

Evolutionary Synthesis of
Pattern Recognition Systems

Monographs in Computer Science

Abadi and Cardelli, A Theory of Objects

Benosman and Kang [editors], Panoramic Vision: Sensors, Theory and Applications

Broy and Stolen, Specification and Development of Interactive Systems: FOCUS on
Streams, Interfaces, and Refinement

Brzozowski and Seger, Asynchronous Circuits

Cantone, Omodeo, and Policriti, Set Theory for Computing: From Decision
Procedures to Declarative Programming with Sets

Castillo, Gutibrrez, and Hadi, Expert Systems and Probabilistic Network Models

Downey and Fellows, Parameterized Complexity

Feijen and van Gasteren, On a Method of Multiprogramming

Herbert and Sparck Jones [editors], Computer Systems: Theory, Technology, and
Applications

Leiss, Language Equations

Mclver and Morgan [editors], Programming Methodology

Mclver and Morgan, Abstraction, Refinement and Proof for Probabilistic Systems

Misra, A Discipline of Multiprogramming: Program Theory for Distributed
Applications

Nielson [editor], ML with Concurrency

Paton [editor], Active Rules in Database Systems

Selig, Geometric Fundamentals of Robotics, Second Edition

Tonella and Potrich, Reverse Engineering of Object Oriented Code

Bir Bhanu
Yingqiang Lin

Krzysztof Krawiec

Evolutionary Synthesis of
Pattern Recognition Systems

Springer -

Bir Bhanu Yingqiang Lin
Center for Research in Center for Research in
Intelligent Systems Intelligent Systems
University of California University of California
at Riverside at Riverside
Bourns Hall RM B232 Bourns Hall RM B232
Riverside, CA 92521 Riverside CA 92521

Krzysztof Krawiec
Center for Research in
Intelligent Systems
University of California
at Riverside
Bourns Hall RM B232
Riverside CA 92521

Series Editors
David Gries
Dept. of Computer Science
Cornell University
Upson Hall
Ithaca NY 14853-7501

Fred B. Schneider
Dept. Computer Science
Cornell University
Upson Hall
Ithaca NY 14853-7501

Library of Congress Cataloging-in-Publication Data
Bhanu, Bir.

Evolutionary Synthesis of Pattern Recognition Systems IBir Bhanu, Yingqiang Lin, and Krzysztof
Krawiec.

p. cm. -(Monographs in Computer Science)
Includes bibliographic references and index.

ISBN 0-387-21295-7 e-ISBN 0-387-24452-2 Printed on acid-free paper.

O 2005 Springer Science+Business Media, Inc.
All rights reserved. This work may not be translated or copied in whole or in part without the
written permission of the publisher (Springer Science+Business Media, Inc., 233 Spring Street,
New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly
analysis. Use in connection with any form of information storage and retrieval, electronic
adaptation, computer software, or by similar or dissimilar methodology now know or hereafter
developed is forbidden.
The use in this publication of trade names, trademarks, service marks and similar terms, even if
the are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

Printed in the United States of America. (BSIDH)

9 8 7 6 5 4 3 2 1 SPIN (HC) 10984741 I SPIN (eBK) 1 138 1136

Contents

LIST OF FIGURES xi

LIST OF TABLES xvii

PREFACE xxi

CHAPTER 1 INTRODUCTION 1

1.1 Object Detection and Recognition Problem 1

1.2 Motivations for Evolutionary Computation 3

1.3 Evolutionary Approaches for Synthesis and
Analysis 5

1.4 Outline of the Book 7

CHAPTER 2 FEATURE SYNTHESIS FOR OBJECT

DETECTION 11

2.1 Introduction 11

2.2 Motivation and Related Research 12
2.2.1 Motivation 12
2.2.2 Related research 13

2.3 Genetic Programming for Feature Synthesis 15
2.3.1 Design considerations 16

vi Table of Contents

2.3.2 Selection, crossover and mutation 20
2.3.3 Steady-state and generational genetic

programming 23

2.4 Experiments 27
2.4.1 SAR Images 28
2.4.2 Infrared and color images 45
2.4.3 Comparison with GP with hard limit on

composite operator size 53
2.4.4 Comparison with image-based GP 62
2.4.5 Comparison with a traditional ROI

extraction algorithm 68
2.4.6 A multi-class example 73

2.5 Conclusions 78

CHAPTER 3 MDL-BASED EFFICIENT GENETIC

PROGRAMMING FOR OBJECT DETECTION 79

3.1 Introduction 79

3.2 Motivation and Related Research 80
3.3 Improving the Efficiency of GP 84

3.3.1 MDL principle-based fitness function 84
3.3.2 Genetic programming with smart crossover

and smart mutation 86
3.3.3 Steady-state and generational genetic

programming 90

3.4 Experiments 93
3.4.1 Road extraction 95
3.4.2 Lake extraction 103
3.4.3 River extraction 105
3.4.4 Field extraction 108
3.4.5 Tank extraction 110
3.4.6 Comparison of smart GP with normal GP 113

Table of Contents vii

3.5 Conclusions 119

CHAPTER 4 FEATURE SELECTION FOR OBJECT

DETECTION 121

4.1 Introduction 121

4.2 Motivation and Related Research 123

4.3 Feature Evaluations and Selection 125
4.3.1 Feature selection 126
4.3.2 Various criteria for fitness function 127

4.4 System Description 131
4.4.1 CFAR detector 131
4.4.2 Feature extractor 134
4.4.3 GA for feature selection 142

4.5 Experiments 143
4.5.1 MDL principle-based fitness function 144
4.5.2 Other fitness functions 153
4.5.3 Comparison and analysis 154

4.6 Conclusions 164

CHAPTER 5 EVOLUTIONARY FEATURE SYNTHESIS FOR

OBJECT RECOGNITION 165

5.1 Introduction 165

5.2 Motivation and Related Research 167
5.2.1 Motivation 167
5.2.2 Related research 168

5.3 Coevolutionary GP for Feature Synthesis 170
5.3.1 Design considerations 170
5.3.2 Selection, crossover and mutation 174

viii Table of Contents

5.4

5.3.3 Generational coevolutionary genetic
programming

5.3.4 Bayesian classifier

Experiments
5.4.1 Distinguish objects from clutter
5.4.2 Recognize objects
5.4.3 Comparison with other classification

algorithms
5.4.4 Discussion

175
177

177
178
182

193
197

5.5 Conclusions 199

CHAPTER 6 LINEAR GENETIC PROGRAMMING FOR
OBJ

6.1

6.2

6.3

6.4

6.5

6.6

6.7

ECT RECOGNITION

Introduction

Explicit Feature Construction

Linear Genetic Programming

Evolutionary Feature Programming
6.4.1 Representation and its properties
6.4.2 Execution of feature extraction procedure
6.4.3 Locality of representation
6.4.4 Evaluation of solutions

