
How Anywhere Computing Just Killed Your
Phone-Based Two-Factor Authentication

Radhesh Krishnan Konoth†, Victor van der Veen†, and Herbert Bos

†Equal contribution joint first authors

VU University Amsterdam, The Netherlands
r.k.konoth@vu.nl,{vvdveen,herbertb}@cs.vu.nl

Abstract. Exponential growth in smartphone usage combined with re-
cent advances in mobile technology is causing a shift in (mobile) app
behavior: application vendors no longer restrict their apps to a single
platform, but rather add synchronization options that allow users to
conveniently switch from mobile to PC or vice versa in order to access
their services. This process of integrating apps among multiple platforms
essentially removes the gap between them. Current, state of the art, mo-
bile phone-based two-factor authentication (2FA) mechanisms, however,
heavily rely on the existence of such separation. They are used in a vari-
ety of segments (such as consumer online banking services or enterprise
secure remote access) to protect against malware. For example, with
2FA in place, attackers should no longer be able to use their PC-based
malware to instantiate fraudulent banking transactions.
In this paper, we analyze the security implications of diminishing gaps
between platforms and show that the ongoing integration and desire
for increased usability results in violation of key principles for mobile
phone 2FA. As a result, we identify a new class of vulnerabilities dubbed
2FA synchronization vulnerabilities. To support our findings, we present
practical attacks against Android and iOS that illustrate how a Man-
in-the-Browser attack can be elevated to intercept One-Time Passwords
sent to the mobile phone and thus bypass the chain of 2FA mechanisms
as used by many financial services.

Keywords: Two-Factor Authentication, Smartphone Security, Finan-
cial Trojans, Synchronization, Anywhere Computing

1 Introduction

Approaching an impressive 1.25 billion sales in 2014 with an expected audi-
ence of over 1.75 billion, smartphones have become an important factor in many
people’s day-to-day life [35, 17]. Daily activities performed on these mobile de-
vices include those that can be done on PC as well: accessing e-mail, searching
the web, social networking, or listening to music [19]. To enhance usability, both
application developers and platform vendors are making an effort to blur bound-
aries between the two platforms. This is reflected in synchronization features like



Firefox Sync and Samsung SideSync or sophisticated market places like Google
Play and Microsoft’s Windows Store that allow users to manage their mobile
phone remotely.

A second important trend in web computing is the increasing number of appli-
cations that provide the possibility to harden user accounts by enabling 2 Factor
Authentication (2FA) for them. 2FA is a form of multi-factor authentication and
provides unambiguous identification of users by means of the combination of
two different components, i.e., something the user knows (PIN code, password)
and something the user possesses (bank card, USB stick token). With 2FA en-
abled, if attackers steal a user’s password, they still require access to the second
component before they can impersonate the victim.

Not surprisingly, software vendors often embody the second component of
2FA in the form of a mobile phone. To authenticate, the web application sends
a one-time-valid, dynamic passcode to the user’s mobile phone (for instance via
SMS, e-mail, or a dedicated application), which must then be entered along
with the user’s credentials in order to complete the authentication. Since users
usually carry their phone all the time, Mobile Phone 2FA does not introduce
additional costs and can be implemented relatively easy. Examples of well-known
companies that provide mobile phone 2FA include Amazon, Apple, Dropbox,
Google, Microsoft, Twitter, Yahoo, and many more, including a large number of
financial institutions1. The latter is represented by many of the biggest financial
organisations in the world such as Bank of America, Wells Fargo, JP Morgan
Chan, ICBC in China, and ING in The Netherlands.

In this paper, we analyze the security implications of Anywhere Computing
and show that seamless platform integration comes at the cost of weakening the
(commonly perceived) strong mobile phone 2FA mechanism. We define a new
class of vulnerabilities dubbed 2FA synchronization vulnerabilities and show how
these can be exploited by an attacker. In particular, we present reliable attacks
against both Android and iOS, two platforms that represent a combined market
share of over 90% [6]. Our threat model is the same as that of 2FA: we as-
sume that a victim’s PC has been compromised, allowing an attacker to perform
Man-in-the-Browser (MitB) attacks. In this scenario, mobile phone 2FA should
guarantee that the attacker cannot perform authorized operations without hav-
ing also access to the user’s phone. By exploiting certain 2FA synchronization
vulnerabilities, however, we show that mobile phone 2FA as used by many online
services for secure authentication, including financial institutions, can be easily
bypassed.

In more detail, our first attack utilizes Google Play’s remote app installation
feature to install a specifically crafted vulnerable app onto registered Android
devices of the victim which is then silently activated and used to hijack One-
Time Passwords (OTPs). Our iOS attack, on the other hand, exploits a new
OS X feature that enables the synchronization of SMS messages between iPhone
and Mac.

1 http://twofactorauth.org



Although the security of 2FA implementations has been subject of prior
work [16], we believe that our work is the first to address weaknesses relating to
ongoing synchronization and usability enhancement efforts.

Contributions. In summary, our contributions are the following:

1. We identify a new class of vulnerabilities, 2FA synchronization vulnerabili-
ties, that weaken the security guarantees of mobile phone 2FA.

