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Preface 

Designing object detection and recognition systems that work in the real world 
is a challenging task due to various factors including the high complexity of 
the systems, the dynamically changing environment of the real world and 
factors such as occlusion, clutter, articulation, and various noise contributions 
that make the extraction of reliable features quite difficult. Furthermore, 
features useful to the detection and recognition of one kind of object or in the 
processing of one kind of imagery may not be effective in the detection and 
recognition of another kind of object or in the processing of another kind of 
imagery. Thus, the detection and recognition system often needs thorough 
overhaul when applied to other types of images different from the one for 
which the system was designed. This is very uneconomical and requires highly 
trained experts. The purpose of incorporating learning into the system design 
is to avoid the time consuming process of feature generation and selection and 
to lower the cost of building object detection and recognition systems. 

Evolutionary computation is becoming increasingly important for computer 
vision and pattern recognition fields. It provides a systematic way of synthesis 
and analysis of object detection and recognition systems. With learning 
incorporated, the resulting recognition systems will be able to automatically 
generate new features on the fly and cleverly select a good subset of features 
according to the type of objects and images to which they are applied. The 
system will be flexible and can be applied to a variety of objects and images. 

This book investigates evolutionary computational techniques such as 
genetic programming (GP), linear genetic programming (LGP), 
coevolutionary genetic programming (CGP) and genetic algorithms (GA) to 
automate the synthesis and analysis of object detection and recognition 
systems. The ultimate goal of the learning approaches presented in this book 
is to lower the cost of designing object detection and recognition systems and 
build more robust and flexible systems with human-competitive performance. 



xxil Preface

The book presents four important ideas.

First, this book shows the efficacy of GP and CGP in synthesizing effective
composite operators and composite features from domain-independent
primitive image processing operations and primitive features (both elementary
and complex) for object detection and recognition. It explores the role of
domain knowledge in evolutionary computational techniques for object
recognition. Based on GP and CGP's ability to synthesize effective features
from simple features not specifically designed for a particular kind of imagery,
the cost of building object detection and recognition systems is lowered and
the flexibility of the systems is increased. More importantly, a large amount of
unconventional features are explored by GP and CGP and these
unconventional features yield exceptionally good detection and recognition
performance in some cases, overcoming the human experts' limitation of
considering only a small number of conventional features.

Second, smart crossover, smart mutation and a new fitness function based
on the minimum description length (MDL) principle are designed to improve
the efficiency of genetic programming. Smart crossover and smart mutation
are designed to identify and keep the effective components of composite
operators from being disrupted and a MDL-based fitness function is proposed
to address the well-known code bloat problem of GP without imposing severe
restriction on the GP search. Compared to normal GP, smart GP algorithm
with smart crossover, smart mutation and a MDL-based fitness function finds
effective composite operators more quickly and the composite operators
learned by smart GP algorithm have smaller size, greatly reducing both the
computational expense during testing and the possibility of overfitting during
training.

Third, a new MDL-based fitness function is proposed to improve the
genetic algorithm's performance on feature selection for object detection and
recognition. The MDL-based fitness function incorporates the number of
features selected into the fitness evaluation process and prevents GA from
selecting a large number of features to overfit the training data. The goal is to
select a small set of features with good discrimination performance on both
training and unseen testing data to reduce the possibility of overfitting the
training data during training and the computational burden during testing.



Preface xxiii

Fourth, adaptive revolutionary linear genetic programming (LGP) in
conjunction with general image processing, computer vision and pattern
recognition operators is proposed to synthesize recognition systems. The basic
two-class approach is extended for scalability to multiple classes and various
architectures and strategies are considered.

The book consists of eight chapters dealing with various evolutionary
approaches for automatic synthesis and analysis of object detection and
recognition systems. Many real world imagery examples are given in all the
chapters and a comparison of the results with standard techniques is provided.

The book will be of interest to scientists, engineers and students working in
computer vision, pattern recognition, object recognition, machine learning,
evolutionary learning, image processing, knowledge discovery, data mining,
cybernetics, robotics, automation and psychology.

Authors would like to thank Ken Grier, Dale Nelson, Lou Tamburino, and
Bob Herklotz for their guidance and support. Many discussions held with Ed
Zelnio, Tim Ross, Vince Velten, Gregory Power, Devert Wicker, Grinnell
Jones, and Sohail Nadimi were very helpful.

The work covered in this book was performed at the University of
California at Riverside. It was partly supported by funding from Air Force
Research Laboratory during the last four years. Krzysztof Krawiec was at the
University of California at Riverside on a temporary leave from Poznan
University of Technology, Poznan, Poland. He would like to acknowledge the
support from the Scientific Research Committee, Poland (KBN). Authors
would like to thank Julie Vu and Lynne Cochran for their secretarial support.

Riverside, California Bir Bhanu
November 2004 Yingqiang Lin

Krzysztof Krawiec



Chapter 1 

INTRODUCTION 

In recent years, with the advent of newer, much improved and inexpensive 
imaging technologies and the rapid expanding of the Internet, more and more 
images are becoming available. Recent developments in image collection 
platforms produce far more imagery than the declining ranks of image analysts 
are capable of handling due to human work load limitations. Relying on 
human image experts to perform image analysis, processing and classification 
becomes more and more unrealistic. Building object detection and recognition 
systems to take advantage of the speed of computer is a viable and important 
solution to the increasing need of processing a large quantity of images 
efficiently. 

1 .I Object Detection and Recognition Problem 

The object detection and recognition problem is one of the most important 
research areas in pattern recognition and computer vision [7], [IS]. It has wide 
range of applications in surveillance, reconnaissance, object and target 
recognition, autonomous navigation, remote sensing, manufacturing 
automation, etc. The major task of object detection is to locate and extract 
regions that may contain objects in an image. It is an important intermediate 
step to object recognition. The extracted regions are called regions-of-interest 
(ROIs) or object chips. ROI extraction is very important to object recognition, 



2 Chapter 1. Introduction 

since the size of an image is usually large, leading to the heavy computational 
burden of processing the whole image. By extracting ROIs, the computational 
cost of object recognition is greatly reduced, thus improving the recognition 
efficiency. This advantage is particularly useful to real-time applications, 
where the recognition speed is of prime importance. Also, by extracting ROIs, 
the recognition system can focus on the extracted regions that may contain 
potential objects and this can be very helpful in improving the recognition 
accuracy. Generally, the extracted ROIs are identical to their corresponding 
regions in the original image, but sometimes, they may be images that result 
from applying some image processing operations to the corresponding regions 
in the original image. No matter what ROIs are, they are passed to an object 
recognition module for further processing. Usually, in order to increase the 
probability of object detection, some false alarm ROIs, which do not contain 
an object, but some natural or man-made clutter, are allowed to pass object 
detection phase. 

The task of object recognition is first to reject the false alarm ROIs and then 
recognize the kinds of objects in the ROIs containing them. It is actually a 
signal-to-symbol problem of labeling perceived signals with one or more 
symbols. A solution to this problem takes images or the features extracted 
from images as input and outputs one or more symbols which are the labels of 
the objects in the images. Sometimes, the symbols may further represent the 
pose of the objects or the relations between different objects. These symbols 
are intended to capture some useful aspects of the input and in turn, permit 
some high level reasoning on the perceived signals. 

It is well known that automatic object detection and recognition is really not 
an easy task. The quality of detection and recognition is heavily dependent on 
the kind and quality of features extracted from the image, and it also highly 
relies on the representation of an object based on the extracted features. The 
features used to represent an object are the key to object detection and 
recognition. If useful features with good quality are unavailable to build an 
efficient representation of an object, good detection and recognition results 
cannot be achieved no matter what detection and recognition algorithms are 
used. However, in most real images, there is always some noise, making the 
extraction of features difficult. More importantly, since there are many kinds 
of features that can be extracted, so what are the appropriate features for the 
current detection and recognition task or how to synthesize composite features 
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particularly usehl to the detection and recognition from the primitive features 
extracted from an image? There is no easy answer to these questions and the 
solutions are largely dependent on the intuitive instinct, knowledge, previous 
experience and even the bias of human image experts. Object detection and 
recognition in many real-world applications is still a challenging problem and 
needs further research. 

1.2 Motivations for Evolutionary Computation 

In the past, object detection and recognition systems are manually developed 
and maintained by human experts. The traditional approach requires a human 
expert to select or synthesize a set of features to be used in detection and 
recognition. However, handcrafting a set of features requires human ingenuity 
and insight into the objects to be detected and recognized since it is very 
difficult to identify a set of features that characterize a complex set of objects. 
Typically, many features are explored before object detection and recognition 
systems can be built. There are a lot of features available and these features 
may be correlated. To select a set of features which, when acting 
cooperatively, can give good performance is very time consuming and 
expensive. Sometimes, simple features (also called primitive features) directly 
extracted from images may not be effective in detecting and recognizing 
objects. At this point, synthesizing composite features useful for the current 
detection and recognition task from those simple ones becomes imperative. 

Traditionally, it is the human experts who synthesize features to be used. 
However, based on their knowledge, previous experience and limited by their 
bias and speed, human experts only consider a small number of conventional 
features and many unconventional features are totally ignored. Sometimes it is 
those unconventional features that yield very good detection and recognition 
performance. Furthermore, after the features are selected or designed by 
human experts and incorporated into a system, they are fixed. The features 
used by the system are pre-determined and the system cannot generate new 
features useful to the current detection and recognition task on the fly based on 
the already available features, leading to inflexibility of the system. Features 
usehl to the detection and recognition of one kind of object or in the 
processing of one kind of imagery may not be effective in the detection and 
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recognition of another kind of object or in the processing of another kind of 
imagery. Thus, the detection and recognition system often needs thorough 
overhaul when applied to other types of images that are different from the one 
when the system was devised. This is very uneconomical. 

Synthesizing effective new features from primitive features is equivalent to 
finding good points in the feature combination space where each point 
represents a combination of primitive features. Similarly, selecting an 
effective subset of features is equivalent to finding good points in the feature 
subset space where each point represents a subset of features. The feature 
combination space and feature subset space are huge and complicated and it is 
very difficult to find good points in such vast spaces unless one has an 
efficient search algorithm. 

Hill climbing, gradient descent and simulated annealing (also called 
stochastic hill climbing) are widely used search algorithms. Hill climbing and 
gradient descent are efficient in exploring a unimodal space, but they are not 
suitable for finding global optimal points in a multi-modal space due to their 
high probability of being trapped in local optima. Thus, if the search space is 
a complicated and multi-modal space, they are unlikely to yield good search 
results. Simulated annealing has the ability to jump out of local optimal 
points, but it is heavily dependent on the starting point. If the starting point is 
not appropriately placed, it takes a long time, or even could be impossible, for 
simulated annealing to reach good points. Furthermore, in order to apply a 
simulated annealing algorithm, the neighborhood of a point must be defined 
and the neighboring points should be somewhat similar. This requires some 
knowledge about the search space and it also requires some smoothness of the 
search space. 

It is very difficult, if not impossible, to define the neighborhood of a point 
in the huge and complicated feature combination and feature subset spaces, 
since similar feature combinations and similar feature subsets may have very 
different object detection and recognition performance. Due to the lack of 
knowledge about these search spaces, a variety of genetic programming 
techniques and genetic algorithms [6], [36], [57], [58], [66] are employed in 
this book. In order to apply GP and GA, all that needs to be known are how to 
define individuals, how to define crossover and mutation operations on the 
individuals and how to evaluate individuals. GP and GA are very much 
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capable of exploring huge complicated multi-modal spaces with unknown 
structures. Maintaining a large population of individuals as multiple searching 
points, GP and GA explore the search spaces along different directions 
concurrently. With multiple searching points and the crossover and mutation 
operations' ability to immediately move a searching point from one portion of 
the search space to another faraway portion, GP and GA are less likely to be 
trapped at local optimal points. All these characteristics greatly enhance the 
probability of finding global optimal points, although they cannot guarantee 
the finding of global optima. It is to be noted that GP and GA are not random 
search algorithms, they are guided by the fitness of the' individuals in the 
population. As search proceeds, the population is gradually adapted to the 
portion of the search space containing good points. 

1.3 Evolutionary Approaches for Synthesis and Analysis 

In this book, the techniques necessary for automatic design of object detection 
and recognition systems are investigated. Here, the object detection and 
recognition system itself is the theme and the efficacy of evolutionary learning 
algorithms such as genetic programming and genetic algorithm in the feature 
generation and selection is studied. The advantage of incorporating learning is 
to avoid the time consuming process of feature selection and generation and to 
automatically explore many unconventional features. The system resulting 
from the learning is able to automatically generate features on the fly and 
cleverly select a good subset of features according to the type of object and 
image to which it is applied. The system should be somewhat flexible and can 
be applied to a variety of objects and images. The goal is to lower the cost of 
designing object detection and recognition systems and build more robust and 
flexible systems with human-competitive performance. 

This book investigates evolutionary computational techniques such as 
genetic programming (GP), coevolutionary genetic programming (CGP), 
linear genetic programming (LCP) and genetic algorithm (GA) to automate the 
synthesis and analysis of object detection and recognition systems. 

First, this book shows the efficacy of GP and CGP in synthesizing effective 
composite operators and composite features from domain-independent 



6 Chapter 1. Introduction 

primitive image processing operations and primitive features for object 
detection and recognition. It explores the role of domain knowledge in 
evolutionary computation. Based on GP and CGP's ability to synthesize 
effective features from simple features not specifically designed for a 
particular kind of imagery, the cost of building object detection and 
recognition systems is lowered and the flexibility of the systems is increased. 
More importantly, it shows that a large amount of unconventional features are 
explored by GP and CGP and these unconventional features yield 
exceptionally good detection and recognition performance in some cases, 
overcoming the human experts' limitation of considering only a small number 
of conventional features. 

Second, smart crossover, smart mutation and a new fitness function based 
on minimum description length (MDL) principle are designed to improve the 
efficiency of genetic programming. Smart crossover and smart mutation are 
designed to identify and keep the effective components of composite operators 
from being disrupted and a MDL-based fitness function is proposed to address 
the well-known code bloat problem of GP without imposing severe restriction 
on the GP search. Compared to normal GP, a smart GP algorithm with smart 
crossover, smart mutation and a MDL-based fitness function finds effective 
composite operators more quickly and the composite operators learned by a 
smart GP algorithm have smaller size, greatly reducing both the computational 
expense during testing and the possibility of overfitting during training. 

Third, a new MDL-based fitness function is proposed to improve the 
genetic algorithm's performance on feature selection for object detection and 
recognition. The MDL-based fitness function incorporates the number of 
features selected into the fitness evaluation process and prevents GA from 
selecting a large number of features to overfit the training data. The goal is to 
select a small set of features with good discrimination performance on both 
training and unseen testing data to reduce both the possibility of overfitting the 
training data during training and the computational burden during testing. 

Fourth, linear genetic programming (LGP) and coevolutionary genetic 
programming (CGP) techniques are used to synthesize a feature extraction 
procedure (FEP) to generate features for object recognition. FEP consists of a 
sequence of instructions, which are primitive image processing operators that 
are executed sequentially one after another. Each instruction in a FEP is 
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composed of an opcode determining the operator to be used and arguments 
referring to registers from which to fetch the input data and to which to store 
the result of the instruction. LGP is a variety of GP with simplified, linear 
representation of individuals and it is a hybrid of GA and GP and combines 
their advantages. LGP is similar to GP in the sense that each individual 
actually contains a sequence of interrelated operators. On the other hand, a 
FEP has a fixed number of instructions and an instruction is encoded into a 
fixed-length binary string at the genome level, which is essentially equivalent 
to GA representation. LGP encoding is, therefore, more positional and more 
resistant to destructive crossovers. When CGP is applied, the problem of 
feature construction can be decomposed at different levels. We explore 
decomposition at the instruction, feature, class and decision levels. Our 
experiments show the superiority of decomposition at the instruction level. 
With different segments of a FEP evolved by sub-populations of CGP, a better 
FEP can be synthesized by concatenating the segments from sub-populations. 
The benefits we expect from the decomposition of feature construction by 
CGP include faster convergence of the learning process, better scalability of 
the learning with respect to the problem size and better understanding of the 
obtained solutions. 

1.4 Outline of the Book 

The outline of the book is as follows: 

Chapter 1 is the introduction. It describes object detection and recognition 
problems, provides motivation and advantages of incorporating evolutionary 
computation in the design of object detection and recognition systems. 

Chapter 2 discusses synthesizing composite features for object detection. 
Genetic programming (GP) is applied to the learning of composite features 
based on primitive features and primitive image processing operations. The 
primitive features and primitive image processing operations are domain- 
independent, not specific to any kind of imagery so that the proposed feature 
synthesis approach can be applied to a wide variety of images. 
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Chapter 3 concentrates on improving the efficiency of genetic 
programming. A fitness function based on the minimum description length 
(MDL) principle is proposed to address the well-known code bloat problem of 
GP while at the same time avoiding severe restriction on the GP search. The 
MDL fitness fbnction incorporates the size of a composite operator into the 
fitness evaluation process to prevent it from growing too large, reducing 
possibility of overfitting during training and the computational expenses 
during testing. The smart crossover and smart mutation are proposed to 
identify the effective components of a composite operator and keep them from 
being disrupted by subsequent crossover and mutation operations to W h e r  
improve the efficiency of GP. 

In chapter 4, genetic algorithms (GA) are used for feature selection for 
distinguishing objects from natural clutter. Usually, GA is driven by a fitness 
function based on the performance of selected features. To achieve excellent 
performance during training, GA may select a large number of features. 
However, a large number features with excellent performance on training data 
may not perform well on unseen testing data due to the overfitting. Also, 
selecting more features means heavier computational burden during testing. In 
order to overcome this problem, an MDL-based fitness function is designed to 
drive GA. With MDL-based fbnction incorporating the number of features 
selected into the fitness evaluation process, a small set of features is selected to 
achieve satisfactory performance during both training and testing. 

Chapter 5 presents a method of learning composite feature vectors for object 
recognition. Coevolutionary genetic programming (CGP) is used to synthesize 
composite feature vectors based on the primitive features (simple or relatively 
complex) directly extracted from images. The experimental results using real 
SAR images show that CGP can evolve composite features that are more 
effective than the primitive features upon which they are built. 

Chapter 6 presents a coevolutionary approach for synthesizing 
recognition systems using linear genetic programming (LGP). It provides a 
rationale for the design of the method and outlines main differences in 
comparison to standard genetic programming. The basic characteristic of LGP 
approach is the linear (sequential) encoding of elementary operations and 
passing of intermediate arguments through temporary variables (registers). 
Two variants of of the approach are presented. The first approach called, 



Chapter 1. Introduction 9 

evolutionary feature programming (EFP), engages standard single-population 
evolutionary computation. The second approach called, coevolutionary feature 
programming (CFP), decomposes feature synthesis problem using cooperative 
coevolution. Various decomposition strategies for breaking up the feature 
synthesis process are discussed. 

Chapter 7 presents experimental results of applying the methodology 
described in chapter 7 to real-world computer visionlpattern recognition 
problems. It includes experiments using single-population evolutionary feature 
programming (EFP), and selected variants of coevolutionary feature 
programming (CFP) cooperating at different decomposition levels. To provide 
experimental evidence for the generality of the proposed approach, it is 
verified on two different real-world tasks. First of them is the recognition of 
common household objects in controlled lighting conditions, using the widely 
known COIL-20 benchmark database. The second application is much more 
difficult and concerns the recognition of different types of vehicles in synthetic 
aperture radar (SAR) images. 

Finally, Chapter 8 provides the conclusions and hture research directions. 



Chapter 2 

FEATURE SYNTHESIS FOR OBJECT DETECTION 

2.1 Introduction 

Designing automatic object detection and recognition systems is one of the 
important research areas in computer vision and pattern recognition [7], [35]. 
The major task of object detection is to locate and extract regions of an image 
that may contain potential objects so that the other parts of the image can be 
ignored. It is an intermediate step to object recognition. The regions extracted 
during detection are called regions-of-interest (ROIs). ROI extraction is very 
important in object recognition, since the size of an image is usually large, 
leading to the heavy computational burden of processing the whole image. By 
extracting ROIs, the recognition system can focus on the extracted regions that 
may contain potential objects and this can be very helpful in improving the 
recognition rate. Also by extracting ROIs, the computational cost of object 
recognition is greatly reduced, thus improving the recognition speed. This 
advantage is particularly important for real-time applications, where the 
recognition accuracy and speed are of prime importance. 

However, the quality of object detection is dependent on the type and 
quality of features extracted from an image. There are many features that can 
be extracted. The question is what are the appropriate features or how to 
synthesize features, particularly useful for detection, from the primitive 
features extracted from images. The answer to these questions is largely 
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dependent on the intuitive instinct, knowledge, previous experience and even 
the bias of algorithm designers and experts in object recognition. 

In this chapter, we use genetic programming (GP) to synthesize composite 
features which are the output of composite operators, to perform object 
detection. A composite operator consists of primitive operators and it can be 
viewed as a way of combining primitive operations on images. The basic 
approach is to apply a composite operator on the original image or primitive 
feature images generated from the original one; then the output image of the 
composite operator, called composite feature image, is segmented to obtain a 
binary image or mask; finally, the binary mask is used to extract the region 
containing the object from the original image. The individuals in our GP based 
learning are composite operators represented by binary trees whose internal 
nodes represent the pre-specified primitive operators and the leaf nodes 
represent the original image or the primitive feature images. The primitive 
feature images are pre-defined, and they are not the output of the pre-specified 
primitive operators. 

This chapter is organized as follows: chapter 2.2 provides motivation, 
related research and contribution of this chapter; chapter 2.3 provides the 
details of genetic programming for feature synthesis; chapter 2.4 presents 
experimental results using synthetic aperture radar (SAR), infrared (IR) and 
color images. Various comparisons are given in this section to demonstrate the 
effectiveness of the approach, including examples of two-class and multi-class 
imagery; finally, chapter 2.5 provides the conclusions of this chapter. 

2.2 Motivation and Related Research 

2.2.1 Motivation 

In most imaging applications, human experts design an approach to detect 
potential objects in images. The approach can often be divided into some 
primitive operations on the original image or a set of related feature images 
obtained from the original one. It is the expert who, relying on histher 
experience, figures out a smart way to combine these primitive operations to 
achieve good detection results. The task of synthesizing a good approach is 
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equivalent to finding a good point in the space of composite operators formed 
by the combination of primitive operators. 

Unfortunately, the ways of combining primitive operators are infinite. The 
human expert can only try a very limited number of conventional 
combinations. However, a GP may try many unconventional ways of 
combining primitive operations that may never be imagined by a human 
expert. Although these unconventional combinations are very difficult, if not 
impossible, to be explained by domain experts, in some cases, it is these 
unconventional combinations that yield exceptionally good results. The 
unlikeliness, and even incomprehensibility of some effective solutions learned 
by GP demonstrates the value of GP in the generation of new features for 
object detection. The inherent parallelism of GP and the high speed of current 
computers allow the portion of the search space explored by GP to be much 
larger than that by human experts. The search performed by GP is not a 
random search. It is guided by the fitness of composite operators in the 
population. As the search proceeds, GP gradually shifts the population to the 
portion of the space containing good composite operators. 

2.2.2 Related research 

Genetic programming, an extension of genetic algorithm, was first proposed 
by Koza [55], [56], [57], [58] and has been used in image processing, object 
detection and object recognition. Harris and Buxton [39] applied GP to the 
production of high performance edge detectors for 1-D signals and image 
profiles. The method is also extended to the development of practical edge 
detectors for use in image processing and machine vision. Poli [92] used GP to 
develop effective image filters to enhance and detect features of interest and to 
build pixel-classification-based segmentation algorithms. Bhanu and Lin [14], 
[17], [21], [69] used GP to learn composite operators for object detection. 
Their experimental results showed that GP is a viable way of synthesizing 
composite operators from primitive operations for object detection. Stanhope 
and Daida [I141 used GP to generate rules for targetlclutter classification and 
rules for the identification of objects. To perform these tasks, previously 
defined feature sets are generated on various images and GP is used to select 
relevant features and methods for analyzing these features. Howard et al. [44] 
applied GP to automatic detection of ships in low-resolution SAR imagery by 
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evolving detectors. Roberts and Howard [103] used GP to develop automatic 
object detectors in infrared images. Tackett [I151 applied GP to the 
development of a processing tree for the classification of features extracted 
from images. 

Belpaeme [5] investigated the possibility of evolving feature detectors under 
selective pressure. His experimental results showed that it is possible for GP to 
construct visual functionality based on primitive image processing functions 
inspired by visual behavior observed in mammals. The inputs for the feature 
detectors are images. Koppen and Nickolay [54] presented a special 2-D 
texture filtering framework, based on the so-called 2-D-Lookup with its 
configuration evolved by GP that allowed representing and searching a very 
large number of texture filters. Their experimental results demonstrated that 
although the framework may never find the globally optimal texture filters, it 
evolves the initialized solutions toward better ones. Johnson et al. [50] 
described a way of automatically evolving visual routines for simple tasks by 
using genetic programming. The visual routine models used in their work were 
initially proposed by Ullman [I211 to describe a set of primitive routines that 
can be applied to find spatial relations between objects in an input image. 
Ullman proposed, that given a specific task, the visual routine processor 
compiled and organized an appropriate set of visual routines and applied it to a 
base representation. But as Johnson et al. [50] pointed out, Ullman did not 
explain how routines were developed, stored, chosen and applied. In their 
work, Johnson et al. [50] applied typed genetic programming to the problem of 
creating visual routines for the simple task of locating the left and right hands 
in a silhouette image of a person. In their GP, crossover was performed by 
exchanging between two parents the subtrees of the same root return type. To 
avoid the code bloat problem of GP, they simply canceled a particular 
crossover if it would produce an offspring deeper than the maximum allowable 
depth. Rizki et al. [I021 use hybrid evolutionary computation (genetic 
programming and neural networks) for target recognition using 1-D radar 
signals. 

Unlike the prior work of Stanhope and Daida [114], Howard et al. [44] and 
Roberts and Howard [103], the input and output of each node of a tree in the 
system described in this chapter are images, not real numbers. When the data 
from node to node is an image, the node can contain any primitive operation 
on images. Such image operations do not make sense when the data is a real 
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number. In our system, the data to be processed are images, and image 
operations can be applied to primitive feature images and any other 
intermediate images to achieve object detection results. In [114], [44], [103], 
image operations can only be applied to the original image to generate 
primitive feature images. Also, the primitive features defined in this chapter 
are more general and easier to compute than those used in [I 141, [44]. Unlike 
our previous work [17], in this chapter the hard limit of composite operator 
size is removed and a soft size limit is used to let GP search more freely while 
at the same time preventing the code-bloat problem. The training in this 
chapter is not performed on a whole image, but on the selected regions of an 
image and this is very helpful in reducing the training time. Of course, training 
regions must be carefully selected and represent the characteristics of training 
images [ll]. Also, two types of mutation are added to further increase the 
diversity of the population. Finally, more primitive feature images are 
employed. The primitive operators and primitive features designed in this 
chapter are very basic and domain-independent, not specific to a kind of 
imagery. Thus, this system and methodology can be applied to a wide variety 
of images. For example, results are shown here using synthetic aperture radar 
(SAR), infrared (IR) and color video images. 

2.3 Genetic Programming for Feature Synthesis 

In our GP based approach, individuals are composite operators represented by 
binary trees. The search space of GP is huge and it is the space of all possible 
composite operators. Note that there could be equivalent composite operators 
in terms of their output images. In the computer system, a pixel of an image 
can assume only finite values, the number of possible images is finite, but this 
number is huge and astronomical. Also, if we set a maximum composite 
operator size, the number of composite operators is also finite, but again this 
number is also huge and astronomical. To illustrate this, consider only a 
special kind of binary tree, where each tree has exactly one leaf node and 30 
internal nodes and each internal node has only one child. For 17 primitive 
operators and only one primitive feature image, the total number of such trees 
is 17~'. It is extremely difficult to find good composite operators from this vast 
space unless one has a smart search strategy. 
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2.3.1 Design considerations 

There are five major design considerations, which involve: determining the set 
of terminals; the set of primitive operators; the fitness measure; the parameters 
for controlling the evolutionary run; and the criterion for terminating a run. 

The set of terminals: The set of terminals used in this chapter are sixteen 
primitive feature images generated from the original image: the first one is the 
original image; the others are mean, deviation, maximum, minimum and 
median images obtained by applying templates of sizes 3x3, 5x5 and 7x7, as 
shown in Table 2.1. These images are the input to composite operators. GP 
determines which operations are applied on them and how to combine the 
results. To get the mean image, we translate a template across the original 
image and use the average pixel value of the pixels covered by the template to 
replace the pixel value of the pixel covered by the central cell of the template. 
To get the deviation image, we just compute the pixel value difference 
between the pixel in the original image and its corresponding pixel in the mean 
image. To get maximum, minimum and median images, we translate the 
template across the original image and use the maximum, minimum and 
median pixel values of the pixels covered by the template to replace the pixel 
value of the pixel covered by the central cell of the template, respectively. 
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Table 2.1. Sixteen primitive feature images used as the set of terminals.

No.
0

1

2

3

4

5

6

7

Primitive
feature
image
PFIMO

PFIM1

PFIM2

PFIM3

PFIM4

PFIM5

PFIM6

PFIM7

Description
Original image

3x3 mean
image

5x5 mean
image

7x7 mean
image

3x3 deviation
image

5x5 deviation
image

7x7 deviation
image

3x3 maximum
image

No.
8

9

10

11

12

13

14

15

Primitive
feature
image
PFIM8

PFIM9

PFIM10

PFIM11

PFIM12

PFIM13

PFIM14

PFIM15

Description
5x5 maximum

image
7x7 maximum

image

3x3 minimum
image

5x5 minimum
image

7x7 minimum
image

3x3 median
image

5x5 median
image

7x7 median
image
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The set of primitive operators: A primitive operator takes one or two 
input images, performs a primitive operation on them and stores the result in a 
resultant image. Currently, 17 primitive operators are used by GP to form 
composite operators, as shown in Table 2.2, where A and B are input images 
of the same size and c is a constant (ranging from -20 to 20) stored in the 
primitive operator. For operators such as ADD, SUB, MUL, etc., that take two 
images as input, the operations are performed on the pixel-by-pixel basis. In 
the operators MAX, MIN, MED, MEAN and STDV, a 3x3, 5x5 or 7x7 
neighborhood is used with equal probability. Operator 16 (MEAN) can be 
considered as a kind of convolution for low pass filtering and operator 17 
(STDV) is a kind of convolution for high pass filtering. Operators 13 (MAX), 
14 (MIN) and 15 (MED) can also be considered as convolution operators. We 
do not include edge operators for several reasons. First, these operators are not 
primitive and we want to investigate if GP can synthesize effective composite 
operators or features from simple and domain-independent operations. This is 
important since without relying on domain knowledge, we can examine the 
power of a learning algorithm when applied to a variety of images. Second, 
edge detection operators can be dissected into the above primitive operators 
and it is possible for GP to synthesize edge operators or composite operators 
approximating them if they are very useful to the current object detection task. 
Finally, the primitive operator library is decoupled from the GP learning 
system. Edge detection operators can be added in the primitive operator library 
if they are absolutely needed by the current object detection task. 

Some operations used to generate feature images are the same as some 
primitive operators (see Table 2.1 and Table 2.2), but there are some 
differences. Primitive feature images are generated from original images, so 
the operations generating primitive feature images are applied to an original 
image. A primitive operator is applied to a primitive feature image or to an 
intermediate image output that is generated by the child node of the node 
containing this primitive operator. In short, the input image of a primitive 
operator varies. 
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Table 2.2. Seventeen primitive operators.

No.
1
2
3
4

5

6

7
8
9
10
11

12

13

14

15

16

17

Operator
ADD (A, B)
SUB (A, B)
MUL (A, B)
DIV (A, B)

MAX2 (A, B)

MIN2 (A, B)

ADDC (A)
SUBC (A)
MULC (A)
DIVC (A)
SQRT (A)

LOG (A)

MAX (A)

MIN (A)

MED (A)

MEAN (A)

STDV (A)

Description
Add images A and B.
Subtract image B from A.
Multiply images A and B.
Divide image A by image B (If the pixel in B has
value 0, the corresponding pixel in the resultant
image takes the maximum pixel value in A).
The pixel in the resultant image takes the larger pixel
value of images A and B.
The pixel in the resultant image takes the smaller
pixel value of images A and B.
Increase each pixel value by c.
Decrease each pixel value by c.
Multiply each pixel value by c.
Divide each pixel value by c.
For each pixel with value v, if v > 0, change its value
to sfv . Otherwise, to —/-v.

For each pixel with value v, if v > 0, change its value
to ln(V). Otherwise, to -ln(-v).
Replace the pixel value by the maximum pixel value
in a 3x3, 5x5 or 7x7 neighborhood.
Replace the pixel value by the minimum pixel value
in a 3x3, 5x5 or 7x7 neighborhood.
Replace the pixel value by the median pixel value in
a 3x3, 5x5 or 7x7 neighborhood.
Replace the pixel value by the average pixel value of
a 3x3, 5x5 oE 7x7 neighborhood.
Replace the pixel value by the standard deviation of
pixels in a 3x3, 5x5 or 7x7 neighborhood.
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The fitness measure: It measures the extent to which the ground-truth and 
the extracted ROI overlap. The fitness value of a composite operator is 
computed in the following way. Suppose G and G' are foregrounds in the 
ground-truth image and the resultant image of the composite operator 
respectively. Let n(X) denote the number of pixels within region X, then 
Fitness = n(GnG ') / n(G u G '). The fitness value is between 0 and 1. If G and 
G'  are completely separated, the value is 0; if G and G'  are completely 
overlapped, the value is 1. 

Parameters and termination: The key parameters are: the population size 
M; the number of generations N; the crossover rate; the mutation rate; and the 
fitness threshold. The GP stops whenever it finishes the pre-specified number 
of generations or whenever the best composite operator in the population has 
fitness value greater than the fitness threshold. 

2.3.2 Selection, crossover and mutation 

GP searches through the space of composite operators to generate new 
composite operators, which may be better than the previous ones. By 
searching through the composite operator space, GP gradually adapts the 
population of composite operators from generation to generation and improves 
the overall fitness of the whole population. More importantly, GP may find an 
exceptionally good composite operator during the search. The search is done 
by performing selection, crossover and mutation operations [2], [7 11, [118]. 
The initial population is randomly generated and the fitness of each individual 
is evaluated. 

Selection: The selection operation involves selecting composite operators 
from the current population. In this chapter, we use tournament selection, 
where a number of individuals (in this case five) are randomly selected from 
the current population and the one with the highest fitness value is copied into 
the new population. 

Crossover: To perform crossover, two composite operators are selected on 
the basis of their fitness values. The higher the fitness value, the more likely 
the composite operator is selected for crossover. These two composite 
operators are called parents. One internal node in each of these two parents is 
randomly selected, and the two subtrees rooted at these two nodes are 
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exchanged between the parents to generate two new composite operators, 
called offspring. The offspring are composed of subtrees from their parents. If 
two composite operators are somewhat effective in detection, then some of 
their parts probably have some merit. The reason that an offspring may be 
better than the parents is that recombining randomly chosen parts of somewhat 
effective composite operators may yield a new composite operator that is even 
more effective in detection. 

It is easy to see that the size of one offspring (i.e., the number of nodes in 
the binary tree representing the offspring), may be greater than both parents. 
So if we do not control the size of composite operators when implementing 
crossover in this simple way, the sizes of composite operators will become 
larger and larger as GP proceeds. This is the well-known code bloat problem 
of GP. It is a very serious problem, since when the size becomes too large, it 
will take a long time to execute a composite operator, thus, greatly reducing 
the search speed of GP. Further, large-size composite operators may overfit 
the training data by approximating various noisy components of an image. 
Although the results on the training image may be very good, the performance 
on unseen testing images may be bad. Also, large composite operators take up 
a lot of computer memory. Due to the finite computer resources and the desire 
to achieve a good running speed (efficiency) of GP, we must limit the size of 
composite operator by specifying its maximum size. In our previous work 
[17], if the size of one offspring exceeds the maximum size allowed, the 
crossover operation is performed again until the sizes of both offspring are 
within the limit. Although this simple method guarantees that the size of 
composite operators does not exceed the size limit, it is a brutal method since 
it sets a hard size limit. The hard size limit may restrict the search performed 
by GP, since after randomly selecting a crossover point in one composite 
operator, GP cannot select some nodes of the other composite operator as a 
crossover point in order to guarantee that both offspring do not exceed the size 
limit. However, restricting the search may greatly reduce the efficiency of GP, 
making it less likely to find good composite operators. 

One may suggest that after two composite operators are selected, GP may 
perform crossover twice and may each time keep the offspring of smaller size. 
This method can enforce the size limit and will prevent the sizes of offspring 
composite operators from growing large. However, GP will now only search 
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the space of these smaller composite operators. With a small number of nodes, 
a composite operator may not capture the characteristics of objects to be 
detected. How to avoid restricting the GP search while at the same time 
prevent code-bloat is the key to the success of GP and it is still a subject of 
intensive research. The key is to find a balance between these two conflicting 
factors. 

In this chapter, we set a composite operator size limit to prevent code- 
bloating, but unlike our previous work, the size limit is a soft size limit, so it 
restricts the GP search less severely than the hard size limit. With a soft size 
limit, GP can select any node in both composite operators as crossover points. 
If the size of an offspring exceeds the size limit, GP still keeps it and evaluates 
it later. If the fitness of this large composite operator is the best or very close 
to the fitness of the best composite operator in the population, it is kept by GP; 
otherwise, GP randomly selects one of its sub-trees of size smaller than the 
size limit to replace it in the population. In this chapter, GP discards any 
composite operator beyond the size limit unless it is the best one in the 
population. By keeping the effective composite operators exceeding the size 
limit, GP enhances the possibility of finding good composite operators, since 
good composite operators usually contain effective components (sub-trees) 
and these effective components are kept by the soft size limit and they may 
transfer to other composite operators during crossover. Also, by keeping some 
large composite operators, the size difference between composite operators in 
the population is widened and this is helpful in reducing the possibility of 
fitness bloat (in which an increasing number of redundant composite operators 
in the population evaluate to the same fitness value), although it cannot get rid 
of it. With a hard size limit, many composite operators in the population have 
size equal or very close to the hard size limit in the later generations of GP. 
This increases the possibility of fitness bloat. However, large composite 
operators kept by the soft size limit take a long time to execute and many of 
them have redundant branches. By getting rid of the redundant branches, we 
can reduce the size and running time of composite operators without degrading 
their performance. But, in order to identify the redundant branches, the fitness 
of each internal node has to be evaluated and this is a time-consuming process. 
Moreover, some redundant branches are effective components. They are 
redundant just because they are in an inhospitable context and their effect is 
cancelled by other nodes. Eliminating them does no good to the GP search 
since these effective components may go into other friendly composite 
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operators via crossover operation. Also, composite operators with redundant 
branches are more resistant to destructive crossover and mutation. Without 
redundant branches, each part of a composite operator is important to its 
performance and breaking any component may have a major impact on the 
performance of the composite operator. 

Mutation: In order to avoid premature convergence, mutation is 
introduced to randomly change the structure of some individuals to maintain 
the diversity of the population. Composite operators are randomly selected for 
mutation. In this system, there are three types of mutation invoked with equal 
probability: 

Randomly select a node of the binary tree representing the composite 
operator and replace the subtree rooted at this node, including the node 
selected, by a new randomly generated binary tree 
Randomly select a node of the binary tree representing the composite 
operator and replace the primitive operator stored in the node with another 
primitive operator of the same arity as the replaced one. The replacing 
primitive operator is selected at random from all the primitive operators 
with the same arity as the replaced one. 
Randomly select two subtrees within the composite operator and swap 
these two subtrees. Of course, neither of the two sub-trees can be the sub- 
tree of the other. 

2.3.3 Steady-state and generational genetic programming 

Both steady-state and generational genetic programming are used in this 
chapter. In steady-state GP, two parent composite operators are selected on the 
basis of their fitness for crossover. The children of this crossover replace a pair 
of composite operators with the smallest fitness values. The two children are 
executed immediately and their fitness values are recorded. Then another two 
parent composite operators are selected for crossover. This process is repeated 
until the crossover rate is satisfied. Finally, mutation is applied to the resulting 
population and the mutated composite operators are executed and evaluated. 
The above cycle is repeated from generation to generation. In generational 
GP, two composite operators are selected on the basis of their fitness values 
for crossover and generate two offspring. The two offspring are not put into 
the current population and do not participate in the following crossover 
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operations on the current population. The above process is repeated until the 
crossover rate is satisfied. Then, mutation is applied to the composite operators 
in the current population and the offspring from crossover. After mutation is 
done, selection is applied to the current population to select some composite 
operators. The number of composite operators selected must meet the 
condition that after combining with the composite operators from crossover, 
we get a new population of the same size as the old one. Finally, combine the 
composite operators from crossover with those selected from the old 
population to get a new population and the next generation begins. In addition, 
we adopt an elitism replacement method that keeps the best composite 
operator from generation to generation. Figure 2.1 and Figure 2.2 show the 
pseudo code for steady-state and generational genetic programming 
algorithms, respectively. 
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Steady-state Genetic Programming Algorithm: 

I. randomly generate population P of size M and evaluate each composite 
operator in P. 
for gen = I to N do loop I // N is the number of generation. 

keep the best composite operator in P. 
repeat 

select 2 composite operators from P based on theirfltness values for 
crossover through tournament selection. 

select 2 composite operators with the lowest fitness values in P for 
replacement. 

perform crossover operation and let the 2 offspring replace the 2 
composite operators selected for replacement. 

execute the 2 offspring and evaluate theirfltness values. 
until crossover rate is met. 
perform mutation on each composite operator with probability of 

mutation rate and evaluate mutated composite operators. 
//After crossover and mutation, a new population P ' is generated. 
let the best composite operator from population P replace the worst 

composite operator in P' and let P = P'. 
i f  the fitness value of the best composite operator in P is above fitness 

threshold value, then stop. 
for each composite operator in P, do loop 2 

i f  its size exceeds the size limit and it is not the best composite 
operator in P, then replace it with one of its subtrees whose size is 
within the size limit. 

endfor // loop 2 
endfor //loop I 

Figure 2.1. Steady-state genetic programming algorithm. 
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Generational Genetic Programming Algorithm: 

I .  randomly generate population P of size M and evaluate each composite 
operator in P. 

2. for gen = I to N do loop I // N is the number of generation 
3. keep the best composite operator in P. 
4. perform crossoveron the composite operators in P until crossover rate 

is satisfied and keep all the offspring from crossover separately. 
5. perform mutation on the composite operators in P and the offspring 

from crossover with the probability of mutation rate. 
6. perform selection on P to select some composite operators. The number 

of selected composite operators must be M minus the number of 
composite operators from crossover. 

7. combine the composite operators from crossover with those selected 
from P to get a new population P' of the same size as P. 

8. evaluate offspring from crossover and the mutated composite operators. 
9. let the best composite operator from P replace the worst composite 

operator in P' and let P = P'. 
10. if the fitness of the best composite operator in P is above fitness 

threshold, then stop. 
I I .  for each composite operator in P, do loop 2. 
12. if its size exceeds the size limit and it is not the best composite 

operator in P, then replace it with one of its subtrees whose size is 
within the size limit. 

endfor // loop 2 
endfor //loop I 

Figure 2.2. Generational genetic programming algorithm. 



2.4 Experiments 27 

2.4 Experiments 

Various experiments are performed to test the efficacy of genetic 
programming in extracting regions of interest from real synthetic aperture 
radar (SAR) images, infrared (IR) images and RGB color images. We provide 
detailed results using examples from remote sensing, target recognition, and 
survallence/monitoring application areas. We give several comparisons to 
demonstrate the effectiveness of the approach. These include comparisons 
with the image-based genetic programming and the traditional ROI extraction 
algorithm. We also provide the performance of the GP with hard limit on the 
composite operator size. The results from the hard size limit GP are compared 
with those from the MDL-based GP in chapter 3. We provide examples of 
both two-class classification and multi-class classification. 