Coevolutionary Feature Programming

Decomposition of Explicit Feature
Construction

Conclusions

201

201

202

205

206
208
216
218
221

223

226

232

Table of Contents ix

CHAPTER 7 APPLICATIONS OF LINEAR GENETIC

PROGRAMMING FOR OBJECT RECOGNITION 233

7.1 Introduction 233

7.2 Technical Implementation 234

7.3 Common Experimental Framework 235
7.3.1 Background knowledge 235
7.3.2 Parameter settings and performance

measures 237
7.4 Recognition of Common Household Objects 238

7.4.1 Problem and data 238
7.4.2 Parameter settings 240
7.4.3 Results 241

7.5 Object Recognition in Radar Modality 245
7.5.1 Problem decomposition at instruction level 247
7.5.2 Binary classification tasks 252
7.5.3 On-line adaptation of population number 256
7.5.4 Scalability 259
7.5.5 Recognizing object variants 260
7.5.6 Problem decomposition at decision level 264

7.6 Analysis of Evolved Solutions 268

7.7 Conclusions 275

CHAPTER 8 SUMMARY AND FUTURE WORK 277

8.1 Summary 277

8.2 Future Work 280

REFERENCES 282

INDEX 291

List of Figures

Chapter 2

Figure 2.1. Steady-state genetic programming algorithm 25
Figure 2.2. Generational genetic programming algorithm 26
Figure 2.3. Training SAR image containing road...30
Figure 2.4. Sixteen primitive feature images of training SAR image

containing road 31
Figure 2.5. Learned composite operator tree 32
Figure 2.6. Fitness versus generation (road vs. field) 32
Figure 2.7. Utility of primitive operators and primitive feature images 34
Figure 2.8. Feature images output by the nodes of the best composite

operator. The ouput of the root node is shown Figure 2.3(c) 35
Figure 2.9. ROIs extracted from the output images of the nodes of the

best composite operator. The fitness value is shown for the
entire image. The ouput of the root node is shown Figure
2.3(d) 36

Figure 2.10. Testing SAR images containing road 37
Figure 2.11. Training SAR image containing lake 38
Figure 2.12. Testing SAR image containing lake...38
Figure 2.13. Training SAR image containing river 39
Figure 2.14. Learned composite operator tree 40
Figure 2.15. Fitness versus generation (river vs. field) 40
Figure 2.16. Testing SAR image containing river 40
Figure 2.17. Training SAR image containing field 41
Figure 2.18. Testing SAR image containing field 42
Figure 2.19. Training SAR image containing tank 42
Figure 2.20. Learned composite operator tree in LISP notation 43
Figure 2.21. Fitness versus generation (T72 tank) 43
Figure 2.22. Testing SAR image containing tank 44
Figure 2.23. Training IR image containing a person 46

xii List of Figures

Figure 2.24. Learned composite operator tree in LISP notation 47
Figure 2.25. Fitness versus generation (person) 47
Figure 2.26. Testing IR images containing a person 49
Figure 2.27. Training RGB color image containing car 50
Figure 2.28. Learned composite operator tree in LISP notation 50
Figure 2.29. Fitness versus generation (car) 51
Figure 2.30. Testing RGB color image containing car 51
Figure 2.31. Training and testing RGB color image containing SUV 52
Figure 2.32. Results on SAR images containing road 55
Figure 2.33. Learned composite operator tree in LISP notation 56
Figure 2.34. Fitness versus generation (road vs. field) 56
Figure 2.35. Results on SAR images containing lake 57
Figure 2.36. Results on SAR images containing river 58
Figure 2.37. Learned composite operator tree in LISP notation 59
Figure 2.38. Fitness versus generation (river vs. field) 59
Figure 2.39. Results on SAR images containing field 60
Figure 2.40. Results on SAR images containing tank 61
Figure 2.41. Learned composite operator tree in LISP notation 61
Figure 2.42. Fitness versus generation (T72 tank) 61
Figure 2.43. Results on SAR images containing road 64
Figure 2.44. Results on SAR images containing lake 64
Figure 2.45. Results on SAR images containing river 66
Figure 2.46. Results on SAR images containing field 66
Figure 2.47. ROIs extracted by the traditional ROI extraction algorithm 71
Figure 2.48. ROIs extracted by the GP-evolved composite operators 72
Figure 2.49. SAR image containing lake, road, field, tree and shadow 74
Figure 2.50. Lake, road and field ROIs extracted by the composite

operators learned in Examples 1, 2 and 4 74
Figure 2.51. Histogram of pixel values (range 0 to 200) within lake and

road regions 75
Figure 2.52. SAR image containing lake and road 75
Figure 2.53. lake and road ROIs extracted from training images 76
Figure 2.54. Lake, road and field ROIs extracted from the testing image 77
Figure 2.55. Lake, road and field ROIs extracted by the traditional

algorithm 77

List of Figures xiii

Chapter 3

Figure 3.1. Modified Steady-state genetic programming 91
Figure 3.2. Modified Generational genetic programming 92
Figure 3.3. Training SAR image containing road 95
Figure 3.4. Learned composite operator tree in LISP notation 96
Figure 3.5. Fitness versus generation (road vs. field) 97
Figure 3.6. Frequency of primitive operators and primitive feature

images 98
Figure 3.7. Feature images output at the nodes of the best composite

operator learned by smart GP 100
Figure 3.8. ROIs extracted from the output images at the nodes of the

best composite operator from smart GP. The goodness value
is shown for the entire image 101

Figure 3.9. Testing SAR images containing road 102
Figure 3.10. Training SAR image containing lake 103
Figure 3.11. Testing SAR image containing lake 104
Figure 3.12. Learned composite operator tree in LISP notation 105
Figure 3.13. Training SAR image containing river 105
Figure 3.14. Learned composite operator tree in LISP notation 106
Figure 3.15. Fitness versus generation (river vs. field) 107
Figure 3.16. Testing SAR image containing river 107
Figure 3.17. Training SAR image containing field 108
Figure 3.18. Testing SAR image containing field 109
Figure 3.19. Learned composite operator tree in LISP notation 110
Figure 3.20. Training SAR image containing a tank I l l
Figure 3.21. Learned composite operator tree in LISP notation 112
Figure 3.22. Fitness versus generation (T72 tank) 112
Figure 3.23. Testing SAR image containing tank 113
Figure 3.24. The average goodness of the best composite operators

versus generation 115

Chapter 4

Figure 4.1. System diagram for feature selection 125
Figure 4.2. SAR image and CFAR detection result 133
Figure 4.3. Example of the standard deviation feature 135

xiv List of Figures

Figure 4.4. Example of the fractal dimension feature 136
Figure 4.5. Examples of images used to compute size features (4-6) for

(a) object and (b) clutter 138
Figure 4.6. Fitness values vs. generation number 150
Figure4.7. Training error rates vs. generation number 151
Figure 4.8. The number of features selected vs. generation number 152
Figure 4.9. Average performance of various fitness functions 162

