
IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.8, August 2012

74

Manuscript received August 5, 2012
Manuscript revised August 20, 2012

Camouflage in Malware: from Encryption to Metamorphism

Babak Bashari Rad†, Maslin Masrom ††, Suhaimi Ibrahim†††

†Faculty of Computer Science and Information System, University Technology Malaysia
††Razak School of Engineering and Advanced Technology, University Technology Malaysia

†††Advanced Informatics School, University Technology Malaysia

Summary
Camouflage of malware is a serious challenge for antivirus
experts and code analysts. Malware use various techniques to
camouflage them to not be easily visible and make their lifetime
as longer as possible. Although, camouflage approaches cannot
fully stop the analyzing and fighting against the malware, but it
make the process of analyzing and detection prolonged, so the
malware can get more time to widely spread. It is very important
for antivirus technologies to improve their products by
shortening the detection procedure, not only at the first time
facing with a new threat, but also in the future detections. In this
paper, we intend to review the concept of camouflage in malware
and its evolution from non-stealth days to modern metamorphism.
Moreover, we explore obfuscation techniques exploited by
metamorphism, the most recent method in malware camouflage.
Keywords:
Camouflage in Malware, Malware Evolution, Malware
Encryption, Malware Oligomorphism, Malware Polymorphism,
Malware Metamorphism, Obfuscation Techniques

1. Introduction

From the early days of computer malware creation, there is
a serious challenge between the malicious code
programmers and antivirus specialists. Each opponent
endeavors to growth its capabilities to defeat the adversary
[1]. In the side of malware producers, one of the most
important issues is to prolong the lifetime of the malware
in the wild, as much as possible. It is achievable if the
malware is able to abscond from the antivirus scanner
engines well. Consequently, the camouflage of the
malware code is significant factor to make it successful in
the wild. In this article, we tend to survey the malware
camouflage tactics from the earliest simple viral codes
until more advanced introduced techniques, nowadays.
There are four main generations in gradual development of
the stealth methodologies [2-3]: Encryption,
Oligomorphism, Polymorphism, and Metamorphism.
Figure 1 displays the evolution timeline of camouflage
techniques in malware.

Figure 1: Evolution timeline of Camouflage techniques appearance in
malware

2. Primitive Malware

When the story began, virus writing was a kind of
programming fun for computer specialists to show off
their technical skills, but it gradually became as a tool for
other purposes, such as swiping the people’s information,
like credit card numbers, passwords, or bank account
numbers, or for avenges purposes, and so on. In the
beginning, there were no techniques invented to escape
from the code analyzers or experts who were trying to find
malicious code and trap them. Computer programmers
liked to satisfy the tempting to make the virus. They were
enjoying finding new ways of these amazing programming
strengths.

3. Stealth Malware

Malware creators’ first attempts in order to escape from
trapping redounded to appear of stealth techniques. Stealth
virus is able to conceal its signs and traces. Virus normally
changes and modifies data resources on the system. For
example, a file-hosted virus may append its own code to
the end of an executable file. If an application examines
the infected file, it can detect the viral code in the file and
catch the virus. Stealth virus can hide the changes that it
previously applied. When other applications request the
parts of resources modified by the virus, stealth code of the
malware that dominates the system, delivers the
unchanged data instead of the viral code.
The term of “stealth” can be used as a general term for all
kind of malicious codes, which are capable to hide

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.8, August 2012

75

themselves from being visible. They employ many
techniques to conceal any existent sign of themselves in
the system resources. In general, camouflage actions of the
stealth malware may be categorized in two aspects: hiding
the trails of the malware or hiding its own code from the
human or other programs. The first aspect depends on
what the virus is going to perform on the host system. It
may change the file system or its components, the memory
management system, and so on.

