
Particle Swarm Optimization Methods for Pattern 

Recognition and Image Processing 

 
by 

 
Mahamed G. H. Omran 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Submitted in partial fulfillment of the requirements for the degree Philosophiae 

Doctor in the Faculty of Engineering, Built Environment and Information Technology 

University of Pretoria 

Pretoria 

November 2004 



 

 

 

ii 
 

Particle Swarm Optimization Methods for Pattern Recognition and Image 
Processing 

by 
Mahamed G. H. Omran 

 

Abstract 

Pattern recognition has as its objective to classify objects into different categories and 

classes. It is a fundamental component of artificial intelligence and computer vision. 

This thesis investigates the application of an efficient optimization method, known as 

Particle Swarm Optimization (PSO), to the field of pattern recognition and image 

processing. First a clustering method that is based on PSO is proposed. The 

application of the proposed clustering algorithm to the problem of unsupervised 

classification and segmentation of images is investigated. A new automatic image 

generation tool tailored specifically for the verification and comparison of various 

unsupervised image classification algorithms is then developed. A dynamic clustering 

algorithm which automatically determines the "optimum" number of clusters and 

simultaneously clusters the data set with minimal user interference is then developed. 

Finally, PSO-based approaches are proposed to tackle the color image quantization 

and spectral unmixing problems. In all the proposed approaches, the influence of PSO 

parameters on the performance of the proposed algorithms is evaluated. 

 
Key terms: Clustering, Color Image Quantization, Dynamic Clustering, Image Processing, 

Image Segmentation, Optimization Methods, Particle Swarm Optimization, Pattern 

Recognition, Spectral Unmixing, Unsupervised Image Classification. 

 

Thesis supervisor: Prof. A. P. Engelbrecht 

Thesis co-supervisor: Dr. Ayed Salman  
Department of Computer Engineering, Kuwait University, Kuwait 

Department of Computer Science 

Degree: Philosophiae Doctor 



 

 

 

iii 
 

 

 

 

 

 

 

 

 
 

“Obstacles are those frightening things you see when you take your eyes off your 

goal.”  

Henry Ford 

 

“You will recognize your own path when you come upon it, because you will 

suddenly have all the energy and imagination you will ever need.” 

Jerry Gillies  



 

 

 

iv 
 

Acknowledgments 

 

I address my sincere gratitude to God as whenever I faced any difficulty I used to pray 

to God to help me and He always was there protecting and saving me. 

Then, I would like to express my warm thanks to Professor Andries 

Engelbrecht, who spared no effort in supporting me with all care and patience. I 

enjoyed working with him, making every moment I spent in the research work as 

enjoyable as can be imagined. 

I would like also to thank my co-supervisor Dr. Ayed Salman from Kuwait 

University for his continuous guidance, encouragement and patience throughout the 

PhD journey. I will never forget the long hours we spent together discussing various 

ideas and methods. 

Last but not least, I would love to thank my family for their support and care, 

especially my mother Aysha and my father Ghassib. May God bless and protect them 

both hoping that God will help me to repay them part of what they really deserve. I 

also thank my two sisters Ala'a and Esra'a for their help in preparing this thesis. 



 

 

 

v 
 

Contents 

 
Chapter 1 

Introduction....................................................................................................................1 

1.1 Motivation............................................................................................................1 
1.2 Objectives ............................................................................................................2 
1.3 Methodology ........................................................................................................3 
1.4 Contributions........................................................................................................4 
1.5 Thesis Outline ......................................................................................................5 

 

Chapter 2 

Optimization and Optimization Methods.......................................................................7 

2.1 Optimization ........................................................................................................7 
2.2 Traditional Optimization Algorithms ................................................................10 
2.3 Stochastic Algorithms........................................................................................11 
2.4 Evolutionary Algorithms ...................................................................................12 
2.5 Genetic Algorithms............................................................................................15 

2.5.1 Solution Representation ..............................................................................16 
2.5.2 Fitness Function ..........................................................................................16 
2.5.3 Selection......................................................................................................17 
2.5.4 Crossover ....................................................................................................19 
2.5.5 Mutation......................................................................................................20 
2.5.6 The Premature Convergence Problem ........................................................22 

2.6 Particle Swarm Optimization.............................................................................23 
2.6.1 The PSO Algorithm ....................................................................................23 
2.6.2 The lbest Model ..........................................................................................26 
2.6.3 PSO Neighborhood topologies ...................................................................28 
2.6.4 The Binary PSO ..........................................................................................29 
2.6.5 PSO vs. GA.................................................................................................31 
2.6.6 PSO and Constrained Optimization ............................................................32 
2.6.7 Drawbacks of PSO......................................................................................33 
2.6.8 Improvements to PSO.................................................................................34 

2.7 Ant Systems .......................................................................................................45 
2.8 Conclusions........................................................................................................46 

 

Chapter 3 

Problem Definiton........................................................................................................47 

3.1 The Clustering Problem .....................................................................................47 
3.1.1 Definitions...................................................................................................48 
3.1.2 Similarity Measures ....................................................................................49 
3.1.3 Clustering Techniques ................................................................................51 
3.1.4 Clustering Validation Techniques...............................................................64 
3.1.5 Determining the Number of Clusters..........................................................69 
3.1.6 Clustering using Self-Organizing Maps......................................................75 



 

 

 

vi 
 

3.1.7 Clustering using Stochastic Algorithms......................................................78 
3.1.8 Unsupervised Image Classification.............................................................82 

3.2 Image Segmentation using Clustering ...............................................................83 
3.2.1 Thresholding Techniques............................................................................84 
3.2.2 Edge-based Techniques ..............................................................................84 
3.2.3 Region growing Techniques .......................................................................85 
3.2.4 Clustering Techniques ................................................................................85 

3.3 Color Image Quantization..................................................................................89 
3.3.1 Pre-clustering approaches ...........................................................................91 
3.3.2 Post-clustering approaches..........................................................................94 

3.4 Spectral Unmixing .............................................................................................97 
3.4.1 Linear Pixel Unmixing (or Linear Mixture Modeling)...............................98 
3.4.2 Selection of the End-Members..................................................................100 

3.5 Conclusions......................................................................................................103 
 

Chapter 4 

A PSO-based Clustering Algorithm with Application to Unsupervised Image 

Classification..............................................................................................................104 

4.1 PSO-Based Clustering Algorithm....................................................................104 
4.1.1 Measure of Quality ...................................................................................104 
4.1.2 PSO-Based Clustering Algorithm.............................................................105 
4.1.3 A Fast Implementation..............................................................................107 

4.2 Experimental Results .......................................................................................108 
4.2.1 gbest PSO versus K-Means.......................................................................111 
4.2.2 Improved Fitness Function .......................................................................114 
4.2.3 gbest PSO versus GCPSO.........................................................................115 
4.2.4 Influence of PSO Parameters ....................................................................116 
4.2.5 gbest PSO versus state-of-the-art clustering algorithms ..........................122 
4.2.6 Different Versions of PSO ........................................................................126 
4.2.7 A Non-parametric Fitness Function..........................................................128 
4.2.8 Multispectral Imagery Data ......................................................................129 
4.2.9 PSO for Data Clustering ...........................................................................134 

4.3 Conclusions......................................................................................................134 
 

Chapter 5 

SIGT: Synthetic Image Generation Tool for Clustering Algorithms.........................136 

5.1 Need for Benchmarks ......................................................................................136 
5.2 SIGT: Synthetic Image Generation Tool .........................................................138 

5.2.1 Synthetic Image Generator .......................................................................139 
5.2.2 Clustering Verification Unit .....................................................................141 

5.3 Experimental Results .......................................................................................144 
5.4 Conclusions......................................................................................................146 

 



 

 

 

vii 
 

Chapter 6 

Dynamic Clustering using Particle Swarm Optimization with Application to 

Unsupervised Image Classification............................................................................153 

6.1 The Dynamic Clustering using PSO (DCPSO) Algorithm..............................153 
6.1.1 Validity Index ...........................................................................................158 
6.1.2 Time Complexity ......................................................................................158 

6.2 Experimental results.........................................................................................159 
6.2.1 Synthetic images .......................................................................................162 
6.2.2 Natural images ..........................................................................................163 
6.2.3 Comparison with GA and RS ...................................................................166 
6.2.4 Swarm Size ...............................................................................................167 
6.2.5 The Termination Criteria ..........................................................................168 
6.2.6 pini and Nc ..................................................................................................171 
6.2.7 Comparison of gbest-, lbest- and lbest-to-gbest-PSO...............................173 
6.2.8 Multispectral Imagery Data ......................................................................174 

6.3 Conclusions......................................................................................................175 
 

Chapter 7 

Applications ...............................................................................................................177 

7.1 A PSO-based Color Image Quantization Algorithm .......................................177 
7.1.1 The PSO-based Color Image Quantization (PSO-CIQ) Algorithm..........178 
7.1.2 Experimental Results ................................................................................181 

7.2 A PSO-based End-Member Selection Method for Spectral Unmixing of 
Multispectral Satellite Images................................................................................192 

7.2.1 The PSO-based End-Member Selection (PSO-EMS) Algorithm .............192 
7.2.2 Experimental Results ................................................................................195 

7.3 Conclusions......................................................................................................207 
 

Chapter 8 

Conclusion .................................................................................................................208 

8.1 Summary ..........................................................................................................208 
8.2 Future Research ...............................................................................................210 

 

Bibliography ..............................................................................................................213 

 

Appendix A 

Definition of Terms and Symbols..............................................................................238 

 

Appendix B 

Derived Publications..................................................................................................239 

 



 

 

 

viii 
 

List of Figures 
 
Figure 2.1: Example of a global minimizer ∗x  as well as a local minimizer ∗

Bx .......10 

Figure 2.2: General pseudo-code for EAs....................................................................13 

Figure 2.3: General pseudo-code for PSO ...................................................................27 

Figure 2.4. A diagrammatic representation of neighborhood topologies ....................29 

Figure 3.1: General pseudo-code for SOM..................................................................76 

Figure 3.2: Rectangular Lattice arrangement of neighborhoods .................................77 

Figure 3.3: General simulated annealing based clustering algorithm..........................78 

Figure 3.4: General pseudo-code for GA-based clustering algorithm.........................80 

Figure 4.1: The PSO clustering algorithm .................................................................107 

Figure 4.2: Data set consisting of synthetic, MRI and LANDSAT images...............110 

Figure 4.3: PSO Performance on Synthetic Image ....................................................112 

Figure 4.4: The Segmented Synthetic Images ...........................................................113 

Figure 4.5: The Segmented MRI Images...................................................................113 

Figure 4.6: The Segmented Lake Tahoe Images .......................................................113 

Figure 4.7: Effect of swarm size on synthetic image.................................................118 

Figure 4.8: Effect of swarm size on MRI image........................................................119 

Figure 4.9: The Landsat MSS test images of Lake Tahoe.........................................132 

Figure 4.10: The Thematic Maps for Lake Tahoe Image Set ....................................133 

Figure 5.1: The synthetic image generator algorithm................................................140 

Figure 5.2: The clustering verification algorithm......................................................143 

Figure 6.1: The DCPSO algorithm ............................................................................156 

Figure 6.2: Natural Images ........................................................................................160 

Figure 6.3: 6-Clusters thematic map obtained using DCPSO....................................175 

Figure 7.1: The PSO-CIQ algorithm..........................................................................180 

Figure 7.2:  Quantization results for the Lenna image using PSO-CIQ ....................184 

Figure 7.3:  Quantization results for the peppers image using PSO-CIQ..................185 

Figure 7.4:  Quantization results for the jet image using PSO-CIQ ..........................186 

Figure 7.5:  Quantization results for the mandrill image using PSO-CIQ.................187 

Figure 7.6: The PSO-EMS algorithm ........................................................................195 

Figure 7.7:  AVHRR Image of UK, Size: 847x1009 , 5 bands, 10-bits per pixel .....199 

Figure 7.8:  Species concentration maps resulting from the application of ISO-

UNMIX to unmix the Lake Tahoe test image set ......................................................200 



 

 

 

ix 
 

Figure 7.9:  Species concentration maps resulting from the application of PSO-EMS 

to unmix the Lake Tahoe test image set.....................................................................201 

Figure 7.10:  Species concentration maps resulting from the application of ISO-

UNMIX to unmix the UK test image set ...................................................................202 

Figure 7.11:  Species concentration maps resulting from the application of PSO-EMS 

to unmix the UK test image set..................................................................................203 

 



 

 

 

x 
 

List of Tables 
 
Table 4.1: Comparison between K-means and PSO..................................................112 

Table 4.2: 2-component versus 3-component fitness function ..................................115 

Table 4.3: PSO versus GCPSO..................................................................................116 

Table 4.4: Effect of inertia weight on the synthetic image ........................................120 

Table 4.5: Effect of inertia weight on the MRI image...............................................120 

Table 4.6: Effect of acceleration coefficients on the synthetic image .......................121 

Table 4.7: Effect of acceleration coefficients on the MRI image ..............................121 

Table 4.8: Effect of sub-objective weight values on synthetic image .......................123 

Table 4.9: Effect of sub-objective weight values on MRI image ..............................124 

Table 4.10: Comparison between K-means, FCM, KHM, H2, GA and PSO for fitness 

function defined in equation (4.6)..............................................................................125 

Table 4.11: Comparison of different PSO versions ...................................................127 

Table 4.12: Comparison between K-means, FCM, KHM, H2, GA and PSO for fitness 

function defined in equation (4.7)..............................................................................130 

Table 4.13: Comparison between different non-parametric fitness function ............131 

Table 4.14: Comparison between K-means, gbest PSO and lbest-to-gbest PSO when 

applied to multispectral image set..............................................................................131 

Table 5.1: Synthetic image details and classification accuracy.................................148 

Table 5.2: Synthetic images, Histograms and Thematic Maps..................................149 

Table 5.2 (continued). ................................................................................................150 

Table 5.2 (continued). ................................................................................................151 

Table 5.2 (continued). ................................................................................................152 

Table 6.1: Additional synthetic images used along with the corresponding histograms

....................................................................................................................................161 

Table 6.2: Experiments on synthetic images .............................................................163 

Table 6.3: Experiments on natural images.................................................................164 

Table 6.4: Samples of segmented images resulting from DCPSO using V ...............165 

Table 6.4: Samples of segmented images resulting from DCPSO using V (continued)

....................................................................................................................................166 

Table 6.5: Comparison of PSO-, GA- and RS- versions of the proposed approach..167 

Table 6.6: Comparison of PSO- and GA- versions of the proposed approach using a 

swarm size s = 20.......................................................................................................168 



 

 

 

xi 
 

Table 6.7: Effect of  termination criterion TC1 on the DCPSO using a swarm size s = 

20 and TC2= 2 ............................................................................................................170 

Table 6.8: Effect of  termination criterion TC2 on the DCPSO using a swarm size s = 

20 and TC1= 50 ..........................................................................................................171 

Table 6.9: Effect of  pini on the DCPSO using a swarm size s = 20 ..........................172 

Table 6.10: Effect of  Nc on the DCPSO using a swarm size s = 20 .........................173 

Table 6.11: Comparison of gbest-, lbest- and lbest-to-gbest- PSO versions of DCPSO 

using V (s = 20) ..........................................................................................................174 

Table 7.1: Comparison between SOM, GCMA and PSO-CIQ .................................183 

Table 7.2: Effect of Vmax on the performance of PSO-CIQ using Lenna image (16 

colors) ........................................................................................................................188 

Table 7.3: Effect of the swarm size on the performance of PSO-CIQ using Lenna 

image (16 colors) .......................................................................................................189 

Table 7.4: Effect of the number of PSO iterations on the performance of PSO-CIQ 

using Lenna image (16 colors)...................................................................................189 

Table 7.5: Effect of pkmeans on the performance of PSO-CIQ using Lenna image (16 

colors) ........................................................................................................................190 

Table 7.6: Effect of the number of K-means iterations on the performance of PSO-

CIQ using Lenna image (16 colors)...........................................................................191 

Table 7.7: Comparison of gbest-, lbest- and lbest-to-gbest- PSO versions of PSO-CIQ 

using Lenna image (16 colors)...................................................................................191 

Table 7.8: Comparison between ISO-UNMIX and PSO-EMS .................................198 

Table 7.9: Effect of Vmax on the performance of PSO-EMS using Lake Tahoe image 

set ...............................................................................................................................198 

Table 7.10: Effect of the swarm size on the performance of PSO-EMS using Lake 

Tahoe image set .........................................................................................................204 

Table 7.11: Effect of the number of PSO iterations on the performance of PSO-EMS 

using Lake Tahoe image set.......................................................................................204 

Table 7.12: Effect of pkmeans on the performance of PSO-EMS using Lake Tahoe 

image set ....................................................................................................................205 

Table 7.13: Effect of the number of K-means iterations on the performance of PSO-

EMS using Lake Tahoe image set .............................................................................206 

Table 7.14: Comparison of gbest-, lbest- and lbest-to-gbest- PSO versions of PSO-

EMS using Lake Tahoe image set .............................................................................206



 

 

 

1 
 

Chapter 1 

Introduction 
 

As humans, it is easy (even for a child) to recognize letters, objects, numbers, voices 

of friends, etc. However, making a computer solve these types of problems is a very 

difficult task. Pattern recognition is the science with the objective to classify objects 

into different categories and classes. It is a fundamental component of artificial 

intelligence and computer vision. Pattern recognition methods are used in various 

areas such as science, engineering, business, medicine, etc. Interest in pattern 

recognition is fast growing in order to deal with the prohibitive amount of information 

we encounter in our daily life. Automation is desperately needed to handle this 

information explosion. This thesis investigates the application of an efficient 

optimization method, known as Particle Swarm Optimization, to the field of pattern 

recognition and image processing. PSOs solve optimization problems by simulating 

the social behavior of bird flocks. 

 

1.1 Motivation 
 

There are many difficult problems in the field of pattern recognition and image 

processing. These problems are the focus of much active research in order to find 

efficient approaches to address them. However, the outcome of the research is still 

unsatisfactory.  

Local search approaches were generally used to solve difficult problems in the 

field of pattern recognition and image processing. However, the selected set of 



 

 

 

2 
 

problems in this thesis are NP-hard and combinatorial. Hence, evolutionary 

algorithms are generally more suitable to solve these difficult problems because they 

are population-based stochastic approaches. Thus, evolutionary algorithms can avoid 

being trapped in a local optimum and can often find a global optimal solution. A PSO 

is a population-based stochastic optimization algorithm modeled after the simulation 

of the social behavior of bird flocks. PSO is easy to implement and has been 

successfully applied to solve a wide range of optimization problems [Hu 2004]. Thus, 

due to its simplicity and efficiency in navigating large search spaces for optimal 

solutions, PSOs are used in this research to develop efficient, robust and flexible 

algorithms to solve a selective set of difficult problems in the field of pattern 

recognition and image processing. Out of these problems, data clustering is 

elaborately tackled in this thesis specifically image data. The motivation for the focus 

on data clustering is the fact that data clustering is an important process in pattern 

recognition and machine learning. Actually, clustering is a primary goal of pattern 

recognition. Furthermore, it is a central process in Artificial Intelligence. In addition, 

clustering algorithms are used in many applications, such as image segmentation, 

vector and color image quantization, spectral unmixing, data mining, compression, 

etc. Therefore, finding an efficient clustering algorithm is very important for 

researchers in many different disciplines.  

 

1.2 Objectives 
 

The primary objectives of this thesis can be summarized as follows: 

• To show that the PSO can be successfully used to solve difficult problems in 

pattern recognition and image processing. 



 

 

 

3 
 

• To develop an efficient clustering algorithm based on PSO. 

• To develop a tool that can aid researchers in the unsupervised image 

classification field to test their algorithms, compare different clustering 

algorithms and generate benchmarks. 

• To develop an efficient dynamic clustering algorithm that can find the 

"optimum" number of clusters in a data set with minimum user interference. 

• To develop a PSO-based approach to tackle the color image quantization 

problem. 

• To develop an efficient end-members selection method based on PSO for 

spectral unmixing of multispectral imagery data.     

 

1.3 Methodology 
 

Algorithms proposed in this thesis are first presented and discussed. Experimental 

results were then generally obtained using various synthetic images with well-known 

characteristics in order to show the accuracy and efficiency of the proposed 

algorithms.  

In addition, natural images from different areas such as medical images and 

remotely sensed satellite images were also used to show the wide applicability of the 

proposed approaches. 

The results of state-of-the-art algorithms when applied to the same test images 

were also reported to show the relative performance of the proposed approaches when 

compared to other well-known approaches. 

For the task of unsupervised image classification, attempts were made to find 

the best values for the PSO parameters. 



 

 

 

4 
 

Due to the stochastic nature of the proposed algorithms, all the presented 

results are averages and standard deviations over several simulations. However, due to 

the computational expensive nature of the simulations, results were generally taken 

over 10 or 20 runs. 

 

1.4 Contributions 
 

The main contributions of this thesis are: 

• The development of an efficient clustering algorithm based on the PSO that 

performs better than state-of-the-art clustering algorithms when applied to the 

problem of unsupervised image classification. 

• The development of a simple tool for synthetic image generation and 

verification. This tool can be used as a preliminary test to compare different 

unsupervised image classification algorithms. In addition, it can be used to 

generate a set of benchmark images that can be used by the researchers in the 

field of unsupervised image classification. 

• The development of an efficient dynamic clustering algorithm based on the 

PSO that is able to simultaneously cluster a data set and find the "optimum" 

number of clusters in the data set. 

• The development of an efficient color image quantization algorithm based on 

the PSO which is capable of generating high quality quantized images. 

• The development of an efficient end-members selection method for spectral 

unmixing of multispectral satellite imagery data which is based on the PSO. 

The efficiency of the algorithm is demonstrated by applying it to test imagery 

from various platforms. 



 

 

 

5 
 

 

1.5 Thesis Outline 
 

Chapter 2 briefly reviews the subject of optimization. This is followed by a brief 

discussion of traditional and stochastic optimization methods. Evolutionary 

Algorithms (EAs) (with more emphasis on Genetic Algorithms (GAs)) are then 

presented. This is followed by an elaborated discussion of particle swarm 

optimization and its various modifications. PSO is a model from the swarm 

intelligence paradigm. Therefore in order to provide a complete coverage of swarm 

intelligence background, a brief overview of another swarm intelligence model, Ant 

Colony Systems, is given. 

 Chapter 3 reviews the problems addressed in this thesis in sufficient detail. 

First the clustering problem is defined and different clustering concepts and 

approaches are presented. This is followed by defining image segmentation in 

addition to presenting various image segmentation methods. A survey of color image 

quantization and its approaches is then presented. This is followed by a brief 

introduction to spectral unmixing.  

 Chapter 4 presents a clustering method that is based on PSO. The algorithm 

finds the centroids of a user specified number of clusters, where each cluster groups 

together similar patterns. The application of the proposed clustering algorithm to the 

problem of unsupervised classification and segmentation of images is investigated. To 

illustrate its wide applicability, the proposed algorithm is then applied to synthetic, 

MRI and satellite images. 

 Chapter 5 presents a new automatic image generation tool tailored specifically 

for the verification and comparison of different unsupervised image classification 



 

 

 

6 
 

algorithms. The usefulness of the tool is demonstrated in this chapter with reference to 

the well-known K-means clustering algorithm and the PSO-based clustering algorithm 

proposed in the chapter 4. 

 Chapter 6 presents a new dynamic clustering approach based on PSO. This 

approach is applied to unsupervised image classification. The proposed approach 

automatically determines the "optimum" number of clusters and simultaneously 

clusters the data set with minimal user interference. The proposed approach is then 

applied to synthetic, natural and multispectral images. A genetic algorithm and a 

random search version of dynamic clustering are presented and compared to the 

particle swarm version. 

 Chapter 7 presents PSO-based approaches to tackle the color image 

quantization and spectral unmixing problems. The proposed approaches are then 

applied on different image sets to show their applicability and they are compared with 

other state-of-the-art approaches. 

 Chapter 8 highlights the conclusions of this thesis and discusses directions for 

future research. 

 The appendices present a definition of frequently used terms and symbols and 

a list of publications derived from the work introduced in this thesis. 

  

  

 

  

 
 
 
 



 

 

 

7 
 

 

Chapter 2 

Optimization and Optimization Methods 

 

This chapter provides a brief overview of optimization. This is followed by a brief discussion 

of traditional and stochastic optimization methods. Evolutionary algorithms (with more 

emphasis on genetic algorithms) are then presented. This is followed by an elaborated 

discussion of particle swarm optimization and its various modifications. A brief overview of 

ant colony systems is then given.   

 

2.1 Optimization 

 

The objective of optimization is to seek values for a set of parameters that maximize 

or minimize objective functions subject to certain constraints [Rardin 1998; Van den 

Bergh 2002]. A choice of values for the set of parameters that satisfy all constraints is 

called a feasible solution. Feasible solutions with objective function value(s) as good 

as the values of any other feasible solutions are called optimal solutions [Rardin 

1998]. An example of an optimization problem is the arrangement of the transistors in 

a computer chip in such a way that the resulting layout occupies the smallest area and 

that as few as possible components are used. Optimization techniques are used on a 

daily base for industrial planning, resource allocation, scheduling, decision making, 

etc. Furthermore, optimization techniques are widely used in many fields such as 

business, industry, engineering and computer science. Research in the optimization 



 

 

 

8 
 

field is very active and new optimization methods are being developed regularly 

[Chinneck 2000]. 

 Optimization encompasses both maximization and minimization problems. 

Any maximization problem can be converted into a minimization problem by taking 

the negative of the objective function, and vice versa. Hence, the terms optimization, 

maximization and minimization are used interchangeably in this thesis. In general, the 

problems tackled in this thesis are minimization problems. Therefore, the remainder 

of the discussion focuses on minimization problems. 

 

The minimization problem can be defined as follows [Pardalos et al. 2002] 

Given ℜ→  S :f  where dNℜ⊆S and dN  is the dimension of the 

search space S  

find Sx ∈∗  such that S x xx ∈∀≤∗  ),()( ff                         (2.1) 

 

The variable ∗x  is called the global minimizer (or simply the minimizer) of f  and 

)( ∗xf is called the global minimum (or simply the minimum) value of f . This can be 

illustrated as given in Figure 2.1 where ∗x is a global minimizer of f . The process of 

finding the global optimal solution is known as global optimization [Gray et al. 1997]. 

A true global optimization algorithm will find ∗x  regardless of the selected starting 

point Sx ∈0  [Van den Bergh 2002]. Global optimization problems are generally very 

difficult and are categorized under the class of nonlinear programming (NLP) [Gray et 

al. 1997]. 

Examples of global optimization problems are [Gray et al. 1997]: 



 

 

 

9 
 

• Combinatorial problems: where a linear or nonlinear function is defined over a 

finite but very large set of solutions, for example, network problems and 

scheduling [Pardalos et al. 2002]. The problems addressed in this thesis belong 

to this category. 

• General unconstrained problems: where a nonlinear function is defined over 

an unconstrained set of real values. 

• General constrained problems: where a nonlinear function is defined over a 

constrained set of real values. 

Evolutionary algorithms (discussed in Sections 2.4-2.5) have been successfully 

applied to the above problems to find approximate solutions [Gray et al. 1997]. More 

details about global optimization can be found in Pardalos et al. [2002], Floudas and 

Pardalos [1992] and Horst et al. [2000]. 

In Figure 2.1, ∗
Bx  is called the local minimizer of region B  because )( ∗

Bxf  is 

the smallest value within a local neighborhood, B . Mathematically speaking, the 

variable ∗
Bx  is a local minimizer of the region B  if 

 

B x xxB ∈∀≤∗  ),()( ff                (2.2) 

 

where SB ⊂ . Every global minimizer is a local minimizer, but a local minimizer is 

not necessarily a global minimizer.  

 Generally, a local optimization method is guaranteed to find the local 

minimizer ∗
Bx  of the region B  if a starting point 0x  is used with Bx ∈0 . An 

optimization algorithm that converges to a local minimizer, regardless of the selected 

starting point Sx ∈0 , is called a globally convergent algorithm [Van den Bergh 



 

 

 

10 
 

2002]. There are many local optimization algorithms in the literature. For more detail 

the reader is referred to Aarts and Lenstra [2003] and Korte and Vygen [2002].  

 

 

Figure 2.1: Example of a global minimizer ∗x  as well as a local minimizer ∗
Bx  

 

2.2 Traditional Optimization Algorithms 
 

Traditional optimization algorithms use exact methods to find the best solution. The 

idea is that if a problem can be solved, then the algorithm should find the global best 

solution. One exact method is the brute force (or exhaustive) search method where the 

algorithm tries every solution in the search space so that the global optimal solution is 

guaranteed to be found. Obviously, as the search space increases the cost of brute 

force algorithms increases. Therefore, brute force algorithms are not appropriate for 

the class of problems known as NP-hard problems. The time to exhaustively search an 



 

 

 

11 
 

NP-hard problem increases exponentially with problem size. Other exact methods 

include linear programming, divide and conquer and dynamic programming. More 

details about exact methods can be found in Michalewicz and Fogel [2000].   

 

2.3 Stochastic Algorithms 

 

Stochastic search algorithms are used to find near-optimal solutions for NP-hard 

problems in polynomial time. This is achieved by assuming that good solutions are 

close to each other in the search space. This assumption is valid for most real world 

problems [Løvberg 2002; Spall 2003]. Since the objective of a stochastic algorithm is 

to find a near-optimal solution, stochastic algorithms may fail to find a global optimal 

solution. While an exact algorithm generates a solution only after the run is 

completed, a stochastic algorithm can be stopped any time during the run and generate 

the best solution found so far [Løvberg 2002]. 

Stochastic search algorithms have several advantages compared to other 

algorithms [Venter and Sobieszczanski-Sobieski 2002]: 

• Stochastic search algorithms are generally easy to implement. 

• They can be used efficiently in a multiprocessor environment. 

• They do not require the problem definition function to be continuous. 

• They generally can find optimal or near-optimal solutions. 

• They are suitable for discrete and combinatorial problems. 

 

Three major stochastic algorithms are Hill-Climbing [Michalewicz and Fogel 2000], 

Simulated Annealing [Van Laarhoven and Aarts 1987] and Tabu search [Glover 1989; 



 

 

 

12 
 

Glover 1990]. In Hill-Climbing, a potential solution is randomly chosen. The 

algorithm then searches the neighborhood of the current solution for a better solution. 

If a better solution is found, then it is set as the new potential solution. This process is 

repeated until no more improvement can be made. Simulated annealing is similar to 

Hill-Climbing in the sense that a potential solution is randomly chosen. A small value 

is then added to the current solution to generate a new solution. If the new solution is 

better than the original one then the solution moves to the new location. Otherwise, 

the solution will move to the new location with a probability that decreases as the run 

progresses [Salman 1999]. Tabu search is a heuristic search algorithm where a tabu 

list memory of previously visited solutions is maintained in order to improve the 

performance of the search process. The tabu list is used to "guide the movement from 

one solution to the next one to avoid cycling" [Gabarro 2000], thus, avoid being 

trapped in a local optimum. Tabu search starts with a randomly chosen current 

solution. A set of test solutions are generated via moves from the current solution. The 

best test solution is set as the current solution if it is not in the tabu list, or if it is in the 

tabu list, but satisfies an aspiration criterion. A test solution satisfies an aspiration 

criterion if it is in the tabu list and it is the best solution found so far [Chu and 

Roddick 2003]. This process is repeated until a stopping criterion is satisfied. 

 

2.4 Evolutionary Algorithms 

 

Evolutionary algorithms (EAs) are general-purpose stochastic search methods 

simulating natural selection and evolution in the biological world. EAs differ from 

other optimization methods, such as Hill-Climbing and Simulated Annealing, in the 



 

 

 

13 
 

fact that EAs maintain a population of potential (or candidate) solutions to a problem, 

and not just one solution [Engelbrecht 2002; Salman 1999]. 

Generally, all EAs work as follows: a population of individuals is initialized 

where each individual represents a potential solution to the problem at hand. The 

quality of each solution is evaluated using a fitness function. A selection process is 

applied during each iteration of an EA in order to form a new population. The 

selection process is biased toward the fitter individuals to ensure that they will be part 

of the new population. Individuals are altered using unary transformation (mutation) 

and higher order transformation (crossover). This procedure is repeated until 

convergence is reached. The best solution found is expected to be a near-optimum 

solution [Michalewicz 1996]. A general pseudo-code for an EA is shown in Figure 2.2 

[Gray et al. 1997]. 

Initialize the population 

Evaluate the fitness of each individual in the population 

Repeat 

Apply selection on the population to form a new population 

Alter the individuals in the population using evolutionary operators 

Evaluate the fitness of each individual in the population 

Until some convergence criteria are satisfied 

Figure 2.2: General pseudo-code for EAs 

 

The unary and higher order transformations are called evolutionary operators. The 

two most frequently evolutionary operators are: 

• Mutation, which modifies an individual by a small random change to generate 

a new individual [Michalewicz 1996]. This change can be done by inverting 

the value of a binary digit in the case of binary representations, or by adding 



 

 

 

14 
 

(or subtracting) a small number to (or from) selected values in the case of 

floating point representations. The main objective of mutation is to add some 

diversity by introducing more genetic material into the population in order to 

avoid being trapped in a local optimum. Generally, mutation is applied using a 

low probability. However, some problems (e.g. problems using floating point 

representations) require using mutation with high probability [Salman 1999]. 

A preferred strategy is to start with high probability of mutation and dreasing 

it over time.  

• Recombination (or Crossover), where parts from two (or more) individuals are 

combined together to generate new individuals [Michalewicz 1996]. The main 

objective of crossover is to explore new areas in the search space [Salman 

1999].  

There are four major evolutionary techniques: 

• Genetic Programming (GP) [Koza 1992] which is used to search for the fittest 

program to solve a specific problem. Individuals are represented as trees and 

the focus is on genotypic evaluation. 

• Evolutionary Programming (EP) [Fogel 1994] which is generally used to 

optimize real-valued continuous functions. EP uses selection and mutation 

operators; it does not use the recombination operator. The focus is on 

phenotypic evaluation and not on genotypic evaluation. 

• Evolutionary Strategies (ES) [Bäck et al. 1991] which is used to optimize real-

valued continuous functions. ES uses selection, crossover and mutation 

operators. ES optimizes both the population and the optimization process, by 

evolving strategy parameters. Hence, ES is evolution of evolution. 



 

 

 

15 
 

• Genetic Algorithms (GA) [Goldberg 1989] which is generally used to optimize 

general combinatorial problems [Gray et al. 1997]. The GA is a commonly 

used algorithm and has been used for comparison purposes in this thesis. The 

focus in GA is on genetic evolution using both mutation and crossover, 

although the original GAs developed by Holland [1962] used only crossover. 

Since later chapters make use of GAs, a detailed explanation of GAs is given 

in Section 2.5. 

 

Due to its population-based nature, EAs can avoid being trapped in a local optimum 

and consequently can often find global optimal solutions. Thus, EAs can be viewed as 

global optimization algorithms. However, it should be noted that EAs may fail to 

converge to a global optimum [Gray et al. 1997]. 

EAs have successfully been applied to a wide variety of optimization 

problems, for example: image processing, pattern recognition, scheduling, 

engineering design, etc. [Gray et al 1997; Goldberg 1989].  

 

2.5 Genetic Algorithms 
 
Genetic Algorithms (GAs) are evolutionary algorithms that use selection, crossover 

and mutation operators. GAs were first proposed by Holland [1962; 1975] and were 

inspired by Darwinian evolution and Mendelian genetics [Salman 1999]. GAs follow 

the same algorithm presented in Figure 2.2. GAs are one of the most popular 

evolutionary algorithms and have been widely used to solve difficult optimization 

problems. GAs have been successfully applied in many areas such as pattern 

recognition, image processing, machine learning, etc. [Goldberg 1989]. In many cases 

GAs perform better than EP and ESs. However, EP and ESs usually converge better 



 

 

 

16 
 

than GAs for real valued function optimization [Weiss 2003]. Individuals in GAs are 

called chromosomes. Each chromosome consists of a string of cells called genes. The 

value of each gene is called allele. The major parameters of GAs are discussed in 

Sections 2.5.1-2.5.5. In Section 2.5.6, a brief discussion about a problem that may be 

encountered in GAs is discussed. 

 

2.5.1 Solution Representation 
 
Binary representation is often used in GAs where each gene has a value of either 0 or 

1. Other presentations have been proposed, for example, floating point representations 

[Janikow and Michalewicz 1991], integer representations [Bramlette 1991], gray-

coded representations [Whitley and Rana 1998] and matrix representation 

[Michalewicz 1996]. More detail about representation schemes can be found in 

Goldberg [1989]. Generally, non-binary representations require different evolutionary 

operators for each representation while uniform operators can be used with binary 

representation for any problem [Van den Bergh 2002]. However, according to 

Michalewicz [1991], floating point representations are faster, more consistent and 

have higher precision than binary representations. 

 

2.5.2 Fitness Function 
 
A key element in GAs is the selection of a fitness function that accurately quantifies 

the quality of candidate solutions. A good fitness function enables the chromosomes 

to effectively solve a specific problem. Both the fitness function and solution 

representation are problem dependent parameters. A poor selection of these two 

parameters will drastically affect the performance of GAs. One problem related to 



 

 

 

17 
 

fitness functions that may occur when GAs are used to optimize combinatorial 

problems is the existence of points in the search space that do not map to feasible 

solutions. One solution to this problem is the addition of a penalty function term to the 

original fitness function so that chromosomes representing infeasible solutions will 

have a low fitness score, and as such, will disappear from the population [Fletcher 

2000]. 

 

2.5.3 Selection 
 

Another key element of GAs is the selection operator which is used to select 

chromosomes (called parents) for mating in order to generate new chromosomes 

(called offspring). In addition, the selection operator can be used to select elitist 

individuals. The selection process is usually biased toward fitter chromosomes. 

Selection methods are used as mechanisms to focus the search on apparently more 

profitable regions in the search space [Angeline, Using Selection 1998].  Examples of 

well-known selection approaches are: 

• Roulette wheel selection: Parent chromosomes are probabilistically selected 

based on their fitness. The fitter the chromosome, the higher the probability 

that it may be chosen for mating. Consider a roulette wheel where each 

chromosome in the population occupies a slot with slot size proportional to the 

chromosome's fitness [Gray et al. 1997]. When the wheel is randomly spun, 

the chromosome corresponding to the slot where the wheel stopped is selected 

as the first parent. This process is repeated to find the second parent. Clearly, 

since fitter chromosomes have larger slots, they have better chance to be 

chosen in the selection process [Goldberg 1989]. 



 

 

 

18 
 

• Rank selection: Roulette wheel selection suffers from the problem that highly 

fit individuals may dominate in the selection process. When one or a few 

chromosomes have a very high fitness compared to the fitness of other 

chromosomes, the lower fit chromosomes will have a very slim chance to be 

selected for mating. This will increase selection pressure, which will cause 

diversity to decrease rapidly resulting in premature convergence. To reduce 

this problem, rank selection sorts the chromosomes according to their fitness 

and base selection on the rank order of the chromosomes, and not on the 

absolute fitness values. The worst (i.e. least fit) chromosome has rank of 1, the 

second worst chromosome has rank of 2, and so on. Rank selection still prefers 

the best chromosomes; however, there is no domination as in the case of 

roulette wheel selection. Hence, using this approach all chromosomes will 

have a good chance to be selected. However, this approach may have a slower 

convergence rate than the roulette wheel approach [Gray et al. 1997]. 

• Tournament selection: In this more commonly used approach [Goldberg 

1989], a set of chromosomes are randomly chosen. The fittest chromosome 

from the set is then placed in a mating pool. This process is repeated until the 

mating pool contains a sufficient number of chromosomes to start the mating 

process.  

• Elitism: In this approach, the fittest chromosome, or a user-specified number 

of best chromosomes, is copied into the new population. The remaining 

chromosomes are then chosen using any selection operator. Since the best 

solution is never lost, the performance of GA can significantly be improved 

[Gray et al. 1997].   



 

 

 

19 
 

 

2.5.4 Crossover 
 

Crossover is "the main explorative operator in GAs" [Salman 1999]. Crossover occurs 

with a user-specified probability, called the crossover probability pc. pc is problem 

dependent with typical values in the range between 0.4 and 0.8 [Weiss 2003]. The 

four main crossover operators are: 

• Single point crossover: In this approach, a position is randomly selected at 

which the parents are divided into two parts. The parts of the two parents are 

then swapped to generate two new offspring. 

Example 2.1 

Parent A: 11001010 

Parent B: 01110011 

Offspring A: 11001011  

 Offspring B: 01110010 

 

•   Two point crossover: In this approach, two positions are randomly selected. 

The middle parts of the two parents are then swapped to generate two new 

offspring. 

Example 2.2 

Parent A: 11001010 

Parent B: 01110011 

Offspring A: 11110010  

Offspring B: 01001011 



 

 

 

20 
 

• Uniform crossover: In this approach, alleles are copied from either the first 

parent or the second parent with some probability, usually set to 0.5. 

Example 2.3 

Parent A: 11001010 

Parent B: 01110011 

Offspring A: 11101011  

Offspring B: 01010010 

• Arithmetic crossover: In this approach, which is used for floating point 

representations, offspring is calculated as the arithmetic mean of the parents 

[Michalewicz 1996; Krink and Løvbjerg 2002], i.e.  

Bparent Aparent A offspring )(1 xxx rr −+=                           (2.3) 

Aparent Bparent B offspring )(1 xxx rr −+=                           (2.4) 

where (0,1)~ Ur . 

 

2.5.5 Mutation 
 

In GAs, mutation is considered to be a background operator, mainly used to explore 

new areas in the search space and to add diversity (contrary to selection and crossover 

which reduces diversity) to the population of chromosomes in order to prevent being 

trapped in a local optimum. Mutation is applied to the offspring chromosomes after 

crossover is performed. In a binary coded GA, mutation is done by inverting the value 

of each gene in the chromosome according to a user-specified probability, which is 

called the mutation probability, pm. This probability is problem dependent. Mutation 

occurs infrequently both in nature and in GAs [Løvberg 2002], hence, a typical value 



 

 

 

21 
 

for pm is 0.01 [Weiss 2003]. However, a better value for pm is the inverse of the 

number of genes in a chromosome (i.e. chromosome size) [Goldberg 1989].  