2. We present practical attacks against Android and iOS that exploit multi-
ple 2FA synchronization vulnerabilities and show how these can be used to
successfully bypass mobile phone 2FA.

3. We discuss the security implications of our findings and provide recommen-
dations for various stakeholders. Based on our findings, we conclude that
SMS-based 2FA should be considered unsafe.

The remainder of this paper is organized as follows. In Section 2, we outline
current efforts deployed by vendors that ease platform integration and provide
a definition of 2FA synchronization vulnerabilities. Section 3 details our attacks
against Android and iOS which can be used to bypass mobile phone 2FA. We
discuss security implications and recommendations in Section 4, followed by a
related work study on the evolution of Man-in-the-Browser attacks and 2FA in
Section 5. We conclude in Section 6.

2 Synchronization

To maximize connectivity and to ensure that users never miss another status
update, vendors continuously come up with ways to close the gap between PC
and mobile devices. In this section, we separate these integration techniques
into two categories: (i) remote services as provided by mobile operating system
vendors and (ii) integration of applications across the different platforms using
synchronization features. Finally, we define 2FA synchronization vulnerabilities
in detail and show example vulnerabilities that we later use to break mobile
phone 2FA.

2.1 Remote Services

Mobile operating system market leader Google provides a remote install service
in its Play Store that allows users to install Android applications on any of their
phones or tablets, from a desktop computer. The process is painless and straight-
forward: a user (i) logs into the Google Play store, (ii) picks an app of his interest,
(iii) hits the install button, (iv) accepts the app’s permissions, (v) chooses the
device on which this app should be installed, and (vi) confirms installation. The
app is now automatically pushed and installed onto the selected phone—as soon
as it has connectivity. Since all the app’s permissions are requested and con-
firmed in the browser already, the only trace left on the phone is a <app name>



successfully installed notification message. Similar features have been deployed
in app stores of both Microsoft (Windows Phone) and Apple (iOS).

Naturally, platform vendors have adopted security policies to prevent ex-
ploitation of this feature. Focussing on Android, for example, Google, deployed
two: (i) silent remote install only works for apps on Google Play, which is ac-
tively monitored for malware by Google Bouncer; and (ii) newly installed apps
default to a deactivated state which means that even if the app defines spe-
cific event receivers (e.g., on BOOT COMPLETED to start a service at boot-time, or
SMS RECEIVED to listen for incoming SMS text messages), it cannot use these un-
til the app is explicitly activated by the user. Activation is triggered by starting
the app for a first time, either by selecting it from the launcher or by sending it
an intent from another app (e.g., by opening a link from the mobile browser) [1].

In addition to remote install, platform vendors also provide features that help
users in locating or wiping a lost device [2, 7, 5].

2.2 App Synchronization

Besides remote services, developers try to increase usability even further by in-
corporating cross-platform synchronization features in their applications. This
is best illustrated by looking at recent changes in browsers. Browsers once were
self-contained software pieces that ran on a single device. Popular browsers like
Google Chrome or Mozilla Firefox, however, nowadays offer integrated synchro-
nization services. By using these features, users no longer have to configure
browsers individually, but can automatically synchronize all their saved pass-
words, bookmarks, open tabs, browser history and settings across multiple de-
vices [8, 4]. It is expected that Microsoft’s Edge introduces similar functionality
soon [32].

Another example of application synchronization is Apple’s Continuity which
features, among others, synchronization of SMS text messages between iOS (8.1
and up) and Mac OS X (10.10 Yosemite and later): “with Continuity, all the
SMS and MMS text messages you send and receive on your iPhone also appear
on your Mac, iPad, and iPod touch” [9].

2.3 2FA Synchronization Vulnerabilities

Given the ongoing efforts by both platform vendors and application developers to
bridge the gap between the end-user’s desktop and his or her mobile devices, we
identify a new class of vulnerabilities that, while increasing usability, jeopardize
2FA security guarantees.

Definition A 2FA synchronization vulnerability is a usability feature that delib-
erately blurs the boundaries between devices, but, potentially combined with other
vulnerabilities, inadvertently weakens the security guarantees of 2FA.

As an example, consider the previously discussed remote app installation fea-
ture: a clear product of a design decision aiming to enhance usability. Although



such option successfully improves usability indeed—users can conveniently man-
age their mobile device from their browser—it comes with an obvious security
risk: if attackers manage to get control over a user’s browser, they can extend
control to the user’s mobile devices as well by pushing arbitrary apps to them.
We thus identify the remote install feature as a 2FA synchronization vulnerabil-
ity.

Focussing again on Android, Google’s deployed security measures make that
without additional vulnerabilities, attackers cannot abuse this synchronization
vulnerability alone to bypass mobile phone 2FA. Finding such vulnerabilities is
easy though. First, fundamental weaknesses in Google Bouncer expose multi-
ple ways to bypass malware detection, giving attackers a sufficient time window
to push malicious apps to Google Play and thus to mobile devices. Second, we
identify numerous ways to activate apps after installation, either by exploiting
end-users’ curiosity (hey, what is this app? ) or by relying on additional synchro-
nization vulnerabilities, for example in browser apps: previously discussed fea-
tures can be used by an attacker to synchronize malicious bookmarks or browser
tabs that, when opened on the mobile device, can activate deactive apps.

