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Abstract 
Vaudenay [1] has presented an attack on the CBC mode of block ciphers, which uses padding 
according to the PKCS#5 standard. One of the countermeasures, which he has assumed, 
consisted of the encryption of the message M´= M || padding || hash(M || padding) instead of 
the original M. This can increase the length of the message by several blocks compared with 
the present padding. Moreover, Wagner [1] showed a security weakness in this proposal. The 
next correction, which Vaudenay proposed ("A Fix Which May Work") has a general 
character and doesn't solve practical problems with the real cryptographic interfaces used in 
contemporary applications. In this article we propose three variants of the CBC mode. From 
the external point of view they behave the same as the present CBC mode with the PKCS#5 
padding, but they prevent Vaudenay's attack. 
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side-channel, modes of operation, PKCS#5 padding, implementation, cryptoAPI 
 
Introduction 
Vaudenay's attack [1] on the CBC mode of block ciphers with the PKCS#5 padding [2] uses 
the information, which states, whether the deciphered text had the correct padding. One of 
Vaudenay's proposals consisted of the encryption of the message M´= M || padding || hash(M 
|| padding) instead of M, but he rejected it because of the theoretical weakness. From the 
practical point of view, the disadvantage of this proposal is, in particular, that during 
encryption of the last plaintext block several cipher text blocks arise, instead of 1 or 2 blocks 
as at present. This noticeably disrupts the semantics of contemporary cryptographic interfaces, 
for instance CryptoAPI [3]. 
 
The present CBC mode (according to the common semantics of programming interfaces) 
works as follows: If a part of the plaintext is encrypted, a cryptographic device will always 
return one ciphertext block for each plaintext block. There is the only one exception and this 
is the encryption of the last block of the plaintext. In this case one or two ciphertext blocks 
can be returned (depending on the length of the last block). Decryption works in the reverse 
order: A cryptographic device returns one plaintext block for each ciphertext block, except the 
decryption of the last block. After decryption of the last plaintext block, its padding is 
determined, cut off and the valid plaintext is returned. The characteristic of the PKCS#5 
padding is that the information, which part of the plaintext has to be cut off, is determined 
from and only from the last ciphertext block (this would be disrupted by Vaudenay's 



 2/5 

proposal). Based on this principal the cryptographic interfaces were built and therefore they 
will not work if it is violated.*) 
 
The goal of this contribution is to design an encryption for the last plaintext block, which 
respects the semantics of the widely used PKCS#5 padding (thereby preserving compatibility 
with the usual cryptographic interfaces) and at the same time prevents Vaudenay's attack. It is 
still possible that some systems do not enable the implementation of some proposed variants 
of encryption because of new requirements for working with key material. However we have 
paid the attention to minimizing the number of such systems. 
 
This article does not deal in any way with the alternative definition of padding. We state that 
our goal was to design countermeasures, which are practically usable. That means: They 
obviously eliminate Vaudenay's attack, they do not introduce other evidently practically 
exploitable weaknesses and they clearly do not violate the semantics of contemporary 
cryptographic interfaces. The analysis of the theoretical characteristics of the proposed 
variants is an open question. 
 
Example 
According to Vaudenay's proposal, if a 7 bytes long message M is encrypted using 3DES and 
SHA-1, we have to encrypt 7 bytes of M, 5 bytes of the padding and 20 bytes of the hash 
value, which creates 4 blocks (32 bytes). The cryptographic interface would then obtain a 
request for an encryption of 7 bytes of M (marked as the last block) and it would return four 
ciphertext blocks to the calling application. However contemporary interfaces designed 
according to PKCS#5 expect to receive only one ciphertext block in such a situation. Similar 
problems arise during decryption. It has been practically verified, that the introduction of this 
type of padding into the subsystem CryptoAPI makes common applications crash. 
 
New proposals for strengthened encryption of the last block in the CBC mode 
We propose three variants for strengthened encryption of the last plaintext block in the CBC 
mode, which are compatible with contemporary cryptographic interfaces, including Crypto 
API [3]. We assume variant A as the ”middle”. Its "stronger" version is variant B and the 
"weaker" one is variant C. The security of these variants is estimated only heuristically in a 
short time after the presentation of the attack. An in depth theoretical analysis of their security 
remains an open problem. The variants reflect the capabilities of a designer to use different 
cryptographic tools. 
 