The size of SAR images is 128x128, except the tank SAR images whose 
size is 80x80, and the size of IR and RGB color images is 160x120. GP in 
chapter 2.4.1 Examples 1-5, 2.4.2, 2.4.5 and 2.4.6 is not applied to a whole 
training image, but only to a region or regions carefully selected from a 
training image, to generate the composite operators. The generated composite 
operator (with the highest fitness) is then applied to the whole training image 
and to some other testing images to evaluate it. The advantage of performing 
training on a small selected region is that it can greatly reduce the training 
time, making it practical for the GP system to be used as a subsystem of other 
learning systems, which improve the efficiency of GP by adapting the 
parameters of GP system based on its performance. Our experiments show 
that if the training regions are carefully selected from the training images, the 
best composite operator generated by GP is effective. In the following 
experiments in sections 2.4.1, 2.4.2, 2.4.3, and 2.4.6, the parameters are: 
population size (loo), the number of generations (70), the fitness threshold 
value (1.0), the crossover rate (0.6), the mutation rate (0.05), the soft size limit 
of composite operators (30), and the segmentation threshold (0). In each 
experiment, GP is invoked ten times with the same parameters and the same 
training region(s). The coordinate of the upper left comer of an image is (0,O). 
The ground-truth is used only during the training, it is not needed during 
testing. We use it in testing only for evaluating the performance of the 
composite operator on testing images. The size, orientation or shape of the 
objects in testing images is different from those in the training images. 
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2.4.1 SAR Images 

Five experiments are performed with real SAR images. The experimental 
results from one run and the average performance of ten runs are given in 
Table 2.3. We select the run in which GP finds the best composite operator 
among the composite operators found in all ten runs. The first two rows show 
the average values of the above fitness values over all ten runs. The third and 
fourth rows show the fitness value of the best composite operator and the 
population fitness value (average fitness value of all the composite operators 
in the population) on training region (s) in the initial and final generations in 
the selected run. The fitness values of the best composite operators on the 
entire training image (numbers with a * superscript) and other testing images 
in their entirety are also given. The regions extracted during the training and 
testing by the best composite operator from the selected run are shown in the 
following examples. 

Example 1 - Road extraction: Three images contain road, the first one 
contains horizontal paved road and field (Figure 2.3(a)); the second one 
contains unpaved road and field (Figure 2.10 (a)); the third one contains 
vertical paved road and grass (Figure 2.10(d)). Training is done on the training 
regions of training image shown in Figure 2.3(a). After the training, the 
learned composite operator is evaluated on the whole training image and 
testing images. There are two training regions, locating from (5, 19) to (50, 
119) and from (82, 48) to (126, 124), respectively. Figure 2.3(b) shows the 
ground-truth provided by the user and the training regions. The white region 
corresponds to the road and only the training regions of the ground-truth are 
used in the evaluation during the training. Figure 2.4 shows the sixteen 
primitive feature images of the training image. 
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Table 2.3. The performance on various examples of SAR images
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(a) paved road (b) ground- (c) composite (d) ROI 
vs. field truth feature image extracted 

Figure 2.3. Training SAR image containing road. 

The generational GP is used to synthesize a composite operator to extract the 
road and the results of the best of the ten runs (sixth run) are reported. The 
fitness value of the best composite operator in the initial population is 0.68 and 
the population fitness value is 0.28. The fitness value of the best composite 
operator in the final population is 0.95 and the population fitness value is 0.67. 
Figure 2.3(c) shows the output image of the best composite operator on the 
whole training image and Figure 2.3(d) shows the binary image after 
segmentation. The output image has both positive pixels in brighter shade and 
negative pixels in darker shade. Positive pixels belong to the region to be 
extracted. The fitness value of the extracted ROI is 0.93. The best composite 
operator has 17 nodes and its depth is 16. It has only one leaf node containing 
5x5 median image. The median image is less noisy, since median filtering is 
effective in eliminating speckle noises. The best composite operator is shown 
in Figure 2.5, where PFIM14 is 5x5 median image. Figure 2.6 shows how the 
average fitness of the best composite operator and average fitness of 
population over all 10 runs change as GP explores the composite operator 
space. Unlike [17] where the population fitness approaches the fitness of the 
best composite operator as GP proceeds, in Figure 2.6, population fitness is 
much lower than that of best composite operator even at the end of GP search. 
It is reasonable, since we don't restrict the selection of crossover points. The 
population fitness is not important since only the best composite operator is 
used in testing. If GP finds one effective composite operator, the GP learning 
is successful. The large difference between the fitness of the best composite 
operator and the population indicates that the diversity of the population is 
always maintained during the GP search, which is very helpful in preventing 
premature convergence. 
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Figure 2.4. Sixteen primitive feature images of training SAR image containing road. 
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Figure 2.6. Fitness versus generation (road vs. field).
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Ten best composite operators are learned in ten runs. After computing the 
percentage of each primitive operator and primitive feature image among the 
total number of internal nodes (representing primitive operators) and the total 
number of leaf nodes (representing primitive feature images) of these ten best 
cornpsite operators, we get the utility (frequency of occurence) of primitive 
operators and primitive feature images, which is shown in Figure 2.7(a) and 
(b). MED (primitive operator 15) and PFIM5 (5x5 deviation image) have the 
highest frequency of utility. Figure 2.8 shows the output image of each node of 
the best composite operator shown in Figure 2.5. From left to right and top to 
bottom, the images correspond to nodes sorted in the pre-order traversal of the 
binary tree representing the best composite operator. The output of the root 
node is shown in Figure 2.3(c), and Figure 2.8 shows the outputs of other 
nodes. The primitive operators in Figure 2.8 are connected by arrow. The 
operator at the tail of an arrow provides input to the operator at the head of the 
arrow. After segmenting the output image of a node, we get the ROI (shown as 
the white region) extracted by the corresponding subtree rooted at the node. 
The extracted ROIs and their fitness values are shown in Figure 2.9. If an 
output image of a node has no positive pixel (for example, the output of 
MEAN primitive operator), nothing is extracted and the fitness value is 0; if an 
output image has positive pixels only (for example, PFIM14 has positive 
pixels only), everything is extracted and the fitness is 0.25. The output of the 
root node storing primitive operator MED is shown in Figure 2.3(d). 
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Figure 2.7. Utility of primitive operators and primitive feature images. 
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Figure 2.8. Feature images output by the nodes of the best composite operator. The 
ouput of the root node is shown Figure 2.3(c). 
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Figure 2.9. ROIs extracted from the output images of the nodes of the best composite 
operator. The fitness value is shown for the entire image. The ouput of the root node 
is shown Figure 2.3(d). 
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We applied the composite operator obtained in the above training to the 
other two real SAR images shown in Figure 2.10 (a) and Figure 2.10 (d). 
Figure 2.10 (b) and Figure 2.10 (e) show the output of the composite operator 
and Figure 2.10 (c) shows the region extracted from Figure 2.10 (a). The 
fitness value of the region is 0.90. Figure 2.10 (f) shows the region extracted 
from Figure 2.10(d). The fitness value of the region is 0.93. 

(a) unpaved (b) composite (c) ROI 
road vs. field feature image extracted 

(d) paved road (e) composite (f) ROI extracted 
vs. grass feature image 

Figure 2.10. Testing SAR images containing road. 

Example 2 - Lake Extraction: Two SAR images contain lake (Figure 
2.1 l(a), Figure 2.12(a)), the first one contains a lake and field, and the second 
one contains a lake and grass. Figure 2.1 1(a) shows the original training image 
containing lake and field and the training region from (85, 85) to (127, 127). 
Figure 2.11(b) shows the ground-truth provided by the user. The white region 
corresponds to the lake to be extracted. Figure 2.12 (a) shows the image 
containing lake and grass used only in testing. 
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(a)lake vs.field (b) ground-truth (c) composite (d) ROI 
feature image 

Figure 2.1 1. Training SAR image containing lake. 

The steady-state GP is used to generate the composite operator and the 
results of the best of ten runs (ninth run) are shown. The fitness value of the 
best composite operator in the initial population is 0.56 and the population 
fitness value is 0.32. The fitness value of the best composite operator in the 
final population is 0.97 and the population fitness value is 0.93. Figure 2.1 1(c) 
shows the output image of the best composite operator on the whole training 
image and Figure 2.11(d) shows the binary image after segmentation. The 
fitness value of the extracted ROI is 0.93. 

We apply the composite operator to the testing image containing lake and 
grass. Figure 2.12(b) shows the output of the composite operator and Figure 
2.12(c) shows the region extracted from Figure 2.12(a). The fitness of the 
region is 0.98. 

(a) lake vs. grass (b) composite feature (c) ROI extracted 
image 

Figure 2.12. Testing SAR image containing lake. 
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Example 3 - River Extraction: Two SAR images contain river and field. 
Figure 2.13(a) and Figure 2.13(b) show the original training image and the 
ground-truth provided by the user. The white region in Figure 2.13(b) 
corresponds to the river to be extracted. The training regions are from (68, 3 1) 
to (126, 103) and from (2, 8) to (28, 74). The testing SAR image is shown in 
Figure 2.16(a). 

(a) river vs. field (b) ground-truth (c) composite (d) ROI extracted 
feature image 

Figure 2.13. Training SAR image containing river. 

The steady-state GP was used to generate the composite operator and the 
results from the best of ten runs (fourth run) are reported. The fitness value of 
the best composite operator in the initial population is 0.65 and the population 
fitness value is 0.18. The fitness value of the best composite operator in the 
final population is 0.90 and the population fitness value is 0.85. Figure 2.13(c) 
shows the output image of the best composite operator on the whole training 
image and Figure 2.13(d) shows the binary image after segmentation. The 
fitness value of the extracted ROI is 0.71. The best composite operator has 29 
nodes and a depth of 19. It has five leaf nodes that all contain 7x7 median 
image shown in Figure 2.14. There are 17 MED operators that are very useful 
in eliminating speckle noise. Figure 2.15 shows how the average fitness of the 
best composite operator and average fitness of population over all 10 runs 
change as GP explores the composite operator space. 
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Figure 2.14. Learned composite operator tree. 
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Figure 2.15. Fitness versus generation (river vs. field). 

(a) river vs. field (b) composite feature image (c) ROI extracted 

Figure 2.16. Testing SAR image containing river. 
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We apply the composite operator to the testing image containing a river and 
field. Figure 2.16(b) shows the output of the composite operator and Figure 
2.16(c) shows the region extracted from Figure 2.16(a) and the fitness value of 
the region is 0.83. There are some islands in the river and these islands along 
with part of the river around them are not extracted. 

Example 4 - Field Extraction: Two SAR images contain field and grass. 
Figure 2.17(a) and (b) show the original training image and the ground-truth. 
The training regions are from (17, 3) to (75, 61) and from (79, 62) to (124, 
122). Extracting field from a SAR image containing field and grass is the most 
difficult task among the five experiments, since the grass and field are similar 
to each other and some small regions between grassy areas are actually field 
pixels. 

(a) field vs. grass (b) ground-truth (c) composite (d) ROI extracted 
feature imaae 

Figure 2.17. Training SAR image containing field. 

The generational GP was used to generate the composite operator and the 
results from the best of ten runs (second run) are reported. The fitness value of 
the best composite operator in the initial population is 0.53 and the population 
fitness value is 0.39. The fitness value of the best composite operator in the 
final population is 0.78 and the population fitness value is 0.64. Figure 2.17(c) 
shows the output image of the best composite operator on the whole training 
image and Figure 2.17(d) shows the binary image after segmentation. The 
fitness value of the extracted ROI is 0.89. 
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(a) field vs. grass (b) composite feature image (c) ROI extracted 

Figure 2.18. Testing SAR image containing field. 

We apply the composite operator to the testing image containing field and 
grass shown in Figure 2.18(a). Figure 2.18(b) shows the output of the 
composite operator and Figure 2.18(c) shows the region extracted from Figure 
2.18(a). The fitness value of the region is 0.80. 

Example 5 - Tank Extraction: We use 80x80 size SAR images of a T72 
tank that are taken under different depression and azimuth angles. The training 
image contains a T72 tank at a 17" depression angle and 135" azimuth angle, 
which is shown in Figure 2.19(a). The training region is from (19, 17) to (68, 
66). The testing SAR image contains a T72 tank at a 20" depression angle and 
225" azimuth angle, which is shown in Figure 2.22(a). The ground-truth is 
shown in Figure 2.19(b). 

(a) T72 (b) ground- (c) composite (d) ROI 
tank truth feature image 

Figure 2.19. Training SAR image containing tank. 
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The generational GP is applied to synthesize composite operators for tank 
detection and the results from the best of ten runs (first run) are reported. The 
fitness value of the best composite operator in the initial population is 0.5 1 and 
the population fitness value is 0.16. The fitness value of the best composite 
operator in the final population is 0.88 and the population fitness value is 0.80. 
Figure 2.19(c) shows the output image of the best composite operator on the 
whole training image and Figure 2.19 (d) shows the binary image after 
segmentation. The fitness value of the extracted ROI is 0.88. The best 
composite operator, shown in Figure 2.20, has 10 nodes and its depth is 9. It 
has only one leaf node, which contains the 5x5 mean image. Figure 2.21 
shows how the average fitness of the best composite operator and average 
fitness of population over all 10 runs change as GP proceeds. 

Figure 2.20. Learned composite operator tree in LISP notation. 

generation 

Figure 2.21. Fitness versus generation (T72 tank). 
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We apply the composite operator to the testing image containing T72 tank 
under depression angle 20" and azimuth angle 225". Figure 2.22(b) shows the 
output of the composite operator and Figure 2.22(c) shows the region 
corresponding to the tank. The fitness of the extracted ROI is 0.84. 

(a) T72 tank (b) composite feature image (c) ROI extracted 

Figure 2.22. Testing SAR image containing tank. 

Our results show that GP is very much capable of synthesizing composite 
operators for target detection. With more and more SAR images collected by 
satellites and airplanes, it is impractical for human experts to scan each SAR 
image to find targets. Applying the synthesized composite operators on these 
images, regions containing potential targets can be quickly detected and 
passed on to automatic target recognition systems or to human experts for 
fbrther examination. Concentrating on the regions of interest, the human 
experts and recognition systems can perform recognition task more effectively 
and more efficiently. 

Note that composite operators shown in Figure 2.5 and Figure 2.20 may be 
called as ccprocessing chains," which is a simpler binary tree in which each 
internal node has only one child. Most of the composite operators learned by 
GP in our experiments are not processing chains. 
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2.4.2 Infrared and color images 

One experiment is performed with infrared (IR) images and two are performed 
with RGB color images. The experimental results from one run and the 
average performance of ten runs are shown in Table 2.4. As we did in chapter 
2.4.1, we select the run in which GP finds the best composite operator among 
the composite operators found in all the ten runs. The regions extracted during 
the training and testing by the best composite operator from the selected run 
are shown in the following examples. 

Table 2.4. The performance results on IR and RGB color images. 

Testing performance 
RGB image - SUV 

0.58 ftest 
fop fitness of the best composite operator on selected region(s), 
fp : fitness of population on selected region(s), 
*: indicate finess on the entire training images, 
finitial: fitness of the initial generation on selected region(s), 
ffi,,,: fitness of the final population on selected region(s), 

fitness of the best composite operator on the entire testing images. 

IR image - people 
0.84,0.81,0.86 

RGB image - car 
0.76 
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People extraction in IR images: In IR images, pixel values correspond to the 
temperature in the scene. We have four IR images with one used in training 
and the other three used in testing. Figure 2.23(a) and (b) show the training 
image and the ground-truth. Two training regions are from (59, 9) to (106, 88) 
and from (2, 3) to (21, 82), respectively. The left training region contains no 
pixel belonging to the person. The reason for selecting it during the training is 
that there are major pixel intensity changes among the pixels in this region. 
Nothing in this region should be detected. The fitness of composite operator 
on this region is defined as one minus the percentage of pixels detected in the 
region. If nothing is detected, the fitness value is 1.0. Averaging the fitness 
values of the two training regions, we get the fitness during the training. When 
the learned composite operator is applied to the whole training image, the 
fitness is computed as a measurement of the overlap between the ground-truth 
and the extracted ROI, as we did in the previous experiments. Three testing IR 
images are shown in Figure 2.26(a), (d) and (g). 

- 

(a) person (b) ground- (c) composite 
truth feature image 

(d) ROI 
extracted 

Figure 2.23. Training IR image containing a person. 

The generational GP is applied to synthesize composite operators for person 
detection and the results from the best of ten runs (third run) are reported. The 
fitness value of the best composite operator in the initial population is 0.56 and 
the population fitness value is 0.23. The fitness value of the best composite 
operator in the final population is 0.93 and the population fitness value is 0.79. 
Figure 2.23(c) shows the output image of the best composite operator on the 
whole training image and Figure 2.23(d) shows the binary image after 
segmentation. The fitness value of the extracted ROI is 0.85. The best 
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composite operator (shown in Figure 2.24) has 28 nodes and a depth of 13 
with 9 leaf nodes. Figure 2.25 shows how the average fitness of the best 
composite operator and average fitness of population over all the 10 runs 
change as GP proceeds. 

(SQRT (SQRT (SUBC (SQRT (MAX2 (MAX2 PFIMl (SUB (MAX2 
PFIM14 PFIM15) (DIV (MULC (SQRT (MAX (MAX (ADD 
PFIM12 PFIMIS))))) PFIM9))) (DIV (MULC (SQRT (MAX (ADD 
PFIM 12 PFIM9)))) PFIM9)))))) 

Figure 2.24. Learned composite operator tree in LISP notation. 

9 c ":: population 

4- 

0.4 
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0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 

generation 

Figure 2.25. Fitness versus generation (person). 

We apply the composite operator to the testing images shown in Figure 
2.26. Figure 2.26(b), (e) and (h) show the output of the composite operator and 
Figure 2.26(c), (f) and (i) show the ROI extracted. Their fitness values are 
0.84,0.81 and 0.86 respectively. 
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Car extraction in RGB color images: GP is applied to learn features to 
detect a car in RGB color images. Unlike previous experiments, the primitive 
feature images in this experiment are RED, GREEN and BLUE planes of a 
RGB color image. Figure 2.27(a), (b) and (c) show the RED, GREEN and 
BLUE planes of the training image. The ground-truth is shown in Figure 
2.27(d). The training region is from (21,3) to (91,46). 

The steady-state GP is applied to synthesize composite operators for car 
detection and the results from best of ten runs (fourth run) are reported. The 
fitness value of the best composite operator in the initial population is 0.35 and 
the population fitness value is 0.18. The fitness value of the best composite 
operator in the final population is 0.84 and the population fitness value is 0.79. 
Figure 2.27(e) shows the output image of the best composite operator on the 
whole training image and Figure 2.27(f) shows the binary image after 
segmentation. The fitness value of the extracted ROI is 0.82. The best 
composite operator has 44 nodes and its depth is 21. It has ten leaf nodes with 
one containing GREEN plane and the others containing BLUE plane. It is 
shown in Figure 2.28, where PFG means GREEN plane and PFB means 
BLUE plane. Note that only green and blue planes are used by the composite 
operator. Figure 2.29 shows how the average fitness of the best composite 
operator and average fitness of population over all 10 runs change as GP runs. 
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(a) person (b) composite feature image R ~ I  extracted 

(d) person (e) composite feature image (f) ROI extracted 

(g) Person (h) composite feature image (i) ROI extracted 

Figure 2.26. Testing IR images containing a person. 
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-- 
3 b. 

(a) RED plane (b) GREEN plane (c) BLUE plane 

(d) ground-truth (e) composite feature (f) ROI extracted 
image 

Figure 2.27. Training RGB color image containing car. 

(MED (MED (MED (MULC (MUL (SUB (MIN 
(MEAN (MAX2 (MED (ADDC (MAX2 (ADDC 
(ADDC (MED (MAX2 (MED (MED (MAX2 (MED 
(ADDC PFB)) PFB))) PFB)))) PFB))) (MED PFG)))) 
(ADDC (MAX2 (ADDC (ADDC (MED (MAX2 (MED 
(MED (MAX2 (MED (ADDC PFB)) PFB))) PFB)))) 
PFB))) (ADDC PFB)))))) 

Figure 2.28. Learned composite operator tree in LISP notation. 
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generation 

Figure 2.29. Fitness versus generation (car). 

We apply the composite operator to the testing image whose RED plane is 
shown in Figure 2.30(a). Figure 2.30 (b) shows the output of the composite 
operator and Figure 2.30(c) shows the ROI extracted. The fitness value of 
extracted ROI is 0.76. 

(a) RED plane (b) composite feature (c) ROI extracted 
image 

Figure 2.30. Testing RGB color image containing car. 
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SUV extraction in RGB color images: In this subsection, GP is applied to 
learn features to detect SUV (sports utility vehicle) in RGB color images. The 
images containing a SUV have more complicated background than the images 
containing the car, increasing the difficulty in SUV detection. This will be a 
difficult example for any segmentation technique in computer vision and 
pattern recognition. Figure 2.31(a), (b) and (c) show the RED, GREEN and 
BLUE planes of the training image and Figure 2.3 1(d) shows the ground-truth. 
The training region is from (20, 21) to (139, 100). Figure 2.3 1(f) and (g) show 
the RED plane and the ground-truth of the testing image. 

(a) RED plane (b) GREEN plane (c) BLUE plane (d) ground-truth 

(e) ROI extracted (f) RED plane (g) ground-truth (h) ROI extracted 

Figure 2.3 1. Training and testing RGB color image containing SUV. 

The steady-state GP is applied to synthesize composite operators for SUV 
detection and the results from the best of ten runs (fourth run) are reported. 
The fitness value of the best composite operator in the initial population is 
0.33 and the population fitness value is 0.22. The fitness value of the best 
composite operator in the final population is 0.69 and the population fitness 
value is 0.65. Figure 2.31(e) and (h) show the ROI extracted by the best 
composite operator from training and testing images. The fitness values of the 
extracted ROIs are 0.69 and 0.58, respectively. The extracted ROIs are not 
very satisfactory, since the shapes of ROIs differ from the shapes of vehicles 
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in images. However, the extracted ROIs contain SUVs in the training and 
testing images, which means the locations of the vehicle are correctly detected. 

2.4.3 Comparison with GP with hard limit on composite operator size 

As stated in chapter 2.3, GP has a well-known code bloat problem in that the 
size of individuals becomes larger and larger as GP proceeds if no measure is 
taken to control the size. Large individuals cause problems such as reducing 
the speed of GP, taking up a lot of computer memory, and overfitting the 
training data. To resolve this problem, a simple way is to set a limit on the size 
of individuals. If crossover or mutation produces an individual above the size 
limit, the individual is discarded and crossover or mutation is performed again. 

In this section, the performance of a hard-size GP (GP with hard limit on 
composite operator size = 30) is compared with the soft-size GP (GP with soft 
limit on composite operator size) whose performance is reported before. The 
major difference between the soft-size GP and the hard-size GP, as stated in 
chapter 2.3, is that in the soft-size GP, a composite operator with size above 
the size limit is kept in the population if its fitness value is the highest (used in 
this chapter) or above a certain threshold value. All the other parameters of 
these two GPs are the same. 

Table 2.5 shows the performance of the hard-size GP. In the following, the 
results from the best composite operator found in ten runs are shown. The 
average performance of hard-size GP over ten runs is compared with that of a 
MDL-based GP with smart operators in chapter 3. 
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Table 2.5. The performance results on various examples of SAR images. The hard 
limit on composite operator size is used. 

fop fitness of the best composite operator on selected region(s), 
fp : fitness of population on selected region(s), 
*: indicate finess on the entire training images, 
finitial: fitness of the initial generation on selected region(s), 
ffinal: fitness of the final population on selected region(s), 
f,,,,: fitness of the best composite operator on the entire testing images. 
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Road extraction: Figure 2.3(a) shows the training image and Figure 
2.10(a), (d) show the testing images. The generational GP is used to generate a 
composite operator to extract the road and the best composite operator is found 
in the seventh run. The fitness value of the best composite operator in the 
initial population is 0.60 and the population fitness value is 0.27. The fitness 
value of the best composite operator in the final population is 0.94 and the 
population fitness value is 0.93. The fitness of the extracted ROI is 0.90. 
Figure 2.32(a) shows the output image of the best composite operator in the 
final population and Figure 2.32(b) shows the extracted ROI. We apply the 
composite operator obtained in the above training to the two testing SAR 
images. Figure 2.32(c) and (d) show the output image of the composite 
operator and the ROI extracted from Figure 2.10(a), respectively. The fitness 
value of the extracted ROI is 0.90. Figure 2.32 (e) and (0 show the output 
image of the composite operator and the ROI extracted from Figure 2.10(d), 
respectively. The fitness value of the extracted ROI is 0.93. 

(a) composite (b) R01 extracted (c) composite 
feature image from Figure 2.3(a) feature image 

(d) ROI extracted from (e) composite (f) ROI extracted from 
Figure 2.10(a) feature image Figure 2.1 0(d) 

Figure 2.32. Results on SAR images containing road. 
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The best composite operator has 27 nodes and its depth is 16. It has five leaf 
nodes, three contain 5x5 median image and the other two contain 7x7 median 
image. It is shown in Figure 2.33, where PFIM14 and PFIMl5 are 5x5 and 
7x7 median images, respectively. The median images have less speckle noise, 
since median filtering is effective in eliminating speckle noise. Figure 2.34 
shows the change in the average fitness of the best composite operators and 
the average fitness of the populations over all the 10 runs as GP explores the 
composite operator space. GP gradually shifts the population to the regions of 
space containing good composite operators. 

(MAX (MAX (MIN (DIVC (DIV (ADDC 
(ADD (ADDC (ADD (SUBC (ADDC (ADD 
(SUBC (STDV (MAX (SUBC PFIM15)))) 
(MAX (SUBC PFIM14))))) (MAX (SUBC 
PFIM 14)))) (MAX (SUBC PFIM 14)))) 
PFIM15))))) 

Figure 2.33. Learned composite operator tree in LISP notation. 

generation 

Figure 2.34. Fitness versus generation (road vs. field). 



2.4 Experiments 57 

Lake extraction: Figure 2.11(a) shows the training image and Figure 
2.12(a) shows the testing image. The steady-state GP is used to generate the 
composite operator and the best composite operator is found in the 4th run. The 
fitness value of the best composite operator in the initial population is 0.62 and 
the population fitness value is 0.30. The fitness value of the best composite 
operator in the final population is 0.99 and the population fitness value is 0.95. 
The fitness of the extracted ROI is 0.95. Figure 2.35(a) shows the output 
image of the best composite operator in the final population and Figure 2.35(b) 
shows the extracted ROI. We apply the composite operator to the testing SAR 
image. Figure 2.35(c) and (d) show the output image of the composite operator 
and the extracted ROI with fitness value 0.97, respectively. In Figure 2.35(a) 
and (c), pixels in the small dark regions have very low pixel values (negative 
values with very large absolute value), thus making many pixels appear bright, 
although some of them have negative pixel values. 

(a) composite (b) ROI extracted (c) composite (d) ROI extracted 
feature image from Figure 2.1 1 (a) feature image from Figure 2.1 2(a) 

Figure 2.35. Results on SAR images containing lake. 
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River extraction: Figure 2.13(a) shows the training image and Figure 
2.16(a) shows the testing image. The steady-state GP is used to generate the 
composite operator and the results from the first run are reported. The fitness 
value of the best composite operator in the initial population is 0.59 and the 
population fitness value is 0.19. The fitness value of the best composite 
operator in the final population is 0.89 and the population fitness value is 0.86. 
The fitness of the extracted ROI is 0.72. Figure 2.36(a) shows the output 
image of the best composite operator in the final population and Figure 2.36(b) 
shows the extracted ROI. We apply the composite operator to the testing 
image. Figure 2.36(c) and (d) show the output image of the composite operator 
and the extracted ROI with fitness value 0.83. 

The best composite operator has 30 nodes and its depth is 23. It has four 
leaf nodes, three contain 5x5 mean image and the other one contains 3x3 mean 
image. There are more than ten MED operators that are very useful in 
eliminating speckle noise. It is shown in Figure 2.37. Figure 2.38 shows how 
the average fitness of the best composite operators and the average fitness of 
the populations over all the 10 runs change as GP explores the composite 
operator space. 

(a) composite (b) ROI extracted (c) composite (d) ROI extracted 
feature image from Figure 2.1 3(a) feature image from Figure 2.1 6(a) 

Figure 2.36. Results on SAR images containing river. 
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(MULC (MED (MED (MED (MED (MED 
(MED (MED (MED (MED (MED (MIN 

(ADDC (LOG (ADD (MAX (MIN (MULC 
PFIM2))) (DIV (MIN (MULC (MED (MIN 
(MAX (SUB PFIM2 (MULC PFIM2))))))) 

PFIMl)))))))))))))))) 

Figure 2.37. Learned composite operator tree in LISP notation. 
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Figure 2.38. Fitness versus generation (river vs. field). 

Field extraction: Figure 2.17(a) shows the training image and Figure 
2.18(a) shows the testing image. The generational GP is used to generate the 
composite operator and the results from the 7th run are reported The fitness 
value of the best composite operator in the initial population is 0.52 and the 
population fitness value is 0.38. The fitness value of the best composite 
operator in the final population is 0.78 and the population fitness value is 0.77. 
The fitness of the extracted ROI is 0.88. Figure 2.39(a) shows the output 
image of the best composite operator in the final population and Figure 2.39(b) 
shows the extracted ROI. We apply the composite operator to the testing 
image. Figure 2.39(c) and (d) show the output image of the composite operator 
and the extracted ROI with fitness value 0.8 1. 
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(a) composite (b) ROI (c) composite (d) ROI 
feature image extracted from feature image extracted from 

Figure 2.1 7(a) Figure 2.1 8(a) 

Figure 2.39. Results on SAR images containing field. 

Tank extraction: Figure 2.19(a) shows the training image and Figure 
2.22(a) shows the testing image. The generational GP is used to generate the 
composite operator and the results from the 6th run are reported. The fitness 
value of the best composite operator in the initial population is 0.65 and the 
population fitness value is 0.17. The fitness value of the best composite 
operator in the final population is 0.88 and the population fitness value is 0.87. 
The fitness of the extracted ROI is 0.88. Figure 2.40(a) shows the output 
image of the best composite operator in the final population and Figure 2.40(b) 
shows the extracted ROI. We apply the composite operator to the testing 
image. Figure 2.40(c) and (d) show the output image of the composite operator 
and the extracted ROI with fitness value 0.84. 

The best composite operator has 28 nodes and its depth is 17. It has four 
leaf nodes with two containing a 3x3 minimum image, one containing a 7x7 
maximum image and one containing a 7x7 minimum image. It is shown in 
Figure 2.41. Figure 2.42 shows how the average fitness of the best composite 
operators and the average fitness of the populations over all the 10 runs change 
as GP proceeds. 
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(a) composite (b) ROI (c) composite (d) ROI 
feature image extracted from feature image extracted from 

Figure 2.1 9(a) Figure 2.22(a) 

Figure 2.40. Results on SAR images containing tank. 

(MED (MED (MUL (MIN PFIM 10) (MUL 
(MAX PFIM12) (MIN2 (MAX (SUBC 

(DIVC (MIN (MEAN PFIM9))))) (SUBC 
(MED (SUBC (MAX (MAX (SUBC (MAX 

(MAX (SUBC (MAX (MAX (SUBC 
PFIM 10))))))))))))))))) 
-- 

Figure 2.41. Learned composite operator tree in LISP notation. 
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Figure 2.42. Fitness versus generation (T72 tank). 
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Comparing Table 2.3 and Table 2.5, we find that there is not much difference 
between the soft and hard size limits since both use a limit of 30 as the size of 
a composite operator. The only difference between them is that in the case of 
the soft size limit an exception is allowed if the fitness of an individual is the 
highest in the population. 

2.4.4 Comparison with image-based GP 

This subchapter is an advancement to our previous work in [17], where we 
also applied genetic programming to learn composite operators for object 
detection. The three major differences between the method presented here and 
that in [17] are: 

1. Unlike [17] where a whole training image is used during training (Image- 
based GP), here GP runs on carefully selected region(s) (Region-based GP) 
to reduce the training time. 

2. The hard size limit on the composite operator is replaced by the soft size 
limit in this chapter. This removes the restriction on the selection of 
crossover point in the parent composite operators to improve the search 
efficiency of GP, as stated in chapter 2.3.2. 

3. Only the first mutation type in chapter 2.3.2 and only the first seven 
primitive feature images are used in [17]. With more mutation types and 
more primitive feature images used, the diversity of the composite operator 
population can be further increased. 

We summarize the experimental results on SAR images in [17] for the 
purpose of comparison. The parameters are: the same population size (loo), 
100 generations (vs. 70), the same fitness threshold value (1.0), the same 
crossover rate (0.6), 0.1 mutation rate (vs. 0.05), a hard limit of 30 on the 
maximium size (number of internal nodes) of composite operators (vs. soft 
limit of 30), and the same segmentation threshold (0). In each experiment, GP 
is invoked ten times with the same parameters. The experimental results from 
the run in which GP finds the best composite operator among the composite 
operators found in all ten runs and the average performance of ten runs are 
shown in Table 2.6. 
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Road extraction: In this case, the entire training image (shown in Figure 
2.3(a)) is used and the same testing images in Figure 2.10(a), (d) are used. The 
generational GP was used to generate a composite operator to extract the road. 
The fitness value of the best composite operator in the initial population is 
0.47 and the population fitness value is 0.19. The fitness value of the best 
composite operator in the final population is 0.92 and the population fitness 
value is 0.89. Figure 2.43(a) shows the output image of the best composite 
operator in the final population and Figure 2.43(b) shows the extracted ROI. 
We applied the composite operator obtained in the above training to the two 
testing SAR images. Figure 2.43(c) and (d) show the output image of the 
composite operator and the ROI extracted from Figure 2.10(a). The fitness 
value of the extracted ROI is 0.89. Figure 2.43(e) and (9 show the output 
image of the composite operator and the ROI extracted from Figure 2.10(d). 
The fitness value of the extracted ROI is 0.92. 

Lake extraction: The entire training image in Figure 2.1 1(a) is used and 
Figure 2.12(a) shows the testing image. The steady-state GP was used to 
generate the composite operator. The fitness value of the best composite 
operator in the initial population is 0.65 and the population fitness value is 
0.42. The fitness value of the best composite operator in the final population is 
0.93 and the population fitness value is 0.92. Figure 2.44(a) shows the output 
image of the best composite operator in the final population and Figure 2.44(b) 
shows the extracted ROI. We applied the composite operator to the testing 
SAR image. Figure 2.44(c) and (d) show the output image of the composite 
operator and the extracted ROI with fitness value 0.92. In Figure 2.44(a) and 
(c), pixels in the small dark regions have very low pixel values (negative 
values with very large absolute values), thus making many pixels appear 
bright, although some of them have negative pixel values. 
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(a) composite (b) ROI extracted 
feature image from Figure 2.3(a) 

(d) ROI (e) composite 
extracted from feature image 
Figure 2.1 0(a) 

I I 

(c) composite 
feature image 

(f) ROI 
extracted from 
Figure 2.1 0 (d) 

Figure 2.43. Results on SAR images containing road. 

(a) composite (b) ROI extracted (c) composite (d) ROI extracted 
feature image from Figure 2.1 1 (a) feature image from Figure 2.1 2(a) 

Figure 2.44. Results on SAR images containing lake. 
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Table 2.6. The performance results of image-based GP on various SAR images. 

River extraction: The entire training image in Figure 2.13(a) is used and 
Figure 2.16(a) shows the testing image. The steady-state GP was used to 
generate the composite operator. The fitness value of the best composite 
operator in the initial population is 0.43 and the population fitness value is 
0.2 1. The fitness value of the best composite operator in the final population is 
0.74 and the population fitness value is 0.68. Figure 2.5(a) shows the output 
image of the best composite operator in the final population and Figure 2.5(b) 
shows the extracted ROI. We applied the composite operator to the testing 
image. Figure 2.5(c) and (d) show the output image of the composite operator 
and the extracted ROI with fitness value 0.84. Like Figure 2.44(c), pixels in 
the small dark region have very low pixel values, thus making many pixels 
with negative pixel values appear bright. 

Testing performance 

ftest 

fop fitness of the best composite operator on selected region(s), 
fp : fitness of population on selected region(s), 
*: indicate finess on the entire training images, 
finitial: fitness of the initial generation on selected region(s), 
ffinal: fitness of the final population on selected region(s), 
f,,,: fitness of the best composite operator on the entire testing images. 

Road 

0.89,0.92 

Lake 

0.92 

River 

0.84 

Field 

0.68 
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(a) composite 
feature image 

(b) ROI extracted (c) composite (d) ROI extracted 
from Figure 2.13(a) feature image from Figure 2.1 6(a) 

Figure 2.45. Results on SAR images containing river. 

(a) composite (b) ROI (c) composite (d) ROI extracted 
feature image extracted from feature image from Figure 2.1 8(a) 

Figure 2.1 7(a) 

Figure 2.46. Results on SAR images containing field. 
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Field extraction: In this case, the entire training image in Figure 2.17(a) is 
used and Figure 2.18(a) shows the testing image. The generational GP was 
used to generate the composite operator. The fitness value of the best 
composite operator in the initial population is 0.62 and the population fitness 
value is 0.44. The fitness value of the best composite operator in the final 
population is 0.87 and the population fitness value is 0.86. Figure 2.46(a) 
shows the output image of the best composite operator in the final population 
and Figure 2.46(b) shows the extracted ROI. We applied the composite 
operator to the testing image. Figure 2.46(c) and (d) show the output image of 
the composite operator and the extracted ROI with fitness value 0.68. 

Table 2.7. Average training time of region GP and image GP (in seconds). 

Road 

Region GP 

From Table 2.3 and associated figures, it can be seen that if the carefully 
selected training regions represent the characteristics of training images, the 
composite operators learned by GP running on training regions are effective in 
extracting the ROIs containing the object and their performance is comparable 
to the performance of composite operators learned by GP running on whole 
training images. By running on the selected regions, the training time is greatly 
reduced. Table 2.7 shows the average training time of GP running on selected 
regions (Region GP) and GP running on the whole training images (Image GP) 
over all ten runs. Since the number of generations in [I71 is 100 and the 
number of generations in this chapter is 70, the training time of "Image GP" 
stated in Table 2.7 is normalized as the actual training time of "Image GP" 
times 0.7. It can be seen that the training time using selected training regions is 
much shorter than that using the whole image. 
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2.4.5 Comparison with a traditional ROI extraction algorithm 

To show the effectiveness of composite operators in ROI extraction, they are 
compared with a traditional ROI extraction algorithm. The traditional ROI 
extraction algorithm uses a threshold value to segment the image into 
foreground and background. The region consisting of pixels with value greater 
than the threshold value is called the bright region and its complement is 
called the dark region. If the bright region has a higher fitness than the dark 
region, the bright region is the foreground. Otherwise, the dark region is the 
foreground. The foreground is the ROI extracted by this traditional algorithm. 
The threshold value plays a vital role in the ROI extraction and selecting an 
appropriate threshold value is the key to the success of this traditional ROI 
extraction algorithm. The performance of composite operators is compared 
with that of the traditional ROI extraction algorithm when the best threshold 
value is used. To find the best threshold value, every possible threshold value 
is tried by the algorithm and its performance is recorded. In order to show the 
effectiveness of composite features over that of primitive features, the 
traditional ROI extraction algorithm is applied to all the 16 primitive feature 
images (for SAR and IR images) or the 3 primitive feature images (RED, 
GREEN AND BLUE planes of RGB color images), and the best result from 
the 16 or 3 primitive feature images is recorded in Table 2.8 and Figure 2.47. 
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The Traditional ROI Extraction Algorithm 

find the maximum and minimum pixel values of the image. 
if the maximum pixel value is greater than 1000 

normalize the pixel values into the range of 0 to 1000. The pixel values 
are changed according to the following equation. 
newqixval = (orgqixval - minqixval) / (maxqixval - minqixval) * 
1000 
where newqixval and orgqixval are the new and original pixel values, 
respectively and minqixval and maxqixval are the minimum and 
maximum pixel values in the original image. After normalization, the 
minimum and maximum pixel values are 0 and 1000, respectively. 

else 
do not normalize the image. 

endif 
each integer value between the minimum and maximum pixel values is 
used as the threshold value and its performance in ROI extraction is 
recorded. 
select the best threshold value and output its corresponding ROI. 

The fitness values of the extracted ROIs and their corresponding threshold 
values are shown in Table 2.8. Figure 2.47 shows the ROIs extracted by the 
traditional ROI extraction algorithm corresponding to the best threshold value. 
For the purpose of comparison, Figure 2.48 shows the corresponding 
performance of the GP-learned composite operators on the same images. From 
Figure 2.47, Figure 2.48 and Table 2.8, it is clear that the composite operators 
learned by GP are more effective in ROI extraction. Actually, its performance 
is better than the best performance of the traditional ROI extraction algorithm 
in all the examples except a couple of them where there is a minor difference. 
Table 2.9 shows the average running time of the composite operators and the 
traditional ROI extraction algorithm in extracting ROIs from training and 
testing images. From Table 2.9, it is obvious that the composite operators are 
more efficient. 
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Table 2.8. Comparison of the performance of traditional ROI extraction algorithm and 
composite operators generated by GP. 
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(a) paved road (b) unpaved (c) paved road 
vs. field road vs. field VS. arass 

(d) lake vs. field (e) lake vs. grass (9 river vs. field (g) river vs. field 

(h) field vs. grass (i) field vs. grass (j) T72 tank (k) T72 tank 

(I) person (rn) person (n) person (0) person 

(P) car (4 car (r) SUV (s) SUV 

Figure 2.47. ROIs extracted by the traditional ROI extraction algorithm. 
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(a) paved road (b) unpaved (c) paved road 
vs. field road vs. field vs. grass 

(d) lake vs. field (e) lake vs. grass (f) river vs. field (g) river vs. field 

(h) field vs. grass (i) field vs. grass (j) T72 tank (k) T72 tank 

(I) person (m) person (n) person (0) person 

(P) car ((4) car (r) SUV (s) suv 

Figure 2.48. ROIs extracted by the GP-evolved composite operators. 
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Table 2.9. Average running time (in seconds) of the composite operators and the
traditional ROI extraction algorithm.

Composite
operator

Traditional
ROI

exaction
algorithm

Road

5

12.3

Lake

15

10

River

33

50.5

Field

8

32

Tank

3

23

Person

1

3.4

Car

2

5.5

SUV

6

20.5

2.4.6 A multi-class example

In the above examples, we showed the effectiveness and efficiency of
composite operators learned by GP in ROI extraction. In this section, a
complicated SAR image (shown in Figure 2.49(a)) containing lake, road, field,
tree and shadow is used as a testing image. Note that shadow is an unknown
region (reject class, not considered in this chapter) in this example. Figure
2.49(b), (c) and (d) show the ground-truth for lake, road and field.

We apply the composite operators for lake, road and field learned in
Examples 2, 1 and 4, respectively, to the above testing image. The lake
operator is applied first; then the road operator is applied to the rest of the
image excluding the lake ROIs; finally, the field operator is applied to the rest
of the image excluding both lake and road ROIs. The ROIs extracted are
shown in Figure 2.50. The fitness values are 0.85, 0 and 0.75, respectively.
These results are not promising. Since the pixel values of road and lake
regions are quite similar (see Figure 2.53, many pixels in the road and lake
regions have values between 0 and 20), the lake composite operator extracts
part of the road and the road composite operator extracts no road pixel. In
order to force GP to learn composite operators that can distinguish the subtle
difference between the lake and road pixels, a SAR image (shown in Figure
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2.52) containing both lake and road is used as a training image. Figure 2.52(a) 
shows the original image with the training regions from (4, 96) to (124, 119) 
and from (2, 25) to (127, 86) used by GP to learn composite operators for the 
lake extraction. To learn composite operators for the road extraction, the same 
image with the training region from (90, 30) to (135, 117) shown in Figure 
2.52(c) and the training image used in Example 1 are used for training. Figure 
2.52(b) and (d) show the ground-truth for the lake and road, respectively. Note 
that the images in Figure 2.49(a) and Figure 2.52(a) are quite different. 

(a) original image (b) lake ground- (c) road ground- (d) field ground- 
truth truth truth 

Figure 2.49. SAR image containing lake, road, field, tree and shadow. 