The most considerable reasons to use stealth
techniques in malware and hide the viral code and signs of
the virus are:

1. To make it invisible from non-expert persons
2. To prevent the static analysis and reverse

engineering of the virus code
3. To prolong the lifetime of the virus
4. To prevent modifying the code by other persons

4. Camouflage Evolution

4.1 Encryption

Malware authors always try to improve their program to
escape from code analyzer technicians. Accordingly, they
could get more time for their produced malware to live in
the wild and show off more. The earliest and simplest
method employed by the malware programmers to achieve
this goal was encryption. The first known encrypted virus,
Cascade, was appeared in 1987 [4].

Encrypted virus is composed of two basic sections: a
decryption loop and main body. Decryptor, or decryption

loop, is a short piece of code, which is responsible to
encrypt and decrypt the code of main body. The main
body is the actual code of the malware, encrypted, and is
not meaningful before it is being decrypted by the
decryption loop. When the virus starts to run on the host
computer, first the decryptor loop must decode the main
body into machine executable code and meaningful data.

Encryption of the code can be carried out via various
approaches. For example, a simple encryption may use a 1
to 1 mapping to transform the code byte by byte. In
another simple form of encryption, a zero-operand
instruction such as INC or NEG can be used. More
sophisticated encryption techniques may be utilized, as
well, which use reversible instruction, e.g. ADD or XOR
with random keys. In addition, the encryption key may be
constant value or be a sliding variable value generated by a
special algorithm.

Figure 2 depicts the general structure of an encrypted
virus.

However, a virus scanner cannot immediately detect
the virus using signatures and it first needs to decrypt the
virus body to access the whole code. However, it can find
the decrypting part, so if this part includes of enough bytes
as string signature, it still causes that indirect detection of
the virus through string signature be achievable.

However, a virus scanner cannot immediately detect
the virus using signatures and it first needs to decrypt the
virus body to access the whole code. However, it can find
the decrypting part, so if this part includes of enough bytes
as string signature, it still causes that indirect detection of
the virus through string signature be achievable.

Figure 2: Structure of encrypted virus

4.2 Oligomorphism

The next efforts in advancement of the malware
concealment bring about the appearance of oligomorphic
viruses. Oligomorphic virus is also called as semi-
polymorphic [5]. It was an attempt to make the decryptor

loop of encrypted virus different appearance in each new
infection. Oligomorphism is an advanced form of the
encryption. It contains a collection of different decryptors,
which are randomly chosen for a new victim. In such a
way, the decryptor code is not identical in various
instances. The first known oligomorphic virus was the

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.8, August 2012

76

Whale, a DOS virus that was appeared in 1990 [2]. Figure
3 displays the structure and mechanism of an oligomorphic
virus, schematically.

Oligomorphism is not a major problem for the
antivirus software because it only makes a malware
slightly more difficult to observe. Unlike encrypted virus,
antivirus engine has to check all possible decryptor
instances instead of looking for only one decryptor, and it
needs a longer time.

4.3 Polymorphism

Polymorphism is actually the most complicated type of
oligomorphism and encryption [6]. Polymorphic viruses
are similar to encrypted and oligomorphic viruses in usage
of code encryption, but the difference is that polymorphics
are able to create an unlimited number of new different

decryptors [2]. The first polymorphic virus, 1260, a virus
of chameleon family appeared by 1990, was developed by
Mark Washburn [2].

Polymorphic techniques try to make analysis of virus
harder by changing its appearance. The principal rule is to
modify the appearance of the code constantly, from a copy
to another [7]. It must be carried out in such a way so no
permanent common string remain among variants of a
virus to be exploited by the antivirus scanner engine for
detection purpose. Polymorphic techniques are rather
difficult to implement and manage [8].

Polymorphic virus utilizes code obfuscation
approaches such as insertion of junk codes or substitution
of instructions to mutate its decryptor and build a new one
for new infected victim.[9] The section responsible for this
process is called mutation engine or obfuscation engine [5].

Figure 3: Structure and mechanism of oligomorphic virus

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.8, August 2012

77

Figure 4: Polymorphic virus structure

Some of most common obfuscation techniques, which
are exploited by polymorphic viruses to mutate their code,
are [3, 9-11]:

1. Instruction replacement
2. Instruction permutation
3. Variable/Register substitution
4. Junk /Dead code insertion
5. Code transposition
Figure 4 illustrates the structure of a polymorphic

virus and its infection process, briefly.
It does not matter how much a polymorphic virus is

designed well, after a sufficient emulation of the code, the
underlying encrypted code will be revealed and can be
detected by a simple string matching [12]. Malicious code
writers felt need to a stronger approach to camouflage their
products.