One mutation scheme used with floating point representations is the non-

uniform mutation [Michalewicz 1996]. The jth element of chromosome x is mutated as 

follows: 

 

  where,jjj xxx ∆+=  

( )

( )





−−−

−−+
=∆

−

−

1 isbit  random a if       )1)((
0 isbit  random a if      )1)((

max

max

1
min

1
max

b

b

t/t
j

t/t
j

j rZx
rxZ

x                  (2.5) 

 

where Zmin and Zmax are the lower and upper bound of the search space, (0,1)~ Ur , t 

is the current iteration, tmax is the total number of iterations and b is a user-specified 

parameter determining the degree of iteration number dependency (in this thesis, b 

was set to 5 as suggested by Michalewicz [1996]). Thus, the amount of mutation 

decreases as the run progresses. 

 Kennedy and Spears [1998] observed that a GA using either mutation or 

crossover performed better than a GA using both crossover and mutation operators 

when applied to a set of random problems (especially for problems with a large 

multimodality).   

 



 

 

 

22 
 

2.5.6 The Premature Convergence Problem 
 

Genetic algorithms suffer from the premature suboptimal convergence (simply 

premature convergence or stagnation) which occurs when some poor individuals 

attract the population - due to a local optimum or bad initialization - preventing 

further exploration of the search space [Dorigo et al. 1999]. One of the causes of this 

problem is that a very fit chromosome is generally sure to be selected for mating, and 

since offspring resemble their parents, chromosomes become too similar (i.e. 

population loses diversity). Hence, the population will often converge before reaching 

the global optimal solution, resulting in premature convergence. Premature 

convergence can be prevented by: 

• Using subpopulations: The population of chromosomes is divided into 

separate subpopulations. Each subpopulation is evolved independent of the 

other subpopulations for a user-specified number of generations. Then, a 

number of chromosomes are exchanged between the subpopulations. This 

process helps in increasing diversity and thus preventing premature 

convergence. 

• Re-initializing some chromosomes: A few chromosomes are re-initialized 

from time to time in order to add diversity to the population. 

• Increase the mutation probability: As already discussed, mutation aids in 

exploring new areas in the search space and increases diversity. Therefore, 

increasing pm will help in preventing premature convergence. 

 

In general, any mechanism that can increase diversity will help in preventing 

premature convergence. 



 

 

 

23 
 

 

2.6 Particle Swarm Optimization 

 

A particle swarm optimizer (PSO) is a population-based stochastic optimization 

algorithm modeled after the simulation of the social behavior of bird flocks [Kennedy 

and Eberhart 1995; Kennedy and Eberhart 2001]. PSO is similar to EAs in the sense 

that both approaches are population-based and each individual has a fitness function. 

Furthermore, the adjustments of the individuals in PSO are relatively similar to the 

arithmetic crossover operator used in EAs [Coello Coello and Lechuga 2002]. 

However, PSO is influenced by the simulation of social behavior rather than the 

survival of the fittest [Shi and Eberhart 2001]. Another major difference is that, in 

PSO, each individual benefits from its history whereas no such mechanism exists in 

EAs [Coello Coello and Lechuga 2002]. PSO is easy to implement and has been 

successfully applied to solve a wide range of optimization problems such as 

continuous nonlinear and discrete optimization problems [Kennedy and Eberhart 

1995; Kennedy and Eberhart 2001; Eberhart and Shi, Comparison 1998].  

 

2.6.1 The PSO Algorithm 
 

In a PSO system, a swarm of individuals (called particles) fly through the search 

space. Each particle represents a candidate solution to the optimization problem. The 

position of a particle is influenced by the best position visited by itself (i.e. its own 

experience) and the position of the best particle in its neighborhood (i.e. the 

experience of neighboring particles). When the neighborhood of a particle is the entire 



 

 

 

24 
 

swarm, the best position in the neighborhood is referred to as the global best particle, 

and the resulting algorithm is referred to as a gbest PSO. When smaller 

neighborhoods are used, the algorithm is generally referred to as a lbest PSO [Shi and 

Eberhart, Parameter 1998]. The performance of each particle (i.e. how close the 

particle is from the global optimum) is measured using a fitness function that varies 

depending on the optimization problem. 

 

Each particle in the swarm is represented by the following characteristics: 

 

xi: The current position of the particle; 

vi: The current velocity of the particle; 

yi: The personal best position of the particle. 

iŷ : The neighborhood best position of the particle. 

 

The personal best position of particle i is the best position (i.e. the one resulting in the 

best fitness value) visited by particle i so far. Let f denote the objective function. Then 

the personal best of a particle at time step t is updated as 

 





<++
≥+

=+
))(())1(( if     )1(
))(())1(( if         )(

)1(
tftft
tftft

t
iii

iii
i yxx

yxy
y               (2.6) 

 

For the gbest model, the best particle is determined from the entire swarm by selecting 

the best personal best position. If the position of the global best particle is denoted by 

the vector ŷ , then 

 



 

 

 

25 
 

}{ { }))((,)),(()),((min,,,)(ˆ 1010 tftftft ss yyyyyyy KK =∈             (2.7) 

 

where s denotes the size of the swarm.  

The velocity update step is specified for each dimension j ∈ 1,…,Nd, hence, vi,j 

represents the jth element of the velocity vector of the ith particle. Thus the velocity of 

particle i is updated using the following equation: 

 

))()()(())()()(()(1)( 2,21,1 txtŷtrctxtytrctwvtv ji,jjji,ji,jji,ji, −+−+=+                     (2.8) 

 

where w is the inertia weight, 1c  and 2c  are the acceleration constants, and )(1, tr j , 

(0,1)~)(2, Utr j . Equation (2.8) consists of three components, namely 

• The inertia weight term, w, which was first introduced by Shi and Eberhart [A 

modified 1998]. This term serves as a memory of previous velocities. The 

inertia weight controls the impact of the previous velocity: a large inertia 

weight favors exploration, while a small inertia weight favors exploitation [Shi 

and Eberhart, Parameter 1998]. 

• The cognitive component, ii t xy −)( , which represents the particle's own 

experience as to where the best solution is. 

• The social component, )()(ˆ tt ixy − , which represents the belief of the entire 

swarm as to where the best solution is. 

According to Van den Bergh [2002], the relation between the inertia weight and 

acceleration constants should satisfy the following equation in order to have 

guaranteed convergence: 



 

 

 

26 
 

w
cc

<−
+

1
2

21                               (2.9) 

Otherwise, the PSO particles may exhibit divergent of cyclic behavior. For a thorough 

study of the relationship between the inertia weight and acceleration constants, the 

reader is advised to refer to Ozcan and Mohan [1998], Clerc and Kennedy [2001], 

Van den Bergh [2002], Zheng et al. [2003], Yasuda et al. [2003] and Trelea [2003]. 

Velocity updates can also be clamped with a user defined maximum velocity, 

Vmax, which would prevent them from exploding, thereby causing premature 

convergence [Eberhart et al. 1996]. 

 

The position of particle i, xi, is then updated using the following equation: 

 

)1()()1( ++=+ ttt iii vxx                (2.10) 

 

The PSO updates the particles in the swarm using equations (2.8) and (2.10). This 

process is repeated until a specified number of iterations is exceeded, or velocity 

updates are close to zero. The quality of particles is measured using a fitness function 

which reflects the optimality of a particular solution. Figure 2.3 summarizes the basic 

PSO algorithm.   

 

2.6.2 The lbest Model 
 
For the lbest model, a swarm is divided into overlapping neighborhoods of particles. 

For each neighborhood Ni, the best particle is determined, with position iŷ . This 

particle is referred to as the neighborhood best particle. Let the indices of the particles 

wrap around at s and the neighborhood size is l. Then the update equations are:



 

 

 

27 
 

 

For each particle i ∈ 1,...,s do 

   Randomly initialize xi 

   Randomly initialize vi (or just set vi to zero) 

   Set yi = xi 

endfor 

Repeat 

   For each particle i ∈ 1,...,s do 

      Evaluate the fitness of particle i, f(xi) 

      Update yi using equation (2.6) 

      Update ŷ  using equation (2.7) 

      For each dimension  j ∈ 1,...,Nd do 

         Apply velocity update using equation (2.8) 

      endloop 

      Apply position update using equation (2.10) 

   endloop 

Until some convergence criteria is satisfied 

Figure 2.3: General pseudo-code for PSO 

 

 

{ })(),(,),(),(),(,),(),( tttttttN li1li1ii1i1lilii +−++−+−−= yyyyyyy KK           (2.11) 

{ } },))((min1))((|{1)( iiiiii NtftˆfNtˆ ∈∀=+∈+ yyyy                       (2.12) 

))()()(())()()(()(1)( 2,21,1, txtŷtrctxtytrctwvtv ji,ji,jji,ji,jji,ji −+−+=+          (2.13) 

 



 

 

 

28 
 

The position update equation is the same as given in equation (2.10). Neighbors 

represent the social factor in PSO. Neighborhoods are usually determined using 

particle indices, however, topological neighborhoods can also be used [Suganthan 

1999]. It is clear that gbest is a special case of lbest with l = s; that is, the 

neighborhood is the entire swarm. While the lbest approach results in a larger 

diversity, it is still slower than the gbest approach. 

 

2.6.3 PSO Neighborhood topologies 
 
Different neighborhood topologies have been investigated [Kennedy 1999; Kennedy 

and Mendes 2002]. Two common neighborhood topologies are the star (or wheel) and 

ring (or circle) topologies. For the star topology one particle is selected as a hub, 

which is connected to all other particles in the swarm. However, all the other particles 

are only connected to the hub. For the ring topology, particles are arranged in a ring. 

Each particle has some number of particles to its right and left as its neighborhood. 

Recently, Kennedy and Mendes [2002] proposed a new PSO model using a Von 

Neumann topology. For the Von Neumann topology, particles are connected using a 

grid network (2-dimensional lattice) where each particle is connected to its four 

neighbor particles (above, below, right and left particles). Figure 2.4 illustrates the 

different neighborhood topologies.     



 

 

 

29 
 

 

   

(a) Star topology (b) Ring Topology (c) Von Neumann Topology 

Figure 2.4. A diagrammatic representation of neighborhood topologies  

 

 The choice of neighborhood topology has a profound effect on the propagation 

of the best solution found by the swarm. Using the gbest model the propagation is 

very fast (i.e. all the particles in the swarm will be affected by the best solution found 

in iteration t, immediately in iteration 1+t ). This fast propagation may result in the 

premature convergence problem discussed in Section 2.5.6. However, using the ring 

and Von Neumann topologies will slow down the convergence rate because the best 

solution found has to propagate through several neighborhoods before affecting all 

particles in the swarm. This slow propagation will enable the particles to explore more 

areas in the search space and thus decreases the chance of premature convergence. 

 

2.6.4 The Binary PSO 
 

Kennedy and Eberhart [1997] have adapted the PSO to search in binary spaces. For 

the binary PSO, the component values of xi, yi and iŷ  are restricted to the set {0, 1}. 

The velocity, vi, is interpreted as a probability to change a bit from 0 to 1, or from 1 to 

0 when updating the position of particles. Therefore, the velocity vector remains 

continuous-valued. Since each ℜ∈ji,v , a mapping needs to be defined from vi,j to a 



 

 

 

30 
 

probability in the range [0, 1]. This is done by using a sigmoid function to squash 

velocities into a [0, 1] range. The sigmoid function is defined as 

 

ve
vsig −+
=

1
1)(                 (2.14) 

 

The equation for updating positions (equation (2.10)) is then replaced by the 

probabilistic update equation [Kennedy and Eberhart 1997]: 

 





+<
+≥

=+
))1(()( if      1
))1(()( if      0

)1(
tvsigtr
tvsigtr

tx
ji,j3,

ji,j3,
ji,              (2.15) 

 

where (0,1)~)(3, Utr j .  

It can be observed from equation (2.15) that if sig(vi,j) = 0 then xi,j = 0. This 

situation occurs when vi,j < -10. Furthermore, sig(vi,j) will saturate when vi,j > 10 [Van 

den Bergh 2002]. To avoid this problem, it is suggested to set vi,j ∈ [-4,4] and to use 

velocity clamping with Vmax = 4 [Kennedy and Eberhart 2001]. 

 PSO has also been extended to deal with arbitrary discrete representation 

[Yoshida et al. 1999; Fukuyama and Yoshida 2001; Venter and Sobieszczanski-

Sobieski 2002; Al-kazemi and Mohan 2000; Mohan and Al-Kazemi 2001]. These 

extensions are generally achieved by rounding xi,j to its closest discrete value after 

applying position update equation (2.10) [Venter and Sobieszczanski-Sobieski 2002].    



 

 

 

31 
 

2.6.5 PSO vs. GA 
   

A PSO is an inherently continuous algorithm where as a GA is an inherently discrete 

algorithm [Venter and Sobieszczanski-Sobieski 2002]. Experiments conducted by 

Veeramachaneni et al. [2003] showed that a PSO performed better than GAs when 

applied on some continuous optimization problems. Furthermore, according to 

Robinson et al. [2002], a PSO performed better than GAs when applied to the design 

of a difficult engineering problem, namely, profiled corrugated horn antenna design 

[Diaz and Milligan 1996]. In addition, a binary PSO was compared with a GA by 

Eberhart and Shi [Comparison 1998] and Kennedy and Spears [1998]. The results 

showed that binary PSO is generally faster, more robust and performs better than 

binary GAs, especially when the dimension of a problem increases. 

 Hybrid approaches combining PSO and GA were proposed by 

Veeramachaneni et al. [2003] to optimize the profiled corrugated horn antenna. The 

hybridization works by taking the population of one algorithm when it has made no 

fitness improvement and using it as the starting population for the other algorithm. 

Two versions were proposed: GA-PSO and PSO-GA. In GA-PSO, the GA population 

is used to initialize the PSO population. For PSO-GA, the PSO population is used to 

initialize the GA population. According to Veeramachaneni et al. [2003], PSO-GA 

performed slightly better than PSO. Both PSO and PSO-GA outperformed both GA 

and GA-PSO.  

 Some of the first applications of PSO were to train Neural Networks (NNs), 

including NNs with product units. Results have shown that PSO is better than GA and 

other training algorithms [Eberhart and Shi, Evolving 1998; Van den Bergh and 

Engelbrecht 2000; Ismail and Engelbrecht 2000]. 



 

 

 

32 
 

According to Shi and Eberhart [1998], the PSO performance is insensitive to 

the population size (however, the population size should not be too small). This 

observation was verified by Løvberg [2002] and Krink et al. [2002]. Consequently, 

PSO with smaller swarm sizes perform comparably to GAs with larger populations. 

Furthermore, Shi and Eberhart observed that PSO scales efficiently. This observation 

was verified by Løvberg [2002].  

 

2.6.6 PSO and Constrained Optimization 
 
 
Most engineering problems are constrained problems. However, the basic PSO is only 

defined for unconstrained problems. One way to allow the PSO to optimize 

constrained problems is by adding a penalty function to the original fitness function 

(as discussed in Section 2.5.2). In this thesis, a constant penalty function (empirically 

set to 106) is added to the original fitness function for each particle with violated 

constraints. More recently, a modification to the basic PSO was proposed by Venter 

and Sobieszczanski-Sobieski [2002] to penalize particles with violated constraints. 

The idea is to reset the velocity of each particle with violated constraints. Therefore, 

these particles will only be affected by yi and ŷ . According to Venter and 

Sobieszczanski-Sobieski [2002], this modification has a significant positive effect on 

the performance of PSO. Other PSO approaches dealing with constrained problems 

can be found in El-Gallad et al. [2001], Hu and Eberhart [Solving 2002], Schoofs and 

Naudts [2002], Parsopoulos and Vrahatis [2002], Coath et al. [2003] and Gaing 

[2003]. 

 



 

 

 

33 
 

2.6.7 Drawbacks of PSO 
 
PSO and other stochastic search algorithms have two major drawbacks [Løvberg 

2002]. The first drawback of PSO, and other stochastic search algorithms, is that the 

swarm may prematurely converge (as discussed in Section 2.5.6). According to 

Angeline [Evolutionary 1998], although PSO finds good solutions much faster than 

other evolutionary algorithms, it usually can not improve the quality of the solutions 

as the number of iterations is increased. PSO usually suffers from premature 

convergence when strongly multi-modal problems are being optimized. The rationale 

behind this problem is that, for the gbest PSO, particles converge to a single point, 

which is on the line between the global best and the personal best positions. This point 

is not guaranteed to be even a local optimum. Proofs can be found in Van den Bergh 

[2002]. Another reason for this problem is the fast rate of information flow between 

particles, resulting in the creation of similar particles (with a loss in diversity) which 

increases the possibility of being trapped in local optima [Riget and Vesterstrøm 

2002]. Several modifications of the PSO have been proposed to address this problem. 

Two of these modifications have already been discussed, namely, the inertia weight 

and the lbest model. Other modifications are discussed in the next section.  

The second drawback is that stochastic approaches have problem-dependent 

performance. This dependency usually results from the parameter settings of each 

algorithm. Thus, using different parameter settings for one stochastic search algorithm 

result in high performance variances. In general, no single parameter setting exists 

which can be applied to all problems. This problem is magnified in PSO where 

modifying a PSO parameter may result in a proportionally large effect [Løvberg 

2002]. For example, increasing the value of the inertia weight, w, will increase the 

speed of the particles resulting in more exploration (global search) and less 



 

 

 

34 
 

exploitation (local search). On the other hand, decreasing the value of w will decrease 

the speed of the particle resulting in more exploitation and less exploration. Thus 

finding the best value for w is not an easy task and it may differ from one problem to 

another. Therefore, it can be concluded that the PSO performance is problem-

dependent. 

 One solution to the problem-dependent performance of PSO is to use self-

adaptive parameters. In self-adaptation, the algorithm parameters are adjusted based 

on the feedback from the search process [Løvberg 2002]. Bäck [1992] has 

successfully applied self-adaptation on GAs. Self-adaptation has been successfully 

applied to PSO by Clerc [1999], Shi and Eberhart [2001], Hu and Eberhart [Adaptive 

2002], Ratnaweera et al. [2003] and Tsou and MacNish [2003], Yasuda et al. [2003] 

and Zhang et al. [2003].  

 The problem-dependent performance problem can be addressed through 

hybridization. Hybridization refers to combining different approaches to benefit from 

the advantages of each approach [Løvberg 2002]. Hybridization has been successfully 

applied to PSO by Angeline [1998], Løvberg [2002], Krink and Løvbjerg [2002], 

Veeramachaneni et al. [2003], Reynolds et al. [2003], Higashi and Iba [2003] and 

Esquivel and Coello Coello [2003].  

 

2.6.8 Improvements to PSO 
 

The improvements presented in this section are mainly trying to address the problem 

of premature convergence associated with the original PSO. These improvements 

usually try to solve this problem by increasing the diversity of solutions in the swarm. 

   



 

 

 

35 
 

Constriction Factor 

Clerc [1999] and Clerc and Kennedy [2001] proposed using a constriction factor to 

ensure convergence. The constriction factor can be used to choose values for w, c1 and 

c2 to ensure that the PSO converges. The modified velocity update equation is defined 

as follows: 

 

))),()()(())()()(()((1)( 2,21,1 txtŷtrctxtytrctvtv ji,jjji,ji,jji,ji, −+−+=+ χ               (2.16) 

 

where χ  is the constriction factor defined as follows: 

 

ϕϕϕ
χ

42

2
2 −−−

= , 

 

and 4   21 >+= ϕϕ ,cc . 

Eberhart and Shi [2000] showed imperically that using both the constriction 

factor and velocity clamping generally improves both the performance and the 

convergence rate of the PSO. 

 

Guaranteed Convergence PSO (GCPSO) 

The original versions of PSO as given in Section 2.6.1, may prematurely converge 

when yyx ˆii == , since the velocity update equation will depend only on the term 

wvi(t) [Van den Bergh and Engelbrecht 2002; Van den Bergh 2002]. To overcome 

this problem, a new version of PSO with guaranteed local convergence was 

introduced by Van den Bergh [2002], namely GCPSO. In GCPSO, the global best 

particle with index τ is updated using a different velocity update equation, namely 



 

 

 

36 
 

 

))(21)(()()()()1( 2 trttwvtŷtxtv j,j,jj,j, −+++−=+ ρτττ            (2.17) 

 

which results in a position update equation of 

 

))(21)(()()()1( 2 trttwtŷtx j,j,jj, −++=+ ρττ v             (2.18) 

 

The term –xτ resets the particle's position to the global best position ŷ ; )(tw τv  

signifies a search direction, and ))(21)(( 2 trt j,−ρ  adds a random search term to the 

equation. The term )(tρ  defines the area in which a better solution is searched.  

 

The value of )0(ρ  is initialized to 1.0, with )1( +tρ  defined as 








>
>

=+
otherwise                     (t)

   if   (t)50
   if    (t)2

)1(
ρ

ρ
ρ

ρ c

c

ffailures#.
ssuccesses#

t                         (2.19) 

 

A failure occurs when 1))-(())(( tˆftˆf yy ≥ (in the case of a minimization problem) 

and the variable #failures is subsequently incremented (i.e. no apparent progress has 

been made). A success then occurs when 1))-(())(( tˆftˆf yy < . Van den Bergh [2002] 

suggests learning the control threshold values fc and sc dynamically. That is, 

 



 >++

=+
                    otherwise          )(
1)( if      1)(

)1(
ts

ftfailures#ts
ts

c

cc
c             (2.20) 



 >++

=+
                    otherwise          )(
1)( if      1)(

)1(
tf

stsuccess#tf
tf

c

cc
c             (2.21) 



 

 

 

37 
 

 

This arrangement ensures that it is harder to reach a success state when multiple 

failures have been encountered. Likewise, when the algorithm starts to exhibit overly 

confident convergent behavior, it is forced to randomly search a smaller region of the 

search space surrounding the global best position. For equation (2.19) to be well 

defined, the following rules should be implemented: 

 

#successes(t+1) > #successes(t) ⇒ #failures(t+1) = 0 

#failures(t+1) > #failures(t) ⇒ #successes(t+1) = 0 

 

Van den Bergh suggests repeating the algorithm until ρ  becomes sufficiently 

small, or until stopping criteria are met. Stopping the algorithm once ρ  reaches a 

lower bound is not advised, as it does not necessarily indicate that all particles have 

converged – other particles may still be exploring different parts of the search space. 

It is important to note that, for the GCPSO algorithm, all particles except for 

the global best particle still follow equations (2.8) and (2.10). Only the global best 

particle follows the new velocity and position update equations. 

According to Van den Bergh [2002] and Peer et al. [2003], GCPSO generally 

performs better than PSO when applied to benchmark problems. This improvement in 

performance is especially noticeable when PSO and GCPSO are applied to unimodal 

functions, but the performance of both algorithms was generally comparable for 

multi-modal functions [Van den Bergh 2002]. Furthermore, due to its fast rate of 

convergence, GCPSO is slightly more likely to be trapped in local optima [Van den 

Bergh 2002]. However, it has gauaranteed local convergence whereas the original 

PSO does not. 



 

 

 

38 
 

 

Multi-start PSO (MPSO) 

Van den Bergh [2002] proposed MPSO which is an extension to GCPSO in order to 

make it a global search algorithm. MPSO works as follows: 

1. Randomly initialize all the particles in the swarm. 

2. Apply the GCPSO until convergence to a local optimum. Save the position of this 

local optimum. 

3. Repeat Steps 1 and 2 until some stopping criteria are satisfied. 

 

In Step 2, the GCPSO can be replaced by the original PSO. Several versions of MPSO 

were proposed by Van den Bergh [2002] based on the way used to determine the 

convergence of GCPSO. One good approach is to measure the rate of change in the 

objective function as follows: 

))((
))1(())((

ratio tˆf
tˆftˆff

y
yy −−

=    

If fratio is less than a user-specified threshold then a counter is incremented. The swarm 

is assumed to have converged if the counter reaches a certain threshold [Van den 

Bergh 2002]. According to Van den Bergh [2002], MPSO generally performed better 

than GCPSO in most of the tested cases. However, the performance of MPSO 

degrades significantly as the number of dimensions in the objective function increases 

[Van den Bergh 2002].  

 

Attractive and Repulsive PSO (ARPSO) 

ARPSO [Riget and Vesterstrøm 2002] alternates between two phases: attraction and 

repulsion based on a diversity measure. In the attraction phase, ARPSO uses PSO to 

allow fast information flow, as such particles attract each other and thus the diversity 



 

 

 

39 
 

reduces. It was found that 95% of fitness improvements were achieved in this phase. 

This observation shows the importance of low diversity in fine tuning the solution. In 

the repulsion phase, particles are pushed away from the best solution found so far 

thereby increasing diversity. Based on the experiments conducted by Riget and 

Vesterstrøm [2002] ARPSO outperformed PSO and GA in most of the tested cases. 

 

Selection 

A hybrid approach combining PSO with a tournament selection method was proposed 

by Angeline [Using Selection 1998]. Each particle is ranked based on its performance 

against a randomly selected group of particles. For this purpose, a particle is awarded 

one point for each opponent in the tournament for which the particle has a better 

fitnss. The population is then sorted in decending order according to the points 

accumulated. The bottom half of the population is then replaced by the top half. This 

step reduces the diversity of the population. The results showed that the hybrid 

approach performed better than the PSO (without w and χ ) for unimodal functions. 

However, the hybrid approach performed worse than the PSO for functions with many 

local optima. Therefore, it can be concluded that although the use of a selection 

method improves the exploitation capability of the PSO, it reduces its exploration 

capability [Ven den Bergh 2002]. Hence, using a selection method with PSO may 

result in premature convergence. 

 

Breeding 

Løvberg et al. [2001] proposed a modification to PSO by using an arithmetic 

crossover operator (discussed in Section 2.5.4), referred to as a breeding operator, in 

order to improve the convergence rate of PSO. Each particle in the swarm is assigned 



 

 

 

40 
 

a user-defined breeding probability. Based on these probabilities, two parent particles 

are randomly selected to create offspring using the arithmetic crossover operator. 

Offspring replace the parent particles. The personal best position of each offspring 

particle is initialized to its current position (i.e. yi = xi), and its velocity is set as the 

sum of the two parent's velocities normalized to the original length of each parent 

velocity. The process is repeated until a new swarm of the same size has been 

generated. PSO with breeding generally performed better than the PSO when applied 

to multi-modal functions [Løvberg et al. 2001].   

 

Mutation 

Recently, Higashi and Iba [2003] proposed hybriding PSO with Gaussian mutation. 

Similarly, Esquivel and Coello Coello [2003] proposed hybridizing lbest- and gbest- 

PSO with a powerful diversity maintenance mechanism, namely, a non-uniform 

mutation operator discussed in section 2.5.5 to solve the premature convergence 

problem of PSO. According to Esquivel and Coello Coello [2003] the hybrid 

approach of lbest PSO and the non-uniform mutation operator outperformed PSO and 

GCPSO in all of the conducted experiments. 

 

Dissipative PSO (DPSO) 

DPSO was proposed by Xie et al. [2002] to add random mutation to PSO in order to 

prevent premature convergence. DPSO introduces negative entropy via the addition of 

randomness to the particles (after executing equation (2.8) and (2.10)) as follows: 

If (r1(t) < cv) then vi,j(t + 1) = r2(t)Vmax  

If (r3(t) < cl) then xi,j(t + 1) = R(t)  



 

 

 

41 
 

where r1(t) ~ U(0,1), r2(t) ~ U(0,1) and r3(t) ~ U(0,1); cv and cv are chaotic factors in 

the range [0,1] and R(t) ~ U(Zmin,Zmax) where Zmin and Zmax are the lower and upper 

bound of the search space. The results showed that DPSO performed better than PSO 

when applied to the benchmarks problems [Xie et al. 2002]. 

 

Differential Evolution PSO (DEPSO) 

DEPSO [Zhang and Xie 2003] uses a differential evolution (DE) operator [Storn and 

Price 1997] to provide the mutations. A trait point )(tiy&&  is calculated as follows: 

 

If (r1(t) < pc OR j = kd) then 

2
))()(())()((

)()( 4321 tytytyty
tŷty j,j,j,j,

jji,

−+−
+=&&                   (2.23) 

 

where r1(t) ~ U(0,1), kd ~ U(1,Nd), and )(1 ty , )(2 ty , )(3 ty  and )(4 ty  are randomly 

chosen from the set of personal best positions. Then, 

))(())(( ifonly  ),()( tftftt iiii yyyy <= &&&& . The rationale behind mutating )(tiy  instead 

of )(tix  is to avoid disorganization of the swarm. 

DEPSO works by alternating between the original PSO and the DE operator 

such that equations (2.8) and (2.10) are used in the odd iterations and equation (2.23) 

is used is in the even iterations. According to Zhang and Xie [2003], DEPSO 

generally performed better than PSO, DE, GA, ES, DPSO and fuzzy-adaptive PSO 

when applied to the benchmark functions. 

  



 

 

 

42 
 

Craziness 

To avoid premature convergence, Kennedy and Eberhart [1995] introduced the use of 

a craziness operator with PSO. However, they concluded that this operator may not be 

necessay. More recently, Venter and Sobieszczanski-Sobieski [2002] reintroduced the 

craziness operator to PSO. In each iteration, a few particles far from the center of the 

swarm are selected. The positions of these particles are then randomly changed while 

their velocities are initialized to the cognitive velocity component, i.e. 

 

))()()((1)( 1,1 txtytrctv ji,ji,jji, −=+                             (2.24) 

 

According to Venter and Sobieszczanski-Sobieski [2002], the proposed craziness 

operator does not seem to have a big influence on the performance of PSO. 

 

The LifeCycle Model 

A self-adaptive heuristic search algorithm, called LifeCycle, was proposed by Krink 

and Løvbjerg [2002]. LifeCycle is a hybrid approach combing PSO, GA and Hill-

Climbing approaches. The motivation for LifeCycle is to gain the benefits of PSO, 

GA and Hill-Climbing in one algorithm. In LifeCycle, the individuals (representing 

potential solutions) start as PSO particles, then depending on their performance (in 

searching for solutions) can change into GA individuals, or Hill-Climbers. Then, they 

can return back to particles. This process is repeated until convergence. The LifeCycle 

was compared with PSO, GA and Hill-Climbing [Krink, and Løvbjerg 2002] and has 

generally shown good performance when applied to the benchmark problems. 

However, PSO performed better than (or comparable to) the LifeCycle in three out of 

five benchmark problems. Another hybrid approach proposed by Veeramachaneni et 



 

 

 

43 
 

al. [2003] combining PSO and GA has already been discussed in Section 2.6.5. From 

the experimental results of Krink and Løvbjerg [2002] and Veeramachaneni et al. 

[2003], it can be observed that the original PSO performed well compared to their 

more complicated hybrid approaches.  

 

Multi-Swarm (or subpopulation) 

The idea of using several swarms instead of one swarm was applied to PSO by 

Løvberg et al. [2001] and Van den Bergh and Engelbrecht [2001]. The approach 

proposed by Løvberg et al. [2001] is an extension of PSO with the breeding operator 

discussed above. The idea is to divide the swarm into several swarms. Each swarm 

has its own global best particles. The only interaction between the swarms occurs 

when the breeding selects two particles to mate from different swarms. The results in 

Løvberg et al. [2001] showed that this approach did not improve the performance of 

PSO. The expected reasons are [Jensen and Kristensen 2002]:  

• The authors split a swarm of 20 particles into six different swarms. Hence, 

each swarm contains a few particles. Swarms with few particles have little 

diversity and therefore little exploration power. 

• No action has been taken to prevent swarms from being too similar to each 

other. 

 

The above problems were addressed by Jensen and Kristensen [2002]. The modified 

approach works by using two swarms (each with a size of 20 particles) and keeping 

them away from each other either by randomly spreading the swarm (with the worst 

performance) over the search space or by adding a small mutation to the positions of 

the particles in this swarm. The approach using the mutation technique generally 



 

 

 

44 
 

performed better than PSO when applied to the benchmark problems [Jensen and 

Kristensen 2002]. However, one drawback of this approach is the fact that the 

decision of whether two swarms are too close to each other is very problem dependent 

[Jensen and Kristensen 2002].  

 

Self-Organized Criticality (SOC PSO) 

In order to increase the population diversity to avoid premature convergence, Løvberg 

and Krink [2002] extended PSO with Self Organized Criticality (SOC). A measure, 

called criticality, of how close particles are to each other is used to relocate the 

particles and thus increase the diversity of the swarm. A particle with a high criticality 

disperses its criticality by increasing the criticality of a user-specified number of 

particles, CL, in its neighborhood by 1. Then, the particle reduces its own criticality 

value by CL. The particle then relocates itself. Two types of relocation were 

investigated: the first re-initializes the particle, while the second pushes the particle 

with high criticality a little further in the search space. According to Løvberg and 

Krink [2002], the first relocation approach produced better results when applied to the 

tested functions. SOC PSO outperformed PSO in one case out of the four cases used 

in the experiments. However, adding a tenth of the criticality value of a particle to its 

own inertia (w was set to 0.2) results in a significant improvement of the SOC PSO 

compared to PSO [Løvberg and Krink 2002]. 

  

Fitness-Distance Ratio based PSO (FDR-PSO) 

Recently, Veeramachaneni et al. [2003] proposed a major modification to the way 

PSO operates by adding a new term to the velocity update equation. The new term 



 

 

 

45 
 

allows each particle to move towards a particle in its neighborhood that has a better 

personal best position. The modified velocity update equation is defined as: 

 

))()(())()(())()(()(1)( 321 txtytxtŷtxtytwvtv ji,j,ji,jji,ji,ji,ji, −+−+−+=+ ηψψψ      (2.25) 

 

where 1ψ , 2ψ  and 3ψ  are user-specified parameters and each )(ty j,η  is chosen by 

maximizing 

 

)()(
 ))(())((

txty
tftf

ji,jη,

i

−

− ηyx
                (2.26) 

 

where |.| represents the absolute value. 

According to Veeramachaneni et al. [2003], FDR-PSO decreases the 

possibility of premature convergence and thus is less likely to be trapped in local 

optima. In addition, FDR-PSO (using 121 ==ψψ  and 23 =ψ ) outperformed PSO 

and several other variations of PSO, namely, ARPSO, DPSO, SOC PSO and Multi 

Swarm PSO [Løvberg et al. 2001], in different tested benchmark problems 

[Veeramachaneni et al. 2003]. 

 

2.7 Ant Systems 
 
Another population-based stochastic approach is Ant Systems. Ant Systems were first 

introduced by Dorigo [1992] and Dorigo et al. [1991] to solve some difficult 

combinatorial optimization problems [Dorigo et al. 1999]. Ant systems were inspired 

by the observation of real ant colonies. In real ant colonies, ants communicate with 



 

 

 

46 
 

each other indirectly through depositing a chemical substance, called pheromone. 

Ants use, for example, pheromones to find the shortest path to food. This indirect way 

of communication via pheromones is called stigmergy [Dorigo et al. 1999]. 

 Using Ant Colony Optimization (ACO), a finite size colony of artificial ants 

cooperate with each other via stigmergy to find quality solutions to optimization 

problems. Good solutions result from the cooperation of the artificial ants. ACO was 

applied to a wide range of optimization problems such as the traveling salesman 

problem, and routing and load balancing in packet switched networks with 

encouraging results [Dorigo et al. 1999]. More details about Ant Systems and their 

applications can be found in Bonabeau et al. [1999] and Dorigo and Di Caro [1999]. 

Ant systems and their applications are outside the scope of this thesis.    

 

2.8 Conclusions 
 
This chapter provided a short overview of optimization and optimization methods 

with a special emphasis on PSO. From the discussed methods, PSO (and GA for 

comparison purposes) is used in this thesis to optimize a set of problems in the field of 

pattern recognition and image processing. These problems are introduced in the next 

chapter. 



 

 

 

47 
 

Chapter 3 

Problem Definition 

 

This chapter reviews the problems addressed in this thesis in sufficient detail. First the 

clustering problem is defined and different clustering concepts and approaches are discussed. 

This is followed by defining image segmentation in addition to presenting various image 

segmentation methods. A survey of color image quantization and approaches to quantization 

are then presented. This is followed by a brief introduction to spectral unmixing.   

 

3.1 The Clustering Problem 

 

Data clustering is the process of identifying natural groupings or clusters within 

multidimensional data based on some similarity measure (e.g. Euclidean distance) 

[Jain et al. 1999; Jain et al. 2000]. It is an important process in pattern recognition and 

machine learning [Hamerly and Elkan 2002]. Furthermore, data clustering is a central 

process in Artificial Intelligence (AI) [Hamerly 2003]. Clustering algorithms are used 

in many applications, such as image segmentation [Coleman and Andrews 1979; Jain 

and Dubes 1988; Turi 2001], vector and color image quantization [Kaukoranta et al. 

1998; Baek et al. 1998; Xiang 1997], data mining [Judd et al. 1998], compression 

[Abbas and Fahmy 1994], machine learning [Carpineto and Romano 1996], etc. A 

cluster is usually identified by a cluster center (or centroid) [Lee and Antonsson 

2000]. Data clustering is a difficult problem in unsupervised pattern recognition as the 

clusters in data may have different shapes and sizes [Jain et al. 2000]. 



 

 

 

48 
 

 

3.1.1 Definitions 
 

The following terms are used in this thesis: 

• A pattern (or feature vector), z, is a single object or data point used by the 

clustering algorithm [Jain et al. 1999]. 

• A feature (or attribute) is an individual component of a pattern [Jain et al. 

1999]. 

• A cluster is a set of similar patterns, and patterns from different clusters are 

not similar [Everitt 1974]. 

• Hard (or Crisp) clustering algorithms assign each pattern to one and only one 

cluster. 

• Fuzzy clustering algorithms assign each pattern to each cluster with some 

degree of membership. 

• A distance measure is a metric used to evaluate the similarity of patterns [Jain 

et al. 1999]. 

 

The clustering problem can be formally defined as follows (Veenman et al. 2003): 

Given a data set }{ 21 pNp ,,,,, zzzzZ KK=  where zp is a pattern in the Nd-dimensional 

feature space, and Np is the number of patterns in Z,  then the clustering of Z is the 

partitioning of Z into K clusters {C1, C2,…,CK} satisfying the following conditions: 

• Each pattern should be assigned to a cluster, i.e. 

ZC =∪ = k
K
k 1  

• Each cluster has at least one pattern assigned to it, i.e. 



 

 

 

49 
 

K,,kk K1   , =≠ φC  

• Each pattern is assigned to one and only one cluster (in case of hard clustering 

only), i.e. 

kkkkkk ≠=∩     whereφCC  

 

3.1.2 Similarity Measures 
 

As previously mentioned, clustering is the process of identifying natural groupings or 

clusters within multidimensional data based on some similarity measure. Hence, 

similarity measures are fundamental components in most clustering algorithms [Jain 

et al. 1999].  

The most popular way to evaluate a similarity measure is the use of distance 

measures. The most widely used distance measure is the Euclidean distance defined as 

 

wu

N

j
jw,ju,wu

d

zz,d zzzz −=−= ∑
=1

2)()(                           (3.1) 

 

Euclidean distance is a special case (when α = 2) of the Minkowski metric [Jain et al. 

1999] defined as 

 

αααα
wu

/
N

j
jw,ju,wu

d

zz,d zzzz −=−= ∑
=

1

1

))(()(               (3.2) 

 

When α = 1, the measure is referred to as the Manhattan distance [Hamerly 2003]. 



 

 

 

50 
 

Clustering data of high dimensionality using the Minkowski metric is usually 

not efficient because the distance between the patterns increases with increase in 

dimensionality. Hence, the concepts of near and far become weaker [Hamerly 2003]. 

Furthermore, for the Minkowski metric, the largest-scaled feature tends to dominate 

the other features. This can be solved by normalizing the features to a common range 

[Jain et al. 1999]. One way to do this is by using the cosine distance (or vector dot 

product) which is the sum of the product of each component from two vectors defined 

as 

 

wu

N

j
jw,ju,

wu

d

zz
,

zz
zz

 
  1
∑
==><                  (3.3) 

 

where >< wu ,zz  ∈ [-1,1].  

The cosine distance is actually not a distance but rather a similarity metric. In 

other words, the cosine distance measures the difference in the angle between two 

vectors not the difference in the magnitude between two vectors. The cosine distance 

is suitable for clustering data of high dimensionality [Hamerly 2003]. 

 

Another distance measure is the Mahalanobis distance defined as 

 

T1
M )()()( wuwuwu ,d zzzzzz −Σ−= −                 (3.4) 

 

where Σ is the covariance matrix of the patterns. The Mahalanobis distance gives 

different features different weights based on their variances and pairwise linear 



 

 

 

51 
 

correlations. Thus, this metric implicitly assumes that the densities of the classes are 

multivariate Gaussian [Jain et al. 1999]. 

 

3.1.3 Clustering Techniques 
 

Most clustering algorithms are based on two popular techniques known as 

hierarchical and partitional clustering [Frigui and Krishnapuram 1999; Leung et al. 

2000]. In the following, an overview of both techniques is presented with an elaborate 

discussion of popular hierarchical and partitional clustering algorithms. 

 

3.1.3.1 Hierarchical Clustering Techniques 
 

Algorithms in this category generate a cluster tree (or dendrogram) by using heuristic 

splitting or merging techniques [Hamerly 2003]. A cluster tree is defined as "a tree 

showing a sequence of clustering with each clustering being a partition of the data set" 

[Leung et al. 2000]. Algorithms that use splitting to generate the cluster tree are called 

divisive. On the other hand, the more popular algorithms that use merging to generate 

the cluster tree are called agglomerative. Divisive hierarchical algorithms start with 

all the patterns assigned to a single cluster. Then, splitting is applied to a cluster in 

each stage until each cluster consists of one pattern. Contrary to divisive hierarchical 

algorithms, agglomerative hierarchical algorithms start with each pattern assigned to 

one cluster. Then, the two most similar clusters are merged together. This step is 

repeated until all the patterns are assigned to a single cluster [Turi 2001]. Several 

agglomerative hierarchical algorithms were proposed in the literature which differ in 

the way that the two most similar clusters are calculated. The two most popular 



 

 

 

52 
 

agglomerative hierarchical algorithms are the single link [Sneath and Sokal 1973] and 

complete link [Anderberg 1973] algorithms. Single link algorithms merge the clusters 

whose distance between their closest patterns is the smallest. Complete link 

algorithms, on the other hand, merge the clusters whose distance between their most 

distant patterns is the smallest [Turi 2001]. In general, complete link algorithms 

generate compact clusters while single link algorithms generate elongated clusters. 

