

Anastasios Stasinopoulos (Anastasios Stasinopoulos (@ancst@ancst) |) | https://stasinopoulos.github.iohttps://stasinopoulos.github.io

11stst BSides Athens, 25 June 2016, Athens, Greece BSides Athens, 25 June 2016, Athens, Greece

Perform effective command injection Perform effective command injection
attacks like attacks like __

https://twitter.com/ancst
https://stasinopoulos.github.io/

About me.

● Ph.D candidate at University of Piraeus (Department of Digital Systems)

― Member of the Systems Security Laboratory (@ssl_unipi)
● Builder and breaker of stuff, seduced by the dark side.
― Writing code that executes arbitrary code.
― Hunting bugs for living.

Anastasios Stasinopoulos (@ancst)

https://twitter.com/SSL_Unipi/
https://twitter.com/ancst

Introduction. Introduction. __

Brief introduction.
According to the OWASP, “command injection (a.k.a shell injection) is
an attack in which the goal, is the execution of arbitrary commands
on the host operating system through a vulnerable application.”

● This attack is possible when an application passes unsafe user

supplied data (i.e forms, cookies, HTTP headers etc) to a system
shell.

● The attacker-supplied OS commands are usually executed with
the same privileges of the vulnerable application.

https://www.owasp.org/index.php/Command_Injection

PWNIES

What causes command injection flaws? What causes command injection flaws? __

...?addr=127.0.0.1

Separator
Arbitrary OS command

What causes command injection flaws?

GET parameter

 ;

The main reason that an application is vulnerable to command injection
attacks, is due to incorrect or complete lack of input data validation.

URL

ls

Analysis of command injection attacks. Analysis of command injection attacks. __

1. Results-based command injections.
● The vulnerable application outputs the result(s) of the injected

command.

● The attacker can directly infer if the command injection succeeded or
not.

2. Blind command injections.
● The vulnerable application does not output the result(s) of the injected

command.

● Even if the attacker injects an arbitrary command, the results will not be
shown in the screen.

Analysis of command injection attacks.

Results-based command injections. Results-based command injections. __

Example #1 : “normal.php”.

Vulnerable part
of code

Example #1 : “normal.php” exploitation.

2. Results-based exploitation result

1. Regular usage result

Execution result

Execution under the hood
Execution result

Execution under the hood

Arbitrary command

Blind command injections.Blind command injections. __

Example #2 : “blind.php”.

Vulnerable part
of code

Example #2 : “blind.php” exploitation.

2. Blind exploitation result

1. Regular usage result

Execution result

Execution under the hood
Execution result

Execution under the hood

Arbitrary command

Time-based (blind) technique (1/3).

Is based on time delays → The attacker can presume the result
of the injected command.

… payload for *nix targets:

… payload for windows targets:

1. Is decided if the application is vulnerable to time-based (blind)
command injection or not.

Time-based (blind) technique (2/3).

Is based on time delays → The attacker can presume the result
of the injected command.

… payload for *nix targets:

2. The length of the output of the provided injected command is
determined.

… payload for windows targets:

Time-based (blind) technique (3/3).

Is based on time delays → The attacker can presume the result
of the injected command.

… payload for *nix targets :

3. The output of the injected command is exported character-
by-character.

… payload for windows targets:

File-based (semi-blind) technique.
Fact: If we are not able to see the results of the execution of an
injected command, we can write them to a file in web server 's
directory, which is writable by us (i.e “/var/www/”, “/var/www/html/”,
“\htdocs\”, “\inetpub\wwwroot\”, etc.).

… payload for *nix targets:

… payload for windows targets:

Publicly accessible file

Execution result

Tempfile-based (semi-blind) technique.

Fact: We can use temporary directories, (i.e “/tmp/”,
“/var/tmp/”,“%tmp%” etc) to store a file with the output of the
injected command!

● Limitation: We cannot read files located into these temporary
directories through the web application. → Blind command injection!

● To bypass this limitation, a new and un-documented technique
(i.e tempfile-based) was designed and implemented.

● It applies the file-based technique in combination with
 the time-based technique.

● In that way, the contents of the text file(s) located in to
temporary directories will be extracted out character-by-
character.

The commix tool.The commix tool. __

General information.
Commix (a short for command injection exploiter) is a software tool that can be
used from web developers, penetration testers or even security researchers in
order to test web-based applications with the view to find bugs, errors or
vulnerabilities related to command injection attacks.

● Available at https://github.com/stasinopoulos/commix
● Follow @commixproject.

● Written in Python programming language.

● Python version 2.6.x or 2.7.x is required.

● Cross-platform application
● Linux
● Mac OS X
● Windows (experimental)

● Free Open Source Software.

● GNU General Public License v3.0

https://www.owasp.org/index.php/Command_Injection
https://github.com/stasinopoulos/commix
https://twitter.com/commixproject

Installation tips.
Get the latest version of commix by cloning the official Git repository:

Commix comes packaged on the official repositories of the following Linux
distributions. Use the package manager to install it!