Chapter 5

Figure 5.1. System diagram for object recognition using coevolutionary
genetic programming 171

Figure 5.2. Computation of fitness of jth composite operator of ith sub-
population 173

Figure 5.3. Generational coevolutionary genetic programming 176
Figure 5.4. Example object and clutter SAR images 179
Figure 5.5. Composite operator vector learned by CGP 182
Figure 5.6. Five objects used in recognition 185
Figure 5.7. Composite operator vector learned by CGP with 5 sub-

populations 189
Figure 5.8. Composite operator vector learned by CGP 192

Chapter 6

Figure 6.1. The outline of evolutionary feature programming (EFP) 207
Figure 6.2. Graph representation of an exemplary feature extraction

procedure 211
Figure 6.3. Details on genotype-phenotype mapping 212
Figure 6.4. Execution of feature extraction procedures for a single

training example (image) x 216
Figure 6.5. Comparison of particular decomposition levels for

evolutionary feature programming 231

List of Figures XV

Chapter 7

Figure 7.1. Software implementation of CVGP. Dashed-line components
implement background knowledge 235

Figure 7.2. Exemplary images from COIL20 database (one representative
per class) 238

Figure 7.3. Apparent size changes resulting from MBR cropping for
different aspects of two selected objects from the COIL20
database 239

Figure 7.4. Fitness of the best individual, test set recognition ratio, and
test set TP ratio for binary COIL20 experiments (means over
10 runs and 0.95 confidence intervals) 242

Figure 7.5. Test set FP ratio and tree size for binary COIL20 experiments
(means over 10 runs and 0.95 confidence intervals) 243

Figure 7.6. Decision tree h used by the final recognition system evolved
in one of the COIL20 binary experiments 245

Figure 7.7. Selected vehicles represented in MSTAR database 249
Figure 7.8. Exemplary images from the MSTAR database 249
Figure 7.9. Three vehicles and their correspondings SAR images 250
Figure 7.10. Fitness graph for binary experiment (fitness of the best

individual for each generation) 254
Figure 7.11. True positive (TP) and false positive (FP) ratios for binary

recognition tasks (testing set, single recognition systems).
Chart presents averages over 10 independent synthesis
processes and their .95 confidence intervals 256

Figure 7.12. True positive (TP) and false positive (FP) ratios for binary
recognition tasks (testing set, single recognition systems,
adaptive CC). Chart presents averages over 10 independent
synthesis processes and their 0.95 confidence intervals 259

Figure 7.13. Test set recognition ratios of compound recognition systems
for different number of decision classes 261

Figure 7.14. Curves for different number of decision classes (base
classifier: SVM) 262

Figure 7.15. True positive and false positive ratios for binary recognition
tasks (testing set, compound recognition systems) 267

Figure 7.16. Representative images of objects used in experiments
concerning object variants (all pictures taken at 191°

xvi List of Figures

aspect/azimuth, cropped to central 64x64 pixels, and
magnified to show details) 267

Figure 7.17. Image of the ZSU class taken at 6° azimuth angle (cropped
to input size, i.e. 48x48 pixels) 269

Figure 7.18. Processing carried out by one of the evolved solutions
(individual 1 of 4; see text for details) 271

Figure 7.19. Processing carried out by one of the evolved solutions
(individual 2 of 4; see text for details) 272

Figure 7.20. Processing carried out by one of the evolved solutions
(individual 3 of 4; see text for details) 273

Figure 7.21. Processing carried out by one of the evolved solutions
(individual 4 of 4; see text for details) 274

List of Tables

Chapter 2

Table 2.1. Sixteen primitive feature images used as the set of terminals. 17
Table 2.2. Seventeen primitive operators. .. 19
Table 2.3. The performance on various examples of SAR images 29
Table 2.4. The performance results on IR and RGB color images. 45
Table 2.5. The performance results on various examples of SAR images.

The hard limit on composite operator size is used. 54
Table 2.6. The performance results of image-based GP on various SAR

images. .. 65
Table 2.7. Average training time of region GP and image GP (in

seconds). 67
Table 2.8. Comparison of the performance of traditional ROI extraction

algorithm and composite operators generated by GP. 70
Table 2.9. Average running time (in seconds) of the composite operators

and the traditional ROI extraction algorithm. 73

Chapter 3

Table 3.1. The performance of the best composite operators from normal
and smart GPs.94

Table 3.2. The average goodness of the best composite operators from
normal and smart GPs. 1 16

Table 3.3. The average size and performance of the best composite
operators from normal and smart GPs.. 1 17

Table 3.4. Average training time of Normal GP and Smart GP. 1 17
Table 3.5. The average performance of the best composite operators from

smart GPs with and without the public library. 11 8
Table 3.6. Average running time (in seconds) of the composite operators

from normal and smart GPs. ... 1 18

xviii List of Tables

Chapter 4

Table 4.1. Experimental results with 300 training target and clutter chips
(MDL, equation (4.2); 6 = 0.002) 146

Table 4.2. Experimental results with 500 training target and clutter chips
(MDL, equation (4.2); 8 = 0.0015) 147

Table 4.3. Experimental results with 700 training target and clutter chips
(MDL, equation (4.2); 8 = 0.0015) 148

Table 4.4. Experimental results with 700 training target and clutter chips
(MDL, equation (4.2); e = 0.0011) 149

Table 4.5. Experimental results with 500 training target and clutter chips
(penalty function, equation (4.4); e = 0.0015) 155

Table 4.6. Experimental results with 500 training target and clutter chips
(penalty and # of features, equation (4.5); y = 0.1; e =
0.0015) 156

Table 4.7. Experimental results with 500 training target and clutter chips
(penalty and # of features, equation (4.5); y = 0.3; s =
0.0015) 157

Table 4.8. Experimental results with 500 training target and clutter chips
(penalty and # of features, equation (4.5); y = 0.5; e =
0.0015) 158

Table 4.9. Experimental results with 500 training target and clutter chips
(error rate and # of features, equation (4.6); y = 0.1; e =
0.0015) 159

Table 4.10. Experimental results with 500 training target and clutter
chips (penalty and # of features, equation (4.6); y = 0.3; 8 =
0.0015) 160

Table 4.11. Experimental results with 500 training target and clutter
chips (penalty and # of features, equation (4.6); y = 0.5; 8 =
0.0015) 161

Table 4.12. Experimental results using only one feature for
discrimination (target chips = 500, clutter chips = 500) 162

Table 4.13. The number of times each feature is selected in MDL
Experiments 1, 2 and 4 163

