inputs to their respective outputs, as obtained
from its oracle. Such an attack is called a brute force attack or exhaustive key
search and it can be carried out on any block cipher. We therefore conclude
that since DES has a 56-bit key, it can be broken in time 256. In fact, due
to the “complementary property” of DES (see Exercise ***), it can actually
be broken in time 255. Although this is not a trivial amount of computation,
it is definitely feasible today. In fact, already in the late 1970’s there were
strong objections to the choice of such a short key for DES. Back then, the
objection was more theoretical as no one had the computational power to
traverse that many keys. The practicality of a brute force attack on DES
was demonstrated in 1997 and 1998 when a number of DES challenges set
up by RSA Security were solved (these challenges were input/output pairs
and a reward was given to the first person or organization to find the secret
key that was used to compute the output). The first challenge was broken
in 96 days in 1997 by the DESCHALL project. The second challenge was
broken in early 1998 in 41 days by the distributed.net project. A significant
breakthrough came later in 1998 when the third challenge was solved in just 56
hours. This impressive feat was achieved via a special-purpose DES-breaking
machine called Deep Crack (it was built by the Electronic Frontier Foundation
at a cost of $250,000). Additional challenges have been solved, and the latest
was solved in just 22 hours and 15 minutes (as a combined effort of Deep
Crack and distributed.net). The bottom line of the above is that DES is no
longer secure, and in fact has not been secure in a very long time (even an
attack taking a full year is completely unacceptable).

It is important to note that the insecurity of DES has nothing to do with its
internal structure and design, but rather is due only to its short key length.
Thus, it makes sense to try to use DES as a building block in order to construct
a block cipher with a longer key. This was carried out very successfully and the
result is called triple DES. We discuss this construction below in Section 5.4.

One issue worth noting with respect to brute force attacks on DES is that
given a single input/output pair (x, y), with probability approximately 2−8

Pseudorandom Objects in Practice: Block Ciphers 169

there may be more than one key that maps x to y. This occurs because for
a single randomly-chosen key k, the probability that DESk(x) = y is 2−64

(assuming random behavior of DES). Thus, the probability that there exists
a key k (that is not equal to the real key used to compute y from x) may be
close to 256/264 = 2−8. This means that with a not too small probability, a
brute force search may turn up more than one candidate key. In such a case,
it is easy to rule out the additional candidate or candidates by trying another
pair (x′, y′); note that it suffices to test the few remaining candidate keys on
the additional input/output pair.

5.3.3.1 Advanced Cryptanalytic Attacks on DES

The brute force attacks described above do not utilize any internal weak-
nesses of DES (apart from the complementary property that reduces the at-
tack time by one half). Indeed, for many years no such weaknesses were known
to exist. The first breakthrough on this front was by Biham and Shamir in
the late 1980s who developed a technique called differential cryptanalysis and
used it to achieve an attack on DES that took less time than 255. Their
specific attack takes time 237 and works by analyzing 236 outputs that are
obtained from a larger pool of 247 chosen inputs. Thus, in essence 247 time is
really needed. Nevertheless, the real problem is that the adversary needs to
be able to make 247 queries to its oracle (or in real-life, it needs to be able to
make something like 247 chosen-plaintext requests). It is hard to imagine any
realistic scenario where such a large amount of chosen inputs can be obtained.
We stress that this does not take away from the importance of the work of
Biham and Shamir. However, it does mean that as an attack on DES, it is
more theoretical than practical. We note that it is believed that differential
cryptanalysis as a technique was already known to the designers of DES at
the time that DES was developed. One of the reasons for this belief is the fact
that Biham and Shamir also showed that a variant of DES with random S-
boxes is much easier to break using differential cryptanalysis than the actual
DES. Later, the designers of DES at revealed that the method was indeed
known to them (but that they were asked to keep it quiet in the interest of
National security). Thus, the general belief is that the actual S-boxes of DES
were specifically chosen to thwart differential cryptanalytic attacks, and thus
the NSA already knew about these attacks at the time.

Following Biham and Shamir’s breakthrough, an additional cryptanalytic
attack called linear cryptanalysis was developed by Matsui in the early 1990s
and applied to DES. The advantage of Matsui’s attack is that although it still
requires a large number of outputs (243 to be exact), it suffices for them to
be known-input only. That is, the adversary needs to be able to obtain 243

input/output pairs. This is a great improvement over the requirement that
the adversary needs to be able to also choose the inputs to the block cipher.
Nevertheless, it is still hard to conceive of any real scenario where it is possible
to obtain such a large number of input/output (or plaintext/ciphertext) pairs.

170 Introduction to Modern Cryptography

We conclude that although using sophisticated cryptanalytic techniques it
is possible to break DES in less time than required by a brute-force attack, in
practice exhaustive key search is still the most effective attack on DES today.
This is a great tribute to the designers of DES who seem to have succeeded
in constructing an almost “perfect” block cipher (with the glaring exception
of its too-short key). In Section 5.6 we will briefly describe the basic ideas
behind differential and linear cryptanalysis.

5.4 Increasing the Key Size for Block Ciphers

As we have seen, the DES design seems to be almost optimal. It has
withstood decades of cryptanalytic attacks and an exhaustive key search still
remains the best attack in practice. Thus, it is very natural to try to build a
block cipher with a long key, using DES as a building block. In this section
we will study such constructions.

Internal tampering versus black-box constructions. There are two
possible approaches that one could take to this task. The first is to somehow
try to modify the internal structure of DES, while increasing the key size. For
example, one may leave the internal f -functions untouched and simply use a
128-bit key with a different key schedule (still choosing a 48-bit subkey in each
round). The disadvantage of this approach is that by modifying the design of
DES we lose the confidence that we have gained over the many years of its
existence. Cryptographic constructions are very sensitive and even mild and
seemingly insignificant changes can render the original scheme completely in-
secure. This approach is therefore usually not recommended. An alternative
approach that does not suffer from the above problem is to use the original
DES as a “black box”. That is, no change is made to the original cipher, and
the key is lengthened by somehow applying the complete original DES a num-
ber of times to the input (while using different keys each time). For example,
in double-DES, the block cipher is defined by two applications of DES to the
input where each application uses an independent key. Another advantage of
black-box constructions is that they can be applied to any underlying block
cipher, because they make no reference to the internal structure. Indeed, in
the constructions below we will often refer to an arbitrary block-cipher, and
not just to DES.

5.4.0.2 Double Invocation

Let F be a block cipher and let k1 and k2 be two independent keys for F .
Then, a new block cipher with a key that is twice the length of the original

Pseudorandom Objects in Practice: Block Ciphers 171

one can be defined by

F ′k1,k2
(x) = Fk2(Fk1(x)).

If F =DES then the result is a key of size 112, which is much too long for any
exhaustive key search (for DES this method is typically called double-DES).
Unfortunately, as we will show now, a double invocation of a block cipher
does not provide a high enough level of security. We describe a “meet-in-the-
middle” attack on the double-invocation method. Denote the length of the
keys of F by n (thus the length of the keys of F ′ is 2n). The attack that we
will describe now uses approximately 2n time and 2n space.

The adversary is given an input/output pair (x, y) where y = F ′k1,k2
(x) =

Fk2(Fk1 (x)), and works as follows. First, it starts by building two lists of
pairs. The first list is made up of all the pairs of the form (k̃1, z1) where
z1 = Fk̃1

(x); that is, for every possible key k̃1, the pair (k̃1, z1) is added

to the list. The second list is made up of all the pairs of the form (k̃2, z2)
where z2 = F−1

k̃2
(y). (Recall that x and y are the given input/output pair.)

Notice now that there exists a value z such that Fk1 (x) = z = F−1
k2

(y), where
k1 and k2 are the keys that the adversary is searching for. Therefore, the
aim of the adversary is to match up pairs in the first list with pairs in the
second list, where a match is defined by the pairs having the same z portion
(i.e., where z1 = z2). Any such match defines a candidate key (k̃1, k̃2) for F ′

because Fk̃1
(x) = z1 = z = z2 = F−1

k̃2
(y) and so y = Fk̃2

(Fk̃1
(x)). This is the

“meet-in-the-middle” that we are looking for; see Figure ??.
We therefore remain with an algorithmic problem which is to scan the two

lists and find all matches. We leave the solution of this as an exercise (see
Exercise 5.8), and note that it can be carried out in time O(2n).

Assuming random behavior of F , we have that approximately 2n candidates
key-pairs (k̃1, k̃2) should be chosen. (This is because each z should appear
approximately once in each table. Thus, each z in the first table should have
approximately one match in the second table. This yields 2n candidates.)
The attack is then concluded by testing all of the candidate pairs on a new
input/output pair (x′, y′) obtained by the adversary.

Complexity. Using counting sort, the lists can be constructed and sorted
in time O(2n). Furthermore, the search for all candidates can be carried out
in time 2 · 2n. Overall, the time complexity of the attack is therefore O(2n).
In other words, double-invocation is vulnerable to an attack that takes no
longer than an exhaustive key search on the original block cipher. We stress
that although this is true with respect to the time complexity of the attack,
it requires 2 · 2n memory, which is a very high space complexity.

Double-DES. When applying double invocation to DES, we obtain that the
result is vulnerable to an attack requiring time that is in the order of 256

(to be more exact, it would be something like 260). This is still within our
computing capabilities today and so is highly problematic. Of course, the

172 Introduction to Modern Cryptography

attack also requires 257 space and this is far more problematic. Despite this,
the margin of security for double-DES is not large enough and it is therefore
not used.

5.4.0.3 Triple Invocation

In order to thwart meet-in-the-middle attacks, three invocations of the un-
derlying block cipher can be used. We have no proof that no other shortcuts
exist for this method. Despite this, it is widely believed that triple invocation
of the block cipher provides a high level of security against brute force attacks.
There are two variants that are typically used for triple invocation:

1. Variant 1 – three independent keys: Choose 3 independent keys k1, k2, k3

and compute y = F ′k1,k2,k3
(x) = Fk3(F

−1
k2

(Fk1(x))).

2. Variant 2 – two independent keys: Choose 2 independent keys k1, k2

and compute y = F ′k1,k2
(x) = Fk1(F

−1
k2

(Fk1 (x))).

Before comparing the security of the two alternatives we note that the middle
invocation of F is actually F−1. This makes no difference to the security
because if F is a pseudorandom permutation then so too is F−1 (see Defini-
tion 3.28). The reason for this strange alternation between F , F−1 and F is
so that if one chooses k1 = k2 = k3, the result is a single invocation of F with
k1. This helps with backward compatibility (in order to reverse back to a sin-
gle invocation, there is no need for special code and it suffices to just set the
keys to all be equal). Regarding the security of the alternatives, no weakness
whatsoever has been demonstrated with the first alternative. In contrast, it
has been shown that for the second alternative it is possible to carry out an
attack in time 2n and using 2n queries to the block cipher. However, as we
have mentioned above, the possibility of obtaining 2n outputs of the block
cipher on chosen inputs is so far fetched that it is not considered a concern at
all. (This is in contrast with 2n memory that is far more feasible.) Therefore,
both alternatives are reasonable, although it seems preferable to go with the
first.

Triple-DES (3DES). Triple-DES is based on a triple invocation of DES,
as described above. It is widely believed to be highly secure and in 1999
officially replaced DES as the NIST standard (although one would hope that
the basic DES was already phased out well before this time). We remark that
triple-DES is still widely used today and is considered a very strong block
cipher. Its only drawbacks are its relatively small block-size (that can be
problematic as discussed in the paragraph on “block length and security” in
Section 3.6.4) and the fact that it is quite slow since it requires 3 full block
cipher operations (in fact, even single DES is not that fast, making triple DES
even worse). These drawbacks have led to its recent replacement in 2001 by
the Advanced Encryption Standard (AES), presented in the next section.

Pseudorandom Objects in Practice: Block Ciphers 173

5.5 AES – The Advanced Encryption Standard

In January 1997, the National Institute of Standards and Technology of the
United States (NIST) announced that they were seeking a new block cipher
to replace the DES standard. The new cipher was to be called the Advanced
Encryption Standard, or AES for short. Later that year the terms of the AES
competition were published. The competition was ingeniously designed and
resulted in extraordinarily intensive scrutiny on the proposed ciphers. This
was achieved by having two rounds in the competition. In the first round, any
team could submit a candidate algorithm. There were 15 different algorithms
that were submitted from all over the world. These submissions included the
work of many of the best cryptographers and cryptanalysts today. Follow-
ing the first round of submission, the different algorithms were analyzed for
their security and performance. Two AES conferences were held, one in 1998
and one in 1999, in which papers were published regarding the different se-
curity and other properties of the submitted schemes. Following the second
AES conference, NIST narrowed the field down to 5 submissions and the sec-
ond round begun. A third AES conference was then held, inviting additional
scrutiny on the five finalists. Finally, in October 2000 NIST announced that
the winning algorithm is Rijndael (a block cipher designed by John Daemen
and Vincent Rijmen from Belgium). This process was ingenious because any
group who submitted an algorithm, and was therefore interested in having
their algorithm be adopted, had strong motivation to attack all the other
submissions.4 In this way, essentially all of the world’s best cryptanalysts
worked intensively to find even the slightest weaknesses in the AES submis-
sions. Thus, after only a few years, the scrutiny received was very great, and
our confidence in the security of the winning algorithm was high. Of course,
the longer the algorithm is used, the more our confidence will grow. However
today, only about 5 years later, the AES block cipher is already very widely
used and no significant security weaknesses have been discovered.

The AES construction. In this section, we will present the high-level
structure of the AES block cipher. As with DES, we will not present a full
specification and our description should never be used as a basis for implemen-
tation. In particular, we will not present the AES S-box or describe the key
schedule. Rather, our aim is to provide a general idea of how the algorithm
works. Before we begin, we remark that although the terms AES and Rijndael
are used interchangeably, the AES is a specific standard and is different from
Rijndael. For example, Rijndael can be implemented with a large range of

4We note that the motivation was not financial because the winning submission could not
be patented. Nevertheless, much honor and glory was at stake.

174 Introduction to Modern Cryptography

block and key sizes whereas the AES is limited to a block size of 128 and a
key size of 128, 192 or 256 bits.

In contrast to DES that has a Feistel structure, AES is essentially a substitution-
permutation network. The AES algorithm holds a 4 by 4 array of bytes called
the state, that is initialized to the input to the cipher (note that the input is
128 bits which is exactly 16 bytes). The substitution and permutation oper-
ations (providing confusion and diffusion) are all applied to the state array.
There are four stages in every round of AES (see Figure ?? for a graphical
presentation of each of the four steps):

1. Stage 1 – AddRoundKey: In every round of AES, a 16 byte round key
is derived from the master key, and is interpreted as a 4 by 4 array
of bytes.5 Then, the key array is simply XORed with the state array.
Denote by ai,j the byte appearing in the ith row and jth column of the
state array, and likewise by ki,j that analogous byte in the key array.
Then the AddRoundKey step consists of computing ai,j = ai,j ⊕ ki,j for
every 1 ≤ i ≤ 4 and 1 ≤ j ≤ 4.

2. Stage 2 – SubBytes: In this step, each byte of the state array is re-
placed by another byte, according to a single fixed lookup table S. This
substitution table (or S-box) is a bijection over {0, 1}8. Thus, the Sub-

Bytes step consists of computing ai,j = S(ai,j) for every 1 ≤ i ≤ 4 and
1 ≤ j ≤ 4. We stress that there is only one S-box and it is used for
substituting all of the bytes in the state array.

3. Stage 3 – ShiftRows: In this step, the bytes in each row of the state
array are cyclically shifted to the left as follows: the first row of the
array is untouched, the second row is shifted one place to the left, the
third row is shifted two places to the left, and the fourth row is shifted
three places to the left. Of course, all shifts are cyclic so in the second
row, we have that byte a2,1 become a2,4, byte a2,2 becomes a2,1 and so
on.

4. Stage 4 – MixColumns: In this step, each column is mixed via an in-
vertible linear transformation. Specifically, each column is interpreted
as a polynomial over GF [28] (with the entries being the polynomial
coefficients) and is multiplied modulo x4 + 1 with a fixed polynomial
c(x) = 3x3 + x2 + x + 2. This step can also be viewed as a matrix
multiplication in GF [28].

By viewing stages 3 and 4 as a “mixing permutation” step, we have that
each round of AES has the structure of a substitution-permutation network.
(That is, the round key is first XORed with the intermediate value. Then,

5Recall that the master key may be of size 16, 24 or 32 bytes. This effects the key schedule
only.

Pseudorandom Objects in Practice: Block Ciphers 175

confusion is applied by applying a small, invertible random-looking function
to each byte. Finally, the bytes are mixed. We stress that unlike our general
description of a substitution-permutation network, here the third stage is not
via a simple mixing permutation.)

The number of rounds in AES depends on the key-size. There are 10 rounds
for a 128-bit key, 12 rounds for a 192-bit key, and 14 rounds for a 256-bit key.
In the final round of AES the MixColumns stage is replaced with an additional
AddRoundKey step (this prevents simply rewinding the last round as we have
seen).

Security of AES. As we have mentioned, the AES cipher underwent intense
scrutiny during the selection process and this has continued ever since. To
date, the only non-trivial cryptanalytic attacks that have been found are for
reduced-round variants of AES. It is often hard to compare cryptanalytic
attacks because they vary on different parameters. We will therefore describe
the complexity of one set of attacks that gives the flavor of what is known.
There are known attacks on 6-round AES for 128 bit keys (taking time in
the order of 272 encryptions), 8-round AES for 192 bit keys (taking time in
the order of 2188 encryptions), and 8-round AES for 256 bit keys (taking
time in the order of 2204 encryptions). We stress that the above attacks are
for reduced-round variants of AES, and as of today nothing better than an
exhaustive search on the key space is known for the full AES construction.
(Observe that even the complexities on the reduced-round variants are very
high.) Of course, the fact that no attack is known today does not mean that
one does not exist. In any case, it appears that AES has a large security
margin (especially if one uses 192-bit or 256-bit keys).

A different class of attacks, called side-channel attacks, consider the scenario
that the adversary is somehow able to make measurements on the processor
computing the encryption or decryption with the unknown secret key. Al-
though it sounds far-fetched, information such as the time taken to encrypt
or the power consumed during encryption has actually been used to extract
secret keys in reasonable amounts of time. Such attacks are sometimes feasi-
ble (e.g., when a secure coprocessor, typically called a smartcard, is used for
carrying out encryption and decryption, and may fall into the hands of the
adversary). In any case, a number of side-channel attacks have been demon-
strated on AES. However, they typically require very strong assumptions on
the power of the adversary.

We conclude that as of today, AES constitutes an excellent choice for almost
any cryptographic implementation that needs a pseudorandom permutation
or function. It is free, standardized and highly secure.

176 Introduction to Modern Cryptography

5.6 Differential and Linear Cryptanalysis – A Brief Look

Typical block ciphers are relatively complicated constructions, and as such
are hard to analyze and cryptanalyze. Nevertheless, one should not be fooled
into thinking that a complicated cipher is difficult to break. On the contrary, it
is very very difficult to construct a secure block cipher and surprisingly easy to
construct a trivially insecure one (no matter how complicated it looks). This
should serve as a warning that non-experts (and even many experts) should
not try to construct new ciphers unless there is a very good reason to. Given
that we have 3DES and AES, in most applications it is hard to justify the
necessity to use anything else.

In this section we will very briefly mention two central tools that belong
in the cryptanalysts toolbox. The existence of such tools should also help to
strengthen our above warning that it is very hard to construct good block
ciphers. Today, any new cipher must demonstrate resilience to differential
and linear cryptanalysis.

Differential cryptanalysis. This technique was first presented by Biham
and Shamir in the late 1980s who used it to attack DES. The basic idea
behind the attack is to find specific differences in input that lead to specific
differences in output with above expected probability. Let x1 and x2 be two
inputs to the block cipher. The difference between x1 and x2 is defined by

∆x
def
= x1⊕x2. Likewise, let y1 and y2 be the output of the block cipher with

a secret key k, given inputs x1 and x2, respectively (i.e., y1 = Fk(x1) and

y2 = Fk(x2)), and let ∆y
def
= y1⊕ y2. The pair (∆x, ∆y) is called a differential.

Differential cryptanalysis capitalizes on a potential weakness in the cipher
that results in certain differentials appearing with probability that is higher
than expected in a random function. In order to clarify, we say that a dif-
ferential (∆x, ∆y) appears with probability p if for random plaintexts x1 and
x2 such that x1 ⊕ x2 = ∆x, the probability that Fk(x1) ⊕ Fk(x2) = ∆y is p.
Denoting now the size of the block by n, it is clear that in a random function,
no differential should appear with probability that is much higher than 2−n.
However, in a block cipher (especially a weak one), there are differential that
appear with significantly higher probability.

We will not discuss here how one finds such differentials or even how they
are used to extract the secret key. We will mention that applying the block
cipher to random pairs of inputs that have the given differential enables a
cryptanalyst to isolate portions of the secret key and verify guesses for those
portions. As we discussed regarding the attack on a 2-round substitution-
permutation network, the ability to isolate parts of a key enables an attacker
to obtain the key in time that is less than a brute force search. Notice that
differential cryptanalysis uses a chosen-plaintext attack. This can be seen
from the fact that the method works by observing what happens with pairs

Pseudorandom Objects in Practice: Block Ciphers 177

of plaintexts with a given differential (in order to observe pairs with this
differential, the attacker must be able to choose the pairs of plaintexts it
wishes). Thus, if an attack requires a large number of plaintext pairs, its
practicality is in question.

We remark that although DES and AES are resilient to differential crypt-
analysis (or at least, they seem to be), it has been used with success on other
block ciphers. One important example is FEAL-8 which was completely bro-
ken using differential cryptanalysis.

Linear cryptanalysis. Linear cryptanalysis was developed by Matsui in
the early 1990s. Matsui’s method works by considering linear relationships
between some of the bits of input and output. That is, the potential weak-
ness here is that some subset of the plaintext and ciphertext bits are lin-
early correlated. Letting x1, . . . , xn and y1, . . . , yn denote the input and out-
put bits, respectively, linear cryptanalysis considers equations of the form
xi1 ⊕ · · ·xi`

⊕ yi1 ⊕ · · · yi′`
= 0. Clearly, if the function in question was truly

random, then such linear equations can only hold with probability 1/2. Thus,
here the cryptanalyst looks for equations of the above type that hold with
probability that is far from 1/2. Matsui showed how to use such equations
to completely break the cipher by finding the secret key. However, we note
that the existence of such an equation that holds with probability that is non-
negligibly far from 1/2 is enough to declare that the block cipher is not pseu-
dorandom. (Specifically, any such equation holding with probability 1/2 + ε
yields an algorithm that can distinguish the block cipher from a random func-
tion with advantage ε. All the algorithm needs to do is to output 1 when
the equation holds and 0 otherwise.) An important property of this attack is
that it does not require chosen-plaintext abilities. Rather it suffices for the
cryptanalyst to have many plaintext/ciphertext pairs (i.e., here the cryptan-
alyst carries out a known-plaintext attack). Despite this, as with differential
cryptanalysis, if a very large number of pairs are needed the attack becomes
impractical in most settings.

We have already discussed the applications of differential and linear crypt-
analysis on DES in Section 5.3.3 and therefore do not repeat it here.

5.7 Stream Ciphers from Block Ciphers

In this chapter we have studied practical constructions of block ciphers. We
have not covered stream ciphers, and will not do so in this book. There are a
number of stream ciphers in use today; just one popular example is RC4. As
we have mentioned (in Section 3.4.3), it seems that the cryptographic commu-
nity’s understanding of stream ciphers is somewhat less satisfactory than its
understanding of block ciphers. This can be seen by the fact that extremely

178 Introduction to Modern Cryptography

strong block ciphers like 3DES and AES exist and have been standardized.
In contrast, stream ciphers seem to be far more prone to attack, and there is
no standard stream cipher with no known weakness that has withstood years
of cryptanalytic attacks.

Having said the above, it is well known that stream ciphers can easily be
constructed from block ciphers, in which case the stream cipher inherits the
security of the block cipher. We have already seen how this can be achieved
when we studied modes of operation for block ciphers (see Section 3.6.4).
Therefore, unless severe constraints mandate the use of a dedicated stream
cipher (e.g., in the case of weak hardware where the additional efficiency of
stream ciphers is crucial), we advocate the use of AES and 3DES in practice.
We note that AES is extremely fast and so for most applications it more than
suffices.6

Additional Reading and References

The confusion-diffusion paradigm and substitution-permutation networks
were both introduced by Shannon [113]. The Feistel method of constructing
a block cipher was presented by Feistel [54] when working on Lucifer, a block
cipher predating DES. A theoretical analysis of the Feistel methodology was
later given by Luby and Rackoff [91].

The full DES standard can be found at [102] and a more friendly description
can be found in Kaufman et al. [84]. The most comprehensive presentation
of AES can be found in the book written by its designers Daemen and Ri-
jmen [44]. There are a large number of other good (and less good) block
ciphers in the literature. For a broad but somewhat outdated overview of
other ciphers, see [93, Chapter 7].

A recent analysis of the security of triple-DES is given by Bellare and Ro-
gaway [22].

Differential cryptanalysis was introduced by Biham and Shamir [23] and its
use on full DES was presented in [24]. Coppersmith [37] describes the DES
design in light of the public discovery of differential cryptanalysis. Linear
cryptanalysis was discovered by Matsui [92]. For more information on these
advanced techniques, we refer to the excellent tutorial on differential and

6One may wonder why stream ciphers are preferred over block ciphers in the first place.
There are two main reasons. First, they are often faster (and our recommendation to use a
block cipher in a “stream-cipher mode” will therefore cause some slowdown). The second
reason is that implementors often prefer to use a stream cipher because no padding of the
message is needed (recall that when encrypting with a block cipher, the plaintext message
must be padded in order to make its length an exact multiple of the block size).

Pseudorandom Objects in Practice: Block Ciphers 179

linear cryptanalysis by Heys [78]. A more concise presentation can be found
in the textbook by Stinson [124].

Exercises

5.1 In our attack on a two-round substitution-permutation network, we con-
sidered a block size of 64 bits and a network with 16 S-boxes that take
input of size 4 bits. Repeat the analysis for the case of 8 S-boxes, each
S-box taking an input of size 8 bits. Present an exact description of the
complexity of the attack. Repeat the analysis again with a block size
of 128 bits (and S-boxes that take input of size 8). Does the block size
make any difference?

5.2 Our attack on a three-round substitution-permutation network does not
recover the key but only shows how to distinguish it from a random
permutation. Thus it is not a “complete break”. Despite this, show
that using a three-round substitution-permutation network with counter
mode (see Section 3.6.4) can have disastrous effects on the security of
encryption.

5.3 Consider a modified substitution-permutation network where instead of
carrying out key-mixing, substitution and permutation in alternating
order, first R keys are mixed (via XOR), then R substitution steps are
carried out, and finally R permutations are run. Analyze the security
of this construction. Does it make a difference if the same S-boxes and
permutations are used in all steps or if they are different?

5.4 Show that in the DES structure, DESk(x) = DESk(x) for every key
k and input x (where z denotes the bitwise complement of z). This is
called the complementary property of DES.

5.5 Use the previous exercise to show how it is possible to find the DES
secret key in time 255 (i.e., half the time of a straightforward brute-
force search). For your attack, you can assume that you are given an
oracle that computes DES under the secret key k.

5.6 Provide a formal proof that the initial and final permutations IP and
IP−1 have no effect on the security of DES (beyond slowing down at-
tacks by a constant factor).

Hint: Show that any attack on DES without the permutations can be

converted into an attack on DES with the permutations.

5.7 This exercise discusses problematic keys for DES; these keys are called
weak keys:

180 Introduction to Modern Cryptography

(a) Assume that the DES secret key k equals 056. Show that for every
x it holds that DESk(DESk(x)) = x. Why does the use of such a
key pose a security threat?

(b) Find three other DES keys with the same property. Present the
keys and explain why they have the property.

(c) Is the existence of these 4 keys a threat to the security of DES?
Explain your answer.

5.8 Describe an algorithm that is given two sorted lists of length N and
finds all values that appear in both lists in time O(N). Recall that this
is used in the attack on double-DES.

5.9 It has been proposed to use double-DES as a fixed-length collision-
resistant hash function within the Merkle-Damg̊ard transform, in the
following way. Define the hash function h : {0, 1}112 → {0, 1}64 as
h(x1‖x2) = DESx1(DESx2(0

64)) where |x1| = |x2| = 56.

(a) Write down an actual collision in this fixed-length hash function.

(b) In how much time is it possible to find a preimage for the hash
function. That is, given some y ∈ {0, 1}64 show how to find a
pair (x1, x2) such that h(x1‖x2) = y. Make your attack as quick
as possible. Does your attack make it possible to find a preimage
that “makes sense” (say, one that contains an English word)?

(c) What happens when h as above is used in the Merkle-Damg̊ard
transform? Find the most effective attack that you can think of.

5.10 Describe a detailed attack on all of the following (silly) modifications to
DES:

(a) The S-boxes all output zeroes, irrespective of the input

(b) The internal f function computes the identity function

(c) Instead of using different subkeys in every round, the same 48-bit
key is used in every round of the Feistel structure.

If you claim insecurity, then describe a detailed attack and analyze its
complexity.

Chapter 6

* Theoretical Constructions of
Pseudorandom Objects

In Chapter 3 we introduced the notion of pseudorandomness, and defined the
basic cryptographic primitives of pseudorandom generators and pseudoran-
dom functions. In addition, we showed that these objects are the basic build-
ing blocks for constructing secure encryption schemes (in Chapter 4 we also
saw that they can be used for constructing message authentication codes).
Finally, in Chapter 5 we studied how pseudorandom functions can be con-
structed heuristically. Thus, all of our constructions of encryption schemes
and message authentication codes can be proven secure under the assump-
tion that pseudorandom generators and functions exist (and thus under the
assumption that constructions like the AES block cipher indeed constitute
pseudorandom functions). Since these objects form the basis of essentially
all of “private-key cryptography”, it is of great importance to enhance our
understanding of them from a theoretical (and more rigorous) point of view.
In this chapter we study pseudorandom generators and functions and show
under what (minimal) assumptions they can be constructed, and how.

That material in this chapter is for the most part theoretical, and we do
not suggest that the constructions presented here should (or could) be used in
practice. Indeed, they are far too inefficient for that. Nevertheless, a strong
theoretical understanding of pseudorandomness greatly deepens our under-
standing of how security is achieved, and what assumptions are necessary. In
addition, a strong theoretical understanding is often beneficial when analyzing
schemes used in practice.

A note regarding this chapter. This chapter is somewhat more advanced
and more theoretical than the others in the book. The chapter may be skipped
entirely and is not relied on in the rest of the book. (The one exception to this
rule is that we do mention one-way functions later on. Nevertheless, if desired,
they can be taken at the intuitive level.) Having said this, we have made great
efforts to make the material here suitable for an advanced undergraduate or
beginning graduate audience. This is especially true for Sections 6.1 and 6.2
that we believe are suitable for a general undergraduate audience. We believe
that familiarity with at least some of the topics covered here is important
enough to warrant the effort involved.

181

182 Introduction to Modern Cryptography

6.1 One Way Functions

As we have mentioned, the basic aim of this chapter is to understand the
minimal assumption required for constructing pseudorandom generators and
functions, and how this assumption is used in those constructions. But, why is
any assumption necessary? Why can’t we construct a pseudorandom function
from scratch, and just prove mathematically that it is indeed pseudorandom?
The answer to this question is simply that an unconditional proof of the exis-
tence of pseudorandom generators or functions would involve breakthroughs
in complexity theory that seem far beyond reach today.

Given that some assumption is necessary, at least with our current under-
standing of complexity, a natural goal is to try to base our constructions on
the “minimal assumption” possible. Formally, a minimal assumption is one
that is both necessary and sufficient for achieving constructions of pseudo-
random generators and functions. As it turns out, the minimal assumption
here is that of the existence of one-way functions. Loosely speaking, such
a function has the property that it is easy to compute, but (almost always)
hard to invert. The fact that this assumption is indeed minimal will be proven
throughout this chapter, and in particular in Section 6.7.

We remark that one-way functions are in fact a minimal assumption for
almost all of cryptography, and not just for obtaining pseudorandom genera-
tors and functions. (The only exception are cryptographic tasks for which no
computational assumptions are needed.) Furthermore, on an intuitive level
they constitute a far weaker assumption than the existence of pseudorandom
generators or functions (although technically speaking, as we show in this
chapter they are actually equivalent and either they both exist or they both
do not exist).

6.1.1 Definitions

One-way functions have the property that they are easy to compute, but
hard to invert. Since we are interested in a computational task that is almost
always hard to solve, the hard-to-invert requirement is formalized by saying
that a polynomial-time adversary will fail to invert the function (i.e., find
some preimage), except with negligible probability. (Note that it is always
possible to succeed with negligible probability, by just guessing a preimage of
the appropriate length. Likewise, given exponential-time, it is always possible
to search the entire domain for a preimage.)

Simplifying convention. Throughout this entire chapter, we will assume
that the input and output lengths of every one-way function (or variant) f
are polynomially related. This means that there exist two constants c1 and c2

such that for every x, it holds that |x|1/c1 ≤ |f(x)| ≤ |x|c2 . We remark that
the requirement that f(x) be at most of length |x|c2 is given in any case by

* Theoretical Constructions of Pseudorandom Objects 183

the fact that f must be efficiently computable (a polynomial-time algorithm
cannot write more than polynomially many bits). In contrast, the requirement
that f(x) be at least of length |x|1/c1 is a simplifying convention. We remark
that there are ways of dealing with one-way functions for which this doesn’t
hold. However, this convention simplifies the notation and so we adopt it.

DEFINITION 6.1 (one-way functions): A function f : {0, 1}∗ → {0, 1}∗
is called one-way if the following two conditions hold:

1. Easy to compute: There exists a polynomial-time algorithm Mf such
that on input any x ∈ {0, 1}∗, Mf outputs f(x) (i.e., Mf (x) = f(x) for
every x).

2. Hard to invert: For every probabilistic polynomial-time inverting algo-
rithm A, there exists a negligible function negl such that

Pr
[
A(f(x)) ∈ f−1(f(x))

]
≤ negl(n) (6.1)

where the probability is taken over the uniform choice of x in {0, 1}n
and the random coin tosses of A.

We stress that it is only guaranteed that a one-way function is hard to
invert when the input is uniformly distributed. Thus, there may be many
inputs (albeit a negligible fraction) for which the function can be inverted.
Furthermore, as usual for asymptotic definitions, it is only guaranteed that it
be hard to invert for all long enough values of x.

Successful inversion of one-way functions. A very important point to
note also that a function that is not one-way is not necessarily easy to invert
all the time (or even “often”). Rather, the converse of Definition 6.1 is that
there exists a probabilistic polynomial-time algorithm A and a non-negligible
function ε such that A inverts f(x) for x ∈ {0, 1}n with probability at least
ε(n). What this actually means is that there exists a positive polynomial q(·)
such that for infinitely many n’s, the algorithmA inverts f with probability at
least 1/q(n). Thus, if there exists anA that inverts f with probability n−10 for
all even values of n, then the function is not one-way. This holds even though
A only succeeds on half of the values of n and even though when it succeeds,
it is only with probability n−10. We also stress that the inverting algorithm
is not required to find the exact x used in computing y = f(x). Rather, if it
finds any value x′ such that f(x′) = y = f(x), then it has succeeded in its
task.

Exponential-time inversion. As we have mentioned, any one-way function
can be inverted given enough time. Specifically, given a value y, it is always
possible to simply try all values x of increasing length (up to some bound) until
a value x is found such that f(x) = y. This algorithm runs in exponential time

184 Introduction to Modern Cryptography

and always succeeds. Thus, the existence of one-way functions is inherently
an assumption about computational complexity and computational hardness.
That is, it considers a problem that can be solved in principle. However, it
cannot be solved efficiently.

One-way permutations. We will often be interested in one-way functions
with special properties. One particular category of interest is that of one-way
functions that are bijections. We call such functions “one-way permutations”.
Since we are considering infinite domains (i.e., functions that receive inputs
of all lengths), we should explain in more detail what we mean. We will call
a function over an infinite domain a permutation if for every n, the function
restricted to inputs of length n is a bijection.

DEFINITION 6.2 (one-way permutations): Let f be a function with
domain {0, 1}∗ and define the function fn to be the restriction of f to the
domain {0, 1}n (i.e., for every x ∈ {0, 1}n, fn(x) = f(x)). Then, a one-way
function f is called a one-way permutation if for every n, the function fn is
1–1 and onto {0, 1}n.

An interesting property of one-way permutations is that any value y uniquely
determines its preimage x. This is due to the fact that a permutation f is a
bijection, and so there exists only one preimage. Thus, even though y fully
determines x, it is still hard to find x in polynomial-time.

We remark that a more involved notion called “families of one-way permu-
tations” is typically considered in the cryptography literature. Nevertheless,
for the sake of clarity, we will consider the above simpler notion and remark
that it makes almost no difference to the material presented in this chapter.

Families of one-way functions and permutations. The above defini-
tions of one-way functions and permutations are very convenient in that they
consider a single function over an infinite domain and range. However, most
candidates that we have for one-way functions and permutations actually
don’t fit into this type of formalization. Rather, for every n there is a differ-
ent function with a finite domain and range containing inputs of size poly(n).
Furthermore, the inputs and outputs may not be mere strings of size n but
may have a certain form. For example, for every prime p we may consider a
permutation fp over Zp. The collection of all fp then constitutes a family of
functions. This brings us to the following definition:

DEFINITION 6.3 A tuple Π = (Gen, Samp, f) of probabilistic, polynomial-
time algorithms is a family of functions if the following hold:

1. The parameter generation algorithm Gen, on input 1n, outputs parameters
I with |I | ≥ n. Each value of I output by Gen defines sets DI and RI that
constitute the domain and range, respectively, of a function we define
next.

* Theoretical Constructions of Pseudorandom Objects 185

2. The sampling algorithm Samp, on input I, outputs a uniformly distributed
element of DI (except possibly with probability negligible in |I |).

3. The deterministic evaluation algorithm f , on input I and x ∈ DI , outputs
an element y ∈ RI . We write this as y := fI(x).

Π is a family of permutations if for each value of I output by Gen(1n), it holds
that DI = RI and the function fI : DI → DI is a bijection.

Consider a function fp that is defined for every prime p as follows: fp(x) =
gx mod p. Then, one can define a family of functions where Gen chooses
a random prime of the appropriate length n (in this case I = p), Samp(I)
chooses a random element x within Zp, and f(x) computes gx mod p. It is
not hard to see that this is actually a family of permutations. We now proceed
to define one-wayness for a family of functions or permutations. We begin by
defining an “inversion” experiment:

The inverting experiment InvertA,Π(n):

1. Gen(1n) is run to obtain I, and then Samp(I) is run to obtain
a random x← DI . Finally, y = fI(x) is computed.

2. A is given I and y as input, and outputs x′.

3. The output of the experiment is defined to be 1 if fI(x
′) = y,

and 0 otherwise.

A function is one-way if success in the above experiment occurs with at most
negligible probability. That is:

DEFINITION 6.4 A family of functions/permutations Π = (Gen, Samp,
f) is called one-way if for all probabilistic polynomial-time algorithms A there
exists a negligible function negl such that

Pr[InvertA,Π(n) = 1] ≤ negl(n).

6.1.2 Candidates

One-way functions are only of interest if they actually exist. Since we do
not know how to prove that they exist (because this would imply a major
breakthrough in complexity theory), we conjecture or assume their existence.
This conjecture (assumption) is based on some very natural computational
problems that have received much attention, and have yet to yield polynomial-
time algorithms. Perhaps the most famous of these problems is that of integer
factorization. This problem relates to the difficulty of finding the prime factors
of a number that is the product of long uniformly distributed primes of similar
length. This leads us to define the function fmult(x‖y) = x · y. Now, if there
is no restriction on the lengths of x and y, then fmult is easy to invert (with

186 Introduction to Modern Cryptography

high probability x · y will have a small prime factor p that can be found, and
then it is possible to return (p, xy/p) as a preimage). Nevertheless, there are
two ways to modify fmult so that it yields a one-way function. The first is
to require that |x| = |y| (this prevents finding a small prime factor), and the
other is to use the input to sample two primes of approximately the same size
(see Section 7.2.1). The integer factorization problem is discussed in greater
length in Chapters 7 and 8.

Another candidate one-way function is based on the subset-sum problem
and is defined by f(x1, . . . , xn, J) = (x1, . . . , xn,

∑
j∈J xj), where all xi’s are

of length n, and J is a subset of {1, . . . , n}. Note that when given an image
(x1, . . . , xn, y) of this function, the task of inverting it is exactly that of finding
a subset J ′ of {1, . . . , n} such that

∑
j∈J xj = y.1

We conclude with a family of permutations that is widely believed to be one-
way. This family is based on the so-called discrete logarithm problem and is
defined by fp(x) = gx mod p for any prime p. We described this family above
and remark here that it is believed to be one-way. This is called the discrete
logarithm because the logarithm function is the inverse of exponentiation; it
is “discrete” because we work over Zp and not the reals.

In summary, one-way functions and one-way permutations are assumed to
exist, and we have a number of concrete candidates for their existence. We
will study some of these in detail in Chapters 7, 8 and 11.

6.1.3 Hard-Core Predicates

By the definition, a one-way function is hard to invert. Stated differently,
given a value y = f(x), the value of x is unknown to any polynomial-time
inverting algorithm. Thus, f hides information about x, even when f(x)
is known. Recall that when f is a permutation, f(x) fully determines x.
Nevertheless, x is still hidden to any polynomial-time algorithm.

One may have the impression that this means that x is completely unknown,
even given f(x). However, this is not the case. Indeed, a one-way function f
may yield a lot of information about its input, and yet still be hard to invert.
For example, let f be a one-way function and define g(x1, x2) = (f(x1), x2),
where |x1| = |x2|. Then, it is easy to show that g is also a one-way function,
even though it reveals half of its input (the proof that g is one-way is left as
an exercise). For our applications, we will need to classify what information
is truly hidden by f . This is exactly the purpose of a hard-core predicate.

1We remark that students who have taken a course in complexity or who have studied
NP-completeness may be familiar with the subset-sum problem and the fact that it is
NP-complete. We stress that NP-completeness does not imply one-wayness because NP-
completeness relates to worst-case complexity and not average case as we consider here.
Thus, our belief that this function is one-way is based on the lack of known algorithms to
solve this problem, and not on the fact that the general problem is NP-complete.

* Theoretical Constructions of Pseudorandom Objects 187

Loosely speaking, a hard-core predicate hc of a function f is a function out-
putting a single bit with the following property: If f is one-way, then upon
input f(x) it is infeasible to correctly guess hc(x) with any non-negligible ad-
vantage above 1/2. (Note that it is always possible to compute hc(x) correctly
with probability 1/2 by just randomly guessing it.)

Notation: Before proceeding to the definition, we remark that in this chapter
we will often make the probability space explicit by subscripting it in the
probability (see the equation in the definition below). We found this to be
clearer for the material in this chapter.

We now proceed with the definition of a hard-core predicate.

DEFINITION 6.5 (hard-core predicate): A polynomial-time computable
predicate hc : {0, 1}∗ → {0, 1} is called a hard-core of a function f if for every
probabilistic polynomial-time algorithm A, there exists a negligible function
negl such that

Pr
x←{0,1}n

[A(f(x)) = hc(x)] ≤ 1

2
+ negl(n)

where the probability is taken over the uniform choice of x in {0, 1}n and the
random coin tosses of A.

Simple ideas don’t work. Consider for a moment the candidate hard-core
predicate defined as hc(x) =

⊕n
i=1 xi where x1, . . . , xn denote the bits of x.

The intuition behind why this function “should” be a hard-core predicate is
that if f cannot be inverted, then f(x) must hide at least one of the bits xi

of its preimage. Then, the exclusive-or of all of the bits of x must be hard
to compute (since xi alone is already hard to compute). Despite its appeal,
this argument is incorrect. Specifically, given a one-way function f , define
the function g(x) = (f(x),

⊕n
i=1 xi). It is not hard to show that g is one-way.

However, it is clear that g(x) does not hide the value of hc(x) =
⊕n

i=1 xi,
because this is part of its output. Therefore, hc(x) is not always a hard-core
predicate. (Actually, it can be shown that for every given predicate hc, there
exists a one-way function for which hc is not a hard-core of f .)

Meaningless hard-core predicates. We note that some functions have
“meaningless” hard-core predicates. For example, let f be any function and
define g(σ, x) = f(x) where σ ∈ {0, 1} and x ∈ {0, 1}n. Then, given g(σ, x) it
is clearly hard to guess σ with probability greater than 1/2 (because σ is not
determined by g(σ, x)). This holds even if f (and thus g) is not one-way.

In contrast, a 1–1 function f has a hard-core predicate only if it is one-
way (see Exercise 6.9). Intuitively, this is the case because when a function
is 1–1, the value f(x) fully determines x. Now, if f is not one-way, then
it can be inverted, revealing the unique preimage x. Thus, hc(x) can be
computed from f(x) with some non-negligible advantage. This shows that if

188 Introduction to Modern Cryptography

a 1–1 function is not one-way, then it cannot have a hard-core predicate. We
stress that in the example above of g(σ, x), the fact that σ remains hidden is
due to the fact that it is not determined. In contrast, for 1–1 functions, the
difficulty of guessing the hard-core is due to computational difficulty. We will
use hard-core predicates in order to construct pseudorandom generators. In
that construction, it will become clear why a hard-core predicate that hides
an undetermined bit is of no use.

6.2 Overview of Constructions

In this section, we describe the steps in the construction of pseudorandom
generators and functions from one-way functions. The first step is to show
that for every one-way function f , there exist a hard-core predicate for the
function g(x, r) = (f(x), r), where |x| = |r| (recall that if f is one-way then so
is g). Notice that if f was 1–1 or a permutation, then so is g. Thus, nothing
is lost by considering g instead of f . We have the following theorem:

THEOREM 6.6 Let f be a one-way function and define g(x, r) = (f(x), r).
Then, the function gl(x, r) =

⊕n
i=1 xi · ri, where x = x1, . . . , xn and r =

r1, . . . , rn, is a hard-core predicate of g.

Notice that the function gl(x, r) outputs a bit that consists of the exclusive-
or of a random subset of the bits x1, . . . , xn. This is due to the fact that r
can be seen as selecting this subset (when ri = 1 the bit xi is included in
the XOR, and otherwise it is zeroed), and r is uniformly distributed. Thus,
Theorem 6.6 essentially states that f(x) hides the exclusive-or of a random
subset of the bits of x. ¿From here on, we will write f(x) as the one-way
function, and unless explicitly stated otherwise, it should be understood that
we really mean a one-way function of the form g as above. We remark that
the function is denoted gl after Goldreich and Levin who proved Theorem 6.6.

The next step in the construction is to show how hard-core predicates can be
used to obtain pseudorandom generators. Despite the fact that more general
theorems exist, we will show this only for the case of one-way permutations.
We use the following two important facts. First, if f is a permutation, then
for a uniformly distributed x it holds that f(x) is also uniformly distributed.
Second, if hc is a hard-core of f , then the bit hc(x) looks random, even given
f(x). (This second fact follows from the fact that a polynomial-time algorithm
can guess the value hc(x) given f(x) with probability only negligibly greater
than 1/2. This is equivalent to say that it looks random, or more formally,
that it is pseudorandom.) We have the following theorem:

* Theoretical Constructions of Pseudorandom Objects 189

THEOREM 6.7 Let f be a one-way permutation and let hc be a hard-
core predicate of f . Then, G(s) = (f(s), hc(s)) constitutes a pseudorandom
generator with expansion factor `(n) = n + 1.

The existence of a pseudorandom generator that stretches the seed even by
just a single bit is very non-trivial. The possibility of creating even a single bit
of randomness in a deterministic way is very surprising (note, for example,
that such a result cannot be achieved in a world where algorithms are not
computationally bounded). Despite this, we are interested in obtaining many
pseudorandom bits. This is due to the fact that in order to encrypt with pseu-
dorandom generators (as in Section 3.4) it is necessary to have pseudorandom
generators with large expansion factors. Fortunately, pseudorandom genera-
tors that stretch the seed by one bit can be used to construct pseudorandom
generators with any polynomial expansion factor.

THEOREM 6.8 Assume that there exist pseudorandom generators with
expansion factor `(n) = n + 1. Then, for every polynomial p(·), there exists a
pseudorandom generator with expansion factor `(n) = p(n).

Thus, pseudorandom generators can be constructed from any one-way per-
mutation. Pseudorandom generators suffice for obtaining secure encryption
in the presence of eavesdropping adversaries. However, for active CPA and
CCA attacks and for constructing message authentication code, we relied upon
pseudorandom functions. The last step is thus the construction of pseudoran-
dom functions from pseudorandom generators. That is,

THEOREM 6.9 Assume that there exist pseudorandom generators with
expansion factor `(n) = 2n. Then, there exist pseudorandom functions and
pseudorandom permutations.

Combining Theorems 6.6 to 6.9, we have the following corollary:

COROLLARY 6.10 Assuming the existence of one-way permutations,
there exist pseudorandom generators with any polynomial expansion factor,
pseudorandom functions and pseudorandom permutations.

We remark that it is actually possible to obtain all of these results from
any one-way function (without requiring that it be a permutation or even
1–1). However, the construction that is based on arbitrary one-way functions
is very involved and is out of the scope of this book.

190 Introduction to Modern Cryptography

6.3 Hard-Core Predicates from Every One-Way Func-
tion

In this section, we prove Theorem 6.6. We begin by restating the theorem:

THEOREM 6.11 (hard-core predicate – restated): Let f be a one-way
function and let g be defined by g(x, r) = ((f(x), r)), where |x| = |r|. Let
gl(x, r) =

⊕n
i=1 xi · ri be the inner product function, where x = x1 · · ·xn and

r = r1 · · · rn. Then, the predicate gl is a hard-core of the function g.

We now proceed to prove Theorem 6.11. Due to the complexity of the
proof, we present it in three stages beginning with the most simplistic case
and ending with the full proof.

6.3.1 The Most Simplistic Case

We first show that if there exists a polynomial-time adversaryA that always
successfully guesses gl(x, r) given (f(x), r), then it is possible to invert f in
polynomial-time. Given the assumption that f is a one-way function, it follows
that no such adversary A exists.

PROPOSITION 6.12 Let f and gl be as in Theorem 6.11. If there exists
a probabilistic polynomial-time adversary A such that for infinitely many n’s

Pr
x,r←{0,1}n

[
A((f(x), r)) = gl(x, r)

]
= 1

then there exists a probabilistic polynomial-time adversary A′ such that for
infinitely many n’s

Pr
x←{0,1}n

[
A′(f(x)) ∈ f−1(f(x))

]
= 1

PROOF Let A be as in the proposition and consider the infinite set of
n’s upon which A successfully guesses gl(x, r). We construct an adversary
A′ as follows. Let ei denote the length-n vector that contains zeroes in all
positions, except for the ith position where it contains a one. Then, upon
input y, adversary A′ invokes A with input (y, ei) for i = 1, . . . , n. That is,
for y = f(x), A′ effectively invokes A with input g(x, ei). By the assumption
in the proposition (that A always succeeds in guessing gl), we have that for

* Theoretical Constructions of Pseudorandom Objects 191

each i, A outputs gl(x, ei). However,

gl(x, ei) =

n⊕

j=1

xj · ei
j = xi · ei

i +
⊕

j 6=i

xj · ei
j = xi

where the last equality is due to the fact that ei
i = 1, but for all j 6= i it

holds that ei
j = 0. We therefore conclude that A′ obtains the bits x1, . . . , xn

one at a time from A. Once it concludes, it outputs x = x1, . . . , xn. By the
assumption on A, we have that f(x) = y, and so A′ successfully inverts f .

As we have mentioned, by the assumption that f is one-way, it is impos-
sible to invert f with non-negligible probability (let alone probability 1) in
polynomial-time. Thus, we conclude that an adversary A that can guess
gl(x, r) with probability 1 does not exist. Of course, this is still very far from
our ultimate goal of showing that gl(x, r) can be guessed with probability only
negligibly greater than 1/2.

6.3.2 A More Involved Case

We now proceed to show that it is hard to guess gl(x, r) with probability
that is non-negligibly greater than 3/4. This already establishes a measure
of unpredictability of gl(x, r) given f(x, r). Notice that the strategy in the
proof of Proposition 6.12 fails completely here because it may be that A never
succeeds when it receives r = ei. Furthermore, notice that in this case, A′
cannot know if a particular bit output by A as a guess for gl(x, r) is correct or
not. The only fact that A′ can deduce is that with probability non-negligibly
greater than 3/4, adversary A is indeed correct. We now prove the following:

PROPOSITION 6.13 Let f and gl be as in Theorem 6.11. If there exists
a probabilistic polynomial-time adversary A and a polynomial p(·) such that
for infinitely many n’s it holds

Pr
x,r←{0,1}n

[
A(f(x), r) = gl(x, r)

]
≥ 3

4
+

1

p(n)

then there exists a probabilistic polynomial-time adversary A′ and a polynomial
p′(·) such that for infinitely many n’s

Pr
x←{0,1}n

[
A′(f(x)) ∈ f−1(f(x))

]
≥ 1

p′(n)

PROOF The main observation behind the proof of this proposition is that
for every r ∈ {0, 1}n, the values gl(x, r⊕ ei) and gl(x, r) together can be used

192 Introduction to Modern Cryptography

to derive the ith bit of x. This follows from the following calculation:

gl(x, r) ⊕ gl(x, r ⊕ ei)

=




n⊕

j=1

xj · rj


⊕




n⊕

j=1

xj · (rj ⊕ ei)


 = xi · ri ⊕ xi · (ri ⊕ 1) = xi

where the second equality is due to the fact that for all j 6= i, the value
xj · rj ⊕ xj · rj appears (and so is cancelled out).

In order to use this observation, we will need to choose many different values
of r for a fixed x (the reason for this will become apparent later). We therefore
need to show that for many x’s, the probability that A’s correctly outputs
both gl(x, r) and gl(x, r ⊕ ei), when r is chosen uniformly, is good. In the
following claim, we show that there is a large enough set of concrete “good
inputs” x upon which A often succeeds. This claim allows us to consider the
probability distribution over the choice of r (and not over the uniform choice
of both x and r), which makes things easier.

CLAIM 6.14 For infinitely many n’s, there exists a set Sn ⊆ {0, 1}n of
size at least 1

2p(n) · 2n such that for every x ∈ Sn it holds that

Pr
r←{0,1}n

[A(f(x), r) = gl(x, r)] ≥ 3

4
+

1

2p(n)
(6.2)

where the probability is taken over the choice of r only.

PROOF Set ε(n) = 1/p(n) and for any given x, let

s(x) = Pr
r←{0,1}n

[A(f(x), r) = gl(x, r)].

Then, let Sn be the set of all x’s for which s(x) ≥ 3/4+ε(n)/2 (i.e., for which

Equation (6.2) holds). We show that |Sn| ≥ ε(n)
2 · 2n. This follows from a

simple averaging argument. (That is, if A inverts with probability 3/4+ε(n),
then there must be at least an ε(n)/2 fraction of inputs for which it succeeds
with probability 3/4 + ε(n)/2.) We have:

Pr
x,r

[A(f(x), r) = gl(x, r)]

= Pr
x,r

[A(f(x), r) = gl(x, r) | x ∈ Sn] · Pr
x

[x ∈ Sn]

+ Pr
x,r

[A(f(x), r) = gl(x, r) | x /∈ Sn] · Pr
x

[x /∈ Sn]

≤ Pr
x

[x ∈ Sn] + Pr
x,r

[A(f(x), r) = gl(x, r) | x /∈ Sn]

and so

Pr
x

[x ∈ Sn]

≥ Pr
x,r

[A(f(x), r) = gl(x, r)] − Pr
x,r

[A(f(x), r) = gl(x, r) | x /∈ Sn]

* Theoretical Constructions of Pseudorandom Objects 193

By the definition of Sn, it holds that for every x /∈ Sn, Pr[A(f(x), r) =
gl(x, r)] < 3/4 + ε(n)/2. That is, Prx,r[A(f(x), r) = gl(x, r) | x /∈ Sn] <
3/4 + ε(n)/2, and so we have that

Pr
x

[x ∈ Sn] ≥ 3

4
+ ε(n)− 3

4
− ε(n)

2
=

ε(n)

2

This implies that Sn must be at least of size ε(n)
2 · 2n (because x is uniformly

distributed in {0, 1}n), completing the proof of the claim.

For the rest of the proof we set ε(n) = 1/p(n) and consider only the infinite
set of n’s upon which A succeeds with probability ε(n). The claim above
states that for an ε(n)/2 = 1/2p(n) fraction of inputs x, the adversary A
correctly outputs gl(x, r) with probability at least 3/4 + ε(n)/2, when r is
uniformly distributed. Below, we will show that A′ can invert f(x) with good
probability in the case that x is as above (i.e., for x ∈ Sn). Since ε(·) is
a non-negligible function, this is enough to contradict the one-wayness of f
(because for a one-way function it must be possible to invert only a negligible
fraction of the inputs with good probability). Formally, it suffices to look only
at x ∈ Sn because

Pr[A′(f(x)) = x] ≥ Pr[x ∈ Sn] · Pr[A′(f(x)) = x | x ∈ Sn].

From now on, we focus only on x ∈ Sn.
Now, let A be as in the proposition. Then, given y = f(x) for any x ∈ Sn,

an adversary A′ can choose a random r and invoke A on (y, r). By the
assumption in the proposition, it holds that A outputs gl(x, r) =

⊕n
j=1 xj · rj

with probability at least 3/4 + ε(n)/2. Stated otherwise, A fails to output
the correct gl(x, r) with probability at most 1/4 − ε(n)/2. Likewise, upon
input (y, r⊕ ei), we have that A outputs gl(x, r⊕ ei) with probability at least
3/4 + ε(n)/2 and so fails with probability at most 1/4− ε(n)/2. This holds
because if r is uniformly distributed then so is r ⊕ ei.

Recall that if A outputs the correct values for both gl(x, r) and gl(x, r⊕ ei)
then A′ will obtain the correct value xi. We would now like to analyze the
probability that A outputs the correct values for both gl(x, r) and gl(x, r⊕ei).
Note that r and r⊕ei are not independent. Therefore, we cannot just multiply
the probabilities of success; that is, we cannot claim that the probability is
(3/4 + ε(n)/2) · (3/4 + ε(n)/2) > 9/16. Nevertheless, we can use the union
bound (see Proposition A.7 in Appendix A) and just sum the probabilities of
failure. Thus, we have that the probability that A is incorrect on at least one
of gl(x, r) or gl(x, r ⊕ ei) is at most

(
1

4
− ε(n)

2

)
+

(
1

4
− ε(n)

2

)
=

1

2
− ε(n)

and so A is correct on both gl(x, r) and gl(x, r ⊕ ei) with probability at least
1/2 + ε(n). This means that the adversary A′, upon input f(x), is able to

194 Introduction to Modern Cryptography

correctly guess the ith bit of x with probability that is non-negligibly greater
than 1/2 (when x ∈ Sn). This does not yet suffice because in order to invert
f(x), A must simultaneously guess all of the bits of the preimage x1, . . . , xn

correctly. However, this can be achieved by separately running the above
procedure for each bit, while reducing the error probability for each guess. In
order to see how this works, assume that we can improve the above procedure
so that A′ obtains a correct guess of xi with probability at least 1− 1

2n . Since
this holds for each i, we have the following: A′ incorrectly guesses a bit xi with
probability at most 1

2n . Therefore, by the union bound, the probability that
A′ will guess at least one of x1, . . . , xn incorrectly is at most n· 1

2n = 1
2 . Stated

differently, A′ obtains the correct preimage x = x1 · · ·xn with probability at
least 1/2 and so successfully inverts f(x), in contradiction to the one-wayness
of f .

It remains to show how we can improve the procedure of A′ for guessing
xi so that it is correct with probability at least 1 − 1

2n . The idea behind
the improved procedure is to run the original procedure many times (using
independent coins each time). Then, since the correct answer is obtained more
often than the incorrect one (with an advantage of ε(n)), it holds that over
many trials – proportionate to n/ε(n) – the majority result will be correct with
high probability (if a coin that is biased towards heads is flipped many times,
then with very high probability heads will appear more often than tails). This
can be proven using the Chernoff bound (a standard bound from probability
theory). We remark that the Chernoff bound only works for independent
random variables. However, since x ∈ Sn is fixed, the probability is only over
the choice of r, which is chosen independently in each attempt. Therefore,
each trial is independent.2 We leave the application of the Chernoff bound
here (so as to complete the proof) as an exercise.

A corollary of Proposition 6.13 is that if f is a one-way function, then
the probability of correctly guessing gl(x, r) when given (f(x), r) is at most
negligibly greater than 3/4. Thus, the bit gl(x, r) has considerable uncertainty
(when considering polynomial-time observers).

6.3.3 The Full Proof

We remark that this section is more advanced than the rest of the book, and
relies on more involved concepts from probability theory and theoretical com-
puter science (for example, the proof relies heavily on the notion of pairwise

2This is the reason that we needed to fix the set Sn. Otherwise, we would have a random x
and a random r, and in the different trials we would only be changing r. Such trials would
not be independent, and so Chernoff could not be used. We note that the random coins of
A can be chosen independently each time and so pose no problem.

* Theoretical Constructions of Pseudorandom Objects 195

independent random variables). We include the full proof for completeness,
and for more advanced students and courses.

6.3.3.1 Preliminaries – Markov and Chebyshev Inequalities

Before proceeding to the full proof of Theorem 6.11, we prove two impor-
tant inequalities that we will use. These inequalities are used to measure the
probability that a random variable will significantly deviate from its expecta-
tion.

Markov Inequality: Let X be a non-negative random variable and v a real
number. Then:

Pr[X ≥ v · Exp[X]] ≤ 1

v

Equivalently: Pr[X ≥ v] ≤ Exp[X]/v.

PROOF

Exp[X] =
∑

x

Pr[X = x] · x

≥
∑

x<v

Pr[X = x] · 0 +
∑

x≥v

Pr[X = x] · v

= Pr[X ≥ v] · v

The Markov inequality is extremely simple, and is useful when very little
information about X is given. However, when an upper-bound on its variance

is known, better bounds exist. Recall that Var(X)
def
= Exp[(X − Exp[X])2],

that Var(X) = Exp[X2]− Exp[X]2, and that Var[aX + b] = a2Var[X].

Chebyshev’s Inequality: Let X be a random variable and δ > 0. Then:

Pr[|X − Exp[X]| ≥ δ] ≤ Var(X)

δ2

PROOF We define a random variable Y
def
= (X−Exp[X])2 and then apply

the Markov inequality to Pr[Y ≥ δ2]. That is,

Pr[|X − Exp[X]| ≥ δ] = Pr[(X − Exp[X])2 ≥ δ2]

≤ Exp[(X − Exp[X])2]

δ2

=
Var(X)

δ2

196 Introduction to Modern Cryptography

where the second inequality is by the “equivalent” formulation of Markov.

An important corollary of Chebyshev’s inequality relates to pairwise inde-
pendent random variables. A series of random variables X1, . . . , Xm are called
pairwise independent if for every i 6= j and every a and b it holds that

Pr[Xi = a ∧ Xj = b] = Pr[Xi = a] · Pr[Xj = b]

We note that for pairwise independent random variables X1, . . . , Xm it holds
that Var[

∑m
i=1 Xi] =

∑m
i=1 Var[Xi] (this is due to the fact that every pair

of variables are independent and so their covariance equals 0). (Recall that
cov(X, Y) = Exp[XY] − Exp[X]Exp[Y] and Var[X + Y] = Var[X] + Var[Y] −
2cov(X, Y). This can be extended to any number of random variables.)

COROLLARY 6.15 (pairwise-independent sampling): Let X1, . . . , Xm be
pairwise-independent random variables with the same expectation µ and the
same variance σ2. Then, for every ε > 0,

Pr

[∣∣∣∣
∑m

i=1 Xi

m
− µ

∣∣∣∣ ≥ ε

]
≤ σ2

ε2m

PROOF By the linearity of expectations, Exp[
∑m

i=1 Xi/m] = µ. Applying
Chebyshev’s inequality, we have

Pr

[∣∣∣∣
∑m

i=1 Xi

m
− µ

∣∣∣∣ ≥ ε

]
≤ Var

(∑m
i=1

Xi

m

)

ε2

By pairwise independence, it follows that

Var

(
m∑

i=1

Xi

m

)
=

m∑

i=1

Var

(
Xi

m

)
=

1

m2

m∑

i=1

Var(Xi) =
1

m2

m∑

i=1

σ2 =
σ2

m

The inequality is obtained by combining the above two equations.

6.3.3.2 The Full Proof of the Hard-Core Predicate

Similarly to above, we prove Theorem 6.11 via the following proposition:

PROPOSITION 6.16 Let f and gl be as in Theorem 6.11. If there exists
a probabilistic polynomial-time adversary A and a polynomial p(·) such that
for infinitely many n’s it holds that

Pr
x,r←{0,1}n

[
A(f(x), r) = gl(x, r)

]
≥ 1

2
+

1

p(n)

* Theoretical Constructions of Pseudorandom Objects 197

then there exists a probabilistic polynomial-time adversary A′ and a polynomial
p′(·) such that for infinitely many n’s

Pr
x←{0,1}n

[
A′(f(x)) ∈ f−1(f(x))

]
≥ 1

p′(n)

PROOF Before we prove the proposition, we remark that it implies Theo-
rem 6.11 because it states that if it is possible to guess the hard-core predicate
with any non-negligible advantage, then it is possible to invert f with non-
negligible advantage. Thus, the assumed one-wayness of f implies that gl is
a hard-core predicate of f .

As in the proof of Proposition 6.13, we set ε(n) = 1/p(n) and focus only
on the infinite set of n’s upon which A succeeds with probability ε(n). We
also begin by defining a set Sn of inputs x ∈ {0, 1}n for which A is successful
in guessing gl(x, r), when r is randomly chosen. The following claim is anal-
ogous to the claim presented in the case where A is assumed to succeed with
probability greater than 3/4.

CLAIM 6.17 There exists a set Sn ⊆ {0, 1}n of size at least ε(n)
2 · 2n such

that for every x ∈ Sn it holds that

s(x) = Pr
r←{0,1}n

[A(f(x), r) = gl(x, r)] ≥ 1

2
+

ε(n)

2

Claim 6.17 is proved in an almost identical way to Claim 6.14 and we
therefore leave it as an exercise.

In the proof of Proposition 6.13, we showed how to convert A’s capability
of correctly guessing gl(x, r) into a way of guessing the ith bit of x with
probability that is non-negligibly greater than 1/2. This suffices because given
such a non-negligible success in guessing xi, it is possible to boost this success
further to 1− 1/2n, which suffices.

The proof of this case (where A guesses gl(x, r) with probability 1/2+ε(n))
is significantly more involved than in the case of Proposition 6.13 (where A
guesses gl(x, r) with probability 3/4 + ε(n)). The reason for this is that if A
guesses gl(x, r) and gl(x, r⊕ei) correctly with probability only 1/2+ε(n) each,
then the probability that at least one is incorrect can only be upper-bound
by 1/2− ε(n) + 1/2− ε(n) = 1− 2ε(n). Thus, there is no guarantee that the
majority of the guesses made by A′ will be correct (when using the procedure
from above).3 We therefore must somehow compute gl(x, r) and gl(x, r ⊕ ei)

3We stress again that the events of successfully guessing gl(x, r) and gl(x, r ⊕ ei) are not
independent. Furthermore, we don’t know that the minority guess will be correct; rather,
we know nothing at all.

198 Introduction to Modern Cryptography

without invoking A twice. The way we do this is to invoke A on gl(x, r ⊕ ei)
and “guess” the value gl(x, r) ourselves. This guess is generated in a special
way so that the probability of the guess being correct (for all i) is reasonable
good. (Of course, a naive way of guessing would be correct with only negligible
probability, because we need to guess gl(x, r) for a polynomial number of r’s.)
The strategy for generating the guesses is via pairwise independent sampling.
As we have already seen, Chebyshev’s inequality can be applied to this case
in order to bound the deviation from the expected value.

Continuing with this discussion, we show how the pairwise independent r’s
are generated. In order to generate m different r’s (where m will be polynomial
in n – see below), we select dl = log(m+1)e independent uniformly distributed
strings in {0, 1}n; denote them by s1, . . . , sl. Then, for every possible non-
empty subset I ⊆ {1, . . . , l}, we define rI = ⊕i∈I si. Notice that there are
2l − 1 non-empty subsets, and therefore we have defined 2log(m+1) − 1 =
m different strings. Furthermore, each string is uniformly distributed when
considered in isolation. We now claim that all of the strings rI are pairwise
independent. In order to see this, notice that for every two subsets I 6= J ,
there exists an index j such that j /∈ I ∩ J . Without loss of generality,
assume that j ∈ J . Then, given rI , it is clear that rJ is uniformly distributed
because it contains a uniformly distributed string sj that does not appear in
rI . Likewise, rI is uniformly distributed given rJ because sj “hides” rI . (A
formal proof of pairwise independence is straightforward and is omitted.) We
now have the following two important observations:

1. Given the correct values gl(x, s1), . . . , gl(x, sl) and any non-empty sub-
set I ⊆ {1, . . . , l}, it is possible to correctly compute gl(x, rI). This
is due to the fact that by the definition of the predicate, gl(x, rI) =
gl(x,⊕i∈I si) = ⊕i∈I gl(x, si).

2. The values gl(x, s1), . . . , gl(x, sl) can be correctly guessed with proba-
bility 1/2l (this is the case because there are only l bits and so only
2l = m + 1 possibilities – one of which is correct). Note that since m
is polynomial in n, it follows that 2l is polynomial in n. Thus, the val-
ues gl(x, s1), . . . , gl(x, sl) can be correctly guessed with non-negligible
probability.

Combining the above, we obtain the surprising property that this procedure
yields a way of obtaining m = poly(n) pairwise independent strings r ∈ {0, 1}n
along with their corresponding correct gl(x, r) values, with non-negligible
probability. It follows that these r and gl(x, r) values can then be used to
compute xi in the same way as in the proof of Proposition 6.13. Details
follow.

The inversion algorithm A′. We now provide a full description of the
algorithm A′ that receives an input y and uses algorithm A in order to find
f−1(y). Upon input y, A′ sets n = |y| and l = dlog(2n/ε(n)2 + 1)e, and
proceeds as follows:

* Theoretical Constructions of Pseudorandom Objects 199

1. Uniformly choose s1, . . . , sl ← {0, 1}n and σ1 . . . , σl ← {0, 1} (σi is a
guess for gl(x, si)).

2. For every non-empty subset I ⊆ {1, . . . , l}, define rI = ⊕i∈I si and
compute τ I = ⊕i∈I σi (τ I is a guess for gl(x, rI)). We remark that as
long as the σi values are all correct, so too are the τ I values.

3. For every i ∈ {1, . . . , n}, obtain a guess for xi as follows:

(a) For every non-empty subset I ⊆ {1, . . . , l}, set vI
i = τ I ⊕A(y, rI ⊕

ei).

(b) Guess xi = majorityI{vI
i } (i.e., take the bit that appeared a major-

ity of the times in the previous step).

4. Output x = x1 · · ·xn.

Analyzing the success probability of A′. It remains to compute the
probability that A′ successfully outputs x ∈ f−1(y). Before proceeding with
the formal analysis, we provide an intuitive explanation. First, consider the
case that the τ I ’s are all correct (recall that this occurs with non-negligible
probability). In such a case, we have that vI

i = xi with probability at least
1/2+ ε(n)/2 (this is due to the fact that A is invoked only once in computing
vI

i ; the τ I factor is already assumed to be correct). It therefore follows that
a majority of the vI

i values will equal the real value of xi. Our analysis will
rely on Chebyshev’s inequality for the case of pairwise independent variables,
because we need to compute the probability that the majority equals the
correct xi, where this majority is due to all the pairwise independent rI ’s.
We now present the formal proof.

CLAIM 6.18 Assume that for every I, τ I = gl(x, rI). Then, for every
x ∈ Sn and every 1 ≤ i ≤ n, the probability that the majority of the vI

i values
equal xi is at least 1− 1/2n. That is,

Pr

[∣∣∣
{
I : gl(x, rI)⊕A(f(x), rI ⊕ ei) = xi

}∣∣∣ > 1

2
·
(
2l − 1

)]
> 1− 1

2n

PROOF For every I , define a 0-1 random variable XI such that XI = 1
if and only if A(y, rI ⊕ ei) = gl(x, rI ⊕ ei). Notice that if XI = 1, then
gl(x, rI)⊕A(y, rI⊕ei) = xi. Since each rI and rI⊕ei are uniformly distributed
in {0, 1}n (when considered in isolation), we have that Pr[XI = 1] = s(x),
and so for x ∈ Sn, we have that Pr[XI = 1] ≥ 1/2 + ε(n)/2 implying that
Exp[XI] ≥ 1/2 + ε(n)/2. Furthermore, we claim that all the XI random vari-
ables are pairwise independent. This follows from the fact that the rI values

200 Introduction to Modern Cryptography

are pairwise independent. (Notice that if rI and rJ are truly independent,
then clearly so are XI and XJ . The same is true of pairwise independence.)

Let m = 2l−1 and let X be a random variable that is distributed the same
as all of the XI ’s. Then, using Chebyshev’s inequality, we have:

Pr

[∑

I

XI ≤ 1

2
·m
]

= Pr

[∑
I mXI

m
− 1

2
·m ≤ 0

]

= Pr

[∑
I mXI

m
− 1

2
·m− ε(n)

2
·m ≤ −ε(n)

2
·m
]

≤ Pr

[∣∣∣∣
∑

I mXI

m
−
(

1

2
+

ε(n)

2

)
·m
∣∣∣∣ ≥ m · ε(n)

2

]

≤ Var[mX]

(m · ε(n)/2)2 ·m

=
m2Var[X]

(ε(n)/2)2 ·m3

=
Var[X]

(ε(n)/2)2 ·m

Since m = 2l − 1 = 2n/ε(n)2, it follows from the above that:

Pr

[∑

I

XI ≤ 1

2
·m
]

=
Var[X]

(ε(n)/2)2 · 2n/ε(n)2

=
Var[X]

n/2

<
1/4

n/2
=

1

2n

where Var[X] < 1/4 because Var[X] = E[X2] − E[X]2 = E[X] − E[X]2 =
E[X](1−E[X]) = (1/2 + ε(n)/2)(1/2− ε(n)/2) = 1/4− ε(n)2/4 < 1/4. This
completes the proof of the claim because

∑
I XI is exactly the number of

correct vI
i values.

By Claim 6.18, we have that if all of the τ I values are correct, then each
xi computed by A′ is correct with probability at least 1−1/2n. By the union
bound over the failure probability of 1/2n for each i, we have that if all the
τ I values are correct, then the entire x = x1 · · ·xn is correct with probability
at least 1/2. Notice now that the probability of the τ I values being correct is
independent of the analysis of Claim 6.18 and that this event happens with
probability

1

2l
=

1

2n/ε(n)2 + 1
>

ε(n)2

4n

* Theoretical Constructions of Pseudorandom Objects 201

Therefore, for x ∈ Sn, algorithm A′ succeeds in inverting y = f(x) with

probability at least ε(n)2/8n. Recalling that |Sn| > ε(n)
2 · 2n, we have that

x ∈ Sn with probability ε(n)/2 and so the overall probability that A′ suc-
ceeds in inverting f(x) is greater than or equal to ε(n)3/16n. Recalling that
ε(n) = 1/p(n) we have that for infinitely many n’s, A′ succeeds in inverting
f with probability at least p′(n) = 16n/p(n)3. Finally, noting that A′ runs in
polynomial-time, we obtain a contradiction to the one-wayness of f .

6.4 Constructions of Pseudorandom Generators

As we have seen in Section 3.3, pseudorandom generators are deterministic
algorithms that receive a random input s of length n, and output a longer
string of length `(n) that looks random to any polynomial-time observer (or
distinguisher). In this section we begin by showing how to construct pseu-
dorandom generators that stretch the seed by one bit, under the assumption
that one-way permutations exist. Then, we will show how to extend this to
any polynomial expansion factor. Our presentation is based on one-way per-
mutations. However, they can all be extended to hold for families of one-way
permutations as well.

6.4.1 Pseudorandom Generators with Minimal Expansion

Let f be a one-way permutation and let hc be a hard-core predicate of
f (such a predicate exists by Theorem 6.11). The starting point for the
construction is the fact that given f(s) for a random s, it is hard to guess
the value of hc(s) with probability that is non-negligibly higher than 1/2.
Thus, intuitively, hc(s) is a pseudorandom bit. Furthermore, since f is a
permutation, f(s) is uniformly distributed (applying a permutation to a uni-
formly distributed value yields a uniformly distributed value). We therefore
conclude that the string (f(s), hc(s)) is pseudorandom and so the algorithm
G(s) = (f(s), hc(s)) constitutes a pseudorandom generator.

THEOREM 6.19 Let f be a one-way permutation, and let hc be a hard-
core predicate of f . Then, the algorithm G(s) = (f(s), hc(s)) is a pseudoran-
dom generator with `(n) = n + 1.

PROOF We have already seen the intuition and therefore begin directly
with the proof. As with the theorems above, the proof is by reduction. That
is, we show that if there exists a distinguisher D that can distinguish G(s)
from a truly random string, then we can use this distinguisher to construct

202 Introduction to Modern Cryptography

an adversary A that guesses hc(s) from f(s) with probability that is non-
negligibly greater than 1/2.

Assume, by contradiction, that there exists a probabilistic polynomial-time
distinguisher D and a non-negligible function ε(n) such that

∣∣∣∣ Pr
s∈{0,1}n

[D(f(s), hc(s)) = 1]− Pr
r∈{0,1}n+1

[D(r) = 1]

∣∣∣∣ ≥ ε(n)

We call ε the “distinguishing gap” and say that D distinguishes (f(s), hc(s))
from a random r with probability ε(n).

As a first step to constructing an algorithm A to guess hc(s) from f(s),
we show that D can distinguish (f(s), hc(s)) from (f(s), hc(s)) where hc(s) =
1− hc(s). In order to see this, first note that

Pr
s∈{0,1}n,β∈{0,1}

[D(f(s), β) = 1]

=
1

2
· Pr[D(f(s), hc(s)) = 1] +

1

2
· Pr[D(f(s), hc(s)) = 1]

because with probability 1/2 the random bit β equals hc(s), and with proba-
bility 1/2 it equals hc(s). Given this, we have:

|Pr[D(f(s), hc(s)) = 1]− Pr[D(f(s), β) = 1]|

= |Pr[D(f(s), hc(s)) = 1]− 1

2
· Pr[D(f(s), hc(s)) = 1]

− 1

2
· Pr[D(f(s), hc(s)) = 1]|

=
1

2
|Pr[D(f(s), hc(s)) = 1]− Pr[D(f(s), hc(s)) = 1]|

where in all of the probabilities above s← {0, 1}n and β ← {0, 1} are chosen
uniformly at random. By our contradicting assumption, and noting that
(f(s), β) is just a uniformly distributed string of length n + 1, we have that

∣∣∣∣ Pr
s∈{0,1}n

[D(f(s), hc(s)) = 1]− Pr
s∈{0,1}n

[D(f(s), hc(s)) = 1]

∣∣∣∣

= 2 ·
∣∣∣∣ Pr
s∈{0,1}n

[D(f(s), hc(s)) = 1]− Pr
r∈{0,1}n+1

[D(r) = 1]

∣∣∣∣
≥ 2ε(n)

Assume that Pr[D(f(s), hc(s)) = 1] > Pr[D(f(s), hc(s)) = 1]; this is without
loss of generality. We now use D to construct an algorithm A that is given
f(s) and guesses hc(s). Intuitively this is not difficult because D outputs 1
more often when it receives (f(s), hc(s)) than when it receives (f(s), hc(s)).
Upon input y = f(s) for a random s, algorithm A works as follows:

1. Uniformly choose σ ← {0, 1}

* Theoretical Constructions of Pseudorandom Objects 203

2. Invoke D upon (y, σ).

3. If D returns 1, then output σ. Otherwise, output σ.

It remains to analyze the success probability of A. As we have mentioned, A
should succeed because D outputs 1 when σ = hc(s) with probability 2ε(n)
more than it outputs 1 when σ = hc(s). Formally,

Pr[A(f(s)) = hc(s)]

=
1

2
Pr[A(f(s)) = hc(s) | σ = hc(s)] +

1

2
Pr[A(f(s)) = hc(s) | σ = hc(s)]

=
1

2
· Pr[D(f(s), hc(s)) = 1] +

1

2
· Pr[D(f(s), hc(s)) = 0]

where equality holds here because when D outputs 1, A outputs the value
σ (and otherwise it outputs σ). Thus, if σ = hc(s), we have that A invokes
D on input (f(s), hc(s)) and so A outputs hc(s) if and only if D outputs 1
upon input (f(s), hc(s)). Likewise, if σ 6= hc(s), then A invokes D on input
(f(s), hc(s)) and so A outputs hc(s) if and only if D outputs 0 upon input
(f(s), hc(s)). Continuing the analysis, we have that

Pr[A(f(s)) = hc(s)]

=
1

2
· Pr[D(f(s), hc(s)) = 1] +

1

2

(
1− Pr[D(f(s), hc(s)) = 1]

)

=
1

2
+

1

2
· Pr[D(f(s), hc(s)) = 1]− 1

2
· Pr[D(f(s), hc(s)) = 1]

=
1

2
+

1

2
·
(
Pr[D(f(s), hc(s)) = 1]− Pr[D(f(s), hc(s)) = 1]

)

≥ 1

2
+

1

2
· 2ε(n) =

1

2
+ ε(n)

and so A guesses hc(s) with probability 1/2 + ε(n). Since ε(n) is a non-
negligible function, this contradicts the assumption that hc is a hard-core
predicate of f .

6.4.2 Increasing the Expansion Factor

In this section, we show that the expansion factor of any pseudorandom
generator can be increased by any polynomial amount. This means that the
construction above (with expansion factor `(n) = n + 1) suffices for demon-
strating the existence of pseudorandom generators with arbitrary polynomial
expansion factor.

THEOREM 6.20 If there exists a pseudorandom generator G1 with ex-
pansion factor `1(n) = n + 1, then for any polynomial p(n) > n, there exists
a pseudorandom generator G with expansion factor `(n) = p(n).

204 Introduction to Modern Cryptography

PROOF The idea behind the construction of G from G1 is as follows.
Given an initial seed s of length n, the generator G1 can be used to obtain
n + 1 pseudorandom bits. One of the n + 1 bits may be output, and the
remaining n bits can be used once again as a seed for G1. The reason that
these n bits can be used as a seed is because they are pseudorandom, and
therefore essentially as good as a truly random seed. This procedure can be
iteratively applied to output as many bits as desired; see Figure ??.

We now formally describe the construction of G from G1:

1. Let s ∈ {0, 1}n be the seed, and denote s0 = s.

2. For every i = 1, . . . , p(n), compute (si, σi) = G1(si−1), where σi ∈ {0, 1}
and si ∈ {0, 1}n.

3. Output σ1, . . . , σp(n)

We now proceed to prove that G(s) is a pseudorandom string of length p(n).
We begin by proving this for the special and simple case of p(n) = 2. That
is, the output of G(s) = (σ1, σ2). Of course, this is not even a pseudoran-
dom generator, because the output length is shorter than the input length.
Nevertheless, it is helpful for understanding the basis of the proof.

A simplified case – p(n) = 2. Recall that the output (σ1, σ2) of G(s)
is derived in two stages: first by computing (s1, σ1) = G1(s) and then by
computing (s2, σ2) = G1(s1). Now, consider a “hybrid” experiment (the
reason that we call this experiment “hybrid” will become apparent later)
with an algorithm G′ that receives n + 1 random bits for input, denoted
s̃ ∈ {0, 1}n+1, and works as follows . Let s̃[n] be the first n bits of s̃ and let
s̃n+1 be the last bit of s̃. Then, G′ works by computing (s2, σ2) = G1(s̃

[n]) and
setting σ1 = s̃n+1 (thus σ1 is uniformly distributed). As with G, the algorithm
G′ outputs (σ1, σ2). First, notice that for every probabilistic polynomial-time
distinguisher D there exists a negligible function negl such that

∣∣∣∣ Pr
s∈{0,1}n

[D(G(s)) = 1]− Pr
s̃∈{0,1}n+1

[D(G′(s̃)) = 1]

∣∣∣∣ ≤ negl(n) (6.3)

This must be the case because otherwise D can be used by an algorithm D′

to distinguish G1(s) from random in the following way. Given a string w of
length n + 1, the algorithm D′ can compute (s2, σ2) = G1(w

[n]) and define
σ1 = wn+1 (exactly like G′). Then, D′ invokes D on (σ1, σ2) and outputs
whatever D outputs. The important observations are as follows:

1. If w = r is truly random, then the pair (σ1, σ2) prepared by D′ is
distributed identically to G′(s̃). Thus,

Pr
r∈{0,1}n+1

[D′(r) = 1] = Pr
s̃∈{0,1}n+1

[D(G′(s̃)) = 1]

* Theoretical Constructions of Pseudorandom Objects 205

2. If w is the output of G1(s) for a random s ← {0, 1}n, then the pair
(σ1, σ2) prepared by D′ is distributed identically to G(s). In order to
see this, note that in this case, σ1 is the n+1th bit of G1(s) and σ2 is the
n+1th bit of G1(s1), where s1 = G1(s)

[n], exactly as in the construction
of G. Therefore,

Pr
s∈{0,1}n

[D′(G1(s)) = 1] = Pr
s∈{0,1}n

[D(G(s)) = 1]

Combining the above equations together, we have that
∣∣∣∣ Pr
s∈{0,1}n

[D′(G1(s)) = 1]− Pr
r∈{0,1}n+1

[D′(r) = 1]

∣∣∣∣

=

∣∣∣∣ Pr
s∈{0,1}n

[D(G(s)) = 1]− Pr
s̃∈{0,1}n+1

[D(G′(s̃)) = 1]

∣∣∣∣

Now, if Equation (6.3) does not hold, then this implies that D′ distinguishes
G1(s) from random with non-negligible probability, in contradiction to the
assumed pseudorandomness of G1.

Next, we claim that for every probabilistic polynomial-time D there exists
a negligible function negl such that

∣∣∣∣ Pr
s̃∈{0,1}n+1

[D(G′(s̃)) = 1]− Pr
r∈{0,1}2

[D(r) = 1]

∣∣∣∣ ≤ negl(n) (6.4)

This is proven in a very similar way as above. Specifically, if it does not hold,
then D can be used by an algorithm D′ to distinguish G1(s) from random in
the following way. Given a string w of length n + 1, the distinguisher D′ sets
σ1 to be truly random and σ2 to be the n + 1th bit of w. As above, we have
the following two observations:

1. If w = r is truly random, then the pair (σ1, σ2) prepared by D′ is truly
random. Thus,

Pr
w∈{0,1}n+1

[D′(w) = 1] = Pr
r∈{0,1}2

[D(r) = 1]

2. If w is the output of G1(s) for a random s ← {0, 1}n, then the pair
(σ1, σ2) prepared by D′ is distributed identically to G′(s̃). This follows
because G′ sets σ2 to be the n + 1th bit of the output of G1(s̃) and σ1

to be truly random. Therefore,

Pr
s∈{0,1}n

[D′(G1(s)) = 1] = Pr
s̃∈{0,1}n

[D(G′(s̃)) = 1]

Combining the above equations together, we have that
∣∣∣∣ Pr
s∈{0,1}n

[D′(G1(s)) = 1]− Pr
w∈{0,1}n+1

[D′(w) = 1]

∣∣∣∣

=

∣∣∣∣ Pr
s̃∈{0,1}n+1

[D(G′(s̃)) = 1]− Pr
r∈{0,1}2

[D(r) = 1]

∣∣∣∣

206 Introduction to Modern Cryptography

Now, if Equation (6.4) does not hold, then this implies that D′ distinguishes
G1(s) from random with non-negligible probability, in contradiction to the
assumed pseudorandomness of G1.