4.4 Metamorphism

Unlike the three previous camouflage generations,
metamorphic virus has no encrypted part. Therefore, it
does not need decryptor, but like polymorphic virus, it
employs a mutation engine, as well, Instead of modifying
the decryptor loop only, it mutates all its body. The most
concise definition of metamorphic viruses is introduced by
Igor Muttik “Metamorphics are body-polymorphics” [2].
Each new copy may have different structure, code
sequence, size and syntactic properties, but the behavior of
the virus does not change. In Figure 5, we illustrate the
metamorphic virus propagation scheme.

The first known metamorphic virus that was produced
for DOS was ACG, on 1998, and the first efforts on 32-

bits metamorphic virus targeting the Portable Executable
files was W32.Appartition that spread by 2000 [2].

Anatomy of a metamorphic virus is well explained in

[13-14]. A practical metamorphic engine must include the
following parts:

1. Disassembler
2. Code analyzer
3. Code transformer
4. Assembler
A complete structure of a metamorphic virus

replicator is depicted in figure 6. We create this adapted
form from the model introduced by Walnstine et al. in
[13].Components of the mutation engine are also displayed.
After the virus finds the location of its own code, it needs
to convert the code into assembly instruction, which is
done by an internal disassembler. The code analyzer is
responsible to provide information for code transformer
module. The code transformer may need some information
such as structure and flow diagram of the program,
subroutines, life period of variables and registers, and so
on. This information helps the code transformer to work
appropriately. Code transformer or obfuscator is the heart
of mutation engine. It is responsible to obfuscate the code
and change the binary sequence of the virus. In fact, the
other modules are designed to prepare the requirements of
obfuscation module. It may use all various obfuscation
techniques, which are mentioned for the polymorphic virus,
as well. The last module, Assembler, converts the new
produced mutated assembly code of the virus into machine
binary code.

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.8, August 2012

78

Figure 5: Metamorphic virus propagation scheme

Figure 6: Structure of replicator and mutation engine in metamorphic virus

Well-constructed metamorphic virus does not contain

matching string signatures common among its different
instances [6]. It means a professional metamorphic
malware is able to produce unlimited number of variants,
which are similar in behavior and not contain of producing
a single pattern vulnerability to be detectable via it.
Therefore, antivirus scanning engines must use highly
developed heuristics and behavior analysis based detection
techniques to catch powerful metamorphic viruses.
Although many efforts have done in this area, but a full
ideal methodology has not presented yet.

5. Obfuscation Techniques

Different researchers explained and categorized the
obfuscation techniques in several ways. Here, we try to
cover all the most important techniques, explaining in a
clear form and prevent contradiction among them. Most
common obfuscation techniques used in malware are [3,
10]:

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.8, August 2012

79

5.1 Junk/Dead Code Insertion

The insertion of dead code or garbage code is the most
effortless solution to modify the binary sequence of the
virus program without any effect on the code functionality
and behavior [9]. There are various types of garbage codes.

In Table 1, a few examples of junk codes are listed
[15]. In this type, the instructions do not change the
content of CPU registers or memory and are equal to no-
operation (NOP).

Table 1: No-Operation dead code samples

Instruction Operation

ADD	 Reg,	0	 Reg	←	Reg	+	0	

MOV	 Reg,	Reg	 Reg	←	Reg	

OR	 Reg,	0	 Reg	←	Reg		|		0	

AND	 Reg,	‐1	 Reg	←	Reg	&	‐1	

Instructions in Table 1 do not change the value of the
operand register; however, they may modify the status of
flag register in CPU. For example, adding a zero to a
variable or a register, or assigning a register value to itself,
do not have any effects on the results of execution.