List of Tables xix

Chapter 5

Table 5.1. Twelve primitive operators 172
Table 5.2. Parameters of CGP used throughout the experiments 178
Table 5.3. Recognition rates of 20 primitive features 180
Table 5.4. Performance of composite and primitive features on

object/clutter discrimination 181
Table 5.5. Recognition rates of 20 primitive features (3 objects) 187
Table 5.6. Performance of composite and primitive features on 3-object

discrimination 188
Table 5.7. Recognition rates of 20 primitive features (5 objects) 190
Table 5.8. Performance of composite and primitive features on 5-object

discrimination 191
Table 5.9. Average recognition performance of multi-layer neural

networks trained by backpropagation algorithms (3 objects) 195
Table 5.10. Average recognition performance of multi-layer neural

networks trained by backpropagation algorithms (5 objects) 196
Table 5.11. Recognition performance of C4.5 classification algorithm 197

Chapter 7

Table 7.1. Elementary operations used in the visual learning experiments
(k and 1 denote the number of the input and output arguments,
respectively) 236

Table 7.2. Parameter settings for COIL20 experiments 241
Table 7.3. Description of data for the experiment concerning cooperation

on genome level 250
Table 7.4. Performance of recognition systems evolved by means of

cooperation at genome level 251
Table 7.5. Test set confusion matrix for selected EFP recognition system 251
Table 7.6. Test set confusion matrix for selected CFP recognition system. ...251
Table 7.7. True positive (TP) and false positive (FP) ratios for SAR

binary recognition tasks (testing set). Table presents averages
over 10 independent synthesis processes and their 0.95
confidence intervals 255

Table 7.8. True positive (TP) and false positive (FP) ratios for SAR
binary recognition tasks (testing set, CFP-A; means over 10

xx List of Tables

independent synthesis processes and 0.95 confidence
intervals) 257

Table 7.9. Mean and maximum number of populations for SAR binary
recognition tasks (CFP-A) 258

Table 7.10. Confusion matrices for recognition of object variants for 2-
class recognition system 262

Table 7.11. Confusion matrices for recognition of object variants for 4-
class recognition system 263

Table 7.12. True positive and false positive ratios for binary recognition
tasks (testing set, off-line decision level decomposition) 266

Preface

Designing object detection and recognition systems that work in the real world
is a challenging task due to various factors including the high complexity of
the systems, the dynamically changing environment of the real world and
factors such as occlusion, clutter, articulation, and various noise contributions
that make the extraction of reliable features quite difficult. Furthermore,
features useful to the detection and recognition of one kind of object or in the
processing of one kind of imagery may not be effective in the detection and
recognition of another kind of object or in the processing of another kind of
imagery. Thus, the detection and recognition system often needs thorough
overhaul when applied to other types of images different from the one for
which the system was designed. This is very uneconomical and requires highly
trained experts. The purpose of incorporating learning into the system design
is to avoid the time consuming process of feature generation and selection and
to lower the cost of building object detection and recognition systems.

Evolutionary computation is becoming increasingly important for computer
vision and pattern recognition fields. It provides a systematic way of synthesis
and analysis of object detection and recognition systems. With learning
incorporated, the resulting recognition systems will be able to automatically
generate new features on the fly and cleverly select a good subset of features
according to the type of objects and images to which they are applied. The
system will be flexible and can be applied to a variety of objects and images.

This book investigates evolutionary computational techniques such as
genetic programming (GP), linear genetic programming (LGP),
coevolutionary genetic programming (CGP) and genetic algorithms (GA) to
automate the synthesis and analysis of object detection and recognition
systems. The ultimate goal of the learning approaches presented in this book
is to lower the cost of designing object detection and recognition systems and
build more robust and flexible systems with human-competitive performance.

xxil Preface

The book presents four important ideas.

First, this book shows the efficacy of GP and CGP in synthesizing effective
composite operators and composite features from domain-independent
primitive image processing operations and primitive features (both elementary
and complex) for object detection and recognition. It explores the role of
domain knowledge in evolutionary computational techniques for object
recognition. Based on GP and CGP's ability to synthesize effective features
from simple features not specifically designed for a particular kind of imagery,
the cost of building object detection and recognition systems is lowered and
the flexibility of the systems is increased. More importantly, a large amount of
unconventional features are explored by GP and CGP and these
unconventional features yield exceptionally good detection and recognition
performance in some cases, overcoming the human experts' limitation of
considering only a small number of conventional features.

Second, smart crossover, smart mutation and a new fitness function based
on the minimum description length (MDL) principle are designed to improve
the efficiency of genetic programming. Smart crossover and smart mutation
are designed to identify and keep the effective components of composite
operators from being disrupted and a MDL-based fitness function is proposed
to address the well-known code bloat problem of GP without imposing severe
restriction on the GP search. Compared to normal GP, smart GP algorithm
with smart crossover, smart mutation and a MDL-based fitness function finds
effective composite operators more quickly and the composite operators
learned by smart GP algorithm have smaller size, greatly reducing both the
computational expense during testing and the possibility of overfitting during
training.

Third, a new MDL-based fitness function is proposed to improve the
genetic algorithm's performance on feature selection for object detection and
recognition. The MDL-based fitness function incorporates the number of
features selected into the fitness evaluation process and prevents GA from
selecting a large number of features to overfit the training data. The goal is to
select a small set of features with good discrimination performance on both
training and unseen testing data to reduce the possibility of overfitting the
training data during training and the computational burden during testing.

Preface xxiii

Fourth, adaptive revolutionary linear genetic programming (LGP) in
conjunction with general image processing, computer vision and pattern
recognition operators is proposed to synthesize recognition systems. The basic
two-class approach is extended for scalability to multiple classes and various
architectures and strategies are considered.

The book consists of eight chapters dealing with various evolutionary
approaches for automatic synthesis and analysis of object detection and
recognition systems. Many real world imagery examples are given in all the
chapters and a comparison of the results with standard techniques is provided.

The book will be of interest to scientists, engineers and students working in
computer vision, pattern recognition, object recognition, machine learning,
evolutionary learning, image processing, knowledge discovery, data mining,
cybernetics, robotics, automation and psychology.

Authors would like to thank Ken Grier, Dale Nelson, Lou Tamburino, and
Bob Herklotz for their guidance and support. Many discussions held with Ed
Zelnio, Tim Ross, Vince Velten, Gregory Power, Devert Wicker, Grinnell
Jones, and Sohail Nadimi were very helpful.

The work covered in this book was performed at the University of
California at Riverside. It was partly supported by funding from Air Force
Research Laboratory during the last four years. Krzysztof Krawiec was at the
University of California at Riverside on a temporary leave from Poznan
University of Technology, Poznan, Poland. He would like to acknowledge the
support from the Scientific Research Committee, Poland (KBN). Authors
would like to thank Julie Vu and Lynne Cochran for their secretarial support.

Riverside, California Bir Bhanu
November 2004 Yingqiang Lin

Krzysztof Krawiec

Chapter 1

INTRODUCTION

In recent years, with the advent of newer, much improved and inexpensive
imaging technologies and the rapid expanding of the Internet, more and more
images are becoming available. Recent developments in image collection
platforms produce far more imagery than the declining ranks of image analysts
are capable of handling due to human work load limitations. Relying on
human image experts to perform image analysis, processing and classification
becomes more and more unrealistic. Building object detection and recognition
systems to take advantage of the speed of computer is a viable and important
solution to the increasing need of processing a large quantity of images
efficiently.