A second attack exploits the clear 2FA synchronization vulnerability intro-
duced in recent Mac OS X releases. If Continuity is enabled, there is no need
for attackers to control a victim’s phone: they can read SMS messages from an
infected Mac directly.

It is important to realize that 2FA synchronization vulnerabilities are not
necessarily caused by bad developer habits or configuration mistakes. More often,
they will be the result of a design decision-making process. This means that it
is much harder to convince vendors of their mistakes: a 2FA synchronization
vulnerability does not leak data or enable code execution, but must be considered
within the mobile phone 2FA threat model before it becomes a threat.

3 Exploiting 2FA Synchronization Vulnerabilities

By exploiting the synchronization vulnerabilities discussed in Section 2, we can
construct attacks that break mobile phone 2FA. In this section, we present prac-
tical implementations of such attacks against the two major mobile operating
systems: Google Android and Apple iOS. Additionally, we show that synchro-
nization vulnerabilities also imperil mobile phone 2FA implementations that use
a dedicated app to transfer the OTP.

Our attacks operate on the basic threat model of 2FA: we assume that the
attacker already has control over the victim’s PC, possibly including a MitB,
and is specifically interested in bypassing mobile phone 2FA.

3.1 Android

The intention of our Android attack is to exploit the remote install feature of
Google Play to push a malicious app onto the user’s mobile device. This app
can then intercept and forward OTPs sent as SMS messages to a server that is



controlled by the attacker. Given that the attackers have control over the user
credentials (stolen by the MitB), this gives them sufficient means to bypass 2FA.

Google’s deployed mitigation techniques slightly complicate our scenario. In
order to successfully break 2FA, we need to address two defenses: (i) we need to
bypass Google Bouncer before we can publish our SMS stealing app in Google
Play, and (ii) we need the user to activate the app before it can intercept and
forward SMS messages.

Bypassing Google Bouncer Since Google’s remote install feature only allows
app installation from trusted sources, attackers first need to get an SMS stealing
app published in Google Play. For this, they need to bypass Bouncer, Google’s
automated malware analysis tool that uses both static and dynamic analysis to
identify malicious behavior [26]. Once an application is uploaded to Google Play,
Bouncer starts analyzing it for known malware, spyware and trojans.

Although the inner workings of Bouncer are kept confidential, prior work has
shown that it is easily circumvented [29, 30]. This is confirmed by a recent case
study where Avast identified a number of popular Play Store apps that had over
a million downloads to be in fact malware [15].

Orthogonal to recent work, our approach to trick Bouncer into accepting
rogue apps is publishing a vulnerable application [36]. By pushing a poorly coded
WebView application, for example, attackers no longer have to hide malicious code
from Bouncer, but can simply move it to a web server that will be contacted
by the app to display regular data [28]. An alternative, even harder to detect
scheme, involves exposing a backdoor in native code via a memory corruption
vulnerability [11].

To show the practicality of our attack, we successfully published an SMS
‘backup’ app in Google Play. Upon SMS reception, our app first writes the mes-
sage content to a file, followed by loading a remote webpage inside a hidden
webview component. The prepared webview component, however, is made vul-
nerable by exposing a ProcessBuilder class via the addJavascriptInterface
API. This allows the remote webpage to execute arbitrary commands within the
app’s context using JavaScript.

Removing malicious code from the app makes it undetectable for Google
Bouncer’s static analysis. To also hide from dynamic analysis, we construct the
remote webpage in such a way that it does not serve malicious commands when
the incoming connection is made from a Google machine. In practice, to avoid
accidental misuse, we instructed the webpage to only serve malicious code if
accessed from an IP address that is under our control.

App Activation Once installed, Android puts new apps in a deactivated state.
While deactivated, an app will not run for any reason, except after (i) a manual
launch of its main activity via the launcher, or (ii) an explicit intent from another
app (e.g., a clicked link from the mobile browser) [22]. Attackers must thus
somehow steer their victim into starting the app manually. We identify two
reliable approaches to achieve this.



1. Request remote app install

2. Silent install

!
!

3. Activation
User click on:
- notification
- bookmark
- ...

Synchronization

Fig. 1: Malicious app installation process. Attackers (i) use their deployed MitB to
request the installation of a vulnerable app, stored in Google Play, and replace all the
browser’s bookmarks with malicious variants. Google then (ii) pushes the app onto the
mobile phone of the victim. Finally (iii) the user is steered into activating the app.
Activation is achieved by exploiting browser synchronization features to synchronize
the malicious bookmarks to the phone, or by exploiting the user’s curiosity (a click on
the app is installed notification message).

1. The most naive method is to hide the malicious activity inside an attractive
container. By using a challenging or even provocative app name or icon, a
user may be tempted into opening the app manually, simply out of curiosity.