Classical CBC encryption of plaintext by a block cipher with key K1 is described by the 
following equations: 
Let us denote plaintext: x1, x2, ... xN, ciphertext: y1, y2, ... yN, initialisation value: IV, encryption 
key: K1. 
Encryption: y1 = EK1(IV ⊕  x1), yi = EK1(yi-1 ⊕  xi), i = 2, ..., N 
Decryption: x1 = IV ⊕  DK1(y1), xi = yi-1 ⊕  DK1(yi), i = 2, ..., N 
 
Strengthened encryption of the last block uses the present definition of the PKCS#5 padding. 
It means that xN is the block padded according to PKCS#5.  All three variants encrypt all 

                                                
*) There can be situations where the system receives the ciphertext blocks consequently and 
the fact, that a block is the last block of the whole message, will be recognized after receiving 
this block, not before. In  Vaudenay's original proposal after cutting the padding the system 
would have to take back several plaintext blocks, which in some cases would not be possible. 
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plaintext blocks x1, x2, ... xN-1 (excluding the last block xN) in the CBC mode with the key K1 
in the usual way, i.e.  
Encryption: y1 = EK1(IV ⊕  x1), yi = EK1(yi-1 ⊕  xi), i = 2, ..., N-1 and 
Decryption: x1 = IV ⊕  DK1(y1), xi = yi-1 ⊕  DK1(yi), i = 2, ..., N-1. 
The only difference is in the equation for the encryption and decryption of the last block, 
which we will describe now. 
 
Using the function PBKDF2 from the standard PKCS#5 [2] and three different values of the 
salt (SALT) and three counters (COUNT) we derive three different values of keys K2, K3 and 
K4:  
K2 = PBKDF2(K1, SALT1, COUNT1, dklen), 
K3 = PBKDF2(K1, SALT2, COUNT2, dklen), 
K4 = PBKDF2(K1, SALT3, COUNT3, dklen), 
where dklen is the length of keys K2, K3 and K4, values SALT1, SALT2 and SALT3 are 
different constants and COUNT1, COUNT2 and COUNT3 are other constants, chosen 
according to the standard PKCS#5.  
 
Strengthened encryption -  variant A 
We define the equation for the last block in the following way: 
Encryption: yN = EK4(DK2(xN) ⊕  EK3(yN-1)) 
Decryption: xN = EK2(EK3(yN-1) ⊕  DK4(yN)) 
The goal of this type of encryption is that the influence of the variables (xN, yN-1, yN) affecting 
encryption and decryption of the last block, is indirect, non-linear and "masked" by 
transformations, unknown to the attacker. The keys K2, K3 and K4 must have these 
properties: 

- They are derived from key K1 by a one-way function. 
- It is impossible to determine the individual keys K2, K3 or K4 from the remaining 

two. 
These additional keys are introduced in order to prevent an attacker from deducing any 
information about EKi and DKi, for i = 2, 3, 4, from eventual knowledge of the behaviour of 
the transformation EK1 on many pairs of plaintext-ciphertext blocks. Note that it is possible to 
define other kinds of derivations of the keys K2, K3 and K4, which are different from those 
defined in PKCS#5. It is only necessary to preserve the properties mentioned above. 
 
Strengthened encryption -  variants B1 and B2 
According to the designer's capability to use the hash function we propose variants B1 and 
B2. Both are designed in such a way, that the feedback from the penultimate ciphertext block 
is a one-way function of the variable yN-1. This property is guaranteed by the value EK3(yN-1) ⊕  
yN-1 in the B1 variant and by the value h(EK3(yN-1)) in the B2 variant. Derivation of the keys 
K2, K3 and K4 is the same as in the variant A. Note that we will use only the n most 
significant bits from the hash function output, where n is the length of the block of the block 
cipher.  
The equation for the last block is defined in the following way: 
The variant B1: 
Encryption: yN = EK4(DK2(xN) ⊕  EK3(yN-1) ⊕  yN-1) 
Decryption: xN = EK2(EK3(yN-1) ⊕  yN-1 ⊕  DK4(yN)) 
The variant B2: 
Encryption: yN = EK4(DK2(xN) ⊕  h(EK3(yN-1)) 
Decryption: xN = EK2(h(EK3(yN-1)) ⊕  DK4(yN)) 
 