(a) lake ROI (b) road ROI (c) field ROI 

Figure 2.50. Lake, road and field ROIs extracted by the composite operators learned in 
Examples 1,2 and 4. 
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pixel vaue 

(a) Lake 

0 20 40 60 80 100 120 140 160 180 200 

pixel value 

(b) road 

Figure 2.5 1. Histogram of pixel values (range 0 to 200) within lake and road regions. 

(a) original (b) lake (c) original (d) road 
image ground-truth image ground-truth 

Figure 2.52. SAR image containing lake and road. 
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(a) lake ROI extracted (b) road ROI extracted (c) road ROI extracted 

Figure 2.53. lake and road ROIs extracted from training images. 

The steady-state GP is applied to synthesize composite operators for lake 
detection and the ROI extracted by the learned composite operator from the 
training image is shown in Figure 2.53(a). The fitness value of the extracted 
ROI is 0.95. The generational GP is applied to synthesize composite operators 
for road detection. The ROIs extracted by the learned composite operator from 
the training images (Figure 2.3(a) and Figure 2.52(c)) are shown in Figure 
2.53(b) and (c). The fitness values are 0.78 and 0.90, respectively. 

We apply the newly learned lake and road composite operators to the testing 
image in Figure 2.49(a). The extracted lake and road ROIs are shown in Figure 
2.54(a) and (b). The fitness values of the extracted ROIs are 0.93 and 0.46, 
respectively. After extracting the lake and road from the image, we exclude the 
regions corresponding to the extracted lake and road ROIs and apply the field 
composite operator learned in Example 4 to the rest of the image. The 
extracted ROI is shown in Figure 2.54(c) and its fitness value is 0.81. The 
running times are 53, 127 and 26 seconds, respectively for the results shown in 
Figure 2.54. 
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(a) lake ROI (b) road ROI (c) field ROI 

Figure 2.54. Lake, road and field ROIs extracted from the testing image. 

(a) lake ROI (b) road ROI (c) field ROI 

Figure 2.55. Lake, road and field ROIs extracted by the traditional algorithm. 

Finally, the traditional ROI extraction algorithm is applied to the above 
testing image. The extracted ROIs, corresponding to the best threshold values, 
of the lake, road and field are shown in Figure 2.55(a), (b) and (c), 
respectively. To extract road, the regions corresponding to the extracted lake 
ROIs are removed and the algorithm is applied to the rest of the image. Figure 
2.55(b) demonstrates that it is very difficult for the traditional ROI extraction 
algorithm to distinguish road from field in SAR images. To extract field, the 
regions corresponding to the ground-truth of the lake and road (not the ROIs 
corresponding to the lake and road) are excluded. The reason that we do not 
use extracted ROIs is that the extracted road ROIs are very bad. The fitness 
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values of the extracted lake, road and field ROIs are 0.86, 0.15 and 0.79, 
respectively. The best threshold values are 16, 55 and 28.5, and the running 
times are 192, 176 and 195 seconds, respectively. It can be seen that the GP 
learned composite operators are more effective in the lake, road and field 
detection, compared to the traditional ROI extraction algorithm. 

2.5 Conclusions 

In this chapter, we use genetic programming to synthesize composite operators 
and composite features to detect potential objects in images. We use a soft 
composite operator size limit to avoid code-bloating and severe restrictions on 
GP search. We also compare it with the hard limit on composite operator size. 
Our experimental results show that the primitive operators and primitive 
features defined by us are effective. GP can synthesize effective composite 
operators for object detection by running on the carefully selected training 
regions of images and the synthesized composite operators can be applied to 
the whole training images and other similar testing images. We do not find 
significant difference between generational and steady-state genetic 
programming algorithms. 

As discussed, GP has code bloat problem. Controlling code bloat due to the 
limited computational resources inevitably restricts the search efficiency of 
GP. How to reach the balance between the two conflicting factors (size of the 
composite operator and performance) is critical in the implementation of GP. 
In the next chapter, we address this problem by designing a new fitness 
function based on the minimum description length (MDL) principle to 
incorporate the size of composite operators into the fitness evaluation process. 



Chapter 3 

MDL-BASED EFFICIENT GENETIC PROGRAMMING 
FOR OBJECT DETECTION 

3.1 Introduction 

In chapter 2, the efficacy of genetic programming in learning composite 
features for object detection is demonstrated. The motivation for using GP is 
to overcome the human experts' limitation of considering only a very limited 
number of conventional combinations of primitive features. Chapter 2 shows 
that GP is an effective way of synthesizing composite features from primitive 
ones for object detection. However, genetic programming is computationally 
expensive. In the traditional GP with hard limit on the individual size (also 
called a normal GP), crossover and mutation locations are randomly selected, 
leading to the disruption of the effective components (subtree in this approach) 
of composite operators especially at the later stage of the GP search. This 
greatly reduces the efficiency of GP. It is very important for GP to identify and 
keep the effective components of composite operators to improve the 
efficiency. In this chapter, smart crossover and smart mutation are proposed to 
better choose crossover and mutation points to prevent effective components 
of a composite operator from being disrupted. Also, a public library is 
established to save the effective components of composite operators for later 
reuse. Finally, a fitness function based on the minimum description length 
(MDL) principle is designed to incorporate the size of a composite operator 



80 Chapter 3. MDL-Based Efficient Genetic Programming for Object Detection 

into the fitness evaluation to address the well-known code bloat problem of GP 
without imposing severe restrictions on the GP search. The GP with smart 
crossover, smart mutation and MDL-based fitness function is called a smart 
GP. 

3.2 Motivation and Related Research 

Crossover and mutation are two major mechanisms employed by GP to search 
the composite operator space (also called feature combination space). As GP 
proceeds, effective components are generated. The power of crossover lies in 
the fact that by swapping sub-trees between two effective composite operators 
(parents), the effective components (sub-trees) in these two parents can be 
assembled together into child composite operators (offspring) and the new 
offspring may be better than both parents. However, although crossover can 
assemble good components to yield better offspring, it is also a destructive 
force in the sense that it can disrupt good components due to the random 
selection of crossover points. When the search begins, since the initial 
population is randomly generated, it is unlikely that a composite operator 
contains large good components and the probability of crossover breaking up a 
good component is small. At this time, crossover is a constructive force and 
the fitness of a composite operator is increased. As search proceeds, small 
good components are generated and assembled into larger and larger good 
components. When more and more composite operators contain large good 
components to achieve high fitness, the good component accounts for a large 
portion of a composite operator and the composite operator becomes more and 
more fragile because the good components are more prone to being broken up 
by subsequent crossover due to the random selection of crossover points. The 
crossover can damage the fitness of a composite operator in ways other than 
disrupting good components. Sometimes, a good component is moved into an 
inhospitable context, that is, the crossover inserts a good component into a 
composite operator that does not use the good component in any useful way or 
other nodes of the composite operator cancel out the effect of the good 
component. According to [82], crossover has an overwhelmingly negative 
effect on the fitness of the offspring from crossover, especially in the later 
stage of GP search. 
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Mutation is introduced to maintain the diversity of a population, since a 
serious weakness of evolutionary algorithms is that the population recombined 
repeatedly will develop uniformity sooner or later [82]. However, in the later 
stage of GP search when more and more composite operators contain large 
good components, the random selection of mutation points leads to a high 
probability of disrupting good components and makes mutation a destructive 
force. When both crossover and mutation become negative factors in the GP 
search, it is very unlikely that better composite operators will be generated. To 
improve the efficiency and effectiveness of GP, it is highly beneficial if good 
components can be identified and kept from destructive crossover and 
mutation operations and stored in a public library for later reuse. These 
components are treated as atomic terminals and are directly inserted into 
composite operators as a whole when the mutations are performed or during 
initialization. 

GP has a well-known code bloat problem in which the sizes of individuals 
become larger and larger. In normal GP with individuals represented by tree 
structures, a crossover operation is performed by swapping sub-trees rooted at 
the randomly selected nodes called crossover points, and one of the mutation 
operations is performed by substituting a randomly selected sub-tree with 
another randomly generated tree. It is easy to see that the size of one offspring 
(i.e., the number of nodes in the binary tree representing the offspring) may be 
greater than both parents if crossover and mutation are performed in this 
simple way. If we do not control the sizes of composite operators, they will 
become larger and larger as GP proceeds, as stated in chapter 2. When the size 
becomes too large, it takes a long time to execute a composite operator, greatly 
reducing the speed of GP. Also, large-size composite operators may overfit 
training data by approximating the noise in images. Although the result on the 
training image is very good, the performance on unseen testing images may be 
bad. Finally, large composite operators take up a lot of computer memory. 

Usually in normal GP, a limit on the size of composite operators is 
established when performing crossover or mutation. If the size of an offspring 
exceeds the size limit, the crossover or mutation operation is performed again 
until the sizes of both offspring are within the limit. Although this simple 
method prevents the code bloat, the size limit may greatly restrict the search 
performed by GP [17], since after randomly selecting a crossover point in one 
composite operator, GP cannot select some nodes of the other composite 
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operator as crossover point in order to guarantee that both offspring do not 
exceed the size limit. Also, the size limit restricts the size of trees used to 
replace sub-trees in mutation. However, the composite operator space is huge 
[17], and to find effective composite operators, GP must search extensively. 
Restricting the search greatly reduces the efficiency of GP, making it less 
likely to find good composite operators. To allieviate the restrictions, in 
chapter 2, the soft limit on the composite operator size is proposed. With a soft 
size limit, GP allows the generation of large compsite operators above the size 
limit and keeps those large composite operators only when they are the best, or 
with performance very close the best composite operator(s) in the population, 
thus taking off the restrictions on the selection of crossover and mutation 
points without causing code bloat. However, with little knowledge on the 
composite operator space and the object characteristics, it is very difficult, if 
not impossible, to determine the appropriate hard or soft size limit to prevent 
code bloat and overfitting while allowing the resulted composite operators to 
capture the characteristics of objects. How to avoid restricting the GP search 
without causing code bloat is the key to the success of GP search. Also, with 
little knowledge on the objects to be detected, it is critical for GP to 
automatically determine the appropriate size of composite operators that are 
needed to capture the characteristics of objects. In this chapter, a fitness 
function is designed based on the minimum description length (MDL) 
principle [loo] to take the size of a composite operator into the fitness 
evaluation process. According to the MDL principle, large composite 
operators effective on training regions may not have good fitness and will be 
culled out by selection. Thus, we can take off the restriction on crossover and 
mutation while preventing composite operators from growing too large. 

To improve the efficiency of GP, Tackett [I161 devises a method called 
brood recombination to reduce the destructive effect of crossover. In this 
method, when crossover is performed, many offspring are generated from two 
parents and only the best two offspring are kept. D'haeseleer [24] devises 
strong context preserving crossover (SCPC) to preserve the context. SCPC 
only permits crossover between nodes that occupied exactly the same position 
in the two parents. He finds modest improvement in results by mixing regular 
crossover and SCPC. Smith [ I l l ]  proposes a conjugation operator for GP to 
transfer genetic information from one individual to another. In his conjugation 
method, the parent with higher fitness becomes the donor and the other with 
lower fitness becomes the recipient. The conjugation operator is different from 
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crossover and it simulates one of the ways in which individuals exchange 
genetic materials in nature. Ito et al. [48] propose a depth-dependent crossover 
for GP in which the depth selection ratio is varied according to the depth of a 
node. A node closer to the root node of a tree has a better chance of being 
selected as a crossover point to lower the chance of disrupting small good 
components near leaves. Their experimental results show the superiority of the 
depth-dependent crossover to the random crossover in which crossover points 
are randomly selected. Bhanu and Lin [16], [69] propose smart crossover and 
mutation operators to identify and keep the good components of composite 
operators. Their initial experiments show that with smart GP operators, GP can 
search the composite operator space more efficiently. 

Unlike the work of Ito [48] that used only the syntax of a tree (the depth of a 
node), the smart crossover and smart mutation proposed in this chapter 
evaluate the performance of each node to determine the interactions among 
them and use the fitness values of the nodes to determine crossover and 
mutation points. Also, unlike our previous work [16], a public library is 
introduced to keep the good components for later reuse and more types of 
mutations are added to increase the population diversity. Nine more primitive 
feature images are included to build composite operators. To reduce the 
training time, the training in this chapter is performed on the selected regions 
of training images, not the whole images as in the previous work. More 
importantly, a new MDL-based fitness function is designed to reach a balance 
point between the conflicting factors of code bloat and less restriction on the 
GP search. 

Quinlan and Rivest [97] explore the use of the minimum description length 
principle for the construction of decision trees. The MDL defines the best 
decision tree to be the one that yields the minimum combined length of the 
decision tree itself plus the description of the misclassified data items. Their 
experimental results show that the MDL provides a unified framework for 
both growing and pruning the decision tree, and these trees seem to compare 
favorably with those created by other techniques such as C4.5 algorithm. Gao 
et al. [34] use the MDL principle to determine the best model granularity such 
as the sampling interval between the adjacent sampled points along the curve 
of Chinese characters or the number of nodes in the hidden layer of a three 
layer feed-forward neural network. Their experiments show that in these two 
quite different settings the theoretical value determined by the MDL principle 
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coincides with the best value found experimentally. The key point of their 
work is that using the MDL principle, the optimal granularity of the model 
parameters can be computed automatically rather than being tuned manually. 
In this chapter, a fitness function is designed based on the MDL principle to 
incorporate the size of composite operators into the fitness evaluation to 
address the code-bloat problem without imposing severe restrictions on the GP 
search. 

3.3 Improving the Efficiency of GP 

The primitive feature images and primitive operators are the same as those 
used in chapter 2. There are 16 primitive feature images: the original image 
(0), mean (1-3), deviation (4-6), maximum (7-9), minimum (10-12) and 
median (13-15) images obtained by applying templates of sizes 3x3, 5x5 and 
7x7. 17 primitive operators are ADD, SUB, MUL, DIV, MAX2, MIN2, 
ADDC, SUBC, MULC, DIVC, SQRT, LOG, MAX, MIN, MED, MEAN and 
STDV. The key parameters are the population size M, the number of 
generation N, the crossover rate, the mutation rate and the goodness threshold 
(defined in chapter 3.3.1). The GP stops whenever it finishes the pre-specified 
number of generations or whenever the best composite operator in the 
population has goodness value greater than the goodness threshold. 

3.3.1 MDL principle-based fitness function 

To address the code bloat problem and prevent severe restriction on the GP 
search, we design a MDL-based fitness function to incorporate the composite 
operator size into the fitness evaluation process. The fitness of a composite 
operator is defined as the sum of the description length of the composite 
operator and the description length of the segmented training regions with 
respect to this composite operator as a predictor for the label (object or 
background) of each pixel in the training regions. Here, both lengths are 
measured in bits and the details of the coding techniques are relevant. The 
trade-off between the simplicity and complexity of composite operators is that 
if the size of the composite operators is too small, it may not capture the 
characteristics of objects to be detected, on the other hand, if the size is too 
large, the composite operator may overfit the training image, thus performing 
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poorly on the unseen testing images. With the MDL-based fitness function, the 
composite operator with the minimum combined description lengths of both 
the operator itself and image-to-operator error is the best composite operator 
and may perform best on the unseen testing images. Based on minimum 
description length principle, we propose the following fitness function for GP 
to maximize: 

F(COi) = - (rxlog (N,,) xSize(C0i) + 

where COi is the ith composite operator in the population, N,, is the number of 
primitive operators (including primitive feature images) available for GP to 
synthesize composite operators, Size(COi) is the size of the composite operator 
which is the number of nodes in the binary tree representing it, no and nb are 
the number of object and background pixels misclassified, Wim and Hi, are the 
width and height of the training image and r is a parameter determining the 
relative importance of the composite operator size and the detection rate, 
which is 0.7 in this chapter. The value r = 0.7 is selected experimentally. In 
our experiments, we find 0.7 is an appropriate value to balance the composite 
operator size and its performance. Note that the first term of the fitness 
function is the description length of the composite operator. The description 
length is the number of bits needed to encode a composite operator and it is 
not the size of a composite operator (the number of nodes in the composite 
operator). However, the description length is closely related to the size of a 
composite operator. The larger the size of a composite operator, the longer is 
its description length. 

We now give a brief explanation of this fitness function. Suppose a sender 
and a receiver both have the training image and the training regions and they 
agree in advance that composite operators can be used to locate the object in 
the image, that is, to determine the label (object or background) of each pixel 
in the training regions. But only the sender knows the ground-truth (the label 
of each pixel). Now, the sender wants to tell the receiver which pixels belong 
to the object and which pixels belong to the background. One simple approach 
to do this is to send a bit sequence of n (n is the number of pixels in the 
training regions) bits where 1 represents the object and 0 represents 
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background, provided that both the sender and the receiver know the order of 
the training regions and they agree that the pixels are scanned in the top-to- 
bottom and left-to-right fashion. However, n is usually very large, thus the 
communication burden is heavy. To reduce the number of bits to be 
transmitted, the sender can send the composite operator to the receiver. Then 
the receiver applies the composite operator on the training regions to get 
segmented training regions. When sending the composite operator, the sender 
can send its nodes in a preorder traversal. Given Npo primitive operators 
(including primitive features), log(Npo) bits are needed to encode each node. 
Thus, the cost of sending composite operator is log(Npo) xSize(COi). However, 
some pixels may be misclassified by the composite operator. In order for the 
receiver to get the truth, the sender needs to tell the receiver which pixels are 
misclassified. Each pixel is represented by its coordinate in the image. If the 
width and height of the image are Wi, and Him respectively, then 
log(Wim)+log(Him) bits are needed to encode each pixel. Thus, the cost of 
sending the misclassified pixels is (no + nb) x(log(Wim)+log(Him)). If the 
composite operator is very effective and its size is not too large, then only few 
pixels are misclassified and the number of bits to send is much smaller than n. 

In chapter 2, the fitness function is defined as n(GnG ') / n(G u G '), where 
G and G' are foregrounds in the ground-truth image and the resultant image of 
a composite operator respectively and n(X) denote the number of pixels within 
the intersection of region X and the training region. It measures how the 
ground-truth and the detection results are overlapped. In this chapter, this 
measure is called the goodness of a composite operator. It is not used to drive 
smart GP, but only used to measure the effectiveness of a composite operator. 

3.3.2 Genetic programming with smart crossover and smart mutation 

The selection operation selects composite operators from the current 
population. In this chapter, as before, we use tournament selection with a 
tournament size equal to five. 

In the normal GP, to perform crossover, two composite operators are 
selected on the basis of their fitness values. The higher the fitness value, the 
more likely the composite operator is selected for crossover. These two 
composite operators are called parents. One internal node in each of these two 
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parents is randomly selected, and the two subtrees rooted at these two nodes 
are exchanged between the parents to generate two new composite operators, 
called offspring. The crossover is called random crossover due to the random 
selection of the crossover point. Usually, at the later stage of GP search, 
effective composite operators contain large effective components. These 
components are prone to be disrupted by random crossover, leading to a 
reduction in the efficiency of genetic programming. 

To avoid this problem, we propose a smart crossover that can identify and 
keep the effective components. To define smart crossover, the output image of 
each node, not just the resultant image from the root node, is evaluated and its 
fitness value is recorded. Based on the node fitness values, we define the 
fitness of an edge as the fitness difference between the parent node and the 
child node linked by the edge. If the fitness value of a node is smaller than that 
of its parent node, the edge linking them is a good edge. Otherwise, the edge is 
labeled as a bad edge. During crossover, all the bad edges are identified and 
one of them is selected by random selection or roulette selection (based on the 
fitness of the bad edges) invoked with equal probability. The child node of the 
selected edge is the crossover point and the subtrees rooted at the crossover 
points are swapped between parents. If a composite operator has no bad edge, 
the crossover point is randomly selected. 

Since GP evaluates the fitness of each node, GP knows the fitness of each 
component (subtree) of a composite operator. A public library is established to 
store effective components for later reuse by smart mutation. The larger the 
library, the more effective components can be kept for later reuse, but the 
likelihood of each effective component being reused is reduced. In this 
chapter, the size of the public library is 100. After the library is full, a new 
effective component replaces the worst one in the library if it is better than the 
replaced one. 

To avoid premature convergence, mutation is introduced to randomly 
change the structure of some individuals to maintain the diversity of the 
populationComposite operators are randomly selected for mutation. In a 
normal GP, there are three types of random mutation, invoked with equal 
probability, that involve randomly selecting mutation points as described in 
chapter 2.3.2. 
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In the smart mutation, however, the mutation point is the parent or child 
node of a bad edge or a bad node whose goodness is below the average 
goodness of all the nodes in the tree. The mutation point is selected from those 
qualified nodes randomly or by roulette selection based on the goodness of bad 
edges or bad nodes. There are four smart mutations invoked with equal 
probability: 

1. Select the parent node of a bad edge as the mutation point. If the parent 
node has only one child, it is deleted and the child node is linked to the 
grandparent node (parent node of the parent node). If no grand parent node 
exists, the child becomes the root node; if the parent node has two children, 
the parent node and the sub-tree rooted at the child with smaller goodness 
value are deleted and the other child is linked directly to the grand parent 
node. If no grand parent node exists, the child becomes the root node. 

2. Select the parent node of a bad edge as the mutation point and replace the 
primitive operator stored in the node with another primitive operator of the 
same number of input as the replaced one. 

3. Select two subtrees whose roots are child nodes of two bad edges within the 
composite operator and swap them. Neither of the two sub-trees can be the 
sub-tree of the other. 

4. Select a bad node as the mutation point. Delete the subtree rooted at the 
node and replace it with another randomly generated tree or a randomly 
selected effective component from the public library. 

The first two mutations delete a node that cancels the effect of its child or 
children; the third mutation moves two components away from unfriendly 
contexts that cancel their effects and inserts them into new contexts to see if 
the new contexts are appropriate to them; the fourth mutation deletes a bad 
component and replaces it with a new component or a good one stored in the 
public library. 
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We use an &-greedy policy to determine whether a smart operator (smart 
crossover or mutation) or a random operator (random crossover or mutation) is 
used. With probability E, the smart operator is invoked; with probability 1 - E, 
the random operator is invoked. In this chapter, E is a variable that is adjusted 
by the following formula: 

where cmin is 0.5 and E,, is 0.9, Goodpo, is population goodness (the average 
goodness of the composite operators in the current population). The reason for 
using the random operators is that smart operators bias the selection of 
crossover and mutation points. They avoid disrupting effective components, 
but at the same time they restrict the GP search. According to our experiments, 
restricting the search reduces the efficiency of GP. At the beginning when the 
population is just initialized, few composite operators contain effective 
components. At this time, GP should search extensively to generate effective 
components and assemble them together. It is harmful to apply smart operators 
at the early stage of GP search since they just restrict the search. Only after 
some time when the effective components are gathered in composite operators, 
smart operators should be applied to identify the effective components to 
avoid disrupting them and keep them in a public library for later reuse. So, in 
this chapter, smart operators are not used in the first 20 generations. In the last 
50 generations, smart operators are applied with higher and higher probability 
as the population goodness becomes larger and larger. Here, the number 20 is 
experimentally determined, since in our experiments, it is observed that the 
population fitness (the average fitness of all the composite operators in the 
population) increases significantly in the first 20 generations, which means 
after 20 generations, some effective components are generated and assembled 
together. 
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3.3.3 Steady-state and generational genetic programming 

As in chapter 2, steady-state genetic programming and generational genetic 
programming are used to synthesize composite operators. The major 
difference is that in generational GP, the offspring from crossover are kept 
aside and do not participate in the crossover operation on the current 
population. The current population is not changed during crossover. But in 
steady-state GP, the offspring from crossover are evaluated and replace the 
worst individuals in the population immediately, and they participate in the 
crossover operations on the current population. In smart GP, a MDL-based 
fitness function is used, smart GP crossover and smart mutation are invoked 
with probability determined by &-greedy policy and a public library is set up to 
store the effective components of composite operators. Similarly, we adopt an 
elitism replacement method to keep the best composite operator from 
generation to generation. At the end of each generation, GP checks each 
composite operator and replaces it with the subtree whose root node has the 
highest goodness value among all the nodes of the composite operator. This is 
helpful to further control the size of composite operators and avoid overfitting. 
Figure 3.1 and Figure 3.2 show the pseudo code for modified steady-state and 
generational genetic programming algorithms, respectively. 
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Modified Steady-state Genetic Programming Algorithm: 

0. randomly generate population P of size M and evaluate composite operators in P. 
1. for gen = 1 to N do // N is the number of generation 
2. keep the best composite operator in P. 
3. repeat 
4. select 2 composite operators from P based on theirfitness values for 

crossover. 
5. select 2 composite operators with the lowestfitness values in P for 

replacement. 
6. ifgen < 20 then 
7. perform random crossover and let the 2 offspring replace the 2 composite 

operators selected for replacement. 
else 

8. perform smart or random crossover and let the 2 offspring replace the 2 
composite operators selected for replacement. 

endif 
9. execute the 2 offspring and evaluate their fitness values. 
10. until crossover rate is met. 
11. ifgen < 20 then 
12. perform random mutation on each composite operator with probability of 

mutation rate. 
else 

13. perform smart or random mutation on each composite operator with 
probability of mutation rate. 

endif 
14. execute and evaluate mutated composite operators. 

N after crossover and mutation, a new populationP'is generated. 
15. perform elitism mechanism. let the best composite operator of P replace the 

worst composite operator in P' and let P = P'. 
16. update the value of E according to equation (3.2). 
17. store good components of composite operators in the public library. 
18. ifthe goodness of the best composite operator in P is above goodness threshold 

value, then 
19. stop. 

endif 
20. check each composite operator in P and use its best component to replace it. 

endfor // loop 

Figure 3.1. Modified Steady-state genetic programming. 
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Modified Generational Genetic Programming Algorithm: 

0. randomly generate population P of size M and evaluate each composite operator 
in P. 

I .  for gen = I to N do // N is the number of generation 
2. keep the best composite operator in P. 
3. ifgen < 20 then 
4. perform random crossover on the composite operators in P until crossover 

rate is satisfied and keep all the offspring from crossover. 
5. perform mutation on the composite operators in P and the offspring from 

crossover with the probability of mutation rate. 
else 

6. perform smart or random crossover on the composite operators in P until 
crossover rate is satisfied and keep all the offspring from crossover. 

7. perform smart or random mutation on the composite operators in P and the 
offspring from crossover with the probability of mutation rate. 

endif 
8, perform selection on P to select some composite operators and combine them with 

the composite operators from crossover to get a new population P' of the same 
size as P. 

9. evaluate offspring from crossover and the mutated composite operators. 
10. perform elitism mechanism. let the best composite operator from P replace the 

worst composite operator in P' and let P = P'. 
11. update the value of &according to equation (3.2). 
12. store good components of composite operators in the public library. 
13. if the goodness of the best composite operator in P is above the goodness 

threshold, then 
14. stop. 

endif 
15. check each composite operator in P and use its best component to replace it. 

endfor //loop 1 

Figure 3.2. Modified Generational genetic programming. 
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3.4 Experiments 

Various experiments are performed to test the efficacy of genetic 
programming in extracting regions of interest from real synthetic aperture 
radar (SAR) images. The SAR images are the same as used in chapter 2.4.1. 
As in chapter 2 (except chapter 2.4.4), here, GP is not applied to the whole 
training image, but only to a region or regions carefully selected from the 
training image, to generate the composite operators. The generated composite 
operator is then applied to the whole training image and some other testing 
images to evaluate it. In each experiment in this chapter, both normal genetic 
programming (GP with random crossover, random mutation and hard limit on 
the composite operator size) and smart genetic programming (GP with smart 
crossover, smart mutation and a MDL-based fitness function) are applied. For 
the purpose of objective comparison, we invoke normal GP and smart GP with 
the same set of parameters and training regions. The parameters in the 
experiments are: populationsize (loo), the number of generations (70), the 
goodness threshold value (1.0), the crossover rate (0.6), the mutation rate 
(0.05), and the segmentation threshold (0). For normal GP, the hard size limit 
of a composite operator is 30. These are the same parameters as used before in 
chapter 2. 

Five experiments (chapters 3.4.1 to 3.4.5) that are comparable to chapter 
2.4.1 are performed with the same SAR images. In each experiment, GP is 
invoked ten times with the same parameters and the same training region(s). In 
this chapter, we present the results from the run in which GP finds the best 
composite operator among the best composite operators found in all ten runs. 
The comparison between normal GP and smart GP is provided in chapter 
3.4.6. There is much randomness involved in GP, so for the purpose of 
objective comparison, only the average performance over all ten runs is used 
in comparison. Note that the fitness and goodness of composite operators are 
the same in our previous work [17] and the definition of goodness in this 
chapter is the same as the definition of fitness in [17] and in chapter 2, so the 
comparison is based on the goodness of composite operators. Table 3.1 shows 
the performance of the best composite operators learned by normal GP and 
smart GP on various SAR images used in the experiments. 
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Table 3.1. The performance of the best composite operators from normal and smart 
GPs. 

Normal GP 

Size 
Time 

I Smart GP I 

2.6 1 19 2 
GP - the type of GP used to synthesize composite operators. G: generational 

GP. S: steadv-state GP. 
FBI - fitness of the best composite operator in the initial population (on 

training region). 
FBF - fitness of the best composite operator in the final population (on 

training region). 
G B ~  - goodness of the best composite operator in the initial population (on 

training region). 
GBF - goodness of the best composite operator in the final population (on 

training region). 
PF - performance, the goodness of the ROI extracted by the best composite 

operator from training and testing images. * indicates the goodness of 
ROI extracted from the training image. 

Size - size of the best composite operator. 
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Time - average running time (in seconds) of the best composite operator on 
the training and testing images. 

3.4.1 Road extraction 

The training image contains horizontal paved road and field, as shown in 
Figure 3.3(a); two testing images contain unpaved road vs. field and vertical 
paved road vs. grass, as shown in Figure 3.9(a) and Figure 3.9 (f), 
respectively. Two training regions (Figure 3.3(a)) are located from (5, 19) to 
(50, 119) and from (82, 48) to (126, 124). Figure 3.3(b) shows the ground- 
truth. The white region corresponds to the road and only the portion of ground- 
truth in the training regions is used in the fitness evaluation. These testing and 
training images (and regions) are the same as those previously used in chapter 
2, Figure 2.3(a) and (b) and Figure 2.10(a) and (b), respectively. 

(a) paved road 
vs. field 

(d) ROI extracted 
(normal GP) 

(b) ground-truth (c) feature image 
(normal GP) 

-*- .c 
(e) feature image (f) ROI extracted 

(smart GP) (smart GP) 

Figure 3.3. Training SAR image containing road. 
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The generational GP is used to synthesize a composite operator to detect the 
road. For normal GP, the goodness value of the best composite operator in the 
initial population is 0.60 and the goodness value of the best composite 
operator in the final population is 0.94. Figure 3.3(c) shows the output image 
of the best composite operator on the whole training image and Figure 3.3(d) 
shows the binary image after segmentation. The goodness value of the 
extracted ROI is 0.90. For smart GP, the fitness and goodness of the best 
composite operator in the initial population are -2303.6 and 0.45, respectively. 
The corresponding values in the final population are -325.4 and 0.94, 
respectively. Figure 3.3(e) shows the output image of the best composite 
operator on the whole training image and Figure 3.3(f) shows the binary image 
after segmentation. The goodness value of the extracted ROI is 0.91. The best 
composite operator has 18 nodes and a depth of 13. It has three leaf nodes all 
containing 7x7 median image, which contains less speckles due to the median 
filter's effectiveness in eliminating speckle noise. It is shown in Figure 3.4 
where PFIM15 represents 7x7 median image. Compared to smart GP, the best 
composite operator from normal GP has 27 nodes and a depth of 16. 

(MAX (MAX (MAX (MAX 
(MAX (SUBC (MUL (DIVC 
(ADDC (MAX (MAX (MAX 
(ADDC PFIM 15)))))) (DIV 
PFIM 15 (STDV PFIM 1 5))))))))) 

Figure 3.4. Learned composite operator tree in LISP notation. 
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generation 

Figure 3.5. Fitness versus generation (road vs. field). 

Figure 3.5 shows how the average fitness of the best composite operators 
and the average fitness of the populations over all 10 runs change as GP 
proceeds. In Figure 3.5, the population fitness is much lower than that of the 
best composite operator even at the end of GP search. It is reasonable, since 
the selection of crossover points is not restricted by a hard size limit on 
composite operators. The difference between the sizes of the composite 
operators in the population is large and so are their fitness values. The 
population fitness is not important since only the best composite operator is 
used in testing. If GP finds one effective composite operator, the GP learning 
is successful. That's why we do not compare the population fitness between 
normal GP and smart GP. The large difference between the fitness of the best 
composite operator and that of the population indicates that the diversity of the 
population is maintained during GP search, which is very helphl in preventing 
premature convergence. 

Ten best composite operators are obtained in the initial and final generations 
of 10 runs, respectively. Figure 3.6 shows the frequency of primitive operators 
and primitive feature images appearing in the best composite operators of 
initial and final generations. To compute frequency, we first compute the total 
number of each primitive operator and the total number of each primitive 
feature image in the 10 best composite operators, then divide them by the total 
number of internal nodes and leaf nodes of these 10 best composite operators, 
respectively. From Figure 3.6(b), it can be seen that MED operator has the 
most frequent occurrence in the best composite operators learned by GP. This 
is similar to the results in chapter 2, Figure 2.7. 
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primitive operator 
(a) lnltial 

0.4 1 

primitive operator 

(b) final 
0.4 

primitive feature image 

(c) initial 
0.4 1 

primitive feature image 

(d) final 

Figure 3.6. Frequency of primitive operators and primitive feature images. 
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Figure 3.7 shows the output image at each node of the best composite operator 
shown in Figure 3.4. The primitive operators in Figure 3.7 are connected by 
arrow. The operator at the tail of an arrow provides input to the operator at the 
head of the arrow. After segmenting the output image of a node, we get the 
ROI (shown as the white region) extracted by the corresponding subtree rooted 
at the node. The extracted ROIs and their goodness values are shown in Figure 
3.8. If an output image has positive pixels only (for example, PFIMIS has 
positive pixels only), everything is extracted and the goodness is 0.25. From 
Figure 3.8, it can be seen that since the feature image from subtree (DIV 
PFIMIS (STDV PFIMIS)) has no pixel with negative value, it does not affect 
the ROI extracted from the feature image output by its parent node MUL. This 
branch of the composite operator is a redundant code. Note that the best 
composite operator shown in Figure 3.7 does not use primitive operator MED. 
MED is very effective in speckle noise elimination, so it is frequently selected 
by GP to build effective composite operators as shown in Figure 3.6, but 
Figure 3.7 shows that without it, GP may still generate effective composite 
operators. The interaction among primitive operators and primitive features is 
very complicated, indicating the high complexity of the search space structure 
and the difficulty of the feature synthesis process. Also, some combinations of 
other primitive operators and primitive feature images may approximate the 
function of primitive operator MED. 
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e m - + +  - C n - m  
MAX MAX MAX MAX MAX 

PFIM 1 5 

DIVC ADDC 

MAX MAX ADDC PFIM 15 

Figure 3.7. Feature images output at the nodes of the best composite operator learned 
by smart GP. 
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L L - - -  
MAX MAX MAX MAX MAX (0.55) 
(0.91) (0.77) (0.70) (0.62) 4 

n sTDv  PFIM 15 
(0.25) 

(0.25) 

PFIM 15 
(0.25) 

(0.47) 

DIVC ADDC MAX (0.25) 

MAX MAX ADDC PFIM 15 

Figure 3.8. ROIs extracted from the output images at the nodes of the best composite 
operator from smart GP. The goodness value is shown for the entire image. 
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(a) unpaved (b) feature (c) ROI (d) feature (e) ROI 
road vs. field image extracted image extracted 

(normal GP) (normal GP) (smart GP) (smart GP) 

(f) paved road (9) feature (h) ROI (i) feature (j) ROI 
vs. grass image extracted image extracted 

(normal GP) (normal GP) (smart GP) (smart GP) 

Figure 3.9. Testing SAR images containing road. 

The composite operator obtained in the above training is applied to the other 
two real SAR images shown in Figure 3.9(a) and Figure 3.9(f). Figure 3.9(b) 
and Figure 3,9(g) show the output of the composite operator from normal GP 
and Figure 3.9(c) and Figure 3.9(h) show the regions extracted from Figure 
3.9(a) and Figure 3.9(f), respectively. The goodness values of the extracted 
regions are 0.90 and 0.93. Figure 3.9(d) and Figure 3.9(i) show the output of 
the composite operator from smart GP and Figure 3.9(e) and Figure 3.90') 
show the regions extracted from Figure 3.9(a) and Figure 3.9(f), respectively. 
The goodness values of the extracted regions are 0.91 and 0.93. The average 
running time of the best composite operators from normal GP on training and 
testing images is 5 seconds; the corresponding time of that from smart GP is 
2.6 seconds. 
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3.4.2 Lake extraction 

Two SAR images contain lake. The training image, shown in Figure 3.10(a), 
contains a lake and field, and the testing image, shown in Figure 3.1 1(a) 
contains a lake and grass. The training region is from (85, 85) to (127, 127). 
Figure 3.10(b) shows the ground-truth. These testing and training images (and 
regions) are the same as those previously used in chapter 2, Figure 2.1 1(a) and 
Figure 2.12(a). 

(a) lake vs. field 

(d) ROI extracted 
(normal GP) 

(b) ground-truth (c) feature image 
(normal GP) 

(e) feature image (f) ROI extracted 
(smart GP) (smart GP) 

Figure 3.10. Training SAR image containing lake. 

The steady-state GP is used to generate composite operators. For the 
normal GP, the goodness value of the best composite operator in the initial 
population is 0.62 and the goodness value of the best composite operator in the 
final population is 0.99. Figure 3.10(c) shows the output image of the best 
composite operator on the whole training image and Figure 3.10(d) shows the 
binary image after segmentation. The goodness value of the extracted ROI is 
0.95. For the smart GP, the fitness and goodness of the best composite 
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operator in the initial population are -1585.5 and 0.55, respectively. The 
corresponding values in the final population are -158.9 and 0.97, respectively. 
Figure 3.10(e) shows the output image of the best composite operator on the 
whole training image and Figure 3.10(f) shows the binary image after 
segmentation. The goodness value of the extracted ROI is 0.94. 

The composite operator is applied to the testing image containing a lake and 
grass. Figure 3.11(b) shows the output of the composite operator from normal 
GP and Figure 3.1 1(c) shows the region extracted. The goodness value of the 
region is 0.97. Figure 3.1 l(d) shows the output of the composite operator from 
the smart GP and Figure 3.1 1(e) shows the region extracted. The goodness 
value of the region is 0.98. The average running time of the best composite 
operators from the normal GP on training and testing images is 15 seconds; the 
corresponding time from smart GP is 1 second. The size of the best composite 
operator from normal GP is 28. The best composite operator from smart GP 
has size 13 and it is shown in Figure 3.12. 

(a) lake (b) feature (c) ROI (d) feature (e) ROI 
vs. grass image extracted image extracted 

(normal GP) (normal GP) (smart GP) (smart GP) 

Figure 3.1 1. Testing SAR image containing lake. 
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(MAX (ADDC (MIN2 (LOG (SUB (DIV 
PFIMlO (LOG PFIM2)) (ADDC (ADDC 
PFIM2)))) PFIM4))) 

Figure 3.12. Learned composite operator tree in LISP notation. 

3.4.3 River extraction 

Two SAR images contain river and field. Figure 3.13(a) and Figure 3.13(b) 
show the original training image and the ground-truth provided by the user. 
The white region in Figure 3.13(b) corresponds to the river to be extracted. The 
training regions are from (68,31) to (126, 103) and from (2, 8) to (28,74). The 
testing SAR image is shown in Figure 3.16(a). Note that Figure 3.13 (a), Figure 
3.13(b) and Figure 3.16(a) are the same as those previously used in chapter 2, 
Figure 2.13(a) and (b) and Figure 2.16(a), respectively. 

(a) river vs. field (b) ground-truth (c) feature image 
(normal GP) 

I : 
-- 

L A  
(normal GP) (smart GP) 

(d) ROI extracted (e) feature image (f) ROI extracted 
(smart GP) 

Figure 3.13. Training SAR image containing river. 
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The steady-state GP is used to generate a composite operator. For normal 
GP, the goodness values of the best composite operator in the initial and final 
populations are 0.59 and 0.89, respectively. Figure 3.13(c) shows the output 
image of the best composite operator on the whole training image and Figure 
3.13(d) shows the binary image after segmentation. The goodness of the 
extracted ROI is 0.72. For smart GP, the fitness and goodness of the best 
composite operator in the initial population are -2480.8 and 0.23. The 
corresponding values in the final population are -404.6 and 0.90. Figure 3.13(e) 
shows the output image of the best composite operator on the whole training 
image and Figure 3.13(f) shows the binary image after segmentation. The 
goodness of the extracted ROI is 0.71. The best composite operator has 13 
nodes and a depth of 12. It has one leaf node containing 3x3 mean image. 
Among 13 nodes, seven of them are MED operators effective in eliminating 
speckle noise. It is shown in Figure 3.14. Compared to smart GP, the best 
composite operator from normal GP has 30 nodes with a depth of 23. Figure 
3.15 shows how the average fitness of the best composite operators and the 
average fitness of the populations over all 10 runs change as GP searches the 
composite operator space. 

(DIVC (SUBC (SUBC (MED (MED 
(MIN (MED (MED (MED (MED (MED 
(SUBC PFIMl)))))))))))) 

Figure 3.14. Learned composite operator tree in LISP notation. 
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V) 

3 -2000 population 
s 
CI " -4000 

generation 

Figure 3.15. Fitness versus generation (river vs. field) 

The composite operator is applied to the testing image containing a river 
and field. Figure 3.16(b) shows the output of the composite operator from the 
normal GP and Figure 3.16(c) shows the region extracted from Figure 3.16(a). 
The goodness of the region is 0.83. Figure 3.16(d) shows the output of the 
composite operator from the smart GP and Figure 3.16(e) shows the region 
extracted. The goodness of the region is 0.86. There are some islands along 
with the river around them that are not extracted, since these islands look 
similar to the field. The average running time of the best composite operators 
from normal GP on training and testing images is 33 seconds; the 
corresponding time of that from smart GP is 19 seconds. 

(a) river (b) feature (c) R01 (d) feature (e) ROI 
vs. field image extracted image extracted 

(normal GP) (normal GP) (smart GP) (smart GP) 

Figure 3.16. Testing SAR image containing river. 
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3.4.4 Field extraction 

Two SAR images contain field and grass. Figure 3.17(a) and Figure 3.17(b) 
show the original training image and the ground-truth. The training regions are 
from (17, 3) to (75, 61) and from (79, 62) to (124, 122). Extracting field from 
a SAR image containing field and grass is considered as the most difficult task 
among the five experiments, since the grass and field are similar to each other 
and some small regions in the grass area are actually fields. The testing image 
is shown in Figure 3.18(a). Note that Figure 3.17(a) and Figure 3.17(b) and 
Figure 3.18(a) are the same as those in chapter 2, Figure 2.17(a) and (b) and 
Figure 2.18(a), respectively. 

(a) field vs. grass (b) ground-truth (c) feature image 
(normal GP) 

(d) ROI extracted (e) feature image (f) ROI extracted 
(normal GP) (smart GP) (smart GP) 

Figure 3.17. Training SAR image containing field. 

The generational GP is used to generate composite operators. For the 
normal GP, the goodness values of the best composite operators in the initial 
and finally populations are 0.52 and 0.78, respectively. Figure 3.17(c) shows 
the output image of the best composite operator on the whole training image 
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and Figure 3.17(d) shows the binary image after segmentation. The goodness 
value of the extracted ROI is 0.88. For the smart GP, the fitness and goodness 
of the best composite operator in the initial population are -7936.2 and 0.39. 
The corresponding values in the final population are -1999.4 and 0.79. Figure 
3.17(e) shows the output image of the best composite operator on the whole 
training image and Figure 3.17(f) shows the binary image after segmentation. 
The goodness value of the extracted ROI is 0.90. 