2. Armed with both synchronization vulnerabilities and the victim’s Google
credentials obtained by the MitB, an attacker can manipulate saved book-
marks, recent tabs, or URLs used in e-mail, cloud documents, social media,
etcetera, in such a way that, when clicked, they redirect to a malicious web-
page. This page, controlled by the attacker, can then send the aforementioned
intent to activate the malicious app.

To prevent a user from detecting the rogue app after it has been activated, we
complement it with stealth features. Strictly abiding to the Android developers
guidelines, we constructed our app in such a way that, once activated, it removes
it’s main icon from the launcher. Additionally, we use a name masquerading
technique to maximize discretion: (i) the app name shown in the notification
bar is different from (ii) the name of the app as found in the launcher, which
in its turn differs from (iii) the official app name as shown in the app overview
(accessible from the settings view). This works because (i) during app submis-
sion, the Google Developers Console does not check whether the provided app
name matches the official app name as found in the uploaded .apk, and (ii) the
<activity-alias> tag inside the app’s manifest allows us to declare additional
activity names.

The process of installing a vulnerable app and activating it is shown in Fig-
ure 1. The stealthy installation via bookmarks (or recent tabs or some other
object of synchronization) combined with name obfuscation makes it hard to
tell that an app is malicious, even for experienced users.



1. Initiate transaction

2. TAN code

!
RCE

€4. Intercepted TAN code

3. Intercepted TAN code
www.mal.icio.us

!

Fig. 2: Completing fraudulent transactions while bypassing 2FA. After our app pro-
cesses the TAN code, it loads a remote webpage into a WebView component that allows
the attacker to perform Remote Code Execution (RCE). This way, attackers can hide
their malicious activity from Google Play.

Breaking 2FA With the malicious/vulnerable app and activation methods in
place, attackers can start their attack from the hijacked browser by requesting
remote installation for the rogue app. We implemented a MitB trojan for the
Google Chrome browser that can do this. Once installed, our extension can
use Google session cookies to start remote app installation and prepare app
activation. The plugin basically consists of three phases:

1. Hijack a Google session. Our plugin waits for a Google authentication
cookie to become available. This happens when the user logs into a Google
component (e.g., Gmail, YouTube, Drive, etcetera). Optionally, it forwards
the typed credentials or cookies over the network to the attacker.

2. Remote install. Using the hijacked Google session, the trojan sends a re-
quest to Google Play to retrieve a list of Device IDs of all Android devices
linked to this particular Google account. Next, for each device, the plugin
requests remote installation of the vulnerable app. Since app permissions are
approved from within the PC-based browser only, the app will be silently
installed, leaving only a <app name> successfully installed installation no-
tification on the device.

3. Activation. In order to allow app activation, our extension rewrites all
stored bookmarks and recent tabs so that they point to an attacker-controlled
page while the original URL is provided as parameter: http:\\mal.icio.us\
proxy.php?url=<original url>. When opened using the mobile Chrome
browser, this page performs a redirect to rogueapp://<original url>
which triggers activation of the rogue app. The app then immediately fires
another intent that redirects the mobile browser to <orignal url>, leaving
practically no footprint.

Once activated, the malicious app can be used in conjunction with the PC-
based trojan to successfully bypass mobile phone 2FA. Fraudulent financial
transactions, for example, can be initiated by attackers once their PC-based
trojan has captured banking credentials of their victims. To confirm such trans-
action, the mobile component intercepts the OTP sent via SMS, and forwards
it to the attacker. This attack scenario is depicted in Figure 2.



1. Initiate transaction

2. TAN code

€4. Synchronized TAN code

3. Synchronized TAN code

!

Fig. 3: Breaking 2FA on Apple Continuity. If enabled, Mac OS X 10.10 automati-
cally synchronizes SMS messages between different Apple devices, breaking the second
factor.

3.2 iOS

Similar to our Android attack, mobile phone 2FA on the iOS platform can be by-
passed by publishing a rogue app to Apple’s App Store and installing it from an
infected PC via the iTunes remote-install feature. Wang et. al., already demon-
strated how a vulnerable app could slip through Apple’s strict review process
and how such app can be used to access private APIs reserved for system apps to
read SMS messages [36, 3]. Additionally, Bosman and Bos showed how a vulner-
able app and sigreturn oriented programming allow to execute any set of system
calls needed to pull of any attack [11].

As of iOS 8.3, released in April 2015, however, it is no longer possible to
receive a so-called kCTMessageReceivedNotification to let an app act on in-
coming text messages without using a specific entitlement (similar to the Android
RECEIVE SMS permission). Since this functionality stems from a so-called private
API, requesting such permission violates the App Store Review Guidelines and
will result in an app rejection, effectively breaking this type of attack. The recent
release of Mac Os X 10.10 Yosemite, however, opens up a new attack scenario.

As outlined in Section 2, Mac OS X Continuity features options to syn-
chronize SMS and MMS text messages between multiple Apple devices. When
enabled, SMS messages that are received on a linked iPhone, are forwarded and
stored in plain-text in the ˜/Library/Messages/chat.db file on the Mac.