 4/5 

Strengthened encryption - the variant C 
This variant is proposed as the "minimal" variant for the case where the designer does not 
have the possibility of using other transformations than EK1 and DK1, i.e. he/she has no 
possibility to derive new keys from key K1 and he/she has no possibility to use a hash 
function.  
The equation for the last block is defined in the following way: 
Encryption: yN = EK1(DK1(xN) ⊕  EK1(yN-1) ⊕  yN-1) 
Decryption: xN = EK1(EK1(yN-1) ⊕  yN-1 ⊕  DK1(yN)) 
 
The brief analysis 
From the general attack point of view we can assume all presented variants as an application 
of the two modes. Blocks x1, x2, ... xN-1 are encrypted using the first mode and block xN is 
encrypted using the second mode. There is no change in the case of encryption of the blocks 
x1, x2, ... xN-1 - it is the original CBC mode. Therefore the proposed variants do not impose 
new weaknesses here. The encryption of the last block can be assumed also as the CBC mode, 
the initialisation value of which is derived pseudorandomly from the penultimate ciphertext 
block yN-1. In this way the dependency on the original IV is preserved.  
 
From the point of view of defence against Vaudenay's attack, it is natural to use the notion of 
the confirmation oracle [4], which is a useful tool in the study of side channels. We have used 
it for the fault attacks on RSA-KEM in [4]. In the case of the CBC mode the confirmation 
oracle has the form of a decryption engine, which the attacker sends chosen ciphertexts to. 
The engine accepts or refuses the given ciphertext according to whether the last plaintext 
block has the correct padding or not. We  assume that an attacker has the possibility of 
obtaining information about the acceptance or refusal of the last block. Therefore he/she has 
access to a confirmation oracle, which allows him/her to confirm whether the last block of the 
decrypted plaintext has correct padding or not. 
 
Let us denote PAD the set of allowed paddings according to PKCS#5. In the case of the 
classical CBC mode with the PKCS#5 padding, it holds xN = DK1(yN) ⊕   yN-1, xN ∈  PAD. 
Using the confirmation oracle it is possible to confirm the validity of this relation for an 
arbitrarily chosen yN and yN-1. With respect to the definition of the set PAD and with respect to 
the way in which the value yN-1 enters the expression, the transformation EK1 can be easily 
inverted using the confirmation oracle. That is exactly what Vaudenay has shown in his article 
[1]. 
 
Now, let us look at the relations (note that the statement xN ∈  PAD is their crucial part), which 
can be confirmed in our variants of a strengthened encryption. 
A)  xN = EK2( EK3(yN-1) ⊕  DK4(yN)), xN ∈  PAD 
B1) xN = EK2( EK3(yN-1) ⊕  yN-1 ⊕  DK4(yN)), xN ∈  PAD 
B2) xN = EK2(h(EK3(yN-1)) ⊕  DK4(yN)), xN ∈  PAD 
C)  xN = EK1( EK1(yN-1) ⊕  yN-1 ⊕  DK1(yN)), xN ∈  PAD 
 
The influence of yN-1 on xN = DK1(yN) ⊕   yN-1 is in the original CBC mode "direct and non-
masked". In the proposed variants the variables yN-1 and yN always act indirectly and via non-
linear transformations, unknown to an attacker. Thus from the confirmation oracle an attacker 
could obtain only information about a relation among unknown images of input variables. 
Moreover, except for variant A, the input variable yN-1 goes through a one-way function. This 
prevents the attacker preparing special values for a test in the case, where he/she has partial 
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knowledge about the transformation EK3(yN-1) or EK1(yN-1). In this way defence against 
Vaudenay's attack is ensured.  
  
Conclusion 
Vaudenay has described a practical attack on the CBC mode based on a fault side channel. 
The correction, which Vaudenay proposed has a general character and doesn't solve practical 
problems with the real cryptographic interfaces used in contemporary applications. In this 
contribution we have presented practical countermeasures, which are semantically compatible 
with current cryptographic interfaces. On the basis of the above brief analysis we presume 
that the proposed variants are not vulnerable to attacks of the Vaudenay type. Their theoretical 
security is an open problem. We suggest considering and implementing them in the order B2, 
B1, A, C. 
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