Finally, combining Equations (6.3) and (6.4), we have that for every prob-
abilistic polynomial-time distinguisher there exists a negligible function negl

such that
∣∣∣∣ Pr
s∈{0,1}n

[D(G(s)) = 1]− Pr
r∈{0,1}2

[D(r) = 1]

∣∣∣∣ ≤ negl(n)

and so we have proven that G is pseudorandom (however, as we have men-
tioned, it is not a generator because it only outputs 2 bits).

* The full proof. The full proof of the theorem works in a similar way as
above, except that we need to consider an arbitrary polynomial number of
invocations of G1. This proof uses a very important proof technique, called
a hybrid argument, that is common in proofs in cryptography. As usual, the
proof is by reduction and we show how a distinguisher for G with expansion
factor p(n) can be used to distinguish G1(s) from random. Assume by contra-
diction that there exists a probabilistic polynomial-time distinguisher D and
a non-negligible function ε such that

∣∣∣∣ Pr
s∈{0,1}n

[D(G(s)) = 1]− Pr
r∈{0,1}p(n)

[D(r) = 1]

∣∣∣∣ = ε(n)

For every i, we define a hybrid random variable H i
n as a string with a length i

prefix that is truly random, and a length p(n)− i suffix that is pseudorandom.
Specifically, H i

n is computed by first fixing its first i bits to be truly random.
Then, a random s ← {0, 1}n is chosen and p(n) − i bits are obtained by
iteratively applying G1(s) and taking the last bit each time (stated differently,
the remaining p(n) − i bits are taken as G(s) with expansion factor `(n) =
p(n)−i). Clearly, this random variable is a “hybrid” between a random string
and a pseudorandom one.

Notice that H0
n = G(s), because all of the bits are taken from G(s) with ex-

pansion factor p(n), and that H
p(n)
n is a uniformly distributed string of length

p(n). The main idea behind the hybrid argument is that if D can distinguish
these extreme hybrids, then it can also distinguish neighboring hybrids (even
though it was not “designed” to do so). However, the difference between one
hybrid and its neighbor is a single application of the pseudorandom generator.
Thus, as we will show, the distinguisher D for G can be transformed into a
distinguisher D′ for G1.

We now describe the probabilistic polynomial-time distinguisher D′ that
uses D and distinguishes between G1(s) and r, where s ← {0, 1}n and r ←
{0, 1}n+1. Upon input w ∈ {0, 1}n+1, distinguisher D′ chooses a random
i ← {0, . . . , p(n) − 1} and constructs a string s̃ as follows. It first chooses
i random bits and sets them to be the first i bits of s̃. Then, it takes the

* Theoretical Constructions of Pseudorandom Objects 207

n + 1th bit of w and sets it to be the i + 1th bit of s̃. Finally, it computes
G(w) with expansion factor `(n) = p(n) − i− 1 and writes the result as the
remaining bits of s̃. Finally, D′ invokes D on s̃ and outputs whatever D does.
The important observations here are as follows:

1. If w = G1(s) for some random s← {0, 1}n, then s̃ is distributed exactly
like H i

n (because the first i bits are random and the rest are pseudoran-
dom). Furthermore, each i is chosen with probability exactly 1/p(n).
Thus,

Pr
s∈{0,1}n

[D′(G1(s)) = 1] =
1

p(n)
·

p(n)−1∑

i=0

Pr[D(H i
n) = 1]

2. If w = r is a truly random string (r ← {0, 1}n+1), then s̃ is distributed
exactly like H i+1

n (because the first i + 1 bits are random and the rest
are pseudorandom). Thus,

Pr
r∈{0,1}n+1

[D′(r) = 1] =
1

p(n)
·

p(n)−1∑

i=0

Pr[D(H i+1
n) = 1].

Combining this together, and using the fact that

∣∣∣∣∣∣

p(n)−1∑

i=0

Pr[D(H i
n) = 1]−

p(n)−1∑

i=0

Pr[D(H i+1
n) = 1]

∣∣∣∣∣∣

=
∣∣∣Pr[D(G(H0

n)) = 1]− Pr[D(Hp(n)
n) = 1]

∣∣∣

(since it is a telescopic sum), we have that:

∣∣∣∣ Pr
s∈{0,1}n

[D′(G1(s)) = 1]− Pr
r∈{0,1}n+1

[D′(r) = 1]

∣∣∣∣

=
1

p(n)
·

∣∣∣∣∣∣

p(n)−1∑

i=0

Pr[D(H i
n) = 1]−

p(n)−1∑

i=0

Pr[D(H i+1
n) = 1]

∣∣∣∣∣∣

=
1

p(n)
·
∣∣∣Pr[D(H0

n) = 1]− Pr[D(Hp(n)
n) = 1]

∣∣∣

=
1

p(n)
·
∣∣∣∣ Pr
s∈{0,1}n

[D(G(s)) = 1]− Pr
r∈{0,1}n+1

[D(r) = 1]

∣∣∣∣

=
ε(n)

p(n)

which is non-negligible, in contradiction to the pseudorandomness of G1.

208 Introduction to Modern Cryptography

The hybrid technique. The hybrid proof technique is used in many proofs
of cryptographic constructions and is considered a basic technique. Note that
there are three conditions for using it. First, the extreme hybrids are the

same as the original distributions (in this case, H0
n = G(s) and H

p(n)
n = r ∈

{0, 1}p(n)). Second, the capability of distinguishing neighboring hybrids can
be translated into the capability of distinguishing the underlying primitive (in
this case, G1(s) from r ∈ {0, 1}n+1). Finally, the number of hybrids is poly-
nomial (and so the degradation of distinguishing success is only polynomial).
We stress that although it may seem strange that we invoke the distinguisher
D on an input that it does not expect, D is just an algorithm and so its
behavior is well-defined (irrespective of what it “means” to do).

An efficiency improvement. It is possible to modify the construction of
the generator G given in the proof of Theorem 6.20 so that G outputs sp(n)

as well as σ1, . . . , σp(n). The proof of this modification can be obtained from
the proof of Theorem 6.20 and we leave it as an exercise.

An explicit generator with arbitrary expansion factor. By combining
the construction of Theorem 6.19 (that states that G(s) = (f(s), hc(s)) is a
pseudorandom generator) together with the proof of Theorem 6.20 (actually,
with the efficiency improvement described above), we obtain that for every
polynomial p,

G`(s) =
(
fp(n)(s), hc(s), hc(f(s)), . . . , hc(fp(n)−n(s))

)

is a pseudorandom generator with expansion factor p(n), assuming that f is
a one-way permutation and hc is a hard-core predicate of f .

Modern (heuristic) stream cipher design. Many modern stream ciphers
(i.e., pseudorandom generators) work by maintaining a large pseudorandom
internal state. In each iteration of the generator, some pseudorandom bits
are output and the internal state is updated. It is interesting to note that
the construction described in Theorem 6.20 (and in Figure ??) works in this
exact way. This may be seen as evidence that this is a good heuristic, since in
some circumstances it can be used to achieve a provable-secure construction.

6.5 Constructions of Pseudorandom Functions

Having shown how to construct pseudorandom generators from one-way
permutations, we continue and show how to construct pseudorandom func-
tions from pseudorandom generators. As defined in Section 3.6.1, a pseudoran-
dom function is an efficiently-computable keyed function that looks random
to any polynomial-time distinguisher (recall, this distinguisher receives oracle
access to either a truly random function or a pseudorandom one).

* Theoretical Constructions of Pseudorandom Objects 209

Before presenting the full construction, we motivate it through the following
short example. Let G be a pseudorandom generator with expansion factor
`(n) = 2n (i.e., G is length doubling), and denote G(s) = (G0(s), G1(s)),
where |s| = |G0(s)| = |G1(s)| = n; that is, the seed length is n, G0(s) is the
first half of the output and G1(s) is the second half of the output. We now
use G to construct a keyed function (with a key of length n bits) that takes a
single input bit and outputs strings of length n bits. For a randomly-chosen
key k, we define:

Fk(0) = G0(k) Fk(1) = G1(k)

We claim now that this function is pseudorandom.4 This follows immediately
from the fact that G is a pseudorandom generator and so no polynomial-time
algorithm can distinguish G(k) = (G0(k), G1(k)) from a truly random string.
Now, a truly random function f of this type has two random strings, one
defining f(0) and the other defining f(1). Thus, these two functions cannot
be distinguished by any polynomial-time algorithm.

We take this construction a step further and define a pseudorandom function
that has a two-bit input and an n-bit output. Namely, for a random k, define:

Fk(00) = G0(G0(k)) Fk(10) = G1(G0(k))

Fk(01) = G0(G1(k)) Fk(11) = G1(G1(k))

We claim that the four strings G0(G0(k)), G0(G1(k)), G1(G0(k)), and G1(G1(k))
are all pseudorandom, even when viewed all together. (As above, this suffices
to prove that the function Fk is pseudorandom.) In order to see that all four
strings are indeed pseudorandom, consider the following hybrid distribution:

G0(k0), G0(k1), G1(k0), G1(k1)

where k0, k1 ← {0, 1}n are independent, uniformly distributed strings. In this
hybrid distribution, the random string k0 takes the place of G0(k) and the
random string k1 takes the place of G1(k). Now, if it is possible to distinguish
the hybrid distribution from the original distribution, then we would be able
to distinguish between the pseudorandom string G(k) = (G0(k), G1(k)) and
a truly random string (k1, k2), in contradiction to the pseudorandomness of
G. Likewise, if it is possible to distinguish the hybrid distribution from a
truly random string of length 4n, then it would be possible to distinguish
either G(k0) = G0(k0), G1(k0) from a truly random string of length 2n, or
G(k1) = G0(k1), G1(k1) from a truly random string of length 2n. Once again,
this contradicts the pseudorandomness of G. Combining the above, we have
that the four strings are pseudorandom, and so the function defined is also
pseudorandom. The formal proof of this fact is left as an exercise.

4Note that our definition of pseudorandom function (Definition 3.24) restricts the function
to domain and range of {0, 1}n. Nevertheless, the definition can be extended to domain
{0, 1} and range {0, 1}n in a straightforward way.

210 Introduction to Modern Cryptography

As we have discussed, long pseudorandom strings yield pseudorandom func-
tions. This is due to the fact that a truly random function is just a very long
random string, where a different part of the string is allocated as output for
every possible input. (In order to see this, one can view a random function as
just a large table of random values.) The fundamental leap between pseudo-
random generators and pseudorandom functions is due to the fact that when
the function is defined over inputs of length n, the string defining the function
is of length n2n, which is exponential and so cannot be computed.5 Despite
this fact, the above ideas can be used in order to obtain a pseudorandom
function. Specifically, the full construction below works in the same way as
above, except that the pseudorandom generator is applied n times, once for
each input bit.

CONSTRUCTION 6.21 Pseudorandom function.

Let G be a deterministic function that maps inputs of length n into
outputs of length 2n (G will be instantiated as a pseudorandom generator
with `(n) = 2n). Denote by G0(k) the first n bits of G’s output, and by
G1(k) the second n bits of G’s output. For every k ∈ {0, 1}n, define the
function Fk : {0, 1}n → {0, 1}n as:

Fk(x1x2 · · ·xn) = Gxn (· · · (Gx2 (Gx1(k))) · · ·)

The function F : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ is obtained by defining
F (k, x) = Fk(x) for every k and x of the same length (and setting the
output to be ⊥ if k and x are not of the same length).

This construction can be viewed as a full binary tree of depth n, defined as
follows. The value at the root equals the key k. Then, for any node of value
k′, the left son of k′ has value G0(k

′) and the right son of k′ has value G1(k
′).

The function on an input value x = x1 · · ·xn is then equal to the value at
the leaf that is reached by traversing the tree according to x (that is, xi = 0
means “go left in the tree”, and xi = 1 means “go right”). We stress that
the inputs to the function are also of length n exactly, and thus only values
in the leaves are output (if the values at internal nodes could also be output,
the result would not be a pseudorandom function). Note also that the size of
the tree is exponential in n; in particular, there are 2n leaves. Nevertheless,
we never need to construct and hold the tree explicitly. Rather, the values on
the path (and so the value of the appropriate leaf) can be efficiently obtained

5Indeed, a pseudorandom function from two input bits to n output bits could have been
constructed by using a pseudorandom generator with `(n) = 4n, and allocating a different
n-bit portion to each of the 4 inputs. However, such a strategy would not generalize to
pseudorandom functions with domain {0, 1}n.

* Theoretical Constructions of Pseudorandom Objects 211

given the key k, and so can be computed dynamically. See Figure ?? for a
graphical presentation of the construction.

We now claim that when G is a pseudorandom generator, the above con-
struction constitutes a pseudorandom function.

THEOREM 6.22 If the function G is a pseudorandom generator with ex-
pansion factor `(n) = 2n, then Construction 6.21 is an efficiently computable
pseudorandom function.

PROOF (Sketch) The intuition behind the proof of this theorem follows
from the motivating examples given above. Namely, the hybrid distribution
provided for the case of a 2-bit input can be extended to inputs of length n.
This extension works by just continuing to build the binary tree of Figure ??
(note that the case of 1 input bit gives the root and the next level of the
tree and the case of 2 input bits extends this to an additional level of the
tree). The reason why it is possible to continue extending the construction is
that if the intermediate result is pseudorandom, then it can be replaced by
truly random strings, that can then be used as seeds to the pseudorandom
generator once again.

The actual proof of the theorem works by a hybrid argument (see the proof
of Theorem 6.20), and we only sketch it here. We define a hybrid random
variable H i

n to be a full binary tree of depth n where the nodes of levels 0 to i
are labelled with independent truly random values, and the nodes of levels i+1
to n are constructed as in Construction 6.21 (given the labels of level i).
We note that in H i

n, the labels in nodes 0 to i − 1 are actually irrelevant.
The function associated with this tree is obtained as in Construction 6.21 by
outputting the appropriate values in the leaves.

Notice that Hn
n is a truly random function, because all of the leaves are

given truly random and independent values. On the other hand, H0
n is ex-

actly Construction 6.21 (because only the key is random and everything else
is pseudorandom, as in the construction). Using a standard hybrid argument
as made in the proof of Theorem 6.20, we obtain that if a polynomial-time dis-
tinguisher D can distinguish Construction 6.21 from a truly random function
with non-negligible probability, then there must be values i for which H i

n can
be distinguished from H i+1

n with non-negligible probability. We use this to
distinguish the pseudorandom generator from random. Intuitively this follows
because the only difference between the neighboring hybrid distributions H i

n

and H i+1
n is that in H i+1

n the pseudorandom generator G is applied one more
time on the way from the root to the leaves of the tree. The actual proof
is more tricky than this because we cannot hold the entire (i + 1)th level of
the tree (it may be exponential in size). Rather, let t(n) be the maximum
running-time of the distinguisher D who manages to distinguish Construc-
tion 6.21 from a random function. It follows that D makes at most t(n)
oracle queries to its oracle function. Now, let D′ be a distinguisher for G that

212 Introduction to Modern Cryptography

receives an input of length 2n · t(n) that is either truly random or t(n) invo-
cations of G(s) with independent random values of s each time. (Although
we have not shown it here, it is not difficult to show that all of these sam-
ples together constitute a pseudorandom string of length 2n · t(n).) Then, D′

chooses a random i← {0, . . . , n−1} and answers D’s oracle queries as follows,
initially holding an empty binary tree. Upon receiving a query x = x1 · · ·xn

from D, distinguisher D′ uses x1 · · ·xi to reach a node on the ith level (filling
all values to that point with arbitrary values – they are of no consequence).
Then, D′ takes one of its input samples (of length 2n) and labels the left son
of the reached node with the first half of the sample and the right son with
the second half of the sample. D′ then continues to compute the output as
in Construction 6.21. Note that in future queries, if the input x brings D′

to a node that has already been filled, then D′ answers consistently to the
value that already exists there. Otherwise, D′ uses a new sample from its
input. (Notice that D′ works by filling the tree dynamically, depending on
D’s queries. It does this because the full tree is too large to hold.)

The important observations are as follows:

1. If D′ receives a truly random string of length 2n · t(n), then it answers
D′ exactly according to the distribution H i+1

n . This holds because all
the values in level i + 1 in the tree that are (dynamically) constructed
by D′ are random.

2. If D′ receives pseudorandom input (i.e., t(n) invocations of G(s) with
independent values of s each time), then it answers D′ exactly according
to H i

n. This holds because the values in level i + 1 are pseudorandom
and generated by G, exactly as defined. (Notice that the seeds to these
pseudorandom values are not known to D′ but this makes no difference
to the result.)

By carrying out a similar hybrid analysis as in the proof of Theorem 6.20, we
obtain that if D distinguishes Construction 6.21 from a truly random function
with non-negligible probability ε(n), then D′ distinguishes t(n) invocations of
G(s) from a truly random string of length 2n · t(n) with probability ε(n)/n.
Since ε(n) is non-negligible, this contradicts the assumption that G is a pseu-
dorandom generator.

6.6 Constructions of Pseudorandom Permutations

In this section, we show how pseudorandom permutations can be con-
structed from pseudorandom functions. Recall that a pseudorandom per-
mutation is a pseudorandom function F with the property that for every
k ∈ {0, 1}n, the function Fk(·) is a bijection over {0, 1}n. In addition, the

* Theoretical Constructions of Pseudorandom Objects 213

security requirement is that it is hard to distinguish such a function from a
truly random one, even when given oracle access to both Fk and F−1

k (i.e.,
the inversion function). See Section 3.6.3 for more details. In contrast to
the previous sections in this chapter, we will not prove the security of this
construction (nor even provide a proof sketch) and refer the interested reader
to more advanced texts.

Feistel structures revisited. Recall that a Feistel structure is a way of
constructing an invertible function from non-invertible operations (see Sec-
tion 5.2). In some sense, this is exactly what we wish to do here. Namely,
given a pseudorandom function, we wish to construct another pseudorandom
function that is a bijection (and thus is invertible). In another interesting
connection between theoretical and heuristic constructions, it turns out that
four rounds of a Feistel structure with the F -functions taken as pseudoran-
dom functions, constitutes a pseudorandom permutation. That is, we have
the following construction:

CONSTRUCTION 6.23 Pseudorandom permutation.

Let F be a pseudorandom function so that for every n and every k ∈
{0, 1}n, the function Fk(·) maps inputs of length n into outputs of length
n. Define the function F ′ that maps inputs of length 2n into outputs of
length 2n as follows:

• Inputs: a key k ∈ {0, 1}4n of length 4n and an input x ∈ {0, 1}2n;
denote x = (x1, x2) where |x1| = |x2| = n

• Computation:

1. Denote k = (k1, k2, k3, k4) where each ki is of length n

2. Compute α1 = x2 and α2 = x1 ⊕ Fk1(x2)

3. Compute β1 = α2 and β2 = α1 ⊕ Fk2 (α2)

4. Compute γ1 = β2 and γ2 = β1 ⊕ Fk3 (β2)

5. Compute y1 = γ2 and y2 = γ1 ⊕ Fk4 (γ2)

6. Output (y1, y2)

We remark that Construction 6.23 deviates slightly from Definition 3.28
because the input and key lengths are different. Nevertheless, Definition 3.28
can easily be modified to allow this. Notice that in each round of the Feistel
structure, a different key ki is used. Furthermore, the construction is “legal”
because Fki with a key of length n is applied to an input that is also of length
n. See Figure ?? for a graphical presentation of the construction.

We have the following theorem:

214 Introduction to Modern Cryptography

THEOREM 6.24 If the function F is pseudorandom and maps n-bit
strings to n-bit strings, then Construction 6.23 is an efficiently computable
and efficiently invertible pseudorandom function that maps 2n-bit strings to
2n-bit strings (and uses a key of length 4n).

As we have mentioned, we will not prove the theorem. However, we do
remark that it is easy to prove that the resulting function is indeed a bijection
and that it is efficiently invertible. We leave this for an exercise. We also
remark that if only three rounds of a Feistel is used, then the result is a
weaker type of pseudorandom permutation where the distinguisher is only
given access to the function oracle (and not the inversion oracle).

6.7 Private-Key Cryptography – Necessary and Suffi-
cient Assumptions

Summing up what we have seen so far in this chapter, we have the following:

1. For every one-way function f , there exists a hard-core predicate for the
function g(x, r) = (f(x), r).

2. If there exist one-way permutations, then there exist pseudorandom
generators (the proof of this fact uses the hard-core predicate that is
guaranteed to exist).

3. If there exist pseudorandom generators, then there exist pseudorandom
functions.

4. If there exist pseudorandom functions, then there exist pseudorandom
permutations.

Thus, pseudorandom generators and functions (that can be used for encryp-
tion) can be achieved assuming the existence of one-way permutations. In
actuality, it is possible to construct pseudorandom generators from any one-
way function (we did not present this construction as it is highly complex).
Thus, we have the following fundamental theorem:

THEOREM 6.25 If there exist one-way functions, then there exist pseu-
dorandom generators, pseudorandom functions and pseudorandom permuta-
tions.

Recall now that all of the private-key cryptographic tools that we have stud-
ied so far can be constructed from pseudorandom generators and functions.
This includes basic encryption that is secure for eavesdropping adversaries,

* Theoretical Constructions of Pseudorandom Objects 215

more advanced methods that are CPA and CCA-secure, and message authenti-
cation codes. Noting that CCA-security implies both CPA and eavesdropping
security, we have the following theorem:

THEOREM 6.26 If there exist one-way functions, then there exist encryp-
tion schemes that have indistinguishable encryptions under chosen-ciphertext
attacks, and there exist message authentication codes that are existentially
unforgeable under chosen message attacks.

Stated informally, one-way functions are a sufficient assumption for private-
key cryptography. Given this fact, a question of great importance is whether
or not one-way functions are also a necessary (or minimal) assumptions. We
now show that this is indeed the case.

Pseudorandom entities imply one-way functions. We begin by showing
that the existence of pseudorandom generators and functions imply the exis-
tence of one-way functions. In fact, since it is easy to show that pseudorandom
functions imply pseudorandom generators (just define G(s) = (Fs(0), Fs(1))),
it follows that it suffices to prove the following:

PROPOSITION 6.27 If there exist pseudorandom generators, then there
exist one-way functions.

PROOF We prove this proposition by showing how to construct a one-way
function f from a pseudorandom generator G. The construction is simple and
is defined by f(x) = G(x). In order to show that f is indeed one-way, we
need to show that it can be efficiently computed but that it is hard to invert.
Efficient computability is straightforward (by the fact that G can be computed
in polynomial-time). Regarding inversion, we will show that the ability to
invert f can be translated into the ability to distinguish G from random.
Intuitively, this holds because the ability to invert f equals the ability to find
the seed used by the generator. (Recall that a one-way function is invoked on
a uniformly distributed string, just like a pseudorandom generator.)

Formally, let G be a pseudorandom generator with expansion factor `(n) =
2n (recall that the expansion factor can be increased, so assuming `(n) = 2n is
without loss of generality). Assume by contradiction that f(x) = G(x) is not
a one-way function. This implies that there exists a probabilistic polynomial-
time algorithm A and a non-negligible function ε such that

Pr
[
A(f(x)) ∈ f−1(f(x))

]
= Pr

[
A(G(x)) ∈ G−1(G(x))

]
≥ ε(n)

where x ← {0, 1}n is uniformly chosen. We now use A to construct a distin-
guisher D for G. The distinguisher D receives a string w ∈ {0, 1}2n (that is
either pseudorandom or truly random) and runs A on w. Then, D outputs 1

216 Introduction to Modern Cryptography

if and only if A outputs a value x such that G(x) = w. We claim that D is a
good distinguisher for G. We first show that

Pr
r∈{0,1}2n

[D(r) = 1] ≤ 1

2n

This holds because there are at most 2n values w in the range of G; namely the
values {G(s)}s∈{0,1}n . However, there are 22n different values r in {0, 1}2n.
It therefore follows that a uniformly distributed string of length 2n is in the
range of G with probability at most 2n/22n = 2−n. Of course, if w is not
even in the range of G, then A cannot output x such that G(x) = w and so
D definitely outputs 0. Next, we claim that

Pr
s∈{0,1}n

[D(G(s)) = 1] ≥ ε(n)

This follows immediately from the way we constructed D and from the as-
sumed success of A in inverting the function f(x) = G(x). We therefore have
that

| Pr
r∈{0,1}2n

[D(r) = 1]− Pr
s∈{0,1}n

[D(G(s)) = 1]| ≥ ε(n)− 1

2n

Since ε is non-negligible, the function ε(n)−2−n is also non-negligible. We con-
clude that D distinguishes the output of G from random with non-negligible
probability, in contradiction to the assumed pseudorandomness of G. Thus,
we conclude that f is a one-way function and so the existence of pseudoran-
dom generators implies the existence of one-way functions.

Private-key encryption schemes imply one-way functions. Proposi-
tion 6.27 tells us that if we want to build pseudorandom generators or func-
tions, then we need to assume that one-way functions exist. It is important to
note that this does not imply that one-way functions are needed for construct-
ing secure private-key encryption schemes (it may be possible to construct
secure encryption schemes in a completely different way). Furthermore, it is
possible to construct perfectly secret encryption schemes (see Chapter 2), as
long as the plaintext is shorter than the key. Thus, the proof that secure
private-key encryption implies one-way function is somewhat more subtle.
Since security in the presence of eavesdropping adversaries is the weakest of
the definitions we considered, we prove the proposition based on such schemes.

PROPOSITION 6.28 If there exist private-key encryption schemes that
have indistinguishable encryptions in the presence of eavesdropping adver-
saries (as in Definition 3.9), then there exist one-way functions.

PROOF We remark that since Definition 3.9 is considered, security must
hold for messages of any length output by the adversary. In particular, se-
curity must hold for messages that are longer than the key, and so perfectly

* Theoretical Constructions of Pseudorandom Objects 217

secret encryption schemes do not meet the requirements. This is important
because perfectly-secret encryption (with the key at least as long as the plain-
text) can be constructed without any assumptions, and in particular without
assuming the existence of one-way functions. The idea behind the proof here is
similar to that of Proposition 6.27. Specifically, we define a one-way function
for which successful inversion implies breaking the encryption scheme (specifi-
cally, finding the secret key). Then, we show how any adversary that succeeds
in inverting the one-way function can be used to distinguish encryptions (in
contradiction to the assumed security of the encryption scheme). In this proof
we assume familiarity with Definition 3.9 and PrivKeav (see Section 3.2.1).

Let Π = (Gen, Enc, Dec) be a private-key encryption scheme that has in-
distinguishable encryptions in the presence of an eavesdropper. Assume that
Enc uses at most ` bits of randomness in order to encrypt a plaintext of
length `. (The proof can be modified to hold for any polynomial number
of random bits. We assume this for simplicity.) Denote an encryption of a
message m with key k and random coins r by Enck(m; r). Now, define a
function f(k, m, r) = (Enck(m; r), m) where m is twice the length of k (i.e.,
|m| = 2|k|). Thus, if the input length is n, we have that k is of length n/5
and m are r are both of length 2n/5. We claim that f is a one-way function.
The fact that it can be efficiently computed is immediate. We show that it
is hard to invert. Assume by contradiction that there exists a probabilistic
polynomial-time algorithm A and a non-negligible function ε such that

Pr[A(f(x)) ∈ f−1(f(x))] ≥ ε(n)

where x ← {0, 1}n is uniformly chosen. Recall, x = (k, m, r) and f(x) =
f(k, m, r) = (Enck(m; r), m). We use A to construct an adversary A′ that
succeeds with non-negligible advantage in PrivKeav

Π,A′(n
5). (We note that the

key length is n/5. Therefore, it will be convenient to refer to the security pa-
rameter in the encryption experiment as being of length n/5.) The adversary
A′ simply chooses two random strings m0, m1 ← {0, 1}2n/5 of length 2n/5
and receives back c = Enck(mb; r) for some b ∈ {0, 1} and r ∈ {0, 1}2n/5.
Then, A′ invokes A on (c, m0). If A outputs a tuple (k′, m0, r

′) such that
c = Enck′(m0; r

′), then A′ outputs b′ = 0. Otherwise, A outputs a uniformly
chosen b′ ← {0, 1}. We now show that A′ guesses the correct value b′ = b
with probability that is non-negligibly greater than 1/2.

We first claim that if c = Enck(m0; r) for some r, then A outputs (k′, m0, r
′)

such that c = Enck′(m0; r
′) with probability at least ε(n). This follows im-

mediately from the assumption regarding A’s capability of inverting f . Fur-
thermore, in such a case, A′ always succeeds in PrivKeav. This is due to the
fact that A′ outputs 0, and we are considering the case that c = Enck(m0)
and so b = 0. We note that k′ may not be the “correct key” (i.e., the
key k chosen by the experiment may be such that k 6= k′, but neverthe-
less Enck(m0; r) = c = Enck′(m0; r

′) for some r and r′). However, A′ still
outputs 0 and b = 0; thus A′ succeeds. Denoting by invertA the event that A

218 Introduction to Modern Cryptography

outputs (k′, m0, r
′) where c = Enck′(m0; r

′), we have that:

Pr [invertA | b = 0] ≥ ε(n)

and
Pr
[
PrivKeav

Π,A′(n
5) = 1 | invertA ∧ b = 0

]
= 1

Notice also that if the event invertA does not occur, then A′ succeeds in
PrivKeav with probability exactly 1/2 (because in this case A′ just outputs a
random bit). Thus,

Pr
[
PrivKeav

Π,A′(n
5) = 1 | ¬invertA ∧ b = 0

]
=

1

2

Combining the above, we have:

Pr
[
PrivKeav

Π,A′(n
5) = 1 | b = 0

]

= Pr [invertA | b = 0] · Pr
[
PrivKeav

Π,A′(n
5) = 1 | invertA ∧ b = 0

]

+ Pr [¬invertA | b = 0] · Pr
[
PrivKeav

Π,A′(n
5) = 1 | ¬invertA ∧ b = 0

]

= Pr [invertA | b = 0] · 1 + (1− Pr [invertA | b = 0]) · 1
2

=
1

2
· Pr [invertA | b = 0] +

1

2

≥ 1

2
+

ε(n)

2

We now proceed to analyze the case that b = 1. At first sight, it may seem
that in this case, A′ always succeeds in PrivKeav with probability 1/2, because
c is an encryption of m1 and so cannot possibly be “inverted” by A to be an
encryption of m0. However, this is not true. For some c = Enck(m1), there
may exist a key k′ such that m0 = Deck′(c); indeed perfectly-secret encryption
schemes always have this property. We will now show that this occurs (in this
computational setting) with at most negligible probability. Fix k, m1, r, and
c = Enck(m1; r). We upper-bound the probability that there exists a key k′

such that m0 = Deck′(c). Notice that k′ is of length n/5 and m0 is a uniformly
distributed string of length 2n/5. Furthermore, m0 is chosen independently
of m1. Since m0 is independent of m1 and c = Enck(m1), we can consider
the probability that there exists a key k′ such that m0 = Enck′ (c), where the
probability is over the random choice of m0. We have:

Pr
m0∈{0,1}2n/5

[∃k′ m0 = Deck′(c)] ≤
∑

k′∈{0,1}n/5

Pr
m0∈{0,1}2n/5

[m0 = Deck′(c)]

=
∑

k′∈{0,1}n/5

1

22n/5

=
2n/5

22n/5
=

1

2n/5

* Theoretical Constructions of Pseudorandom Objects 219

where the first inequality is by the union bound, the second equality is due to
the uniform choice of m0 and the unique decryption requirement on the en-
cryption scheme (i.e., for any given key k′ there is only a single value Deck′(c)),
and the third equality is due to the number of different possible keys.6 Now, if
there does not exist such a key k′, then clearly A cannot “invert” and output
(k′, m0, r

′) such that c = Enck′(m0; r
′). Thus,

Pr [¬invertA | b = 1] ≥ 1− 1

2n/5

Furthermore, as in the case of b = 0, if the event invertA does not occur, then
A′ succeeds in PrivKeav with probability exactly 1/2. Noting finally that if
invertA does occur in this case then A′ succeeds with probability 0 (because
it outputs 0 when b = 1), we have:

Pr
[
PrivKeav

Π,A′(n
5) = 1 | b = 1

]

= Pr [invertA | b = 1] · Pr
[
PrivKeav

Π,A′(n
5) = 1 | invertA ∧ b = 1

]

+ Pr [¬invertA | b = 1] · Pr
[
PrivKeav

Π,A′(n
5) = 1 | ¬invertA ∧ b = 1

]

= Pr [¬invertA | b = 1] · Pr
[
PrivKeav

Π,A′(n
5) = 1 | ¬invertA ∧ b = 1

]

≥
(

1− 1

2n/5

)
· 1
2

=
1

2
− 1

2 · 2n/5

Putting the above together (and noting that b = 0 and b = 1 with probability
1/2), we have:

Pr
[
PrivKeav

Π,A′(n
5) = 1

]

=
1

2
· Pr

[
PrivKeav

Π,A′(n
5) = 1 | b = 0

]
+

1

2
· Pr

[
PrivKeav

Π,A′(n
5) = 1 | b = 1

]

≥ 1

2

(
1

2
+

ε(n)

2

)
+

1

2

(
1

2
− 1

2 · 2n/5

)

=
1

2
+

ε(n)

4
− 1

4 · 2n/5

Since ε is a non-negligible function (and 2−n/5 is negligible), it follows that A′
succeeds with probability that is non-negligibly greater than 1/2, in contradic-
tion to the assumed security of (Gen, Enc, Dec) in the presence of eavesdrop-
ping adversaries. Thus, f(k, m, r) = (Enck(m; r), m) is a one-way function.

6This bound only holds when the plaintext can be longer than the key. Therefore the proof
falls completely when one-time pad like schemes are considered.

220 Introduction to Modern Cryptography

Message authentication codes imply one-way functions. Having cov-
ered pseudorandom generators and functions and secure private-key encryp-
tion, it remains to show that message authentication codes also imply the
existence of one-way functions. The proof of this fact is also somewhat subtle,
because unconditionally secure message authentication codes do exist (again,
with a limitation on the relation between the number of messages authenti-
cated and the key length). We state this proposition without proof:

PROPOSITION 6.29 If there exist message authentication codes that
are existentially unforgeable under chosen message attacks, then there exist
one-way functions.

Conclusion and discussion. We conclude that the existence of one-way
functions is both a necessary and sufficient assumption for achieving private-
key cryptography. Thus the assumption regarding the existence of one-way
functions is indeed minimal when it comes to private-key cryptography. We
remark that this seems not to be the case for public-key encryption, that
will be studied next. That is, although one-way functions is a necessary
assumption also for public-key cryptography, it seems not to be a sufficient
one. (We remark that in addition to the fact that we do not know how to
construct public-key encryption from one-way functions, there is also evidence
that such constructions are in some sense “unlikely to exist”.)

6.8 A Digression – Computational Indistinguishability

The notion of computational indistinguishability is central to the theory of
cryptography. It underlies much of what we have seen in this chapter, and is
therefore worthy of explicit treatment. Informally speaking, two probability
distributions are computationally indistinguishable if no efficient algorithm
can tell them apart (or distinguish them). This is formalized as follows. Let
D be some probabilistic polynomial-time algorithm, or distinguisher. Then,
D is provided either a sample from the first distribution or the second one.
We say that the distributions are computationally indistinguishable if every
such distinguisher D outputs 1 with (almost) the same probability upon re-
ceiving a sample from the first or second distribution. This should sound very
familiar, and is indeed exactly how we defined pseudorandom generators (and
functions). Indeed, a pseudorandom generator is an algorithm that generates
a distribution that is computationally indistinguishable from the uniform dis-
tribution over strings of a certain length. Below, we will formally redefine the
notion of a pseudorandom generator in this way.

* Theoretical Constructions of Pseudorandom Objects 221

The actual definition of computational indistinguishability refers to prob-
ability ensembles. These are infinite series of finite probability distributions
(rather than being a single distribution). This formalism is a necessary by-
product of the asymptotic approach because distinguishing two finite dis-
tributions is easy (an algorithm can just have both distributions explicitly
hardwired into its code).

DEFINITION 6.30 (probability ensemble): Let I be a countable index
set. A probability ensemble indexed by I is a sequence of random variables
indexed by I.

In most cases, the set I is either the set of natural numbers N or an ef-
ficiently computable subset of {0, 1}∗. In the case of I = N, a probability
ensemble is made up of a series of random variables X1, X2, ..., and is denoted
X = {Xn}n∈N. The actual random variable taken in a cryptographic context
is determined by the security parameter (i.e., for a given security parameter
n, the random variable Xn is used). Furthermore, in most cases the random
variable Xn ranges over strings of length that is polynomial in n. More specif-
ically, it is typically the case that probability ensembles X = {Xn}n∈N are
considered for which there exists a polynomial p(·) such that for every n, the
support of the random variable Xn is a subset of {0, 1}p(n) (or a subset of the
set of all strings of size at most p(n)). We present the formal definition for
the case that I = N.

DEFINITION 6.31 (computational indistinguishability): Two probability
ensembles X = {Xn}n∈N and Y = {Yn}n∈N are computationally indistinguish-

able, denoted X
c≡ Y , if for every probabilistic polynomial-time distinguisher

D there exists a negligible function negl such that:

|Pr[D(Xn) = 1]− Pr[D(Yn) = 1]| ≤ negl(n)

The distinguisher D is given the unary input 1n so that it can run in time
that is polynomial in n in its attempt to distinguish. (This is of importance
when the output range of X and Y may be very small.)

6.8.1 Pseudorandomness and Pseudorandom Generators

We now show that the notion of pseudorandomness is just a special case of
computational indistinguishability. Then, we have the following:

DEFINITION 6.32 (pseudorandom ensembles): An ensemble X = {Xn}n∈N

is called pseudorandom if there exists a polynomial `(n) such that X is com-
putationally indistinguishable from the ensemble U = {U`(n)}n∈N, where U`(n)

222 Introduction to Modern Cryptography

the uniform distribution over {0, 1}`(n).

This can now in turn be used to redefine the notion of a pseudorandom
generator, as previously defined in Definition 3.15 of Chapter 3.

DEFINITION 6.33 (pseudorandom generator): Let `(·) be a polynomial
and let G be a (deterministic) polynomial-time algorithm such that upon any
input s, algorithm G outputs a string of length `(|s|). We say that G is a
pseudorandom generator if the following two conditions hold:

1. Expansion: For every n it holds that `(n) > n

2. Pseudorandomness: The ensemble {G(sn)}n∈N, where sn ← {0, 1}n is
pseudorandom

Thus, pseudorandomness is just a special case of computational indistin-
guishability. We remark that many of the concepts that we see in this book
can be cast as special cases of computational indistinguishability. Despite the
fact that this involves jumping ahead (or jumping back), we give two examples.
First, the decisional Diffie-Hellman (DDH) assumption of Section 7.3.2 can be
formalized by stating that the ensemble of tuples of the type (G, g, gx, gy, gxy)
is computationally indistinguishable from the ensemble of tuples of the type
(G, g, gx, gy, gz), where x, y, z are randomly chosen. A second example from
Section 11.1.3 is that the quadratic residuosity assumption can be formalized
by stating that the ensemble of quadratic residues QR = {QRN} is com-
putationally indistinguishable from the ensemble of quadratic non-residues
QNR = {QNRN}. (Note that the index set of the above ensembles is not
the set of natural numbers. In the DDH example the index set is made up of
pairs (G, g), and in the quadratic residuosity example it is made up of values
N where N = pq and p and q are primes.)

6.8.2 Multiple Samples

An important general theorem regarding computational indistinguishabil-
ity is that multiple samples of computationally indistinguishable ensembles
are also computationally indistinguishable. For example, consider a pseudo-
random generator G with expansion factor `. Then, the output of two inde-
pendent applications of G is a pseudorandom string of length 2`(n). That is,
{(G(s1), G(s2))} is computationally indistinguishable from the uniform dis-
tribution over {0, 1}2`(n), where s1 and s2 are independently chosen random
strings of length n. We prove this theorem due to its interest in its own right,
and also because it is another example of a proof using the hybrid argument
technique (as seen in the proof of Theorem 6.20).

We say that an ensemble X = {Xn}n∈N is efficiently samplable if there exists
a probabilistic polynomial-time algorithm S such that for every n, the random

* Theoretical Constructions of Pseudorandom Objects 223

variables S(1n) and Xn are identically distributed. That is, the algorithm S is
an efficient way of sampling X . Clearly, the ensemble generated by a pseudo-
random generator is efficiently samplable: the algorithm S chooses a random
string s of length n and then outputs G(s). We now prove that if two effi-
ciently samplable ensembles X and Y are computationally indistinguishable,
then a polynomial number of (independent) samples of X are computationally
indistinguishable from a polynomial number of (independent) samples of Y .
We stress that this theorem does not hold in the case that X and Y are not
efficiently samplable. We will denote by X = {(X (1)

n , . . . , X
(p(n))
n)}n∈N the

ensemble generated by p(n) independent samples of Xn; likewise for Y . For
the sake of clarity, we do not explicitly give the distinguisher the unary input
1n, but do assume that it knows the value of the security parameter and can
run in time that is polynomial in n.

THEOREM 6.34 Let X and Y be efficiently samplable ensembles such

that X
c≡ Y . Then, for every polynomial p(·), the multisample ensemble

X = {(X(1)
n , . . . , X

(p(n))
n)}n∈N is computationally indistinguishable from the

multisample ensemble Y = {(Y (1)
n , . . . , Y

(p(n))
n)}n∈N.

PROOF The proof is by reduction. We show that if there exists a prob-
abilistic polynomial-time distinguisher D that distinguishes X from Y with
non-negligible success, then there exists a probabilistic polynomial-time dis-
tinguisher D′ that distinguishes a single sample of X from a single sample of
Y with non-negligible success. Formally, assume by contradiction that there
exists a probabilistic polynomial-time distinguisher D and a non-negligible
function ε(·), such that:

∣∣∣Pr
[
D(X(1)

n , . . . , X(p(n))
n) = 1

]
− Pr

[
D(Y (1)

n , . . . , Y (p(n))
n) = 1

]∣∣∣ ≥ ε(n)

For every i, we define a hybrid random variable H i
n as a sequence containing i

independent copies of Xn followed by p(n)− i independent copies of Yn. That
is:

H i
n =

(
X(1)

n , . . . , X(i)
n , Y (i+1)

n , . . . , Y (p(n))
n

)

Notice that H0
n = Y n and H

p(n)
n = Xn. The main idea behind the hybrid

argument is that if D can distinguish these extreme hybrids, then it can also
distinguish neighboring hybrids (even though it was not “designed” to do so).
In order to see this, and before we proceed to the formal argument, we present

the basic hybrid analysis. Denote Xn = (X
(1)
n , . . . , X

(p(n))
n) and likewise for

224 Introduction to Modern Cryptography

Y n. Then, we have:

∣∣Pr[D(Xn) = 1]− Pr[D(Y n) = 1]
∣∣

=

∣∣∣∣∣∣

p(n)−1∑

i=0

Pr[D(H i
n) = 1]−

p(n)−1∑

i=0

Pr[D(H i+1
n) = 1]

∣∣∣∣∣∣

This follows from the fact that the only remaining terms in this telescopic sum

are Pr[D(H0
n) = 1] and Pr[D(H

p(n)
n) = 1]. By our contradicting assumption,

it holds that:

ε(n) ≤
∣∣Pr[D(Xn) = 1]− Pr[D(Y n) = 1]

∣∣

=

∣∣∣∣∣∣

p(n)−1∑

i=0

Pr[D(H i
n) = 1]−

p(n)−1∑

i=0

Pr[D(H i+1
n) = 1]

∣∣∣∣∣∣

≤
p(n)−1∑

i=0

∣∣Pr[D(H i
n) = 1]− Pr[D(H i+1

n) = 1]
∣∣

Therefore, there must exist some i for which
∣∣Pr[D(H i

n) = 1]− Pr[D(H i+1
n) = 1]

∣∣
is non-negligible (otherwise, the entire sum would be negligible which is not
the case). Notice now that the only difference between H i

n and H i+1
n is a

single sample (in both, the first i samples are from Xn and the last n− i− 1
samples are from Yn). Thus, the fact that D can distinguish between H i

n

and H i+1
n can be used to construct a distinguisher D′ that can distinguish

between a single sample of X and a single sample of Y , in contradiction to

the assumption that X
c≡ Y .

Formally, we construct a probabilistic polynomial-time distinguisher D′ for
a single sample of Xn and Yn. Upon input a single sample α, D′ chooses a

random i ← {0, . . . , p(n) − 1}, generates the vector Hn = (X
(1)
n , . . . , X

(i)
n , α,

Y
(i+2)
n , . . . , Y

(p(n))
n), invokes D on the vector Hn, and outputs whatever D

does.7 Now, if α is distributed according to Xn, then Hn is distributed
exactly like H i+1

n (because the first i + 1 samples are from Xn and the last
n− i−1 from Yn). In contrast, if α is distributed according to Yn, then Hn is
distributed exactly like H i

n (because the first i samples are from Xn and the
last n−i from Yn). This argument holds because the samples are independent
and so it makes no difference who generates the samples and in which order.
Now, each i is chosen with probability exactly 1/p(n). Therefore,

Pr[D′(Xn) = 1] =
1

p(n)
·

p(n)−1∑

i=0

Pr[D(H i+1
n) = 1]

7The efficient samplability of X and Y is needed for constructing the vector Hn.

* Theoretical Constructions of Pseudorandom Objects 225

and

Pr[D′(Yn) = 1] =
1

p(n)
·

p(n)−1∑

i=0

Pr[D(H i
n) = 1]

It therefore follows that:

|Pr[D′(Xn) = 1]− Pr[D′(Yn) = 1]|

=
1

p(n)
·

∣∣∣∣∣∣

p(n)−1∑

i=0

Pr[D(H i+1
n) = 1]−

p(n)−1∑

i=0

Pr[D(H i
n) = 1]

∣∣∣∣∣∣

=
1

p(n)
·
∣∣∣Pr[D(Hp(n)

n) = 1]− Pr[D(H0
n) = 1]

∣∣∣

=
1

p(n)
·
∣∣Pr[D(Xn) = 1]− Pr[D(Y n) = 1]

∣∣

≥ ε(n)

p(n)

which is non-negligible (a non-negligible function divided by a polynomial
is always a non-negligible function). This contradicts the assumed indistin-
guishability of a single sample of X from Y .

References and Additional Reading

The notion of a one-way function was first introduced by Diffie and Hell-
man [50] and was later formalized and studied by Yao [134]. The concept of
hard-core bits was first studied by Blum and Micali [28] and the fact that
there exists a hard-core bit for every one-way function was proven by Goldre-
ich and Levin [69]. The notion of pseudorandomness was introduced first by
Yao [134] and the first construction of pseudorandom generators was given by
Blum and Micali [28]. The construction of a pseudorandom generator from
any one-way permutation was given by Yao [134], and the fact that pseudoran-
dom generators can be constructed from any one-way function was shown by
H̊astad et al. [75]. Pseudorandom functions were defined and constructed by
Goldreich, Goldwasser and Micali [67] and their extension to pseudorandom
permutations was presented by Luby and Rackoff [91].

Most of the presentation in this chapter follows the textbook of Goldre-
ich [65] (Chapters 2 and 3). We highly recommend this book to students who
are interested in furthering their understanding of the foundations of cryptog-
raphy. This chapter is only a taste of the rich theory that cryptography has
to offer.

226 Introduction to Modern Cryptography

Exercises

6.1 Show that the addition function f(x, y) = x + y (where |x| = |y| and
x and y are interpreted as natural numbers) is not one-way. Likewise,
show that f(x) = x2 when computed over the integers is not one-way.

6.2 Prove that if there exist one-way functions, then there exists a one-way
function f such that for every n, f(0n) = 0n. Provide a full (formal)
proof of your answer. Note that this demonstrates that for infinitely
many values x, the function f is easy to invert. Why does this not
contradict one-wayness?

6.3 A function f is said to be length regular if for every x, y ∈ {0, 1}∗ such
that |x| = |y|, it holds that |f(x)| = |f(y)|. Show that if there exist
one-way functions, then there exist length-regular one-way functions.
Provide a full (formal) proof of your answer.

Hint: Let f be a one-way function and let p(·) be a polynomial such

that for every x, |f(x)| ≤ p(|x|) (justify the existence of this p). Define

f ′(x) = f(x)10p(|x|)−|f(x)|. Prove that f ′ is length-regular and one-way.

6.4 Prove that if f is a one-way function, then g(x1, x2) = (f(x1), x2) where
|x1| = |x2| is also a one-way function. Observe that g fully reveals half
of its input bits, but is nevertheless still one-way.

6.5 Prove that there exist one-way functions if and only if there exist families
of one-way functions. Discuss why your proof does not carry over to
one-way permutations.

6.6 Let f be a one-way function. Is g(x) = f(f(x)) necessarily a one-way
function? What about g(x) = f(x), f(f(x))? Prove your answers.

6.7 This exercise is for students who have taken a course in complexity or
are otherwise familiar with NP completeness.

(a) Show that the existence of one-way functions implies that P 6= NP .

(b) Assume that P 6= NP . Show that there exists a function that is
easy to compute and hard to invert in the worst case, but is not
one-way.

6.8 Let x ∈ {0, 1}n and denote x = x1 · · ·xn. Prove that if there exist
one-way functions, then there exists a one-way function f such that for
every i there exists an algorithm Ai such that,

Pr
x←Un

[Ai(f(x)) = xi] ≥
1

2
+

1

2n

* Theoretical Constructions of Pseudorandom Objects 227

We note that x← Un means that x is chosen according to the uniform
distribution over {0, 1}n. (This exercise demonstrates that it is not
possible to claim that every one-way function hides at least one specific
bit of the input.)

6.9 Show that if a 1–1 function has a hard-core predicate, then it is one-way.
Explain why the 1–1 part is needed in your proof.

6.10 Complete the proof of Proposition 6.13 by finding the Chernoff bound
and applying it to the improved procedure of A′ for guessing xi.

6.11 Prove Claim 6.17.

6.12 Let G be a pseudorandom generator. Prove that

G′(x1, . . . , xn) = G(x1), G(x2), . . . , G(xn)

where |x1| = · · · = |xn| is a pseudorandom generator.

Hint: Use a hybrid argument.

6.13 Prove the efficiency improvement of the generator described in the proof
of Theorem 6.20. Specifically, show that G(s) = sp(n)σ1, . . . , σp(n)−n is
a pseudorandom generator with expansion factor p(n).

6.14 Prove that the function G′ defined by

G′(s) = G0(G0(s)), G0(G1(s)), G1(G0(s)), G1(G1(s))

is a pseudorandom generator with expansion factor `(n) = 4n. Explain
the connection to pseudorandom functions.

6.15 Show that if Construction 6.21 is modified so the internal nodes of the
tree are also output, then the construction is no longer a pseudorandom
function.

6.16 Prove that if there exist pseudorandom functions Fn that map k(n) bits
to one bit, then there exist pseudorandom functions that map k(n) bits
to n bits. Note: n denotes the security parameter, and there is no
restriction on k(·) (in particular, k may be a constant function, or it
may be poly(n)).

Hint: Use a hybrid argument.

6.17 Prove that Construction 6.23 indeed yields a permutation, and show
how the (efficient) inversion procedure works. Prove that two rounds of
Construction 6.23 is not pseudorandom.

6.18 Let X = {Xn}n∈N and Y = {Yn}n∈N be computationally indistinguish-
able probability ensembles.

228 Introduction to Modern Cryptography

(a) Prove that for any probabilistic polynomial-time algorithm A it
holds that {A(Xn)}n∈N and {A(Yn)}n∈N are computationally in-
distinguishable.

(b) Prove that the above does not hold if A does not run in polynomial-
time.

Part III

Public-Key (Asymmetric)
Cryptography

229

Chapter 7

Number Theory and Cryptographic
Hardness Assumptions

Modern cryptography, as we have seen, is almost always based on an as-
sumption that some problem cannot be solved in polynomial time. (See Sec-
tion 1.4.2 for a discussion of this point.) In Chapters 3 and 4, for example,
we have seen that efficient private-key cryptography — both encryption and
message authentication — can be based on the assumption that pseudoran-
dom permutations exist. Recall that, roughly speaking, this means that there
exists some keyed permutation F for which it is impossible to distinguish in
polynomial time between interactions with Fk (for a randomly-chosen key k)
and interactions with a truly random permutation.

On the face of it, the assumption that a pseudorandom permutation exists
seems quite strong and unnatural, and it is reasonable to ask whether this
assumption is likely to be true or whether there is any evidence to support it.
In Chapter 5 we have explored how pseudorandom permutations (i.e., block
ciphers) are constructed in practice, and the resistance of these constructions
to attack at least serves as indication that the existence of pseudorandom
permutations is plausible. Still, it is difficult to imagine looking at some F
and somehow being convinced on any intuitive level that it is a pseudorandom
permutation. Moreover, the current state of our theory is such that we do
not know how to prove the pseudorandomness of any of the existing practical
constructions relative to any “more reasonable” assumption. This is, all-in-all,
a not entirely satisfying state of affairs.

In contrast, as mentioned in Chapter 3 (and investigated in detail in Chap-
ter 6) it is possible to prove that pseudorandom permutations exist based
on the much milder assumption that one-way functions exist. Informally, a
function f is one-way if f is easy to compute but hard to invert; a formal def-
inition is deferred to Section 7.4.1. Except briefly in Chapter 6, however, we
have not yet seen any concrete examples of functions believed to be one-way.

The goal of this chapter is to introduce and discuss various problems that
are believed to be “hard”, and the conjectured one-way functions that can
be based on these problems.1 All the examples we explore will be number-

1Recall that we currently do not know how to prove that one-way functions exist, and so
the best we can do is to base one-way functions on assumptions regarding the hardness of
certain mathematical problems.

231

232 Introduction to Modern Cryptography

theoretic in nature, and we therefore begin with a short introduction to num-
ber theory and group theory. Because we are also be interested in problems
that can be solved efficiently (even a one-way function needs to be easy to
compute in one direction), we also initiate a study of algorithmic number
theory. Thus, even the reader who is familiar with number theory or group
theory is encouraged to read this chapter, since algorithmic aspects are typi-
cally ignored in a purely mathematical treatment of these topics.

In the context of algorithmic number theory, a brief word of clarification
is in order regarding what is meant by “polynomial time.” An algorithm’s
running time is always measured as a function of the length(s) of its input(s).
(If the algorithm is given as additional input a security parameter 1n then
the total input length is increased by n.) This means, for example, that the
running time of an algorithm taking as input an integer N is measured in
terms of ‖N‖, the length of the binary representation of N , and not in terms
of N itself. An algorithm running in time Θ(N) on input N is thus actually
an exponential -time algorithm when measured in terms of ‖N‖ = Θ(log N).

The material in this chapter is not intended to be a comprehensive survey
of number theory, but is intended rather to present the minimal amount of
material needed for the cryptographic applications discussed in the remainder
of the book. Accordingly, our discussion of number theory is broken into two:
the material covered in this chapter is sufficient for understanding Chapters 9,
10, 12, and 13. In Chapter 11, additional number theory is developed that is
used only within that chapter.

The reader may be wondering why there was no discussion of number theory
thus far, and why it is suddenly needed now. There are two reasons for placing
number theory at this point of the course:

1. As discussed above, this chapter serves as a culmination of the “top
down” approach we have taken in developing private-key cryptography.
That is, we have first shown that private-key cryptography can be based
on pseudorandom functions and permutations, then stated (and shown
in Chapter 6) that the latter can be based on one-way functions. Here,
we show that one-way functions can be based on certain hard mathe-
matical problems.

2. A second motivation for studying this material illustrates a difference
between the private-key setting we have been concerned with until now,
and the public-key setting with which we will be concerned in the remain-
der of the book. (The public-key setting will be introduced in the fol-
lowing chapter.) Namely, in the private-key setting there exist suitable
primitives (i.e., pseudorandom generators, functions, and permutations)
for constructing schemes, and these primitives can be constructed — at
least heuristically, as explored in Chapter 5 — without invoking any
number theory. In the public-key setting, however, there is no single
unifying primitive that suffices for constructing schemes, and we cur-

Number Theory and Cryptographic Hardness Assumptions 233

rently do not know how to construct public-key schemes “from scratch”
without relying on some concrete underlying mathematical problem.

7.1 Preliminaries and Basic Group Theory

We begin with a review of prime numbers and basic modular arithmetic.
Even the reader who has seen these topics before should skim the next two
sections since some of the material may be new and we include proofs for most
of the stated results. (Any omitted proofs can be found in standard algebra
texts; see the references at the end of this chapter.)

7.1.1 Primes and Divisibility

The set of integers is denoted by Z. For a, b ∈ Z, we say that a divides
b, written a | b, if there exists an integer c such that ac = b. If a does not
divide b, we write a6 | b. (We are primarily interested in the case when a, b, c
are all positive, though the definition makes sense even when one or more of
these is negative or zero.) A simple observation is that if a | b and a | c then
a | (Xb + Y c) for any X, Y ∈ Z.

If a | b and a is positive, we call a a divisor of b. If furthermore a 6∈ {1, b}
then a is also called a non-trivial factor of b. A positive integer p > 1 is prime
if it has no non-trivial factors; i.e., it has only two divisors: 1 and p itself.
A positive integer greater than 1 that is not prime is called composite. By
convention, ‘1’ is neither prime nor composite.

A fundamental theorem of arithmetic is that every integer greater than 1
can be expressed uniquely (up to ordering) as a product of primes. That is,
any positive integer N > 1 can be written as N =

∏
i pei

i , where the {pi}
are distinct primes and ei ≥ 1 for all i; furthermore, the {pi} and {ei} are
uniquely determined up to ordering.

We are familiar with the process of division with remainder from elementary
school. The following proposition formalizes this notion.

PROPOSITION 7.1 Let a be an integer and b a positive integer. Then
there exist unique integers q, r with a = qb + r and 0 ≤ r < b.

Furthermore, given integers a and b as in the proposition, it is possible to
compute q and r in polynomial time. See Section B.1.

The greatest common divisor of two non-negative integers a, b, written
gcd(a, b), is the largest integer c such that c | a and c | b. (We leave gcd(0, 0)
undefined.) The notion of greatest common divisor also makes sense when
either or both of a, b are negative but we will never need this; therefore, when

234 Introduction to Modern Cryptography

we write gcd(a, b) we always assume that a, b ≥ 0. Note that gcd(b, 0) =
gcd(0, b) = b; also, if p is prime then gcd(a, p) is either equal to 1 or p. If
gcd(a, b) = 1 we say that a and b are relatively prime.

The following is a useful result:

PROPOSITION 7.2 Let a, b be positive integers. Then there exist in-
tegers X, Y such that Xa + Y b = gcd(a, b). Furthermore, gcd(a, b) is the
smallest positive integer that can be expressed in this way.

PROOF Consider the set I
def
= {X̂a + Ŷ b | X̂, Ŷ ∈ Z}. Note that a, b ∈ I ,

and I certainly contains some positive integers. Let d be the smallest positive
integer in I . We claim that d = gcd(a, b); since d can be written as d =
Xa + Y b for some X, Y ∈ Z (because d ∈ I), this proves the theorem.

To show that d = gcd(a, b) we must show that d | a and d | b, and that d
is the largest integer with this property. In fact, we can show that d divides
every element in I . To see this, take arbitrary c ∈ I and say c = X ′a + Y ′b
with X ′, Y ′ ∈ Z. Using division with remainder (Proposition 7.1) we have
c = qd + r with q, r integers and 0 ≤ r < d. Then

r = c− qd = X ′a + Y ′b− q(Xa + Y b) = (X ′ − qX)a + (Y ′ − qY)b ∈ I.

If r 6= 0, this contradicts our choice of d as the smallest positive integer in I .
So, r = 0 and hence d | c.

Since a ∈ I and b ∈ I , the above shows that d | a and d | b. Say there exists
d′ > d such that d′ | a and d′ | b. Then d′ |Xa + Y b; since the latter is equal
to d, this means d′ | d. But this is impossible if d′ is larger than d. We conclude
that d is the largest integer dividing both a and b, and hence d = gcd(a, b).

Given a and b, the Euclidean algorithm can be used to compute gcd(a, b)
in polynomial time. The extended Euclidean algorithm can be used to com-
pute X, Y (as in the above proposition) in polynomial time as well. See
Section B.1.2 for details.

The preceding proposition is very useful in proving additional results about
divisibility. We show two examples now.

PROPOSITION 7.3 If c | ab and gcd(a, c) = 1, then c | b. In particular,
if p is prime and p | ab then either p | a or p | b.

PROOF Since c | ab we can write γc = ab for some integer γ. If gcd(a, c) =
1 then, by the previous proposition, there exist integers X, Y such that 1 =
Xa + Y c. Multiplying both sides by b, we obtain

b = Xab + Y cb = Xγc + Y cb = c · (Xγ + Y b).

Number Theory and Cryptographic Hardness Assumptions 235

Since (Xγ + Y b) is an integer, it follows that c | b.
The second part of the proposition follows from the fact that if p 6 | a then

gcd(a, p) = 1.

PROPOSITION 7.4 Say p |N , q |N , and gcd(p, q) = 1. Then pq |N .

PROOF Write pa = N , qb = N , and (using Proposition 7.2) 1 = Xp+Y q,
where a, b, X, Y are all integers. Multiplying both sides of the last equation
by N , we obtain

N = XpN + Y qN = Xpqb + Y qpa = pq(Xb + Y a),

showing that pq |N .

7.1.2 Modular Arithmetic

Let a, b, N ∈ Z with N > 1. We use the notation [a mod N] to denote the
remainder of a ∈ Z upon division by N . In more detail: by Proposition 7.1
there exist unique q, r with a = qN + r and 0 ≤ r < N , and we define
[a mod N] to be equal to this r. Note therefore that 0 ≤ [a mod N] < N . We
refer to the process of mapping a to [a mod N] as reduction modulo N .

We say that a and b are congruent modulo N , written a = b mod N , if
[a mod N] = [b mod N], i.e., the remainder when a is divided by N is the
same as the remainder when b is divided by N . Note that a = b mod N if and
only if N | (a− b). By way of notation, in an expression such as

a = b = c = · · · = z mod N,

the understanding is that every equal sign in this sequence (and not just the
last) refers to congruence modulo N .

Note that a = [b mod N] implies a = b mod N , but not vice versa. For
example, 36 = 21 mod 15 but 36 6= [21 mod 15] = 6.

Congruence modulo N is an equivalence relation: i.e., it is reflexive (a =
a mod N for all a), symmetric (a = b mod N implies b = a mod N), and
transitive (if a = b mod N and b = c mod N then a = c mod N). Congru-
ence modulo N also obeys the standard rules of arithmetic with respect to
addition, subtraction, and multiplication; so, for example, if a = a′ mod N
and b = b′ mod N then (a + b) = (a′ + b′) mod N and ab = a′b′ mod N . A
consequence is that we can “reduce and then add/multiply” instead of hav-
ing to “add/multiply and then reduce,” a feature which can often be used to
simplify calculations.

Example 7.5
Let us compute [1093028 ·190301 mod 100]. Since 1093028 = 28 mod 100 and

236 Introduction to Modern Cryptography

190301 = 1 mod 100, we have

1093028 · 190301 = [1093028 mod 100] · [190301 mod 100] mod 100

= 28 · 1 = 28 mod 100.

The alternate way of calculating the answer (namely, computing the product
1093028 · 190301 and then reducing the answer modulo 100) is much more
time-consuming. ♦

Congruence modulo N does not (in general) respect division. That is, if
a = a′ mod N and b = b′ mod N then it is not necessarily true that a/b =
a′/b′ mod N ; in fact, the expression “a/b mod N” is not, in general, well-
defined. As a specific example that often causes confusion, ab = cb mod N
does not necessarily imply that a = c mod N .

Example 7.6
Take N = 24. Then 3 · 2 = 6 = 15 · 2 mod 24, but 3 6= 15 mod 24. ♦

In certain cases, however, we can define a meaningful notion of division. If
for a given integer b there exists an integer b−1 such that bb−1 = 1 mod N , we
say that b−1 is a (multiplicative) inverse of b modulo N and call b invertible
modulo N . It is not too difficult to show that if β is a multiplicative inverse of
b modulo N then so is [β mod N]; furthermore, if β′ is another multiplicative
inverse then [β mod N] = [β′ mod N]. When b is invertible we can therefore
simply let b−1 denote the unique multiplicative inverse of b that lies in the
range {0, . . . , N − 1}.

When b is invertible modulo N we define division by b modulo N as multi-
plication by b−1 modulo N (i.e., we define a/b = ab−1 mod N). We stress that
division by b is only defined when b is invertible. If ab = cb mod N and b is
invertible, then we may divide each side of the equation by b (or, equivalently,
multiply each side by b−1) to obtain

(ab) · b−1 = (cb) · b−1 mod N ⇒ a = c mod N.

We see that in this case, division works “as expected.” Invertible integers are
therefore “nicer” to work with, in some sense.

The natural question is: which integers are invertible modulo a given mod-
ulus N? We can fully answer this question using Proposition 7.2:

PROPOSITION 7.7 Let a, N be integers, with N > 1. Then a is invert-
ible modulo N iff gcd(a, N) = 1.

PROOF Assume a is invertible modulo N , and let b denote its inverse.
Note that a 6= 0 since 0 · b = 0 mod N regardless of the value of b. Since

Number Theory and Cryptographic Hardness Assumptions 237

ab = 1 mod N , the definition of congruence modulo N implies that ab−1 = cN
for some c ∈ Z. Equivalently, ba− cN = 1. By Proposition 7.2, this implies
gcd(a, N) = 1.

Conversely, if gcd(a, N) = 1 then by Proposition 7.2 there exist integers
X, Y such that Xa+Y N = 1. Reducing each side of this equation modulo N
gives Xa = 1 mod N , and we see that X is a multiplicative inverse of a.

Example 7.8
Let N = 17 and a = 11. Then (−3) · 11 + 2 · 17 = 1, and so 14 = [−3 mod 17]
is the inverse of 11. One can verify that 14 · 11 = 1 mod 17. ♦

Addition, subtraction, multiplication, and computation of inverses (when
they exist) modulo N can all be done in polynomial time; see Section B.2.
Exponentiation (i.e., computing ab mod N for b > 0 an integer) can also be
done in polynomial time; see Section B.2.3 for further details.

7.1.3 Groups

Let G be a set. A binary operation ◦ on G is simply a function ◦(·, ·)
that takes as input two elements of G. If g, h ∈ G then instead of using the
cumbersome notation ◦(g, h), we write g ◦ h.

We now introduce the important notion of a group.

DEFINITION 7.9 A group is a set G along with a binary operation ◦
such that:

(Closure) For all g, h ∈ G, g ◦ h ∈ G.

(Existence of an Identity) There exists an identity e ∈ G such that for all
g ∈ G, e ◦ g = g = g ◦ e.

(Existence of Inverses) For all g ∈ G there exists an element h ∈ G such
that g ◦ h = e = h ◦ g. Such an h is called an inverse of g.

(Associativity) For all g1, g2, g3 ∈ G, (g1 ◦ g2) ◦ g3 = g1 ◦ (g2 ◦ g3).

When G has a finite number of elements, we say G is a finite group and let
|G| denote the order of the group; that is, the number of elements in G. A
group G with operation ◦ is abelian if the following additional condition holds:

(Commutativity) For all g, h ∈ G, g ◦ h = h ◦ g.

When the binary operation is understood, we simply call the set G a group.

We will always deal with finite, abelian groups. We will be careful to specify,
however, when a result requires these assumptions.

238 Introduction to Modern Cryptography

If G is a group, a set H ⊆ G is a subgroup of G if H itself forms a group
under the same operation associated with G. To check that H is a subgroup,
we need to verify closure, existence of identity and inverses, and associativity
as per Definition 7.9. (Actually, associativity — as well as commutativity if
G is abelian — is inherited automatically from G.) Every group G always has
the trivial subgroups G and {1}. We call H a strict subgroup of G if H 6= G.

Associativity implies that we do not need to include parentheses when writ-
ing long expressions; that is, the notation g1 ◦ g2 ◦ · · · ◦ gn is unambiguous
since it does not matter in what order we evaluate the operation ◦.

One can show that the identity element in a group G is unique, and so we
can therefore refer to the identity of a group. One can also show that each
element g of a group has a unique inverse. See Exercise 7.1.

In general, we will not use the notation ◦ to denote the group operation.
Instead, we will use either additive notation or multiplicative notation de-
pending on the group under discussion. When using additive notation, the
group operation applied to two elements g, h is denoted g + h; the identity
is denoted by ‘0’, and the inverse of an element g is denoted by −g. When
using multiplicative notation, the group operation applied to g, h is denoted
by g · h or simply gh; the identity is denoted by ‘1’, and the inverse of an
element g is denoted by g−1. As in the case of multiplication modulo N , we
also define division by g as multiplication by g−1 (i.e., h/g is defined to mean
hg−1). When we state results, we will always use multiplicative notation. We
stress that this does not imply that the group operation corresponds to integer
addition or multiplication. This merely serves as useful notation.

At this point, it may be helpful to see some examples.

Example 7.10

A set may be a group under one operation, but not another. For example,
the set of integers Z is an abelian group under addition: the identity is the
element ‘0’, and every integer g has inverse −g. On the other hand, it is not
a group under multiplication since, for example, the integer ‘2’ does not have
a multiplicative inverse in the integers. ♦

Example 7.11

The set of real numbers R is not a group under multiplication, since ‘0’ does
not have a multiplicative inverse. The set of non-zero real numbers, however,
is an abelian group under multiplication with identity ‘1’. ♦

The following example introduces the group ZN that will be of central
importance for us.

Example 7.12

Let N ≥ 2 be an integer. The set {0, . . . , N − 1} with respect to addition

Number Theory and Cryptographic Hardness Assumptions 239

modulo N is an abelian group of order N : Closure is obvious; associativity and
commutativity follow from the fact that the integers satisfy these properties;
the identity is 0; and, since a+(N −a) = 0 mod N , it follows that the inverse
of any element a is [(N − a) mod N]. We denote this group by ZN . (We will
occasionally use ZN also to denote the set {0, . . . , N − 1} without regard to
any particular operation.) ♦

We end this section with an easy lemma that formalizes an obvious “can-
celation law” for groups.

LEMMA 7.13 Let G be a group and a, b, c ∈ G. If ac = bc, then a = b.
In particular, if ac = c then a is the identity in G.

PROOF We know ac = bc. Multiplying both sides by the unique inverse
c−1 of c, we obtain a = b. In excruciating detail:

a = a · 1 = a(c · c−1) = (ac)c−1 = (bc)c−1 = b(c · c−1) = b · 1 = b.

Compare the above proof to the discussion (preceding Proposition 7.7) re-
garding a cancelation law for division modulo N . As indicated by the sim-
ilarity, the invertible elements modulo N form a group under multiplication
modulo N . We will return to this example in more detail shortly.

Group Exponentiation

It is often useful to be able to describe the group operation applied m times
to a fixed element g, where m is a positive integer. When using additive
notation, we express this as m · g or mg; that is,

mg = m · g def
= g + · · ·+ g︸ ︷︷ ︸

m times

.

Note that m is an integer, while g is a group element. So mg does not represent
the group operation applied to m and g (indeed, we are working in a group
where the group operation is written additively). Thankfully, however, the
notation “behaves as it should”; so, for example, if g ∈ G and m, m′ are
integers then (mg) + (m′g) = (m + m′)g, m(m′g) = (mm′)g, and 1 · g = g. In
an abelian group G with g, h ∈ G, (mg) + (mh) = m(g + h).

When using multiplicative notation, we express application of the group
operation m times to an element g by gm. That is,

gm def
= g · · · g︸ ︷︷ ︸

m times

.

240 Introduction to Modern Cryptography

The familiar rules of exponentiation hold: gm · gm′

= gm+m′

, (gm)m′

= gmm′

,
and g1 = g. Also, if G is an abelian group and g, h ∈ G then gm ·hm = (gh)m.
Note that all these results are simply “translations” of the results stated in
the previous paragraph to the setting of groups written multiplicatively rather
than additively.

The above notation is extended to the case when m is zero or a negative
integer in the natural way. (In general, we leave gr undefined if r is not an

integer.) When using additive notation we have 0 · g def
= 0 and (−m) · g def

=
m · (−g) for m a positive integer. (Note that in the equation ‘0 · g = 0’ the
‘0’ on the left-hand side is the integer 0 while the ‘0’ on the right-hand side
is the identity element in the group.) As one would expect, it can be shown

that (−m) · g = −(mg). When using multiplicative notation, g0 def
= 1 and

g−m def
= (g−1)m. Again, as expected, one can show that g−m = (gm)−1.

Let g ∈ G and b ≥ 0 be an integer. Then the exponentiation gb can be
computed using a polynomial number of underlying group operations in G.
Thus, if the group operation can be computed in polynomial time, then so
can exponentiation. This non-trivial observation is discussed in Section B.2.3.

We now know enough to prove the following remarkable result:

THEOREM 7.14 Let G be a finite group with m = |G|, the order of the
group. Then for any element g ∈ G, gm = 1.

PROOF We prove the theorem only when G is abelian (though it holds
for any finite group). Fix arbitrary g ∈ G, and let g1, . . . , gm be the elements
of G. We claim that

g1 · g2 · · · gm = (gg1) · (gg2) · · · (ggm).

To see this, note that ggi = ggj implies gi = gj by Lemma 7.13. So each of the
m elements in parentheses on the right-hand side of the displayed equation is
distinct. Because there are exactly m elements in G, the m elements being
multiplied together on the right-hand side are simply all elements of G in
some permuted order. Since G is abelian the order in which all elements of
the group are multiplied does not matter, and so the right-hand side is equal
to the left-hand side.

Again using the fact that G is abelian, we can “pull out” all occurrences of
g and obtain

g1 · g2 · · · gm = (gg1) · (gg2) · · · (ggm) = gm · (g1 · g2 · · · gm).

Appealing once again to Lemma 7.13, this implies gm = 1.

An important corollary of the above is that we can work “modulo the group
order in the exponent”:

Number Theory and Cryptographic Hardness Assumptions 241

COROLLARY 7.15 Let G be a finite group with m = |G| > 1. Then for
any g ∈ G and any integer i, we have gi = g[i mod m].

PROOF Say i = qm + r, where q, r are integers and r = [i mod m]. Using
Theorem 7.14,

gi = gqm+r = gqm · gr = (gm)q · gr = 1q · gr = gr,

as claimed.

Example 7.16
Written additively, the above corollary says that if g is an element in a group
of order m, then i · g = [i mod m] · g. As an example, consider the group Z15

of order m = 15, and take g = 11. The corollary says that

152 · 11 = [152 mod 15] · 11 = 2 · 11 = 11 + 11 = 22 = 7 mod 15.

The above exactly agrees with the fact (cf. Example 7.5) that we can “reduce
and then multiply” rather than having to “multiply and then reduce.” ♦

Another corollary that will be extremely useful for cryptographic applica-
tions is the following:

COROLLARY 7.17 Let G be a finite group with m = |G| > 1. Let
e > 0 be an integer, and define the function fe : G → G by fe(g) = ge. If
gcd(e, m) = 1, then fe is a permutation. Moreover, if d = [e−1 mod m] then
fd is the inverse of fe.

PROOF By Proposition 7.7, gcd(e, m) = 1 implies that e is invertible
modulo m, and so e−1 mod m exists. The second part of the claim implies
the first, so we need only show that fd is the inverse of fe. This is true because
for any g ∈ G we have

fd (fe(g)) = fd(g
e) = (ge)d = ged = g[ed mod m] = g1 = g,

where the third-to-last equality follows from Corollary 7.15.

7.1.4 The Group Z
∗
N and the Chinese Remainder Theorem

As discussed in Example 7.12, the set ZN = {0, . . . , N − 1} is a group
under addition modulo N . Can we define a group structure over the set
{0, . . . , N−1} with respect to multiplication modulo N? Clearly, ‘1’ will have
to be the identity. We know that not every element in this set is invertible;

242 Introduction to Modern Cryptography

for example, ‘0’ obviously has no multiplicative inverse. This is not the only
potential problem: if N = 6, then ‘3’ is not invertible as can be proved by
exhaustively trying every possibility.

Which elements a ∈ {0, . . . , N − 1} are invertible modulo N? Proposi-
tion 7.7 says that this occurs if and only if gcd(a, N) = 1. We have also seen
in Section 7.1.2 that whenever a is invertible, it has an inverse lying in the
range {0, . . . , N − 1}. This leads us to define, for N > 1, the set

Z
∗
N

def
= {a ∈ {1, . . . , N − 1} | gcd(a, N) = 1}

(i.e., Z∗N consists of integers in the set {1, . . . , N−1} that are relatively prime
to N) with the associated binary operation of multiplication modulo N .

We claim that Z∗N , with respect to this operation, is a group. The discussion
above shows that Z∗N has an identity, and that each element in this set has
a multiplicative inverse in the same set. Commutativity and associativity
follow from the fact that these properties hold over the integers. To show
that closure holds, let a, b ∈ Z∗N , let c = [ab mod N], and assume c 6∈ Z∗N .
This means that gcd(c, N) 6= 1, and so there exists a prime p dividing both
N and c. Since ab = qN + c for some integer q, we see that p | ab. By
Proposition 7.3, this means p | a or p | b; but then either gcd(a, N) 6= 1 or
gcd(b, N) 6= 1, contradicting our assumption that a, b ∈ Z∗N .

Summarizing:

PROPOSITION 7.18 Let N > 1 be an integer. Then Z∗N is an abelian
group under multiplication modulo N .

Define φ(N)
def
= |Z∗N |, the order of the group Z∗N (φ is called the Euler phi

function). What is the value of φ(N)? First consider the case when N = p is
prime. Then all elements in {1, . . . , p − 1} are relatively prime to p, and so
φ(p) = |Z∗p| = p − 1. Next consider the case N = pq, where p, q are distinct
primes. If an integer a ∈ {1, . . . , N − 1} is not relatively prime to N , then
either p | a or q | a (a cannot be divisible by both p and q since this would imply
pq | a but a < N = pq). The elements in {1, . . . , N − 1} divisible by p are
exactly the (q−1) elements p, 2p, 3p, . . . , (q−1)p, and the elements divisible by
q are exactly the (p− 1) elements q, 2q, . . . , (p− 1)q. The number of elements
remaining (i.e., those that are neither divisible by p or q) is therefore given by

N − 1− (q − 1)− (p− 1) = pq − p− q + 1 = (p− 1)(q − 1).

We have thus proved that φ(N) = (p − 1)(q − 1) when N is the product of
two distinct primes p and q.

You are asked to prove the following general result in Exercise 7.4:

THEOREM 7.19 Let N =
∏

i pei

i , where the {pi} are distinct primes and
ei ≥ 1. Then φ(N) =

∏
i pei−1

i (pi − 1).

Number Theory and Cryptographic Hardness Assumptions 243

Example 7.20
Take N = 15 = 5 · 3. Then Z∗15 = {1, 2, 4, 7, 8, 11, 13, 14} and |Z∗N | = 8 =
4 · 2 = φ(15). The inverse of 8 in Z

∗
N is 2, since 8 · 2 = 16 = 1 mod 15. ♦

We have shown that Z∗N is a group of order φ(N). The following are now
easy corollaries of Theorem 7.14 and Corollary 7.17:

COROLLARY 7.21 Take arbitrary N > 1 and a ∈ Z
∗
N . Then

aφ(N) = 1 mod N.

For the specific case when N = p is prime and a ∈ {1, . . . , p− 1}, we have

ap−1 = 1 mod p.

COROLLARY 7.22 Fix N > 1. For integer e > 0 define fe : Z∗N →
Z∗N by fe(x) = xe mod N . If e is relatively prime to φ(N) then fe is a
permutation. Moreover, if d = [e−1 mod φ(N)] then fd is the inverse of fe.

Group Isomorphisms

An isomorphism of a group G provides an alternate, but equivalent, way of
thinking about G.

DEFINITION 7.23 Let G, H be groups with respect to the operations
◦G, ◦H, respectively. A function f : G → H is an isomorphism from G to H if
(1) f is a bijection; (2) for all g1, g2 ∈ G we have f(g1 ◦G g2) = f(g1)◦H f(g2).
If there exists an isomorphism from G to H then we say these groups are
isomorphic and write this as G ' H.

Note that if G is finite and G ' H, then H must be finite and have the same
size as G. Also, if there exists an isomorphism f from G to H then f−1 is an
isomorphism from H to G.

The aim of this section is to use the language of isomorphisms to better
understand the group structure of ZN and Z∗N when N = pq is a product of
two distinct primes. We first need to introduce the notion of a cross product
of groups. Given groups G, H with group operations ◦G, ◦H respectively, we
can define a new group G×H (the cross product of G and H) as follows. The
elements of G×H are ordered pairs (g, h) with g ∈ G and h ∈ H; thus, if G

has n elements and H has n′ elements, G × H has nn′ elements. The group
operation ◦ on G×H is applied component-wise; that is:

(g, h) ◦ (g′, h′)
def
= (g ◦G g′, h ◦H h′).

We leave it to Exercise 7.5 to verify that G×H is indeed a group.

244 Introduction to Modern Cryptography

The above notation can be extended to cross products of more than two
groups in the natural way, though we will not need this for what follows.

We may now state and prove the Chinese remainder theorem.

THEOREM 7.24 (Chinese Remainder Theorem) Let N = pq where
p and q are relatively prime. Then

ZN ' Zp × Zq and Z
∗
N ' Z

∗
p × Z

∗
q .

Moreover, let f be the function mapping elements x ∈ {0, . . . , N − 1} to pairs
(xp, xq) with xp ∈ {0, . . . , p− 1} and xq ∈ {0, . . . , q − 1} defined by

f(x) = ([x mod p], [x mod q]).

Then f is an isomorphism from ZN to Zp × Zq as well as2 an isomorphism
from Z∗N to Z∗p × Z∗q .

PROOF It is clear that for any x ∈ ZN the output f(x) is a pair of
elements (xp, xq) with xp ∈ Zp and xq ∈ Zq . Furthermore, we claim that if
x ∈ Z∗N then (xp, xq) ∈ Z∗p×Z∗q . Indeed, if (say) xp 6∈ Z∗p then this means that
gcd([x mod p], p) 6= 1. But then gcd(x, p) 6= 1. This implies gcd(x, N) 6= 1,
contradicting the assumption that x ∈ Z∗N .

We now show that f is an isomorphism from ZN to Zp×Zq. (The proof that
it is an isomorphism from Z∗N to Z∗p × Z∗q is similar.) Let us start by proving
that f is one-to-one. Say f(x) = (xp, xq) = f(x′). Then x = xp = x′ mod p
and x = xq = x′ mod q. This in turn implies that (x − x′) is divisible by
both p and q. Since gcd(p, q) = 1, Proposition 7.4 says that pq = N divides
(x−x′). But then x = x′ mod N . For x, x′ ∈ ZN , this means that x = x′ and
so f is indeed one-to-one.

Since |ZN | = N = p · q = |Zp| · |Zq |, the sizes of ZN and Zp × Zq are the
same. This in combination with the fact that f is one-to-one implies that f
is bijective.

In the following paragraph, let +N , +p, +q denote addition modulo N , mod-
ulo p, and modulo q, respectively; let � denote the group operation in Zp×Zq

(i.e., addition modulo p in the first component and addition modulo q in
the second component). To conclude the proof that f is an isomorphism
from ZN to Zp × Zq , we need to show that for all a, b ∈ ZN it holds that
f(a +N b) = f(a) � f(b). To see that this is true, note that

f(a +N b) =
(
[(a +N b) mod p], [(a +N b) mod q]

)

=
(
[(a +p b) mod p], [(a +q b) mod q]

)

=
(
[a mod p], [a mod q]

)
�

(
[b mod p], [b mod q]

)
= f(a) � f(b).

2Technically, here we consider the restriction of f to inputs in Z∗
N .

Number Theory and Cryptographic Hardness Assumptions 245

(In Exercise 7.6, you are asked to prove that (a +N b) mod p = (a+p b) mod p,
a result used for the second equality, above.)

The theorem does not require p or q to be prime. An extension of the
Chinese remainder theorem says that if p1, p2, . . . , p` are pairwise relatively

prime (i.e., gcd(pi, pj) = 1 for all i 6= j) and p
def
=
∏`

i=1 pi, then

Zp ' Zp1 × · · · × Zp`
and Z

∗
p ' Z

∗
p1
× · · · × Z

∗
p`

.

An isomorphism in each case is obtained by a natural extension of the one
used in the theorem above.

By way of notation, with N understood and x ∈ {0, 1, . . . , N − 1} we write
x ↔ (xp, xq) for xp = [x mod p] and xq = [x mod q]. I.e., x ↔ (xp, xq) if and
only if f(x) = (xp, xq), where f is as in the theorem above. One way to think
about this notation is that it means “x (in ZN) corresponds to (xp, xq) (in
Zp × Zq).” The same notation is used when dealing with x ∈ Z

∗
N .

Example 7.25
Take 15 = 5 · 3, and consider Z∗15 = {1, 2, 4, 7, 8, 11, 13, 14}. The Chinese
remainder theorem says that this group is isomorphic to Z∗5 ×Z∗3. Indeed, we
can compute

1↔ (1, 1) 2↔ (2, 2) 4↔ (4, 1) 7↔ (2, 1)
8↔ (3, 2) 11↔ (1, 2) 13↔ (3, 1) 14↔ (4, 2)

,

where each possible pair (a, b) with a ∈ Z
∗
5 and b ∈ Z

∗
3 appears exactly once.

♦

7.1.5 Using the Chinese Remainder Theorem

If two groups are isomorphic, then they both serve as representations of the
same underlying “algebraic structure.” Nevertheless, the choice of which rep-
resentation to use can affect the computational efficiency of group operations.
We show this abstractly, and then in the specific context of ZN and Z∗N .

Let G, H be groups with operations ◦G, ◦H, respectively, and say f is an
isomorphism from G to H where both f and f−1 can be computed efficiently
(in general this will not be the case). Then for g1, g2 ∈ G we can compute
g = g1 ◦G g2 in two ways: either by directly computing the group operation
in G, or by carrying out the following steps:

1. Compute h1 = f(g1) and h2 = f(g2);

2. Compute h = h1 ◦H h2 using the group operation in H;

3. Compute g = f−1(h).

246 Introduction to Modern Cryptography

Which method is better depends on the specific groups under consideration,
as well as the efficiency of computing f and f−1.

We now turn to the specific case of computations modulo N , when N =
pq is a product of distinct primes. The Chinese remainder theorem shows
that addition or multiplication modulo N can be “transformed” to analogous
operations modulo p and q. (Moreover, an easy corollary of the Chinese
remainder theorem shows that this holds true for exponentiation as well.)
Using Exercise 7.25, we can show some simple examples with N = 15.

Example 7.26
Say we wish to compute 14 · 13 mod 15. Exercise 7.25 gives 14 ↔ (4, 2) and
13↔ (3, 1). Now,

[14 · 13 mod 15]↔ (4, 2) · (3, 1) = ([4 · 3 mod 5], [2 · 1 mod 3]) = (2, 2).

But (2, 2)↔ 2, which is the correct answer since 14 · 13 = 2 mod 15. ♦

Example 7.27
Say we wish to compute 112 mod 15. Exercise 7.25 gives 11 ↔ (1, 2) and so
[112 mod 15]↔ (1, 2)2 (on the right-hand side, exponentiation is in the group
Z∗5 × Z∗3). Thus,

[112 mod 15]↔ (1, 2)2 = (12 mod 5, 22 mod 3) = (1, 1)↔ 1.

Indeed, 112 = 1 mod 15. ♦

One thing we have not yet discussed is how to convert back-and-forth be-
tween the representation of an element modulo N and its representation mod-
ulo p and q. We now show that the conversion can be carried out in polynomial
time provided the factorization of N is known.

It is easy to map an element x modulo N to its corresponding represen-
tation modulo p and q: the element x corresponds to ([x mod p], [x mod q]).
Since both the necessary modular reductions can be carried out efficiently (cf.
Section B.2), this process can be carried out in polynomial time.

For the other direction, we make use of the following observation: an ele-
ment with representation (xp, xq) can be written as

(xp, xq) = xp · (1, 0) + xq · (0, 1).

So, if we can find elements 1p, 1q ∈ {0, . . . , N − 1} such that 1p ↔ (1, 0) and
1q ↔ (0, 1), then (appealing to the Chinese remainder theorem) we know that

(xp, xq)↔ [(xp · 1p + xq · 1q) mod N].