The composite operator is applied to the testing image containing field and 
grass shown in Figure 3.18(a). Figure 3.18(b) shows the output of the 
composite operator from normal GP and Figure 3.18(c) shows the extracted 
region with goodness value 0.81. Figure 3.18(d) shows the output of the 
composite operator from the smart GP and Figure 3.18(e) shows the extracted 
region with goodness value 0.84. The average running time of the best 
composite operators from normal GP on training and testing images is 8 
seconds; the corresponding time of that from smart GP is 12 seconds. The size 
of the best composite operator from normal GP is 9, and the size of best 
composite operator from smart GP is 15 and it has 7 MED primitive operators. 
It is shown in Figure 3.19. In this experiment, the best composite operator 
learned by the smart GP has larger size and it takes a longer time to execute 
than that learned by the normal GP. However, the time it takes a composite 
operator to run on a particular image is not only determined by its size. It is 
also related to the type of primitive operators it contains. For example, it takes 
a longer time for primitive operator MED than primitive operator ADDC to 
execute. 

(a) field vs. 
grass 

(b) feature (c) ROI (d) feature (e) ROI 
image extracted image extracted 

(normal GP) (normal GP) (smart GP) (smart GP) 

Figure 3.18. Testing SAR image containing field. 
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From the experiment on the field extraction, we can see that the proposed 
algorithm has difficulties in dealing with textures and objects with great 
variations, and the reason lies in the fact that only domain-independent 
primitive operators and primitive features are used in the feature synthesis. 
The predefined primitive operators and primitive features have significant 
impact on the performance of the learned composite operators. If texture- 
specific primitive operators and primitive features are included for the 
synthesis of composite operators, GP may learn composite operators that are 
effective in dealing with textures. 

Figure 3.19. Learned composite operator tree in LISP notation. 

3.4.5 Tank extraction 

GP is applied to synthesize features for the detection of T72 tanks. Their SAR 
images are taken under different depression and azimuth angles and the size of 
the images is 80x80. The training image contains T72 tank under depression 
angle 17" and azimuth angle 135", which is shown in Figure 3.20(a). The 
training region is from (19, 17) to (68, 66). The testing SAR image contains a 
T72 tank under depression angle 20" and azimuth angle 225", which is shown 
in Figure 3.23(a). The ground-truth is shown in Figure 3,20(b). These testing 
and training images (and regions) are the same images (under the same 
depression and azimuth angles) as those previously used in chapter 2, Figure 
2.19(a) and (b) and 2.22(a), respectively. 

The generational GP is applied to synthesize composite operators for tank 
detection. For the normal GP, the goodness value of the best composite 
operator in the initial population is 0.65 and the goodness value of the best 
composite operator in the final population is 0.88. Figure 3.20(c) shows the 
output image of the best composite operator on the whole training image and 
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Figure 3.20(d) shows the binary image after segmentation. The goodness value 
of the extracted ROI is 0.88. For the smart GP, the fitness and goodness of the 
best composite operator in the initial population are -807.2 and 0.54, 
respectively. The corresponding values in the final population are -190.8 and 
0.89, respectively. Figure 3.20(e) shows the output image of the best 
composite operator on the whole training image and Figure 3.20(f) shows the 
binary image after segmentation. The goodness value of the extracted ROI is 
0.89. The best composite operator has 5 nodes and a depth of 4. It has one leaf 
node containing 3x3 maximum image. Two internal nodes are primitive 
operator MED, which is useful in eliminating speckle noises in SAR image. It 
is shown in Figure 3.21. Compared to the smart GP, the best composite 
operator from normal GP has 28 nodes and a depth of 17. Figure 3.22 shows 
how the average fitness of the best composite operators and the average fitness 
of the populations over all 10 runs change as GP proceeds. 

(a) T72 tank (b) ground-truth (c) feature image 
(normal GP) 

(d) ROI extracted (e) feature image (f) ROI extracted 
(normal GP) (smart GP) (smart GP) 

Figure 3.20. Training SAR image containing a tank. 
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Figure 3.21. Learned composite operator tree in LISP notation. 

Q) 
c population 
.r -3000 G 

-5000 
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 

generation 

Figure 3.22. Fitness versus generation (T72 tank). 

The composite operator is applied to the testing image containing T72 tank 
under depression angle 20' and azimuth angle 225". Figure 3.23(b) shows the 
output of the composite operator from normal GP and Figure 3.23(c) shows 
the region corresponding to the tank. The goodness of the extracted ROI is 
0.84. Figure 3.23(d) shows the output of the composite operator from smart 
GP and Figure 3.23(e) shows the region corresponding to the tank. The 
goodness of the extracted ROI is 0.84. The average running time of the best 
composite operators from normal GP on training and testing images is 3 
seconds; the corresponding time from smart GP is 2 seconds. 
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(a) T72 tank (b) feature (c) ROI (d) feature (e) ROI 
image extracted image extracted 

(normal GP) (normal GP) (smart GP) (smart GP) 

Figure 3.23. Testing SAR image containing tank. 

3.4.6 Comparison of smart GP with normal GP 

This subchapter compares the performance of the smart GP with that of the 
normal GP. For objective comparison, only the average performance over all 
ten runs is used in comparison. The comparison is based on the goodness of 
composite operators synthesized by normal and smart GPs. The reason for 
using goodness as the comparison metric is that a composite operator having 
higher fitness than another composite operator does not mean it always has a 
higher performance than the composite operator with lower fitness, since its 
size may be much smaller. Comparing the goodness values, it can be clearly 
shown that on the average, composite operators from smart GP have a smaller 
size and better or at least comparable performance with that from normal GP. 

Figure 3.24 shows how the average goodness of the best composite 
operators improves as normal GP and smart GP proceed. The thick line 
represents the goodness of smart GP and the thin line represents the goodness 
of normal GP. It shows that if normal GP already achieves very good 
performance such as in the lake and tank cases, then it is difficult for smart GP 
to significantly improve the performance, since there is not much room for 
improvement. At this time, smart GP may achieve similar or a little better 
performance than normal GP. 

If primitive operators and primitive features are not suitable to the tasks to 
be solved, both normal and smart GP may not generate effective composite 
operators such as in the field case, since primitive operators and primitive 
features have significant impact on the effectiveness of learned composite 
operators. 
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The smart GP operators have a bad side effect of restricting the GP search 
by biasing the selection of crossover and mutation points to keep the effective 
components generated during GP search. If effective components are 
generated and assembled together in some composite operators in the first 20 
generations, then it is beneficial to apply the smart GP operators in the 
remaining generations to keep effective composite operators. Otherwise, it 
may be harmful to apply smart GP. Note that even when smart operators are 
not applied in the first 20 generations, smart GP and normal GP are different, 
since the fitness functions used to drive smart GP and normal GP are different. 
From Figure 3.24, it can be seen that on the average, smart GP finds good 
composite operators more quickly. 

Table 3.2 shows the average goodness and standard deviation of the best 
composite operator in the initial and final populations. Table 3.3 shows the 
average size of the best composite operators from normal GP and smart GP. It 
also shows the average performance of the best composite operators on the 
whole training image and other testing image(s). The standard deviation values 
of size and performance are also provided. It can be seen that although smart 
GP does not always generate composite operators with better performance, on 
the average, the best composite operators learned by smart GP have better 
performance and smaller size than those from normal GP, reducing the 
computational expense during testing. 
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Figure 3.24. The average goodness of the best composite operators versus generation. 
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Table 3.2. The average goodness of the best composite operators from normal and 
smart GPs. 

Table 3.4 shows the average and standard deviation of training time (in 
seconds) of normal GP and smart GP. By intuition, the training time of smart 
GP should be much longer than that of normal GP, since in normal GP, only 
the output image of the root node is evaluated and smart GP evaluates the 
output image of each node of a composite operator. From Table 3.4, it can be 
seen that the difference between the training times is not as much as expected. 
In the experiments with lake and tank images, the training time of smart GP is 
much shorter. The reason lies in the code bloat problem of GP. In normal GP, 
a size limit of composite operator (in this chapter, it is 30) is specified. At the 
later stage of the GP search, most of the composite operators have size equal 
or close to the size limit. In smart GP, the MDL-based fitness function takes 
the size of composite operators into the fitness evaluation. The difference 
between the sizes of composite operators is large, even at the later stage of the 
GP search. Although a few composite operators have a size larger than the size 
limit in normal GP, many of them have a size smaller than the size limit. If the 
size limit set in normal GP is large, it can be expected that the training time of 
the normal GP will be longer than that of smart GP. Also, in the above 
experiments, the goodness threshold value is set at 1.0 to force GP to finish the 
pre-specified number of generations. If the goodness threshold value is smaller 
than 1.0, the smart GP may run fewer generations, since it finds effective 
composite operators more quickly, thus reducing its training time. 
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Table 3.3. The average size and performance of the best composite operators from
normal and smart GPs.

l esting

mean
stdv

mean
stdv

mean
stdv

mean
stdv

mean
stdv

mean
stdv

Road
29.4
1.07

0.789
0.080

0.620, 0.797
0.274,0.151

Road
24.6
4.58
0.860
0.038

0.831,0.914
0.115,0.025

Nor
Lake
28.4
1.74

0.891
0.128
0.913
0.161

Sn
Lake
11.8
5.65

0.916
0.021
0.972
0.009

•malGP
River
27.6
4.43
0.583
0.112
0.754
0.129

lartGP
River
16.8
7.19

0.650
0.049
0.836
0.023

Field
20.2
8.93

0.794
0.101
0.675
0.124

Field
14.9
9.98

0.839
0.039
0.784
0.033

Tank
24.6
6.17

0.829
0.035
0.766
0.042

Tank
5.7
1.9

0.849
0.025
0.821
0.012

Table 3.4. Average training time of Normal GP and Smart GP.

Normal
GP

Smart
GP

mean

stdv

mean

stdv

Road
6915

5348

10249

8893

Lake
2577

1213

770

724

River
7951

8006

11035

10310

Field
3606

2679

5251

5506

Tank
2686

2163

649

589
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Table 3.5 shows the average performance of the best composite operators 
(over 10 runs) from smart GP with and without the public library on training 
and testing images containing road and tank images. From Table 3.5, it can be 
seen that with the public library to keep the effective components for later 
reuse, GP can generate more effective composite operators. 

Table 3.6 shows the average running time of the composite operators from 
normal and smart GPs on road, lake, river, field, and tank SAR images. The 
time is measured in seconds. From Table 3.6 it can be seen that on average, the 
composite operators from smart GP are more efficient. 

Table 3.5. The average performance of the best composite operators from smart GPs 
with and without the public library. 

I Smart GP (Lib Size 100) 1 Smart GP (No Lib) I 

Table 3.6. Average running time (in seconds) of the composite operators from normal 
and smart GPs. 

I Road I Lake I River I Field I Tank I 

Training 
image 

Testing 
image 

Road 

0.860 

0.038 

0.83 1,0.9 14 
0.1 15,0.025 

mean 

stdv 

mean 
stdv 

Smart GP 
NormalGP 

Tank 

0.849 

0.025 

0.82 1 
0.012 

2.6 

5 

Road 

0.800 

0.106 

0.640,0.812 
0.1 13,0.083 

Tank 

0.820 

0.052 

0.782 
0.050 

1 

15 

19 

3 3 

12 

8 

2 
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3.5 Conclusions 

In this chapter, we use genetic programming to evolve composite operators for 
object detection. To improve the efficiency of genetic programming, we 
design smart crossover and smart mutation that can identify and prevent the 
effective components of composite operators from being disrupted and use a 
public library to keep them for later reuse. To address the well-known code 
bloat problem of GP, we design a new fitness function based on the minimum 
description length to take the size of a composite operator into the fitness 
evaluation process. The new fitness function prevents composite operators 
from growing too large, while at the same time imposes relatively less severe 
restrictions on the GP search. Our experimental results with real SAR images 
show that with the MDL-based fitness function and the smart search operators, 
the smart GP can learn better composite operators more quickly than the 
traditional normal GP, improving the efficiency of GP. Compared to the 
normal GP, the composite operators learned by smart GP have better 
performance on the training and testing images and have smaller sizes, 
reducing the computational expense and the running time during testing. 
Currently, in order to get the goodness at each node, its output image has to be 
evaluated against the ground-truth, which is a time consuming and inefficient 
process. To further improve the efficiency of GP, it is important to find a way 
to estimate the goodness of internal nodes based on the goodness of the root 
node. 



Chapter 4 

FEATURE SELECTION FOR OBJECT DETECTION 

4.1 Introduction 

The goal of feature selection is to find the subset of features that produces the 
best object detection and recognition performance and requires the least 
computational effort. Feature selection is important to object detection and 
recognition systems mainly for three reasons: 

First, using more features can increase system complexity, yet it may not 
always lead to higher detectionlrecognition accuracy. Sometimes, many 
features are available to a detectionlrecognition system. However, these 
features are not independent and may be correlated. A bad feature may greatly 
degrade the performance of the system. Thus, selecting a subset of good 
features is important. 

Second, features are selected by a learning algorithm during the training 
phase. The selected features are used as a model to describe the training data. 
Selecting many features means a complicated model is used to approximate 
the training data. According to the minimum description length (MDL) 
principle, a simple model is better than a complex model [loo]. Since the 
training data may be corrupted with a variety of noises, a complex model may 
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overfit the training data. Thus, a complex model may be sensitive to noise in 
the training data and its performance on unseen test data may be bad. 

Third, using fewer features can reduce the computational cost, which is 
important for real-time applications. Also it may lead to better classification 
accuracy due to the finite sample size effect. 

In this chapter, we use genetic algorithm (GA) 1411, [42], [77] to select as 
few features as possible to describe the training data effectively. The specific 
application we focus on is the detection of targets in SAR images. Automatic 
detection of potential targets in SAR imagery is an important problem [7], 
[65]. A constant false alarm rate (CFAR) detector is commonly used to 
"prescreen" the image to localize the possible targets [65]. Generally, targets 
correspond to bright spots caused by strong radar return from natural or man- 
made objects. Parts of the imagery that are not selected are rejected from 
further consideration. In the next stage of processing, regions of interest are 
further examined to distinguish man-made objects from natural clutter. 
Finally, a classifier such as a Bayesian classifier, a template matcher or a 
model-based recognizer is used to reject man-made clutter. 

GAS are widely used in image processing, pattern recognition and computer 
vision [7], [13], [23]. They are used to evolve morphological probes that 
sample the multi-resolution images [loll ,  to generate image filters for target 
detection [53], to select good parameters of partial shape matching for 
occluded object recognition [89], to perform pattern clustering and 
classification [113], etc. GAS are also used to automatically determine the 
relative importance of many different features and to select a good subset of 
features available to the system [95]. 

The problem we address is to select a minimal set of features to distinguish 
targets from natural clutter. The approach is based on a closed loop system 
involving GA based feature selection and a Bayesian classifier. GA uses a 
MDL-based fitness function that combines the number of features to be used 
and the error rate of the classifier. The results are presented using real SAR 
images. The experimental results show that the MDL-based fitness function is 
the most effective in selecting a minimal set of features to describe the data 
accurately compared to other three fitness functions, and the subset of features 
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selected by GA can greatly reduce the computational cost while at the same 
time maintaining the desired detection accuracy. 

Chapter 4.2 presents the motivation and related research. Chapter 4.3 
describes the approach, feature evaluation criteria, fitness functions, the 
prescreener used to detect potential target regions, the features for target 
discrimination and the application of GAS to feature selection. Experimental 
results are presented in chapter 4.4 and chapter 4.5 provides the conclusions of 
the chapter. 

4.2 Motivation and Related Research 

Bhanu and Lee [12] present a closed loop image segmentation system which 
incorporates a genetic algorithm to adapt the segmentation process to changes 
in image characteristics caused by various environmental conditions such as 
time of day, time of year, clouds, etc. The segmentation problem is formulated 
as an optimization problem and the genetic algorithm efficiently searches the 
hyperspace of segmentation parameter combinations to determine the 
parameter set which maximizes the segmentation quality criteria in terms of 
edge-border coincidence, boundary consistency, pixel classification, object 
overlap and object contrast. Their experimental results demonstrate that 
genetic algorithm can continuously adapt the segmentation process to normal 
environmental variations to provide robust performance when interacting with 
a dynamic environment. Emmanouilidis et al. [30] discuss the use of multi- 
criteria genetic algorithms for feature selection. With multi-criteria fitness 
functions, genetic algorithm tries to minimize the number of features selected 
while maintaining the high classification accuracy. The algorithm is shown to 
yield a diverse population of alternative feature subsets with various accuracy 
and complexity trade-off. It is applied to select features for performing 
classification with fuzzy models and is evaluated on real-world data sets such 
as a cancer data set in which each data point has 9 input features and one 
output label (malignant or benign). Estevez and Caballero [31] propose a 
genetic algorithm to select features for neural network classifiers. Their 
algorithm is based on a niching method to find and maintain multiple optima. 
They also introduce a new mutation operator to speed up the convergence of 
the genetic algorithm. Rhee and Lee [99] present an unsupervised feature 
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selection method using a fuzzy-genetic approach. The method minimizes a 
feature evaluation index which incorporates a weighted distance between a 
pair of patterns used to rank the importance of the individual features. A 
pattern is represented by a set of features and the task of genetic algorithm is 
to determine the weight coefficients of features in the calculation of weighted 
distance. Matsui et al. [74] use genetic algorithm to select the optimal 
combination of features to improve the performance of tissue classification 
neural networks and apply their method to problems of brain MRI 
segmentation to classify gray matterlwhite matter regions. MDL related prior 
work is described in chapter 3.2. 

In this chapter, we use genetic algorithm to select a good subset of features 
used for target detection in SAR images. The target detection task involves the 
selection of a subset of features to discriminate SAR images containing targets 
from those containing clutter. Our method is a novel combination of genetic 
algorithm based optimization of a criterion function that involves classification 
error and the number of features that are used for the discrimination of targets 
from natural clutter in SAR images. The criterion (fitness) function we 
propose in this chapter is based on the minimum description length principle 
and it compares favorably with other three fitness functions. We assume the 
joint distribution of features follows a Gaussian distribution. The criterion 
function is optimized in a closed-loop with a Bayesian classifier evaluating the 
performance of each set of features. The GA used in feature selection is 
adaptive in the sense that it can automatically adapt the parameters, such as 
crossover rate and mutation rate, based on the efficiency of GA search in the 
feature space. As compared to this work, the feature selection presented in 
[65],  [84] for target vs. natural clutter discrimination measures exhaustively 
the performance of each combination of the features by the Pd (probability of 
detection) versus Pfo (probability of false alarm) plot produced by it. The 
higher the Pd and the lower the Pfa, the better the combination of features. 
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4.3 Feature Evaluations and Selection 

The purpose of the genetic algorithm based feature selection approach 
presented in this chapter is to select a set of features to discriminate the targets 
from the natural clutter false alarms in SAR images. The approach includes 
four stages: rough target detection, feature extraction from the potential target 
regions, feature selection based on the training data and the final 
discrimination. The first stage is based on the Lincoln Lab ATR system and 
the second stage uses some of features (first 10 of the 20 features) used in 
their system [65], [84], [85]. In the feature selection stage, we use GA to select 
a best feature subset, defined as a particular set of features that is the best in 
discriminating the target from the natural clutter. The diagram for feature 
selection is given in Figure 4.1. 

Input SAR Potential 
Image Target Regions 

Extracted 
Features 

Best Feature 
r l S u b s e t  Classifier rl . Selection 

Feedback 

Figure 4.1. System diagram for feature selection. 
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4.3.1 Feature selection 

Adding more features does not necessarily improve discrimination 
performance. An important goal is to choose the best set of features from the 
discriminating features that are available. Before we do the feature selection, it 
is appropriate to give a set of feature evaluation criteria, which measure the 
discrimination capability of each feature or a combination of several features 

Divergence: Divergence is basically a form of the Kulback-Liebler distance 
measure between density fbnctions. If we assume that the target as well as the 
natural clutter feature vectors follow Gaussian distributions, that is, 
N(u,,C,) and N(u,,C,), whereu, and u,aremeanvalues and C, and C, 
are covariance matrices, respectively, the divergence can be computed as 
follows 

One major drawback of the divergence dlz is that it is not easily computed, 
unless the Gaussian assumption is employed. For SAR imagery, the Gaussian 
assumption itself is in question. 

Scatter matrices: These criteria are based upon the information related to 
the way feature vector samples are scattered in the I-dimensional feature space. 
We define two kinds of scatter matrices, that is, within-class scatter matrix and 
between-class scatter matrix. Within-class scatter matrix for M classes is, 

M 
s = C p . ~  , where Si is the covariance matrix for class mi and 4 is the a 

I I 

i = l  

priori probability of class mi. S, matrix measures how feature vector samples 

are scattered within each class. Between-class scatter matrix S,, is defined as 
M 

follows: sb = pi (. - 
- )T , where u,, is the global mean vector 

i = l  

and u i  is the mean for each class, i = I, ..., M. The between-class scatter 

matrix measures how the feature vector samples are scattered between 
different classes. Based on the different combinations of these two scatter 
matrices, a set of class separability criteria can be derived; one such measure 
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I S  I can be defined as: J = A. If the feature vector samples within each class 
IS, I 

are scattered compactly and the feature vector samples from different classes 
are far away from one another, we expect the value for J would be high. This 
also implies that the features we choose have high discrimination. 

Feature vector evaluation using a classifier: Another method for feature 
evaluation depends on the specific classifier. The task of feature selection is to 
select or determine a set of features that, when fed into the classifier, will let 
the classifier achieve the high performance. So it makes sense to relate the 
feature selection procedure with the particular classifier used. During the 
training time, we have all the features extracted from the training data. What 
we can do is to select a subset of features and feed them into the classifier and 
see the classification result. Then the goodness of each feature subset is 
indicated by its classification error rate. 

4.3.2 Various criteria for fitness function 

We use GA to seek the smallest (or the least costly) subset of features for 
which the classifier's performance does not deteriorate below a certain 
specified level [95], [log]. The basic system framework is shown in Figure 
4.1. 

When the error of a classifier is used to measure the performance, a subset 
of features is defined as feasible if the classifier's error rate is below the so- 
called feasibility threshold. We search for the smallest subset of features 
among all feasible subsets. During the search, each subset can be coded as a d- 
element bit string (d is the total number of features). The ith element of the bit 
string assumes 0 if the ith feature is excluded from the subset and 1 if it is 
present in the subset. 

In order for the GA to select a subset of features, a fitness function must be 
defined to evaluate the performance of each subset of features. GA explores 
the space of subset of features to try to find a minimum subset of features with 
good classification performance. 
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Fitness function based on MDL 

In our system, the classifier is a fixed Bayesian classifier, but the set of 
features that is input into the classifier is a variable. In order to apply MDL to 
feature selection, we view the features selected by GA as the model used to 
describe the training data. Selecting more features means that a more complex 
model is used to approximate the data. Although a complex model may have 
perfect performance on the training data, it may not be a good model, since it 
may be overly sensitive to statistical irregularities and idiosyncrasies of the 
data and causes accidental noise to be modeled as well, leading to the poor 
performance on the unseen test data. 

To fix the above problem, we use an MDL principle to prevent the 
overfitting of the training data. Roughly speaking, the MDL principle states 
that among all the models approximating the data to or above certain accuracy, 
the simplest one is the best one. To restrict the model from growing too 
complex while maintaining the description accuracy, the cost of describing a 
set of data with respect to a particular model is defined as the sum of the 
length of the model and the length of the data when encoded using the model 
as a predictor for the data. The description length of data-to-model error is 
defined as the combined length of all data items failed to be described by the 
model. GA is used to select the subset of features minimizing the above cost. 
Here, both description lengths are measured in bits and the details of the 
coding techniques are relevant. The trade-off between simplicity and 
complexity of both lengths is that if a model is too simple, it may not capture 
the characteristics of the data and lead to increased error coding length; if a 
model is too complicated, it may model the noise and become too sensitive to 
minor irregularities to give accurate prediction of the unseen data. MDL states 
that among the given set of models, the one with the minimum combined 
description lengths of both the model and data-to-model error is the best 
approximation and can perform best on the unseen test data. 

Based on MDL, we propose the following fitness function for GA to 
maximize: 
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where ci is a chromosome coding the selected set of features, f is the total 
number of features extracted from each training data, k is the number of 
features selected (ci has k bits of 1 and f - k bits of 0), n is the total number of 
data items in the training set and n, is the number of data items misclassified. 
It is easy to see that the fewer the number of features selected and smaller the 
number of data items misclassified, the larger the value of the fitness function. 

Chapter 3.2 provided an explanation of an MDL-based fitness function. In 
the following, we give a brief simpler explanation of the above (equation 4.2) 
fitness function. Suppose a sender and a receiver both know all the data items 
and their order in the training set and also they agree in advance on the feature 
extractor used to extract the f features from each data item and the classifier 
used to classify each data based on the features extracted. But only the sender 
knows the label (target or clutter) of each data item. Now, the sender wants to 
tell the receiver the label of each data item. One simple approach to do this is 
to send a bit sequence of n bits where 1 represents the target and 0 represents 
the clutter. If n is large, then the communication burden will be heavy. In order 
to reduce the number of bits to be transmitted, in an alternative approach, the 
sender can tell the receiver which features can be used to classify the data, 
since the receiver can extract the features and apply the classifier on the 
features extracted to get the label of each data item. There are a total off 
features and l o g o  bits are needed to encode the index of each feature. If k 
features are selected, k l o g o  bits are needed in order to inform the receiver 
which features should be extracted. However, some data items may be 
misclassified, so the sender needs to tell the receiver which data items are 
misclassified so that the receiver can get the correct labels of all the data in the 
training set. Since there are a total of n data items, log@ bits are needed to 
encode the index of each data item. If n, data items are misclassified, then n, 
log@ bits are needed to convey to the receiver the indices of these 
misclassified data items. If the set of features selected is effective in 
discriminating targets from clutter, n, may be very small, thus the number of 
bits needs to be transmitted is much smaller than n. 
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Other fitness functions 

We have three other additional fitness functions to drive GA and compare their 
performance with that of the MDL-based fitness function. 

In order to define two other fitness functions, we first define the following 
penalty function [ 1091: 

where e is the error rate (the number of misclassified data item divided by the 
total number of data items in the training set) of the classifier, t is the 
feasibility threshold and m is called the "tolerance margin". In this chapter, t = 

0.01 and m = 0.005. We can see easily that if e < t, p(e) is negative and as e 
approaches zero, p(e) slowly approaches its minimal value. Note also that p(t) 
= 0 and p(t + m) = 1. For greater values of the error rate, this penalty function 
rises quickly toward infinity. 

The second fitness function is defined as follows: 

This fitness function considers only the error rate of the classifier and does 
not care about how many features are selected. It can be predicted that this 
fitness function may lead to the selection of many features. 

The third fitness function takes the complexity of the model, that is the 
number of features selected, into consideration. It combines the complexity of 
the model and its performance on the training data and is defined as follow: 

where k is the number of features selected by GA. The variable y ranges from 
0 to 1 and it determines the relative importance of the number of features 
selected and the error rate of the classifier. If we want to use fewer features, 
we can assign a large value to y; if we think lower error rate is more important, 
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we can assign a small value to y. In our experiments, y takes value 0.1, 0.3 and 
0.5. 

The fourth fitness function is defined as follows: 

where k is the number of features as defined in (4.5) and y ranges from 0 to 1 
and is a parameter that determines the relative importance of the number of 
feature selected and the error rate of the classifier. 

GA tries to maximize these three fitness functions in order to find an 
optimal set of features for discriminating targets from clutter. 

4.4 System Description 

The system has four major elements as shown in Figure 4.1 : a CFAR detector, 
feature extractor, feature selector, and a typical Bayesian Classifier. 

4.4.1 CFAR detector 

A two-parameter CFAR detector is used as a prescreener to identify potential 
targets in the image on the basis of radar amplitude. A guard area around a 
potential target pixel is used for the estimation of clutter statistics. The 
amplitude of the test pixel is compared with the mean and standard deviation 
of the clutter according to the following rule: 

x, - CC 
X~~~~ = > KCFAR 3 target, otherwise clutter (4.7) 

6 c  

where X, is the amplitude of the test pixel, 6, is the estimated mean of the 

clutter amplitude, 3, is the estimated standard deviation of the clutter 
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amplitude, and KCFAR is a constant threshold value that defines the false-alarm 
rate. In this chapter, the value of KCFAR is 4.0. 

Only those test pixels whose amplitude is much higher than that of the 
surrounding pixels are declared to be targets. The higher we set the threshold 
value of KCFAR, the more a test pixel must stand out from its background for it 
to be declared as a target. Because a single target can produce multiple CFAR 
detections, the detected pixels are grouped together if they are within a target- 
sized neighborhood. The CFAR detection threshold in the prescreener is set 
relatively low to obtain a high initial probability of detection for the target 
data. It is the responsibility of the discriminator to capture and reject those 
escaping clutter false alarms from the prescreener stage. An example SAR 
image and corresponding detection results are shown in Figure 4.2. 
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(a) Example SAR image. 

(b) Detection result. 

Figure 4.2. SAR image and CFAR detection result. 
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4.4.2 Feature extractor 

First, we use a target-sized rectangular template to determine the position and 
orientation of the detected target [38]. The algorithm slides and rotates the 
template until the energy within the template is maximized. Then we extract a 
set of features from the target-sized template or the region of interest. By using 
this set of 20 features, we attempt to discriminate the targets from the natural 
clutter. The first ten features are the same as those used in [65]. The features 
from eleven to twenty are general features used in pattern recognition and 
object recognition 

The standard-deviation feature (feature 1): The standard deviation of 
the data within the template is a statistical measurement of the fluctuation of 
the pixel intensities. If we use P(r, a) to represent the radar intensity in power 
from range r and azimuth a, the standard deviation can be calculated as 
follows: 

S ,  = 10 log ,, P ( r , a )  
N where r , a e region 

0 = 
S2 = C [lo 1% 1, P ( r , a ) I 2  (4.8) 

r , a e region 

and N is the number of points in the region. 

Targets usually exhibit much larger standard deviation than the natural 
clutter, as illustrated by Figure 4.3. 
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(a) A typical object image with (b) A typical natural clutter image 
standard deviation 5.2832 with standard deviation 4.51 87 

Figure 4.3. Example of the standard deviation feature. 

The fractal dimension feature (feature 2): The fractal dimension of the 
pixels in the region of interest provides information about the spatial 
distribution of the brightest scatterers of the detected object. It complements 
the standard-deviation feature, which depends only on the intensities of the 
scatterers, not on their spatial locations. 

The first step in applying the fractal-dimension concept to a radar image is 
to select an appropriately sized region of interest, and then convert the pixel 
values in the region of interest to binary. One method of performing this 
conversion is to select the N brightest pixels in the region of interest and 
convert their values to 1, while converting the rest of pixel values to 0. Based 
on these N brightest pixels, we approximate the fractal dimension by using the 
following formula: 

log M, - log M2 log M,  - log M2 
dim = - - - 

log 1 - log 2 log 2 (4.9) 

where MI represents the minimum number of 1-pixel-by-1 -pixel boxes that 
cover all N brightest pixels in the region of interest (This number is obviously 
equal to N) and M2 represents the minimum number of 2-pixel-by-2-pixel 
boxes required to cover all N brightest pixels. 

The bright pixels for a natural clutter tend to be widely separated, thus 
produce a low value for the fractal dimension, while the bright pixels for the 
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target tend to be closely bunched, thus we expect a high value for the fractal 
dimension, which is illustrated by Figure 4.4. Figure 4.4(a) shows a target 
image chip. In Figure 4.4(b), the 50 brightest pixels from the target image are 
tightly clustered, and 22 2x2-pixel boxes are needed to cover them, which 
results in a high fractal dimension of 1.2. Figure 4.4(c) shows a natural clutter 
image chip. In Figure 4.4(d), the 50 brightest pixels from this natural clutter 
are relatively isolated, and 46 2x2-pixel boxes are needed to cover them, 
which results in a low fractal dimension of 0.29. 

(a) Object image (b) 50 brightest pixels in (a) 

(c) Natural clutter image (d) 50 brightest pixels in (c) 

Figure 4.4. Example of the fractal dimension feature. 

Weighted-rank fill ratio feature (feature 3): This textural feature 
measures the percentage of the total energy contained in the brightest 
scatterers of a detected object. We define the weighted-rank fill ratio as 
follows: 
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C P ( r , a )  
k brightest pixels 

17 = 
C P ( r , a )  

all pixels 

This feature attempts to exploit the fact that power returns from most targets 
tend to be concentrated in a few bright scatters, whereas power returns form 
natural-clutter false alarm tend to be more diffuse. The weighted-rank fill ratio 
values of target in Figure 4.3(a) and clutter in Figure 4.3(b) are 0.3861 and 
0.2321 respectively. 

Size-related features (feature 4 - 6): The three size-related features 
utilize only the binary image created by the morphological operations on the 
CFAR image. The morphological operations are applied in the order of clean 
(remove isolated pixels), bridge (connect unconnected components if they are 
close to each other, at most 3 pixels apart) and close (dilation followed by 
erosion). The resulting largest component is called morphological blob. 

1 .  The mass (feature 4) is computed by counting the number of pixels in the 
morphological blob. 

2. The diameter (feature 5) is the length of the diagonal of the smallest 
rectangle that encloses the blob. 

3. The square-normalized rotational inertia (feature 6) is the second 
mechanical moment of the blob around its center of mass, normalized by the 
inertia of an equal mass square. 

In our experiments, we found the size features are not effective in scenarios 
where the targets are partially occluded or hidden. After the prescreener stage, 
the size and the shape of the detected morphological blob can be arbitrary. For 
the clutter, there is also no ground to assert that the resulting morphological 
blob will exhibit a certain amount of coherence. The experimental results in 
Figure 4.5 show the arbitrariness of the morphological blobs for the targets as 
well as the clutter. 
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(a) The left-hand side figures represent the object images and the right- 
hand figures represent their corresponding morphological blobs. 

(b) The left-hand side figures represent the clutter images and the 
right-hand figures represent their corresponding morphological blobs. 

Figure 4.5. Examples of images used to compute size features (4-6) for (a) object and 
(b) clutter. 
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The contrast-based features (features 7 - 9): The CFAR statistic is 
computed for each pixel in the target-shaped blob to create a CFAR image. 
Then the three features can be derived as follows: 

1. The maximum CFAR (feature 7) is the maximum value in the CFAR image 
contained within the target-sized blob. 

2. The mean CFAR (feature 8) is the average of the CFAR image taken over 
the target-shaped blob. 

3. The percent bright CFAR (feature 9) is the percentage of pixels within the 
target-sized blob that exceed a certain CFAR value. 

The maximum CFAR feature, the mean CFAR feature and the percent 
bright CFAR feature values of target in Figure 4.3(a) are 55.69, 5.53 and 0.15, 
respectively, and these feature values of clutter in Figure 4.3(b) are 10.32, 2.37 
and 0.042, respectively. We can see that CFAR feature values for the target are 
much larger than those for the natural clutter false alarm. 

The count feature (feature 10): The count feature is very simple; it counts 
the number of pixels that exceeded the threshold T and normalizes this value 
by the total possible number of pixels in a target blob. The threshold T is set to 
the quantity corresponding to the 98th percentile of the surrounding clutter. 
The count feature values of target in Figure 4.3(a) and clutter in Figure 4.3(b) 
are 0.6 and 0.1376, respectively. We can see that the count feature value for 
the target is much larger than that for the natural clutter false alarm. This is 
reasonable because the intensity values of the pixels belonging to the target 
stand out from the surrounding clutter, while the natural clutter false alarms do 
not have this property. 

The following ten features: four projection features; three distance features 
and three moment features, are common features used in image processing and 
object recognition. They are extracted from binary image resulting from 
CFAR detection. In these images, foreground pixels (pixels with value 1) are 
potential target pixels. 
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Projection features (features 11 - 14): Four projection features are 
extracted from each binary image: 

1 .  horizontal projection feature 11): Project the foreground pixels on a 
horizontal line (x axis of image) and compute the distance between the 
leftmost point and the rightmost point. 

2. vertical projection feature 12): Project the foreground pixels on a vertical 
line (y axis of image) and compute the distance between the uppermost 
point and the lowermost point. 

3. major diagonalprojection feature 13): Project the foreground pixels on the 
major diagonal line and compute the distance between the upper leftmost 
point and the lower rightmost point. 

4. minor diagonalprojection feature 14): Project the foreground pixels on the 
minor diagonal line and compute the distance between the lower leftmost 
point and the upper rightmost point. 

The average values of horizontal, vertical, major and minor diagonal 
projection features of all the clutter images, we collected, are approximately 
60.0, 60.0, 90.0 and 90.0, respectively. Their corresponding values for target 
images are 34.5, 29.5, 46.7 and 47.8, respectively. It can be seen that the 
feature values for the clutter are larger than those for the target. This result is 
reasonable, since the bright pixels of a natural clutter tend to be widely 
separated. This has already been shown by the fractal dimension feature value. 

Distance features (features 15 - 17): Three distance features are extracted 
from each binary image. Before computing distance features, we first compute 
the centroid of all the foreground pixels in the binary image. 

1 .  minimum distance feature 15): Compute the distance from each foreground 
pixel to the centroid and select the minimum one. 

2. maximum distance featire 16): Compute the distance from each foreground 
pixel to the centroid and select the maximum one. 

3. average distance feature 17): Compute the distance from each foreground 
pixel to the centroid and get the average value of all these distances. 
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The average values of minimum, maximum and average distance features of 
all the clutter images we collected are approximately 40.0, 70.0 and 60.0, 
respectively. Their corresponding values of target images are 3.8, 26.7 and 
11.5, respectively. It can be seen that the feature values for the clutter are 
larger than those for the target. This result is reasonable, since the bright pixels 
of a natural clutter tend to be widely separated. 

Moment features (features 18 - 20): Three moment features are extracted 
from each binary image. All three moments are central moments, so before 
computing moment features, we first compute the centroid of all the 
foreground pixels in the binary image. 

The central moments can be expressed as: 

where (Z, 7)  is the centroid and p and q are integers. 

We compute p,, , p,, and p,, from each binary image and these are the 

horizontal, vertical and diagonal second-order moments (features 18, 19, 20) 
respectively. 

The average values of horizontal, vertical and diagonal second-order 
moment features of all the clutter images we collected are approximately 
910.0, 910.0 and 374020.0, respectively. Their corresponding values of target 
images are 80.5, 46.7 and 4021.6, respectively. It can be seen that the feature 
values for the clutter are larger than those for the target. This result is 
reasonable, since the bright pixels of a natural clutter tend to be widely 
separated. 
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4.4.3 GA for feature selection 

The genetic algorithm is an optimization procedure that operates in binary 
search spaces (the search space consists of binary strings). A point in the 
search space is represented by a finite sequence of 0's and l's, called a 
chromosome. The algorithm manipulates a finite set of chromosomes, the 
population, in a manner resembling the mechanism of natural evolution. Each 
chromosome is evaluated to determine its "fitness," which determines how 
likely the chromosome is to survive and breed into the next generation. The 
probability of survival is proportional to the chromosome's fitness value. 
Those chromosomes which have higher fitness values are given more chances 
to "reproduce" by the processes of crossover and mutation. The function of 
crossover is to mate two parental chromosomes to produce a pair of offspring 
chromosomes. In particular, if a chromosome is represented by a binary string, 
crossover can be implemented by randomly choosing a point, called the 
crossover point, at which two chromosomes exchange their parts to create two 
new chromosomes. Mutation randomly perturbs the bits of a single parent to 
create a child. This procedure can increase the diversity of the population. 
Mutations can be performed by flipping randomly one or more bits in 
chromosomes. In this chapter, we implement an adaptive genetic algorithm 
that can automatically adapt the parameters such as crossover rate and 
mutation rate based on the performance of GA. To be specific, if the fitness 
value of the best individual is not improved for 3 or 5 generations in a row, 
GA will automatically raise the mutation rate to increase the diversity of the 
population. Also, elitism mechanism is adopted such that the best individual 
(set of features selected) is copied from generation to generation when 
performing reproduction. 

In this research, there are 20 features as described earlier. Each feature is 
represented as a bit in the genetic algorithm. There are 220 possible 
combinations of these features. 
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4.5 Experiments 

We use SAR images from MSTAR public data (target and clutter data) [I041 
and generate 1008 target chips (small SAR images containing target) and 1008 
clutter chips (small SAR images containing clutter) of size 120x120. We also 
use SAR images that are downloaded from the website of MIT Lincoln Lab. 
From these SAR images, 40 target chips and 40 clutter chips of size 120x120 
are generated. By adding these two sets of images, we have 1048 target chips 
and 1048 clutter chips. Some of the chips are used in training and the rest are 
used in testing. The chips used in training are randomly selected. The GA 
selects a good subset of features from the 20 features described previously to 
classify a SAR image chip into either a target or clutter. We use the CFAR 
detector in the prescreener stage to detect the potential target regions. Since we 
know the ground-truth, we know which one is the real target and which one is 
the clutter false alarm among the potential target regions detected. This allows 
us to construct a set of training data (training target data and training natural 
clutter false alarm data) for feature selection. Then we extract a set of 20 
features from each potential target region and do the feature selection. Finally 
in the testing stage we use the selected features to discriminate the targets from 
the natural clutter false alarms. 

For our GA-based feature selection framework, we adopt a Bayesian 
classifier to classify the training data and the resulting error rate is used as the 
feedback into the feature selection algorithm. The size of the population is 
100, the initial crossover rate is 0.8 and the initial mutation rate is 0.01. If the 
fitness value of the best individual is not improved for 3 generations in a row, 
GA increases the mutation rate by 0.02. In order to reduce the training time, 
we set an error rate threshold E. The GA stops when either the error rate of the 
best set of features selected is below the specified threshold E or the mutation 
rate is increased above 0.09. 

We carried out a series of experiments to test the efficacy of GA in feature 
selection. First, we use the MDL-based fitness function. Then we use the other 
three fitness hnctions. Finally, we compare and analyze the performance of 
these fitness functions. In order to have an objective comparison of various 
experiments, the GA is invoked ten times for each experiment with the same 
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set of parameters and the same set of training chips. Only the average 
performance is used for comparison. 

4.5.1 MDL principle-based fitness function 

We performed four experiments with this fitness function. In the first 
experiment, 300 target chips and 300 clutter chips are used in training and 748 
target chips and 748 clutter chips are used in testing, the error rate threshold 
value E is 0.002; in the second experiment, 500 target chips and 500 clutter 
chips are used in training and 548 target chips and 548 clutter chips are used in 
testing, the error rate threshold value E is 0.0015; in the third and fourth 
experiments, 700 target chips and 700 clutter chips are used in training and 
348 target chips and 348 clutter chips are used in testing, the error rate 
threshold values E are 0.00 15 and 0.00 1 1, respectively. The features selected 
during training are used for classification during testing. It is worth noting that 
the training chip set in the third and fourth experiments is the superset of that 
in the second experiment and the training chip set in the second experiment is 
the superset of that in the first experiment. The target and clutter chips used 
during training are selected at random. 

Table 4.1 shows the experimental results where 300 target and 300 clutter 
chips are used in training. GA is invoked 10 times and each row records the 
experimental results from the corresponding invocation. The last row records 
the average results of 10 runs. The column "Best generation" records the 
generation number in which the best set of features is found and the column 
"Total generation" shows the total number of generations GA runs. Note that 
Bg is often much less than Tg, which indicates that the termination criteria are 
somewhat loose and, thus, we are somewhat inefficient in training time. It can 
be seen that although the training error rate is 0.003 in each run, different 
features are selected. In some runs, the same number of testing clutter chips 
are misclassified, but the clutter chips that are misclassified in each run are 
different. From the testing results, we can observe that sometimes clutter chips 
are misclassified as target chips. The testing results show that GA finds an 
effective set of features to discriminate target from clutter. 

Table 4.2 and Table 4.3 show the experimental results when 500 target and 
clutter chips and 700 target and clutter chips are used in training, respectively. 
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The results in Table 4.2 are very good. On the average, 5.1 features are 
selected and both the training and testing error rate are very low. However, the 
results in Table 4.3 are not good. Although the training and testing error rates 
are low, 9.2 features are selected on the average. From Table 4.3, we can see 
that GA runs 4.9 generations on the average. It is clear that GA stops 
prematurely. The reason for the premature termination is that the error rate 
threshold value 0.0015 is high in this case, since there are 700 target chips and 
700 clutter chips. In order to force GA to explore the search space, we lower 
the error rate threshold value to 0.001 1 and get the results shown in Table 4.4. 
These results are much better than those in Table 4.3. Only 5.3 features are 
selected on the average, although the average testing error rate is almost 
doubled. Considering both the test error rate and the number of features 
selected, the first run in Table 4.1 and Table 4.4, and the sixth run in Figure 
4.2 yield the best results. Figure 4.6 shows how fitness values change as GA 
searches the feature subset space during these runs; Figure 4.7 shows how 
training error rate changes and Figure 4.8 shows how the number of features 
selected changes. 