1 .I Object Detection and Recognition Problem

The object detection and recognition problem is one of the most important
research areas in pattern recognition and computer vision [7], [IS]. It has wide
range of applications in surveillance, reconnaissance, object and target
recognition, autonomous navigation, remote sensing, manufacturing
automation, etc. The major task of object detection is to locate and extract
regions that may contain objects in an image. It is an important intermediate
step to object recognition. The extracted regions are called regions-of-interest
(ROIs) or object chips. ROI extraction is very important to object recognition,

2 Chapter 1. Introduction

since the size of an image is usually large, leading to the heavy computational
burden of processing the whole image. By extracting ROIs, the computational
cost of object recognition is greatly reduced, thus improving the recognition
efficiency. This advantage is particularly useful to real-time applications,
where the recognition speed is of prime importance. Also, by extracting ROIs,
the recognition system can focus on the extracted regions that may contain
potential objects and this can be very helpful in improving the recognition
accuracy. Generally, the extracted ROIs are identical to their corresponding
regions in the original image, but sometimes, they may be images that result
from applying some image processing operations to the corresponding regions
in the original image. No matter what ROIs are, they are passed to an object
recognition module for further processing. Usually, in order to increase the
probability of object detection, some false alarm ROIs, which do not contain
an object, but some natural or man-made clutter, are allowed to pass object
detection phase.

The task of object recognition is first to reject the false alarm ROIs and then
recognize the kinds of objects in the ROIs containing them. It is actually a
signal-to-symbol problem of labeling perceived signals with one or more
symbols. A solution to this problem takes images or the features extracted
from images as input and outputs one or more symbols which are the labels of
the objects in the images. Sometimes, the symbols may further represent the
pose of the objects or the relations between different objects. These symbols
are intended to capture some useful aspects of the input and in turn, permit
some high level reasoning on the perceived signals.

It is well known that automatic object detection and recognition is really not
an easy task. The quality of detection and recognition is heavily dependent on
the kind and quality of features extracted from the image, and it also highly
relies on the representation of an object based on the extracted features. The
features used to represent an object are the key to object detection and
recognition. If useful features with good quality are unavailable to build an
efficient representation of an object, good detection and recognition results
cannot be achieved no matter what detection and recognition algorithms are
used. However, in most real images, there is always some noise, making the
extraction of features difficult. More importantly, since there are many kinds
of features that can be extracted, so what are the appropriate features for the
current detection and recognition task or how to synthesize composite features

Chapter 1. Introduction 3

particularly usehl to the detection and recognition from the primitive features
extracted from an image? There is no easy answer to these questions and the
solutions are largely dependent on the intuitive instinct, knowledge, previous
experience and even the bias of human image experts. Object detection and
recognition in many real-world applications is still a challenging problem and
needs further research.

1.2 Motivations for Evolutionary Computation

In the past, object detection and recognition systems are manually developed
and maintained by human experts. The traditional approach requires a human
expert to select or synthesize a set of features to be used in detection and
recognition. However, handcrafting a set of features requires human ingenuity
and insight into the objects to be detected and recognized since it is very
difficult to identify a set of features that characterize a complex set of objects.
Typically, many features are explored before object detection and recognition
systems can be built. There are a lot of features available and these features
may be correlated. To select a set of features which, when acting
cooperatively, can give good performance is very time consuming and
expensive. Sometimes, simple features (also called primitive features) directly
extracted from images may not be effective in detecting and recognizing
objects. At this point, synthesizing composite features useful for the current
detection and recognition task from those simple ones becomes imperative.

Traditionally, it is the human experts who synthesize features to be used.
However, based on their knowledge, previous experience and limited by their
bias and speed, human experts only consider a small number of conventional
features and many unconventional features are totally ignored. Sometimes it is
those unconventional features that yield very good detection and recognition
performance. Furthermore, after the features are selected or designed by
human experts and incorporated into a system, they are fixed. The features
used by the system are pre-determined and the system cannot generate new
features useful to the current detection and recognition task on the fly based on
the already available features, leading to inflexibility of the system. Features
usehl to the detection and recognition of one kind of object or in the
processing of one kind of imagery may not be effective in the detection and

4 Chapter 1. Introduction

recognition of another kind of object or in the processing of another kind of
imagery. Thus, the detection and recognition system often needs thorough
overhaul when applied to other types of images that are different from the one
when the system was devised. This is very uneconomical.

Synthesizing effective new features from primitive features is equivalent to
finding good points in the feature combination space where each point
represents a combination of primitive features. Similarly, selecting an
effective subset of features is equivalent to finding good points in the feature
subset space where each point represents a subset of features. The feature
combination space and feature subset space are huge and complicated and it is
very difficult to find good points in such vast spaces unless one has an
efficient search algorithm.

Hill climbing, gradient descent and simulated annealing (also called
stochastic hill climbing) are widely used search algorithms. Hill climbing and
gradient descent are efficient in exploring a unimodal space, but they are not
suitable for finding global optimal points in a multi-modal space due to their
high probability of being trapped in local optima. Thus, if the search space is
a complicated and multi-modal space, they are unlikely to yield good search
results. Simulated annealing has the ability to jump out of local optimal
points, but it is heavily dependent on the starting point. If the starting point is
not appropriately placed, it takes a long time, or even could be impossible, for
simulated annealing to reach good points. Furthermore, in order to apply a
simulated annealing algorithm, the neighborhood of a point must be defined
and the neighboring points should be somewhat similar. This requires some
knowledge about the search space and it also requires some smoothness of the
search space.

It is very difficult, if not impossible, to define the neighborhood of a point
in the huge and complicated feature combination and feature subset spaces,
since similar feature combinations and similar feature subsets may have very
different object detection and recognition performance. Due to the lack of
knowledge about these search spaces, a variety of genetic programming
techniques and genetic algorithms [6], [36], [57], [58], [66] are employed in
this book. In order to apply GP and GA, all that needs to be known are how to
define individuals, how to define crossover and mutation operations on the
individuals and how to evaluate individuals. GP and GA are very much

Chapter 1. Introduction 5

capable of exploring huge complicated multi-modal spaces with unknown
structures. Maintaining a large population of individuals as multiple searching
points, GP and GA explore the search spaces along different directions
concurrently. With multiple searching points and the crossover and mutation
operations' ability to immediately move a searching point from one portion of
the search space to another faraway portion, GP and GA are less likely to be
trapped at local optimal points. All these characteristics greatly enhance the
probability of finding global optimal points, although they cannot guarantee
the finding of global optima. It is to be noted that GP and GA are not random
search algorithms, they are guided by the fitness of the' individuals in the
population. As search proceeds, the population is gradually adapted to the
portion of the search space containing good points.