Since p, q are distinct primes, gcd(p, q) = 1. We can use the extended
Euclidean algorithm (cf. Section B.1.2) to find integers X, Y such that

Xp + Y q = 1.

Number Theory and Cryptographic Hardness Assumptions 247

We claim that 1p = [Y q mod N]. This is because

[
[Y q mod N] mod p

]
= [Y q mod p] = [(1−Xp) mod p] = 1

and
[Y q mod N] mod q = [Y q mod q] = 0 ;

and so Y q mod N ↔ (1, 0) as desired. It can similarly be shown that 1q =
[Xp mod N].

In summary, we can convert an element represented as (xp, xq) to its rep-
resentation modulo N in the following way (assuming p and q are known):

1. Compute X, Y such that Xp + Y q = 1.

2. Set 1p = [Y q mod N] and 1q = [Xp mod N].

3. Compute x = [(xp · 1p + xq · 1q) mod N].

Note that if many such conversions will be performed, then 1p, 1q can be
computed once-and-for-all in a pre-processing phase.

Example 7.28
Take p = 5, q = 7, and N = 5 · 7 = 35. Say we are given the representation
(4, 3) and want to convert this to the corresponding element of {0, . . . , 34}.
Using the extended Euclidean algorithm, we compute

3 · 5− 2 · 7 = 1.

Thus, 1p = [(−2 · 7) mod 35] = 21 and 1q = [3 · 5 mod 35] = 15. So

(4, 3) = 4 · (1, 0) + 3 · (0, 1)

↔ [4 · 1p + 3 · 1q mod 35]

= [4 · 21 + 3 · 15 mod 35] = 24.

Since 24 = 4 mod 5 and 24 = 3 mod 7, this is indeed correct. ♦

Example 7.29
Say we want to compute 29100 mod 35. We first compute 29↔ ([29 mod 5],
[29 mod 7]) = (−1, 1). Using the Chinese remainder theorem, we have

29100 mod 35↔ (1,−1)100 = (1100 mod 5, (−1)100 mod 7) = (1, 1),

and it is immediate that (1, 1)↔ 1. We conclude that 1 = [29100 mod 35]. ♦

Example 7.30
Say we want to compute 1825 mod 35. We have 18↔ (3, 4) and so

1825 mod 35↔ (3, 4)25 = ([325 mod 5], [425 mod 7]).

248 Introduction to Modern Cryptography

Since Z∗5 is a group of order 4, we can “work modulo 4 in the exponent” and
see that

325 = 325 mod 4 = 31 = 3 mod 5.

Similarly,
425 = 425 mod 6 = 41 = 4 mod 7.

Thus, ([325 mod 5], [425 mod 7]) = (3, 4)↔ 18 and so 1825 mod 35 = 18. ♦

7.2 Primes, Factoring, and RSA

In this section, we show the first examples of number-theoretic problems
that are (conjectured to be) “hard”. We begin with a discussion of factoring.

Given a composite integer N , the factoring problem is to find positive inte-
gers p, q such that pq = N . Factoring is a classic example of a hard problem,
both because it is so simple to describe and also because it has been rec-
ognized as a hard computational problem for a long time (even before the
advent of cryptography). The problem can be solved in exponential time
O(
√

N · polylog(N)) using trial division: that is, by exhaustively checking
whether p divides N for p = 2, . . . , b

√
Nc. This always succeeds because al-

though the largest prime factor of N may be as large as N/2, the smallest
prime factor of N can be at most b

√
Nc. Although algorithms with better

running time are known (see Chapter 8), no polynomial-time algorithm that
correctly solves the factoring problem has been developed despite much effort.

Consider the following experiment for a given algorithmA and parameter n:

The weak factoring experiment w-FactorA(n)

1. Choose two n-bit integers x1, x2 at random.

2. Compute N := x1 · x2.

3. A is given N , and outputs x′1, x
′
2.

4. The output of the experiment is defined to be 1 if x′1 ·x′2 = N ,
and 0 otherwise.

We have just said that the factoring problem is believed to be hard — does
this mean that for any ppt algorithm A we have

Pr[w-FactorA(n) = 1] ≤ negl(n)

for some negligible function negl? Not at all. For starters, the number N in
the above experiment is even with probability 3/4 (as this occurs when either
x1 or x2 is even) and it is, of course, each for A to factor N in this case. While
we can make A’s job more difficult by requiring A to output integers x′1, x

′
2 of

Number Theory and Cryptographic Hardness Assumptions 249

length n (as suggested in Chapter 6), it remains the case that x1 or x2 (and
hence N) might have small prime factors that can still be easily found by A.
In certain contexts, we would like to prevent this.

As this discussion indicates, the “hardest” numbers to factor are those hav-
ing only large prime factors. This suggests re-defining the above experiment
so that x1, x2 are random n-bit primes rather than random n-bit integers, and
in fact such an experiment will be used when we formally define the factoring
assumption in Section 7.2.3. For this experiment to be useful in a crypto-
graphic setting, however, it will be necessary to be able to generate random
n-bit primes efficiently. This is the topic of the next section.

7.2.1 Generating Random Primes

The same general approach discussed in Section B.2.4 for choosing random
integers in a certain range can be used to generate random n-bit primes. (The
discussion in Section B.2.4 is helpful, but not essential, for what follows.)
Specifically, we can generate a random n-bit prime by repeatedly choosing
random n-bit integers until we find the first prime. That is:

ALGORITHM 7.31
Generating a random prime — high-level outline

Input: Length n; parameter t
Output: A random n-bit prime

for i = 1 to t:
p′ ← {0, 1}n−1

p := 1‖p′

if p is prime return p
return fail

(An alternate to outputting fail in the last line is simply to output an arbitrary
n-bit integer, which may not be prime.) Note that the algorithm forces the
output to be an integer of length exactly n (rather than length at most n) by
fixing the high-order bit of p to ‘1’.

Given a method that always correctly determines whether or not a given
integer p is prime, the above algorithm outputs a random n-bit prime con-
ditioned on the event that it does not output fail. The probability that the
algorithm outputs fail depends on t, and for our purposes we will want to set
t so as to obtain a failure probability that is negligible in n. To show that this
approach leads to an efficient (i.e., polynomial-time in n) algorithm for gener-
ating primes, we need a better understanding of two issues: (1) the probability
that a randomly-selected n-bit integer is prime; and (2) how to efficiently test
whether a given integer p is prime. We discuss these issues briefly now, and
defer a more in-depth exploration of the second topic to Section 7.2.2.

250 Introduction to Modern Cryptography

The distribution of primes. The prime number theorem, an important
result in mathematics, gives fairly precise bounds on the fraction of integers
of a given length that are prime. For our purposes, we need only the following
weak version of that result:

THEOREM 7.32 There exists a constant c such that, for any n > 1, the
number of n-bit primes is at least c · 2n−1/n.

We do not give a proof of this theorem here, though somewhat elementary
proofs are known (see the references at the end of the chapter). The theorem
implies that the probability that a random n-bit integer is prime is at least

c · 2n−1/n

2n−1
=

c

n
.

Returning to the approach for generating primes described above, this implies
that if we set t = n2/c then the probability that a prime is not chosen in all
t iterations of the algorithm is at most

(
1− c

n

)t

=

((
1− c

n

)n/c
)n

≤
(
e−1
)n

= e−n

(using Inequality A.2), which is negligible in n.

Testing primality. The problem of efficiently determining whether a given
number p is prime has a long history. In the 1970s the first efficient probabilis-
tic algorithms for testing primality were developed, and efficient algorithms
with the following property where shown: if the given input p is a prime num-
ber, then the output is always “prime”. On the other hand, if p is a composite
number, then the output is “composite” except with probability negligible in
the length of p. Put differently, this means that if the result is “composite”
then p is definitely composite, but if the output is “prime” then it is very
likely that p is prime but it is also possible that a mistake has occurred (and
p is actually composite).3

When using a randomized primality test of this sort in the prime-generation
algorithm shown earlier, the output of the algorithm is still a random prime
of the desired length conditioned on the output being prime. An additional
source of error (besides the possibility of outputting fail) is introduced, how-
ever, and the algorithm may now output a composite number by mistake.
Since we can ensure that this happens with only negligible probability, this
remote possibility will be of no practical concern and we can safely ignore it.

3There also exist probabilistic primality tests that work in the opposite way: they always
correctly identify composite numbers but sometimes make a mistake when given a prime
as input. We will not consider algorithms of this type.

Number Theory and Cryptographic Hardness Assumptions 251

A deterministic polynomial-time algorithm for testing primality was demon-
strated in a breakthrough result in 2002. This algorithm, though running in
polynomial time, is slower than the probabilistic tests mentioned above. For
this reason, probabilistic primality tests are still used exclusively in practice
for generating large primes.

In Section 7.2.2 we describe and analyze one of the most commonly-used
probabilistic primality tests: the Miller-Rabin algorithm. This algorithm
takes two inputs: an integer N being tested for primality and a parame-
ter t that determines the error probability. The Miller-Rabin algorithm runs
in time polynomial in ‖N‖ and t, and satisfies:

THEOREM 7.33 If N is prime, then the Miller-Rabin test always out-
puts “prime”. If N is composite, then the algorithm outputs “prime” with
probability at most 2−t (and outputs the correct answer “composite” with the
remaining probability).

Putting it all together. Given the preceding discussion, we can now de-
scribe a polynomial-time prime-generation algorithm that, on input n, out-
puts a random n-bit prime except with probability negligible in n. (In the
algorithm, c is the unspecified constant from Theorem 7.32.)

ALGORITHM 7.34
Generating a random prime

Input: Length n
Output: A random n-bit prime

for i = 1 to n2/c:
p′ ← {0, 1}n−1

p := 1‖p′

run the Miller-Rabin test on input p and parameter n
if the output is “prime”, return p

return fail

Generating primes of a particular form. It is often desirable to gen-
erate a random n-bit prime p of a particular form, for example satisfying
p = 3 mod 4 or such that p = 2q + 1 where q is also prime (p of the latter
type are called strong primes). In this case, appropriate modifications of the
prime-generation algorithm shown above can be used. While these modified
algorithms work well in practice, rigorous proofs that they run in polynomial
time and fail with only negligible probability are more complex (and, in some
cases, rely on unproven number-theoretic conjectures regarding the density of
primes of a particular form). A detailed exploration of these issues is beyond

252 Introduction to Modern Cryptography

the scope of this book, and we will simply assume the existence of appropriate
prime-generation algorithms when needed.

7.2.2 * Primality Testing

We now describe the Miller-Rabin primality testing algorithm and prove
Theorem 7.33. This material is not used directly in the rest of the book.

The key to the Miller-Rabin algorithm is to find a property that distin-
guishes primes and composites. As a starting point in this direction, consider
the following observation: if N is prime then |Z∗N | = N − 1, and so for any
number a ∈ {1, . . . , N − 1} we have aN−1 = 1 mod N by Theorem 7.14. This
suggests testing whether a given integer N is prime by choosing a random

element a and checking whether aN−1 ?
= 1 mod N . (Recall that exponentia-

tion and computation of greatest common divisors can be done in polynomial
time. Choosing a random element in the range {1, . . . , N − 1} can also be
done in polynomial time. Refer to Section B.2.) If aN−1 6= 1 mod N , then
N cannot be prime. Conversely, we might hope that if N is not prime then
there is a reasonable chance that we will pick a with aN−1 6= 1 mod N , and
so by repeating this test many times we could determine whether N is prime
or not with high confidence. See Algorithm 7.35

ALGORITHM 7.35
Primality testing — first attempt

Input: Integer N and parameter t
Output: A decision as to whether N is prime or composite

for i = 1 to t:
a← {1, . . . , N − 1}
if gcd(a,N) 6= 1 return “composite”
if aN−1 6= 1 mod N return “composite”

return “prime”

If N is prime then the discussion above implies that this algorithm always
outputs “prime.” If N is composite, the algorithm outputs “composite” if it
finds (in any of the t iterations) an a ∈ Z∗N such that aN−1 6= 1 mod N . (It
also outputs “composite” if it ever finds an a 6∈ Z

∗
N ; we will take this into

account later.) We will refer to an a with this property as a witness that N
is composite, or simply a witness. We might hope that when N is composite
there are many witnesses, so that in each iteration the algorithms finds such
a witness with “high” probability. This intuition is correct provided there is
at least one witness that N is composite.

Before proving this, we need two group-theoretic lemmas.

Number Theory and Cryptographic Hardness Assumptions 253

PROPOSITION 7.36 Let G be a finite group, and H ⊆ G. Assume that
H contains the identity element of G, and that for all a, b ∈ H it holds that
ab ∈ H. Then H is a subgroup of G.

PROOF We need to verify that H satisfies all the conditions of Defini-
tion 7.9. Associativity in H is inherited automatically from G. By assump-
tion, H has an identity element and is closed under the group operation. The
only thing remaining to verify is that the inverse of every element in H also
lies in H. Let m be the order of G (here is where we use the fact that G

is finite), and consider an arbitrary element a ∈ H. Since a ∈ G, we have
1 = am = a · am−1. This means that am−1 is the inverse of a. Since a ∈ H,
the closure property of H guarantees that am−1 ∈ H as required.

LEMMA 7.37 Let H be a strict subgroup of a finite group G (i.e., H 6= G).
Then |H| ≤ |G|/2.

PROOF Let h̄ be an element of G that is not in H; since H 6= G, we

know such an h̄ exists. Consider the set H̄
def
= {h̄h | h ∈ H} (this is not a

subgroup of G). We show that (1) |H̄| = |H|, and (2) every element of H̄ lies
outside of H; i.e., the intersection of H and H̄ is empty. Since both H and H̄

are subsets of G, these imply |G| ≥ |H|+ |H̄| = 2|H|, proving the lemma.
If h̄h1 = h̄h2 then, multiplying by h̄−1 on each side, we have h1 = h2. This

shows that every distinct element h ∈ H corresponds to a distinct element
h̄h ∈ H̄, proving (1).

Assume toward a contradiction that h̄h ∈ H for some h. This means h̄h = h′

for some h′ ∈ H, and so h̄ = h′h−1. Now, h′h−1 ∈ H since H is a subgroup
and h′, h−1 ∈ H. But this means that h̄ ∈ H, in contradiction to the way h̄
was chosen. This proves (2), and completes the proof of the lemma.

The following theorem will enable us to analyze the algorithm given earlier.

THEOREM 7.38 Fix N . Say there exists a witness that N is composite.
Then at least half the elements of Z∗N are witnesses that N is composite.

PROOF Let Bad be the set of elements in Z∗N that are not witnesses;
that is, a ∈ Bad means aN−1 = 1 mod N . Clearly, 1 ∈ Bad. If a, b ∈ Bad,
then (ab)N−1 = aN−1 · bN−1 = 1 · 1 = 1 mod N and hence ab ∈ Bad. By
Lemma 7.36, we conclude that Bad is a subgroup of Z∗N . Since (by assumption)
there is at least one witness, Bad is a strict subgroup of Z

∗
N . Lemma 7.37

then shows that |Bad| ≤ |Z∗N |/2, showing that at least half the elements of
Z∗N are not in Bad (and hence are witnesses).

254 Introduction to Modern Cryptography

If there exists a witness that N is composite, then there are at least |Z∗N |/2
witnesses. The probability that we find either a witness or an element not in
Z
∗
N in any given iteration of the algorithm is thus at least

|Z∗
N |
2 +

(
(N − 1)− |Z∗N |

)

N − 1
= 1− |Z

∗
N |/2

(N − 1)
≥ 1− |Z

∗
N |/2

|Z∗N |
=

1

2
,

and so the probability that the algorithm does not find a witness in any of the
t iterations (and hence the probability that the algorithm mistakenly outputs
“prime”) is at most 2−t.

The above, unfortunately, does not give a complete solution since there are
infinitely-many composite numbers N that do not have any witnesses that
they are composite! Such N are known as Carmichael numbers ; a detailed
discussion is beyond the scope of this book.

Happily, a refinement of the above test can be shown to work for all N .
Let N − 1 = 2ru, where u is odd and r ≥ 1. (It is easy to compute r and u
given N . Also, restricting to r ≥ 1 means that N is odd, but testing primality
is easy when N is even!) The algorithm shown previously tests only whether
aN−1 = a2ru = 1 mod N . A more refined algorithm looks at the sequence of
values au, a2u, . . . , a2ru (all modulo N). Note that each term in this sequence
is the square of the preceding term; thus, if some value is equal to ±1 then
all subsequent values will be equal to 1.

Say that a ∈ Z
∗
N is a strong witness that N is composite (or simply a

strong witness) if (1) au 6= ±1 mod N and (2) a2iu 6= −1 mod N for all

i ∈ {1, . . . , r − 1}. If a is not a strong witness then a2r−1u = ±1 mod N and

aN−1 = a2ru =
(
a2r−1u

)2

= 1 mod N,

and so a is not a witness that N is composite, either. Put differently, if a is a
witness then it is also a strong witness and so there can only possibly be more
strong witnesses than witnesses. Note also that when an element a is not
a strong witness then the sequence (au, a2u, . . . , a2ru) (all taken modulo N)
takes one of the following forms:

(±1, 1, . . . , 1) or (?, . . . , ?,−1, 1, . . . , 1) ,

where ? denotes an arbitrary term.

We first show that if N is prime then there does not exist a strong witness
that N is composite. In doing so, we rely on the following easy lemma (which
is a special case of Proposition 11.1 proved later):

LEMMA 7.39 Say x is a square root of 1 modulo N if x2 = 1 mod N . If
N is an odd prime then the only square roots of 1 modulo N are [±1 mod N].

Number Theory and Cryptographic Hardness Assumptions 255

PROOF Clearly (±1)2 = 1 mod N . Now, say N is prime and x2 = 1 mod
N with x ∈ {1, . . . , N − 1}. Then 0 = x2 − 1 = (x + 1)(x− 1) mod N ,
implying that N | (x + 1) or N | (x − 1) by Proposition 7.3. However, these
can only possibly occur if x = [±1 mod N].

Now, say N is prime and fix arbitrary a ∈ Z∗N . Let i be the minimum (non-

negative) value for which a2iu = 1 mod N ; since a2ru = aN−1 = 1 mod N we
know that some such i ≤ r exists. If i = 0 then au = 1 mod N and a is not a
strong witness. Otherwise,

(
a2i−1u

)2

= a2iu = 1 mod N

and a2i−1u is a square root of 1. If N is prime, then the only square roots of
1 are ±1; by choice of i, however, a2i−1u 6= 1 mod N . So a2i−1u = −1 mod N ,
and a is not a strong witness. We conclude that when N is prime there is no
strong witness for N .

A composite integer N is a prime power if N = p̂e for some prime p̂ and
integer e ≥ 2. We now show that every composite N that is not a prime
power has “many” strong witnesses.

THEOREM 7.40 Let N be an odd, composite number that is not a prime
power. Then at least half the elements of Z

∗
N are strong witnesses that N is

composite.

PROOF Let Bad ⊆ Z∗N denote the set of elements that are not strong
witnesses. We define a set Bad and show that (1) Bad is a subset of Bad,
and (2) Bad is a strict subgroup of Z∗N . Together, these imply that |Bad| ≤
|Z∗N |/2 as in Theorem 7.38, and so at least half the elements of Z∗N are strong
witnesses. (We stress that we do not claim that Bad is a subgroup.)

Note first that −1 ∈ Bad since (−1)u = −1 mod N (recall u is odd). Let
i ∈ {0, . . . , r−1} be the largest integer for which there exists an a ∈ Bad with

a2iu = −1 mod N ; alternately, i is the largest integer for which there exists
an a ∈ Bad with

(au, a2u, . . . , a2ru) = (?, . . . , ?,−1︸ ︷︷ ︸
i + 1 terms

, 1, . . . , 1).

Since −1 ∈ Bad and (−1)2
0u = −1 mod N , such i is well-defined.

Define

Bad
def
= {a | a2iu = ±1 mod N}.

We now prove what we claimed above.

256 Introduction to Modern Cryptography

CLAIM 7.41 Bad ⊆ Bad.

Let a ∈ Bad. Then either au = 1 mod N or a2ju = −1 mod N for some
j ∈ {0, . . . , r− 1}. In the first case, a2iu = (au)2

i

= 1 mod N and so a ∈ Bad.
In the second case, we have j ≤ i by choice of i. If j = i then clearly a ∈ Bad.
If j < i then a2iu = (a2ju)2

i−j

= 1 mod N and a ∈ Bad. Since a was arbitrary,
this shows Bad ⊆ Bad.

CLAIM 7.42 Bad is a subgroup of Z∗N .

Clearly, 1 ∈ Bad. Furthermore, if a, b ∈ Bad then

(ab)2
iu = a2iub2iu = (±1)(±1) = ±1 mod N.

By Lemma 7.36, Bad is a subgroup.

CLAIM 7.43 Bad is a strict subgroup of Z∗N .

If N is a composite integer that is not a prime power, then N can be written
as N = N1N2 with gcd(N1, N2) = 1. Appealing to the Chinese remainder
theorem, let the notation a ↔ (a1, a2) denote the representation of a ∈ Z∗N
as an element of Z∗N1

× Z∗N2
; that is, a1 = [a mod N1] and a2 = [a mod N2].

Take a ∈ Bad such that a2iu = −1 mod N (such an a must exist by the way
we defined i), and say a↔ (a1, a2). We know that

(a2iu
1 , a2iu

2) = (a1, a2)
2iu ↔ a2iu = −1↔ (−1,−1),

and so

a2iu
1 = −1 mod N1 and a2iu

2 = −1 mod N2.

Consider the element b that corresponds to (a1, 1). Then

b2iu ↔ (a1, 1)2
iu = (a2iu

1 , 1) = (−1, 1) 6↔ ±1.

That is, b2iu 6= ±1 mod N and so we have found an element b 6∈ Bad.

An integer N is a perfect power if N = N̂e for some integers N̂ and e > 1
(here it is not required for N̂ to be prime). Note that any prime power is also
a perfect power. We can now describe a primality testing algorithm in full.

Exercises 7.9 and 7.10 ask you to show that testing whether N is a perfect
power, and testing whether a particular a is a strong witness, can be done in
polynomial time. Given these results, the algorithm clearly runs in time poly-
nomial in ‖N‖ and t. We can now easily complete the proof of Theorem 7.33.

Number Theory and Cryptographic Hardness Assumptions 257

ALGORITHM 7.44
The Miller-Rabin primality test

Input: Integer N and parameter t
Output: A decision as to whether N is prime or composite

if N is even, return “composite”
if N is a perfect power, return “composite”
compute r ≥ 1 and u odd such that N − 1 = 2ru
for j = 1 to t:

a← {1, . . . , N − 1}
if gcd(a,N) 6= 1 return “composite”
if a is a strong witness return “composite”

return “prime”

PROOF If N is prime, then there are no strong witnesses for N and so
the Miller-Rabin algorithm always outputs “prime”. If N is composite there
are two cases: if N is a prime power then the algorithm always outputs “com-
posite”. Otherwise, we invoke Theorem 7.40 and see that, in any iteration,
the probability of finding either a strong witness or an element not in Z∗N is
at least

|Z∗N |/2 +
(
(N − 1)− |Z∗N |

)

N − 1
= 1− |Z

∗
N |/2

N − 1
≥ 1− |Z

∗
N |/2

|Z∗N |
=

1

2
,

and so the probability that the algorithm does not find a witness in any of
the t iterations (and hence outputs “prime”) is at most 2−t.

7.2.3 The Factoring Assumption

Now that we have shown how to generate random primes, we formally define
the factoring assumption. Let GenModulus be a polynomial-time algorithm
that, on input 1n, outputs (N, p, q) where N = pq, and p and q are n-bit
primes except with probability negligible in n. (A natural way to construct
such an algorithm is to generate two random primes p and q of length n, as
discussed in Section 7.2.1, and then set N to be their product.) Then consider
the following experiment for a given algorithm A and parameter n:

The factoring experiment FactorA,GenModulus(n)

1. Run GenModulus(1n) to obtain (N, p, q)

2. A is given N , and outputs p′, q′ > 1.

3. The output of the experiment is defined to be 1 if p′ · q′ = N ,
and 0 otherwise.

Of course, except with negligible probability, if the output of the experiment
is 1 then {p, q} = {p′, q′}.

258 Introduction to Modern Cryptography

DEFINITION 7.45 We say that factoring is hard relative to GenModulus

if for all probabilistic, polynomial-time algorithms A there exists a negligible
function negl such that

Pr[FactorA,GenModulus(n) = 1] ≤ negl(n).

The factoring assumption is simply the assumption that there exists a
GenModulus relative to which factoring is hard.

7.2.4 The RSA Assumption

The factoring problem has been studied for hundreds of years without an
efficient algorithm being found, and so it is very plausible that the problem
truly is hard. Unfortunately, although the factoring assumption does yield a
one-way function (as we will see in Section 7.4.1), the factoring assumption in
the form we have described it does not seem very useful for practical crypto-
graphic constructions.4 This has motivated a search for other problems whose
difficulty is related to the hardness of factoring. The best known of these is a
problem introduced by Rivest, Shamir, and Adleman and now known as the
RSA problem.

Z∗N is a group of order φ(N) = (p − 1)(q − 1). If the factorization of N
is known, then it is easy to compute the group order φ(N) and so compu-
tations modulo N can potentially be simplified by “working in the exponent
modulo φ(N)” (cf. Corollary 7.15). On the other hand, if the factorization of
N is unknown then it is difficult to compute φ(N) (in fact, computing φ(N)
is as hard as factoring N) and so “working in the exponent modulo φ(N)” is
not an available option, at least not in the obvious way. The RSA problem
exploits this asymmetry: the RSA problem is easy to solve if φ(N) is known,
but appears hard to solve without knowledge of φ(N). In this section we
focus on the hardness of solving the RSA problem relative to a modulus N
of unknown factorization; the fact that the RSA problem becomes easy when
the factors of N are known will prove extremely useful for the cryptographic
applications we will see later in the book.

Given a modulus N and an integer e > 0 relatively prime to φ(N), Corol-
lary 7.22 shows that exponentiation to the eth power modulo N is a permu-
tation. It therefore makes sense to define y1/e mod N (for any y ∈ Z∗N) as the

unique element of Z∗N for which
(
y1/e

)e
= y mod N .

The RSA problem can now be described informally as follows: given N ,
an integer e > 0 that is relatively prime to φ(N), and an element y ∈ Z∗N ,
compute y1/e mod N ; that is, given N, e, y find x such that xe = y mod N .
Formally, let GenRSA be a polynomial-time algorithm that, on input 1n, out-
puts a modulus N that is the product of two n-bit primes, as well as an integer

4In Section 11.2.2, however, we will see a very useful problem whose hardness can be shown
to be equivalent to that of factoring.

Number Theory and Cryptographic Hardness Assumptions 259

e > 0 with gcd(e, φ(N)) = 1 and an integer d satisfying ed = 1 mod φ(N).
(Note that such a d exists since e is invertible modulo φ(N).) The algorithm
may fail with probability negligible in n. Consider the following experiment
for a given algorithm A and parameter n:

The RSA experiment RSA-invA,GenRSA(n)

1. Run GenRSA(1n) to obtain (N, e, d).

2. Choose y ← Z∗N .

3. A is given N, e, y, and outputs x ∈ Z∗N .

4. The output of the experiment is defined to be 1 if xe = y mod N ,
and 0 otherwise.

DEFINITION 7.46 We say the RSA problem is hard relative to GenRSA

if for all probabilistic, polynomial-time algorithms A there exists a negligible
function negl such that

Pr[RSA-invA,GenRSA(n) = 1] ≤ negl(n).

The RSA assumption is simply the assumption that there exists an GenRSA

relative to which the RSA problem is hard.
A suitable algorithm GenRSA can be constructed based on any algorithm

GenModulus that generates a composite modulus along with its factorization.
A high-level outline follows, where the only thing left unspecified is how ex-
actly e is chosen. There are in fact a number of different ways e can be chosen
(with the RSA problem still believed to be hard); some specific methods for
choosing e are discussed in Section 10.4.1.

ALGORITHM 7.47
GenRSA — high-level outline

Input: Security parameter 1n

Output: N , e, d as described in the text

(N, p, q)← GenModulus(1n)
φ(N) := (p− 1)(q − 1)
find e such that gcd(e, φ(N)) = 1
compute d := [e−1 mod φ(N)]
return N, e, d

When GenRSA is constructed as above, for which algorithms GenModulus

is the RSA problem likely to be hard? Note that if the factorization of N is
known, the RSA problem is easy to solve: first compute φ(N); then compute
d = [e−1 mod φ(N)]; finally compute the solution [yd mod N]. It follows from
Corollary 7.22 that this gives the correct answer.

260 Introduction to Modern Cryptography

For the RSA problem to be hard, then, it must be infeasible to factor N
output by GenModulus. (We stress that this is a necessary, but not a sufficient,
condition.) We conclude that if the RSA problem is hard relative to GenRSA

constructed as above, then the factoring problem must be hard relative to
GenModulus. Another way of saying this is that the RSA problem cannot be
more difficult than factoring.

What about the converse? When N is a product of two primes, the factor-
ization of N can be computed efficiently from φ(N) (see Exercise 7.11) and
so the problems of factoring N and computing φ(N) are equally hard. In fact,
one can show more: given N , e, and d with ed = 1 mod φ(N) it is possible
to compute the factorization of N (see Exercise 7.12 for a simple case of this
result). It is possible, however, that there are other ways of solving the RSA
problem that do not involve explicit computation of φ(N) or d, and so we
cannot conclude that the RSA problem is as hard as factoring.

7.3 Assumptions in Cyclic Groups

In this section we introduce a class of cryptographic hardness assumptions
in cyclic groups. We first discuss the necessary background.

7.3.1 Cyclic Groups and Generators

Let G be a finite group of order m. For arbitrary g ∈ G, consider the set

〈g〉 def
=
{
g0, g1, . . . ,

}
.

By Theorem 7.14, we have gm = 1. Let i ≤ m be the smallest positive integer
for which gi = 1. Then the above sequence repeats after i terms (i.e., gi = g0,
gi+1 = g1, etc.), and so

〈g〉 =
{
g0, . . . , gi−1

}
.

We see that 〈g〉 contains at most i elements. In fact, it contains exactly i
elements since if gj = gk with 0 ≤ j < k < i then gk−j = 1 and 0 < k− j < i,
contradicting our choice of i.

It is not too hard to verify that 〈g〉 is a subgroup of G for any g (see
Exercise 7.3); 〈g〉 is called the subgroup generated by g. If the order of the
subgroup 〈g〉 is i, then i is called the order of g; that is:

DEFINITION 7.48 Let G be a finite group and g ∈ G. The order of g is
the smallest positive integer i with gi = 1.

Number Theory and Cryptographic Hardness Assumptions 261

The following is a useful analogue of Corollary 7.15 (the proof is identical):

PROPOSITION 7.49 Let G be a finite group, and g ∈ G an element of
order i. Then for any any integer x, we have gx = g[x mod i].

We can actually prove something stronger.

PROPOSITION 7.50 Let G be a finite group, and g ∈ G an element of
order i. Then gx = gy if and only if x = y mod i.

PROOF If x = y mod i then [x mod i] = [y mod i] and the previous propo-
sition says that

gx = g[x mod i] = g[y mod i] = gy.

For the more interesting direction, say gx = gy. Let x′ = [x mod i] and
y′ = [y mod i]; the previous proposition tells us that gx′

= gy′

or, equivalently,
gx′

(gy′

)−1 = 1. If x′ 6= y′, we may assume without loss of generality that
x′ > y′; since both x′ and y′ are smaller than i, the difference x′ − y′ is then
a non-zero integer smaller than i. But then

1 = gx′ ·
(
gy′
)−1

= gx′−y′

,

contradicting the fact that i is the order of g.

The identity element of any group G has order 1, generates the group
〈1〉 = {1}, and is the only element of order 1. At the other extreme, if
there exists an element g ∈ G that has order m (where m is the order of
G), then 〈g〉 = G. In this case, we call G a cyclic group and say that g is
a generator of G. (Note that a cyclic group will have multiple generators,
and so we cannot speak of the generator.) If g is a generator of G then, by
definition, every element h ∈ G is equal to gx for some x ∈ {0, . . . , m− 1}, a
point we will return to in the next section.

Different elements of the same group G may have different orders. We can,
however, place some restrictions on what these possible orders might be.

PROPOSITION 7.51 Let G be a finite group of order m, and say g ∈ G

has order i. Then i |m.

PROOF By Theorem 7.14 we know that gm = 1. Since g has order i,
we have gm = g[m mod i] by Proposition 7.49. If i does not divide m, then

i′
def
= [m mod i] is a positive integer smaller than i for which gi′ = 1. Since i

is the order of g, this is impossible.

262 Introduction to Modern Cryptography

The next corollary illustrates the power of this result:

COROLLARY 7.52 If G is a group of prime order p, then G is cyclic.
Furthermore, all elements of G except the identity are generators of G.

PROOF By Proposition 7.51, the only possible orders of elements in G

are 1 and p. Only the identity has order 1, and so all other elements have
order p and generate G.

Groups of prime order form one class of cyclic groups. The additive group
ZN , for N > 1, gives another example of a cyclic group (the element 1 is
always a generator). The next theorem gives an important additional class of
cyclic groups; a proof is outside our scope, but can be found in any standard
abstract algebra text.

THEOREM 7.53 If p is prime then Z∗p is cyclic.

For p > 3 prime, Z∗p does not have prime order and so the above does not
follow from the preceding corollary.

Some examples will help illustrate the preceding discussion.

Example 7.54

Consider the group Z15. As we have noted, Z15 is cyclic and the element
‘1’ is a generator since 15 · 1 = 0 mod 15 and i′ · 1 = i′ 6= 0 mod 15 for any
0 < i′ < 15.

Z15 has other generators. E.g., 〈2〉 = {0, 2, 4, . . . , 14, 1, 3, 5, . . . , 13} and
so 2 is also a generator.

Not every element generates Z15. For example, the element ‘3’ has order 5
since 5 · 3 = 0 mod 15, and so 3 does not generate Z15. The subgroup 〈3〉
consists of the 5 elements {0, 3, 6, 9, 12}, and this is indeed a subgroup under
addition modulo 15. The element ‘10’ has order 3 since 3 · 10 = 0 mod 15,
and the subgroup 〈10〉 consists of the 3 elements {0, 10, 20}. Note that 5 and
3 both divide |Z15| = 15 as required by Proposition 7.51. ♦

Example 7.55

Consider the group Z∗15 of order (5− 1)(3− 1) = 8. We have 〈2〉 = {1, 2, 4, 8},
and so the order of 2 is 4. As required by Proposition 7.51, 4 divides 8. ♦

Example 7.56

Consider the group Zp of prime order p. We know this group is cyclic, but
Corollary 7.52 tells us more: namely, that every element except 0 is a gener-

Number Theory and Cryptographic Hardness Assumptions 263

ator. Indeed, for any element g ∈ {1, . . . , p − 1} and integer i > 0 we have
ig = 0 mod p iff p | ig. But then Proposition 7.3 says that either p | g or p | i.
The former cannot occur (since g < p), and the smallest positive integer for
which the latter can occur is i = p. We have thus shown that every non-zero
element g has order p (and so generates Zp), in accordance with Corollary 7.52.

♦

Example 7.57

Consider the group Z∗7, which is cyclic by Theorem 7.53. We have 〈2〉 =
{1, 2, 4}, and so 2 is not a generator. However,

〈3〉 = {1, 3, 2, 6, 4, 5}= Z
∗
7,

and so 3 is a generator of Z∗7. ♦

The following shows that all cyclic groups of the same order are, in some
sense, the same.

Example 7.58

Let G be a cyclic group of order n, and let g be a generator of G. Then the
mapping f : Zn → G given by f(a) = ga is an isomorphism between Zn and
G. Indeed, for a, a′ ∈ Zn we have

f(a + a′) = g[a+a′ mod n] = ga+a′

= ga · ga′

= f(a) · f(a′).

Bijectivity of f can be proved using the fact that n is the order of g. ♦

We stress that while the above is true in a group-theoretic sense, it is not true
in a computational sense. That is, although (for example) Z∗p, for p prime, is
isomorphic to the group Zp−1, the computational complexity of operations in
these two groups may be very different.

7.3.2 The Discrete Logarithm and Diffie-Hellman Assump-
tions

We now introduce a number of computational problems that can be defined
for any class of cyclic groups. We will keep the discussion in this section
abstract, and consider specific examples of groups in which these problems
are believed to be hard in Sections 7.3.3 and 7.3.4.

If G is a cyclic group of order q, then there exists a generator g ∈ G such
that {g0, g1, . . ., gq−1} = G. Equivalently, for every h ∈ G there is a unique
x ∈ Zq such that gx = h. By way of notation, when the underlying group G

is understood from the context we call this x the discrete logarithm of h with

264 Introduction to Modern Cryptography

respect to g and write x = logg h.5 Note that if gx′

= h for some arbitrary
integer x′, then logg h = [x′ mod q].

Discrete logarithms obey many of the same rules as “standard” logarithms.
For example, logg 1 = 0 (where ‘1’ is the identity of G) and logg(h1 · h2) =
[(logg h1 + logg h2) mod q].

The discrete logarithm problem in a cyclic group G with given generator g
is to compute logg h given a random element h ∈ G as input. Formally, let
G be a polynomial-time algorithm that, on input 1n, outputs a (description
of a) cyclic group G, its order q (with ‖q‖ = n), and a generator g ∈ G.
We also require that the group operation in G can be computed efficiently
(namely, in time polynomial in n). Consider the following experiment for a
given algorithm A and parameter n:

The discrete logarithm experiment DLogA,G(n)

1. Run G(1n) to obtain output (G, q, g), where G is a cyclic
group of order q (with ‖q‖ = n) and g is a generator of G.

2. Choose h ← G. (Note that this can be done by choosing
x′ ← Zq and setting h := gx′

.)

3. A is given G, q, g, h, and outputs x ∈ Zq.

4. The output of the experiment is defined to be 1 if gx = h,
and 0 otherwise.

DEFINITION 7.59 We say the discrete logarithm problem is hard rela-

tive to G if for all probabilistic, polynomial-time algorithms A there exists a
negligible function negl such that

Pr[DLogA,G(n) = 1] ≤ negl(n).

The discrete logarithm assumption is simply the assumption that there
exists a G for which the discrete logarithm problem is hard.

Related to the problem of computing discrete logarithms are the so-called
Diffie-Hellman problems. There are two important variants: the compu-
tational Diffie-Hellman (CDH) problem, and the decisional Diffie-Hellman
(DDH) problem. Although the CDH problem is not used in the remainder
of the book, it will be instructive to introduce it, at least informally, before
moving on to the DDH problem.

Fix a cyclic group G and generator g ∈ G. Given two group elements h1

and h2, define DHg(h1, h2)
def
= glogg h1·logg h2 . That is, if h1 = gx1 and h2 = gx2

then
DHg(h1, h2) = gx1·x2 = hx2

1 = hx1
2 .

5Logarithms in this case are called “discrete” since they take values in a finite range, as
opposed to “standard” logarithms from calculus whose values range over an infinite set.

Number Theory and Cryptographic Hardness Assumptions 265

The CDH problem is to compute DHg(h1, h2) given randomly-chosen h1 and h2.
Note that if the discrete logarithm problem in G is easy, then the CDH

problem is too: given h1 and h2, first compute x1 = logg h1 and then output
the answer hx1

2 . In contrast, it is not clear whether hardness of the discrete
logarithm problem implies that the CDH problem is necessarily hard as well.

The DDH problem, roughly speaking, is to distinguish DHg(h1, h2) from a
random group element; that is, given randomly-chosen h1, h2 and a candidate
solution y, to decide whether y = DHg(h1, h2) or whether y was chosen at
random from G. Formally, let G be as above; that is, G is a polynomial-time
algorithm that, on input 1n, outputs a (description of a) cyclic group G, its
order q (with ‖q‖ = n), and a generator g, where the group operation in G

can be computed efficiently (namely, in time polynomial in n). Then:

DEFINITION 7.60 We say the DDH problem is hard relative to G if for all
probabilistic, polynomial-time algorithms A there exists a negligible function
negl such that

∣∣∣Pr[A(G, q, g, gx, gy, gz) = 1]− Pr[A(G, q, g, gx, gy, gxy) = 1]
∣∣∣ ≤ negl(n),

where in each case the probabilities are taken over the experiment in which
G(1n) outputs (G, q, g), and then random x, y, z ∈ Zq are chosen.

Note that when z is chosen at random from Zq , independent of anything
else, the element gz is uniformly distributed in G.

We have already seen that if the discrete logarithm problem is easy for some
group G, then the CDH problem is too. Similarly, if the CDH problem is easy
in G then so is the DDH problem; you are asked to show this in Exercises 7.13
and 7.14. The converse, however, does not appear to be true, and there are
examples of groups in which the discrete logarithm and CDH problems are
believed to be hard even though the DDH problem is easy.

Using Prime-Order Groups

There are a number of classes of cyclic groups for which the discrete loga-
rithm and Diffie-Hellman problems are believed to be hard. Although cyclic
groups of non-prime order are still widely used for certain cryptographic ap-
plications, there is a general preference for using cyclic groups of prime order.
There are a number of reasons for this, as we now explain.

One reason for preferring groups of prime order is because, in a certain
sense, the discrete logarithm problem is hardest in such groups. Specifically,
the Pohlig-Hellman algorithm shown in Chapter 8 reduces an instance of the
discrete logarithm problem in a group of order q = q1 · q2 to two instances
of the discrete logarithm problem in groups of order q1 and q2, respectively.
(This assumes that the factorization of q is known, but if q has small prime
factors then finding some non-trivial factorization of q will be easy.) We stress

266 Introduction to Modern Cryptography

that this does not mean that the discrete logarithm problem is easy (i.e., can
be solved in polynomial time) in non-prime order groups; it merely means
that the problem becomes easier. In any case, this explains why prime order
groups are desirable.

A second motivation for using prime order groups is because finding a gen-
erator in such groups is trivial, as is testing whether a given element is a
generator. This follows from Corollary 7.52, which says that every element
of a prime order group (except the identity) is a generator. Even though it is
possible to find a generator of an arbitrary cyclic group in probabilistic poly-
nomial time (see Section B.3), using a prime-order group can thus potentially
yield a more efficient algorithm G (which, recall, needs to compute a generator
g of the group G that it outputs).

A final reason for working with prime-order groups applies in situations
when the decisional Diffie-Hellman problem should be hard. Fixing a group
G with generator g, the DDH problem boils down to distinguishing between
tuples of the form (h1, h2, DHg(h1, h2)), for random h1, h2, and tuples of the
form (h1, h2, y), for random h1, h2, y. A necessary condition for the DDH
problem to be hard is that DHg(h1, h2) by itself should be indistinguishable
from a random group element. It seems that it would be best if DHg(h1, h2)
actually were a random group element, when h1 and h2 are chosen at random.6

We show that when the group order q is prime, this is (almost) true.

PROPOSITION 7.61 Let G be a group of prime order q with generator
g. If x1 and x2 are chosen uniformly at random from Zq, then

Pr [DHg(g
x1 , gx2) = 1] = 1−

(
1− 1

q

)2

=
2

q
− 1

q2
,

and for any other value y ∈ G, y 6= 1:

Pr[DHg(g
x1 , gx2) = y] =

1

q
·
(

1− 1

q

)
=

1

q
− 1

q2
.

PROOF We use the fact that DHg(g
x1 , gx2) = g[x1·x2 mod q]. Since q is

prime, [x1 · x2 mod q] = 0 if and only if either x1 = 0 or x2 = 0. Because x1

and x2 are uniformly distributed in Zq ,

Pr[DHg(g
x1 , gx2) = 1] = Pr[x1 = 0 or x2 = 0]

= 1− Pr[x1 6= 0] · Pr[x2 6= 0] = 1−
(

1− 1

q

)2

.

6It is important to keep in mind the distinction between the distribution of DHg(h1, h2), and
the distribution of DHg(h1, h2) conditioned on the given values of h1, h2. Since DHg(h1, h2)
is a deterministic function of h1 and h2, the latter distribution puts probability 1 on the
correct answer DHg(h1, h2) and is thus far from uniform.

Number Theory and Cryptographic Hardness Assumptions 267

Fix any y ∈ G, y 6= 1, and let x = logg y 6= 0. Note that DHg(g
x1 , gx2) = y

iff x1x2 = x mod q. Since q is prime, all non-zero elements of Zq have a
multiplicative inverse modulo q, and so x1x2 = x mod q iff x2 is non-zero and
x2 = x · (x1)

−1 mod q. So:

Pr[DHg(g
x1 , gx2) = y] = Pr[x1x2 = x mod q]

= Pr
[
x2 = x · (x1)

−1 mod q | x1 6= 0
]
· Pr[x1 6= 0]

=
1

q
·
(

1− 1

q

)
,

as claimed.

A uniformly-distributed element y′ has Pr[y′ = y] = 1
q for all y ∈ G (i.e., in-

cluding when y = 1). When ‖q‖ = n (and so q = Θ(2n)) the above proposition
says that for uniformly-distributed h1 and h2

Pr[DHg(h1, h2) = y] =
1

q
± negl(n).

In this sense, DHg(h1, h2) is close to uniformly distributed in G. The above
notwithstanding, we stress that using a group of prime order is neither nec-
essary nor sufficient for the DDH problem to be hard. Instead, this should
merely be viewed as a heuristic reason why prime-order groups are often used.

7.3.3 Working in (Subgroups of) Z∗p

Groups of the form Z∗p, for p prime, give one class of cyclic groups in which
the discrete logarithm problem is believed to be hard. Concretely, let G1 be
an algorithm that, on input 1n, chooses a random n-bit prime p, and outputs
p and the group order q = p−1 along with a generator g of Z

∗
p. (Section 7.2.1

discusses efficient algorithms for choosing a random prime, and Section B.3
shows how to efficiently find a generator of Z∗p.) Then it is conjectured that
the discrete logarithm problem is hard relative to G1.

Note, however, that the cyclic group Z∗p (for p > 2 prime) does not have
prime order. (The preference for groups of prime order was discussed in the
previous section.) More problematic, the decisional Diffie-Hellman problem
is simply not hard in such groups (see Exercise 11.8 of Chapter 11), and they
are therefore unacceptable for the cryptographic applications we will explore
in Chapters 9 and 10.

Thankfully, these problems can be addressed relatively easily by using an
appropriate subgroup of Z∗p. Say an element y ∈ Z∗p is a quadratic residue
modulo p if there exists an x ∈ Z∗p such that x2 = y mod p. It is not hard
to show that the set of quadratic residues modulo p forms a subgroup of Z∗p.
Moreover, when p is prime it can be shown that squaring modulo p is a two-
to-one function, implying that exactly half the elements of Z∗p are quadratic

268 Introduction to Modern Cryptography

residues. See Section 11.1.1 for a proof of this fact as well as further discussion
of quadratic residues modulo a prime.

If p is a strong prime — i.e., p = 2q + 1 with q prime — then the subgroup
of quadratic residues modulo p has exactly (p− 1)/2 = q elements. Since q is
prime, Corollary 7.52 shows that this subgroup is cyclic and furthermore all
elements of this subgroup (except the identity) are generators. This class of
groups is very useful for cryptography since the DDH problem is assumed to
be hard for such groups.

For completeness, we sketch an appropriate polynomial-time algorithm G2

that follows easily from the above discussion.

ALGORITHM 7.62
A group generation algorithm G2

Input: Security parameter 1n

Output: Cyclic group G, its order q, and a generator g

generate a random (n + 1)-bit prime p

with q
def
= (p− 1)/2 also prime

choose arbitrary x ∈ Z
∗
p with x 6= ±1 mod p

g := x2 mod p
return p, q, g

Generation of p can be done as described in Section 7.2.1. Note that g
is computed in such a way that it is guaranteed to be a quadratic residue
modulo p with g 6= 1, and so g will be a generator of the subgroup of quadratic
residues modulo p.

7.3.4 * Elliptic Curve Groups

The groups we have seen thus far have all been based on modular arithmetic.
Another interesting class of groups is those consisting of points on elliptic
curves. Such groups are used widely in cryptographic applications since, in
contrast to Z

∗
p, there is currently no known sub-exponential time algorithm for

solving the discrete logarithm problem in elliptic-curve groups. (See Chapter 8
for further discussion.) Although elliptic-curve groups are very important in
practical applications of cryptography, our treatment of such groups in this
book is (unfortunately) scant for the following reasons:

1. The mathematics required for a deeper understanding of elliptic-curve
groups is more than we were willing to assume on the part of the reader.
Our treatment of elliptic curves is therefore rather minimal and sacri-
fices generality in favor of simplicity. The reader interested in further
exploring this topic is advised to consult the references at the end of the
chapter.

Number Theory and Cryptographic Hardness Assumptions 269

2. In any case, most cryptographic schemes based on elliptic-curve groups
(and all the schemes in this book) can be analyzed and understood by
treating the underlying group in a completely generic fashion, without
reference to any particular group used to instantiate the scheme. For
example, we will see in later chapters cryptographic schemes that can
be based on arbitrary cyclic groups; these schemes are secure as long
as some appropriate computational problem in the underlying group is
‘hard’. From the perspective of provable security, then, it makes no
difference how the group is actually instantiated (as long as the relevant
computational problem is believed to be hard in the group).

Of course, when it comes time to implement the scheme in practice,
the concrete choice of which underlying group to use is of fundamental
importance.

Let p ≥ 5 be a prime, and let Zp
def
= {0, . . . , p− 1}.7 Consider an equation

E in the variables x and y of the form:

y2 = x3 + Ax + B mod p, (7.1)

where A, B ∈ Zp are constants with 4A3 + 27B2 6= 0 mod p (this latter con-
dition ensures that the equation x3 + Ax + B = 0 mod p has no repeated
roots). Let Ê(Zp) denote the set of pairs (x, y) ∈ Zp×Zp satisfying the above
equation; i.e.,

Ê(Zp)
def
=
{
(x, y) | x, y ∈ Zp and y2 = x3 + Ax + B mod p

}
.

Define E(Zp)
def
= Ê(Zp) ∪ {O}, where O is a special value whose purpose we

will discuss shortly. The elements of the set E(Zp) are called the points on
the elliptic curve E defined by Equation 7.1, and O is called the “point at
infinity.”

Example 7.63
Recall that an element y ∈ Z∗p is a quadratic residue modulo p if there exists
an x ∈ Z∗p such that x2 = y mod p ; we say x is a square root of y in this
case. Furthermore, when p > 2 is prime every quadratic residue modulo p has
exactly two square roots. (See Section 11.1.1.)

Let f(x)
def
= x3 + 3x + 3 and consider the curve E : y2 = f(x) mod 7. Each

value of x for which f(x) is a quadratic residue modulo 7 yields two points
on the curve; a value of x for which f(x) = 0 mod 7 gives one point on the
curve. This allows us to determine the points on the curve:

7The theory can be adapted to deal with the case of p = 2 or 3 but this introduces
additional complications. For the advanced reader, we mention that elliptic curves can in
fact be defined over arbitrary (finite or infinite) fields, and the discussion here carries over
for fields of characteristic not equal to 2 or 3.

270 Introduction to Modern Cryptography

• f(0) = 3 mod 7, a quadratic non-residue modulo 7.

• f(1) = 0 mod 7, so we obtain the point (0, 0) ∈ E(Z7).

• f(2) = 3 mod 7, a quadratic non-residue modulo 7.

• f(3) = 4 mod 7, a quadratic residue modulo 7 with square roots 2 and
5. This yields the points (3, 2), (3, 5) ∈ E(Z7).

• f(4) = 2 mod 7, a quadratic residue modulo 7 with square roots 3 and
4. This yields the points (4, 3), (4, 4) ∈ E(Z7).

• f(5) = 3 mod 7, a quadratic non-residue modulo 7.

• f(6) = 6 mod 7, a quadratic non-residue modulo 7.

Including the point at infinity, there are 6 points in E(Z7). ♦

A useful way to conceptualize E(Zp) is to look at the graph of Equation 7.1
over the reals (i.e., the equation y2 = x3+Ax+B without reduction modulo p)
as in Figure ??. We stress that this figure does not correspond exactly to
E(Zp) because, for example, E(Zp) has a finite number of points (Zp is, after
all, a finite set) while there are an infinite number of solutions to the same
equation if we allow x and y to range over all real numbers. Nevertheless, the
picture provides useful intuition. In such a figure, one can think of the “point
at infinity” O as sitting at the top of the y-axis and lying on every vertical
line.

It is possible to show that every line intersecting the curve E intersects the
curve in exactly 3 points, where (1) a point P is counted twice if the line is
tangent to the curve at P , and (2) the point at infinity is also counted (when
the line is vertical). This fact is used to define8 a binary operation, called
‘addition’ and denoted by ‘+,’ on points of E(Zp) in the following way:

• The point O is defined as an (additive) identity; that is, for all P ∈
E(Zp) we define P +O = O + P = P .

• If P1, P2, P3 are co-linear points on E then we require that

P1 + P2 + P3 = O. (7.2)

(This disregards the ordering of P1, P2, P3, implying that addition is
commutative for all points, and associative for co-linear points.)

8Our approach is informal, and in particular we do not justify that it leads to a consistent
definition.

Number Theory and Cryptographic Hardness Assumptions 271

Rules for negation and addition of arbitrary points are consequences of these
rules.

Negation. Given a point P , the negation −P is (by definition of negation)
that point for which P +(−P) = O. If P = O then −P = O. Otherwise, since
P + (−P) +O = (P + (−P)) +O = O+O = O we see, using Equation (7.2),
that −P corresponds to the third point on the line passing through P and O
or, equivalently, the vertical line passing through P . As can be seen, e.g., by
looking at Figure ??, this means that −P is simply the reflection of P in the
x-axis; that is, if P = (x, y) then −P = −(x, y) = (x,−y).

Addition of points. For two arbitrary points P1, P2 6= O on E, we can
evaluate their sum P1+P2 by drawing the line through P1, P2 (if P1 = P2 then
draw the line tangent to E at P1) and finding the third point of intersection P3

of this line with E; note that it may be that P3 = O. Equation (7.2) implies
that P1 +P2 +P3 = O, or P1 +P2 = −P3. If P3 = O then P1 +P2 = −O = O.
Otherwise, if the third point of intersection of the line through P1 and P2 is
the point P3 = (x, y) 6= O then

P1 + P2 = −P3 = (x,−y).

Graphically, P1 + P2 can be found by finding the third point of intersection
of E and the line through P1 and P2, and then reflecting in the x-axis.

It is straightforward, but tedious, to work out the addition law concretely.
Let P1 = (x1, y1) and P2 = (x2, y2) be two points in E(Zp), with P1, P2 6= O
and E as in Equation (7.1). To keep matters simple, suppose x1 6= x2 (the
extension to the case x1 = x2 is still straightforward but even more tedious).
The slope of the line through these points is

m =
y2 − y1

x2 − x1
mod p ;

our assumption that x1 6= x2 means that this does not involve a division by 0.
The line passing through P1 and P2 has the equation

y = m · (x− x1) + y1 mod p .

To find the third point of intersection of this line with E, substitute the above
into the equation for E to obtain

(
m · (x − x1) + y1

)2

= x3 + Ax + B mod p.

The values of x that satisfy this equation are x1, x2, and [m2−x1−x2 mod p].
The first two solutions correspond to the original points P1 and P2, while the
third is the x-coordinate of the third point of intersection P3. The y-value
corresponding to this third value of x is y = [m · (x− x1) + y1 mod p]. That
is, P3 = (x3, y3) where

x3 = [m2 − x1 − x2 mod p] y3 = [m · (x3 − x1) + y1 mod p].

272 Introduction to Modern Cryptography

To obtain the desired answer P1 + P2, it remains only to take the negation of
P3 (or, equivalently, reflect P3 in the x-axis) giving:

CLAIM 7.64 Let p ≥ 5 be prime, and P1 = (x1, y1) and P2 = (x2, y2)
be points on the elliptic curve y2 = x3 + Ax + B mod p with P1, P2 6= O and
x1 6= x2. Then P1 + P2 = (x3, y3) with

x3 = [m2 − x1 − x2 mod p] y3 = [m · (x1 − x3)− y1 mod p],

where m =
[

y2−y1

x2−x1
mod p

]
.

For completeness, we state the addition law for points not covered by the
above claim.

CLAIM 7.65 Let p ≥ 5 be prime, and P1 = (x1, y1) and P2 = (x2, y2) be
points on the elliptic curve y2 = x3 + Ax + B mod p with P1, P2 6= O.

1. If x1 = x2 but y1 6= y2 then P1 = −P2 and so P1 + P2 = O.

2. If P1 = P2 and y1 = 0 then P1 + P2 = 2P1 = O.

3. If P1 = P2 and y1 6= 0 then P1 + P2 = (x3, y3) with

x3 = [m2 − 2x1 mod p] y3 = [m · (x1 − x3)− y1 mod p],

where m =
[

3x2
1+A
2y1

mod p
]
.

Somewhat amazingly, it can be shown the set of points E(Zp) along with
the addition rule defined above form an abelian group! Actually, we have
already seen almost all the necessary properties: closure under addition follows
from the fact (not proven here) that any line intersecting E has three points
of intersection; O acts as the identity; each point on E(Zp) has an inverse
in E(Zp); and commutativity of addition follows from Equation 7.2. The
difficult property to verify is associativity, which the disbelieving reader can
check through tedious calculation. A more illuminating proof that does not
involve explicit calculation relies on algebraic geometry.

In typical cryptographic applications, parameters of the elliptic curve are
chosen in such a way that the group E(Zp) (or a subgroup thereof) is a prime-
order, and hence cyclic, group. Efficient methods for doing so are beyond the
scope of this book.

Number Theory and Cryptographic Hardness Assumptions 273

7.4 Applications of Number-Theoretic Assumptions in
Cryptography

We have by now spent a fair bit of time discussing number theory and group
theory, and introducing computational hardness assumptions that are widely
believed to hold. Applications of these assumptions will be shown in the rest
of the book, but we provide some brief examples here.

7.4.1 One-Way Functions and Permutations

One-way functions are the minimal cryptographic primitive, and they are
both necessary and sufficient for all the private-key constructions we have
seen in Chapters 3 and 4. A more complete discussion of the role of one-
way functions in cryptography is given in Chapter 6; here we only provide a
definition of one-way functions and note that their existence follows from all
the number-theoretic hardness assumptions we have seen in this chapter.

Informally, a function f is said to be one-way if f is easy to compute but
f−1 is not. Formally (the following is just a re-statement of Definition 6.1):

DEFINITION 7.66 A function f : {0, 1}∗ → {0, 1}∗ whose output length
is polynomially-related to its input length9 is one-way if the following two con-
ditions hold:

1. Easy to compute: There exists a polynomial-time algorithm that on input
x ∈ {0, 1}∗ outputs f(x).

2. Hard to invert: Consider the following experiment for a given algorithm
A and parameter n:

The inverting experiment InvertA,f (n)

(a) Choose input x← {0, 1}n. Compute y := f(x).

(b) A is given y as input, and outputs x′.

(c) The output of the experiment is defined to be 1 if f(x′) =
y, and 0 otherwise.

Then it is required that for all probabilistic, polynomial-time algorithms
A there exists a negligible function negl such that

Pr[InvertA,f (n) = 1] ≤ negl(n).

9Recall this means that there exists a constant c > 0 such that |f(x)| ≥ |x|c.

274 Introduction to Modern Cryptography

We now show formally that the factoring assumption implies the existence
of a one-way function. Let Gen be a polynomial-time algorithm that, on in-
put 1n, outputs (N, p, q) where N = pq and p and q are n-bit primes (except
with probability negligible in n). (We use Gen rather than GenModulus here
for notational convenience.) Since Gen runs in polynomial time, there exists
a polynomial p such that the number of random bits the algorithm uses on
input 1n is at most p(n). For simplicity, assume that Gen always uses exactly
p(n) bits on input 1n, and further that p(n) is strictly increasing. We define a
deterministic function fGen (that can be computed in polynomial time) by de-
scribing a deterministic polynomial-time algorithm for computing fGen. This
algorithm runs Gen as a subroutine, but we stress that fGen is deterministic
since the random tape of Gen is fixed to the input x of fGen, rather than being
chosen at random each time fGen(x) is computed.

ALGORITHM 7.67
Algorithm computing fGen

Input: String x
Output: String N

compute n such that p(n) ≤ |x| < p(n + 1)
compute (N, p, q) := Gen(1n; x)

/* i.e., run Gen(1n) using x as the random tape */

return N

If the factoring problem is hard relative to Gen then, intuitively, fGen is a
one-way function. Certainly fGen is easy to compute. As for the hardness of
inverting this function, note that for any n′ the following distributions are
identical:

1. The modulus N output by fGen(x), when x ∈ {0, 1}n′

is chosen at ran-
dom.

2. The modulus N output by the randomized process in which Gen(1n) is
run to obtain N . Here, n satisfies p(n) ≤ n′ < p(n + 1).

Since moduli N chosen according to the second distribution are hard to fac-
tor, the same holds for moduli N chosen according to the first distribution.
Moreover, given any x for which fGen(x) = N , it is easy to recover a non-
trivial factor of N (by running Gen(1n; x) to obtain (N, p, q) and outputting
the factors p and q). We thus have the following theorem (a formal proof
follows fairly easily from what we have said):

THEOREM 7.68 If the factoring problem is hard relative to Gen, then
fGen is a one-way function.

Number Theory and Cryptographic Hardness Assumptions 275

A corollary is that hardness of the RSA problem implies the existence of
a one-way function (this follows from the fact that hardness of RSA implies
that factoring is hard). In fact, hardness of the RSA problem gives something
stronger: a family of one-way permutations. We define this primitive here,
but once again refer the reader to Chapter 6 for a more in-depth discussion
of its application.

The following is just a re-statement of Definitions 6.2 and 6.3:

DEFINITION 7.69 A tuple Π = (Gen, Samp, f) of probabilistic, polynomial-
time algorithms is a family of functions if the following hold:

1. The parameter generation algorithm Gen, on input 1n, outputs parameters
I with |I | ≥ n. Each value of I output by Gen defines sets DI and RI that
constitute the domain and range, respectively, of a function we define
next.

2. The sampling algorithm Samp, on input I, outputs a uniformly distributed
element of DI (except possibly with probability negligible in |I |).

3. The deterministic evaluation algorithm f , on input I and x ∈ DI , outputs
an element y ∈ RI . We write this as y := fI(x).

Π is a family of permutations if, for each value of I output by Gen(1n), it
additionally holds that DI = RI , and the function fI : DI → DI is a bijection.

Note that, due to the last condition, when Π is a family of permutations
choosing x ← DI uniformly at random and setting y := fI(x) results in a
uniformly-distributed value of y.

Given a family of functions Π, consider the following experiment for any
algorithm A and parameter n:

The inverting experiment InvertA,Π(n)

1. Gen(1n) is run to obtain I, and then Samp(I) is run to obtain
a random x← DI . Finally, y := fI(x) is computed.

2. A is given I and y as input, and outputs x′.

3. The output of the experiment is defined to be 1 if fI(x
′) = y,

and 0 otherwise.

DEFINITION 7.70 Let Π = (Gen, Samp, f) be a family of functions. Π
is one-way if for all probabilistic, polynomial-time algorithms A there exists a
negligible function negl such that

Pr[InvertA,Π(n) = 1] ≤ negl(n).

276 Introduction to Modern Cryptography

Given GenModulus as in Section 7.2.4, Construction 7.71 defines a family
of permutations. It is immediate that if the RSA problem is hard for GenRSA

then this family is in fact one-way. It can similarly be shown that hardness
of the discrete logarithm problem (and, by extension, the CDH or DDH prob-
lems) in Z∗p, with p prime, implies the existence of a one-way permutation
family. See Exercise 7.17.

CONSTRUCTION 7.71

• Parameter-generation algorithm Gen: on input 1n, run
GenRSA(1n) to obtain (N, e, d) and output I = 〈N, e〉. We will
have DI = Z

∗
N .

• Sampling algorithm Samp: on input I = 〈N, e〉, choose a random
element of Z

∗
N .

• Evaluation algorithm f : on input I = 〈N, e〉 and x ∈ Z
∗
N , outputs

[xe mod N].

A family of one-way permutations (assuming the RSA problem is hard
relative to GenRSA).

7.4.2 Constructing Collision-Resistant Hash Functions

Collision-resistant hash functions were introduced in Section 4.6. Although,
as discussed in that section, there exist heuristic constructions of collision-
resistant hash functions that are used widely in practice, we have not yet seen
any provable constructions of such hash functions based on more primitive
assumptions. (In particular, no such constructions were shown in Chapter 6.
In fact, there is evidence that constructing collision-resistant hash functions
from arbitrary one-way functions or permutations is impossible.)

We show now a construction of a collision-resistant hash function based on
the discrete logarithm assumption in prime-order groups. A second construc-
tion based on the hardness of factoring is described in Exercise 7.18. Although
these constructions are less efficient than the hash functions used in practice,
they are important since they illustrate the feasibility of achieving collision
resistance based on standard and well-studied cryptographic assumptions.

As in Section 7.3.2, let G be a polynomial-time algorithm that, on input 1n,
outputs a (description of a) cyclic group G, its order q (with ‖q‖ = n), and a
generator g. As always, we also assume that the group operation in G can be
computed efficiently. Finally, we also require that q is prime except possibly
with negligible probability. (Recall anyway from there is a general preference
for using groups of prime order, as discussed in Section 7.3.2.) A fixed-length
hash function based on G is given as Construction 7.72.

Number Theory and Cryptographic Hardness Assumptions 277

CONSTRUCTION 7.72

Let G be as described in the text. Define (Gen, H) as follows:

• Key generation algorithm Gen: On input 1n, run G(1n) to obtain
(G, q, g) and then select h← G. Output s = 〈G, q, g, h〉.

• Hash algorithm H: On input s = 〈G, q, g, h〉 and message
(x1, x2) ∈ Zq × Zq, output gx1hx2 ∈ G.

A fixed-length hash function.

Note that Gen and H can be computed in polynomial time. Before contin-
uing with an analysis of the construction, we make some technical remarks:

• For a given s = 〈G, q, g, h〉 with n = ‖q‖, the function Hs is described
as taking elements of Zq × Zq as input. However, Hs can be viewed
as taking bit-strings of length 2 · (n − 1) as inout if we parse inputs
x ∈ {0, 1}2(n−1) as two strings x1, x2 each of length n−1, and then view
each of x1, x2 as an element of Zq in the natural way.

• The output of Hs is similarly specified as an element of G, but we can
view the output of Hs as a bit-string if we fix some representation of G.
To satisfy the requirements of Definition 4.10 (which requires the output
length to be fixed as a function of n) we can pad the output with 0s as
needed.

• Given the above, the construction only compresses its input for certain
groups G (specifically, when elements of G can be represented using
fewer than 2n−2 bits). As we show in Exercise 7.74, however, compres-
sion can be achieved when using subgroups of Z∗p of the type discussed
in Section 7.3.3.

THEOREM 7.73 If the discrete logarithm problem is hard relative to G,
then Construction 7.72 is collision resistant.

PROOF Let Π = (Gen, H), and letA be an arbitrary probabilistic, polynomial-
time algorithm with

ε(n)
def
= Pr[Hash-collA,Π(n) = 1]

(cf. Definition 4.10). Consider the following algorithm A′ solving the discrete
logarithm problem relative to G:

Algorithm A′:
The algorithm is given G, q, g, h as input.

1. Let s := 〈G, q, g, h〉. Run A(s) and obtain output x and x′.

278 Introduction to Modern Cryptography

2. If x 6= x′ and Hs(x) = Hs(x
′) then:

(a) If h = 1 return 0

(b) Otherwise (h 6= 1), parse x as x1‖x2 and parse x′ as
x′1‖x′2. Return

[
(x1 − x′1) · (x′2 − x2)

−1 mod q
]
.

Clearly, A′ runs in polynomial time. Furthermore, the input s given toA when
run as a subroutine by A′ is distributed exactly as in experiment Hash-collA,Π

for the same value of the security parameter n. (The input to A′ is generated
by running G(1n) to obtain G, q, g and then choosing h ∈ G uniformly at
random. This is exactly how s is generated by Gen(1n).) So, with probability
exactly ε(n) there is a collision: i.e., x 6= x′ and Hs(x) = Hs(x

′).
We claim that whenever there is a collision, A′ returns the correct answer

logg h. If h = 1 then this is clearly true (since logg h = 0 in this case).
Otherwise, the existence of a collision means that

Hs(x1‖x2) = Hs(x
′
1‖x′2) ⇒ gx1hx2 = gx′

1hx′
2

⇒ gx1−x′
1 = hx′

2−x2 . (7.3)

Let ∆
def
= x′2 − x2. Note that [∆ mod q] 6= 0 since this would imply that

[(x1 − x′1) mod q] = 0, but then x = x1‖x2 = x′1‖x′2 = x′ in contradiction to
the assumption that there was a collision. Since q is prime and ∆ 6= 0 mod q,
the inverse ∆−1 exists. Raising each side of Equation (7.3) to the power ∆−1

gives:

g(x1−x′
1)·∆−1

=
(
hx′

2−x2

)∆−1

= h[∆·∆−1 mod q] = h1 = h,

and so

logg h = [(x1 − x′1)∆
−1 mod q] =

[
(x1 − x′1) · (x′2 − x2)

−1 mod q
]
,

the output returned by A′.
We see that A′ correctly solves the discrete logarithm problem with prob-

ability exactly ε(n). Since, by assumption, the discrete logarithm problem is
hard relative to G, we conclude that ε(n) is negligible.

The above only shows collision resistance, but does not necessarily mean
that Construction 7.72 is compressing. Indeed, as discussed earlier, whether
or not the construction is compressing depends on the number of bits required
to represent elements of G. For many natural choices of groups, however, com-
pression is attained; you are asked to prove this for one concrete example in
Exercise 7.16. Interestingly, a generalization of Construction 7.72 can be used
to obtain compression from any G for which the discrete logarithm problem is
hard, regardless of the number of bits required to represent group elements.

Number Theory and Cryptographic Hardness Assumptions 279

Example 7.74

Let p = 47, and say we work with the subgroup of quadratic residues in Z∗47
having order q = (47 − 1)/2 = 23. (See Section 7.3.3.) Since |q| = 5, any
4-bit binary string can be viewed as an element of Zq = {0, . . . , q − 1} in the
natural way. Similarly, any element of Z∗p = {1, . . . , 46} can be written in the
natural way using exactly 6 bits (padding to the left with zeros as needed).

Say g = 4 and h = 21, so that s = 〈G, 23, 4, 21〉. We obtain a function
Hs mapping 8-bit inputs to 6-bit outputs. For example, Hs(11111101) is
computed as follows: 1111 in binary is the number 15; 1101 is the number 13.
Then 415 · 2113 = 3 mod 47, which can be written in binary as 000011. So,
Hs(11111101) = 000011. ♦

References and Additional Reading

The book by Childs [36] has excellent coverage of the topics discussed in
this chapter (and more), in greater depth but at a similar level of exposition.
Shoup [117] gives a more advanced, yet still accessible, treatment of much
of this material also. Relatively gentle introductions to abstract algebra and
group theory that go well beyond what we have space for here are available in
the books by Fraleigh [58] and Herstein [77]; the interested reader will have
no trouble finding more advanced algebra texts if they are so inclined.

The first efficient primality test was by Solovay and Strassen [121]. The
Miller-Rabin test is due to Miller [97] and Rabin [108]. A deterministic primal-
ity test was recently discovered by Agrawal et al. [11]. See Dietzfelbinger [49]
for an accessible and comprehensive presentation of primality testing.

The RSA permutation was introduced by Rivest, Shamir and Adleman [110]
and has since been studied greatly. The discrete logarithm and Diffie-Hellman
problems were first considered, at least implicitly, by Diffie and Hellman [50].
Recent surveys of each of these problems and their applications are given by
Odlyzko [101] and Boneh [29].

While there are many references to elliptic curves, there are almost none
that do not require an advanced mathematical background on the part of the
reader. The book by Silverman and Tate [118] is perhaps an exception. As
is the case for most books on the subject, however, that book has little cov-
erage of elliptic curves over finite fields, which is the case most relevant to
cryptography. The text by Washington [130], though a bit more advanced,
deals heavily (though not exclusively) with the finite-field case. Implementa-
tion issues related to elliptic-curve cryptography are covered by Hankerson,
et al. [73].

The construction of a collision-resistant hash function based on the discrete
logarithm problem is due to [35], and an earlier construction based on the

280 Introduction to Modern Cryptography

hardness of factoring is given in [71] (see Exercise 7.18).

Exercises

7.1 Let G be an abelian group. Prove that there is a unique identity in G,
and that every element g ∈ G has a unique inverse.

7.2 Show that Proposition 7.36 does not necessarily hold when G is infinite.

Hint: Consider the set {1} ∪ {2, 4, 6, 8, . . .} ⊂ R.

7.3 Let G be a finite group, and g ∈ G. Show that 〈g〉 is a subgroup of G.
Is the set {g0, g1, . . .} necessarily a subgroup of G when G is infinite?

7.4 This question concerns the Euler phi function.

(a) Let p be a prime and e ≥ 1 an integer. Show that

φ(pe) = pe−1(p− 1).

(b) Let p, q be relatively prime. Show that φ(pq) = φ(p) · φ(q). (You
may not use the Chinese remainder theorem.)

(c) Prove Theorem 7.19.

7.5 Prove that if G, H are groups, then G×H is a group.

7.6 Let p, N be integers with p |N . Prove that for any integer X ,

[[X mod N] mod p] = [X mod p].

Show that, in contrast, [[X mod p] mod N] need not equal [X mod N].

7.7 Fill in the details of the proof of the Chinese remainder theorem, showing
that Z∗N is isomorphic to Z∗p × Z∗q .

7.8 Corollary 7.21 shows that if N = pq and ed = 1 mod φ(N) then for any

x ∈ Z∗N we have (xe)
d

= x mod N . Show that this holds for all x ∈ ZN .

Hint: Use the Chinese remainder theorem.

7.9 This exercise develops an efficient algorithm for testing whether an in-
teger is a perfect power.

(a) Show that if N = N̂e for some integers N̂ , e > 1 then e ≤ ‖N‖+1.

Number Theory and Cryptographic Hardness Assumptions 281

(b) Given N and e with 2 ≤ e ≤ ‖N‖ + 1, show how to determine
in poly(‖N‖) time whether there exists an integer N̂ such that
N̂e = N . (Hint : use binary search.)

(c) Given N , show how to test in poly(‖N‖) time whether N is a
perfect power.

7.10 Given N and a ∈ Z∗N , show how to test in polynomial time whether a
is a strong witness that N is composite.

7.11 Let N = pq be a product of two distinct primes. Show that if φ(N) and
N are known, then it is possible to compute p and q in polynomial time.

Hint: Derive a quadratic equation (over the integers) in the unknown p.

7.12 Let N = pq be a product of two distinct primes. Show that if N and an
integer d such that 3 · d = 1 mod φ(N) are known, then it is possible to
compute p and q in polynomial time.

Hint: Obtain a small list of possibilities for φ(N) and then use the

previous exercise.

7.13 Prove formally that the hardness of the CDH problem relative to G
implies the hardness of the discrete logarithm problem relative to G.

7.14 Prove formally that the hardness of the DDH problem relative to G
implies the hardness of the CDH problem relative to G.

7.15 Prove the third statement in Claim 7.65.

7.16 Let G be an algorithm that, on input 1n, outputs p, q, g where p = 2q+1
is a strong prime and g is a generator of the subgroup of quadratic
residues modulo p. (See Section 7.3.3.) Show how to obtain compression
in Construction 7.72 for p large enough.

7.17 Let G1 be as in Section 7.3.3. Show that the hardness of the discrete
logarithm problem relative to G1 implies the existence of a family of
one-way permutations.

Hint: Define a permutation on elements of Z∗
p.

7.18 Let GenRSA be as in Section 7.2.4. Prove that if the RSA problem is
hard relative to GenRSA then Construction 7.75 shown below is collision
resistant.

Hint: Show that the eth root of y can be computed from any collision.

282 Introduction to Modern Cryptography

CONSTRUCTION 7.75

Define (Gen, H) as follows:

• Gen(1n) runs GenRSA(1n) to obtain N, e, and selects y ← Z
∗
N .

The seed is s = 〈N, e, y〉.
• If s = 〈N, e, y〉, then Hs maps inputs in {0, 1}3n to outputs

in Z
∗
N . Let f0

s (x)
def
= [xe mod N] and f1

s (x)
def
= [y · xe mod N].

For a 3n-bit long string X = X1 · · ·X3n, define

Hs(X)
def
= fX1

s

(
fX2

s

(
· · ·
(
1
)
· · ·
))

.

Chapter 8

* Algorithms for Factoring and
Computing Discrete Logarithms

As discussed in Chapter 7, there are currently no known polynomial-time algo-
rithms for factoring or for computing discrete logarithms in Z∗p. But this does
not mean that brute-force search is the best available method for attacking
these problems! Here, we survey some better algorithms for these problems.
Besides being interesting in their own right, and serving as a nice application
of some of the number theory we have already learned, understanding the
effectiveness of these algorithms is crucial for choosing cryptographic param-
eters in practice: if a cryptographic scheme based on factoring is supposed
to withstand adversaries mounting a dedicated attack for 5 years, then — at
a minimum! — the modulus N used by the scheme needs to be long enough
so that the best-known factoring algorithm will take (at least) 5 years to
successfully factor N .

8.1 Algorithms for Factoring

Throughout this section, we assume that N = pq is a product of two distinct
primes. We will also be most interested in the case when p and q are each of
the same (known) length n, and so n = Θ(log N). There exist other factoring
algorithms tailored to work for N of a different form (e.g., when N = prq
for p, q prime and integer r > 1, or when p and q have significantly different
lengths) but we do not cover these here.

We will frequently use the Chinese remainder theorem along with some no-
tation developed in Sections 7.1.4 and 7.1.5. The Chinese remainder theorem
states that

Z
∗
N ' Z

∗
p × Z

∗
q ,

with isomorphism given by f(x)
def
= ([x mod p], [x mod q]) for x ∈ Z∗N . The

fact that f is an isomorphism means in particular that it gives a one-to-
one mapping between elements x ∈ Z∗N and pairs (xp, xq) ∈ Z∗p × Z∗q . We
write x ↔ (xp, xq), with xp = [x mod p] and xq = [x mod q], to denote this
bijection.

283

284 Introduction to Modern Cryptography

Recall from Section 7.2 that trial division, a trivial, brute-force factor-
ing method, finds a factor of a given number N with probability 1 in time
O(
√

N). A more sophisticated factoring algorithm is therefore only interesting
if its running time is asymptotically less than this. We cover three different
factoring algorithms with improved running time:

• Pollard’s p−1 method is effective when p−1 has “small” prime factors.

• Pollard’s rho method applies to arbitrary N . (As such, it is called a
general-purpose factoring algorithm.) Its running time for N of the
form discussed at the beginning of this section is O(N 1/4 · polylog(N)).
Since N = 2Θ(n) this is exponential in n, the length of N .

• The quadratic sieve algorithm is a general-purpose factoring algorithm
that runs in time sub-exponential in the length of N .1 We give a high-
level overview of how this algorithm works, but the details are somewhat
complex and are beyond the scope of this book.

Currently, the best-known general-purpose factoring algorithm (in terms of
asymptotic running time) is the general number field sieve. Heuristically,2

this algorithm runs in time 2O(n1/3·(log n)2/3) on average to factor a number N
of length O(n).

8.1.1 Pollard’s p− 1 Method

This section relies on some of the material from Section B.3.1.
An algorithm due to Pollard can be used to factor an integer N = pq when

p − 1 has only “small” factors. The key to this approach is the following
observation: Say we can find an element y ∈ Z∗N for which y ↔ (1, yq) and
yq 6= 1. That is,

y = 1 mod p but y 6= 1 mod q (8.1)

or, equivalently,

y − 1 = 0 mod p but y − 1 6= 0 mod q.

The above means that p | (y − 1) but q 6 | (y − 1), which in turn implies that
gcd(y − 1, N) = p. Thus, a simple gcd computation (which can be performed
efficiently as described in Section B.1.2) yields a non-trivial factor of N .

The problem of factoring N has thus been reduced to finding a value y with
the stated properties. We now describe how to find such a y. Say we had an
integer B for which

(p− 1) |B but (q − 1) 6 |B. (8.2)

1If f(n) = 2Ω(n), then f is exponential in n. If f(n) = 2o(n), then f is sub-exponential
in n. A polynomial in n has the form f(n) = 2O(log n) = nO(1).
2It remains open to rigorously analyze the running time of this algorithm.

* Factoring and Computing Discrete Logarithms 285

(We defer until later the details of how such a B is determined.) Write B =
γ · (p − 1) for some integer γ. Taking an arbitrary element x ∈ Z∗N and
setting y = [xB mod N] (note that y can be computed using the efficient
exponentiation algorithm from Section B.2.3), we have

y = [xB mod N]↔ (xp, xq)
B = (xB

p mod p, xB
q mod q)

= ((xp−1
p)γ mod p, xB

q mod q) = (1, xB
q mod q)

using Theorem 7.14 and the fact that the order of Z
∗
p is p − 1. The value y

with y ↔ (1, xB
q) therefore satisfies Equation (8.1) as long as xB

q 6= 1 mod q.
We now show that the latter occurs with sufficiently high probability.

Since Z∗q is cyclic, the group Z∗q contains exactly φ(q−1) generators each of
whose order is (by definition) q − 1. We claim that if xq is a generator of Z∗q
and (q − 1)6 |B, then xB

q 6= 1 mod q. To see this, use division-with-remainder
(Proposition 7.1) to write B = α · (q − 1) + β with 1 ≤ β < (q − 1). Then

xB
q = xα·(q−1)+β

q = xβ
q mod q,

using Theorem 7.14. But xβ
q 6= 1 mod q since the order of xq is strictly larger

than β.

If x is chosen uniformly at random from Z∗N , then xq
def
= [x mod q] is uni-

formly distributed in Zq . (This is a consequence of the fact that the Chinese
remainder theorem gives a bijection between Z∗N and Z∗p × Z∗q .) Using Theo-

rem B.16, we conclude that with probability at least φ(q−1)
q−1 = Ω(1/ log q) we

choose x such that xB
q 6= 1 mod q.

Pseudocode for Pollard’s p−1 algorithm follows. The discussion in the pre-
vious paragraphs implies that the algorithm succeeds in finding a non-trivial
factor of N with probability Ω(1/ log q) = Ω(1/n), assuming a B satisfying
Equation (8.2) is known.

ALGORITHM 8.1
Pollard’s p− 1 algorithm for factoring

Input: Integer N
Output: A non-trivial factor of N

x← Z
∗
N

y := [xB mod N]
p := gcd(y − 1, N)
if p 6∈ {1, N} return p

It remains to choose a value for B. One possibility is to choose

B =

k∏

i=1

p
bn/ log pic
i ,

286 Introduction to Modern Cryptography

where pi denotes the ith prime (that is, p1 = 2, p2 = 3, p3 = 5, . . .) and k is a
bound whose choice affects both the running time and the success probability

of the algorithm. Note that p
bn/ log pic
i is the largest power of pi that can

divide p − 1, an integer of length at most n. Thus, as long as p − 1 can be
written as

∏k
i=1 pei

i with ei ≥ 0 (that is, as long as p− 1 has no prime factors
larger than pk), it will be the case that (p − 1) |B. In contrast, if q − 1 has
any prime factor larger than pk then (q − 1) 6 |B.

Choosing a larger value for k increases B and so increases the running time
of the algorithm (which performs a modular exponentiation to the power B).
A larger value of k also makes it more likely that (p− 1) |B but at the same
time makes it less likely that (q − 1) |B. It is, of course, possible to run the
algorithm repeatedly using multiple choices for k. Other ways of selecting B
are also possible.

Pollard’s p− 1 method is thwarted if both p− 1 and q− 1 have large prime
factors. For this reason, when generating a modulus N = pq for cryptographic
applications p and q are sometimes chosen to be strong primes (recall that p
is a strong prime if (p − 1)/2 is also prime). Selecting p and q in this way
is markedly less efficient than simply choosing p and q as arbitrary (random)
primes. Because better factoring algorithms are available anyway, as we will
see below, the current consensus is that the added computational cost of
generating p and q as strong primes is not offset by any appreciable security
gains. However, we remark that certain cryptographic schemes (that we will
not see in this book) require p and q to be strong primes for technical reasons
related to the group structure of Z∗N .

8.1.2 Pollard’s Rho Method

Unlike the algorithm of the previous section, Pollard’s rho method can be
used to find a non-trivial factor of an arbitrary integer N without assumptions
regarding p or q; that is, it is a general-purpose factoring algorithm. Proving
rigorous bounds on the running time/success probability of the algorithm is
still an open question; heuristically, the algorithm factors N with constant
probability in O

(
N1/4 · polylog(N)

)
≈ 2‖N‖/4 steps, an improvement over

trial division.

The idea of the rho method is to find two distinct values x, x′ ∈ Z∗N that
are equivalent modulo p (i.e., x = x′ mod p); let us call such a pair of values
good. Similarly to the previous section, we may observe that x−x′ = 0 mod p
but x − x′ 6= 0 mod N , and so p | (x − x′) but N 6 | (x − x′). But this means
that gcd(x− x′, N) = p, a non-trivial factor of N .

How can we find a good pair? Say we choose values x1, . . . , xk independently
and uniformly at random from Z∗N , where k = 2n/2 = O(

√
p). Note that:

• By a direct application of Lemma A.9, the probability that there exist

* Factoring and Computing Discrete Logarithms 287

distinct i, j with xi = xj is at most

k2

2 · φ(N)
=

2n

2 · φ(N)
= O(2−n),

which is negligible in n.

• As a consequence of the bijectivity between Z∗N and Z∗p×Z∗q guaranteed

by the Chinese remainder theorem, the values {[xm mod p]}km=1 are
independently and uniformly distributed in Z∗p. Using Lemma A.10,
the probability that there exist i, j with [xi mod p] = [xj mod p] is
roughly 1/4.

Combining the above, we see that with probability roughly 1/4 there will
exist i, j with xi, xj a good pair; i.e.,

xi = xj mod p but xi 6= xj mod N.

This pair can then be used to find a non-trivial factor of N as discussed earlier.

We can generate k = O(
√

p) random elements of Z
∗
N in O(

√
p) time. Test-

ing all pairs of elements in order to find a good pair, however, would require(
k
2

)
= O(k2) = O(p) = O(N1/2) time! (Note that since p is unknown we

cannot simply compute the sequence x̂i
def
= [xi mod p] and then sort the x̂i to

find a good pair. Instead, for all i, j we must compute gcd(xi − xj , N) to see
whether this gives a non-trivial factor of N .) Without further optimizations,
this will be no better than trial division.

Pollard’s idea was to choose x1, . . . , xk, . . . , x2k in a recursive manner, choos-
ing x1 ∈ Z∗N at random and then computing xm = F (xm−1) mod N for some
appropriate function F . (Choice of F is discussed below.) Instead of testing
each pair xi, xj (for all i, j ≤ k) to find a good pair, it now suffices to test xi

and x2i for all i ≤ k as explained in the following claim.

CLAIM 8.2 Let x1, . . . be a sequence of values with xm = F (xm−1) mod N .
Say xi = xj mod p with i < j ≤ k. Then there exists an i′ < j ≤ k such that
xi′ = x2i′ mod p.

PROOF If xi = xj mod p, then the sequence [xi mod p], [xi+1 mod p], . . .
repeats with period j − i. (To see this, observe that xm = F (xm−1) mod p
for all m. So xi+δ = xj+δ mod p for all δ ≥ 0 and then xi = xj = xi+(j−i) =
xj+(j−i) mod p.) Take i′ to be the least multiple of j − i that is greater than

or equal to i; that is, i′
def
= (j − i) · di/(j − i)e. We must have i′ < j since the

sequence i, i+1, . . . i+(j− i−1) contains a multiple of j− i. Since 2i′− i′ = i′

is a multiple of the period and i′ ≥ i, it follows that xi′ = x2i′ mod p.