From the above experiments, we can see that the MDL-based fitness 
function and adaptive GA are very efficient in feature selection. Only 4 to 6 
features are selected on the average while the detection accuracy is kept high. 
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Table 4.1. Experimental results with 300 training target and clutter chips (MDL, 
equation (4.2); E = 0.002). 

B,: best generation. T,: total generation. F,: number of features selectc 
T: target. C: clutter. 

Training Number Testing 
Features 1 selected 1 ::; ki ::; 

0100101001 
0000000000 0.003 0.001 

Number 
of 
T 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

errors 
C 

2 

116 

116 

7 

225 

110 

116 

116 

5 

7 

12 



4.5 Experiments 147

Table 4.2. Experimental results with 500 training target and clutter chips (MDL,
equation (4.2); E = 0.0015).

Run

1

2

3

4

5

6

7

8

9

10

Ave.

Bg

17

13

19

20

10

26

25

9

8

17

16.4

T*g

35

31

38

38

28

44

43

27

26

35

34.5

Fn

5

5

5

5

5

5

5

6

5

5

5.1

Features

seiecieu
0100001001
1000100000
0100001001
0000001001
0100001001
0000011000
0100001001
0000011000
0100001001
0010100000
0100001001
1100000000
0100001001
0000010100
0000001011
0000011010
0100001001
0000011000
0001001001
0011000000

Training
error
rate

0.002

0.002

0.002

0.002

0.002

0.002

0.002

0.002

0.002

0.002

0.002

Nu n
of ei
T

1

1

1

1

1

1

1

1

1

1

1

iber
Tors
C

1

1

1

1

1

1

1

1

1

1

1

Testing
error
rate

0.006

0.006

0.006

0.006

0.006

0.003

0.007

0.007

0.006

0.004

0.0057

Nun
of er
T

0

0

0

0

0

0

0

0

0

0

0

iber
rors
C

7

7

7

7

7

3

8

8

7

4

6.5

T: target. C: clutter.
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Table 4.3. Experimental results with 700 training target and clutter chips (MDL,
equation (4.2); E = 0.0015).

Run

1

2

3

4

5

6

7

8

9

lo

Ave.

8

9

7

2

5

2

5

3

4

4

4.9

8

9

7

2

5

2

5

3

4

4

4.9

Fn

9

10

7

10

8

7

lo

lo

l1

lo

9.2

Features

selected
0101101001
1010001001
1101001001
1010101010
0000001011
0100101010
1101001001
0110011010
0100001001
0011111000
1000011011
0100001000
1101001001
0110101100
1100101011
0101010001
1101011001
1010111000
1101001001
0011111000

Training
error
rate

0.0014

0.0014

0.0014

0.0014

0.0014

0.0014

o.oo14

o.oo14

o.oo14

o.oo14

0.0014

Num
of err
T

1

1

1

1

1

1

1

1

1

1

1

?er
ors
C

1

1

1

1

1

1

1

1

1

1

1

Testing
error
rate

0.006

0.001

0.012

0.001

0.007

0.012

0.001

0.003

0.001

0.001

0.0045

Nun
of ei
T

0

0

0

0

0

0

0

0

0

0

0

iber
Tors
C

4

1

8

1

5

8

1

2

1

1

3.2
B,: best generation. T,:totalg
T: target: C: clutter.

total generation. F,: number of features selected.
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Table 4.4. Experimental results with 700 training target and clutter chips (MDL,
equation (4.2); E = 0.0011).

Run

1

2

3

4

5

6

7

8

9

10

Ave.

10

19

17

16

16

19

10

15

10

23

15.5

Tg

28

37

35

34

34

37

28

33

28

41

33.5

6

5

5

6

5

5

5

5

6

5

5.3

Features

seiecieu
0001001001
1000001010
0100001001
0000001010
0100001001
0010100000
0001011001
0010001000
0100001001
0000011000
0100001001
0010100000
0100001001
0000010100
0100001001
0000011000
0100011001
1000010000
0100001001
0000001001

Training
error
rate

0.0014

0.0014

0.0014

0.0014

0.0014

0.0014

0.0014

0.0014

0.0014

0.0014

0.0014

Nur
of e
T

1

1

1

1

1

1

1

1

1

1

1

ober
rrors
C

1

1

1

1

1

1

1

1

1

1

1

Testing
error
rate

0.004

0.012

0.01

0.006

0.01

0.01

0.01

0.01

0.007

0.01

0.0089

Nui
of e
T

0

0

0

0

0

0

0

0

0

0

0

nber
rrors
C

3

8

7

4

7

7

7

7

5

7

6.1
Bg: best generation.
T: target. C: clutter.

total generation. Fn: number of features selected.
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generation 

(a) 700 training target and clutter chips. 

0 5 10 15 20 25 30 35 40 45 0 5 10 15 20 25 30 

generation generation 

(b) 500 training target and (c) 300 training target and 
clutter chips. clutter chips. 

Figure 4.6. Fitness values vs. generation number. 
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(a) 300 training target and clutter chips. 
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(b) 500 training target and (c) 700 training target and 
clutter chips. clutter chips. 

Figure 4.7. Training error rates vs. generation number. 
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0 5 10 15 20 25 30 35 40 45 50 

generation 

(a) 300 training target and clutter chips. 

0 5 10 15 20 25 30 35 40 45 0 5 10 15 20 25 30 

generation generation 

(b) 500 training target and (c) 700 training target and 
clutter chips. clutter chips. 

Figure 4.8. The number of features selected vs. generation number. 
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4.5.2 Other fitness functions 

For the purpose of objective comparison, the training chip set in the following 
experiments is the same as that in the second experiment above, that is, 500 
target chips and 500 clutter chips are used in training and 548 target chips and 
548 clutter chips are used in testing. 

First, we use (4.4) as the fitness function and invoke GA 10 times. The error 
rate threshold value is 0.0015. Table 4.5 shows the experimental results. This 
function is only dependent on the error rate, so GA found a set of features with 
very low error rate quickly. The selected features are shown by the "Number 
of features" and "Features selected" columns. However, since the number of 
features is not taken into consideration by the fitness function, many features 
are selected. More than 10 features are selected on the average in 10 runs. 

Next, we use (4.5) as the fitness function. We performed three experiments 
with this function, and the values of y are 0.1, 0.3 and 0.5 in these three 
experiments, respectively. The error rate threshold is 0.0015. Since this 
function considers the number of features selected, only a few features will be 
selected. Table 4.6, Table 4.7 and Table 4.8 show the corresponding 
experimental results when y is 0.1,0.3 and 0.5. 

From Table 4.6, we can see that since the training error rate is low, the 
number of features selected accounts for a large percentage of the value of the 
fitness function, forcing GA to select only 2 features in each run. However, the 
error rate for testing results is not encouraging. It is more than 0.02 on the 
average. 

When y is 0.3, the number of features account for a larger part of the value 
of the fitness function than when y is 0.1, forcing GA to select almost only one 
feature. Actually, in 8 of the 10 runs shown in Table 4.7, GA selects the best 
feature (feature 7) among all the 20 features (see Table 4.12) to discriminate 
the target from clutter. When y is 0.5, the number of features almost dominates 
the value of fitness function. The same phenomenon occurs and the 
experimental results are shown in Table 4.8. 
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Finally, we use (4.6) as the fitness function. We did three experiments with 
this function, and the values of y are 0.1, 0.3 and 0.5 in these three 
experiments, respectively. The error rate threshold is 0.0015. Like (4.5), this 
function considers both the number of features selected and the error rate. 
When y is large, this function forces GA to select one feature. Usually, the best 
feature (feature 7) is selected (see Table 4.12). Table 4.9, Table 4.10 and 
Table 4.1 1 show the corresponding experimental results when y is 0.1, 0.3 and 
0.5, respectively. 

In order to show that GA selects the best feature when the number of features 
dominates the fitness function, we examine the efficacy of each feature in 
discriminating the targets from clutter. The data used in examination are 500 
target chips and 500 clutter chips used in the above training. The results are 
shown in Table 4.12. From this table, it can be seen that the best feature 
(feature 7, the maximum CFAR feature) is selected by GA. 

4.5.3 Comparison and analysis 

Figure 4.9 shows the average performance of each of the above experiments 
pictorially. The X-axis is the average number of features selected and the Y- 
axis is the average training error rate. We use the average number of features 
selected and the average training error rate to form a performance point and 
evaluate the performance according to the location of performance point. A 
good performance point should have lower values of both the average number 
of features and the training error. The three points (shown as circles) are the 
performance points when the MDL-based fitness function is used and the rest 
are the performance points corresponding to other fitness functions. 

From the above experimental results, we can see that GA is capable of 
selecting a good set of features to discriminate the target from clutter. The 
MDL-based fitness function is the best fitness function compared to the three 
other functions. Fitness function (4.4) doesn't include the number of features. 
Although GA can find a good set of features quickly driven by this function, 
many features are selected. This greatly increases the computational 
complexity in the testing phase. Fitness functions (4.5) and (4.6) take the 
number of features selected into consideration. However, the number of 
features dominates the fitness function value, forcing GA to select only one or 
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two features, leading to the unsatisfactory training and testing error rates. In
order to balance the number of features selected and the error rate, parameter y
must be finely tuned. This is not an easy task and it usually takes a lot of time.
The MDL-based fitness function is based on a sound theory and it balances
these two terms very well. Only a few features are selected while the training
and testing error rates are kept low.

Table 4.5. Experimental results with 500 training target and clutter chips (penalty
function, equation (4.4); E = 0.0015).

Run

1

2

3

4

5

6

7

8

9

10

Ave.

B,

4

11

2

4

3

10

8

2

3

3

5

T

22

11

20

22

21

10

26

20

21

21

19.4

13

10

9

11

10

9

10

11

10

9

10.2

Features

selectede
0111111011
1100111000
1011011011
0001100100
0101101001
1011000100
1010011011
0101011100
1110001011
1010010100
0011011011
0000110100
1101101001
0011010010
1110101011
0001001110
0110011011
1101100000
1110011011
0000110000

Training

0.002

0.001

0.002

0.002

0.002

0.001

0.002

0.002

0.002

0.002

0.0018

Nui
of e
T

1

1

1

1

1

1

1

1

1

1

1

mber
rrors
C

1

0

1

1

1

0

1

1

1

1

1

Testing
error
rate

0.004

0.005

0.005

0.004

0.003

0.005

0.001

0.003

0.005

0.008

0.0043

Nui
of e
T

0

0

0

0

0

0

0

0

0

0

0

mber
rrors
C

4

5

5

4

3

5

1

3

5

9

4.4

T: target. C: clutter.
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Table 4.6. Experimental results with 500 training target and clutter chips (penalty and
# of features, equation (4.5); y = 0.1; E = 0.0015).

Run

1

2

3

4

5

6

7

8

9

10

Ave.

Bg

18

12

17

20

16

11

15

17

14

12

15.2

36

30

35

38

34

29

33

35

32

30

33.2

Fn

2

2

2

2

2

2

2

2

2

2

2

Features

selected
0000001001
0000000000
0000001000
0000001000
0000001001
0000000000
0000001001
0000000000
0000001001
0000000000
0000001001
0000000000
0000001001
0000000000
0000001001
0000000000
0000001001
0000000000
0000001000
0000001000

Training
error
rate

0.005

0.007

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.007

0.0054

Nur
of e
T
2

1

2

2

2

2

2

2

2

1

1.8

nber
rrors
C

3

6

3

3

3

3

3

3

3

6

3.6

Testing
error
rate

0.024

0.007

0.024

0.024

0.024

0.024

0.024

0.024

0.024

0.007

0.0206

Nui
of e
T
0

0

0

0

0

0

0

0

0

0

0

nber
rrors
C

26

8

26

26

26

26

26

26

26

8

22.4
B,: best generation. T,
T: target. C: clutter.

total generation. F,: number of features selected.
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Table 4.7. Experimental results with 500 training target and clutter chips (penalty and
# of features, equation (4.5); y = 0.3; E = 0.0015).

Run

1

2

3

4

5

6

7

8

9

10

~ve.1

23

20

11

8

30

14

25

20

22

27

20

T

41

38

29

26

48

32

43

38

40

45

38

Fn

1

1

2

3

1

1

1

1

1

1

1.3

Features

selected

0000001000
0000000000
0000001000
0000000000
1000001000
0000000000
0000000010
0010010000
0000001000
0000000000
0000001000
0000000000
0000001000
0000000000
0000001000
0000000000
0000001000
0000000000
0000001000
0000000000

Training
error
rate

0.01

0.01

0.005

0.008

0.01

0.01

0.01

0.01

0.01

0.01

0.0093

Nur
ofe

T

1

1

1

4

1

1

1

1

1

1

1.3

nber
rrors

C

9

9

4

4

9

9

9

9

9

9

8

Testing
error
rate

0.036

0.036

0.033

0.005

0.036

0.036

0.036

0.036

0.036

0.036

0.0326

Nui
ofe

T

0

0

0

0

0

0

0

0

0

0

0

nber
rrors

C

39

39

36

5

39

39

39

39

39

39

35.3
B,: best generation. T,: total generation. F,: number of features selected.
TI target: C: clutter.
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Table 4.8. Experimental results with 500 training target and clutter chips (penalty and
# of features, equation (4.5); y = 0.5; E = 0.0015).

Run

1

2

3

4

5

6

7

8

9

10

Ave.

Bg

17

29

22

15

32

11

11

23

9

23

19.2

T

35

41

40

33

50

29

29

41

27

41

37.2

Fn

1

1

1

1

1

1

1

1

2

1

1.1

Features

selected

0000001000
0000000000
0000001000
0000000000
0000001000
0000000000
0000001000
0000000000
0000001000
0000000000
0000001000
0000000000
0000001000
0000000000
0000001000
0000000000
0000000010
0000001000
0000001000
0000000000

Training
error
rate

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.012

0.01

0.01

Nun
of ei

T

1

1

1

1

1

1

1

1

5

1

1.5

tiber
rrors
C

9

9

9

9

9

9

9

9

7

9

8.8

Testing
error
rate

0.036

0.036

0.036

0.036

0.036

0.036

0.036

0.036

0.011

0.036

0.0335

Nut
of e

T

0

0

0

0

0

0

0

0

0

0

0

nber
rrors

C

39

39

39

39

39

39

39

39

12

39

36.3
B,: best generation. T,:totalg
T: target. C: clutter.

total generation. F,: number of features selected.
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Table 4.9. Experimental results with 500 training target and clutter chips (error rate
and # of features, equation (4.6); y = 0.1; E = 0.0015).

Run

1

2

3

4

5

6

7

8

9

10

Ave.

21

16

14

25

13

17

17

33

22

12

19

T

39

34

32

43

31

35

35

51

40

30

37

Fn

1

1

2

1

1

1

2

1

1

1

1.2

Features

selected
0000001000
0000000000
0000001000
0000000000
0000100010
0000000000
0000001000
0000000000
0000001000
0000000000
0000001000
0000000000
0000100010
0000000000
0000001000
0000000000
0000001000
0000000000
0000001000
0000000000

Training

cuui idle

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

N u n
of ei
T

1

1

7

1

1

1

7

1

1

1

2.2

nber
rors
C

9

9

3

9

9

9

3

9

9

9

7.8

Testing
error
rate

0.036

0.036

0.006

0.036

0.036

0.036

0.006

0.036

0.036

0.036

0.03

Nur
of e
T

0

0

0

0

0

0

0

0

0

0

0

nber
rrors
C

39

39

7

39

39

39

7

39

39

39

32.6

B,: best generation. T,:
T- target. C: clutter.

total generation. F,: number of features selected.
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Table 4.10. Experimental results with 500 training target and clutter chips (penalty and
# of features, equation (4.6); y = 0.3; E = 0.0015)

Run

1

2

3

4

5

6

7

8

9

10

Ave.

Bs

11

27

17

11

11

11

20

30

7

12

15.7

T

29

45

35

29

29

29

38

48

25

30

33.7

Fn

1

1

1

1

1

1

1

1

1

1

1

Features

selected
0000001000
0000000000
0000001000
0000000000
0000001000
0000000000
0000001000
0000000000
0000001000
0000000000
0000001000
0000000000
0000000010
0000000000
0000000010
0000000000
0000000010
0000000000
0000001000
0000000000

Training
error
ected

0.01

0.01

0.01

0.01

0.01

0.019

0.01

0.019

0.019

0.01

0.013

Nur
of ei
T

1

1

1

1

1

7

1

7

7

1

2.8

mber
rors
c

9

9

9

9

9

12

9

12

12

9

9.9

Testing
error
ected

0.036

0.036

0.036

0.036

0.036

0.028

0.036

0.028

0.028

0.036

0.0336

Nur
or e
T

0

0

0

0

0

0

0

0

0

0

0

ber
error
c

39

39

36

36

39

31

39

31

31

39

36.3
B,: best generation. T,
T: target. C: clutter.

total generation. F,: nurber of features selected.
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Table 4.11. Experimental results with 500 training target and clutter chips (penalty and
# of features, equation (4.6); y = 0.5; E = 0.0015).

Run

1

2

3

4

5

6

7

8

9

lo

Ave.

Bg

25

11

8

11

8

15

9

l2

29

24

15.2

Tg

43

29

26

29

26

33

27

30

47

42

33.2

Fn

1

1

1

1

1

1

l

1

1

1

1

Features

oeiecicu

0000000010
0000000000
0000001000
0000000000
0000000010
0000000000
0000001000
0000000000
0000001000
0000000000
0000001000
0000000000
oooooolooo
0000000000
oooooolooo
0000000000
0000001000
0000000000
0000001000
0000000000

Training
error
rate

0.019

0.01

0.019

0.01

0.01

0.01

0.01

0.01

o.ol

o.ol

0.013

Nur
of e
T

7

1

7

1

1

1

1

1

1

1

2.2

nber
rrors
C

12

9

12

9

9

9

9

9

9

9

9.4

Testing
error
rate

0.028

0.036

0.028

0.036

0.036

0.036

0.036

0.036

0.036

0.036

0.0344

Nu
ofe
T

0

0

0

0

0

0

0

0

0

0

0

mber
:rrors
C

31

39

31

39

39

39

39

39

39

39

37.4
B,: best generation. T,:totalg
T: target. C: clutter.

: total generation. F,: number of features selected.
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Table 4.12. Experimental results using only one feature for discrimination (target
chips = 500, clutter chips = 500).

Feature

1
2
3
4
5
6
7
8
9
10

Error
rate

0.119
0.099
0.056
0.057
0.068
0.354
0.01
0.5

0.019
0.073

Num
en

Target
17
16
7
17
13
0
1

480
7
15

ber of
ors

Clutter
102
83
49
40
55

354
9

20
12
58

Feature

11
12
13
14
15
16
17
18
19
20

Error
rate

0.118
0.111
0.126
0.131
0.09
0.069
0.075
0.209
0.2

0.244

Num
en

Target
18
6
9
7
5
3
3
0
2
0

ber of
"ors

Clutter
100
105
117
124
85
66
72

209
198
244

&
2

i
CD
O)
c
"c
'CD

0.013
0.012
0.011
0.010
0.009
0.008
0.007
0.006
0.005
0.004
0.003
0.002
0.001

0

A

A

• MDLP-~~S~~ fitness function
• fitness function (4.4)
A fitness function (4.5)
• fitness function (4.6)

•

0 1 2 3 4 5 6 7 8 9

number of features

10 11

Figure 4.9. Average performance of various fitness functions
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Table 4.13. The number of times each feature is selected in MDL Experiments 1, 2
and 4.

Features
1
2*
3
4
5
6
7*
8
9
10*
11
12
13
14
15
16
17
18
19
20

Exp 1
0
8
2
1
1
1
10
0
2
10
1
2
3
1
4
0
0
0
0
0

Exp 2
0
8
0
1
0
0
10
0
1
10
2
1
2
1
2
4
5
1
1
1

Exp 4
0
8
0
2
0
2
10
0
0
10
1
0
3
0
2
4
6
1
2
1

Total
0
24
2
4
1
3
30
0
3
30
4
3
8
2
8
8
11
2
3
2



164 Chapter 4. Feature Selection for Object Detection 

In order to evaluate which features are more important than others using the 
MDL-based approach, we combine the results of first, second and fourth 
experiments. Note that in the first, second and fourth experiments (shown in 
Table 4.1, Table 4.2 and Table 4.4), GA is invoked for a total of 30 times. 
Table 4.13 shows the number of times each feature is selected in these 30 runs. 
It can be seen from Table 4.13 that the fractal dimension feature (feature 2), 
the maximum CFAR feature (feature 7) and the count feature (feature 10) are 
very useful in detecting targets in SAR images, while the standard deviation 
feature (feature 1) and the mean CFAR feature (feature 8) are not used at all. 
The major diagonal projection feature (feature 13), the minimum distance 
feature (feature 15), the maximum distance feature (feature 16) and the 
average distance feature (feature 17) have low utility while other features have 
very low utility. These results are consistent with those shown in Table 4.12. 
Considered individually, the maximum CFAR feature (feature 7) is the best 
feature (see Table 4.12) and it is selected by GA (in combination with other 
features) in all the 30 runs. 

4.6 Conclusions 

In this chapter, we introduced the GA feature selection algorithm into a 
specific application domain to discriminate the targets from the natural 
clutter false alarms in SAR images. Rough target detection, feature extraction, 
GA feature selection and final discrimination are successfully implemented 
and good results are obtained. Our experimental results show that the GA 
selected a good subset of features. Also, we proposed a MDL-based fitness 
function and compared its performance with three other fitness functions. Our 
experimental results show that the MDL-based fitness function balances the 
number of features selected and the error rate very well and it is the best 
fitness function compared to other three functions. 



Chapter 5 

EVOLUTIONARY FEATURE SYNTHESIS FOR 
OBJECT RECOGNITION 

5.1 Introduction 

In this chapter, we investigate the effectiveness of domain knowledge in 
improving the efficiency of the evolutionary search and the efficacy of genetic 
programming in synthesizing composite features for object recognition. The 
basic task of object recognition is to identify the kinds of objects in an image, 
and sometimes the task may include estimating the pose of the recognized 
objects. One of the key approaches to object recognition is based on features 
extracted from images. These features capture the characteristics of the object 
and are fed into a classifier to perform recognition. The quality of object 
recognition is heavily dependent on the effectiveness of the features. However, 
it is difficult to extract good features from real images due to various factors, 
including noise. More importantly, there are many features that can be 
extracted. What are the appropriate features or how to select an appropriate set 
of features from the available features? If it is very difficult or even impossible 
to extract effective features from images, then how to synthesize usehl 
features based on the available ones? To make use of knowledge about a 
specific domain and improve the quality of synthesized features, the question 
is how to incorporate domain knowledge in the feature synthesis? The answers 
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to these questions are largely dependent on the instinct, knowledge, 
experience, and the bias of human experts. 

In this chapter, the effectiveness of coevolutionary genetic programming 
(CGP) [57], [69], [94] in generating composite operator vectors for object 
recognition is investigated. As presented in Chapter 2, genetic programming 
(GP) is an evolutionary computational paradigm that is an extension of genetic 
algorithm and works with a population of individuals. An individual in a 
population can be any complicated data structure such as linked lists, trees and 
graphs, etc. CGP is an extension of GP in which several populations are 
maintained and employed to evolve solutions cooperatively. A population 
maintained by CGP is called a sub-population and it is responsible for 
evolving a part of a solution. A complete solution is obtained by combining 
the partial solutions from all the sub-populations. In this chapter, individuals in 
sub-populations are composite operators, which are the elements of a 
composite operator vector. A composite operator is represented by a binary 
tree whose internal nodes are the pre-specified domain-independent primitive 
operators and leaf nodes are primitive features. It is a way of combining 
primitive features. The advantage of using a tree structure is that it is powerfid 
enough in expressing the ways of combining primitive features and unlike a 
graph, it has no loops and this guarantees that the execution of individuals 
represented by trees terminate and not be trapped in an infinite loop. The 
primitive features can be directly extracted simple features or complicated 
features designed by human experts based on the characteristics of objects to 
be recognized in a particular kind of imagery (e.g., SAR images). The 
primitive features are real value attributes in this chapter. With each element 
evolved by a sub-population of CGP, a composite operator vector is 
cooperatively evolved by all the sub-populations. By applying composite 
operators, corresponding to each sub-population, to the primitive features 
extracted from images, composite feature vectors are obtained. These 
composite feature vectors are fed into a classifier for recognition. It is worth 
noting that the primitive operators and primitive features are decoupled from 
the CGP mechanism that generates composite features, so they can be tailored 
to particular recognition tasks without affecting the other parts of the system. 
Thus, the method and the recognition system are flexible and can be applied to 
a wide variety of images. 
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Chapter 5.2 explains the motivation for using genetic programming as a tool 
for learning composite features. It also surveys the related works. Chapter 5.3 
provides the overall structure of the learning and recognition system and gives 
the technical details used in this chapter. Experimental results are presented in 
chapter 5.4 and chapter 5.5 summarizes the conclusions and proposes possible 
future research directions. 

5.2 Motivation and Related Research 

5.2.1 Motivation 

The recognition accuracy of an automatic object recognition system is 
determined by the quality of the feature set used. Usually, it is the human 
experts who design the features to be used in recognition. Designing a set of 
effective features requires human ingenuity and insight into the characteristics 
of the objects to be recognized and in general, it is very difficult to identify a 
set of features that characterize a complex set of objects. Typically, many 
types of features are explored before a recognition system can be built to 
perform the desired recognition task. There are a lot of features available and 
these features may be correlated, making the design and selection of 
appropriate features a very time consuming and expensive process. 
Sometimes, it is very difficult to figure out and extract simple features that are 
effective in recognition directly from images. However, human experts 
generally know what kinds of features are useful for a particular kind of 
imagery. These simple features can be selected as primitive features. At this 
time, synthesizing composite features that are effective to the current 
recognition task from these primitive features becomes extremely important. 

The process of synthesizing composite features can often be dissected into 
some primitive operations on the primitive features. It is usually the human 
experts who, replying on their knowledge and rich experience, figure out a 
smart way to combine these primitive operations to yield good composite 
features. The task of finding good composite features is equivalent to finding 
good points in the composite feature space. However, the ways of combining 
primitive features are almost infinite, leading to a huge composite feature 
space. It is obvious that a smart search strategy is necessary in order to find 
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good composite features in such a huge space. The human experts can only try 
a very limited number of combinations due to time limits and usually only the 
conventional combinations are tried due to knowledge, experience and even 
the bias of human experts. CGP, on the other hand, may try many 
unconventional combinations and in some cases it is these unconventional 
combinations that yield exceptionally good recognition performance. Also, the 
inherent parallelism of CGP and the concept of sub-populations (search by 
many individuals) facilitate its implementation on multi-processor 
supercomputers to further increase the search speed and allow a much larger 
portion of the search space to be explored by CGP than that explored by 
human experts, thus greatly enhancing the chance of finding good composite 
features. As a result, CGP is a very usefid tool in comparison to human experts 
in the feature design and synthesis. 

5.2.2 Related research 

In general, feature selection and feature synthesis are two kinds of feature 
transformations. In feature selection [15], original features are not changed and 
some original features are selected to form a subset of features to be used by 
classifiers. Genetic algorithm is widely used in feature selection as discussed 
in Chapter 4. In feature synthesis, a transformation, linear or nonlinear, is 
applied to the original features to generate new features. Weighted summation 
is a kind of linear transformation on the original features, and the weights of 
features can be determined by genetic algorithm. In multi-layer neural 
networks, each node of a neural network takes the weighted sum of the outputs 
of its child nodes as input[l20]. The weights are determined by 
backpropagation algorithm during training. The output of a node is determined 
by the input and the activation function of the node. It can be viewed as a 
nonlinear transformation on the original features. The CGP-based feature 
synthesis is another kind of nonlinear transformation on the original features, 
which are the primitive features in this chapter. 

Genetic programming (GP) has been used in image processing, object 
detection and recognition. Harris and Buxton [39] apply GP to the production 
of high performance edge detectors for ID signals and image profiles. The 
method is also extended to the development of practical edge detectors for use 
in image processing and machine vision. Ebner and Zell [29] use GP to 
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automate the process of chaining a series of well known image processing 
operators to perform image processing. Poli 1921 uses GP to develop effective 
image filters to enhance and detect features of interest and to build pixel- 
classification-based segmentation algorithm. Bhanu and Lin [14] use GP to 
generate composite operators for object detection. The primitive operators and 
primitive features used in their system are very basic and domain-independent, 
so their object detection system can be applied to a wide variety of images. 
Their experimental results showed that GP is a viable way of synthesizing 
composite features from primitive features for object detection and ROI 
(region-of-interest) extraction. Howard et al. [44] apply GP to automatic 
detection of ships in low resolution SAR imagery using an approach that 
evolves detectors. The detectors are algebraic formulae involving the values at 
pixels belonging to a small region surrounding the pixel undergoing the test 
and the detectors evolved by GP compare favorably in accuracy to those 
obtained using a neural network. Roberts and Howard [103] use GP to develop 
automatic object detectors in infrared images. They present a multi-stage 
approach to address feature detection and object segregation and the detectors 
developed by GP do not require images to be preprocessed. Stanhope and 
Daida [I141 use GP paradigms for the generation of rules for targettclutter 
classification and rules for the identification of objects. GP determines 
relevant features from previously defined features to form a selected feature 
set. It evolves logical expressions based on the comparison of the selected 
features to both real-valued constants and other features in the selected feature 
set to create a classifier. Krawiec and Bhanu [64] present a method for the 
automatic synthesis of recognition procedures chaining elementary operations 
for computer vision and pattern recognition tasks based on cooperative 
coevolution and linear genetic programming. Each sub-population evolves a 
part of the recognition procedure and all the sub-populations coevolve the 
whole recognition procedure by selecting the best individual from each sub- 
population and chaining them together. Their experimental results show that 
linear genetic programming is effective in synthesizing a recognition 
procedure from elementary image processing operations. They also show that 
coevolutionary linear genetic programming is superior to regular single- 
population linear genetic programming that is equivalent to genetic algorithms. 

Unlike the work of Stanhope and Daida [114], the primitive operators in this 
chapter are not logical operators, but operators on real numbers and the 
composite operators are binary trees of primitive operators on real numbers, 
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not binary trees of logical operators. In [114], GP is used to evolve logical 
expressions and the final outcome of the logical expression determines the 
type of the object under consideration (for example, 1 means target and 0 
means clutter). In this chapter, CGP is used to evolve composite feature 
vectors to be used by a Bayesian classifier [I201 and each sub-population is 
responsible for evolving a specific composite feature in the composite feature 
vector. The classifier evolved by GP in [114] is a logical expression 
represented by the binary tree with the best classification rate in the 
population, but the classifier evolved by CGP in this chapter is a Bayesian 
classifier determined by the composite feature vectors obtained from the 
training images. Unlike the work of Krawiec and Bhanu [64], composite 
operators in this chapter are binary trees of primitive operators and primitive 
features, whereas the recognition procedures in [64] are linked lists of simple 
image processing operations. 

5.3 Coevolutionary GP for Feature Synthesis 

In the CGP-based approach proposed in this chapter, individuals are composite 
operators represented by binary trees with primitive operators as internal nodes 
and primitive features as leaf nodes. The search space is the set of all possible 
composite operators. The search space is huge and it is extremely difficult to 
find good composite operators from this vast space unless one has a smart 
search strategy. The system consists of training and testing modules, which are 
shown in Figure 5.l(a) and l(b), respectively. During training, CGP runs on 
training images and evolves composite operators to obtain composite features. 
Since a Bayesian classifier is derived from the feature vectors obtained from 
training images, both the composite operator vector and the classifier are 
learned by CGP. 

5.3.1 Design considerations 

To apply genetic programming, there are five major design considerations, 
which involve determining the set of terminals, the set of primitive operators, 
the fitness measure, the parameters for controlling the run and the criterion for 
terminating a run. 
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(a) Training module - Learning composite operator 
vectors and Bayesian classifier 
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(b) Testing module -Applying learned composite operator 
vector and Bayesian classifier to a test image 
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Figure 5.1. System diagram for object recognition using coevolutionary genetic 
programming. 
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The set of terminals: The set of terminals are the 20 primitive features 
described in chapter 4.4.2. The first 10 of these features capture the particular 
characteristics of synthetic aperture radar (SAR) imagery and are found useful 
for object detection 1651. The other 10 features are common features used 
widely in image processing and computer vision. In this chapter, we use these 
same 20 primitive features as in chapter 4. 

To extract some primitive features, the CFAR (Constant False Alarm Rate) 
image of an original image is needed. The CFAR image is generated by 
applying the method described in chapter 4.4.1. For the detailed description of 
CFAR detector, the reader is referred to [65]. 

The set of primitive operators: A primitive operator takes one or two real 
numbers, performs a simple operation on them and outputs the result. 
Currently, 12 primitive operators shown in Table 5.1 are used, where a and b 
are real numbers and input to an operator and c is a constant real number 
stored in an operator. 

Table 5.1. Twelve primitive operators. 

Primitive 
Operator 
ADD (a, b) 

SUB (a, b) 

MUL (a, b) 

DIV (a, b) 

MAX2 (a, b) 

SQRT (a) 

I Primitive 
Description 

Operator 
Add a and b. 11 ADDC (a, c) 

Subtract b from a. 

Multiply a and b. 

Divide a by b. I DIVC (a, c) 

Description 

Add constant value c to a. 

Subtract constant value c 
from a. 

Multiply a with constant 
value c. 

Divide a by constant value 
C. 

Get the smaller of a and b. 

Return log(a) if a 2 0; 
otherwise, return - 
log(-a). 
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Sub-population Sub-population i: Sub-population n: /I . .  ... 
Best Individual Individual j Best Individual 

vectors 

Ground- 
truth 

Figure 5.2. Computation of fitness of jth composite operator of ith sub-population. 

assemble 
evaluator 

The fitness measure: The fitness of a composite operator vector is 
computed in the following way: apply each composite operator of the 
composite operator vector on the primitive features of training images to 
obtain composite feature vectors of training images and feed them to a 
Bayesian classifier. Note that not all the primitive features are necessarily used 
in feature synthesis. Only the primitive features that appear in the leaf nodes of 
the composite operator are used to generate composite features. The 
recognition rate of the classifier is the fitness of the composite operator vector. 
To evaluate a composite operator evolved in a sub-population (see Figure 5.2), 
the composite operator is combined with the current best composite operators 
in other sub-populations to form a complete composite operator vector where 
composite operator from the ith sub-population occupies the ith position in the 
vector and the fitness of the vector is defined as the fitness of the composite 
operator under evaluation. The fitness values of other composite operators in 
the vector are not affected. When sub-populations are initially generated, the 
composite operators in each sub-population are evaluated individually without 
being combined with composite operators from other sub-populations. In each 
generation, the composite operators in the first sub-population are evaluated 
first, then the composite operators in the second sub-population and so on. 

I 

Parameters and termination: The key parameters are the number of sub- 
populations N, the population size My the number of generations G, the 
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crossover and mutation rates, and the fitness threshold. GP stops whenever it 
finishes the specified number of generations or the performance of the 
Bayesian classifier is above the fitness threshold. After termination, CGP 
selects the best composite operator of each sub-population to form the learned 
composite operator vector to be used in testing. 

5.3.2 Selection, crossover and mutation 

The CGP searches through the space of composite operator vectors to generate 
new composite operator vectors. The search is performed by selection, 
crossover and mutation operations. The initial sub-populations are randomly 
generated. Although sub-populations are cooperatively evolved (the fitness of 
a composite operator in a sub-population is not solely determined by itself, but 
affected by the composite operators from other sub-populations), selection is 
performed only on composite operators within a sub-population and crossover 
is not allowed between two composite operators from different sub- 
populations. 

Selection: The selection operation involves selecting composite operators 
from the current sub-population. In this chapter, tournament selection is used 
and the tournament size is five. The higher the fitness value, the more likely 
the composite operator is selected to survive. 

Crossover: Two composite operators, called parents, are selected on the 
basis of their fitness values. The higher the fitness value, the more likely the 
composite operator is selected for crossover. One internal node in each of 
these two parents is randomly selected, and the two subtrees rooted at these 
two nodes are exchanged between the parents to generate two new composite 
operators, called offspring. It is easy to see that the size of one offspring (i.e., 
the number of nodes in the binary tree representing the offspring) may be 
greater than both parents if crossover is implemented in such a simple way. To 
prevent code bloat, we specify a hard limit on the composite operator size 
(called hard size limit). If the size of one offspring exceeds the hard size limit, 
the crossover is performed again. If the size of an offspring still exceeds the 
hard size limit after the crossover is performed 10 times, GP selects two 
subtrees of same size (i.e., the same number of nodes) from two parents and 
swaps the subtrees between the parents. These two subtrees can always be 
found, since a leaf node can be viewed as a subtree of size 1. 
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Mutation: To avoid premature convergence, mutation is introduced to 
randomly change the structure of some composite operators to maintain the 
diversity of sub-populations. Candidates for mutation are randomly selected 
and the mutated composite operators replace the old ones in the sub- 
populations. There are three mutations invoked with equal probability: 

1. Randomly select a node of the composite operator and replace the subtree 
rooted at this node by a new randomly generated binary tree. 

2. Randomly select a node of the composite operator and replace the primitive 
operator stored in the node with another primitive operator randomly 
selected from the primitive operators of the same arity as the replaced one. 

3. Randomly select two subtrees of the composite operator and swap them. Of 
course, neither of the two subtrees can be a subtree of the other. 

5.3.3 Generational coevolutionary genetic programming 

Generational coevolutionary genetic programming is used to evolve composite 
operators. The GP operations are applied in the order of crossover, 
mutationand selection. The composite operators in the initial sub-populations 
are randomly generated. A composite operator is generated in two steps. In the 
first step, the number of internal nodes of the tree representing the composite 
operator is randomly determined as long as this number is smaller than half of 
hard size limit. Suppose the tree has n internal nodes. The tree is generated 
from top to bottom by a tree generation algorithm. The root node is generated 
first and the primitive operator stored in the root node is randomly selected. 
The selected primitive operator determines the number of children the root 
node has. If it has only one child, the algorithm is recursively invoked to 
generate a tree of n-I internal nodes; if it has two children, the algorithm is 
recursively invoked to generate two trees of /(n-I) / 2_/and /&I) / 2 hnternal 
nodes, respectively. In the second step, after all the internal nodes are 
generated, the leaf nodes containing primitive features are attached to those 
internal nodes that are temporarily the leaf nodes before the real leaf nodes are 
attached. The number of leaf nodes attached to an internal node is determined 
by the primitive operator stored in the internal node. In addition, an elitism 
replacement method is adopted to keep the best composite operator from 
generation to generation. 
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Generational Coevolutionary Genetic Programming Algorithms: 

randomly generate N sub-populations of size M and evaluate each composite 
operator in each sub-population individually. 

forgen = 1 to G do 
for i =I to N do 
keep the best composite operator in sub-population Pi. 
perform crossover on the composite operators in Pi until the crossover rate is 

satisfied and keep all the offspring from crossover. 
perform mutation on the composite operators in Pi and the offspring from 

crossover with the probability of mutation rate. 
perform selection on Pi to select some composite operators and combine them 

with the composite operators from crossover to get a new sub-population 
PiJ of the same size as Pi, 

evaluate each composite operator Cj in Pi1. 
to evaluate Cj, select the current best composite operator in each of the 
other sub-populations, combine Cj with those N-1 best composite operators 
to form a composite operator vecter where composite operator from the kth 
sub-population occupy the kth position in the vector (k=l, ..., N). run the 
composite operator vector on the primitive features of the training images 
to get composite feature vectors and use them to build a Bayesian 
classijier. feed the composite feature vectors into the Bayesian class$er 
and let the recognition rate be the fitness of the composite operator vector 
and the fitness of Cj. 

perform elitism replacement. 
let the best composite operator from Pi replace the worst composite 
operator in Pi9 and let Pi = Pi' 

form the current best composite operator vector consisting of the best 
composite operators from corresponding sub-populations and evaluate it. 
if its fitness is above thefitness threshold, goto 11. 

endfor //loop 2 iterates on each sub-population. after a new sub-population is 
generated, the best composite feature vector is changed and we need to find 
the best composite feature vector and evaluate it to determine if CGP can be 
terminated 

endfor //loop 1 iterates on each generation. 
select the best composite operator from each sub-population to form the learned 

composite operator vector and output it. 

Figure 5.3. Generational coevolutionary genetic programming. 
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5.3.4 Bayesian classifier 

For each class Ci (i = 1, 2, 3 or 1, 2, 3, 4, 5 in this chapter), a Bayesian 
classifier [I201 is generated based on GP-learned composite features. A 
Bayesian classifier consists of a mean feature vector and a covariance matrix 
of feature vectors of class Ci. Suppose A,, A2, . . ., J,, are the feature vectors 
extracted from n training images of class Ci, then the mean feature vector and 
the covariance matrix are computed by: 

1 " 
pi = -C f i j  

n , = I  

During testing, for a feature vector f from a testing image, we compute 
distance di (d,  = (f - p i )T  c,?( f - p i ) )  and assign the object in the testing 

image to the class corresponding to the smallest distance. Here, we assume 
that the prior probability of each class is equal. 

5.4 Experiments 

Various experiments are performed to test the efficacy of genetic 
programming in generating composite features for object recognition. All the 
images used in the experiments are real synthetic aperture radar (SAR) images. 
These images are divided into training and testing images. The 20 primitive 
features described in Chapter 4 are extracted from each SAR image. CGP runs 
on primitive features from training images to generate a composite operator 
vector and a Bayesian classifier. The composite operator vector and the 
Bayesian classifier are tested against the testing images. It is worth noting that 
the ground-truth is used only during training. The experiments are categorized 
into three classes: (1) distinguishing man-made objects from natural clutters, 
(2) distinguishing between 3 kinds of man-made objects and (3) distinguishing 
between 5 kinds of man-made objects. For the purpose of objective 
comparison, CGP is invoked ten times for each experiment with the same set 
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of parameters and the same set of training images. Only the average 
performance is used for comparison. Some of the parameters of CGP used 
throughout the experiments are shown in Table 5.2. The hard size limit is 10 in 
experiment 1 and 20 in experiments 2 and 3. The real number c stored in 
primitive operators ADDC, SUBC, MULC and DIVC can be any real number 
from -20 to 20. When mutation is performed on these primitive operators, the 
value c stored in these primitive operators may be changed. 

Table 5.2. Parameters of CGP used throughout the experiments. 

5.4.1 Distinguish objects from clutter 

Sub-population size 
Number of generations 
Fitness threshold 

Data: The data used here are the same 1048 SAR images containing objects 
and 1048 SAR images containing natural clutters from the MSTAR public 
data, as describled in chapter 4.5. An example object image and clutter image 
are shown in Figure 5.4, where white spots indicate scatterers with high 
magnitude. The 300 object images and 300 clutter images are randomly 
selected as training images and the rest are used in testing. 

Experiment 1: First, the effectiveness of each primitive feature in 
discriminating the objects from the clutters is examined. Each kind of 
primitive feature from the training images is used to train a Bayesian classifier 
and the classifier is tested against the same kind of primitive features from the 
testing images. The results are shown in Table 5.3. The percent bright CFAR 
feature (feature 9) is the best single feature with a recognition rate of 0.98. 

50 
50 
1.0 

Crossover rate 
Mutation rate 
Tournament size 

0.6 
0.05 
5 
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(a) An object image (b) A natural clutter image 

Figure 5.4. Example object and clutter SAR images. 