Breaking 2FA With Continuity enabled, attackers can break 2FA by instruct-
ing their MitB to monitor the chat.db database for changes and forward new
messages to a remote server immediately after receipt. To show the practicality
of this attack, we implemented a Firefox extension that uses the FileUtils.jsm
API to read contents of synchronized SMS messages as soon as they are delivered
to the iPhone.

The Continuity attack is illustrated in Figure 3.



Fig. 4: Bypassing dedicated 2FA apps. The screenshot on the left shows Google 2SV
requesting a verification code from the Google Authenticator. Note the Try another
way to sign in option near the bottom of the window. When clicked, the right-hand
figure shows the fallback option to get a text message with an OTP sent over SMS. An
attacker in control of the PC-browser is therefore able to dicate what 2FA technique is
used.

3.3 Dedicated 2FA Apps

Many online and offline applications are in the process of complementing their
authentication mechanism with an optional 2FA step, often dubbed Two-Step
Verification (2SV). Open source implementations are provided by Google (Google
Authenticator) and Microsoft (Azure Authenticator) and can already be enabled
for dozens of popular services, including Google, Microsoft Online, Amazon Web
Services, Dropbox, Facebook, WordPress, Joomla, and KeePass.

Due to sandboxing techniques, our previously described attacks cannot ac-
cess OTPs that are generated by 2SV authenticator apps. During the process
of setting up an authenticator app, however, users are advised to provide the
underlying system a backup phone number. The rationale behind this is that if,
for some reason, users fail to access the authenticator app, they can fallback to
requesting an OTP sent over SMS.

Assuming that many users provide a backup phone number that is used by
the same smartphone that runs the authenticator app, an attacker can easily by-
pass these dedicated 2FA apps: (i) having access to stolen credentials harvested
by the MitB, an attacker initiates the login procedure; (ii) for logins via the
Google Authenticator, for example, when prompted to enter a verification code,
the attacker instructs the login page to try another way to sign in, followed by se-
lecting the Send a text message to your phone option. From here, our previously
described attacks can be used to completely bypass the 2FA mechanism.

Figure 4 illustrates how an attacker can fallback to SMS based OTPs when
using Google Authenticator.



4 Discussion

In the previous sections, we showed how an attacker can bypass a variety of mo-
bile phone 2FA mechanisms by exploiting synchronization vulnerabilities. We
now study feasibility and practicalities of our attacks in more detail. Addition-
ally, we discuss our efforts regarding responsible disclosure, as well as recom-
mendations for involved parties.

4.1 Feasibility

Reviewing our Android attack described in Section 3.1, we conclude that exploit-
ing synchronization vulnerabilities to bypass 2FA can be done in a reliable and
stealthy way on Google’s mobile operating system. Attackers can reduce their
footprint to a bare minimum by breaking the attack down in different steps: (i)
a preparation phase wherein attackers acquire access to infected PCs, possi-
bly via a Malware as a Service-provider [14]; (ii) an app-installation phase
wherein attackers push a vulnerable app to Google Play and instruct their vic-
tims to remotely install it. Depending on the target audience of the attacker,
this can be done within a time window of only a couple of hours, after which the
rogue app can again be removed from Google’s servers; (iii) an app-activation
phase wherein attackers gracefully wait until victims activate the malicious
app. Our app-hiding tricks make that attackers can safely wait days so that a
large group of victims get to activate the rogue app; and (iv) an attack phase
wherein attackers perform an automated attack that requires access to OTPs
sent over SMS. One typical example of such attack is transferring funds from
saving accounts to an account that is controlled by the attackers.

Although more prerequisites must be met for our iOS attacks described in
Section 3.2, they complement each other nicely: the vulnerable app approach
does not work on iPhones running the latest iOS version, while our Continuity
attack requires that victims do use more up to date versions of iOS and Mac
OS X. The latter, however, also requires that (i) victims have enabled message
synchronization (which setup process requires interaction with both Mac and
iPhone), and (ii) both devices are connected to the same wireless network. Al-
though this does not necessarily make the attack less feasible, it may slightly
reduce its scalability given that synchronization is off by default and increase
the detection rate by attentive users (the content of received SMS messages will
pop up on both devices).

Finally, although the remote-install 2FA synchronization vulnerability is also
prevalent on the Windows Phone (WP) platform, Microsoft does not (yet) pro-
vide an API for reading received SMS messages programmatically. Additionally,
to the best of our knowledge, WP does not provide SMS synchronization fea-
tures like Apple’s Continuity. It is because of this that we were unable to break
mobile phone 2FA on WP.



4.2 Recommendations and Future Work

An important step towards preventing the presented sophisticated MitB-based
attacks against mobile phone 2FA, is to raise awareness among the various stake-
holders. Mobile platform vendors should be aware that the release of new syn-
chronization features may introduce security risks for their end-users. As such,
vendors should be extremely careful when enabling new features by default in-
stead of making them optional. It is their obligation to inform end-users that en-
abling or using certain synchronization features might jeopardize security guar-
antees of mobile phone 2FA. Only then can the user make a considered decision
to give up security in favor of usability.