288 Introduction to Modern Cryptography

(The proof of the claim is the reason the algorithm is called “rho,” since
the repeating sequence suggests the Greek letter ρ as shown in Figure ??.)

By the claim above, if there is a good pair xi, xj in the sequence x1, . . . , xk

then there is a good pair xi′ , x2i′ in the sequence x1, . . . , x2k. The number of
pairs that need to be tested, however, is reduced from

(
k
2

)
to k = O(

√
p) =

O(N1/4). A description of the entire algorithm follows.

ALGORITHM 8.3
Pollard’s rho algorithm for factoring

Input: Integer N
Output: A non-trivial factor of N

x0 ← Z
∗
N

for i = 1 to 2n/2:
xi := [F (xi−1) mod N]
x2i := [F (F (x2i−2)) mod N]
p := gcd(x2i − xi, N)
if p 6∈ {1, N} return p

Pollard’s choice of x1, . . . leads to an improvement in the running time of
the algorithm. Unfortunately, since the values in the sequence are no longer
chosen independently at random, the analysis given earlier (showing that a
good pair exists with probability roughly 1/4) no longer applies. Heuristically,
however, if the sequence “behaves randomly” then we expect that a good
pair will still be found with probability roughly 1/4. (We stress that the
sequence is certainly not pseudorandom in the sense of Chapter 3. However,
cryptographic pseudorandomness is not a necessary condition for Pollard’s
rho algorithm to succeed.) Taking F of the form F (x) = x2 + b, where
b 6= 0,−2 mod N , gives an F that is efficient to compute and seems to work
well in practuce. (See [127, Section 10.2] for some rationale for this choice
of F .) It remains an interesting open question to give a tight and rigorous
analysis of Pollard’s rho algorithm for any concrete F .

8.1.3 The Quadratic Sieve Algorithm

Pollard’s rho algorithm runs in time exponential in the length of the num-
ber N to be factored. The quadratic sieve algorithm runs in sub-exponential
time. It was the fastest-known factoring algorithm until the early ’90s, and re-
mains the factoring algorithm of choice for numbers up to around 300 bits long.
In this section, we describe the general principles underlying the quadratic
sieve algorithm but caution the reader that many of the important details are
omitted.

Recall that an element z ∈ Z∗N is a quadratic residue modulo N if there

* Factoring and Computing Discrete Logarithms 289

exists an x ∈ Z∗p such that x2 = z mod N ; we say x is a square root of z in
this case. The following observations, used also in Chapter 11, serve as our
starting point:

• If N = pq is a product of two distinct primes, then every quadratic
residue modulo N has exactly four square roots. See Section 11.1.2 for
proof.

• Given x, y with x2 = y2 mod N and x 6= ±y mod N , it is possible to
compute in polynomial time a non-trivial factor of N . This is by virtue
of the fact that x2 = y2 mod N implies

0 = x2 − y2 = (x− y)(x + y) mod N,

and so N | (x−y)(x+y). On the other hand, N 6 | (x−y) and N 6 | (x+y)
because x 6= ±y mod N . So it must be the case that gcd(x − y, N) is
equal to one of the prime factors of N . See also Lemma 11.20.

The quadratic sieve algorithm tries to generate a pair of values x, y whose
squares are equal modulo N ; the hope is that with constant probability it
will also hold that x 6= ±y mod N . It searches for x and y via the following3

two-step process:

Step 1. Fix a set B = {p1, . . . , pk} of small prime numbers. Find ` > k

distinct values x1, . . . , x` ∈ Z∗N for which qi
def
= [x2

i mod N] is “small”, so that
qi can be factored over the integers (using, e.g., trial division) and such that
all the prime factors of qi lie in B. (It is also required that xi >

√
n, so x2

i > n
and the modular reduction of x2

i is not trivial.) We omit the details of how
these {xi} are found.

Following this step, we have a set of equations of the form:

x2
1 =

k∏

i=1

p
e1,i

i mod N

... (8.3)

x2
` =

k∏

i=1

p
e`,i

i mod N.

Looking only at the exponents of each pi modulo 2, we obtain the matrix

Γ
def
=




γ1,1 γ1,2 · · · γ1,k

...
...

. . .
...

γ`,1 γ`,2 · · · γ`,k


 def

=




e1,1 mod 2 e1,2 mod 2 · · · e1,k mod 2
...

...
. . .

...
e`,1 mod 2 e`,2 mod 2 · · · e`,k mod 2


 .

3Some details have been changed in order to simplify the presentation. The description is
merely meant to convey the main ideas of the algorithm.

290 Introduction to Modern Cryptography

The goal is to have ` > k with none of the rows of Γ all 0. Once this is
accomplished, proceed to the next step.

Step 2. The matrix Γ constructed in the previous step has more rows than
columns. Therefore, some subset of the rows must sum to the all-0 row mod-
ulo 2. (Furthermore, by construction, Γ has no all-0 rows.) An appropriate
set of rows can be found efficiently using linear algebra. For the sake of illus-
tration, say rows `1, `2, `3 sum to the all-0 row; that is,

γ`1,1 · · · γ`1,k

γ`2,1 · · · γ`2,k

+ γ`3,1 · · · γ`3,k

0 · · · 0

where addition is modulo 2. Taking the appropriate equations from Equa-
tion (8.3), we have

X
def
= x2

`1 · x2
`2 · x2

`3 =

k∏

i=1

p
e`1,i+e`2,i+e`3,i

i mod N.

Moreover, by choice of `1, `2, `3 we know that e`1,i + e`2,i + e`3,i is even for
all i. This means that we can write

X = (x`1 · x`2 · x`3)
2

=

(
k∏

i=1

p
(e`1,i+e`2,i+e`3,i)/2

i

)2

mod N,

and we have found two elements whose squares are equal modulo N . Although

there is no guarantee that x`1 · x`2 · x`3 6= ±
∏k

i=1 p
(e`1,i+e`2,i+e`3,i)/2

i mod N ,
we can at least heuristically expect that this will be the case with probability
roughly 1/2 (since X has four square roots).

Example 8.4
Take N = 377753. We have 6647 = [6202 mod N], and we can factor 6647
(over the integers, without any modular reduction) as

6647 = 172 · 23.

Thus, 6202 = 172 · 23 mod N . Similarly,

6212 = 24 · 17 · 29 mod N

6452 = 27 · 13 · 23 mod N

6552 = 23 · 13 · 17 · 29 mod N.

So

6202 · 6212 · 6452 · 6552 = 214 · 132 · 174 · 232 · 292 mod N

⇒ (620 · 621 · 645 · 655 mod N)2 =
(
27 · 13 · 172 · 23 · 29 mod N

)2
mod N

⇒ 1271942 = 453352 mod N,

* Factoring and Computing Discrete Logarithms 291

with 127194 6= ±45335 mod N . Computing gcd(127194− 45335, 377753) =
751 yields a non-trivial factor of N . ♦

Running time. We have omitted many details in our discussion of the algo-
rithm above. It can be shown, however, that with appropriate optimizations

the quadratic sieve algorithm runs in time 2O(
√

n·log n) to factor a number N of
length O(n). The important point is that this running time is sub-exponential
in the length of N .

8.2 Algorithms for Computing Discrete Logarithms

Let G be a group for which the group operation can be carried out efficiently.
By the results of Section B.2.3, this means that exponentiation in G can also
be done efficiently. An instance of the discrete logarithm problem takes the
following form (see Section 7.3.2): given g ∈ G and y ∈ 〈g〉, find x such that
gx = y.4 This answer is denoted by logg y, and is uniquely defined modulo the
order of g. We sometimes refer to g in an instance of the discrete logarithm
problem as the base.

Algorithms for attacking the discrete logarithm problem fall into two cate-
gories: those that work for arbitrary groups (such algorithms are sometimes
termed generic) and those that work for some specific group. For algorithms
of the former type, we can often just as well take the group to be 〈g〉 itself
(thus ignoring elements in G\〈g〉 when g is not a generator of G). When doing
so, we will let q denote the order of 〈g〉 and assume that q is known. Note
that brute-force search for the discrete logarithm can be done in time O(q),
and so we will only be interested in algorithms whose running time is better
than this.

We will discuss the following algorithms that work in arbitrary groups:

• The baby-step/giant-step method, due to Shanks, computes the discrete
logarithm in a group of order q in time O(

√
q · polylog(q)).

• The Pohlig-Hellman algorithm can be used when the factorization of
the group order q is known. When q has small factors, this technique
reduces the given discrete logarithm instance to multiple instances of
the discrete logarithm problem in groups of smaller order. Solutions to
each of the latter can be combined to give the desired solution to the
original problem.

4Recall that 〈g〉, the cyclic subgroup generated by g, is the subgroup {g0, g1, . . .} ⊆ G. If
〈g〉 = G then g is a generator of G and G is cyclic.

292 Introduction to Modern Cryptography

We next look at computing discrete logarithms in some specific groups.
As an illustrative but simple example, we first look at the problem in the
(additive) group ZN and show that discrete logarithms can be computed in
polynomial time in this case. The point of this exercise is to demonstrate that

even though any cyclic group of order q is isomorphic to Zq (cf.
Example 7.58 in Chapter 7), and hence all cyclic groups of the
same order are, in some sense, “the same”, the hardness of the
discrete logarithm problem depends in a crucial way on the partic-
ular representation being used for the group.

Indeed, the algorithm for computing discrete logarithms in the additive group
ZN will rely on the fact that multiplication modulo N is also defined. Such
a statement makes no sense in some arbitrary group that is defined without
reference to modular arithmetic.

Turning to groups with more cryptographic significance, we briefly discuss
the computation of discrete logarithms in the cyclic group Z∗p for p prime. We
give a high-level overview of the index calculus method that solves the discrete
logarithm problem in such groups in sub-exponential time. The full details of
this approach are, unfortunately, beyond the scope of this book.

The baby-step/giant-step algorithm is known to be optimal (in terms of its
asymptotic running time) as far as generic algorithms go. (We remark, how-
ever, that more space-efficient generic algorithms with the same running time
are known.) The proven lower bound on the complexity of finding discrete
logarithms when the group is treated generically, however, says nothing about
the hardness of finding discrete logarithms in any particular group.

Currently, the best-known algorithm for computing discrete logarithms in
Z∗p (for p prime) is the general number field sieve.5 Heuristically, this algorithm

runs in time 2O(n1/3·(log n)2/3) on average to compute discrete logarithms in
Z∗p when p has length ‖p‖ = O(n). Importantly, essentially no non-generic
algorithms are currently known for computing discrete logarithms in certain
specially-constructed elliptic curve groups (cf. Section 7.3.4). This means that
for such groups, as long as the group order is prime (so as to preclude the
Pohlig-Hellman algorithm), only exponential-time algorithms for computing
discrete logarithms are known.

To get a sense for the practical importance of this latter remark, we can
compare the group sizes needed for each type of group in order to make the
discrete logarithm problem equally hard. (This will be a rough comparison
only, as a more careful comparison would, for starters, need to take into
account the constants implicit in the big-O notation of the running times given
above.) For a 512-bit prime p, the general number field sieve computes discrete

5It is no accident that the name of this algorithm and its running time are the same as
for that of the currently best-known algorithm for factoring: they share many of the same
underlying steps.

* Factoring and Computing Discrete Logarithms 293

logarithms in Z∗p in roughly 25121/3· 92/3 ≈ 28·4 = 232 steps. This matches the
time needed to compute discrete logarithms using the best generic algorithm
in an elliptic curve group of order q, where q is a 64-bit prime, since then√

q ≈ 264/2 = 232. We see that a significantly smaller elliptic curve group,
with concomitantly faster group operations, can be used without reducing the
difficulty of the discrete logarithm problem (at least with respect to the best
currently-known techniques). Roughly speaking, then, by using elliptic curve
groups in place of Z∗p we obtain cryptographic schemes that are more efficient
for the honest players, but that are equally hard for an adversary to break.

8.2.1 The Baby-Step/Giant-Step Algorithm

The baby-step/giant-step algorithm, due to Shanks, computes discrete log-
arithms in a group of order q in time O(

√
q · polylog(q)). The idea is simple.

Given as input g and y ∈ 〈g〉, we can imagine the elements of 〈g〉 laid out in
a circle as

1 = g0, g1, g2, . . . , gq−2, gq−1, gq = 1,

and we know that y must lie somewhere on this circle. Computing and writing
down all the points on this circle would take at least Ω(q) time. Instead, we

“mark off” the circle at intervals of size t
def
= b√q c; that is, we compute and

record the bq/tc+ 1 = O(
√

q) elements

g0, gt, g2t, . . . , gbq/tc·t.

(These are the “giant steps”.) Note that the “gap” between any consecutive
“marks” on the circle is at most t. Furthermore, we know that y = gx lies in
one of these gaps. We are thus guaranteed that one of the t elements

y · g0 = gx, y · g1 = gx+1, . . . , y · gt = gx+t,

will be equal to one of the points we have marked off. (These are the “baby
steps”.) Say y · gi = gk·t. We can easily solve this to obtain y = gkt−i or
logg y = [kt− i mod q]. Psuedocode for this algorithm is given next.

The algorithm requires O(
√

q) exponentiations and multiplications in G,
and each exponentiation can be done in time O(polylog(q)) using an efficient
exponentiation algorithm. (Actually, other than the first value g1 = gt, each
value gi can be computed using a single multiplication as gi = gi−1 · g1.)
Sorting the O(

√
q) pairs (i, gi) can be done in time O(

√
q · log q), and we

can then use binary search to check whether yi is equal to some gk in time
O(log q). The overall algorithm thus runs in time O(

√
q · polylog(q)).

Example 8.6
We show an application of the algorithm in the cyclic group Z∗29 of order
q = 29− 1 = 28. Take g = 2 and y = 17. We set t = 5 and compute

20 = 1, 25 = 3, 210 = 9, 215 = 27, 220 = 23, 225 = 11.

294 Introduction to Modern Cryptography

ALGORITHM 8.5
The baby-step/giant-step algorithm

Input: Elements g ∈ G and y ∈ 〈g〉; the order q of g
Output: logg y

t := b√q c
for i = 0 to bq/tc:

compute gi := gi·t

sort the pairs (i, gi) by their second component
for i = 0 to t:

compute yi := y · gi

if yi = gk for some k, return [kt − i mod q]

(We omit the “mod 29” since it is understood that operations are in the
group Z∗29.) Then compute

17·20 = 17, 17·21 = 5, 17·22 = 10, 17·23 = 20, 17·24 = 11, 17·25 = 22,

and notice that 225 = 11 = 17 · 24. We thus have log2 17 = 25− 4 = 21. ♦

8.2.2 The Pohlig-Hellman Algorithm

The Pohlig-Hellman algorithm can be used to speed up the computation
of discrete logarithms when any non-trivial factors of the group order q are
known. Recall that the order of an element g, which we denote here by ord(g),
is the smallest positive i for which gi = 1. We will need the following lemma:

LEMMA 8.7 Let ord(g) = q, and say p | q. Then ord(gp) = q/p.

PROOF Since (gp)q/p = gq = 1, the order of gp is certainly at most q/p.
Let i > 0 be such that (gp)i = 1. Then gpi = 1 and, since q is the order
of g, it must be the case that pi ≥ q or i ≥ q/p. The order of gp is therefore
exactly q/p.

We will also use a generalization of the Chinese remainder theorem: if
q =

∏k
i=1 qi and the {qi} are pairwise relatively prime (i.e., gcd(qi, qj) = 1 for

all i 6= j), then

Zq ' Zq1 × · · · × Zqk
and Z

∗
q ' Z

∗
q1
× · · · × Z

∗
qk

.

(This can be proved by induction on k, using the basic Chinese remainder
theorem as the base case.) Moreover, by an extension of the algorithm in
Section 7.1.5 it is possible to convert efficiently between the representation
of an element as an element of Zq and its representation as an element of
Zq1 × · · · × Zqk

.

* Factoring and Computing Discrete Logarithms 295

We now describe the Pohlig-Hellman approach. We are given g and y and
are interested in finding an x such that gx = y. Let ord(g) = q, and say a
factorization

q =
k∏

i=1

qi

is known with the {qi} pairwise relatively prime. (Note that this need not be
the complete prime factorization of q.) We know that

(
gq/qi

)x

= (gx)
q/qi = yq/qi for i = 1, . . . , k. (8.4)

Letting gi
def
= gq/qi , we thus have k instances of a discrete logarithm problem

in k smaller groups, each of size ord(gi) = qi (by Lemma 8.7).
We can solve each of the k resulting instances using any other algorithm for

solving the discrete logarithm problem; for concreteness, let us assume that
the baby-step/giant-step algorithm of the previous section is used. Solving
these instances gives a set of answers {xi}ki=1 for which gxi

i = yq/qi = gx
i .

(The second equality follows from Equation (8.4).) Proposition 7.50 implies
that x = xi mod qi for all i. By the generalized Chinese remainder theorem
discussed earlier, the constraints

x = x1 mod q1

...

x = xk mod qk

uniquely determine x modulo q. (This is of course the best we can hope for,
since the equation gx = y only uniquely determines x modulo q.) The answer
x itself can be efficiently reconstructed from x1, . . . , xk .

Example 8.8
We again apply the ideas introduced here to compute a discrete logarithm in
Z∗p. Here, take p = 31 with the order of Z∗31 being q = 31− 1 = 30 = 5 · 3 · 2.
Say g = 3 and y = 26 = gx. We have

(gx)30/5 = y30/5 ⇒ (36)x = 16x = 266 = 1

(gx)30/3 = y30/3 ⇒ (310)x = 25x = 2610 = 5

(gx)30/2 = y30/2 ⇒ (315)x = 30x = 2615 = 30.

(Once again, we omit the “mod 31” since this is understood.) Solving each
equation, we obtain

x = 0 mod 5, x = 2 mod 3, x = 1 mod 2,

and so x = 5 mod 30. Indeed, 35 = 26 mod 31. ♦

296 Introduction to Modern Cryptography

Assuming q with factorization as above, and assuming the baby-step/giant-
step algorithm is used to solve each of the smaller instances of the dis-
crete logarithm problem, the running time of the entire algorithm will be
O(polylog(q) ·∑k

i=1

√
qi). Since q can have at most log q factors, this simpli-

fies to O(polylog(q) ·maxi{√qi}). Depending on the size of the largest known
factor of q, this can be a marked improvement over the O(

√
q) algorithm

given in the previous section. In particular, if q has many small factors then
the discrete logarithm problem in a group of order q will be relatively easy to
solve via this approach. As discussed in Section 7.3.2, this motivates choosing
q to be prime for cryptographic applications.

If q has prime factorization q =
∏k

i=1 pei

i , the Pohlig-Hellman algorithm as
described above solves the discrete logarithm in a group of order q in time

O
(
polylog(q) ·maxi{

√
pei

i }
)
. Using additional ideas, this can be improved

to O
(
polylog(q) ·maxi{√pi}

)
; see Exercise 8.2.

8.2.3 The Discrete Logarithm Problem in ZN

The algorithms shown in the preceding two sections are generic, in the sense
that they are oblivious to the underlying group in which the discrete logarithm
problem is defined (except for knowledge of the group order). The purpose of
this brief section is merely to emphasize that non-generic algorithms, which
make use of the particular (representation of the) group under consideration,
can potentially perform much better.

Consider the task of computing discrete logarithms in the (additive) group
ZN for arbitrary N . The problem is trivial with respect to the base g = 1:
the discrete logarithm of element y ∈ ZN is simply the integer y itself since
y · 1 = y mod N . Note that, formally speaking, the ‘y’ on the left-hand side
of this equation denotes the integer y while the ‘y’ on the right-hand side
denotes the element y ∈ ZN . Nevertheless, the particular nature of the group
ZN allows us to essentially view these two instances of ‘y’ interchangeably.

Things are only mildly more complicated if a generator g 6= 1 is used.
(Exercise 8.3 deals with the case when g is not a generator of ZN .) Let g ∈ ZN

be a generator and say we want to compute x such that x · g = y mod N for
some given value y. Using Theorem B.18 (along with the fact that 1 is a
generator), we have gcd(g, N) = 1. But then g has a multiplicative inverse
g−1 modulo N (and this inverse can be computed efficiently as discussed in
Appendix B.2.2). The desired solution is simply x = y · g−1 mod N .

It is interesting to pinpoint once again exactly what non-generic properties
of ZN are being used here. In this case, the algorithm implicitly uses the fact
that an operation (namely, multiplication modulo N) other than the group
operation (i.e., addition modulo N) is defined on the elements of the group.

* Factoring and Computing Discrete Logarithms 297

8.2.4 The Index Calculus Method

The index calculus method solves the discrete logarithm problem in the
cyclic group Z∗p (for p prime) in time that is sub-exponential in the length
of p. The astute reader may notice that the algorithm as we will describe it
bears some resemblance to the quadratic sieve factoring algorithm introduced
in Section 8.1.3. As in the case of that algorithm, we will discuss the main
ideas used by the index calculus method but leave the details beyond the scope
of our treatment. Also, some small changes are made in order to simplify the
presentation.

The index calculus method uses a two-stage process. Importantly, the first
stage requires knowledge only of the modulus p and the base g and so it can
be run as a ‘pre-processing step’ before y is known. For the same reason, it
suffices to run the first stage only once in order to solve multiple instances of
the discrete logarithm problem (as long as all these instances share the same
p and g).

Step 1. Let q = p − 1, the order of Z∗p. Fix a set B = {p1, . . . , pk} of
small prime numbers. In this stage, we find ` ≥ k distinct, non-zero values

x1, . . . , x` ∈ Zq for which gi
def
= gxi mod p is “small”, so that gi can be factored

over the integers (using, e.g., trial division) and such that all the prime factors
of gi lie in B. We do not discuss how these {xi} are found.

Following this step, we have ` equations of the form:

gx1 =

k∏

i=1

p
e1,i

i mod p

...

gx` =

k∏

i=1

p
e`,i

i mod p.

Taking discrete logarithms, we can transform these into linear equations:

x1 =
k∑

i=1

e1,i · logg pi mod (p− 1)

... (8.5)

x` =

k∑

i=1

e`,i · logg pi mod (p− 1).

Note that the {xi} and the {ei,j} are known, while the {logg pi} are unknown.

Step 2. Now we are given an element y and want to compute logg y. Here,

we find a value x∗ ∈ Zq for which g∗
def
= gx∗ · y mod p is “small”, so that g∗

298 Introduction to Modern Cryptography

can be factored over the integers and such that all the prime factors of g∗ lie
in B. We do not discuss how x∗ is found.

Say

gx∗ · y =
k∏

i=1

p
e∗

i
i mod p

⇒ x∗ + logg y =

k∑

i=1

e∗i · logg pi mod (p− 1),

where x∗ and the {e∗i } are known. Combined with Equation (8.5), we have
` + 1 ≥ k + 1 linear equations in the k + 1 unknowns {logg pi}ki=1 and logg y.
Using linear algebraic6 methods (and assuming the system of equations is not
under-defined), we can solve for each of the unknowns and in particular solve
for the desired solution logg y.

Example 8.9

Let p = 101, g = 3, and y = 87. We have 310 = 65 mod 101, and 65 = 5 · 13
(over the integers). Similarly, 312 = 80 = 24·5 mod 101 and 314 = 13 mod 101.
That is,

10 = log3 5 + log3 13 mod 100

12 = 4 · log3 2 + log3 5 mod 100

14 = log3 13 mod 100.

We also have 35 · 87 = 32 = 25 mod 101, or

5 + log3 87 = 5 · log3 2 mod 100. (8.6)

Using simple algebraic manipulation, we first derive 4 · log3 2 = 16 mod 100.
This doesn’t determine log3 2 uniquely, but it does tell us that log3 2 =
4, 29, 54, or 79 (cf. Exercise 8.3). Trying all possibilities shows that log3 2 = 29.
Plugging this into Equation (8.6) gives log3 87 = 40. ♦

Running time. It can be shown that with appropriate optimizations the

index calculus algorithm runs in time 2O(
√

n·log n) to compute discrete log-
arithms in Z∗p for p a prime of length n. The important point is that this
is sub-exponential in ‖p‖. Note that the expression for the running time is
identical to that for the quadratic sieve method.

6Technically, things are slightly more complicated since the linear equations are all modulo
p− 1, which is not prime. Nevertheless, there exist techniques for dealing with this.

* Factoring and Computing Discrete Logarithms 299

References and Additional Reading

The texts by Wagstaff [127], Shoup [117], Crandall and Pomerance [43],
and Bressoud [33] all provide further discussion of algorithms for factoring
and computing discrete logarithms, and the latter two books are highly rec-
ommended for the reader wishing to understand the state-of-the-art.

Lower bounds on so-called generic algorithms for computing discrete loga-
rithms (i.e., algorithms that apply to arbitrary groups without regard for the
way the group is represented) are given by Nechaev [100] and Shoup [114].

Exercises

8.1 Here we show how to solve the discrete logarithm problem in a cyclic
group of order q = pe in time O(polylog(q) · √p). We are given as input
a generator g of known order pe and a value y, and want to compute
x = logg y. Note that p can be computed easily from q (see Exercise 7.9
in Chapter 7).

(a) Show how to find x mod p in time O(polylog(q) · √p).
Hint: Solve the equation

(
gpe−1

)x0
= ype−1

and use the same ideas as in the Pohlig-Hellman algorithm.

(b) Say x = x0+x1 ·p+· · ·+xe−1 ·pe−1 with 0 ≤ xi < p. In the previous
step we determined x0. Show how to compute in polylog(q) time a

value y1 such that (gp)x1+x2·p+···+xe−1·pe−2

= y1.

(c) Use recursion to obtain the claimed running time for the original
problem. (Note that e = polylog(q).)

8.2 Let q have prime factorization q =
∏k

i=1 pei

i . Using the result from the
previous problem, show a modification of the Pohlig-Hellman algorithm
that solves the discrete logarithm problem in a group of order q in time

O
(
polylog(q) ·∑k

i=1 ei
√

pi

)
= O

(
polylog(q) ·max{√pi }

)
.

8.3 (a) Show that if ab = c mod N and gcd(b, N) = d, then:

i. d | c;
ii. a · (b/d) = (c/d) mod (N/d); and

iii. gcd(b/d, N/d) = 1.

(b) Describe how to use the above to compute discrete logarithms in
ZN efficiently even when the base g is not a generator of ZN .

Chapter 9

Private-Key Management and the
Public-Key Revolution

9.1 Limitations of Private-Key Cryptography

9.1.1 The Key-Management Problem

Until now we have learned that given shared, secret keys it is possible to
solve the primary problem of cryptography: how to securely communicate
over an insecure channel. However, we have not really dealt at all with the
question of how shared, secret keys can be obtained in the first place. Clearly,
they cannot be sent over an insecure communication channel, because an
eavesdropping adversary could then catch them en route.

Key distribution and setup. The initial sharing of a secret key can be
done using a secure channel that can be implemented, e.g., using a trusted
messenger service. This option is likely to be unavailable to the average per-
son, though governments, the military, intelligence organizations, and other
such entities do have the means to share keys in this way. (Indeed, it is ru-
mored that the red phone connecting Moscow and Washington was encrypted
using a one-time pad, where the keys were shared by diplomats who flew from
one country to the other carrying briefcases full of print-outs of the pad being
used.)

A more pragmatic method for two parties to share a key is for these parties
to arrange a physical meeting at which time a random key can be generated
(perhaps by flipping coins) and a copy of the key given to each party. Although
one can imagine two users arranging such a meeting on a dark street corner, a
more commonplace setting where this might take place is in a standard work
environment. For example, a manager might share a key with each employee
on the day when that employee first shows up at work.

While this might be a viable approach when only the manager shares keys
with each employee, it does not scale well when all employees are required to
share keys with each other. Extending the above approach would mean that
every time a new employee arrived, all the other employees would have to
share a new secret key with her. This would be especially problematic if the
company is large and spread over a number of different physical locations.

301

302 Introduction to Modern Cryptography

A partial solution in the above setting is to use a designated “controller”
(say, the IT manager of the company) to establish shared keys between all
employees. Specifically, when a new employee joins the company the con-
troller could generate ` random keys k1, . . . , k`, give these keys to the new
employee (in person), and then send key ki to the ith existing employee by
encrypting ki using the secret key shared between the controller and this em-
ployee. (We assume here that the controller is an employee, and so all existing
employees share a key with him.) This is a very cumbersome approach. More
importantly, it does not even give a complete solution, as the controller knows
all the keys shared by all employees. A dishonest controller will be able to
decrypt all inter-employee communication.

Key storage and secrecy. Consider again the aforementioned work en-
vironment where each pair of employees shares a secret key. This means
that when there are U employees, the number of secret keys in the system
is
(
U
2

)
= Θ(U2). Perhaps more importantly, this means that every employee

must hold U−1 secret keys so that it can communicate with all other employ-
ees. In fact, the situation is far worse because employees may need keys to
communicate securely with remote resources as well (e.g., databases, servers,
and so on). When the organization in question is large this creates a huge
problem, on a number of levels. First, the proliferation of many secret keys
creates a significant logistical problem. Second, all these secret keys must
be stored in a secure place. The more keys there are, the harder it is to
protect them, and the higher the chance of some keys being stolen by an ad-
versary. Computer systems are often infected by viruses, worms, and other
forms of malicious software. These malicious programs can be instructed to
steal secret keys and send them quietly over the network to an attacker (such
programs have been deployed in the past and their existence is not only a
theoretical threat). Thus, storing multiple keys on a personal computer is not
a reasonable solution.

Secret keys must be stored in a secure fashion irrespective of the number
of keys each party holds. When only a few keys need to be stored, however,
there are good solutions for doing this. The typical solution today is to use
something called a smartcard, which is essentially a highly protected piece of
hardware where secret cryptographic keys are stored. Cryptographic compu-
tations using the secret keys take place on the smartcard, ensuring that par-
ties’ secret keys never find their way onto their insecure personal computers.
Smartcards are typically quite limited in memory, making them impractical
for storing hundreds (if not thousands) of keys. Of course, in principle similar
solutions can be found. In practice, though, a system with many secret keys
is simply more vulnerable to attack (you can hide a needle in a haystack but
it’s hard to hide thousands of needles in a haystack).

Once again, organizations with many resources like governments and armies
are able to solve these problems. The second author once spoke to someone
who worked for the US embassy in a Western European country many years

Private-Key Management and the Public-Key Revolution 303

ago. His job was to decrypt all incoming communications, and the system
was basically as follows. Whenever an encrypted message arrived, he took the
message to a special highly-protected and locked room where all of the keys
were stored. He then found the appropriate key (by its identity sent with
the message) and used the key to decrypt the message.1 The point of this
story is that governments and organizations on that scale could use private-
key encryption in order to solve their problems. However, the solutions were
very costly, do not scale well, and are not suitable for settings that are typical
in industry or for personal use.

The limitations of private-key cryptography. As we have discussed,
private-key cryptography can be used in “closed” systems, where it is pos-
sible to distribute secret keys via physical means. However, there are two
very important points to note. First, even within closed systems, private-key
cryptography is difficult to deploy and maintain, and many security risks arise
from the necessity to manage so many keys. The second point to realize is
that in many settings it is not possible to use private-key cryptography at
all. For example, when encryption is needed for making a purchase over the
Internet, or sending email to a colleague in another country (who we may
never have met), private-key cryptography just does not provide a solution.
Thus in “open” or “ad-hoc” systems, different solutions are needed. Due to
its importance, we reiterate this point:

Solutions that are based on private-key cryptography are not suf-
ficient to deal with the problem of secure communication in open
systems where parties cannot physically meet and/or have tran-
sient interactions.

9.1.2 A Partial Solution – Key Distribution Centers

As we have described, there are three distinct problems that arise with
respect to the use of private-key cryptography. The first is that of key dis-
tribution; the second is that of managing so many secret keys; and the third
is its inapplicability to open systems. Although it is impossible to fully solve
the first problem, there is a solution that alleviates the first two problems and
makes it feasible to implement private-key solutions in large organizations.
An extension of the idea (that we do not discuss further) allows private-key
cryptography to be used in “partially-open” systems consisting of multiple
organizations that mutually trust each other.

Key distribution centers. Consider again the case of a large organiza-
tion where all pairs of employees must be able to communicate securely. The

1For obvious reasons, the description told of this job was very vague. We therefore cannot
guarantee perfect accuracy. In any case, the system worked essentially as described here.

304 Introduction to Modern Cryptography

solution in which each pair of employees shares a key results in a huge prolif-
eration of keys in the system. A different approach is to rely on the fact that
all employees may trust the same entity (at least with respect to the security
of work-related information), say the IT manager of the organization. It is
therefore possible for the IT manager to set up a single server — called a key
distribution center or KDC for short — that acts as an intermediary between
employees that wish to communicate, and distributes keys to the employees.
This server can work in the following way. First, all employees share a single
key with the KDC; this key can be generated and shared, e.g., on the em-
ployee’s first day at work. Then, when employee Alice wants to communicate
securely with employee Bob, she sends a message to the KDC saying ‘Alice

wishes to communicate with Bob’. The KDC then chooses a new random
secret key (called a session key) and sends this key to Alice encrypted under
Alice’s key and to Bob encrypted under Bob’s key. Once Alice and Bob re-
ceive the session key, they can use it to communicate securely; when they are
done with their conversation, they can (and should) erase this key because
they can always contact the server again should they wish to communicate
again at some later time. We remark that this is just a sketch of the solution
and is not sufficient to provide the necessary level of security. (It is beyond
the scope of this book to provide rigorous definitions and proofs for analyzing
these solutions.) Nevertheless, it is enough to give a feeling of how to make
private-key cryptography workable.

Consider the following advantages of this approach:

1. Each employee needs to store only one secret key and so a smartcard-
type solution can be deployed. It is true that the KDC needs to store
many keys. However, the KDC can be secured in a safe place and given
the highest possible protection against network attacks.

2. When an employee joins the organization all that must be done is to set
up a secret key between this employee and the KDC. No other employees
need to update the set of keys they hold. The same is true when a party
leaves the organization.

Thus, this approach alleviates two problems related to private-key cryptog-
raphy: key distribution is simplified (only one new key must be shared when
a party joins the organization), and key storage issues are resolved (only a
single key needs to be stored by each party except the KDC). In short, this
approach makes private-key cryptography practical in a single organization,
where there is one person who is trusted by everyone.

Having said this, there are also some disadvantages to this approach:

1. A successful attack on the KDC will result in a complete break of the
system for all parties. Thus, the motivation to break into the KDC
is very great, increasing the security risk. In addition, an adversary
internal to the organization who has access to the KDC (for example,
the IT manager) can decrypt all communication between all parties.

Private-Key Management and the Public-Key Revolution 305

2. The above system has a single point of failure: if the KDC crashes, all
secure communication is temporarily impossible. Since all employees
are continually contacting the KDC, the load on the KDC can be very
high thereby increasing the chances that it may fall.

A simple solution is to replicate the KDC. This works (and is essential
in practice), however it is important to be aware that the existence of
more KDCs means that there are now more points of attack on the
system. Furthermore, it becomes more difficult to add a new employee
since updates to any KDC must be securely propagated to all others.

The KDC-based solution above is similar to the solution we gave earlier
whereby a designated “controller” sets up shared keys between all employees
any time a new employee joins the organization. In the previous case, the
controller is essentially acting as an off-line KDC. Since the controller is only
involved in the initial setup, all employees still need to hold many secret keys.
This is in contrast to the solution given here where the KDC is online and so
can be used to interactively exchange keys between any pair of parties when
needed. This means that each party needs to store only a single secret key.

Protocols for key distribution using a KDC. There are a number of
protocols that can be found in the literature for secure key distribution via a
KDC. One of these is the classic Needham-Schroeder protocol. We will not go
into the details of this protocol (or any other) and instead refer the reader to
the references listed at the end of this chapter for more details. We do mention
one engineering feature of the protocol. When Alice contacts the KDC and
asks to communicate with Bob, the KDC does not send the encrypted session
key to both Alice and Bob. Rather, the KDC sends the session key encrypted
under both Alice’s and Bob’s keys to Alice, and Alice herself forwards to
Bob the session key encrypted under his key. The protocol was designed in
this way due to the fact that Bob may not be online and this will cause a
problem for the KDC who will have to decide when to timeout. By sending
both encrypted keys to Alice, the KDC is relieved of unnecessary work. The
session key encrypted under Bob’s key that the KDC sends to Alice is called
a ticket, and can be viewed as a credential allowing Alice to talk to Bob.

In practice, protocols like the Needham-Schroeder protocol are widely used.
In many cases Alice and Bob are not two individuals, but Alice may be an
individual and Bob a resource. For example, Alice may wish to read from
a protected disk on some server. Then, Alice asks for “permission” to do
this from the KDC who issues Alice a ticket that serves as Alice’s credentials
for reading from that disk. This ticket contains a session key (as described
above) and thus Alice’s communication with the server can be protected.
A very widely-used system for implementing user authentication and secure
communication via a KDC is the Kerberos protocol that was developed at
MIT. Kerberos has a number of important features, and is the method used
by Microsoft Windows (in Windows 2000 and above) for securing an internal

306 Introduction to Modern Cryptography

network. We conclude by noting that the secret key that Alice shared with
the KDC is usually a short, memorizable password (because most users don’t
have smartcards to store secret keys). In this case, many additional security
problems arise that must be considered and dealt with. Once again, we refer
the interested reader to the references listed at the end of this chapter for
more information about such issues and how they are addressed.

9.2 The Public-Key Revolution

Key distribution centers and protocols like Kerberos are very useful, and
are commonly used in practice. However, they still cannot solve the basic
problem of key distribution in open systems where there is no secure chan-
nel. (Note that in the KDC setting, we assume a “secure channel” that is
used to share a key between an employee and the KDC when the employee
first joins the organization.) In particular, KDCs do not help in Internet-like
settings. In order to deal with this, something radically different must be
used. In 1976, Whitfield Diffie and Martin Hellman published a paper with
an innocent-looking title called “New Directions in Cryptography” [50]. The
influence of this paper was enormous; in addition to introducing a fundamen-
tally different way of looking at cryptography, it served as one of the first
steps toward moving cryptography out of the private domain and into the
public one. Before describing the basic ideas of Diffie and Hellman, we quote
the first two paragraphs of their paper:

We stand today on the brink of a revolution in cryptography. The
development of cheap digital hardware has freed it from the design
limitations of mechanical computing and brought the cost of high
grade cryptographic devices down to where they can be used in such
commercial applications as remote cash dispensers and computer
terminals.

In turn, such applications create a need for new types of crypto-
graphic systems which minimize the necessity of secure key distri-
bution channels and supply the equivalent of a written signature.
At the same time, theoretical developments in information theory
and computer science show promise of providing provably secure
cryptosystems, changing this ancient art into a science.

Diffie and Hellman were not exaggerating, and the revolution they spoke of
was due in great part due to their work. Until 1976, it was well accepted
that encryption could not be carried out without first sharing a secret key,
as we have seen so far in this book. However, Diffie and Hellman observed
that there is asymmetry in the world: there are certain operation that can be

Private-Key Management and the Public-Key Revolution 307

easily carried out but cannot be easily inverted. For example, many padlocks
can be locked without a key (i.e., easily), but then cannot be reopened. More
strikingly, it is easy to shatter a glass vase but extremely difficult to put it
back together again. Algorithmically, and more to the point, we have seen that
it is easy to multiple two large primes but difficult to recover these primes
from their product (this is exactly the factoring problem discussed in the
previous chapter). The existence of such phenomena opens the possibility for
constructing an encryption scheme for which the encryption and decryption
keys are different. Furthermore, and most importantly, the security of the
encryption scheme is preserved even against an adversary who knows the
encryption key. Given such a scheme, it is possible to publicize the encryption
key (say, in the newspaper), enabling everyone to send encrypted messages.
Of course, the main point is that the encryption scheme remains secure even
though the encryption key has been publicized. Such encryption schemes are
called asymmetric or public-key (in contrast to the symmetric, or private-key,
encryption schemes that we have seen so far). In a public-key encryption
scheme the encryption key is called the public key and the decryption key is
called the private key.

It is clear why this helps with key distribution. With a public-key encryp-
tion scheme it is possible to post one’s public keys on one’s webpage, or send
the public key to another party via email, without ever having to arrange
a physical meeting.2 Furthermore, it is no longer necessary to store many
secret keys. Rather, each party needs to store only his or her own private
key; other parties’ public keys can either be obtained when needed, or stored
in a non-secure (i.e., publicly-readable) fashion. (Clearly, however, the in-
tegrity of stored public keys must be preserved.) Given the above, and the
fact that private-key encryption is not implementable in many settings (like
today’s Internet), the invention of public-key encryption was indeed a revolu-
tion in cryptography. Indeed, it is no coincidence that until the late ’70s and
early ’80s, encryption and cryptography in general belonged to the domain
of intelligence and military organizations; only with the advent of public-key
cryptography did the use of cryptography spread to the masses.3

Diffie and Hellman actually introduced three distinct public-key (or asym-
metric) primitives. The first is that of public-key encryption, described above;
we will study this notion in Chapter 10. The second is a public-key analogue of
message authentication codes, called digital signatures schemes and discussed
in Chapter 12. As with MACs, a digital signature scheme is used to pre-
vent any undetected tampering of the signed message. In contrast to MACs,
however, authenticity of a message can be verified by anyone who knows the

2We stress that this is actually not as simple as it seems. Nevertheless, the point is that
public keys can be distributed over a public (but authenticated) channel.
3Of course, until the early ’80s computers were also not in widespread use in the public
domain. Nevertheless, cryptography could not have moved to the public domain until the
problem of key distribution was solved.

308 Introduction to Modern Cryptography

public key of the sender, whereas only the owner of the corresponding private
key can generate a valid digital signature. This turns out to have far-reaching
ramifications. Specifically, it is possible to take a document that was digitally
signed by a party Alice and present it to a third party, such as a judge, as
proof that Alice indeed signed the document. Since only Alice knows the cor-
responding private key, this serves as proof that Alice signed the document.
This property is called non-repudiation and has extensive applications in elec-
tronic commerce. For example, it is possible to digitally sign contracts, send
signed electronic purchase orders or promises of payments and so on. Another
highly important application of digital signatures is to aid in the secure distri-
bution of public keys within a “public-key infrastructure”. This is discussed
in more detail in Chapter 12.

The third primitive introduced by Diffie and Hellman is that of interac-
tive key exchange. An interactive key-exchange protocol is a method whereby
parties who do not have any secret information can generate a secret key by
communicating over an open network. The main property here is that an
eavesdropping adversary who sees all the messages sent over the communi-
cation line does not learn anything about the secret key. (Such a protocol
cannot be constructed using only private-key techniques.) Stopping to think
about it, this is quite amazing — it means that, in principle, if you and a
friend stand on opposite sides of a room you can shout messages to each other
in such a way that will allow you to generate a shared secret that someone
else (listening to everything you say) won’t learn anything about!

The main difference between key exchange and encryption is that the former
requires both parties to be online. This is in contrast to encryption that is
a non-interactive process and is thus more appropriate for some applications.
Secure email, for example, requires encryption because the recipient is not
necessarily online when the email message is sent.

Although Diffie and Hellman introduced all three of the above primitives,
they only presented a construction for the problem of key exchange. A year
later, Ron Rivest, Adi Shamir, and Len Adleman proposed the RSA problem
and presented the first public-key encryption and digital signature schemes
based on the hardness of this problem [110]. Variants of the schemes they
presented are the most widely used today. Interestingly, in 1985 an encryption
scheme based on the Diffie-Hellman key-exchange protocol was presented [60].
Thus, although Diffie and Hellman did not succeed in constructing a (non-
interactive) public-key encryption scheme, they came very close. We describe
the Diffie-Hellman key-exchange protocol in the next section.

History. It is fascinating to read about the history leading to the public-
key revolution initiated by Diffie and Hellman. First, it is important to note
that similar ideas were floating around at the time. Another prominent re-
searcher who was doing similar and independent work at the same time was
Ralphe Merkle (Merkle is considered by many to be a co-inventor of public-key
cryptography, although he published after Diffie and Hellman). Another in-

Private-Key Management and the Public-Key Revolution 309

teresting fact is that it seems that a public-key encryption scheme was known
to the intelligence world (at the British intelligence agency GCHQ) in the
early 1970s. It appears, however, that although the underlying mathematics
of public-key encryption may have been discovered earlier, the widespread
ramifications of this new technology were not appreciated until Diffie and
Hellman came along.

At the time that their work was carried out, Diffie and Hellman (and oth-
ers working on and publishing papers in cryptography) were essentially under
threat of prosecution. This is due to the fact that under the International
Traffic in Arms Regulations (ITAR), technical literature on cryptography was
considered an implement of war. Although cryptographic publications soon
became accepted and widespread, at the time it was considered highly prob-
lematic. Indeed, Hellman tells a story where he personally gave a conference
presentation of joint work with Ralph Merkle and Steve Pohlig, even though
they were students and he was a professor (the usual practice is that students
who co-author a paper are the ones to present it). The reason for this reversal
of protocol was that, under the advice of Stanford’s general counsel, it was
recommended that students not present the paper, lest they be prosecuted.
Fortunately, the US government did not pursue this route and publications
in cryptography were allowed to continue. We remark that limitations on the
export of cryptographic implementations from the US continue until today.
However, since 2000 they have been greatly reduced and are hardly felt at all.

9.3 Diffie-Hellman Key Exchange

In this section we will present the Diffie-Hellman key exchange protocol and
will prove its security in the presence of eavesdropping adversaries. We will
not present definitions of security of key exchange for active adversaries who
may intercept and modify messages sent between the parties, as this material
is beyond the scope of this book.

The setting and definition of security: eavesdropping adversaries.
We will consider a setting with two parties Alice and Bob that run some
protocol in order to exchange a key; we denote the protocol by Π (thus Π
is the set of instructions for Alice and Bob in the protocol). The input of
both Alice and Bob in the protocol is the security parameter in unary form,
and they use random coins in their computation. Denote by rA the random
coins used by Alice and by rB the random coins used by Bob. Furthermore, let
outputA,Π(1n, rA, rB) and outputB,Π(1n, rA, rB) denote the respective outputs
of Alice and Bob from Π, upon input 1n and respective random coins rA and
rB . Finally, let transcriptΠ(1n, rA, rB) denote the transcript of all messages
sent by Alice and Bob in an execution of Π, upon input 1n and respective

310 Introduction to Modern Cryptography

random coins rA and rB . We assume that this output takes the form of an
n-bit key that is supposed to be shared by Alice and Bob. We are now ready
to present the definitions.

The first definition is a correctness requirement and it states that, except
with negligible probability, Alice and Bob must agree on the same key.

DEFINITION 9.1 A protocol Π for key exchange is called correct if there
exists a negligible function negl such that for every n,

Pr
[
outputA,Π(1n, rA, rB)

]
6= Pr

[
outputB,Π(1n, rA, rB)

]
≤ negl(n)

where the probabilities are taken over the choice of rA and rB.

We now move on to define security. Intuitively, a key exchange protocol is
secure if the key output by Alice and Bob is completely secret to an eaves-
dropping adversary. This is formulated by giving an adversary the transcript
of a protocol execution and seeing if it can distinguish between the key out-
put by the parties and a completely random key. In order to define this, we
present an experiment that is somewhat reminiscent of the experiment used
to define security of encryption. Let Eve be an adversary and n the security
parameter. We have the following experiment:

The eavesdropping key exchange experiment KEeav
Eve,Π(n):

1. Random strings rA and rB are chosen of the appropriate
length, as defined in protocol Π.

2. A random bit b ← {0, 1} is chosen; if b = 0 then set k :=
outputA,Π(1n, rA, rB), and if b = 1 then k ← {0, 1}n.

3. The adversary Eve is given for input the security parameter
1n, the transcript transcriptΠ(1n, rA, rB) and the key k, and
outputs a bit b′.

Formally, b′ ← Eve (1n, transcriptΠ(1n, rA, rB), k).

4. The output of the experiment is defined to be 1 if b′ = b,
and 0 otherwise. (In case KEeav

Eve,Π(n) = 1, we say that Eve

succeeds.)

Observe that k could be set to either outputA,Π(1n, rA, rB) or outputB,Π(1n, rA, rB)
(when b = 0) and it wouldn’t make a difference because we are only interested
in correct protocols.

The transcript and output value are generated using the same rA and rB

and are therefore correlated as in a real execution. The adversary Eve suc-
ceeds in the experiment if it can guess whether the key k it was given is the
“correct” one, or it is completely random and independent of the transcript.
As expected, we say that the protocol Π is secure if the adversary succeeds
with probability that is at most negligibly greater than 1/2. That is:

Private-Key Management and the Public-Key Revolution 311

DEFINITION 9.2 A key exchange protocol Π is secure in the presence of

eavesdropping adversaries if for every probabilistic polynomial-time adversary
Eve there exists a negligible function negl such that

Pr
[
KEeav

Eve,Π(n) = 1
]
≤ 1

2
+ negl(n)

We remark that the aim of a key exchange protocol is to use the output
key k for encrypting and possibly MACing messages that are now to be ex-
changed between the parties. The fact that the above definition guarantees
that one can use the output key for encryption and MAC, and security is
preserved, needs a formal proof. However, such a proof is beyond the scope
of this book. Rather, we rely on intuition here: if the output key looks ex-
actly like a random one, then clearly it can be used for encryption, MAC or
any other cryptographic task for which a random key is needed. (We warn
against relying on intuition alone in cryptography. However, we do not rely
on intuition and once again note that there is a proof that this suffices.)

The Diffie-Hellman key exchange protocol. We will now describe the
Diffie-Hellman key exchange protocol that appeared in their original paper.
The protocol is based on the difficulty of the discrete log problem (see Chap-
ter 7), and can be formally proven secure under the decisional Diffie-Hellman
(DDH) problem.

Before motivating the security of the protocol, we show that it is correct.
In order to see this, notice that h2 = gy and thus hx

2 = gyx = gxy. Likewise,
h1 = gx and so hy

1 = gxy. Therefore hx
2 = hy

1 meaning that Alice and Bob
output the same key k. Next, regarding security, notice that an eavesdropping
adversary Eve cannot carry out the same operation as Alice or Bob in order
to compute the key k. This is because Eve does not know x or y and cannot
compute them because this involves solving the discrete logarithm problem
(which is assumed to be hard). However, who says that the only way of
computing k is to first find x or y? It may be possible to take h1 = gx and
h2 = gy and compute k = gxy without ever obtaining x or y. This task
is exactly the computational Diffie-Hellman problem and it too is assumed
to be hard. However, with a bit more thought, this is also not enough to
guarantee security. Specifically, it may be hard to compute gxy but it may
be easy to distinguish it from a random group element. This is not a merely
theoretical concern, because it may be possible to obtain half of the bits of
gxy and no more. In such a case, it is indeed hard to solve the computational
Diffie-Hellman problem and thus hard to obtain the entire key k. However,
possession of half the key may suffice for breaking the encryption scheme (or
for whatever task the key is used). We therefore need a stronger assumption,
and that is that the output key gxy is not just hard to compute but is also hard
to distinguish from a random element. This is exactly the decisional Diffie-

312 Introduction to Modern Cryptography

CONSTRUCTION 9.3 Diffie-Hellman key exchange.

• Common input: The security parameter n

• The protocol:

1. Alice generates the description of a group G and generator
g using a group-generation algorithm G with input 1n, and
sends the result to Bob. Let m denote the order of g.a

2. Alice chooses a random index x ∈ {1, . . . , m − 1} and com-
putes h1 = gx. Alice sends h1 to Bob.

3. Bob chooses a random index y ∈ {1, . . . , m−1} and computes
h2 = gy. Bob sends h2 to Alice. (Note that this can be
computed and sent before Bob receives h1 from Alice.)

4. Alice outputs k = hx
2 .

5. Bob outputs k = hy
1 .

aIt is possible to have the protocol assume that both parties have the descrip-
tion of G and g ahead of time. In such a case, Alice and Bob’s messages can
be generated independently of each other.

Hellman assumption and is thus what is required for proving the security of
the protocol.

Before proceeding to the proof, we remark that the output of Alice and Bob
from the protocol is an element in G. The representation of such an element
may be easily distinguished from a random string of the same length. For
example, in the group Z∗p for a prime p, the most significant bit may be 0
with very high probability. We thus modify the experiment so that if b = 1
the adversary is given a random group element h ← G and not a uniformly
distributed string of the same length. We denote this modified experiment by
KEeav ′. We now proceed to the proof:

THEOREM 9.4 Assuming that the decisional Diffie-Hellman problem is
hard relative to the group generation algorithm G, the Diffie-Hellman key ex-
change protocol of Construction 9.3 is correct and secure in the presence of
eavesdropping adversaries.

PROOF Correctness has already been proved in the discussion above. We
prove security. By the definition of the experiment KEeav′, the adversary
Eve receives (G, g, h1, h2, k), where (G, g) are generated according to G, and
k = hy

1 = hx
2 if b = 0 and k ← G is a random element if b = 1. Writing this

out in full we have that this input of Eve equals (G, g, gx, gy, gxy) if b = 0
and (G, g, gx, gy, h) if b = 1 (where h is a random element in G and x and y

Private-Key Management and the Public-Key Revolution 313

are chosen randomly as in the protocol). Thus, distinguishing between these
two elements is equivalent to solving the decisional Diffie-Hellman problem.
Formally, let ε be a function such that Pr

[
KEeav′

Eve,Π(n) = 1
]

= 1
2 + ε(n).

Noting that Pr[b = 0] = Pr[b = 1] = 1/2, we have

Pr
[
KEeav ′

Eve,Π(n) = 1
]

=
1

2
· Pr

[
KEeav′

Eve,Π(n) = 1 | b = 0
]
+

1

2
· Pr

[
KEeav ′

Eve,Π(n) = 1 | b = 1
]

=
1

2
· Pr[Eve(G, g, gx, gy, gxy) = 0] +

1

2
· Pr[Eve(G, g, gx, gy, h) = 1]

and therefore

1

2
· Pr[Eve(G, g, gx, gy, gxy) = 0] +

1

2
· Pr[Eve(G, g, gx, gy, h) = 1] =

1

2
+ ε(n)

or equivalently

Pr[Eve(G, g, gx, gy, gxy) = 0] + Pr[Eve(G, g, gx, gy, h) = 1] = 1 + 2ε(n).

Noting that Pr[Eve(G, g, gx, gy, gxy) = 0] = 1 − Pr[Eve(G, g, gx, gy, gxy) = 1]
we have that

1− Pr[Eve(G, g, gx, gy, gxy) = 1] + Pr[Eve(G, g, gx, gy, h) = 1] = 1 + 2ε(n)

and so

Pr[Eve(G, g, gx, gy, h) = 1]− Pr[Eve(G, g, gx, gy, gxy) = 1] = 2ε(n).

By the assumed hardness of the decisional Diffie-Hellman assumption relative
to the group generation algorithm G, the above difference must be negligi-
ble and so ε must also be a negligible function. We therefore conclude that
Pr
[
KEeav ′

Eve,Π(n) = 1
]

is at most negligibly greater than 1/2 and so the pro-
tocol is secure in the presence of eavesdropping adversaries.

Random elements versus random strings. We have proven that the
output of Alice and Bob from the Diffie-Hellman key exchange protocol looks
the same as a random group element (to probabilistic polynomial-time adver-
saries). However, in most cases, the secret key that Alice and Bob wish to use
must be a uniformly distributed (or pseudorandom) string of some length (as
required by the original experiment KEeav). Thus, the random group element
must be converted into a string that can be used for encryption. Such an
operation can be carried out and the function used for the conversion is called
a “randomness extractor”. We will not describe how this is done here.

Insecurity of Diffie-Hellman key exchange for active adversaries.
So far we have considered the case of an eavesdropping adversaries. Now,

314 Introduction to Modern Cryptography

although eavesdropping attacks are by far the most common (as they are so
easy to carry out), they are in now way the only type of attack. Rather, it
is possible to carry out active attacks in which the adversary sits in between
Alice and Bob, intercepts their messages and modifies them or sends messages
of its own. Such an adversarial attack is called a man-in-the-middle attack
and any key exchange protocol to be used today must be secure also in the
presence of adversaries carrying out such an attack. We will not define security
for this case as it is rather involved and we will also not show how to achieve
key exchange in the presence of man-in-the-middle attacks. However, we
do remark that the Diffie-Hellman protocol is not secure against man-in-
the-middle attacks. In fact, a man-in-the-middle adversary can act so that
Alice and Bob conclude with different keys k1 and k2 that the adversary
knows, and neither Alice nor Bob know that any attack was carried out. We
leave the details of this attack as a highly recommended exercise. We remark
that the fact that the Diffie-Hellman protocol is not resilient to man-in-the-
middle attacks does not detract in any way from its importance. The Diffie-
Hellman protocol was the first demonstration that asymmetric techniques
(and number-theoretic problems) can be used to alleviate the problems of
key distribution in cryptography. We also remark that using only private-key
(symmetric) cryptographic techniques, it is impossible to achieve secure key
exchange even in the presence of eavesdropping adversaries. Finally, we note
that there are solutions to the problem of key exchange and key distribution
in the presence of active adversaries who can carry out man-in-the-middle
attacks. These solutions are discussed below in Section 12.7.

Diffie-Hellman in practice. The Diffie-Hellman key exchange protocol in
its basic form, as described above, is typically not used in practice. This
is due to its insecurity in the face of man-in-the-middle attacks. However,
it does form the basis of other key exchange protocols that are resilient to
man-in-the-middle attacks; these more advanced protocols take the core of
the Diffie-Hellman protocol and add to it in order to achieve the desired
resilience. One notable example of a standardized protocol that uses Diffie-
Hellman is IPsec. Loosely speaking, the IPsec standard is typically used
to connect servers so that they can communicate securely over an insecure
channel. The key exchange protocol that stands at the heart of IPsec is a
version of authenticated Diffie-Hellman, that as we have mentioned, takes the
basic Diffie-Hellman protocol and add steps so as to thwart man-in-the-middle
attacks. We therefore conclude that although Diffie and Hellman did not
succeed in constructing an encryption or digital signature scheme, their key-
exchange protocol is in widespread use. Thus, in addition to their conceptual
contribution to cryptography and its enormous impact, they also constructed
a protocol that is in use until today (and will most likely be in use for many
many years to come).

Private-Key Management and the Public-Key Revolution 315

References and Additional Reading

We have only very briefly discussed the problems of key distribution and
key management in general. For more information, we recommend looking
at some of the Network Security literature. Our favorite book is [84] and it
provides an excellent treatment of the different KDC protocols, what they
aim to achieve and how they work.

We highly recommend reading the original paper by Diffie and Hellman [50].
The history of the development of public-key cryptography is a fascinating one
and much information can be found on the Internet. An interesting book that
focuses on the political and historical aspects of the public-key revolution is
that of [89].

Exercises

9.1 Describe in detail a man-in-the-middle attack on the Diffie-Hellman key
exchange protocol. Show how an adversary can act so that at the end of
the protocol Alice has a key k1 (known to the adversary) and Bob has a
key k2 (known to the adversary). In addition to the above, show how an
adversary can act so that if Alice and Bob continue by carrying out an
encrypted conversation (using their keys obtained from the protocol),
then the adversary obtains all the plaintext messages sent and Alice and
Bob don’t know that any attack was carried out.

9.2 Consider the following key-exchange protocol that is based on the one-
time pad and perfect secrecy:

(a) Alice chooses a random key k and a random string r both of length
n, and sends s = k ⊕ r to Bob.

(b) Bob chooses a random string t of length n and sends u = s⊕ t to
Alice.

(c) Alice computes w = u⊕ r and sends w to Bob.

(d) Alice outputs k and Bob computes w ⊕ t.

Show that Alice and Bob output the same key. Analyze the security of
the scheme (i.e., either prove its security or show a concrete break).

Chapter 10

Public-Key Encryption

10.1 Public-Key Encryption – An Overview

As discussed in the previous chapter, the introduction of public-key en-
cryption marked a revolution in the field of cryptography. Until that time,
cryptographers had relied exclusively on shared, secret keys to achieve pri-
vate communication. Public-key techniques, in contrast, enable two parties
to communicate privately without having agreed on any secret information
in advance. As noted previously (in a slightly different context), it is quite
amazing and counter-intuitive that this is possible: it means that two people
on opposite sides of a room who can only communicate by shouting to each
other can talk in such a way that no one else in the room learns anything
about what they are saying!

In the setting of private-key encryption, two parties agree on a secret key
k which can be used (by either party) for both encryption and decryption.
Public-key encryption is asymmetric in both these respects. In the setting
of public-key encryption, one party (the receiver) generates a pair of keys
(pk, sk), called the public key and the private key, respectively. The public
key can be used by a sender to encrypt a message for the receiver; the receiver
can then use the private key to decrypt the resulting ciphertext.

Since the goal is to avoid the need for two parties to meet in advance to
agree on any information, how does the sender learn pk? At an abstract level,
there are essentially two ways this can occur. Let us call the receiver Alice
and the sender Bob. If Alice knows that Bob wants to communicate with her,
she can at that point generate (pk, sk) (assuming she hasn’t done so already)
and then send pk in the clear to Bob; Bob can then use pk to encrypt his
message. We emphasize that the channel from Alice to Bob may be public, but
is assumed to be authenticated. (See Section 12.7 for a discuss of how public
key can be distributed over unauthenticated channels.) An example is the
“shouting-across-a-room” scenario mentioned earlier, if we imagine that Alice
shouts her public key (bit-by-bit, say) and then Bob shouts his ciphertext.

An alternate way to picture the situation is that Alice generates her keys
(pk, sk) in advance, independent of any particular sender. (In fact, at the
time of key generation Alice need not even be aware that Bob wants to talk
to her or even that Bob exists!) Then Alice widely disseminates her public

317

318 Introduction to Modern Cryptography

key pk, say, by publishing it on her webpage, putting it on her business cards,
publishing it in a newspaper, or placing it in a public directory. Now, anyone
who wishes to communicate privately with Alice can look up her public key
and proceed as above. Note that multiple senders can communicate multiple
times with Alice using the same public key pk for all communication.

An important point is that pk is inherently public — and, more to the
point, can easily be learned by an attacker — in either of the above scenarios.
In the first case, an adversary eavesdropping on the communication between
Alice and Bob obtains pk by simply listening to the first message that Alice
sends Bob; in the second case, an adversary could just as well look up Alice’s
public key on his own. A consequence is that privacy of public-key encryption
cannot rely on secrecy of pk, but must instead rely on secrecy of sk. It is
therefore crucial that Alice not reveal her private key to anyone, including
the sender Bob.

Comparison to Private-Key Encryption

Perhaps the most obvious difference between private- and public-key en-
cryption is that the former assumes complete secrecy of all cryptographic
keys, whereas the latter requires secrecy for “only” half the key-pair (pk, sk).
Though this might seem like a minor distinction, the ramifications are huge:
in the private-key setting the communicating parties must somehow be able to
share the secret key without allowing any third party to learn the key; in the
public-key setting, the public key can be sent from one party to the other over
a public channel without compromising security. For parties shouting across
a room or, more realistically, communicating entirely over a public network
like a phone line or the Internet, public-key encryption is the only option.

Another important distinction is that private-key encryption schemes use
the same key for both encryption and decryption, while public-key systems
use different keys for each operation. For this reason, public-key encryption
schemes are sometimes called asymmetric. This asymmetry in the public-key
setting means that the roles of sender and receiver are not interchangeable
the way they are in the private-key setting: a given instance of a public-key
encryption scheme allows communication in one direction only. (This can be
addressed in any of a number of ways, but the point is that a single invocation
of a public-key encryption scheme forces a distinction between one user who
acts as a receiver and other users who act as senders.) On the other hand, a
single instance of a public-key encryption scheme enables multiple senders to
communicate privately with a single receiver, in contrast to the private-key
case where a secret key shared between two parties enables only these two
parties to communicate privately.

Summarizing and elaborating the preceding discussion, we see that public-
key encryption has the following advantages relative to private-key encryption
(see also the discussion in the previous chapter):

• The most important advantage is that public-key encryption solves (to

Public-Key Encryption 319

some extent) the key distribution problem since communicating parties
do not need to secretly share a key in advance of their communication.
Public-key encryption allows two parties to communicate secretly even
if all communication between them is monitored.

• In the case when one receiver is communicating with U senders (e.g.,
an on-line merchant processing credit card orders from multiple pur-
chasers), it is much more convenient for the receiver to store a single
private key sk rather than to share, store, and manage U different se-
cret keys (i.e., one for each sender). In fact, when using public-key
encryption the number and identities of the potential senders need not
be known at the time of key-generation; this allows enormous flexibility,
and is clearly essential for an on-line merchant.

The main disadvantage of public-key encryption is that it is roughly 2–3 or-
ders of magnitude slower than private-key encryption.1 This means, for exam-
ple, that it can be a challenge to implement public-key encryption in severely
resource-constrained devices like smartcards or radio-frequency identification
(RFID) tags. Even when a powerful computer is performing cryptographic
operations, carrying out many hundreds of such operations (as might be the
case for a server processing credit-card transactions for an on-line merchant)
may be prohibitive. In any case, we may conclude that if private-key encryp-
tion is an option (i.e., if two parties can securely share a key in advance) it
should always be used.

In fact, private-key encryption is used in the public-key setting to improve
the efficiency of the (public-key) encryption of long messages; this is discussed
further in Section 10.3. A thorough understanding of private-key encryption is
therefore crucial to fully appreciate how public-key encryption is implemented
in practice.

Secure Distribution of Public Keys and Active Adversaries

In our entire discussion thus far, we have implicitly assumed that the ad-
versary is passive; that is, the adversary only eavesdrops on communication
between the sender and receiver but does not actively interfere with the com-
munication. If the adversary has the ability to tamper with all communication
between all honest parties, then privacy simply cannot be achieved. For ex-
ample, if a receiver Alice sends her public key pk to Bob but the adversary
replaces this public key with a key pk′ of his own (for which it knows the
matching private key sk′), then even though Bob encrypts his message using
pk′ the adversary will easily be able to recover this message (using sk′). A
similar attack works if an adversary is able to change the value of Alice’s pub-
lic key that is stored in some public directory, or if the adversary can tamper

1It is difficult to give an exact comparison since the relative efficiency depends on the exact
schemes under consideration as well as various implementation details.

320 Introduction to Modern Cryptography

with the public key as it is transmitted from the directory to Bob. If Alice
and Bob do not share any information in advance, or do not rely on some
mutually-trusted third party, there is nothing Alice or Bob can do to prevent
active attacks of this sort, or even to tell that such an attack is taking place.2

Looking ahead, we will discuss in Section 12.7 how reliance on a trusted third
party can be used to address such attacls.

Our treatment of public-key encryption in this and the next chapter will
simply assume that senders have a legitimate copy of the receiver’s public key.
(This will be implicit in the security definitions we give.) That is, we assume
secure key distribution. This assumption is made not because active attacks of
the type discussed above are of no concern — in fact, they represent a serious
threat that must be dealt with in any real-world system that uses public-
key encryption. Rather, this assumption is made because there exist other
mechanisms for preventing active attacks (see, for example, Section 12.7),
and it is therefore convenient (and useful) to de-couple the study of secure
public-key encryption from the study of secure key distribution.

10.2 Definitions

We begin by defining the syntax of public-key encryption.

DEFINITION 10.1 A public-key encryption scheme is a tuple of proba-
bilistic, polynomial-time algorithms (Gen, Enc, Dec) that satisfies the following:

1. Algorithm Gen takes as input a security parameter 1n and outputs a pair
of keys (pk, sk). We refer to the first of these as the public key and the
second as the private key. We assume for convenience that pk and sk
each have length at least n, and that n can be determined from pk, sk.

2. Algorithm Enc takes as input a public key pk and a message m from
some underlying plaintext space (that may depend on pk). It outputs a
ciphertext c, and we write this as c← Encpk(m).

3. Algorithm Dec takes as input a private key sk and a ciphertext c, and
outputs a message m or a special symbol ⊥ denoting failure. We assume
without loss of generality that Dec is deterministic, and write this as
m := Decsk(c).

2In our “shouting-across-a-room” scenario, Alice and Bob can detect when an adversary
interferes with the communication. But this is only because (1) the adversary cannot
prevent Alice’s messages from reaching Bob, and (2) Alice and Bob “share” in advance
certain information (e.g., the sound of their voices or the way they look) that allows them
to “authenticate” their communication.

Public-Key Encryption 321

We require that for every n, every (pk, sk) output by Gen(1n), and every
message m in the appropriate underlying plaintext space, it holds that

Decsk(Encpk(m)) = m.

Recall from the previous chapter how a public-key encryption scheme is
used. One party, the receiver, runs Gen(1n) to obtain keys (pk, sk). The
public key pk is then made available for anyone who wants to encrypt a
message for this receiver; for example, the receiver may post their key on
their webpage or store it in some public repository of public keys. We assume
that anyone wishing to encrypt a message for this receiver is able to obtain a
legitimate copy of this receiver’s public key. (As we have already noted, this
is a non-trivial problem and one that we will return to in Section 12.7. Using
this assumption allows us to de-couple the problem of obtaining the correct
key from the problem of using the key once it is obtained.) A sender, holding
the public key pk of the receiver, can encrypt their message m by computing
c ← Encpk(m). The receiver, upon receipt of c, can recover the message by
computing m := Decsk(c).

In terms of the syntax of the definition, the important distinction from the
private-key setting is that the key-generation algorithm Gen now outputs two
keys rather than one. (Moreover, we can no longer simply assume that pk is
just a random n-bit string.) The public key pk is used for encryption, while the
private key sk is used for decryption. Recall from the previous chapter that
pk is assumed to be widely distributed so that anyone can encrypt messages
for the party who has generated this key, but sk must be kept private by the
receiver in order for security to possibly hold.

For practical usage of public-key encryption, we will want the plaintext
space to be {0, 1}n or {0, 1}∗ (and, in particular, to be independent of the
public key). Although we will sometimes describe encryption schemes using
some message space M that does not contain all bit-strings of some fixed
length (and that may also depend on the public key), we will in such cases also
specify how to encode bit-strings as elements of M. This encoding must be
both efficient and efficiently reversible (so that the receiver can recover the bit-
string being encrypted). As we will see later (cf. Proposition 10.11), a public-
key encryption scheme for the plaintext space {0, 1} extends immediately to
give an encryption scheme for {0, 1}∗.

Example 10.2

Say an encryption scheme has message space ZN , where N is an n-bit integer
that is included in the public key. We can encode strings of length n − 1
as elements of ZN in the natural way, by interpreting any such string as an
integer strictly less than N . This encoding is efficient and easily reversible. ♦

322 Introduction to Modern Cryptography

10.2.1 Security against Chosen-Plaintext Attacks

We begin our treatment of security notions by introducing the “natural”
counterpart of Definition 3.9 in the public-key setting. Since extensive moti-
vation for this definition (as well as the others we will see) has already been
given in Chapter 3, the discussion here will be relatively brief and will focus
primarily on the differences between the private-key and public-key settings.

Given a public-key encryption scheme Π = (Gen, Enc, Dec) and an adversary
A, consider the following experiment:

The eavesdropping experiment PubKeav
A,Π(n):

1. Gen(1n) is run to obtain keys (pk, sk).

2. Adversary A is given pk and outputs a pair of messages
m0, m1 with |m0| = |m1|. (These messages must be in the
plaintext space associated with pk.)

3. A random bit b ← {0, 1} is chosen, and then the ciphertext
c← Encpk(mb) is computed and given to A. We call c the
challenge ciphertext.

4. A outputs a bit b′.

5. The output of the experiment is defined to be 1 if b′ = b, and
0 otherwise.

DEFINITION 10.3 A public-key encryption scheme Π = (Gen, Enc, Dec)
has indistinguishable encryptions in the presence of an eavesdropper if for all
probabilistic, polynomial-time adversaries A there exists a negligible function
negl such that

Pr[PubKeav
A,Π(n) = 1] ≤ 1

2
+ negl(n),

where the probability is taken over the random coins used by A, as well as the
random coins used to generate (pk, sk), choose b, and encrypt mb.

The main difference between the above definition and Definition 3.9 is that
here A is given the public key pk. (Furthermore, we allow A to choose its mes-
sages m0 and m1 based on this public key.) This is essential when defining
security of public-key encryption since, as discussed in the previous chapter,
we are forced to assume that an adversary eavesdropping on the communi-
cation between two parties in the public-key setting knows the public key of
the recipient. (Indeed, the recipient makes no effort to keep his public key
hidden; to the contrary, he may have widely publicized his public key.)

The seemingly “minor” modification of giving the adversary A the pub-
lic key pk being used to encrypt the message has a tremendous impact: it
effectively gives A access to an encryption oracle for free. (The concept
of an encryption oracle is explained in Section 3.5.) This is the case be-
cause the adversary, given pk, can now encrypt any message m on its own

Public-Key Encryption 323

simply by computing Encpk(m) using honestly-generated random coins. (As
always, A is assumed to know the algorithm Enc.) The upshot is that Defi-
nition 10.3 is equivalent to security against chosen-plaintext attacks, defined
in a manner analogous to Definition 3.22. Specifically, consider the following
experiment defined for public-key encryption scheme Π = (Gen, Enc, Dec) and
adversary A:

The CPA indistinguishability experiment PubK
cpa
A,Π(n):

1. Gen(1n) is run to obtain keys (pk, sk).

2. Adversary A is given pk as well as oracle access to Encpk(·).
The adversary outputs a pair of messages m0, m1 with |m0| =
|m1|. (These messages must be in the plaintext space associ-
ated with pk.)

3. A random bit b ∈ {0, 1} is chosen, and then the ciphertext
c← Encpk(mb) is computed and given to A. We call c the
challenge ciphertext. A continues to have access to Encpk(·).

4. A outputs a bit b′.

5. The output of the experiment is defined to be 1 if b′ = b, and
0 otherwise.

DEFINITION 10.4 Public-key encryption scheme Π = (Gen, Enc, Dec)
has indistinguishable encryptions under chosen-plaintext attacks (or is CPA se-

cure) if for all probabilistic, polynomial-time adversaries A, there exists a
negligible function negl such that:

Pr[PubK
cpa
A,Π(n) = 1] ≤ 1

2
+ negl(n).

Summarizing what we have said above:

PROPOSITION 10.5 If public-key encryption scheme Π has indistin-
guishable encryptions in the presence of an eavesdropper, then Π also has
indistinguishable encryptions under chosen-plaintext attacks.

This is in contrast to the private-key setting, where the above does not hold.
(See Claims 3.20 and 3.23.) Further differences from the private-key setting
that follow almost immediately as a consequence of the above are discussed
next.

Impossibility of Perfectly-Secure Public-Key Encryption

Perfectly-secret public-key encryption could be defined analogously to Def-
inition 2.1 by conditioning over the entire view of an eavesdropper (i.e., in-

324 Introduction to Modern Cryptography

cluding the pubic key). Equivalently, it could be defined by extending Defi-
nition 10.3 to require that for all adversaries A

Pr[PubKeav
A,Π(n) = 1] =

1

2
.

In contrast to the private-key setting, perfectly-secret public-key encryption
does not exist. (We stress that this holds regardless of how long the keys are
and how short the message is.) In fact, given pk and a ciphertext c computed
via c← Encpk(m), it is possible for an unbounded adversary to determine the
message m with probability 1. A demonstration of this is left as an exercise.

Insecurity of Deterministic Public-Key Encryption

As noted in the context of private-key encryption, no deterministic encryp-
tion scheme can be CPA-secure. Because of the equivalence, in the public-key
setting, between CPA-security and indistinguishability of encryption in the
presence of an eavesdropper, we conclude that

THEOREM 10.6 No deterministic public-key encryption scheme has in-
distinguishable encryptions in the presence of an eavesdropper.

Because Theorem 10.6 is so important, it merits a bit more discussion.
First, it is important to understand that the theorem is not a mere “artifact”
of our security definition, or an indication that Definition 10.3 is too strong.
Deterministic public-key encryption scheme leaves one vulnerable to practical
attacks in realistic scenarios, and should never be used. The reason is that
a deterministic scheme not only allows the adversary to determine when the
same message is sent twice (as in the private-key setting), but also allows the
adversary to recover the message, with probability 1, as long as the set of
possible messages being encrypted is small. (See Exercise 10.2.) For example,
consider a professor encrypting the final grade of a student. Here, an eaves-
dropper knows that the student’s grade must be one of {A, B, C, D, F}. If the
professor uses a deterministic public-key encryption scheme, an eavesdropper
can quickly determine the student’s actual grade.

Second, though the result seems deceptively simple, for a long time many
real-world systems were designed using deterministic public-key encryption.
In fact, when public-key encryption was introduced it is fair to say that the
importance of probabilistic encryption was not yet fully realized. The semi-
nal work of Goldwasser and Micali, in which (something equivalent to) Defini-
tion 10.3 was proposed and Theorem 10.6 was proved, marked a turning point
in the field of cryptography. The importance of looking at things the right
way for the first time (even if seemingly simple in retrospect), and pinning
down one’s intuition in a formal definition, should not be underestimated.

Public-Key Encryption 325

10.2.2 Security for Multiple Encryptions

As in Chapter 3, it is important also to understand the effect of using the
same key (in this case, the same public key) for encrypting multiple mes-
sages. We define security in such a setting via an extension of the definition
of eavesdropping security (Definition 10.3), though it should be clear from
the discussion in the previous section that such a definition is automatically
equivalent to a definition in which chosen-plaintext attacks are also allowed.
We then prove that the two definitions are equivalent. We can therefore prove
schemes secure with respect to eavesdropping on the encryption of a single
message (which is a simpler definition that is easier to work with), and obtain
security with respect to eavesdropping on the encryptions of multiple mes-
sages (which is a stronger definition that more accurately models adversarial
attacks).

We remark that an analogous result in the private-key setting was stated,
but not proved, as Claim 3.23. That claim refers to security under chosen-
plaintext attacks, but as we have seen already chosen-plaintext attacks are
“for free” in the public-key setting.

Consider the following experiment defined for public-key encryption scheme
Π = (Gen, Enc, Dec) and adversary A:

Eavesdropping on multiple encryptions PubKmult
A,Π(n):

1. Gen(1n) is run to obtain keys (pk, sk).

2. Adversary A is given pk, and outputs a pair of vectors of
messages ~M0 = (m1

0, . . . , m
t
0) and ~M1 = (m1

1, . . . , m
t
1) such

that |mi
0| = |mi

1| for all i. (All messages must be in the
plaintext space associated with pk.)

3. A random bit b ∈ {0, 1} is chosen, and A is given the vec-

tor ~C = (Encpk(m1
b), . . . , Encpk(mt

b)). The adversary A then
outputs a bit b′.

4. The output of the experiment is defined to be 1 if b′ = b, and
0 otherwise.

DEFINITION 10.7 Public-key encryption scheme Π = (Gen, Enc, Dec)
has indistinguishable multiple encryptions in the presence of an eavesdropper if
for all probabilistic, polynomial-time adversaries A, there exists a negligible
function negl such that:

Pr[PubKmult
A,Π(n) = 1] ≤ 1

2
+ negl(n).

The proof that the above definition is equivalent to Definition 10.3 is not
difficult, though it is a bit technical. We therefore provide some intuition
before giving the formal proof. Specifically, we deal with the case that t = 2

326 Introduction to Modern Cryptography

in PubKmult
A,Π(n). (In general, t can be arbitrary and may even depend on n

or pk.) Fix an arbitrary ppt adversary A and a public-key encryption scheme
Π that has indistinguishable encryptions in the presence of an eavesdropper,
and consider experiment PubKmult

A,Π(n) (with t = 2). In this experiment, if b = 0
the adversary is given (Encpk(m1

0), Encpk(m2
0)) while if b = 1 the adversary is

given (Encpk(m1
1), Encpk(m2

1)). We show that there exists a negligible function
negl such that

1

2
+ negl(n) ≥ Pr[PubKmult

A,Π(n) = 1]

=
1

2
· Pr[A(Encpk(m1

0), Encpk(m2
0)) = 0]

+
1

2
· Pr[A(Encpk(m1

1), Encpk(m2
1)) = 1],

where the equality follows by conditioning on the two possible values of b.
Since this holds for every probabilistic polynomial-time adversary A, this
completes the proof.

Consider what would happen if A were given (Encpk(m1
0), Encpk(m2

1)). Al-
though this does not correspond to anything that can happen in experiment
PubKmult

A,Π(n), the probability that A outputs 0 when given two ciphertexts
computed in this way is still well-defined. We claim:

CLAIM 10.8 There exists a negligible function negl such that

1

2
+ negl(n) ≥ 1

2
· Pr[A(Encpk(m1

0), Encpk(m2
0)) = 0]

+
1

2
· Pr[A(Encpk(m1

0), Encpk(m2
1)) = 1].

PROOF To prove the claim, construct the following ppt adversaryA′ that
eavesdrops on the encryption of a single message.

Adversary A′:

1. A′, given pk, runs A(pk) to obtain two vectors of messages
~M0 = (m1

0, m
2
0) and ~M1 = (m1

1, m
2
1).

2. A′ outputs a pair of messages (m2
0, m

2
1), and is given in return

a ciphertext c2.

3. A′ computes c1 ← Encpk(m1
0); runs A(c1, c2); and outputs

the bit b′ that is output by A.

If we look at the experiment PubKeav
A,Π(n), we see that when b = 0 in that

experiment then A′ is given Encpk(m2
0). Furthermore,

Pr[A′(Encpk(m2
0)) = 0] = Pr[A(Encpk(m1

0), Encpk(m2
0)) = 0].

Public-Key Encryption 327

On the other hand, when b = 1 in experiment PubKeav
A,Π(n) then A′ is given

Encpk(m2
1). Furthermore,

Pr[A′(Encpk(m2
1)) = 1] = Pr[A(Encpk(m1

0), Encpk(m2
1)) = 1].

By security of Π (in the sense of single-message indistinguishability), it
must be the case that there exists a negligible function negl such that

1

2
+ negl1(n) ≥ Pr[PubKeav

A′,Π(n) = 1]

=
1

2
Pr[A′(Encpk(m2

0)) = 0] +
1

2
Pr[A′(Encpk(m2

1)) = 1]

=
1

2
· Pr[A(Encpk(m1

0), Encpk(m2
0)) = 0]

+
1

2
· Pr[A(Encpk(m1

1), Encpk(m2
1)) = 1],

completing the proof of the claim.

By an exactly analogous argument, we can also prove:

CLAIM 10.9 There exists a negligible function negl such that

1

2
+ negl(n) ≥ 1

2
· Pr[A(Encpk(m1

0), Encpk(m2
1)) = 0]

+
1

2
· Pr[A(Encpk(m1

1), Encpk(m2
1)) = 1].

Summing the expressions in these two claims and using the fact that the sum
of two negligible functions is negligible, we see that there exists a negligible
function negl such that

1 + negl(n) ≥ 1

2
· Pr[A(Encpk(m1

0), Encpk(m2
0)) = 0]

+
1

2
·
(

Pr[A(Encpk(m1
0), Encpk(m2

1)) = 1]

+ Pr[A(Encpk(m1
0), Encpk(m2

1)) = 0]
)

+
1

2
· Pr[A(Encpk(m1

1), Encpk(m2
1)) = 1]

=
1

2
· Pr[A(Encpk(m1

0), Encpk(m2
0)) = 0] +

1

2

+
1

2
· Pr[A(Encpk(m1

1), Encpk(m2
1)) = 1],

implying that
1

2
+ negl(n) ≥ Pr[PubKmult

A,Π(n) = 1]

328 Introduction to Modern Cryptography

as desired.
The main complication that arises in the general case is that t is no longer

fixed but may instead depend on n. The formal proof of the theorem that
follows serves as a good illustration of the hybrid argument which is used
extensively in the analysis of more complex cryptographic schemes; on a first
reading, though, the reader may want to skip the proof.

THEOREM 10.10 If public-key encryption scheme Π has indistinguish-
able encryptions in the presence of an eavesdropper, then Π has indistinguish-
able multiple encryptions in the presence of an eavesdropper.

PROOF Fix an arbitrary ppt adversary A, and consider experiment
PubKmult

A,Π(n). Let t = t(n) be an upper-bound on the number of messages
in each of the two vectors output by A, and assume without loss of generality
that A always outputs vectors containing exactly this many messages. (That
this is indeed without loss of generality is left as an exercise.) For a given

public key pk and vectors ~M0 = (m1
0, . . . , m

t
0) and ~M1 = (m1

1, . . . , m
t
1) output

by A, define

~C(i) def
= (Encpk(m1

0), . . . , Encpk(mi
0)︸ ︷︷ ︸

i terms

, Encpk(mi+1
1), . . . , Encpk(mt

1)︸ ︷︷ ︸
t− i terms

)

for 0 ≤ i ≤ t. We stress that the above encryptions are always performed
using independently random coins, and so the above actually represents a
distribution over vectors containing t ciphertexts. Using this notation, we
have

Pr[PubKmult
A,Π(n) = 1] =

1

2
· Pr[A(~C(t)) = 0] +

1

2
· Pr[A(~C(0)) = 1].

Consider the following ppt adversary A′ that eavesdrops on the encryption
of a single message.

Adversary A′:

1. A′, given pk, runs A(pk) to obtain two vectors of messages
~M0 = (m1

0, . . . , m
t
0) and ~M1 = (m1

1, . . . , m
t
1), with t = t(n).

2. A′ chooses a random index i ← {1, . . . , t} and outputs the
pair of messages mi

0, m
i
1. A′ is given in return a ciphertext ci.

3. For j < i, A′ computes cj ← Encpk(mj
0). For j > i, A′

computes cj ← Encpk(mj
1). Then A′ runs A(c1, . . . , ct) and

outputs the bit b′ that is output by A.

Intuitively, we can view A′ as “guessing” an index i ∈ {0, . . . , t} for which A
can distinguish between ~C(i) and ~C(i−1).

Public-Key Encryption 329

In experiment PubKeav
A,Π(n), when b = 0 and i = i∗ then A′ is given

Encpk(mi∗

0) and A is run on input distributed according to ~C(i∗). So,

Pr[A′ outputs 0 | b = 0] =

t∑

i∗=1

Pr[A′ outputs 0 | b = 0
∧

i = i∗] · Pr[i = i∗]

=
t∑

i∗=1

1

t
· Pr[A(~C(i∗)) = 0].

On the other hand, when b = 1 and i = i∗ in experiment PubKeav
A,Π(n), then A′

is given Encpk(mi∗

1) and A is run on input distributed according to ~C(i∗−1).
So,

Pr[A′ outputs 1 | b = 1] =

t∑

i∗=1

Pr[A′ outputs 1 | b = 1
∧

i = i∗] · Pr[i = i∗]

=

t−1∑

i∗=0

1

t
· Pr[A(~C(i∗)) = 1].

(Note that the indices of summation have been shifted.)
By assumption, Π has indistinguishable encryptions in the presence of an

eavesdropper and so that there exists a negligible function negl such that

1

2
+ negl(n) ≥ Pr[PubKeav

A′,Π(n) = 1]

=
1

2
Pr[A′ outputs 0 | b = 0] +

1

2
Pr[A′ outputs 1 | b = 1]

=
t∑

i∗=1

1

2t
· Pr[A(~C(i∗)) = 0] +

t−1∑

i∗=0

1

2t
· Pr[A(~C(i∗)) = 1]

=
1

2t
·

t−1∑

i∗=1

(
Pr[A(~C(i∗)) = 0] + Pr[A(~C(i∗)) = 1]

)

+
1

2t
·
(

Pr[A(~C(t)) = 0] + Pr[A(~C(0)) = 1]
)

=
t− 1

2t
+

1

t
· Pr[PubKmult

A,Π(n) = 1].

Simple algebra shows that this implies

1

2
+ t(n) · negl(n) ≥ Pr[PubKmult

A,Π(n) = 1].

Because t is polynomial, the function t(n) · negl(n) is also negligible. Since A
was an arbitrary ppt adversary, this completes the proof that Π has indistin-
guishable multiple encryptions in the presence of an eavesdropper.