Thus, complete link algorithms are generally more useful than single link algorithms 

[Jain et al. 1999]. Another less popular agglomerative hierarchical algorithm is the 

centroid method [Anderberg 1973]. The centroid algorithm merges the clusters whose 

distance between their centroids is the smallest. One disadvantage of the centroid 

algorithm is that the characteristic of a very small cluster is lost when merged with a 

very large cluster [Turi 2001]. More details about traditional hierarchical clustering 

techniques can be found in Everitt [1974]. 

 Recently, a hierarchical clustering approach to simulate the human visual 

system by modeling the blurring effect of lateral retinal interconnections based on 

scale space theory has been proposed by Leung et al. [2000]. The following paragraph 

provides the reader with a good idea about this approach as described by Leung et al. 

[2000]:  

"In this approach, a data set is considered as an image with each light 

point located at a datum position. As we blur this image, smaller light 

blobs merge into larger ones until the whole image becomes one light blob 

at a low level of resolution. By identifying each blob with a cluster, the 

blurring process generates a family of clustering along the hierarchy." 

 

According to Leung et al. [2000], this approach has several advantages, including: 



 

 

 

53 
 

• it is not sensitive to initialization, 

• it is robust in the presence of noise in the data set, and 

• it generates clustering that is similar to that perceived by human eyes. 

 

In general, hierarchical clustering techniques have the following advantages [Frigui 

and Krishnapuram 1999]: 

• the number of clusters need not to be specified a priori, and 

• they are independent of the initial conditions.  

 

However, hierarchical clustering techniques generally suffer from the following 

drawbacks:  

• They are computationally expensive (time complexity is )logO( 2
pp NN  and 

space complexity is )O( 2
pN [Turi 2001]). Hence, they are not suitable for very 

large data sets.  

• They are static, i.e. patterns assigned to a cluster cannot move to another 

cluster. 

• They may fail to separate overlapping clusters due to a lack of information 

about the global shape or size of the clusters.  

 

3.1.3.2 Partitional Clustering Techniques 
 

Partitional clustering algorithms divide the data set into a specified number of 

clusters. These algorithms try to minimize certain criteria (e.g. a square error function) 

and can therefore be treated as optimization problems. However, these optimization 



 

 

 

54 
 

problems are generally NP-hard and combinatorial [Leung et al. 2000]. The 

advantages of hierarchical algorithms are the disadvantages of the partitional 

algorithms and vice versa. Because of their advantages, partitional clustering 

techniques are more popular than hierarchical techniques in pattern recognition [Jain 

et al. 2000], hence, this thesis concentrates on partitional techniques. 

  Partitional clustering algorithms are generally iterative algorithms that 

converge to local optima [Hamerly and Elkan 2002]. Employing the general form of 

iterative clustering used by Hamerly and Elkan [2002], the steps of an iterative 

clustering algorithm are:  

 

1. Randomly initialize the K cluster centroids 

2. Repeat 

   (a) For each pattern, zp, in the data set do 

       Compute its membership ) |( pku zm  to each centroid mk and its weight w(zp) 

       endloop 

 

   (b) Recalculate the K cluster centroids, using  

∑

∑

∀

∀=

p

p

ppk

pppk

k wu

wu

z

z

zzm

zzzm
m

)() |(

)() |(
                (3.5) 

   until a stopping criterion is satisfied. 

 

In the above algorithm, ) |( pku zm  is the membership function which quantifies the 

membership of pattern zp to cluster k. The membership function, ) |( pku zm , must 

satisfy the following constraints: 



 

 

 

55 
 

1) ) |( pku zm  ≥ 0,  p = 1,…, Np and k = 1,…, K 

2) 1) |(
1

=∑
=

K

k
pku zm ,  p = 1,…, Np 

 

Crisp clustering algorithms use a hard membership function (i.e. ) |( pku zm ∈{0,1}), 

while fuzzy clustering algorithms use a soft member function (i.e. ) |( pku zm ∈[0,1]) 

[Hamerly and Elkan 2002]. 

The weight function, w(zp), in equation (3.5) defines how much influence 

pattern zp has in recomputing the centroids in the next iteration, where 0)( >pw z  

[Hamerly and Elkan 2002]. The weight function was proposed by Zhang [2000]. 

Different stopping criteria can be used in an iterative clustering algorithm, for 

example: 

• stop when the change in centroid values are smaller than a user-specified 

value, 

• stop when the quantization error is small enough, or 

• stop when a maximum number of iterations has been exceeded. 

 

In the following, popular iterative clustering algorithms are described by defining the 

membership and weight functions in equation (3.5). 

 

The K-means Algorithm 

The most widely used partitional algorithm is the iterative K-means approach [Forgy 

1965]. The objective function that the K-means optimizes is 

 



 

 

 

56 
 

∑ ∑
= ∈∀

− =
K

k
kp

kp

dJ
1

2
meansK )(

Cz
m,z                  (3.6) 

 

Hence, the K-means algorithm minimizes the intra-cluster distance [Hamerly and 

Elkan 2002]. The K-means algorithm starts with K centroids (initial values for the 

centroids are randomly selected or derived from a priori information). Then, each 

pattern in the data set is assigned to the closest cluster (i.e. closest centroid). Finally, 

the centroids are recalculated according to the associated patterns. This process is 

repeated until convergence is achieved.  

The membership and weight functions for K-means are defined as 

 

{ }


 =

=
otherwise                                               0

)(min arg)( if   1
)(

22
kpkkp

pk
dd

|u
m,zm,z

zm              (3.7) 

1)( =pzw                    (3.8) 

 

Hence, K-means has a hard membership function. Furthermore, K-means has a 

constant weight function, thus, all patterns have equal importance [Hamerly and Elkan 

2002]. 

 

The K-means algorithm has the following main advantages [Turi 2001]: 

• it is very easy to implement, and 

• its time complexity is O(Np) making it suitable for very large data sets. 

 

However, the K-means algorithm has the following drawbacks [Davies 1997]: 

• the algorithm is data-dependent,  



 

 

 

57 
 

• it is a greedy algorithm that depends on the initial conditions, which may 

cause the algorithm to converge to suboptimal solutions, and 

• the user needs to specify the number of clusters in advance. 

 

The K-medoids algorithm is similar to K-means with one major difference, namely, 

the centroids are taken from the data itself [Hamerly 2003]. The objective of K-

medoids is to find the most centrally located patterns within the clusters [Halkidi et al. 

2001]. These patterns are called medoids. Finding a single medoid requires )O( 2
pN . 

Hence, K-medoids is not suitable for moderately large data sets.  

   

The Fuzzy C-means Algorithm 

A fuzzy version of K-means, called Fuzzy C-means (FCM) (sometimes called fuzzy 

K-means), was proposed by Bezdek [1980; 1981]. FCM is based on a fuzzy extension 

of the least-square error criterion. The advantage of FCM over K-means is that FCM 

assigns each pattern to each cluster with some degree of membership (i.e. fuzzy 

clustering). This is more suitable for real applications where there are some overlaps 

between the clusters in the data set. The objective function that the FCM optimizes is  

 

∑∑
= =

=
K

k

N

p
kp

q
pk,

p

duJ
1 1

2
FCM )( m,z                  (3.9) 

 

where q is the fuzziness exponent, with q ≥ 1. Increasing the value of q will make the 

algorithm more fuzzy; uk,p is the membership value for the pth pattern in the kth cluster 

satisfying the following constraints: 

1) 0≥pk,u ,  p = 1,…, Np and k = 1,…, K 



 

 

 

58 
 

2) 1
1

=∑
=

K

k
pk,u ,  p = 1,…, Np 

 

The membership and weight functions for FCM are defined as [Hamerly and Elkan 

2002] 

 

∑
=

−−

−−

−

−
= K

k

q/

kp

q/

kp
pk |u

1

)1(2

)1(2

)(
mz

mz
zm                          (3.10) 

1)( =pzw                  (3.11) 

 

Hence, FCM has a soft membership function and a constant weight function. In 

general, FCM performs better than K-means [Hamerly 2003] and it is less affected by 

the presence of uncertainty in the data [Liew et al. 2000]. However, as in K-means it 

requires the user to specify the number of clusters in the data set. In addition, it may 

converge to local optima [Jain et al. 1999]. 

 Krishnapuram and Keller [1993; 1996] proposed a possibilistic clustering 

algorithm, called possibilistic C-means. Possibilistic clustering is similar to fuzzy 

clustering; the main difference is that in possibilistic clustering the membership values 

may not sum to one [Turi 2001]. Possibilistic C-means works well in the presence of 

noise in the data set. However, it has several drawbacks, namely [Turi 2001], 

• it is likely to generate coincident clusters, 

• it requires the user to specify the number of clusters in advance,  

• it converges to local optima, and  

• it depends on initial conditions.    

 



 

 

 

59 
 

The Gaussian Expectation-Maximization Algorithm 

Another popular clustering algorithm is the Expectation-Maximization (EM) 

algorithm [McLachlan and Krishnan 1997; Rendner and Walker 1984; Bishop 1995]. 

EM is used for parameter estimation in the presence of some unknown data [Hamerly 

2003]. EM partitions the data set into clusters by determining a mixture of Gaussians 

fitting the data set. Each Gaussian has a mean and covariance matrix [Alldrin et al. 

2003]. The objective function that the EM optimizes as defined by Hamerly and Elkan 

[2002] is 

 

∑ ∑
= =

−=
pN

p

K

k
kkp p|pJ

1 1
EM ))()(log( mmz              (3.12) 

 

where )( kp |p mz  is the probability of pz  given that it is generated by a Gaussian 

distribution with centroid km , and )( kp m is the prior probability of centroid km . 

The membership and weight functions for EM are defined as [Hamerly and 

Elkan 2002] 

 

)(
)()(

)(
p

kkp
pk p

p|p
|u

z
mmz

zm =                          (3.13) 

1)( =pzw                  (3.14) 

 

Hence, EM has a soft membership function and a constant weight function. The 

algorithm starts with an initial estimate of the parameters. Then, an expectation step is 

applied where the known data values are used to compute the expected values of the 

unknown data [Hamerly 2003]. This is followed by a maximization step where the 



 

 

 

60 
 

known and expected values of the data are used to generate a new estimate of the 

parameters. The expectation and maximization steps are repeated until convergence. 

 Results from Veenman et al. [2002] and Hamerly [2003] showed that K-

means performs comparably to EM. Furthermore, Aldrin et al. [2003] stated that EM 

fails on high-dimensional data sets due to numerical precision problems. They also 

observed that Gaussians often collapsed to delta functions [Alldrin et al. 2003]. In 

addition, EM depends on the initial estimate of the parameters [Hamerly 2003; Turi 

2001] and it requires the user to specify the number of clusters in advance. Moreover, 

EM assumes that the density of each cluster is Gaussian which may not always be true 

[Ng et al. 2001]. 

 

The K-harmonic Means Algorithm 

Recently, Zhang and colleagues [1999; 2000] proposed a novel algorithm called K-

harmonic means (KHM), with promising results. In KHM, the harmonic mean of the 

distance of each cluster center to every pattern is computed. The cluster centroids are 

then updated accordingly. The objective function that the KHM optimizes is 

 

∑
∑=

= −

=
pN

p
K

k kp

KJ
1

1

KHM 1
α

mz

               (3.15) 

 

where α is a user-specified parameter, typically α ≥ 2.   

The membership and weight functions for KHM are [Hamerly and Elkan 

2002] 

 



 

 

 

61 
 

∑
=

−−

−−

−

−
= K

k
kp

kp
pk |u

1

2

2

)(
α

α

mz

mz
zm                                       (3.16) 

2

1

1

2

)(









−

−
=

∑

∑

=

−

=

−−

K

k
kp

K

k
kp

pw
α

α

mz

mz
z                (3.17) 

 

Hence, KHM has a soft membership function and a varying weight function. KHM 

assigns higher weights for patterns that are far from all the centroids to help the 

centroids in covering the data [Hamerly and Elkan 2002]. 

Contrary to K-means, KHM is less sensitive to initial conditions and does not 

have the problem of collapsing Gaussians exhibited by EM [Alldrin et al. 2003]. 

Experiments conducted by Zhang et al. [1999], Zhang [2000] and Hamerly and Elkan 

[2002] showed that KHM outperformed K-means, FCM (according to Hamerly and 

Elkan [2002]) and EM.  

 

Hybrid 2 

Hamerly and Elkan [2002] proposed a variation of KHM, called Hybrid 2 (H2), which 

uses the soft membership function of KHM (i.e. equation (3.16)) and the constant 

weight function of K-means (i.e. equation (3.8)). Hamerly and Elkan [2002] showed 

that H2 outperformed K-means, FCM and EM. However, KHM, in general, 

performed slightly better than H2.  

 

K-means, FCM, EM, KHM and H2 are linear time algorithms (i.e. their time 

complexity is O(Np)) making them suitable for very large data sets. According to 



 

 

 

62 
 

Hamerly [2003], FCM, KHM and H2 - all use soft membership functions - are the 

best available clustering algorithms. 

 

Non-iterative Partitional Algorithms 

Another category of unsupervised partitional algorithms includes the non-iterative 

algorithms. The most widely used non-iterative algorithm is MacQueen's K-means 

algorithm [MacQueen 1967]. This algorithm works in two phases: the first phase finds 

the centroids of the clusters, and the second clusters the patterns. Competitive 

Learning (CL) updates the centroids sequentially by moving the closest centroid 

toward the pattern being classified [Scheunders, A Comparison 1997]. These 

algorithms suffer the drawback of being dependent on the order in which the data 

points are presented. To overcome this problem, data points are presented in a random 

order [Davies 1997]. In general, iterative algorithms are more effective than non-

iterative algorithms, since they are less dependent on the order in which data points 

are presented. 

 

3.1.3.3 Other Clustering Techniques 
 

Another type of clustering algorithms includes the Nearest Neighbor clustering 

algorithm proposed by Lu and Fu [1978]. For each unclassified pattern, the algorithm 

finds the nearest classified pattern whose distance from the unclassified pattern is less 

than a pre-specified threshold. The unclassified pattern is then assigned to the cluster 

of the classified pattern. This process is repeated until all the patterns become 

classified or no further assignments can occur [Jain et al. 1999]. 



 

 

 

63 
 

Recently, a new type of clustering algorithms called spectral clustering algorithms 

[Ng et al. 2001; Bach and Jordan 2003] has been proposed by computer vision 

researchers and graph theorists. Spectral clustering is based on spectral graph theory 

[Chung 1997] where a graph representing the data (the graph is analogous to a matrix 

of the distance between the patterns in the data set) is searched by the spectral 

clustering algorithm for globally optimal cuts [Hamerly 2003]. One major advantage 

of spectral clustering is that it can generate arbitrary-shaped clusters. However, 

spectral clustering suffers from two major drawbacks [Hamerly 2003]: 

• It is computationally expensive (its time complexity is )O( 23
pdp NNN + ). 

Hence, they are not suitable for moderately large data sets. 

• It requires the user to specify a kernel width parameter which has a profound 

effect on the result of the spectral clustering algorithm. Choosing a good value 

for this parameter is usually difficult.  

 

The mean shift algorithm [Comaniciu and Meer 2002] also automatically finds the 

number of clusters in a data set and can work with arbitrary shaped clusters. The mean 

shift algorithm starts with a number of kernel estimators in the input space. These 

estimators are then repeatedly moved towards areas of higher density. When all the 

kernels reached stability, all the kernels that are near to each other are grouped 

together. The data is then segmented based on where each kernel started. 

 

The mean shift algorithm has the following problems, [Hamerly 2003]: 

• it has to find a way to group kernels and patterns, and 



 

 

 

64 
 

• as in spectral clustering, the mean shift algorithm requires the user to specify a 

kernel width parameter which has a profound effect on the result of the 

algorithm. 

 

3.1.4 Clustering Validation Techniques 
 
 

The main objective of cluster validation is to evaluate clustering results in order to 

find the best partitiong of a data set [Halkidi et al. 2001]. Hence, cluster validity 

approaches are used to quantitatively evaluate the result of a clustering algorithm 

[Halkidi et al. 2001].  These approaches have representative indices, called validity 

indices. The traditional approach to determine the "optimum" number of clusters is to 

run the algorithm repetitively using different input values and to select the partitioning 

of data resulting in the best validity measure [Halkidi and Vazirgiannis 2001]. 

 Two criteria that have been widely considered sufficient in measuring the 

quality of data partitioning, are [Halkidi et al. 2001] 

• Compactness: patterns in one cluster should be similar to each other and 

different from patterns in other clusters. The variance of patterns in a cluster 

gives an indication of compactness. 

• Separation: clusters should be well-separated from each other. The Euclidean 

distance between cluster centroids gives an indication of cluster separation. 

 

There are several validity indices; a thorough survey of validity indices can be found 

in Halkidi et al. [2001]. In the following, some representative indices are discussed. 

Dunn [1974] proposed a well known cluster validity index that identifies 

compact and well separated clusters. The main goal of Dunn's index is to maximize 



 

 

 

65 
 

inter-cluster distances (i.e. separation) while minimizing intra-cluster distances (i.e. 

increase compactness). The Dunn index is defined as 

 

























=











=

+==
)diam(max

),(dist
minminD

aK,...,a

kkk

K,...,kkkK,...,k
C

CC

1

11
                        (3.18)  

 

where ),(dist kkk CC is the dissimilarity function between two clusters Ck and Ckk 

defined as 

),(dmin),(dist
kkk ,

kkk wuCC
CwCu ∈∈

= , 

where d(u, w) is the Euclidean distance between u and v; diam(C) is the diameter of a 

cluster, defined as 

),(d max)diam(
,

wuC
Cwu

 
∈

=  

An "optimal" value of K is the one that maximizes the Dunn's index. Dunn's 

index suffers from the following problems [Halkidi et al. 2001]: 

• it is computationally expensive, and 

• it is sensitive to the presence of noise.  

 

Several Dunn-like indices were proposed in Pal and Biswas [1997] to reduce the 

sensitivity to the presence of noise. 

Another well known index, proposed by Davies and Bouldin [1979], 

minimizes the average similarity between each cluster and the one most similar to it. 

The Davies and Bouldin index is defined as 

 



 

 

 

66 
 








 +
= ∑

= ≠
= )(

)()(1
1 1

kkk

kkk
K

k kkk
K,...,kk ,dist

diamdiam
max

K
DB

CC
CC

             (3.19) 

 

An "optimal" value of K is the one that minimizes the DB index. 

 Recently, Turi [2001] proposed an index incorporating a multiplier function 

(to penalize the selection of a small number of clusters) to the ratio between intra-

cluster and inter-cluster distances, with some promising results. The index is defined 

as 

 

inter
intra)1)1,2(N( ×+×= cV                (3.20) 

 

where c is a user specified parameter and N(2,1) is a Gaussian distribution with mean 

2 and standard deviation of 1. The "intra" term is the average of all the distances 

between each data point and its cluster centroid, defined as 

∑ ∑
= ∈∀

−=
K

k
k

p k
N 1

21intra
Cu

mu  

This term is used to measure the compactness of the clusters. The "inter" term is the 

minimum distance between the cluster centroids, defined as 

.K,...,kkkK,...,kmin kkk 1  and  11  },{inter 2 +=−=∀−= mm  

This term is used to measure the separation of the clusters. An "optimal" value of K is 

the one that minimizes the V index. 

 According to Turi [2001], this index performed better than both Dunn's index 

and the index of Davies and Bouldin on the tested cases. 

Two recent validity indices are S_Dbw [Halkidi and Vazirgiannis 2001] and 

CDbw [Halkidi and Vazirgiannis 2002]. S_Dbw measures the compactness of a data 



 

 

 

67 
 

set by the cluster variance, whereas separation is measured by the density between 

clusters. The S_Dbw index is defined as 

 

)()( KDens_bwKscatS_Dbw +=                          (3.21) 

 

The first term is the average scattering of the clusters which is a measure of 

compactness of the clusters, defined as 

∑
=

=
K

k
kK

scat(K)
1

)()(1 ZC σσ  

where )( kCσ is the variance of cluster Ck and )(Zσ is the variance of data set  Z; ||z|| 

is defined as ||z|| = (zTz)1/2, where z is a vector. 

The second term in equation (3.21) evaluates the density of the area between 

the two clusters in relation to the density of the two clusters. Thus, the second term is 

a measure of the separation of the clusters, defined as 

{ }∑ ∑
=

≠
= 
















−
=

K

k

K

kkk
kk kkk

kkk,

density,densitymax
density

1KK
KDens_bw

1 1 )()(
)(

)(
1)(

CC
b

 

where bk,kk is the middle point of the line segment defined by mk and mkk. The term 

density(b) is defined as 

∑
=

=
kkk,n

ll
ll ,fdensity

1
)()( bzb  

where nk,kk is the total number of patterns in clusters Ck and Ckk (i.e. nk,kk= nk + nkk). 

The function f(z,b) is defined as 



 >

=
otherwise               1

)( if         0
)(

σbz
bz

,d
,f  

where 



 

 

 

68 
 

∑
=

=
K

k
kK 1
)(1 Cσσ  

An "optimal" value of K is the one that minimizes the S_Dbw index. Halkidi 

and Vazirgiannis [2001] showed that, in tested cases, S_Dbw successfully found the 

"optimal" number of clusters whereas other well-known indices often failed to do so. 

However, S_Dbw does not work properly for arbitrary shaped clusters.  

To address this problem, Halkidi and Vazirgiannis [2002] proposed a multi-

representative validity index, CDbw, in which each cluster is represented by a user-

specified number of points, instead of one representative as is done in S_Dbw. 

Furthermore, CDbw uses intra-cluster density to measure the compactness of a data 

set, and uses the density between clusters to measure their separation. 

More recently, Veenman et al. [2002; 2003] proposed a validity index that 

minimizes the intra-cluster variability while constraining the intra-cluster variability 

of the union of the two clusters. The sum of squared error is used to minimize the 

intra-cluster variability while a minimum variance for the union of two clusters is 

used to implement the joint intra-cluster variability. The index is defined as 

∑
=

=
K

k
kkVarnminIV

1

)(C                (3.22) 

where nk is the number of patterns in cluster Ck and 

21)( ∑
∈

−=
kpz

kp
kn

Var
C

k mzC  

such that 

kkk,,Var kkkkkk ≠∀≥∪ CCCC    ,)( 2
maxσ  

where 2
maxσ  is a user-specified parameter. This parameter has a profound effect on the 

final result. 



 

 

 

69 
 

The above validity indices are suitable for hard clustering. Validity indices 

have been developed for fuzzy clustering. The interested reader is referred to Halkidi 

et al. [2001] for more information. 

 

3.1.5 Determining the Number of Clusters 
 

Most clustering algorithms require the number of clusters to be specified in advance 

[Lee and Antonsson 2000; Hamerly and Elkan 2003]. Finding the "optimum" number 

of clusters in a data set is usually a challenge since it requires a priori knowledge, 

and/or ground truth about the data, which is not always available. The problem of 

finding the optimum number of clusters in a data set has been the subject of several 

research efforts [Halkidi et al. 2001; Theodoridis and Koutroubas 1999], however, 

despite the amount of research in this area, the outcome is still unsatisfactory 

[Rosenberger and Chehdi 2000]. In the literature, many approaches to dynamically 

find the number of clusters in a data set were proposed. In this section, several 

dynamic clustering approaches are presented and discussed. 

 ISODATA (Iterative Self-Organizing Data Analysis Technique), proposed by 

Ball and Hall [1967], is an enhancement of the K-means algorithm (K-means is 

sometimes referred to as basic ISODATA [Turi 2001]). ISODATA is an iterative 

procedure that assigns each pattern to its closest centroids (as in K-means). However, 

ISODATA has the ability to merge two clusters if the distance between their centroids 

is below a user-specified threshold. Furthermore, ISODATA can split elongated 

clusters into two clusters based on another user-specified threshold. Hence, a major 

advantage of ISODATA compared to K-means is the ability to determine the number 

of clusters in a data set. However, ISODATA requires the user to specify the values of 



 

 

 

70 
 

several parameters (e.g. the merging and splitting thresholds). These parameters have 

a profound effect on the performance of ISODATA making the result subjective [Turi 

2001]. 

 Dynamic Optimal Cluster-seek (DYNOC) [Tou 1979] is a dynamic clustering 

algorithm which is similar to ISODATA. DYNOC maximizes the ratio of the 

minimum inter-cluster distance to the maximum intra-cluster distance. This is done by 

an iterative procedure with the added capability of splitting and merging. However, as 

in ISODATA, DYNOC requires the user to specify a value for a parameter that 

determines whether splitting is needed [Turi 2001]. 

 Snob [Wallace 1984; Wallace and Dowe 1994] uses various methods to assign 

objects to clusters in an intelligent manner [Turi 2001]. After each assignment, a 

means of model selection called the Wallace Information Measure (also known as the 

Minimum Message Length) [Wallace and Boulton 1968; Oliver and Hand 1994] is 

calculated and based on this calculation the assignment is accepted or rejected. Snob 

can split/merge and move points between clusters, thereby allowing it to determine 

the number of clusters in a data set. 

 Bischof et al. [1999] proposed an algorithm based on K-means which uses a 

similar concept to the Wallace Information Measure called the Minimum Description 

Length [Rissanen 1978] framework. The algorithm starts with a large value for K and 

proceeds to remove centroids when this removal results in a reduction of the 

description length. K-means is used between the steps that reduce K. 

Modified Linde-Buzo-Gray (MLBG), proposed by Rosenberger and Chehdi 

[2000], improves K-means by automatically finding the number of clusters in data set 

by using intermediate results. MLBG is an iterative procedure that starts with K 

clusters. In each iteration, a cluster, Ck, maximizing an intra-cluster distance measure 



 

 

 

71 
 

is chosen for splitting. Two centroids are generated from the splitting process. The 

first centroid, m1, is initialized to the centroid of the original cluster, Ck. The second 

cluster centroid, m2, is chosen to be the pattern in Ck which is the most distant from 

m1. K-means is then applied on the new K+1 centroids. The new set of centroids is 

accepted if it satisfies an evaluation criterion based on a dispersion measure. This 

process is repeated until no valid partition of the data can be obtained. One of the 

main problems with MLBG is that it requires the user to specify the values of four 

parameters, which have a profound effect on the resultant number of clusters. 

Pelleg and Moore [2000] proposed another K-means based algorithm, called 

X-means that uses model selection. X-means starts by setting the number of clusters, 

K, to be the minimum number of clusters in the data set (e.g. K = 1). Then, K-means 

is applied on the K clusters. This is followed by a splitting process based on the 

Bayesian Information Criterion (BIC) [Kass and Wasserman 1995] defined as 

 

p
d N

NK
|l̂|BIC log

2
)1(

)()(
+

−= CZZC                         (3.23)  

 

where )( CZ |l̂  is the log-likelihood of the data set Z according to model C. If the 

splitting process improves the BIC score the resulting split is accepted, otherwise it is 

rejected. Other scoring functions can also be used. 

These two steps are repeated until a user-specified upper bound of K is reached. 

X-means searches over the range of values of K and reports the value with the best 

BIC score. 

Recently, Huang [2002] proposed SYNERACT as an alternative approach to 

ISODATA. SYNERACT combines K-means with hierarchical descending approaches 



 

 

 

72 
 

to overcome the drawbacks of K-means mentioned previously. Three concepts used 

by SYNERACT are:  

• a hyperplane to split up a cluster into two smaller clusters and compute their 

centroids, 

• iterative clustering to assign pixels into available clusters, and  

• a binary tree to store clusters generated from the splitting process.  

 

According to Huang [2002], SYNERACT is faster than and almost as accurate as 

ISODATA. Furthermore, it does not require the number of clusters and initial location 

of centroids to be specified in advance. However, SYNERACT requires the user to 

specify the values of two parameters that affect the splitting process. 

 Veenman et al. [2002] proposed a partitional clustering algorithm that finds 

the number of clusters in a data set by minimizing the clustering validity index 

defined in equation (3.22). This algorithm starts by initializing the number of clusters 

equal to the number of patterns in the data set. Then, iteratively, the clusters are split 

or merged according to a series of tests based on the validity index. According to 

Veenman et al. [2002], the proposed approach performed better than both K-means 

and EM algorithms. However, the approach suffers from the following drawbacks, 

namely 

• it is computationally expensive, and 

• it requires the user to specify a parameter for the validity index (already 

discussed in Section 3.1.4) which has a significant effect on the final results 

(although the authors provide a method to help the user in finding a good 

value for this parameter).   

 



 

 

 

73 
 

More recently, Hamerly and Elkan [2003] proposed another approach based on K-

means, called G-means. G-means starts with a small value for K, and with each 

iteration splits up the clusters whose data do not fit a Gaussian distribution. Between 

each round of splitting, K-means is applied to the entire data set in order to refine the 

current solution. According to Hamerly and Elkan [2003], G-means works better than 

X-means, however, it works only for data having spherical and/or elliptical clusters. 

G-means is not designed to work for arbitrary-shaped clusters [Hamerly 2003]. 

 Gath and Geva [1989] proposed an unsupervised fuzzy clustering algorithm 

based on a combination of FCM and fuzzy maximum likelihood estimation. The 

algorithm starts by initializing K to a user-specified lower bound of the number of 

clusters in the data set (e.g. K = 1). A modified FCM (that uses an unsupervised 

learning process to initialize the K centroids) is first applied to cluster the data.  Using 

the resulting centroids, a fuzzy maximum likelihood estimation algorithm is then 

applied. The fuzzy maximum likelihood estimation algorithm uses an "exponential" 

distance measure based on maximum likelihood estimation [Bezdek 1981] instead of 

the Euclidean distance measure, because the exponential distance measure is more 

suitable for hyper-ellipsoidal clusters. The quality of the resulting clusters is then 

evaluated using a clustering validity index that is mainly based on a hyper-volume 

criterion which measures the compactness of a cluster. K is then incremented and the 

algorithm is repeated until a user-specified upper bound of K is reached. The value of 

K resulting in the best value of the validity index is considered to be the "optimal" 

number of clusters in the data set. Gath and Geva [1989] stated that their algorithm 

works well in cases of large variability of cluster shapes. However, the algorithm 

becomes more sensitive to local optima as the complexity increases. Furthermore, 

because of the exponential function, floating point overflows may occur [Su 2002]. 



 

 

 

74 
 

 Lorette et al. [2000] proposed an algorithm based on fuzzy clustering to 

dynamically determine the number of clusters in a data set. In this thesis, the proposed 

algorithm is referred as the Unsupervised Fuzzy Clustering (UFC) algorithm. A new 

objective function was proposed for this purpose, defined as 

 

)log()(
11 1

2
UFC k

K

k
k

K

k

N

p
kp

q
pk, ppduJ

p

∑∑∑
== =

−= βm,z                        (3.24) 

 

where q is the fuzziness exponent, uk,p is the membership value for the pth pattern in 

the kth cluster, β is a parameter that decreases as the run progresses, and pk is the a 

priori probability of cluster Ck defined as 

 

∑
=

=
pN

p
pk,

p
k u

N
p

1

1                 (3.25) 

 

The first term of equation (3.24) is the objective function of FCM which is minimized 

when each cluster consists of one pattern. The second term is an entropy term that is 

minimized when all the patterns are assigned to one cluster. Lorette et al. [2000] use 

this objective function to derive new update equations for the membership and 

centroid parameters. 

 The algorithm starts with a large number of clusters. Then, the membership 

values and centroids are updated using the new update equations. This is followed by 

applying equation (3.25) to update the a priori probabilities. If ε<kp  then cluster k 

is discarded; ε is a user-specified parameter. This procedure is repeated until 



 

 

 

75 
 

convergence. The drawback of this approach is that it requires the parameter ε to be 

specified in advance. The performance of the algorithm is sensitive to the value of ε. 

 Similar to UFC, Boujemaa [2000] proposed an algorithm, based on a 

generalization of the competitive agglomeration clustering algorithm introduced by 

Frigui and Krishnapuram [1997]. 

 The fuzzy algorithms discussed above modify the objective function of FCM. 

In general, these approaches are sensitive to initialization and other parameters [Frigui 

and Krishnapuram 1999]. Frigui and Krishnapuram [1999] proposed a robust 

competitive clustering algorithm based on the process of competitive agglomeration. 

The algorithm starts with a large number of small clusters. Then, during the execution 

of the algorithm, adjacent clusters compete for patterns. Clusters losing the 

competition will eventually disappear [Frigui and Krishnapuram 1999]. However, this 

algorithm also requires the user to specify a parameter that has a significant effect on 

the generated result. 

 

3.1.6 Clustering using Self-Organizing Maps 
 
Kohonen's Self Organizing Maps (SOM) [Kohonen 1995] can be used to 

automatically find the number of clusters in a data set. The objective of SOM is to 

find regularities in a data set without any external supervision [Pandya and Macy 

1996]. SOM is a single-layered unsupervised artificial neural network where input 

patterns are associated with output nodes via weights that are iteratively modified 

until a stopping criterion is met [Jain et al. 1999]. SOM combines competitive 

learning (in which different nodes in the Kohonen network compete to be the winner 

when an input pattern is presented) with a topological structuring of nodes, such that 

adjacent nodes tend to have similar weight vectors (this is done via lateral feedback) 



 

 

 

76 
 

[Mehrotra et al. 1997; Pandya and Macy 1996]. A general pseudo-code of SOM 

[Pandya and Macy 1996] is shown in Figure 3.1. 

 

Let )(tη  be the learning rate parameter and )(tw∆ be the neighborhood function  

Randomly initialize the weight vectors, wk(0) 

Initialize the learning rate (0)η  and the neighborhood function (0)w∆  

Repeat 

   For each input pattern zp do 

      Select the node whose weight vector is closest (in terms of Euclidean distance) to   

      zp as the winning node 

 

      Use competitive learning to train the weight vectors such that all the nodes within  

      the neighborhood of the winning node are moved toward zp: 

 



 ∆∈−+

=+
otherwise                                )(

)(   )]()[()(
)1(

t
tkttt

t
k

kpk
k w

wzw
w wη

 

   Endloop 

   Linearly decrease )(tη and reduce )(tw∆  

Until some convergence criteria are satisfied 

Figure 3.1: General pseudo-code for SOM 

 

In Figure 3.1, )(tη  starts relatively large (e.g. close to 1) then linearly decreases until 

it reaches a small user-specified value. The neighborhood function )(tw∆  defines the 

neighborhood size surrounding the winning node. A large value of  )(tw∆  is used at 

the beginning of the training. This value is then reduced as the training progresses in 



 

 

 

77 
 

order to get sharper clusters [Pandya and Macy 1996]. A typical neighborhood 

arrangement is the rectangular lattice shown in Figure 3.2 [Pandya and Macy 1996]. 

 

 

Figure 3.2: Rectangular Lattice arrangement of neighborhoods 

 

  

SOM suffers from the following drawbacks [Jain et al. 1999]: 

• It depends on the initial conditions. 

• Its performance is affected by the learning rate parameter and the 

neighborhood function. 

• It works well with hyper-spherical clusters only. 

• It uses a fixed number of output nodes. 

• It depends on the order in which the data points are presented. To overcome 

this problem, the choice of data points can be randomized during each iteration 

[Pandya and Macy 1996]. 

 



 

 

 

78 
 

3.1.7 Clustering using Stochastic Algorithms 
 

Simulated annealing (discussed in Section 2.3) has been used for clustering [Klein and 

Dubes 1989]. In general, a simulated annealing based clustering algorithm works as 

shown in Figure 3.3 [Jain et al. 1999]. 

  

An initial partition P0 of the data set is randomly chosen  

Repeat 

   A neighbor of P0 is chosen  

   If the new partition is better than P0 then  

      move to the new partition  

   Else 

      move to the new partition with a probability that decreases as the algorithm  

      progresses. 

Until a stopping criterion is satisfied 

Figure 3.3: General simulated annealing based clustering algorithm 

 

One problem with simulated annealing is that it is very slow in finding an optimal 

solution [Jain et al. 1999].  

Tabu search (discussed in Section 2.3) has also been used for hard clustering 

[Al-Sultan 1995] and fuzzy clustering [Delgado et al. 1997] with encouraging results. 

A hybrid approach combining both K-means and tabu search that performs better than 

both K-means and tabu search was proposed by Frnti et al. [1998]. Recently, Chu and 

Roddick [2003] proposed a hybrid approach combining both tabu search and 

simulated annealing that outperforms the hybrid proposed by Frnti et al. [1998]. 



 

 

 

79 
 

However, the performance of simulated annealing and tabu search depends on the 

selection of several control parameters [Jain et al. 1999]. 

Most clustering approaches discussed so far perform local search to find a 

solution to a clustering problem. Evolutionary algorithms (discussed in Section 2.4) 

which perform global search have also been used for clustering [Jain et al. 1999]. 

Raghavan and Birchand [1979] used GAs to minimize the squared error of a 

clustering solution. In this approach, each chromosome represents a partition of Np 

patterns into K clusters. Hence, the size of each chromosome is Np. This 

representation has a major drawback in that it increases the search space by a factor of 

K!. The crossover operator may also result in inferior offspring [Jain et al. 1999]. 

 Babu and Murty [1993] proposed a hybrid approach combining K-means and 

GAs that performed better than the GA. In this approach, a GA is only used to feed K-

means with good initial centroids [Jain et al. 1999]. 

 Recently, Maulik and Bandyopadhyay [2000] proposed a GA-based clustering 

where each chromosome represents K centroids. Hence, a floating point 

representation is used. The fitness function is defined as the inverse of the objective 

function of K-means (refer to equation (3.6)). The GA-based clustering algorithm is 

summarized in Figure 3.4. 

 According to Maulik and Bandyopadhyay [2000], this approach outperformed 

K-means on the tested cases. One drawback of this approach is that it requires the user 

to specify the number of clusters in advance.



 

 

 

80 
 

 

1. Initialize each chromosome to contain K randomly chosen centroids from the 

data set 

2. For t = 1 to tmax 

(a) For each chromosome i 

(i) Assign each pattern to the cluster with the closest centroid 

(ii)  Recalculate the K cluster centroids of chromosome i as the means of their 

patterns 

(iii) Calculate the fitness of chromosome i 

 

(b) Apply roulette wheel selection 

(c) Apply single point crossover with probability pc 

(d) Apply mutation with probability pm. The mutation operator is defined as 

xxx )( γ+±= r  

             where (0,1)~ Ur and γ  is a user-specified parameter such that γ ∈(0,1) 

Figure 3.4: General pseudo-code for GA-based clustering algorithm 

 

Lee and Antonsson [2000] used an evolution strategy (ES) to dynamically cluster a 

data set. The proposed ES implemented variable length individuals to search for both 

the centroids and the number of clusters. Each individual represents a set of centroids. 

The length of each individual is randomly chosen from a user-specified range of 

cluster numbers. The centroids of each individual are then randomly initialized. 

Mutation is applied to the individuals by adding/subtracting a Gaussian random 

variable with zero mean and unit standard deviation. Two point crossover is also used 

as a "length changing operator". A (10+60) ES selection is used where 10 is the 



 

 

 

81 
 

number of parents and 60 is the number of offspring generated in each generation. 

The best ten individuals from the set of parents and offspring are used for the next 

generation. A modification of the mean square error is used as the fitness function, 

defined as 

 

∑ ∑
= ∈∀

+=
K

k C
kp

kp

dKJ
1

ES )(1
z

m,z                          (3.26) 

 

The modification occurs by multiplying the mean square error by a constant 

corresponding to the square root of the number of clusters. This constant is used to 

penalize a large value of K. According to Lee and Antonsson [2000], the results are 

promising. However, the proposed algorithm needs to be compared with other 

dynamic clustering approaches and its performance needs to be investigated as the 

dimension increases. 

In general, evolutionary approaches have several advantages, namely [Jain et al. 

1999]: 

• they are global search approaches, 

• they are suitable for parallel processing, and 

• they can work with a discontinuous criterion function.  

 

However, evolutionary approaches generally suffer from the following drawbacks 

[Jain et al. 1999]: 

• they require the user to specify the values of a set of parameters (e.g. 

population size, pc, pm, etc.) for each specific problem, and  



 

 

 

82 
 

• the execution time of EAs is significantly higher than the execution time of 

other traditional clustering algorithms (e.g. K-means and FCM), especially 

when applied to large data sets. 

 

3.1.8 Unsupervised Image Classification 
 

Image classification is the process of identifying groups of similar image primitives 

[Puzicha et al. 2000]. These image primitives can be pixels, regions, line elements and 

so on, depending on the problem encountered.  

There are two main approaches to image classification: supervised and 

unsupervised. In the supervised approach, the number and the numerical 

characteristics (e.g. mean and variance) of the classes in the image are known in 

advance (by the analyst) and used in the training step, which is followed by the 

classification step. There are several popular supervised algorithms such as the 

minimum-distance-to-mean, parallelepiped and the Gaussian maximum likelihood 

classifiers [Lillesand and Kiefer 1994]. In the unsupervised approach the classes are 

unknown and the approach starts by partitioning the image data into groups (or 

clusters), according to a similarity measure, which can be compared with reference to 

data by an analyst and used to segment the image.  

Therefore, unsupervised classification is a special case of the general clustering 

problem where the data set is an image (or a set of images) and the patterns are the 

pixels of the image(s).  

In general, the unsupervised approach has several advantages over the supervised 

approach, namely [Davies 1997] 

 



 

 

 

83 
 

• For unsupervised approaches, there is no need for an analyst to specify in 

advance all the classes in the image data set. The clustering algorithm 

automatically finds distinct clusters, which dramatically reduces the work of 

the analyst. 

• The characteristics of the objects being classified can vary with time; the 

unsupervised approach is an excellent way to monitor these changes. 

• Some characteristics of objects may not be known in advance. The 

unsupervised approach automatically flags these characteristics. 

 

3.2 Image Segmentation using Clustering 

 

Image segmentation is a fundamental process in several image processing and 

computer vision applications. It can be considered as the first low-level processing 

step in image processing and pattern recognition [Cheng et al. 2001]. Image 

segmentation is defined as the process of dividing an image into disjoint homogenous 

regions. These homogenous regions should represent objects or parts of them 

[Lucchese and Mitra 2001]. The homogeneity of the regions is measured using some 

image property (e.g. pixel intensity) [Jain et al. 1999]. Image segmentation can be 

formally defined as follows: 

Given an image I and a homogeneity predicate P. The segmentation of image I is the 

partitioning of I into K regions, {R1, R2,…,RK}, satisfying the following conditions: 

• Each pixel in the image should be assigned to a region, i.e. 