Reviewing our proposed attacks, this means that Apple, for example, should
warn users about potential security risks when they set up Continuity. More-
over, if the user decides to enable this feature, synchronizing only messages sent
by trusted phone numbers — those that are found in the user’s contact list —
would eliminate our attack scenario, assuming that TAN codes are sent by an
unknown sender or SMS gateway. Additionally, we recognize a major task for
platform vendors to safeguard their remote-install features. In our view, users
should always be forced to explicitly approve new app installations on their mo-
bile device. This way, attackers can no longer silently push apps, but always
require manual user-interaction. Ignorant users may still be phished into ap-
proving unknown install requests, of course, but such change would eradicate
our completely automated attack scenario. We believe that the current app-
activation security policy alone as deployed by vendors is too weak, given that
additional synchronization vulnerabilities can be used to achieve activation.

Startled users who do not want to wait for a fix from their vendor, can protect
themselves from exploitation by using a separate account for each device. This
way, remote-install features have zero knowledge about which devices an app
can be pushed to. Naturally, the downside of such approach is losing the ability
to use synchronization features at all. Authenticator users, in addition, should
update their settings so that their backup is a phone number that is attached
to a dumb phone. These phones are remarkably harder to get infected.

Besides raising user-awareness, future work should focus on the detection of
SMS stealing apps at runtime, given that existing mobile Anti-Virus apps are
useless to this respect—they are confined to their own filesystem sandbox and
thus cannot access directories of other apps, monitor the phone’s file system, or
analyze dynamic behavior of installed applications [31]. Instead, system mod-
ifications that can monitor the global smartphone state are required. To this,
the redesigned permission model of Android Marshmallow in which apps are
no longer automatically granted all of their specified permissions at install time,
but rather prompt users to grant individual permissions at runtime, is promising.
Unfortunately, this model will only be used by applications that are specifically
compiled for Marshmallow and can thus still be bypassed.

As an ultimate resort, we recommend that financial institutions consider the
removal of mobile 2FA from their business processes and switch to token based
2FA instead—such token must of course be able to show transaction details, so



that Man-in-the-Middle attacks can be detected by the user during transaction
processing. Naturally, such switch will cause large expenses; each institution will
have to consider whether moving away from mobile 2FA is feasible by comparing
costs, gained security, and risk analysis results. Even so, given the attack sce-
narios we conclude that 2FA on smartphones is currently entirely compromised
and no safer than single factor authentication.

4.3 Responsible Disclosure

To show the practicality of bypassing Google Bouncer, we uploaded a first version
of our SMS stealing app to Google Play on July 8, 2015, where it has been
publicly available for over two months. The app got removed on September 10,
2015, only a few hours after we had shared its name and a video demonstration
of our attack with the head of Android Platform Security, while we already
reported our attack scenario and recommendations to the Android security team
months before the initial publication. Responses so far, unfortunately, indicate
that Google believes that our proposed attack is not feasible in practice, despite
all evidence to the contrary (including actual demos2).

We notified Apple about our findings on November 30, 2015, but we did not
receive a technical response.

5 Background and Related Work

In this section, we provide a brief historical overview and related work discussion
of the two fundamental components covered in this paper: Man-in-the-Browser
attacks and Two-Factor Authentication. Additionally, we discuss current, state-
of-the-art attacks against mobile-phone 2FA which rely on cross-platform infec-
tion. We focus on online banking schemes in particular, as this always was, and
still is, one of the services subject to a vast amount of criminal activity.

5.1 Man-in-the-Browser

At first, online financial services depended completely on single-factor authen-
tication (e.g., by using a secret key). For attackers, keyloggers were enough to
steal credentials of associated users. However, they also generated vast amount
of useless data, forcing the attacker to parse a huge amount of log output in
order to retrieve meaningful credentials. Parsing keylog data was considered a
challenging and time consuming task for an attacker, as it is hard to automate.
As an alternative, cyber criminals deployed phishing campaigns, followed quickly
by form grabbing attacks. The latter proved to be an effective and robust mech-
anism to steal useful information.

Well known banking trojans like Zeus and SpyEye were the first to implement
form grabbing by hooking web browser APIs [24, 38]. The fundamental idea

2 https://youtu.be/k1v rQgS0d8



behind form grabbing is to intercept all form information before it is sent to
the network via HTTP requests. Form grabbing can be implemented in different
ways: (i) sniffing all outgoing requests using a PCAP-based library—something
that has the disadvantage of only working for unencrypted data [34]; (ii) API
hooking the browser’s dynamic library to steal all the requests and responses
made by the user before they get encrypted [34]; and (iii) using a malicious
plugin to easily register callbacks within the browser for events like page load or
file download in order to intercept any request or response.

Malicious plugins and API hooking techniques can be used to do more than
just form grabbing. Using a plugin, an attacker can modify HTTP responses
received by the browser or covertly perform illegitimate operations on behalf of
the user. This is commonly known as a Man-in-the-Browser (MitB) attack [21].