330 Introduction to Modern Cryptography

Encrypting Arbitrary-Length Messages

An immediate consequence of the above result is that given any public-
key encryption scheme for fixed-length messages that has indistinguishable
encryptions in the presence of an eavesdropper, we can obtain a public-key
encryption scheme for arbitrary-length messages satisfying the same notion
of security. We illustrate this in the extreme case when the original scheme
encrypts only 1-bit messages. Say Π = (Gen, Enc, Dec) is an encryption scheme
where the plaintext space is {0, 1}. We can construct a new scheme Π′ =
(Gen, Enc′, Dec′) with plaintext space {0, 1}∗ by defining Enc′ as follows:

Enc′pk(m) = Encpk(m1), . . . , Encpk(mt),

where m = m1 · · ·mt. The decryption algorithm Dec′ is modified in the
obvious way. We have

PROPOSITION 10.11 Let Π and Π′ be as above. If Π has indistinguish-
able encryptions in the presence of an eavesdropper, then so does Π′.

A Note on Terminology

We have shown that — in the public-key setting — any scheme having indis-
tinguishable encryptions in the presence of an eavesdropper is also CPA-secure
(that is, it has indistinguishable multiple encryptions under chosen-plaintext
attack). This means that once we prove a scheme secure with respect to the
former (relatively weak) definition we obtain as an immediate consequence se-
curity with respect to the latter (more realistic) definition. We will therefore
refer to schemes as being “CPA-secure” (both in our discussion as well as in
our theorem statements) but in our proofs we will work exclusively with the
notion of indistinguishable encryptions in the presence of an eavesdropper.

10.3 Hybrid Encryption

In the discussion prior to Proposition 10.11, we showed how any CPA-
secure public-key encryption scheme for 1-bit messages can be used to obtain
a CPA-secure encryption scheme for messages that are arbitrarily long. Unfor-
tunately, encrypting a t-bit message using the approach shown there requires
t invocations of the original encryption scheme, meaning that both the com-
putation and the ciphertext length are increased by a multiplicative factor
of t relative to the underlying scheme. Is it possible to do better?

It is possible to do significantly better (for messages that are sufficiently
long) by using private-key encryption in tandem with public-key encryption;
this will improve efficiency because private-key encryption is significantly more

Public-Key Encryption 331

efficient than public-key encryption. The resulting combination is called hy-
brid encryption and is used extensively in practice. The basic idea is to break
encryption into two steps. To encrypt a message m:

1. The sender first chooses a random secret key k, and encrypts k using the
public key of the receiver. Call the resulting ciphertext c1. The receiver
will be able to recover k (by decrypting c1), yet k will intuitively remain
unknown to an eavesdropper (by security of the public-key encryption
scheme), and so this has the effect of establishing a shared secret between
the sender and the receiver.

2. The sender then encrypts the message m using a private-key encryption
scheme and the secret key k that has just been shared. This results in
a ciphertext c2 that can be decrypted by the receiver using k.

Of course, the above two steps can be performed in “one shot” by having the
sender transmit the single ciphertext 〈c1, c2〉 to the receiver. We stress that
although private-key encryption is used as a component of the construction,
the above constitutes a public-key encryption scheme by virtue of the fact
that the sender and receiver do not share any secret key in advance.

A formal description of the above is given as Construction 10.12. The
construction assumes that Π includes {0, 1}n in the underlying plaintext space;
the plaintext space for Πhy is identical to the plaintext space of Π′.

CONSTRUCTION 10.12

Let Π = (Gen, Enc, Dec) be a public-key encryption scheme, and let
Π′ = (Enc′,D′) be a private-key encryption scheme. Construct public-
key encryption scheme Πhy = (Genhy, Enchy, Dechy) as follows:

• Genhy is identical to Gen.

• Enc
hy
pk(m) proceeds as follows:

1. Choose random k ← {0, 1}n (recall that, by convention, n
can be determined from pk).

2. Compute c1 ← Encpk(k) and c2 ← Enc′k(m).

3. Output the ciphertext 〈c1, c2〉.
• Dec

hy
sk(〈c1, c2〉) proceeds as follows:

1. Compute k := Decsk(c1).

2. Output the message m := Dec′k(c2).

Hybrid encryption.

What is the efficiency of hybrid encryption relative to the previous approach
of using Enc to encrypt bit-by-bit? First observe that hybrid encryption can

332 Introduction to Modern Cryptography

only possibly give a performance improvement when |m| > n; otherwise,
instead of encrypting k using Enc we may as well just encrypt m itself. When
|m| � n, though, hybrid encryption gives a substantial efficiency improvement
assuming Enc′ is more efficient (per bit) that Enc. (Refer to the previous
chapter for a discussion of the relative efficiency of public- vs. private-key
techniques.) In detail, for some fixed value of n let α denote the cost of
encrypting an n-bit key using Enc, and let β denote the cost (per bit of
plaintext) of encryption using Enc′. Then the cost, per bit of plaintext, of
encrypting a t-bit message using Πhy is

α + β · t
t

=
α

t
+ β, (10.1)

which approaches β as t gets large. In the limit of very long messages, then,
the cost per bit of the public-key encryption scheme Πhy is the same as the
cost per bit of the private-key scheme Π′. Hybrid encryption thus allows
us to achieve the functionality of public-key encryption at the efficiency of
private-key encryption, at least for long messages.

A similar calculation can be used to gauge the effect of hybrid encryption
on the ciphertext length. For a fixed value of n, let ` denote the length of
the encryption of an n-bit key using Enc, and say the private-key encryption
of a message m using Enc′ results in a ciphertext of length n + |m| (this can
be achieved using one of the modes of encryption discussed in Section 3.6.4).
Then the total length of a ciphertext in scheme Πhy is

` + n + |m|. (10.2)

We can use some rough estimates to get a sense for what the above results
mean in practice. (We stress that these numbers are only meant to give a
feel for the improvement, while actual numbers would depend on a variety
of factors.) A typical value for the length n of the key k might be n ≈ 100.
Letting α, as above, denote the cost of public-key encryption of a 100-bit key,
a typical public-key encryption scheme might be able to encrypt a message of
length t with computational cost α·dt/1000e and ciphertext length 2·dt/1000e.
(That is, it costs the same to encrypt 1 bit or 1000 bits; messages longer than
1000 bits would be parsed into blocks of length at most 1000 bits, and then
each block could be encrypted separately.) Finally, if we again let β denote
the computational cost (per bit) of private-key encryption then a reasonable
approximation is β ≈ α/106. The computational cost (per bit) of hybrid
encryption for a 1Mb e-mail, as per Equation (10.1), is

α

106
+

α

106
=

α

5 · 105
,

and the ciphertext length, as per Equation (10.2), would be 106+2000+100≈
106 bits. For comparison, block-by-block encryption would have computa-
tional cost (per bit)

α · dt/1000e
t

≈ α

5 · 102

Public-Key Encryption 333

and result in a ciphertext of length roughly 2 · 106. Thus, hybrid encryption
improves the computational efficiency in this case by a factor of 1000(!), and
the ciphertext length by a factor of 2

It remains to analyze the security of Πhy. In the theorem that follows, we
show that the composite scheme Πhy is CPA-secure as long as the original
public-key encryption scheme Π is CPA-secure and the private-key scheme Π′

has indistinguishable encryptions in the presence of an eavesdropper. It is
interesting to notice here that it suffices for Π′ to satisfy a weaker definition
of security — which, recall, does not imply CPA-security in the private-key
setting — in order for Πhy to be CPA-secure. Intuitively, the reason is that
the secret key k used during the course of encryption is chosen freshly and
completely at random each time a new message is encrypted. Since each
key k is used only once, indistinguishability of a single encryption suffices for
security of the hybrid scheme Πhy.

Before formally proving the security of Πhy, we highlight the overall in-

tuition. Let the notation “A
c≡ B” denote, intuitively, the fact that no

polynomial-time adversary can distinguish between X and Y . (This con-
cept is treated more formally in Section 6.8, though we do not rely on that
section here.) For example, the fact that Π is CPA-secure means that for any
messages m0, m1 output by a ppt adversary A we have

(pk, Encpk(m0))
c≡ (pk, Encpk(m1)) ,

where pk is generated by Gen(1n). That is to say, an encryption of m0 cannot
be distinguished (in polynomial time) from an encryption of m1, even given pk.
Similarly, the fact that Π′ has indistinguishable encryptions in the presence
of an eavesdropper means that for any m0, m1 output by A we have

Enc′k(m0)
c≡ Enc′k(m1),

where k is chosen uniformly at random. Now, in order to prove CPA-security
of Πhy we need to show that

(
pk, Encpk(k), Enc′k(m0)

) c≡
(
pk, Encpk(k), Enc′k(m1)

)
(10.3)

for all m0, m1 output by a ppt adversary A, where again pk is output by Gen

and in addition the key k is chosen at random. (Equation (10.3) shows that
Πhy has indistinguishable encryptions in the presence of an eavesdropper, but
by Theorem 10.10 this implies that Πhy is CPA-secure.)

The proof proceeds in three steps; see Figure 10.1. First we prove that

(
pk, Encpk(k), Enc′k(m0)

) c≡
(
pk, Encpk(0n), Enc′k(m0)

)
(10.4)

by CPA-security of Π. Indeed, the only difference between the left- and the
right-hand sides is the switch from encrypting k to encrypting an all-0 string of
the same length, in both cases using scheme Π. But security of Π means that

334 Introduction to Modern Cryptography

〈
Encpk(k), Enc′k(m0)

〉

?

6
(by security of Π)

〈
Encpk(0n), Enc′k(m0)

〉 -�

� -
(by “transitivity”)

(by security of Π′)

〈
Encpk(0n), Enc′k(m1)

〉

〈
Encpk(k), Enc′k(m1)

〉

?

6
(by security of Π)

FIGURE 10.1: High-level structure of the proof of Theorem 10.13. The
public key pk is left implicit, and is always given to the adversary.

this change is not noticeable by a ppt adversary. Furthermore, this holds even
if k is known to the adversary, and so the fact that k is also used to encrypt m0

does not introduce any complications. (In contrast, if we were to try to prove

that
(
pk, Encpk(k), Enc′k(m0)

) c≡
(
pk, Encpk(k), Enc′k(m1)

)
based on security

of Π′ we would run into trouble, since indistinguishability of Enc′k(m0) and
Enc′k(m1) only holds when the adversary has no information about k. But if
k is encrypted with respect to Π then this is no longer the case.)

Next, we prove that

(
pk, Encpk(0n), Enc′k(m0)

) c≡
(
pk, Encpk(0n), Enc′k(m1)

)
(10.5)

based on the fact that Π′ has indistinguishable encryptions in the presence
of an eavesdropper. Indeed, here the difference is between encrypting m0

and m1, in both cases using Π′ and a key k chosen uniformly at random.
Furthermore, no other information about k is leaked to the adversary, and
in particular no information can be leaked by Encpk(0n) since this is just an
encryption of the all-0 string (and not k itself).

Exactly as in the case of Equation (10.6), we can also show that

(
pk, Encpk(0n), Enc′k(m1)

) c≡
(
pk, Encpk(k), Enc′k(m1)

)
, (10.6)

by relying again on security of Π. Equations (10.4)–(10.6) imply, by transitiv-
ity, the desired result in Equation (10.3). (We do not prove that transitivity
holds; rather, transitivity in this case is implicit in the proof we give below.)

THEOREM 10.13 If Π is a CPA-secure public-key encryption scheme and
Π′ is a private-key encryption scheme that has indistinguishable encryptions
in the presence of an eavesdropper, then Πhy as in Construction 10.12 is a
CPA-secure public-key encryption scheme.

PROOF Fix an arbitrary ppt adversary Ahy, and consider experiment
PubKeav

A,Πhy(n). (By Theorem 10.10, once we show that Πhy has indistinguish-

Public-Key Encryption 335

able encryptions in the presence of an eavesdropper we can conclude that it is
CPA-secure.) Our goal is to prove that there exists a negligible function negl

such that

1

2
+ negl(n) ≥ Pr[PubKeav

Ahy,Πhy(n) = 1]

=
1

2
· Pr[Ahy(Encpk(k), Enc′k(m0)) = 0]

+
1

2
· Pr[Ahy(Encpk(k), Enc′k(m1)) = 1]. (10.7)

Note that in each case, the probability is taken over randomly-generated pk
as well as uniform choice of k. Furthermore, Ahy is also given the public key
pk but this is left implicit for better readability.

Consider the following ppt adversary A1 that eavesdrops on a message
encrypted using public-key scheme Π.

Adversary A1:

1. A1, given pk, chooses random k ← {0, 1}n (recall that, by
convention, n can be determined from pk) and outputs the
pair of messages k, 0n. It is given in return a ciphertext c1.

2. A1 runs Ahy(pk) to obtain two messages m0, m1. A1 com-
putes c2 ← Enc′k(m0). Then A1 runs Ahy(c1, c2) and outputs
the bit b′ that is output by Ahy.

In experiment PubKeav
A1,Π(n), when b = 0 then Ahy is given a ciphertext

of the form 〈c1, c2〉 = 〈Encpk(k), Enc′k(m0)〉 for randomly-generated pk and
uniform choice of k. So,

Pr[A1 outputs 0 | b = 0] = Pr[Ahy(Encpk(k), Enc′k(m0)) = 0].

On the other hand, when b = 1 in experiment PubKeav
A1,Π(n) then Ahy is given

a ciphertext of the form 〈Encpk(0n), Enc′(m0)〉, and so

Pr[A1 outputs 1 | b = 1] = Pr[Ahy(Encpk(0n), Enc′k(m0)) = 1].

By assumption, Π has indistinguishable encryptions in the presence of an
eavesdropper and so there exists a negligible function negl1 such that

1

2
+ negl1(n) ≥ Pr[PubKeav

A1,Π(n) = 1] (10.8)

=
1

2
· Pr[A1 outputs 0 | b = 0] +

1

2
· Pr[A1 outputs 1 | b = 1]

=
1

2
· Pr[Ahy(Encpk(k), Enc′k(m0)) = 0]

+
1

2
· Pr[Ahy(Encpk(0n), Enc′k(m0)) = 1].

Next, consider the following ppt adversaryA′ that eavesdrops on a message
encrypted using private-key scheme Π′.

336 Introduction to Modern Cryptography

Adversary A′:

1. A′(1n) runs Gen(1n) on its own to generate keys (pk, sk).

2. A′ runs Ahy(pk) to obtain two messages m0, m1. These same
messages are output by A′, and it is given in return a cipher-
text c2.

3. A′ computes c1 ← Encpk(0n). Then A′ runs Ahy(c1, c2) and
outputs the bit b′ that is output by Ahy.

In experiment PrivKeav
A′,Π′(n), when b = 0 then Ahy is given a ciphertext

of the form 〈Encpk(0n), Enc′k(m0)〉 for randomly-generated pk and uniform
choice of k. We can see that

Pr[A′ outputs 0 | b = 0] = Pr[Ahy(Encpk(0n), Enc′k(m0)) = 0].

On the other hand, when b = 1 then Ahy is given a ciphertext of the form
〈Encpk(0n), Enc′k(m1)〉 and so

Pr[A′ outputs 1 | b = 1] = Pr[Ahy(Encpk(0n), Enc′k(m1)) = 1].

By assumption, Π′ has indistinguishable encryptions in the presence of an
eavesdropper and so there exists a negligible function negl′ such that

1

2
+ negl′(n) ≥ Pr[PrivKeav

A′,Π′(n) = 1] (10.9)

=
1

2
· Pr[A′ outputs 0 | b = 0] +

1

2
· Pr[A′ outputs 1 | b = 1]

=
1

2
· Pr[Ahy(Encpk(0n), Enc′k(m0)) = 0]

+
1

2
· Pr[Ahy(Encpk(0n), Enc′k(m1)) = 1].

We will next show something that is exactly analogous to Equation (10.8)
(and so the reader is welcome to skip directly to Equation (10.10)). Consider
the following ppt adversary A2 that eavesdrops on a message encrypted using
public-key scheme Π.

Adversary A2:

1. A2, given pk, chooses random k ← {0, 1}n and outputs the
pair of messages 0n, k (the order of these messages has been
switched relative to adversary A1). It is given in return a
ciphertext c1.

2. A2 runs Ahy(pk) to obtain two messages m0, m1. A2 com-
putes c2 ← Enc′k(m1). Then A2 runs Ahy(c1, c2) and outputs
the bit b′ that is output by Ahy.

Public-Key Encryption 337

In experiment PubKeav
A2,Π(n), when b = 0 then Ahy is given a ciphertext

of the form 〈c1, c2〉 = 〈Encpk(0n), Enc′k(m1)〉 for randomly-generated pk and
uniform choice of k. So,

Pr[A2 outputs 0 | b = 0] = Pr[Ahy(Encpk(0n), Enc′k(m1)) = 0].

On the other hand, when b = 1 in experiment PubKeav
A2,Π(n) then Ahy is given

a ciphertext of the form 〈Encpk(k), Enc′(m1)〉, and so

Pr[A2 outputs 1 | b = 1] = Pr[Ahy(Encpk(k), Enc′k(m1)) = 1].

Since Π has indistinguishable encryptions in the presence of an eavesdrop-
per, there exists a negligible function negl2 such that

1

2
+ negl2(n) ≥ Pr[PubKeav

A2,Π(n) = 1] (10.10)

=
1

2
· Pr[A2 outputs 0 | b = 0] +

1

2
· Pr[A2 outputs 1 | b = 1]

=
1

2
· Pr[Ahy(Encpk(0n), Enc′k(m1)) = 0]

+
1

2
· Pr[Ahy(Encpk(k), Enc′k(m1)) = 1].

At long last, we come to the conclusion of the proof. Summing Equa-
tions (10.8)–(10.10) and using the fact that the sum of three negligible func-
tions is negligible, we see that there exists a negligible function negl such
that

3

2
+ negl(n) ≥
1

2
·
[
Pr[Ahy(Encpk(k), Enc′k(m0)) = 0] + Pr[Ahy(Encpk(0n), Enc′k(m0)) = 1]

+ Pr[Ahy(Encpk(0n), Enc′k(m0)) = 0] + Pr[Ahy(Encpk(0n), Enc′k(m1)) = 1]

+ Pr[Ahy(Encpk(0n), Enc′k(m1)) = 0] + Pr[Ahy(Encpk(k), Enc′k(m1)) = 1]
]
.

Note that

Pr[Ahy(Encpk(0n), Enc′k(m0)) = 1] + Pr[Ahy(Encpk(0n), Enc′k(m0)) = 0] = 1,

since the probabilities of complementary events always sum to 1. Similarly,

Pr[Ahy(Encpk(0n), Enc′k(m1)) = 1] + Pr[Ahy(Encpk(0n), Enc′k(m1)) = 0] = 1.

So we see that

1

2
+ negl(n) ≥
1

2
·
(

Pr[Ahy(Encpk(k), Enc′k(m0)) = 0] + Pr[Ahy(Encpk(k), Enc′k(m1)) = 1]
)

,

338 Introduction to Modern Cryptography

exactly what we wanted to prove (cf. Equation (10.7)).

The above theorem justifies a focus on public-key encryption schemes that
can encrypt messages of length n, the security parameter. Of course, it suf-
fices even to construct schemes that encrypt single-bit messages (since they
can be extended to encrypt n-bit messages using a bit-by-bit approach as in
Section 10.2.2); the point is that there is not much reason to bother optimizing
a public-key encryption scheme once it can encrypt messages of length n.

10.4 RSA Encryption

Our discussion regarding public-key encryption has thus far been rather
abstract: we have seen how to encrypt arbitrary-length messages using any
public-key encryption scheme, but we still have no concrete examples of any
such schemes! In this section, we focus on one popular class of schemes based
on the RSA assumption (cf. Section 7.2.4).

10.4.1 “Textbook RSA” and its Insecurity

Let GenRSA be a ppt algorithm that, on input 1n, outputs a modulus N
that is the product of two n-bit primes, along with integers e, d satisfying
ed = 1 mod φ(N). Recall from Section 7.2.4 that such an algorithm can be
easily constructed from any algorithm GenModulus that outputs a composite
moduli N along with its factorization:

GenRSA

Input: Security parameter 1n

Output: N , e, d as described in the text

(N, p, q)← GenModulus(1n)
φ(N) := (p− 1)(q − 1)
find e such that gcd(e, φ(N)) = 1
compute d := [e−1 mod φ(N)]
return N, e, d

We present what we call the “textbook RSA” encryption scheme as Con-
struction 10.14. We refer to the scheme as we do since many textbooks de-
scribe RSA encryption in exactly this way with no further warning; unfortu-
nately, “textbook RSA” encryption is deterministic and hence automatically
insecure as we have already discussed extensively in Section 10.2.1. Even

Public-Key Encryption 339

though it is insecure, we show it here since it provides a quick demonstration
of why the RSA assumption is so useful for constructing public-key encryption
schemes, and it serves as a useful stepping-stone to the secure construction
we show in Section 10.4.3.

CONSTRUCTION 10.14

Let GenRSA be as in the text. Define a public-key encryption scheme as
follows:

• Gen(1n) runs GenRSA(1n) to obtain N, e, and d. The public key
is 〈N, e〉 and the private key is 〈N, d〉.

• Encpk(m), on input a public key pk = 〈N, e〉 and a message m ∈
Z

∗
N , computes the ciphertext

c := [me mod N].

• Decsk(c), on input a private key sk = 〈N, d〉 and a ciphertext
c ∈ Z

∗
N , computes the message

m := [cd mod N].

The “textbook RSA” encryption scheme.

The fact that decryption always succeeds in recovering the message follows
immediately from Corollary 7.22. As for the security of the scheme, one
thing we can claim is that computing the private key is as hard as factoring
moduli output by GenRSA. The reason for this is that, as mentioned briefly
in Section 7.2.4, given N = pq and e, d with ed = 1 mod φ(N), it is possible
to compute the factors of N in polynomial time. It should be emphasized
that this result says nothing about whether the RSA encryption function can
be inverted using other means.

In fact, although the textbook RSA scheme is not secure with respect to any
of the definitions of security we have proposed in this chapter, it is possible to
prove a very weak form of security for the scheme if the RSA assumption holds
for GenRSA. Namely, one can show that if a message m is chosen uniformly at
random from Z

∗
N , then no ppt adversary given the public key 〈N, e〉 and the

resulting ciphertext c = me mod N can recover the entire message m. We do
not prove this result since it follows immediately from the RSA assumption
(Definition 7.46). Note that this is indeed a rather weak guarantee — m must
be chosen at random (so, in particular, it is not clear what we can say when
m corresponds to English-language text) and furthermore the only thing we
can claim is that an adversary does not learn everything about m (but it may
learn a lot of partial information about m).

340 Introduction to Modern Cryptography

RSA in Practice

We close this section with a brief discussion of some practical aspects related
to RSA encryption. The discussion here applies not only to the textbook RSA
scheme, but also to other schemes that rely on the RSA assumption.

Encoding binary strings as elements of Z∗N . Let ` = ‖N‖. Any binary
string m of length ` − 1 can be viewed as an element of ZN in the natural
way. It is also possible to encode strings of varying lengths as elements of ZN

by padding using some method for indicating the length of the message and
padded the message to the left with 0s.

A theoretical concern is that (the encoded message) m may not lie in Z∗N
(i.e., it may be the case that gcd(m, N) 6= 1). Note that even if this occurs,
decryption still succeeds as shown in Exercise 7.8 of Chapter 7. In any case
if m is chosen at random, then the probability of this event is low (by Propo-
sition B.17); moreover, even if a sender tried to find an m that did not lie in
Z∗N they would be unable to do so without factoring N : given m ∈ ZN \ Z∗N ,
the value gcd(m, N) is a non-trivial factor of N .

Choice of e. There does not appear to be any difference in the hardness of
the RSA problem for different exponents e and, as such, different methods
have been suggested for selecting e. One popular choice is to set e = 3, since
this means that computing eth powers modulo N (as done when encrypting
in the “textbook RSA” scheme) requires only two multiplications and hence
can be performed very quickly. If e is to be set equal to 3 then p and q must
be chosen to satisfy p, q 6= 1 mod 3.

Choosing e = 3 leaves the textbook RSA scheme vulnerable to certain
attacks, some of which are illustrated in the following section. This should be
taken more as an indication of the inadequacy of Construction 10.14 than as
an indication that setting e = 3 is a bad choice.

Note that choosing d to be small (that is, changing GenRSA so that d is
chosen first and then computing e) in order to speed up decryption is a bad
idea. If d is chosen in a small range (say, d < 216) then a brute-force search for
d is easy to carry out. Even if d is chosen so that d ≈ N 1/4, and so brute-force
attacks are ruled out, there are other potential attacks that can be used to
recover d from the public key.

Using the Chinese remainder theorem. The receiver, who holds the
private key and hence the factorization of N , can utilize the Chinese remainder
theorem to speed up computation of dth roots modulo N (as done when
decrypting in the textbook RSA scheme). Specifically, since [cd mod N] ↔
(cd mod p, cd mod q) the receiver can compute the partial results

mp = cd mod p = c[d mod (p−1)] mod p

and

mq = cd mod q = c[d mod (q−1)] mod q

Public-Key Encryption 341

and then combine these to obtain m↔ (mp, mq) as discussed in Section 7.1.5.

Example 10.15
Say p = 11, q = 23, and e = 3. Then N = 253, φ(N) = 220, and d = 147.

To encrypt the binary message m = 0111001 with respect to the key pk =
〈N = 253, e = 3〉, simply interpret m as the number 57 (and hence an element
of Z

∗
253) in the natural way. Then compute

250 := [573 mod 253].

To decrypt, simply compute 57 := [250147 mod 253]. Alternately, using the
Chinese remainder theorem the receiver could compute

250[147 mod 10] mod 11 = 87 mod 11 = 2

and

250[147 mod 22] mod 23 = 2015 mod 23 = 11.

And indeed, 57 ↔ (2, 11). (The desired answer could be recovered from the
representation (2, 11) as described in Section 7.1.5.) ♦

10.4.2 Attacks on RSA

To give more of a feel for the RSA problem, as well as to illustrate additional
problems with textbook RSA encryption, we describe here various attacks,
some of which apply only to Construction 10.14 and some of which apply more
generally. We emphasize that none of these attacks indicate any vulnerability
in provably-secure encryption schemes based on the RSA assumption (such as
the one we will see in the next section) when these schemes are used properly.

Encrypting short messages using small e. If e is small then the encryp-
tion of “small” messages is insecure when using textbook RSA encryption.
For example, say e = 3 and the message m is such that m < N 1/3 but m is
otherwise unknown to an attacker. (We assume in this case that m is padded
to the left with 0s and then interpreted as an element of ZN .) In this case,
encryption of m does not involve any modular reduction since the integer
m3 is less than N . This means that given the ciphertext c = [m3 mod N]
an attacker can determine m by computing m := c1/3 over the integers, a
computation that can be easily done.

Note that this is actually a realistic attack scenario: if strings are encoded
as elements of Z∗N , then having m < N1/3 corresponds to the encryption of
a short message m having length less than ‖N‖ /3 (assuming messages are
encoded by padding to the left with 0s).

A general attack when small e is used. The above attack shows that
short messages can be recovered easily from their encryption if textbook RSA

342 Introduction to Modern Cryptography

with small e is used. Here we extend the attack to the case of arbitrary-length
messages as long as the same message is sent to multiple receivers.

Let e = 3 as before, and say the same message m is sent to three different
parties holding public keys pk1 = 〈N1, 3〉, pk2 = 〈N2, 3〉, and pk3 = 〈N3, 3〉,
respectively. Then an eavesdropper sees

c1 = m3 mod N1 and c2 = me mod N2 and c3 = m3 mod N3.

Assume gcd(Ni, Nj) = 1 for all i, j (if not, then at least one of the moduli can
be factored immediately and the message can then be easily recovered). Let
N∗ = N1N2N3. An extended version of the Chinese remainder theorem says
that there exists a unique non-negative value ĉ < N ∗ with

ĉ = c1 mod N1

ĉ = c2 mod N2

ĉ = c3 mod N3.

Moreover, using techniques similar to those shown in Section 7.1.5 it is pos-
sible to compute ĉ efficiently. Note that ĉ = m3 mod N∗. But since m <
min{N1, N2, N3} we have m3 < N∗. As in the previous attack, this means
that ĉ = m3 over the integers (i.e., with no modular reduction taking place),
and m can be obtained by computing the (integer) cube-root of ĉ.

A quadratic improvement in recovering m. Since textbook RSA encryp-
tion is deterministic, we know that if the message m is chosen from a small
list of possible values then it is possible to determine m from the ciphertext
c = [me mod N] by simply trying each possible value of m as discussed in
Section 10.2.1. If we know that 1 ≤ m < L, the time to carry out this attack
is linear in L, and so one might hope that textbook RSA encryption could be
used when L is large, i.e., the message is chosen from some reasonably-large
set of values. One possible scenario where this might occur is in the context
of hybrid encryption (Section 10.3), where the “message” that is encrypted
directly by the public-key component is a random secret key of length n, and
so L = 2n.

Unfortunately, there is a clever attack that recovers m in this case (with
high probability) in time roughly

√
L. This is a significant improvement in

practice: if an 80-bit (random) message is encrypted, then a brute-force attack
taking 280 steps is infeasible, but an attack taking 240 steps is relatively easy
to carry out.

We show the attack and then discuss why it works. In the description of
the algorithm, we assume that m < 2` and the attacker knows this. The value
α is a constant with 1

2 < α < 1.

If an r that is not invertible modulo N is ever encountered, then the fac-
torization of N (and hence m) can be easily computed; we do not bother
explicitly writing this in the algorithm above. The time complexity of the

Public-Key Encryption 343

An attack on textbook RSA encryption

Input: Public key 〈N, e〉; ciphertext c; parameter `
Output: m such that me = c mod N

set T := 2α`

for r = 1 to T :
xi := [c/re mod N]

sort the pairs {(r, xr)}Tr=1 by their second component
for s = 1 to T :

if xr = [se mod N] for some r
return [r · s mod N]

algorithm is bounded by the time required to sort the 2α`/2 pairs (i, xi); this
can be done in time O(` · 2α`).

Say c = me mod N with ‖m‖ ≤ `. If m is chosen as a random `-bit integer,
it can be shown that with high probability there exist r, s with 1 < r, s ≤ 2α`

and m = r · s. (See the references at the end of the chapter.) We claim that
whenever this occurs, the above algorithm finds m. Indeed, in this case

c = me = (r · s)e = re · se mod N,

and so c/re = se mod N . It is easy to verify that the algorithm finds r, s.

Common modulus attack I. This is a classic example of mis-use of RSA.
Imagine that a company wants to use the same modulus N for each of its
employees. Since it is not desirable for messages encrypted to one employee
to be read by any other employee, the company issues different (ei, di) to each
employee. That is, the public key of the ith employee is pki = 〈N, ei〉 and
their private key is sk = 〈N, di〉, where ei · di = 1 mod φ(N) for all i.

This approach is insecure, and allows any employee to read messages en-
crypted to all other employees. The reason is that, as noted in Section 7.2.4,
given N and ei, di with ei · di = 1 mod φ(N), the factorization of N can be
efficiently computed. Given the factorization of N , of course, it is possible to
compute dj := e−1

j mod φ(N) for any j.

Common modulus attack II. The attack just shown allows any employee to
decrypt messages sent to any other employee. This still leaves the possibility
that sharing the modulus N is ok as long as all employees are trusted (or,
alternately, as long as confidentiality need only be preserved against outsiders
but not against other members of the company). Here we show a scenario
indicating that sharing a modulus is still a bad idea, at least when textbook
RSA encryption is used.

Say the same message m is encrypted and sent to two different (known)
employees with public keys (N, e1) and (N, e2) (e1 6= e2). Assume further
than gcd(e1, e2) = 1. Then an eavesdropper sees the two ciphertexts

c1 = me1 mod N and c2 = me2 mod N.

344 Introduction to Modern Cryptography

Since gcd(e1, e2) = 1, there exist integers X, Y such that Xe1 + Y e2 = 1
by Proposition 7.2; moreover, X and Y can be computed efficiently using
the extended Euclidean algorithm (see Section B.1.2). We claim that m =
[cX

1 · cY
2 mod N] (the latter can be easily calculated); this is true because

cX
1 · cY

2 = mXe1mY e2 = mXe1+Y e2 = m1 = m mod N.

10.4.3 Padded RSA

The insecurity of the textbook RSA encryption scheme, both vis-a-vis the
various attacks described in the previous two sections as well as the fact that
it cannot possibly satisfy Definition 10.3, means that other approaches to en-
cryption based on RSA must be considered. One simple idea is to randomly
pad the message before encrypting. A general paradigm for this approach is
shown as Construction 10.16. The construction is defined based on a param-
eter ` that determines the length of messages that can be encrypted.

CONSTRUCTION 10.16

Let GenRSA be as before, and let ` be a function with `(n) ≤ 2n− 2 for
all n. Define a public-key encryption scheme as follows:

• Key-generation algorithm Gen: On input 1n, run GenRSA(1n) to
obtain (N, e, d). Output the public key pk = 〈N, e〉, and the
private key sk = 〈N, d〉.

• Encryption algorithm Enc: On input a public key pk =
〈N, e〉 and a message m ∈ {0, 1}`(n), choose a random string
r← {0, 1}‖N‖−`(n)−1 and interpret r‖m as an element of ZN in
the natural way. Output the ciphertext

c := [(r‖m)e mod N].

• Decryption algorithm Dec: On input a private key sk = 〈N, d〉 and
a ciphertext c ∈ Z

∗
N , compute

m̂ := [cd mod N],

and output the `(n) low-order bits of m̂.

The padded RSA encryption scheme.

It is clear from the description of the scheme that decryption always suc-
ceeds. (This is immediate when r‖m ∈ Z∗N , but is true even if r‖m 6∈ Z∗N . In
any case, note that the latter occurs with only negligible probability.) Security
of the padded RSA encryption scheme depends on `. If ` is too large, so that
`(n) = 2n−O(log n), then a brute-force search through all possible values of
the random padding r can be done in 2O(log n) = poly(n) time and the scheme

Public-Key Encryption 345

is completely insecure. When `(n) = c · n for some constant c < 2, it is rea-
sonable to conjecture that padded RSA is secure but there is no known proof
of security based on the standard RSA assumption introduced in Chapter 7.
(It is possible, however, to prove security in this case based on a different
assumption; see Exercise 10.5.) Finally, when `(n) = 1 it is possible to prove
the following:

THEOREM 10.17 If the RSA problem is hard relative to GenRSA then
Construction 10.16 with `(n) = 1 has indistinguishable encryptions under
chosen-plaintext attacks.

A full proof3 of this theorem is beyond the scope of this book; however, one
step of the proof is given as part of Exercise 10.6.

PKCS #1 v1.5. A widely-used and standardized encryption scheme, RSA
Laboratories Public-Key Cryptography Standard (PKCS) #1, v1.5, utilizes
what is essentially padded RSA encryption. For a public key pk = 〈N, e〉 of
the usual form, let k denote the length of N in bytes; i.e., k is the integer
satisfying 28(k−1) ≤ N < 28k. Messages m to be encrypted are assumed to be
a multiple of 8 bits long, and can have length up to k− 11 bytes. Encryption
of a message m that is D-bytes long is done as

(00000000‖00000010‖r‖00000000‖m)e mod N,

where r is a randomly-generated string of (k − D − 3) bytes, with none of
these bytes equal to 0. (This latter condition on r simply enables the message
to be unambiguously recovered upon decryption.)

PKCS #1 v1.5 is believed to be CPA-secure, though no proof based on
the RSA assumption has ever been shown. Subsequent to the introduction of
PKCS #1 v1.5, a chosen-ciphertext attack on this scheme was demonstrated;
this motivated a change in the standard to a newer scheme that has been
proven secure against such attacks. The most recent version of the standard
is PKCS #1 v2.1; see Section 13.2.3 for a high-level description of this scheme.
This updated version is preferred for new implementations, though the older
version is still in widespread use for reasons of backwards-compatibility.

10.5 The El Gamal Encryption Scheme

The El Gamal encryption scheme is another popular and widely-used en-
cryption scheme whose security can be based on the hardness of the decisional

3For those who have covered Chapter 6, we note that the theorem relies on the fact that
the least-significant bit is hard-core for RSA.

346 Introduction to Modern Cryptography

Diffie-Hellman (DDH) problem. The DDH problem is discussed in detail in
Section 7.3.2.

We begin by stating and proving a simple lemma that underlies the El
Gamal encryption scheme and will also be useful for analyzing some of the
schemes we present in Chapter 10. Let G be a group, and let m ∈ G be
an arbitrary element. Essentially, the lemma states that multiplying m by a
random group element g yields a random group element g′; since the distri-
bution of g′ is independent of m, this means that g′ contains no information
about m. That is:

LEMMA 10.18 Let G be a finite group, and let m ∈ G be arbitrary. Then
choosing random g ← G and setting g′ := m · g gives the same distribution
for g′ as choosing random g′ ← G. I.e., for any ĝ ∈ G

Pr[m · g = ĝ] = 1/|G|,

where the probability is taken over random choice of g.

PROOF Let ĝ ∈ G be arbitrary. Then

Pr[m · g = ĝ] = Pr[g = m−1 · ĝ].

Since g is chosen uniformly at random, the probability that g is equal to the
fixed element m−1 · ĝ is exactly 1/|G|.

The above lemma suggests a way to construct a perfectly-secret private-key
encryption scheme that encrypts messages in G: The sender and receiver will
share as their secret key a random element g ← G; to encrypt the message
m ∈ G, the sender computes the ciphertext g′ := m · g. The receiver can
recover the message from the ciphertext g′ by computing m := g′/g. Perfect
secrecy of this schemes follows immediately from the lemma.

In fact, we have already seen this scheme in a different guise — the one-time
pad encryption scheme is exactly an example of the above approach, with the
underlying group being the set of strings of some fixed length under the group
operation of bit-wise xor.

In the scheme as we have described it, g is truly random and decryption is
possible only because the sender and receiver have shared g in advance. In
the public-key setting, a different technique is needed to allow the receiver to
decrypt. The crucial idea is to use a “pseudorandom” element g rather than
a truly random one. In a bit more detail, g will be defined in such a way that
the receiver will be able to compute g using her private key, yet g will “look
random” for any eavesdropper. We now see how to implement this idea using
the DDH assumption, and this discussion should become even more clear once
we see the proof of Theorem 10.20.

Public-Key Encryption 347

Let G be a polynomial-time algorithm that, on input 1n, outputs a (de-
scription of a) cyclic group G, its order q (with ‖q‖ = n), and a generator g.
(As usual, we also require that the group operation in G can be computed in
time polynomial in n). The El Gamal encryption scheme is defined as follows:

CONSTRUCTION 10.19

Let G be as in the text. Define a public-key encryption scheme as follows:

• Gen(1n) runs G(1n) to obtain G, q, g, and then chooses a random
x ← Zq. The public key is 〈G, q, g, gx〉 and the private key is
〈G, q, g, x〉.

• To encrypt a message m ∈ G with respect to the public key pk =
〈G, q, g, h〉, choose a random y ← Zq and output the ciphertext

〈gy, hy ·m〉.

• To decrypt a ciphertext 〈c1, c2〉 using the private key sk =
〈G, q, g, x〉, compute

m := c2/cx
1 .

The El Gamal encryption scheme.

To see that decryption succeeds, let 〈c1, c2〉 = 〈gy, hy ·m〉 with h = gx.
Then note that

c2

cx
1

=
hy ·m
(gy)x

=
(gx)y ·m

gxy
=

gxy ·m
gxy

= m.

To fully specify the scheme, we need to show how to encode binary strings as
elements of G. See the discussion at the end of this section.

We now prove security of the El Gamal encryption scheme. The reader
may want to compare the proof of the following theorem to the proof of
Theorem 3.17.

THEOREM 10.20 If the DDH problem is hard relative to G, then the
El Gamal encryption scheme has indistinguishable encryptions under chosen-
plaintext attacks.

PROOF Let Π denote the El Gamal encryption scheme. We prove that
Π has indistinguishable encryptions in the presence of an eavesdropper; by
Theorem 10.10 this implies that it is CPA-secure.

Let A be a probabilistic, polynomial-time adversary, and define

ε(n)
def
= Pr[PubKeav

A,Π(n) = 1].

348 Introduction to Modern Cryptography

Consider the modified “encryption scheme” Π̃ where Gen is the same as in Π,
but encryption of a message m with respect to the public key 〈G, q, g, h〉 is
done by choosing random y ← Zq and z ← Zq and outputting the ciphertext

〈gy, gz ·m〉.

Although Π̃ is not actually an encryption scheme (as there is no way for the
receiver to decrypt), the experiment PubKeav

A,Π̃
(n) is still well-defined since

the experiment depends only on the algorithms for key generation and for
encryption.

Lemma 10.18, and the discussion that immediately follows it, imply that the
second component of the ciphertext in scheme Π̃ is a uniformly-distributed
group element and, in particular, is independent of the message m being
encrypted. The first component of the ciphertext is trivially independent
of m. Taken together, this means that the distribution of the ciphertext is
independent of m and hence contains no information about m. It follows that

Pr[PubKeav

A,Π̃
(n) = 1] =

1

2
.

Now consider the following ppt algorithm D that attempts to solve the
DDH problem relative to G:

Algorithm D:
The algorithm is given G, q, g, g1, g2, g3 as input.

• Set pk = 〈G, q, g, g1〉 and run A(pk) to obtain two messages
m0, m1.

• Choose a random bit b, and set c1 := g2 and c2 := g3 ·mb.

• Give the ciphertext 〈c1, c2〉 to A and obtain an output bit b′.
If b′ = b, output 1; otherwise, output 0.

Let us analyze the behavior of D. There are two cases to consider:

Case 1: Say the input to D is generated by running Gen(1n) to obtain
(G, q, g), then choosing random x, y, z ∈ Zq , and finally setting g1 := gx,
g2 := gy, and g3 := gz. Then D runs A on a public key constructed as

pk = 〈G, q, g, gx〉

and a ciphertext constructed as

〈c1, c2〉 = 〈gy, gz ·mb〉.

We see that in this case the view of A when run as a subroutine by D is
distributed exactly as A’s view in experiment PubKeav

A,Π̃
(n). Since D outputs 1

exactly when the output b′ of A is equal to b, we have that

Pr[D(G, q, g, gx, gy, gz) = 1] = Pr[PubKeav

A,Π̃
(n) = 1] =

1

2
.

Public-Key Encryption 349

Case 2: Say the input to D is generated by running Gen(1n) to obtain
(G, q, g), then choosing random x, y ∈ Zq , and finally setting g1 := gx, g2 :=
gy, and g3 := gxy. Then D runs A on a public key constructed as

pk = 〈G, q, g, gx〉

and a ciphertext constructed as

〈c1, c2〉 = 〈gy, gxy ·mb〉 = 〈gy, (gx)y ·mb〉.

We see that in this case the view of A when run as a subroutine by D is
distributed exactly as A’s view in experiment PubKeav

A,Π(n). Since D outputs 1
exactly when the output b′ of A is equal to b, we have that

Pr[D(G, q, g, gx, gy, gxy) = 1] = Pr[PubKeav
A,Π(n) = 1] = ε(n) .

Since the DDH problem is hard relative to G, there must exist a negligible
function negl such that

negl(n) =
∣∣∣Pr[D(G, q, g, gx, gy, gz) = 1]− Pr[D(G, q, g, gx, gy, gxy) = 1]

∣∣∣

=

∣∣∣∣
1

2
− ε(n)

∣∣∣∣ .

But this implies that ε(n) ≤ 1
2 + negl(n), completing the proof.

El Gamal in Practice

We briefly discuss a few practical aspects related to El Gamal encryption.

Encrypting binary strings. As noted earlier, in order to fully specify
a usable encryption scheme we need to show how to encode binary strings
as elements of G. This, of course, depends on the particular type of group
under consideration. We sketch one possible encoding when G is taken to be
the subgroup of quadratic residues modulo a strong prime p as discussed in
Section 7.3.3. The encoding we present was chosen for simplicity, and more
efficient encodings are possible.

Let p be a strong prime, i.e., q = (p − 1)/2 is also prime. Then the set
of quadratic residues modulo p forms a group G of order q under multipli-
cation modulo p. We can map the integers {1, . . . , (p − 1)/2} to the set of
quadratic residues modulo p by squaring: that is, the integer m̄ is mapped
to the quadratic residue m = [m̄2 mod p]. This encoding is one-to-one and
efficiently reversible. It is one-to-one since any quadratic residue [m̄2 mod p]
has exactly the two square roots [±m̄ mod p], and exactly one of these values
lies in the range {1, . . . , (p−1)/2}. (This is so because [m̄ mod p] ≤ (p−1)/2
if and only if [−m̄ mod p] = p − [m̄ mod p] > (p − 1)/2.) The encoding is
efficiently invertible since square roots modulo p are easy to compute. See
Sections 11.1.1 and 11.2.1 for further discussion about these issues.

350 Introduction to Modern Cryptography

Given the above, we can map a string m̂ of length n−1 to an element m ∈ G

in the following way (recall that n = ‖q‖): given a string m̂ ∈ {0, 1}n−1,
interpret it as an integer in the natural way and add 1 to obtain an integer m̄
with 1 ≤ m̄ ≤ q. Then take m = [m̄2 mod p].

Example 10.21

Let q = 83 and p = 2q + 1 = 167, and let G be the quadratic residues
modulo p. Since q is prime, any element of G except 1 is a generator; take
g = 22 = 4 mod 167. Say the receiver chooses secret key 37 ∈ Z83 and so the
public key is

pk = 〈167, 83, 4, [437 mod 167]〉 = 〈167, 83, 4, 76〉.

To encrypt the 6-bit message m̂ = 011101, view it as the integer 29 and then
add 1 to obtain m̄ = 30. Squaring this gives m = [302 mod 167] = 65 ≤ q.
This is our encoding of the message. Picking y = 71 when encrypting, we get
the ciphertext

〈[471 mod 167], [7671 · 65 mod 167]〉 = 〈132, 44〉.

To decrypt, the receiver first computes 124 = [13237 mod 167]; then, since
66 = [124−1 mod 167], the receiver can recover m = 65 = [44 · 66 mod 167].
This m has the two square roots 30 and 137, but the latter is greater than q.
So m̄ = 30 and m̂ can be easily determined. ♦

El Gamal encryption is also widely used with G being an elliptic-curve
group. Such groups were introduced briefly in Section 7.3.4.

Sharing public parameters. Our description of the El Gamal encryp-
tion scheme in Construction 10.19 requires the receiver to run G to generate
G, q, g. In practice, however, it is common for these parameters to be gener-
ated “once-and-for-all” and then used by multiple receivers. (For example, a
system administrator can fix these parameters for a particular choice of secu-
rity parameter n, and then everyone in the system can share these values.) Of
course, each receiver must choose their own secret value x and publish their
own public key containing h = gx.

Sharing public parameters is not believed to compromise the security of the
encryption scheme in any way. Assuming the DDH problem is hard relative
to G in the first place, this is because the DDH problem is still believed to be
hard even for the party who runs G to generate G, q, g. We remark that this
is in contrast to RSA, where the party who runs GenRSA (at least the way we
have described it) knows the factorization of the output modulus N . (And in
the case of RSA, public parameters can not be shared.)

Public-Key Encryption 351

10.6 Chosen-Ciphertext Attacks

Chosen-ciphertext attacks, in which an adversary is allowed to obtain the
decryption of any ciphertexts of its choice (with one technical restriction; see
the formal definition below), are as much of a concern in the public-key set-
ting as they are in the private-key setting. Arguably, in fact, they are more
of a concern in the public-key setting since a receiver in the public-key set-
ting expects to receive ciphertexts from multiple senders, possibly unknown
in advance, whereas a receiver in the private-key setting intends only to com-
municate with a single, known sender using any particular secret key.

As described in Section 4.8, although at first glance it may seem unreason-
able to model an attacker as being able to interact with a decryption oracle
that decrypts arbitrary ciphertexts of the adversary’s choice, there are real-
istic scenarios in which this model makes sense. Assume an eavesdropper A
observes a ciphertext c sent by a sender S to a receiver R. In the public-key
setting one can imagine two broad classes of chosen-ciphertext attacks that
might occur:

• A might send a ciphertext c′ to R, but claim that this ciphertext was
sent by S. (E.g., in the context of encrypted e-mail A might construct
an encrypted e-mail message c′ and forge the “From” field so that it
appears the e-mail originated from S.) In this case, although it is un-
likely that A would be able to obtain the entire decryption m′ of c′, it
might be possible for A to infer some information about m′ based on
the subsequent behavior of R.

• A might also send a ciphertext c′ to R in its own name. In this case,
it may be easier for A to obtain the entire decryption m′ of c′ because
R may respond directly to A. Or, A may not obtain the decryption of
c′ at all, but the content of m′ alone may have beneficial consequences
for A. (See the third scenario below for an illustration of this latter
point.)

Note that the second class of attacks applies only in the context of public-key
encryption. We now give some scenarios demonstrating the above types of
attacks.

Scenario 1. Say a user S logs in to her bank account by sending an encryption
of her password pw to the bank. (Logging in this way has other problems,
but we ignore these for now.) Assume further that there are two types of
error messages that the bank sends upon a failed login: upon receiving (an
encryption of) pw from the user S, who is assumed to have an account with the
bank, the bank sends “invalid password” if pw contains any non-alphanumeric
characters, and returns “password incorrect” if pw is a valid password but it
does not match the stored password of S.

352 Introduction to Modern Cryptography

If an adversary obtains a ciphertext c sent by S to the bank, the adversary
can now mount a (partial) chosen-ciphertext attack by sending ciphertexts c′

to the bank and observing the error messages that the bank returns. This
information may be enough to enable the adversary to determine the user’s
password. We remark further that the adversary gains no information by
sending c to the bank, since it already knows in this case that no error message
will be generated.4

Scenario 2. Say S sends an encrypted e-mail c to R, and this e-mail is
observed by A. If A sends an encrypted e-mail c′ to R (in its own name), then
R might reply to this e-mail and quote the decrypted text m′ corresponding
to c′. (Note that even if R encrypts this response using the public key of A, it
will be possible for A to decrypt the response and obtain m′.) In this case, R
is exactly acting as a decryption oracle for A and might potentially decrypt
any ciphertext that A sends it. On the other hand, if A sends c itself to R
then R might get suspicious and refuse to respond.

Scenario 3. Very related to the issue of chosen-ciphertext security is the
possible malleability of ciphertexts. Since a formal definition is quite involved,
we do not pursue one here but instead only give the intuitive idea. Say
an encryption scheme has the property that given an encryption c of some
unknown message m, it is possible to come up with a ciphertext c′ that is an
encryption of an unknown message m′ that is related in some known way to m.
For example, perhaps given an encryption c of m, it is possible to construct
a ciphertext c′ that is an encryption of 2m. (We will see natural examples of
schemes with this property further in this section.)

Now imagine that R is running an auction, where two parties S and A sub-
mit their bids by encrypting them using the public key of R. If a CPA-secure
encryption scheme having the above property is used, it may be possible for
an adversary A to always place the highest bid (without bidding the maxi-
mum) by carrying out the following attack: wait until S sends a ciphertext c
corresponding to its bid m (that is unknown to A); then, send a ciphertext c′

corresponding to the bid m′ = 2m. Note that both m and m′ remain unknown
to A (until R announces the results), and so the possibility of such an attack
does not contradict the fact that the encryption scheme is CPA-secure.

We now present a formal definition of security against chosen-ciphertext
attacks that exactly parallels Definition 3.31. (A cosmetic difference is that
we do not give the adversary access to an encryption oracle; as discussed
previously, an encryption oracle does not give any additional power to the

4Re-sending c is an example of a replay attack, and in this example would have the negative
effect of fooling the bank into thinking that S was logging in. This can be fixed by having
the user encrypt a time-stamp along with her password, but the addition of a time-stamp
does not change the feasibility of the described attack. (In fact, it may make an attack
easier since there may now be a third error message indicating an invalid time-stamp.)

Public-Key Encryption 353

adversary in the public-key setting.) For a public-key encryption scheme Π
and an adversary A, consider the following experiment:

The CCA indistinguishability experiment PubKcca
A,Π(n):

1. Gen(1n) is run to obtain keys (pk, sk).

2. Adversary A is given pk and access to a decryption oracle
Decsk(·), outputs a pair of messages m0, m1 with |m0| = |m1|.
(These messages must be in the plaintext space associated
with pk.)

3. A random bit b ← {0, 1} is chosen, and then the ciphertext
c← Encpk(mb) is computed and given to A.

4. A can continue to interact with the decryption oracle, but
may not request decryption of c itself. Finally, A outputs a
bit b′.

5. The output of the experiment is defined to be 1 if b′ = b, and
0 otherwise.

DEFINITION 10.22 A public-key encryption scheme Π = (Gen, Enc, Dec)
has indistinguishable encryptions under a chosen-ciphertext attack (or is CCA-

secure) if for all probabilistic, polynomial-time adversaries A there exists a
negligible function negl such that

Pr[PubKcca
A,Π(n) = 1] ≤ 1

2
+ negl(n),

where the probability is taken over the random coins used to generate (pk, sk),
choose b, and encrypt mb.

We will not be able to show any examples of CCA-secure encryption schemes
here, since all existing constructions are rather complex. We remark, however,
that a CCA-secure encryption scheme based on the DDH assumption and
with efficiency roughly twice that of El Gamal encryption is known. (See
the references at the end of the chapter.) In Chapter 13 we discuss a CCA-
secure scheme that is used widely in practice. Coming up with simpler or
more efficient constructions of CCA-secure public-key encryption schemes,
especially based on the RSA assumption, is an area of active research.

Examples of Chosen-Ciphertext Attacks

The vulnerability of encryption schemes to chosen-ciphertext attacks is not
only a theoretical possibility. We show here that all the schemes we have seen
so far are insecure under such attacks.

Textbook RSA encryption. In our earlier discussion, we noted that the
textbook RSA encryption scheme at least satisfies the following security prop-
erty (assuming the RSA problem is hard for GenRSA): if a message m is chosen

354 Introduction to Modern Cryptography

uniformly at random from Z∗N and encrypted with respect to the public key
〈N, e〉, then an eavesdropping adversary cannot recover m in its entirety. It
is not hard to see that even this weak property no longer holds if the ad-
versary is allowed to mount a chosen-ciphertext attack. Say an adversary A
intercepts the ciphertext c = me mod N . Then the adversary can choose a
random r ← Z∗N and compute the ciphertext c′ = [re · c mod N]. Given the
decryption m′ of this ciphertext, A can recover m = [m′ · r−1 mod N]. To see
that this works, note that

m′ · r−1 = (c′)dr−1 = (re ·me)dr−1 = redmedr−1 = rmr−1 = m mod N,

where d is the value contained in the receiver’s private key and used to decrypt
c′ (and so ed = 1 mod φ(N)).

Textbook RSA encryption is also vulnerable in the auction scenario dis-
cussed earlier (scenario 3). We show how to carry out exactly the attack
shown there. Say an adversary observes a ciphertext c = me mod N en-
crypted with respect to the public key 〈N, e〉. Then we claim that the cipher-
text c′ = [2ec mod N] decrypts to 2m. This holds because

(c′)d = (2eme)d = 2edmed = 2m mod N,

where d is as above.

PKCS #1 v1.5. Recall that the public-key encryption scheme used as part
of the PKCS #1 v1.5 standard uses a variant of padded RSA encryption
where a portion of the padding is done in a specific way (and cannot consist
of arbitrary bits). If a ciphertext is decrypted and discovered not to have the
correct format, an error message is returned. It turns out the the presence of
these error messages is sufficient to enable a chosen-ciphertext attack against
the scheme. That is, given a properly-generated ciphertext c, an attacker
can recover the underlying message m by submitting multiple ciphertexts c′

and observing only which ciphertexts are decrypted successfully and which
generate an error. Since this sort of information is easy to obtain, the attack
is quite practical.

The existence of such a practical chosen-ciphertext attack on the scheme
came as somewhat of a surprise, and prompted efforts to standardize an
improved encryption scheme that could be proven secure against chosen-
ciphertext attacks. These efforts culminated in (a variant of) a scheme that
we discuss in Section 13.2.3.

El Gamal encryption. The El Gamal encryption scheme is as vulnerable to
chosen-ciphertext attacks as textbook RSA encryption is. This may be some-
what surprising since we have proved that the El Gamal encryption scheme is
CPA-secure, but we emphasize again that there is no contradiction since we
are now in a stronger attack model.

Say an adversaryA intercepts a ciphertext c = 〈c1, c2〉 that is an encryption
of the (encoded) message m with respect to the public key pk = 〈G, q, g, h〉.

Public-Key Encryption 355

This means that

c1 = gy and c2 = hy ·m

for some y ∈ Zq unknown to A. Nevertheless, if the adversary computes
c′2 := c2 · m′ then it is easy to see that the ciphertext c′ = 〈c1, c

′
2〉 is an

encryption of the message m ·m′. This observation leads to an easy chosen-
ciphertext attack, and also shows that El Gamal encryption is vulnerable in
the auction scenario mentioned above.

One might object that the receiver will become suspicious if it receives two
ciphertexts c, c′ that share the same first component. (Indeed, for honestly-
generated ciphertexts this occurs with only negligible probability.) However,
this is easy for the adversary to avoid. Letting c1, c2, m, m′ be as above, A can
now choose a random y′′ ← Zq and compute c′′1 := c1 ·gy′′

and c′′2 := c2·hy′′ ·m′;
then

c′′1 = gy · gy′′

= gy+y′′

and c′′2 = hym · hy′′

m′ = hy+y′′

mm′,

and so the ciphertext c′′ = 〈c′′1 , c′′2〉 is again an encryption of m ·m′ but with
a completely random first component.

10.7 * Trapdoor Permutations and Public-Key Encryp-
tion

We have seen in Section 10.4.3 how to construct a public-key encryption
scheme based on the RSA assumption. By distilling those properties of RSA
that are used in the construction, and defining an abstract notion that en-
capsulates those properties, we can hope to obtain a general template for
constructing secure encryption schemes based on any primitive satisfying the
same set of properties. Trapdoor permutations, which are a special case of
one-way permutations, serve as one such abstraction.

In the following section, we define trapdoor permutations and observe that
the RSA family of one-way permutations (Construction 7.71) trivially satisfies
the additional requirements needed to be a family of trapdoor permutations.
In Section 10.7.2 we show how a public-key encryption scheme can be con-
structed from any trapdoor permutation. The material in Section 10.7.1 is
used directly only in Section 11.2, where a second example of a trapdoor
permutation is shown; trapdoor permutations are mentioned in passing in
Chapter 13 but are not essential for understanding the material there. Sec-
tion 10.7.2 is not used in the rest of the book.

356 Introduction to Modern Cryptography

10.7.1 Trapdoor Permutations

We showed in Section 7.4.1 that the RSA assumption naturally gives rise
to a family of one-way permutations. But the astute reader may have noticed
that the construction we gave (Construction 7.71) has a special property that
was not remarked upon there: namely, the parameter-generation algorithm
Gen outputs some additional information along with I that enables efficient
inversion of fI . We refer to such additional information as a trapdoor, and
call families of one-way permutations with this additional property families
of trapdoor permutations. A formal definition follows.

DEFINITION 10.23 A tuple of polynomial-time algorithms (Gen, Samp,
f , Inv) is a family of trapdoor permutations (or, informally, a trapdoor permu-

tation) if the following hold:

• The parameter-generation algorithm Gen, on input 1n, outputs
(I, td) with |I | ≥ n. Each (I, td) output by Gen defines a set DI = Dtd.

• Let Gen1 denote the algorithm that results by running Gen and outputting
only I. It is required that (Gen1, Samp, f) be a family of one-way per-
mutations (see Definition 7.70).

• The deterministic inverting algorithm Inv, on input td and y ∈ Dtd, out-
puts an element x ∈ Dtd. We write this as x := Invtd(y). It is required
that for all (I, td) output by Gen(1n) and all x ∈ DI = Dtd we have

Invtd(fI(x)) = x.

Informally, the second condition simply means that fI cannot be efficiently
inverted without td. The final condition requires that fI can be inverted
with td. It is immediate that Construction 7.71 can be modified to give a
family of trapdoor permutations as long as the RSA problem is hard relative
to GenModulus. We sometimes refer to this as the RSA trapdoor permutation.
Another example of a trapdoor permutation will be given in Section 11.2.2.

10.7.2 Public-Key Encryption from Trapdoor Permutations

We now sketch, at a somewhat high level, how a public-key encryption
scheme can be constructed from an arbitrary family of trapdoor permutations.
Although the reader may better appreciate the material in this section after
reading Chapter 6, that chapter is not required in order to understand this
section. In order to keep this section self-contained, however, some repetition
is inevitable.

Before continuing, it will be useful to introduce some shorthand. If (Gen,
Samp, f , Inv) is a family of trapdoor permutations and (I, td) is a pair of
values output by Gen, we simply write “x← DI” to denote random selection

Public-Key Encryption 357

of an element from DI (and no longer explicitly refer to algorithm Samp). We
also use fI in place of fI , and f−1

I in place of Invtd, with the understanding
that the latter can only be efficiently computed if td is known. We will thus
refer to (Gen, f) as a family of trapdoor permutations (though formally we
still mean (Gen, Samp, f , Inv)).

Given only I and fI(x) for a randomly-chosen x, we cannot expect to be
able to compute x efficiently. Nevertheless, this does not mean that certain
information about x (say, the least-significant bit of x) is hard to compute.
The first step in our construction of a public-key encryption scheme will be
to distill the hardness of a family of trapdoor permutation, by identifying a
single bit of information that is hard to compute about x. This idea is made
concrete in the notion of a hard-core predicate. The following is the natural
adaptation of Definition 6.5 to our context.

DEFINITION 10.24 (hard-core predicate): Let Π = (Gen, f) be a family
of trapdoor permutations. Let hc be a deterministic, polynomial-time algo-
rithm that, on input I and x ∈ DI , outputs the single bit hcI(x).

We say hc is a hard-core predicate of Π if for every probabilistic polynomial-
time algorithm A, there exists a negligible function negl such that

Pr[A(I, fI (x)) = hcI(x)] ≤ 1

2
+ negl(n),

where the probability is taken over the experiment in which Gen(1n) is run to
give (I, td) and then x is chosen uniformly at random from DecI .

Given a family Π̂ of trapdoor permutations and a predicate hc that is hard-
core for this family, we can encrypt a single bit in the following natural way:
Given public key I , the sender encrypts a single bit m by (1) choosing ran-
dom x ← DI ; (2) computing y := fI(x); and (3) sending the ciphertext
〈y, hcI(x)⊕m〉. To decrypt the ciphertext 〈y, m′〉 using private key 〈I, td〉,
the receiver first computes x := f−1

I (y) using td, and then outputs the mes-
sage m := hcI(x) ⊕m′. (See Construction 10.25.) It is easy to see that this
recovers the original message.

THEOREM 10.26 If Π̂ is a family of trapdoor permutations and hc is
a hard-core predicate of Π̂, then Construction 10.25 has indistinguishable en-
cryptions under chosen-ciphertext attacks.

PROOF Let Π denote the public-key encryption scheme given by Con-
struction 10.25. As usual, we prove that Π has indistinguishable encryptions
in the presence of an eavesdropper, and use Theorem 10.10 to obtain the
stated result.

358 Introduction to Modern Cryptography

CONSTRUCTION 10.25

Let Π̂ = (Ĝen, f) be a family of permutations, and hc a predicate that is

hard-core for Π̂. Construct the following public-key encryption scheme:

• Key-generation algorithm Gen: On input 1n, run Ĝen(1n) to obtain
(I, td). Output the public key I and the private key 〈I, td〉.

• Encryption algorithm Enc: On input a public key I and a message
m ∈ {0, 1}, choose random x← DI and output the ciphertext

〈fI(x), hcI(x)⊕m〉.

• Decryption algorithm Dec: On input a private key 〈I, td〉 and a
ciphertext 〈y, m′〉 with y ∈ Dtd, compute x := f−1

I (y) and output
the message hcI(x)⊕m′.

A public-key encryption scheme from any family of trapdoor permutations.

Let A be a probabilistic, polynomial-time adversary, and define

ε(n)
def
= Pr[PubKeav

A,Π(n) = 1].

We will assume, without loss of generality, that the messages m0, m1 output
by A are always different. (You should convince yourself that this is indeed
without loss of generality.)

Consider the following ppt algorithm Ah that attempts to compute hI(x)
when given I and fI(x) as input:

Algorithm Ah:
The algorithm is given I and y ∈ DI as input.

• Set pk = I and run A(pk) to obtain two messages m0, m1.

• Choose independent random bits z and b. Set m′ := mb ⊕ z.

• Give the ciphertext 〈y, m′〉 to A and obtain an output bit b′.
If b′ = b, output z; otherwise, output z̄, where z̄ denotes the
complement of z.

Let us analyze the behavior of Ah. Letting x be such that y = fI(x), we
can view z as an initial “guess” by Ah for the value of hI(x). This guess is
correct with probability 1/2, and incorrect with probability 1/2. We also have

Pr[Ah(I, fI(x)) = hI(x)]

=
1

2
·
(

Pr[b′ = b | z = hI(x)] + Pr[b′ 6= b | z 6= hI(x)]
)

. (10.11)

When z = hI(x) the view of A (being run as a sub-routine by Ah) is
distributed exactly as A’s view in experiment PubKeav

A,Π(n) with bit b being
used in that experiment. This is true because in this case m′ satisfies m′ =

Public-Key Encryption 359

mb ⊕ hI(x), and so the ciphertext 〈y, m′〉 given to A is indeed a random
encryption of mb. It follows that

Pr[b′ = b | z = hI(x)] = Pr[PubKeav
A,Π(n) = 1] = ε(n).

On the other hand, when z 6= hI(x) then the view of A (being run as a sub-
routine by Ah) is distributed exactly as A’s view in experiment PubKeav

A,Π(n)

but with bit b̄ being used in that experiment. This follows because now m′

satisfies

m′ = mb ⊕ h̄I(x) = mb̄ ⊕ hI(x),

(recalling our assumption that m0 = m̄1), and so the ciphertext 〈y, m′〉 given
to A is now a random encryption of mb̄. Therefore

Pr[b′ = b | z 6= hI(x)] = Pr[PubKeav
A,Π(n) = 0] = 1− ε(n)

and so Pr[b′ 6= b mod z 6= hI(x)] = ε(n).
Using Equation (10.11) and the fact that h is a hard-core predicate for Π,

there exists a negligible function negl with

ε(n) = Pr[Ah(I, fI(x)) = hI(x)] ≤ 1

2
+ negl(n).

This completes the proof.

It remains only to show that families of trapdoor permutations have hard-
core predicates. For some natural families, such as the one based on the
RSA assumption that was discussed in the previous section, specific hard-
core predicates are known. (As one example, it is known that if the RSA
assumption holds then the least-significant bit is hard-core for the RSA family
of trapdoor permutations.) For the general case, we can rely on the following
result that can be proved by a suitable modification of Theorem 6.6:

THEOREM 10.27 If a family of trapdoor permutations Π̂ exists, then
there exists a family of trapdoor permutations Π along with a predicate h that
is hard-core for Π.

Encrypting longer messages. Using Corollary 10.11, we know that we can
extend Construction 10.25 to encrypt `-bit messages for any polynomial `.
Doing so, the ciphertext corresponding to an `-bit message m = m1 · · ·m`

encrypted with respect to the public key I would take the form

〈
fI(x1), hI(x1)⊕m1

〉
, . . . ,

〈
fI(x`), hI(x`)⊕m`

〉

with x1, . . . , x` chosen independently and uniformly at random from DI .

360 Introduction to Modern Cryptography

We can reduce the size of the ciphertext by having the sender instead pro-
ceed as follows: Choose random x1 ← DI and compute xi+1 := fI(xi) for
i = 1 to `. Then output the ciphertext

〈
x`+1, hI(x1)⊕m1, · · · , hI(x`)⊕m`

〉
.

A proof that this is secure uses ideas from Section 6.4, and is left as an exercise.

References and Additional Reading

The idea of public-key encryption was first proposed (in the open literature,
at least) by Diffie and Hellman [50]. Somewhat amazingly, the El Gamal
encryption scheme [60] was not proposed until 1984 even though it can be
viewed as a direct transformation of the Diffie-Hellman key exchange protocol
shown in Chapter 9; see Exercise 10.3. Rivest, Shamir, and Adleman [110]
introduced the RSA assumption and proposed a public-key encryption scheme
based on this assumption.

Definition 10.3 is rooted in the seminal work of Goldwasser and Micali [70],
who were also the first to recognize the necessity of probabilistic encryption
for satisfying this definition.

A proof of security for a special case of hybrid encryption was first given
by Blum and Goldwasser [27].

The public-key encryption scheme suggested by Rivest, Shamir, and Adle-
man [110] corresponds to the textbook RSA scheme shown here. The attacks
described in Section 10.4.2 are due to [74, 48, 119, 32]; see [93, Chapter 8]
and [30] for additional attacks and further explanation. The PKCS#1 RSA
Cryptography Standard (both the latest version and some previous versions)
is available for download from http://www.rsa.com/rsalabs. A proof of
Theorem 10.17 can be derived from results in [13, 76].

As noted in Chapter 4, chosen-ciphertext attacks were first formally defined
by Naor and Yung [99] and Rackoff and Simon [109]. The chosen-ciphertext
attacks on the “textbook RSA” and El Gamal schemes are immediate; the
attack on PKCS #1 v1.5 is due to Bleichenbacher [25]. For more recent defi-
nitional treatments of public-key encryption under stronger attacks, including
chosen-ciphertext attacks, the reader is referred to the works of Dolev et al.
[51] and Bellare et al. [16]. The first efficient public-key encryption scheme
secure against chosen-ciphertext attack was shown by Cramer and Shoup [42].
See the expository article by Shoup [115] for a discussion of the importance
of security against chosen-ciphertext attacks.

The existence of public-key encryption based on arbitrary trapdoor permu-
tations was shown by Yao [134], and the efficiency improvement discussed at
the end of Section 10.7.2 is due to Blum and Goldwasser [27]. The reader in-

Public-Key Encryption 361

terested in finding out more about hard-core predicates for the RSA family of
trapdoor permutations is invited to peruse [13, 76, 12] and references therein.

Exercises

10.1 Assume a public-key encryption scheme for single-bit messages. Show
that, given pk and a ciphertext c computed via c ← Encpk(m), it is
possible for an unbounded adversary to determine m with probability 1.
This shows in particular that perfectly-secret public-key encryption is
impossible.

10.2 Say a deterministic public-key encryption scheme is used to encrypt a
message m that is known to lie in a small set of N possible values. Show
how it is possible to determine m in time linear in N .

10.3 Show that any 2-round key-exchange protocol (that is, where each party
sends a single message) satisfying Definition 9.2 can be converted into
a public-key encryption scheme that is CPA-secure.

10.4 Show that in Definition 10.7, we can assume without loss of general-
ity that A always outputs two vectors containing exactly t(n) messages
each. That is, show how to construct, for any scheme Π and any ad-
versary A, an adversary A′ that (1) always outputs vectors of the same
length t(n) for each fixed value of n and such that

Pr[PubKmult
A,Π(n) = 1] = Pr[PubKmult

A′,Π(n) = 1].

10.5 Let GenRSA have the usual meaning. Consider the following experiment
for an algorithm A, a function ` with `(n) ≤ 2n − 2 for all n, and a
parameter n:

The padded RSA experiment PADA,GenRSA,`(n)

(a) Run GenRSA(1n) to obtain output (N, e, d).

(b) Give N, e to A, who outputs a string m ∈ {0, 1}`(n).

(c) Choose a random bit b. If b = 0, choose random y0 ← Z∗N .
If b = 1 choose r ← {0, 1}‖N‖−`(n)−1 and set

y1 := [(r‖m)e mod N].

(d) A is given yb, and outputs a bit b′.

(e) The output of the experiment is defined to be 1 if b′ = b,
and 0 otherwise.

362 Introduction to Modern Cryptography

Say the `-padded RSA problem is hard relative to GenRSA if for all proba-
bilistic, polynomial-time algorithms A there exists a negligible function
negl such that Pr[PADA,GenRSA,`(n) = 1] ≤ 1

2 + negl(n).

Prove that if the `-padded RSA problem is hard relative to GenRSA, then
the padded RSA encryption scheme (Construction 10.16) using function
` has indistinguishable encryptions under chosen-plaintext attacks.

10.6 We say a function f is hard-core for GenRSA if for all probabilistic,
polynomial-time algorithmsA there exists a negligible function negl such
that

∣∣∣Pr[A(N, e, c, f(x)) = 1]− Pr[A(N, e, c, f(r)) = 1]
∣∣∣ ≤ negl(n),

where in each case the probabilities are taken over the experiment in
which GenRSA(1n) outputs (N, e, d), random x, r ← Z∗N are chosen,
and c is set equal to [xe mod N].

For x ∈ Z∗N , let lsb(x) (resp., msb(x)) denote the least- (resp., most-)
significant bit of x when written as an integer using exactly ‖N‖ bits.

Define f(x)
def
= msb(x)‖lsb(x). It can be shown that if the RSA problem

is hard relative to GenRSA, then f is hard-core for GenRSA [12]. Prove
Theorem 10.17 by relying on this result.

Hint: Note that in Construction 10.16, msb(r‖m) is always equal to 0.

10.7 Consider the following variant of Construction 10.25:

CONSTRUCTION 10.28

Let Π̂ = (Ĝen, f) and h be as in Construction 10.25.

• Key-generation algorithm Gen: As in Construction 10.25.

• Encryption algorithm Enc: On input a public key I and a
message m ∈ {0, 1}, choose random x← DI such that hI (x) =
m, and output the ciphertext fI(x).

• Decryption algorithm Dec: On input a private key 〈I, td〉 and
a ciphertext y with y ∈ Dtd, compute x := f−1

I (y) and output
the message hI (x).

(a) Argue that encryption can be performed in polynomial time.

(b) Prove that if Π̂ is a family of trapdoor permutations and h is a hard-

core predicate of Π̂, then this construction has indistinguishable
encryptions under chosen-ciphertext attacks.

Chapter 11

* Additional Public-Key Encryption
Schemes

In the previous chapter we have seen some examples of public-key encryption
schemes based on the RSA and decisional Diffie-Hellman problems. Here, we
explore additional encryption schemes based on other number-theoretic prob-
lems. The schemes discussed in this chapter were not placed here because
they are fundamentally less important than the schemes covered in the pre-
vious chapter — although RSA and El Gamal encryption are more widely
used than any of the schemes discussed here — rather, the schemes in this
chapter require a bit more number theory than we have covered to this point.
Actually, each of the schemes we show here is well worth understanding, from
at least a theoretical standpoint:

• The Goldwasser-Micali encryption scheme, based on the hardness of
distinguishing quadratic residues from (certain) quadratic non-residues
modulo a composite, was the first scheme proven to satisfy Defini-
tion 10.3. The scheme is relatively simple to describe, and the cryp-
tographic assumption on which it relies is useful in other contexts.

• The Rabin encryption scheme is very similar to the RSA encryption
scheme, but with one crucial difference: it is possible to prove that
the Rabin encryption scheme is CPA-secure under the assumption that
factoring is hard. Recall that, in contrast, hardness of the RSA problem
(and thus the security of any encryption scheme based on RSA) is not
known to follow from the factoring assumption.

• The Paillier encryption scheme is based on a cryptographic assumption
related (but not known to be identical) to factoring. It is more effi-
cient than the Goldwasser-Micali or Rabin cryptosystems, as well as the
provably-secure RSA scheme of Theorem 10.17. The Paillier encryption
scheme also has other advantages we will discuss in Section 11.3.

Throughout this chapter, we let p and q denote odd primes, and let N
denote a product of two distinct odd primes.

363

364 Introduction to Modern Cryptography

11.1 The Goldwasser-Micali Encryption Scheme

We begin with a discussion of the Goldwasser-Micali encryption scheme.
Before we can present the scheme, we need to develop a better understanding
of quadratic residues. We first explore the easier case of quadratic residues
modulo a prime p, and then look at the slightly more complicated case of
quadratic residues modulo a composite N .

11.1.1 Quadratic Residues Modulo a Prime

Given a group G, an element y ∈ G is a quadratic residue if there exists an
x ∈ G such that x2 = y. An element that is not a quadratic residue is called
a quadratic non-residue. It is not too hard to show that in an abelian group,
the set of quadratic residues form a subgroup.

In the specific case of Z∗p, we have that y is a quadratic residue if there
exists an x with y = x2 mod p. We begin with an easy observation.

PROPOSITION 11.1 Let p > 2 be prime. Every quadratic residue in Z
∗
p

has exactly two square roots.

PROOF Let y ∈ Z∗p be a quadratic residue. Then there exists an x ∈ Z∗p
such that x2 = y mod p. Clearly, (−x)2 = x2 = y mod p. Furthermore,
−x 6= x mod p : if −x = x mod p then 2x = 0 mod p which implies p | 2x.
However, this means that either p | 2 (which is impossible since p > 2) or p |x
(which is impossible since 0 < x < p). So, [x mod p] and [−x mod p] are
distinct elements of Z∗p, and y has at least two distinct square roots.

Let x′ ∈ Z∗p be a square root of y. Then x2 = (x′)2 mod p implying that
x2 − (x′)2 = 0 mod p. Factoring the left-hand side we obtain

(x− x′)(x + x′) = 0 mod p ,

so that either p | (x− x′) or p | (x + x′). In the first case, x′ = x mod p and in
the second case x′ = −x mod p, showing that y indeed has only [±x mod p]
as square roots.

Let sqp : Z∗p → Z∗p be the function sqp(x)
def
= x2 mod p. The above propo-

sition shows that sqp is a two-to-one function when p > 2 is prime. This im-
mediately implies that exactly half the elements of Z∗p are quadratic residues.
We denote the set of quadratic residues modulo p by QRp, and the set of
quadratic non-residues by QNRp. We have just seen that for p > 2 prime

|QRp| = |QNRp| =
∣∣Z∗p
∣∣ /2 = (p− 1)/2 .

* Additional Public-Key Encryption Schemes 365

Define1 Jp(x), the Jacobi symbol of x modulo p, as follows. Let p > 2 be
prime, and x ∈ Z∗p. Then

Jp(x)
def
=

{
+1 if x is a quadratic residue modulo p
−1 if x is not a quadratic residue modulo p

.

The notation can be extended in the natural way for any x relatively prime
to p by defining Jp(x) = Jp([x mod p]).

Can we characterize the quadratic residues in Z∗p for p > 2 prime? We begin
with the fact that Z∗p is a cyclic group of order p− 1 (see Theorem 7.53). Let
g be a generator of Z

∗
p. This means that

Z
∗
p = {g0, g1, g2, . . . , g

p−1
2 −1, g

p−1
2 , g

p−1
2 +1, . . . , gp−2}

(recall that p is odd, so p− 1 is even). Squaring each element in this list and
reducing modulo p− 1 in the exponent (cf. Corollary 7.15) yields a list of all
the quadratic residues in Z∗p:

QRp = {g0, g2, g4, . . . , gp−3, g0, g2, . . . , gp−3}.

(Note that each quadratic residue appears twice in this list.) We see that the
quadratic residues in Z∗p are exactly those elements that can be written as gi

with i ∈ {0, . . . , p− 2} an even integer.
The above characterization leads to a simple way to tell whether a given

element x ∈ Z∗p is a quadratic residue or not.

PROPOSITION 11.2 Let p > 2 be a prime. Then Jp(x) = x
p−1
2 mod p.

PROOF Let g be an arbitrary generator of Z∗p. If x is a quadratic residue

modulo p, our earlier discussion shows that x = gi for some even integer i.
Writing i = 2j with j an integer we then have

x
p−1
2 =

(
g2j
) p−1

2 = g(p−1)j =
(
gp−1

)j
= 1j = 1 mod p ,

and so x
p−1
2 = +1 = Jp(x) mod p as claimed.

On the other hand, if x is not a quadratic residue then x = gi for some odd
integer i. Writing i = 2j + 1 with j an integer we have

x
p−1
2 =

(
g2j+1

) p−1
2 =

(
g2j
) p−1

2 · g p−1
2 = 1 · g p−1

2 = g
p−1
2 mod p.

Now, (
g

p−1
2

)2

= gp−1 = 1 mod p,

1Jp(x) is also sometimes called the Legendre symbol of x, and denoted by Lp(x); we have
chosen alternate notation to be consistent with notation introduced later.

366 Introduction to Modern Cryptography

and so g
p−1
2 = ±1 mod p since [±1 mod p] are the two square roots of 1.

Since g is a generator, it has order p − 1 and so g
p−1
2 6= 1. It follows that

x
p−1
2 = −1 = Jp(x) mod p in this case as well.

Proposition 11.2 directly gives a polynomial-time algorithm for testing whether
a given element x ∈ Z∗p is a quadratic residue or not.

ALGORITHM 11.3
Deciding quadratic residuosity modulo a prime

Input: Prime p; element x ∈ Z
∗
p

Output: Jp(x)

b := [x
p−1
2 mod p]

if b = 1 return “quadratic residue”
else return “quadratic non-residue”

We conclude this section by noting a nice multiplicative property of quadratic
residues and non-residues modulo p.

PROPOSITION 11.4 Let p > 2 be a prime, and x, y ∈ Z∗p. Then

Jp(xy) = Jp(x) · Jp(y).

PROOF Using the previous proposition,

Jp(xy) = (xy)
p−1
2 = x

p−1
2 · y p−1

2 = Jp(x) · Jp(y) mod p.

Since Jp(xy),Jp(x),Jp(y) = ±1, equality holds over the integers as well.

COROLLARY 11.5 Let p > 2 be a prime, x, x′ ∈ QRp, and y, y′ ∈
QNRp. Then:

1. [xx′ mod p] ∈ QRp.

2. [yy′ mod p] ∈ QRp.

3. [xy mod p] ∈ QNRp.

11.1.2 Quadratic Residues Modulo a Composite

We now turn our attention to quadratic residues in the group Z∗N . Char-
acterizing the quadratic residues modulo N is easy if we use the results of

* Additional Public-Key Encryption Schemes 367

the previous section in conjunction with the Chinese remainder theorem. Re-
call that the Chinese remainder theorem says that Z∗N ' Z∗p × Z∗q , and we
let y ↔ (yp, yq) denote the correspondence guaranteed by the theorem (i.e.,
yp = [y mod p] and yq = [y mod q]). The key observation is:

PROPOSITION 11.6 Let N = pq with p, q distinct primes, and let y ∈
Z
∗
N with y ↔ (yp, yq). Then y is a quadratic residue modulo N if and only if

yp is a quadratic residue modulo p and yq is a quadratic residue modulo q.

PROOF If y is a quadratic residue modulo N then, by definition, there
exists an x ∈ Z∗N such that x2 = y mod N . Let x↔ (xp, xq). Then

(yp, yq)↔ y = x2 ↔ (xp, xq)
2 = ([x2

p mod p], [x2
q mod q]),

where (xp, xq)
2 is simply the square of element (xp, xq) in the group Z∗p ×Z∗q .

That is,

yp = x2
p mod p and yq = x2

q mod q (11.1)

and yp, yq are quadratic residues (with respect to the appropriate moduli).

Conversely, if y ↔ (yp, yq) and yp, yq are quadratic residues modulo p and q,
respectively, then there exist xp ∈ Z∗p and xq ∈ Z∗q such that Equation (11.1)
holds. Let x ∈ Z∗N be such that x ↔ (xp, xq). Reversing the above steps
shows that x is a square root of y.

The above proposition characterizes the quadratic residues modulo N . Care-
ful examination of the proof yields more: in fact, each quadratic residue
y ∈ Z

∗
N has exactly four square roots. To see this, let y ↔ (yp, yq) be a

quadratic residue modulo N and let xp, xq be square roots of yp and yq mod-
ulo p and q, respectively. Then the four square roots of y are given by (the
elements in Z∗N corresponding to)

(xp, xq), (−xp, xq), (xp, −xq), (−xp, −xq). (11.2)

Each of these is a square root of y since

(±xp, ±xq)
2 =

(
[(±xp)

2 mod p], [(±xq)
2 mod q]

)

= ([x2
p mod p], [x2

q mod q]) = (yp, yq)↔ y

(where again the notation (·, ·)2 refers to squaring in the group Zp × Zq).
The Chinese remainder theorem guarantees that the four elements in Equa-
tion (11.2) each correspond to distinct elements of Z∗N , since xp and −xp are
unique modulo p (and similarly for xq and −xq modulo q).

368 Introduction to Modern Cryptography

Example 11.7
Consider Z∗15 (the correspondence given by the Chinese remainder theorem
is tabulated in Example 7.25). Element 4 is a quadratic residue with square
root 2. Since 2↔ (2, 2), the other square roots of 4 are given by

•
(
2, [−2 mod 3]

)
= (2, 1)↔ 3;

•
(
[−2 mod 5], 2

)
= (3, 2)↔ 8; and

•
(
[−2 mod 5], [−2 mod 3]

)
= (3, 1)↔ 13.

One can verify that 72 = 82 = 132 = 4 mod 15. ♦

Since squaring modulo N is a four-to-one function, we immediately see
that exactly 1/4 of the elements of Z∗N are quadratic residues. Alternately,
we could note that since y ∈ Z∗N is a quadratic residue if and only if yp, yq are
quadratic residues, there is a one-to-one correspondence between QRN and
QRp ×QRq . Thus, the fraction of quadratic residues modulo N is

|QRN |
|Z∗N |

=
|QRp| · |QRq|

|Z∗N |
=

p−1
2 ·

q−1
2

(p− 1)(q − 1)
=

1

4
,

in agreement with the above.
In the previous section, we defined the Jacobi symbol Jp(x) for p > 2

prime. We extend the definition to the case of N = pq a product of distinct,
odd primes as follows: for any x relatively prime to N ,

JN (x)
def
= Jp(x) · Jq(x)

= Jp([x mod p]) · Jq([x mod q]).

We define J +1
N as the set of elements in Z∗N having Jacobi symbol +1, and

define J −1
N analogously.

We know from Proposition 11.6 that if x is a quadratic residue modulo N ,
then [x mod p] and [x mod q] are quadratic residues modulo p and q, respec-
tively; that is, Jp(x) = Jq(x) = +1. So JN (x) = +1 and we see that

if x is a quadratic residue modulo N , then JN (x) = +1.

However, JN (x) = +1 can also occur when Jp(x) = Jq(x) = −1; that is,
when both [x mod p] and [x mod q] are not quadratic residues modulo p and q
(and so x is not a quadratic residue modulo N). This turns out to be useful
for the Goldwasser-Micali encryption scheme, and we therefore introduce the
notation QNR+1

N for the set of elements of this type; that is

QNR+1
N

def
=

{
x ∈ Z

∗
N

∣∣∣ Jn(x) = +1, but x is not
a quadratic residue modulo N

}
.

It is now easy to prove the following:

PROPOSITION 11.8 Let N = pq with p, q distinct, odd primes. Then:

* Additional Public-Key Encryption Schemes 369

1. Exactly half the elements of Z∗N are in J +1
N .

2. QRN is contained in J +1
N .

3. Exactly half the elements of J +1
N are in QRN (the other half are in

QNR+1
N).

PROOF We know that JN (x) = +1 if either Jp(x) = Jq(x) = +1 or
Jp(x) = Jq(x) = −1. We also know (from the previous section) that exactly
half the elements of Z∗p have Jacobi symbol +1, and half have Jacobi symbol
−1 (and similarly for Z∗q). Defining J +1

p , J −1
p , J +1

q , and J −1
q in the natural

way, we thus have:

∣∣J+1
N

∣∣ = |J+1
p ×J +1

q |+ |J −1
p × J−1

q |
= |J+1

p | · |J +1
q |+ |J −1

p | · |J−1
q |

=
(p− 1)

2

(q − 1)

2
+

(p− 1)

2

(q − 1)

2
=

φ(N)

2
.

So
∣∣J +1

N

∣∣ = |Z∗N | /2, proving that half the elements of Z∗N are in J+1
N .

We have noted earlier that all quadratic residues modulo N have Jacobi
symbol +1, showing that QRN ⊆ J +1

N .
Since x ∈ QRN if and only if Jp(x) = Jq(x) = +1, we have

|QRN | = |J +1
p ×J +1

q | =
(p− 1)

2

(q − 1)

2
=

φ(N)

4
,

and so |QRN | =
∣∣J+1

N

∣∣ /2. Since QRN is a subset of J +1
N , this proves that

half the elements of J +1
N are in QRN .

The next two results are analogues of Proposition 11.4 and Corollary 11.5.