The second type of this technique, obfuscator place
an instruction in the code that probably changes the status

of the machine or the content of memory or CPU registers,
but before it affects on the result of program, another
piece of code undoes it [16]. Two simple examples of this
type are listed in Table 2 [10]. A plenty number of nested
dead codes makes the analyzing of the code nearly
complicated.

Table 2: Reversible dead code samples

Instruction Comments

PUSH CX It	push	value	of	AX	into	stack,	later	it	
must	be	turned	back	to	AX	before	any	
effects	on	AX	or	stack	memory	

… …
POP CX

INC AX The	value	of	DX	increases	by	14,	and	
later	before	any	usage	of	DX,		its	value	
must	be	changed	back	to	its	previous	
value

… …
SUB AX,	1

However, metamorphic viruses employ composite
forms of junk code insertion methods to make the code
adequately obscured. The following example in Table 3 is
a small part of the W32.Evol virus [2]. The mutation
engine of the virus use junk instruction insertion to change
the binary sequence of the program code. Table 3 lists two
dissimilar instances of W32.Evol [10].

Table 3: Two versions of W32.Evol

The table 3 shows that these two forms of the
W32.Evol are entirely dissimilar images, but their

behaviors are similar. Both of them move the constant
value 5151EC8Bh into the memory addressed by

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.8, August 2012

80

[5500000Fh]. The interesting thing is there is no common
string signature to be utilized for static signature-based
detection, even using wildcards.

5.2 Variable/Register substitution

Another method used by mutation engines is to exchange
registers or memory variables in different instances of the
virus. With this technique, the virus tries to defeat the
string signature detection, by converting the identical bytes
in different generations. W95.Regswap was one of the first
viruses that made use of this approach to produce diverse
variants of the virus, by December 1998. Obviously, it
does not change the behavior of the code, but modifies the
binary sequence of the code. Two forms of W95.Regswap
are given in Table 4 [10].

The identical bytes in these two instances are
highlighted. This technique is not too highly complicated
and such wildcards-based scanning can find the morphed
versions of the virus simply; there are similar byte
sequences as many as necessary to build a signature string.

This relatively simple method in combination with
other techniques can produce enough complicated variants
of a virus that cannot be easily discovered and make the
signature-based detection very impractical.

5.3 Instruction replacement

This technique tries to replace some instructions with their
equivalent instructions. Sometimes, a task can be executed
in different equal coding instructions set. For example, all
different following instructions set the register eax with a
zero [10]:

Virus programmers take advantage of this skill in

their virus obfuscation engines. it is similar to usage of
different synonyms in natural speaking [17].

Table 4: Two versions of W95.Regswap

The example codes in Tables 5, display two different
forms of W95.Bistro [2, 10]. Some operations are
exchanged by their equivalents, as it is observable in the
code. “test	 	 esi,	 esi” is substituted by “or	 	 esi,	 esi”;
furthermore, “test	 	 edi,	 edi” is used instead of “or	 	 edi,	 edi”
that has the same result, and also, “mov	 	 ebp,	 esp” is

exchanged by a couple of consecutive instructions “push		
esp” and “pop	 	 ebp”, that implements similar operation.
Obviously, these substitutions metamorphose the binary
sequence of program code. Accordingly, the signatures in
the given examples of Win95.Bistro are not identical.
However, as the other methods, because some fractions of

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.8, August 2012

81

the binary signatures are alike, scanner can utilize
wildcards to detect the variants. The similar parts in the

signatures are highlighted in Tables 5.

Table 5: Two Versions of W95.Bistro

5.4 Instruction permutation

In many programs, the programmer is able to reorder the
sequence of instructions, safely. Through this rearranging
process, binary sequences of the code look dissimilar in
various generations.
In a situation that some instructions are independent, they
can be reorganized in a different order, with no change of
the result. Given the following example:
 op1	 	 Reg1/Mem1,	Reg2/Mem2	
	 op2	 	 Reg3/Mem3,	Reg4/Mem4
The above operations can be permutated, If these
conditions are exist [18]:

1‐			Reg1/Mem1			≠			Reg2/Mem2	
2‐			Reg1/Mem1			≠			Reg4/Mem4	
3‐			Reg2/Mem2			≠			Reg3/Mem3	

Table 6 display an example, two columns contain same
result and code can be arranged in both order, equally [10].