1.3 Evolutionary Approaches for Synthesis and Analysis

In this book, the techniques necessary for automatic design of object detection
and recognition systems are investigated. Here, the object detection and
recognition system itself is the theme and the efficacy of evolutionary learning
algorithms such as genetic programming and genetic algorithm in the feature
generation and selection is studied. The advantage of incorporating learning is
to avoid the time consuming process of feature selection and generation and to
automatically explore many unconventional features. The system resulting
from the learning is able to automatically generate features on the fly and
cleverly select a good subset of features according to the type of object and
image to which it is applied. The system should be somewhat flexible and can
be applied to a variety of objects and images. The goal is to lower the cost of
designing object detection and recognition systems and build more robust and
flexible systems with human-competitive performance.

This book investigates evolutionary computational techniques such as
genetic programming (GP), coevolutionary genetic programming (CGP),
linear genetic programming (LCP) and genetic algorithm (GA) to automate the
synthesis and analysis of object detection and recognition systems.

First, this book shows the efficacy of GP and CGP in synthesizing effective
composite operators and composite features from domain-independent

6 Chapter 1. Introduction

primitive image processing operations and primitive features for object
detection and recognition. It explores the role of domain knowledge in
evolutionary computation. Based on GP and CGP's ability to synthesize
effective features from simple features not specifically designed for a
particular kind of imagery, the cost of building object detection and
recognition systems is lowered and the flexibility of the systems is increased.
More importantly, it shows that a large amount of unconventional features are
explored by GP and CGP and these unconventional features yield
exceptionally good detection and recognition performance in some cases,
overcoming the human experts' limitation of considering only a small number
of conventional features.

Second, smart crossover, smart mutation and a new fitness function based
on minimum description length (MDL) principle are designed to improve the
efficiency of genetic programming. Smart crossover and smart mutation are
designed to identify and keep the effective components of composite operators
from being disrupted and a MDL-based fitness function is proposed to address
the well-known code bloat problem of GP without imposing severe restriction
on the GP search. Compared to normal GP, a smart GP algorithm with smart
crossover, smart mutation and a MDL-based fitness function finds effective
composite operators more quickly and the composite operators learned by a
smart GP algorithm have smaller size, greatly reducing both the computational
expense during testing and the possibility of overfitting during training.

Third, a new MDL-based fitness function is proposed to improve the
genetic algorithm's performance on feature selection for object detection and
recognition. The MDL-based fitness function incorporates the number of
features selected into the fitness evaluation process and prevents GA from
selecting a large number of features to overfit the training data. The goal is to
select a small set of features with good discrimination performance on both
training and unseen testing data to reduce both the possibility of overfitting the
training data during training and the computational burden during testing.

Fourth, linear genetic programming (LGP) and coevolutionary genetic
programming (CGP) techniques are used to synthesize a feature extraction
procedure (FEP) to generate features for object recognition. FEP consists of a
sequence of instructions, which are primitive image processing operators that
are executed sequentially one after another. Each instruction in a FEP is

Chapter 1. Introduction 7

composed of an opcode determining the operator to be used and arguments
referring to registers from which to fetch the input data and to which to store
the result of the instruction. LGP is a variety of GP with simplified, linear
representation of individuals and it is a hybrid of GA and GP and combines
their advantages. LGP is similar to GP in the sense that each individual
actually contains a sequence of interrelated operators. On the other hand, a
FEP has a fixed number of instructions and an instruction is encoded into a
fixed-length binary string at the genome level, which is essentially equivalent
to GA representation. LGP encoding is, therefore, more positional and more
resistant to destructive crossovers. When CGP is applied, the problem of
feature construction can be decomposed at different levels. We explore
decomposition at the instruction, feature, class and decision levels. Our
experiments show the superiority of decomposition at the instruction level.
With different segments of a FEP evolved by sub-populations of CGP, a better
FEP can be synthesized by concatenating the segments from sub-populations.
The benefits we expect from the decomposition of feature construction by
CGP include faster convergence of the learning process, better scalability of
the learning with respect to the problem size and better understanding of the
obtained solutions.

1.4 Outline of the Book

The outline of the book is as follows:

Chapter 1 is the introduction. It describes object detection and recognition
problems, provides motivation and advantages of incorporating evolutionary
computation in the design of object detection and recognition systems.

Chapter 2 discusses synthesizing composite features for object detection.
Genetic programming (GP) is applied to the learning of composite features
based on primitive features and primitive image processing operations. The
primitive features and primitive image processing operations are domain-
independent, not specific to any kind of imagery so that the proposed feature
synthesis approach can be applied to a wide variety of images.

8 Chapter 1. Introduction

Chapter 3 concentrates on improving the efficiency of genetic
programming. A fitness function based on the minimum description length
(MDL) principle is proposed to address the well-known code bloat problem of
GP while at the same time avoiding severe restriction on the GP search. The
MDL fitness fbnction incorporates the size of a composite operator into the
fitness evaluation process to prevent it from growing too large, reducing
possibility of overfitting during training and the computational expenses
during testing. The smart crossover and smart mutation are proposed to
identify the effective components of a composite operator and keep them from
being disrupted by subsequent crossover and mutation operations to W h e r
improve the efficiency of GP.

In chapter 4, genetic algorithms (GA) are used for feature selection for
distinguishing objects from natural clutter. Usually, GA is driven by a fitness
function based on the performance of selected features. To achieve excellent
performance during training, GA may select a large number of features.
However, a large number features with excellent performance on training data
may not perform well on unseen testing data due to the overfitting. Also,
selecting more features means heavier computational burden during testing. In
order to overcome this problem, an MDL-based fitness function is designed to
drive GA. With MDL-based fbnction incorporating the number of features
selected into the fitness evaluation process, a small set of features is selected to
achieve satisfactory performance during both training and testing.

Chapter 5 presents a method of learning composite feature vectors for object
recognition. Coevolutionary genetic programming (CGP) is used to synthesize
composite feature vectors based on the primitive features (simple or relatively
complex) directly extracted from images. The experimental results using real
SAR images show that CGP can evolve composite features that are more
effective than the primitive features upon which they are built.

Chapter 6 presents a coevolutionary approach for synthesizing
recognition systems using linear genetic programming (LGP). It provides a
rationale for the design of the method and outlines main differences in
comparison to standard genetic programming. The basic characteristic of LGP
approach is the linear (sequential) encoding of elementary operations and
passing of intermediate arguments through temporary variables (registers).
Two variants of of the approach are presented. The first approach called,

Chapter 1. Introduction 9

evolutionary feature programming (EFP), engages standard single-population
evolutionary computation. The second approach called, coevolutionary feature
programming (CFP), decomposes feature synthesis problem using cooperative
coevolution. Various decomposition strategies for breaking up the feature
synthesis process are discussed.