PROPOSITION 11.9 Let N = pq be a product of distinct, odd primes,
and say x, y ∈ Z∗N . Then JN (xy) = JN (x) · JN (y).

PROOF Using the definition of JN (·) and Proposition 11.4, we have

JN (xy) = Jp(xy) · Jq(xy) = Jp(x) · Jp(y) · Jq(x) · Jq(y)

= Jp(x) · Jq(x) · Jp(y) · Jq(y) = JN (x) · JN (y).

COROLLARY 11.10 Let N = pq be a product of distinct, odd primes,
and say x, x′ ∈ QRN and y, y′ ∈ QNR+1

N . Then:

370 Introduction to Modern Cryptography

1. [xx′ mod N] ∈ QRN .

2. [yy′ mod N] ∈ QRN .

3. [xy mod N] ∈ QNR+1
N .

PROOF We prove the final claim; proofs of the others are similar. Since
x ∈ QRN , we have Jp(x) = Jq(x) = +1. Since y ∈ QNR+1

N , we have
Jp(y) = Jq(y) = −1. Using Proposition 11.4,

Jp(xy) = Jp(x) · Jp(y) = −1 and Jq(xy) = Jq(x) · Jq(y) = −1,

and so xy ∈ QNR+1
N .

In contrast to Corollary 11.5, it is not true that y, y′ ∈ QNRN implies
yy′ ∈ QRN . (Instead, as indicated in the corollary, this is only guaranteed
if y, y′ ∈ QNR+1

N .) For example, we could have Jp(y) = +1, Jq(y) = −1
and Jp(y

′) = −1, Jq(y
′) = +1, so Jp(yy′) = Jq(yy′) = −1 and yy′ is not a

quadratic residue even though JN (yy′) = +1.

11.1.3 The Quadratic Residuosity Assumption

In Section 11.1.1, we showed an efficient algorithm for deciding whether a
given input x is a quadratic residue modulo a prime p. Can we adapt the
algorithm to work modulo a composite number N? Proposition 11.6 gives an
easy solution to this problem provided the factorization of N is known.

Deciding quadratic residuosity modulo a composite
of known factorization

Input: Composite N = pq; the factors p and q; element x ∈ Z
∗
N

Output: A decision as to whether x ∈ QRN

compute Jp(x) and Jq(x)
if Jp(x) = Jq(x) = +1 return “quadratic residue”
else return “quadratic non-residue”

(As always, we assume the factors of N are distinct odd primes.) A simple
modification of the above algorithm allows for computing JN (x) when the
factorization of N is known.

When the factorization of N is unknown, however, there is no immediate
way of efficiently computing the Jacobi symbol modulo N , or efficiently decid-
ing whether a given element x is a quadratic residue modulo N or not. Some-
what surprisingly, a highly non-trivial polynomial-time algorithm is known
for computing JN (x) without the factorization of N . (Although the algo-
rithm itself is not that complicated, its proof of correctness is beyond the

* Additional Public-Key Encryption Schemes 371

scope of this book and we therefore do not present the algorithm at all.)
This leads to a partial test of quadratic residuosity: if, for a given input x it
holds that JN (x) = −1, then x cannot possibly be a quadratic residue. (See
Proposition 11.8.) This test says nothing in case JN (x) = +1, and it is a
reasonable cryptographic assumption that no polynomial-time algorithm for
deciding quadratic residuosity in this case (that performs better than random
guessing) exists.

We now formalize this assumption. Let GenModulus be a polynomial-time
algorithm that, on input 1n, outputs (N, p, q) where N = pq, and p and q are
n-bit primes except with probability negligible in n.

DEFINITION 11.11 We say deciding quadratic residuosity is hard rela-

tive to GenModulus if for all probabilistic, polynomial-time algorithms A there
exists a negligible function negl such that

∣∣∣Pr[A(N, qr) = 1]− Pr[A(N, nqr) = 1]
∣∣∣ ≤ negl(n),

where in each case the probabilities are taken over the experiment in which
GenModulus(1n) is run to give (N, p, q), qr is chosen at random from QRN ,
and qnr is chosen at random from QNR+1

N .

The quadratic residuosity assumption is simply the assumption that there
exists a GenModulus relative to which deciding quadratic residuosity is hard.
It is easy to see that if deciding quadratic residuosity is hard relative to
GenModulus, then factoring is hard relative to GenModulus as well.

11.1.4 The Goldwasser-Micali Encryption Scheme

The preceding section immediately suggests a public-key encryption scheme
for single-bit messages based on the quadratic residuosity assumption:

• The public key will be a modulus N , and the secret key will be the
factorization of N .

• The encryption of the bit ‘0’ will be a random quadratic residue, and
the encryption of the bit ‘1’ will be a random quadratic non-residue with
Jacobi symbol +1.

• The receiver can decrypt a ciphertext c with its secret key by using the
factorization of N to decide whether c is a quadratic residue or not.

Security of this scheme in the sense of Definition 10.3 follows almost trivially
from the difficulty of the quadratic residuosity problem.

One thing missing from the above description is a specification of how the
sender, who does not know the factorization of N , can choose a random
element of QRN (in case it wants to encrypt a 0) or QNR+1

N (in case it wants

372 Introduction to Modern Cryptography

to encrypt a 1). The first of these turns out to be easy to do, while the second
requires some ingenuity.

Choosing a random quadratic residue. Choosing a random element
y ∈ QRN is easy: simply pick a random x ← Z∗N (see Section B.2.4) and
set y := x2 mod N . Clearly y ∈ QRN . That y is random follows from the
facts that squaring modulo N is a 4-to-1 function (see Section 11.1.2) and x
is chosen at random. In more detail, fix any ŷ ∈ QRN and let us compute the
probability that y = ŷ. Denote the four square roots of ŷ by ±x̂,±x̂′. Then:

Pr[y = ŷ] = Pr[x is a square root of ŷ]

= Pr [x ∈ {±x̂,±x̂′}]

=
4

|Z∗N |
=

1

|QRN |
.

Since the above holds for every ŷ ∈ QRN , we see that y is distributed uni-
formly in QRN .

Choosing a random element of QNR+1
N . In general, it is not known

how to choose a random element of QNR+1
N if the factorization of N is un-

known. What saves us in the present context is that the receiver can help.
Specifically, we modify the scheme as described above so that the receiver
will additionally choose a random z ← QNR+1

N and include z as part of its
public key. (This is easy for the receiver to do since it knows the factoriza-
tion of N ; see Exercise 11.3.) Then the sender can choose a random element
y ← QNR+1

N by first choosing a random x ← QRN (as above) and then
setting y := [z ·x mod N]. We leave it as an exercise to show that y chosen in
this way is indeed uniformly distributed in QNR+1

N ; we do not use this fact
directly in the proof of security given below.

We give a complete description of the Goldwasser-Micali encryption scheme,
implementing the above ideas, as Construction 11.12.

THEOREM 11.13 If the quadratic residuosity problem is hard relative
to GenModulus, then the Goldwasser-Micali encryption scheme has indistin-
guishable encryptions under chosen-plaintext attacks.

PROOF Let Π denote the Goldwasser-Micali encryption scheme. We prove
that Π has indistinguishable encryptions in the presence of an eavesdropper;
by Theorem 10.10 this implies that it is CPA-secure.

Let A be a probabilistic, polynomial-time adversary, and define

ε(n)
def
= Pr[PubKeav

A,Π(n) = 1].

Consider the following ppt adversary D that attempts to solve the quadratic
residuosity problem relative to GenPrime:

* Additional Public-Key Encryption Schemes 373

CONSTRUCTION 11.12

Let GenModulus be a polynomial-time algorithm that, on input 1n, out-
puts (N, p, q) where N = pq, and p and q are n-bit primes except with
probability negligible in n. Construct a public-key encryption scheme as
follows:

• Gen(1n) runs GenModulus(1n) to obtain (N, p, q). It also chooses
random z ← QNR+1

N . The public key is pk = 〈N, z〉 and the
private key is sk = 〈p, q〉.

• To encrypt a message m ∈ {0, 1} with respect to the public key
pk = 〈N, z〉, choose random x← Z

∗
N and output the ciphertext

c := [zm · x2 mod N].

• To decrypt a ciphertext c using the private key sk = 〈p, q〉, deter-
mine whether c is a quadratic residue modulo N using, e.g., the
algorithm of Section 11.1.3. If c is a quadratic residue, output 0;
otherwise, output 1.

The Goldwasser-Micali encryption scheme.

Algorithm D:
The algorithm is given N, z as input.

• Set pk = 〈N, z〉 and runA(pk) to obtain two messages m0, m1.

• Choose a random bit b and a random x ← Z∗N , and set c :=
[zmb · x2 mod N].

• Give the ciphertext c to A and obtain an output bit b′. If
b′ = b, output 1; otherwise, output 0.

Let us analyze the behavior of D. There are two cases to consider:

Case 1: Say the input to D was generated by running GenModulus(1n) to
obtain (N, p, q), and then choosing random z ← QNR+1

N . Then D runs A
on a public key constructed exactly as in Π, and we see that in this case the
view of A when run as a subroutine by D is distributed exactly as A’s view
in experiment PubKeav

A,Π(n). Since D outputs 1 exactly when the output b′ of
A is equal to b, we have that

Pr[D(N, qr) = 1] = Pr[PubKeav
A,Π(n) = 1] = ε(n) ,

where qr represents a random quadratic residue as in Definition 11.11.

Case 2: Say the input to D was generated by running GenModulus(1n) to
obtain (N, p, q), and then choosing random z ← QRN . We claim that the
view of A in this case is independent of the bit b. To see this, note that the
ciphertext c given to A is a random quadratic residue regardless of whether
a 0 or a 1 is encrypted:

374 Introduction to Modern Cryptography

• When a 0 is encrypted, c = [x2 mod N] for a random x← Z∗N and it is
immediate that c is a random quadratic residue.

• When a 1 is encrypted, c = [z · x2 mod N] for a random x ← Z∗N . Let

x̂
def
= [x2 mod N], and note that x̂ is a uniformly-distributed element

of the group QRN . Since z ∈ QRN , we can apply Lemma 10.18 to
conclude that c is uniformly distributed in QRN as well.

Since A’s view is independent of b, the probability that b′ = b in this case is
exactly 1

2 . That is,

Pr[D(N, qnr) = 1] =
1

2
,

where qnr represents a random element of QNR+1
N as in Definition 11.11.

Since the quadratic residuosity problem is hard relative to GenModulus,
there must exist a negligible function negl such that

negl(n) =
∣∣∣Pr[D(N, qr) = 1]− Pr[D(N, qnr) = 1]

∣∣∣

=

∣∣∣∣ε(n)− 1

2

∣∣∣∣ .

This implies that ε(n) ≤ 1
2 + negl(n), completing the proof.

11.2 The Rabin Encryption Scheme

The Rabin encryption scheme is based on the fact that it is easy to com-
pute square roots modulo a composite number N if the factorization of N
is known, yet it appears to be difficult to compute square roots modulo N
when the factorization of N is unknown. In fact, as we will see, comput-
ing square roots modulo N is equivalent to factoring N ; thus, the factoring
assumption implies the difficulty of computing square roots modulo a com-
posite (generated appropriately). Due of this equivalence, a version of the
Rabin encryption scheme can be shown to be CPA-secure as long as factoring
is hard. Such a result is not known for RSA encryption, and the RSA prob-
lem may potentially be easier than factoring. (A similar remark applies to
the Goldwasser-Micali encryption scheme.) This makes the Rabin encryption
scheme very attractive, at least from a theoretical point of view.

Interestingly, the Rabin encryption scheme is (superficially, at least) very
similar to the RSA encryption scheme yet has the advantage of being based on
a potentially weaker assumption. The fact that the latter is more widely-used
than the former seems to be due to historical factors rather than technical
ones; we discuss these issues further at the end of this section.

* Additional Public-Key Encryption Schemes 375

11.2.1 Computing Modular Square Roots

The Rabin encryption scheme requires the receiver to compute modular
square roots, and so in this section we explore the algorithmic complexity of
this problem. We first show an efficient algorithm for computing square roots
modulo a prime p, and then extend this algorithm to enable computation of
square roots modulo a composite N of known factorization. The reader willing
to accept the existence of these algorithms on faith can skip to the following
section, where we show that computing square roots modulo a composite N
with unknown factorization is equivalent to factoring N .

Let p be an odd prime. Computing square roots modulo p turns out to
be relatively simple when p = 3 mod 4, and much more involved when p =
1 mod 4. We tackle the easier case first. (Actually, the easier case is all
we need for the Rabin encryption scheme as presented in Section 11.2.3; we
include the second case for completeness.) In both cases, we show how to
compute one of the square roots of a quadratic residue a ∈ Z∗p. Note that if x
is one of the square roots of a, then [−x mod p] is the other.

We tackle the easier case first. Say p = 3 mod 4, meaning we can write
p = 4i + 3 for some integer i. Since a ∈ Z∗p is a quadratic residue, we have

Jp(a) = 1 = a
p−1
2 mod p (see Proposition 11.2). Multiplying both sides by a

we obtain
a = a

p−1
2 +1 = a2i+2 =

(
ai+1

)2
mod p ,

and so ai+1 = a
p+1
4 mod p is a square root of a. That is, we can compute a

square roots of a modulo p as x := [a
p+1
4 mod p].

Note that it is crucial, above, that (p + 1)/2 is even, and so (p + 1)/4 is an
integer (this is necessary in order for it to be possible to efficiently compute

a
p+1
4 mod p). This approach does not succeed when p = 1 mod 4, in which

case p + 1 is an integer that is not divisible by 4.
Instead, when p = 1 mod 4 we will proceed slightly differently. Motivated

by the above approach, we might think to search for an odd integer r such

that ar = 1 mod p ; then (as above) ar+1 = a mod p and a
r+1
2 mod p would

be a square root of a with (r + 1)/2 an integer. Though we will not be able
to do this, we can do something just as good: we will find an odd integer r
along with an element b ∈ Z∗p and an even integer r′ such that

ar · br′

= 1 mod p.

Then ar+1 · br′

= a mod p and a
r+1
2 · b r′

2 mod p is a square root of a (with the
exponents (r + 1)/2 and r′/2 being integers).

Example 11.14
Take p = 29 and a = 22. Then

227 · 214 = 1 mod 29,

376 Introduction to Modern Cryptography

and so 15 = 22(7+1)/2 ·214/2 = 224 ·27 mod 29 is a square root of 22 modulo 29.
The other square root is, of course, −15 = 14 mod 29. ♦

We now describe the general approach to finding r, b, and r′ with the stated
properties. Let p−1

2 = 2` ·m where `, m are integers with ` ≥ 1 and m odd.2

Since a is a quadratic residue, we know that

a2`m = a
p−1
2 = 1 mod p. (11.3)

This means that a2`m/2 = a2`−1m mod p is a square root of 1. The square

roots of 1 modulo p are ±1 mod p, so we know that a2`−1m = ±1 mod p. If

a2`−1m = 1 mod p, we are in the same situation as in Equation (11.3) except
that the exponent of a has been reduced by a factor of 2, and more importantly
is divisible by a smaller power of 2. This is progress in the right direction: if
we can get to the point where the exponent of a is not divisible by any power
of 2 (as would be the case here if ` = 1), then the exponent of a is odd and
we can compute a square root as discussed earlier. We give an example, and

discuss in a moment how to deal with the case when a2`−1m = −1 mod p.

Example 11.15

Take p = 29 and a = 7. Since 7 is a quadratic residue modulo 29, we have
714 mod 29 = 1 and we know that 77 mod 29 is a square root of 1. In fact,

77 = 1 mod 29,

and the exponent 7 is odd. So 7(7+1)/2 = 74 = 23 mod 29 is a square root of 7
modulo 29. ♦

To summarize where things stand: we begin with a2`m = 1 mod p and we
pull factors of 2 out of the exponent of a until one of two things happen: either

am = 1 mod p, or a2`′m = −1 mod p for some `′ < `. In the first case, since m
is odd we can immediately compute a square root of a as in Example 11.15.
In the second case, we will “restore” the +1 on the right-hand side of the
equation by multiplying each side of the equation by −1 mod p. However,
as motivated at the beginning of this discussion, we want to achieve this by
multiplying the left-hand side of the equation by some element b raised to an
even power. If we have available a quadratic non-residue b ∈ Z∗p, this is easy:

since b2`m = b
p−1
2 = −1 mod p we have

a2`′m · b2`m = (−1)(−1) = +1 mod p.

2The integers ` and m can be computed easily by taking out factors of 2 from (p− 1)/2.

* Additional Public-Key Encryption Schemes 377

ALGORITHM 11.16
Computing square roots modulo a prime

Input: Prime p; quadratic residue a ∈ Z
∗
p

Output: A square root of a

case p = 3 mod 4:

return [a
p+1
4 mod p]

case p = 1 mod 4:
let b be a quadratic non-residue modulo p
compute ` and m odd with 2` ·m = p−1

2

r := 2` ·m, r′ := 0

for i = ` to 1
{

/* maintain the invariant ar · br′

= 1 mod p */

r := r/2, r′ := r′/2

if ar · br′

= −1 mod p

r′ := r′ + 2` ·m
}

/* now r is odd, r′ is even, and am · br′

= 1 mod p */

return
[
a

r+1
2 · b r′

2 mod p
]

We can now proceed as before: taking a square root of the entire left-
hand side to reduce the largest power of 2 dividing the exponent of a, and

multiplying by b2`m (as needed) so the right-hand side is always +1. Observe
that the exponent of b is always divisible by a larger power of 2 than the
exponent of a (and so we can indeed take square roots by dividing by 2 in
both exponents). We continue performing these steps until the exponent of a is
odd, and can then compute a square root of a as described earlier. Pseudocode
for this algorithm, which gives another way of viewing what is going on, is
given above. It can be verified that the algorithm runs in polynomial time
given a quadratic non-residue b.

One point we have not yet addressed is how to find b in the first place.
Actually, no deterministic polynomial-time algorithm for finding a quadratic
non-residue modulo p is known. Fortunately, it is easy to find a quadratic
non-residue probabilistically: simply choose random elements of Z∗p until a
quadratic non-residue is found. This works because exactly half the elements
of Z∗p are quadratic non-residues, and because a polynomial-time algorithm for
deciding quadratic residuosity modulo a prime is known (see Section 11.1.1
for proofs of both these statements). We remark that this means that the
algorithm we have shown is actually randomized when p = 1 mod 4; a deter-
ministic polynomial-time algorithm for computing square roots in this case is
not known.

Example 11.17

In this example, we consider the “worst case,” when taking a square root
always gives −1. Let a ∈ Z∗p be the element whose square root we are trying

378 Introduction to Modern Cryptography

to compute; let b ∈ Z∗p be a quadratic non-residue; and let p−1
2 = 23 ·m where

m is odd.

In the first step, we have a23m = 1 mod p. Since a23m =
(
a22m

)2

and the

square roots of 1 are ±1, this means that a22m = ±1 mod p; assuming the

worst case, a22m = −1 mod p. So, we multiply by b
p−1
2 = b23m = −1 mod p

to obtain
a22m · b23m = 1 mod p.

In the second step, we observe that a2m · b22m is a square root of 1; again
assuming the worst case, we thus have a2m · b22m = −1 mod p. Multiplying
by b23m to “correct” this gives

a2m · b22m · b23m = 1 mod p.

In the third step, taking square roots and assuming the worst case (as

above) we obtain am · b2m · b22m = −1 mod p; multiplying by the “correction

factor” b23m we get

am · b2m · b22m · b23m = 1 mod p.

We are now where we want to be. To conclude the algorithm, multiply both
sides by a to obtain

am+1 · b2m+22m+23m = a mod p.

Since m is odd, (m + 1)/2 is an integer and a
m+1

2 · bm+2m+22m mod p is a
square root of a. ♦

Example 11.18
Here we work out a concrete example. Let p = 17 (so (p− 1)/2 = 23), a = 4,
and b = 3. Note that here m = 1.

We begin with 423

= 1 mod 17. So 422

should be equal to ±1 mod 17; by
calculation, we see that 422

= 1 mod 17 and so no correction term is needed
in this step.

Continuing, we know that 42 is a square root of 1 and so must be equal
to ±1 mod 17; calculation gives 42 = −1 mod 17. Multiplying by 323

gives
42 · 323

= 1 mod 17.
Finally, we consider 4 · 322

= 1 mod 17. We are now almost done: multi-
plying both sides by 4 gives 42 · 322

= 4 mod 17 and so 4 · 32 = 2 mod 17 is a
square root of 4. ♦

Computing Square Roots Modulo N

It is not hard to see that the algorithm we have shown for computing square
roots modulo a prime can be extended easily to the case of computing square

* Additional Public-Key Encryption Schemes 379

roots modulo a composite N = pq of known factorization. Specifically, let
a ∈ Z∗N be a quadratic residue with a ↔ (ap, aq) via the Chinese remainder
theorem. Computing the square roots xp, xq of ap, aq modulo p and q, respec-
tively, gives a square root (xp, xq) of a (see Section 11.1.2). Given xp and xq ,
the representation x corresponding to (xp, xq) can be recovered as discussed
in Section 7.1.5. That is:

• Compute ap := [a mod p] and aq := [a mod q].

• Using the algorithm just shown, compute a square root xp of ap modulo p
and a square root xq of aq modulo q

• Convert from the representation (xp, xq) ∈ Z∗p × Z∗q to x ∈ Z∗N with
x↔ (xp, xq). Output x, which is a square root of a modulo N .

11.2.2 A Trapdoor Permutation based on Factoring

We have seen that computing square roots modulo N can be done in poly-
nomial time if the factorization of N is known. We show here that computing
square roots modulo a composite N of unknown factorization is as hard as
factoring N .

More formally, let GenModulus be a polynomial-time algorithm that, on
input 1n, outputs (N, p, q) where N = pq and p and q are n-bit primes except
with probability negligible in n. Consider the following experiment for a given
algorithm A and parameter n:

The square root experiment SQRA,GenModulus(n)

1. Run GenModulus(1n) to obtain output N, p, q.

2. Choose y ← QRN .

3. A is given N, y, and outputs x ∈ Z
∗
N .

4. The output of the experiment is defined to be 1 if x2 = y mod N ,
and 0 otherwise.

DEFINITION 11.19 We say computing square roots is hard relative to

GenModulus if for all probabilistic, polynomial-time algorithms A there exists
a negligible function negl such that

Pr[SQRA,GenModulus(n) = 1] ≤ negl(n).

It is easy to see that if computing square roots is hard relative to GenModulus

then factoring must be hard relative to GenModulus too: if moduli N output
by GenModulus could be factored easily then it is easy to compute square roots
modulo N by first factoring N and then applying the algorithm discussed in
the previous section. Our aim now is to show the converse: that if factoring is

380 Introduction to Modern Cryptography

hard relative to GenModulus then so is the problem of computing square roots.
We emphasize again that such a result is not known for the RSA problem or
the problem of deciding quadratic residuosity.

The key is the following lemma, which says that two “unrelated” square
roots of any element in Z∗N can be used to factor N .

LEMMA 11.20 Let N = pq with p, q distinct, odd primes. Given x1, x2

such that x2
1 = y = x2

2 mod N but x1 6= ±x2 mod N , it is possible to factor N
in time polynomial in ‖N‖.

PROOF We claim that either gcd(N, x1 + x2) or gcd(N, x1 − x2) is equal
to one of the prime factors of N .3 Since gcd computations can be carried out
in polynomial time, this proves the lemma.

If x2
1 = x2

2 mod N then

0 = x2
1 − x2

2 = (x1 − x2) · (x1 + x2) mod N,

and so N | (x1−x2)(x1 +x2). Then p | (x1−x2)(x1 +x2) and so p divides one
of these terms. Say p | (x1 + x2) (the proof proceeds similarly if p | (x1 − x2)).
If q | (x1 + x2) then N | (x1 + x2), but this cannot be the case since x1 6=
−x2 mod N . So q 6 |x + 1 + x2 and gcd(N, x1 + x2) = p.

An alternate way of proving the above is to look at what is going on in the
Chinese remaindering representation. Say x1 ↔ (x1,p, x1,q). Then, because
x1 and x2 are square roots of the same value y, we know that x2 corresponds
to either (−x1,p, x1,q) or (x1,p, −x1,q). (It cannot correspond to (x1,p, x1,q) or
(−x1,p, −x1,q) since the first corresponds to x1 while the second corresponds
to −x1 mod N , and both possibilities are ruled out by assumption.) Say
x2 ↔ (−x1,p, x1,q). Then

[x1 + x2 mod N]↔ (x1,p, x1,q) + (−x1,p, x1,q) = (0, [2x1,q mod q]),

and we see that x1 + x2 = 0 mod p while x1 + x2 6= 0 mod q. Since x1 6= x2,
we have that gcd(N, x1 + x2) = p, a factor of N .

We can now prove the main result of this section.

THEOREM 11.21 If factoring is hard relative to GenModulus, then com-
puting square roots is hard relative to GenModulus as well.

PROOF Let A be a probabilistic, polynomial-time algorithm, and define

ε(n)
def
= Pr

[
SQRA,GenModulus(n) = 1

]
.

3In fact, both of these are equal to one of the prime factors of N but it is easier to prove
what we have claimed and this is anyway sufficient.

* Additional Public-Key Encryption Schemes 381

Consider the following probabilistic, polynomial-time algorithm Afact that
attempts to factor moduli output by GenModulus:

Algorithm Afact:
The algorithm is given a modulus N as input.

• Choose random x1 ← Z∗N and compute y := x2
1 mod N .

• Run A(N, y) to obtain output x2.

• If x2
2 = y mod N and x2 6= ±x1 mod N , then factor N .

(In the third step, we rely on Lemma 11.20.)

By Lemma 11.20, we know that Afact succeeds in factoring N exactly when
x2 6= ±x1 mod N and x2

2 = y mod N . That is,

Pr[FactorAfact ,GenModulus(n) = 1]

= Pr
[
x2 6= ±x1 mod N

∧
x2

2 = y mod N
]

= Pr
[
x2 6= ±x1 mod N

∣∣ x2
2 = y mod N

]
· Pr

[
x2

2 = y mod N
]
, (11.4)

where the above probabilities all refer to experiment FactorAfact ,GenPrime(n).
In this experiment, the modulus N given as input to Afact is generated by
GenModulus(1n), and y is a random quadratic residue modulo N (see Sec-
tion 11.1.4 if this is unclear). So the view of A when run as a subroutine
by Afact is distributed exactly as A’s view in experiment SQRA,GenModulus(n).
Therefore,

Pr
[
x2

2 = y mod N
]

= Pr
[
SQRA,GenModulus(n) = 1

]
= ε(n). (11.5)

Conditioned on the value of the quadratic residue y chosen in any given run
of experiment FactorAfact ,GenPrime(n), the value x1 is equally likely to be each
of the four possible square roots of y. From the point of view of algorithm
A (being run as a subroutine by Afact), then, x1 is equally likely to be each
of the four square roots of y. This in turn means that, conditioned on A’s
outputting some square root x2 of y, the probability that x2 = ±x1 mod N is
exactly 1/2. (We stress that we do not make any assumption about how x2 is
distributed among the square roots of y, and in particular are not assuming
here that A outputs a random square root of y. Rather we are using the
fact that x1 is uniformly distributed among the square roots of y from the
perspective of A.) That is,

Pr
[
x2 6= ±x1 mod N

∣∣ x2
2 = y mod N

]
=

1

2
. (11.6)

Combining Equations (11.4)–(11.6), we see that

Pr[FactorAfact ,GenModulus(n) = 1] =
1

2
· ε(n).

382 Introduction to Modern Cryptography

Since factoring is hard relative to GenModulus, there must exist a negligible
function negl such that

negl(n) ≥ Pr[FactorAfact ,GenModulus(n) = 1] =
1

2
· ε(n),

completing the proof.

The previous theorem leads directly to a family of one-way functions (see
Definition 7.70) based on any GenModulus relative to which factoring is hard:

• Algorithm Gen, on input 1n, runs Gen(1n) to obtain (N, p, q) and outputs
I = N . The domain DI will be Z∗N and the range RI will be QRN .

• Algorithm Samp, on input N , chooses a random element x← Z∗N .

• Algorithm f , on input N and x ∈ Z∗N , outputs [x2 mod N].

We can turn this into a permutation by using moduli N of a special form and
working over a subset of Z∗N . Say N = pq is a Blum integer if p and q are
distinct primes with p = q = 3 mod 4. The key is the following proposition.

PROPOSITION 11.22 Let N be a Blum integer. Then every quadratic
residue modulo N has exactly one square root that is also a quadratic residue.

PROOF Say N = pq with p = q = 3 mod 4. Using Proposition 11.2, we
see that −1 is not a quadratic residue modulo p or q. Now let y ↔ (yp, yq) be
an arbitrary quadratic residue modulo N with the four square roots

(xp, xq), (−xp, xq), (xp, −xq), (−xp, −xq).

We claim that exactly one of these is a quadratic residue modulo N . To see
this, assume Jp(xp) = 1 and Jp(xq) = −1 (the proof proceeds similarly in
any other case). Using Proposition 11.4, we have

Jp(−xp) = Jp(−1) · Jp(xp) = −1

and, similarly, Jp(−xq) = 1.
The above shows that xp and −xq are quadratic residues modulo p and q,

respectively, and that −xp and xq are not quadratic residues modulo p and q,
respectively. Using the characterization of quadratic residues modulo N given
by Proposition 11.6, we see that (xp,−xq) is a quadratic residue modulo N ,
but none of the other square roots of y are.

Expressed differently, the above proposition says that when N is a Blum
integer, the function fN : Z∗N → Z∗N given by fN (x) = [x2 mod N] is a

* Additional Public-Key Encryption Schemes 383

permutation over QRN . Modifying the sampling algorithm Samp, above, to
choose a random x ← QRN (which, as we have already seen, can be done
easily by choosing random r ← Z

∗
N and setting x := [r2 mod N]) gives a

family of one-way permutations. Finally, because square roots modulo N can
be computed in polynomial time given the factorization of N , a straight-
forward modification yields a family of trapdoor permutations based on any
GenModulus relative to which factoring is hard. (This is sometimes called the
Rabin family of trapdoor permutations.) In summary:

THEOREM 11.23 Let GenModulus be an algorithm that, on input 1n,
outputs (N, p, q) where N = pq and p and q are distinct primes (except possibly
with negligible probability) and p = q = 3 mod 4. If factoring is hard relative
to GenModulus, then there exists a family of trapdoor permutations.

11.2.3 The Rabin Encryption Scheme

In Section 10.7.2 we showed that any trapdoor permutation can be used to
construct a CPA-secure public-key encryption scheme. To apply the transfor-
mation shown there to the Rabin family of trapdoor permutations introduced
in the previous section, we need a predicate that is hard-core for this family
(see Definition 10.24). It can be shown that the least-significant bit lsb(·)
constitutes a hard-core predicate. That is, let GenModulus be an algorithm
outputting Blum integers relative to which factoring is hard. Then for all
probabilistic, polynomial-time algorithms A there exists a negligible function
negl such that

Pr[A(N, [x2 mod N]) = lsb(x)] ≤ 1

2
+ negl(n),

where the probability is taken over the experiment in which Gen(1n) outputs
(N, p, q) and then x is chosen at random from QRN . Plugging this into
Construction 10.25 gives a concrete example of a public-key encryption scheme
whose security can be based on the factoring assumption.

An alternate approach, perhaps conceptually simpler though less efficient
than the above, is to construct a “padded Rabin” encryption scheme by anal-
ogy with padded RSA encryption (see Section 10.4.3). In Construction 11.24
we describe such an approach for encrypting single-bit messages. See Exer-
cise 11.11 for a generalization to longer messages (which has no known proof
of security based on factoring).

We do not prove the following theorem here; see Exercise 10.6 of Chapter 10
(and the reference there) for an idea as to how a proof would proceed.

THEOREM 11.25 If factoring is hard relative to GenModulus, the Con-
struction 11.24 has indistinguishable encryptions under chosen-plaintext at-
tacks.

384 Introduction to Modern Cryptography

CONSTRUCTION 11.24

Let GenModulus be a polynomial-time algorithm that, on input 1n, out-
puts (N, p, q) where N = pq and p and q are n-bit primes (except with
probability negligible in n) with p = q = 3 mod 4. Construct a public-
key encryption scheme as follows:

• Gen(1n) runs GenModulus(1n) to obtain (N, p, q). The public key
is N , and the private key is 〈p, q〉.

• To encrypt a message m ∈ {0, 1} with respect to the public key
N , repeatedly choose random r ∈ {0, 1}‖N‖−2 until r‖m (viewed
as an element of Z

∗
N in the natural way) is a quadratic residue

modulo N . Output the ciphertext

c := [(r‖m)2 mod N].

• To decrypt a ciphertext c ∈ QRN using the private key 〈p, q〉,
compute the unique r̂ ∈ QRN such that r̂2 = c mod N , and out-
put the least-significant bit of r̂.

The padded Rabin encryption scheme.

Rabin Encryption vs. RSA Encryption

It is worthwhile to remark on the similarities and differences between the
Rabin and RSA cryptosystems. For concreteness, the reader can think in
terms of Construction 10.16 (with ` = 1) and Construction 11.24, though the
discussion here applies more generally to any scheme based on the Rabin or
RSA trapdoor permutations. At a basic level the RSA and Rabin trapdoor
permutations appear quite similar, with squaring in the case of Rabin corre-
sponding to taking e = 2 in the case of RSA. (Of course, ‘2’ is not relatively
prime to φ(N) and so Rabin is not a special case of RSA.)

In terms of the security offered by each construction, we have noted that
hardness of computing modular square roots is equivalent to hardness of fac-
toring, while hardness of solving the RSA problem is not known to be implied
by the hardness of factoring. The Rabin trapdoor permutation is thus, in
some sense, based on a weaker assumption; it is theoretically possible that
someone might one day develop an efficient algorithm for solving the RSA
problem, yet computing square roots will remain hard. More plausible is that
an algorithm will one day be proposed that solves the RSA problem in less
time than it takes to factor (but still requiring super-polynomial time); com-
puting square roots modulo N , however, can never be much faster than the
best available algorithm for factoring N .

Efficiency-wise, the RSA and Rabin permutations are essentially the same.
Actually, if a large exponent e is chosen in the case of RSA then computation
in the “easy” direction is slightly slower with RSA than with Rabin. On
the other hand, a bit more care is required when working with the Rabin
permutation since it is only a permutation over a subset of Z∗N , in contrast to

* Additional Public-Key Encryption Schemes 385

RSA which gives a permutation over all of Z∗N .

A “textbook Rabin” encryption scheme, constructed in a manner exactly
analogous to textbook RSA encryption, is vulnerable to a chosen-ciphertext
attack that enables an adversary to learn the entire private key of the receiver
(see Exercise 11.9). No such attack is known in the case of textbook RSA.

The RSA permutation is much more widely used in practice than the Rabin
permutation, and this appears to be due more to historical accident than to
any compelling technical justification.

11.3 The Paillier Encryption Scheme

The Paillier encryption scheme, like the RSA, Goldwasser-Micali, and Rabin
encryption schemes, is based on the hardness of factoring a composite num-
ber N that is the product of two primes. (We emphasize that, with the excep-
tion of Rabin encryption, security of these schemes is not known to be equiv-
alent to the hardness of factoring.) The Paillier encryption scheme is more
efficient than the Goldwasser-Micali cryptosystem, as well as the provably-
secure RSA and Rabin schemes of Theorems 10.17 and 11.25, respectively.
Perhaps more importantly, the Paillier encryption scheme possesses some nice
homomorphic properties we will discuss further in Section 11.3.3.

The Paillier encryption utilizes the group Z∗N2 . A useful characterization
of this group is given by the following proposition which says, among other
things, that Z∗N2 is isomorphic to4 ZN ×Z∗N (see Definition 7.23) for N of the
form we will be interested in.

PROPOSITION 11.26 Let N = pq, where p, q are distinct odd primes of
the same length. Then:

1. gcd(N, φ(N)) = 1.

2. For a an integer with 0 ≤ a ≤ N , we have (1+N)a = (1+aN) mod N2.

As a consequence, the order of (1+N) in Z∗N2 is N . That is, (1+N)N =
1 mod N2 and (1 + N)x 6= 1 mod N2 for any 1 ≤ x < N .

3. ZN × Z∗N is isomorphic to Z∗N2 , with isomorphism f : ZN × Z∗N → Z∗N2

given by

f(a, b) = [(1 + N)a · bN mod N2] .

4Recall that ZN is a group under addition modulo N while Z∗
N is a group under multipli-

cation modulo N .

386 Introduction to Modern Cryptography

In light of the final claim of the above proposition, we introduce some
convenient shorthand. With N understood, and x ∈ Z∗N2 , a ∈ ZN , b ∈ Z∗N ,
we write x↔ (a, b) if f(a, b) = x where f is as in the proposition above. One
way to think about this notation is that it means “x (in Z∗N2) corresponds
to (a, b) (in ZN × Z∗N).” We have used the same notation throughout this
book in the context of the isomorphism Z∗N ' Z∗p × Z∗q given by the Chinese
remainder theorem; we keep the notation because in both cases it refers to an
isomorphism of groups. Nevertheless, there should be no confusion since the
group Z∗N2 and the above proposition are only used in this section (and the
Chinese remainder theorem is not used in this section).

Section 11.3.1 is dedicated to a proof of Proposition 11.26. The reader who
is willing to accept it on faith can skip directly to Section 11.3.2.

11.3.1 The Structure of Z∗N2

In this section, we prove Proposition 11.26 claim-by-claim. Throughout, we
let N, p, q be as in the proposition.

CLAIM 11.27 For N, p, q as in Proposition 11.26, gcd(N, φ(N)) = 1.

PROOF Recall φ(N) = (p − 1)(q − 1). Assume p > q without loss of
generality. Since p is prime and p > p− 1 > q − 1, clearly gcd(p, φ(N)) = 1.
Similarly, gcd(q, q − 1) = 1. Now, if gcd(q, p − 1) 6= 1 then gcd(q, p− 1) = q
since q is prime. But then (p − 1)/q ≥ 2, contradicting the assumption that
p and q have the same length.

CLAIM 11.28 For a an integer with 0 ≤ a ≤ N , we have (1 + N)a =
1 + aN mod N2. Thus, the order of (1 + N) in Z

∗
N2 is N .

PROOF Using the binomial expansion theorem (Theorem A.1), we see
that

(1 + N)a =
a∑

i=0

(
a

i

)
N i.

Reducing the right-hand side modulo N 2, all terms with i ≥ 2 become 0 and
so (1+N)a = 1+aN mod N2. For a in the range {1, . . . , N}, this expression
is equivalent to 1 modulo N2 only when a = N .

CLAIM 11.29 The group ZN × Z∗N is isomorphic to the group Z∗N2 , with
isomorphism f : ZN × Z∗N → Z∗N2 given by f(a, b) = [(1 + N)a · bN mod N2].

* Additional Public-Key Encryption Schemes 387

PROOF Note that (1 + N)a · bN does not have a factor in common with
N2 since gcd((1 + N), N2) = 1 and gcd(b, N2) = 1 (because b ∈ Z∗N). So
[(1 + N)a · bN mod N2] lies in Z

∗
N2 . We now prove that f is an isomorphism.

We first show that f is a bijection. Since

|Z∗N2 | = φ(N2) = p · (p− 1) · q · (q − 1) = pq · (p− 1)(q − 1)

= |ZN | · |Z∗N | = |ZN × Z
∗
N |

(see Theorem 7.19 for the second equality), it suffices to show that f is one-
to-one. Say a1, a2 ∈ ZN and b1, b2 ∈ Z∗N are such that f(a1, b1) = f(a2, b2).
Then:

(1 + N)a1−a2 · (b1/b2)
N = 1 mod N2. (11.7)

(Note that b2 ∈ Z∗N2 and so it has a multiplicative inverse modulo N 2.)
Raising both sides to the power φ(N) and using the fact that the order of
Z∗N2 is φ(N2) = N · φ(N) we obtain

(1 + N)(a1−a2)·φ(N) · (b1/b2)
N ·φ(N) = 1 mod N2

⇒ (1 + N)(a1−a2)·φ(N) = 1 mod N2 .

By Claim 11.28, (1+N) has order N modulo N 2. Applying Proposition 7.50,
we see that (a1 − a2) · φ(N) = 0 mod N and so N divides (a1 − a2) · φ(N).
Since gcd(N, φ(N)) = 1 by Claim 11.27, it follows that N | (a1 − a2). Since
a1, a2 ∈ ZN , this can only occur if a1 = a2.

Returning to Equation (11.7) and setting a1 = a2, we thus have bN
1 =

bN
2 mod N2. This implies bN

1 = bN
2 mod N . Since N is relatively prime to

φ(N), the order of Z∗N , exponentiation to the power N is a bijection in Z∗N
(cf. Corollary 7.17). This means that b1 = b2 mod N ; since b1, b2 ∈ Z∗N , we
have b1 = b2. We conclude that f is one-to-one, and hence a bijection.

To show that f is an isomorphism, we show that f(a1, b1) · f(a2, b2) =
f(a1+a2, b1·b2). (Note that multiplication on the left-hand side of the equality
is taking place modulo N2, while addition/multiplication on the right-hand
side is taking place modulo N .) We have:

f(a1, b1) · f(a2, b2) =
(
(1 + N)a1 · bN

1

)
·
(
(1 + N)a2 · bN

2

)
mod N2

= (1 + N)a1+a2 · (b1b2)
N mod N2.

Since (1+N) has order N modulo N2 (by Claim 11.28), we can apply Propo-
sition 7.49 and obtain

f(a1, b1) · f(a2, b2) = (1 + N)a1+a2 · (b1b2)
N mod N2

= (1 + N)a1+a2 mod N · (b1b2)
N mod N2. (11.8)

We are not yet done, since b1b2 in Equation (11.8) represents multiplication
modulo N2 whereas we would like it to be modulo N . Let b1b2 = r + γN ,

388 Introduction to Modern Cryptography

where γ, r are integers with 1 ≤ r ≤ N − 1 (r cannot be 0 since b1, b2 ∈ Z∗N
and so their product cannot be divisible by N). Note that r = b1b2 mod N .
We also have

(b1b2)
N = (r + γN)N mod N2

=

N∑

k=0

(
N

k

)
rN−k(γN)k mod N2

= rN + N · rN−1 · (γN) = rN = (b1b2 mod N)N mod N2 ,

using the binomial expansion theorem as in Claim 11.28. Plugging this in to
Equation (11.8) we get the desired result:

f(a1, b1) · f(a2, b2) = (1 + N)a1+a2 mod N · (b1b2 mod N)N mod N2,

proving that f is an isomorphism from ZN × Z∗N to Z∗N2 .

11.3.2 The Paillier Encryption Scheme

Let N = pq be a product of two distinct primes of equal length. Proposi-
tion 11.26 says that ZN × Z∗N is isomorphic to Z∗N2 , with isomorphism given
by f(a, b) = [(1+N)a · bN mod N2]. A consequence is that a random element
y ∈ Z∗N2 corresponds to a random element (a, b) ∈ ZN × Z∗N or, in other
words, (a, b) with random a ∈ ZN and random b ∈ Z

∗
N .

Say y ∈ Z∗N2 is an N th residue modulo N2 if y is an N th power; that is, if
there exists an x ∈ Z∗N2 with y = xN mod N2. Let us characterize the N th

residues in Z
∗
N2 . Taking any element x ∈ Z

∗
N2 with x ↔ (a, b) and raising it

to the N th power gives:

[xN mod N2]↔ (a, b)N = (N · a mod N, bN mod N) = (0, bN mod N)

(recall that the group operation in ZN ×Z∗N is addition modulo N in the first
component and multiplication modulo N in the second component). More-
over, we claim that any element y with y ↔ (0, b) is an N th residue. To see

this, recall that gcd(N, φ(N)) = 1 and so d
def
= [N−1 mod φ(N)] exists. So

(a, [bd mod N])N = (Na mod N, [bdN mod N]) = (0, b)↔ y

for any a ∈ ZN . We have thus shown that the set of N th residues corresponds
exactly to the set

Res(N2)
def
= {(0, b) | b ∈ Z

∗
N} .

(Compare this to Z∗N2 , which corresponds to {(a, b) | a ∈ ZN , b ∈ Z∗N}.)
The decisional composite residuosity problem, roughly speaking, is to distin-

guish a random element of Z∗N2 from a random element of Res(N 2). Formally,
let GenModulus be a polynomial-time algorithm that, on input 1n, outputs

* Additional Public-Key Encryption Schemes 389

(N, p, q) where N = pq, and p and q are n-bit primes (except with probability
negligible in n). Then:

DEFINITION 11.30 We say the decisional composite residuosity problem is

hard relative to GenModulus if for all probabilistic, polynomial-time algorithms
A there exists a negligible function negl such that

∣∣∣Pr[A(N, [rN mod N2]) = 1]− Pr[A(N, r) = 1]
∣∣∣ ≤ negl(n),

where in each case the probabilities are taken over the experiment in which
GenModulus(1n) outputs (N, p, q), and then a random r ← Z

∗
N2 is chosen.

(Note that in the first case, [rN mod N2] is a random element of Res(N 2).)

The decisional composite residuosity (DCR) assumption is simply the as-
sumption that there exists a GenModulus relative to which the decisional com-
posite residuosity problem is hard. This assumption can be viewed as a gen-
eralization, of sorts, of the quadratic residuosity assumption in Z

∗
N that we

saw earlier.
As we have discussed, random elements of Z∗N2 have the form (r′, r) with r′

and r random (in the appropriate groups), while random N th residues have
the form (0, r) with r random. The DCR assumption is that it is hard to
distinguish random elements of the first type from random elements of the
second type. This suggests the following abstract way to encrypt a message
m ∈ ZN with respect to a public key N : choose a random N th residue (0, r)
and set the ciphertext equal to

c := (m, 1) · (0, r) = (m, r).

(In the above, ‘·’ represents the group operation in ZN × Z
∗
N .) Without wor-

rying for now how this can be carried out efficiently by the sender, or how
the receiver can decrypt, let us simply convince ourselves (on an intuitive
level) that this is secure. Since a random N th residue (0, r) cannot be distin-
guished from a random element (r′, r), the ciphertext as constructed above is
indistinguishable (from the point of an eavesdropper who does not know the
factorization of N) from a ciphertext constructed as

c′ := (m, 1) · (r′, r) = ([m + r′ mod N], r)

for random r′ ∈ ZN . Lemma 10.18 shows that [m + r′ mod N] is uniformly
distributed in ZN and so, in particular, the ciphertext c′ is independent of the
message m. Indistinguishability of encryptions in the presence of an eaves-
dropper follows.

A formal proof that proceeds exactly along these lines is given below. Let
us first see how encryption and decryption can be performed efficiently, and
then give a formal description of the encryption scheme.

390 Introduction to Modern Cryptography

Encryption. We have described encryption above as though it is taking
place in ZN × Z∗N . In fact it will take place in the isomorphic group Z∗N2 .
That is, the sender will generate a ciphertext C ∈ Z

∗
N2 by choosing random

r ∈ Z∗N and then computing

c := [(1 + N)m · rN mod N2]

=
(
(1 + N)m · 1N

)
·
(
(1 + N)0 · rN

)
mod N2.

Note that c↔ (m, r) as desired.

We remark that it does not make any difference whether the sender chooses
random r ← Z∗N or random r ← Z∗N2 , since in each case the distribution on
rN mod N2 is the same. (As can be verified by looking at what happens in
the isomorphic group ZN × Z∗N .)

Decryption. We now describe how decryption can be performed efficiently
given the factorization of N . For c constructed as above, we claim that m is
recovered by the following steps:

• Set ĉ := [cφ(N) mod N2].

• Set m̂ := (ĉ− 1)/N . (Note that this is carried out over the integers.)

• Set m := m̂ · φ(N)−1 mod N .

To see why this works, let c↔ (m, r) for arbitrary r ∈ Z∗N . Then

ĉ
def
= [cφ(N) mod N2]

↔ (m, r)φ(N)

=
(
[m · φ(N) mod N], [rφ(N) mod N]

)

=
(
[m · φ(N) mod N], 1

)
.

By Proposition 11.26(3), this means that ĉ = (1 + N)[m·φ(N) mod N] mod N2.
Using Proposition 11.26(2), we know that

ĉ = (1 + N)[m·φ(N) mod N] = (1 + [m · φ(N) mod N] ·N) mod N2,

and so m̂
def
= (ĉ− 1)/N = [m · φ(N) mod N]. Finally,

m
def
= [m̂ · φ(N)−1 mod N] = m,

as required. (Note that φ(N) is invertible modulo N since gcd(N, φ(N)) = 1.)

We give an example of the above calculations, followed by a complete de-
scription of the Paillier encryption scheme.

* Additional Public-Key Encryption Schemes 391

Example 11.31
Let N = 11 · 17 = 187 (and so N 2 = 34969), and consider encrypting the
message m = 175 and then decrypting the corresponding ciphertext. Choosing
r = 83 ∈ Z∗187, we compute the ciphertext

c := [(1 + 187)175 · 83187 mod 34969] = 23911

corresponding to (175, 83). To decrypt, note that φ(N) = 160. So we first
compute ĉ := [23911160 mod 34969] = 25620. Subtracting 1 and dividing by
187 gives

m̂ := (23911− 1)/187 = 137;

since 90 = [160−1 mod 187], the message is recovered as

m := [137 · 90 mod 187] = 175.

♦

CONSTRUCTION 11.32

Let GenModulus be a polynomial-time algorithm that, on input 1n, out-
puts (N, p, q) where N = pq and p and q are n-bit primes (except with
probability negligible in n). Define a public-key encryption scheme as
follows:

• Gen(1n) runs GenModulus(1n) to obtain (N, p, q). The public key
is N , and the private key is 〈N, φ(N)〉.

• To encrypt a message m ∈ ZN with respect to the public key N ,
choose random r← Z

∗
N and output the ciphertext

c := [(1 + N)m · rN mod N2].

• To decrypt a ciphertext c using the private key sk = 〈N, φ(N)〉,
compute

m :=

[
[cφ(N) mod N2] − 1

N
· φ(N)−1 mod N

]
.

The Paillier encryption scheme.

Correctness follows from what we have shown earlier. We now prove security
of the scheme.

THEOREM 11.33 If the decisional composite residuosity problem is hard
relative to GenModulus, then the Paillier encryption scheme has indistinguish-
able encryptions under chosen-plaintext attacks.

392 Introduction to Modern Cryptography

PROOF Let Π denote the Paillier encryption scheme. We prove that
Π has indistinguishable encryptions in the presence of an eavesdropper; by
Theorem 10.10 this implies that it is CPA-secure.

Let A be a probabilistic, polynomial-time adversary, and define

ε(n)
def
= Pr[PubKeav

A,Π(n) = 1].

Consider the following ppt adversary D that attempts to solve the decisional
composite residuosity problem relative to GenModulus:

Algorithm D:
The algorithm is given N, y as input.

• Set pk = 〈N〉 and run A(pk) to obtain two messages m0, m1.

• Choose a random bit b and set c := [(1 + N)mb · y mod N2].

• Give the ciphertext c to A and obtain an output bit b′. If
b′ = b, output 1; otherwise, output 0.

Let us analyze the behavior of D. There are two cases to consider:

Case 1: Say the input to D was generated by running GenModulus(1n) to
obtain (N, p, q), choosing random r ← Z∗N2 , and setting y := [rN mod N2].
In this case, the ciphertext c is constructed as

c = [(1 + N)mb · rN mod N2]

for random r ∈ ZN2 . Recalling that the distribution on [rN mod N2] is the
same whether r is chosen at random from Z∗N or from Z∗N2 , we see that in
this case the view of A when run as a subroutine by D is distributed exactly
as A’s view in experiment PubKeav

A,Π(n). Since D outputs 1 exactly when the
output b′ of A is equal to b, we have that

Pr[D(N, rN) = 1] = Pr[PubKeav
A,Π(n) = 1] = ε(n) ,

where the left-most probability is taken over the appropriate experiment in-
dicated in Definition 11.30.

Case 2: Say the input to D was generated by running GenModulus(1n) to
obtain (N, p, q) and choosing random y ← Z∗N2 . We claim that the view of
A in this case is independent of the bit b. To see this, note that since y is a
random element of the group Z∗N2 , the ciphertext c is randomly distributed in
Z∗N2 (see Lemma 10.18) and, in particular, is independent of m. This means
the probability that b′ = b in this case is exactly 1

2 . That is,

Pr[D(N, r) = 1] =
1

2
,

where the probability is taken over the appropriate experiment indicated in
Definition 11.30.

* Additional Public-Key Encryption Schemes 393

Since, by assumption, the decisional composite residuosity problem is hard
relative to GenModulus, there must exist a negligible function negl such that

negl(n) =
∣∣∣Pr[D(N, [rN mod N2]) = 1]− Pr[D(N, r) = 1]

∣∣∣

=

∣∣∣∣ε(n)− 1

2

∣∣∣∣ .

This implies that ε(n) ≤ 1
2 + negl(n), completing the proof.

11.3.3 Homomorphic Encryption

The Paillier encryption scheme turns out to be useful in a number of con-
texts since it is an example of a homomorphic encryption scheme over an
additive group. That is, if we let EncN (m) denote the (randomized) Paillier
encryption of a message m ∈ ZN with respect to the public key N , we have

EncN (m1) · EncN (m2) = EncN ([m1 + m2 mod N])

for all m1, m2 ∈ ZN . To see this, one can verify that
(
(1 + N)m1 · rN

1

)
·
(
(1 + N)m2 · rN

2

)

= (1 + N)[m1+m2 mod N] · (r1r2)
N mod N2,

and the latter is a valid encryption of the message [m1 + m2 mod N].

DEFINITION 11.34 A public-key encryption scheme (Gen, Enc, Dec) is
homomorphic if for all n and all (pk, sk) output by Gen(1n), it is possible to
define groups C, M such that

• The plaintext space is M, and all ciphertexts output by Encpk are ele-
ments of C.

• For any m1, m2 ∈ M and c1, c2 ∈ C with m1 = Decsk(c1) and m2 =
Decsk(C2), it holds that

Decsk(c1 · c2) = m1 ·m2,

where the group operations are carried out in C and M, respectively.

Re-stating what we have said above, the Paillier encryption scheme is ho-
momorphic taking C = Z∗N2 and M = ZN for the public key pk = N .

The Paillier encryption scheme is not the first homomorphic encryption
scheme we have seen. El Gamal encryption is also homomorphic: if Gen(1n)
outputs pk = (G, q, g, h) then ciphertexts are elements of G×G and messages
are elements of G. Furthermore,

〈gy1 , hy1 ·m1〉 · 〈gy2 , hy2 ·m2〉 = 〈gy1+y2 , hy1+y2 ·m1m2〉,

394 Introduction to Modern Cryptography

a valid encryption of the message m1m2 ∈ G. Goldwasser-Micali encryption
is also homomorphic (see Exercise 11.12).

A nice feature of Paillier encryption is that it is homomorphic over a large
additive group (namely, ZN). To see why this might be useful, imagine the
following cryptographic voting scheme based on Paillier encryption:

1. An authority generates a public key N for the Paillier encryption scheme
and publicizes N .

2. Let 0 stand for a “no” vote, and let 1 stand for a “yes” vote. Each of
` voters can cast their vote by encrypting it. That is, voter i casts her
vote vi by computing ci := [(1+N)vi ·rN mod N2] for randomly-chosen
r ← Z∗N .

3. Each voter broadcasts their vote ci. These votes are then aggregated by
computing

c∗ :=
[∏`

i=1 ci mod N2
]
.

4. The authority is given the ciphertext c. (We assume the authority has
not been able to observe what goes on until now.) By decrypting c, the
authority obtains the vote total

v∗ =
∑`

i=1 vi.

Note that the authority obtains the correct vote total without learning any
individual votes. Furthermore, no voter learns anyone else’s vote, either. We
remark that we assume here that all parties act honestly (and only try to
figure out others’ votes based on the information they have observed); there
are attacks on the above protocol when this assumption does not hold, and an
entire research area of cryptography is dedicated to formalizing appropriate
security notions in settings such as these, and designing secure protocols.

References and Additional Reading

The books by Childs [36] and Shoup [117] provide further coverage of the
number theory (and computational number theory) used in this chapter. A
good description of the algorithm for computing the Jacobi symbol modulo a
composite of unknown factorization, along with a proof of correctness, is given
in [49]. The problem of deciding quadratic residuosity modulo a composite of
unknown factorization goes back to Gauss [61] and is related to other (conjec-
tured) hard number-theoretic problems. The Goldwasser-Micali encryption
scheme is from [70], and was the first public-key encryption scheme with a
rigorous proof of security.

* Additional Public-Key Encryption Schemes 395

Rabin [107] showed that computing square roots modulo a composite is
equivalent to factoring. The method shown in Section 11.2.2 for obtaining
a family of permutations based on squaring modulo a composite is due to
Blum [26].

Section 10.2 of Shoup’s text [117] characterizes Z∗Ne for arbitrary inte-
gers N, e (and not just N = pq, e = 2 as done here). The Paillier encryption
scheme was introduced in [105].

Exercises

11.1 Let G be an abelian group. Show that the set of quadratic residues in
G forms a subgroup.

11.2 This question concerns the quadratic residues in the additive group ZN .
(I.e., an element y ∈ ZN is a quadratic residue if and only if there exists
an x ∈ ZN with 2x = y mod N .)

(a) What are the quadratic residues in Zp for p an odd prime?

(b) Let N = pq be a product of two odd primes p and q. What are the
quadratic residues in ZN?

(c) Let N be an even integer. What are the quadratic residues in ZN?

11.3 Let N = pq with p, q distinct, odd primes. Show a ppt algorithm for
choosing a random element of QNR+1

N when the factorization of N is
known. (Your algorithm can have failure probability negligible in ‖N‖.)

11.4 Let N = pq with p, q distinct, odd primes. Prove that if x ∈ QRN

then [x−1 mod N] ∈ QRN . Similarly, prove that if x ∈ QNR+1
N then

[x−1 mod N] ∈ QNR+1
N .

11.5 Let N = pq with p, q distinct, odd primes, and fix z ∈ QNR+1
N . Show

that choosing random x← QRN and setting y := [z · x mod N] gives a
y that is uniformly distributed in QNR+1

N . I.e., for any ŷ ∈ QNR+1
N

Pr[z · x = ŷ mod N] = 1/|QNR+1
N |,

where the probability is taken over random choice of x← QRN .

Hint: Use the previous exercise.

11.6 Consider the following variation of the Goldwasser-Micali encryption
scheme: GenModulus(1n) is run to obtain (N, p, q) where N = pq and
p = q = 3 mod 4. (I.e., N is a Blum integer.) The public key is N and
the secret key is 〈p, q〉. To encrypt the message m ∈ {0, 1}, the sender
chooses random x ∈ ZN and computes the ciphertext c := (−1)m ·
x2 mod N . Decryption is done as in Construction 11.12.

396 Introduction to Modern Cryptography

(a) Prove that for N of the stated form, [−1 mod N] ∈ QNR+1
N .

(b) Prove that the scheme described has indistinguishable encryptions
under chosen-plaintext attacks if deciding quadratic residuosity is
hard relative to GenModulus.

Hint: The proof is slightly easier than the proof of Theorem 11.13.

11.7 Consider the following variation of the Goldwasser-Micali encryption
scheme: GenModulus(1n) is run to obtain (N, p, q). The public key
is N and the secret key is 〈p, q〉. To encrypt a 0, the sender chooses
n random elements c1, . . . , cn ← QRN . To encrypt a 1, the sender
chooses n random elements c1, . . . , cn ← J +1

N . In each case, the resulting
ciphertext is c∗ = 〈c1, . . . , cn〉.

(a) State how the sender can generate a random element of J +1
N in

polynomial time.

(b) Suggest a way for the receiver to decrypt efficiently, though with
error probability negligible in n.

(c) Prove that if deciding quadratic residuosity is hard relative to
GenModulus, then this scheme has indistinguishable encryptions
under chosen-plaintext attacks.

Hint: Use Corollary 11.10.

11.8 Let G be a polynomial-time algorithm that, on input 1n, outputs a prime
p with ‖p‖ = n and a generator g of Z∗p. Prove that the DDH problem
is not hard relative to G.

Hint: Use the fact that quadratic residuosity can be decided efficiently

modulo a prime.

11.9 Consider a “textbook Rabin” encryption scheme in which a message
m ∈ QRN is encrypted relative to a public key N (where N is a Blum
integer) by computing the ciphertext c := [m2 mod N]. Show a chosen-
ciphertext attack on this encryption scheme that recovers the entire
private key.

11.10 Let N be a Blum integer.

(a) Define the set S
def
= {x ∈ Z∗N | x < N/2 and JN (x) = 1}. Define

the function fN : S → Z∗N by:

fN(x) =

{
[x2 mod N] if [x2 mod N] < N/2

[−x2 mod N] if [x2 mod N] > N/2

Show that fN is a permutation over S.

(b) Define a family of trapdoor permutations based on factoring using
fN as defined above.

* Additional Public-Key Encryption Schemes 397

11.11 (a) Let N be a Blum integer. Define the function halfN : Z∗N → {0, 1}
as

halfN (x) =

{
0 if x < N/2
1 if x > N/2

Show that the function f : Z∗N → QRN × {0, 1}2 defined as

f(x) = [x2 mod N],JN (x), halfN (x)

is one-to-one.

(b) Using the previous result, suggest a variant of the padded Rabin
encryption scheme that encrypts messages of length n. (All al-
gorithms of your scheme should run in polynomial time, and the
scheme should have correct decryption. Although a proof of se-
curity is unlikely, your scheme should not be susceptible to any
obvious attacks.)

11.12 Show that the Goldwasser-Micali encryption scheme is homomorphic,
where the plaintext space {0, 1} is viewed as the group Z2.

Chapter 12

Digital Signature Schemes

12.1 Digital Signatures – An Overview

Digital signature schemes allow a signer S who has established a public key
pk to “sign” a message in such a way that any other party who knows pk (and
knows that this public key was established by S) can verify that the message
originated from S and has not been modified in any way. Signature schemes
can be viewed as the public-key counterpart of message authentication codes,
though there are some important differences as we will see below.

As an example of typical usage of a digital signature scheme, consider a
software company that wants to disseminate software patches in an authen-
ticated manner: that is, when the company needs to release a software patch
it should be possible for any of its clients to recognize that this patch is au-
thentic, and a malicious third party should never be able to fool a client into
accepting a patch that was not actually released by the company. To do this,
the company can generate a public key pk along with a private key sk, and
then distribute pk in some reliable manner to its clients while keeping sk se-
cret. (As in the case of public-key encryption, we assume that this initial
distribution of the public key is carried out correctly so that all clients have
a correct copy of pk. In the current example, pk can be included with the
original software purchased by a client.) When releasing a software patch m,
the company can then compute a digital signature σ on m using its private
key sk; the pair (m, σ) is then sent to every client. Each client can verify
the authenticity of m by checking that σ is a legitimate signature on m with
respect to the public key pk. Note that the same public key pk is used by all
clients, and so only a single signature needs to be computed by the company
and sent to everyone.

A malicious party might try to issue a fake patch by sending (m′, σ′) to a
client, where m′ represents a patch that was never released by the company.
m′ might be a modified version of some previous patch m, or it might be
completely new and unrelated to previous patches. If the signature scheme is
“secure” (in a sense we will define more carefully soon), however, then when
the client attempts to verify σ′ it will find that this is an invalid signature
on m′ with respect to pk; that is, the client will reject the signature. Note
that the client should reject even if m′ is modified only slightly (even only in

399

400 Introduction to Modern Cryptography

a single bit!) from a genuine patch m.

Comparison to Message Authentication Codes

Both message authentication codes and digital signature schemes are used
to ensure the integrity (or authenticity) of transmitted messages. Using digital
signatures rather than message authentication codes simplifies key manage-
ment in the case when a sender needs to communicate with multiple receivers.
In particular, by using a digital signature scheme the sender can avoid having
to establish a distinct secret key with each potential receiver, and avoid hav-
ing to compute a separate message authentication code with respect to each
such key; instead, the sender need only compute only a single signature that
can be verified by all recipients.

A qualitative advantage that digital signatures have as compared to message
authentication codes is that signatures are publicly verifiable. This means that
if a receiver verifies the signature on a given message as being legitimate, then
it is assured that all other parties who receive this signed message will verify
it as legitimate, too. This feature is not achieved by message authentication
codes when a signer shares a separate key with each receiver: in such a setting
a malicious sender might compute a correct MAC tag with respect to receiver
A’s shared key but an incorrect MAC tag with respect to a different user B’s
shared key. In this case, A knows that he received an authentic message from
the sender but has no guarantee that other recipients will agree.

Public verifiability implies that signatures are transferable: a signature σ
on a message m by a particular signer S can be shown to a third party, who
can then verify herself that σ is a legitimate signature on m with respect
to S’s public key (here, we assume this third party also knows S’s public
key). By making a copy of the signature, this third party can then show the
signature to another party and convince them that S authenticated M , and
so on. Transferability and public verifiability are essential for the application
of digital signatures to certificates and public-key infrastructures, as we will
discuss in further detail in Section 12.7.

Digital signature schemes also provide the very important property of non-
repudiation. That is — assuming a signer S widely publicizes his public key
in the first place — once S signs a message he cannot later deny having done
so. This aspect of digital signatures is crucial for situations where a recipient
needs to prove to a third party (say, a judge) that a signer did indeed “certify”
a particular message (e.g., a contract): assuming S’s public key is known to
the judge (or is publicly available), a valid signature on a message is enough to
convince the judge that S indeed signed this message. Message authentication
codes simply cannot provide this functionality. To see this, say users S and R
share a key kSR, and S sends a message m to R along with a (valid) MAC tag
tag computed using kSR. Since the judge does not know kSR (indeed, this key
is kept secret by S and R), there is no way for the judge to determine whether
tag is valid or not. If R were to reveal the key kSR to the judge, there would

Digital Signature Schemes 401

be no way for the judge to know whether this is the “actual” key that S and
R shared, or whether it is some “fake” key manufactured by R. Finally, even
if we assume that the judge is given the actual key kSR and can somehow be
convinced of this fact, there is no way for R to prove that S generated tag

rather than R himself — the very fact that message authentication codes are
symmetric (so that anything S can do, R can also do) implies that there is
no way for the judge to distinguish between actions of the two parties.

As in the case of private- vs. public-key encryption, message authentication
codes have the advantage of being roughly 2–3 orders of magnitude more ef-
ficient than digital signatures. Thus, in situations where public verifiability,
transferability, and/or non-repudiation are not needed and parties are able to
share a secret key in advance of their communication, message authentication
codes may be preferable. We remark that there may also be settings where
non-repudiation and transferability are specifically not desirable: say, when a
signer S wants a particular recipient to be assured that S certified a message,
but does not want this recipient to be able to prove this fact to other par-
ties. In this case, a message authentication code (or some more complicated
cryptographic primitive) would have to be used.

Relation to Public-Key Encryption

Digital signatures are often mistakenly viewed as the “inverse” of public-key
encryption, with the roles of the sender and receiver interchanged. (E.g., in the
case of public-key encryption the receiver publishes a public key whereas in the
case of digital signatures this is done by the sender.) Historically, in fact, it has
been suggested that digital signatures can be obtained by “reversing” public-
key encryption schemes, i.e., signing a message m by decrypting it (using the
private key) to obtain σ, and verifying a signature σ by encrypting it (using
the corresponding public key) and checking whether the result is m.1 The
suggestion to construct signature schemes in this way is completely unfounded.

12.2 Definitions

As we have noted, digital signatures are the public-key counterpart of mes-
sage authentication codes. The algorithm that the sender applies to a message
is now denoted Sign (rather than Mac), and the output of this algorithm is
now called a signature (rather than a tag). The algorithm that the receiver
applies to a message and a signature in order to verify legitimacy of the mes-

1The view no doubt arises in part because, as we will see in Section 12.3.1, “textbook RSA”
signatures are indeed the reverse of textbook RSA encryption. However, neither textbook
RSA signatures nor encryption meet even minimal notions of security.

402 Introduction to Modern Cryptography

sage is again denoted Vrfy. We now formally define the syntax of a digital
signature scheme.

DEFINITION 12.1 (signature scheme — syntax): A signature scheme is
a tuple of probabilistic polynomial-time algorithms (Gen, Sign, Vrfy) satisfying
the following:

1. The key-generation algorithm Gen takes as input a security parameter 1n

and outputs a pair of keys (pk, sk). These are called the public key and
the private key, respectively. We assume for convenience that pk and sk
each have length at least n, and that n can be determined from pk, sk.

2. The signing algorithm Sign takes as input a private key sk and a message
m from some underlying message space (that may depend on pk). It
outputs a signature σ, and we write this as σ ← Signsk(m).

3. The deterministic verification algorithm Vrfy takes as input a public key
pk, a message m, and a signature σ. It outputs a bit b, with b = 1
meaning valid and b = 0 meaning invalid. We write this as b :=
Vrfypk(m, σ).

We require that for every n, every (pk, sk) output by Gen(1n), and every
message m in the appropriate underlying plaintext space, it holds that

Vrfypk(m, Signsk(m)) = 1.

We say σ is a valid signature on a message m (with respect to some public
key pk that is understood form the context) if Vrfypk(m, σ) = 1.

A signature scheme is used in the following way. One party S, who will acts
as the sender, runs Gen(1n) to obtain keys (pk, sk). The public key pk is then
publicized as belonging to S, e.g., it can be placed on S’s webpage or placed in
some public directory. As always in the public-key setting, we assume that any
other party is able to obtain a legitimate copy of S’s public key (see discussion
below). When S wants to transmit a message m, either intended for one
particular party or multiple parties, S computes the signature σ ← Signsk(m)
and sends (m, σ). Upon receipt of (m, σ), a receiver who knows pk can verify

the authenticity of m by checking whether Vrfypk(m, σ)
?
= 1. This establishes

both that S sent m, and also that m was not modified in transit. As in the
case of message authentication codes, however, it does not say anything about
when m was sent, and replay attacks (see Section 4.3) are still possible.

For practical usage of digital signatures, we will want the message space to
consist of bit-strings, either of arbitrary length or of length super-polynomial2

2Signature schemes for logarithmic-length messages are relatively easy to construct, and
are not that useful for standard applications.

Digital Signature Schemes 403

in the security parameter n. Although we will sometimes describe signature
schemes using some message space M that does not contain all bit-strings
of some fixed length (and that may also depend on the public key), we will
in such cases also specify how to encode bit-strings as elements of M. As
far as correctness alone is concerned, this encoding can be arbitrary; for rea-
sons of security it will be necessary for this encoding to be one-to-one, or it
should be computationally infeasible to find collisions in the encoding. (See
Section 12.4.)

The assumption that parties are able to obtain a legitimate copy of S’s
public key implies that S is able to send a message (i.e., pk itself) in a reli-
able and authenticated manner. Given this, one may wonder why signature
schemes are needed at all! The point is that reliable distribution of pk is a
difficult task, and using a signature scheme means that this need only be car-
ried out once, after which an unlimited number of messages can subsequently
be sent reliably. (The situation is analogous to the case of private-key encryp-
tion, where a secret key must be shared once and this key can then be used
to encrypt an unlimited number of messages.) Interestingly, as we will see
in Section 12.7, signature schemes themselves are used to ensure the reliable
distribution of other public keys.

Security of signature schemes. Given a public key pk generated by a
signer S, we say an adversary outputs a forgery if it outputs a message m
along with a valid signature σ on m, and furthermore m was not previously
signed by S. As in the case of message authentication, security of a digital
signature scheme means that an adversary cannot output a forgery even if
the adversary is allowed to obtain signatures on many other messages of its
choice. This is the direct analogue of the definition of security for message
authentication codes (Definition 4.2), and so we refer the reader there for
motivation and further discussion.

Let Π = (Gen, Sign, Vrfy) be a signature scheme, and consider the following
experiment for an adversary A and parameter n:

The signature experiment Sig-forgecma
A,Π(n).

1. Gen(1n) is run to obtain keys (pk, sk).

2. Adversary A is given pk and oracle access to Signsk(·). (This
oracle returns a signature Signsk(m) for any message m of
the adversary’s choice.) The adversary then outputs (m, σ).

3. Let Q denote the set of messages whose signatures were re-
quested by A during its execution. The output of the experi-
ment is 1 if m 6∈ Q and Vrfypk(m, σ) = 1.

DEFINITION 12.2 A signature scheme Π = (Gen, Sign, Vrfy) is existen-

tially unforgeable under an adaptive chosen-message attack if for all probabilis-
tic polynomial-time adversaries A, there exists a negligible function negl such

404 Introduction to Modern Cryptography

that:
Pr[Sig-forgecma

A,Π(n) = 1] ≤ negl(n)

Definition 12.2 is the standard notion of security for digital signature schemes.

12.3 RSA Signatures

In this section we will discuss various signature schemes based on the RSA
assumption. We warn the reader that none of the schemes in this section
are known to be secure; we introduce these schemes mainly to provide some
examples of attacks on digital signature schemes, as well as to provide some
intuition as to why constructing secure signature schemes is highly non-trivial.
Moreover, a variant of one of the schemes we show here will later be proven
secure in a security model that is discussed in detail in Chapter 13.

12.3.1 “Textbook RSA” and its Insecurity

We begin by introducing the “textbook RSA” signature scheme, given
this name because (as in the case of textbook RSA encryption) many text-
books still describe RSA signatures this way even though, as we will see,
the construction is completely insecure. Let GenRSA be a ppt algorithm
that, on input 1n, outputs (except with negligible probability) a modulus N
that is the product of two n-bit primes, along with integers e, d satisfying
ed = 1 mod φ(N). The textbook RSA signature scheme is given as Construc-
tion 12.3.

It is easy to see that verification of a legitimately-generated signature is
always successful since

σe = (md)e = m mod N.

The textbook RSA signature scheme is insecure, however, as the following
examples demonstrate.

A no-message attack. It is trivial to output a forgery for the textbook
RSA signature scheme based on the public key alone, without even having to
obtain any signatures from the legitimate signer. The attack works as follows:
given public key pk = 〈N, e〉, choose arbitrary σ ∈ Z∗N and compute m :=
σe mod N ; then output the forgery (m, σ). It is immediate that verification
succeeds; this is obviously a forgery since no signature on m (in fact, no
signatures at all!) were generated by the owner of the public key. We conclude
that the textbook RSA signature scheme does not satisfy Definition 12.2.

Digital Signature Schemes 405

CONSTRUCTION 12.3

Let GenRSA be as in the text. Define a signature scheme as follows:

• Gen, on input 1n, runs GenRSA(1n) to obtain (N, e, d). The public
key is 〈N, e〉 and the private key is 〈N, d〉.

• Sign, on input a private key sk = 〈N, d〉 and a message m ∈ Z
∗
N ,

computes the signature

σ := [md mod N].

• Vrfy, on input a public key pk = 〈N, e〉, a message m ∈ Z
∗
N , and

a signature σ ∈ Z
∗
N , outputs 1 if and only if

m
?
= [σe mod N].

The “textbook RSA” signature scheme.

One may argue that the above does not constitute a realistic attack since the
adversary has “no control” over the message m for which it outputs a forgery.
Of course, this is irrelevant as far as Definition 12.2 is concerned. Moreover,
the adversary does have some control over the message m: for example, it
can set the last bit of m to ay desired value by carrying out the above attack
multiple times, choosing σ at random each time. In any case, we have already
discussed (in Chapter 4) why it is dangerous to assume any semantics for
messages that are going to be authenticated using any cryptographic scheme.

Forging a signature on an arbitrary message. A more damaging attack
on the textbook RSA signature scheme requires the adversary to obtain two
signatures from the signer, but allows the adversary to output a forgery on
any message of the adversary’s choice. Say the adversary wants to forge a
signature on the message m ∈ Z∗N with respect to the public key pk = 〈N, e〉.
The adversary chooses a random m1 ∈ Z∗N , sets m2 := [m/m1 mod N], and
then obtains signatures σ1, σ2 on m1 and m2, respectively. We claim that
σ := σ1 · σ2 mod N is a valid signature on m. This is because

σe = (σ1 · σ2)
e = (md

1 ·md
2)

e = med
1 ·med

2 = m1m2 = m mod N,

using the fact that σ1, σ2 are valid signatures on m1 and m2. This constitutes
a forgery since m is not equal to m1 or m2 (with all but negligible probability).

Being able to forge a signature on an arbitrary message is clearly devas-
tating. Nevertheless, one might argue that this attack is unrealistic since an
adversary will never be able to convince a signer to sign the exact messages
m1 and m2 as needed for the above attack. Once again, this is irrelevant as
far as Definition 12.2 is concerned. Also, it is dangerous to make assumptions
about what messages the signer will or will not be willing to sign. Finally, this
attack can be extended to other scenarios: for example, if an adversary is able
to obtain valid signatures on some arbitrary q messages M = {m1, . . . , mq},

406 Introduction to Modern Cryptography

then the adversary can output a forgery for any of 2q − q messages obtained
by taking products of subsets of M with |M | 6= 1.

12.3.2 Hashed RSA

Various modifications of the textbook RSA signature scheme have been
proposed in an effort to protect against the attacks described in the previous
section. We caution the reader once again that most of these proposals have
not been proven secure, and should not be used. Nevertheless, we show one
such example here. This example serves as an illustration of a more general
paradigm that will be explored in the following section, and can be proven
secure in a model that will be described in detail in Chapter 13.

The basic idea is to take modify the textbook RSA signature scheme by
applying some function H to the message before signing it. That is, the
public and private keys are as before except that a description of some function
H : {0, 1}∗ → Z∗N is included as part of the public key. A message m ∈ {0, 1}∗
is now signed by computing

σ := [H(m)d mod N].

(That is, m̂ := H(m) is fist computed, followed by σ := [m̂d mod N].) Verifi-
cation of the pair (m, σ) is done by checking whether

σe ?
= H(m) mod N.

Clearly, verification of a legitimately-generated signature will always succeed.

An immediate observation is that a minimal requirement for the above
scheme to be secure is that H must be collision-resistant (see Section 4.6):
if it is not, and an adversary can find two different messages m1, m2 with
H(m1) = H(m2), then forgery is trivial. Since H must be a collision-resistant
hash function, the modified scheme described above is sometimes called the
hashed RSA signature scheme. The scheme is an example of using the “hash-
and-sign” paradigm (introduced in the following section) to the textbook RSA
signature scheme.

We stress that there is no known function H for which hashed RSA sig-
natures are known to be secure in the sense of Definition 12.2. Nevertheless,
we can at least describe the intuition as to why the attacks shown on the
textbook RSA signature scheme in the previous section are likely to be more
difficult to carry out on the hashed RSA signature scheme (note that this does
not mean that these attacks are ruled out):

The no-message attack. The natural way to attempt the no-message attack
shown previously is to choose arbitrary σ ∈ Z∗N , compute m̂ := [σe mod N],
and then try to find some m ∈ {0, 1}∗ such that H(m) = m̂. If the function
H is not efficiently invertible this appears difficult to do.

Digital Signature Schemes 407

Forging a signature on an arbitrary message. The natural way to
attempt the chosen-message attack shown previously requires the adversary
to find three messages m, m1, m2 for which H(m) = H(m1) ·H(m2) mod N .
Once again, if H is not efficiently invertible this seems difficult to do.

12.4 The “Hash-and-Sign” Paradigm

In addition to (possibly) offering some protection against certain attacks,
the hashed RSA signature scheme has another advantage over textbook RSA:
it can be used to sign arbitrary-length bit-strings, rather than just elements of
Z∗N . This feature is useful in general, and the approach of hashing a message
and then signing the result (using some underlying signature scheme) is a
standard way to achieve it. We study the security of this approach now.

Let Π = (Gen, Sign, Vrfy) be a signature scheme for messages of length n.
(That is, when the security parameter is 1n, messages of length n can be
signed.) Setting the message space to {0, 1}n is done for simplicity only, and
everything that follows can be modified appropriately for arbitrary message
spaces (even message spaces that depend on the public key) as long as the
message space is of size super-polynomial in n.3 Let Π = (Gen, H̄) be a hash
function as per Definition 4.9, where the output of H has length n on security
parameter 1n.

CONSTRUCTION 12.4

Let (Gen, Sign, Vrfy) and (Gen, H̄) be as in the text.

• Gen′, on input 1n, runs Gen(1n) to obtain (pk, sk) and runs
Gen(1n) to obtain s. The public key is pk′ = 〈pk, s〉 and the
private key is sk′ = 〈sk, s〉.

• Sign′, on input a private key sk′ = 〈sk, s〉 and a message m ∈
{0, 1}∗, computes σ′ ← Signsk(Hs(m)).

• Vrfy, on input a public key pk′ = 〈pk, s〉, a message m ∈ {0, 1}∗,
and a signature σ, outputs 1 if and only if Vrfypk(Hs(m), σ)

?
= 1.

The hash-and-sign paradigm.

We can construct a new signature scheme Π′ = (Gen′, Sign′, Vrfy′) for arbitrary-
length messages as follows: the public key contains a public key pk output by

3Looking ahead, this restriction is needed because collision-resistant hash functions must
have super-logarithmic output length.

408 Introduction to Modern Cryptography

Gen as well as a key s output by Gen; the private key is simply the one corre-
sponding to sk (that was also output by Gen). To sign a message m ∈ {0, 1}∗,
the signer simply computes σ ← Signsk(H̄s(m)). Verification is performed by

checking that Vrfypk(H̄s(m), σ)
?
= 1. See Construction 12.4. Note that the

hashed RSA signature scheme is indeed constructed from the textbook RSA
signature scheme using exactly this approach (of course, the theorem below
does not apply in that case because textbook RSA signatures are insecure.

We have the following result:

THEOREM 12.5 If Π is existentially unforgeable under an adaptive chosen-
message attack, and Π is collision resistant, then Π′ is existentially unforgeable
under an adaptive chosen-message attack.

PROOF Let A′ be a probabilistic polynomial-time adversary. In a
particular execution of experiment Sig-forgecma

A′,Π′(n), let pk′ = 〈pk, s〉 denote
the public key that was used, letQ denote the set of messages whose signatures
were requested by A′, and let (m, σ) be the final output of A′. We assume
without loss of generality that m 6∈ Q. Define collA′,Π′(n) to be the event
that in the experiment Sig-forgecma

A′,Π′(n), there exists an m′ ∈ Q for which
Hs(m′) = Hs(m).

We have

Pr[Sig-forgecma
A′,Π′(n) = 1]

= Pr[Sig-forgecma
A′,Π′(n) = 1 ∧ collA′,Π′(n)]

+ Pr[Sig-forgecma
A′,Π′(n) = 1 ∧ collA,Π′(n)]

≤ Pr[collA′,Π′(n)] + Pr[Sig-forgecma
A′,Π′(n) = 1 ∧ collA,Π′(n)]. (12.1)

We will show that both terms in Equation (12.1) are negligible, which will
complete the proof. Intuitively, the first term is negligible by collision resis-
tance of (Gen, H̄), and the second term is negligible by security of Π.

Consider the following ppt algorithm C who attempts to find a collision in
scheme Π:

Algorithm C:
The algorithm is given s as input (the security parameter n is
implicit).

• Compute Gen(1n) to obtain (pk, sk). Set pk′ = 〈pk, s〉.
• Run A′ on input pk′. When A′ requests the ith signature on

some message mi ∈ {0, 1}∗, compute σi ← Signsk(Hs(mi))
and give σi to A′.

• Eventually, A′ outputs (m, σ). If there exists an i for which
Hs(m) = Hs(mi), output (m, mi).

Digital Signature Schemes 409

Let us analyze the behavior of C. When the input to C is generated by
running Gen(1n) to obtain s, the view of A′ when run as a subroutine by
C is distributed exactly as its view in experiment Sig-forgecma

A′,Π′(n). Since C
outputs a collision exactly when collA′,Π′(n) occurs, we have

Pr[Hash-collC,Π(n) = 1] = Pr[collA′,Π′(n)].

Because Π is collision resistant, we conclude that Pr[collA′,Π′(n)] must be
negligible.

Consider next the following ppt adversary A attacking signature scheme Π:

Adversary A:
The adversary is given as input a public key pk (with n implicit),
and has access to a signing oracle Signsk(·).
• A computes Gen(1n) to obtain s, and sets pk′ = 〈pk, s〉.
• A runs A′ on input pk′. When A′ requests the ith signature

on a message mi ∈ {0, 1}∗, this is answered as follows: (1) A
computes m̂i := Hs(mi); then (2) A obtains a signature σi

on m̂i from its own signing oracle, and gives σi to A′.
• Eventually,A′ outputs (m, σ). AdversaryA outputs (Hs(m), σ).

Consider experiment Sig-forgecmaA, Π(n). In this experiment, the view ofA′
when run as a subroutine by A is distributed exactly as its view in experiment
Sig-forgecma

A′,Π′(n). Furthermore, it can be easily verified that whenever both
Sig-forgecma

A′,Π′(n) = 1 and collA,Π′(n) occur, A outputs a forgery. (That σ
is a valid signature on Hs(m) with respect to pk is immediate. The fact that
collA,Π′(n) occurs means that m̂ = Hs(m) was never asked by A to its own
signing oracle.) Therefore,

Pr[Sig-forgecma
A,Π(n) = 1] ≥ Pr[Sig-forgecma

A′,Π′(n) ∧ collA,Π′(n)],

and so the latter probability must be negligible by security of Π. This con-
cludes the proof of the theorem.

An analogue of Theorem 12.5 holds for the case of message authentica-
tion codes, and gives an alternate way of constructing variable-length MACs
from fixed-length ones (albeit under the additional assumption that collision-
resistant hash functions exist, which is not needed for Theorem 4.6).

12.5 Lamport’s One-Time Signature Scheme

Although Definition 12.2 is the standard definition of security for digital
signature schemes, weaker definitions have also been considered. Signature

410 Introduction to Modern Cryptography

schemes satisfying these weaker definitions may be appropriate for certain
restricted applications, and may also serve as useful “building blocks” for
signature schemes satisfying stronger definitions of security.

In this section, we define one-time signature schemes which, informally, are
“secure” as long as they are used to sign only a single message. We then show
a construction, due to Lamport, of a one-time signature scheme from any
one-way function. (In this section, we rely only on the definition of one-way
functions given in Section 7.4.1, and do not need any of the material developed
in Chapter 6.) We will use one-time signature schemes in the following section
to construct signature schemes satisfying Definition 12.2.

Let Π = (Gen, Sign, Vrfy) be a signature scheme, and consider the following
experiment for an adversary A and parameter n:

The one-time signature experiment Sig-forge1-time
A,Π (n).

1. Gen(1n) is run to obtain keys (pk, sk).

2. Adversary A is given pk and asks a single query m′ to oracle
Signsk(·). (That is, A requests a signature on a single message
m′.) A then outputs (m, σ) where m 6= m′.

3. The output of the experiment is 1 if Vrfypk(m, σ) = 1.

DEFINITION 12.6 A signature scheme Π = (Gen, Sign, Vrfy) is existen-

tially unforgeable under a single-message attack, or simply a one-time signature

scheme, if for all probabilistic polynomial-time adversaries A, there exists a
negligible function negl such that:

Pr[Sig-forge1-time
A,Π (n) = 1] ≤ negl(n).

The basic idea of Lamport’s signature scheme is quite simple, and we illus-
trate it for the case of signing a 3-bit message. Let f be a one-way function.

Signing:

SK =

(
x1,0 x2,0 x3,0

x1,1 x2,1 x3,1

)
⇒ σ = (x1,0, x2,1, x3,1)

Verifying:

PK =

(
y1,0 y2,0 y3,0

y1,1 y2,1 y3,1

)

σ = (x1, x2, x3)




⇒

f(x1)
?
= y1,0

f(x2)
?
= y2,1

f(x3)
?
= y3,1

FIGURE 12.1: The Lamport scheme used to sign the message m = 011.

Digital Signature Schemes 411

(Recall this means, informally, that f is easy to compute but hard to invert;
see Definition 7.66.) The public key will consist of 2 · 3 = 6 elements y1,0,
y1,1, y2,0, y2,1, y3,0, y3,1 in the range of f ; the private key will contain the
corresponding pre-images x1,0, x1,1, x2,0, x2,1, x3,0, x3,1 under f . These keys
can be visualized as two-dimensional arrays:

pk =

(
y1,0 y2,0 y3,0

y1,1 y2,1 y3,1

)
sk =

(
x1,0 x2,0 x3,0

x1,1 x2,1 x3,1

)
.