Table 6: Example of Instruction Permutation

Code Order 1 Code Order 2

mov		eax,	0F	 	 	 add		esi,	ebx	

push	ecx	 	 	 mov		eax,	0F	

add		esi,	ebx	 	 	 push	ecx	

5.5 Code transposition

This approach revise the program structure, in such a way
that reorder the program instruction or code flow, but still
keeping the execution flow using unconditional or
conditional branches. The transformation can be
performed on the single instructions level or a code block.
Figure 7 illustrate a case of code transposition scheme that
is used by Zperm virus [2].
Virtualization obfuscation is another recent method, which
is employed by malware creators to defend the malicious
code against the reverse engineering [19]. In this
technique, instructions and logic of the code are virtualized
to hide from analysis. The obfuscator includes a virtual

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.8, August 2012

82

machine that is required to interpret the logic of the
program. This interpreter usually is produced using

assembly programming language [20].

Figure 7: Code transposition in Zperm virus

7. Conclusion

Today, signature-based malware detection is not
adequately effective. Because the malware authors attempt
to invent advanced camouflage techniques, analysis and
study on these techniques by antivirus experts is more
required. With the development of information
technology, the stealthiness in malware grows up from
simple encryption methods to complicated metamorphism.
Subsequent to metamorphic virus generation, newer
techniques, such as JavaScript malware obfuscation,
virtualization obfuscation, and exploit obfuscation are still
being developed. Specially, web malware are a serious
threat for the increasingly internet users and a significant
challenge for antivirus vendors, as well. Consequently, the
camouflage techniques in malware need to be investigated
and examined by the security specialists, seriously.

Acknowledgement

This study is supported by the Razak School of
Engineering and Technology grant funded by University
Technology of Malaysia (No. 4B010).

References
[1] M. Sharif, A. Lanzi, J. Giffin et al., “Impeding Malware

Analysis using Conditional Code Obfuscation,” in The 15th
Annual Network and Distributed System Security
Symposium (NDSS 2008), San Diego, CA, (2008).

[2] P. Szor, The Art of Computer Virus Research and Defense:
Addison-Wesley Professional, (2005).

[3] I. You, and K. Yim, "Malware Obfuscation Techniques: A
Brief Survey," Fifth International Conference on Broadband,
Wireless Computing, Communication and Applications
(BWCCA 2010). pp. 297-300, (2010).

[4] P. Beaucamps, “Advanced Polymorphic Techniques,”
International Journal of Computer Science, vol. 2, no. 3, pp.
194-205, (2007).

[5] J. Aycock, Computer Viruses and Malware, New York, NY,
USA: Springer, (2006).

[6] P. O'Kane, S. Sezer, and K. McLaughlin, “Obfuscation: The
Hidden Malware,” Security & Privacy, IEEE, vol. 9, no. 5,
pp. 41-47, (2011).

[7] S. Noreen, S. Murtaza, M. Z. Shafiq et al., “Evolvable
malware,” in Proceedings of the 11th Annual conference on
Genetic and evolutionary computation, Montreal, Canada,
pp. 1569-1576, (2009).

[8] E. Filiol, Computer viruses: from theory to applications,
Paris: Springer, (2005).

[9] L. Xufang, P. K. K. Loh, and F. Tan, "Mechanisms of
Polymorphic and Metamorphic Viruses," 2011 European
Intelligence and Security Informatics Conference (EISIC),
pp. 149-154, (2011).

[10] B. B. Rad, and M. Masrom, "Metamorphic Virus Variants
Classification Using Opcode Frequency Histogram,"
LATEST TRENDS on COMPUTERS. pp. 147-155, (2010).

[11] D. Bruschi, L. Martignoni, and M. Monga, “Code
normalization for self-mutating malware,” IEEE Security &
Privacy, vol. 5, no. 2, pp. 46-54, (2007).