Chapter 7 presents experimental results of applying the methodology
described in chapter 7 to real-world computer visionlpattern recognition
problems. It includes experiments using single-population evolutionary feature
programming (EFP), and selected variants of coevolutionary feature
programming (CFP) cooperating at different decomposition levels. To provide
experimental evidence for the generality of the proposed approach, it is
verified on two different real-world tasks. First of them is the recognition of
common household objects in controlled lighting conditions, using the widely
known COIL-20 benchmark database. The second application is much more
difficult and concerns the recognition of different types of vehicles in synthetic
aperture radar (SAR) images.

Finally, Chapter 8 provides the conclusions and hture research directions.

Chapter 2

FEATURE SYNTHESIS FOR OBJECT DETECTION

2.1 Introduction

Designing automatic object detection and recognition systems is one of the
important research areas in computer vision and pattern recognition [7], [35].
The major task of object detection is to locate and extract regions of an image
that may contain potential objects so that the other parts of the image can be
ignored. It is an intermediate step to object recognition. The regions extracted
during detection are called regions-of-interest (ROIs). ROI extraction is very
important in object recognition, since the size of an image is usually large,
leading to the heavy computational burden of processing the whole image. By
extracting ROIs, the recognition system can focus on the extracted regions that
may contain potential objects and this can be very helpful in improving the
recognition rate. Also by extracting ROIs, the computational cost of object
recognition is greatly reduced, thus improving the recognition speed. This
advantage is particularly important for real-time applications, where the
recognition accuracy and speed are of prime importance.

However, the quality of object detection is dependent on the type and
quality of features extracted from an image. There are many features that can
be extracted. The question is what are the appropriate features or how to
synthesize features, particularly useful for detection, from the primitive
features extracted from images. The answer to these questions is largely

12 Chapter 2. Feature Synthesis for Object Detection

dependent on the intuitive instinct, knowledge, previous experience and even
the bias of algorithm designers and experts in object recognition.

In this chapter, we use genetic programming (GP) to synthesize composite
features which are the output of composite operators, to perform object
detection. A composite operator consists of primitive operators and it can be
viewed as a way of combining primitive operations on images. The basic
approach is to apply a composite operator on the original image or primitive
feature images generated from the original one; then the output image of the
composite operator, called composite feature image, is segmented to obtain a
binary image or mask; finally, the binary mask is used to extract the region
containing the object from the original image. The individuals in our GP based
learning are composite operators represented by binary trees whose internal
nodes represent the pre-specified primitive operators and the leaf nodes
represent the original image or the primitive feature images. The primitive
feature images are pre-defined, and they are not the output of the pre-specified
primitive operators.

This chapter is organized as follows: chapter 2.2 provides motivation,
related research and contribution of this chapter; chapter 2.3 provides the
details of genetic programming for feature synthesis; chapter 2.4 presents
experimental results using synthetic aperture radar (SAR), infrared (IR) and
color images. Various comparisons are given in this section to demonstrate the
effectiveness of the approach, including examples of two-class and multi-class
imagery; finally, chapter 2.5 provides the conclusions of this chapter.

2.2 Motivation and Related Research

2.2.1 Motivation

In most imaging applications, human experts design an approach to detect
potential objects in images. The approach can often be divided into some
primitive operations on the original image or a set of related feature images
obtained from the original one. It is the expert who, relying on histher
experience, figures out a smart way to combine these primitive operations to
achieve good detection results. The task of synthesizing a good approach is

2.2 Motivation and Related Research 13

equivalent to finding a good point in the space of composite operators formed
by the combination of primitive operators.

Unfortunately, the ways of combining primitive operators are infinite. The
human expert can only try a very limited number of conventional
combinations. However, a GP may try many unconventional ways of
combining primitive operations that may never be imagined by a human
expert. Although these unconventional combinations are very difficult, if not
impossible, to be explained by domain experts, in some cases, it is these
unconventional combinations that yield exceptionally good results. The
unlikeliness, and even incomprehensibility of some effective solutions learned
by GP demonstrates the value of GP in the generation of new features for
object detection. The inherent parallelism of GP and the high speed of current
computers allow the portion of the search space explored by GP to be much
larger than that by human experts. The search performed by GP is not a
random search. It is guided by the fitness of composite operators in the
population. As the search proceeds, GP gradually shifts the population to the
portion of the space containing good composite operators.

2.2.2 Related research

Genetic programming, an extension of genetic algorithm, was first proposed
by Koza [55], [56], [57], [58] and has been used in image processing, object
detection and object recognition. Harris and Buxton [39] applied GP to the
production of high performance edge detectors for 1-D signals and image
profiles. The method is also extended to the development of practical edge
detectors for use in image processing and machine vision. Poli [92] used GP to
develop effective image filters to enhance and detect features of interest and to
build pixel-classification-based segmentation algorithms. Bhanu and Lin [14],
[17], [21], [69] used GP to learn composite operators for object detection.
Their experimental results showed that GP is a viable way of synthesizing
composite operators from primitive operations for object detection. Stanhope
and Daida [I141 used GP to generate rules for targetlclutter classification and
rules for the identification of objects. To perform these tasks, previously
defined feature sets are generated on various images and GP is used to select
relevant features and methods for analyzing these features. Howard et al. [44]
applied GP to automatic detection of ships in low-resolution SAR imagery by

14 Chapter 2. Feature Synthesis for Object Detection

evolving detectors. Roberts and Howard [103] used GP to develop automatic
object detectors in infrared images. Tackett [I151 applied GP to the
development of a processing tree for the classification of features extracted
from images.

Belpaeme [5] investigated the possibility of evolving feature detectors under
selective pressure. His experimental results showed that it is possible for GP to
construct visual functionality based on primitive image processing functions
inspired by visual behavior observed in mammals. The inputs for the feature
detectors are images. Koppen and Nickolay [54] presented a special 2-D
texture filtering framework, based on the so-called 2-D-Lookup with its
configuration evolved by GP that allowed representing and searching a very
large number of texture filters. Their experimental results demonstrated that
although the framework may never find the globally optimal texture filters, it
evolves the initialized solutions toward better ones. Johnson et al. [50]
described a way of automatically evolving visual routines for simple tasks by
using genetic programming. The visual routine models used in their work were
initially proposed by Ullman [I211 to describe a set of primitive routines that
can be applied to find spatial relations between objects in an input image.
Ullman proposed, that given a specific task, the visual routine processor
compiled and organized an appropriate set of visual routines and applied it to a
base representation. But as Johnson et al. [50] pointed out, Ullman did not
explain how routines were developed, stored, chosen and applied. In their
work, Johnson et al. [50] applied typed genetic programming to the problem of
creating visual routines for the simple task of locating the left and right hands
in a silhouette image of a person. In their GP, crossover was performed by
exchanging between two parents the subtrees of the same root return type. To
avoid the code bloat problem of GP, they simply canceled a particular
crossover if it would produce an offspring deeper than the maximum allowable
depth. Rizki et al. [I021 use hybrid evolutionary computation (genetic
programming and neural networks) for target recognition using 1-D radar
signals.