To sign a message m = m1 · m2 · m3, where each mi is a single bit, the
signer releases the appropriate pre-image xi,mi for 1 ≤ i ≤ 3; the signature σ
simply consists of the three values (x1,m1 , x2,m2 , x3,m3). Verification is done
in the natural way: presented with the candidate signature (x1, x2, x3) on the

message m = m1 ·m2 ·m3, accept if and only if f(xi)
?
= yi,mi for 1 ≤ i ≤ 3.

This is shown graphically in Figure 12.1, and formally as Construction 12.7.

CONSTRUCTION 12.7

• Gen, on input 1n, proceeds as follows for i ∈ {1, . . . , `}:
1. Choose random xi,0, xi,1 ← {0, 1}n.

2. Compute yi,0 := f(xi,0) and yi,1 := f(xi,1).

The public key pk and the private key sk are

pk :=

(
y1,0 y2,0 · · · y`,0

y1,1 y2,1 · · · y`,1

)
sk :=

(
x1,0 x2,0 · · · x`,0

x1,1 x2,1 · · · x`,1

)
.

• Sign, on input a private key sk as above and a message m ∈ {0, 1}`
with m = m1 · · ·m`, outputs the signature (x1,m1 , . . . , x`,m`

).

• Vrfy, on input a public key pk as above, a message m ∈ {0, 1}`
with m = m1 · · ·m`, and a signature σ = (x1, . . . , x`), outputs 1
if and only if f(xi) = yi,mi for 1 ≤ i ≤ `.

Lamport’s signature scheme for messages of length ` = `(n).

THEOREM 12.8 Let ` be any polynomial. If f is a one-way function,
then Construction 12.7 is a one-time signature scheme.

PROOF We let ` = `(n) for the rest of the proof. As intuition for the
security of the scheme, note that for an adversary given public key pk =(

y1,0 y2,0 · · · y`,0

y1,1 y2,1 · · · y`,1

)
, finding an x such that f(x) = yi∗,b∗ for any (i∗, b∗)

amounts to inverting f . So it will certainly be hard to compute a signature

412 Introduction to Modern Cryptography

on any message m given only the public key. Might it become easier to
compute a signature on some message m after being given a signature on a
different message m′? Note that if m′ 6= m then there must be at least one
position i∗ on which these messages differ. Say mi∗ = b∗ 6= m′i∗ . Then forging
a signature on m requires, in particular, finding an x such that f(x) = yi∗,b∗ .
But finding such an x does not become easier even when given {xi,b} for all
(i, b) 6= (i∗, b∗) (since {xi,b}(i,b)6=(i∗,b∗) are all chosen independently of xi∗,b∗),
and a signature on m′ reveals even fewer “x-values” than these.

We now turn this intuition into a formal proof. Let Π denote the Lamport
scheme. Let A be a probabilistic, polynomial-time adversary, and define

ε(n)
def
= Pr[Sig-forge1-time

A,Π (n) = 1].

In a particular execution of Sig-forge1-time
A,Π (n), let m′ denote the message whose

signature is requested by A (we assume without loss of generality that A
always requests a signature on a message), and let (m, σ) denote the final
output of A. We say A output a forgery at (i, b) if Vrfypk(m, σ) = 1 and

furthermore mi 6= m′i (i.e., messages m and m′ differ on their ith position)
and mi = b 6= m′i. Note that whenever A outputs a forgery, it outputs a
forgery at some (i, b).

Consider the following ppt algorithm I attempting to invert the one-way
function f :

Algorithm I:
The algorithm is given y as input (with n implicit).

1. Choose random i∗ ← {1, . . . , `} and b∗ ← {0, 1}. Set yi∗,b∗ := y.

2. For i ∈ {1, . . . , `} and b ∈ {0, 1} with (i, b) 6= (i∗, b∗):

• Choose xi,b ← {0, 1}n and set yi,b := f(xi,b).

3. Run A on input pk :=

(
y1,0 y2,0 · · · y`,0

y1,1 y2,1 · · · y`,1

)
.

4. When A requests a signature on the message m′:

• If m′i∗ = b∗, stop.

• Otherwise, return the correct signature σ = (x1,m′
1
, . . . , x`,m′

`
).

5. When A outputs (m, σ) with σ = (x1, . . . , xp):

• If A output a forgery at (i∗, b∗), then output xi∗ .

Note that whenever A outputs a forgery at (i∗, b∗), algorithm I succeeds
in inverting its given input y. We are interested in the probability that this
occurs when the input to I is generated by choosing random x ← {0, 1}n
and setting y := f(x) (cf. Definition 7.66). Imagine for a moment a “mental
experiment” in which I is given x at the outset, sets xi∗,b∗ := x, and then
always returns a signature to A in step 4 (i.e., even if m′i∗ = b∗). It is

Digital Signature Schemes 413

not hard to see that the view of A being run as a subroutine by I in this
mental experiment is distributed identically to the view of A in experiment
Sig-forge1-time

A,Π (n). Therefore, the probability that A outputs a forgery in step 5
is exactly ε(n). Because (i∗, b∗) was chosen at random at the beginning of the
experiment, and the view of A is independent of this choice, the probability
that A outputs a forgery at (i∗, b∗), conditioned on the fact that A output a
forgery at all, is at least 1/2`(n). We conclude that, in this mental experiment,
the probability that A outputs a forgery at (i∗, b∗) is at least ε(n)/2`(n).

Returning to the real experiment involving I as initially described, the
key observation is that the probability that A outputs a forgery at (i∗, b∗) is
unchanged. This is because the mental experiment and the real experiment
only differ if A requests a signature on a message m′ with m′i∗ = b∗, but if this
happens then it is impossible (by definition) for A to subsequently output a
forgery at (i∗, b∗). So, in the real experiment, the probability that A outputs
a forgery at (i∗, b∗) is still at least ε(n)/2`(n). That is,

Pr[InvertI,f (n) = 1] ≥ ε(n)/2`(n).

Because f is a one-way function, there is a negligible function negl such that

negl(n) ≥ Pr[InvertI,f (n) = 1] ≥ ε(n)/2`(n).

Since ` is polynomial, ε must be negligible. This completes the proof.

COROLLARY 12.9 If one-way functions exist, then there exist one-time
signature schemes.

We remark that the Lamport scheme is completely insecure if used to sign
more than one message; see Exercise 12.2.

12.6 * Signatures from Collision-Resistant Hashing

We have not yet seen any signature schemes that are existentially unforge-
able under an adaptive chosen-message attack (cf. Definition 12.2). Here we
show a relatively inefficient construction that is essentially the simplest one
known based on the cryptographic assumptions we have introduced thus far.
The construction relies only on the existence of collision-resistant hash func-
tions, and serves mainly as a proof of feasibility for realizing Definition 12.2.

We remark that signature schemes satisfying Definition 12.2 are, in general,
quite difficult to construct, and even today only a few efficient schemes that
can be proven to satisfy this definition are known. In Chapter 13, we will

414 Introduction to Modern Cryptography

discuss a very efficient signature scheme that can be proven secure in a cer-
tain “idealized” model that is introduced and discussed extensively there. It
remains open to develop other efficient signature schemes that can be proven
secure in the “standard” model we have been using until now.

We build up to our final construction in stages. In Section 12.6.1 we define
the notion of a stateful signature scheme, and show how to construct a stateful
signature scheme that satisfies Definition 12.2. In Section 12.6.2 we discuss a
more efficient variant of this scheme (that is still stateful) and show that this,
too, is existentially unforgeable under an adaptive chosen-message attack. We
then describe how this construction can be made stateless, so as to recover a
signature scheme as originally defined.

12.6.1 “Chain-Based” Signatures

We first define signature schemes that allow the signer to maintain some
state that is updated after every signature is produced.

DEFINITION 12.10 A stateful signature scheme is a tuple of probabilistic
polynomial-time algorithms (Gen, Sign, Vrfy) satisfying the following:

1. The key-generation algorithm Gen takes as input a security parameter
1n and outputs (pk, sk, s0). These are called the public key, private key,
and initial state, respectively. We assume |pk| ≥ n, and that n can be
determined from pk.

2. The signing algorithm Sign takes as input a private key sk, a value si−1,
and a message m. It outputs a signature σ along with a value si, and
we write this as (σ, si)← Signsk,si−1

(m).

3. The deterministic verification algorithm Vrfy takes as input a public key
pk, a message m, and a signature σ. It outputs a bit b, and we write
this as b := Vrfypk(m, σ).

We require that for every n, every (pk, sk, s0) output by Gen(1n), and any
sequence of messages m1, . . . , m`, if we compute (σi, si) ← Signsk,si−1

(mi)
recursively for i ∈ {0, . . . , `} then

Vrfypk(m`, σ`) = 1.

We emphasize that the state is not needed to verify a signature. Signa-
ture schemes which do not maintain state are sometimes called stateless to
distinguish them from stateful schemes.

Existential unforgeability under an adaptive chosen-message attack for the
case of stateful signatures schemes is defined in a manner exactly analogous
to Definition 12.2, with the only subtleties being that the signing oracle only

Digital Signature Schemes 415

returns the signature (and not the state), and the signing oracle updates the
state appropriately each time it is invoked.

We can easily construct a stateful “`-time” signature scheme that can be
used to sign ` = `(n) messages for any polynomial `. (The notion of secu-
rity here would be analogous to the definition of one-time signatures given
earlier; we do not give a formal definition since our discussion here will only
be informal.) Simply let the public key consist of ` independently-generated
public keys for any one-time signature scheme, with the private key similarly
constructed; i.e., set pk := (pk1, . . . , pk`) and sk := (sk1, . . . , sk`) where each
(pki, ski) is an independently-generated key-pair for some one-time signature
scheme. The initial state is set to 1.

To sign a message m using the secret key sk and current state s ≤ `, simply
output σ ← Signsks

(m) (that is, generate a one-time signature on m using the
private key sks) and update the state to s + 1. (Since the initial state starts
out at 1, this means that the ith message is signed using ski.) Verification of
a signature σ on a message m can be done by checking whether σ is a valid
signature on m with respect to any of the {pki}.

Intuitively, this scheme is secure if used to sign ` messages since each public-
/private-key pair is used to sign only a single message. Since ` may be an
arbitrary polynomial, why doesn’t this give us the solution we are looking
for? The main drawback is that the scheme requires the upper bound ` on
the number of messages to be signed to be fixed in advance, at the time of
key generation. This is a potentially severe limitation in practice, as once this
upper bound is reached a new public key would have to be generated and
distributed. We would like instead to have a single, fixed scheme that can
support signing an unbounded number of messages. The scheme is also not
very efficient, as the public and private keys have length linear in the total
number of messages that can be signed.

Let Π = (Gen, Sign, Vrfy) be a one-time signature scheme. In the scheme we
have just described, the signer runs ` invocations of Gen to obtain public keys
pk1, . . . , pk`, and includes each of these in its actual public key pk. The signer
is then restricted to signing at most ` messages. We can do better by using
a “chain-based scheme” in which the signer generates and certifies additional
public keys on-the-fly as needed.

In the chain-based scheme, the public key will consist of just a single public
key pk1 generated using Gen, and the private key will contain the associated
private key sk1. To sign the first message m1, the signer first generates a new
key-pair (pk2, sk2) using Gen, and then signs both m1 and pk2 using sk1 to
obtain σ1 ← Signsk1

(m1‖pk2). The signature that is output includes both pk2

and σ1, and the signer stores (m1, pk2, sk2, σ1) as part of its state.
In general, when it comes time to sign the ith message the signer will have

stored {(mj , pkj+1, skj+1, σj)}i−1
j=1 as part of its state. To sign the ith message

mi, the signer first generates a new key-pair (pki+1, ski+1) using Gen, and then
signs mi and pki+1 using ski to obtain a signature σi ← Signski

(mi‖pki+1).
The actual signature that is output includes pki+1, σi, and also the values

416 Introduction to Modern Cryptography

{mj , pkj+1, σj}i−1
j=1. The signer then includes (mi, pki+1, ski+1, σi) as part of

its state. See Figure ?? for a graphical depiction of this process.

To verify a signature (pki+1, σi, {mj , pkj+1, σj}i−1
j=1) on a message m = mi

with respect to public key pk1, the receiver verifies each link between a public
key pkj and the next public key pkj+1 in the chain, as well as the link between
the last public key pki+1 and m1. That is, the verification procedure outputs 1

if and only if Vrfypkj
(mj‖pkj+1, σj)

?
= 1 for all j ∈ {1, . . . , i}. (It may help to

refer to Figure ??.)

It is not hard to be convinced — at least on an intuitive level — that
the signature scheme thus constructed is existentially unforgeable under an
adaptive chosen-message attack (regardless of how many messages are signed).
Informally, this is once again due to the fact that each key-pair (pki, ski) is
used to sign only a single “message” (where in this case the “message” is
actually a message/public-key pair mi‖pki+1). Since we are going to prove
secure a more efficient scheme in the next section, we do not give a formal
proof of security for the chain-based scheme here.

An important point regarding the chain-based scheme that we have ne-
glected to mention until now is that each public key pki in this scheme is
used to sign both a message and another public key. Thus, it is essential for
the underlying one-time signature scheme Π to be capable of signing messages
longer than the public key. The Lamport scheme presented in Section 12.5 does
not have this property. If we apply the “hash-and-sign” paradigm from Sec-
tion 12.4 to the Lamport scheme, however, we do obtain a one-time signature
scheme that can sign messages of arbitrary length. (Although Theorem 12.5
was stated only with regard to signature schemes satisfying Definition 12.2,
it is not hard to see that an identical proof works for one-time signature
schemes.) Because this result is crucial for the next section, we state it for-
mally.

LEMMA 12.11 If collision-resistant hash functions exist, then there exist
one-time signature schemes that can sign messages of arbitrary length.

PROOF As mentioned, we simply use the hash-and-sign paradigm of The-
orem 12.5 in conjunction with the Lamport signature scheme. Note that the
existence of collision-resistant hash functions implies the existence of one-way
functions (see Exercise 12.5).

The chain-based signature scheme is a stateful signature scheme which is
existentially unforgeable under an adaptive chosen-message attack. It has a
number of disadvantages, though. Primary among these is that there does not
appear to be any easy way to eliminate the state in this scheme (recall that
our ultimate goal is a stateless scheme satisfying Definition 12.2). It is also not
very efficient, in that the signature length, size of the state, and verification

Digital Signature Schemes 417

time are all linear in the number of messages that have been signed. Finally,
each signature reveals all previous messages that have been signed; while this
does not technically violate any security requirement for signatures, this may
be undesirable in some contexts.

12.6.2 “Tree-Based” Signatures

The signer in the chain-based scheme of the previous section can be viewed
as maintaining a tree (rooted at the public key pk1) of degree 1 and depth
equal to the number of messages signed thus far (cf. Figure ??). A natural
way to improve the efficiency of this approach is to use a binary tree in which
each node has degree 2. As before, a signature will correspond to a “certified”
path in the tree from a leaf to the root; notice that as long as the tree has
polynomial depth (even if it has exponential size!), verification can still be
done in polynomial time.

Concretely, to sign messages of length n we will work with a tree of depth n
having 2n leaves. As before, the signer will add nodes to the tree “on the fly,”
as needed. In contrast to the chain-based scheme, though, only leaves (and
not internal nodes) will be used to certify messages. Each leaf of the tree will
correspond to one of the possible messages of length n.

In more detail, we imagine a binary tree of depth n where the root is
labeled by ε (i.e., the empty string) and a node labeled with the binary string
w ∈ {0, 1}<n has left-child labeled w0 and right-child labeled w1. This tree
is never constructed in its entirety (note that it is exponentially-large), but is
instead built up by the signer as needed.

Associated with each node w will be a public key pkw generated using some
one-time signature scheme Π. The public key of the root, pkε, is the actual
public key of the signer. To sign a message m ∈ {0, 1}n, the signer:

1. Generates (as needed) public keys for all nodes on the path from the
root to the leaf labeled m. (Note that some of these public keys may
have been generated in the process of signing previous messages, and in
this case are not generated again.)

2. “Certifies” the path from the root to the leaf labeled m by computing
a signature on pkw0‖pkw1 with respect to pkw, for each string w that is
a proper prefix of m.

3. “Certifies” m itself by computing a signature on m with respect to pkm.

The final signature on m consists of the signature on m with respect to pkm,
as well as all the information needed to verify the path from the leaf labeled
m to the root; see Figure ??. Additionally, the signer updates its state by
storing any public-/private-key pairs generated as part of the above signing
process. A formal description of this scheme is given as Construction 12.12.

Notice that each of the underlying keys in this scheme is being used to
sign a pair of public keys (except at a leaf). Thus, we need out one-time

418 Introduction to Modern Cryptography

CONSTRUCTION 12.12

Let Π = (Gen, Sign, Vrfy) be a signature scheme. For m a binary string, let

m|i def
= m1 · · ·mi denote the i-bit prefix of m (with m|0 def

= ε, the empty
string). Construct scheme Π∗ = (Gen∗, Sign∗, Vrfy∗) as follows:

• Gen∗, on input 1n, computes (pkε, skε) ← Gen(1n) and outputs the
public key pkε. The secret key and initial state are skε.

• Sign∗, on input a message m ∈ {0, 1}n, does the following.

1. For i = 0 to n− 1:

– If the values pkm|i0, pkm|i1, and σm|i are not yet in-
cluded as part of the state, then compute the values
(pkm|i0, skm|i0) ← Gen(1n), (pkm|i1, skm|i1) ← Gen(1n),
and σm|i ← Signskm|i

(pkm|i0 ‖ pkm|i1), and store all these

values as part of the state.

2. If σm is not included in the state, compute σm ← Signskm
(m)

and store it as part of the state.

3. Output the signature
({

σm|i , pkm|i0, pkm|i1

}n−1

i=0
, σm

)
.

• Vrfy∗, on input a signature
({

σm|i , pkm|i0, pkm|i1

}n−1

i=0
, σm

)
, message

m, and public key pkε, outputs 1 if and only if both:

1. Vrfypkm|i
(pkm|i0 ‖ pkm|i1, σm|i)

?
= 1 for all i ∈ {0, . . . , n− 1}.

2. Vrfypkm
(m, σm)

?
= 1.

A “tree-based” signature scheme.

signature scheme Π to be capable of signing messages longer than the public
key. Fortunately, we know from Lemma 12.11 that such schemes can be
constructed based on collision-resistant hash functions.

Before proving security of this tree-based approach, we note that it improves
on the chain-based scheme in a number of respects. It still allows for signing an
unbounded number of messages.4 In terms of efficiency, the signature length
and verification time are now proportional to the message length n but are
independent of the number of messages signed. The scheme is still stateful,
but we will see how this can be avoided after we prove the following result.

THEOREM 12.13 Let Π be a one-time signature scheme that can sign
messages of arbitrary length. Then Π∗ as in Construction 12.12 is existen-
tially unforgeable under an adaptive chosen-message attack.

4Although there are only 2n leaves, the message space contains only 2n messages. In any
case, 2n is eventually larger than any polynomial function of n.

Digital Signature Schemes 419

PROOF Let A∗ be a probabilistic polynomial time adversary, let `∗ =
`∗(n) be a (polynomial) upper bound on the number of signing queries made

by A∗, and set `(n)
def
= 2n`∗(n) + 1. Define

λ(n)
def
= Pr[Sig-forgecma

A∗,Π∗(n) = 1].

Consider the following ppt adversary A attacking signature scheme Π:

Adversary A:
A is given as input a public key pk (the security parameter n is implicit).

• Choose random index i∗ ← {1, . . . , `∗}. Construct a list pk1, . . . , pk` of
keys as follows:

– Set pki∗ := pk.

– For i 6= i∗, compute (pki, ski)← Gen(1n).

• Run A∗ on input public key pkε = pk1. When A∗ requests a signature
on a message m do:

1. For i = 0 to n− 1:

– If the values pkm|i0, pkm|i1, and σm|i have not yet been de-
fined, then set pkm|i0 and pkm|i1 equal to the next two unused
public keys pkj and pkj+1. Then compute5 a signature σm|i
on pkm|i0 ‖ pkm|i1 with respect to pkm|i .

2. If σm is not yet defined, compute a signature σm on m with respect
to pkm (see footnote 5).

3. Give
({

σm|i , pkm|i0, pkm|i1
}n−1

i=0
, σm

)
to A∗.

• Say A∗ outputs a message m (for which it had not previously requested

a signature) and

({
σ′m|i , pk′m|i0, pk′m|i1

}n−1

i=0
, σ′m

)
. If this is a valid

signature on m, then:

Case 1: Say there exists a j ∈ {0, . . . , n− 1} for which pk′m|j0 6= pkm|j0
or pk′m|j1 6= pkm|j1; this includes the case when pkm|j0 or pkm|j1 were

never defined by A. Take the minimal such j, and let i be such that
pki = pkm|j = pk′m|j . If i = i∗, output (pk′m|j0‖pk′m|j1, σ′m|j).

Case 2: If case 1 does not hold, then pk′m = pkm. Let i be such that
pki = pkm. If i = i∗, output (m, σ′m).

5If i 6= i∗ then A can compute a signature with respect to pki by itself. A can also obtain
a (single) signature with respect to pki∗ by making the appropriate query to its signing
oracle. This is what is meant here.

420 Introduction to Modern Cryptography

This completes the description of A.
In experiment Sig-forge1-time

A,Π (n), the view of A∗ being run as a subroutine by
A is distributed identically to the view of A∗ in experiment Sig-forgecma

A∗,Π∗(n).6

Thus, the probability that A∗ outputs a forgery is exactly δ(n) when it is run
as a subroutine by A in this experiment. Given that A∗ outputs a forgery,
consider each of the two possible cases:

Case 1: Since i∗ was chosen uniformly at random and is independent of
the view of A∗, the probability that i = i∗ is exactly 1/`. If i = i∗, then A
requested a signature on the message pkm|j0‖pkm|j1 with respect to the public

key pk = pki∗ = pkm|j that it was given (and requested no other signatures).
Moreover,

pk′m|j0‖pk′m|j1 6= pkm|j0‖pkm|j1

and yet σ′m|j is a valid signature on pk′m|j0‖pk′m|j1 with respect to pk.

Case 2: Again, since i∗ was chosen uniformly at random and is independent
of the view of A∗, the probability that i = i∗ is exactly 1/`. If i = i∗, then A
did not request any signatures with respect to the public key pk = pki = pkm

and yet σ′m is a valid signature on m with respect to pk.

We thus see that, conditioned on A∗ outputting a forgery (and regardless of
which of the above cases occurs), A outputs a forgery with probability exactly
1/`. This means that

Pr[Sig-forge1-time
A,Π (n) = 1] = δ(n)/`(n).

Because Π is a one-time signature scheme, we know that there exists a negli-
gible function negl for which

Pr[Sig-forge1-time
A,Π (n) = 1] ≤ negl(n).

Since ` is polynomial, we conclude that δ(n) must be negligible.

A stateless solution. The signer’s state in Π∗ depends on the messages
signed, but to a much more limited extent than the chain-based scheme of
the previous section, in a sense we now make precise. In scheme Π∗, we could
imagine having the signer generate all necessary information for all the nodes
in the entire tree in advance, at the time of key generation. (That is, at the
time of key generation the signer could generate the keys {(pkw, skw)} and the
signatures {σw} for all binary strings w of length at most n.) If key generation
were done in this way, then the signer would not have to update its state at

6One point that is not completely trivial to check is that A never “runs out” of public keys.
A signing query of A∗ uses 2n public keys; thus, even if new public keys were required
to answer every signing query of A∗ (which will in general not be the case), only 2n`∗(n)
public keys would be needed by A in addition to the “root” public key PKε.

Digital Signature Schemes 421

all; these values could all be stored as part of a (large) private key, and we
would obtain a stateless scheme. The problem with this approach, of course,
is that generating all these values requires exponential time.

An alternative is to store some randomness that can be used to gener-
ate the values {(pkw, skw)} and {σw}, as needed, rather than storing the
values themselves. That is, the signer could store a random string rw for
each w, and whenever the values pkw, skw are needed the signer can com-
pute (pkw, skw) := Gen(1n; rw). Similarly, the signer can store r′w and set
σw := Signskw

(pkw0‖pkw1; r
′
w) (assuming here that |w| < n). Generating and

storing sufficiently-many random strings, however, still requires exponential
time and space.

A simple modification of this alternative gives a polynomial-time solution.
Instead of storing random rw and r′w as suggested above, the signer can store
two keys k, k′ for a pseudorandom function F . When needed, the values
pkw, skw (say) can now be generated by the following two-step process:

1. Compute rw := Fk(w).7

2. Compute (pkw, skw) := Gen(1n; rw) (as before).

(Key k′ is used to generate the {r′w}.) This gives a stateless signature scheme
in which key generation (as well as signing and verifying) can be done in
polynomial time; we leave it as an exercise to prove that this modified scheme
remains existentially unforgeable under an adaptive chosen-message attack.

Since the existence of collision-resistant hash functions implies the exis-
tence of one-way functions (cf. 12.5), and the latter implies the existence of
pseudorandom functions (see Chapter 6), we have:

THEOREM 12.14 If collision-resistant hash functions exist, there exists a
(stateless) signature scheme that is existentially unforgeable under an adaptive
chosen-message attack.

In fact, it is known that signature schemes satisfying Definition 12.2 can be
constructed based on the (minimal) assumption that one-way functions exist;
a proof of this result is beyond the scope of this book.

12.7 Certificates and Public-Key Infrastructures

We conclude this chapter with a brief discussion of one of the primary ap-
plications of digital signatures: the secure distribution of public keys. This

7We assume the output length of F is sufficiently long, and that w is padded to some
fixed-length string in a one-to-one fashion. We ignore these technicalities here.

422 Introduction to Modern Cryptography

brings us full-circle in our discussion of public-key cryptography: in this and
the previous three chapters we have seem how to use public-key cryptogra-
phy once public keys are securely distributed; now we show how public-key
cryptography itself can be used to securely distribute public keys. This may
sound circular, but is not since essentially what we will show is that once
a single public key (belonging to some trusted party) is distributed in a se-
cure fashion, this key can be used to “boot-strap” the secure distribution of
arbitrarily-many other public keys. Thus, the problem of secure key public
key distribution need only be solved once (theoretically speaking, at least).

The key idea is the notion of a certificate, which is simply a signature bind-
ing some entity to some public key. To be concrete, say a party Charlie has
generated a key-pair (pkC , skC) for a secure digital signature scheme (in this
section, we will only be concerned with signature schemes satisfying Defi-
nition 12.2). Assume further that another party Bob has also generated a
key-pair (pkB , skB) (in the present discussion, these may be keys for either a
signature scheme or a public-key encryption scheme), and that Charlie knows
that pkB is Bob’s public key. Then Charlie can compute the signature

certC→B
def
= SignskC

(‘Bob’s key is pkB’)

and give this signature to Bob. This signature certC→B is called a certificate
for Bob’s key issued by Charlie. We remark that in practice a certificate
should unambiguously identify the party holding a particular public key and
so a more descriptive term than “Bob” would be used, for example, Bob’s
email address.

Now say Bob wants to communicate with some other party Alice who al-
ready knows pkC . What Bob can do is to send (pkB , certC→B) to Alice,
who can then verify that certC→B is indeed a valid signature on the message
‘Bob’s key is pkB’ with respect to pkC . Assuming verification succeeds,
Alice now knows that Charlie has signed the indicated message; if Alice trusts
Charlie, then she might now accept pkB as Bob’s legitimate public key.

Note that all communication between Bob and Alice can occur over an
insecure and unauthenticated channel. If an active adversary interferes with
the communication of (pkB , certC→B) from Bob to Alice, that adversary will
be unable to generate a valid certificate linking Bob to any other public key
pk′B unless Charlie had previously signed some other certificate linking Bob
with pk′B (in which case this is anyway not much of an attack). This all
assumes that Charlie is not dishonest and that his private signing key has not
been compromised.

We have omitted many details in the above description; most prominently,
we have not discussed how Alice learns pkC in the first place; how Charlie can
be sure that pkB is Bob’s public key; and how Alice decides to accept pkB

as Bob’s public key even assuming the certificate is valid. Fully specifying
such details (and others) gives a public-key infrastructure (PKI) that enables
widespread distribution of public keys. A variety of different PKI models have

Digital Signature Schemes 423

been suggested, and we mention a few of the more popular ones now. Our
treatment here will be kept at a relatively high level, and the reader interested
in further details is advised to consult the references at the end of this chapter.

A single certificate authority. The simplest PKI assumes a single certifi-
cate authority (CA) who is trusted by everybody and who issues certificates
for everyone’s public key. A certificate authority would not typically be a
person, but would more likely be a company whose business it is to certify
public keys, a governmental agency, or perhaps a department within an or-
ganization (although in this latter case the CA would likely only be used by
people within the organization). Anyone who wants to rely on the services of
the CA would have to obtain a legitimate copy of the CA’s public key pkCA.
Clearly, this step must be done in a secure fashion since if some party obtains
an incorrect version of pkCA then that party may not be able to obtain an
authentic copy of anyone else’s public key. This means that pkCA must be
distributed over an authenticated channel. The easiest way of doing this is
via physical means: for example, if the CA is within an organization then any
employee can obtain an authentic copy of pkCA directly from the CA on their
first day of work. If the CA is a company, then other users would have to go
to this company at some point and, say, pick up a copy of a CD-ROM that
contains the CA’s public key. The point, once again, is that this very difficult
step need only be carried out once.

A common way for a CA to distribute its public key in practice is to “bun-
dle” this public key with some other software. In fact this occurs today with
most popular web browsers: a CA’s public key is “hard-wired” into the web
browser’s code, and the web browser can be programmed to automatically
verify certificates (with respect to the hard-coded public key) as they arrive.
(Actually, web browsers typically have public keys of multiple CAs hard-wired
into their code, and so more accurately fall into the “multiple CA” case dis-
cussed below.) As another example, a public key could be included as part of
the operating system when a new computer is purchased.

The means for some party Bob to obtain a certificate from the CA must
also be very carefully controlled. As one example, Bob may have to show
up in person before the CA with a CD-ROM containing his public key pkB

as well as some identification proving that his name (or his email address) is
what he says it is. Only then will the CA issue an appropriate certificate for
Bob’s public key.

In the model where there is a single CA, parties completely trust this CA to
issue certificates only when appropriate (this is why it is crucial that a detailed
verification process be used before a certificate is issued). As a consequence,
if Alice receives a certificate certCA→B certifying that pkB is Bob’s public key,
Alice will accept this assertion as a valid one and use pkB as Bob’s public key.

Multiple certificate authorities. While the model in which there is only
a single CA is very simple and appealing, it is not very practical. For one
thing, outside of a single organization it is highly unlikely for everyone to

424 Introduction to Modern Cryptography

trust the same CA. Note that this needn’t even imply that anyone thinks
the CA is corrupt; it could simply be the case that someone finds the CA’s
verification process to be insufficient (say, the CA asks for only one ID when
generating a certificate but Alice would prefer that two IDs be used instead).
Moreover, the CA is a single point of failure for the entire system. If the
CA is corrupt, or can be bribed, or even if CA is merely lax with the way
it protects its private signing key, the legitimacy of issued certificates may
be called into question. Reliance on a single CA is also a problem even in
non-adversarial environments: if the CA is down then no new certificates can
be issues, and the load on the CA may be very high if many parties want to
obtain certificates at once.

One approach to alleviating these issues is to rely on multiple CAs. A
party Bob who wants to obtain a certificate on his public key can choose
which CA(s) it wants to issue a certificate, and a party Alice who is presented
with a certificate (or even multiple certificates issued by different CAs) can
choose which CA’s certificates it trusts. There is no harm in having Bob
obtain a certificate from every CA (there this may result in some inconvenience
or expense for Bob), but Alice must be more careful since the security of
her communications is ultimately only as good as the least-secure CA that
she trusts. That is, say Alice trusts two CAs, CA1 and CA2, and CA2 is
corrupted by an adversary. Then although this adversary will not be able
to forge certificates issued by CA1, it will be able to generate certificates
issued by CA2 for any identity/public key of its choice. This is actually a real
problem in current web browsers. As mentioned earlier, web browsers typically
come pre-configured with a number of CA public keys “hard-wired” in, and
the default setting is for all these CAs to be treated as equally trustworthy.
Essentially any company willing to pay, however, can be included as a CA.
So the list of pre-configured CAs includes some reputation, well-established
companies along with other, new companies whose trustworthiness cannot be
easily established. It is left to the user to manually configure their browser
settings so as to only accept signed certificates from CAs that the user trusts.

Delegation and certificate chains. Another approach which alleviates
some of the burden on a single CA (but does not address the security concerns
of having a single point of failure) is to use certificate chains. We present the
idea for certificate chains of length 2, though it is easy to see that everything
we say generalizes to chains of arbitrary length.

Say Charlie, acting as a CA, issues a certificate for Bob as in our original
discussion. Assume further that Bob’s key pkB is a public key for a signature
scheme. Now Bob, in turn, can issue his own certificates for other parties.
For example, Bob may issue a certificate for Alice of the form

certB→A
def
= SignskB

(‘Alice’s key is pkA’).

Now, say Alice wants to communicate with some fourth party Dave who knows

Digital Signature Schemes 425

Charlie’s public key (but not Bob’s). Then Alice can send

pkA, certB→A, pkB , certC→B ,

to Dave. What can Dave tell from this? Well, he can first verify that Charlie,
whom he trusts and whose public key is already in his possession, has signed
a certificate certC→B indicating that pkB indeed belongs to someone named
Bob. Dave can also verify that this person names Bob has signed a certificate
certB→A indicating that pkA indeed belongs to Alice. If Dave trusts Charlie
to only issue certificates for trustworthy people, then Dave may accept pkA

as being the authentic key of Alice.
Note that in this example stronger semantics are associated with a cer-

tificate certC→B . In all our prior discussion, a certificate of this form was
only an assertion that Bob holds the public key pkB . Now, a certificate as-
serts that Bob holds the public key pkB and Bob should be trusted to issue
other certificates. We remark that it is not essential that all certificates issued
by Charlie have these semantics, and Charlie could, for example, have two
different “types” of certificates that he issues.

When Charlie signs a certificate for Bob having the stronger semantics
discussed above, Charlie is delegating his ability to issue certificates to Bob.
In effect, Bob can now act as a proxy for Charlie, issuing certificates on
behalf of Charlie. Coming back to a CA-based PKI, we can imagine one
“root” CA and n “second-level” CAs denoted CA1, . . . , CAn. The root CA
will issue certificates on behalf of each of the second-level CAs, who can then
in turn issue certificates for other principles holding public keys. This eases
the burden on the root CA, and also makes it more convenient for parties to
obtain certificates (since they may now contact the second-level CA who is
closest to them, for example). On the other hand, managing these second-
level CAs may be difficult, and their presence means that there are now more
points of attack in the system.

The “web of trust” model. The last example of a PKI we will discuss is
a fully-distributed model, with no central points of trust, called the “web of
trust”. A variant of this model is used by the PGP email encryption program
for distribution of public keys.

In the “web of trust” model, anyone can issue certificates for anyone else
and each user has to make their own decision about how much trust to place
in certificates issued by other users. As an example of how this might work,
say a user Alice is already in possession of public keys pk1, pk2, pk3 for some
users C1, C2, C3. (We discuss below how these public keys might initially
be obtained by Alice.) Another user Bob who wants to communicate with
Alice might have certificates certC1→B , certC3→B , and certC4→B , and will
send these certificates (along with his public key pkB) to Alice. Alice cannot
verify certC4→B (since she doesn’t have C4’s public key), but she can verify
the other two certificates. Now she has to decide how must trust she places
in C1 and C3. She may decide to accept pkB if she unequivocally trusts C1,

426 Introduction to Modern Cryptography

or also if she trusts both C1 and C3 to some minimal extent. (She may, for
example, consider it likely that either C1 or C3 is corrupt, but consider it
unlikely for them both to be corrupt.)

We see that in this model, as we have described it, users are expected to
collect both public keys of other parties, as well as certificates on their own
public key (issued by other parties). In the context of PGP, this is often
done at “key-signing parties” where a bunch of PGP users get together (at
a conference, say) and give each other authentic copies of their public keys
and and issue certificates for each other. Note that in general the users at
a key-signing party may not know each other, but then can check a driver’s
license, say, before accepting someone’s public key.

Public keys and certificates can also be stored in a central database, and this
is done for the case of PGP (see http://pgp.mit.edu). When Alice wants
to send an encrypted message to Bob, she can search for Bob’s public key in
this database; along with Bob’s public key, the database will return a list of
all certificates it holds that have been issued for Bob’s public key. It is also
possible that multiple public keys for Bob will be found in the database, and
each of these public keys may be certified by certificates issued by a different
set of parties. Once again, Alice then needs to decide how much trust to place
in any of these public keys before using them.

The web of trust model is attractive because it works at the “grass-roots”
level, without requiring trust in any central authority. On the other hand,
while it may work well for the average user encrypting their email, it does
not really seem appropriate for settings where security is more critical, or for
the distribution of organizational public keys. If a user wants to communicate
with his bank, for example, it is unlikely that he would trust a bunch of people
he met at a conference to certify his bank’s public key, and also unlikely that
a bank representative will go to a key-signing party to get the bank’s key
certified.

Invalidating Certificates

One important issue we have not yet touched on at all is the fact that
certificates should generally not be valid indefinitely. An employee may leave
a company, no longer be allowed to receive encrypted communication from
others within the company; a user’s private key might also be stolen, at which
point the user (assuming they know about the theft) will want to generate a
new key-pair and have the old public key removed from circulation. In either of
these scenarios, we need a way to render previously-issues certificates invalid.

Approaches for handling these issues are varied and complex, and we will
only mention two relatively simple ideas that, in some sense, represent oppo-
site extremes. (Improving these methods is an active area of research, and the
reader is referred to the references at the end of the chapter for an introduction
to the literature in this area.)

Digital Signature Schemes 427

Expiration. One method for preventing certificates from being used indef-
initely is to include an expiry date as part of the certificate. A certificate
issued by a CA Charlie for Bob’s public key might now have the form

certC→B
def
= SignskC

(‘Bob’s key is pkB’, date),

where date is some date in the future at which point the certificate becomes
invalid. (For example, it may be 1 year from the day the certificate is issued.)
When another user verifies this certificate, they need to know not only pkB

but also the expiry date; to verify, they now need to check not only that the
signature is valid, but also that the expiry date has not passed. A user who
holds a certificate must contact the CA to get a new certificate issued whenever
their current one expires; at this point, the CA verifies the identity/credentials
of the user again before issuing another certificate.

Expiry dates provides a very coarse-grained solution to the problems men-
tioned earlier. If an employee leaves a company the day after getting a cer-
tificate, and the certificate expires 1 year after its issuance date, then this
employee can use their public key illegitimately for an entire year until the
expiry date passes. For this reason, this approach is typically used in con-
junction with other methods such as the one we describe next.

Revocation. When an employee leaves an organization, or a user’s private
key is stolen, we would like the certificates that have been issued for their
public keys to become invalid immediately, or at least as soon as possible.
This can be achieved by having the CA explicitly revoke the certificate. Of
course, everything we say applies more generally if the user had certificates
issued by multiple CAs; for simplicity we assume a single CA.

There are many different ways revocation can be handled. One possibility
(the only one we will discuss) is for the CA to include a serial number in every
certificate it issues; that is, a certificate will now have the form

certC→B
def
= SignskC

(‘Bob’s key is pkB’, ###),

where “###” represents the serial number of this certificate. Each certificate
should have a unique serial number, and the CA will store the information
(Bob, pkB , ###) for each certificate it generates.

If a user Bob’s private key corresponding to the public key pkB is stolen,
Bob can alert the CA to this fact. (Note that the CA must verify Bob’s
identity here, to prevent another user from falsely revoking a certificate issued
to Bob. For an alternative approach, see Exercise 12.8.) The CA will then
search its database to find the serial number associated with the certificate
issued for Bob and pkB . At the end of each day, say, the CA will generate
a revocation list containing the serial numbers of all revoked certificates, and
sign this entire list along with the current date. The singed list is then widely
distributed, perhaps by posting it on the CA’s public webpage.

428 Introduction to Modern Cryptography

To verify a certificate issued as above, another user now needs pkB and
also the serial number of the certificate (this can be forwarded by Bob along
with everything else). Verification now requires checking that the signature
is valid, checking that the serial number does not appear on the most recent
revocation list, and verifying the CA’s signature on the revocation list itself.

In this approach the way we have described it, there is a lag time of at most
1 day before a certificate becomes invalid. This offers more flexibility than an
approach based only on expiry dates.

References and Additional Reading

Notable early work on digital signatures includes that of Diffie and Hellman
[50], Rabin [106, 107], Rivest, Shamir, and Adleman [110], and Goldwasser,
Micali, and Yao [72]. Lamport’s one-time signature scheme was published in
1979 [88], though it was already described in [50].

Goldwasser, Micali, and Rivest [71] defined the notion of existential un-
forgeability under an adaptive chosen-message attack, and also gave the first
construction of a stateful signature scheme satisfying this definition. (Inter-
estingly, As explained in that paper, prior to their work some had thought
that Definition 12.2 would be impossible to achieve.) Goldreich [64] suggested
an approach to make the Goldwasser-Micali-Rivest scheme stateless, and we
have essentially adopted Goldreich’s ideas in Section 12.6.2.

We have not shown any efficient constructions of signature schemes in this
chapter since the known constructions are somewhat difficult to analyze and
require cryptographic assumptions that we have not introduced in this book.
The interested reader can consult [62, 41, 56].

A tree-based construction similar in spirit to Construction 12.12 was sug-
gested by Merkle [94, 95], though a tree-based approach was also used in [71].
Naor and Yung [98] showed that one-way permutations suffice for construct-
ing one-time signatures that can sign messages of arbitrary length, and this
was improved by Rompel [111, 82] who showed that one-way functions are
sufficient. As we have seen in Section 12.6.2, one-time signatures of this sort
cam be used to construct signature schemes that are existentially unforgeable
under an adaptive chosen-message attack.

Goldreich [66, Chapter 6] and Katz [81] provide a more extensive treatment
of signature schemes than what is covered here.

The notion of certificates was first described by Kohnfelder [85] in his un-
dergraduate thesis. Public-key infrastructures are discussed in greater detail
in [84, Chapter 15] and [10]. Ellison and Schneier [53] discuss some reasons
why PKI is not a panacea for identity management.

Digital Signature Schemes 429

Exercises

12.1 Prove that the existence of a one-time signature scheme for 1-bit mes-
sages implies the existence of one-way functions.

12.2 Consider the Lamport one-time signature scheme. Describe an adver-
sary who obtains signatures on two messages of its choice and can then
forge signatures on any message it likes.

12.3 The Lamport scheme uses 2` values in the public key to sign messages
of length `. Consider the following variant: the private key consists of
2` values x1, . . . , x2` and the public key contains the values y1, . . . , y2`

where yi = f(xi). A message m{0, 1}`′ is mapped in a one-to-one fashion
to a subset Sm ⊂ {1, . . . , 2`} of size `. To sign m, the signer reveals
{xi}i∈Sm . Prove that this gives a one-time signature scheme. What is
the maximum message-length `′ that this scheme supports?

12.4 A strong one-time signature scheme satisfies the following (informally):
given a signature σ on a message m, it is infeasible to output (m′, σ′) 6=
(m, σ) for which σ′ is a valid signature on m′ (note that m = m′ is
allowed).

(a) Give a formal definition of strong one-time signatures.

(b) Assuming the existence of one-way functions, show a one-way func-
tion for which Lamport’s scheme is not a strong one-time signature
scheme.

(c) Assuming the existence of collision-resistant hash functions, con-
struct a strong one-time signature scheme.

Hint: Use a particular one-way function in Lamport’s scheme.

12.5 Let (Gen, H) be a collision-resistant hash function, where H maps strings
of length 2n to strings of length n. Prove that the function family
(Gen, Samp, H) is one-way (cf. Definition 7.70), where Samp is the trivial
algorithm that samples a random string of length 2n.

Hint: Choosing random x ← {0, 1}2n and computing an inverse of

y = Hs(x) does not guarantee a collision. But it does yield a collision

most of the time. . .

12.6 At the end of Section 12.6.2, we show how a pseudorandom function can
be used to make Construction 12.12 stateless. Does a similar approach
work for the path-based scheme described in Section 12.6.1? If so, sketch
a construction and proof. If not, explain why.

12.7 Prove Theorem 12.14.

430 Introduction to Modern Cryptography

12.8 Assume revocation of certificates is handled in the following way: when
a user Bob claims that the private key corresponding to his public key
pkB has been stolen, the user sends to the CA a statement of this fact
signed with respect to pkB . Upon receiving such a signed message, the
CA revokes the appropriate certificate.

Explain why it is not necessary for the CA to check Bob’s identity in this
case. In particular, explain why it is of no concern that an adversary who
has stolen Bob’s private key can forge signatures with respect to pkB .

12.9 Consider the following “improvement” for handling revocation: instead
of signing a revocation list containing the serial numbers of all revoked
certificates at the end of each day, simply sign the serial number of a
revoked certificate immediately and immediately post this signed se-
rial number on a public webpage (adding it to the end of the list of
previously-signed serial numbers).

Explain why this approach is insecure, in that an adversary who steals
a user’s private key can prevent the relevant certificate from ever being
recognized as invalid by another user. Assume there are no authenti-
cated channels in the system.

Chapter 13

Public-Key Cryptosystems in the
Random Oracle Model

In the previous two chapters, we have seen constructions of digital signatures
and public-key encryption schemes based on a variety of assumptions. For
the most part, however, the provably-secure schemes we have discussed and
analyzed are not particularly efficient. More to the point:

• In Section 10.4.3 we have seen an encryption scheme that can be proven
secure based on the RSA assumption (cf. Theorem 10.17), but the effi-
ciency of this scheme does not come close to the efficiency of the text-
book RSA encryption scheme described in Section 10.4.1. In fact, no
secure encryption scheme based on RSA with efficiency comparable to
the textbook RSA encryption scheme is currently known.

• We have not shown any public-key encryption schemes secure against
chosen-ciphertext attacks. Though efficient schemes based on certain
assumptions are known (these are, however, beyond the scope of this
book), there is no known scheme based on RSA that is even remotely
practical.

• We saw only a single example of a digital signature scheme satisfying
the desired level of security given in Definition 12.2. This construction,
shown in Section 12.6.2, is not very practical. In fact, no secure signature
scheme based on RSA with efficiency comparable to the textbook RSA
signature scheme is known.

We stress that the above statements remain true even given an efficient pseu-
dorandom function (that could be instantiated in practice using a block cipher
such as DES or AES) and/or an efficient collision-resistant hash function (that
could be instantiated using a cryptographic hash function such as SHA-1).

We conclude that for most “standard” cryptographic assumptions (such as
the RSA, factoring, or DDH assumptions), there are few or no public-key cryp-
tosystems that are both (1) efficient enough to be used in practice, yet (2) can
be proven secure based on these assumptions. This state of affairs presents a
challenge to cryptographers, who continue to work at improving the efficiency
of existing solutions, proposing new assumptions, and showing limitations to
the best possible efficiency that can be achieved. In the meanwhile, we are left
in practice with the question of what schemes to use. While one might argue

431

432 Introduction to Modern Cryptography

that we should simply choose the “best” schemes that are currently available
(according to whatever criteria one likes), the reality appears to be that peo-
ple for the most part would rather use nothing than use an inefficient scheme.
(Furthermore, in some cases existing solutions are not remotely practical even
if one is willing to sacrifice some efficiency.) Something must give.

One possibility, of course, is simply to use an efficient but completely ad-
hoc cryptosystem with no justification for its security other than, perhaps,
the fact that the designers tried to attack the scheme and were unsuccessful.
This flies in the face of everything we have said so far about the importance
of the rigorous, modern approach to cryptography, and it should be clear that
this is unacceptable! By using a scheme that merely seems (to us) “hard to
break” we potentially leave ourselves open to an adversary who is more clever
than us and who can break the scheme. A better alternative must be sought.

13.1 The Random Oracle Methodology

Another approach, which has been hugely successful in practice and offers
a “middle-ground” between a fully-rigorous proof of security on the one hand
and no proof whatsoever on the other, is to introduce an idealized model in
which to prove the security of cryptographic schemes. Though the idealization
may not be an accurate reflection of reality, we can at least derive some
measure of confidence in the soundness of a scheme’s design from a proof
within the idealized model. As long as the model is reasonable, such proofs
are certainly better than no proofs at all.

The most popular example of this approach is the random oracle model,
which posits the existence of a public, randomly-chosen function H that can
be evaluated only by “querying” an oracle — which can be thought of as a
“magic box” — that returns H(x) when given input x. (We will discuss in
the following section exactly how this is to be interpreted.) To differentiate
things, the model we have been using until now (where no random oracle is
present) is often called the ‘standard model.’

It should be stressed that no one seriously claims that any such oracle
exists (although there have been suggestions that a random oracle could be
implemented in practice by a trusted party). Rather, the random oracle
model provides a formal methodology that can be used to design and validate
cryptographic schemes via the following two-step approach:

1. First, a scheme is designed and proven secure in the random oracle
model; that is, we assume that the world contains a random oracle, and
construct and analyze a scheme based on this assumption. Standard
cryptographic assumptions (of the type we have seen until now) may be
utilized in the proof of security as well.

Public-Key Cryptosystems in the Random Oracle Model 433

2. When we want to implement the scheme in the real world, a random
oracle is not available. Instead, the random oracle H in the scheme is
instantiated with a cryptographic hash function Ĥ such as SHA-1 or
MD5, modified appropriately. That is, at each point where the scheme
dictates that a party should query the oracle for the value H(x), the
party instead computes Ĥ(x) on its own.

The hope is that the cryptographic hash function used in the second step is
“sufficiently good” at simulating a random oracle, so that the security proof
given in the first step will carry over to the real-world instantiation of the
scheme. A difficulty is that there is currently no theoretical justification for
this hope, and in fact there exist (contrived) schemes that can be proven secure
in the random oracle model but are insecure no matter how the random oracle
is instantiated in the second step. Furthermore, as a practical matter it is not
clear exactly what it means for a hash function to be “good” at simulating a
random oracle, nor is it clear that, as stated, this is an achievable goal. For
these reasons, a proof of security for a scheme in the random oracle model
should be viewed as providing evidence that the scheme has no “inherent
design flaws”, but should not be taken as a rigorous proof that any real-world
instantiation of the scheme is secure. Further discussion on how to interpret
proofs in the random oracle model is given in Section 13.1.2.

13.1.1 The Random Oracle Model in Detail

Before continuing, let us pin down exactly what the random oracle model
entails. A good way to think about the random oracle model is as follows:
The “oracle” is simply a box that takes a binary string as input and returns
a binary string as output. The internal workings of the box are unknown and
inscrutable. Everyone — both honest parties as well as adversaries — can
interact with the box, where such interaction consists of entering a binary
string x as input and receiving a binary string y as output; we refer to this as
querying the oracle on x and call x itself a query made to the oracle. Queries
to the oracle are assumed to be private so that if some party queries the oracle
on input x then no one else learns x, or even learns that this party queried
the oracle at all.

It is guaranteed that the box is consistent : that is, if the box ever outputs
y for a particular input x, then it always outputs the same answer y when
given the same input x again. This means that we can view the box as
implementing a function H ; i.e., we simply define the function H in terms of
the input/output characteristics of the box. For convenience, we thus speak
of “querying H” rather than querying the box. Note that no one “knows” H
(except the box itself); at best, all that is known are the values of H on the
strings that have been explicitly queried thus far.

Security guarantees in the random oracle model are a bit different from
the security guarantees we are familiar with from the rest of the book, as we

434 Introduction to Modern Cryptography

now discuss. Fix some cryptographic scheme Π that relies on an oracle; that
is, the scheme requires the honest parties running Π to query the oracle at
various points during their execution. A general definition of (computational)
security for Π has the following form:

For any polynomial-time adversary A, the probability that some
event occurs when A interacts with Π is negligible.

The difference is that in all the definitions we have seen thus far, the proba-
bility in question is taken over the random choices made by the honest parties
running Π. (If A is randomized then the probability is taken over the random
choices of A as well, but this is less important for the current discussion.) In
the random oracle model, the probability in question is taken over these ran-
dom choices as well as the random choice of a function H for the oracle. (This
should become more clear from the examples given in the following section.)
It is for this reason that we speak of H as a random oracle.

A brief digression is in order regarding what it means to choose a function
(uniformly) at random. Any function H mapping n1-bit inputs to n2-bit
outputs can be viewed as a table indicating for each possible input x ∈ {0, 1}n1

the corresponding output value H(x) ∈ {0, 1}n2 . Using lexicographic order
for the inputs, this means that any such function can be represented by a
string of length 2n1 · n2 bits, and conversely that every string of this length
can be viewed as a function mapping n1-bit inputs to n2-bit outputs. An

immediate corollary is that there are exactly U
def
= 2n2·2n1

different functions
having the specified input and output lengths. Picking a function H of this
type uniformly at random means choosing H uniformly from among these U
possibilities. In the random oracle model as we have been picturing it, this
corresponds to initializing the oracle by choosing such an H and having the
oracle answer according to H . Note that storing the string/table representing
H in any physical device would require an exponential (in the input length)
number of bits, so even for moderately-sized inputs this is not something we
can hope to do in the real world.

An equivalent, but often more convenient, way to think about choosing a
function H uniformly at random is to imagine generating random outputs for
H “on-the-fly,” as needed. Specifically, imagine that the function is defined
by a table of pairs {(xi, yi)} that is initially empty. When the oracle receives a
query x it first checks whether x = xi for some pair (xi, yi) in the table; if so,
the corresponding yi is returned. Otherwise, a random string y ∈ {0, 1}n2 is
chosen, the answer y is returned, and the oracle stores (x, y) in its table so the
same output can be returned if the same input is ever queried again. While
one could imagine carrying this out in the real world, this is further from our
conception of “fixing” the function H once-and-for-all before beginning to run
some cryptographic scheme. From the point of view of the parties interacting
with the oracle, however, it is completely identical.

Returning to our discussion of security in the random oracle model, note
that even if some scheme Π is proven secure in this model, security is not

Public-Key Cryptosystems in the Random Oracle Model 435

guaranteed for any particular function H but is instead only guaranteed “on
the average” over random choice of H . (This is exactly analogous to the fact
that a scheme secure in the standard model is not guaranteed to be secure
for any particular set of random choices made by the honest parties but only
on average over these random choices.) This indicates one reason why it
is difficult to argue that any concrete instantiation of the oracle H yields a
real-world implementation of Π that is actually secure.

Simple Illustrations of the Random Oracle Model

At this point some examples may be helpful. The examples given here
are rather simple, do not use the full power that the random oracle model
affords, and do not really illustrate any of the limitations of the random
oracle methodology; the intention of including these examples is merely to
provide a gentle introduction to the use of the model.

In all that follows, we assume a random oracle mapping n1-bit inputs to n2-
bit outputs where n1, n2 ≥ n, the security parameter. (Technically speaking,
n1 and n2 are functions of n.)

A random oracle as a one-way function. We first show that a random
oracle acts like a one-way function. Note that we do not say that a random
oracle is a one-way function, since (as discussed in the previous section) a
random oracle is not a fixed function. Rather, what we claim is that any
polynomial-time adversary A succeeds with only negligible probability in the
following experiment:

1. A random function H is chosen.

2. A random input x ∈ {0, 1}n1 is chosen, and y := H(x) is computed.

3. A is given y, and succeeds if it outputs a value x′ such that H(x′) = y.

We now argue why this is true. Assume without loss of generality that the
value x′ that A outputs was previously queried by A to the oracle. Assume
further than if A ever makes a query xi with H(xi) = y, then A succeeds.
(This just means that A does not act stupidly and fail to output a correct
answer once it knows one.) Then the success probability of A in the above
experiment is exactly the same as the success probability of A in the following
experiment (to see why, it helps to recall the discussion from the previous
section regarding “on-the-fly” selection of a random function):

1. A random x ∈ {0, 1}n1 is chosen, and a random value y ∈ {0, 1}n2 is
given to A.

2. Each time A makes a query xi to the random oracle, do:

• If xi = x, then A immediately succeeds.

436 Introduction to Modern Cryptography

• Otherwise, choose a random yi ∈ {0, 1}n2 . If yi = y then A imme-
diately succeeds; if not, return yi to A as the answer to the query
and continue the experiment.

Let ` be the number of queries A makes to the oracle, with ` = poly(n)
since A runs in polynomial time. Since y is completely independent of x, the
probability that A succeeds by querying xi = x for some i is at most `/2n1 .
Furthermore, since the answer yi is chosen at random when the query xi is
not equal to x, the probability that A succeeds because yi = y for some i is
at most `/2n2 . Since n1, n2 ≥ n the probability that A succeeds in the latter
game is at most 2`/2n = poly(n)/2n, which is negligible.

A random oracle as a collision-resistant hash function. It is not much
more difficult to see that a random oracle also acts like a collision-resistant
hash function. That is, the success probability of any polynomial-time adver-
sary A in the following game is negligible:

1. A random function H is chosen.

2. A succeeds if it outputs x, x′ with H(x) = H(x′) but x 6= x′.

To see this, assume without loss of generality that A only outputs values x, x′

that it had previously queried to the oracle, and that A never makes the
same query to the oracle twice. Letting the oracles queries of A be x1, . . . , x`,
with ` = poly(n), it is clear that the probability that A succeeds is upper-
bounded by the probability that H(xi) = H(xj) for some i 6= j. Viewing the
choice of a random H as being done “on-the-fly”, this is exactly equal to the
probability that if we pick ` strings y1, . . . , y` ∈ {0, 1}n2 independently and
uniformly at random, we have yi = yj for some i 6= j. The problem has now
been transformed into an example of the birthday problem; using the results
of Section A.4 we see that A succeeds with probability O(`2/2n2), which is
negligible.

Constructing a pseudorandom function from a random oracle. It is
also rather easy to construct a pseudorandom function in the random oracle
model (though the proof is not quite as trivial as in the examples above).
Suppose n1 = 2n and n2 = n. Then define

Fk(x)
def
= H(k‖x),

where |k| = |x| = n. We claim that this is a pseudorandom function; namely,
for any polynomial-time A the success probability of A in the following ex-
periment is at most negligibly greater than 1/2:

1. A random function H , a random k ∈ {0, 1}n, and a random bit b are
chosen.

2. If b = 0, the adversary A is given access to an oracle for Fk(·). If b = 1,
then A is given access to a random function mapping n-bit inputs to
n-bit outputs. (This random function is independent of H .)

Public-Key Cryptosystems in the Random Oracle Model 437

3. A outputs a bit b′, and succeeds if b = b′.

We stress that A can access H in addition to the function oracle provided to
it by the experiment in step 2. In Exercise 13.1 you are asked to show that
the construction above indeed gives a pseudorandom function.

It is worth reflecting that the use of an “oracle” and a “random function”
in step 2 (and, indeed, back in Chapter 3 when we first defined pseudorandom
functions) is fundamentally different from the use of a random oracle/function
in the random oracle model. In the context of pseudorandom functions, the
oracle and random function are used as a definitional tool but need not exist
for the primitive itself to be realized. In the random oracle model, in contrast,
the random oracle is used as part of the construction and so something must
take the place of the oracle for the construction to be realized.

An interesting aspect of all the above proofs is that they hold even for
computationally-unbounded adversaries, as long as such adversaries are limited
to only making polynomially-many queries to the oracle. This has no real-
world counterpart, where (for example) any function can be inverted by an
adversary running for an unlimited amount of time and, moreover, there is no
oracle and hence no way to define what it means to “query an oracle/evaluate
a hash function” polynomially-many times.

Advanced Proof Techniques in the Random Oracle Model

The preceding examples may not make clear that the random oracle model
enables certain proof techniques that have no counterpart in the standard
model. We sketch them here, but caution the reader that a full understanding
will likely have to wait until later in this chapter when these techniques are
used in the proofs of some concrete schemes.

A first distinctive feature of the random oracle model, used already in the
previous section, is

If an adversary A has not explicitly queried the oracle on some
point x, then the value of H(x) is completely random (at least as
far as A is concerned).

This may seem superficially similar to the guarantee provided by a pseudo-
random generator, but it is actually quite different. If G is a pseudorandom
generator then G(x) is pseudorandom assuming x is chosen uniformly at ran-
dom and is unknown to the observer. If x is known then trivially G(x) is too.
For H a random oracle, however, H(x) is (truly) random as long as the ad-
versary has not queries x. This is true even if x is known. Furthermore, if x is
not chosen uniformly at random, but is chosen with enough entropy to make
guessing x difficult, then G(x) might be easy to distinguish from random but
H(x) will not be.

Say we are trying to prove security of some scheme in the random oracle
model. As in the rest of the book, we will often construct a reduction showing

438 Introduction to Modern Cryptography

how any adversaryA breaking the security of the scheme (in the random oracle
model) can be used to violate some cryptographic assumption.1 As part of
the reduction, the random oracle that A interacts with must be simulated as
part of the reduction. That is: A will submit queries to and receive answers
from what it believes to be the oracle, but what is actually the reduction
itself. This turns out to give a lot of power. For starters:

As part of the reduction, we may choose values for the output of
H “on-the-fly” (as long as these values are correctly distributed,
i.e., uniformly random).

This is sometimes called “programmability”. Although this may not seem like
programmability confers any advantage, it does, as perhaps illustrated best
by the proof of Theorem 13.11 will illustrate. Another advantage deriving
from the fact that the reduction gets to simulate the random oracle is

The reduction gets to “see” the queries that A makes to the random
oracle.

(Note that this does contradict the fact, mentioned earlier, that queries to the
random oracle are supposed to be “private”. While that is true in the formal
model itself, here we are using A as a subroutine within a reduction.) This
also turns out to be extremely useful, as the proofs of Theorems 13.2 and 13.6
will demonstrate.

13.1.2 Is the Random Oracle Methodology Sound?

With the mechanics of the random oracle model behind us, we can turn to
more fundamental questions such as: What do proofs of security in the random
oracle model guarantee in the real world?, and: Are proofs in the random
oracle model fundamentally different from proofs in the standard model? We
highlight at the outset that these questions do not currently have any definitive
answers: there is currently much debate within the cryptographic community
regarding the role played by the random oracle model, and an active area
of research is to determine what, exactly, a proof of security in the random
oracle model does guarantee in the real world. We can only hope to give a
flavor of all sides of this discussion.

Objections to the random oracle model. The starting point for argu-
ments against using random oracles is simple: as we have already noted, there
is no formal or rigorous justification for believing that a proof of security for
some scheme Π in the random oracle model implies anything about the secu-
rity of Π in the real world (i.e., once the random oracle H has been instantiated
with any particular hash function Ĥ). These are more than just theoretical

1In contrast, the proofs in the previous section were information-theoretic and did not use
reductions.

Public-Key Cryptosystems in the Random Oracle Model 439

misgivings. A more basic issue is that no concrete hash function can ever act
as a “true” random oracle. For example, in the random oracle model H(x)
is supposed to be “completely random” if x was not explicitly queried. The
counterpart would be to require that Ĥ(x) is random (or pseudorandom) if
Ĥ was not explicitly evaluated on x. How are we to interpret this in the
real world? For starters, it is not even clear what it means to “explicitly
evaluate” Ĥ : what if an adversary knows some shortcut for computing Ĥ
that doesn’t involve running the actual code for Ĥ? Moreover, Ĥ(x) cannot
possibly be random (or even pseudorandom) since once the adversary learns
the description of Ĥ the value of that function on all inputs is immediately
defined.

Limitations of the random oracle model become more clear once we examine
the proof techniques introduced in Section 13.1.1. As an example, recall that
one proof technique is to use the fact that a reduction can “see” the queries
that an adversaryAmakes to the random oracle. But if we replace the random
oracle by a particular hash function Ĥ , this means that we must provide a
description of Ĥ to the adversary at the beginning of the experiment. But
then A can evaluate Ĥ on its own, without making any explicit queries, and so
a reduction will no longer have the ability to “see” any queries made by A. (In
fact, as noted in the previous paragraph, the notion of A performing distinct
evaluations of Ĥ may not even be true and certainly cannot be formally
defined.)

Even if we are willing to overlook the above theoretical concerns, a practical
problem is that we do not currently have a very good understanding of what
it means for a concrete hash function to be “sufficiently good” at instantiating
a random oracle. For concreteness, say we want to instantiate the random
oracle using (some appropriate modification of) SHA-1. While for any given
scheme Π one could, after analyzing Π, decide to assume that Π is secure
when instantiated with SHA-1, it is much less reasonable to assume that
SHA-1 can take the place of the random oracle in any scheme designed in the
random oracle model. Indeed, as we have said earlier, we know that SHA-1
is not a random oracle. And it is not hard to design a scheme that can be
proven secure in the random oracle model, but is completely insecure when
the random oracle is replaced by SHA-1. (See Exercise 13.2.)

It is worth emphasizing that an assumption of the form “SHA-1 acts like
a random oracle” is significantly different from an assumption of the form
“SHA-1 is collision-resistant” or “AES is a pseudorandom function.” The
problem lies partly with the fact that we do not have a satisfactory definition
of what the first statement should mean (while we do have such definitions
for the latter two statements). In particular, a random oracle is not the same
thing as a pseudorandom function: the latter is a keyed function that can
only be evaluated when the key is known, and is only “random-looking” when
the key is unknown. In contrast, a random oracle is an unkeyed function that
can be evaluated by anyone, yet is supposed to remain “random-looking” in
some ill-defined sense.

440 Introduction to Modern Cryptography

Because of this, using the random oracle model to prove security of a scheme
is qualitatively different from, e.g., introducing a new cryptographic assump-
tion in order to prove a scheme secure in the standard model, and proofs of
security in the random oracle model are less desirable and less satisfying than
proofs of security in the standard model. The division of the chapters in this
book can be taken as an endorsement of this preference.

In support of the random oracle model. Given all the problems with
the random oracle model, why do we cover the random oracle model at all?
More to the point: why has the random oracle been so influential in the
development of modern cryptography, and why does it continue to be so widely
used? As we will see, the random oracle model currently enables the design of
substantially more efficient schemes than those we know how to construct in
the standard model. As such, there are few (if any) public-key cryptosystems
used today having proofs of security in the standard model, while there are
numerous widely-deployed schemes having proofs of security in the random
oracle model. In addition, proofs in the random oracle model are almost
universally recognized as important for schemes being considered as standards.
The random oracle model have increased the confidence we have in certain
efficient schemes, and has played a major role in the increasing pervasiveness
with which cryptographic algorithms are deployed.

The fundamental reason for the above is the belief (with which we concur)
that

A proof of security in the random oracle model is significantly
better than no proof at all.

Though some might disagree with the above, we offer the following in support
of this conviction:

• A proof of security for a given scheme in the random oracle model in-
dicates that the design is “sound”, in the sense that the only possible
weaknesses in (a real-world instantiation of) the scheme are those that
arise due to a weakness in the hash function used to instantiate the
random oracle. Said differently, a proof in the random oracle model
indicates that the only way to “break” the scheme is to “break” the
hash function itself (in some way); thus, if the hash function is “good
enough” we have some confidence in the security of the scheme itself.
Moreover, if a given instantiation of the scheme is successfully attacked,
we can simply replace the hash function being used with a “better” one.

• Importantly, there have been no real-world attacks on any “natural”
schemes proven secure in the random oracle model (we do not include
here attacks on “contrived” schemes like that of Exercise 13.2). This
gives evidence to the usefulness of the random oracle model in designing
practical schemes.

Public-Key Cryptosystems in the Random Oracle Model 441

Nevertheless, the above ultimately represent only intuitive speculation as to
the usefulness of proofs in the random oracle model. Understanding exactly
what such proofs guarantee in the real world remains, in our minds, one of
the most important research questions facing cryptographers today.

Instantiating the Random Oracle

Multiple times already in this chapter, we have stated that the random
oracle can be instantiated in practice using “an appropriate modification of a
cryptographic hash function.” In fact, things are complicated by a number of
issues such as (to name two)

• Cryptographic hash functions almost all use a Merkle-Damg̊ard con-
struction (cf. Section 4.6.4), and can therefore be distinguished relatively
easy from a random oracle taking variable-length inputs. (In contrast,
there are no known attacks on such hash function when restricting to
fixed-length inputs.)

• Frequently, it is necessary for the output of a random oracle to have a
certain form; e.g., the oracle should output elements of Z∗N rather than
bit-strings. Cryptographic hash functions, of course, output bit-strings
only. (When we need such an oracle for our proofs, we will simply
assume that one exists.)

A detailed discussion of how these issues can be dealt with in practice is
beyond the scope of this book; our aim is merely to alert the reader to the
subtleties that can arise.

13.2 Public-Key Encryption in the Random Oracle Model

We show in this section various public-key encryption schemes in the ran-
dom oracle model. We present these constructions based on the RSA problem,
both for convenience as well as because these constructions are most frequently
instantiated using RSA in practice. We remark, however, that they can all be
instantiated using an arbitrary trapdoor permutation (see Section 10.7.1).

13.2.1 Security against Chosen-Plaintext Attacks

The secure public-key encryption scheme we have previously seen based on
RSA (cf. Theorem 10.17) was both inefficient and difficult to prove secure
(indeed, we offered no proof). In the random oracle model, things become
significantly easier. As usual, GenRSA denotes a ppt algorithm that, on input
1n, outputs a modulus N that is the product of two n-bit primes, along with
integers e, d satisfying ed = 1 mod φ(N).

442 Introduction to Modern Cryptography

CONSTRUCTION 13.1

Let GenRSA be as in the text, and let H : {0, 1}2n → {0, 1}`(n) be a
function for ` an arbitrary polynomial.

Key generation. Run GenRSA(1n) to compute (N, e, d), where N is
of length 2n and elements of Z

∗
N are represented by 2n-bit strings. The

public key is 〈N, e〉 and the private key is (N, d).

Encryption. To encrypt a message m ∈ {0, 1}`(n) with respect to the
public key 〈N, e〉, choose random r ← Z

∗
N and output the ciphertext

〈[re mod N], H(r)⊕m〉 .

Decryption. To decrypt ciphertext 〈c1, c2〉 using private key 〈N, d〉,
compute r := [cd

1 mod N] and then output the message H(r)⊕ c2.

CPA-secure RSA encryption in the random oracle model.

We can argue intuitively that the scheme is CPA-secure in the random oracle
model (under the RSA assumption) as follows: since r is chosen at random it
is infeasible for an eavesdropping adversary to recover r from c1 = [re mod N].
The adversary will therefore never query r to the random oracle, and so the
value H(r) is completely random from the point of view of the adversary. But
then c2 is just a “one-time pad”-like encryption of m using the random value
H(r), and so the adversary gets no information about m. This intuition is
developed into a formal proof below.

The proof (as indicated by the intuition above) relies heavily on the fact
that H is a random oracle, and does not work if H is replaced by, e.g., a
pseudorandom generator G. The reason is that the RSA assumption says that
an adversary cannot recover r from [re mod N], but says nothing about what
partial information about r the adversary might recover. For instance, it may
be the case that the adversary can compute half the bits of r, and in this case
we can no longer claim that G(r) is pseudorandom (since pseudorandomness
of G(r) requires r to be completely random). However, when H is a random
oracle it does not matter if partial information about r is leaked; H(r) is
random as long as r has not been explicitly queried to the oracle.

THEOREM 13.2 If the RSA problem is hard relative to GenRSA and
H is modeled as a random oracle, Construction 13.1 has indistinguishable
encryptions under chosen-plaintext attacks.

PROOF Let Π denote Construction 13.1. As usual, we prove that Π has
indistinguishable encryptions in the presence of an eavesdropper; by Theo-
rem 10.10 this implies that Π is CPA-secure.

Public-Key Cryptosystems in the Random Oracle Model 443

Let A be a probabilistic polynomial-time adversary, and define

ε(n)
def
= Pr[PubKeav

A,Π(n) = 1].

For the reader’s convenience, we describe the steps of experiment PubKeav
A,Π(n):

1. A random function H is chosen.

2. GenRSA(1n) is run to generate (N, e, d). A is given pk =
〈N, e〉, and may query H(·). Eventually, A outputs two mes-
sages m0, m1 ∈ {0, 1}`(n),

3. A random bit b← {0, 1} and a random r ← Z∗N are chosen,
and A is given the ciphertext 〈re mod N, H(r) ⊕ mb〉. The
adversary may continue to query H(·).

4. A then outputs a bit b′. The output of the experiment is
defined to be 1 if b′ = b, and 0 otherwise.

In an execution of experiment PubKeav
A,Π(n), let Query denote the event that,

at any point during its execution, A queries r to the random oracle H . We
also use Succ as shorthand for the event that PubKeav

A,Π(n) = 1. Then

Pr[Succ] = Pr
[
Succ ∧ Query

]
+ Pr[Succ ∧Query]

≤ Pr
[
Succ ∧ Query

]
+ Pr[Query]

where all probabilities are taken over the randomness used in experiment
PubKeav

A,Π(n). We now show that Pr
[
Succ ∧ Query

]
≤ 1

2 and that Pr[Query] is
negligible. The theorem follows.

CLAIM 13.3 If H is modeled as a random oracle, Pr
[
Succ ∧Query

]
≤ 1

2 .

If Pr[Query] = 0 then the claim is immediate. Otherwise, we have

Pr
[
Succ ∧Query

]
= Pr

[
Succ | Query

]
· Pr[Query]

≤ Pr
[
Succ | Query

]
.

Furthermore, Pr
[
Succ | Query

]
= 1

2 . This is an immediate consequence of
what we said earlier: namely, that if A does not explicitly query r to the
oracle then H(r) is completely random from A’s point of view, and so A has
no information as to whether m0 or m1 was encrypted. (This is exactly as in
the case of the one-time pad encryption scheme.) Therefore, the probability
that b′ = b when Query does not occur is exactly 1

2 . The reader should
convince him or herself that this intuition can be turned into a formal proof.

CLAIM 13.4 If the RSA problem is hard relative to GenRSA and H is
modeled as a random oracle, then Pr[Query] is negligible.

444 Introduction to Modern Cryptography

The intuition here is that if Query is not negligible then we can useA to solve
the RSA problem with non-negligible probability as follows: given inputs N, e,
and c1 ∈ Z

∗
N , give to A the public key 〈N, e〉 and ciphertext 〈c1, c2〉, where

c2 ← {0, 1}`(n) is chosen at random. Then monitor all the queries that A
makes to the random oracle. (See the discussion in Section 13.1.1.) If Query

occurs then one of A’s queries r satisfies re = c1 mod N , and so we can output
r as the answer. We therefore solve the RSA problem with probability exactly
Pr[Query], which must be negligible because the RSA problem is hard relative
to GenRSA.

Formally, consider the following algorithm A′:

Algorithm A′(N, e, c1)

1. Choose random k∗ ← {0, 1}`(n). (We imagine that A′ implic-

itly sets H(r) = k∗, where r
def
= [c

1/e
1 mod N]. Note, however,

that A′ does not know r.)

2. Run A on input the public key pk = 〈N, e〉. Store pairs
of strings (·, ·) in a table, initially empty. When A makes
random oracle query H(x), answer it as follows:

• If there is an entry (x, k) in the table, return k.

• If xe = c1 mod N , return k∗ and store (x, k∗) in the table.
(Note that in this case we have x = r, for r defined as
above.)

• Otherwise, choose a random k ← {0, 1}`(n), return k to
A, and store (x, k) in the table.

3. At some point, A outputs messages m0, m1 ∈ {0, 1}`(n).

4. Choose random b ← {0, 1} and set c2 := k∗ ⊕ mb. Give A
the ciphertext 〈c1, c2〉.

5. At the end of A’s execution (after it has output its guess b′),
let x1, . . . , xp be the list of all oracle queries made by A. If
there exists an i for which xe

i = c1 mod N , output xi.

It is immediate that A′ runs in polynomial time. Say the input to A′
is generated by running GenRSA(1n) to obtain (N, e, d) and then choosing
c1 ← Z∗N at random. (See Definition 7.46.) Then the view of A when run as
a subroutine by A′ is distributed identically to the view of A in experiment
PubKeav

A,Π(n). (In each case 〈N, e〉 is generated the same way; c1 is equal to
[re mod N] for a randomly-chosen r ← Z∗N ; and the random oracle queries of
A are answered with random strings.) Thus, the probability of event Query

remains unchanged. Furthermore, A′ correctly solves the given RSA instance
whenever Query occurs. That is,

Pr[RSA-invA′,GenRSA(n) = 1] = Pr[Query].

Public-Key Cryptosystems in the Random Oracle Model 445

Since the RSA problem is hard relative to GenRSA, it must be the case that
Pr[Query] is negligible. This concludes the proof of the claim, and hence the
proof of the theorem.

13.2.2 Security Against Chosen-Ciphertext Attacks

We have not yet seen any examples of public-key encryption schemes se-
cure against chosen-ciphertext attacks. Although such schemes exist, they
are somewhat complex. Moreover, no practical schemes are known that can
be based on, e.g., the RSA or factoring assumptions. (There are, however,
practical CCA-secure public-key encryption schemes based on the DDH as-
sumption.) Once again, the situation becomes much simpler in the random
oracle model, and we show a construction based on the RSA assumption here.

Let GenRSA be as in the previous section, and let Π′ = (Enc′, Dec′) be
a private-key encryption scheme for messages of length `(n) whose keys are
(without loss of generality) of length n. Looking ahead, we will want Π′ to
be secure against chosen-ciphertext attacks; as shown in Section 3.7, efficient
private-key encryption schemes satisfying this notion can be constructed rel-
atively easily.

CONSTRUCTION 13.5

Let Π′ be a private-key encryption scheme as described in the text, and
GenRSA be as in the previous section. H : {0, 1}2n → {0, 1}n is a
function.

Key generation. Run GenRSA(1n) to compute (N, e, d). The public
key is 〈N, e〉 and the private key is 〈N, d〉.
Encryption. To encrypt a message m ∈ {0, 1}`(n) with respect to the
public key 〈N, e〉, first choose random r← Z

∗
N and compute k := H(r).

Output the ciphertext

〈
[re mod N], Enc

′
k(m)

〉
.

Decryption. To decrypt ciphertext 〈c1, c2〉 using private key 〈N, d〉,
first compute r := [cd

1 mod N] and set k := H(r). Output Dec′k(c2).

CCA-secure RSA encryption in the random oracle model.

It is instructive to compare the above with Construction 13.1. In both cases,
the sender chooses a random r ← Z∗N and sends c1 = [re mod N] as part of
the ciphertext. The difference between the two schemes, on a conceptual
level, is that in Construction 13.1 the sender encrypts the message m using
the key H(r) and a private-key encryption scheme that has indistinguishable
encryptions in the presence of an eavesdropper. (Construction 13.1 utilizes the

446 Introduction to Modern Cryptography

one-time pad encryption scheme since, letting k := H(r) there, the second
component of the ciphertext is computed as k ⊕ m. We remark that an
analogous proof can be given when Construction 13.1 is instantiated with
an arbitrary CPA-secure private-key encryption scheme; see Exercise 13.3.)
Here, in contrast, the sender encrypts the message m using the key k = H(r)
and a private-key encryption scheme that has indistinguishable encryptions
under a chosen-ciphertext attack.

The intuition for the proof of security, when H is modeled as a random
oracle, is roughly as in the previous section. In the proof, we will again
distinguish between the case when the adversary does not query r to the
random oracle H and the case when it does. In the first case, the adversary
learns nothing about the key k = H(r) and so we have reduced the security
of our construction to the security of the private-key encryption scheme Π′.
We then argue that the second case occurs with only negligible probability if
the RSA problem is hard relative to GenRSA. The proof of this fact is a bit
more complex than in the previous section because we must now show how it
is possible to simulate decryption oracle queries without knowing the private
key. We show how to do this by “programming” the random oracle in an
appropriate way.

THEOREM 13.6 If the RSA problem is hard relative to GenRSA and
H is modeled as a random oracle, Construction 13.5 has indistinguishable
encryptions under a chosen-ciphertext attack.

PROOF Let Π denote Construction 13.5, and let A be a probabilistic
polynomial-time adversary. Define

ε(n)
def
= Pr[PubKcca

A,Π(n) = 1].

For the reader’s convenience, we describe the steps of experiment PubKcca
A,Π(n):

1. A random function H is chosen.

2. GenRSA(1n) is run to obtain (N, e, d). A is given pk = 〈N, e〉
and may query H(·) and the decryption oracle Dec〈N,d〉(·).
Eventually A outputs two messages m0, m1 ∈ {0, 1}`(n),

3. Random b ← {0, 1} and r ← Z∗N are chosen, and A is given
the ciphertext 〈re mod N, Enc′H(r)(mb)〉. Adversary A may
continue to query H(·) and the decryption oracle, though it
may not query the latter on the ciphertext it was given.

4. A then outputs a bit b′. The output of the experiment is
defined to be 1 if b′ = b, and 0 otherwise.

In an execution of experiment PubKcca
A,Π(n), let Query denote the event that,

at any point during its execution, A queries r to the random oracle H . We

Public-Key Cryptosystems in the Random Oracle Model 447

also use Succ as shorthand for the event that b′ = b. Then

Pr[Succ] = Pr
[
Succ ∧ Query

]
+ Pr[Succ ∧Query]

≤ Pr
[
Succ ∧ Query

]
+ Pr[Query],

where all probabilities are taken over the randomness used in experiment
PubKcca

A,Π(n). We now show that there exists a negligible function negl such
that

Pr
[
Succ ∧ Query

]
≤ 1

2
+ negl(n),

and that Pr[Query] is negligible. The theorem follows.

CLAIM 13.7 If private-key encryption scheme Π′ has indistinguishable
encryptions under a chosen-ciphertext attack and H is modeled as a random
oracle, then there exists a negligible function negl such that

Pr
[
Succ ∧ Query

]
≤ 1

2
+ negl(n).

The proof now is much more involved than the proof of the corresponding
claim in the previous section. This is because, as discussed in the intuition
preceding this theorem, Construction 13.1 uses the (perfectly-secret) one-time
pad encryption scheme as its “private-key component”, whereas Construc-
tion 13.5 uses a computationally-secure private-key encryption scheme Π′.

Consider the following adversaryA′ carrying out a chosen-ciphertext attack
on Π′ (cf. Definition 3.31):

Adversary A′(1n)

A′ has access to an encryption oracle Enc′k(·) and a decryption
oracle Dec′k(·) for some key k

1. Run GenRSA(1n) to compute (N, e, d). Choose r ← Z
∗
N and

set c1 := [re mod N].

/* We will imagine that A′ implicitly sets H(r) = k, though
A′ does not know k. */

2. Run A on input pk := 〈N, e〉. Pairs of strings (·, ·) are stored
in a table, initially empty. When A makes a query 〈c̄1, c̄2〉 to
its decryption oracle, answer it as follows:

• If c̄1 = c1, then A′ queries c̄2 to its own decryption oracle
and returns the result to A.

• If c̄1 6= c1, compute r̄ := [c̄d
1 mod N]. Then compute

k̄ := H(r̄) using the procedure discussed below. Return
the result Dec′k̄(c̄2) to A.

When the value H(r̄) is needed, either in response to a query
by A to the random oracle or in the course of answering a
query by A to its decryption oracle, compute H(r̄) as follows:

448 Introduction to Modern Cryptography

• If there is an entry (r̄, k̄) in the table, return k̄.

• Otherwise, choose a random k̄ ← {0, 1}n return it, and
store (r̄, k̄) in the table.

3. At some point, A outputs m0, m1 ∈ {0, 1}`(n). Adversary
A′ outputs these same messages, and is given in return a
ciphertext c2. Then A′ gives the ciphertext 〈c1, c2〉 to A, and
continues to answer the oracle queries of A as before.

4. When A outputs its guess b′, this value is output by A′.

It is immediate that A′ runs in polynomial time. Furthermore, A′ never
submits the ciphertext c2 to its own decryption oracle after it is given this
ciphertext in step 3; the only way this could happen would be if A submitted
〈c1, c2〉 to its decryption oracle, but this is not allowed.

Let Pr′[·] refer to the probability of an event in experiment PrivKcca
A′,Π′(n).

Define Succ and Query as above; that is, Succ is the event that b′ = b, and
Query is the event that A queries r to the random oracle. The key obser-
vation is that the view of A′ when run as a subroutine by A (in experi-
ment PrivKcca

A′,Π′(n)) is distributed identically to the view of A′ in experiment
PubKcca

A,Π(n), until event Query occurs. So

Pr′[Succ] ≥ Pr′[Succ ∧ Query] = Pr[Succ ∧ Query].

(The inequality is trivial, and the equality follows from the observation we
just made.) Because Π′ is CCA-secure, there exists a negligible function negl

such that
1

2
+ negl(n) ≥ Pr′[Succ] ≥ Pr[Succ ∧ Query],

completing the proof of the claim.

CLAIM 13.8 If the RSA problem is hard relative to GenRSA and H is
modeled as a random oracle, then Pr[Query] is negligible.

Intuitively, Pr[Query] is negligible for the same reason as in the proof of
Theorem 13.2. In the formal proof, however, additional difficulties arise due to
the fact that the decryption queries of A must somehow be answered without
knowledge of the private (decryption) key. Fortunately, the random oracle
model enables a solution: to decrypt a ciphertext 〈c̄1, c̄2〉 (where no prior
decryption query was made using the same initial component c̄1), we generate
a random key k̄ and return the message Dec′k̄(c̄2). We then implicitly set

H(r̄) = k̄, where r̄
def
= [c

1/e
1 mod N]. (Note that r̄ may be unknown at this

time, and we do not know how to compute it without the factorization of N .)

The only “catch” is that we must ensure consistency with both prior and
later queries of A to the random oracle. But this is relatively simple:

Public-Key Cryptosystems in the Random Oracle Model 449

• When decrypting, we first check for any prior random oracle query H(r̄)
such that c̄1 = re mod N (and, if so, use for k the value previously
returned in response to the previous random oracle query H(r̄)).

• When answering a random oracle query H(r̄), we compute c̄1 := [r̄e mod
N] and check whether any previous decryption query used c̄1 as the first
component of the ciphertext (and, if so, return the value k̄ that was
previously used to answer this prior decryption oracle query).

Actually, a simple data structure handles both cases: maintain a table storing
all the random oracle queries and answers as in the proof of Theorem 13.2
(and as in the proof of the previous claim), except that now the table will
contain triples rather than pairs. Two types of entries will appear in the
table:

• The first type of entry has the form (r̂, ĉ1, k̂) with ĉ1 = [r̂e mod N].

This entry means that we have defined H(r̂) = k̂.

• The second type of entry has the form (?, ĉ1, k̂), which means that the

value r̂
def
= [ĉ

1/e
1 mod N] is not yet known. (Again, we are not able to

compute this value without the factorization of N .) An entry of this sort

indicates that we are implicitly setting H(r̄) = k̂; in particular, when
answering a decryption oracle query 〈c̄1, c̄2〉 by A, we return Dec′k̄(c̄2).
If A ever asks the random oracle query H(r̄) we will return the correct

answer k̂ because we will check the table for any entry having [r̄e mod N]
as its second component.

We implement the above ideas as the following algorithm A′:

Algorithm A′(N, e, c1)

1. Choose random k ∈ {0, 1}n. Triples (·, ·, ·) are stored in a
table that initially contains only (?, c1, k).

2. Run A on input pk := 〈N, e〉. When A makes a query 〈c̄1, c̄2〉
to the decryption oracle, answer it as follows:

• If there is an entry in the table whose second component
is c̄1, let k̄ be the third component of this entry. (That
is, the entry is either of the form (r̄, c̄1, k̄) with r̄e =
c̄1 mod N , or of the form (?, c̄1, k̄).) Return Dec′k̄(c̄2).

• Otherwise, choose a random k̄ ← {0, 1}n, return Dec′k̄(c̄2),
and store (?, c̄1, k̄) in the table.

When A makes a query r̂ to the random oracle, compute
c̄1 := [r̄e mod N] and answer the query as follows:

• If there is an entry of the form (r̄, c̄1, k̄) in the table,
return k̄.

450 Introduction to Modern Cryptography

• If there is an entry of the form (?, c̄1, k̄) in the table,
return k̄ and store (r̄, c̄1, k̄) in the table.