● ArchAssault
● BlackArch
● Kali linux
● Weakerthan

Commix also comes as a plugin, on the following penetration testing
frameworks:

● The Penetration Testers Framework (PTF)
● PentestBox
● CTF-Tools
● PenBox

https://archassault.org/
http://blackarch.org/
https://www.kali.org/
http://www.weaknetlabs.com/
https://github.com/trustedsec/ptf
http://pentestbox.com/
https://github.com/zardus/ctf-tools
https://github.com/x3omdax/PenBox

Supported exploitation techniques. Supported exploitation techniques. __

Supported exploitation techniques (1/3).

1. Results-based command injections
● 1.1. The classic results-based technique.

● It is based on the execution results output.

● 1.2. The dynamic code evaluation technique.
● It is based on the eval() 's execution results output.

● Except for eval(), are also supported:
● preg_replace() injections via “/e” modifier.
● usort() injections.
● assert() injections.
● str_replace() injections.
● preg_match() injections.

2. Blind command injections

● 2.1. The time-based technique (Blind)
● It is based on time delays → Output is inferred char-by-

char.

● 2.2. The file-based technique (Semi-blind)
● It is based on the execution results output, in a random

name text file in “/var/www/”, “/var/www/html/”,
“\htdocs\”, “\inetpub\wwwroot\”, etc.

● 2.3 The tempfile-based technique (Semi-blind)
● It is based on time delays → Output is inferred char-by-

char from a random named text file in “/tmp/”,
“/var/tmp/”, “C:\Windows\TEMP\” or “%temp%”
directory.

Supported exploitation techniques (2/3).

All the described supported exploitation techniques provide
many variations of attack vectors, specially adjusted for the
target host.

● For *nix targets, the attack vectors are based on (single or
combination of) bash command(s).

● For windows targets, the attack vectors are based on
(single or combination of) cmd.exe and/or powershell.exe
command(s).

Supported exploitation techniques (3/3).

Reducing false positives. Reducing false positives. __

Reducing false positives.
1. Results-based command injections.

● A randomly generated string, is printed three times combined with the result of a
mathematic calculation of two randomly selected numbers.

2. Blind command injections.
● Problem: High probability of false-positive results, due to random or accidental

response delays of the target host.
● The average response time of the target host is calculated and also a time-

relative false-positive identifier is used.

● The average response time, is added to the default delay time which is used to
perform time-relative attacks (i.e time-based, tempfile-based).

● The time-relative false-positive identifier, detects (i.e. statistical analysis)
unexpected time delays due to unstable requests.

● We must take as response → union of the strings combined with the result of
the mathematic calculation (i.e KWCAUM144KWCAUMKWCAUM)

Functionality. Functionality. __

HTTP headers.
For the HTTP headers, we are able :
1. To provide our own HTTP headers:

● i.e User-Agent, Referer, Cookies values as well as custom HTTP headers.

1.
2. To perform tests for command injections against HTTP headers:

● If the value of “--level” option is >= “2” then it tests Cookie values.
● If the value of “--level” option is = “3” then it tests User-Agent and Referer values.

Command injection attack via the
User-Agent HTTP header.

Enumeration.
In order to enumerate the target host, we are able to use the enumeration options.

● ...we can retrieve current user name.
● ...we can retrieve current hostname.
● ...we can check if the current user has root (*nix) or administrator privileges (windows).
● ...we can retrieve system information → operating system / hardware platform.
● ...we can retrieve system users list.
● ...we can retrieve system users privileges.
● ...we can retrieve system users password hashes (*nix).

● Limitation: The “/etc/shadow” file must be readable by current user.
● ...we can retrieve PowerShell's version number (windows).

Enumeration.

Alternative os-shell.
● We are able to bypass target host's bash limitations.

● There could be restrictions of bash commands (i.e “cat”, “echo”, etc).

● At this moment only Python alternative is fully supported on
every injection technique.

● Future plan support → PHP/Perl/Ruby alternative os-shells

Hint: Pwn @VulnHub's “Persistense” vm via this os-shell.

The payload has turned fully in Python.

https://www.vulnhub.com/entry/persistence-1,103/

ModSecurity avoidance.
● We are able to bypass the default ModSecurity's block attempt rule.

● RuleID : 950907 → modsecurity_crs_40_generic_attacks.conf

● The “(?i:(?:[\;\|\`]\W*?\bcc|\b(wget|curl))\b|\/cc(?:[\'\"\|\;\`\-\s]|$))”
rule blocks:

● … pipe symbol (i.e. | cmd),

● … command substitutions (i.e $((cmd)), `cmd`)

● ... parameter expansions (i.e ${cmd}),

● … matches “wget”, “curl” and “cc” which (as author claims) are
often used in injection attacks!