[12] M. Jordan, “Dealing with Metamorphism,” Virus Bulletin,
pp. 4-6, October, (2002).

[13] A. Walenstein, R. Mathur, M. Chouchane et al., "The design
space of metamorphic malware," Proceedings of the 2nd
International Conference on Information Warfare and
Security (ICIW 2007). pp. 241-248, (2007).

[14] A. Lakhotia, A. Kapoor, and E. Kumar, “Are metamorphic
viruses really invincible?,” Virus Bulletin, pp. 5–7,
December, (2004).

[15] J. M. Borello, and L. Me, “Code obfuscation techniques for
metamorphic viruses,” Journal in Computer Virology, vol. 4,
no. 3, pp. 211-220, (2008).

[16] M. W. Bailey, C. L. Coleman, and J. W. Davidson, “Defense
against the dark arts,” SIGCSE Bulletin, vol. 40, no. 1, pp.
315-319, (2008).

IJCSNS International Journal of Computer Science and Network Security, VOL.12 No.8, August 2012

83

[17] A. Karnik, S. Goswami, and R. Guha, “Detecting obfuscated
viruses using cosine similarity analysis,” AMS 2007: First
Asia International Conference on Modelling & Simulation
Asia Modelling Symposium, Proceedings, pp. 165-170,
(2007).

[18] P. Desai, and M. Stamp, “A highly metamorphic virus
generator,” International Journal of Multimedia Intelligence
and Security vol. 1, no. 4, pp. 402 - 427, (2010).

[19] K. Coogan, G. Lu, and S. Debray, “Deobfuscation of
virtualization-obfuscated software: a semantics-based
approach,” in Proceedings of the 18th ACM conference on
Computer and communications security, Chicago, Illinois,
USA, pp. 275-284, (2011).

[20] R. Rolles, “Unpacking virtualization obfuscators,” in
Proceedings of the 3rd USENIX conference on Offensive
technologies, Montreal, Canada, pp. 1-1, (2009).

Babak Bashari Rad is currently a PhD
candidate in Computer Science, at
University Technology of Malaysia
International Campus, Kuala Lumpur. He
has completed his Master degree (2002) in
Computer Engineering-Artificial
Intelligence and Robotic as the outstanding
student of Computer Science and
Engineering (CSE) department, faculty of

engineering at Shiraz University, Iran. He has been working as a
faculty lecturer for nine past years in Azad University branches
at Iran. His interests and research areas are computer virology,
malwares, information security, code analysis, and machine
learning methodologies. He is studying on metamorphic virus
analysis and detection methodologies for his PhD thesis.

Maslin Masrom received the Bachelor of
Science in Computer Science (1989),
Master of Science in Operations Research
(1992), and PhD in Information
Technology/Information System
Management (2003). She is an Associate
Professor, Razak School of Engineering
and Advanced Technology Malaysia,
Universiti Technology Malaysia

International Campus, Kuala Lumpur. Her current research
interests include information security, ethics in computing, e-
learning, human capital and knowledge management, and
structural equation modeling. She has published articles in both
local and international journals such as Information and
Management Journal, Oxford Journal, Journal of US-China
Public Administration, MASAUM Journal of Computing, ACM
SIGCAS Computers & Society and International Journal of
Cyber Society and Education.

Suhaimi Ibrahim received the Bachelor
in Computer Science (1986), Master in
Computer Science (1990), and PhD in
Computer Science (2006). He is an
Associate Professor attached to Advanced
Informatics School (AIS), Universiti
Teknologi Malaysia International Campus,
Kuala Lumpur. He is an ISTQB certified
tester and currently being appointed a

board member of the Malaysian Software Testing Board (MSTB).
He has published articles in both local and international journals
such as the International Journal of Web Services Practices,
Journal of Computer Science, International Journal of
Computational Science, Journal of Systems and Software, and
Journal of Information and Software Technology. His research
interests include software testing, requirements engineering, Web
services, software process improvement and software quality.