IRk
K
k =∪ =1  

• Each pixel is assigned to one and only one region, i.e. 



 

 

 

84 
 

kkkRR kkk ≠=∩     whereφ  

• Each region satisfies homogeneity predicate P, i.e. 

K,,kRP k K1   True,)( =∀=  

• Two different regions can not satisfy P, i.e. 

kkkRRP kkk ≠=∪     whereFalse)(  

 
There are many techniques for image segmentation in the literature; details can be 

found in Fu and Mui [1981], Pal and Pal [1993], Cheng et al. [2001], Lucchese and 

Mitra [2001] and Turi [2001]. In general, these techniques can be categorized into 

thresholding, edge-based, region growing and clustering techniques [Turi 2001]. Each 

of these categories are discussed in the following sections. 

 

3.2.1 Thresholding Techniques 
 

Thresholding [Gonzalez and Woods 1992; Jain et al. 1995] is the simplest image 

segmentation technique. In its simplest version an image is divided into two segments: 

object and background by specifying a threshold. A pixel above the threshold is 

assigned to one segment and a pixel below the threshold is assigned to the other 

segment. For more sophisticated images multiple thresholds can be used. 

 

3.2.2 Edge-based Techniques 
 

In edge-based techniques [Gonzalez and Woods 1992; Jain et al. 1995; Kwok and 

Constantinides 1997], segmentation is achieved by finding the edges of the regions. 



 

 

 

85 
 

This is usually accomplished by moving a mask (e.g. a 3×3 window) over the image 

to detect local changes in the image intensity. 

 

3.2.3 Region growing Techniques 
 

In region growing [Gonzalez and Woods 1992; Jain et al. 1995; Fuh et al. 2000], a set 

of seed pixels are chosen. Neighboring pixels of a seed are agglomerated if they 

satisfy a homogeneity criterion. This is repeated until no more pixels can be added to 

the region. This approach has some problems [Turi 2001]:  

• The selection of the seed pixels which is not a straightforward task. 

• The selection of the homogeneity criterion. 

 

Region splitting and merging divide the image into regions. A region is then split if it 

does not satisfy a homogeneity condition. Regions can also be merged if their 

merging results in a region that satisfies some condition. This is repeated until no 

more splitting and merging can occur [Gonzalez and Woods 1992]. 

 

3.2.4 Clustering Techniques 
 

Image segmentation can be treated as a clustering problem where features describing 

each pixel correspond to a pattern and an image region (i.e. segment) corresponds to a 

cluster [Jain et al. 1999]. This similarity is obvious by comparing the clustering 

problem definition (refer to section 3.1.1) and the image segmentation problem 

definition (refer to section 3.2). Therefore, clustering algorithms have been widely 

used to solve the problem of image segmentation (e.g. K-means [Tou and Gonzalez 



 

 

 

86 
 

1974], FCM [Trivedi and Bezdek 1986], ISODATA [Tou and Gonzalez 1974] and 

snob [Wallace and Dowe 1994]). However, it should be noted that the number of 

clusters is usually not known a priori in image segmentation. Therefore, clustering 

algorithms that do not require the user to specify the number of clusters are usually 

preferred.  

In this thesis, the clustering problem and the image segmentation problem are 

considered to be similar. Thus, algorithms are proposed for both problems 

interchangeably. In the following, several representative clustering-based techniques 

are presented. 

 A hybrid approach combining agglomerative hierarchical clustering and 

region-based segmentation was proposed by Amadasun and King [1988]. The image 

is first divided into regions. Homogenous regions are specified and mean feature 

vectors are then determined for each homogenous region. The most similar mean 

feature vectors are merged. This process is repeated until the specified number of 

clusters is reached. One advantage of this approach is that it is computationally 

efficient, because hierarchical clustering is applied on the mean feature vectors 

instead of the image pixels. However, this approach has several drawbacks, namely 

[Turi 2001], 

• it requires the user to specify the number of clusters in advance, 

• it depends on the region size, and 

• it depends on the used homogeneity criterion. 

 

Clustering algorithms are usually applied to feature space, and as such they do not use 

any spatial information (e.g. the relative location of the patterns in the feature space). 

However, for image segmentation spatial information is important because pixels with 



 

 

 

87 
 

similar features are usually found near each other in the spatial domain [Liew et al. 

2000]. To address this issue, a generalization of K-means that is adaptive and includes 

spatial information was proposed by Pappas [1992]. In this approach, a posteriori 

probability function is defined which constrains the region intensity and imposes 

spatial continuity [Turi 2001]. The iterative algorithm alternates between maximizing 

the a posteriori probability function and calculating the cluster centroids. The cluster 

centroids are initially equal to the K-means cluster centroids. The centroids are 

updated by averaging them over a sliding window. The size of the sliding window is 

progressively decreases [Lucchese and Mitra 2001]. Chang et al. [1994] extends this 

algorithm to color image segmentation. Saber et al. [1996] extends the approach of 

Chang et al. by proposing a hybrid approach combining color image segmentation and 

edge linking. Chen et al. [1998] applied an approach similar to Pappas [1992] to 

biomedical images. A drawback of the generalization of K-means approaches is that 

they require the user to specify the number of clusters in advance [Turi 2001]. 

 A color map image segmentation algorithm combining FCM and a supervised 

neural network was proposed by Wu et al. [1994]. FCM is first applied giving a set of 

prototypes satisfying some validation criteria. A neural network with supervised 

learning is then used to optimize these prototypes. The optimized prototypes are used 

to segment the image using the nearest neighbor rule [Turi 2001]. 

 A fuzzy image clustering algorithm which incorporates spatial contextual 

information was proposed by Liew et al. [2000]. A dissimilarity measure which 

considers the eight neighboring pixels of each pixel was proposed. The dissimilarity 

measure is adaptive in the sense that the effect of the neighboring pixels is suppressed 

in nonhomogenous image regions. In addition, a merging process that merges clusters 

based on their closeness and their degree of overlap is also used to determine the 



 

 

 

88 
 

"optimal" number of clusters. According to Liew et al. [2000], due to the 

incorporation of spatial information, this approach is faster, less sensitive to noise and 

more suitable for arbitrary shaped clusters than FCM. 

 Lim and Lee [1990] proposed a two-stage process called thresholding and 

FCM. In the first stage, a coarse segmentation is obtained by smoothing the histogram 

of each color component by a Gaussian convolution. Thresholds are set as the valleys 

of the smoothed histograms (the valleys are obtained using the first and second 

derivative of the smoothed histograms). A safe area around each threshold is 

determined. Each pixel outside these safe areas is assigned to a cluster according to its 

red, green and blue values. Cluster centroids are then calculated. In the second stage, a 

fine segmentation is obtained by assigning pixels in safe areas to their closest clusters 

as determined from the fuzzy membership functions. One advantage of this approach 

is that it dynamically determines the number of clusters. However, the number of 

clusters obtained is significantly affected by the smoothing function parameter and the 

size of the safe area [Turi 2001]. 

 Color image segmentation using competitive learning based on the least-

squares criterion was proposed by Uchiyama and Arbib [1994]. An image 

segmentation approach based on the mean shift algorithm was proposed by 

Comaniciu and Meer [1997]. Shi and Malik [1997] addressed image segmentation 

using clustering as a graph partitioning problem. 

 Zhang et al. [2001] proposed a hybrid approach combining hidden Markov 

random field (HMRF) and the EM algorithm to segment brain magnetic resonance 

(MR) images. A HMRF model is a stochastic process generated by a MRF. The 

HMRF state sequence can be observed through a field of observations [Zhang et al. 

2001]. An advantage of HMRF is that it encodes spatial information, which is very 



 

 

 

89 
 

useful in image segmentation since it reduces the sensitivity to the presence of noise. 

A parameter estimation method is required to approximate the parameters of the 

HMRF model. In this approach, the EM algorithm is used to estimate the parameters. 

One drawback of this approach is that it depends on the initial estimations of the 

parameters. 

Recently, Veenman et al. [2003] proposed a cellular coevolutionary algorithm 

for image segmentation. The algorithm places agents in a two-dimensional grid 

representing an image. The agents move pixels between each other to improve the 

homogeneity of the regions. Neighboring agents form alliances if the union of their 

regions is homogenous. This approach does not require the user to specify the number 

of clusters in advance. However, it requires the user to specify a parameter (discussed 

in section 3.1.4, equation (3.22)) that has a profound effect on the performance of the 

algorithm. 

 

3.3 Color Image Quantization 

 

Color image quantization is the process of reducing the number of colors presented in 

a digital color image [Braquelaire and Brun 1997]. Color image quantization can be 

formally defined as follows [Velho et al. 1997]: 

Given a set of S ′N  colors dNℜ⊂′S . The color quantization is a map S  S ′′→′ :qf  

where S ′′  is a set of S ′′N  colors such that SS ′⊂′′  and SS ′′′ < NN . The objective is to 

minimize the quantization error resulting from replacing a color Sc ′∈  with its 

quantized value Sc ′′∈)(qf .  



 

 

 

90 
 

Color image quantization is an important problem in the fields of image 

processing and computer graphics [Velho et al. 1997]:  

• It can be used in lossy compression techniques [Velho et al. 1997];  

• It is suitable for mobile and hand-held devices where memory is usually small 

[Rui et al. 2002];  

• It is suitable for low-cost color display and printing devices where only small 

number of colors can be displayed or printed simultaneously [Scheunders, A 

Genetic 1997]. 

• Most graphics hardware use color lookup tables with a limited number of 

colors [Freisleben and Schrader 1997]. 

 

Color image quantization consists of two major steps:  

• Creating a colormap (or palette) where a small set of colors (typically 8-256 

[Scheunders, A Genetic 1997]) is chosen from the (224) possible combinations 

of red, green and blue (RGB). 

• Mapping each color pixel in the color image to one of the colors in the 

colormap. 

 

Therefore, the main objective of color image quantization is to map the set of colors 

in the original color image to a much smaller set of colors in the quantized image 

[Xiang and Joy 1994]. Furthermore, this mapping, as already mentioned, should 

minimize the difference between the original and the quantized images [Freisleben 

and Schrader 1997]. The color quantization problem is known to be NP-complete [Wu 

and Zhang 1991]. This means that it is not feasible to find the global optimal solution 

because this will require a prohibitive amount of time. To address this problem, 



 

 

 

91 
 

several approximation techniques have been used. One popular approximation method 

is the use of a standard local search strategy such as K-means. K-means has already 

been applied to the color image quantization problem [Shafer and Kanade 1987; 

Celenk 1990]. However, as previously mentioned, K-means is a greedy algorithm 

which depends on the initial conditions, which may cause the algorithm to converge 

to suboptimal solutions. This drawback is magnified by the fact that the distribution of 

local optima is expected to be broad in the color image quantization problem due to 

the three dimensional color space. In addition, this local optimality is expected to 

affect the visual image quality.  The local optimality issue can be addressed by using 

stochastic optimization schemes.  

Several heuristic techniques have been proposed in the literature. These 

techniques can be categorized into two main categories: pre-clustering and post-

clustering. The next subsections discuss each of these categories.  

 

3.3.1 Pre-clustering approaches 
 
Pre-clustering approaches divide the color into disjoint regions of similar colors. A 

representative color is then determined from each region. These representatives form 

the colormap. There are many fast algorithms in this category which are commonly 

used. 

The median cut algorithm (MCA) [Heckbert 1982] is often used in image 

applications because of its simplicity [Freisleben and Schrader 1997]. MCA divides 

the color space repeatedly along the median into rectangular boxes until the desired 

number of colors is obtained. 



 

 

 

92 
 

The variance-based algorithm (VBA) [Wan 1990] also divides the color space 

into rectangular boxes. However, in VBA the box with the largest mean squared error 

between the colors in the box and their mean is split. 

The octree quantization algorithm [Gervautz and Purgathofer 1990] repeatedly 

subdivides a cube into eight smaller cubes in a tree structure of degree eight. Then 

adjacent cubes with the least number of pixels are merged. This is repeated until the 

required number of colors is obtained [Dekker 1994]. Octree produces results similar 

to MCA, but with higher speed and smaller memory requirements [Freisleben and 

Schrader 1997]. 

Xiang and Joy [1994] proposed an agglomerative clustering method which 

starts with each image color as a separate cluster. Small clusters are then repeatedly 

clustered into larger clusters in a hierarchical way until the required number of colors 

is obtained. The abandoning of the fixed hierarchical division of the color space is a 

significant improvement over the octree approach [Xiang and Joy 1994].  

A similar approach called Color Image Quantization by Pairwise Clustering 

was proposed by Velho et al. [1997]. In this approach, a relatively large set of colors 

is chosen. An image histogram is then created. Two clusters that minimize the 

quantization error are then selected and merged together. This process is repeated 

until the required number of colors is obtained. According to Velho et al. [1997], this 

approach performed better than MCA, VBA, octree, K-means and other popular 

quantization algorithms when applied to the two colored images used in their 

experiments. 

Xiang [1997] proposed a color image quantization algorithm that minimizes 

the maximum distance between color pixels in each cluster (i.e. the intra-cluster 

distance). The algorithm starts by assigning all the pixels into one cluster. A pixel is 



 

 

 

93 
 

then randomly chosen as the head of the cluster. A pixel that is the most distant from 

its cluster head is chosen as the head of a new cluster. Then, pixels nearer to the head 

of the new cluster move towards the new head forming the new cluster. This 

procedure is repeated until the desired number of clusters is obtained. The set of 

cluster heads forms the colormap.  

A hybrid competitive learning (HCL) approach combining competitive 

learning and splitting of the color space was proposed by Scheunders [A Comparison 

1997]. HCL starts by randomly choosing a pixel as a cluster centroid. Competitive 

learning is then applied resulting in assigning all the image pixels to one cluster 

surrounding the centroid. A splitting process is then conducted by creating another 

copy of the centroid; competitive learning is then applied on both centroids. This 

process is repeated until the desired number of clusters is obtained. According to 

Scheunders [A Comparison 1997], HCL is fast, completely independent of initial 

conditions and can obtain near global optimal results. When applied to commonly 

used images, HCL outperformed MCA, VBA and K-means, and performed 

comparably with competitive learning [Scheunders, A Comparison 1997; Scheunders, 

A Genetic 1997].  

Braquelaire and Brun [1997] compared the various pre-clustering heuristics 

and suggested some optimizations of the algorithms and data structures used. 

Furthermore, they proposed a new color space called H1 H2 H3 and argued that it 

improves the quantization heuristics. Finally, they proposed a new method which 

divides each cluster along the axis H1, H2 or H3 of greatest variance. According to 

Braquelaire and Brun [1997], the proposed approach generates images with 

comparable quality to that obtained from better but slower methods in this category. 



 

 

 

94 
 

Recently, Cheng and Yang [2001] proposed a color image quantization 

algorithm based on color space dimensionality reduction. The algorithm repeatedly 

sub-divides the color histogram into smaller classes. The colors of each class are 

projected into a line. This line is defined by the mean color vector and the most distant 

color from the mean color. For each class, the vector generated from the projection of 

the colors into the line is then used to cluster the colors into two representative palette 

colors. This process is repeated until the desired number of representative colors is 

obtained. All color vectors in each class are then represented by their class mean. 

Finally, all these representative colors form the colormap. According to Cheng and 

Yang [2001], this algorithm performed better than MCA, and performed comparably 

to SOM when applied on commonly used images. 

  

3.3.2 Post-clustering approaches 
 
The main disadvantage of the pre-clustering approaches is that they only work with 

color spaces of simple geometric characteristics. On the other hand, post-clustering 

approaches can work with arbitrary shaped clusters. Post-clustering approaches 

perform clustering of the color space [Cheng and Yang 2001]. A post-clustering 

algorithm starts with an initial colormap. It then iteratively modifies the colormap to 

improve the approximation. The major disadvantage of post-clustering algorithms is 

the fact that it is time consuming [Freisleben and Schrader 1997]. 

The K-means algorithm is one of the most popular post-clustering algorithms. 

It starts with an initial set of colors (i.e. initial colormap). Then, each color pixel is 

assigned to the closest color in the colormap. The colors in the colormap are then 

recomputed as the centroids of the resulting clusters. This process is repeated until 

convergence. The K-means algorithm has been proven to converge to a local optimum 



 

 

 

95 
 

[Freisleben and Schrader 1997]. As previously mentioned, a major disadvantage of K-

means is its dependency on initial conditions.  

FCM [Balasubramanian and J. Allebach 1990] and Learning Vector 

Quantization [Kotropoulos et al. 1992] have also been used in the color image 

quantization. Scheunders and De Backer [1997] proposed a joint approach using both 

competitive learning and a dithering process to overcome the problem of contouring 

effects when using small colormaps. 

Fiume and Quellette [1989] proposed an approach which uses simulated 

annealing for color image segmentation. Pre-clustering approaches were used to 

initialize the colormap. 

SOMs (discussed in Section 3.1.6) were used by Dekker [1994] to quantize 

color images. The approach selects an initial colormap, and then modifies the colors 

in the colormap by moving them in the direction of the image color pixels. However, 

to reduce the execution time, only samples of the colors in the image are used. 

According to Dekker [1994], the algorithm performs better than MCA and octree.  

Rui et al. [2002] presented an initialization and training method for SOM that 

reduces the computational load of SOM and at the same time generates reasonably 

good results.  

A hybrid approach combining evolutionary algorithms with K-means has been 

proposed by Freisleben and Schrader [1997]. A population of individuals, each 

representing a colormap, are arbitrary initialized. Then, after each generation, the K-

means algorithm (using a few iterations) is applied on each individual in the 

population. The standard error function of the Euclidean distance is chosen to be the 

fitness function of each individual. Based on the experiments conducted by Freisleben 



 

 

 

96 
 

and Schrader [1997], this hybrid approach outperformed both MCA and octree 

algorithms.  

Genetic C-means algorithm (GCMA) uses a similar idea where a hybrid 

approach combining a genetic algorithm with K-means was proposed by Scheunders 

[A Genetic 1997]. The fitness function of each individual in the population is set to be 

the mean square error (MSE), defined as 

 

p

K

k
kp

N
MSE kp

∑ ∑
= ∈∀= 1

2)(
Cz

m -z
                          (3.27) 

 

As in Freisleben and Schrader [1997], each chromosome represents a colormap. 

GCMA starts with a population of arbitrary initialized chromosomes. K-means is then 

applied to all the chromosomes to reduce the search space. A single-point crossover is 

then applied. This is followed by the application of mutation which randomly decides 

if a value of one is added to (or subtracted from) the gene's value (i.e. mutating the 

gene's value with ±1). All the chromosomes are then pairwise compared and the 

chromosome with the lowest MSE replaces the other chromosome. This process is 

repeated until a stopping criterion is satisfied. A faster version of this approach can be 

obtained by applying K-means to the best chromosome in each generation. For the 

remaining chromosomes, an approximation of K-means is used where a single 

iteration of K-means is applied on a randomly chosen subset of pixels. This process is 

repeated a user-specified number of times using different subsets. GCMA 

outperformed MCA, VBA, K-means, competitive learning and HCL when applied on 

commonly used images [Scheunders, A Comparison 1997; Scheunders, A Genetic 

1997]. However, GCMA is computationally expensive. 



 

 

 

97 
 

 Recently, a new approach using model based clustering trees was proposed by 

Murtagh et al. [2001]. The algorithm requires selecting a 3D color space (e.g. RGB) 

and specifying the order of color bands. For the first color band, the number of 

clusters is determined using BIC (discussed in section 3.1.5, equation (3.23)). The EM 

algorithm is used to estimate the model parameters and each pixel is then assigned to 

its most likely cluster. The second color band is then used to split each of the clusters 

generated from the previous step. The generated clusters are further subdivided using 

the third color band. 

 

3.4 Spectral Unmixing 

  

In remote sensing, classification is the main tool for extracting information about the 

surface cover type. Conventional classification methods assign each pixel to one class 

(or species). This class can represent water, vegetation, soil, etc. The classification 

methods generate a map showing the species with highest concentration. This map is 

known as the thematic map. A thematic map is useful when the pixels in the image 

represent pure species (i.e. each pixel represents the spectral signature of one species). 

Hence, thematic maps are suitable for imagery data with a small ground sampling 

distance (GSD) such as LANDSAT Thematic Mapper (GSD = 30 m). However, 

thematic maps are not as useful for large GSD imagery such as NOAA'a AVHRR 

(GSD = 1.1 km) because in this type of imagery pixels are usually not pure. 

Therefore, pixels need to be assigned to several classes along with their respective 

concentrations in that pixel's footprint. Spectral unmixing (or mixture modeling) is 

used to assign these classes and concentrations. Spectral unmixing generates a set of 



 

 

 

98 
 

maps showing the proportions of all species present in each pixel footprint. These 

maps are called the abundance images. Hence, each abundance image shows the 

concentration of one species in a scene. Therefore, spectral unmixing provides a more 

complete and accurate classification than a thematic map generated by conventional 

classification methods. 

 Spectral unmixing can be used for the compression of multispectral imagery. 

Using spectral unmixing, the user can prioritize the species of interest in the 

compression process. This is done by first applying the spectral unmixing on the 

original images to generate the abundance images. The abundance images 

representing the species of interest are then prioritized by coding them with a 

relatively high bit rate. Other abundance images are coded using a relatively low bit 

rate. At the decoder, the species-prioritized reconstructed multispectral imagery is 

generated via a re-mixing process on the decoded abundance images [Saghri et al. 

2002]. This approach is feasible if the spectral unmixing algorithm results in a small 

(negligible) residual error. 

 

3.4.1 Linear Pixel Unmixing (or Linear Mixture Modeling) 
 
Spectral unmixing is generally performed using a linear mixture modeling approach. 

In linear mixture modeling the spectral signature of each pixel vector is assumed to be 

a linear combination of a limited set of fundamental spectral components known as 

end-members. Hence, spectral unmixing can be formally defined as follows: 

 

eememememefEMz ++++++=+=
ee NNiip ffff. LL2211           (3.28) 

 



 

 

 

99 
 

where the symbols are defined as follows: 

 pz  a pixel signature of Nb components 

 EM Nb × Ne matrix of end-members 
eN,,L1em  

if   fractional component of end-member i (i.e. proportion of footprint 

covered by species i) 

 f  vector of fractional components T
21 )(

eNi f,,f,,f,f LL  

 iem   end-member i of Nb components 

 e  residual error vector of Nb components 

 Nb  number of spectral bands 

 eN   number of components, be NN ≤  

 

Provided that the number of end-members is less than or equal to the true spectral 

dimensionality of the scene, the solution via classical least-squares estimation is, 

 

pzEMEMEMf T1T )( −=                (3.29) 

 

Therefore, there are two requirements for linear spectral unmixing: 

• the spectral signature of the end-members needs to be known, and 

• the number of end-members has to be less than or equal to the true spectral 

dimensionality of the scene (i.e. the dimension of the feature space). This is 

known as the condition of identifiability. 

 

The condition of identifiability restricts the application of the linear spectral unmixing 

when applied to multispectral imagery, because 



 

 

 

100 
 

• the end-members may not correspond to physically identifiable species on the 

ground, and 

• the number of distinct species in the scene may be more than the true spectral 

dimensionality of the scene. For example, for Landsat TM with seven spectral 

bands (Nb =7), the true spectral dimension is at most five ( eN =5) based on 

principal component analysis. 

   

3.4.2 Selection of the End-Members 
 

There are many methods for end-member selection proposed in the literature 

[Settle and Drake 1993; Antoniades et al. 1995; Hlavka and Spanner 1995; Bateson 

and Curtiss 1996; Maselli 1998; Parra et al. 2000; Saghri et al. 2000]. In the 

following, several representative techniques are presented. 

Mathematical techniques such as Gram-Schmidt orthogonalization and 

principal component analysis can be used to obtain orthogonal end-members which 

can be used to linearly unmix each pixel vector of the scene. There are several 

advantages for the mathematical techniques, namely 

• they result in minimum residual error, and 

• there is no human interaction time. 

 

However, mathematical techniques suffer from the following drawbacks: 

• They may generate end-members with negative components. 

• They may not correspond to physical species in the scene. 

 



 

 

 

101 
 

Manual techniques can also be used to obtain end-members which can be used to 

linearly unmix each pixel vector of the scene. In manual techniques, the user will 

select the end-members directly from the scene, or from a library of end-members. 

The advantages of manual techniques are the disadvantages of mathematical 

techniques and vice versa. 

 Spectral screening is another way to obtain end-members. In this approach, a 

set of unique pixels are selected from the scene. The selection is based on a user-

specified spectral angle threshold. The approach works as follows: 

• The first pixel in the image is assumed to be unique and is added to the set of 

unique pixels. 

• The pixels in the image are then sequentially scanned and each pixel whose 

spectral angle with respect to all the unique pixels in the set exceeds the user-

specified spectral angle threshold, is added to the set of unique pixels. 

  

Clearly, this technique suffers from two major drawbacks: 

• the generated set of unique pixels depends on the order in which the pixels are 

scanned, and 

• the generated set also depends on the spectral angle threshold. 

 

To overcome the condition of identifiability, Maselli [1998] proposed a method of 

dynamic selection of an optimum end-member subset. In this technique, an optimum 

subset of all available end-members is selected for spectral unmixing of each pixel 

vector in the scene. Thus, although every pixel vector will not have a fractional 

component for each end-member, the ensemble of all pixel vectors in the scene will 

collectively have fractional contributions for each end-member. 



 

 

 

102 
 

For each pixel vector, a unique subset of the available end-members is selected 

which minimizes the residual error after decomposition of that pixel vector. To 

determine the eN  optimum end-members for pixel vector pz , the pixel vector is 

projected onto all available normalized end-members. The most efficient projection, 

which corresponds to the highest dot product value cmax, indicates the first selected 

end-member emmax. It can be shown that this procedure is equivalent to finding the 

end-member with the smallest spectral angle with respect to pz  [Saghri et al. 2000]. 

The residual pixel signature, 
pzr  = pz  - cmax.emmax is then used to identify the second 

end-member by repeating the projection onto all remaining end-members. The process 

continues up to the identification of a prefixed maximum eN  number of end-members 

from the total of mN  available end-members. 

More recently, Saghri et al. [2000] proposed a method to obtain end-members 

from the scene with relatively small residual errors. In this method, the set of end-

members are chosen from a thematic map resulting from a modified ISODATA. The 

modified ISODATA uses the spectral angle measure instead of the Euclidean distance 

measure to reduce the effect of shadows and sun angle effects. The end-members are 

then set as the centroids of the compact and well-populated clusters. Maselli's 

approach discussed above is then used to find the optimum end-member subset from 

the set of available end-members for each pixel in the scene. Linear spectral unmixing 

is then applied to generate the abundance images. 

 

According to Saghri et al. [2000], the proposed approach has several advantages: 

• the resulting end-members correspond to physically identifiable (and likely 

pure) species on the ground, 



 

 

 

103 
 

• the residual error is relatively small, and 

• minimal human interaction time is required. 

 

However, this approach has the drawback that it uses ISODATA which depends on 

initial conditions. 

 

3.5 Conclusions 
 

This chapter presented an overview of a set of problems from the field of pattern 

recognition and image processing. The clustering problem was defined and discussed, 

followed by image segmentation and color image quantization. Finally, spectral 

unmixing was overviewed. From the discussion presented in this chapter it can be 

observed that all these problems are difficult to solve and they need efficient 

optimization methods to solve them. In this thesis, the PSO is used to address these 

difficult problems. In the next chapter, a PSO-based clustering algorithm is proposed 

and compared with other state-of-the-art clustering algorithms.  



 

 

 

104 
 

Chapter 4 

A PSO-based Clustering Algorithm with Application 

to Unsupervised Image Classification 

 

A clustering method that is based on PSO is developed in this chapter. The algorithm finds 

the centroids of a user specified number of clusters, where each cluster groups together 

similar patterns. The application of the proposed clustering algorithm to the problem of 

unsupervised classification and segmentation of images is investigated. To illustrate its wide 

applicability, the proposed algorithm is then applied to synthetic, MRI and satellite images. 

Experimental results show that the PSO clustering algorithm performs better than state-of-the-

art clustering algorithms (namely, K-means, Fuzzy C-means, K-Harmonic means and Genetic 

Algorithms) in all measured criteria. The influence of different values of PSO control 

parameters on performance is illustrated. The performance of different versions of PSO is also 

investigated.  

 

4.1 PSO-Based Clustering Algorithm 

This section defines the terminology used throughout the rest of the chapter. A 

measure is given to quantify the quality of a clustering algorithm, after which the 

PSO-based clustering algorithm is introduced. 

 

4.1.1 Measure of Quality 
 
Different measures can be used to express the quality of a clustering algorithm. The 

most general measure of performance is the quantization error, defined as 



 

 

 

105 
 

 

K

nd

J

K

k
kkp

e
kp

∑ ∑
= ∈∀ 












=
1

)(
Cz

m,z

                (4.1) 

 

where Ck is the kth cluster, and kn  is the number of pixels in Ck 

 

4.1.2 PSO-Based Clustering Algorithm 
 

In the context of data clustering, a single particle represents the K cluster centroids. 

That is, each particle xi is constructed as xi = (mi,1,…,mi,k,…,mi,K) where mi,k refers to 

the kth cluster centroid vector of the ith particle. Therefore, a swarm represents a 

number of candidate data clusterings. The quality of each particle is measured using 

 

))((),(),( minmax2max1 iiiii dzwdwf xxZZx −+=                                                (4.2) 

 

where maxz is the maximum value in the data set (i.e. in the context of digital images, 

12max −= sz  for an s-bit image); Zi is a matrix representing the assignment of patterns 

to the clusters of particle i. Each element pk,i,z  indicates if pattern zp belongs to cluster 

Ck of particle i. The constants 1w  and 2w  are user-defined constants used to weigh the 

contribution of each of the sub-objectives. Also, 

 













= ∑
∈∀=

ki,p

ki,ki,p
K,,k

iimax /n,dmax,d
Cz

mzxZ )()(
1K

               (4.3) 

 



 

 

 

106 
 

is the maximum average Euclidean distance of particles to their associated clusters, 

and 

 

)}({)( kki,ki,
kkkkk,k,

imin ,dmind mmx
≠∀

=                             (4.4) 

 

is the minimum Euclidean distance between any pair of clusters. In the above, ki,n  is 

the number of patterns that belong to cluster ki,C  of particle i. 

The fitness function in equation (4.2) has as objective to simultaneously 

minimize the intra-distance between patterns and their cluster centroids, as quantified 

by ),(max iid xZ , and to maximize the inter-distance between any pair of clusters, as 

quantified by, )(min id x . 

According to the definition of the fitness function, a small value of ),( iif Zx  

suggests compact and well-separated clusters (i.e. good clustering). 

The fitness function is thus a multi-objective problem. Approaches to solve 

multi-objective problems have been developed mostly for evolutionary computation 

approaches [Coello Coello 1996]. Recently, approaches to multi-objective 

optimization using PSO have been developed by Hu and Eberhart [Multiobjective 

2002], Fieldsend and Singh [2002] and Coello Coello and Lechuga [2002]. Since our 

scope is to illustrate the applicability of PSO to data clustering, and not on multi-

objective optimization, a simple weighted approach is used to cope with multiple 

objectives. Different priorities are assigned to the subobjectives via appropriate 

initialization of the values of 1w  and 2w .  

 

The PSO clustering algorithm is summarized in Figure 4.1. 



 

 

 

107 
 

1. Initialize each particle to contain K randomly selected cluster centroids 

2. For t = 1 to tmax 

(a) For each particle i 

i. For each pattern zp 

• calculate )( ki,p ,d mz  for all clusters ki,C  using equation 

(3.1) 

• assign zp to ki,C  where 

                    )}{)
1

ki,p
K,,k

ki,p ,d(min,d( mzmz
K=∀

=             (4.5) 

ii. Calculate the fitness, )( ii ,f Zx  

(b) Find the personal best position for each particle and the global best 

solution, )(ˆ ty  

(c) Update the cluster centroids using equations (2.8) and (2.10) 

Figure 4.1: The PSO clustering algorithm 

 

 

As previously mentioned, an advantage of using PSO is that a parallel search for an 

optimal clustering is performed. This population-based search approach reduces the 

effect of the initial conditions, compared to K-means (as shown in Figure 4.4), 

especially for relatively large swarm sizes. 

 

4.1.3 A Fast Implementation 
 

Since most of the images used in this thesis are single band, gray scale images and 

since most clustering algorithms do not use spatial information, a fast implementation 



 

 

 

108 
 

is used for this type of images in order to speedup the execution time of the 

algorithms used. The fast implementation works as follows: 

1) The histogram of a single band, gray scale image is created by calculating the 

frequency of each gray level. 

2) A data structure is used where each gray level is associated with a frequency 

value and a cluster label. 

3) Depending on the algorithm used, perform all the calculations (e.g. Euclidean 

distance, calculation of centroids, fitness function, etc.) using the above data 

structure by multiplying each gray level by its frequency and using the cluster 

labels for clustering. 

 

Using the above implementation, the execution time will be independent on the size 

of the image. However, the execution time will depend on the number of gray levels 

which is usually very small (e.g. 256 for 8-bit images and 1024 for 10-bit images). 

Furthermore, the number of gray levels is generally much less than the number of 

pixels. Hence, the execution time will reduce significantly while the results are the 

same. Therefore, this implementation is used in this thesis for single band, gray scale 

images. 

 

4.2 Experimental Results 
 

The PSO-based clustering algorithm has been applied to three types of imagery data, 

namely synthetic, MRI and LANDSAT 5 MSS (79 m GSD) images. These data sets 

have been selected to test the algorithms, and to compare them with other algorithms, 

on a range of problem types, as listed below: 



 

 

 

109 
 

 

Synthetic Image: Figure 4.2(a) shows a 100 × 100 8-bit gray scale image created to 

specifically show that the PSO algorithm does not get trapped in the local minimum. 

The image was created using two types of brushes, one brighter than the other. 

 

MRI Image:  Figure 4.2(b) shows a 300 × 300 8-bit gray scale image of a human 

brain, intentionally chosen for its importance in medical image processing. 

 

Remotely Sensed Imagery Data: Figure 4.2(c) shows band 4 of the four-channel 

multispectral test image set of the Lake Tahoe region in the US. Each channel is 

comprised of a 300 × 300, 8-bit per pixel (remapped from the original 6 bit) image. 

The test data are one of the North American Landscape Characterization (NALC) 

Landsat multispectral scanner data sets obtained from the U.S. Geological Survey 

(USGS). 

The rest of this section is organized as follows: Section 4.2.1 illustrates that 

the basic PSO can be used successfully as an unsupervised image classifier, using the 

original fitness function as defined in equation (4.2). Section 4.2.2 illustrates the 

performance under a new fitness function. Results of the gbest PSO are compared 

with that of GCPSO in section 4.2.3, using the new fitness function. Section 4.2.4 

investigates the influence of the different PSO control parameters. The performance 

of PSO using the new fitness function is compared with state-of-the-art clustering 

approaches in Section 4.2.5. In section 4.2.6, the performance of different versions of 

PSO is investigated. A new non-parametric fitness function is presented in Section 

4.2.7. In section 4.2.8, the PSO-based clustering algorithm is applied to multispectral 



 

 

 

110 
 

imagery data. Finally, section 4.2.9 provides a discussion of applying PSO to data 

clustering.  

 

 

(a) Synthetic image 

 

(b) MRI Image of Human brain 

 

(c) Band 4 of the Landsat MSS test image of Lake Tahoe 

Figure 4.2: Data set consisting of synthetic, MRI and LANDSAT images 

 

The results reported in this section are averages and standard deviations over 20 

simulations. All comparisons are made with reference to eJ , maxd and mind . 



 

 

 

111 
 

Furthermore, a total number of clusters of 3, 8 and 4 were used respectively for the 

synthetic, MRI and Tahoe images. 

 

4.2.1 gbest PSO versus K-Means 
 
This section presents results to compare the performance of the gbest PSO algorithm 

with that of the K-means algorithm for each of the images.  

Table 4.1 summarizes the results for the three images. In all cases, for PSO, 50 

particles were trained for 100 iterations; for K-means, 5000 iterations were used (that 

is, both algorithms have performed 5000 function evaluations). Vmax = 5, w = 0.72 and 

c1 = c2 = 1.49. The chosen values of w, c1, and c2 are popular in the literature and 

ensure convergence [Van den Bergh 2002]. For the fitness function in equation (4.2), 

w1 = w2 = 0.5 to give each subobjective an equal contribution.  

The results showed that, for the images used, K-means performed better than 

the PSO algorithm with reference to the quantization error eJ . However, eJ  does not 

give an idea of the quality of the individual clusters. With respect to the minimization 

of intra-distances ( maxd ) and the maximization of inter-distances ( mind ), the PSO 

algorithm generally performed better than K-means clustering. 

Figure 4.3 illustrates for the synthetic image how the fitness of PSO improves 

over time. For this figure, 10 particles have been used for a training phase of 100 

iterations, Vmax = 5, w = 0.72, c1 = c2 = 1.49, and w1 = w2 = 0.5. The fitness value, as 

measured using equation 4.2, improves from the initial 96.637 to 91.781. 

 



 

 

 

112 
 

91

92

93

94

95

96

97

0 10 20 30 40 50 60 70 80 90 100

Iteration

Fi
tn

es
s 

of
 B

es
t P

ar
tic

le

PSO 10 particles

 

Figure 4.3: PSO Performance on Synthetic Image 

 

Figure 4.4(a) illustrates the segmented image of the synthetic image for the K-

means algorithm, while Figure 4.4(b) illustrates the segmented image obtained from 

the PSO algorithm. These figures clearly illustrate that K-means was trapped in a 

local optimum. Three clusters were created using two brushers, the brighter brush 

were used to create the two spots in the upper right and lower left corner while the 

other brush were used to create the remaining shape. K-means could not classify the 

clusters correctly, since it failed to cluster the two spots as separate clusters. PSO, on 

the other hand, was not trapped in this local optimum and succeeded in showing the 

two spots as separate clusters. The segmented images for the MRI and the Tahoe 

images are given in Figures 4.5 and 4.6, respectively. 

 

Table 4.1: Comparison between K-means and PSO 
Image 

eJ  maxd  mind  

Synthetic  K-means 20.212 ± 0.938 28.040 ± 2.778 78.498 ± 7.0629 

         PSO 24.453 ± 0.209 27.157 ± 0.017 98.679 ± 0.023 

MRI K-means 7.370 ±  0.0428 13.214 ±  0.762 9.934 ± 7.309 

         PSO 8.536 ± 0.584 10.129 ± 1.262 28.745 ± 2.949 

Tahoe K-means 1.664 ± 0.040 3.107 ± 0.168 4.527 ± 1.347 

         PSO 7.215 ± 2.393 9.036 ± 3.363 25.777 ± 9.602 



 

 

 

113 
 

 

 

  

(a) K-means (b) PSO 

Figure 4.4: The Segmented Synthetic Images 

 

  

(a) K-means (b) PSO 

Figure 4.5: The Segmented MRI Images 

 

  

(a) K-means (b) PSO 

Figure 4.6: The Segmented Lake Tahoe Images 

 



 

 

 

114 
 

 

4.2.2 Improved Fitness Function 
 
The above experimental results have shown that the PSO clustering algorithm 

improves on the performance of the K-means algorithm in terms of inter- and intra-

cluster distances. An improved fitness function which simply adds to the previous 

fitness function an additional sub-objective to also minimize the quantization error is 

presented in the following equation: 

 

ieiiiii Jwdzwdwf ,3minmax2max1 ))((),(),( +−+= xxZZx              (4.6) 

 

In this section, the results of the gbest PSO shown in the previous section are 

compared with results using the new fitness function as defined in equation (4.6). All 

parameters are set as in the previous section. The only difference is that for the 

extended fitness function, w1 = w2 = 0.3, w3 = 0.4 were used for the synthetic image, 

w1 = 0.2, w2 = 0.5, w3 = 0.3 were used for the MRI image and w1 = w2 = w3 = 

0.333333 were used for the Tahoe image. These values were set empirically. 

Table 4.2 compares the results for the two fitness functions. The new fitness 

function succeeded in significant improvements in the quantization error, eJ . The 

new fitness function also achieved significant improvements in minimizing the intra-

cluster distances for the synthetic and Tahoe images, thus resulting in more compact 

clusters, and only marginally worse for the MRI image. These improvements were at 

the cost of loosing on maximization of the inter-cluster distances. However, this loss 

is acceptable because the gbest PSO using the new fitness function still performs 



 

 

 

115 
 

better than the K-means algorithm in terms of the inter-cluster distance (compare the 

results in Table 4.1 and Table 4.2). 

Due to the improved performance on the quantization error and intra-cluster 

distances, the rest of this chapter uses the 3-component fitness function as defined in 

equation (4.6). 

 

Table 4.2: 2-component versus 3-component fitness function 
2-Component Fitness Function 3-Component Fitness Function  

Problem 
eJ  maxd  mind  eJ  maxd  mind  

Synthetic 24.453 ± 

0.209 

27.157 ± 

0.017 

98.679 ± 

0.023 

17.113 ± 

0.548 

24.781 ± 

0.270 

92.768 ± 

4.043 

MRI 8.536 ± 

0.584 

10.129 ± 

1.262 

28.745 ± 

2.949 

7.225 ± 

0.552 

12.206 ± 

2.507 

22.936 ± 

8.311 

Tahoe 7.215 ± 

2.393 

9.036 ± 

3.363 

25.777 ± 

9.602 

3.556 ± 

0.140 

4.688 ± 

0.260 

14.987 ± 

0.425 

 

4.2.3 gbest PSO versus GCPSO 
 
This section compares the performance of the gbest PSO with the GCPSO. This is 

done for a low Vmax = 5 and a high Vmax = 255. All other parameters are as for section 

4.2.2. Table 4.3 shows no significant difference in the performance between PSO and 

GCPSO. It is, however, important to note that too much clamping of the velocity 

updates have generally a negative influence on performance. In general, better results 

were obtained, for both the PSO and GCPSO with a large value of Vmax. 