To show the efficacy of CGP in synthesizing effective composite features, 
we consider three cases: only the worst two primitive features (blob inertia (6) 
and mean values of pixels within blob (8)) are used by CGP; five bad primitive 
features (blob inertia (6), mean values of pixels within blob (a), moments p20 

(IS), po2 (19) and p 2 ~  (20) of scatters) are used by CGP; 10 common features 
(primitive features 11 to 20) not specifically designed to process SAR images 
are used by CGP during feature synthesis. The number of sub-populations is 3, 
which means the dimension of the composite feature vectors is 3. CGP is 
invoked ten times with the same parameters. The average recognition 
performance over ten runs is shown in Table 5.4 (first row), where 2f means 
only features (6) and (8) are used as primitive features (case I), 5f means 
features 6, 8, 18, 19 and 20 are used (case 2) and 10f means only 10 common 
features are used in feature synthesis (case 3). The columns on the left show 
the training results and those on the right show the testing results. The 
numbers in the table are the average recognition rates over ten runs. Then the 
number of sub-population is increased to 5. The same 2, 5 and 10 primitive 
features are used by CGP to evolve composite features. The average 
recognition performance over ten runs is shown in Table 5.4 (second row). 
The performance of synthesized composite features is worse than the feature 
set selected by GA in chapter 4. It is reasonable, since in chapter 4, a MDL- 
based GA is applied to select a set of features from all the 20 primitive 
features to distinguish target from clutter, and effective features are always 
selected by GA. In this chapter, we deliberately let GP synthesize composite 
features from 10 common features not specifically designed for SAR images 
or from 2 or 5 worst primitive features selected from the 20 primitive features. 
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Table 5.3. Recognition rates of 20 primitive features. 

1 Feature 1 Primitive 1 Recognition 1 Feature 
I Number I Feature I  ate 11 Number 

dimension 

Weight-rank 
fill ratio 

1 

4 Blob mass 0.94 

Standard 
deviation 

1 6 1 Blob inertia 1 0.66 11 16 

0.88 

5 

I T j -  
Mean CFAR 

1 1 1  

I g I percent bright 1 0.98 11 19 
CFAR 

Blob 
diameter 

1 10 1 Count 1 0.92 11 20 

Primitive I Rec;q&tion 
Feature 

0.94 

Horizontal 
projection 1 0.90 

1 I5 

Vertical 
projection 

Major 
diagonal 

projection 

Minor 
diagonal 

projection 

Minimum 1 0.92 
distance 

Maximum 1 0.95 distance 

Mean 1 0.94 
distance 

Moment p20 

Moment po2 

Moment D~~ 1 0.75 
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Table 5.4. Performance of composite and primitive features on object/clutter 
discrimination. 

I Train. 1 Test I Train. I Test I Train. I Test 

Recognition Rate 
2f 

From Table 5.4, it can be seen that composite feature vectors synthesized by 
CGP are very effective. They are much better than the primitive features upon 
which they are built. Actually, if both features 6 and 8 from the training 
images jointly form 2-dimensional primitive feature vectors to train a Bayesian 
classifier for recognition, the recognition rates on training and testing data are 
0.625 and 0.668, respectively; if features 6, 8, 18, 19, and 20 jointly form 5- 
dimensional primitive feature vectors, the recognition rates on training and 
testing data are 0.908 and 0.947, respectively; if all the 10 common primitive 
features are used, the recognition rates on training and testing data are 0.963 
and 0.978, respectively. These results are shown in Table 5.4 (third row), 
where 2f, 5f and 1Of indicate both the primitive features used and the 
dimension of primitive feature vectors. The average recognition rates of 
composite feature vectors are better than all of the above results and this is the 
value of using CGP for feature synthesis. Figure 5.5 shows the composite 
operator vector evolved by CGP maintaining 3 sub-populations in the 6th run 
when 5 primitive features are used, where PFi means the primitive feature i 
and so on. In Figure 5.5, the least effective feature (feature 8) is used by the 
effective composite operator evolved by CGP. This phenomenon is not 
uncommon, since a feature is not isolated from other features and the 
interaction of features (covariance) is complicated. Sometimes, a feature is not 
effective if it is used alone, but when it is used in combination with other 

3-dimensional 
composite 

feature vector 
5-dimensional 

composite 
feature vector 

primitive 
feature vector 

5 f 1 Of 

0.989 

0.990 

0.625 

0.986 

0.982 

0.668 

0.991 

0.994 

0.908 

0.989 

0.992 

0.947 

0.971 

0.977 

0.963 

0.984 

0.986 

0.978 
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features, a high recognition rate may be achieved. At this time, all these 
features form an effective feature set. 

(SQRT (LOG PF8))))) PF18 PF6))) PF8) 

(a) Composite (b) Composite (c) Composite 
operator 1 operator 2 operator 3 

Figure 5.5. Composite operator vector learned by CGP. 

5.4.2 Recognize objects 

Data: Five objects (BRDM2 armored personnel carrier, D7 bulldozer, T62 
tank, ZIL truck and ZSU anti-aircraft gun) are used in the experiments. For 
each object, 210 real SAR images under 15"-depression angle and various 
azimuth angles between 0" and 359" are collected from MSTAR public data 
[104]. Figure 5.6 shows one optical and four SAR images of each object. From 
Figure 5.6, we can see that it is not easy to distinguish SAR images of 
different objects. Since SAR images are very sensitive to azimuth angles and 
training images should represent the characteristics of an object under various 
azimuth angles, 210 SAR images of each object are sorted in the ascending 
order of their azimuth angles and the first, fourth, seventh, tenth SAR images 
and so on are selected for training. Thus, for each object, 70 SAR images are 
used in training and the rest of the images are used in testing. 
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Experiment 2 - Discriminate three objects: CGP synthesizes composite 
features to recognize three objects: BRDM2, D7 and T62. First, the 
effectiveness of each primitive feature in discriminating these three objects is 
examined. The results are shown in Table 5.5. The mean CFAR (feature 8) is 
the best primitive feature with a recognition rate of 0.73. Three series of 
experiments are performed in which CGP maintains 3,5 and 8 sub-populations 
to evolve 3, 5 and 8-dimensional composite feature vectors, respectively. The 
primitive features used in the experiments are all the 20 primitive features and 
10 common primitive features (primitive features 11 to 20). The average 
recognition rates of 3, 5 and 8-dimensional composite feature vectors over ten 
runs are shown in Table 5.6, where 10f and 20f mean primitive features 11 to 
20 and all the 20 primitive features, respectively. 

(a) Optical and SAR images of BRDM2. 
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(b) Optical and SAR images of D7. 

(c) Optical and SAR images of T62. 
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(d) Optical and SAR images of ZlLl3l. 

(e) Optical and SAR images of ZSU. 

Figure 5.6. Five objects used in recognition. 
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From Table 5.5 and Table 5.6, it can be seen that the learned composite 
feature vectors are more effective than primitive features. If all the 20 
primitive features from the training images are used to form 20-dimensional 
primitive feature vectors to train a Bayesian classifier for recognition, the 
recognition rates on training and testing data are 0.995 and 0.962, respectively. 
This result, shown in the 4th row of Table 5.6 under the 20f heading, is a little 
bit better than the average performance shown in the first and second rows of 
Table 5.6, but the dimension of the feature vector is 20. However, the 
dimensions of composite feature vectors in the first and second rows of Table 
5.6 are just 3 and 5 respectively. If the dimension of composite feature vector 
is increased to 8, the CGP results are better. If the last 10 primitive features are 
used, the recognition rates on training and testing data are 0.863 and 0.812, 
respectively. From these results, we can see that the effectiveness of the 
primitive features has an important impact on the composite features 
synthesized by CGP. In general, with more effective primitive features, CGP 
can synthesize more effective composite features. Figure 5.7 shows the 
composite operator vector. evolved by CGP with 5 sub-populations in the loth 
run using 20 primitive features. The size of the first and second composite 
operators is 20. The size of the third one and the last one are 9 and 15, 
respectively. The fourth composite operator is just primitive feature 11. The 
primitive features used by the learned composite operator vector are primitive 
features 2, 3, 4, 5, 6, 7, 8, 11, 12, 14, 18, 19, 20. If all these 13 primitive 
features form 13-dimensional primitive feature vectors for recognition, the 
recognition rate is 0.960. 
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Table 5.5. Recognition rates of 20 primitive features (3 objects).

Feature
Number

1

2

3

4

5

6

7

8

9

10

Primitive
Feature
Standard
deviation
Fractal

dimension

Weight-rank
fill ratio

Blob mass

Blob
diameter

Blob inertia

Maximum
CFAR

Mean CFAR

Percent
bright CFAR

Count

Recognition
Rate

0.376

0.662

0.607

0.717

0.643

0.495

0.588

0.726

0.607

0.633

Feature
Number

11

12

13

14

15

16

17

18

19

20

Primitive
Feature

Horizontal
projection
Vertical

projection
Major

diagonal
projection

Minor
diagonal

projection

Minimum
distance

Maximum
distance

Mean
distance

Moment u2o

Moment uO2

Moment u22

Recognition
Rate

0.414

0.545

0.460

0.455

0.505

0.417

0.376

0.421

0.443

0.512
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Table 5.6. Performance of composite and primitive features on 3-object
discrimination.

Runs

3-dimensional
composite

feature vector
5-dimensional

composite
feature vector
8-dimensional

composite
feature vector

Primitive
feature vector

10
Training

0.880

0.921

0.962

0.863

Recogniti
f

Testing

0.843

0.857

0.870

0.812

on Rate
20f

Training

0.969

0.990

0.999

0.995

f
Testing

0.943

0.961

0.970

0.962
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- 

(DIV (MULC (SUB (SUB 
(DIVC (SQRT PF6)) (MULC 
(SUB PF18 (MULC (SUB 
PF 18 (SQRT PF4)))))) 
(SQRT PF6))) (MIN2 PF12 
PF 19)) 

(a) Composite operator 1 

(DIV (MULC (ADD (ADDC 
(MULC (MUL (MIN2 (ADDC 
(DIV PF20 PF4)) PF14) 
PF3))) (LOG (ADDC (DIV 
PF20 PF4))))) (DIVC PF4)) 

(b) Composite operator 2 

(c) Composite (d) Composite (e) Composite 
operator 3 operator 4 operator 5 

(DIV (MIN2 (SUBC 

PF7 PF8)) PF8) 

Figure 5.7. Composite operator vector learned by CGP with 5 sub-populations. 

(LOG (ADDC (LOG (DIV 
(SUBC (LOG (DIV (SUBC 
(LOG PF5)) (SUBC PF5)))) 
(MUL PF2 PF5))))) 

Experiment 3 - Discriminate five objects: With two more objects (ZIL 
and ZSU) added, the recognition becomes more difficult. This can be seen 
from Table 5.7, which shows the effectiveness of each primitive feature in 
discriminating these five objects. Blob mass (feature 4) is the best primitive 
feature with a recognition rate of 0.486. If all the 20 primitive features from 
the training images are used jointly to form 20-dimensional primitive feature 
vectors to train a Bayesian classifier for recognition, the recognition rates on 
training and testing are 0.914 and 0.812, respectively; if only the 10 common 
primitive features are used, the recognition rates on training and testing data 
are 0.737 and 0.623, respectively. These results are shown in the 31d row of 
Table 5.8. The composite features built on the primitive features 11 to 20 are 
not very effective, since these 10 primitive features are common features and 
are not designed with the characteristics of SAR images taken into 
consideration. 
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Table 5.7. Recognition rates of 20 primitive features (5 objects). 

deviation 

Weight-rank 3 1 fill ratio 1 0 . 3 6 1  

* 

I I Blob mass 1 0.486 

6 1 Blob inertia 1 0.346 

Fractal 
dimension 

7 Maximum 
CFAR 0.379 

0.473 

8 1 Mean CFAR 1 0.471 
Percent 1 bright CFAR 1 0.449 

10 1 Count 1 0.453 

Feature 1 Primitive 1 Recognition 

Vertical 
l 2  / projection I 0.343 

diagonal 0.28 1 
ro'ection 1 diagonal 0.265 

I projection I 
Minimum 

l 5  1 distance I 0.277 

Maximum 0.294 

distance 0.266 2 
Moment po2 0.267 

20 1 Moment h2 1 0.340 

Two series of experiments are performed in which CGP maintains 5 and 8 
sub-populations to evolve 5 and 8-dimensional composite feature vectors for 
recognition. The primitive features used in the experiments are 20 primitive 
features and 10 common primitive features. The hard size limit is 20. The 
average recognition rates of 5 and 8-dimensional composite feature vectors 
over ten runs are shown in the first and second rows of Table 5.8. 
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Table 5.8. Performance of composite and primitive features on 5-object 
discrimination. 

Runs 

5-dimensional 
composite 

feature vector 
8-dimensional 

composite 
feature vector 

Primitive 
feature vector 

Recognition Rate 

Training Testing Training Testing 

From Table 5.8, we can see that when the dimension of the composite 
feature vector is 8, the performance of the composite features is good and it is 
better than using all 20 (0.812) or 10 (0.623) primitive features upon which the 
composite features are built. When the dimension of the composite feature 
vector is 5, the recognition is not satisfactory when using just 10 common 
features as building blocks. Also, when the dimension is 5, the average 
performance is a little bit worse than using all 20 or 10 primitive features, but 
the dimension of the composite feature vector is just one-fourth or half of the 
number of primitive features, saving a lot of computational burden in 
recognition. When all the 20 primitive features are used and CGP has 8 sub- 
populations, the composite operators in the best composite operator vector 
evolved have sizes 19, 1, 16, 19, 15, 7, 16 and 6, respectively and they are 
shown in Figure 5.8. The primitive features used by the synthesized composite 
operator vector are primitive features 2, 3,4,5, 8,9, 10, 1 1, 12, 13, 14, 15, 16, 
18, 19 and 20. If all these 16 primitive features directly form 16-dimensional 
primitive feature vectors to train a Bayesian classifier for recognition, the 
recognition rate is 0.80 on the testing images, which is lower than the average 
performance of the composite feature vector shown in Table 5.8. 



192 Chapter 5. Evolutionary Feature Synthesis for Object Recognition 

(MIN2 PF 10 (MIN2 (MULC (MUL 
PF9 (MIN2 (DIVC PF10) (MUL 
PF9 (DIVC PF10))))) (MIN2 
(MUL PF9 (DIVC PF 10)) PF 10))) 

(a) Composite operator 1. (b) Composite operator 2. 

(SQRT (DIV PFIO (SQRT (MAX2 
(MULC (SUBC (DIV PF5 PF5))) 
(MAX2 (SUBC (MULC (SUBC 
(MULC (DIV PF15 PF5))))) PFIO))))) 

(c) Composite operator 3. (d) Composite operator 4. 

(LOG (MUL (LOG (SUB 
(ADD PF16 (SQRT (LOG 
(MUL (ADD PF16 PF16) 
PF 12)))) PF 12)) PF20)) 

(SUB (LOG (DIVC 
PF2)) (DIV PF9 
PF 16)) 

(e) Composite operator 5 

- - 

(f) Composite operator 6. 

(ADDC (ADD PF18 (ADD (MULC (LOG 
PF18)) (MIN2 (SUB PF2 PF11) (SUB 
PFI 8 (SUB PFl I PF2)))))) 

(g) Composite operator 7. (h) Composite operator 8. 

Figure 5.8. Composite operator vector learned by CGP. 
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5.4.3 Comparison with other classification algorithms 

In chapters 5.4.1 and 5.4.2, the effectiveness of CGP-learned composite 
features is shown and compared with that of original primitive features. The 
comparison shows that CGP-learned composite features are more effective in 
object recognition. In this subchapter, the performance of CGP-based 
approach proposed in this chapter is compared with four other classical 
classification algorithms: multi-layer feed forward neural networks trained 
with (a) backpropagation algorithm, (b) stochastic backpropagation algorithm 
and (c) stochastic backpropagation algorithm with momentum, and (d) the 
C4.5 classification algorithm. For the detailed description of these algorithms, 
refer to [28], [40], [78]. 

Multi-layer feed forward neural networks used in this chapter have three 
layers: the output layer; the hidden layer; and the input layer. The output layer 
has only one output node and the hidden layer has 3, 5 or 8 nodes. A node of 
the input layer contains a primitive feature and the number of nodes in the 
input layer is equal to the number of primitive features used in recognition. 
The activation hnction of nodes in the output and hidden layers is: 

ebx - e-bx 2 
f (x> = a ebx + e-bx where a=1.716 and b = -  3 (5 .2 )  

The inputs to the neural networks are normalized primitive features. The 
primitive features from training images and testing images are normalized 
separately. The normalization is performed by the following formula: 

f . .  - p .  
nf. I /  = '-- 

g i  

whereh, (j = 1, 2, ..., ni) are the feature values of original primitive feature i (i 
= 1, 2, ... or 20) and nJ; (j = 1, 2, ..., n) are the corresponding normalized 
feature values, n is the number of training or testing images, pi and o;: are the 
mean and standard deviation of these n feature values. The reason for feature 
normalization is that the values of some primitive features are very large, 
making the value of ebx overflow. The weight values of connections between 
nodes of different layers are initialized with small randomly generated real 
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numbers in the range of [-I. 0, 1.01. The learning rate 77 of backpropagation 
algorithms is 0.1 and the momentum a of stochastic backpropagation 
algorithm with momentum is 0.5. Backpropagation algorithms stop when they 
finish 300 weight-update loops or when the recognition rate on training data is 
above 0.9, whichever occurs first. The best recognition rate and its associated 
weight values are kept from loop to loop, and the trained neural network (the 
one with the best recognition rate) is applied to the testing data. In each 
experiment, backpropagation algorithms are invoked ten times with the same 
parameters and input data to train a neural network. For the purpose of 
objective comparison, only the average results over ten runs are reported. The 
original backpropagation algorithm sometimes constructs a neural network 
with very bad performance (below 0.1) due to the gradient descent 
convergence to a poor local minimum point. We do not use the results from 
these runs in the calculation of average performance and invoke the 
backpropagation algorithm to perform training again. 

The input to the C4.5 algorithm is the original set of primitive features, not 
the normalized ones. For a particular primitive feature, if it has at most 10 
unique feature values among the feature values extracted from training images, 
it is treated as a discrete feature; otherwise, it is treated as a continuous feature 
[78]. Since C4.5 is a deterministic algorithm, it is invoked only once in each 
experiments. 

Four experiments are performed: distinguishing between 3 objects using all 
the 20 primitive features or 10 common primitive features; distinguishing 
between 5 objects using all the 20 primitive features or 10 common primitive 
features. As previously stated, in each experiment, the backpropagation is 
invoked ten times to train ten neural networks, the average recognition rates of 
trained multi-layer neural networks with 3, 5 and 8 hidden layers are shown in 
Table 5.9 and Table 5.10, where 10f means using the primitive features 11 to 
20 and 20f means using all the primitive features. Table 5.9 and Table 5.10 
show the performance on distinguishing 3 and 5 objects, respectively, for the 
three backpropagation algorithms. Table 5.1 1 shows the performance for the 
C4.5 algorithm. 

From the above tables and Table 5.6 and Table 5.8, it can be seen that the 
CGP-based approach proposed in this chapter outperforms all the 
backpropagation and C4.5 algorithms in testing and that the C4.5 algorithm is 
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more effective than all the backpropagation algorithms. Stochastic 
backpropagation and stochastic backpropagation with momentum outperform 
the original backpropagation algorithm, since the original backpropagation 
algorithm is more likely to converge to some local minimum points, yielding a 
neural network with poor performance. According to our experiments, three 
hidden nodes are enough, increasing the number of hidden nodes to 5 or 8 
does not increase the performance significantly. In fact, sometimes it decreases 
the recognition performance. 

Table 5.9. Average recognition performance of multi-layer neural networks trained by 
backpropagation algorithms (3 objects). 

Number of 
hidden 
nodes 

Number of 
hidden 
nodes 

Number of 
hidden 
nodes 

Recognition Rate 1 
(Backpropagation) 

1 Of 20f 
Training I Testing I Training I Testing 

0.548 1 0.526 1 0.634 1 0.623 

Recognition Rate I 
(Backpropagation - Stochastic) 
1 Of 20f 

Training Testing Training Testing 
0.672 0.667 0.792 0.801 
0.669 0.664 0.801 0.787 

Recognition Rate 1 
(Backpropagation - stochastic with momentum) 1 

10f - means only 10 common primitive features are used in feature synthesis 
20f - means all the 20 primitive features are used in feature synthesis 
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Table 5.10. Average recognition performance of multi-layer neural networks trained
by backpropagation algorithms (5 objects).

Number of

niuuen
nodes

5
8

Number of

niaaen

5
8

Number of

maaen

5
8

1(
Training

0.274
0.292

(B
1(

Training
0.302
0.296

(Backpropa
1(

Training
0.319
0.331

Recogni
(Backpro

)f
Testing

0.267
0.290
Recogni

ackpropagati
)f

Testing
0.300
0.296
Recogni

gation - Sto
Of

Testing
0.304
0.328

tion Rate
pagation)

2
Training

0.346
0.330

tion Rate
on - Stochas

2
Training

0.370
0.366

tion Rate
hastic with

2
Training

0.376
0.369

Of
Testing

0.340
0.325

tic)
Of

Testing
0.366
0.366

momentum)
20f

Testing
0.367
0.368

10f- means only 10 common primitive features are used in feature synthesis
20f- means all the 20 primitive features are used in feature synthesis
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Table 5.1 1.  Recognition performance of C4.5 classification algorithm. 

3 objects 

5 objects 

1 Of 
Training 

0.962 

20f 

5.4.4 Discussion 

Testing 
0.679 

Training I Testing 
0.754 1 0.344 

The above experiments demonstrate that: 

It is important to introduce domain knowledge into the feature synthesis 
for object recognition by defining the primitive features. In these 
experiments, we compare the effectiveness of composite features built on 
both domain-independent primitive features (10 common features) and 
domain-dependent primitive features encoding demain knowledge (the 
characteristics of SAR imagery in this chapter). The comparison shows 
that more effective composite features can be generated in the feature 
synthesis with primitive features encoding domain knowledge. It is also 
observed from the experiments that with primitive features encoding 
domain knowledge, CGP can evolve effective composite features within 
the fewer number of generations, thus improving the efficiency of CGP 
search. 

Training 
0.995 

Training 
0.917 

In general, the effectiveness of composite features learned by CGP is 
dependent on the effectiveness of primitive features. With more effective 
primitive features available, more effective composite features can be 
generated by CGP. But this does not mean that ineffective primitive 
features are never used by CGP in the feature synthesis. As Figure 5.5 
shows, an ineffective feature (primitive feature 8) is used to synthesize 
effective composite features. The reason for the use of one or more 

Testing 
0.9 17 

Testing 
0.686 
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ineffective primitive features in the synthesis of effective composite 
features is due to the interaction between primitive features. Although 
some features are ineffective when used alone, they can be elements of a 
primitive feature set that is the building block for effective composite 
features. 

CGP is a viable tool to synthesize effective composite features from 
primitive features for object recognition. In general, the synthesized 
composite features are more effective than the primitive features upon 
which these composite features are built, although there are a few 
exceptions in our experiments. In experiment 1, the learned composite 
features outperform the primitive features or any combination of primitive 
features upon which they are evolved, although the improvement in 
recognition rate is not significant when all the 10 common primitive 
features are used to synthesize composite features, since the performance 
of these 10 primitive features, when used together, is already very good 
(0.963 in training and 0.978 in testing). In experiment 2, when 8- 
dimensional composite feature vectors are evolved or when only 10 
common primitive features are used in feature synthesis, the synthesized 
composite features are more effective. But when all the 20 primitive 
features are used and the dimension of composite feature vectors is 5 or 3, 
the performance of primitive features is a little bit higher. However, the 
dimension of primitive feature vectors is 20, much higher than that of 
composite feature vectors, which is 5 or 3. In experiment 3, when 8- 
dimensional composite feature vectors are evolved, the synthesized 
composite features produce better recognition results. But if the dimension 
of composite feature vectors is 5, the 10 or 20-dimensional primitive 
feature vectors yield better performance. Since there is some randomness 
involved in GP, we can still conclude that CGP can evolve composite 
features that are more effective than the primitive ones upon which they 
are evolved. More importantly, to achieve the same or similar recognition 
rate, the number of composite features needed is smaller than the number 
of primitive features needed (one-fourth or half), reducing the 
computational expense during run-time recognition. Thus, the composite 
features outperform the primitive ones with adequate number of sub- 
populations. 
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The CGP approach synthesizes composite features for recognition that 
outperform four basic recognition algorithms (three backpropagation 
algorithms and the C4.5 algorithm). 

5.5 Conclusions 

This chapter investigates synthesizing composite features for object 
recognition. Our experimental results using real SAR images show that CGP 
can evolve composite features that are more effective than the primitive 
features upon which they are built, although sometimes the improvement in 
recognition rate may not be significant. To achieve the same recognition 
performance of primitive features, fewer composite features are needed and 
this reduces the computational burden during recognition. From the 
experimental results, it can be seen that primitive features that provide domain 
knowledge for the evolutionary process have a substantial impact on the 
performance of the synthesized composite features. Although the effectiveness 
of synthesized composite features is not solely dependent on the effectiveness 
of primitive features, on the average, if primitive features do not capture the 
characteristics of the objects to be recognized, it is difficult, if not impossible, 
for CGP to synthesize effective composite features. Thus, it is important to 
design effective primitive features. We cannot entirely rely on CGP to 
generate good features. However, designing effective primitive features needs 
human ingenuity. If human experts lack insight into the characteristics of the 
objects to be recognized, they may not figure out effective primitive features. 

Currently, there is only one object in an image during recognition, so all the 
features come from the same object. If there are multiple overlapped objects 
[19] in an image, the recognition becomes much more difficult. Some of the 
features of an object may not be available due to occlusion and we need to 
distinguish features from different objects before these features are fed into a 
classifier. Recognizing multiple overlapped objects using this approach is a 
challenging future research topic. 



Chapter 6 

LINEAR GENETIC PROGRAMMING FOR OBJECT 
RECOGNITION 

6.1 Introduction 

In this chapter, we describe a feature construction method which uses a special 
linear variety of genetic programming for feature construction. We provide 
rationale for the design of the method and present its two varieties: using 
evolutionary computation for evolutionary feature programming (EFP) and 
cooperative coevolution for coevolutionary feature programming (CFP). We 
discuss different decomposition strategies for breaking up the feature 
construction process. The practical utility of EFP and CFP is verified in real- 
case studies presented in chapter 7. 

Evolutionary computation (EC) has several virtues which make it appealing 
from a computer vision and pattern recognition perspective. As a general 
template of universal search procedure, it needs relatively little task-specific 
tailoring to make it work within a specific application. The evolutionary search 
is usually characterized by low risk of being trapped in local minima, has 
sound rationale in both computational biology and theory (schemata theorem) 
[36], [42], and has proven effective in a wide spectrum of benchmarks and 
real-world applications. In particular, it has found a significant number of 
applications in image processing and analysis as discussed in the previous 
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chapters. In this chapter we discuss the synthesis of entire feature extraction 
procedures using linear genetic programming [59], [60], [61]. 

To make EC work as a search engine for feature construction, two important 
questions have to be answered: how to represent feature mappings G as 
solutions s E S, and how to evaluate individuals. This chapter gives answers to 
these questions and provides rationale for the proposed EFP method. However, 
we abstract here from any application-specific knowledge (e.g., knowledge 
related to computer vision). The particular examples of applying the proposed 
approach to specific applications will be, provided in chapter 7. 

6.2 Explicit Feature Construction 

In most machine learning and visual learning approaches, EC operates in the 
space of hypotheses. An outstanding manifestation of this convention are the 
famous 'Michigan' [43] and 'Pittsburgh' [I121 approaches for GA-based rule 
induction 1761, [78]. In EFP, on the contrary, EC is employed to perform a 
search in the space of feature definitions. The evolutionary computation has 
been also applied to search such spaces, serving the purpose of transformation 
of training data. Most of the work done, however, concerned feature selection. 
There are several publications on applying evolutionary computation to feature 
selection [98], [122], [129]. A new approach was presented in Chapter 4. The 
superiority of global feature selection methods, EC in particular, over local 
search methods, was shown experimentally in early 90's [45], [46]. 

In the framework of learning from examples, a complete description of the 
learning problem is represented by the (often infinite) universe of examples 
(instances, objects) x. The learning task posed to the learner (learning 
algorithm, inducer) consists in finding a hypothesis h (classifier) that 
optimizes some performance measure f defined with respect to the training 
data T, which is in fact a sample from the universe. In the following we 
assume that f is scalar and it is to be maximized, and that the learning is 
supervised, i.e., a discrete decision class label d(x) is given for each training 
example x E T. 
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From a machine learning (ML) perspective, we focus here on explicit 
feature construction, i.e., a deliberate process that aims at changing the form of 
training data. More formally, we are interested in mappings G that transform a 
given image x into its representation G(x) in derived feature space: 

where m denotes the number of features in the transformed representation. The 
goal of such feature construction process is to improve hypothesis, h, 
performance (accuracy of classification in the most common case) i.e. to find 
G such that h(G( )) performs better than h alone, with respect to f. The pair 
(G,h) in the following is referred to as a recognition system or decision 
system. 

Though an example x E T could essentially denote any data entity, we 
identify it with a raster image. In general, the dimensionality m of the derived 
space is not directly related to the amount of information carried over by x; 
nevertheless, in most real-world studies the feature transformation method 
should significantly reduce the dimensionality of the representation to avoid 
learner's overfitting to the training data at the expense of losing generalization 
ability. In the proposed approach, the dimensionality m of the resulting space 
has to be fixed for all images x E T to form a so-called attribute-value 
representation that most learners can work with. 

We assume that each gi represents a real-valued function that is technically 
realized by a feature extraction procedure and undergoes changes as the 
system learns. In general, the form of gi is arbitrary: it could be a polynomial, 
an artificial neuron, or even a lookup table. We try to maintain the explanatory 
function of feature construction and aim at its symbolic variety. Therefore, we 
limit our interest to gi being a (usually compound) function of x, which may be 
expressed in terms of some meaningful symbols. We assume that those 
symbols may be parameterized. 

The methods described in this chapter (EFP and CFP) assume that the 
mapping G is manipulated by an evolutionary process driven by the fitness 
functionJ an estimate of recognition system performance. Now, one has to 
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decide how to encode G as an EC solution (individual) s. Two qualitatively 
different methodologies are possible here. One can fix the general form of 
each gi E G and encode its parameters only. Alternatively, one can encode in 
solution s the complete information that is required to restore G. The former of 
these approaches is obviously less general than the latter one. In EFP and CFP, 
to provide a more general approach, we choose the latter method, where the 
solution s completely determines the actual working of G. 

Next, one should decide how to encode the application-related individuals 
(solutions) in generic representation used by a particular variant of EC (e.g., 
fixed-length strings over a binary alphabet in the case of GA). In evolutionary 
terms, individuals' encoding is commonly referred to as genotype, and its 
representation in application-specific terms - phenotype. These entities dwell 
in two separate universes, genotypic search space and phenotypic search 
space, respectively. In this context, the (maximized) fitness function f: 
S + [0,1] that evaluates individuals s E S is in fact a compound function: 

where& function implements the mapping from the space of genotypes to the 
space of phenotypes (in other words, it decodes the individual). The& function 
(phenotypic fitness) computes the fitness based on the phenotypic 
representation f,(s) of the solution s [105]. Therefore, f, operates in the 
problem domain and is usually much more application-specific than&. 

Function f, implements the so-called genotype-phenotype mapping. An 
important issue is here the extent to which & preserves the topology of the 
search space. In EC literature, this issue is usually referred to as the locality of 
representation [106]. Locality may be defined as a measure that reflects to 
what extent (or, informally, with what probability) the neighbors in the 
genotypic space remain neighbors when mapped to the phenotypic space. High 
locality representations preserve search space topology to a great extent; low 
locality representations do not and resemble more a kind of random mapping. 
This notion becomes important in the discussion of properties of the proposed 
representation for feature extraction procedures. 
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6.3 Linear Genetic Programming 

Prior to formal presentation of EFP, we devote a few paragraphs to describe 
the EC paradigm, which inspired the proposed method. Linear Genetic 
Programming (LGP) was originally proposed by Banzhaff [4]. Essentially, 
LGP is a variety of GP with simplified, linear representation of individual's 
code. The representation used in LGP is a hybrid of GA and GP, and combines 
their advantages. The individual's genome represents a sequential program 
composed of (possibly parameterized) basic and given a priori operators. This 
feature makes LGP similar to GP. On the other hand, as opposed to GP, where 
tree-like expressions are maintained (see chapter 2), LGP encodes such 
procedures in a form of a fixed-length sequence that, at the genome level, is 
essentially equivalent to GA representation. LGP encoding is, therefore, more 
positional, i.e. the evolutionary process tends to bind some meaning to 
particular code fragments. As a consequence, the standard crossover operator 
used in LGP exchanges mutually corresponding code fragments. In GP, on the 
contrary, the standard crossover picks at random subtrees in parent solutions 
and exchanges them, and such an action most often affects unrelated code 
fragments, leading to deterioration of evolution convergence. Therefore, LGP 
is more resistant to destructive crossovers than regular GP [4]. 

Another important concept of LGP is the way the intermediate results are 
passed from one operation to another. In GP, this is determined by the 
structure of the expression tree. In LGP, the 'virtual machine' that interprets an 
LGP program is equipped with extra registers. The registers serve as storage 
for a program's input data, intermediate results, and a program's output 
(response). 

LGP proved successful in the experimental evaluation on a family of 
different classification and regression tasks [22]. Another motivation for 
developing LGP was the possibility of fast individual's compilation into the 
machine code, which obviously may result in significant speedup of fitness 
computation [83]. Note also that several other programming-like EC 
paradigms came into being since GP's advent. These include Grammatical 
Evolution 1871, [I071 (a variant of GP with strong control of individuals' 
syntax), Linear-Tree GP [52] (a hybrid of GP and LGP), and Gene Expression 
Programming [32] (individuals are represented as fixed-length strings at 
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genotype level, but have tree representation at phenotype level). More general 
program representations, like graphs, have been also considered [118], [119]. 

6.4 Evolutionary Feature Programming 

The overall architecture of evolutionary feature programming (EFP) is 
presented in Figure 6.1. It may be briefly characterized as a genetically-driven 
search in the space of explicit, symbolic feature definitions, aimed at 
maximizing the expected predictive accuracy of the entire decision 
(recognition) system. The search is driven by a fitness function f evaluated on 
the training net, and it uses an LGP-inspired representation to encode the 
feature definitions. This compound function involves interpretation of encoded 
feature extraction procedures (genotype-phenotype mapping f,) followed by 
the evaluation of the resulting feature extraction procedures in the context of 
the training data (phenotypic fitness&). 

Learning takes place at two levels: at the upper level the evolutionary search 
learns (generates and evaluates) solutions s that encode feature extraction 
mappings G, i.e., G =f,(s). At the lower level, the learner built into the fitness 
function learns (induces and verifies) hypotheses given a particular 
representation. In other words, the working of the entire approach involves 
two intertwined loops that provide feedback for corresponding search 
algorithms: the outer learning loop involves the evaluation cycle and is closed 
by the fitness function5 whereas the inner learning loop involves hypothesis 
generation and testing within the fitness function itself. 
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Within the proposed framework, the evolutionary algorithm is used mostly 
because exact search methods are inappropriate here. The solution space, 
containing all features that may be expressed as feature extractions procedures, 
cannot be effectively searched by means of exact methods, mostly for the 
following two reasons: Firstly, the number of possible feature extraction 
procedures (FEPs) is prohibitively large. Even for the simplest setting of the 
proposed method, the number of possible realizations is an exponential 
function of feature extractions procedure's length and the number of operators. 
This complexity increases if other elements of the approach are taken into 
account. Secondly, we cannot make any assumptions concerning the fitness 
function f that would simplify the search. As will be shown in following, the 
EFP representation of solutions has low locality. 

Note also that, in the case of feature construction, proving any properties of 
f is much more difficult than in case the of feature selection, where, e.g., some 
methods profit from f ' s  monotonicity with respect to the number of features 
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[25]. Search techniques that would reduce the time complexity by analogously 
exploiting some properties of the objective function (e.g., branch and bound), 
are, therefore, not applicable here. 

For these two reasons, only exhaustive search guarantees finding the global 
optimum (with respect ton.  Heuristic or metaheuristic search is, therefore, the 
only plausible method that can be used to approach the feature construction 
task posed as above, and that can yield reasonably good suboptimal solutions 
in polynomial time. This is consistent with the rather practical attitude chosen 
here, where we assume that well-performing suboptimal recognition systems 
are usually satisfactory. In fact, solutions found during the heuristic search 
may even be globally optimal; however, as we usually do not know the 
application-specific upper bound of recognition performance, we cannot 
discern such solutions from the suboptimal ones. 

6.4.1 Representation and its properties 

Representation of individuals used in EFP is mostly inspired by LGP but does 
not strictly implement LGP as proposed by Banzhaff [4]. On the phenotype 
level, a solution s encodes one or more feature extraction procedures; feature 
definitions, or features for short. Each feature extraction procedure is 
conceptually equivalent to mapping G defined in (6. I), and is able to yield one 
or more scalar values gi(x) given input image x. It is encoded by a fixed-length 
sequence of 1 elementary steps, or, for short, instructions Oi. Instructions are 
executed sequentially; the proposed approach does not provide for branching 
of control flow or iterative computations (loops). Such sophisticated constructs 
have been introduced in some related approaches [119]; here, to avoid the 
possible overfitting to the training data, we keep feature extraction procedures 
simpler. 

Instructions are built using operators oi E 0 from the set of elementary 
operators 0. Instruction Oj is a specific instantiation of an elementary operator 
oi. Their indices are not related: here, i enumerates operators in 0 ,  while j 
denotes order of instructions within a feature extraction procedure. In other 
words, an operator is a function that may be called for some set of arguments, 
whereas an instruction is a particular call to such a function, technically 
encoded as a fragment of a feature extraction procedure code in individual's 
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genome. In the following operators will be identified with unique ids called 
opcodes. 

The set 0 constitutes the knowledge base for the feature construction 
algorithm and is usually domain-dependant. For computer vision and pattern 
recognition applications, operators from 0 may be effectively calls to image 
processing functions, feature extraction hnctions, and other data processing. 
For other application domains, 0 may contain appropriate domain-specific 
operators. Obviously, the more knowledge is provided in 0 and the more 
application-oriented it is, the better. Nevertheless, our goal is to prove that the 
proposed approach works well even if 0 contains only general domain-related 
knowledge, and not necessarily application-related knowledge. In particular, 
we expect to obtain satisfactory results in different computer vision and 
pattern recognition applications using general image processing and computer 
vision knowledge implemented by operators from 0. 

A specific instruction Oj within a particular feature extraction procedure is 
composed of two components: an opcode that determines the operator oi E 0 
to be used, and arguments, which are usually references to registers and tell 
where to fetch input data from and store the result. Registers may be thought 
of as temporary variables (working memory) that are used by instructions as 
input and output arguments. Registers are typed: the numeric registers (rj, 
j = I.. .n,) store only scalar values (intermediate results and final feature 
values). Aiming at computer vision and pattern recognition applications, we 
define also image registers (rj ', j = 1.. .n ',), which store input image and 
processed images (image registers have the same dimensions as the input 
image x). 

The number of numeric registers n, determines the number of scalar features 
gi computed by a feature extraction procedure. Commonly, we impose lower 
bounds on n, and nPr , based on the maximum arity of operators from 0. 
Formally, setting even n, = n ', = 1 is correct, as no constraints are imposed on 
the way the instructions exchange data with registers. For instance, an operator 
that requires two input arguments may fetch them both from the same register, 
and even store the result in the same register. This would, however, seriously 
limit the computational power of feature extraction procedures, thus in real- 
world studies we usually set n, = n ; = 2...5. 
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Preliminary experiments have also indicated the usefulness of such setting. 
Though greater values of nr and n : are possible, one should note that the more 
registers, the less effective is the passing of intermediate results between 
consecutive instructions, it is less likely that a result produced by instruction 
Oi will be used by any instruction Oj, j > i. To overcome this, a feature 
extraction procedure has to be longer, that, in turn, increases the processing 
time. This may be prohibitive in the feature construction phase, because, as it 
will be shown, each individual's evaluation involves multiple execution of the 
feature extraction procedure it encodes. 

Therefore, a feature extraction procedure may be represented as a directed 
graph, with nodes corresponding to instructions and arcs representing data 
flow. Figure 6.2 shows an exemplary graph representing a single feature 
extraction procedure, with extra nodes (marked by squares) that denote the 
initial and final register contents (the intermediate register contents are not 
explicitly depicted here). It can be observed that the proposed representation is 
flexible and not constrained by strict syntactic rules: feature extraction 
procedure is allowed to ignore input data (here: contents of register rl), create 
dead-ends (instruction 02), and it is not obliged to produce novel features in all 
numeric registers (an arrow connecting the initial and final states of r2 means 
that its contents remains intact during the execution of feature extraction 
procedure, so feature g2 is equivalent to initial contents of r2). 

As register contents may be used more than once by the consecutive 
instructions, tree representation is, in general, not sufficient to visualize feature 
extraction procedure processing, though any such graph may be converted into 
a tree by repeating some code fragments (subexpressions). From another 
perspective, each feature extraction procedure may be viewed as a compound 
function made of nested calls of operators oi E 0. 
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Figure 6.2. Graph representation of an exemplary feature extraction procedure. 

The practical applicability of a recognition system based on global features 
would be very limited. For non-trivial computer vision and pattern recognition 
applications, local features are required. Therefore, the feature extraction 
procedure representation allows each instruction to be executed in a local 
mode. The mask flag, a single bit hidden inside the opcode, decides whether 
the instruction should be global (work on the entire image register) or local 
(limited to a mask on the image). 

To support this extension, each image register maintains a rectangular mask. 
The mask may be used by an instruction (if it is local), and limits the 
processing to its interior. Global instructions ignore masks and operate on the 
entire image. Mask placement and dimensions, stored as upper left and lower 
right comer, are initialized prior to the execution of a feature extraction 
procedure, but may be also changed by instructions. 

Given the phenotype representation of a solution s, we are able now to 
summarize the genotype-phenotype mapping& in Figure 6.3. On the genotype 
level, a feature extraction procedure is encoded as a fixed-length sequence of 
bits, with consecutive chunks (substrings) of bits encoding successive 
instructions. On the phenotype level, for each instruction Oi, particular 
elements of its encoding within EC solution s correspond to separate variables 
si in the formulation of evolutionary search. In EC terminology, these elements 
are referred to as genes. 
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Interpretation of genes representing arguments depends on the particular 
elementary operator. If an operator requires only one input argument, the 
output argument is stored in the second gene, and the third gene is ignored. 
Thus, the representation used here is positional in the sense that each 
instruction component is encoded by a fixed-length bit sequence, and, as a 
result, each instruction has fixed length. The positional representation implies 
convenient properties discussed in chapter 6.3. 

Genotypic representation -solution s (fixed-length bit string) 

Sk Sk+l Sk+2 Sk+3 Sk+4 S k + ~  . 
opcodelj7ag I arg, I arg2 I arg3 

I I 

I i" instruction i+ 1 lh instruction I 

! Phenotypic representation -feature ! 
extraction procedure G 

Figure 6.3. Details on genotype-phenotype mapping. 

Technically, all instructional elements are binary-encoded integer variables 
(genes) si. For each gene, its upper limit is determined by corresponding 
parameter setting (the lower limit is always 0). For instance, the number of 
registers n, imposes the upper limit on the values of variables si encoding 
arguments (arg,, argz, arg3), and the number of operators 101 determines the 
range for the gene representing opcode to [0,101-11. However, the number of 
distinct values of particular gene si (alleles in EC terminology) does not 
necessarily have to be a power of two, which is inconsistent with binary 
encoding. To resolve this incompatibility, a 'modulo mapping' is used during 
feature extraction procedure interpretation. f, maps the corresponding gene by 
computing the actual gene si value modulo its upper limit+l. For instance, with 
101 = 70 elementary operators, the minimal possible number of bits for 
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encoding the opcode is 7 (26= 64 < 70 < 128 = 2'). Therefore, the opcode 
10010002= 7210 will be effectively translated into opcode 2, as 72 modulo 70 
amounts to 2. 