Guhring has identified various ways of which a trojan can perform a MitB
attack and discusses pros and cons of various countermeasures that could be
taken [21]. Boutin studies how webinjects are used by a trojan in the browser
and discusses the underground economy behind selling webinjects [12]. Buescher
et al., analyzed different types of hooking methods as used by financial tro-
jans [13]. They propose an approach for detecting and classifying trojans by
looking at the manipulations they perform on a browser. However, their ap-
proach is mainly based on detecting API hooks. As a consequence, MitB attacks
that are implemented using plugins cannot be detected using this technique.

5.2 Two-Factor Authentication

Most account fraud and identity theft relate to accounts that use only single-
factor authentication [20]. To defend against MitB attacks, financial services
started using different types of multi-factor authentication mechanisms. The
most elementary mechanism is that of a list of Transaction Authorization Num-
bers (TAN codes) as provided by the online service, from which the user can
choose one to perform a secure transaction. A more convenient method that has
been adopted by a majority of financial services is generating a new TAN code
for each transaction and sending this via an out-of-band channel to the user.
Naturally, SMS is a cheap and efficient candidate channel: almost everybody
owns a mobile phone.

To defend against MitB attacks that hijack an ongoing transaction by modi-
fying its details (receiver’s bank account number or the amount of money trans-
ferred), financial services are starting to include transaction details along with
the TAN code in the out-of-band SMS message. Users can then verify the trans-
action by inspecting these details in the SMS and only confirm if these match
their expectation.

On August 8, 2001, the Federal Financial Institutions Examination Coun-
cil agencies (FFIEC) issued guidance entitled Authentication in an Electronic
Banking Environment [20]. FFIEC encourages financial institutions to use mo-
bile phone-based 2FA as described above to secure their user’s transactions.

Aloul et al., show how an app on a trusted mobile device can be used for
generating one-time passwords, or how a mobile device itself can be used as a



medium for out-of-band communication to financial services [10]. This is what
most current deployed 2FA implementations use today. Mulliner analyzes attacks
that target SMS interception in general and shows how a smartphone trojan can
steal OTPs received via SMS. He proposes to use a dedicated channel which
cannot be controlled by normal applications for receiving the OTP [27]. This is
based on the assumption that mobile trojans do not have root privileges. Schart-
ner et al., describe an attack against SMS based OTPs in the scenario where
a transaction is made from the mobile device itself [33]. Since the transaction
involves a single device (smartphone), a malware in the device can sniff both
credentials and OTPs received via SMS.

Konoth et al., describe how Google’s 2FA implementation can be bypassed
using a MitB attack on an untrusted device [25]. Dmitrienko et al., analysed
2FA implementations of major online service providers such as Google, Twitter,
Dropbox and Facebook [16]. Their work identifies various weaknesses in existing
implementations that allow an attacker to bypass 2FA and also illustrates a
general attack against 2FA. However, unlike ours, their attack relies on complex
cross-platform infection.

5.3 Cross-platform infection

Cardtrap.A is the first discovered malware that features a cross-platform infec-
tion implementation. The trojan first infects a symbian smartphone. When the
user inserts the memory card of the mobile phone into a Windows PC, it at-
tempts to infect the PC [23]. In 2006, researchers found that it is possible for PC
malware to infect a smartphone by exploiting Microsoft’s ActiveSync synchro-
nization software [18]. Furthermore, Wang et al., explain how a sophisticated
adversary can spread malware to another device through a USB connection [37].
Finally, Dmitrienko et al., demonstrated via prototypes the feasibility of both
PC-to-mobile and mobile-to-PC cross platform attacks [16].

6 Conclusion

With the ongoing integration of platforms—the result of a strong desire for
enhanced usability—keeping our web accounts safe has become increasingly
challenging. In this paper, we showed how synchronization features and cross-
platform services can be used to elevate a regular PC-based Man-in-the-Browser
to an accompanying Man-in-the-Mobile threat which can be used to successfully
bypass mobile phone 2FA. The root cause is that imprudent synchronization
functionality has obliterated the security boundaries on which 2FA solutions
depend.

Due to the large number of financial institutions that rely on mobile phone
2FA for secure transaction processing, we expect that cyber criminals extend
their activities by implementing attacks similar to ours, putting those institu-
tions and their customers at risk. We hope that this paper helps in identifying
issues with respect to cross-platform integration and that both software and



platform vendors adopt our recommendations in order to prevent these types of
attacks from becoming a major threat in the near future.

Acknowledgements

We would like to thank the anonymous reviewers for their valueable comments
and input to improve the paper. This work was supported by the MALPAY
project and by the Netherlands Organisation for Scientific Research through
grants NWO 639.023.309 VICI “Dowsing” and NWO CSI-DHS 628.001.021.