 

 

 

116 
 

 

Table 4.3: PSO versus GCPSO 
PSO GCPSO Problem 

Vmax=5 eJ  maxd  mind  eJ  maxd  mind  

Synthetic 17.112672 ± 

0.548096 

24.781384 ± 

0.270409 

92.767925 ± 

4.043086 

17.116036 ± 

0.547317 

24.826868 ± 

0.237154 

92.845323 ± 

4.056681 

MRI 7.225384 ± 

0.552381 

12.205947 ± 

2.506827 

22.935786 ± 

8.310654 

7.239264 ± 

0.475250 

12.438016 ± 

2.437064 

23.377287 ± 

6.722787 

Tahoe 3.556281 ± 

0.139881 

4.688270 ± 

0.259919 

14.986923 ± 

0.425077 

3.542732 ± 

0.109415 

4.672483 ± 

0.129913 

15.007491 ± 

0.621020 

Vmax=255       

Synthetic 17.004993 ± 

0.086698 

24.615665 ± 

0.143658 

93.478081± 

0.276109 

17.000393 ± 

0.022893 

24.672107 ± 

0.174457 

93.588530 ± 

0.400137 

MRI 7.640622 ± 

0.514184 

10.621452 ± 

1.284735 

24.948486 ± 

3.446673 

7.694498 ± 

0.591383 

10.543233 ± 

1.038114  

25.355967 ± 

3.945929 

Tahoe 3.523967 ± 

0.172424 

4.681492 ± 

0.110739 

14.664859 ± 

1.177861 

3.609807 ± 

0.188862 

4.757948 ± 

0.227090 

15.282949 ± 

1.018218 

 

4.2.4 Influence of PSO Parameters 
 
The PSO have a number of parameters that have an influence on the performance of 

the algorithm. These parameters include Vmax, the number of particles, the inertia 

weight and the acceleration constants. Additionally, the PSO-based clustering 

algorithm adds a weight to each sub-objective. This section investigates the influence 

of different values of these parameters. 

 

Velocity Clamping 

Table 4.3 shows that less clamping of velocity updates is more beneficial. This allows 

particles to make larger jumps in the search space. 



 

 

 

117 
 

 

Swarm Size 

To investigate the effect of different swarm sizes on performance, both the PSO and 

GCPSO have been executed using 10 to 100 particles. All other parameters are as for 

section 4.2.2. Figure 4.7 shows the effect of the swarm size, s, on the synthetic image. 

It is clear from the figure that increasing the number of particles improves the 

performance of both algorithms. The same conclusion can be drawn for the MRI 

image as illustrated in Figure 4.8. However, it can be observed from Figure 4.7, that 

no significant improvement is achived for more than 60 particles. In general, an 

increase in the number of particles increases diversity, thereby limiting the effects of 

initial conditions and reducing the possibility of being trapped in local minima. 

 

Inertia Weight 

Given that all parameters are fixed at the values given in section 4.2.2, the inertia 

weight w was set to different values for both PSO and GCPSO. In addition, a dynamic 

inertia weight was used with an initial w =1.4, which linearly decreased to 0.8. The 

initial large value of w favors exploration in the early stages, with more exploitation in 

the later stages with the smaller values. Tables 4.4 and 4.5 summarize the results for 

the synthetic and MRI images respectively. For the synthetic image, the results 

illustrate no significant difference in performance, meaning that for the synthetic 

image, the PSO-based clustering algorithms are generally insensitive to the value of 

the inertia weight (provided that c1 and c2 are selected such that equation (2.9) is not 

violated). However, in the MRI image, it can be observed that w =0 yields the best 

results in terms of inter- and intra-cluster distances. 



 

 

 

118 
 

 

Synthetic Image tmax = 100

16.8
17

17.2
17.4
17.6
17.8

18
18.2
18.4
18.6

0 20 40 60 80 100

s

Je

PSO

GCPSO

 
(a) Quantization error 

Synthetic Image tmax = 100

24.7
24.8
24.9

25
25.1
25.2
25.3

25.4
25.5

0 20 40 60 80 100

s

dm
ax PSO

GCPSO

 
(b) Intra-cluster Distances 

Synthetic Image tmax = 100

82

84

86

88

90

92

94

96

0 20 40 60 80 100

s

dm
in PSO

GCPSO

 
(c) Inter-cluster Distances 

Figure 4.7: Effect of swarm size on synthetic image 

 



 

 

 

119 
 

MRI Image tmax = 100

6.8
6.9

7
7.1

7.2
7.3
7.4

7.5
7.6

0 20 40 60 80 100

s

Je

PSO

GCPSO

 
(a) Quantization error 

MRI Image tmax = 100

0
2
4

6
8

10
12

14
16

0 20 40 60 80 100

s

dm
ax PSO

GCPSO

 
(b) Intra-cluster Distances 

MRI Image tmax = 100

0

5

10

15

20

25

30

0 20 40 60 80 100

s

dm
in PSO

GCPSO

 
(c) Inter-cluster Distances 

Figure 4.8: Effect of swarm size on MRI image 

 



 

 

 

120 
 

 

Table 4.4: Effect of inertia weight on the synthetic image 

 PSO GCPSO 

w eJ  maxd  mind  eJ  maxd  mind  

0.0 16.983429 ± 

 0.017011  

24.581799 ± 

 0.165103   

93.435221 ± 

 0.308601   

16.986386 ± 

 0.016265  

24.649368 ± 

 0.138223  

93.559275 ± 

 0.254670  

0.1 16.982362 ± 

 0.016074  

24.645884 ± 

 0.137442 

 93.543795 ± 

 0.256700   

16.985079 ± 

 0.016995   

24.637893 ± 

 0.138894   

93.538635 ± 

 0.257167   

0.5 16.985826 ± 

  0.014711  

24.664421 ± 

0.144252  

93.595394 ± 

0.246110 

16.987470 ± 

 0.028402   

24.662973 ± 

 0.163768   

93.58124 ± 

 0.281366  

0.72  16.992102 ± 

 0.021756  

24.670338 ± 

 0.150542   

93.606400 ± 

 0.258548   

16.995967 ± 

 0.039686   

24.722414 ± 

 0.144572   

93.680765 ± 

 0.253954   

0.9 16.993759 ± 

 0.014680    

 24.650337 ± 

0.140005   

93.569595 ± 

0.252781   

17.040990 ± 

0.168017   

24.633802 ± 

0.352785   

93.495340 ± 

0.584424  

1.4 to 0.8 17.824495 ± 

0.594291    

 24.433770 ± 

1.558219   

92.625088 ± 

2.031224   

17.481146 ± 

0.504740   

24.684407 ± 

1.010815   

93.223498 ± 

1.490217  

 

 

Table 4.5: Effect of inertia weight on the MRI image 

 PSO GCPSO 

w eJ  maxd  mind  eJ  maxd  mind  

0.0 7.538669 ± 

 0.312044  

9.824915 ± 

 0.696940   

28.212823 ± 

2.300930   

7.497944 ± 

0.262656   

9.731746 ± 

0.608752   

28.365827 ± 

1.882164 

0.1 7.511522 ± 

 0.281967  

10.307791 ± 

 1.624499   

27.150801 ± 

3.227550   

7.309289 ± 

0.452103   

10.228958 ± 

1.354945   

26.362349 ± 

3.238452  

0.5 7.612079 ± 

 0.524669  

10.515242 ± 

1.103493  

26.996556 ± 

2.161969   

7.466388 ± 

0.492750 

10.348044 ± 

1.454050   

26.790056 ± 

2.830860 

0.72   7.57445 ± 

 0.382172  

 10.150214 ± 

 1.123441  

27.393498 ± 

 3.260418  

 7.467591 ± 

0.396310  

 10.184191 ± 

0.955129   

 26.596493 ± 

3.208689  

0.9  7.847689 ± 

 0.529134  

10.779765 ± 

 1.134843   

26.268057 ± 

3.595596    

7.598518 ± 

0.516938 

10.916945 ± 

 1.534848   

25.417859 ± 

3.174232 

1.4 to 0.8 8.354957 ± 

0.686190 

 13.593536 ± 

 2.035889   

21.625623 ± 

4.507230   

8.168068 ± 

0.709875  

12.722139 ± 

1.850957   

21.169304 ± 

4.732452 

 



 

 

 

121 
 

Acceleration Coefficients 

Given that all parameters are fixed at the values given in section 4.2.2, the influence 

of different values for the acceleration coefficients, c1 and c2, were evaluated for the 

synthetic and MRI images. Tables 4.6 and 4.7 summarize these results. For these 

choices of the acceleration coefficients, no single choice is superior to the others. 

While these tables indicate an independence to the value of the acceleration 

coefficients, it is important to note that convergence depends on the relationship 

between the inertia weight and the acceleration coefficients, as derived in Van den 

Bergh [2002] (also refer to equation (2.9)). 

Table 4.6: Effect of acceleration coefficients on the synthetic image 

 PSO GCPSO 

W eJ  maxd  mind  eJ  maxd  mind  

c1 = 0.7 

c2 = 1.4 

16.989197 ± 

0.011786   

24.726716 ± 

0.101239    

93.698591 ± 

0.184244    

16.989355 ± 

0.012473    

24.708151 ± 

0.120168    

93.667144 ± 

0.207355  

c1 = 1.4 

c2 = 0.7 

 16.991884 ± 

 0.016970   

24.700627 ± 

0.125603  

93.658673 ± 

0.208500  

16.993095 ± 

0.040042  

24.685461 ± 

0.165669  

93.619162 ± 

0.279258 

c1 = 1.49 

c2 = 1.49 

16.987582 ± 

 0.009272   

24.710933 ± 

0.122622  

93.672792 ± 

0.206395  

16.995967 ± 

0.039686    

24.722414 ± 

0.144572   

93.680765 ± 

0.253954 

 

Table 4.7: Effect of acceleration coefficients on the MRI image 

 PSO GCPSO 

W eJ  maxd  mind  eJ  maxd  mind  

c1 = 0.7 

c2 = 1.4 

7.599324 ± 

0.289702  

10.14501 ± 

1.353091  

26.977217 ± 

3.467738    

7.530823 ± 

0.477134  

10.201762 ± 

0.986726  

26.425638 ± 

3.248949   

c1 = 1.4 

c2 = 0.7 

7.528712 ± 

0.439470  

10.23899 ± 

1.484245   

27.747333 ± 

 2.850575   

7.476468 ± 

0.459432   

10.159019 ± 

1.085977   

27.001444 ± 

3.360799  

c1 = 1.49 

c2 = 1.49 

7.499845 ± 

0.416682   

10.20391 ± 

0.951100  

26.629647 ± 

2.652593  

7.467591 ± 

0.396310  

10.184191 ± 

0.955129  

26.596493 ± 

3.208689 

 



 

 

 

122 
 

Sub-objective Weight Values 

Tables 4.8 and 4.9 summarize the effects of different values of the weights, w1, w2 and 

w3, of the sub-objectives for the synthetic and MRI images respectively. The results 

show that increasing the value of a weight, improves the corresponding fitness term. 

However, it is not so clear which sub-objective weight value combination is best for 

the synthetic and MRI images. To eliminate tuning of these weight values, an 

alternative multi-objective approach can be followed [Coello Coello 1996; Hu and 

Eberhart, Multiobjective 2002; Fieldsend and Singh 2002; Coello Coello and Lechuga 

2002], or a non-parametric fitness function can be used as proposed in section 4.2.7. 

 

4.2.5 gbest PSO versus state-of-the-art clustering algorithms 
 

This section compares the performance of the gbest PSO and GCPSO with K-means, 

FCM, KHM, H2 and a GA clustering algorithm. This is done for a high Vmax = 255. 

All other parameters are as for section 4.2.2. In all cases, for PSO, GCPSO and GA, 

50 particles were trained for 100 iterations; for the other algorithms 5000 iterations 

were used (i.e. all algorithms have performed 5000 function evaluations). For FCM, q 

was set to 2 since it is the commonly used value [Hoppner et al. 1999]. For KHM and 

H2, α was set to 2.5 and 4 respectively since these values produced the best results 

according to our preliminary tests. For the GA, a tournament size of 2 was used, a 

uniform crossover probability of 0.8 with mixing ratio of 0.5, and a mutation 

probability of 0.05. Only the best individual survived to the next generation. The 

results are summarized in Table 4.10. These results are also averages over 20 

simulation runs. Table 4.10 shows that PSO and GCPSO generally outperformed K-

means, FCM, KHM and H2 in mind  and maxd , while performing comparably with 



 

 

 

123 
 

respect to eJ  (for the synthetic image, PSO performs significantly better than K-

means, FCM, KHM and H2 with respect to eJ ). The PSO, GCPSO and GA showed 

similar performance, with no significant difference.  

These results show that the PSO-based clustering algorithms are viable 

alternatives that merit further investigation. 

 

Table 4.8: Effect of sub-objective weight values on synthetic image 

   PSO GCPSO 

w1 w2 w3 eJ  maxd  mind  eJ  maxd  mind  

0.3 0.3 0.3 17.068816 

± 

 0.157375   

24.67201 

± 

0.572276   

93.59498 

± 

0.984724   

17.01028 

± 

0.059817   

24.74227 

± 

0.258118  

93.711385 

± 

0.437418 

0.8 0.1 0.1 17.590421 

±  

0.353375  

21.76629 

± 

 0.127098  

88.89228 

± 

0.143159  

17.51434 

± 

 0.025242  

21.72462 

±  

 0.018983  

88.879342 

± 

 0.062452 

0.1 0.8 0.1 18.827495 

±  

0.558357   

27.62398 

± 

0.427120  

97.71945 

± 

0.202744  

18.82712 

± 

0.688529  

27.52239 

± 

0.282601  

97.768398 

± 

0.266885 

0.1 0.1 0.8 16.962755 

±  

0.003149  

24.49574 

± 

0.089611 

93.22883 

± 

0.135893 

16.98372 

± 

0.122501 

24.54688 

± 

0.434417 

92.576271 

± 

4.357444 

0.1 0.45 0.45 17.550448 

±  

0.184982  

26.70792 

± 

0.692239 

96.02056 

± 

0.757185 

17.55782 

± 

0.226305 

26.59844 

± 

0.907974 

95.888089 

± 

1.152158 

0.45 0.45 0.1 18.134349 

±  

0.669151  

26.48904 

± 

0.982256 

96.46178 

± 

1.495491 

18.29490 

± 

0.525467  

26.79529 

± 

0.800436 

96.922471 

± 

1.225336 

0.45 0.1 0.45 17.219807 

±  

0.110357   

22.63196 

± 

0.522369  

90.15281 

± 

0.887423  

17.20169 

± 

0.093969  

22.70116 

± 

0.469470 

90.289690 

± 

 0.828522 

 



 

 

 

124 
 

 

Table 4.9: Effect of sub-objective weight values on MRI image 

   PSO GCPSO 

w1 w2 w3 eJ  maxd  mind  eJ  maxd  mind  

0.3 0.3 0.3 7.239181  

± 

0.576141  

10.235431 

± 

1.201349 

24.705469 

± 

3.364803  

7.194243 

± 

0.573013  

10.403608 

± 

1.290794  

23.814072 

± 

3.748753 

0.8 0.1 0.1 7.364818  

± 

0.667141  

9.683816  

± 

0.865521  

24.021787 

± 

3.136552  

7.248268 

± 

0.474639  

9.327774  

± 

0.654454  

23.103375 

± 

4.970816 

0.1 0.8 0.1 8.336001  

± 

0.599431  

11.256763 

± 

1.908606  

31.106734 

± 

1.009284  

8.468620 

± 

0.626883  

11.430190 

± 

1.901736  

30.712733 

± 

1.336578 

0.1 0.1 0.8 6.160486  

± 

0.241060  

15.282308 

± 

2.300023  

2.342706   

± 

5.062570  

6.088302 

± 

0.328147  

15.571290 

± 

2.410393 

1.659674 

± 

4.381048 

0.1 0.45 0.45 7.359711  

± 

0.423120  

10.826327 

±  

1.229358  

24.536828 

± 

3.934388  

7.303304 

± 

0.439635  

11.602263 

±  

1.975870  

22.939088 

± 

3.614108 

0.45 0.45 0.1 8.001817  

± 

0.391616   

9.885342   

± 

0.803478  

28.057459 

± 

1.947362  

7.901145 

± 

0.420714   

9.657340  

± 

0.947210  

29.236420 

± 

1.741987 

0.45 0.1 0.45 6.498429  

± 

0.277205 

  

11.392347 

± 

2.178743  

12.119429 

± 

 8.274427  

6.402205 

± 

0.363938  

10.939902 

± 

2.301587  

14.422413 

± 

6.916785 

 

 



 

 

 

125 
 

 

Table 4.10: Comparison between K-means, FCM, KHM, H2, GA and PSO for fitness 

function defined in equation (4.6) 
Image Je maxd  mind  

K-means 20.21225 ±  
0.937836 

28.04049 ± 
2.7779388 

78.4975 ± 
7.0628718 

FCM 20.731920 ± 
0.650023 

28.559214 ± 
2.221067 

82.434116 ± 
4.404686 

KHM(p=2.5) 20.168574 ± 
 0.0 

23.362418 ± 
0.0 

86.307593 ± 
0.000008 

H2 (p=4) 20.136423 ± 
0.793973 

26.686939 ± 
3.011022 

81.834143 ± 
6.022036 

GA 17.004002 ± 
0.035146 

24.603018 ± 
0.11527 

93.492196 ± 
0.2567 

PSO 16.988910 ± 
0.023937 

24.696055 ± 
0.130334 

93.632200 ± 
0.248234 

Synthetic 

GCPSO 16.995967 ± 
0.039686 

24.722414 ± 
0.144572 

93.680765 ± 
0.253954 

K-means 7.3703 ±   
0.042809 

13.214369 ± 
0.761599 

9.93435 ± 
7.308529 

FCM 7.205987 ± 
 0.166418 

10.851742 ± 
0.960273 

19.517755 ± 
2.014138 

KHM(p=2.5) 7.53071± 
0.129073 

10.655988 ± 
0.295526 

24.270841 ± 
2.04944 

H2 (p=4) 7.264114 ± 
0.149919 

10.926594 ± 
0.737545 

20.543530 ± 
1.871984 

GA 7.038909 ± 
0.508953 

9.811888 ± 
0.419176 

25.954191 ± 
2.993480 

PSO 7.594520 ± 
0.449454 

10.186097 ± 
1.237529 

26.705917 ± 
3.008073 

MRI 

GCPSO 7.555421 ± 
0.409742 

9.983189 ± 
0.915289 

27.313118 ± 
3.342264 

K-means 3.280730 ± 
0.095188 

5.234911 ± 
0.312988 

9.402616 ± 
2.823284 

FCM 3.164670 ± 
0.000004 

4.999294 ± 
0.000009 

10.970607 ± 
0.000015 

KHM(p=2.5) 3.830761 ± 
0.000001 

6.141770 ± 
0.0 

13.768387 ± 
0.000002 

H2 (p=4) 3.197610 ± 
0.000003 

5.058015 ± 
0.000007 

11.052893 ± 
0.000012 

GA 3.472897 ± 
0.151868 

4.645980 ± 
0.105467 

14.446860 ± 
0.857770 

PSO 3.523967 ± 
0.172424 

4.681492 ± 
0.110739 

14.664859 ± 
1.177861 

Tahoe 

GCPSO 3.609807 ± 
0.188862 

4.757948 ± 
0.227090 

15.282949 ± 
1.018218 

 



 

 

 

126 
 

 

4.2.6 Different Versions of PSO 
 

This section investigates the use of different versions of PSO, namely:  

• lbest PSO (with l = 2).  

• gbest-to-lbest PSO, starting start with an lbest implementation of the PSO 

(with zero-radius neighborhood i.e. l = 0) and linearly increasing the 

neighborhood radius until a gbest implementation of the PSO is reached. This 

hybrid approach is used in order to initially explore more, thus, avoid being 

trapped in local optima, by using a lbest approach [Suganthan 1999]. The 

algorithm then attempts to converge onto the best solution found by the initial 

phase by using a gbest approach.  

• gbest- and lbest- PSO with mutation proposed by Esquivel and Coello Coello 

[2003] (discussed in section 2.6.8). In this approach, the PSO parameters 

where set as specified by Esquivel and Coello Coello [2003] (i.e. w = 0.3, c1 = 

c2 = 1.3). In addition, pm is initialized to 0.9, then linearly decreases with 

increase in the number of iterations [Coello Coello 2003]. 

 

Table 4.11 summarizes the results of gbest PSO, GCPSO, lbest PSO, gbest-to-lbest 

PSO, gbest PSO with mutation and lbest PSO with mutation. In all the experiments, 

50 particles were trained for 100 iterations and Vmax = 255. All the other parameters 

are as for section 4.2.2 for all the approaches except the approaches that use mutation. 

Although the results are generally comparable, it can be observed that the gbest-to-

lbest PSO is slightly better than the others. An explanation for this observation is the 

fact that gbest-to-lbest PSO starts with high diversity (therefore more exploration), 



 

 

 

127 
 

then as the run progresses, the diversity is reduced (to focus more exploitation). This 

observation shows the importance of high diversity at the beginning of the run in 

order to avoid premature convergence and the importance of low diversity at the end 

of the run in order to fine tune the solution. 

 

Table 4.11: Comparison of different PSO versions 
Image Je maxd  mind  

gbest PSO 16.988910 ± 
0.023937 

24.696055 ± 
0.130334 

93.632200 ± 
0.248234 

GCPSO 16.995967 ± 
0.039686 

24.722414 ± 
0.144572 

93.680765 ± 
0.253954 

lbest PSO 16.991791 ±  
0.003523 

24.771597 ±  
0.004171 

93.775989 ± 
0.0 

gbest-to-lbest 
PSO 

16.988325 ± 
0.000273 

24.774668 ± 
0.000371 

93.775989 ± 
0.0 

gbest PSO 
with mutation 

16.985563 ± 
0.006350 

24.728548 ± 
0.110016 

93.698591 ± 
0.184244 

Synthetic 

lbest PSO 
with mutation 

16.995550 ± 
0.015914 

24.684511 ± 
0.135164 

93.646993 ± 
0.223429 

PSO 7.594520 ± 
0.449454 

10.186097 ± 
1.237529 

26.705917 ± 
3.008073 

GCPSO 7.555421 ± 
0.409742 

9.983189 ± 
0.915289 

27.313118 ± 
3.342264 

lbest PSO 7.676197 ± 
0.138833 

9.500085 ± 
0.567423 

29.684682 ± 
0.929038 

gbest-to-lbest 
PSO 

7.663361 ± 
0.142196 

9.211712 ± 
0.502518 

30.138389 ± 
0.878266 

gbest PSO 
with mutation 

7.301802 ± 
0.474767 

9.573999 ± 
0.581114 

27.691924 ± 
3.145707 

MRI 

lbest PSO 
with mutation 

7.657294 ± 
0.277544 

9.890083 ± 
0.696923 

28.731981 ± 
1.938404 

PSO 3.523967 ± 
0.172424 

4.681492 ± 
0.110739 

14.664859 ± 
1.177861 

GCPSO 3.609807 ± 
0.188862 

4.757948 ± 
0.227090 

15.282949 ± 
1.018218 

lbest PSO 3.527251 ± 
0.212840 

4.778272 ± 
0.217206 

15.619541 ± 
1.179783 

gbest-to-lbest 
PSO 

3.460024 ± 
0.289942 

4.826269 ± 
0.238982 

15.985762 ± 
1.410871 

gbest PSO 
with mutation 

3.592122± 
0.180782 

4.750996 ± 
0.213625 

15.252226 ± 
0.987399 

Tahoe 

lbest PSO 
with mutation 

3.660723± 
0.121711 

4.793518 ± 
0.144508 

15.522304 ± 
0.597297 

 



 

 

 

128 
 

 

4.2.7 A Non-parametric Fitness Function  
 

The fitness function defined in equation (4.6) provides the user with the flexibility of 

prioritizing the fitness term of interest by modifying the corresponding weight. 

However, it requires the user to find the best combination of w1, w2 and w3 for each 

image which is not an easy task. Therefore, a non-parametric fitness function without 

weights is defined as 

 

)(
)(

)(
min

max

ii

i,eii
ii ,d

J,d
,f

xZ
xZ

Zx
+

=                  (4.7) 

 

The advantage of equation (4.7) is that it works with any data set without any user 

intervention. Table 4.12 is a repeat of Table 4.10, but with the results of gbest PSO 

using the non-parametric fitness function (referred to as PSO noweights) added. In 

general, the PSO using the non-parametric fitness function performed better than K-

Means, FCM, KHM and H2 in terms of mind  and maxd , while performing comparably 

with respect to eJ . In addition, the PSO using the non-parametric fitness function 

performed comparably with GA, PSO and GCPSO using the parametric fitness 

function (equation (4.6)). Hence, the non-parametric fitness function (equation (4.7)) 

can be used instead of the parametric fitness function (equation (4.6)), thereby 

eliminating the need for tuning w1, w2 and w3. 

However, since the difference between eJ  and maxd  on the one hand and mind  

on the other hand is quite large (as can be observed from the results of this section), 

the value of the fitness function is usually less than one, and may incorrectly indicate 



 

 

 

129 
 

a good clustering for large values of eJ  and maxd . The proposed non-parametric 

fitness function therefore has the problem that the largest criterion tends to dominate 

the other criteria. To address this biased behavior, the values of eJ  and maxd  are 

normalized to the range [0,0.5], while the value of mind  are normalized to the range 

[0,1]. Therefore, eJ  + maxd  and mind  contributes equally the fitness function. Table 

4.13 compares the performance of the non-normalized, non-parametric fitness 

function (PSO noweights) with the normalized, non-parametric fitness function (PSO 

normalized noweights). From Table 4.13, it can be observed that both non-parametric 

fitness functions performed comparably. Hence, it can be concluded that it is not 

necessary to normalize the non-parametric fitness function. 

 

4.2.8 Multispectral Imagery Data 
 

To illustrate the applicability of the proposed approach to multidimensional feature 

spaces, the PSO-based clustering algorithm was applied to the four-channel 

multispectral image set of the Lake Tahoe region in the US shown in Figure 4.9. 

Table 4.14 summarizes the results of applying K-means, gbest PSO and lbest-to-gbest 

PSO on the image set. In all the experiments, 50 particles were trained for 100 

iterations and Vmax = 255. All parameters are as for section 4.2.2. The results showed 

that both PSO approaches performed better than K-means in term of mind . However, 

gbest PSO performed comparably to K-means in terms of maxd , while lbest-to-gbest 

PSO performed comparably to K-means in terms of Je. The segmented images 

(known as thematic maps) for the Tahoe image set are given in Figure 4.10.  



 

 

 

130 
 

 

Table 4.12: Comparison between K-means, FCM, KHM, H2, GA and PSO for fitness 

function defined in equation (4.7) 
Image Je maxd  mind  

K-means 20.21225 ±  
0.937836 

28.04049 ± 
2.7779388 

78.4975 ± 
7.0628718 

FCM 20.731920 ± 
0.650023 

28.559214 ± 
2.221067 

82.434116 ± 
4.404686 

KHM(p=2.5) 20.168574 ± 
 0.0 

23.362418 ± 
0.0 

86.307593 ± 
0.000008 

H2 (p=4) 20.136423 ± 
0.793973 

26.686939 ± 
3.011022 

81.834143 ± 
6.022036 

GA 17.004002 ± 
0.035146 

24.603018 ± 
0.11527 

93.492196 ± 
0.2567 

PSO 16.988910 ± 
0.023937 

24.696055 ± 
0.130334 

93.632200 ± 
0.248234 

GCPSO 16.995967 ± 
0.039686 

24.722414 ± 
0.144572 

93.680765 ± 
0.253954 

Synthetic 

PSO 
noweights 

17.284 ±  
0.09 

22.457 ±  
0.414 

90.06 ±  
0.712 

K-means 7.3703 ±   
0.042809 

13.214369 ± 
0.761599 

9.93435 ± 
7.308529 

FCM 7.205987 ± 
 0.166418 

10.851742 ± 
0.960273 

19.517755 ± 
2.014138 

KHM(p=2.5) 7.53071± 
0.129073 

10.655988 ± 
0.295526 

24.270841 ± 
2.04944 

H2 (p=4) 7.264114 ± 
0.149919 

10.926594 ± 
0.737545 

20.543530 ± 
1.871984 

GA 7.038909 ± 
0.508953 

9.811888 ± 
0.419176 

25.954191 ± 
2.993480 

PSO 7.594520 ± 
0.449454 

10.186097 ± 
1.237529 

26.705917 ± 
3.008073 

GCPSO 7.555421 ± 
0.409742 

9.983189 ± 
0.915289 

27.313118 ± 
3.342264 

MRI 

PSO 
noweights 

7.839 ±  
0.238 

9.197 ±  
0.56 

29.45 ±  
1.481 

K-means 3.280730 ± 
0.095188 

5.234911 ± 
0.312988 

9.402616 ± 
2.823284 

FCM 3.164670 ± 
0.000004 

4.999294 ± 
0.000009 

10.970607 ± 
0.000015 

KHM(p=2.5) 3.830761 ± 
0.000001 

6.141770 ± 
0.0 

13.768387 ± 
0.000002 

H2 (p=4) 3.197610 ± 
0.000003 

5.058015 ± 
0.000007 

11.052893 ± 
0.000012 

GA 3.472897 ± 
0.151868 

4.645980 ± 
0.105467 

14.446860 ± 
0.857770 

PSO 3.523967 ± 
0.172424 

4.681492 ± 
0.110739 

14.664859 ± 
1.177861 

GCPSO 3.609807 ± 
0.188862 

4.757948 ± 
0.227090 

15.282949 ± 
1.018218 

Tahoe 

PSO 
noweights 

3.882 ±  
0.274 

5.036 ±  
0.368 

16.410 ±  
1.231 

 



 

 

 

131 
 

 

 

 

Table 4.13: Comparison between different non-parametric fitness function 
Image Je maxd  mind  

PSO 
noweights 
 

17.284 ±  
0.09 

22.457 ±  
0.414 

90.06 ±  
0.712 

Synthetic PSO 
normalized 
noweights 

17.298567 ± 
0.065019 

22.387227 ± 
0.295405 

89.969316 ± 
0.482432 

PSO 
noweights 
 

7.839 ±  
0.238 

9.197 ±  
0.56 

29.45 ±  
1.481 

MRI PSO 
normalized 
noweights 

7.851594 ± 
0.293330 

9.182184 ± 
0.534796 

29.393441 ± 
1.240797 

PSO 
noweights 
 

3.882 ±  
0.274 

5.036 ±  
0.368 

16.410 ±  
1.231 

Tahoe PSO 
normalized 
noweights 

3.970922 ± 
0.218675 

5.141907 ± 
0.312130 

16.746504 ± 
1.119426 

 

 
Table 4.14: Comparison between K-means, gbest PSO and lbest-to-gbest PSO when 

applied to multispectral image set 
Image Je maxd  mind  

K-means 7.281864 ±  
0.001512 

11.876593 ± 
0.001526 

17.675578 ± 
0.008525 

PSO 8.005989 ± 
0.812936 

11.935493 ± 
0.732004 

19.937182 ± 
3.468417 

Four-bands 
Lake Tahoe 

gbest-to-lbest 
PSO 

7.639596 ± 
0.654930 

12.173503 ± 
0.740456 

18.263982 ± 
3.041869 

  



 

 

 

132 
 

 

  

(a) Band 1 (b) Band 2 

  

(c) Band 3 (d) Band 4 

Figure 4.9: The Landsat MSS test images of Lake Tahoe 



 

 

 

133 
 

 

 

(a) K-means 

 

(b) PSO 

 

(c) lbest-to-gbest PSO 
Figure 4.10: The Thematic Maps for Lake Tahoe Image Set 

 



 

 

 

134 
 

4.2.9 PSO for Data Clustering 
 

The same algorithm presented in section 4.1.1 was used by Van der Merwe and 

Engelbrecht [2003] to cluster general data sets. It was applied on a set of multi-

dimensional data (e.g. the Iris plant data base) using a fitness function consisting of 

eJ  only. In general, the results show that the PSO-based clustering algorithm 

performs better than the K-means algorithm, which verify the results presented in this 

chapter. These results are expected since, as previously mentioned, K-means is a 

greedy algorithm which depends on the initial conditions, which may cause the 

algorithm to converge to suboptimal solutions. On the other hand, PSO is less 

sensitive to the effect of the initial conditions due to its population-based nature. Thus, 

PSO is more likely to find near-optimal solutions. 

4.3 Conclusions 
 

This chapter presented a new clustering approach using PSO. The PSO clustering 

algorithm has as objective to simultaneously minimize the quantization error and 

intra-cluster distances, and to maximize the inter-cluster distances. Both a gbest PSO 

and GCPSO algorithms have been evaluated. The gbest PSO and GCPSO clustering 

algorithms were further compared against K-means, FCM, KHM, H2 and a GA. In 

general, the PSO algorithms produced better results with reference to inter- and intra-

cluster distances, while having quantization errors comparable to the other algorithms. 

The performance of different versions of PSO was investigated and the results 

suggested that algorithms that start with high diversity and then gradually reduces 

diversity perform better than other algorithms. A non-parametric version of the 



 

 

 

135 
 

proposed fitness function was tested with encouraging results. Finally, the proposed 

approach was applied to multispectral imagery data. 

In the next chapter, a new automatic image generation tool is proposed which 

is tailored specifically for verification and comparison of different unsupervised 

image classification algorithms. This tool is used to conduct a more elaborate 

comparison between the PSO and K-means clustering algorithms. 

 



 

 

 

136 
 

Chapter 5 

SIGT: Synthetic Image Generation Tool for 

Clustering Algorithms 

 

A new automatic image generation tool is proposed in this chapter tailored specifically for the 

verification and comparison of different unsupervised image classification algorithms. The 

tool can be used to produce different images (in raw format) with different criteria based on 

user specification. The user specifies the number of clusters to be included in the image along 

with the probability distribution that governs a set of points that belong to different clusters. 

On the other hand, the tool can be used to verify the degree of approximation a new algorithm 

has been able to achieve compared to the original image. This allows for a scientific confident 

comparison between any new algorithm and existing algorithms. The usefulness of the tool is 

demonstrated in this chapter with reference to the well-known K-means clustering algorithm 

and the PSO-based clustering algorithm proposed in the previous chapter. 

 

5.1 Need for Benchmarks 
 

Researchers usually use their own data sets to test the performance of their clustering 

algorithms [Puzicha et al. 2000; Rosenberger and Chehdi 2000; Lorette et al. 2000; 

Boujemaa 2000; Huang 2002]. In addition, many researchers create their own 

synthetic data to test their algorithms. This approach makes the comparison between 

different clustering algorithms difficult. To address this problem, it is necessary to 

create a simple tool which will help researchers to create synthetic images. 

Researchers can then apply their clustering algorithm on these images and evaluate 



 

 

 

137 
 

the performance of these algorithms. Furthermore, researchers can agree to use some 

of these synthetic images as benchmarks making comparison between different 

clustering algorithms easier.  

In this chapter, a new tool is proposed to generate benchmark images tailored 

specifically for clustering problems that have the capability to verify the clustering 

quality of any unsupervised image classification algorithm. This tool has the 

following benefits: 

1. The tool can create synthetic images customized toward user-specific 

objectives. The user can create the images he/she wants with the desired 

complexity that suits his/her interests. The user specifies the number of 

clusters in advance to test the ability of the algorithm to find that number of 

clusters (especially in the case of unsupervised classification). Furthermore, 

the user can specify the degree of closeness (inter-cluster distances) between 

different clusters to control the complexity of different algorithms to be able to 

differentiate between close clusters. Finally, users are able, using the tool, to 

specify the distribution probability that govern the relationship between 

different points belonging to different clusters. 

2. The tool can measure the quality of any clustering algorithm provided that it 

uses the tool’s generated images and generate a thematic map image in a raw 

format. Hence, the user can measure the quality of a user-defined clustering 

algorithm to examine how efficient the algorithm is on different data sets. 

3. According to the above benefits, the tool can be used to create a carefully 

crafted set of benchmark images. Hence, using SIGT, researchers can build 

common benchmark images to be used for comparison among different 



 

 

 

138 
 

clustering algorithms. The ability of the tool to easily create images with pre-

defined clusters pushes towards this direction.  

4. SIGT can be used to quantify the average performance of a user-specified 

clustering algorithm. This can be done by running the algorithm for a number 

of simulations on a library of benchmark images to statistically compare it to 

other algorithms.  

5. This tool could be upgraded to generate a synthetic image from an existing 

image by relaxing some constraints. One way to do this is by calculating the 

histogram of the existing image and then composing a user defined separation 

period along the histogram, thus generating a modified cloned image.  

 

Therefore, SIGT is best used as a preliminary test for any clustering algorithm 

(especially in the area of unsupervised image classification or segmentation). One of 

the advantages of the proposed tool is the ease with which one can measure the 

performance of a clustering algorithm, and compared its performance with other 

algorithms. The rest of the chapter is organized as follows: The proposed tool is 

described in detail in section 5.2. Section 5.3 provides experimental results verifying 

the applicability of the tool. Finally section 5.4 concludes the chapter. 

 

5.2 SIGT: Synthetic Image Generation Tool 
 

A synthetic image generation tool for clustering algorithms, SIGT, is proposed in this 

chapter to assist the unsupervised image classification research community's ability to 

compare and quantify the performance of different algorithms. The proposed tool 



 

 

 

139 
 

consists of two units: a synthetic image generator unit, and a clustering verification 

unit. This section provides a detailed description of each unit. 

 

5.2.1 Synthetic Image Generator 
 

With the synthetic image generation algorithm, the user can generate a synthetic 

image in raw format (converting an image from/to raw format can be achieved easily 

by using different graphic editing tools such as Adobe Photoshop) suitable for his/her 

objectives by specifying the following characteristics of the desired image: 

 

• Size in pixels (i.e. the number of image pixels), Np 

• Dynamic range in bits (e.g. 8-bit image) 

• Number of clusters, K 

• Histogram characteristics: 

- Percentage of points in the image that belongs to each cluster, kC ′ , ∀ k 

= 1,…, K. 

- Each cluster width in pixels (e.g. 10-pixels wide), kw′ , ∀ k = 1,…, K. 

- The probability distribution that govern points in each cluster, pk, ∀ k = 

1,…, K. The tool allows the user to select any of the following discrete 

random distributions [Leon-Garcia 1994; Devore 1995]: Uniform, 

Binomial, Geometric, and/or Poisson. These distributions represent the 

most common distributions. Therefore, the user can create an image 

with the histogram of his/her choice. 



 

 

 

140 
 

- The separation (in number of pixels) between adjacent clusters Sk,kk ≥ 0 

where k, kk = 1,…, K, i.e. the inter-cluster distance between two 

adjacent clusters Ck and Ckk. 

 

After specifying the above information, the synthetic image can be constructed 

according to the algorithm summarized in Figure 5.1. 

 

For each cluster k = 1,…, K do 

 Distribute kC ′ .Np/100 pixels of cluster Ck according to pk 

Endloop 

For each pixel pz  do 

 Assign pz  randomly to any cluster Ck, where k = 1,…, K, based on the image    

            histogram 

Endloop 

Create a thematic map image using 

 

K
k

p
255

=z   ∀ p = 1,…, Np , k = 1,…, K                                    (5.1) 

 

where k is the index of cluster Ck to which pz  belongs 

Figure 5.1: The synthetic image generator algorithm 

 

The synthetic image generation algorithm works as follows: The first step constructs a 

synthetic image histogram by distributing Np image pixels into the K clusters 

according to the cluster distribution specified by the user. The number of pixels in 



 

 

 

141 
 

cluster Ck can be determined by multiplying the percentage of points in the image 

belonging to cluster Ck by the number of image pixels Np divided by 100 (i.e. 

kC ′ .Np/100). The second step assigns the synthetic image pixels randomly to the 

clusters according to the histogram created in the first step. Now, the synthetic image 

has been generated with the specified histogram. Finally, a thematic map image is 

generated according to equation (5.1). This map will help the user to verify the 

accuracy of any clustering algorithm when used in the clustering verification unit.   

The synthetic image generator unit therefore generates two images: The first is 

the synthetic image representing the data set specified by the user, and the second is a 

thematic map of the generated synthetic image. 

 

5.2.2 Clustering Verification Unit 
 

The clustering verification unit verifies the average classification accuracy of the 

clustering algorithm being evaluated. This is done by comparing the thematic map 

generated from the synthetic image generation unit (or if the user has a thematic map 

representing the correct clustering) and the thematic map resulting from the clustering 

algorithm (this thematic map should be generated using equation (5.1)). This unit 

consists of two components, namely the clustering validity checker and the average 

performance analyzer. These components are described next. 

 

5.2.2.1 Clustering Validity Checker Component 
 

The clustering validity checker component verifies the average performance of any 

clustering algorithm with reference to a single image. It calculates the average 



 

 

 

142 
 

classification accuracy over a number of trials.  The component requires the user to 

specify the following information: 

• Dynamic range in bits. 

• Original image name (e.g. synthetic image name generated from the first unit). 

• Reference thematic map name representing the correct classification (e.g. 

thematic map generated from the first unit), TMr. 

• Executable program name of the clustering algorithm. 

• Thematic map resulting from the clustering algorithm being examined (e.g. K-

means, FCM, etc.), TMc. 

• Image size in pixels, Np. 

• Number of clusters, K. 

• Number of runs of the clustering program, Nr. 

 

The clustering verification algorithm is summarized in Figure 5.2.  

For each pixel in the image, the cluster numbers as generated from TMr and 

TMc are compared. If the cluster numbers match, a counter, mcount, is incremented. 

Finally, the classification accuracy is calculated using equation (5.2). This algorithm 

is repeated Nr times followed by calculating the average classification accuracy. 

The clustering verification unit produces a binary image showing the 

difference between the two thematic maps. This difference is represented as a white 

colored pixel for each incorrectly classified pixel. Furthermore, the unit calculates an 

accuracy percentage according to these differences. 



 

 

 

143 
 

 

mcount = 0  /* number of correctly classified pixels */ 

For each pixel pz  do 

 k = cluster number as in TMr 

 kk = cluster number as in TMC 

 If k ≠ kk then 

  Mark pz  as a white dot in the difference image 

 else 

  mcount = mcount + 1 

 Endif 

Endloop 

 Classification accuracy = (mcount/Np).100                                    (5.2) 

Figure 5.2: The clustering verification algorithm 

 

5.2.2.2 Average Performance Analyzer Component 
 

The average performance analyzer component verifies the average performance of 

any clustering algorithm with reference to a set of images specified by the user (i.e. a 

benchmark library). It calculates the average classification accuracy by running the 

program a user-specified number of trials on each image in the library. In this regards, 

the user should specify the following information: 

• Executable program name of the clustering algorithm. 