Except for trivial cases, real-world tasks usually require feature extraction 
procedures that refer to some constants. Constants are important as, among 
others, they parameterize instructions and provide fixed components in 
arithmetic expressions. In EFP, constants are encoded in individual's genome 
and evolve together with it. In particular, a feature extraction procedure may 
use constants in two ways. Both methods assume that one bit in binary 
encoding of each argument (argl.. .arg3 in Figure 6.3) determines its actual 
function. In the first method, if this bit is set, the argument is interpreted as a 
register number; otherwise, the remaining bits of argument encoding are 
interpreted as a constant integer number. In the latter case, depending on the 
application, the resulting constant may be directly passed to the phenotype or 
it may undergo scaling to provide a more appropriate range of values. 

This method is simple, but suffers from limited precision andlor range of 
encoded constants, as each argument is encoded to one byte, i.e., 8 bits. With 
one bit acting as a register-constant flag, 7 bits are left for constant encoding. 
This provides only 128 distinct values, which may not be enough to provide 
both sufficient range and precision. Thus, another, more indirect method of 
constant encoding is also provided. Similar to the first method, the choice 
between register reference and constant value is made according to the state of 
appropriate flag in argument encoding. If the state of the flag indicates 
constant, the constant value is fetched from an extra part of genome ('tail') 
that each individual is equipped with, which is exclusively dedicated to 
constant storage. 

In the following, we summarize some properties of the feature extraction 
procedure representation from the perspective of evolutionary computation, 
and computer vision and pattern recognition. From an evolutionary 
computation perspective, the feature extraction procedure representation may 
be qualified as positional. The proposed representation is also complete and 
robust, in the sense that all solutions are feasible: any bit string has valid 
phenotypic representation as a feature extraction procedure. Thus, we do not 
have to test the solutions for feasibility and use repair algorithms to mend 
infeasible solutions (see, e.g., [76]), which could be quite time-consuming. 
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And, last but not the least, feature extraction procedure representation makes 
some types of problem decomposition easy and elegant (see chapter 6.5). 

The genotypic representation of solutions is essentially equivalent to 
standard GA. As a result, we are able to use the common genetic operators 
(mutation and crossover) to process the individuals. This allows us to rely on 
widely accepted EC standards and avoid possible controversies concerning the 
particular type of genetic operators. 

Feature extraction procedure representation supports the schemata theorem 
[42]. Short bit substrings correspond to conceptually independent elements of 
solution's phenotype (e.g., single instruction or a sequence of instructions). 
Therefore, short feature extraction subprograms/subprocedures are less likely 
to be disrupted by the genetic operators than the long ones. Thus, if a building 
block contributes positively to the overall performance of the solution, it has 
more chance to propagate its offspring to the next generations. 

The modulo mapping introduced in gene interpretation causes that& is not 
bijective and two different bit strings may represent the same feature 
extraction procedure. This obviously makes some modifications of the genetic 
material ineffective, leading, among others, to neutral mutations - changes in 
the genotype that do not affect individual's fitness. This may apparently be 
disadvantageous, but, as the experiments show, it has a marginal effect on the 
convergence of the evolutionary search and may be easily compensated by 
increasing the mutation rate. Moreover, such encoding is somehow consistent 
with the working of natural evolution, where most of the genetic material 
seems to be redundant. Such dead code fragments are usually referred to as 
introns. It has been shown in the past, that introns may have positive impact on 
the effectiveness of search, as they enable performing a background search 
concerning some aspects of the task, without influencing the individual's 
fitness. More than that, some successful work has been done on explicit 
introduction of introns into genetic code [75], [81]. 

Within an instruction, its opcode determines the types of its arguments, and 
the arguments, being stored in registers, are always accessible. For instance, if 
the opcode refers to pixel-wise image subtraction, the consecutive genes are 
interpreted as references to three image registers (two input images, one output 
image); if the opcode refers to image thresholding, the consecutive genes are 
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interpreted as references to image register (input image), numeric register 
(threshold), and image register (output image). Therefore, there is no need for 
extra means that usually have to be undertaken in standard GP. In GP, when 
genetic operators modify solutions, they have to control the type compatibility: 
the type of values returned by node of expression tree has to be compatible 
with its parent's input type. This principle, known as strong typing [57], 
implies extra computational overhead. As there is no need for such control 
here, the feature extraction procedure representation may be characterized by 
weak typing. 

From computer vision and pattern recognition perspective, the proposed 
approach represents the category of feature-based recognition, as opposed to 
model-based algorithms that recognize an object by measuring its similarity to 
models from the database of objects. The recognition process is also image- 
driven (bottom-up, or, more generally, data-driven or example-driven), as 
opposed to some model-based approaches which implement model-driven 
(top-down) strategies. 

The proposed representation models the processing of visual information in 
a stepwise manner. This feature is consistent with neurobiology and cognitive 
science research, which indicates that primates' visual perception is organized 
and works in a modular way [72], [80]. Many stages of processing and the 
ability to perform local operations enable grouping, an essential property of 
any non-trivial vision system [33]. The presence of image registers also helps 
the EFP to obey the principle of least commitment [72] which states that 
algorithms, especially those that process imperfect (noisy, incomplete, 
imprecise) information, should avoid making crisp decisions as long as 
possible, since it is very difficult (if not impossible) to recover from a wrong 
crisp decisions made at the early stages of processing. This is particularly true 
in computer vision and pattern recognition systems, where there are several 
stages at which decisions are made. 
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6.4.2 Execution of feature extraction procedure 

Given the description of feature extraction procedure encoding, we now 
explain its execution, i.e., processing of a single training instance. This 
process, together with evaluation, constitute the second component of the 
fitness function, the phenotypic fitness&. 

The processing of an example x by a feature extraction procedure G 
encoded by an individual s proceeds in three steps (Figure 6.4): 

1. Initialization: The registers are set to values derived from x. 

2. Execution: The instructions Oi, i = 1.. .l, encoded by s are carried out one 
by one; each of them fetches andlor writes some data (intermediate results) 
fromlto registers. 

3. Exploitation: The scalar values computed in the numeric registers rj, 
j= 1.. .n,, after program execution are interpreted as features g(x) that form 
the feature vector G(x). In particular, if one feature extraction procedure is 
used, the contents of scalar registers fully determines G(x) (i.e., m = n,). 

Solution s 

: Instruction #I i+ 

Initialization: 
lmage registers 
initialized by 
processed 
input image x 
with masks set to 
distinctive features 

lnstruction #2 Instruction #3 - 
Exploitation: 
Feature values 
g(x), i = I ,  ..., n 
filched from h&e 

interpreter aiter execution of 
enire LGP program 

Figure 6.4. Execution of feature extraction procedures for a single training example 
(image) x. 
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In the initialization phase, both numeric and image registers have to be 
prepared for the execution of feature extraction procedure. The simplest way, 
copying the input image x into all the image registers, is correct, yet not 
optimal from a practical viewpoint. It seems more reasonable to advance the 
learning process already in its beginning, by providing it with different 'views' 
of the training data. This effect may be easily obtained by differentiating the 
initial contents of image registers. Therefore, each of the image registers r )  is 
initialized by an image resulting from global processing of x by an image 
filter. All filters used for this purpose are unary image operations 
(Image + Image) from the set 0 (see, e.g., list of operators presented in Table 
7.1, which serves as a background knowledge base for real-world applications 
considered in chapter 7). The choice of filters is determined by a separate 
fragment of feature extraction procedure encoding, which, for clarity, was not 
shown in Figure 6.3 and Figure 6.4. For each register, its mask is centered on 
the most distinctive fragment of the image resulting from this preprocessing; 
in practice, it is the brightest point in the processed image. Initially, the mask 
is rectangular, and its dimension is determined by a parameter (here: 5 pixels). 

The numeric registers ri are also initialized according to some information 
derived from the input image x. In particular, the center coordinates of the 
mask of ith image register rIi determine the contents of numeric registers rzi., 
(horizontal coordinate) and 1-2~ (vertical coordinate). This process is obviously 
limited by the number of available numeric registers n,; in general, only the 
coordinates of the first In ,  121 image registers may be stored in this way. 

Another motivation for making the register initialization rather sophisticated 
comes from time complexity considerations. The technical implementation of 
the approach (chapter 7.2) maintains a cache memory for the initial register 
contents and for all the training examples. Image preprocessing takes place in 
the initialization phase and is carried out only once, prior to the evolutionary 
run, for all training examples and all registers, and its results are stored in the 
cache. When a feature extraction procedure is about to be run on a particular 
training image x, the appropriate part of the cache is copied to registers, which 
may be done quickly even for relatively large images. This technical trick 
saves a significant fraction of computation time. 
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6.4.3 Locality of representation 

In this subchapter, we take a closer look at feature extraction procedure 
representation and its locality. For this purpose we perform a qualitative 
analysis of the impact genetic modifications (particularly mutations) have on 
similarities and dissimilarities of solution phenotypes. 

As we use common GA recombination operators to manipulate feature 
extraction procedure representation, the probability of genetic change is 
distributed evenly across the genome of solution s. All stages of information 
processing are, therefore, equally likely to be subject to genetic change. This is 
a substantially different than in GP, where initial processing stages (tree leaves 
and nodes close to them) are more likely to be modified than the final steps 
(tree nodes close to the root and the root itself). Nevertheless, the influence 
('strength') of mutation does depend on instruction placement in feature 
extraction procedure code. Note that some fragments of feature extraction 
procedure code are potentially 'dead', i.e., the instructions' results stored in 
registers are overridden by another instruction. The closer Oi to the end of 
feature extraction procedure code, the less likely its result may be overridden 
by subsequent instructions, and, therefore, the more important it is. Thus, the 
mutations taking place close to the end of feature extraction procedure code 
are more influential, on the average, than the mutations affecting the initial 
feature extraction procedure fragments. 

Within a single instruction, mutation affects a feature extraction procedure 
in different ways. With respect to the instruction components, a single-bit 
mutation may be of the following types: 

1. change the opcode; 

2. change the register the instruction refers to; 

3. change the constant arguments used by the instruction; 

4. change the mode of instruction (local vs. global). 

Mutations of type 1 are potentially the strongest ones in terms of their 
influence on solution's phenotype and the way the 'feature extraction procedure 
processes the training data. They may lead to two qualitatively different 
effects. The influence of such mutation is minor if it does not change the 
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category (image - scalar) of the operation nor its arity; for instance, when a 
unary image processing operation is mutated into another unary image 
processing operation. A major change occurs when the resulting instruction is 
qualitatively different from its original, e.g., when an image processing 
operation is replaced by scalar operation or vice versa. 

Mutations of type 2 result in a change of the register the operation refers to 
as an argument. Such mutations are less profound than those of type 1. 
However, their effects are often stronger for the scalar operations than for the 
image ones, as the numeric registers usually contain different values. Image 
registers are initialized with the input image preprocessed by different unary 
image processing procedures, and are in most cases similar in visual terms, so 
applying mutation on an argument of an image operation has usually a minor 
effect. 

Mutations on constants (type 3) have the smallest influence on the working 
of an feature extraction procedure. The particular impact on the working of a 
feature extraction procedure procedure depends on operation-specific 
argument interpretation. For most operations, that impact is minor and may 
consist, for instance, in a change of image binarization threshold or change of 
mask width and/or height. 

Mutations on instruction mode (type 4) may significantly change the 
working of a feature extraction procedure code. The particular effect of this 
type of mutation depends on the actual mask placement. 

The assumed representation implies that interpretation of some genome 
fragments is conditional, i.e. it depends on other genome fragments. For many 
operations, some element's genes are ignored. For instance, the mode of an 
operation (global/local) is ignored for scalar operations. This, together with the 
phenomenon of neutral changes ('modulo mapping', chapter 6.4.1), implies 
that when performing experiments on real-world data, the mutation probability 
has to be set to rather high values to provide a sufficiently thorough search in 
the solution space. 

In the overall picture, the feature extraction procedure representation cannot 
be univocally classified as having high or low locality (cf. chapter 6.2; [105]). 
In general terms, its locality is probably comparable to that of common genetic 
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programming, where application of the standard mutation operator may also 
lead to qualitative changes (subtree replacement) or quantitative changes 
(replacement of a constant value in a leaf). Analogously, the locality of feature 
extraction procedure representation may be characterized as hybrid, as some 
variables (e.g., those related to constants) exhibit high locality, whereas others, 
with the opcode, as the most prominent example, demonstrate low locality. 

For strong advocates of high-locality representations, we emphasize that 
lack of high locality is unavoidable for such representations like feature 
extraction procedure. This is an inherent feature of many knowledge-intensive 
representations, i.e., representations that heavily relate to background 
knowledge. With the growing complexity of problems that we attempt to solve 
by means of EC and, in particular, by means of different varieties of genetic 
programming, it becomes very difficult to design high-locality representations. 
Nevertheless, as long as the evolutionary process is not deprived of the 
possibility of local search, this situation should not be perceived as 
disadvantageous. For feature extraction procedures, though some actions of 
genetic operators fundamentally change the working of the procedure, causing 
warpinglswitching of fitness landscapes (mutations of type 1, 4 and some of 
the mutations of type 2), there are still some possibilities of local search 
(mutations of type 3 and some mutations of type 2). 

One could even hypothesize that some extent of low locality is probably 
advantageous. The way from the genotype to the final evaluation is long and 
involves feature extraction procedure decoding, its execution on the body of 
training data, and multiple classifier induction and testing (see chapter 6.4.4). 
Therefore, the genome has to undergo substantial changes to impact the 
fitness. This also indicates that the fitness landscape is here probably filled 
with many flat plateaus, which are extremely inconvenient for pure local 
search. In this case, 'far-reaching mutations' resulting from low-locality 
representation may be beneficial. 
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6.4.4 Evaluation of solutions 

The primary objective of the learning process is to provide good predictive 
accuracy of the recognition system. From the explanatory perspective of 
knowledge discovery, the second important goal is to promote simple 
(readable) solutions. For the sake of simplicity, this second objective is not 
explicitly taken into account in the following, for two reasons. Firstly, 
allowing both objectives requires either their aggregation or solving multi- 
objective (bi-objective) problem. Aggregation of objectives usually involves 
parameter setting and often deteriorates the thoroughness of the search. Multi- 
objective approach, on the other hand, would significantly complicate the 
entire approach [12], [108], [123], and address topics that are beyond the 
scope of this book. Secondly, there are other means that enable control of the 
complexity of the evolved solutions: the parameter 1 that determines the 
feature extraction procedure length, and the numbers of registers (n, and n',), 
to mention the most relevant ones. 

Therefore, the fitness function fused here relies only on the predictive 
performance assessment, done in the context of the training set of images T. 
The feature extraction procedure G encoded in a solution s is run for all 
images x E T and produces feature vectors {G(x), x E T). These vectors, 
together with decision class labels d(x), constitute the derived dataset with 
examples given in attribute-value form: 

T'= {(G(x), d (x)), x E T) . 

We want f to promote transformations G that provide better predictive 
performance. In feature selection and construction, f usually measures the 
decision class separability, information contents, coherence, statistical 
properties, or consistency provided by G; the term filter approach has been 
coined to denote such methods. Alternatively, in a so-called wrapper approach 
one estimates the accuracy of classification/recognition that may be attained 
using G, by carrying out an internal multiple train-and-test experiment. The 
practical superiority of the wrapper approach over the filter approach has been 
shown in many different contexts [25]. Moreover, wrappers do not make 
demanding assumptions concerning f 's monotonicity and the types of 
variables (e.g., most consistency measures accept only nominal variables). 
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For these reasons, EFP relies on a wrapper approach. The derived training 
set T' is randomly partitioned into n,, folds (subsets) irl, of possibly equal size. 
Given this partitioning, a multiple train-and-test experiment is carried out 
using an inductive learning algorithm, and the resulting average recognition 
ratio (accuracy of classification) becomes the fitness of evaluated solution s 
and its phenotypic representation G. 

Let us note that the wrapper methodology implies a kind of classifier bias. 
More formally, given two different learners LI and L1, the corresponding f 
values are usually different. A representation (mapping) G evaluated in this 
way usually provides good results with the same classifier; however, for a 
different classifier good results are less likely. 

The above measure is an estimate of predictive accuracy; the actual test-set 
recognition ratio may be different fromfis). In most cases, overfitting occurs. 
Fortunately, from the evolutionary perspective, the absolute value of this 
measure is not as crucial as it appears to be - the mutual relations between 
fitness values of different individuals are more important. This is particularly 
true if selection schemes other than fitness-proportional selection are used. For 
this reason, the random partitioning of T' into folds is static, i.e., it does not 
change during the evolutionary run. Technically, this partitioning is carried out 
prior to the evolutionary run and kept fixed. 

Another consequence of using a wrapper for evaluation is the discrete 
character of$ fitness can take on only ITl+l distinct values. Thus, when the 
training set is small, the probability of getting equal evaluations for even 
substantially different solutions is quite high. This weakens the selective 
pressure, i.e. f s ability to discriminate good solutions from the better ones. 
This observation is another argument for using large training sets, apart from 
the obvious argument that a big (and representative) training set increases a 
learner's chance to produce a well-generalizing classifier. This is, however, in 
conflict with the computational cost, as the more data, the longer the learning 
process, and, consequently, the longer the fitness computation. This tradeoff is 
unfortunate and inescapable; some extra measures that may be taken to avoid 
it have been elaborated elsewhere [62], but are not used here. 
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Here the solution evaluation involves inductive learning, i.e. an adaptive 
process. This makes the proposed approach, and all the approaches based on 
wrapper-like fitness assessment, belong to the category of so-called 
Baldwinian learning [3], [76]. The Baldwin effect takes place whenever the 
genome does not determine directly the working of the phenotype, but offers 
some space for solution's adaptation. The Baldwin effect is clearly observable 
in nature, where organisms learn through interaction with an environment 
during their lifetime. In the approach proposed here, this adaptation affects 
only the solution's fitness; the traits acquired during learning that takes place 
within f do not propagate back to the solution being evaluated. Therefore, the 
learning here is 'Baldwinian' but not 'Lamarckian'. Jean-Baptiste Lamarck 
(1744-1 829) hypothesized that the acquired traits can be inherited. This theory, 
referred to as 'Lamarckism' or 'Lamarckianism', is currently widely 
recognized as incorrect (see, e.g., [90], [I261 for more details) 

6.5 Coevolutionary Feature Programming 

Similar to many other applications of EC, the feature construction task is 
difficult due to the unknown characteristics of the objective function$ More 
precisely, f is known to the feature construction algorithm, but its analytical 
form is very complex, as it is determined by the training set T and the 
inductive learner working in a wrapper. 

In following we show how to tackle the difficulty of feature construction by 
exploiting its modularity and decomposing it. Like in Chapter 5 by 
decomposing the feature construction process, we would like to improve the 
quality of induced decision/recognition system (G,h). The practical benefits 
we expect from decomposition include: 

faster convergence of the learning process, the possibility of obtaining 
better recognition systems at the same computational expense, or 
comparable recognition systems in a shorter computation time, 

better scalability of learning with respect to the size of the problem (number 
of decision classes andlor number of evolved features), 

better understanding of obtained solutions (feature extraction procedures). 
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As formulated earlier in this chapter, explicit feature construction consists in 
an intertwined search in two spaces: the space of hypotheses and the space of 
feature definitions. Therefore, one could conceptually consider decomposition 
concerning both of these spaces. However, as in EFP the hypothesis search is 
merely an element of fitness computation within a wrapper, so we focus here 
more on decomposing the search process in the space of feature definitions. 

Formally, by a decomposable problem we mean a problem, for which each 
solution s may be assembled from conceptually disjoint entities called modules 
si, i.e., there exists a mapping C, which, given I modules si, i=I, ..., 1, composes 
them into the overall solution: 

S = C(s ,,..., s,) 

We concentrate on the specific, yet common in practice, case of modules 
being sets of variables. In this context, by problem decomposition we mean the 
partitioning of the original set of variables si into a set of disjoint modules. In 
the following, we identify a module with a subset (vector) of original problem 
variables such that each variable si belongs to exactly one module sj. 

When humans apply decomposition, they usually specify a subobjective for 
each module. By any means, from a practical viewpoint, this is the best 
approach possible. After decomposition, subobjectives guide the independent 
searches for particular modules and the overall complexity of the problem is 
usually reduced. Problems representing this class are sometimes referred to as 
separable [125]. 

However, not all decomposable problems are separable, as it is not always 
possible to define subobjectives, because the existence of C does not 
automatically imply that there is a way to disassembly the objective function. 
This is the case when (1) the particular modules are (partially) interdependent 
and the objective function cannot be decomposed, or (2) there is not enough 
knowledge available to the human expert to specify subobjectives. 

It has been shown recently [I241 that decomposition may also be useful for 
non-separable problems with average interdependency of modules. Such 
problems have been referred to as nearly decomposable [110], [I241 or 
exhibiting modular dependency [125]. Fortunately, most of the non-separable 
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real-world problems belong to this category of problems with a modest 
'amount' of interdependency. A thorough analysis of module interdependency 
and separability is beyond the scope of this book; the reader is referred to other 
work that goes into more detail [124]. 

Cooperative coevolution (CC), one of EC paradigms that this book is 
devoted to, is especially well-suited for tacking non-separable yet nearly 
decomposable problems [94], [128]. As already emphasized in Chapter 1 and 
Chapter 5, the major advantage of CC is that it provides the possibility of 
breaking up a complex problem into subproblems without specifying explicitly 
the objectives for them. This makes CC especially appealing to a broad class 
of practical problems, where it is possible to design a decomposition of the 
problem into subproblems, however, the objective functions for the particular 
subproblems are not known. The way the individuals from populations 
cooperate emerges as the evolution proceeds. 

In this chapter, we propose a way to decompose the task of evolutionary 
feature programming of linear feature extraction procedures by means of CC. 
This leads us to coevolutionary variety of the proposed methodology, 
coevolutionary feature programming (CFP). 

In CFP, the CC search engine is responsible for searching the space of 
mappings G [63]. Similar to EFP, this search is guided by a fitness fbnctionJ 
which consists in cross-validation on the training data (a wrapper approach). 
The best feature mapping G found in the search, together with the trained 
classifier h, constitute the resulting recognition system (G,h). However, G is 
not encoded in a single solution/individual s. Rather than that, particular 
individuals si from populations Pi describe components of the mapping G. The 
populations and their semi-independent evolutionary processes correspond to 
modules in the terminology introduced here. In the next subchapter, we 
discuss and present four different ways of defining those components 
(modules) and their composition method C. 



226 Chapter 6 .  Linear Genetic Programming for Object Recognition 

6.6 Decomposition of Explicit Feature Construction 

Problem decomposition consists in designing a mapping C that allows for 
assembling the complete solution from some modules (Equation 6.4). For most 
problems, the total number of possible problem decompositions is very large. 
However, only some of them are reasonable in the sense that they enable the 
genotype-phenotype mapping to preserve the modularity (or the 'degree' of 
modularity). To design successful decompositions, i.e. such that they increase 
the chance of finding feature transformations that are (a) feasible, and (b) 
outperform the feature transformations obtained without referring to 
decomposition, we use the background knowledge about the nature of the 
feature construction task and the way the solutions are evaluated. In the 
following, we attempt to investigate the 'reasonable' decomposition strategies, 
though we do not claim that all the possible strategies are considered here. 

We describe four qualitatively different decompositions, in the same order 
as the stage at which they take place within solution evaluation process. In 
CC-related terms, they correspond to different levels on which the cooperation 
takes place: instruction, feature, class and decision levels. 

Instruction Level Decomposition: The lowest possible level at which 
decomposition may be applied is the instruction level. In this decomposition 
strategy, each population is delegated to specific fragment of feature extraction 
procedure. A module si is equivalent to a continuous fragment of feature 
extraction procedure, which constitutes the entire solution s (organism). The 
compositional mapping C is a straightforward concatenation of modules that 
preserves the order of instructions as given by module indices. As the 
subsequences of feature extraction procedure instructions correspond directly 
to substrings of bits in the genotype, this way of decomposition may be 
characterized as genotypic. 

For this type of decomposition, no matter what the number of modules, the 
number of evolved features m is determined by the number of numeric 
registers n,: m = n,.. Note also that, as this type of decomposition'is genotypic, 
it may significantly affect the purely evolutionary aspects of the 
searchllearning; for instance, the more populations, the shorter individuals' 
genome, and the less effective the crossover. 
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In case of nontrivial real-world applications, there is usually need for using 
multiple features gi. Even for binary learning tasks, one scalar feature is 
usually not enough to discriminate decision classes if they are entangled in 
decision space in a complex way. The importance of possible inter-feature 
influences is obvious and present in almost all real-world application (see, for 
instance [25], [26]). 

Note that the non-coevolutionary EFP already enables simultaneous 
computation of multiple features, as one feature extraction procedure may 
potentially compute up to n, features gi, where n, denotes the number of 
numeric registers. However, in most cases, one cannot expect obtaining a 
single FEP that implements qualitatively different features that would lead to 
useful synergy. Moreover, as already discussed in chapter 6.4.1, a large 
number of registers calls for longer FEPs, which, in turn, increases 
prohibitively the searchllearning time. 

Features should discriminate the decision classes as well as possible on one 
hand, and be mutually non-redundant on the other. A desirable phenomenon 
here is synergy, i.e., working together of two or more elements to produce an 
effect greater than their individual effects. 

More precisely, the mutually redundant features cause their combined effect 
to be smaller than or equal to the individual contributions. For a simple case 
two features gl and g2, this means: 

In a simple case, such redundancy may usually be detected using, for 
instance, statistical tools like correlation (for continuous features) or 2 
statistics (for nominal features). However, the statistical approach fails if the 
dependencies are difficult (e.g., complex non-linear), affected by noise, or 
when the sample (training set T )  size is not large enough to provide statistical 
evidence. The synergy of features, on the contrary, provides a better value of 
the objective function than any of the features attains individually: 

Apparently, to stimulate synergy, one could construct several different 
features independently, but the chance that such features would complement 
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each other in discriminating decision classes is rather scant. More likely, the 
resulting features, being drawn from similar 'traits' in the training data T, 
would be highly correlated. To benefit from feature synergy, the processes that 
elaborate particular features have to exchange some information. This, 
together with the pressure on discrimination mentioned earlier, shows that the 
task of explicit feature construction at feature level exhibits intermediate 
interdependency of modules. This makes it an excellent candidate for 
application of cooperative coevolution. 

Feature Level Decomposition: The decomposition at feature level 
consists of delegating each population Pi to work on a separate feature 
extraction procedure. To evaluate a solution s within CC, the following steps 
are undertaken. For each module si, we first decode it and obtain the feature 
extraction procedure Gi, and then run it on the training data to produce the 
derived training data Tji. These steps proceed for each module separately as in 
regular EFP. The fusion of information takes place after all the modules si 
produce their TIi's: the composition mapping C performs a concatenation of 
the feature vectors Gi(x) produced by particular modules si for all training 
images x E T (feature fusion). Here the number of evolved features m is a 
multiple of the number of populations n,: for n, numeric registers, m = npnr. 

Class Level Decomposition: The multi-class learning problems exhibit 
another kind of inherent modularity that consists of the presence of many 
decision classes (nd> 2). TO correctly classify an unknown example, the 
learner has to discriminate it from examples representing all the remaining 
decision classes. Instead of solving this as one learning task, one can 
decompose it into binary base learning tasks. The base learners produce so- 
called base classifiers. Usually, one obtains such decomposition by applying a 
one-vs.-all approach (each base classifier discriminates one decision class 
from the remaining ones) or a painvise approach (each base classifier 
discriminates between a pair of decision classes). Though other decomposition 
schemes are conceptually possible, these two have been most extensively 
studied in past. 

Such class-level decomposition leads to separable modules: by maximizing 
discrimination of a pair of decision classes (or discrimination of ith decision 
class and the remaining classes), the overall recognition system performance is 
improved too. Thus, a feature construction process is run separately for each 
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base learning task and yields a base decision system (Gi,hi). The composition 
C takes place off-line here, after all the learning processes related to particular 
subproblems produce (Gi,hi), and consists in assembling them into one 
decision system (G,h) in a way that depends on the particular architecture 
chosen. 

The particular form of C may vary; within the real-world case studies 
described in chapter 7, we use the one-vs.-all decomposition and a simple 
aggregation rule that produces univocal class assignment if and only if one 
base classifier yields positive response (i.e., votes for the decision class it is 
assigned to). Other response patterns (no base classifier responding or more 
than one base classifier responding) are interpreted as 'no-decision', and 
counted as errors in the final results. This setting implies that the number of 
base decision systems is equal to the number of decision classes nd. 

As this decomposition leads to separable subproblems, the number of 
evolved features m is not directly related to any parameter of EFP. However, if 
we assume that the base learners are homogenous, i.e., each of them produces 
the same number of features k, m amounts to hzd for the one-vs.-all 
decomposition. 

Decision level Decomposition: The last decomposition method 
considered here relates to the concept of multiple (compound) classifiers. This 
way of decomposition resembles the class-level decomposition to some extent. 
In decomposition at decision level, each module encodes a complete base 
decision system that solves the entire learning task (including all decision 
classes). The responses of particular base systems (classification decisions) are 
aggregated by a decision rule (e.g., simple voting) to yield the overall decision. 

This setting implies reducibility, provided each base system does its best, 
any module may be dropped (cancelled) without significant deterioration of 
the result (fitness). The objective of decomposition is not mere enabling the 
learning process to find a satisfactory decision system, rather the goal here is 
boosting the recognition performance. The decompositions produced by this 
approach are also symmetric: if all modules attempt to solve the entire task, 
their roles are interchangeable, provided that the aggregating decision rule is 
symmetric too. 
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The separability of decision level decompositions is difficult to assess. 
Apparently, this method is similar to feature-level decomposition. As each 
base decision system attempts to solve the entire learning task, the objective 
function for each module is known, the marginal search may be thus 
performed, and the decomposition should be claimed separable. On the other 
hand, if no other means are applied, base decision systems are identical or very 
similar, as they optimize virtually the same objective, so they yield no synergy 
when combined. 

A more thorough analysis shows that the similarity of this decomposition 
method to feature-level decomposition is only apparent. In feature level, the 
synthesized features cooperate and span together a common feature space 
glxg2x.. .xg,. The placement of each training example x in that space does 
matter, because, with high probability, it has direct influence on the resulting 
fitness. In decision level decomposition, on the contrary, each module 
produces features that are used for separate learning process and the 
cooperation takes place in the space of decisions. As the base decision systems 
cooperate by majority-vote decision rule, it is much more likely that an. 
erroneous decision made by a particular base decision system will not affect 
the overall system performance (fitness). In other words, the poor module's 
performance may be concealed by the other modules. Thus, we hypothesize 
that the cooperation is difficult at this level, and we label this type of 
decomposition as separable. 

To clarify possible misinterpretations, Figure 6.5 compares the four 
decomposition methods described in this section: instruction-level, feature- 
level, class-level, and decision level. It presents data flows that start with 
individuals (modules) in sub-populations Pi and end up with complete 
recognition systems (G,h). In this presentation, class-level and decision level 
decomposition look the same, as they differ only in data used for training. 
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Figure 6.5. Comparison of particular decomposition levels for evolutionary feature 
programming. 
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6.7 Conclusions 

In this chapter, we described evolutionary feature programming, an 
evolutionary approach to explicit synthesis of recognition systems that uses 
linear representation of feature extraction procedures. We discussed properties 
of the assumed feature extraction procedure representation and its genetic 
encoding. We also proposed a general framework for coevolutionary approach 
to decomposition of feature construction task, and outlined four different 
decomposition schemes, providing rationale for each of them. In the following 
chapter 7, we verify practical utility of different varieties of this methodology 
in an extensive computational experiment concerning view-independent 
recognition of real-world 3D objects imaged using passive and active sensing 
techniques. 



Chapter 7 

APPLICATIONS OF LINEAR GENETIC 
PROGRAMMING FOR OBJECT RECOGNITION 

7.1 Introduction 

This chapter is a logical continuation of chapter 6 and presents results of 
applying the methodology described there to real-world computer vision and 
pattern recognition problems. In particular, the configurations verified here 
include basic, single-population evolutionary feature programming (EFP), and 
selected variants of coevolutionary feature programming (CFP) working on 
different decomposition levels. 

To provide experimental evidence for the generality of the proposed 
approach, we verify it on two different tasks. First of them is the recognition of 
common household objects, a popular benchmark used in computer vision 
community. It concerns the visible part of the electromagnetic spectrum and 
relates to so-called passive sensing, as usually no active dedicated source of 
light is required to acquire the images. On the contrary, the second considered 
application concerns the non-visual modality of radar imaging and represents 
active sensing, as the source of radiation (radar wave transmitter) is required. 
Therefore, the problems considered are entirely different; the only features 
they have in common are (a) recognition of 3D objects from different 
viewpoints, and (b) using mid-size one-channel raster images. 
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7.2 Technical Implementation 

To provide an experimental testbed we developed a software environment 
named CVGP (Computer Vision by Genetic Programming). CVGP, written in 
Java and C, is a universal platform for experimenting with explicit feature 
construction in both machine learning and computer vision. To conform to the 
existing standards and benefit from the ready-to-use background knowledge, 
CVGP integrates several existing libraries: 

Soft-computing libraries written in Java: 
- machine learning library WEKA [127], 
- evolutionary computation library ECJ [70]. 
Image processing and computer vision libraries (C and machine code): 
- Intel Image Processing Library (IPL) [47], 
- Open Computer Vision Library (OpenCV) [88], 

Figure 7.1 presents the overall software architecture of the system. Java 
Native Interface (JNI) has been used to integrate modules and libraries written 
in Java with those written in C. Thanks to this choice of components, the most 
time-consuming evaluation of Feature Extraction Procedures (FEP) is 
efficiently carried out in well optimized libraries written in C and machine 
code, whereas the less computationally demanding ML and EC computation 
takes place in Java. The IPL and OpenCV libraries function as a repository of 
background knowledge. Though originally designed to serve explicit feature 
construction in CV, CVGP may also be applied to ML problems; in such a 
case, WEKA and ECJ are sufficient to run an experiment. On the other hand, 
CVGP may be easily combined with other libraries to use background 
knowledge and input representation relating to other domains (sound, video, 
etc.). 
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Figure 7.1. Software implementation of CVGP. Dashed-line components implement 
background knowledge. 

7.3 Common Experimental Framework 

7.3.1 Background knowledge 

For the proposed methods (EFP and CFP), the only source of background 
vision knowledge is the set of elementary operators 0 provided by the human 
expert (see Figure 7.1). This set could be tailored independently to each visual 
learning task presented here. However, to demonstrate generality of EFPICFP, 
we use the same set 0 for both CV tasks and make it contain only general- 
purpose image processing and feature extraction operations. Therefore, both 
applications share the same vision-related background knowledge and do not 
refer to any application-specific domain knowledge. For instance, though the 
concept of scattering point is usually applied in analysis of radar images (see, 
e.g., [lo]), there is no ready-to-use operation in 0 that could detect such 
features in the image. 

The set 0 contains approximately 70 elementary operations listed in Table 
7.1. Technically, operations refer to functions implemented in Intel Image 
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Processing library [47] and OpenCV library [MI. They embrace image 
processing, feature extraction, mask-related operations, and arithmetic and 
logic operations. 

Table 7.1. Elementary operations used in the visual learning experiments (k and 1 
denote the number of the input and output arguments, respectively). 

Convolution filters Prewitt, Sobel, Laplacian, Gaussian, Highpass, 
owpass, Sharpening 

Median filter, Min filter, Thresholding, Normalized 
cross-correlation 
2-D Fast Fourier Transform 

erations Erosion, Dilatation, Opening, Closing 
Absolute difference, Addition, Subtraction, 
Multiplication 

ations And, Or, Xor 
- -- - - - - -- -- --- - - -- - - 

Image norms Dot product, L1 (city-block), L2 (Euclidean) 
Feature extraction Spatial 2D moments (up to 3rd order), Central 2D 

1 Operations 

moments (up to 3rd order), Normalized central 2D 
moments (up to 3rd order), Mass center, Location of 

i the brightest pixel, Location of the darkest pixel. 
Number of non-zero pixels, SumIAveragelStandard 

I- --. - - - ---- -- -- - 

gk + 93' 
Scalar arithmetic +, -, *, % (protected division) 
Scalar functions Max, Min, Abs, Sgn, If (c 

--- - - Tan, - E 3 1 L o g  
other 
Mask-related operations Set rectangular mask, Set mask upper left comer, S 

mask lower right corner, Shift mask in specific 
direction, Get mask height, Get mask width, Get 
mask mid - X, Get mask mid Y 
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The experiments presented in the following may be roughly divided into 
two categories: basic study experiments focus on the dynamics of evolutionary 
search, its sensitivity to different parameter setting, and the convergence of 
evolutionary process; performance experiments focus on maximizing the 
overall recognition performance and on the predictive (related to the test set) 
properties of evolved recognition systems. Quite obviously, the latter 
experiments are usually much more time-consuming. 

7.3.2 Parameter settings and performance measures 

EFP and CFP use the wrapper approach to estimate the fitness of a particular 
set of features. Unfortunately, the wrapper approach, widely recognized as 
very accurate, is quite time-consuming. As ncv-fold cross-validation involves 
ncv-times classifier induction and nCv-times classifier querying, we need to use 
an inducer that is fast in both of these aspects. 

In the following experiments, the popular tree induction algorithm C4.5 [96] 
is used for that purpose. Precisely, we use the last public release of C4.5 
implemented in WEKA under the name 54.8 [127]. C4.5 has low 
computational complexity of learning and linear (with respect to tree depth) 
complexity of querying. Another advantage of this inducer is that its 
biaslvariance trade-off may be easily controlled by the pruning confidence 
level. In following experiments, we use C4.5'~ default settings: pruning 
confidence level: 0.25, node evaluation measure: gain ratio, subsetting: off. 
The cross-validation runs with n,, = 3 folds. The feature construction is the 
time-critical phase of EFP. After the evolutionary run is over, we use the best 
feature transformation G found for training the classifier for the final 
recognition system. As this is a single event, for some of the final recognition 
systems presented in the following, we use a sophisticated, yet more time- 
consuming in training, support vector machine (SVM) classifier. In particular, 
we rely here on SVM trained by means of the sequential minimal optimization 
algorithm [91] implemented in WEKA library [127]. The SVM classifier uses 
polynomial kernels of degree 3 and is trained with the complexity parameter 
set to 10. 

Peformance is measured by the recognition ratio which measures the 
classification performance on the training or testing data for all the classes 
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under consideration. The value of recognition ratio on the training data is the 
fitness value. True positive ratio, TP = P (positive decision 1 positive example) 
and False Positive ratio, FP = P (positive decision I negative example). 

7.4 Recognition of Common Household Objects 

7.4.1 Problem and data 

For the test of passive sensing, we use the COIL20 database [79], a popular 
computer vision benchmark. COIL20 contains a total of 1440 grayscale (one- 
channel) images of 20 household objects taken at different aspects (72 images 
of each object taken at 5' aspect intervals). Figure 7.2 depicts the 
representatives of all decision classes. 

Figure 7.2. Exemplary images from COIL20 database (one representative per class). 
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We use the processed version of COIL2O. Each image in this collection was 
obtained from the unprocessed image by cropping its contents to a minimum 
bounding rectangle (MBR) embracing the object, and scaling it to 128x128 
pixels (see [77] for details). To speedup the computation, we downsample the 
original images to 64x64 pixels. The downsampled images are directly used 
by the learning system; they do not undergo any other processing. 

Appearances to the contrary, recognition of processed images may be more 
difficult than the unprocessed ones, as (i) the actual size differences between 
particular objects are lost in scaling, and (ii) the use of MBR cropping may 
cause an object to have apparently different sizes for different aspects (see 
Figure 7.3). Due to (i), inter-class differences of size-related features are 
possibly reduced. Due to (ii), the intra-class variance of some features is larger 
than for the unprocessed data. 

Cup, 55" Cup, 180" Car3, 180" Car3,260° 

Figure 7.3. Apparent size changes resulting from MBR cropping for different aspects 
of two selected objects from the COIL20 database. 

The COIL20 database comes with a predefined partitioning of data into a 
training set T and testing set W. In particular, for each object class, the training 
set T contains every fifth image from the entire collection (15 images per class, 
aspect every 24O), and the testing set W gathers all the 57 remaining images of 
that object. Such partitioning provides that the training data well represents the 
entire learning task. 
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7.4.2 Parameter settings 

In this COIL20 experiment, we use feature level CFP. The detailed parameter 
settings are presented in Table 7.2. This experiment runs in a minimum 
configuration, with np = 2 populations and n, = n > = 2 registers. Small np 
allows us to verify the approach in a simple setting and provides relatively 
high search mobility. Standard genetic operators are used for recombination 
and selection. The probability of mutation refers to single bits. Therefore, 
given fixed mutation probability, the longer the feature extraction procedure 
code, the more mutations it undergoes on the average. The crossover 
probability 1.0, what implies that all individuals undergo recombination and 
none of them is directly transferred to the subsequent generation (i.e., there is 
no elitist sampling [76]). To motivate this choice, we argue that the primary 
task of evolutionary algorithm within EFPJCFP is to perform effective search, 
and that maintaining continuity between consecutive generations is of 
secondary importance. 

No constraints have been imposed on genome loci where the one-point 
crossover operator starts to exchange the 'tails' of genetic material. As a result, 
recombination may break apart the feature extraction procedure instructions 
(for instance, opcode may be detached from its arguments and replaced by 
different arguments). This setting may seem strange at first sight, as apparently 
one should treat entire operations as genes and not allow recombination to 
break them apart. Nevertheless, the preliminary experiments have shown that 
such an approach is much more effective as far as search convergence is 
concerned, because it provides more flexibility. 

Setting the tournament pool size to 5 is a compromise between values 2 and 
7 used commonly in genetic algorithms and genetic programming, 
respectively. In each experiment, if no ideal individual is found, evolutionary 
search stops after 4000 seconds (from a practical viewpoint, about an hour 
seemed to be a reasonable amount of time to be devoted to the design of a 
recognition system). The results presented have been obtained using 
computers equipped with a Pentium 1.4 GHz processor. 

To provide for statistical significance, each evolutionary run is repeated 10 
times, starting from different initial populations. Technically, this is provided 
by changing the seed of the random number generator. Therefore, if not 
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otherwise stated, the following tables and graphs show the mean performance 
of best individuals obtained from ten independent runs. 

Table 7.2. Parameter settings for COIL20 experiments. 

Crossover operator 
bit flip, probability 0.1 

"one point, probability 1.0 

7.4.3 Results 

Binary classification tasks. In this setting, we evolve recognition systems 
to recognize one class (positive class, d)  against the remaining 19 classes of 
COIL20 objects, which are temporarily grouped to form the negative class d. 
Figure 7.4 and Figure 7.5 present the results of training the feature-level CFP 
on the COIL20 data (means over 10 runs). For brevity, classes are referenced 
by numbers with respect to the order they appear in Figure 7.2 (rows, then 
columns). Figure 7.4 presents final fitness, test set recognition ratio, and test 
set true positive ratio of evolved binary recognition systems for particular 
binary problems. Figure 7.5 depicts test set false positive ratio (left vertical 
axis) and mean decision tree size (right vertical axis). For selected data series, 
these figures also present 0.95 confidence intervals. 

For 13 out of 20 binary problems, CFP yields recognition systems having 
perfect fitness 1.0 (with respect to the training data). In the remaining cases, 
the training-set performance of evolved recognition systems is very close to 
ideal. Note however, that the a priori probability for the negative class d 
amounts here to 0.95 (nd = 20), and this is the reference point for recognition 
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ratio assessment (the performance of the so-called default classzj?er). The 
evolutionary runs last for 12.5 generations on the average. 

Fitness, RR. TP 

-E- Fitness 

&Test set RR 

-+TP ratio 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

Class 

Figure 7.4. Fitness of the best individual, test set recognition ratio, and test set TP ratio 
for binary COIL20 experiments (means over 10 runs and 0.95 confidence intervals). 
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Figure 7.5. Test set FP ratio and tree size for binary COIL20 experiments (means over 
10 runs and 0.95 confidence intervals). 

For each binary task, after the evolutionary search is over, we build a simple 
recognition system (G, h) using the best representation G evolved in the run 
and the C4.5 decision tree classifier h trained on this representation. Therefore, 
the final recognition system uses the same inducer as the wrapper-based 
fitness function and may benefit from concordance of inductive biases. 