• Otherwise, choose random k̄ ← {0, 1}n, return k̄, and
store (r̄, c̄1, k̄) in the table.

3. At some point, A outputs messages m0, m1 ∈ {0, 1}`(n).
Choose a random bit b ← {0, 1} and set c2 := Enc′k(mb).
Give to A the ciphertext 〈c1, c2〉, and continue to answer the
oracle queries of A as before.

4. At the end of A’s execution, if there is an entry in the table
of the form (r, c1, k) then output r.

Algorithm A′ exactly carries out the strategy outlined earlier, with the
only addition being that a random key k is chosen at the beginning of the

experiment and A′ implicitly sets H([c
1/e
1 mod N]) = k.

It is immediate that A′ runs in polynomial time. Say the input to A′
is generated by running GenRSA(1n) to obtain (N, e, d) and then choosing
c1 ← Z∗N at random from Z∗N . (See Definition 7.46.) Then the view of
A when run as a subroutine by A′ is distributed identically to the view of
A in experiment PubKcca

A,Π(n). Thus, the probability of event Query remains
unchanged. Furthermore, A′ correctly solves the given RSA instance whenever
Query occurs. That is,

Pr[RSA-invA′,GenRSA(n) = 1] = Pr[Query].

Since the RSA problem is hard relative to GenRSA, it must be the case that
Pr[Query] is negligible. This concludes the proof of the claim, and hence the
proof of the theorem.

13.2.3 OAEP

The public-key encryption scheme given in Section 13.2.2 offers a fairly
efficient way to achieve security against chosen-ciphertext attacks based on the
RSA assumption, in the random oracle model. (Moreover, as we noted earlier,
the general paradigm shown there can be instantiated using any trapdoor
permutation and so can be used to construct a scheme with similar security
based on the hardness of factoring.) For certain applications, though, even
more efficient schemes are desirable. The main drawback of the previous
scheme is that the ciphertext expansion is relatively significant when very
short messages are encrypted.

The optimal asymmetric encryption padding (OAEP) technique eliminates
this drawback, and the ciphertext includes only a single element of Z∗N when
short messages are encrypted. (To encrypt longer messages, hybrid encryption
would be used as discussed in Section 10.3.) Technically, OAEP is a padding
method and not an encryption scheme, though encryption schemes that use

Public-Key Cryptosystems in the Random Oracle Model 451

this padding are often simply called OAEP themselves. We denote by RSA-
OAEP the combination of OAEP padding with textbook RSA encryption (as
will become clear from the discussion below and Construction 13.9).

OAEP is a reversible, randomized method for encoding a plaintext message
m of length2 n/2 as a string m̂ of length 2n. OAEP uses two functions G and
H that are modeled as independent random oracles in the analysis. Though
the existence of more than one random oracle was not discussed when we
introduced the random oracle model in Section 13.1.1, this is interpreted in
the natural way. In fact it is quite easy to use a single random oracle H̄ to

implement two independent random oracles G, H by setting G(x)
def
= H̄(0x)

and H(x)
def
= H̄(1x).

In RSA-OAEP, encryption of a message m relative to a public key 〈N, e〉
(with ‖N‖ > 2n) is done by encoding m as m̂ and then computing the ci-
phertext c := [m̂d mod N]. To decrypt, the receiver recovers m̂ using its
private key, and then reverses the encoding to recover the message m. A full
description is given as Construction 13.9.

CONSTRUCTION 13.9

Let GenRSA be as in the previous sections, and let G : {0, 1}n → {0, 1}n
and H : {0, 1}n → {0, 1}n be functions.

Key generation. On input 1n, run GenRSA(1n+1) to obtain (N, e, d)
with ‖N‖ > 2n.a The public key is 〈N, e〉 and the private key is 〈N, d〉.
Encryption. To encrypt message m ∈ {0, 1}n/2 with respect to the
public key 〈N, e〉, first choose random r ← {0, 1}n. Set m′ := m‖0n/2,
compute m̂1 := G(r)⊕m′, and then set

m̂ := m̂1 ‖ (r ⊕H(m̂1))

and interpret m̂ as an element of Z
∗
N in the natural way. Output the

ciphertext c := [m̂e mod N].

Decryption. To decrypt ciphertext c using private key 〈N, d〉, first
compute m̂ := [cd mod N] and parse m̂ as m̂1‖m̂2 with |m̂1| = |m̂2| = n.
Next compute r := H(m̂1) ⊕ m̂2, followed by m′ := m̂1 ⊕ G(r). If the
final n/2 bits of m′ are not 0n/2, output ⊥. Otherwise, output the first
n/2 bits of m′.

aThis explains our unusual choice to run GenRSA with input 1n+1 rather than
input 1n.

The RSA-OAEP encryption scheme.

2This matches Construction 13.9, but can be generalized for other message/encoding
lengths.

452 Introduction to Modern Cryptography

The above is actually somewhat of a simplification, in that certain details
are omitted and other choices of the parameters are possible. The reader
interested in implementing RSA-OAEP is referred to the references given
in the notes at the end of this chapter. A proof of security for the above
construction is beyond the scope of the book; we only mention that if the RSA
problem is hard relative to GenRSA and G and H are modeled as independent
random oracles, then RSA-OAEP can be proven secure for certain types of
public exponents e (including the common case when e = 3). Variants of
OAEP suitable for use with arbitrary public exponents or, more generally,
with other trapdoor permutations, are also known; see the references at the
end of this chapter.

13.3 RSA Signatures in the Random Oracle Model

Having completed our discussion of public-key encryption in the random or-
acle model, we now turn our attention to constructions of digital signatures.
The full-domain hash (FDH) signature scheme is perhaps the simplest to an-
alyze. Though this, too, may be instantiated with any trapdoor permutation,
we once again describe the RSA-FDH scheme which is based on RSA.

CONSTRUCTION 13.10

Let GenRSA be as in the previous sections, and let H : {0, 1}∗ → {0, 1}2n

be a function.

Key generation. Run GenRSA(1n) to compute (N, e, d). The public
key is 〈N, e〉 and the private key is 〈N, d〉.
Signing. To sin message m ∈ {0, 1}∗ using the secret key 〈N, d〉, com-
pute

σ := [H(m)d mod N].

Verification. Given a signature σ on a message m with respect to the

public key 〈N, e〉, output 1 iff σe ?
= H(m) mod N .

The RSA-FDH signature scheme.

We have actually seen the RSA-FDH scheme previously in Section 12.3.2,
where it was called hashed RSA. Hashed RSA was obtained by applying the
textbook RSA signature scheme to a hash of the message, rather than the
message itself. To review: in the textbook RSA signature scheme, a message
m ∈ Z∗N was signed by computing σ := md mod N . (As usual, the private key
is 〈N, d〉 where (N, e, d) were output by some algorithm GenRSA.) Textbook

Public-Key Cryptosystems in the Random Oracle Model 453

RSA is completely insecure, and in particular was shown in Section 12.3.1 to
be vulnerable to the following attacks:

• An adversary can choose arbitrary σ, compute m := [σe mod N], and
output (m, σ) as a forgery.

• Given (legitimately-generated) signatures σ1 and σ2 on messages m1

and m2, respectively, it is possible to compute a valid signature σ :=
[σ1 · σ2 mod N] on the message m := [m1 ·m2 mod N].

In RSA-FDH (i.e., hashed RSA), the signer hashes m before signing it; that
is, a signature on a message m is computed as σ := [H(m)d mod N]. (See
Construction 13.10.) In Section 12.3.2 we argued informally why this modi-
fication prevents the above attacks; we can now see why the attacks do not
apply when H is modeled as a random oracle.

• Given σ, it is hard to find an m such that H(m) = [σe mod N]. (See,
e.g., the discussion in Section 13.1.1 regarding why a random oracle acts
like a one-way function.)

• If σ1 and σ2 are signatures on messages m1 and m2, respectively, this
means that H(m1) = σe

1 mod N and H(m2) = σe
2 mod N . It is not

likely, however, that σ = [σ1 · σ2 mod N] is a valid signature on m =
[m1 ·m2 mod N] since there is no reason to believe that H(m1 ·m2) =
H(m1) · H(m2) mod N . (And if H is a random oracle, the latter will
happen with only negligible probability.)

We stress that the above merely serves as intuition, while in fact RSA-FDH
is provably resistent to the above attacks as a consequence of Theorem 13.11
that we will prove below. We stress also that the above informal arguments
can only be proven when H is modeled as a random oracle; we do not know
how to prove anything like the above if H is “only” collision-resistant, say.

On the face of it, RSA-FDH may seem like an exact instantiation of the
“hash-and-sign” paradigm (Section 12.4) using the textbook RSA signature
scheme. The crucial difference is that in Section 12.4 we showed that the
“hash-and-sign” paradigm converts a signature scheme Π that handles “short”
messages into a signature scheme Π′ that handles messages of arbitrary length,
when the hash function being used is collision resistant and the original signa-
ture scheme Π is existentially unforgeable under an adaptive chosen-message
attack. In contrast, here we are converting a completely insecure scheme Π
(namely, textbook RSA signatures) into a secure scheme Π′, but only by
modeling the hash function as a random oracle.

We prove below that RSA-FDH is existentially unforgeable under an adap-
tive chosen-message attack, under the RSA assumption in the random oracle
model. Toward intuition for this result, first consider the case of existential
unforgeability under a no-message attack ; i.e., when the adversary cannot re-
quest any signatures. Here the adversary is limited only to making queries to

454 Introduction to Modern Cryptography

the random oracle, and we can assume without loss of generality that if the
adversary outputs a purported forgery (m, σ) then the adversary had at some
point previously queried H(m). Letting y1, . . . , yq denote the answers that
the adversary received in response to its q queries to the random oracle, we
see that each yi is completely random; furthermore, forging a valid signature
on some message requires computing an eth root of one of these values. It is
thus not hard to see that, under the RSA assumption, the adversary outputs
a valid forgery with only negligible probability.

Formally, starting with an adversary A forging a valid signature in a no-
message attack we construct an algorithm A′ solving the RSA problem. Given
input (N, e, y), algorithm A′ first runs A on the public key pk = 〈N, e〉. It
answers the random oracle queries of A with random elements of Z∗N except
for one query (chosen at random from among the q random oracle queries
of A) that is answered with y. Say A outputs (m, σ) with σe = H(m) mod N
(i.e., A outputs a forgery). If the input to A′ was generated by (in particular)
choosing y at random from Z∗N , then the view of A when run as a subroutine
by A′ is identically distributed to the view of A when it attacks the signature
scheme; furthermore, A has no information regarding which oracle query was
answered with y. So with probability 1/q it will be the case that the query
H(m) was the one that was answered with y, in which case A′ solves the
given instance of the RSA problem by outputting σ = y1/e mod N . We see
that if A succeeds with probability ε, then A′ solves the RSA problem with
probability ε/q, and hence ε must be negligible if the RSA assumption holds.

Handling the case when the adversary is allowed to request signatures on
messages of its choice is more difficult. The complication arises since our
reduction A′ above does not, of course, know the decryption exponent d, yet
now has to compute valid signatures on messages chosen by A. This seems
impossible (and possibly even contradictory!) until we realize that A′ can
correctly compute a signature on a message m as long as it sets H(m) equal
to [σe mod N] for some known value σ. Note that if σ is chosen uniformly at
random then [σe mod N] is uniformly distributed as well, and so the random
oracle is still emulated “properly” by A′.

The above intuition forms the basis for the proof of the following:

THEOREM 13.11 If the RSA problem is hard relative to GenRSA and H
is modeled as a random oracle, Construction 13.10 is existentially unforgeable
under an adaptive chosen-message attack.

PROOF Let Π = (Gen, Sign, Vrfy) denote Construction 13.10, and let A
be a probabilistic polynomial-time adversary. Define

ε(n)
def
= Pr[Sig-forgecma

A,Π(n) = 1].

For the reader’s convenience, we describe the steps of experiment Sig-forgecma
A,Π(n):

Public-Key Cryptosystems in the Random Oracle Model 455

1. A random function H is chosen.

2. GenRSA(1n) is run to generate (N, e, d). The adversary A is
given pk = 〈N, e〉, and may query H(·) and the signing oracle
Sign〈N,d〉(·). When A requests a signature on a message m,

it is given σ := [H(m)d mod N] in return.

3. Eventually, A outputs a pair (m, σ) where A had not previ-
ously requested a signature on m. The output of the experi-
ment is 1 if σe = H(m), and 0 otherwise.

Since we have already discussed the intuition above, we jump right into the
formal proof. To simplify matters, we assume without loss of generality that
(1) A never makes the same random oracle query twice; (2) if A requests a
signature on a message m then it had previously queried H(m); and (3) if A
outputs (m, σ) then it had previously queried H(m).

Let q = q(n) be a (polynomial) upper-bound on the number of random
oracle queries made by A. Consider the following algorithm A′:

Algorithm A′(N, e, y∗)

1. Choose j ← {1, . . . , q}.
2. Run A on input the public key pk = 〈N, e〉. Store triples

(·, ·, ·) in a table, initially empty. An entry (mi, σi, yi) indi-
cates that A′ has set H(mi) = yi, and furthermore it will be
the case that σe

i = yi mod N . When A makes its ith random
oracle query H(mi), answer it as follows:

• If i = j, return y∗.

• Otherwise, choose random σi ← Z
∗
N , compute yi :=

[σe
i mod N], return yi as the answer to the query, and

store (mi, σi, yi) in the table.

When A requests a signature on message m, let i be such
that3 m = mi and answer the query as follows:

• If i 6= j then there is an entry (mi, σi, yi) in the table.
Return σi.

• If i = j then abort the experiment.

3. At the end of A’s execution, it outputs (m, σ). If m = mj

and σe = y∗ mod N , then output σ.

It is immediate that A′ runs in polynomial time. Say the input to A′ is
generated by running GenRSA(1n) to obtain (N, e, d) and then choosing y∗ ←

3Here mi denotes the ith query made to the random oracle. Recall our assumption that if
A requests a signature on a message, then it had previously queried the random oracle on
that message.

456 Introduction to Modern Cryptography

Z∗N uniformly at random. The index j chosen by A′ in the first step represents
a guess as to which oracle query of A will correspond to the eventual output
of A. When this guess is correct, the view of A when run as a subroutine
by A′ in experiment RSA-invA′,GenRSA(n) is distributed identically to the view
of A in experiment Sig-forgecma

A,Π(n). This is, in part, because each of the q
random oracle queries of A when run as a subroutine by A′ is indeed answered
with a random value:

• The query H(mj) is answered with y∗, a value chosen at random from
Z∗N .

• Queries H(mi) with i 6= j are answered with yi = [σe
i mod N]; since σi

is chosen uniformly at random and RSA is a permutation, this means
that yi is uniformly distributed as well.

Moreover, j is independent of the view of A unless A happens to request a
signature on mj . But in this case the guess of A′ was wrong (since A cannot
output a forgery on mj once it requests a signature on mj).

When A′ guesses correctly and A outputs a forgery, then A′ solves the given
instance of the RSA problem. Since A′ guesses correctly with probability 1/q,
we have that

Pr[RSA-invA′,GenRSA(n) = 1] = ε(n)/q(n).

Because the RSA problem is hard relative to GenRSA, the exists a negligible
function negl such that

Pr[RSA-invA′,GenRSA(n) = 1] ≤ negl(n).

Since q is polynomial, we conclude that ε(n) is negligible as well, completing
the proof.

References and Additional Reading

The first formal treatment of the random oracle model was given by Bellare
and Rogaway [19], though the idea of using a “random-looking” function in
cryptographic applications had been suggested previously, most notably by
[55]. Proper instantiation of a random oracle based on concrete cryptographic
hash functions is discussed in [19, 20, 21, 63, 40].

The seminal negative result concerning the random oracle model is given
by Canetti et al. [34], who show (contrived) schemes that can be proven se-
cure in the random oracle model but demonstrably insecure for any concrete
instantiation of the random oracle.

OAEP was introduced by Bellare and Rogaway [20] and later standard-
ized as PKCS #1 v2.1 (available from http://www.rsa.com/rsalabs). The

Public-Key Cryptosystems in the Random Oracle Model 457

original proof of OAEP was later found to be flawed; the interested reader is
referred to [31, 59, 116] for further details.

The full-domain hash signature scheme was proposed by Bellare are Rog-
away in their original paper on the random oracle model [19]. Later improve-
ments include [21, 38, 39, 63], the first of which has been standardized as part
of PKCS #1 v2.1.

Exercises

13.1 Prove that the pseudorandom function construction in Section 13.1.1 is
indeed secure in the random oracle model.

13.2 In this exercise we show a scheme that can be proven secure in the
random oracle model, but is insecure when the random oracle is instan-
tiated with SHA-1. Let Π be a signature scheme that is secure in the
standard model. Construct a signature scheme Πy where signing is done
as follows: if H(0) = y, then output the secret key; if H(0) 6= y, then
return a signature computed using Π.

(a) Prove that for any value y, the scheme Πy is secure in the random
oracle model.

(b) Show that there exists a particular y for which Πy is not secure
when the random oracle is instantiated using SHA-1.

13.3 Let Π′ = (Enc′, Dec′) be a private-key encryption scheme, and modify
Construction 13.1 so that encryption is done as follows: To encrypt a
message m ∈ {0, 1}`(n) with respect to the public key 〈N, e〉, choose
random r ← Z∗N , set k := H(r), and output the ciphertext

〈
[re mod N], Enc′k(m)

〉
.

(Decryption is done in the obvious way.) Prove that if the RSA problem
is hard relative to GenRSA, Π′ has indistinguishable encryptions under
a chosen-plaintext attack, and H is modeled as a random oracle, this
modified construction is a CPA-secure public-key encryption scheme.

Index of Common Notation

Within each category, notation is given in order of appearance.

General notation:

• If A is a randomized algorithm, then A(x) denotes running A on in-
put x with a uniformly-chosen random tape. A(x; r) denotes running
A on input x using random tape r (note that this is a deterministic
computation)

• ∧ denotes Boolean conjunction (the AND operator)

• ∨ denotes Boolean disjunction (the OR operator)

• ⊕ denotes the exclusive-or (XOR) operator; this operator can be applied
to single bits or entire strings (and in the latter case, the XOR is bitwise)

• Pr[X] denotes the probability of event X occurring

• {0, 1}n is the set of all binary strings of length n

• {0, 1}<n is the set of all binary strings of length less than n

• {0, 1}∗ is the set of all finite strings of any length

• 0n denotes the string comprised of n zeroes

• 1n denotes the string comprised of n ones

• ‖x‖ denotes the length of the string x, in bits. If x is a positive integer,
this denotes the length of the binary representation of x when written
with leading bit 1

• O(·), Θ(·) see Section A.2

• x‖y denotes the concatenation of two strings x and y

• (x1, . . . , x`) denotes a list (that may sometimes be referred to as a single
value, for example as input to a function

• x ← S denotes the process of choosing an element from S with the
uniform distribution and letting x be the result

• x
def
= Y is used to denote that x is defined to be equal to Y

459

460 Introduction to Modern Cryptography

• x := Y means that the variable x is assigned the value Y

Number theory:

• Z denotes the set of integers

• a | b means a divides b

• a6 | b means that a does not divide b

• gcd(a, b) denotes the greatest common divisor of a and b

• [a mod b] denotes the remainder of a when divided by b. Note 0 ≤
[a mod b] < b.

• x1 = x2 = . . . = xi mod N means that x1, . . . , xn are all congruent
modulo N

• ZN denotes the additive group of integers modulo N and sometimes the
set {0, . . . , N − 1}

• Z∗N denotes the multiplicative group of invertible integers modulo N
(i.e., those that are relatively prime to N)

• φ(N) equals the number of integers in {1, . . . , N − 1} that are relatively
prime to N

• G and H denote groups

• G1 ' G2 means that groups G1 and G2 are isomorphic. If this isomor-
phism is given by f and f(x1) = x2 then we write x1 ↔ x2

• g is typically a generator of a group

• 〈g〉 denotes the group generated by g

• p and q usually denote primes

• N typically denotes the product of two distinct primes p and q of equal
length

• QRp is the set of quadratic residues modulo p

• QNRp is the set of quadratic non-residues modulo p

• Jp(x) is the Jacobi symbol of x modulo p

• J+1
N is the set of elements with Jacobi symbol +1 modulo N

• J−1
N is the set of elements with Jacobi symbol −1 modulo N

Public-Key Cryptosystems in the Random Oracle Model 461

• QNR+1
N is the set of quadratic non-quadratic residues modulo N having

Jacobi symbol +1

• log x denotes the (standard) logarithm of x base 2 (this is the default)

• logg h denotes the discrete logarithm of h to the base g; see Chapter 7

Crypto-specific notation:

• n is the security parameter

• (pk, sk) denotes the public/private key-pair (for public-key encryption
and digital signatures)

• A denotes the adversary

• AO(·) denotes the algorithmA with oracle access to O (essentially mean-
ing thatAmay use external subroutine calls toO during its computation

• ExptAname(n) is used to denote an experiment used for defining security.
The experiment is defined by “name”, for an adversary A and with
security parameter n.

• k typically denotes a private key (as in private-key encryption and
MACs)

• negl denotes a negligible function; that is, a function for which for every
polynomial p(·) there exists an integer N such that for every n > N it
holds that µ(n) < 1/p(n). (It is typically used as negl(n) which means
a function that is negligible in the security parameter n.)

• poly(n) denotes a polynomial; that is, f(n) = poly(n) should be read as
“there exists a polynomial p such that f(n) = O(p(n))

• polylog(n) denotes poly(log(n))

• IV denotes the initialization vector (used for block cipher modes of
operation and collision-resistant hash functions)

Algorithms and procedures:

• (Gen, Enc, Dec) denote the key-generation, encryption and decryption
procedures, respectively

• (Gen, MAC, Vrfy) denote the key-generation, MAC generation and MAC
verification procedures, respectively

• (Gen, Sign, Vrfy) denote the key-generation, signature generation and sig-
nature verification procedures, respectively

462 Introduction to Modern Cryptography

• (Gen, H) denote the key-generation and collision-resistant hash func-
tions, respectively

• GenPrime(1n) denotes a procedure for choosing a random prime of length
n

• GenModulus(1n) denotes a procedure for choosing two random primes p
and q of length n each and outputting N = pq

• GenRSA denotes the procedure of generating RSA keys

• G(1n) denotes a procedure that outputs the description of a group, a
generator of that group and its order (which is typically an n-bit integer)

• G denotes a pseudorandom generator

• Fk denotes a pseudorandom function or permutation, keyed by k

References

[1] Advances in Cryptology — Crypto ’84, volume 196 of Lecture Notes in
Computer Science. Springer, 1985.

[2] Advances in Cryptology — Crypto ’86, volume 263 of Lecture Notes in
Computer Science. Springer, 1987.

[3] Advances in Cryptology — Crypto ’89, volume 435 of Lecture Notes in
Computer Science. Springer, 1990.

[4] Advances in Cryptology — Crypto ’91, volume 576 of Lecture Notes in
Computer Science. Springer, 1992.

[5] Advances in Cryptlolgy — Crypto ’98, volume 1462 of Lecture Notes in
Computer Science. Springer, 1998.

[6] Advances in Cryptology — Eurocrypt ’99, volume 1592 of Lecture Notes
in Computer Science. Springer, 1999.

[7] Advances in Cryptology — Crypto 2001, volume 2139 of Lecture Notes
in Computer Science. Springer, 2001.

[8] Advances in Cryptology — Crypto 2005, volume 3621 of Lecture Notes
in Computer Science. Springer, 2005.

[9] ISO/IEC 9797. Data cryptographic techniques — data integrity mech-
anism using a cryptographic check function employing a block cipher
algorithm, 1989.

[10] C. Adams and S. Lloyd. Understanding PKI: Concepts, Standards, and
Deployment Considerations. Addision Wesley, 2nd edition, 2002.

[11] M. Agrawal, N. Kayal, and N. Saxena. PRIMES is in P. Annals of
Mathematics.

[12] A. Akavia, S. Goldwasser, and S. Safra. Proving hard-core predicates
using list decoding. In Proc. 44th Annual Symposim on Foundations of
Computer Science, pages 146–157. IEEE, 2003.

[13] W. Alexi, B. Chor, O. Goldreich, and C.P. Schnorr. RSA and Rabin
functions: Certain parts are as hard as the whole. SIAM Journal on
Computing, 17:194–209, 1988.

463

464 References

[14] M. Bellare, R. Canetti, and H. Krawczyk. Keying hash functions for
message authentication. In Advances in Cryptology — Crypto ’96, vol-
ume 1109 of Lecture Notes in Computer Science, pages 1–15. Springer,
1996.

[15] M. Bellare, A. Desai, E. Jokipii, and P. Rogaway. A concrete security
treatment of symmetric encryption. In Proc. 38th Annual Symposium
on Foundations of Computer Science, pages 394–403, 1997.

[16] M. Bellare, A. Desai, D. Pointcheval, and P. Rogaway. Relations among
notions of security for public-key encryption schemes. In Advances in
Cryptology — Crypto ’98 [5], pages 26–45.

[17] M. Bellare, J. Kilian, and P. Rogaway. The security of the cipher block
chaining message authentication code. Journal of Computer and System
Sciences, 61(3):362–399, 2000.

[18] M. Bellare and C. Namprempre. Authenticated encryption: Relations
among notions and analysis of the generic composition paradigm. In Ad-
vances in Cryptology — Asiacrypt 2000, volume 1976 of Lecture Notes
in Computer Science, pages 531–545. Springer, 2000.

[19] M. Bellare and P. Rogaway. Random oracles are practical: a paradigm
for designing efficient protocols. In ACM Conf. on Computer and Com-
munications Security, pages 62–73. ACM, 1993.

[20] M. Bellare and P. Rogaway. Optimal asymmetric encryption. In Ad-
vances in Cryptology — Eurocrypt ’94, volume 950 of Lecture Notes in
Computer Science, pages 92–111. Springer, 1995.

[21] M. Bellare and P. Rogaway. The exact security of digital signatures
— how to sign with RSA and Rabin. In Advances in Cryptology —
Eurocrypt ’96, volume 1070 of Lecture Notes in Computer Science, pages
399–416. Springer, 1996.

[22] M. Bellare and P. Rogaway. The security of triple encryption and a
framework for code-based game-playing proofs. In Advances in Cryp-
tology — Eurocrypt 2006, volume 4004 of Lecture Notes in Computer
Science, pages 409–426. Springer, 2006.

[23] E. Biham and A. Shamir. Differential cryptanalysis of DES-like cryp-
tosystems. Journal of Cryptology, 4(1):3–72, 1991.

[24] E. Biham and A. Shamir. Differential Cryptanalysis of the Data En-
cryption Standard. Springer, 1993.

[25] D. Bleichenbacher. Chosen ciphertext attacks against protocols based
on the RSA encryption standard PKCS#1. In Advances in Cryptology
— Crypto ’98 [5], pages 1–12.

References 465

[26] M. Blum. Coin flipping by telephone. In Proc. IEEE COMPCOM,
pages 133–137, 1982.

[27] M. Blum and S. Goldwasser. An efficient probabilistic public-key en-
cryption scheme which hides all partial information. In Advances in
Cryptology — Crypto ’84 [1], pages 289–302.

[28] M. Blum and S. Micali. How to generate cryptographically strong
sequences of pseudo-random bits. SIAM Journal on Computing,
13(4):850–864, 1984.

[29] D. Boneh. The decision Diffie-Hellman problem. In Algorithmic Number
Theory, 3rd Intl. Symposium, volume 1423 of Lecture Notes in Computer
Science, pages 48–63. Springer, 1998.

[30] D. Boneh. Twenty years of attacks on the RSA cryptosystem. Notices
of the American Mathematical Society, 46(2):203–213, 1999.

[31] D. Boneh. Simplified OAEP for the RSA and Rabin functions. In
Advances in Cryptology — Crypto 2001 [7], pages 275–291.

[32] D. Boneh, A. Joux, and P. Nguyen. Why textbook ElGamal and
RSA encryption are insecure. In Advances in Cryptology — Asiacrypt
2000, volume 1976 of Lecture Notes in Computer Science, pages 30–44.
Springer, 2000.

[33] D. Bressoud. Factorization and Primality Testing. Springer, 1989.

[34] R. Canetti, O. Goldreich, and S. Halevi. The random oracle methodol-
ogy, revisited. J. ACM, 51(4):557–594, 2004.

[35] D. Chaum, E. van Heijst, and B. Pfitzmann. Cryptographically strong
undeniable signatures, unconditionally secure for the signer. In Ad-
vances in Cryptology — Crypto ’91 [4], pages 470–484.

[36] L.N. Childs. A Concrete Introduction to Higher Algebra. Undergraduate
Texts in Mathematics. Springer, 2nd edition, 2000.

[37] D. Coppersmith. The Data Encryption Standard (DES) and its strength
against attacks. IBM Journal of Research and Development, 38(3):243–
250, 1994.

[38] J.-S. Coron. On the exact security of full-domain hash. In Advances in
Cryptology — Crypto 2000, volume 1880 of Lecture Notes in Computer
Science, pages 229–235. Springer, 2000.

[39] J.-S. Coron. Optimal security proofs for PSS and other signature
schemes. In Advances in Cryptology — Eurocrypt 2002, volume 2332 of
Lecture Notes in Computer Science, pages 272–287. Springer, 2002.

[40] J.-S. Coron, Y. Dodis, C. Malinaud, and P. Puniya. Merkle-Damg̊ard
revisited: How to construct a hash function. In Advances in Cryptology
— Crypto 2005 [8], pages 430–448.

466 References

[41] R. Cramer and V. Shoup. Signature schemes based on the strong RSA
assumption. ACM Transactions on Information and System Security,
3(3):161–185, 2000.

[42] R. Cramer and V. Shoup. Design and analysis of practical public-key
encryption schemes secure against adaptive chosen ciphertext attack.
SIAM Journal on Computing, 33(1):167–226, 2003.

[43] R. Crandall and C. Pomerance. Prime Numbers: A Computational
Perspective. Springer, 2nd edition, 2005.

[44] J. Daemen and V. Rijmen. The Design of Rijndael: AES — The Ad-
vanced Encryption Standard. Springer, 2002.

[45] W. Dai. Crypto++ 5.2.1 benchmarks. Available at
http://www.cryptopp.com/benchmarks.html.

[46] I. Damg̊ard. Collision free hash functions and public key signature
schemes. In Advances in Cryptology — Eurocrypt ’87, volume 304 of
Lecture Notes in Computer Science, pages 1–20. Springer, 1988.

[47] I. Damg̊ard. A design principle for hash functions. In Advances in
Cryptology — Crypto ’89 [3], pages 416–427.

[48] J. DeLaurentis. A further weakness in the common modulus protocol
for the RSA cryptoalgorithm. Cryptologia, 8:253–259, 1984.

[49] M. Dietzfelbinger. Primality Testing in Polynomial Time. Springer,
2004.

[50] W. Diffie and M. Hellman. New directions in cryptography. IEEE
Transactions on Information Theory, 22(6):644–654, 1976.

[51] D. Dolev, C. Dwork, and M. Naor. Nonmalleable cryptography. SIAM
Journal on Computing, 30(2):391–437, 2000.

[52] D. Dolev, C. Dwork, and M. Naor. Nonmalleable cryptography. SIAM
Journal on Computing, 30(2):391–437, 2000.

[53] C. Ellison and B. Schneier. Ten risks of PKI: What you’re not being told
about public key infrastructure. Computer Security Journal, 16(1):1–7,
2000.

[54] H. Feistel. Cryptography and computer privacy. Scientific American,
228(5):15–23, 1973.

[55] A. Fiat and A. Shamir. How to prove yourself: Practical solutions to
identification and signature problems. In Advances in Cryptology —
Crypto ’86 [2], pages 186–194.

[56] M. Fischlin. The Cramer-Shoup strong-RSA signature scheme revisited.
In Public Key Cryptography — PKC 2003, volume 2567 of Lecture Notes
in Computer Science, pages 116–129. Springer, 2003.

References 467

[57] S. Fluhrer, I. Mantin, and A. Shamir. Attacks on RC4 and WEP.
CryptoBytes, 5(2):26–34, 2002.

[58] J.B. Fraleigh. A First Course in Abstract Algebra. Addison Wesley, 7th
edition, 2002.

[59] E. Fujisaki, T. Okamoto, D. Pointcheval, and J. Stern. RSA-OAEP is
secure under the RSA assumption. In Advances in Cryptology — Crypto
2001 [7], pages 260–274.

[60] T. El Gamal. A public-key cryptosystem and a signature scheme based
on discrete logarithms. IEEE Trans. Info. Theory, 31(4):469–472, 1985.

[61] C.F. Gauss. Disquisitiones arithmeticae (english edition). 1986.

[62] R. Gennaro, S. Halevi, and T. Rabin. Secure hash-and-sign signatures
without the random oracle. In Advances in Cryptology — Eurocrypt ’99
[6], pages 123–139.

[63] E.-J. Goh, S. Jarecki, J. Katz, and Nan Wang. Efficient signature
schemes with tight security reductions to the Diffie-Hellman problems.
J. Cryptology, to appear.

[64] O. Goldreich. Two remarks concerning the Goldwasser-Micali-Rivest
signature scheme. In Advances in Cryptology — Crypto ’86 [2], pages
104–110.

[65] O. Goldreich. Foundations of Cryptography, vol. 1: Basic Tools. Cam-
bridge University Press, 2001.

[66] O. Goldreich. Foundations of Cryptography, vol. 2: Basic Applications.
Cambridge University Press, 2004.

[67] O. Goldreich, S. Goldwasser, and S. Micali. How to construct random
functions. Journal of the ACM, 33(4):792–807”, year = 1986.

[68] O. Goldreich, S. Goldwasser, and S. Micali. On the cryptographic ap-
plications of random functions. In Advances in Cryptology — Crypto
’84 [1], pages 276–288.

[69] O. Goldreich and L. Levin. A hard-core predicate for all one-way func-
tions. In Proc. 21st Annual ACM Symposium on Theory of Computing,
pages 25–32, 1989.

[70] S. Goldwasser and S. Micali. Probabilistic encryption. Journal of Com-
puter and System Sciences, 28(2):270–299, 1984.

[71] S. Goldwasser, S. Micali, and R. Rivest. A digital signature scheme
secure against adaptive chosen-message attacks. SIAM J. Computing,
17(2):281–308, 1988.

468 References

[72] S. Goldwasser, S. Micali, and A.C.-C. Yao. Strong signature schemes.
In Proc. 15th Annual ACM Symposium on Theory of Computing, pages
431–439. ACM, 1983.

[73] D. Hankerson, A.J. Menezes, and S.A. Vanstone. Guide to Elliptic
Curve Cryptography. Springer, 2004.

[74] J. H̊astad. Solving simultaneous modular equations of low degree. SIAM
Journal on Computing, 17(2):336–341, 1988.

[75] J. H̊astad, R. Impagliazzo, L. Levin, and M. Luby. A pseudorandom
generator from any one-way function. SIAM Journal on Computing,
28(4):1364–1396, 1999.

[76] J. H̊astad and M. Näslund. The security of all RSA and discrete log
bits. Journal of the ACM, 51(2):187–230, 2004.

[77] I.N. Herstein. Abstract Algebra. Wiley, 3rd edition, 1996.

[78] H. Heys. A tutorial on linear and differential crypt-
analysis. Cryptologia, 26(3):189–221, 2002. Available at
http://citeseer.ist.psu.edu/443539.html.

[79] D. Kahn. The Codebreakers: The Comprehensive History of Secret
Communication from Ancient Times to the Internet. Scribner, 1996.

[80] A. Kalai. Generating random factored numbers, easily. Journal of
Cryptology, 16(4):287–289, 2003.

[81] J. Katz. Digital Signatures. Springer, 2007.

[82] J. Katz and C.-Y. Koo. On constructing universal one-way hash func-
tions from arbitrary one-way functions. J. Cryptology, to appear. Avail-
able at http://eprint.iacr.org/2005/328.

[83] J. Katz and M. Yung. Characterization of security notions for prob-
abilistic private-key encryption. Journal of Cryptology, 19(1):67–96,
2006.

[84] C. Kaufman, R. Perlman, and M. Speciner. Network Security: Private
Communication in a Public World. Prentice Hall, 2nd edition, 2002.

[85] L. Kohnfelder. Towards a practical public-key cryptosystem, 1978. Un-
dergraduate thesis, MIT.

[86] H. Krawczyk. The order of encryption and authentication for protecting
communication (or: How secure is SSL?). In Advances in Cryptology
— Crypto 2001 [7], pages 310–331.

[87] H. Kugel. America’s code breaker. Available for download from:
http://militaryhistory.about.com/.

References 469

[88] L. Lamport. Constructing digital signatures from a one-way function.
Technical Report CSL-98, SRI International, 1978.

[89] S. Levy. Crypto: How the Code Rebels Beat the Government — Saving
Privacy in the Digital Age. Viking, 2001.

[90] M. Luby. Pseudorandomness and Cryptographic Applications. Princeton
University Press, 1996.

[91] M. Luby and C. Rackoff. How to construct pseudorandom permutations
from pseudorandom functions. SIAM Journal on Computing, 17(2):373–
386, 1988.

[92] M. Matsui. Linear cryptanalysis method for DES cipher. In Advances in
Cryptology — Eurocrypt ’93, volume 765 of Lecture Notes in Computer
Science. Springer, 1994.

[93] A.J. Menezes, P.C. van Oorschot, and S.A. Vanstone. Handbook of
Applied Cryptography. CRS Press, 1997.

[94] R. Merkle. A digital signature scheme based on a conventional encryp-
tion function. In Advances in Cryptology — Crypto ’87, volume 293 of
Lecture Notes in Computer Science, pages 369–378. Springer, 1988.

[95] R. Merkle. A certified digital signature. In Advances in Cryptology —
Crypto ’89 [3], pages 218–238.

[96] R. Merkle. One way hash functions and DES. In Advances in Cryptology
— Crypto ’89 [3], pages 428–446.

[97] G.L. Miller. Riemann’s hypothesis and tests for primality. Journal of
Computer and System Sciences, 13(3):300–317, 1976.

[98] M. Naor and M. Yung. Universal one-way hash functions and their
cryptographic applications. In Proc. 21st Annual ACM Symposium on
Theory of Computing, pages 33–43. ACM, 1989.

[99] M. Naor and M. Yung. Public-key cryptosystems provably secure
against chosen ciphertext attacks. In Proc. 22nd Annual ACM Sym-
posium on Theory of Computing, pages 427–437, 1990.

[100] V.I. Nechaev. Complexity of a determinate algorithm for the discrete
logarithm. Mathematical Notes, 55(2):165–172, 1994.

[101] A.M. Odlyzko. Discrete logarithms: The past and the future. Designs,
Codes, and Cryptography, 19(2/3):129–145, 2000.

[102] National Bureau of Standards. Data encryption standard (DES), 1977.
Federal Information Processing Standard (FIPS), publication 46.

[103] National Bureau of Standards. DES modes of operation, 1980. Federal
Information Processing Standard (FIPS), publication 81.

470 References

[104] National Institute of Standards and Technology. The keyed-hash mes-
sage authentication code (HMAC), 2002. Federal Information Process-
ing Standard (FIPS), publication 198.

[105] P. Paillier. Public-key cryptosystems based on composite degree resid-
uosity classes. In Advances in Cryptology — Eurocrypt ’99 [6], pages
223–238.

[106] M.O. Rabin. Digitalized signatures. In R.A. Demillo, D.P. Dobkin, A.K.
Jones, and R.J. Lipton, editors, Foundations of Security Computation,
pages 155–168. Academic Press, 1978.

[107] M.O. Rabin. Digitalized signatures as intractable as factorization. Tech-
nical Report TR-212, MIT/LCS, 1979.

[108] M.O. Rabin. Probabilistic algorithm for testing primality. Journal of
Number Theory, 12(1):128–138, 1980.

[109] C. Rackoff and D. Simon. Non-interactive zero-knowledge proof of
knowledge and chosen ciphertext attack. In Advances in Cryptology
— Crypto ’91 [4], pages 433–444.

[110] R. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital
signatures and public-key cryptosystems. Communications of the ACM,
21(2):120–126, 1978.

[111] J. Rompel. One-way functions are necessary and sufficient for secure
signatures. In Proc. 22nd Annual ACM Symposium on Theory of Com-
puting, pages 387–394, 1990.

[112] B. Schneier. Applied Cryptography: Protocols, Algorithms, and Source
Code in C. Wiley, 2nd edition, 1995.

[113] C.E. Shannon. Communication theory of secrecy systems. Bell Systems
Technical Journal, 28(4):656–715, 1949.

[114] V. Shoup. Lower bounds for discrete logarithms and related problems.
In Advances in Cryptology — Eurocrypt ’97, volume 1233 of Lecture
Notes in Computer Science, pages 256–266. Springer, 1997.

[115] V. Shoup. Why chosen ciphertext security matters. Techni-
cal Report RZ 3076, IBM Zurich, November 1998. Available at
http://shoup.net/papers/expo.pdf.

[116] V. Shoup. OAEP reconsidered. In Advances in Cryptology — Crypto
2001 [7], pages 239–259.

[117] V. Shoup. A Computational Introduction to Number Theory and
Algebra. Cambridge University Press, 2005. Also available at
http://www.shoup.net/ntb.

References 471

[118] J.H. Silverman and J. Tate. Rational Points on Elliptic Curves. Un-
dergraduate Texts in Mathematics. Springer, 1994.

[119] G. Simmons. A ‘weak’ privacy protocol using the RSA crypto algorithm.
Cryptologia, 7:180–182, 1983.

[120] G. Simmons. A survey of information authentication. In G. Simmons,
editor, Contemporary Cryptology: The Science of Information Integrity,
pages 379–419. IEEE Press, 1992.

[121] R. Solovay and V. Strassen. A fast Monte-Carlo test for primality. SIAM
Journal on Computing, 6(1), pages = ”84–85”, year = ”1977”).

[122] D.R. Stinson. Universal hashing and authentication codes. Designs,
Codes, and Cryptography, 4(4):369–380, 1994.

[123] D.R. Stinson. Cryptography: Theory and Practice. Chapman &
Hall/CRC, 1st edition, 1995.

[124] D.R. Stinson. Cryptography: Theory and Practice. Chapman &
Hall/CRC, 3rd edition, 2005.

[125] W. Trappe and L. Washington. Introduction to Cryptography with Cod-
ing Theory. Prentice Hall, 2nd edition, 2005.

[126] G.S. Vernam. Cipher printing telegraph systems for secret wire and
radio telegraphic communications. Journal of the American Institute
for Electrical Engineers, 55:109–115, 1926.

[127] S.S. Wagstaff, Jr. Cryptanalysis of Number Theoretic Ciphers. Chap-
man & Hall/CRC Press, 2003.

[128] X. Wang, Y. L. Yin, and H. Yu. Finding collisions in the full SHA-1.
In Advances in Cryptology — Crypto 2005 [8], pages 17–36.

[129] X. Wang and H. Yu. How to break MD5 and other hash functions.
In Advances in Cryptology — Eurocrypt 2005, volume 3494 of Lecture
Notes in Computer Science, pages 19–35. Springer, 2005.

[130] L. Washington. Elliptic Curves: Number Theory and Cryptography.
Chapman & Hall/CRC Press, 2003.

[131] P. Weadon. The battle of Midway: AF is short of water, 2000. NSA
Historical Publications. Available at: http://www.nsa.gov under His-
torical Publications.

[132] H. Wu. The misuse of RC4 in Microsoft Word and Excel. Available at
http://eprint.iacr.org/2005/007.

[133] ANSI X9.9. American national standard for financial institution mes-
sage authentication (wholesale), 1981.

472 References

[134] A.C.-C. Yao. Theory and applications of trapdoor functions. In Proc.
23rd Annual Symposium on Foundations of Computer Science, pages
80–91. IEEE, 1982.

Appendix A

Mathematical Background

A.1 Identities and Inequalities

We list some standard identities and inequalities that are used throughout
the text.

THEOREM A.1 (Binomial Expansion Theorem) Let x, y be real
numbers, and let n be a positive integer. Then

(x + y)n =

n∑

i=0

(
n

i

)
xi yn−i.

PROPOSITION A.2 For all x ≥ 1 it holds that (1− 1/x)x ≤ e−1.

PROPOSITION A.3 For all x it holds that 1− x ≤ e−x.

PROPOSITION A.4 For all x with 0 ≤ x ≤ 1 it holds that

e−x ≤ 1−
(

1− 1

e

)
· x ≤ 1− x

2
.

A.2 Asymptotic Notation

We follow the standard notation for expressing the asymptotic behavior of
functions.

DEFINITION A.5 Let f(n), g(n) be functions from non-negative integers
to non-negative reals. Then:

• f(n) = O(g(n)) means that there exist positive integers c and n′ such
that for all n > n′ it holds that f(n) ≤ c · g(n).

473

474 Introduction to Modern Cryptography

• f(n) = Ω(g(n)) means that there exist positive integers c and n′ such
that for all n > n′ it holds that f(n) ≥ c · g(n).

• f(n) = Θ(g(n)) means that f(n) = O(g(n)) and f(n) = Ω(g(n)).

• f(n) = o(g(n)) means that limn→∞
f(n)
g(n) = 0.

• f(n) = ω(g(n)) means that limn→∞
f(n)
g(n) =∞.

Example A.6
Let f(n) = n4 + 3n + 500. Then:

• f(n) = O(n4).

• f(n) = O(n5). In fact, f(n) = o(n5).

• f(n) = Ω(n3 log n).

• f(n) = Θ(n4).

♦

A.3 Basic Probability

We assume students are familiar with basic probability theory, on the level
of what is covered in a typical undergraduate course on discrete mathematics.
Here we simply remind the reader of some notation and basic facts.

If E is an event, then Ē denotes the complement of that event; i.e., Ē is the
event that E does not occur. By definition, Pr[E] = 1−Pr[Ē]. If E1 and E2

are events, then E1 ∧ E2 denotes their conjunction; i.e., E1 ∧ E2 is the event
that both E1 and E2 occur. By definition, Pr[E1 ∧ E2] ≤ Pr[E1]. Events E1

and E2 are said to be independent if Pr[E1 ∧ E2] = Pr[E1] · Pr[E2].
Let F, E1, . . . , En be events such that Pr[E1∨· · ·∨En] = 1 and Pr[Ei∧Ej] =

0 for all i 6= j. That is, the Ei partition the space of all possible events, so
that with probability 1 exactly one of the events Ei occurs. Then

Pr[F] =
∑

i

Pr[F ∧Ei].

A special case is when n = 2 and E2 = Ē1, giving

Pr[F] = Pr[F ∧ E1] + Pr[F ∧ Ē1].

If E1 and E2 are events, then E1 ∨ E2 denotes the disjunction of E1 and
E2; that is, E1 ∨ E2 is the event that either E1 or E2 occur. It follows from

Mathematical Background 475

the definition that Pr[E1 ∨ E2] ≥ Pr[E1]. The union bound is often a very
useful upper-bound of this quantity

PROPOSITION A.7 (Union Bound)

Pr[E1 ∨E2] ≤ Pr[E1] + Pr[E2].

Note that repeated application of the union bound gives

Pr

[
k∨

i=1

Ei

]
≤

k∑

i=1

Pr[Ei]

for any events E1, . . . , Ek.

The conditional probability of E1 given E2, denoted Pr[E1 | E2], is defined
as

Pr[E1 | E2]
def
=

Pr[E1 ∧ E2]

Pr[E2]

as long as Pr[E2] 6= 0. (In case Pr[E2] = 0 then we leave Pr[E1 | E2] unde-
fined.) This represents the probability that event E1 occurs once it is given
that E2 has occurred. It follows immediately from the definition that

Pr[E1 ∧E2] = Pr[E1 | E2] · Pr[E2] ;

note that equality holds even if Pr[E2] = 0 as long as we interpret multiplica-
tion by zero on the right-hand side in the obvious way.

We can now easily derive Bayes’ theorem.

THEOREM A.8 (Bayes’ theorem) If Pr[E2] 6= 0 then

Pr[E1 | E2] =
Pr[E1] · Pr[E2 | E1]

Pr[E2]
.

PROOF We have

Pr[E1 | E2] =
Pr[E1 ∧ E2]

Pr[E2]

=
Pr[E2 ∧ E1]

Pr[E2]

=
Pr[E2 | E1] · Pr[E1]

Pr[E2]
.

476 Introduction to Modern Cryptography

A.4 The “Birthday” Problem

If we choose q elements y1, . . . , yq uniformly at random from a set of size N ,
what is the probability that there exist distinct i, j with yi = yj? We refer
to the stated event as a collision, and denote the probability of this event by
coll(q, N). Determining the value of coll(q, N) has been extensively studied,
and is related to the so-called birthday problem: what size group of people
do we need to take such that with probability 1/2 some pair of people in the
group share a birthday? To see the relationship, let yi denote the birthday of
the ith person in the group. If there are q people in the group then we have
q values y1, . . . , yq chosen uniformly from {1, . . . , 365}, making the simplify-
ing assumption that birthdays are uniformly and independently distributed
among the 365 days of a non-leap year. Furthermore, matching birthdays cor-
respond to a collision, i.e., distinct i, j with yi = yj . So the desired solution
to the birthday problem is given by the minimal (integer) value of q for which
coll(q, 365) ≥ 1/2. (The answer may surprise you — taking q = 23 people
suffices!)

In this section, we prove coarse lower and upper bounds on coll(q, N). Taken
together and summarized at a high level, they show that if q <

√
N then

the probability of a collision is Θ(q2/N); alternately, for q = Θ(
√

N) the
probability of a collision is constant.

An upper bound for the collision probability, useful when q is small, is easy
to obtain.

LEMMA A.9 Fix a positive integer N , and say q elements y1, . . . , yq are
chosen uniformly and independently at random from a set of size N . Then

the probability that there exist distinct i, j with yi = yj is at most q2

2N . That
is,

coll(q, N) ≤ q2

2N
.

PROOF The proof is a simple application of the union bound (Proposi-
tion A.7). Recall that a collision means that there exist distinct i, j with
yi = yj . Let Coll denote the event of a collision, and let Colli,j denote the
event that yi = yj . It is immediate that Pr[Colli,j] = 1/N for any distinct i, j.
Furthermore,

Coll =
∨

i6=j

Colli,j

Mathematical Background 477

and so repeated application of the union bound implies that

Pr [Coll] = Pr


∨

i6=j

Colli,j




≤
∑

i6=j

Pr [Colli,j] =

(
q

2

)
· 1

N
≤ q2

2N
.

LEMMA A.10 Fix a positive integer N , and say q ≤
√

2N elements
y1, . . . , yq are chosen uniformly and independently at random from a set of
size N . Then the probability that there exist distinct i, j with yi = yj is at

least q(q−1)
4N . That is,

coll(q, N) ≥ q(q − 1)

4N
.

PROOF Recall that a collision means that there exist distinct i, j with
yi = yj . Let Coll denote this event. Let NoColli be the event that there
is no collision among y1, . . . , yi; that is, yj 6= yk for all j < k ≤ i. Then
NoCollq = Coll is the event that there is no collision at all.

If NoCollq occurs then NoColli must also have occurred for all i ≤ q. Thus,
we have

Pr[NoCollq] = Pr[NoColl1] · Pr[NoColl2 | NoColl1] · · ·Pr[NoCollq | NoCollq−1].

Now, Pr[NoColl1] = 1 since y1 cannot collide with itself. Furthermore, if event
NoColli occurs then {y1, . . . , yi} contains i distinct values; so, the probability
that yi+1 collides with one of these values is i

N and hence the probability that

yi+1 does not collide with any of these values is 1− i
N . This means

Pr[NoColli+1 | NoColli] = 1− i

N
,

and so

Pr[NoCollq] =

q−1∏

i=1

(
1− i

N

)
.

Since i/N < 1 for all i, we have 1− i
N ≤ e−i/N (by Inequality A.3) and so:

Pr[NoCollq] ≤
q−1∏

i=1

e−i/N = e−
∑q−1

i=1 (i/N) = e−q(q−1)/2N .

We conclude that

Pr[Coll] = 1− Pr[NoCollq] ≥ 1− e−q(q−1)/2N ≥ q(q − 1)

4N
,

478 Introduction to Modern Cryptography

using Inequality A.4 in the last step (note that q(q − 1)/2N < 1).

Appendix B

Supplementary Algorithmic Number
Theory

For the cryptographic constructions given in this book to be efficient (i.e.,
to run in time polynomial in the lengths of their inputs), it is necessary for
these constructions to utilize efficient (that is, polynomial-time) algorithms for
performing basic number-theoretic operations. Though in some cases these
number-theoretic algorithms are trivial, it is still worthwhile to pause and con-
sider their efficiency since for cryptographic applications it is not uncommon
to use integers that are thousands of bits long. In other cases the algorithms
themselves are quite clever, and an analysis of their performance may rely on
non-trivial group-theoretic results.

In Section B.1 we describe basic algorithms for integer arithmetic. Here
we cover the familiar algorithms for addition, subtraction, etc. as well as
the Euclidean algorithm for computing greatest common divisors. We also
discuss the extended Euclidean algorithm, assuming for that discussion that
the reader has covered the material in Section 7.1.1.

In Section B.2 we show various algorithms for modular arithmetic. In addi-
tion to a brief discussion of basic modular operations (i.e., modular reduction,
addition, multiplication, and inversion), we discuss algorithms for problems
that are less commonly encountered outside the field of cryptography: expo-
nentiation modulo N (as well as in arbitrary groups) and choosing a random
element of ZN or Z∗N (or in an arbitrary group). This section assumes famil-
iarity with the basic group theory covered in Section 7.1.

The material listed above is used implicitly throughout the entire book,
though it is not absolutely necessary to read this material in order to follow the
book. (In particular, the reader willing to accept the results of this Appendix
without proof can simply read the summary of these results in the theorems
below.) The final section of the appendix, which discusses the issue of finding
generators in cyclic groups and assumes the results of Section 7.3.1, contains
material that is hardly used at all, and is included mainly for completeness
and reference.

Since our goal is only to establish that these problems can be solved in
polynomial time, we have opted for simplicity rather than efficiency in our
selection of algorithms and their descriptions (as long as the algorithms run
in polynomial time). Similarly, we generally will not be interested in the
exact running time of the algorithms we present beyond establishing that

479

480 Introduction to Modern Cryptography

they indeed run in polynomial time. The reader who is seriously interested
in implementing these algorithms is forewarned to look at other sources for
more efficient alternatives as well as various techniques for speeding up the
necessary computations.

The results discussed in this Appendix are encapsulated in the following
theorems:

THEOREM B.1 (Integer Operations) Given integers a and b, it is
possible to perform the following operations in time polynomial in ‖a‖ and ‖b‖:

1. computing the sum a + b and the difference a− b;

2. computing the product ab

3. computing positive integers q and r < b such that a = qb + r (i.e.,
division with remainder);

4. computing the greatest common divisor of a and b, gcd(a, b);

5. computing integers X, Y with Xa + Y b = gcd(a, b).

THEOREM B.2 (Modular Operations) Given integers a, b, and N , it
is possible to perform the following operations in time polynomial in ‖a‖, ‖b‖,
and ‖N‖:

1. computing the modular reduction a mod N ;

2. computing the sum (a + b) mod N , the difference (a − b) mod N , and
the product ab mod N ;

3. computing the multiplicative inverse a−1 mod N , when a is invertible
modulo N (it is also possible to determine whether a is invertible mod-
ulo N is time polynomial in n);

4. computing the exponentiation ab mod N ;

5. choosing an element uniformly at random from ZN or Z∗N .1

THEOREM B.3 (Group Exponentiation) Let G be a group (written
multiplicatively). Let g be an element of the group and let b be a non-negative
integer. Then gb can be computed using poly(‖b‖) group operations.

Theorem B.2(4) is just a special case of the above.

1Of course, we need a probabilistic algorithm in this case. Furthermore, the algorithm has
a small probability of failure; see Section B.2.4 for detailed discussion.

Supplementary Algorithmic Number Theory 481

THEOREM B.4 (Choosing Random Elements) There exists a ran-
domized algorithm with the following properties: on input N ,

• the algorithm runs in time polynomial in ‖N‖;

• the algorithm outputs fail with probability negligible in ‖N‖; and

• conditioned on not outputting fail, the algorithm outputs a uniformly-
distributed element of ZN .

A algorithm with analogous properties exists for Z∗N as well.

By way of notation, we let x ← ZN denote random selection of an ele-
ment x from ZN using, e.g., the algorithm guaranteed by the above theorem
(with analogous notation with Z∗N). Since the probability of outputting fail is
negligible, we ignore it (and instead leave this possibility implicit).

THEOREM B.5 (Testing and Finding Generators) Let G be a cyclic
group of order q, and assume that the group operation and the selection of a
random group element can be carried out in unit time.

1. There exists an algorithm that, on input q, the prime factorization of q,
and an element g ∈ G, runs in poly(‖q‖) time and correctly determines
whether or not g is a generator of G.

2. There exists a randomized algorithm that, on input q and the prime
factorization of q, runs in poly(‖q‖) time and outputs a generator of G

except with probability negligible in ‖q‖. Conditioned on the output being
a generator it is uniformly-distributed among the generators of G.

B.1 Integer Arithmetic

B.1.1 Basic Operations

We begin our exploration of algorithmic number theory with a discussion
of integer addition/subtraction, multiplication, and division with remainder.
A little thought shows that all these operations can be carried out in time
polynomial in the input length using the standard “grade-school” algorithms
for these problems. For example, addition of two positive integers a and b
with a > b can be done in time linear in ‖a‖ by stepping one-by-one through
the bits of a and b, starting with the low-order bits, and computing the cor-
responding output bit and a “carry bit” at each step. (Details are omitted.)
Multiplication of two n-bit integers a and b, to take another example, can be
done by first generating a list of n integers of length at most 2n (each of which

482 Introduction to Modern Cryptography

is equal to a · 2i−1 · bi, where bi is the ith bit of b) and then adding these n
integers together to obtain the final result.

Although these grade-school algorithms already suffice to demonstrate that
the aforementioned problems can be solved in polynomial time, it is interesting
to note that these algorithms are in some cases not the best ones available. As
an example, the simple algorithm for multiplication given above runs in time
O(n2) to multiply two n-bit integers, but there exists an alternate algorithm
running in time O(nlog2 3) (and even that is not the best possible). While the
difference is insignificant for numbers of the size we encounter daily, it becomes
noticeable when the numbers are large. In cryptographic applications it is
not uncommon to use integers that are thousands of bits long, and a judicious
choice of which algorithms to use then becomes critical.

B.1.2 The Euclidean and Extended Euclidean Algorithms

Recall from Section 7.1 that gcd(a, b), the greatest common divisor of two
integers a and b, is the largest integer d that divides both a and b. We state
an easy proposition regarding the greatest common divisor, and then show
how this leads to an efficient algorithm for computing gcd’s.

PROPOSITION B.6 Let a, b > 1 with b6 | a. Then

gcd(a, b) = gcd(b, a mod b).

PROOF If b > a the stated claim is immediate. So assume a > b. Write
a = qb + r for q, r positive integers and r < b (cf. Proposition 7.1); note that
r > 0 because b6 | a. Since r = a mod b, we prove the proposition by showing
that gcd(a, b) = gcd(b, r).

Let d = gcd(a, b). Then d divides both a and b, and so d also divides
r = a − qb. By definition of the greatest common divisor, we thus have
gcd(b, r) ≥ d = gcd(a, b).

Let d′ = gcd(b, r). Then d′ divides both b and r, and so d′ also divides
a = qb + r. By definition of the greatest common divisor, we thus have
gcd(a, b) ≥ d′ = gcd(b, r).

Since d ≥ d′ and d′ ≥ d, we conclude that d = d′.

The above proposition suggests the recursive Euclidean algorithm for com-
puting the greatest common divisor gcd(a, b) of two integers a and b:

Correctness of the algorithm follows readily from Proposition B.6. As for its
running time, we show below that on input (a, b) the algorithm makes fewer
than 2 · ‖b‖ recursive calls. Since checking whether b divides a and computing
a mod b can both be done in time polynomial in ‖a‖ and ‖b‖, this implies
that the entire algorithm runs in polynomial time.

Supplementary Algorithmic Number Theory 483

ALGORITHM B.7
The Euclidean algorithm GCD

Input: Integers a, b with a ≥ b > 0
Output: The greatest common divisor of a and b

if b divides a
return b

else
return GCD(b, a mod b)

PROPOSITION B.8 Consider an execution of GCD(a0, b0), and let ai, bi

(for i = 1, . . . , `) denote the arguments to the ith recursive call of GCD. Then
bi+2 ≤ bi/2 for 0 ≤ i ≤ `− 2.

PROOF Since bi+1 = ai mod bi, we always have bi+1 < bi and so the {bi}
decrease as i increases. Fixing arbitrary i with 0 ≤ i ≤ ` − 2, we show that
bi+2 ≤ bi/2. If bi+1 ≤ bi/2 we are done (because bi+2 < bi+1). Otherwise,
since ai+1 = bi, the (i + 1)st recursive call is

GCD(ai+1, bi+1) = GCD(bi, bi+1)

and

bi+2 = ai+1 mod bi+1 = bi mod bi+1 = bi − bi+1 < bi/2,

using the fact that bi > bi+1 > bi/2 for both the third equality and the final
inequality.

COROLLARY B.9 In an execution of GCD(a, b), there are at most 2 ‖b‖ − 2
recursive calls to GCD.

PROOF Let ai, bi (i = 1, . . . , `) denote the arguments to the ith recursive
call of GCD. The {bi} are always greater than zero, and the algorithm makes
no further recursive calls if it ever happens that bi = 1 (since then bi | ai).
The previous proposition indicates that the {bi} decrease by a factor of (at
least) 2 in every two iterations. It follows that the number of recursive calls
to GCD is at most 2 · (‖b‖ − 1).

The Extended Euclidean Algorithm

By Proposition 7.2, we know that for positive integers a, b there exist inte-
gers X, Y with Xa + Y b = gcd(a, b). A simple modification of the Euclidean
algorithm, called the extended Euclidean algorithm, can be used to find X, Y
in addition to computing gcd(a, b). You are asked to show correctness of the

484 Introduction to Modern Cryptography

ALGORITHM B.10
The extended Euclidean algorithm eGCD

Input: Integers a, b with a ≥ b > 0
Output: (d,X, Y) with d = gcd(a, b) and Xa + Y b = d

if b divides a return (b, 0, 1)
else

Compute integers q, r with a = qb + r and 0 ≤ r < b
(d, X, Y) := eGCD(b, r) /* note that Xb + Y r = d */

return (d, Y, X − Y q)

extended Euclidean algorithm in Exercise B.1, and to prove that the algorithm
runs in polynomial time in Exercise B.2.

B.2 Modular Arithmetic

We now turn our attention to some basic arithmetic operations modulo N .
In this section, N > 1 is arbitrary (and not, e.g., a product of two primes)
unless stated otherwise. We will use ZN to refer both to the set {0, . . . , N−1}
as well as to the group that results by considering addition modulo N among
the elements of this set. We use Z∗N similarly.

B.2.1 Basic Operations

Efficient algorithms for the basic arithmetic operations over the integers
immediately imply efficient algorithms for the corresponding arithmetic oper-
ations modulo N . For example, computing the modular reduction [a mod N]
can be done in time polynomial in ‖a‖ and ‖N‖ by simply computing division-
with-remainder over the integers. Next, say ‖N‖ = n and consider modular
operations on two elements a, b ∈ ZN . (Note that a, b have length at most
n. Actually, it is often convenient to simply require that all elements of ZN

have length exactly n, padding to the left with 0s if necessary.) Addition of a
and b modulo N can be done by first computing a + b, which is an integer of
length at most n + 1, and then reducing this intermediate result modulo N .
Similarly, multiplication modulo N can be performed by first computing the
integer ab of length at most 2n, and then reducing the result modulo N .
Since addition, multiplication, and division-with-remainder can all be done
in polynomial time, these give polynomial-time algorithms for addition and
multiplication modulo N .

Supplementary Algorithmic Number Theory 485

B.2.2 Computing Modular Inverses

Our discussion thus far has shown how to add, subtract, and multiply mod-
ulo N . One operation we are missing is “division” or, equivalently, computing
multiplicative inverses modulo N . Recall from Section 7.1.2 that the multi-
plicative inverse (modulo N) of an element a ∈ ZN is an element a−1 ∈ ZN

such that a · a−1 = 1 mod N . Proposition 7.7 shows that a has an inverse
if and only if gcd(a, N) = 1, i.e., if and only if a ∈ Z∗N . Thus, using the
Euclidean algorithm we can easily determine whether a given element a has
a multiplicative inverse modulo N .

Given N and a ∈ ZN with gcd(a, N) = 1, Proposition 7.2 tells us that
there exist integers X, Y with Xa + Y N = 1. Recall that [X mod N] is the
multiplicative inverse of a; this holds since

[X mod N] · a = Xa = 1− Y N = 1 mod N.

X and Y satisfying Xa+Y N = 1 can be found efficiently using the extended
Euclidean algorithm eGCD shown in Section B.1.2. This leads to the following
polynomial-time algorithm for computing multiplicative inverses:

ALGORITHM B.11
Computing modular inverses

Input: Modulus N ; element a
Output: a−1 (if it exists)

(d, X, Y) := eGCD(a,N) /* note that Xa + Y N = gcd(a, N) */

if d 6= 1 return “a is not invertible modulo N”
else return [X mod N]

B.2.3 Modular Exponentiation

More challenging is the case of exponentiation modulo N ; that is, comput-
ing ab mod N for base a ∈ ZN and integer exponent b > 0. (When b = 0
the problem is easy. When b < 0 and a ∈ Z∗N then ab = (a−1)−b mod N
and the problem is reduced to the case of exponentiation with a positive
exponent given that we can compute inverses as discussed in the previous
section.) Notice first that the basic approach used in the case of addition
and multiplication (i.e., computing the integer ab and then reducing this in-
termediate result modulo N) does not work here: the integer ab has length∥∥ab
∥∥ = Θ(log ab) = Θ(b · ‖a‖), and so even storing the intermediate result ab

would require time that is exponential in ‖b‖ = Θ(log b).
We can address this problem by reducing modulo N repeatedly throughout

the process of computing the result, rather than simply waiting until the
end to reduce modulo N . This has the effect of keeping the intermediate

486 Introduction to Modern Cryptography

results “small” throughout the computation. Even with this important initial
observation, it is still non-trivial to design a polynomial-time algorithm for
modular exponentiation. Consider the following näıve approach:

ALGORITHM B.12
A näıve algorithm for modular exponentiation

Input: Modulus N ; base a ∈ ZN ; exponent b > 0
Output: ab mod N

x := 1
for i = 1 to b:

x := x · a mod N
return x

Since this algorithm uses b iterations of the inner loop, it still runs in time
that is exponential in ‖b‖!

The näıve algorithm given above can be viewed as relying on the following
recurrence:

ab mod N = a · ab−1 mod N = a · a · ab−2 mod N = · · · ,

and could easily have been written recursively in which case the correspon-
dence would be even more clear. Looking at the above equation, we can see
that any algorithm depending on this recurrence is going to require Θ(b) time.
We can do better by making use of the following recurrence:

ab mod N =
(
a

b
2

)2

mod N when b is even

ab mod N = a ·
(
a

b−1
2

)2

mod N when b is odd.

Following this approach leads to a recursive algorithm — called, for obvious
reasons, “square-and-multiply” (or sometimes “repeated squaring”) — that
requires only O(log b) = O(‖b‖) modular squarings/multiplications. In the
algorithm, the length of b decreases by 1 in each recursive call; it follows that
the number of recursive calls is at most ‖b‖. Furthermore, the operations
done during each recursive call can be performed in time polynomial in ‖a‖
and ‖N‖. It follows that the algorithm as a whole runs in time polynomial in
‖a‖, ‖b‖, and ‖N‖. In fact, looking carefully at the algorithm we see that it
performs at most 2 · ‖b‖ multiplications-plus-reductions modulo N .

For reasons of efficiency, an iterative algorithm is preferred to a recursive
algorithm such as the one shown above; see Exercise B.3.

Fix a and N and consider the modular exponentiation function given by
fa,N (b) = ab mod N . We have just seen that computing fa,N is easy. In
contrast, computing the inverse of this function — that is, computing b given
a, N , and ab mod N — is widely believed to be hard when a and N are

Supplementary Algorithmic Number Theory 487

ALGORITHM B.13
Algorithm ModExp for efficient modular exponentiation

Input: Modulus N ; base a ∈ ZN ; exponent b > 0
Output: ab mod N

if b = 1 return a
else

if b is even
t := ModExp (N, a, b/2)
return t2 mod N

if b is odd
t := ModExp (N, a, (b− 1)/2)
return a · t2 mod N

chosen appropriately. Inverting the modular exponentiation function is known
as solving the discrete logarithm problem, something we will discuss in great
detail in Section 7.3.2.

Exponentiation in Arbitrary Groups

The efficient modular exponentiation algorithm given above carries over in
a straightforward way to enable efficient exponentiation in any group, as long
as the underlying group operation can be performed efficiently. Specifically,
if G is a group and g is an element of G, then gb can be computed using at
most 2 · ‖b‖ applications of the underlying group operation.

Considering the (additive) group ZN , note that this gives a different method
for computing the “exponentiation”

b · g mod N
def
= g + · · ·+ g︸ ︷︷ ︸

b times

modN

than the method discussed earlier that relies on standard integer multiplica-
tion followed by a modular reduction. In comparing the two approaches to
solving the same problem, note that the original algorithm uses specific in-
formation about ZN ; in particular, it (essentially) treats the “exponent” b as
an element of (the set) ZN . In contrast, the “square-and-multiply” algorithm
just presented treats ZN only as an abstract group. (Of course, the group
operation of addition modulo N relies on the specifics of ZN .)

The point of this discussion is merely to illustrate that some group algo-
rithms are generic (i.e., they apply equally well to all groups) while some
group algorithms rely on specific properties of a particular group or class of
groups. We will see further examples of this phenomenon in Chapter 8.

B.2.4 Choosing a Random Group Element

For cryptographic applications, it is often required to choose a random
element of a given group G. (Recall our convention that “random” means

488 Introduction to Modern Cryptography

“uniformly-random.”) We first treat the problem in the abstract, and then
focus specifically on the cases of ZN and Z∗N .

Elements of a group G must be specified using some representation of these
elements as bit-strings, where we assume without any real loss of generality
that the elements of a given group are all represented using strings of the
same length. (It is also crucial, especially for our discussion in this section,
that there is a unique string representing each group element.) For example,
if ‖N‖ = n then elements of ZN can all be represented as strings of length n,
where the integer a ∈ ZN is simply padded to the left with 0s in case ‖a‖ < n.

We do not focus much on the issue of representation, since for all the groups
considered in this text the representation can simply be taken to be the “nat-
ural” one (as in the case of ZN , above). Note, however, that different repre-
sentations of the same group can affect the complexity of performing various
computations, and so choosing the “right” representation for a given group is
often important in practice. Since our goal is only to show polynomial-time
algorithms for each of the operations we need (and not to show the most ef-
ficient algorithms known), the exact representation used is less important for
our purposes. Moreover, most of the “higher-level” algorithms we present use
the group operation in a “black-box” manner, so that as long as the group
operation can be performed in polynomial time (in some parameter) then the
resulting algorithm will run in polynomial time as well.

Given a group G where elements are represented by strings of length `, a
random group element can be selected by choosing random `-bit strings until
a group element is found. To obtain an algorithm with bounded running
time, we introduce a parameter t bounding the maximum number of times
this process is repeated; if all t iterations fail to select an element of G, then
the algorithm outputs fail.2 That is:

ALGORITHM B.14
Choosing a random group element

Input: A (description of a) group G; length-parameter `;
a parameter t

Output: A random element of G

for i = 1 to t:
x← {0, 1}`
if x ∈ G return x

return “fail”

It is fairly obvious that whenever the above algorithm does not output fail,

2An alternate possibility is to output some arbitrary element of G. Since we will eventually
set t such that the probability that all t iterations fail is negligible, it does not matter much
which method is used.

Supplementary Algorithmic Number Theory 489

it outputs a uniformly-selected element of G. This is simply because each
element of G is equally likely to be chosen in any given iteration. Formally,
if we let Fail denote the event that the algorithm outputs fail, then for any
element g ∈ G we have

Pr
[
output of the algorithm equals g | Fail

]
=

1

|G| .

What is the probability that the algorithm outputs fail? In any given itera-
tion the probability that x ∈ G is exactly |G|/2`, and so the probability that
x does not lie in G in any of the t iterations is

(
1− |G|

2`

)t

. (B.1)

In cryptographic settings, there will be a security parameter n and the group
G (as well as `) will depend on n rather than being fixed. More formally, we
now fix some class C of groups (rather than a single group), associate a value n
with each group in the class, and ask whether it is possible to sample a random
element from a group G ∈ C in time polynomial in the parameter n associated
with G. That is, we ask whether it is possible to sample a random element in
polynomial time from the groups in the class C.

(As a technical note, the class also specifies a representation for each group
G in the class. We require ` = poly(n) and also that all groups sharing a
particular value of n have the same length-parameter ` = `(n).)

As an example, we will later consider the class of groups C = {ZN | N ∈ Z},
with parameter n = ‖N‖ associated with the group ZN in this class. Then
the question is whether it is possible to sample a random element from ZN in
poly(‖N‖) time.

Actually, there is a trade-off between the running time of the algorithm and
the probability that the algorithm outputs fail, since increasing t decreases the
probability of failure but increases the worst-case running time. What we need
for cryptographic applications is an algorithm where the worst-case running
time is polynomial in n, while the failure probability is negligible in n. We
claim that to achieve an algorithm of this sort, two conditions must hold for
each group G (with parameter n) in the class:

1. It should be possible to determine in poly(n) time whether an `(n)-bit
string is an element of G or not; and

2. the probability that a random `(n)-bit string is an element of G should
be at least 1/poly(n).

The first condition is obvious, since our algorithm for choosing a random
element needs to check whether x ∈ G. As for the second, we prove here
merely that it is sufficient. Say the second condition holds, i.e., there is a
polynomial p such that for every group G (in the given class) with associated

490 Introduction to Modern Cryptography

parameter n and length-parameter ` = `(n), the probability that a random
`(n)-bit string is an element of G is at least 1/p(n). Set t(n) = dp(n) · ne.
Then the probability that the algorithm outputs fail is (cf. Equation B.1):

(
1− |G|

2`

)t

≤
(

1− 1

p(n)

)dp(n)·ne

≤
((

1− 1

p(n)

)p(n)
)n

≤
(
e−1
)n

= e−n ,

using Proposition A.2 for the third inequality. We thus see that when the
second condition holds, it is possible to obtain an algorithm with t = poly(n)
and failure probability negligible in n.

We stress that the two conditions given above are not guaranteed to hold
for some arbitrary class of groups. Instead, they must be verified for each
particular class of interest.

The Case of ZN

Consider the class of groups of the form ZN , with n = ‖N‖. It is easy to
verify each of the conditions outlined previously. Checking whether an n-bit
string x (interpreted as an integer of length at most n) is an element of ZN

simply requires checking whether x < N , which can clearly be done in poly(n)
time. Furthermore, the probability that a random n-bit string lies in ZN is

N

2n
≥ 2n−1

2n
=

1

2
.

For concreteness, we show the algorithm that results from the preceding
discussion:

ALGORITHM B.15
Choosing a random element of ZN

Input: Modulus N of length n
Output: A random element of ZN

for i = 1 to 2n:
x← {0, 1}n
if x < N return x

return “fail”

This algorithm runs in poly(n) time, and outputs fail with probability negli-
gible in n.

Supplementary Algorithmic Number Theory 491

The Case of Z∗N

Consider next groups of the form Z∗N , with n = ‖N‖ as before. We leave
it to the exercises to show how to determine whether an n-bit string x is an
element of Z∗N or not. To prove the second condition, we need to show that
φ(N)
2n ≥ 1/poly(n). Since

φ(N)

2n
=

N

2n
· φ(N)

N

and we have already seen that N
2n ≥ 1

2 , the desired bound is a consequence of
the following theorem.

THEOREM B.16 For N ≥ 3 of length n, we have φ(N)
N > 1/2n.

(We note for completeness that stronger bounds are known, but the above
suffices for our purpose.) We do not prove the theorem, but instead content
ourselves with lower-bounding φ(N)/N in two special cases: when N is prime,
or when N is a product of two close-to-equal-length (distinct) primes.

The analysis is easy when N is prime. In this case φ(N) = N − 1 and (as
when we analyzed the algorithm for choosing a random element of ZN) we
have

φ(N)

2n
=

N − 1

2n
≥ 2n−1

2n
=

1

2
.

Consider next the case of N = pq for p and q distinct primes each of length
roughly n/2.

PROPOSITION B.17 Let N = pq where p and q are distinct primes

each of length at least n/2. Then φ(N)
N = 1− negl(n).

PROOF We have

φ(N)

N
=

(p− 1)(q − 1)

pq
= 1− 1

q
− 1

p
+

1

pq
> 1− 1

q
− 1

p
≥ 1− 2 · 2−(n

2−1) .

The proposition follows.

We conclude that when N is prime or the product of two distinct large
primes, there exists an algorithm for generating a random element of Z∗N
that runs in time polynomial in n = ‖N‖ and outputs fail with probability
negligible in n.

In the rest of the book, we simply write “x← ZN” or “x← Z∗N” to denote
random selection of an element x from ZN or Z∗N using, e.g., one of the
algorithms of this section. (Note also that choosing a random element from

492 Introduction to Modern Cryptography

ZN is equivalent to selecting a random integer in the range {0, . . . , N − 1}.)
We stress that we will simply assume that x lies in the desired range, with
the implicit understanding that the algorithm for choosing x may output fail

(or an x that is not in the desired range) with negligible probability.

B.3 * Finding a Generator of a Cyclic Group

In this section we will be concerned with the problem of finding a generator
of an arbitrary cyclic group G of order q. Note that, in contrast to most
of the rest of the book, here q does not necessarily denote a prime number;
indeed, the problem of finding a generator when q is prime is rendered trivial
by Corollary 7.52.

Our approach to finding a generator will be to find a random generator,
proceeding in a manner very similar to that of Section B.2.4. Namely, we
will repeatedly sample random elements of G until we find an element that
is a generator. As in Section B.2.4, an analysis of this method requires an
understanding of two things:

• How to efficiently test whether a given element is a generator; and

• the fraction of group elements that are generators.

In order to understand these issues, we first develop a bit of additional group-
theoretic background.

B.3.1 Group-Theoretic Background

Recall that the order of an element h is the smallest positive integer i for
which hi = 1. Let g be a generator of a group G of order q > 1, and note
that this means that the order of g is q. Consider any element h ∈ G that
is not the identity (the identity cannot be a generator of G), and let us ask
whether this element might also be a generator of G. Since g generates G, we
can write h = gx for some x ∈ {1, . . . , q − 1} (note x 6= 0 since h is not the
identity). Consider two cases:

Case 1: gcd(x, q) = r > 1. Write x = α · r and q = β · r with α, β non-zero
integers less than q. Then:

hβ = (gx)β = gαrβ = (gq)α = 1.

So the order of h is at most β < q, and h cannot be a generator of G.

Case 2: gcd(x, q) = 1. Let i ≤ q be the order of h. Then

g0 = 1 = hi = (gx)
i
= gxi,

Supplementary Algorithmic Number Theory 493

implying xi = 0 mod q by Proposition 7.50. This means that q |xi. Since
gcd(x, q) = 1, however, Proposition 7.3 shows that q | i and so i = q. We
conclude that h is a generator of G.

Summarizing the above, we see that for x ∈ {0, . . . , q − 1} the element
h = gx is a generator of G exactly when gcd(x, q) = 1. We have seen the set
{x ∈ {0, . . . , q − 1} | gcd(x, q) = 1} before — it is exactly Z∗q ! We have thus
proved the following:

THEOREM B.18 Let G be a cyclic group of order q > 1 with generator
g. Then there are φ(q) generators of G, and these are exactly given by the set
{gx | x ∈ Z∗q}.

In particular, if G is a group of prime order q, then it has φ(q) = q − 1
generators exactly in agreement with Corollary 7.52.

We turn next to the question of determining whether a given element h
is a generator of G. Of course, one way to check whether h generates G is
to simply enumerate {h0, h1, . . . , hq−1} to see whether this list includes every
element of G. This requires time linear in q (i.e., exponential in ‖q‖) and
is therefore unacceptable for our purposes. Another approach, if we already
know a generator g, is to compute the discrete logarithm x = logg h and then
apply the previous theorem; in general, however, we may not have such a g,
and anyway computing the discrete logarithm may itself be a hard problem.

If we know the factorization of q, we can do better.

PROPOSITION B.19 Let G be a group of order q, and let q =
∏k

i=1 pei

i

be the prime factorization of q, where the {pi} are distinct primes and ei ≥ 1.
Set qi = q/pi. Then h ∈ G is a generator of G iff

hqi 6= 1 for i = 1, . . . , k.

PROOF One direction is easy. Say hqi = 1 for some i. Then the order of
h is at most qi < q, and so h cannot be a generator.

Conversely, say h is not a generator but instead has order q′ < q. By
Proposition 7.51, we know q′ | q. This implies that q′ can be written as q′ =∏k

i=1 p
e′

i

i , where e′i ≥ 0 and for at least one index j we have e′j < ej . But

then q′ divides qj = p
ej−1
j ·∏i6=j pei

i , and so (using Proposition 7.50) hqj =

h[qj mod q′] = h0 = 1.

Note that the proposition does not require G to be cyclic; if G is not cyclic
then every element h ∈ G will satisfy hqi = 1 for some i and so there are no
generators (as must be the case if G is not cyclic).

494 Introduction to Modern Cryptography

B.3.2 Efficient Algorithms

We now show how it is possible to efficiently test whether a given element
is a generator, as well as how to efficiently find a generator in an arbitrary
group.

Testing if an Element is a Generator

Proposition B.19 immediately suggests an efficient algorithm for deciding
whether a given element h is a generator or not.

ALGORITHM B.20
Testing whether an element is a generator

Input: Group order q; prime factors {pi}ki=1 of q; element h ∈ G

Output: A decision as to whether h is a generator of G

for i = 1 to k:
if hq/pi = 1 return “h is not a generator”

return “h is a generator”

Correctness of the algorithm is evident from Proposition B.19. We now
show that the algorithm terminates in time polynomial in ‖q‖. Since hq/pi

can be computed in polynomial time in each iteration, we need only show
that the number of iterations k is polynomial. This must be the case since an
integer q can have no more than log2 q = O(‖q‖) prime factors; this is true
because

q =

k∏

i=1

pei

i ≥
k∏

i=1

pi ≥
k∏

i=1

2 = 2k

and so k ≤ log2 q.

The above algorithm requires the prime factors of the group order q to
be provided as input. Interestingly, there is no known efficient algorithm for
testing whether an element of an arbitrary group is a generator when the
factors of the group order are not known.

The Fraction of Elements that are Generators

As shown in Theorem B.18, the fraction of elements of a group G of order q
that are generators is φ(q)/q. Theorem B.16 says that φ(q)/q = Ω(1/‖q‖).
The fraction of elements that are generators is thus sufficiently high to ensure
that sampling a polynomial number of elements from the group guarantees
that a generator will be found with all but negligible probability. (The analysis
is the same as in Section B.2.4.)

Supplementary Algorithmic Number Theory 495

Concrete Examples in Z∗p

Putting everything together, there is an efficient probabilistic method for
finding a generator of a group G as long as the factorization of the group
order is known. When selecting a group for cryptographic applications, it is
therefore important that the group is chosen in such a way that this holds.
For groups of the form Z∗p, with p prime, some possibilities here include:

• As we have already discussed fairly extensively in Section 7.3.2, working
in a prime order subgroup of Z∗p has the effect of, among other things,
eliminating the above difficulties that arise when q is not prime. Recall
that one way to obtain such a subgroup is to choose p as a strong prime
(i.e., so that p = 2q+1 with q also prime) and then work in the subgroup
of quadratic residues modulo p (which is a subgroup of prime order q).

• Alternately, if p is a strong prime as above then the order of the cyclic
group Z∗p is 2q and so the factorization of the group order is known. A
generator of this group can thus be easily found, even though the group
does not have prime order.

• Another possibility is to generate random prime p in such a way that
the factorization of p− 1 is known. This is possible, but the details are
beyond the scope of this book.

References and Additional Reading

The book by Shoup [117] is highly recommended for those seeking to explore
the topics of this chapter in further detail. In particular, bounds on φ(N)/N
(and an asymptotic version of Theorem B.16) can be found in [117, Chapter 5].

A nice result by Kalai [80] gives an easy method for generating random
numbers along with their prime factorization.

Exercises

B.1 Prove correctness of the extended Euclidean algorithm.

B.2 Prove that the extended Euclidean algorithm runs in time polynomial
in the lengths of its inputs.

Hint: First prove a proposition analogous to Proposition B.8.

496 Introduction to Modern Cryptography

B.3 Develop an iterative algorithm for efficient (i.e., polynomial-time) com-
putation of [ab mod N]. (An iterative algorithm does not make recursive
calls to itself.)

Hint: Use auxiliary variables x (initialized to a) and t (initialized to 1),

and maintain the invariant t ·xb = ab mod N . The algorithm terminates

when x = 1 and t holds the final result.

Index

AES
competition, 173
design, 173–175
security, 175

Asymmetric, see public-key
Asymptotic security, 57
Avalanche effect, 156

Birthday attack, 125
Block cipher, see pseudorandom per-

mutation
Block ciphers

CBC mode of operation, 96
CTR mode of operation, 97
ECB mode of operation, 95
modes of operation, 95–100
OFB mode of operation, 96

Chosen-plaintext attacks, 81
Collision resistant hash function

birthday attack, 125
constructions in practice, 129–

131
definition, 124
Merkle-Damg̊ard, 127
security notions, 124
syntax, 123

Computational indistinguishability,
221

Concrete security, 49
Confusion-diffusion paradigm, 154
Cryptographic hash function, see

collision-resistant hash func-
tion

DES
avalanche effect, 164
design, 162–164

double-DES, 171
security, 168–170
triple-DES, 172

Differential cryptanalysis, 169, 176
Diffie-Hellman

key exchange protocol, 309
man-in-the-middle attacks, 313
public-key revolution, 306

Encryption, see private-key encryp-
tion, see public-key encryp-
tion

attack scenarios, 8
basic setting, 4
basic syntax, 5

Feistel network, 160

Hard-core predicate
definition, 187
Goldreich-Levin, 190

Historical ciphers, 9–18
Caesar, 9
substitution, 11
Vigenère, 14

HMAC, 135

Kerckhoffs’ principle, 6
Key distribution center (KDC), 303

Linear cryptanalysis, 169, 176

Merkle-Damg̊ard, 127
Message authentication code

CBC-MAC, 119
definition, 112
syntax, 110

Negligible function, 56

497

498 Introduction to Modern Cryptography

Nested MAC, 133

One-time pad, see perfect secrecy
One-way functions, 182–186

candidates, 185
definition, 183
families, 184
necessary for cryptography, 220
sufficient for private-key cryp-

tography, 215
One-way permutations, 184

Perfect secrecy
definition, 31
key size limitations, 37
one-time pad, 34
Shannon’s theorem, 38
Vernam’s cipher, 34

Polynomial-time computation, 54
Private-key cryptography

key distribution difficulties, 301
Private-key encryption

CCA-security, 100, 137
CPA-security, 82
eavesdropping security, 63
multiple message security, 78
probabilistic encryption, 79
semantic security, 64
syntax, 60

Private-key limitations
key distribution center, 303
multiple key difficulties, 302

Pseudorandom function
construction, 210
definition, 87
use in encryption, 89

Pseudorandom generator
construction, 201
definition, 70
increasing expansion factor, 203
use in encryption, 72

Pseudorandom permutation
construction, 213
definition, 93

Security parameter, 50

Signature scheme
definition, 403, 410
syntax, 402

Stream cipher, see pseudorandom
generator

modes for multiple encryptions,
79

synchronized mode, 79
unsynchronized mode, 80
use in encryption, 72

Substitution-permutation network,
154

Symmetric, see private-key

Vernam’s cipher, see perfect secrecy