• Thematic map resulting from the clustering algorithm being examined (e.g. K-

means, FCM, etc.), TMc. 

• Number of trials to run the clustering program, Nr. 



 

 

 

144 
 

 

Other information (e.g. the number of benchmarks, name of benchmark images, 

reference thematic maps, etc.) should be specified in an input file called 

SIGT_classifier_input.txt.  

 

The clustering verification algorithm in section 5.2.2.1 is also used in this component. 

The only difference is that the clustering program is applied to each image in the 

benchmark library. Note that the tool deals only with raw format images. The next 

section presents results obtained from SIGT to illustrate its features.  

 

5.3 Experimental Results 
 

This section shows how SIGT can be used to standardize the unsupervised image 

classification verification process. For the sake of showing its applicability, two 

clustering algorithms were used, namely K-means and PSO-based clustering 

algorithms. The tool can generate 8-bit, flexible size images. A preliminary core of a 

benchmark library consisting of ten synthetic images with different levels of 

complexity and pixel intensity distribution were created. Table 5.1 shows user-

specified parameters used in generating the images. The first and second images were 

generated such that they resemble very clear separated clusters. Therefore, it must be 

very easy for most clustering techniques to determine these clusters with great 

accuracy. The first image resembles a two-cluster image, while the second resembles 

a three-cluster image. The third synthetic image was generated to be slightly more 

difficult than the previous two in such a way that two of its three clusters are close to 

each other. The fourth image has three clusters adjacent to each other. On the other 



 

 

 

145 
 

hand, the fifth image has one more cluster than the fourth. In fact, the fourth and fifth 

images better approximate real-life images than the first three, which can only be 

considered for functionality verification rather than competitance of different 

clustering algorithms in early phases of algorithm creation. The remaining images are 

the most complex among all, where different difficulty levels are introduced in such a 

way that only competitive clustering algorithms will be able to efficiently cluster the 

regions in the images. A large number of adjacent clusters of different probability 

distributions were used in constructing these images. 

For all the experiments, both K-means and gbest PSO-based clustering 

algorithms (using equation (4.6)) were averaged over 30 trials for each image in the 

benchmark library. The average classification accuracy and confidence interval (CI) 

are calculated (see Table 5.2). For the PSO-based clustering algorithm, 50 particles 

are used for 50 generations, w1 = w2 = 0.3 and w3 = 0.4. The inertia weight, w, is set to 

0.72, and c1 = c2 = 1.49. The velocities are clamped using Vmax = 255. 

Using the clustering verification unit of SIGT, the thematic maps obtained 

from both K-means and PSO clustering algorithms were compared with the thematic 

maps generated by the synthetic image generation unit. The images representing the 

difference in thematic maps are included in Table 5.2. The average classification 

accuracy, calculated using equation (5.2), and the confidence interval of both 

algorithms are included in Table 5.2 for each image. 

It is observed that as the separation between adjacent clusters decreases, the 

classification accuracy becomes lower. Note that the PSO-based clustering algorithm 

performed better than K-means in all the cases except two (Image 8 and 10). The 

rationale for the poor performance of the PSO-based clustering algorithm when 

applied to Image 10 is the choice of w1, w2 and w3. When the PSO-based clustering 



 

 

 

146 
 

algorithm was applied to Image 10 using w1 = w2 = 0 and w3 = 1 (i.e. making the PSO 

fitness function similar to the objective function of K-means) the average 

classification accuracy significantly improved to reach 80.44% ± 7.411 with CI = 

[74.214, 86.674].  

From the overall average performance, it can be concluded that the PSO-based 

clustering algorithm is in general better than the K-means clustering algorithm which 

verifies the results of chapter 4. To be able to make such a conclusion is one of the 

main benefits of SIGT.  

Although the synthetic images represent no visually appealing shape, their 

histograms represent exactly what the user intends to test. The rationale behind this is 

that a clustering algorithm generally clusters pixels in a spectral domain (as 

represented in the histogram) rather than a spatial domain (as represented by the 

image shape). Therefore, the shape is generally not used, but rather the image 

histogram. However, in image segmentation the spatial information is important as 

already discussed in Section 3.2. 

 

5.4 Conclusions 
 

A new tool for synthetic image generation (SIGT) was proposed and implemented. 

The tool consists of two units: a synthetic image generator and a clustering 

verification unit. The first unit allows the user to create a synthetic image based on a 

user-specified histogram suitable for the required application. The second unit allows 

the user to measure the efficiency of a clustering algorithm. The main purpose of 

SIGT was to provide a simple and easy tool to generate synthetic images that can be 

used as benchmarks and to conduct a preliminary test on a clustering algorithm in 



 

 

 

147 
 

order to measure its performance and compare it with other clustering algorithms. 

Different features of SIGT were demonstrated by a set of experiments aided by a 

well-known clustering algorithm (K-means) and the recent PSO-based clustering 

algorithm. These experiments have shown that the tool can be used to generate a 

synthetic image based on a user-specified histogram, measure the quality of any 

clustering algorithm, and create benchmarks.  

 After showing the potential of PSO as a clustering algorithm and proposing a 

tool that can aid in evaluating the efficiency of a clustering algorithm, the next chapter 

will address the difficult problem of determining the "optimal" number of clusters in a 

data set.  



 

 

 

148 
 

 

Table 5.1: Synthetic image details and classification 
accuracy 

Benchmark 
No. 

K % of each cluster 
( kC ′ ) 

Cluster 
distribution (pk) 

1 2 1 (50%) 
2 (50%) 

1 (Binomial) 
2 (Binomial) 

2 3 1 (34%) 
2 (33%) 
3 (33%) 

1 (Binomial) 
2 (Geometric) 
3 (Poisson) 

3 3 1 (40%) 
2 (20%) 
3 (40%) 

1 (Uniform) 
2 (Uniform) 
3 (Binomial) 

4 3 1 (40%) 
2 (20%) 
3 (40%) 

1 (Uniform) 
2 (Uniform) 
3 (Uniform) 

5 4 1 (30%) 
2 (20%) 
3 (30%) 
4 (20%) 

1 (Uniform) 
2 (Uniform) 
3 (Uniform) 
4 (Poisson) 

6 10 1   (10%) 
2   (5%) 
3   (10%) 
4   (10%) 
5   (5%) 
6   (10%) 
7   (15%) 
8   (10%) 
9   (10 %) 
10 (15%) 

1   (Uniform) 
2   (Uniform) 
3   (Uniform) 
4   (Poisson) 
5   (Uniform) 
6   (Binomial) 
7   (Geometric) 
8   (Uniform) 
9   (Poisson) 
10 (Binomial) 

7 6 1   (20%) 
2   (20%) 
3   (15%) 
4   (30%) 
5   (5%) 
6   (10%) 

1   (Poisson) 
2   (Binomial) 
3   (Uniform) 
4   (Uniform) 
5   (Uniform) 
6   (Uniform) 

8 4 1   (25%) 
2   (25%) 
3   (25%) 
4   (25%) 

1   (Geometric) 
2   (Binomial) 
3   (Binomial) 
4   (Uniform) 

9 7 1   (20%) 
2   (10%) 
3   (35%) 
4   (5%) 
5   (15%) 
6   (15%) 
7   (10%) 

1   (Uniform) 
2   (Uniform) 
3   (Uniform) 
4   (Uniform) 
5   (Uniform) 
6   (Uniform) 
7   (Binomial) 

10 4 1   (25%) 
2   (25%) 
3   (25%) 
4   (25%) 

1   (Poisson) 
2   (Binomial) 
3   (Uniform) 
4   (Uniform) 



 

 

 

149 
 

Table 5.2: Synthetic images, Histograms and Thematic Maps 
Bench 

Mark No. 
Synthetic Image Histogram K-Means Sample TMc 

(Avg. Classification 
Accuracy±SDa) 

[CI] 

PSO Sample TMc 
(Avg. Classification 

Accuracy±SD) 
[CI] 

Best K-Means 
TM Difference 

(Best 
Classification 

Accuracy) 

Best PSO TM 
Difference 

(Best 
Classification 

Accuracy) 
1 

 

 

 
100%±0 

[100, 100] 

 
100%±0 

[100, 100] 

 
(100%) 

 

 
(100%) 

 
 

2 

 

 

 
100%±0 

[100, 100] 

 
100%±0 

[100, 100] 
 

 
(100%) 

 
(100%) 

 

3 

 

 

 
79.58%±18.672 

[72.901, 86.265] 

 
96.49%±0.491 

[96.310, 96.662] 

 
(98.25%) 

 
(97.30%) 

aSD stands for standard deviation 
 



 

 

 

150 
 

 
Table 5.2 (continued).   

 
Bench 

Mark No. 
Synthetic Image Histogram K-Means Sample TMc 

(Avg. Classification 
Accuracy±SD) 

[CI] 

PSO Sample TMc 
(Avg. Classification 

Accuracy±SD) 
[CI] 

Best K-Means 
TM Difference 

(Best 
Classification 

Accuracy) 

Best PSO TM 
Difference 

(Best 
Classification 

Accuracy) 
4 

 

 

 
90.56%±0 

[90.560, 90.560] 

 
90.69%±0.060 

[90.664, 90.707] 
 

 
(90.56%) 

 

 
(90.77%) 

 

5 

 

 

 
91.75%±7.647 

[89.018, 94.490] 

 
92.18%±0.318 

[92.070, 92.298] 

 
(93.21%) 

 
(92.48%) 

 

6 

 

 

 
50.91%±9.543 

[47.494, 54.323] 

 
60.53%±26.043 

[51.213, 69.852] 

 
(56.71%) 

 
(98.11%) 



 

 

 

151 
 

 
Table 5.2 (continued).  

 
Bench 

Mark No. 
Synthetic Image Histogram K-Means Sample TMc 

(Avg. Classification 
Accuracy±SD) 

[CI] 

PSO Sample TMc 
(Avg. Classification 

Accuracy±SD) 
[CI] 

Best K-Means 
TM Difference 

(Best 
Classification 

Accuracy) 

Best PSO TM 
Difference 

(Best 
Classification 

Accuracy) 
7 

 

 

 
60.62%±27.284 

[50.856, 70.383] 

 
77.14%±14.021 

[72.119, 82.154] 

 
(95.81%) 

 

 
(95.59%) 

8 

 

 

 
99.96%±0 

[99.96, 99.96] 

 
99.96%±0 

[99.96, 99.96] 

 
(99.96%) 

 
(99.96%) 

9 

 

 

 
55.23%±20.975 

[47.723, 62.734] 

 
60.19%±13.428 

[55.384, 64.995] 

 
(75.99%) 

 
(94.08%) 

 



 

 

 

152 
 

 
Table 5.2 (continued).  

 
Bench 
Mark 
No. 

Synthetic 
Image 

Histogram K-Means Sample TMc 
(Avg. Classification 

Accuracy±SD) 
[CI] 

PSO Sample TMc 
(Avg. Classification 

Accuracy±SD) 
[CI] 

Best K-Means 
TM Difference 

(Best 
Classification 

Accuracy) 

Best PSO TM 
Difference 

(Best 
Classification 

Accuracy) 
10 

 

 

 
88.83%±0 

[88.83, 88.83] 

 
60.14%±0.211 

[60.065, 60.216] 

 
(88.83%) 

 

 
(60.47%) 

 
 

Average Performance 
 

81.74%±18.25123 
[70.43,93.05]  

 
 

 
83.73%±16.63667 

[73.41,94.04] 
 
 

 

 
 

 

 

 

 



 

 

 

153 
 

Chapter 6 

Dynamic Clustering using Particle Swarm 

Optimization with Application to Unsupervised Image 

Classification 

 

A new dynamic clustering approach (DCPSO), based on PSO, is proposed in this chapter. 

This approach is applied to unsupervised image classification. The proposed approach 

automatically determines the "optimum" number of clusters and simultaneously clusters the 

data set with minimal user interference. The algorithm starts by partitioning the data set into a 

relatively large number of clusters to reduce the effects of initial conditions. Using binary 

particle swarm optimization the "best" number of clusters is selected. The centroids of the 

chosen clusters are then refined via the K-means clustering algorithm. The proposed approach 

is then applied on synthetic, natural and multispectral images. The experiments conducted 

show that the proposed approach generally found the "optimum" number of clusters on the 

tested images. A genetic algorithm and a random search version of dynamic clustering are 

presented and compared to the particle swarm version. 

 

6.1 The Dynamic Clustering using PSO (DCPSO) Algorithm 
 

This section presents the DCPSO algorithm. For this purpose, define the following 

symbols: 

Nc is the maximum number of clusters. 

Nd is the dimension of the data set. 



 

 

 

154 
 

Np is the number of patterns to be clustered. 

Z = {zj,p ∈ ℜ  | j = 1,…, Nd and p = 1,…, Np } is the set of patterns. 

M = {mj,k ∈ ℜ  | j = 1,…, Nd and k = 1,…, Nc } is the set of Nc cluster centroids. 

S = {x1,…, xi,…, xs} is the swarm of s particles such that xi indicates particle i, with 

xi,k ∈ {0,1} for k = 1,…, Nc  such that if xi,k = 1 then the corresponding centroid mk in 

M has been chosen to be part of the solution proposed by particle xi. Otherwise, if xi,k 

= 0 then the corresponding mk in M is not part of the solution proposed by xi. 

ni is the number of clusters used by the clustering solution represented by particle xi 

such that 

∑
=

=
cN

k
ji,i xn

1
, with ni ≤ Nc. 

Mi is the clustering solution represented by particle xi such that Mi = (mk) ∀ k: xi,k = 1 

with Mi ⊆ M. 

τn  is the number of clusters used by the clustering solution represented by the global 

best particle ŷ (assuming that gbest PSO is used) such that 

∑
=

=
cN

k
kτ ŷn

1
, with τn  ≤ Nc. 

Mτ is the clustering solution represented by ŷ  such that Mτ = (mk) ∀ k: kŷ = 1 with 

Mτ ⊆ M. 

Mr is the set of centroids in M which have not been chosen by ŷ , i.e. Mr = (mk), ∀ k: 

kŷ = 0 with Mr ⊆ M (i.e. Mr ∩ Mτ = ∅ and Mr ∪ Mτ = M). 

pini is a user-specified probability defined in Kuncheva and Bezdek [1998], which is 

used to initialize a particle position, xi, as follows: 

 



 

 

 

155 
 





<
≥

=
ini

ini

)( if      1
)( if      0

)(
ptr
ptr

tx
k

k
ki,                             (6.1) 

 

where (0,1))( U~trk . Obviously a large value for pini results in selecting most of the 

centroids in M. 

The algorithm which uses some of the ideas presented by Kuncheva and Bezdek 

[1998]: A pool of cluster centroids, M, is randomly chosen from Z. The swarm of 

particles, S, is then randomly initialized. Binary PSO is then applied to find the "best" 

set of cluster centroids, Mτ, from M. K-means is applied to Mτ in order to refine the 

chosen centroids. M is then set to Mτ plus Mr, which is a randomly chosen set of 

centroids from Z (this is done to add diversity to M and to reduce the effect of the 

initial conditions). The algorithm is then repeated using the new M. When the 

termination criteria are met, Mτ will be the resulting "optimum" set of cluster 

centroids and τn  will be the "optimum" number of clusters in Z. The DCPSO 

algorithm is summarized in Figure 6.1. 

The termination criterion can be a user-defined maximum number of iterations 

or a lack of progress in improving the best solution found so far for a user-specified 

consecutive number of iterations, TC. In this chapter, the latter approach is used with 

TC1 = 50 for Step 6 and TC2 = 2 for step 10. These values for TC were set empirically. 

Nc and s are user defined parameters. 



 

 

 

156 
 

 

1) Select mk ∈ M, ∀ k = 1,…, Nc where 1 < Nc < Np, randomly from Z 

2) Initialize the swarm S, with xi,k ~ U{0,1}, ∀ i = 1,…, s and k = 1,…, Nc using 

equation (6.1) 

3) Randomly initialize the velocity, vi, of each particle i in S such that 

5,5][−∈ki,v ,  ∀ i = 1,…, s and k = 1,…, Nc. The range of [-5,5] was set 

empirically 

4) For each particle xi in S 

a. Partition Z according to the centroids in Mi by assigning each data 

point zp to the closest (in terms of the Euclidean distance) cluster in Mi 

b. Calculate the clustering validity index, VI, using one of the clustering 

validity indices as defined in section 3.1.4 to measure the quality of the 

resulting partitioning of Z (i.e. VI = V, VI = S_Dbw or VI=1/D since D 

should be maximized) 

c. f(xi) = VI 

5) Apply the binary PSO velocity and position update equations (2.8) and (2.15) 

on all particles in S 

6) Repeat steps 4) and 5) until a termination criterion is met 

7) Adjust Mτ by applying the K-means clustering algorithm 

8) Randomly re-initialize Mr from Z 

9) Set M = Mr ∪ Mτ 

10) Repeat steps 2) through 9) until a termination criterion is met 

Figure 6.1: The DCPSO algorithm 

 

 



 

 

 

157 
 

A GA version of DCPSO can easily be implemented by replacing step 5 in the above 

algorithm with GA evolutionary operators for selection, crossover and mutation. On 

the other hand, a random search (RS) version of DCPSO, as described by Kunchevea 

and Bezdek [1998], can be implemented by removing step 5 and keeping only the best 

solution encountered so far. 

 

As an illustration of the DCPSO algorithm, consider the following example. 

Example 6.1  

Let Np = 100, Nd = 1, and Nc = 5. 

Let M be 

3 29 78 150 200 

 

An example of a particle position, xi, is 

0 1 1 0 1 

 

which means that cluster centers 29, 78 and 200 are chosen for this particle such that 

Mi is 

29 78 200 

 

In other words, all data in Z are grouped in only these three clusters. 

After step 6, assume the global best particle, ŷ , is 

0 1 0 1 1 

 

Then, Mτ is 



 

 

 

158 
 

29 150 200 

 

Assume that after K-means is applied on Z using the centroids given by Mτ, the new 

Mτ is given by 

  

30.5 129.9 201 

 

Then, randomly initialize the remaining Nc - nτ (i.e. 5 - 3 = 2) clusters, representing 

Mr, from Z (shown below in bold). The resultant M may look as follows: 

110 30.5 8 129.9 201 

 

The DCPSO algorithm is then repeated using the new M. 

 

6.1.1 Validity Index 
 
One of the advantages of DCPSO is that it can use any validity index. Therefore, the 

user can choose the validity index suitable for his/her data set. In addition, any new 

index can easily be integrated with DCPSO. The validity indices used in this chapter 

are D, V and S_Dbw (as defined in section 3.1.4). 

 

6.1.2 Time Complexity 
 

The time complexity of DCPSO is based on the complexity of four processes, namely, 

the partitioning of Z, calculating the quality of the partition, applying binary PSO and 

applying K-means. Assume that T1 is the number of iterations taken by the PSO to 



 

 

 

159 
 

converge (step 6 of the algorithm), and that T2 is the number of iterations taken by 

DCPSO to converge (step 10 of the algorithm). Then the complexity of partitioning Z 

is O(sT1T2NcNpNd), while the complexity of calculating the quality of a partition will 

depend on the time complexity of the validity index which is, in general, some 

constant, ξ, multiplied by Np for the indices used in this chapter. The complexity of 

this step is therefore O(ξT1T2Np). Finally, the complexity of K-means is O(Np). The 

parameters T1, T2, Nc, s and ξ can be fixed in advance. Typically, T1, T2, Nc, s, ξ, Nd << 

Np. Let ς  be the multiplication of s, T1, T2, Nc and Nd (i.e. ς  = sT1T2NcNd). If pN<<ς  

then the time complexity of DCPSO will be O(Np). However, if  pN≈ς  then the time 

complexity of DCPSO will be O( 2
pN ). 

 

6.2 Experimental results 
 

Experiments were conducted using both synthetic images and natural images. The 

synthetic images were generated by SIGT as given in Table 5.1. Furthermore, SIGT 

was used to generate another five different synthetic images for which the actual 

number of clusters was known in advance. These images have different numbers of 

clusters with varying complexities; they consist of well separated clusters, 

overlapping clusters or a combination of both. The new five synthetic images are 

given in Table 6.1 along with their histograms. 

The following well known natural images were used: Lenna, mandrill, jet and 

peppers. These images are shown in Figure 6.2. Furthermore, one MRI and one 

satellite image of Lake Tahoe (as given in Figure 4.2) have been used to show the 

wide applicability of the proposed approach. 



 

 

 

160 
 

 The remainder of this section is organized as follows: Section 6.2.1 applies 

DCPSO to the synthetic images using the three validity indices described in section 

6.1.1. These results are compared with the unsupervised fuzzy approach (UFA) 

proposed by Lorette et al. [2000] (discussed in section 3.1.5) and the SOM approach 

(refer to section 3.1.6). In section 6.2.2, the same experiments are conducted on the 

natural images. Section 6.2.3 compares DCPSO with GA and RS versions on the 

natural images. Sections 6.2.4, 6.2.5 and 6.2.6 investigate the influence of the 

different DCPSO control parameters. Different PSO models (namely, lbest, gbest and 

lbest-to-gbest) are investigated in section 6.2.7. Finally, section 6.2.8 applies DCPSO 

to multispectral imagery data. 

 

  

(a) Lenna (b) Mandrill 

  

(c) Jet (d) Peppers 

Figure 6.2: Natural Images 



 

 

 

161 
 

 

Table 6.1: Additional synthetic images used along with the corresponding histograms 

Synthetic image no. Image Histogram 

11 

 
 

12 

 
 

13 

  
14 

  
15 

  
 

 

 



 

 

 

162 
 

The results reported in this section are averages and standard deviations over 20 

simulations. Since lbest-to-gbest PSO was generally the best performer in chapter 4, 

lbest-to-gbest PSO is used in this section unless otherwise specified. Furthermore, if 

the best solution has not been improved after a user-specified number of iterations (50 

iterations was used for all the experiments conducted) then the algorithm was 

terminated (Step 6 of the algorithm, Section 6.1). For the index proposed by Turi 

[2001], parameter c was set to 25 in all experiments as recommended by by Turi 

[2001]. The DCPSO parameters were empirically set as follows: Nc = 20, pini = 0.75 

and s = 100 for all experiments conducted unless otherwise specified. In addition, the 

PSO parameters were set as follows: w =0.72, 1c = 2c = 1.49 and Vmax= 255. For UFA, 

the user-defined parameter, ε, was set equal to p/N1 as suggested by Lorette et al. 

[2000]. For the SOM, a Kohonen network of 5×4 nodes was used (to give a minimum 

of 20 codebook vectors). All implementation issues were set as in Pandya and Macy 

[1996]: the learning rate )(tη  was initially set to 0.9 then decreased by 0.005 until it 

reached 0.005; the neighborhood function )(tw∆  was initially set to (5+4)/4 then 

decreased by 1 until it reached zero. 

 

6.2.1 Synthetic images 
 

Table 6.2 summarizes the results of DCPSO using the three validity indices described 

in section 6.1.1, along with the UFA and SOM results. It appears that UFA tends to 

overfit the data since it selected the maximum number of clusters as the correct one 

for all experiments. The rationale behind this failure is the choice of ε which has a 

significant effect on the resulting number of clusters. DCPSO using S_Dbw also 

generally overfits the data. On the other hand, DCPSO using D, DCPSO using V and 



 

 

 

163 
 

SOM have generally performed very well (especially DCPSO using V). Hence, it can 

be concluded that DCPSO using V is efficient with respect to the synthetic images.   

 

Table 6.2: Experiments on synthetic images 

Image Actual no. 

of clusters 

DCPSO using 

D 

DCPSO using 

V 

DCPSO using 

S_Dbw 

SOM UFA 

1 2 2 ± 0 2 ± 0 5.55 ± 5.22 2 20 

2 3 3 ± 0 3 ± 0 3 ± 0 3 20 

3 3 2 ± 0 2 ± 0 4.4 ± 4.852 6 20 

4 3 2.7 ± 1.345 5.15 ± 0.357 10.9 ± 5.458 10 20 

5 4 10.85 ± 1.878 5 ± 0 15.5 ± 1.323 7 20 

6 10 9.55 ± 2.246 7.2 ± 0.872 9.3 ± 0.458 9 20 

7 6 3.35 ± 1.526 7.9 ± 0.995 10.8 ± 2.925 9 20 

8 4 8.8 ± 2.379075 5 ± 0 4 ± 0 4 20 

9 7 4.25 ± 0.433 5 ± 0 14.1 ± 3.52 13 20 

10 4 7.9 ± 1.729 7 ± 0 13.95 ± 1.77 9 20 

11 10 10.0 ± 0.950 10 ± 0 10 ± 0 10 20 

12 5 9.0 ± 2.168 7.2 ± 0.4 11.65 ± 1.06 6 20 

13 5 12.1 ± 2.119 5 ± 0 9.6 ± 2.107 5 20 

14 7 7.5 ± 1.204 5 ± 0 7.8 ± 2.088 7 20 

15 5 5 ± 0 5 ± 0 5 ± 0 5 20 

Avg. 5.2 6.53 5.43 9.04 7 20 

 

6.2.2 Natural images 
 

Table 6.3 shows the results of DCPSO using the three validity indices described in 

section 6.1.1. These results are compared with the results of UFA and SOM. In 

addition, the results of snob for the Lenna, mandrill, jet and peppers images are copied 

from Turi [2001]. The optimal range for the number of clusters for the images of 

Lenna, mandrill, jet and peppers are also taken from Turi [2001] which was based on 

a visual analysis survey conducted by a group of ten people. Similarly, the optimal 

range for the MRI and Lake Tahoe images were estimated using a group of three 



 

 

 

164 
 

people.  It appears from the table that results of DCPSO using S_Dbw, UFA, SOM 

and snob were poor. DCPSO using V always found a solution within the optimal 

range. Therefore, the remaining experiments will use V as the validity index. These 

results clearly show the efficiency of DCPSO. Table 6.4 provides samples of the 

resultant segmented images generated by DCPSO using V. 

 

Table 6.3: Experiments on natural images 
Image Optimal 

range 

DCPSO using 

D 

DCPSO using V DCPSO using 

S_Dbw 

SOM UFA Snob 

Lenna 5 to 10 10.35 ± 1.652 6.85 ± 0.477 19.3 ± 0.843 20 20 31 

Mandrill 5 to 10 6.05 ± 1.658  6.25 ± 0.433 19.25 ± 0.766 20 20 42 

Jet 5 to 7 3.35 ± 2.151 5.3 ± 0.459 18.05 ± 1.465 14 20 22 

peppers 6 to 10 10.55 ± 1.465 6 ± 0 18.8 ± 0.872 20 20 39 

MRI 4 to 8 3 ± 0 5 ± 0 17.2 ± 1.4 19 20 - 

Tahoe 3 to 7 3 ± 0 6.1 ± 0.539 14.3 ± 3.018 4 20 - 

Avg.  6.05 5.92 17.82 16.17 20 - 

 



 

 

 

165 
 

 

Table 6.4: Samples of segmented images resulting from DCPSO using V 
Image Segmented image No. of clusters 

Lenna 

 

7 

Mandrill 

 

6 

Jet 

 

5 

 



 

 

 

166 
 

 

Table 6.4: Samples of segmented images resulting from DCPSO using V (continued) 
Image Image Image 

peppers 

 

6 

MRI 

 

5 

Tahoe 

 

6 

 

6.2.3 Comparison with GA and RS 
 

The previous experiments were conducted using the dynamic cluster PSO. In this 

section, a GA and RS version of the algorithm in Figure 6.1 (called DCGA and 

DCRS, respectively) are examined and compared with DCPSO. Both DCGA and 

DCRS used 100 individuals. For DCGA, elitism was used, keeping the fittest 

chromosome for the next generation. In addition, random selection has been used 

along with uniform crossover. The crossover probability was set to 0.8 with a mixing 



 

 

 

167 
 

ratio of 0.5; a mutation probability of c/N1  was used. Table 6.5 presents the results of 

applying DCPSO, DCGA and DCRS on the natural images. As expected, DCRS 

performed poorly due to its pure random search. DCGA performed comparably to 

DCPSO. 

 

Table 6.5: Comparison of PSO-, GA- and RS- versions of the 

proposed approach 
Image Optimal 

range 

DCPSO using 

V 

DCGA using 

V 

DCRS using V 

Lenna 5 to 10 6.85 ± 0.477 6.45 ± 0.74 9.8 ± 1.661 

Mandrill 5 to 10 6.25 ± 0.433 6.05 ± 0.589 8.75 ± 2.095 

Jet 5 to 7 5.3 ± 0.459 5.3 ± 0.557 11.05 ± 1.627 

peppers 6 to 10 6 ± 0 6.05 ± 0.218 10.55 ± 1.532 

MRI 4 to 8 5 ± 0 5.5 ± 0.742 8.1 ± 1.179 

Tahoe 3 to 7 6.1 ± 0.539 6.1 ± 0.831 9.25 ± 1.479 

Avg.  5.92 5.91 9.58 

 

 

6.2.4 Swarm Size 
 

Reducing the swarm size (or population size in case of GA) from 100 to 20 particles 

(or GA chromosomes) did not generally affect the performance of either DCPSO or 

DCGA as illustrated in Table 6.6. However, comparing Table 6.5 and Table 6.6 it 

seems that on average less clusters are formed with less particles/chromosomes. In 

general, the computational requirements of DCPSO and DCGA can be reduced 

significantly without affecting the performance of DCPSO and DCGA.  



 

 

 

168 
 

 

Table 6.6: Comparison of PSO- and GA- 

versions of the proposed approach using a 

swarm size s = 20 
Image Optimal 

range 

DCPSO using 

V 

DCGA using 

V 

Lenna 5 to 10 6.5 ± 0.806 6.4 ± 0.8 

Mandrill 5 to 10 6.15 ± 0.357 5.85 ± 0.476 

Jet 5 to 7 5.3 ± 0.458 5.35 ± 0.477 

peppers 6 to 10 6.05 ± 0.218 6 ± 0 

MRI 4 to 8 5.2 ± 0.4 5.15 ± 0.357 

Tahoe 3 to 7 6.05 ± 0.384 6.2 ± 0.4 

Avg.  5.875 5.825 

 

6.2.5 The Termination Criteria 
 
Given that all parameters are fixed at the values given in section 6.2.4, the influence 

of the termination criteria were evaluated for the natural images. The termination 

criterion for step 6 in the algorithm (section 6.1) is called TC1 and for step 10 is called 

TC2.  

 Table 6.7 and 6.8 summarize the effect of TC1 and TC2, respectively. In Table 

6.7, TC2 was fixed at 2. Table 6.7 shows that for the Lenna, Mandrill and MRI images 

all the tested values for TC1 produced comparable results within the optimal range. 

For the Jet image, all the tested values for TC1 performed comparably with TC1=5 and 

TC1=25 slightly worse than the other values. For the Peppers image, TC1=75 and 

TC1=100 performed better than other values and the results suggest that the "optimal" 

number of clusters in the Pepper image is 6 which seems to be a valid number. For the 

Tahoe image, all the test values for TC1 (except TC1=75) produced comparable results 

within the optimal range. From the results shown in Table 6.7, it can be concluded 

that the performance of DCPSO is generally insensitive to TC1's values. 



 

 

 

169 
 

 In Table 6.8, TC1 was fixed at 50. Table 6.8 shows that for the Lenna and 

Peppers images all the values of TC2 (except for TC2=2) produced the "optimal" 

number of clusters. For the Mandrill image, all the tested values for TC2 produced 

comparable results within the optimal range. For the Jet image, all the values of TC2 

(expect TC2=2) produced results within the optimal range. TC2=25 and TC2=50 

suggest that the "optimal" number of clusters in the MRI image is 5. This seems to be 

a valid number since the Brain MRI images consist mainly of three major tissue 

classes: gray matter, white matter and cerebrospinal fluid [Zhang et al. 2001]. 

Furthermore, the images contain the skull and the background. For the Tahoe image, 

TC2=25 and TC2=50 produced results outside the optimal range. From the results 

shown in Table 6.8, it can be concluded that the performance of DCPSO is relatively 

insensitive to TC2's values. 



 

 

 

170 
 

 

Table 6.7: Effect of  termination criterion TC1 on the 

DCPSO using a swarm size s = 20 and TC2= 2 
Image TC1 Optimal 

range 
DCPSO using V 

5 5 to 10 6.05 ± 0.921 
25 5 to 10 6.55 ± 0.740 
50 5 to 10 6.5 ± 0.806 
75 5 to 10 6.55 ± 0.740 

Lenna 

100 5 to 10 6.55 ± 0.805 
5 5 to 10 6.05 ± 1.023 
25 5 to 10 6.1 ± 0.539 
50 5 to 10 6.15 ± 0.357 
75 5 to 10 5.95 ± 0.384 

Mandrill 

100 5 to 10 6.05 ± 0.218 
5 5 to 7 5.35 ± 0.726 
25 5 to 7 5.2 ± 0.4 
50 5 to 7 5.3 ± 0.458 
75 5 to 7 5.35 ± 0.477 

Jet 

100 5 to 7 5.35 ± 0.477 
5 6 to 10 6.45 ± 1.023 
25 6 to 10 6.2 ± 0.678 
50 6 to 10 6.05 ± 0.218 
75 6 to 10 6.0 ± 0.0 

Peppers 

100 6 to 10 6.0 ± 0.0 
5 4 to 8 5.7 ± 0.843 
25 4 to 8 5.25 ± 0.698 
50 4 to 8 5.2 ± 0.4 
75 4 to 8 5.1 ± 0.3 

MRI 

100 4 to 8 5.15 ± 0.477 
5 3 to 7 5.85 ± 0.477 
25 3 to 7 6.15 ± 0.572 
50 3 to 7 6.05 ± 0.384 
75 3 to 7 6.45 ± 0.669 

Tahoe 

100 3 to 7 6.2 ± 0.4 
 



 

 

 

171 
 

 

Table 6.8: Effect of  termination criterion TC2 on the 

DCPSO using a swarm size s = 20 and TC1= 50 
Image TC2 Optimal 

range 
DCPSO using V 

2 5 to 10 6.55 ± 0.740 
10 5 to 10 7.0 ± 0.0 
25 5 to 10 7.0 ± 0.0 

Lenna 

50 5 to 10 7.0 ± 0.0 
2 5 to 10 6.1 ± 0.539 
10 5 to 10 6.25 ± 0.433 
25 5 to 10 6.15 ± 0.357 

Mandrill 

50 5 to 10 6.15 ± 0.357 
2 5 to 7 5.2 ± 0.4 
10 5 to 7 5.6 ± 0.49 
25 5 to 7 5.6 ± 0.49 

Jet 

50 5 to 7 5.8 ± 0.4 
2 6 to 10 6.2 ± 0.678 
10 6 to 10 6.0 ± 0.0 
25 6 to 10 6.0 ± 0.0 

Peppers 

50 6 to 10 6.0 ± 0.0 
2 4 to 8 5.25 ± 0.698 
10 4 to 8 5.05 ± 0.218 
25 4 to 8 5.0 ± 0.0 

MRI 

50 4 to 8 5.0 ± 0.0 
2 3 to 7 6.15 ± 0.572 
10 3 to 7 6.4 ± 0.49 
25 3 to 7 6.75 ± 0.829 

Tahoe 

50 3 to 7 6.85 ± 0.792 
 

6.2.6 pini and Nc 
 

Given that all parameters are fixed at the values given in section 6.2.4, the influence 

of pini was evaluated for the natural images. The results are summarized in Table 6.9. 

Studying the results, it can be concluded that the performance of DCPSO is generally 

insensitive to the value of pini. 



 

 

 

172 
 

 

Table 6.9: Effect of  pini on the DCPSO using a 

swarm size s = 20 
Image pini Optimal 

range 
DCPSO using V 

0.25 5 to 10 6.7 ± 0.64 
0.5 5 to 10 6.5 ± 0.742 
0.75 5 to 10 6.5 ± 0.806 

Lenna 

0.9 5 to 10 6.65 ± 0.726 
0.25 5 to 10 6.05 ± 0.218 
0.5 5 to 10 6.05 ± 0.21 
0.75 5 to 10 6.15 ± 0.357 

Mandrill 

0.9 5 to 10 6.1 ± 0.539 
0.25 5 to 7 5.5 ± 0.592 
0.5 5 to 7 5.3 ± 0.458 
0.75 5 to 7 5.3 ± 0.458 

Jet 

0.9 5 to 7 5.3 ± 0.458 
0.25 6 to 10 6.0 ± 0.0 
0.5 6 to 10 6.0 ± 0.0 
0.75 6 to 10 6.05 ± 0.218 

Peppers 

0.9 6 to 10 6.0 ± 0.0 
0.25 4 to 8 5.3 ± 0.781 
0.5 4 to 8 5.35 ± 0.726 
0.75 4 to 8 5.2 ± 0.4 

MRI 

0.9 4 to 8 5.3 ± 0.9 
0.25 3 to 7 6.2 ± 0.51 
0.5 3 to 7 6.35 ± 0.477 
0.75 3 to 7 6.05 ± 0.384 

Tahoe 

0.9 3 to 7 6.05 ± 0.497 
 

Given that all parameters are fixed at the values given in section 6.2.4, the influence 

of Nc was evaluated for the natural images. The results are summarized in Table 6.10. 

Studying the results, it appears that using Nc = 10 generally results in choosing the 

lower bound of the optimal range. However, using Nc = 50 tends to overfit the data by 

producing results outside the optimal range. Table 6.10 shows that, Nc = 20 generates 

the best results for the natural images. Hence, it can be concluded that the 

performance of DCPSO is sensitive to the value of Nc. 



 

 

 

173 
 

 

Table 6.10: Effect of  Nc on the DCPSO using a 

swarm size s = 20 
Image Nc Optimal 

range 
DCPSO using V 

10 5 to 10 5.4  ± 0.583 
20 5 to 10 6.5 ± 0.806 

Lenna 

50 5 to 10 16.8 ± 3.516 
10 5 to 10 5.55 ± 0.497 
20 5 to 10 6.15 ± 0.357 

Mandrill 

50 5 to 10 15.95 ± 3.57 
10 5 to 7 5.05 ± 0.218 
20 5 to 7 5.3 ± 0.458 

Jet 

50 5 to 7 15.35 ± 2.495 
10 6 to 10 5.9 ± 0.3 
20 6 to 10 6.05 ± 0.218 

Peppers 

50 6 to 10 16.7 ± 2.722 
10 4 to 8 5.25 ± 0.433 
20 4 to 8 5.2 ± 0.4 

MRI 

50 4 to 8 11.45 ± 3.892 
10 3 to 7 5.35 ± 0.572 
20 3 to 7 6.05 ± 0.384 

Tahoe 

50 3 to 7 12.9 ± 4.265 
 

6.2.7 Comparison of gbest-, lbest- and lbest-to-gbest-PSO 
 

In this section, the effect of different models of PSO is investigated. A comparison is 

made between gbest-, lbest- and lbest-to-gbest-PSO (which has been used in the 

above experiments) using a swarm size of 20 particles. For lbest-PSO, a neighborhood 

size of l = 2 was used. Table 6.11 summarizes the result of the comparison. The 

results show no significant difference in performance.    



 

 

 

174 
 

 

Table 6.11: Comparison of gbest-, lbest- and lbest-to-gbest- 

PSO versions of DCPSO using V (s = 20) 
Image Optimal 

range 

gbest- PSO lbest PSO 

(l=2) 

lbest-to-gbest- 

PSO 

Lenna 5 to 10 6.6 ± 0.735 6.55 ± 0.669 6.5 ± 0.806 

Mandrill 5 to 10 6.1 ± 0.3 6.1 ± 0.539 6.15 ± 0.357 

Jet 5 to 7 5.5 ± 0.5 5.25 ± 0.433 5.3 ± 0.458 

peppers 6 to 10 6.15 ± 0.726 6.15 ± 0.654 6.05 ± 0.218 

MRI 4 to 8 5.0 ± 0.0 5.3 ± 0.458 5.2 ± 0.4 

Tahoe 3 to 7 6.25 ± 0.829 6.1 ± 0.3 6.05 ± 0.384 

Avg.  5.933 5.908 5.875 

 

 

6.2.8 Multispectral Imagery Data 
 

To show the applicability of DCPSO to multidimensional feature spaces, DCPSO was 

applied to the four-channel multispectral image set of the Lake Tahoe region in the 

US. The four bands of the image set was already shown in Figure 4.9. Table 6.12 

gives the results of applying lbest-to-gbest DCPSO using V on the image set. The 

results reported in Table 6.12 are averages and standard deviations over 10 

simulations. All parameters are fixed at the values given in section 6.2.4. It appears 

from the table that DCPSO using V found a solution within the optimal range. The 

results show the efficiency of DCPSO when applied to multispectral imagery data. 

Figure 6.3 shows a sample of the resultant segmented image (or thematic map) 

generated by DCPSO using V.  



 

 

 

175 
 

 

Table 6.12: Applying lbest-to-gbest DCPSO using V 

(s = 20) on multispectral image set 
Image Optimal range DCPSO using V 

Four-bands Lake Tahoe 3 to 7 5.8 ± 0.6 

 

 

Figure 6.3: 6-Clusters thematic map obtained using DCPSO 

 

6.3 Conclusions 
 

This chapter presented DCPSO, a new dynamic clustering algorithm based on PSO 

with application to unsupervised image classification. DCPSO clusters a data set 

without requiring the user to specify the number of clusters in advance. This is an 

important feature since knowing the number of clusters in advance is often not easy. 

DCPSO uses a validity index to measure the quality of the resultant clustering. One of 

the advantages of this approach is that DCPSO can work with any validity index. In 

addition, the proposed approach can be used with a GA or RS. DCPSO was applied 

on synthetic (where the number of clusters was known in advance) as well as natural 



 

 

 

176 
 

images (including MRI and satellite images), and was compared with other 

unsupervised clustering techniques. From these experiments it can be concluded that 

DCPSO, using the validity index proposed by Turi [2001], has outperformed other 

approaches. In general, DCPSO successfully found the optimum number of clusters 

on the tested images. DCPSO was then compared to both DCGA and DCRS, with 

DCPSO and DCGA outperforming DCRS. The influence of the different DCPSO 

control parameters was then investigated. The use of different PSO models (namely, 

lbest, gbest and lbest-to-gbest) was also studied. Finally, DCPSO was successfully 

applied to multispectral imagery data. 

 The next chapter applies the PSO clustering approach to two difficult 

problems in the fields of pattern recognition and image processing, namely, color 

image quantization and spectral unmixing. 