As expected, training set-based estimate (fitness function) is in most cases 
overoptimistic: test-set recognition ratio is usually inferior to solution's fitness 
value. Nevertheless, this deterioration does not exceed 0.01, and for class 2 
('Blockl') even some improvement may be observed (from 0.997 to 0.999). 
Thus, for the COIL20 problem, CFP seems to generalize well and no 
significant overfitting is observed. 

Also in terms of true positive (TP = Pr(h(x) = dt 1 d(x) = dt)) and false 
positive (FP = Pr(h(x) = dt I d(x) = d))  ratios, the charts vote in favor of CFP. 
Only a few cases exhibit significantly worse performance when compared to 
other classes. The classes most affected by this are those for which there are 
visually similar objects in the database: classes 3 and 19 (cars), and 5 and 9 
(elongated boxes). Nevertheless, the overall performance is still sound. Even 
for the worst case (decision class 19), the mean TP value is 0.8804, that means 
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that only about 12% of positive class instances are not detected by the 
recognition system. Taking into account that the negative decision class 
comprises in fact images of 19 different objects, and that the approach is 
feature-based, the obtained rates should be regarded as good. 

The FP results are even more appealing. In the worst case (class 18, 'Cup'), 
the mean FP rate is 0.0032. Thus, only 0.32% images of other 19 objects are 
identified as cups on the average. For many other classes, this figure is much 
smaller. Among the total of 200 recognition systems considered in this 
experiment (nd = 20 decision classes x 10 runs per class), 109 recognition 
systems attained zero FP rate. These results are comparable and, in some 
cases, superior to past experimental studies concerning COIL20 database 
which, in most cases, use a model-based approach (e.g., [I], [73]). The 
confidence intervals are narrow and ensure stability of the results obtained. 
This is especially important from a practical viewpoint, where the method is 
expected to yield a reasonable result in one run, without any need for 
redesigning the settings and repeating computation. 

These encouraging results have been obtained using simple decision tree 
classifiers. Figure 7.5 presents (on the right vertical axis) the average number 
of tree nodes used by decision trees induced from the transformed training 
data. In particular, difficult problems (e.g., for decision classes 6, 9, and 19) 
result in larger trees. Figure 7.6 shows one of the induced trees. Numbers in 
parenthesis denote leaf weight (number of training examples that reached tree 
node; the total number of training examples is 14 = 15nd = 300). Due to 
uneven distribution of decision classes in the data (19:1), the tree is heavily 
imbalanced and classifies the greater part of the examples in the root node. 
Most of the remaining trees induced for this binary problem and for other 
binary COIL20 problems have a similar structure. Relatively small trees (6.8 
nodes for all 200 experiments on the average) clearly indicate, that the most 
difficult part of recognition takes place within feature extraction procedures. 
Otherwise, the results would be probably much worse, as C4.5 often fails 
when faced with highly imbalanced decision classes. The readable structures 
of trees enable human inspection and analysis. 
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Figure 7.6. Decision tree h used by the final recognition system evolved in one of the 
COIL20 binary experiments. 

Complete recognition task. For the complete recognition task, we use CFP 
to discriminate all 20 decision classes present in the COIL20 dataset, that is 
obviously much more difficult than the binary recognition tasks. For this 
purpose, we treat the evolved binary recognition systems synthesized in the 
previous experiment as base classifiers, and combine their votes. Therefore, in 
fact we apply off-line one-versus-all problem decomposition on class level; 
such proceeding is fully justified as class-level decomposition leads to 
separable modules (cf. chapter 6.6). The assembled compound classifier 
comprises 20 base classifiers, one for each decision class. We build 10 such 
compound recognition systems (each binary CFP run was repeated 10 times). 
The resulting mean accuracy of classification for these compound recognition 
systems on the test set amounts to 0.9877f0.0036. Thus, only about 1% of the 
images are mistakenly labeled by the compound recognition system. Analysis 
of error occurrences in test-set confusion matrices confirms the conclusions of 
the binary experiments: the most often confused classes are the ones that 
exhibit visual similarity: 3 'Car' and 5 'Boxl', 3 'Car' and 6 'Car2', 3 'Car' 
and 18 'Cup', 3 'Car' and 19 'Car3' , 5  'Boxl' and 6 'Car2' . 

7.5 Object Recognition in Radar Modality 

As another experimental testbed, we chose the task of object (vehicle) 
recognition in synthetic aperture radar (SAR) images [88]. Imaging in radar 
modality, due to particular wavelengths and their properties (specular 
reflections), is fundamentally different from the general diffuse reflection for 
the visible spectrum. Radar senses in wavelengths outside the visible and 
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infrared spectrum, providing information on surface roughness, and other 
shape properties. Radar waves may penetrate some materials, e.g., vegetation, 
sand, and snow. Radar imaging is active in the sense that it requires 
illumination (source of radiation). 

Synthetic aperture radar (SAR) imaging is a specific technology [86] that 
makes a relatively small antenna work like it is much larger, due to the 
receiver (aircraft) motion and the Doppler principle. SAR sensors can operate 
24 hours a day; there are many other interesting properties of SAR images and 
the reader is referred to [86]. Nevertheless, from the viewpoint of human 
perception, the subjective quality of the acquired images is generally 
disappointedly low. In particular: 

SAR images are non-literal. There is not 1:1 appearance similarity with 
visible imagery and one needs to understand the physics of SAR image 
formation to interpret the imagery. 

Usually only so-called scattering centers are visible. 

The features do not persist under rotation (aspect change). 

SAR images are noisy and have low resolution. 

These properties make SAR image interpretation difficult. This is 
particularly true for this study, which concerns recognition of relatively small 
(when compared to one foot image resolution) man-made objects like vehicles. 

We use the MSTAR public database [I041 as the benchmark for 
evolutionary feature programming. The MSTAR database contains SAR 
images of several objects, mostly vehicles, taken at different elevation angles 
and azimuth (aspect) angles. In this study, we consider only images acquired at 
15" elevation angle (MSTAR contains also images for different elevation 
angles). The spatial resolution is 1 foot and the objects are centered in the 
image. Figure 7.7 presents selected images of the vehicles considered: BRDM 
armored personnel carrier (APC), ZSU anti-aircraft gun, T62 tank, ZIL truck, 
T72 tank, 2S1 gun, BMP2 (APC), and BTR70 (APC). Figure 7.8 shows 
selected SAR views of particular object classes. Note also the presence of 
radar shadow behind each object. Table 7.3 shows the image data used for the 
experiments on three selected objects (Figure 7.9). 
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SAR images are originally two-channel (complex), with each image pixel 
described by signal amplitudelmagnitude and signal phase [88]. We use the 
magnitude component only. The images are cropped to 48x48 pixel window 
centered in the original image. No other form of preprocessing (e.g., speckle 
removal) is applied. 

7.5.1 Problem decomposition at instruction level 

In this experiment, we compare the performance of evolutionary feature 
programming (EFP) and coevolutionary feature programming (CFP), where 
the cooperation in CFP takes place at the instruction level. To make this 
comparison reliable, we consider equal total genome length: for EFP 
experiment with code length I, in the corresponding CFP experiment each of 
np populations works on code fragment of length llnp. Similarly, we fix the 
total number of individuals: the total number of individuals in all np 
populations in CFP is equal to the number of individuals maintained in the 
single population of the corresponding EFP run (see Table 7.4). 

The task is to recognize three different objects: BRDM2, D7, and T62 (see 
Figure 7.9). From the MSTAR database, 507 images of these objects have 
been selected by means of appropriate sampling procedure. The resulting set 
of images has been split into disjoint training and testing parts to provide 
reliable estimate of the recognition ratio of the learned recognition system (see 
Table 7.3). This selection was aimed at providing uniform coverage of the 
azimuth; for each class, there is a training image for approximately every 5.62' 
of azimuth (aspect), and a testing image every 2.9'-5.37', on the average. 

Table 7.4 compares the recognition performance obtained by the proposed 
coevolutionary approach (CFP) and its regular counterpart (EFP). To estimate 
the performance the learning algorithm is able to attain in a limited time, if no 
ideal solution is found, we stop evolution when its run time reaches a 
predefined limit. Two different limits have been imposed on the evolutionary 
learning time, 1000 and 2000 seconds. To obtain statistical evidence, all 
evolutionary runs are repeated 10 times, so the table presents the average 
performance of the best individuals found. The results presented in Table 7.4 
show the superiority of the instruction-level CFP to instruction-level EFP. This 
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applies to both the performance of the synthesized systems on the training as 
well as on the test set. In all cases, the observed increases in accuracy are 
statistically significant with respect to the one-sided t-Student test at the 
confidence level 0.05. Though it is not shown in the table, CFP usually ran for 
a smaller number of generations on the average, due to the extra time required 
to maintain (perform selection and mating) multiple populations. Table 7.5 and 
Table 7.6 show, respectively, the confusion matrices for the best individuals 
found in the first two test set of experiments in Table 7.4 (time limit: 2000 
seconds, total # of individuals: 300). 
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BRDM ZSU T62 ZIL 

Figure 7.7. Selected vehicles represented in MSTAR database. 

Figure 7.8. Exemplary images from the MSTAR database. 



250 Chapter 7. Applications of Linear Genetic Programming for Object Recognition 

Figure 7.9. Three vehicles and their correspondings SAR images. 

Table 7.3. Description of data for the experiment concerning cooperation on genome 
level. 

1 Class 1 Number of images --a I I Total 1 Training set 1 / Testing set1 
interval interval Aspect I 

- .- -. 

Total 1 507 1 192 -- 1315 
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Table 7.4. Performance of recognition systems evolved by means of cooperation at 
genome level. 

, Method 

EFP 
CFP 
EFP 
CFP 

Parameter 
setting; 

Recognition ratio 

Table 7.5. Test set confusion matrix for selected EFP recognition system. 

Table 7.6. Test set confusion matrix for selected CFP recognition system. 



252 Chapter 7. Applications of Linear Genetic Programming for Object Recognition 

7.5.2 Binary classification tasks 

To illustrate the performance of the proposed approach let us first consider the 
simple two-class experimental setting. The overall architecture of the 
recognition system is straightforward in this case: it consists of two modules: 
the best feature extraction procedure G and classifier h trained using those 
features. 

For this performance experiment, we designed a more thorough dataset 
sampling procedure. To provide for good representation of the problem in the 
training data, we implemented an aspect-aware division procedure of the 
original MSTAR collection into training and test data. Similarly to COIL20 
database partitioning, we attempt to build the training set so that a 
representative spectrum of different view angles (aspects) is present in T. For 
each decision class, its representation in the training data T consists of two 
subsets of images sampled from the original MSTAR database; two subsets 
are necessary to provide proper operation of the cross-validation experiment 
involved by the fitness function. For both subsets, the images are selected from 
MSTAR collection as uniformly as possible with respect to 6' azimuth step. 
Note that as opposed to the COIL20 database, MSTAR images do not observe 
precisely equidistant view angles. Therefore, the training set T contains 
2x36016 = 120 images from each decision class, so its total size is 120nd, 
where nd denotes the number of decision classes. 

The corresponding test set W contains all the remaining images from the 
original MSTAR collection (for the decision classes considered with 15' 
elevation angle). In this way, the T and Ware disjoint, yet the learning task is 
well represented by the training set as far as aspect is concerned. Thus, we can 
be confident in the credibility of the results; performing time-consuming 
multiple train-and-test experiment would probably not change the overall 
picture much. For simplicity, we keep the numbers of numeric registers and 
image registers as low as possible, similar to COIL20 experiment. This implies 
setting n, = n ',. = 2, as some of the elementary operations from 0 are binary 
and need two registers to fetch input arguments. The number of coevolving 
populations np is 4 this time, as the SAR task is more difficult than the 
COIL20 problem. This implies m = npn ', = 8 scalar features gi computed by 
the four coevolving feature extraction procedures. The settings of remaining 
parameters are the same as in COIL20 experiments. 
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The task is the recognition of the positive decision class 8 represented here 
by the BRDM vehicle. The objects representing the remaining categories build 
up the negative class d. We run several experiments of different difficulty, 
starting with d containing images from a single decision class ZSU; let us 
denote this task by Bl. Next, we define subsequent tasks, denoted, hereafter, 
B2 to B7, by extending d by other vehicles in the following order: T62, ZIL, 
T72,2Sl, BMP2, and BTR70. In all these tasks, 8 remains fixed and contains 
exclusively images of the BRDM vehicle. 

On each of these seven binary classification problems from B1 to B7, ten 
independent CFP processes have been run to provide statistical significance. 
Each run started with different, randomly created, initial population of 
solutions. Figure 7.10 presents fitness graphs of the best individuals for 
evolutionary learning process run on the B2 problem, i.e. BRDM ( 8 )  versus 
ZSU and T62 (d). Particular data series depict 10 independent evolutionary 
runs starting from different initial states. All learning processes attain fitness 
over 0.9 within the first three generations. The fitness f of the best solutions 
found varies from 0.964 to 0.992, depending on the run. Runs end up in 
different generations (57th to 75th), as the stopping condition concerns time 
limit (4000 seconds), and particular individuals contain feature extraction 
procedures that require different amounts of time when executed. Note that 
this learning process seems to be quite resistant to the problem of local 
minima: after long periods of leveling-off, several runs show improvement. 
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Figure 7.10. Fitness graph for binary experiment (fitness of the best individual for 
each generation). 

The fitness graphs presented in Figure 7.10 reflect the behavior of the 
recognition systems on the training data. The performance of the synthesized 
recognition systems on the test data is shown in Table 7.7 and Figure 7.1 1. 
Two variants of recognition systems are considered here: those using C4.5 
classifier and those using support vector machine (SVM). In each learning 
task, the recognition systems use the same best solution evolved in the training 
phase. Figure 7.11 and Table 7.7 present true positive (TP) and false positive 
(FP) ratios that the recognition systems attain on test set (averages and 0.95 
confidence intervals for 10 independent runs). It may be observed that in all 
experiments, recognition systems using C4.5 and SVM perform similarly. At 
first sight this may seem surprising, taking into account the simplicity of C4.5, 
especially its limited capability of fusing and combining attributes. On the 
other hand, the synthesized features are especially well-suited for C4.5, as this 
induction algorithm is used for fitness computation in the process of feature 
synthesis. In terms of machine learning, the features generated are biased 
towards C4.5. 
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Table 7.7. True positive (TP) and false positive (FP) ratios for SAR binary recognition 
tasks (testing set). Table presents averages over 10 independent synthesis processes 
and their 0.95 confidence intervals. 

Task 
1 

~1 - 
1 ~ 2  
B3 
B4 
B5 
B6 
B7 

The number of decision classes in the negative class controls the complexity 
of this learning task. More decision classes lower the a priori probability of 
the positive class (Figure 7.11). The TP ratios of synthesized recognition 
systems also decrease with growing task complexity. Nevertheless, the results 
obtained are still impressive if we keep in mind that the classifier operates in 
the space spanned over only 8 scalar features computed by the best solution 
from raw, difficult to recognize, raster images. Let us also point out, that 
objects BMP2 and BTR70, used in problems B6 and B7, the last two instances 
of the problem, are visually very similar to the positive class BRDM (see 
Figure 7.7 and Figure 7.8). Note also that a priori probabilities of the positive 
class in these instances are relatively low, amounting to 0.15 and 0.14, 
respectively. 

In terms of false positives, all the synthesized systems perform well. Here, 
SVM outperforms C4.5 in a statistically significant way (significance level 
0.01), exceeding 2% FP ratio only for the simplest problem Bl  (BRDM (dt) 
versus ZSU (d)).  Compared to C4.5, SVM reduces the FP rate from by 32% 
(B6) to by 75% (B2). 
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Figure 7.1 1. True positive (TP) and false positive (FP) ratios for binary recognition 
tasks (testing set, single recognition systems). Chart presents averages over 10 
independent synthesis processes and their .95 confidence intervals. 

7.5.3 On-line adaptation of population number 

The results presented in Table 7.7 and Figure 7.1 1 have been obtained with 
np = 4 populations, each of them evolving n, = 2 features. Determining the 
number of populations n required to attain acceptable performance on a 
particular task prior to test set evaluation may be difficult in general. 
Therefore, we developed a variant of the approach, adaptive cooperative 
feature programming (CFP-A), which adapts the number of cooperating 
populations to the problem difficulty. The coevolutionary algorithm starts with 
a single population. In this special case, the solution the algorithm works on, is 
composed of a single part (individual). In this configuration, evolution 
proceeds until saturation, i.e. until the fitness of the best solution does not 
improve for a certain number of generations (here: 5). In such a case, a new, 
randomly initialized population is added to the cooperation (np t np +I), and 
the evolutionary process continues with two populations. Consecutive 
saturations of the evolutionary search cause addition of other populations. 
However, with np populations at hand, the extension to np +1 populations is 
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allowed only if the best solution has been improved since the insertion of np th 

population. 

Table 7.8 and Figure 7.12 present results of the evolutionary runs carried 
out using the above algorithm. Also Table 7.9 depicts the mean and maximum 
number of populations in various experiments. These figures decrease as the 
complexity of the problem grows. This is due to the fact, that the runs on more 
difficult problems last usually for a smaller number of generations (fitness 
function is more time-consuming). As a result, within the fixed time limit of 
4000 seconds per evolutionary run, the CFP-A algorithm has fewer 
opportunities to add new populations on the difficult problems. 

Table 7.8. True positive (TP) and false positive (FP) ratios for SAR binary recognition 
tasks (testing set, CFP-A; means over 10 independent synthesis processes and 0.95 
confidence intervals). 

Task -- . -- SVM 
TP 

- I - - -  

- - I 
t- * .010- 1.012 

.012 1013 
h .026 :014 
* .035 1.021 
* .038 1.015 
* .058 1.018 
=k .082 .014 - - - . - -- - 
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Table 7.9. Mean and maximum number of populations for SAR binary recognition 
tasks (CFP-A). 

Task 

The results suggest that the test set performance of the recognition systems 
synthesized using CFP-A do not differ much from those obtained using CFP. 
The observed slight differences in both TP and FP ratios are not statistically 
significant. We can, therefore, draw a positive conclusion that CFP-A allows 
attaining results that are not worse than those obtained by CC, with the 
advantage of relieving the system designer from fixing the number of 
cooperating populations. 
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Figure 7.12. True positive (TP) and false positive (FP) ratios for binary recognition 
tasks (testing set, single recognition systems, adaptive CC). Chart presents averages 
over 10 independent synthesis processes and their 0.95 confidence intervals. 

7.5.4 Scalability 

From a practical viewpoint, our interest is not limited to binary classification 
only. To investigate the ability of the proposed approach to handle multiple 
class recognition tasks [49], in this section we consider several problems with 
increasing number of decision classes, similar to the binary classification 
experiments. The simplest problem involves n d =  2 decision classes: BRDM 
(Dl) and ZSU (D2). Consecutive problems are created by adding decision 
classes in the following order: T62 (D3), ZIL (D4), T72 (D5), 2S1 (D6), 
BMP2 (D7), and BTR70 (D8). In this task, the architecture of the compound 
recognition system is the same as the one used in Chapter 7.5.2, however, this 
time each base recognition system makes a decision concerning n d >  2 
decision classes. The number of base systems (voters) is 10; each of them is a 
result of an independent evolutionary run that started from different initial 
population. Simple voting (argmax-like) is used. 
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Figure 7.13 presents the accuracy of classification (recognition) rate as a 
function of the number of decision classes nd. It can be observed, that the 
scalability of the proposed approach with respect to the number of decision 
classes depends heavily on the base classifier. Here, SVM clearly outperforms 
C4.5. The major drop-offs of accuracy occur when T72 tank and 2S1 self- 
propelled gun (classes D5 and D6, respectively), are added to the training data; 
this is probably due to the fact that these objects are similar to each other (e.g., 
both have gun turrets) and significantly resemble the T62 tank (class D3). On 
the contrary, introducing consecutive classes D7 and D8 (BMP2 and BTR60) 
did not affect the performance much; more than this, an improvement is even 
observable for class D7. 

Figure 7.14 shows the curves obtained, for the recognition systems using 
SVM as a base classifier [91], by introducing and modifying the confidence 
threshold that controls voting among base classifiers. The higher this 
threshold, the more classifiers are required to vote for particular class to make 
the final decision. Too small a number of votes causes an example to remain 
unclassified. The curves in Figure 7.14 may be regarded as generalization of 
ROC (receiver operator characteristics) curves to nd > 2 decision classes. Let 
n,, n,, and nu denote respectively the numbers of test objects correctly 
classified, erroneously classified, and unclassified by the recognition system. 
In this chart, the error rate is defined as ne/(nc+ne+nu), and the accuracy of 
classification as n&+n,+n,). Also here the results are encouraging, as the 
curves do not drop rapidly as the error rate decreases. By modifying the 
confidence threshold, one can easily control the characteristics of the 
recognition system, for instance, to lower the error rate by accepting a 
reasonable rejection rate n,l(nc+ne+n,). 

7.5.5 Recognizing object variants 

From a computer vision perspective, a desirable property of an object 
recognition system is an ability to recognize different variants of the same 
object, i.e. to generalize the knowledge acquired from the training data. In 
vehicle recognition in SAR modality, different configuration variants of the 
same vehicle often vary significantly; major differences result from the 
presence of extra equipment mounted on the vehicle. The MSTAR database 
contains images of different configuration variants for selected vehicles; these 
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variants will be distinguished in following by the pound (#) sign and vehicles' 
serial number following class name. For instance, 'BMP2#C217 denotes 
variant C21 of BMP2 APC. 

To provide comparison with human-designed recognition systems, we use 
the experimental setting as in [S]. In particular, we synthesize two separate 
recognition systems using the following training data: 

1) a 2-class recognition system trained with BMP2#C21, T72#132; 

2) a 4-class recognition system trained with BMP2#C21, T72#132, 
BTR70#C7 1, and ZSU#d08. 

Figure 7.16 shows the representative images of objects. After training, these 
systems are tested on a testing set that contains two other variants of BMP2 
(#9563 and #9566), and two other variants of T72 (#812 and #s7). Therefore, 
the testing set is not only disjoint with the training sets, but it also contains 
significantly different variations of the objects to be recognized. 

++ C4.5 recognition ratio 

0.1 + SVM recognition ratio 

0.0 I I I I I I I I 

D2 D3 D4 D5 D6 D7 D8 

Task 

Figure 7.13. Test set recognition ratios of compound recognition systems for different 
number of decision classes. 
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Figure 7.14. Curves for different number of decision classes (base classifier: SVM). 

Table 7.10. Confusion matrices for recognition of object variants for 2-class 
recognition system. 
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Table 7.11. Confusion matrices for recognition of object variants for 4-class 
recognition system. 

Predicted class I 
-- ---- 

Object T - -  -"-T-- - - r  - 
1 1 B M P ~ X C ~ I  T72Ul32 BTRUC71 

--+. - - - -!. 
' 6~2#!%63,9566, 293 1 27 - ; 27- 

Table 7.10 and Table 7.1 1 present test set evaluation of the synthesized 
recognition systems shown in the form of confusion matrices. The results 
suggest that, even when the recognized objects differ significantly from the 
models provided in the training data, the approach is still able to maintain high 
performance. The true positive rate equals 0.804 and 0.793, for 2- and 4-class 
systems, respectively. If we consider only test cases for which the systems 
make any decision (83.3% and 89.2% of test examples for 2-class and 4-class 
decision system, respectively), then the classification accuracy amounts to 
0.966 and 0.940, respectively. These figures are comparable to the forced 
recognition results of the human-designed recognition algorithms reported in 
[9], [lo], which are 0.958 and 0.942, respectively. However, for a fair 
comparision we must force a recognition decision on the "no decision" class in 
Table 7.10 and Table 7.1 1. Without other information, a random choice 
applied to the no decision results (with 50% and 25% success rates for the 2 
and 4 class decisions) yields forced recognition accuracies of 0.888 and 0.820, 
which are less than the comparable human-designed recognition algorithm 
results. Note that in this experiment we do not use confusers, i.e. test images 
from different classes than those present in the training set. In [8] the BRDM 
class has been used for that purpose. Synthesizing features for recognizing 
object variants is challenging and further work is needed. 
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7.5.6 Problem decomposition at decision level 

Some preliminary experiments have been run for the vehicle recognition task 
decomposed at decision level. For this purpose, we design an evolutionary 
experiment as described in chapter 7.5.4: each individual in population Pi 
implements one or more complete feature extraction procedures. For 
evaluation, the feature extraction procedures encoded by the individual are run 
on the training data T and produce the derived dataset T, which is 
subsequently passed to the wrapper-based within fitness function J Till this 
stage, the evaluation process is independent from the remaining populations. 

In each cross-validation fold, the wrapper induces a compound classifier 
from the training data. The number of voters is equal to the number of 
populations np ,  and each base classifier hi works exclusively with features 
developed by the corresponding population Pi (precisely speaking, the 
remaining base classifiers work with features computed by the representatives 
of the remaining populations). In testing, the base classifiers cooperate by 
voting on the class assignment of each example; their votes are aggregated into 
overall decision by simple (unweighted) majority rule. This process is repeated 
for each cross validation fold. As in all other cooperation levels, the predictive 
accuracy resulting from this cross-validation is assigned to the evaluated 
individual as a fitness. 

This process resembles the class-level decomposition used in some COIL20 
experiments (cf. chapter 7.4). Here, however, each of the base classifiers 
solves the complete, multi-class training task; in class-level decomposition, 
base classifiers handle (usually simpler) binary classification tasks. As a result, 
the computational cost of individual evaluations is much higher here. 

In decision level decomposition the cooperation is postponed as long as 
possible. The cooperating individuals (and representatives) do the prevailing 
part of their work prior to cooperation. As already predicted in chapter 6.6, 
some properties of this cooperation model may prevent it from providing 
significant improvements in comparison to EFP. In particular, voting makes it 
probable that a base classifier's incorrect decision is concealed by its peers: the 
'bad and ugly' will not show up in the crowd of 'goods'. This becomes 
especially probable when the number of voters is high. 
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The computational experiment we performed with decision level CFP 
confirmed this hypothesis. The fitness of the best solutions found during 
evolutionary search and the test set performance of the resulting recognition 
systems usually did not show significant improvement in comparison to EFP. 
Even worse, in time-complexity terms, the results obtained with decision level 
cooperation were usually inferior to other CFP decomposition methods and 
EFP, as the computational overhead resulting from the presence of a 
compound classifier inside the fitness function is overwhelming. Therefore, 
the results concerning this cooperation model are not presented in detail here. 

Note that these observations may be interestingly related to Marr's principle 
of least commitment [72], which states that reasoning should postpone making 
crisp (qualitative, discrete) decisions as long as possible, because erroneous 
crisp decisions are difficult to withdraw. This principle, though formulated 
within vision science, is applicable to all decision-making systems that 
perform reasoning in stages, especially those that work with imperfect real- 
world data. In decision level decomposition, cooperating populations make 
their crisp choices prior to decision aggregation. As the aggregation consists in 
simple voting and does not involve any adaptation, these decisions cannot be 
withdrawn and, if incorrect, deteriorate the overall performance. 

An important conclusion of this decision level CFP experiment is that, with 
the cooperation taking place on such a high abstraction level, the CC does not 
seem to be able to provide for successful decomposition of the training task, 
or, more precisely, for enough diversification among voting recognition 
subsystems. A natural question that may be asked at this point is: why not treat 
the modules in this decomposition method as separable and enforce 
diversification of voters by other means? 

Such diversification may be naturally provided by the random nature of 
genetic search. For this purpose, we detach, in a sense, the populations that 
would run in the framework described above, and run many independent 
genetic searches that start from different initial states (initial populations). The 
best solution evolved in each run gives rise to a separate recognition system, 
which serves as a voter in the overall recognition system architecture. This 
assembling of the final recognition system takes place off-line, i.e., after all 
genetic searches come to an end. The base recognition systems are, therefore, 
homogenuous as far as their structure is concerned. 
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Table 7.12. True positive and false positive ratios for binary recognition tasks (testing 
set, off-line decision level decomposition). 

In this experiment, we attempt to maximize the predictive performance and 
verify scalability of the resulting recognition system. Thus, 10 recognition 
subsystems are engaged. In particular, as base recognition systems we use here 
the solutions obtained in the experiments described in chapter 7.5.2. 

Table 7.12 and Figure 7.15 present test-set TP and FP ratios of the 
compound recognition systems built using the described procedure. Quite 
naturally, the cooperation of ten classifiers using different features makes the 
compound recognition system superior to all the single recognition systems 
examined in earlier in this section. This applies to both C4.5 and SVM, as well 
as to both performance measures: true positives and false positives. In 
particular, the FP ratios are here approximately one order of magnitude smaller 
than in the case of single recognition systems. 
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Figure 7.15. True positive and false positive ratios for binary recognition tasks (testing
set, compound recognition systems).

Figure 7.16. Representative images of objects used in experiments concerning object
variants (all pictures taken at 191° aspect/azimuth, cropped to central 64x64 pixels,
and magnified to show details).
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7.6 Analysis of Evolved Solutions 

One of the advantages of symbolic feature construction is the readable form of 
the acquired knowledge. To illustrate this virtue, we present an example of a 
complete evolved recognition system. The recognition system considered here 
is the best solution found in one of the learning processes concerning binary 
classification tasks described in the beginning of Chapter 7.5.2, more precisely 
the Bl task (BRDM versus ZSU). This particular solution has perfect fitness 
(f= 1 .O) on the training set, and attains test set TP and FP ratios of, 0.974 and 
0.058, respectively, when combined with C4.5 classifier, and .974 and 0.0, 
respectively, when used together with a SVM classifier. 

The experiment referenced here concerned CFP with 4 populations 
cooperating at the feature-level. Therefore, in Figure 7.18 to Figure 7.21, we 
present four feature extraction procedures, each of them working with two 
image registers and two numeric registers. The figures depict feature 
extraction procedures encoded by particular individuals that the solution is 
composed of. Each row in these figures corresponds to execution of a single 
elementary operation. The figures depict the processing carried out for a 
selected image representing the negative class (ZSU in this experiment), taken 
at 6" azimuth (see Figure 7.17). 

In all the figures from Figure 7.18 to Figure 7.2 1 the first row presents the 
initial register contents, which is determined by initial fragment of solution 
encoding (see chapter 6.4.2). Before carrying out the feature extraction 
procedure, the image registers are initialized by passing the original input 
image through one of the predefined filters. The masks of the registers are 
initially set to the brightest spot, and the numeric registers are initialized by 
mask coordinates. This genome-dependent initialization method proved useful 
in preliminary experiments, speeding up the convergence by enabling feature 
extraction procedure to start with an already preprocessed image. It also 
provides more diversity among individuals and causes the effective code to be 
shorter by one chunk (4 bytes). This is why, though originally the parameter 
determining feature extraction procedure length has been set to 9 operations 
(implying genome length of 36 bytes), the effective number of operations is 8. 
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Figure 7.17. Image of the ZSU class taken at 6' azimuth angle (cropped to input size, 
i.e. 48x48 pixels). 

In Figure 7.18 to Figure 7.21, the original binary code (solution genome) is 
not presented, as it would not be readable. Rather than that, in each row, the 
first column presents the textual description of the operation being carried out, 
whereas the second column contains the argument lists. An argument list 
contains references to registers; for better readability, numeric registers are 
denoted here by lower-case symbols (rl and r2), and image registers by upper- 
case symbols (R1 and R2). Registers in square brackets are output or input- 
output arguments, i.e. their contents changes when the operation is executed; 
lack of brackets denotes an input (read only) argument. Each subsequent table 
column corresponds to a particular register and illustrates how its contents 
changes during feature extraction procedure execution. For clarity, only 
register changes are shown in the figures; blank table cells denote no change 
of register contents. Arrows illustrate data flow or, in other words, 
dependencies between particular nodes of the processing graph. 

Small gray boxes mark the current position of the image mask. Local 
operations process the image within that mask only; global ones ignore them. 
Mask position and size may be controlled by the feature extraction procedure, 
either explicitly (see, for instance, operation #7 in Figure 7.18 and operation 
#5 in Figure 7.21), or as a side effect of some image processing operations 
(e.g., operation #4 in Figure 7.19). As a consequence, a particular feature 
extraction procedure may apply and use a different mask positionlsize 
depending on the input image. Any violations of required ranges of scalar 
values (e.g., mask comer coordinate exceeding the actual image dimension) 
are handled by modulo operation. 
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Note that some operations involve constants that are not fetched from the 
registers but are encoded directly in the feature extraction procedure code. For 
clarity, such constant parameters are not shown in these examples. For 
instance, they determine the orders of geometrical moments to be computed 
(see operation #3 in Figure 7.18, and operation #6 in Figure 7.20). 

It may be observed that, due to the heuristic nature of evolutionary search, 
only a part of feature extraction procedure code is effective, i.e. produces 
feature values that are fetched from numeric registers after execution of the 
entire procedure. As mentioned in chapter 6.4.1, feature extraction procedure 
fragments may constitute dead code that does not influence the final feature 
values. This phenomenon takes place when an operation writes to a image 
register that is not being read until the end of the entire procedure execution 
(e.g., operations #7 and #8 in Figure 7.18), or the register contents (image or 
numeric) becomes overwritten by a subsequent operation without being read 
(e.g., operation #1 in Figure 7.18). Seemingly superfluous, this redundancy is 
a normal and positive phenomenon characteristic to all variants of genetic 
programming. 

For the input image x considered here, the four individuals described above 
return feature values gi(x) of, respectively, 2.1 and 2577, 14.2 and 7.0,343 and 
4386817, and 0 and 0. These eight feature values build up the final feature 
vector G(x) that is subsequently passed to the classifier h. Both C4.5 and SVM 
yield correct decisions for this image, pointing to the ZSU decision class. 
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7.7 Conclusions 

The results presented show that the proposed methodology of visual learning 
is a promising tool for automatic and semi-automatic synthesis of robust 
computer vision and pattern recognition systems operating in real-world 
environments. 

In particular, the results show that EFP and its coevolutionary variety, CFP, 
meet demands of different imaging fi-ameworks: passive and active sensing, 
visual and invisible spectrum. They yield good results for difficult real-world 
problems, where one has to rely on imperfect (especially noisy) training data. 
Recognition statistics are comparable superior to approaches discussed in the 
literature. 

Without an explicit database of object models and 3D vision knowledge, 
EFPICFP perform effective view-independent visual learning and recognition 
using a feature-based recognition algorithm. They are able to capture relevant 
patterns in multidimensional sparse spaces of images, discarding the details of 
secondary importance. Small sizes of investigated decision trees for the 
COIL20 problem indicate, that the evolutionary process is able to elaborate 
compact yet efficient view-independent internal representations. These 
representations generalize well to novel examples. 

No application-specific tuning is required to maintain high quality of results 
- both visual learning studies use the same background knowledge comprising 
a set 0 of general-purpose vision operators. The evolved feature extraction 
procedures may be conveniently represented as data-flow diagrams that give 
good insight into the inner wiring of the recognition system. Such graphs 
represent explicitly the knowledge acquired by the learner (recognition 
system) and may be analyzed and tuned by the human expert. Further re-use in 
other applications is also possible. 

Cooperative coevolution enables decomposition of the EFP task at different 
levels of abstraction. For levels that exhibit average interdependency (mainly 
instruction-level decomposition and feature-level decomposition), CFP 
delivers recognition statistics that outperform the non-coevolutionary approach 
in a statistically significant way. For other cooperation levels (class and 
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decision), EFP and CFP deliver robust base recognition systems that cooperate 
off-line (post-learning). The random nature of genetic search provides natural 
diversification of evolved image features. That, in turn, enables performance 
boosting and good scalability with respect to problem difficulty and with 
respect to the number of decision classes. CFP may also be equipped with 
automatic adaptation of the number of coevolving populations, without 
significant performance decrease of resulting recognition systems. 

As there is no need for matching the recognized image with models from a 
database, EFP and CFP offer high recognition speed. The average time 
required by the entire recognition process for a single 48x48 image, starting 
from the raw image and ending up at the decision, ranged on the average from 
2.2 ms to 20.5 ms for single classifiers and compound recognition systems, 
respectively. This impressive recognition speed makes our approach suitable 
for real-time applications. 

Despite the impressive results presented in this chapter, the methodology 
needs to be extended so that it can be easily generalized to a greater number of 
categories (decision classes) - model-based extension seems to be desirable. 
Further research is necessary to investigate the issues of interdependency and 
modularity in CFP is more-depth and to identify more precisely the 
prerequisites for more deterministic success. 



Chapter 8 

SUMMARY AND FUTURE WORK 

8.1 Summary 

This book investigates the efficacy of evolutionary computation such as a 
variety of genetic programming and genetic algorithms in learning 
programs/procedures and selecting features for object detection and object 
recognition. The reason for incorporating learning into object detection and 
recognition is to avoid the time consuming process of feature generation and 
selection. With learning incorporated, an object detection and recognition 
system can automatically explore many unconventional features that may yield 
exceptionally good detection and recognition performance, thus overcoming 
human expert limitations of concentrating only on a small number of 
conventional features. A learning integrated system is more flexible and is able 
to automatically generate features on the fly that are particularly effective to 
the type of objects and images to which it is applied. The ultimate goal is to 
lower the cost of designing object detection and recognition systems and to 
build more robust and flexible systems with human-competitive performance. 

The contributions of this book include: 

Investigates the effectiveness of genetic programming in synthesizing 
composite operators and composite features for object detection. It shows 
that GP is effective in synthesizing effective composite operators based on 
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domain-independent primitive operators and domain-independent primitive 
feature images that can be easily generated from the original image for 
object detection. The synthesized composite operators can be applied to 
other testing images that are similar to the training images. The composite 
features discovered by GP are much more effective than the human- 
designed primitive features from which they are built. The GP learned 
composite features are generally unconventional features and different than 
the features designed by human experts. Thus, the learning method will be 
of a great help in the design of practical object detection and recognition 
systems. 

Proposes an MDL-based fitness function and smart GP operators to improve 
the efficiency of genetic programming. An MDL-based fitness function is 
proposed to address the well-known code bloat problem of GP. The MDL- 
based fitness function takes the size of a composite operator into the fitness 
evaluation process to prevent composite operators from growing too large 
without setting a hard limit on the size of a composite operator, imposing 
relatively less restrictions on the GP search and greatly improving the GP 
efficiency. To further improve the efficiency of genetic programming, 
smart crossover and smart mutation are proposed to identify and prevent the 
effective components of composite operators from being disrupted by 
destructive crossover and mutation. Also, a public library is set up to keep 
effective components for later reuse. Compared to traditional genetic 
programming, the smart GP, driven by the MDL-based fitness function and 
equipped with smart crossover and smart mutation, synthesizes composite 
operators with better performance and smaller size, reducing the 
computational expense during recognition and the possibility of overfitting 
the training images. 

Proposes an MDL-based fitness function to drive GA in the selection of 
features for object detection and recognition. The performance of the 
MDL-based fitness function is compared with those of three other fitness 
functions. The MDL-based fitness function balances the number of features 
selected and the recognition error rate very well and it is the best fitness 
function compared to other three functions. With fewer features selected, 
the computational expense and the possibility of overfitting the training data 
is reduced. 



Chapter 8.1 Summary 279 

Investigates coevolutionary genetic programming to synthesize composite 
feature vectors for object recognition. The experimental results show that 
CGP can evolve composite features based on domain-independent primitive 
features and the learned composite features are more effective than the 
primitive features upon which they are built. The book explores the role of 
domain knowledge and public library in evolutionary computation by 
providing general and domain specific primitive features. To achieve the 
same recognition performance of primitive features, fewer composite 
features are needed and this greatly reduces the computational burden 
during recognition. Applications and extensions of these ideas to fingerprint 
classification [117], facial expression recognition [8], and imge databases 
[27] have been highly encouraging. 

Investigates evolutionary and coevolutionary linear genetic programming 
(LGP) techniques to synthesize feature extraction procedures to generate 
features for object recognition. LGP is a variety of GP with simplified, 
linear representation of individuals and it is a hybrid of GA and GP and 
combines their advantages. LGP is similar to GP in the sense that each 
individual actually contains a sequence of interrelated operators. On the 
other hand, a feature extraction procedure has a fixed number of 
instructions and an instruction is encoded into a fixed-length binary string 
at the genome level, which is essentially equivalent to GA representation. A 
feature extraction procedure consists of a sequence of instructions, which 
are primitive image processing operators that are executed sequentially one 
after another. Each instruction in a procedure is composed of an opcode 
determining the operator to be used and arguments referring to registers 
from which to fetch the input data and to which to store the result of the 
instruction. LGP encoding is, therefore, more positional and more resistant 
to destructive crossovers. When coevolutionary computation is applied, the 
problem of feature construction can be decomposed at different levels. We 
explore decomposition at the instruction, feature, class and decision levels. 
The experiments on visible and SAR images show the superiority of 
decomposition at the instruction level. With different segments of a feature 
extraction procedure evolved by sub-populations of coevolutionary 
computation, a better feature extraction procedure can be synthesized by 
concatenating the segments from sub-populations. The benefits we expect 
from the decomposition of feature construction by coevolutionary 
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computation include faster convergence, better scalability and better 
understanding of the obtained solutions. 

8.2 Future Work 

Although this book covers a deep and extensive research on using a variety 
of genetic programming and genetic algorithms for feature generation and 
selection, there are still issues that merit further consideration. 

In this book, smart crossover and smart mutation determine the interactions 
among the nodes of a composite operator based on their performance. The 
fitness value at each node is used to determine the crossover and mutation 
points. Currently, in order to get the fitness at each node, its output image has 
to be evaluated against the ground-truth during the training, which is a time 
consuming and inefficient process. To further improve the efficiency of GP, it 
is important to find a way to estimate the fitness of internal nodes based on the 
fitness of the root node. 

From the experiments with SAR images containing road in chapters 2 and 3, 
it can be seen that the relations and interactions between different nodes of a 
composite operator is very complicated. Thus, it is difficult to determine how 
the performance of a node is dependent on the performance of descendent 
nodes. 

Currently, there is only one object in an image or a ROI during recognition, 
so all the features come from the same object. If there are multiple overlapped 
objects in an image or a ROI, the recognition becomes much more difficult. 
Some of the features of an object may not be available due to occlusion and 
we need to distinguish features from different objects before these features are 
used into a classifier. How to extend the approach to recognize multiple 
overlapped objects is a challenging future research topic. 

From chapter 5, it can be seen that primitive features still have a substantial 
impact on the goodness of the synthesized composite features. It will be 
difficult for CGP to yield effective composite features based on ineffective 
primitive features. If primitive features do not capture the characteristics of 
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the objects to be recognized and cannot discriminate between them, no matter 
how hard CGP works, it still cannot yield effective composite features. 
However, designing effective primitive features needs human ingenuity. If 
human experts lack insight into the characteristics of the objects to be detected 
and recognized, they may not figure out effective primitive features. 
Sometimes, due to various factors, including noise, it is very difficult, to 
extract effective primitive features from images. How to let CGP evolve 
relatively effective composite features based on those somewhat ineffective 
primitive ones using a variety of sophisticated operators is an important and 
challenging future research area. Also synthesizing highly effective features 
for the recognition of articulated and oculated objects [20], [Sl ]  will be very 
interesting 

For coevolutionary feature programming presented in Chapter 7, the most 
interesting future research direction is the further exploration of the possible 
approaches to problem decomposition. This may include exploring higher- 
order decomposition schemes (hierarchies of subprocedures), or even explicit 
preservation of useful code chunks (subprocedures), similarly to automatically 
defined functions in standard genetic programming [59],  [60]. In particular, it 
would be interesting to verify if the knowledge (e.g., subprocedures) acquired 
in the training process related to one application may be somehow reused in 
(ported to) another vision application. 

As far as technical aspects of evolutionary feature programming and 
coevolutionary feature programming are concerned, it would be nice to further 
reduce the number of parameters that control the feature synthesis procedure; 
this may include on-line adaptation of procedure length and number of 
registers. It would be interesting to reduce the time complexity of the fitness 
function, i.e., by caching and re-using intermediate processing results 
(images). 

Lastly, concerning applications, it would be interesting to extend the 
approach to problems that change with time andor analysis of video streams. 
Extension to vision tasks other than recognition, like object tracking, will also 
be interesting. 
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