References

1. Android intents with chrome. https://developer.chrome.com/multidevice/
android/intents

2. Find a lost phone. http://www.windowsphone.com/en-us/how-to/wp8/settings-
and-personalization/find-a-lost-phone

3. Get SMS broadcast with text body without Jailbreak BUT private frameworks
in IOS. http://stackoverflow.com/questions/26642770/get-sms-broadcast-
with-text-body-without-jailbreak-but-private-frameworks-in-ios

4. How do I set up Sync on my computer? http://support.mozilla.org/kb/how-
do-i-set-sync-my-computer

5. iCloud: Erase your device. https://support.apple.com/kb/PH2701
6. Mobile/tablet operating system market share. https://www.netmarketshare.com/

operating-system-market-share.aspx?qprid=8&qpcustomd=1
7. Remotely ring, lock or erase a lost device. https://support.google.com/accounts/

answer/6160500
8. Sync tabs across devices. http://support.google.com/chrome/answer/2591582
9. Use Continuity to connect your iPhone, iPad, iPod touch, and Mac. http:

//support.apple.com/HT204681
10. Aloul, F., Zahidi, S., Hajj, W.E.: Two Factor Authentication Using Mobile Phones.

In: Proceedings on the International Conference on Computer Systems and Appli-
cations (AICCA) (2009)

11. Bosman, E., Bos, H.: Framing Signals - A Return to Portable Shellcode. In: Pro-
ceedings of the Symposium on Security and Privacy (S&P) (2014)

12. Boutin, J.I.: The evolution of webinjects (September 2014)
13. Buescher, A., Leder, F., Siebert, T.: Banksafe Information Stealer Detection In-

side the Web Browser. In: Proceedings on the International Conference on Recent
Advances in Intrusion Detection (RAID) (2011)

14. Caballero, J., Grier, C., Kreibich, C., Paxson, V.: Measuring Pay-per-install: The
Commoditization of Malware Distribution. In: Proceedings of the USENIX Secu-
rity Symposium (USENIX Sec) (2011)

15. Chytry, F.: Apps on Google Play Pose As Games and Infect Millions of Users with
Adware (February 2015)

16. Dmitrienko, A., Liebchen, C., Rossow, C., Sadeghi, A.R.: On the (In)Security of
Mobile Two-Factor Authentication. In: Proceedings of the International Confer-
ence on Financial Cryptography and Data Security (2014)

17. eMarketer: Smartphone Users Worldwide Will Total 1.75 Billion in 2014 (January
2014)



18. Evers, J.: Virus makes leap from PC to PDA (Feburary 2006)
19. Exact Target: 2014 Mobile Behavior Report (February 2014)
20. Federal Financial Institutions Examination Council: Authentication in an Internet

Banking Environment (2005)
21. Gühring, P.: Concepts against Man-in-the-Browser Attacks (September 2006)
22. inazaruk: “Activating” Android applications (December 2011)
23. Kawamoto, D.: Cell phone virus tries leaping to PCs (September 2005)
24. Kharouni, L.: Automating Online Banking Fraud (2012)
25. Krishnan, R., Kumar, R.: Securing User Input as a Defense Against MitB. In: Pro-

ceedings of the International Conference on Interdisciplinary Advances in Applied
Computing (ICONIAAC) (2014)

26. Lockheimer, H.: Android and Security (February 2012)
27. Mulliner, C., Borgaonkar, R., Stewin, P., Seifert, J.P.: SMS-Based One-Time Pass-

words: Attacks and Defense. In: Proceedings of the Conference on Detection of
Intrusions and Malware & Vulnerability Assessment (DIMVA) (2013)

28. Neugschwandtner, M., Lindorfer, M., Platzer, C.: A View to a Kill: WebView
Exploitation. In: Proceedings of the USENIX Workshop on Large-Scale Exploits
and Emergent Threats (LEET) (2013)

29. Oberheide, J., Miller, C.: Dissecting the Android Bouncer (Jun 2012)
30. Poeplau, S., Fratantonio, Y., Bianchi, A., Kruegel, C., Vigna, G.: Execute This! An-

alyzing Unsafe and Malicious Dynamic Code Loading in Android Applications. In:
Proceedings of the Network and Distributed System Security Symposium (NDSS)
(2014)

31. Rafael Fedler, M.K., Schutte, J.: An Antivirus API for Android Malware Recogni-
tion. In: Proceedings of Malicious and Unwanted Software: ”The Americas” (MAL-
WARE), 2013 8th International Conference (2013)

32. Sams, B.: Microsoft confirms Edge will sync passwords, bookmarks, tabs, and
more. http://www.neowin.net/news/microsoft- confirms- edge- will- sync-
passwords-bookmarks-tabs-and-more

33. Schartner, P., Bürger, S.: Attacking mTAN-Applications like e-Banking and mobile
Signatures. Tech. rep., Univeristy of Klagenfurt (2011)

34. Sood, A.K., Enbody, R.J., Bansal, R.: The art of stealing banking information —
form grabbing on fire (November 2011)

35. Statista: Global smartphone sales to end users 2007–2014 (2015)
36. Wang, T., Lu, K., Lu, L., Chung, S., Lee, W.: Jekyll on iOS: When Benign Apps

Become Evil. In: Proceedings of the USENIX Security Symposium (USENIX Sec)
(2013)

37. Wang, Z., Stavrou, A.: Exploiting Smart-Phone USB Connectivity For Fun And
Profit. In: Proceedings of the Computer Security Applications Conference (AC-
SAC) (2010)

38. Wyke, J.: What is zeus? Sophos (May 2011)