 

 

 

177 
 

Chapter 7 

Applications 

 

This chapter presents PSO-based approaches to tackle the color image quantization and 

spectral unmixing problems. The proposed approaches are then applied on different image 

sets to evaluate their performance, and they are compared with other state-of-the-art 

approaches.  

 

7.1 A PSO-based Color Image Quantization Algorithm 
 

A PSO-based color image quantization algorithm is developed in this section. The 

algorithm randomly initializes each particle in the swarm to contain K centroids (i.e. 

color triplets). The K-means clustering algorithm is then applied to each particle at a 

user-specified probability to refine the chosen centroids. Each pixel is then assigned to 

the cluster with the closest centroid. The PSO is then applied to refine the centroids 

obtained from the K-means algorithm. The proposed algorithm is then applied to 

commonly used images. It is shown from the conducted experiments that the proposed 

algorithm generally results in a significant improvement of image quality compared to 

other well-known approaches. The influence of different values of the algorithm 

control parameters is studied. Furthermore, the performance of different versions of 

PSO is also investigated. 

 



 

 

 

178 
 

7.1.1 The PSO-based Color Image Quantization (PSO-CIQ) 
Algorithm 
 

This section defines the terminology used throughout section 7.1. A measure is given 

to quantify the quality of the resultant quantized image, after which the PSO-CIQ 

algorithm is introduced. 

 

Define the following symbols: 

Np  denotes the number of image pixels 

K  denotes the number of clusters (i.e. colors in the colormap) 

zp  denotes the coordinates of pixel p 

mk  denotes the centroid of cluster k (representing one color triple in the colormap) 

 

In this section, the terms centroid and color triple are used interchangeably.   

 

Measure of Quality 

The most general measure of performance is the mean square error (MSE) of the 

quantized image using a specific colormap. The MSE was defined in equation (3.27), 

and is repeated here for convenience: 

 

p

K

k
kp

N
MSE kp

∑ ∑
= ∈∀= 1

2)(
Cz

m -z
                   (7.1) 

 

where Ck is the kth cluster. 

 



 

 

 

179 
 

The PSO-CIQ Algorithm 

In this subsection, a new post-clustering color image quantization approach is 

described. The proposed approach is of the class of quantization techniques that 

performs clustering of the color space.  

In the context of color image quantization, a single particle represents a 

colormap (i.e. a particle consists of K cluster centroids representing RGB color 

triplets). The RGB coordinates in each color triple are floating-point numbers. Each 

particle xi is constructed as xi = (mi,1,…,mi,k,…, Ki,m ) where mi,k refers to the kth 

cluster centroid vector of the ith particle. Therefore, a swarm represents a number of 

candidate colormaps. The quality of each particle is measured using the MSE (defined 

in equation (7.1)) as follows: 

 

)()( ii MSEf xx =                                                          (7.2) 

 

The algorithm initializes each particle randomly from the color image to contain K 

centroids (i.e. color triplets). The set of K color triplets represents the colormap. The 

K-means clustering algorithm is then applied to each particle at a user-specified 

probability, pkmeans. The K-means algorithm is used in order to refine the chosen 

colors and to reduce the search space. Each pixel is then assigned to the cluster with 

the closest centroid. The fitness function of each particle is calculated using equation 

(7.2). The PSO velocity and update equations (2.8) and (2.10) are then applied. The 

procedure is repeated until a stopping criterion is satisfied. The colormap of the global 

best particle after tmax iterations is chosen as the optimal result. 

 

The PSO-CIQ algorithm is summarized in Figure 7.1. 



 

 

 

180 
 

 

1. Initialize each particle by randomly choosing K color triplets from the image 

2. For t = 1 to tmax 

(a) For each particle i 

i. Apply K-means for a few iterations with a probability    

   pkmeans. 

ii. For each pixel zp 

• Calculate )(2
ki,pd mz − for all clusters ki,C  

• Assign zp to kki,C  where 

{ })()( 2

1

2
ki,p

K,,k
kki,p dmind mzmz −=−

=∀ K
    

                  iii. Calculate the fitness, )( if x  

(b) Find the personal best position for each particle and the global best    

     solution, )(ˆ ty  

(c) Update the centroids using equations (2.8) and (2.10) 

Figure 7.1: The PSO-CIQ algorithm 

 

In general, the complexity of the PSO-CIQ algorithm is O(sKtmaxNp). The parameters 

s, K and tmax can be fixed in advance. Typically s, K and tmax << Np. Therefore, the 

time complexity of PSO-CIQ is O(Np). Hence, in general the algorithm has linear time 

complexity in the size of a data set. 

 



 

 

 

181 
 

7.1.2 Experimental Results 
 

The PSO-CIQ algorithm was applied to a set of four commonly used color images 

namely: Lenna, mandrill, jet and peppers (shown in Figures 7.1(a), 7.2(a), 7.3(a) and 

7.4(a), respectively). The size of each image is 512 × 512 pixels. All images are 

quantized to 16, 32 and 64 colors. 

 The rest of this section is organized as follows: Section 7.1.2.1 illustrates that 

the PSO-CIQ can be used successfully as a color image quantization algorithm by 

comparing it to other well-known color image quantization approaches. Section 

7.1.2.2 investigates the influence of the different PSO-CIQ control parameters. 

Finally, the use of different PSO models (namely, gbest, lbest and lbest-to-gbest) are 

investigated in section 7.1.2.3. 

The results reported in this section are averages and standard deviations over 

10 simulations. Since lbest-to-gbest PSO was generally the best performer in chapter 

4, lbest-to-gbest PSO is used in this section unless otherwise specified. The PSO-CIQ 

parameters were initially set as follows: pkmeans = 0.1, s = 20, tmax = 50, number of K-

means iterations is 10 (the effect of these values are then investigated), w =0.72, 1c = 

2c = 1.49 and Vmax= 255 for all the test images. These parameters were used in this 

section unless otherwise specified. For the GCMA [Scheunders, A Genetic 1997] a 

population of 20 chromosomes was used, and evolution continued for 50 generations. 

For the SOM, a Kohonen network of 4×4 nodes was used when quantizing an image 

to 16 colors, a Kohonen network of 8×4 nodes was used when quantizing an image to 

32 colors, and a Kohonen network of 8×8 nodes was used when quantizing an image 

to 64 colors. All SOM parameters were set as in Pandya and Macy [1996]: the 

learning rate )(tη  was initially set to 0.9 then decreased by 0.005 until it reached 



 

 

 

182 
 

0.005, the neighborhood function )(tw∆  was initially set to (4+4)/4 for 16 colors, 

(8+4)/4 for 32 colors, and (8+8)/4 for 64 colors. The neighborhood function is then 

decreased by 1 until it reached zero. 

 

7.1.2.1 PSO-CIQ vs. Well-Known Color Image Quantization 
Algorithms 
 

This section presents results to compare the performance of the PSO-CIQ algorithm 

with that of SOM and GCMA (both discussed in section 3.3.2) for each of the test 

images.  

Table 7.1 summarizes the results for the four images. The results of the 

GCMA represent the best case over several runs and are copied from Scheunders [A 

Genetic 1997]. The results are compared based on the MSE measure (defined in 

equation 7.1). The results showed that, in general, PSO-CIQ outperformed GCMA in 

all the test images except for the mandrill image and the case of quantizing the Jet 

image to 64 colors. Furthermore, PSO-CIQ generally performed better than SOM for 

both Lenna and peppers images. SOM and PSO-CIQ performed comparably well 

when applied to the mandrill image. SOM generally performed better than PSO-CIQ 

when applied to the Jet image. Figures 7.2, 7.3, 7.4 and 7.5 show the visual quality of 

the quantized images generated by PSO-CIQ when applied to Lenna, peppers, jet and 

mandrill, respectively.  



 

 

 

183 
 

 

Table 7.1: Comparison between SOM, GCMA and PSO-CIQ 

Image K SOM GCMA PSO-CIQ 

16 235.6 ± 0.490 332 210.203 ± 1.487 

32 126.400 ± 1.200 179 119.167 ± 0.449 Lenna 

64 74.700 ± 0.458 113 77.846 ± 16.132 

16 425.600 ± 13.162 471 399.63 ± 2.636 

32 244.500 ± 3.854 263 232.046 ± 2.295 Peppers 

64 141.600 ± 0.917 148 137.322 ± 3.376 

16 121.700 ± 0.458 199 122.867 ± 2.0837 

32 65.000 ± 0.000 96 71.564 ± 6.089 Jet 

64 38.100 ± 0.539 54 56.339 ± 11.15 

16 629.000 ± 0.775 606 630.975 ± 2.059 

32 373.600 ± 0.490 348 375.933 ± 3.42 Mandrill 

64 234.000 ± 0.000 213 237.331 ± 2.015 

 



 

 

 

184 
 

 

 

(a) Original (b) 16 colors 

 

(c) 32 colors (d) 64 colors 

Figure 7.2:  Quantization results for the Lenna image using PSO-CIQ 

 



 

 

 

185 
 

 

  

(a) Original (b) 16 colors 

 

(c) 32 colors (d) 64 colors 

Figure 7.3:  Quantization results for the peppers image using PSO-CIQ 

 



 

 

 

186 
 

 

 

(a) Original (b) 16 colors 

 

(c) 32 colors (d) 64 colors 

Figure 7.4:  Quantization results for the jet image using PSO-CIQ 

 



 

 

 

187 
 

 

 

(a) Original (b) 16 colors 

  

(c) 32 colors (d) 64 colors 

Figure 7.5:  Quantization results for the mandrill image using PSO-CIQ 



 

 

 

188 
 

7.1.2.2 Influence of PSO-CIQ Parameters 
 

The PSO-CIQ algorithm has a number of parameters that have an influence on the 

performance of the algorithm. These parameters include Vmax, the swarm size, the 

number of PSO iterations, pkmeans and the number of K-means iterations. This section 

investigates the influence of different values of these parameters using the Lenna 

image when quantized to 16 colors. 

 

Velocity Clamping 

Table 7.2 shows that using Vmax = 5 or Vmax = 255 generally produces comparable 

results. 

 

Table 7.2: Effect of Vmax on the performance of PSO-

CIQ using Lenna image (16 colors) 

 MSE 

Vmax=5 209.338 ± 0.402 

Vmax=255 210.203 ± 1.487 

 

Swarm Size 

Increasing the swarm size from 20 to 50 particles slightly improves the performance 

of the PSO-CIQ algorithm as shown in Table 7.3. Similarly, increasing the swarm size 

from 50 to 100 particles slightly improves the performance of the PSO-CIQ 

algorithm. On the other hand, reducing the swarm size from 20 to 10 particles 

significantly reduces the efficiency of the PSO-CIQ algorithm. The rationale behind 

these results is that increasing the number of particles increases diversity, thereby 



 

 

 

189 
 

limiting the effects of initial conditions and reducing the possibility of being trapped 

in local minima.  

 

Table 7.3: Effect of the swarm size on the 

performance of PSO-CIQ using Lenna image (16 

colors) 

 MSE 

s = 10 212.196 ± 2.458 

s = 20 210.203 ± 1.487 

s = 50 210.06 ± 1.11 

s = 100 209.468 ± 0.703 

 

Number of PSO iterations 

Increasing the number of PSO iterations, tmax, from 50 to 100 slightly improves the 

performance of the PSO-CIQ algorithm as shown in Table 7.4. Similarly, increasing 

tmax from 100 to 150 slightly improves the performance of the PSO-CIQ algorithm. 

Therefore, it can be concluded that increasing tmax generally improves the 

performance of the PSO-CIQ algorithm. 

 

Table 7.4: Effect of the number of PSO iterations on 

the performance of PSO-CIQ using Lenna image (16 

colors) 

 MSE 

tmax = 50 210.203 ± 1.487 

tmax = 100 209.412 ± 0.531 

tmax = 150 208.866 ± 0.22 

 



 

 

 

190 
 

pkmeans 

Applying the K-means clustering algorithm to a larger set of particles is expected to 

improve the performance of the PSO-CIQ algorithm. The rationale behind this 

expectation is the fact that the K-means algorithm generally reduces the search space 

and refines the chosen colors. This expectation is verified by the results shown in 

Table 7.5 which shows that increasing the value of pkmeans generally improves the 

performance of the PSO-CIQ algorithm. However, as a trade-off, increasing the value 

of pkmeans will increase the computational requirements of the PSO-CIQ algorithm.  

 

Table 7.5: Effect of pkmeans on the performance of 

PSO-CIQ using Lenna image (16 colors) 

 MSE 

pkmeans = 0.1 210.203 ± 1.487 

pkmeans = 0.25 209.238 ± 0.74 

pkmeans = 0.5 209.045 ± 0.594 

pkmeans = 0.9 208.886 ± 0.207 

 

Number of K-means iterations 

Reducing the number of K-means iterations from 10 to 5 degrades the performance of 

the PSO-CIQ as shown in Table 7.6. On the other hand, increasing the number of K-

means iterations from 10 to 50 significantly improves the performance of the PSO-

CIQ as shown in Table 7.6. These results suggest that increasing the number of K-

means iterations improves the performance of the PSO-CIQ. However, when the 

number of K-means iterations was reduced to 5 iterations but at the same time pkmeans 

was increased from 0.1 to 0.5 the generated MSE was 210.315 ± 1.563 which is 

significantly better than the corresponding result in Table 7.6. This result suggests that 



 

 

 

191 
 

the number of K-means iterations can be reduced without affecting the performance 

of PSO-CIQ given that the pkmeans is increased. 

 

Table 7.6: Effect of the number of K-means 

iterations on the performance of PSO-CIQ using 

Lenna image (16 colors) 

No. of K-means iterations MSE 

5 212.627 ± 3.7 

10 210.203 ± 1.487 

50 208.791 ± 0.111 

 

7.1.2.3 Comparison of gbest-, lbest- and lbest-to-gbest-PSO 
 

In this section, the effect of different models of PSO is investigated using the Lenna 

image when quantized to 16 colors. A comparison is made between gbest-, lbest- and 

lbest-to-gbest-PSO (which has been used in the above experiments) using a swarm 

size of 20 particles. For lbest-PSO, a neighborhood size of l = 2 was used. Table 7.7 

shows the result of the comparison. The results show no significant difference in 

performance. 

    

Table 7.7: Comparison of gbest-, lbest- and lbest-to-

gbest- PSO versions of PSO-CIQ using Lenna image 

(16 colors) 

 MSE 

gbest PSO 209.841 ± 0.951 

lbest PSO 210.366 ± 1.846 

lbest-to-gbest PSO 210.203 ± 1.487 

 



 

 

 

192 
 

7.2 A PSO-based End-Member Selection Method for 
Spectral Unmixing of Multispectral Satellite Images 
 

An end-member selection method for spectral unmixing that is based on PSO is 

developed in this section. The algorithm uses the K-means clustering algorithm and a 

method of dynamic selection of end-members subsets to find the appropriate set of 

end-members for a given set of multispectral images. The proposed algorithm has 

been successfully applied to test image sets from various platforms such as 

LANDSAT 5 MSS and NOAA's AVHRR. The experimental results of the proposed 

algorithm are encouraging. The influence of different values of the algorithm control 

parameters on performance is studied. Furthermore, the performance of different 

versions of PSO is also investigated.  

 

7.2.1 The PSO-based End-Member Selection (PSO-EMS) Algorithm 
 

This section introduces the PSO-EMS algorithm by first presenting a measure to 

quantify the quality of a spectral unmixing algorithm, after which the PSO-EMS 

algorithm is shown. 

 

Measure of Quality 

To measure the quality of a spectral unmixing algorithm, the root mean square (RMS) 

residual error can be used, defined as follows: 

 

∑
=

=
bN

j
jMSE

1
                              (7.3) 

 



 

 

 

193 
 

where  

p

N

p
p

N

.
p

∑
=

−
= 1

2)( fEMz
MS  

 

where Nb is the number of spectral bands, Np is the number of pixels in the image and 

fEM .  is defined in equation (3.28). 

 

The PSO-EMS Algorithm 

In the context of spectral unmixing, a single particle represents mN  end-members. 

That is, each particle xi is constructed as xi = (emi,1,…,emi,k,…, 
mNi,em ) where emi,k 

refers to the kth end-member vector of the ith particle. Therefore, a swarm represents a 

number of candidate end-members. The quality of each particle is measured using the 

RMS residual error (defined in equation 7.3) as follows: 

 

)()( ii Ef xx =                                                    (7.4) 

 

The algorithm randomly initializes each particle from the multispectral image set to 

contain mN  end-members. The K-means clustering algorithm is then applied to each 

particle at a user-specified probability, pkmeans. The K-means algorithm is used in 

order to refine the chosen end-members and to reduce the search space. Then for each 

particle i, the mN  end-members of the particle form the pool of available candidate 

end-members for the subsequent spectral unmixing procedure. Maselli's approach 

(refer to section 3.4.2) is used to dynamically select the eN  optimum end-member 

subsets from the pool of mN  end-members. Each pixel vector is then spectrally 



 

 

 

194 
 

decomposed as a linear combination of its optimum subset of end-members. The RMS 

residual error for particle i is then calculated. The PSO velocity and update equations 

(2.8) and (2.10) are then applied. The procedure is repeated until a stopping criterion 

is satisfied. The mN  end-members of the best particle are used to generate the 

abundance images.  

 

The Generation of Abundance Images 

For each species represented by an end-member, the ensemble of all fractional 

components forms a concentration map (i.e. an abundance map). The fractional 

concentration maps are then optimally mapped to an 8-bit integer format for display 

and storage purposes. This is done using the following non-linear mapping function 

[Saghri et al. 2000]: 

 

50
)((

))((255
exp

min
exp

max

exp
min

exp

.
f)f
ff

+
−
−

=Ω                 (7.5) 

 

where: 

Ω is the mapped integer fractional component in the range of  0 ≤ Ω ≤ 255 

f is the fractional component 

fmin
  is the minimum fractional component 

fmax  is the maximum fractional component 

exp  is the floating-point exponent parameter in the range of   0 ≤  exp ≤  1.0. In 

this chapter, exp is set to 0.6 for the abundance images as suggested by Saghri 

et al. [2000]. 

 

The PSO-EMS algorithm is summarized Figure 7.6. 



 

 

 

195 
 

 In general, the complexity of the PSO-EMS algorithm is O(stmaxNp). The 

parameters s and tmax can be fixed in advance. Typically s and tmax << Np. Therefore, 

the time complexity of PSO-EMS is O(Np). Hence, in general the algorithm has linear 

time complexity in the size of a data set. 

 

1. Initialize each particle to contain mN  randomly selected end-members 

2. For t = 1 to tmax 

(a) For each particle i 

i. Apply K-means for a few iterations with a probability    

   pkmeans.   

ii. For each pixel zp 

• Find the eN  optimum end-member subset 

• Apply linear spectral unmixing using equation (3.28) 

                  iii. Calculate the fitness, )( if x  

 (b) Find the personal best position for each particle and the global best    

     solution, )(ˆ ty  

(c) Update the end-members using equations (2.8) and (2.10) 

3. Generate the abundance images using the mN  end-members of particle )(ˆ ty  

Figure 7.6: The PSO-EMS algorithm 

 

7.2.2 Experimental Results 
 

The PSO-EMS algorithm has been applied to two types of imagery data, namely 

LANDSAT 5 MSS (79 m GSD) and NOAA's AVHRR (1.1 km GSD) images. These 

image sets have been selected to test the algorithms on a variety of platforms with a 



 

 

 

196 
 

relatively large GSD which represent good candidates for spectral unmixing in order 

to get sub-pixel resolution. The two image sets are described below: 

 

LANDSAT 5 MSS: Figure 4.9 shows the four-channel multispectral test image set of 

the Lake Tahoe region in the US. Each channel is comprised of a 300 × 300, 8-bit per 

pixel (remapped from the original 6 bit) image and corresponds to a GSD of 79 m. 

The test image set is one of the North American Landscape Characterization (NALC) 

Landsat multispectral scanner data sets obtained from the U.S. Geological Survey 

(USGS). The result of a preliminary principal component study of this data set 

indicates that its intrinsic true spectral dimension eN  is 3. As in Saghri et al. [2002], a 

total of six end-members were obtained from the data set (i.e. 6=mN ). 

 

NOAA's AVHRR: Figure 7.7 shows the five-channel multispectral test image set of 

an almost cloud-free territory of the entire United Kingdom (UK). This image set was 

obtained from the University of Dundee Satellite Receiving Station. Each channel 

(one visible, one near-infra red and three in the thermal range) is comprised of a 847 × 

1009, 10-bit per pixel (1024 gray levels) image and corresponds to a GSD of 1.1 km. 

The result of a preliminary principal component study of this data set indicates that its 

intrinsic true spectral dimension eN  is 3. As in Saghri et al. [2000], a total of eight 

end-members were obtained from the data set (i.e. 8=mN ). 

The rest of this subsection is organized as follows: Section 7.2.2.1 illustrates 

that the PSO-EMS can be used successfully as an end-member selection method by 

comparing it to the end-member selection method proposed by Saghri et al. [2000] 

(discussed in section 3.4.2), which is referred to in this chapter as ISO-UNMIX. The 

time complexity of ISO-UNMIX is O(Np). Saghri et al. [2000] showed that ISO-



 

 

 

197 
 

UNMIX performed very well compared to other popular spectral unmixing methods. 

Section 7.2.2.2 investigates the influence of the different PSO-EMS control 

parameters. Finally, the use of different PSO models (namely, gbest, lbest and lbest-

to-gbest) was investigated in section 7.2.2.3. 

The results reported in this section are averages and standard deviations over 

10 simulations. Since lbest-to-gbest PSO was generally the best performer in chapter 

4, lbest-to-gbest PSO is used in this section unless otherwise specified. The PSO-EMS 

parameters were initially set as follows: pkmeans = 0.1, s = 20, tmax = 100, the number of 

K-means iterations is 10 (the effect of these values are then investigated), w =0.72, 

1c = 2c = 1.49 and Vmax= 255 for the Lake Tahoe image set, while Vmax= 1023 for the 

UK image set. These parameters are used in this section unless otherwise specified. 

 

7.2.2.1 PSO-EMS vs. ISO_UNMIX 
 

This section presents results to compare the performance of the PSO-EMS algorithm 

with that of the ISO-UNMIX algorithm for each of the test image sets.  

Table 7.8 summarizes the results for the two image sets. The results are 

compared based on the RMS residual error defined in equation (7.3). The results 

showed that, for both image sets, PSO-EMS performed significantly better than the 

ISO-UNMIX in terms of the RMS residual error. Figures 7.8 and 7.9 show the 

abundance images generated from ISO-UNMIX and PSO-EMS, respectively, when 

applied to the Lake Tahoe image set. In addition, Figures 7.10 and 7.11 show the 

abundance images generated from ISO-UNMIX and PSO-EMS, respectively, when 

applied to the UK image set. For display purposes the fractional species 

concentrations were mapped to 8-bits per pixels abundance images. 



 

 

 

198 
 

 

Table 7.8: Comparison between ISO-UNMIX and 

PSO-EMS 

Image RMS 

LANDSAT 5 MSS ISO_UNMIX 0.491837 

         PSO-EMS 0.462197 ± 0.012074 

NOAA's AVHRR ISO_UNMIX 3.725979 

         PSO-EMS 3.510287 ± 0.045442  

 

7.2.2.2 Influence of PSO-EMS Parameters 
 

The PSO-EMS algorithm has a number of parameters that have an influence on the 

performance of the algorithm. These parameters include Vmax, the swarm size, the 

number of PSO iterations, pkmeans and the number of K-means iterations. This section 

investigates the influence of different values of these parameters using the Lake 

Tahoe image set. 

 

Velocity Clamping 

Table 7.9 shows that using Vmax = 5 or Vmax = 255 generally produces comparable 

results. However, the standard deviation in the case of Vmax = 5 is smaller than the 

standard deviation in the case of Vmax = 255. Hence, using Vmax = 5 generates more 

stable results than using Vmax = 255. 

 

Table 7.9: Effect of Vmax on the performance of PSO-

EMS using Lake Tahoe image set 
 RMS 

Vmax=5 0.469706 ± 0.000456 

Vmax=255 0.462197 ± 0.012074 



 

 

 

199 
 

 

  

(a) Band 1 (b) Band 2 

  

(c) Band 3 (d) Band 4 

 

(e) Band 5 

Figure 7.7:  AVHRR Image of UK, Size: 847x1009 , 5 bands, 10-bits per pixel  

 

 



 

 

 

200 
 

  

  

  

Figure 7.8:  Species concentration maps resulting from the application of ISO-UNMIX to 

unmix the Lake Tahoe test image set 

 



 

 

 

201 
 

 

  

  

  

Figure 7.9:  Species concentration maps resulting from the application of PSO-EMS to unmix 

the Lake Tahoe test image set 

 



 

 

 

202 
 

  

  

  

  

Figure 7.10:  Species concentration maps resulting from the application of ISO-UNMIX to 

unmix the UK test image set 

 



 

 

 

203 
 

  

  

  

  

Figure 7.11:  Species concentration maps resulting from the application of PSO-EMS to unmix 

the UK test image set 

 



 

 

 

204 
 

Swarm Size 

Increasing the swarm size from 20 to 50 particles improves the performance of the 

PSO-EMS algorithm as shown in Table 7.10. On the other hand, reducing the swarm 

size from 20 to 10 particles significantly reduces the efficiency of the PSO-EMS 

algorithm. The rationale behind these results is that increasing the number of particles 

increases diversity, thereby limiting the effects of initial conditions and reducing the 

possibility of being trapped in local minima.  

 

Table 7.10: Effect of the swarm size on the 

performance of PSO-EMS using Lake Tahoe image 

set 
 RMS 

s = 10 0.468706 ± 0.004753 

s = 20 0.462197 ± 0.012074 

s = 50 0.459195 ± 0.009389 

 

Number of PSO iterations 

Reducing the number of PSO iterations, tmax, from 100 to 50 did not reduce the 

performance of the PSO-EMS algorithm as shown in Table 7.11. Similarly, increasing 

tmax from 100 to 150, did not significantly improve the performance of the PSO-EMS. 

 

Table 7.11: Effect of the number of PSO iterations 

on the performance of PSO-EMS using Lake Tahoe 

image set 
 RMS 

tmax = 50 0.468041 ± 0.004735 

tmax = 100 0.462197 ± 0.012074 

tmax = 150 0.465614 ± 0.00739 



 

 

 

205 
 

pkmeans 

Applying the K-means clustering algorithm to a larger set of particles is expected to 

improve the performance of the PSO-EMS algorithm. The rationale behind this 

expectation is the fact that the K-means algorithm generally reduces the search space 

and refines the end-members. This expectation is verified by the results shown in 

Table 7.12 which shows that increasing the value of pkmeans significantly improves the 

performance of the PSO-EMS algorithm. However, as a trade-off, increasing the 

value of pkmeans will increase the computational requirements of the PSO-EMS 

algorithm.  

 

Table 7.12: Effect of pkmeans on the performance of 

PSO-EMS using Lake Tahoe image set 
 RMS 

pkmeans = 0.1 0.462197 ± 0.012074 

pkmeans = 0.25 0.460776 ± 0.009120 

pkmeans = 0.5 0.454029 ± 0.007051 

pkmeans = 0.9 0.445367 ± 0.012339 

 

Number of K-means iterations 

Reducing number of K-means iterations from 10 to 5 degrades the performance of the 

PSO-EMS as shown in Table 7.13. On the other hand, increasing the number of K-

means iterations from 10 to 50 did not improve the performance of the PSO-EMS as 

shown in Table 7.13. These results suggest that using 10 iterations of K-means is a 

good choice for the Lake Tahoe image set. However, when the number of K-means 

iterations was reduced to 5 iterations but at the same time pkmeans was increased from 

0.1 to 0.5 the generated RMS was equal to 0.458149 ± 0.004554 which is 

significantly better than the results in Table 7.13. This result suggests that the number 



 

 

 

206 
 

of K-means iterations can be reduced without affecting the performance of PSO-EMS 

given that the pkmeans is increased. 

 

Table 7.13: Effect of the number of K-means 

iterations on the performance of PSO-EMS using 

Lake Tahoe image set 
No. of K-means iterations RMS 

5 0.468407 ± 0.004212 

10 0.462197 ± 0.012074 

50 0.466708 ± 0.004524 

 

7.2.2.3 Comparison of gbest-, lbest- and lbest-to-gbest-PSO 
 

In this section, the effect of different models of PSO is investigated using the Lake 

Tahoe image set. A comparison is made between gbest-, lbest- and lbest-to-gbest-PSO 

(which has been used in the above experiments) using a swarm size of 20 particles. 

For lbest PSO, a neighborhood size of l = 2 was used. Table 7.14 summarizes the 

result of the comparison. The results show no significant difference in performance. 

However, the standard deviation in the case of lbest-to-gbest PSO is the largest. 

Hence, using lbest-to-gbest PSO generates the least stable result. 

     

Table 7.14: Comparison of gbest-, lbest- and lbest-

to-gbest- PSO versions of PSO-EMS using Lake 

Tahoe image set 
 RMS 

gbest PSO 0.465809 ± 0.006562 

lbest PSO 0.465020 ± 0.004942 

lbest-to-gbest PSO 0.462197 ± 0.012074 



 

 

 

207 
 

7.3 Conclusions 
 
This chapter addressed two difficult problems in the field of pattern recognition and 

image processing. The two problems are color image quantization and spectral 

unmixing. First, the chapter presented a PSO-based color image quantization 

algorithm (PSO-CIQ). The PSO-CIQ algorithm was compared against other well-

known color image quantization techniques. In general, the PSO-CIQ performed 

better than the other techniques when applied to a set of commonly used images. The 

effects of different PSO-CIQ control parameters were studied. The performance of 

different versions of PSO was then investigated.  

The chapter then presented a new spectral unmixing approach using PSO 

(PSO-EMS). The PSO-EMS algorithm has as objective to determine the appropriate 

set of end-members for a given multispectral image set. The PSO-EMS algorithm was 

compared against a relatively recent end-member selection method which was 

proposed by Saghri et al. [2000]. The PSO-EMS algorithm produced better results 

when applied to test image sets from various platforms such as LANDSAT 5 MSS 

and NOAA's AVHRR. The effects of different PSO-EMS control parameters were 

then studied. Finally, the performance of different versions of PSO was investigated. 

From the results presented, it can be concluded that the PSO is an efficient 

optimization algorithm for difficult pattern recognition and image processing 

problems. 

 



 

 

 

208 
 

Chapter 8 

Conclusion 

 
This chapter briefly highlights the findings and contributions of this thesis and discusses 

directions for future research. 

 

8.1 Summary 
 

This thesis investigated the application of an efficient optimization method known as 

Particle Swarm Optimizer to the field of pattern recognition and image processing. 

 Chapter 4 presented a clustering approach using PSO. The objective of the 

proposed algorithm is to simultaneously minimize the quantization error and intra-

cluster distances, and to maximize the inter-cluster distances. The application of the 

proposed clustering algorithm to the problem of unsupervised classification and 

segmentation of images was investigated. The proposed algorithm was compared 

against state-of-the-art clustering algorithms. In general, the PSO algorithms 

produced better results with reference to inter- and intra-cluster distances, while 

having quantization errors comparable to the other algorithms. The performance of 

different versions of PSO was investigated and the results suggest that algorithms that 

start with high diversity and then gradually go to low diversity perform better than 

other algorithms. To test its performance on multidimensional feature spaces, the 

proposed approach was applied to multispectral imagery data. 

 Chapter 5 presented a tool for synthetic image generation (SIGT). The tool 

consists of two units: a synthetic image generator and a clustering verification unit. 



 

 

 

209 
 

The first unit allows the user to create a synthetic image based on a user-specified 

histogram suitable for the required application. The second unit allows the user to 

measure the efficiency of a clustering algorithm. Different features of SIGT were 

demonstrated by a set of experiments aided by the K-means clustering algorithm and 

the PSO-based clustering algorithm proposed in chapter 4. These experiments have 

demonstrated that the tool can help researchers in the field of unsupervised image 

classification to generate synthetic images, measure the quality of a clustering 

algorithm, compare different clustering algorithms and to create benchmarks. 

 Chapter 6 presented a new dynamic clustering algorithm based on PSO, called 

DCPSO, with application to unsupervised image classification. DCPSO clusters a data 

set without requiring the user to specify the number of clusters a priori. DCPSO uses 

a validity index to measure the quality of the resultant clustering. DCPSO has been 

applied to synthetic images (where the number of clusters was known a priori) as well 

as natural images (including MRI and satellite images), and was compared with other 

dynamic clustering techniques. In general, DCPSO successfully found the "optimum" 

number of clusters on the tested images. Genetic algorithm and random search 

versions of the proposed approach were presented and compared to the particle swarm 

version with both the genetic and PSO versions outperforming the random search 

version. The influence of the different DCPSO control parameters was then 

investigated. The use of different PSO versions was also studied. Finally, to test its 

performance in multidimensional feature space, the DCPSO was applied to 

multispectral imagery data. 

 Chapter 7 addressed two difficult problems in the field of pattern recognition 

and image processing. The two problems are: color image quantization and spectral 

unmixing. First, the chapter presented a PSO-based color image quantization 



 

 

 

210 
 

algorithm (PSO-CIQ). The PSO-CIQ algorithm was compared against other well-

known color image quantization techniques. In general, the PSO-CIQ performed 

better than other techniques when applied to a set of commonly used images. The 

effects of different PSO-CIQ control parameters were studied. The performance of 

different versions of PSO was then investigated. Chapter 7 then presented a new 

spectral unmixing approach using PSO (PSO-EMS). The objective of the PSO-EMS 

algorithm is to determine the appropriate set of end-members for a given multispectral 

image set. The PSO-EMS algorithm performed well when applied to test image sets 

from various platforms such as LANDSAT 5 MSS and NOAA's AVHRR. The effects 

of different PSO-EMS control parameters were then studied. Finally, the performance 

of different versions of PSO was investigated. 

 From the results presented in this thesis, it can be concluded that the PSO is an 

efficient optimization algorithm for difficult pattern recognition and image processing 

problems. These problems are considered difficult because they are NP-hard and 

combinatorial problems.  

 

8.2 Future Research 
 

Directions for future research are briefly summarized below. 

 

PSO-based Clustering Algorithm 

Although the parametric fitness function used by the PSO-approach contains multiple 

objectives, no special multi-objective optimization techniques have been used. Future 

research can investigate the use of a PSO multi-objective approach, which may 

produce better results. In addition, incorporating spatial information into the PSO-



 

 

 

211 
 

based clustering algorithm (when used in image segmentation applications) needs to 

be investigated. One way to incorporate spatial information is to consider the eight 

neighboring pixels of each pixel as proposed by Liew et al. [2000]. 

 

SIGT 

Future additions to the tool may include a unit to generate a synthetic image from an 

existing real (synthetic) image by relaxing some constrains. In addition, further 

studies may use SIGT to do an elaborate analysis and comparison of clustering 

algorithms. 

 

DCPSO 

The application of the DCPSO algorithm (described in Section 6.1) to general data 

needs to be investigated. Furthermore, the effect of high dimensionality on the 

performance of the DCPSO should be investigated. Experiments for validating the 

efficiency of randomly re-initializing Mr (i.e. step 8 in Figure 6.1) need to be 

conducted. The DCPSO uses the K-means clustering algorithm to refine the cluster 

centroids. Future research can investigate the use of other more efficient clustering 

algorithms such as FCM and KHM. In addition, incorporating spatial information into 

the DCPSO algorithm (when used in image segmentation applications) needs to be 

investigated. 

 

PSO-CIQ 

The PSO-CIQ (described in section 7.1.1) uses the K-means clustering algorithm to 

refine the color triplets. Future research should investigate the use of other more 

efficient clustering algorithms such as FCM and KHM. Experiments need to be 



 

 

 

212 
 

conducted to compare the PSO-CIQ with the multi-start K-means (with the best result 

generated from applying K-means stmaxpkmeans times, where each K-means starts from 

random cluster centroids). Finally, the PSO-CIQ uses the RGB color space. Although 

the RGB model is the most widely used model, it has some weaknesses. One of these 

weaknesses is that equal distances in the RGB color space may not correspond to 

equal distance in color perception. Hence, future research may try to apply the PSO-

CIQ to other color spaces (e.g. the L*u*v* color space [Watt 1989]). 

 

PSO-EMS 

Experiments need to be conducted to compare the PSO-EMS with the multi-start K-

means (with the best result generated from applying K-means stmaxpkmeans times, where 

each K-means starts from random cluster centroids). The performance of the PSO-

EMS (described in section 7.2.1) when applied to hyperspectral Satellite imagery is a 

potential topic for future research. 

 



 

 

 

213 
 

Bibliography 

 

E. Aarts and  J. Lenstra. Local Search in Combinatorial Optimization. Princeton 

Universality Press, 2003. 

 

H. Abbas and M. Fahmy. Neural Networks for Maximum Likelihood Clustering. 

Signal Processing, vol. 36, no.1, pp. 111-126, 1994. 

 

B. Al-kazemi and C. Mohan. Multi-phase Discrete Particle Swarm Optimization. In 

the Third International Workshop on Frontiers in Evolutionary Algorithms, Atlantic 

City, New Jersey, USA, 2000. 

 

N. Alldrin, A. Smith and D. Turnbull. Clustering with EM and K-means, unpublished 

Manuscript, 2003, http://louis.ucsd.edu/~nalldrin/research/cse253\_wi03.pdf (visited 

15 Nov 2003). 

 

K. Al-Sultan. A Tabu Search Approach to Clustering Problems. Pattern Recognition, 

vol. 28, pp. 1443-1451, 1995.  

 

M. Amadasun and R. King. Low-level Segmentation of Multispectral Images via 

Agglomerative Clustering of Uniform Neighborhoods. Pattern Recognition, vol. 21, 

no. 3, pp. 261-268, 1988. 

 

M. Anderberg. Cluster Analysis for Applications. Academic Press, New York, USA, 

1973. 

 

P. Angeline. Evolutionary Optimization versus Particle Swarm Optimization: 

Philosophy and Performance Difference. In Proceedings of the Seventh Annual 

Conference on Evolutionary Programming, pp. 601-610, 1998. 

 



 

 

 

214 
 

P. Angeline. Using Selection to Improve Particle Swarm Optimization. In 

International Conference on Evolutionary Computation, Piscataway, New Jersey, 

USA, pp. 84-89, IEEE Service Center, 1998. 

 

J. Antoniades, D. Haas, P. Palmadesso, M. Baumback and L. J. Rickard. Use of Filter 

Vectors in Hyperspectral Data Analysis. In Proceedings of SPIE, vol. 2553, pp 128-

139, 1995. 

 

G. Babu and M. Murty. A Near-Optimal Initial Seed Value Selection in K-means 

Algorithm Using a Genetic Algorithm. Pattern Recognition Letters, vol. 14, no. 10, 

pp. 763-769, 1993. 

  

F. Bach and M. Jordan. Learning Spectral Clustering. Neural Information Processing 

Systems 16 (NIPS 2003), 2003. 

 

T. Bäck. Self-Adaptation in Genetic Algorithms. In Proceedings of the First 

European Conference on Artificial Life, pp. 227-235, MIT Press, 1992. 

 

T. Bäck, F. Hoffmeister and H. Schwefel. A Survey of Evolution Strategies. In 

Proceedings of the Fourth International Conference on Genetic Algorithms and their 

Applications, pp. 2-9, 1991. 

 

S. Baek, B. Jeon, D. Lee and K. Sung. Fast Clustering Algorithm for Vector 

Quantization. Electronics Letters, vol. 34, no. 2, pp. 151-152, 1998. 

 

R. Balasubramanian and J. Allebach. A New Approach to Platte Selection for Color 

Images. Image Technology, vol. 17, pp. 284-290, 1990. 

 

G. Ball and D. Hall. A Clustering Technique for Summarizing Multivariate Data. 

Behavioral Science, vol. 12, pp. 153-155, 1967. 

 

A. Bateson and B. Curtiss. A Method for Manual Endmember Selection and Spectral 

Unmixing. Remote Sensing of Enviornment, vol. 55, pp 229-243, 1996. 

 



 

 

 

215 
 

J. Bezdek. A Convergence Theorem for the Fuzzy ISODATA Clustering Algorithms. 

IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 2, pp. 1-8, 

1980. 

 

J. Bezdek. Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum 

Press, 1981. 

 

H. Bischof, A. Leonardis and A. Selb. MDL Principle for Robust Vector 

Quantization. Pattern Analysis and Applications, vol. 2, pp. 59-72, 1999. 

 

C. Bishop. Neural Networks for Pattern Recognition. Clarendon Press, Oxford, 1995. 

 

N. Boujemaa. On Competitive Unsupervised Clustering. In the International 

Conference on Pattern Recognition (ICPR'00), vol. 1, pp. 1631-1634, 2000. 

 

E. Bonabeau, M. Dorigo and T. Theraulaz. From Natural to Artificial Swarm 

Intelligence. Oxford University Press, New York, USA, 1999. 

 

M. Bramlette. Initialisation, Mutation and Selection Method in Genetic Algorithms 

for Function Optimization. In Proceedings of the Fourth International Conference in 

Genetic Algorithms, pp. 100-107, Morgan Kaufmann, 1991. 

 

J. Braquelaire and L. Brun. Comparison and Optimization of Methods of Color Image 

Quantization. IEEE Transactions on Image Processing, vol. 6 no. 7, pp. 1048-1052, 

1997. 

 

C. Carpineto and G. Romano. A Lattice Conceptual Clustering System and Its 

Application to Browsing Retrieval. Machine Learning, vol. 24, no. 2, pp. 95-122, 

1996. 

 

M. Celenk. A Color Clustering Technique for Image Segmentation. Computer Vision, 

Graphics and Image Processing, vol. 52, pp. 145-170, 1990. 

 



 

 

 

216 
 

M. Chang, I. Sezan and M. Tekalp. Adaptive Bayesian Segmentation of Color 

Images. Journal of Electronic Imaging, vol. 3, no. 4, pp. 404-414, 1994. 

 

C. Chen, J. Luo and K. Parker. Image Segmentation via Adaptive K-means Clustering 

and Knowledge-Based Morphological Operations with Biomedical Applications. 

IEEE Transactions on Image Processing, vol. 7, no. 12, pp. 1673-1683, 1998. 

 

H. Cheng, X. Jaing, Y. Sun and J. Wang. Color Image Segmentation: Advances & 

Prospects. Pattern Recognition, vol.34, pp. 2259-2281, 2001. 