The payload has been properly
transformed to bypass ModSecurity.

http://modsecurity.org/
https://github.com/SpiderLabs/owasp-modsecurity-crs/blob/master/base_rules/modsecurity_crs_40_generic_attacks.conf
http://www.tldp.org/LDP/abs/html/commandsub.html
http://www.gnu.org/software/bash/manual/bash.html#Shell-Parameter-Expansion

1. Netcat reverse shells → Reverse shells to netcat.

2. Netcat-without-netcat reverse shells → Reverse shells to netcat
without using netcat.

Hint: Check “usage examples” wiki page → several test cases / attack
scenarios.

3. File access options → We can write / upload web-shell(s) on target.
● Metasploit PHP meterpreter web shell.

● Weevely PHP web shell.
● ...suggest yours! → Fork & commit.

Hint: Check “upload shells” wiki page.

We shellz!

https://github.com/stasinopoulos/commix/wiki/Usage-Examples
https://github.com/stasinopoulos/commix/wiki/Upload-shells

NC: (Linux) Netcat Reverse Shell

We shellz!

Metasploit: (Windows) Meterpreter PHP Reverse Shell

We shellz!

Armitage: (Linux) Meterpreter PHP Reverse Shell

We shellz!

Modules.

1. The 'ICMP exfiltration' module.

● This module is designed to provide a server-side component to store / receive
files, exfiltrated over ICMP echo request packets.

● Hint: Pwn @VulnHub's “Persistense” vm via this module.

We are able to develop and easily import your own modules.

● Increase the capabilities of commix and/or adapt it to our needs.

● Hint: Check “Module Development” wiki page.

3. The 'Shellshock' module.

● This module is designed to affect the shellshock bash vulnerability.

● Hint: Pwn @Pentesterlab's ”CVE-2014-6271/Shellshock” vm via this module.

2. The 'DNS exfiltration' module.

● This module is designed to provide a server-side component to store / receive
files, exfiltrated over DNS requests.

● Hint: Still in experimental phase. (Feel free to evaluate it!)

https://www.vulnhub.com/entry/persistence-1,103/
https://github.com/stasinopoulos/commix/wiki/Module-Development
https://pentesterlab.com/exercises/cve-2014-6271

Modules (i.e shellshock).

Shellshock attack vector.

Evaluation. Evaluation. __

Command injection testbeds.
 1. Damn Vulnerable Web App

 2. Damn Vulnerable Web Services (DVWS)

 3. Damn Small Vulnerable Web (DSVW)

 4. Xtreme Vulnerable Web Application

 5. OWASP: Mutillidae

 6. bWAPP: bee-box (v1.6)

 7. Persistence

 8. Pentester Lab: Web For Pentester

 9. Pentester Lab: CVE-2014-6271/Shellshock

 10. Pentester Lab: Rack Cookies and Commands injection

 11. Pentester Academy: Command Injection ISO: 1

 12. command-line-security-300 (school-ctf-winter-2015)

 13. SpiderLabs: MCIR (ShelLOL)

 14 Kioptrix: Level 1.1 (#2)

 15 Kioptrix: 2014 (#5)

 17. Acid Server: 1

 17. Flick: 2

 18. w3af-moth

 19. commix-testbed

Official commix's testbed!

http://www.dvwa.co.uk/
https://github.com/snoopythesecuritydog/dvws
https://github.com/stamparm/DSVW
https://github.com/s4n7h0/xvwa
https://www.owasp.org/index.php/Category:OWASP_Mutillidae
http://www.itsecgames.com/
https://www.vulnhub.com/entry/persistence-1,103/
https://www.vulnhub.com/entry/pentester-lab-web-for-pentester,71/
https://pentesterlab.com/exercises/cve-2014-6271
https://pentesterlab.com/exercises/rack_cookies_and_commands_injection
https://www.vulnhub.com/entry/command-injection-iso-1,81/
https://github.com/ctfs/write-ups-2015/tree/bb4cfa25cf58f93a006ee75c33410e95fed211e3/school-ctf-winter-2015/exploit/command-line-security-300
https://github.com/SpiderLabs/MCIR/tree/master/shellol
https://www.vulnhub.com/entry/kioptrix-level-11-2,23/
https://www.vulnhub.com/entry/kioptrix-2014-5,62/
https://www.vulnhub.com/entry/acid-server-1,125/
https://www.vulnhub.com/entry/flick-2,122/
https://github.com/andresriancho/w3af-moth/
https://github.com/stasinopoulos/commix-testbed
https://github.com/s4n7h0/xvwa

Bugs and enhancements

Except for pull requests, forks, or stars non-developers can
open an issue @github.

Things i'd really appreciate:
● Bug reports

● Preferably with error logs!
● Enhancements

● Suggestions on how i can improve commix for you !?
● Descriptions of how you use it !?

https://github.com/stasinopoulos/commix/issues

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49