 

S. Cheng and C. Yang. A Fast and Novel Technique for Color Quantization using 

Reduction of Color Space Dimensionality. Pattern Recognition Letters, vol. 22, pp. 

845-856, 2001. 

 

J. Chinneck. Practical Optimization: a Gentle Introduction, 2000. 

http://www.sce.carleton.ca/faculty/chinneck/po.html (visited 1 July 2004). 

 

S. Chu and J. Roddick. A Clustering Algorithm Using Tabu Search Approach with 

Simulated Annealing for Vector Quantization. Chinese Journal of Electronics, vol. 

12, no. 3, pp. 349-353, 2003. 

 

F. Chung. Spectral Graph Theory. Society Press, 1997. 

 

M. Clerc. The Swarm and the Queen: Towards a Deterministic and Adaptive Particle 

Swarm Optimization. In Proceedings of the Congress on Evolutionary Computation, 

Washington DC, USA, vol. 3, pp. 1951-1957, IEEE Press, 1999. 

 

M. Clerc and J. Kennedy. The Particle Swarm: Explosion, Stability and Convergence 

in a Multi-Dimensional Complex Space. IEEE Transactions on Evolutionary 

Computation, vol. 6, pp. 58-73, 2001. 

 

G. Coath and S. Halgamuge. A Comparison of Constraint-handling Methods for the 

Application of Particle Swarm Optimization to Constrained Nonlinear Optimization 



 

 

 

217 
 

Problems. In Proceedings of IEEE Congress on Evolutionary Computation 2003 

(CEC 2003), Canbella, Australia. pp. 2419-2425, 2003. 

 

C.A. Coello Coello. An Empirical Study of Evolutionary Techniques for 

Multiobjective Optimization in Engineering Design, PhD Thesis. Tulane University, 

1996. 

 

C. Coello Coello and M. Lechuga. MOPSO: A Proposal for Multiple Objective 

Particle Swarm Optimization. In Congress on Evolutionary Computation, Piscataway, 

New Jersey, USA, vol. 2, pp. 1051-1056, IEEE Service Center, 2002. 

 

G. Coleman and H. Andrews. Image Segmentation by Clustering. In Proceedings of  

IEEE, vol. 67, pp. 773-785, 1979. 

 

D. Comaniciu and P. Meer. Robust Analysis of Feature Spaces: Color Image 

Segmentation. In Proceedings of IEEE Conference on Computer Vision and Pattern 

Recognition, pp. 750-755, 1997. 

 

D. Comaniciu and P. Meer. Mean Shift: A Robust Approach Toward Feature Space 

Analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 24, 

no. 5, pp. 603-619, 2002.  

 

E. Davies. Machine Vision: Theory, Algorithms, Practicalities. Academic Press, 2nd 

Edition, 1997. 

 

D. Davies and D. Bouldin. A Cluster Separation Measure. IEEE Transactions on 

Pattern Analysis and Machine Intelligence, vol. 1, no. 2, 1979. 

 

A. Dekker. Kohonen Neural Networks for Optimal Colour Quantization. Network: 

Computation in Neural Systems, vol. 5, pp. 351-367, 1994. 

 

M. Delgado, A. Skarmeta and H. Barberá. A Tabu Search Approach to the Fuzzy 

Clustering Problem. In the Sixth IEEE International Conference on Fuzzy Systems, 

Barcelona, 1997. 



 

 

 

218 
 

 

J. Devore. Probability and Statistics for Engineering and the Sciences, fourth edition. 

Duxbury Press, 1995. 

 

L. Diaz and T. Milligan. Antenna Engineering Using Physical Optics: Practical CAD 

Techniques and Software (Artech House Antenna and Propagation Library), Artech 

House Publishers, 1996. 

 

M. Dorigo. Optimization, Learning and Natural Algorithms (in Italian), PhD thesis. 

Dipartimento di Elettronica, Politecnico di Milano, Italy, 1992. 

 

M. Dorigo and G. Di Caro. The Ant Colony Optimization Meta-Heuristic. New 

Methods in Optimization, D. Corne, M. Dorigo and F. Glover, Eds., McGraw-Hill, 

1999. 

 

M. Dorigo, V. Maniezzo and A. Colorni. Positive Feedback as a Search Strategy. 

Technical Report, Report no. 91-016, Dipartimento di Elettronica, Politecnico di 

Milano, Italy, 1991. 

 

J. C. Dunn. Well Separated Clusters and Optimal Fuzzy Partitions. Journal of 

Cybernetics, vol. 4, pp. 95-104, 1974. 

 

R. Eberhart, P. Simpson and R. Dobbins. Computational Intelligence PC Tools. 

Morgan Kaufmann, 1996.  

 

R. Eberhart and Y. Shi. Comparison between Genetic Algorithms and Particle Swarm 

Optimization. In Proceedings of the Seventh Annual Conference on Evolutionary 

Programming, pp. 611-619. Springer-Verlag, 1998.  

 

R. Eberhart and Y. Shi.  Evolving Artificial Neural Networks. In Proceedings of the 

International Conference on Neural Networks and Brain, Beijing, China, PL5-PL13, 

1998. 

 



 

 

 

219 
 

R. Eberhart and Y. Shi. Comparing Inertia Weights and Constriction Factors in 

Particle Swarm Optimization. In Proceedings of the Congress on Evolutionary 

Computing, San Diego, USA, pp. 84-89, 2000.  

 

A. El-Gallad, M. El-Hawary and A. Sallam. Swarming of Intelligent Particles for 

Solving the Nonlinear Constrained Optimization Problem. Engineering Intelligent 

Systems for Electrical Engineering and Communications, vol. 9, no. 3, pp. 155-163, 

2001. 

 

A. Engelbrecht. Computational Intelligence: An Introduction. John Wiley and Sons, 

2002. 

 

S. Esquivel and C. Coello Coello. On the use of Particle Swarm Optimization with 

Multimodal Functions. In Proceedings of IEEE Congress on Evolutionary 

Computation, pp 1130-1136, 2003. 

 

B. Everitt. Cluster Analysis. Heinemann Books, London, 1974. 

 

J. Fieldsend and S. Singh. A Multi-objective Algorithm based upon Particle Swarm 

Optimization, an Efficient Data Structure and Turbulence. In The 2002 UK Workshop 

on Computational Intelligence, UK, pp. 34-44, 2002. 

 

E. Fiume and M. Quellette. On Distributed, Probabilistic Algorithms for Computer 

Graphics. Graphics Interface '89, pp. 211-218, 1989. 

 

R. Fletcher. Practical Methods of Optimization, second edition. John Wiely & Sons, 

2000. 

 

C. Floudas and P. Pardalos. Recent Advances in Global Optimization. Princeton 

Universality Press, 1992. 

 

L. Fogel. Evolutionary Programming in Perspective: The Top-down View. 

Computational Intelligence: Imitating Life, J.M. Zurada, R. Marks II and C. 

Robinson, Eds., Piscataway, New Jersey, USA, IEEE Press, 1994. 



 

 

 

220 
 

 

E. Forgy. Cluster Analysis of Multivariate Data: Efficiency versus Interpretability of 

Classification. Biometrics, vol. 21, pp. 768-769, 1965. 

 

B. Freisleben and A. Schrader. An Evolutionary Approach to Color Image 

Quantization. In Proceedings of IEEE International Conference on Evolutionary 

Computation, pp. 459-464, 1997. 

 

H. Frigui and R. Krishnapuram. Clustering by Competitive Agglomeration. Pattern 

Recognition Letters, vol. 30, no. 7, pp. 1109-1119, 1997. 

 

H. Frigui and R. Krishnapuram. A Robust Competitive Clustering Algorithm with 

Applications in Computer Vision. IEEE Transactions on Pattern Analysis and 

Machine Intelligence, vol. 21, no.5, pp. 450-465, 1999. 

 

P. Frnti, J. Kivijrvi and O. Nevalainen. Tabu Search Algorithm for Codebook 

Generation in Vector Quantization. Pattern Recognition, vol. 31, no. 8, pp. 1139-

1148, 1998. 

 

C. Fuh, S. Cho and K. Essig. Hierarchical Color Image Region Segmentation for 

Content-Based Image Retreival Systems. IEEE Transactions on Image Processing, 

vol. 9, no. 1, pp. 156-162, 2000. 

 

Y. Fukuyama and H. Yoshida. A Particle Swarm Optimization for Reactive Power 

and Voltage Control in Electric Power Systems. In Proceedings of the IEEE Congress 

on Evolutionary Computation, Seoul, S. Korea, pp. 87-93, 2001. 

 

K. Gabarro. Tabu Search Algorithm, 

http://www.lsi.upc.es/~mallba/public/library/firstProposal-BA/node11.html (visited 

18 August 2004). 

 

Z. Gaing. Particle Swarm Optimization to Solving the Economic Dispatch 

Considering the Generator Constraints. IEEE Transactions on Power Systems, vol. 18, 

no. 3, pp. 1187-1195, 2003. 



 

 

 

221 
 

 

 

I. Gath and A. Geva. Unsupervised Optimal Fuzzy Clustering. IEEE Transactions on 

Pattern Analysis and Machine Intelligence, vol. 11, no. 7, pp. 773-781, 1989. 

 

M. Gervautz and W. Purgathofer. A Simple Method for Color Quantization: Octree 

Quantization. Graphics Gems, Academic Press, N.Y., 1990. 

 

F. Glover. Tabu Search – Part I. ORSA Journal on Computing, vol. 1, no. 3, pp. 190-

206, 1989. 

 

F. Glover. Tabu Search – Part II. ORSA Journal on Computing, vol. 2, no. 1, pp. 4-32, 

1990. 

 

D. Goldberg. Genetic Algorithms in search, optimization and machine learning. 

Addison-Wesley, 1989. 

 

R. Gonzalez and R. Woods. Digital Image Processing. Addison-Wesley, 1992. 

 

P. Gray, W. Hart, L. Painton, C. Phillips, M. Trahan and John Wagner. A Survey of 

Global Optimization Methods, Sandia National Laboratories, 1997, http:// 

www.cs.sandia.gov/opt/survey (visited 2 July 2004). 

 

M. Halkidi, Y. Batistakis and M. Vazirgiannis. On Clustering Validation Techniques. 

Intelligent Information Systems Journal, Kluwer Pulishers, vol. 17, no. 2-3, pp.107-

145, 2001. 

 

M. Halkidi and M. Vazirgiannis. Clustering Validity Assessment: Finding the 

Optimal Partitioning of a data set. In Proceedings of ICDM Conference, CA, USA, 

2001. 

 

M. Halkidi and M. Vazirgiannis. Clustering Validity Assessment using Multi 

representative. In Proceedings of the Hellenic Conference on Artificial Intelligence, 

SETN, Thessaloniki, Greece, 2002. 



 

 

 

222 
 

 

G. Hamerly. Learning Structure and Concepts in Data using Data Clustering, PhD 

Thesis. University of California, San Diego, 2003. 

 

G. Hamerly and C. Elkan. Alternatives to the K-means Algorithm that Find Better 

Clusterings. In Proceedings of the ACM Conference on Information and Knowledge 

Management (CIKM-2002), pp. 600-607, 2002. 

 

G. Hamerly and C. Elkan. Learning the K in K-means. In The Seventh Annual 

Conference on Neural Information Processing Systems, 2003. 

 

P. Heckbert. Color Image Quantization for Frame Buffer Display. ACM Computer 

Graphics, vol. 16, no. 3, pp. 297-307, 1982. 

 

N. Higashi and H. Iba. Particle Swarm Optimization with Gaussian Mutation. In 

Proceedings of the IEEE Swarm Intelligence Symposium 2003 (SIS 2003), 

Indianapolis, Indiana, USA. pp. 72-79, 2003. 

 

A. Hlavka and M. A. Spanner. Unmixing AVHRR Imagery to Access Clearcuts and 

Forest Regrowth on Oregon. IEEE Transactions on Geoscience and Remote Sensing, 

vol. 33, pp 788-795, 1995. 

 

J. Holland. Outline for a Logical Theory of Adaptive Systems. Journal of the ACM, 

vol. 3, pp. 297-314, 1962. 

 

J. Holland. Adaptation in Natural and Artificial Systems. University of Michigan 

Press, Michigan, USA, 1975. 

 

F. Hoppner, F. Klawonn, R. Kruse and T. Runkler. Fuzzy Cluster Analysis, Methods 

for Classification, Data Analysis and Image Recognition. John Wiley & Sons Ltd, 

1999. 

 
R. Horst, P. Pardalos and N. Thoai. Introduction to Global Optimization, second 

edition. Kluwer Academic Publishers, 2000. 



 

 

 

223 
 

 

X. Hu. Particle Swarm Optimization: Bibliography, 2004. 

http://www.swarmintelligence.org/bibliography.php (visited 8 February 2005). 

 

X. Hu and R. Eberhart. Adaptive Particle Swarm Optimization: Detection and 

Response to Dynamic Systems. In Proceedings of congress on Evolutionary 

Computation, Hawaii, USA, pp. 1666-1670, 2002. 

 

X. Hu and R. Eberhart. Multiobjective Optimization using Dynamic Neighborhood 

Particle Swarm Optimization. In Proceedings of congress on Evolutionary 

Computation, Hawaii, USA, pp. 1677-1681, 2002. 

 

X. Hu and R. Eberhart. Solving Constrained Nonlinear Optimization Problems with 

Particle Swarm Optimization. In the Sixth World Multiconference on Systemics, 

Cybernetics and Informatics (SCI 2002), Orlando, USA, 2002. 

 

K. Huang. A Synergistic Automatic Clustering Technique (Syneract) for Multispectral 

Image Analysis. Photogrammetric Engineering and Remote Sensing, vol. 1, no.1, pp. 

33-40, 2002. 

 

A. Ismail and A. Engelbrecht. Global Optimization Algorithms for Training Product 

Unit Neural Networks. In IEEE International Conference on Neural Networks, Como, 

Italy,2000. 

 
A. Jain and R. Dubes. Algorithms for Clustering Data. Prentice Hall, New Jersey, 

USA, 1988. 

 

A. Jain, R. Duin and J. Mao. Statistical Pattern Recognition: A Review. IEEE 

Transactions on Pattern Analysis and Machine Intelligence, vol. 22, no.1, pp. 4-37, 

2000. 

 

R. Jain, R. Kasturi and B. Schunck. Machine Vision. McGraw-Hill, Inc., New York, 

USA, 1995. 

 



 

 

 

224 
 

A. Jain, M. Murty and P. Flynn. Data Clustering: A Review. ACM Computing 

Surveys, vol. 31, no. 3, pp. 264-323,1999. 

 

C. Janikow and Z. Michalewicz. An Experimental Comparison of Binary and Floating 

Point Representations in Genetic Algorithm. In Proceedings of the Fourth 

International Conference in Genetic Algorithms, pp. 31-36, Morgan Kaufmann, 1991. 

 

A. Jensen and S. Kristensen. Basic PSO versus Multi Swarm PSO. Topics of 

Evolutionary Computation, EVALife, Department of Computer Science, University of 

Aarhus, Denmark, 2002. 

 

D. Judd, P. Mckinley and A. Jain. Large-scale Parallel Data Clustering. IEEE 

Transactions on Pattern Analysis and Machine Intelligence, vol. 20, no. 8, pp. 871-

876, 1998. 

 

R. Kass and L. Wasserman. A Reference Bayesian Test for Nested Hypotheses and its 

Relationship to the Schwarz Criterion. Journal of the American Statistical 

Association, vol. 90, no. 431, pp. 928-934, 1995. 

 

T. Kaukoranta, P. Fränti and O. Nevalainen. A New Iterative Algorithm for VQ 

Codebook Generation. International Conference on Image Processing, pp. 589-593, 

1998.  

 

J. Kennedy. Small Worlds and Mega-Minds: Effects of Neighborhood Topology on 

Particle Swarm Performance. In Proceedings of the Congress on Evolutionary 

Computation, pp. 1931-1938, 1999. 

 

J. Kennedy and R. Eberhart. Particle Swarm Optimization. In Proceedings of IEEE 

International Conference on Neural Networks, Perth, Australia, vol. 4, pp. 1942-1948, 

1995. 

 

J. Kennedy and R. Eberhart. A Discrete Binary Version of the Particle Swarm 

Algorithm. In Proceedings of the Conference on Systems, Man, and Cybernetics, pp. 

4104-4109, 1997. 



 

 

 

225 
 

 

J. Kennedy and R. Eberhart. Swarm Intelligence. Morgan Kaufmann, 2001. 

 

J. Kennedy and R. Medes. Population Structures and Particle Swarm Performance. In 

Proceedings of the IEEE Congress on Evolutionary Computation, Hawaii, USA, 

2002. 

 

J. Kennedy and W. Spears. Matching Algorithms to Problems: An Experimental Test 

of the Particle Swarm and Some Genetic Algorithms on the Multimodal Problem 

Generator. In IEEE International Conference on Evolutionary Computation, 

Achorage, Alaska, USA, 1998. 

 

R. Klein and R. Dubes. Experiments in Projection and Clustering by Simulated 

Annealing. Pattern Recognition, vol. 22, pp. 213-220, 1989. 

 

T. Kohonen. Self-Organizing Maps. Springer Series in Information Sciences, 30, 

Springer-Verlag, NewYork, USA, 1995. 

 

B. Korte and J. Vygen. Combinatorial Optimization: Theory and Algorithms, second 

edition. Springer-Verlag, Berlin, 2002.  

 

C. Kotropoulos, E. Augé and I. Pitas. Two-layer Learning Vector Quantizer for Color 

Image Quantization. Signal Processing IV: Theories and Applications, J. Vandewalle, 

R. Boite, M. Moonen, A. Oosterlinck, Eds., pp. 1177-1180, 1992. 

 

J. Koza. Genetic Programming: On the Programming of Computers by means of 

Natural Selection. MIT Press, Cambridge, Massachusetts, 1992. 

 

T. Krink, and M. Løvbjerg. The LifeCycle model: Combining Particle Swarm 

Optimisation, Genetic Algorithms and HillClimbers. In Proceedings of Parallel 

Problem Solving from Nature VII, pp. 621-630, 2002. 

 



 

 

 

226 
 

T. Krink, J. Vesterstrøm, J. Riget. Particle Swarm Optimization with Partial Particle 

Extension. In Proceedings of the Fourth Congress on Evolutionary Computation, 

2002. 

 

Krishnapuram and Keller. A Possibilistic Approach to Clustering. IEEE Transactions 

on Fuzzy Systems, vol. 1, no. 2, pp. 98-110, 1993.  

 

Krishnapuram and Keller. The Possibilistic C-Means algorithm: Insights and 

Recommendations. IEEE Transactions on Fuzzy Systems, vol. 4, no. 3, pp. 385-393, 

1996. 

 

L. Kuncheva and J. Bezdek. Nearest Prototype Classification: Clustering, Genetic 

Algorithms, or Random Search?. IEEE Transactions on Systems, Man, and 

Cybernetics-Part C: Applications and Reviews, vol. 28, no. 1, pp. 160-164, 1998. 

 

S. Kwok and A. Constantinides. A Fast Recursive Shortest Spanning Tree for Image 

Segmentation and Edge Detection. IEEE Transactions on Image Processing, vol. 6, 

no. 2, pp. 328-332, 1997. 

 

C. Lee and E. Antonsson. Dynamic Partitional Clustering Using Evolution Strategies. 

In The Third Asia-Pacific Conference on Simulated Evolution and Learning, 2000. 

 

A. Leon-Garcia. Probability and Random Processes for Electrical Engineering, 

second edition. Addison Wesley, 1994. 

 

Y. Leung, J. Zhang and Z. Xu. Clustering by Space-Space Filtering. IEEE 

Transactions on Pattern Analysis and Machine Intelligence, vol. 22, no.12, pp. 1396-

1410, 2000. 

 

A. Liew, S. Leung and W. Lau. Fuzzy Image Clustering Incorporating Spatial 

Continuity. In IEE Proceedings Vision, Image and Signal Processing, vol. 147, no. 2, 

2000. 

 



 

 

 

227 
 

T. Lillesand and R. Kiefer. Remote Sensing and Image Interpretation, John Wiley & 

Sons Publishing, New York, USA, 1994. 

 

A. Lorette, X. Descombes and J. Zerubia. Fully Unsupervised Fuzzy Clustering with 

Entropy Criterion. In International Conference on Pattern Recognition (ICPR'00), 

vol. 3, pp. 3998-4001, 2000. 

 

M. Løvberg. Improving Particle Swarm Optimization by Hybridization of Stochastic 

Search Heuristics and Self Organized Critically, Master's Thesis. Department of 

Computer Science, University of Aarhus, Denmark, 2002. 

 

M. Løvberg, T. Rasmussen and T. Krink. Hybrid Particle Swarm Optimiser with 

Breeding and Subpopulation. In Proceedings of the Third Genetic and Evolutionary 

Computation Conference, vol. 1, pp. 469-476, 2001. 

 

M. Løvberg and T. Krink. Extending Particle Swarm Optimizers with Self-Organized 

Criticality. In Proceedings of the Fourth Congress on Evolutionary Computation, vol. 

2, pp. 1588-1593, 2002. 

 

S. Lu and K. Fu. A Sentence-to-Sentence Clustering Procedure for Pattern Analysis. 

IEEE Transaction on Systems, Man and Cybernetics, vol. 8, pp. 381-389, 1978. 

 

L. Lucchese and S. Mitra. Color Image Segmentation: A State-of-the-Art Survey. In 

Proceedings of the Indian National Science Academy (INSA-A), New Delhi, India, 

vol. 67, no. 2, pp. 207-221, 2001. 

 

J. MacQueen. Some Methods for Classification and Analysis of Multivariate 

Observations. In Proceedings Fifth Berkeley Symposium on Mathematics, Statistics 

and Probability, vol. 1, pp. 281-297, 1967. 

 

F. Maselli. Multiclass Spectral Decomposition of Remotely Sensed Scenes by 

Selective Pixel Unmixing. IEEE Transactions on Geoscience and Remote Sensing, 

vol. 36, no. 5, pp. 1809-1819, 1998. 

 



 

 

 

228 
 

U. Maulik and S. Bandyopadhyay. Genetic Algorithm-Based Clustering Technique. 

Pattern Recognition, vol. 33, pp. 1455-1465, 2000. 

 
G. McLachlan and T. Krishnan. The EM algorithm and Extensions. John Wiley & 

Sons, Inc., 1997. 

 

K. Mehrotra, C. Mohan and Rakka. Elements of Artificial Neural Networks. MIT 

Press, 1997. 

 

Z. Michalewicz. Genetic Algorithms + Data Structures = Evolution Programs, third 

edition. Springer-Verlag, Berlin, 1996. 

 

Z. Michalewicz and D. Fogel. How to Solve It: Modern Heuristics. Springer-Verlag, 

Berlin, 2000. 

 

C. Mohan and B. Al-Kazemi. Discrete Particle Swarm Optimization. In Proceedings 

Workshop on Particle Swarm Optimization, Purdue School of Engineering and 

Technology, USA, 2001. 

 

F. Murtagh, A. Raftery and J. Starck. Bayesian Inference for Color Image 

Quantization via Model-Based Clustering Trees. Technical Report no. 402. 

Department of Statistics, University of Washington, USA, 2001. 

 

A. Ng, M. Jordan and Y. Weiss. On Spectral Clustering: Analysis and an Algorithm. 

In Proceedings of Neural Information Processing Systems (NIPS 2001), 2001. 

 

J. Oliver and D. Hand. Introduction to Minimum Encoding Inference. Technical 

Report no. 94/205. Department of Computer Science, Monash University, Australia, 

1994. 

 

E. Ozcan and C. Mohan. Analysis of a Simple Particle Swarm Optimization System. 

Intelligent Engineering Systems Through Artificial Neural Networks, vol. 8, pp. 253-

258, 1998. 

 



 

 

 

229 
 

N. Pal and J. Biswas. Cluster Validation using Graph Theoretic Concepts. Pattern 

Recognition, vol. 30, no. 6, 1997. 

 

A. Pandya and R. Macy. Pattern Recognition with Neural Networks in C++. CRC 

Press, 1996. 

 

T. Pappas. An Adaptive Clustering Algorithm for Image Segmentation. IEEE 

Transactions on Signal Processing, vol. 40, no, 4, pp. 901-914, 1992. 

 

P. Pardalos, A. Migdalas and R. Burkard. Combinatorial and Global Optimization. 

World Scientific Publishing Company, 2002. 

 

L. Parra, C. Spence, P. Sajda, A. Ziehe and K. Müller. Unmixing Hyperspectral Data. 

In Advances in Neural Information Processing Systems 12, MIT Press, pp. 942-948, 

2000. 

 

K. Parsopoulos and M. Vrahatis. Particle Swarm Optimization Method for 

Constrained Optimization Problems. Intelligent Technologies - Theory and 

Applications: New Trends in Intelligent Technologies, P. Sincak, J. Vascak, V. 

Kvasnicka and J. Pospichal, Eds., IOS Press, 2002. 

 

E. Peer, F. Van den Bergh and A. Engelbrecht. Using Neighborhoods with the 

Guaranteed Convergence PSO. In Swarm Intelligence Symposium, Piscataway, New 

Jersey, USA, pp. 235-242, IEEE Service Center, 2003. 

 

D. Pelleg and A. Moore. X-means: Extending K-means with Efficient Estimation of 

the Number of Clusters. In Proceedings of the 17th International Conference on 

Machine Learning, pp. 727-734, Morgan Kaufmann, San Francisco, CA, 2000. 

 

J. Puzicha, T. Hofmann and J. M. Buhmann. Histogram Clustering for Unsupervised 

Image Segmentation. In IEEE Proceedings of the Computer Vision and Pattern 

Recognition, vol. 2, pp. 602-608, 2000. 

 



 

 

 

230 
 

V. Raghavan and K. Birchand. A Clustering Strategy Based on a Formalism of the 

Reproductive Process in a Natural System. In Proceedings of the Second International 

Conference on Information Storage and Retrieval, pp. 10-22, 1979. 

  

R. Rardin. Optimization in Operations Research. Prentice Hall, New Jersey, USA, 

1998. 

 

A. Ratnaweera, S. Halgamuge and H. Watson. Particle Swarm Optimization with 

Self-adaptive Acceleration Coefficients. In Proceedings of the 1st International 

Conference on Fuzzy Systems and Knowledge Discovery 2002 (FSKD 2002), pp. 264-

268, 2003. 

 

R. Rendner and H. Walker. Mixture Densities, Maximum Likelihood and the EM 

Algorithm. SIAM Review, vol. 26, no. 2, 1984. 

 

R. Reynolds, B. Peng and J. Brewster. Cultural swarms II: Virtual algorithm 

emergence. In Proceedings of IEEE Congress on Evolutionary Computation 2003 

(CEC 2003), Canbella, Australia, pp. 1972-1979, 2003. 

 

J. Riget and J. Vesterstrøm. A Diversity-Guided Particle Swarm Optimizer – The 

ARPSO. EVALife Technical Report no. 2002-2, 2002.  

 

Rissanen. Modeling by Shortest Data Description. Automatica, vol. 14, pp. 465-471, 

1978. 

 

J. Robinson, S. Sinton and Y. Rahmat-Samii. Particle Swarm, Genetic Algorithm, and 

their Hybrids: Optimization of a Profiled Corrugated Horn Antenna. In IEEE 

International Symposium on Antennas & Propagation. San Antonio, Texas, USA, 

2002. 

 

C. Rosenberger and K. Chehdi. Unsupervised Clustering Method with Optimal 

Estimation of the Number of Clusters: Application to Image Segmentation. In The 

International Conference on Pattern Recognition (ICPR'00), vol. 1, pp. 1656-1659, 

2000. 



 

 

 

231 
 

 

X. Rui, C. Chang and T. Srikanthan. On the initialization and Training Methods for 

Kohonen Self-Organizing Feature Maps in Color Image Quantization. In Proceedings 

of the First IEEE International Workshop on Electronic Design, Test and 

Applications, 2002. 

 

E. Saber, A. Tekalp and G. Bozdagi. Fusion of Color and Edge Information for 

Improved Segmentation and Edge Linking. In Proceedings of IEEE International 

Conference on Acoustics, Speech, and Signal Processing, vol. 4, pp. 2176-2179, 

1996. 

 

J. Saghri, A. Tescher, F. Jaradi and M. Omran. A Viable End-Member Selection 

Scheme for Spectral Unmixing of Multispectral Satellite Imagery Data. Journal of 

Imaging Science and Technology, vol. 44, no. 3, pp. 196-203, 2000. 

 

J. Saghri, A. Tescher and M. Omran. Class-Prioritized Compression of Multispectral 

Imagery Data. Journal of Electronic Imaging, vol. 11, no. 2, pp. 246-256, 2002. 

 

A. Salman. Linkage Crossover Operator for Genetic Algorithms, PhD Dissertation. 

School of Syracuse University, USA, 1999. 

 

P. Scheunders. A Comparison of Clustering Algorithms Applied to Color Image 

Quantization. Pattern Recognition Letters, vol. 18, no. 11-13, pp. 1379-1384, 1997. 

 

P. Scheunders. A Genetic C-means Clustering Algorithm Applied to Image 

Quantization. Pattern Recognition, vol. 30, no. 6, 1997. 

 

P. Scheunders and S. De Backer. Joint Quantization and Error Diffusion of Color 

Images using Competitive Learning. In International Conference on Image 

Processing, vol. 1, pp. 811, 1997. 

 

L. Schoofs and B. Naudts. Swarm Intelligence on the Binary Constraint Satisfaction 

Problem. In Proceedings of the IEEE Congress on Evolutionary Computation (CEC 

2002), Honolulu, Hawaii USA, 2002 



 

 

 

232 
 

 
J. J. Settle and N. A. Drake. Linear Mixing and Estimation of Ground Cover 

Proportions. International Journal in Remote Sensing, vol. 14, no. 6,  pp 1159-1177, 

1993. 

 

S. Shafer and T. Kanade. Color Vision. Encyclopedia of Artificial Intelligence, pp. 

124-131, Wiley, 1987. 

 

Y. Shi and R. Eberhart. A Modified Particle Swarm Optimizer. In Proceedings of the 

IEEE International Conference on Evolutionary Computation, Piscataway, New 

Jersey, pp. 69-73, 1998. 

 

Y. Shi and R. Eberhart. Parameter Selection in Particle Swarm Optimization. 

Evolutionary Programming VII: Proceedings of EP 98, pp. 591-600, 1998. 

 

Y. Shi and R. Eberhart. Fuzzy Adaptive Particle Swarm Optimization. In Proceedings 

Congress on Evolutionary Computation, Seoul, S. Korea, 2001. 

 

J. Shi and J. Malik. Normalized Cuts and Image Segmentation. In Proceedings of 

IEEE International Conference on computer Vision and Pattern Recognition, pp. 731-

737, 1997. 

 

P. Sneath and R. Sokal. Numerical Taxonomy. Freeman, London, UK, 1973. 

 

J. Spall. Introduction to Stochastic Search and Optimization, first edition. Wiley-
Interscience, 2003. 
 

R. Storn and K. Price. Differential Evolution – A Simple and Efficient Heuristic for 

Global Optimization over Continuous Spaces. Global Optimization, vol. 11, pp. 341-

359, 1997. 

 

M. Su. Cluster Analysis: Chapter two Lecture notes, 2002, 

http://selab.csie.ncu.edu.tw/~muchun/course/cluster/CHAPTER%202.pdf (visited 15 

August 2004). 



 

 

 

233 
 

  

P. Suganthan. Particle Swarm Optimizer with Neighborhood Optimizer. In 

Proceedings of the Congress on Evolutionary Computation, pp. 1958-1962, 1999. 

 

S. Theodoridis and K. Koutroubas. Pattern Recognition. Academic Press, 1999. 

 

J. Tou. DYNOC – A Dynamic Optimal Cluster-seeking Technique. International 

Journal of Computer and Information Sciences, vol. 8, no. 6, pp. 541-547, 1979. 

 

J. Tou and R. Gonzalez. Pattern Recognition Principles. Addison-Wesley, 

Massachusetts, USA, 1974.  

 

I. Trelea. The Particle Swarm Optimization Algorithm: Convergence Analysis and 

Parameter Selection. Information Processing Letters, vol. 85, no. 6, pp. 317-325, 

2003. 

 

M. Trivedi and J. Bezdek. Low-level Segmentation of Aerial Images with Fuzzy 

Clustering. IEEE Transactions on Systems, Man and Cybernetics, vol. 16, no. 4, pp. 

589-598, 1986. 

 

D. Tsou and C. MacNish. Adaptive Particle Swarm Optimisation for High-

dimensional Highly Convex Search Spaces. In Proceedings of IEEE Congress on 

Evolutionary Computation 2003 (CEC 2003), Canbella, Australia. pp. 783-789, 2003. 

 

R.H. Turi. Clustering-Based Colour Image Segmentation, PhD Thesis. Monash 

University, Australia, 2001. 

 

T. Uchiyama and M. Arbib. Color Image Segmentation using Competitive Learning. 

IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 16, no. 12, pp. 

1197-1206, 1994. 

 

F. Van den Bergh. An Analysis of Particle Swarm Optimizers, PhD Thesis. 

Department of Computer Science, University of Pretoria, South Africa, 2002. 

 



 

 

 

234 
 

F. Van den Bergh and A. Engelbrecht. Cooperative Learning in Neural Networks 

using Particle Swarm Optimizers. South African Computer Journal, vol. 26, pp. 84-

90, 2000. 

 

F. Van den Bergh and A.P. Engelbrecht. Effects of Swarm Size on Cooperative 

Particle Swarm Optimizers. In Proceedings of the Genetic and Evolutionary 

Computation Conference, San Francisco, USA, pp. 892-899, 2001. 

 

F. Van den Bergh and A.P. Engelbrecht. A New Locally Convergent Particle Swarm 

Optimizer. In Proceedings of the IEEE Conference on Systems, Man, and 

Cybernetics, Hammamet, Tunisia, 2002. 

 

D. Van der Merwe and A. Engelbrecht. Data Clustering using Particle Swarm 

Optimization. In IEEE Congress on Evolutionary Computation. Canberra, Australia, 

pp.  215-220, 2003 

 

P. Van Laarhoven and E. Aarts. Simulated Annealing: Theory and Applications. 

Kluwer Academic Publishers, 1987. 

 

C. Veenman, M. Reinders and E. Backer. A Maximum Variance Cluster Algorithm. 

IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 24, no. 9, pp. 

1273-1280, 2002. 

 

C. Veenman, M. Reinders and E. Backer. A Cellular Coevolutionary Algorithm for 

Image Segmentation. IEEE Transactions on Image Processing, vol. 12, no. 3, pp. 

304-316, 2003. 

 

K. Veeramachaneni, T. Peram, C. Mohan and L. Osadciw. Optimization Using 

Particle Swarm with Near Neighbor Interactions. Lecture Notes Computer Science, 

vol. 2723, Springer Verlag, 2003. 

 

L. Velho, J. Gomes and M. Sobreiro. Color Image Quantization by Pairwise 

Clustering. In Proceedings of the Tenth Brazilian Symposium on Computer Graphics 

and Image Processing, pp. 203-207, 1997. 



 

 

 

235 
 

 

G. Venter and J. Sobieszczanski-Sobieski. Particle Swarm Optimization. In the 43rd 

AIAA/ASME/ASCE/AHA/ASC Structures, Structural Dynamics and Materials 

Conference, Denver, Colorado, USA, 2002. 

 

C. Wallace. An Improved Program for Classification. Technical Report no. 47. 

Department of Computer Science, Monash University, Australia, 1984. 

 

C. Wallace and D. Boulton. An Information Measure for Classification. The 

Computer Journal, vol. 11, pp. 185-194, 1968. 

 

C. Wallace and D. Dowe. Intrinsic Classification by MML – the snob program. In 

Proceedings Seventh Australian Joint Conference on Artificial Intelligence, UNE, 

Armidale, NSW, Australia, pp. 37-44, 1994. 

 

S. Wan, P. Prusinkiewicz and S. Wong. Variance-based Color Image Quantization for 

Frame Buffer Display. Color Research and Application, vol. 15, no. 1, pp. 52-58, 

1990. 

 

A. Watt. Three-Dimensional Computer Graphics. Addison-Wesley, 1989. 

 

H. Weiss. Genetic Algorithms and Optimum Robot Design, Institute of Robotics and 

Mechatronics, 2003, http://www.robotic.dlr.de/Holger.Weiss/garep/node3.html 

(visited 6 July 2004). 

 

D. Whitley and S. Rana. Search, Binary Representations, and Counting Optima. In 

Proceeding of a Workshop on Evolutionary Algorithms, Sponsored by the Institute for 

Mathematics and its Applications, 1998. 

 

J. Wu, H. Yan and A. Chalmers. Color Image Segmentation Using Fuzzy Clustering 

and Supervised Learning. Journal of Electronic Imaging, vol. 3, no. 4, pp. 397-403, 

1994. 

 



 

 

 

236 
 

X. Wu and K. Zhang. A Better Tree-Structured Vector Quantizer. In Proceedings 

IEEE Data Compression Conference, pp. 392-401, 1991.  

 

Z. Xiang. Color Image Quantization by Minimizing the Maximum Inter-cluster 

Distance. ACM Transactions on Graphics, vol. 16, no. 3, pp. 260-276, 1997. 

 

Z. Xiang and G. Joy. Color Image Quantization by Agglomerative Clustering. IEEE 

Computer Graphics and Applications, vol. 14, no. 3, pp. 44-48, 1994. 

 

X. Xie, W. Zhang and Z. Yang. A Dissipative Particle Swarm Optimization. In IEEE 

Congress on Evolutionary Computation, Honolulu, Hawaii, USA, 2002. 

 

K. Yasuda, A. Ide and N. Iwasaki. Adaptive Particle Swarm Optimization. In 

Proceedings of IEEE International Conference on Systems, Man and Cybernetics, pp. 

1554-1559, 2003. 

 

H. Yoshida, K. Kawata, Y. Fukuyama and Y. Nakanishi. A Particle Swarm 

Optimization for Reactive Power and Voltage Control Considering Voltage Stability.  

In Proceedings of the International Conference on Intelligent System Application to 

Power Systems, Rio de Janeiro, Brazil, pp. 117–121, 1999. 

 

B. Zhang. Generalized K-Harmonic Means - Boosting in Unsupervised Learning. 

Technical Report HPL-2000-137. Hewlett-Packard Labs, 2000. 

 

B. Zhang, M. Hsu and U. Dayal. K-Harmonic Means - A Data Clustering Algorithm. 

Technical Report HPL-1999-124. Hewlett-Packard Labs, 1999. 

 

W. Zhang, Y. Liu and M. Clerc. An Adaptive PSO Algorithm for Reactive Power 

Optimization. In Advances in Power System Control Operation and Management, 

Hongkong. 2003. 

 

W. Zhang and X. Xie. DEPSO: Hybrid Particle Swarm with Differential Evolution 

Operator. In IEEE International Conference on Systems, Man and Cybernetics, 

Washington DC, USA, pp. 3816-3821, 2003. 



 

 

 

237 
 

 

Y. Zhang, M. Brady and S. Smith. Segmentation of Brain MR Images Through a 

Hidden Markov Random Field Model and the Expectation-Maximization Algorithm. 

IEEE Transactions on Medical Imaging, vol. 20, no. 1, pp. 45-57, 2001. 

 

Y. Zheng, L. Ma, L. Zhang and J. Qian. Robust PID Controller Design using Particle 

Swarm Optimizer. In Proceedings of IEEE International Symposium on Intelligence 

Control, pp. 974-979, 2003. 

 



 

 

 

238 
 

Appendix A 

Definition of Terms and Symbols 

 

This appendix lists the terms and symbols frequently used in this thesis. 

 

pattern is a single object or data point used by the clustering algorithm. 

cluster is a set of similar patterns, and patterns from different clusters are not similar. 

Nc  is the maximum number of clusters. 

Nd  is the dimension of the data set. 

Np  is the number of patterns to be clustered. If the data set is an image (or a set of 

images) Np denotes the number of image pixels. 

ℜ  is the set of all real numbers 

Z denotes the dataset being clustered (i.e. the set of patterns). 

zp  denotes the coordinates of pattern (or pixel) p. 

Ck  denotes the kth cluster. 

mk  denotes the centroid of Ck. 

K  denotes the number of clusters. 

xi  is the current position of particle i. 

vi  is the current velocity of particle i. 

yi  is the personal best position of particle i. 

iŷ  is the neighborhood best position of particle i. 

ŷ  is the position of the global best particle. 

f denotes the function being optimized. 

t denotes time or time steps.  



 

 

 

239 
 

Appendix B 

Derived Publications 

 

This appendix provides a list of publications that have been published, or are currently being 

reviewed, that were derived from the work introduced in this thesis. 

 
Journal Publications: 

 

1. M. Omran, A. Engelbrecht and A. Salman. Particle Swarm Optimization 

Method for Image Clustering. To appear in the in the International Journal of 

Pattern Recognition and Artificial Intelligence. 

2. A. Salman, M. Omran and A. Engelbrecht. SIGT: Synthetic Image Generation 

Tool for Clustering Algorithms. To appear in the ICGST International Journal 

on Graphics, Vision and Image Processing (GVIP), vol. V2, pp. 33-44, 

January, 2005. 

3. M. Omran, A. Salman and A. Engelbrecht. Dynamic Clustering using Particle 

Swarm Optimization with Application in Image Segmentation. Pattern 

Recognition, submitted 2004. 

4. M. Omran, A. Engelbrecht and A. Salman. A PSO-based End-Member 

Selection Method for Spectral Unmixing of Multispectral Satellite Images, 

Pattern Recognition, submitted, 2004. 

5. M. Omran, A. Engelbrecht amd A. Salman. A PSO-based Color Image 

Quantizer, Special issue of Soft Computing Journal in image processing, 

submitted, 2004. 



 

 

 

240 
 

Book Chapter: 

 

6. M. Omran, A. Engelbrecht and A. Salman. Image Classification using Particle 

Swarm Optimization. Recent Advances in Simulated Evolution and Learning, 

K. Tan, M. Lim, X. Yao and L. Wang (Editors), World Scientific, Series on 

Advances in Natural Computation, 2004. 

 

Conference Publications: 

 

7. M. Omran, A. Salman and A. Engelbrecht. Image Classification using Particle 

Swarm Optimization. In Conference on Simulated Evolution and Learning, 

Singapore, pp. 370-374, November 2002. 