Unlike the prior work of Stanhope and Daida [114], Howard et al. [44] and
Roberts and Howard [103], the input and output of each node of a tree in the
system described in this chapter are images, not real numbers. When the data
from node to node is an image, the node can contain any primitive operation
on images. Such image operations do not make sense when the data is a real

2.3 Genetic Programming for Feature Synthesis 15

number. In our system, the data to be processed are images, and image
operations can be applied to primitive feature images and any other
intermediate images to achieve object detection results. In [114], [44], [103],
image operations can only be applied to the original image to generate
primitive feature images. Also, the primitive features defined in this chapter
are more general and easier to compute than those used in [I 141, [44]. Unlike
our previous work [17], in this chapter the hard limit of composite operator
size is removed and a soft size limit is used to let GP search more freely while
at the same time preventing the code-bloat problem. The training in this
chapter is not performed on a whole image, but on the selected regions of an
image and this is very helpful in reducing the training time. Of course, training
regions must be carefully selected and represent the characteristics of training
images [ll]. Also, two types of mutation are added to further increase the
diversity of the population. Finally, more primitive feature images are
employed. The primitive operators and primitive features designed in this
chapter are very basic and domain-independent, not specific to a kind of
imagery. Thus, this system and methodology can be applied to a wide variety
of images. For example, results are shown here using synthetic aperture radar
(SAR), infrared (IR) and color video images.

2.3 Genetic Programming for Feature Synthesis

In our GP based approach, individuals are composite operators represented by
binary trees. The search space of GP is huge and it is the space of all possible
composite operators. Note that there could be equivalent composite operators
in terms of their output images. In the computer system, a pixel of an image
can assume only finite values, the number of possible images is finite, but this
number is huge and astronomical. Also, if we set a maximum composite
operator size, the number of composite operators is also finite, but again this
number is also huge and astronomical. To illustrate this, consider only a
special kind of binary tree, where each tree has exactly one leaf node and 30
internal nodes and each internal node has only one child. For 17 primitive
operators and only one primitive feature image, the total number of such trees
is 17~'. It is extremely difficult to find good composite operators from this vast
space unless one has a smart search strategy.

16 Chapter 2. Feature Synthesis for Object Detection

2.3.1 Design considerations

There are five major design considerations, which involve: determining the set
of terminals; the set of primitive operators; the fitness measure; the parameters
for controlling the evolutionary run; and the criterion for terminating a run.

The set of terminals: The set of terminals used in this chapter are sixteen
primitive feature images generated from the original image: the first one is the
original image; the others are mean, deviation, maximum, minimum and
median images obtained by applying templates of sizes 3x3, 5x5 and 7x7, as
shown in Table 2.1. These images are the input to composite operators. GP
determines which operations are applied on them and how to combine the
results. To get the mean image, we translate a template across the original
image and use the average pixel value of the pixels covered by the template to
replace the pixel value of the pixel covered by the central cell of the template.
To get the deviation image, we just compute the pixel value difference
between the pixel in the original image and its corresponding pixel in the mean
image. To get maximum, minimum and median images, we translate the
template across the original image and use the maximum, minimum and
median pixel values of the pixels covered by the template to replace the pixel
value of the pixel covered by the central cell of the template, respectively.

2.3 Genetic Programming for Feature Synthesis 17

Table 2.1. Sixteen primitive feature images used as the set of terminals.

No.
0

1

2

3

4

5

6

7

Primitive
feature
image
PFIMO

PFIM1

PFIM2

PFIM3

PFIM4

PFIM5

PFIM6

PFIM7

Description
Original image

3x3 mean
image

5x5 mean
image

7x7 mean
image

3x3 deviation
image

5x5 deviation
image

7x7 deviation
image

3x3 maximum
image

No.
8

9

10

11

12

13

14

15

Primitive
feature
image
PFIM8

PFIM9

PFIM10

PFIM11

PFIM12

PFIM13

PFIM14

PFIM15

Description
5x5 maximum

image
7x7 maximum

image

3x3 minimum
image

5x5 minimum
image

7x7 minimum
image

3x3 median
image

5x5 median
image

7x7 median
image

18 Chapter 2. Feature Synthesis for Object Detection

The set of primitive operators: A primitive operator takes one or two
input images, performs a primitive operation on them and stores the result in a
resultant image. Currently, 17 primitive operators are used by GP to form
composite operators, as shown in Table 2.2, where A and B are input images
of the same size and c is a constant (ranging from -20 to 20) stored in the
primitive operator. For operators such as ADD, SUB, MUL, etc., that take two
images as input, the operations are performed on the pixel-by-pixel basis. In
the operators MAX, MIN, MED, MEAN and STDV, a 3x3, 5x5 or 7x7
neighborhood is used with equal probability. Operator 16 (MEAN) can be
considered as a kind of convolution for low pass filtering and operator 17
(STDV) is a kind of convolution for high pass filtering. Operators 13 (MAX),
14 (MIN) and 15 (MED) can also be considered as convolution operators. We
do not include edge operators for several reasons. First, these operators are not
primitive and we want to investigate if GP can synthesize effective composite
operators or features from simple and domain-independent operations. This is
important since without relying on domain knowledge, we can examine the
power of a learning algorithm when applied to a variety of images. Second,
edge detection operators can be dissected into the above primitive operators
and it is possible for GP to synthesize edge operators or composite operators
approximating them if they are very useful to the current object detection task.
Finally, the primitive operator library is decoupled from the GP learning
system. Edge detection operators can be added in the primitive operator library
if they are absolutely needed by the current object detection task.

Some operations used to generate feature images are the same as some
primitive operators (see Table 2.1 and Table 2.2), but there are some
differences. Primitive feature images are generated from original images, so
the operations generating primitive feature images are applied to an original
image. A primitive operator is applied to a primitive feature image or to an
intermediate image output that is generated by the child node of the node
containing this primitive operator. In short, the input image of a primitive
operator varies.

2.3 Genetic Programming for Feature Synthesis 19

Table 2.2. Seventeen primitive operators.

No.
1
2
3
4

5

6

7
8
9
10
11

12

13

14

15

16

17

Operator
ADD (A, B)
SUB (A, B)
MUL (A, B)
DIV (A, B)

MAX2 (A, B)

MIN2 (A, B)

ADDC (A)
SUBC (A)
MULC (A)
DIVC (A)
SQRT (A)

LOG (A)

MAX (A)

MIN (A)

MED (A)

MEAN (A)

STDV (A)

Description
Add images A and B.
Subtract image B from A.
Multiply images A and B.
Divide image A by image B (If the pixel in B has
value 0, the corresponding pixel in the resultant
image takes the maximum pixel value in A).
The pixel in the resultant image takes the larger pixel
value of images A and B.
The pixel in the resultant image takes the smaller
pixel value of images A and B.
Increase each pixel value by c.
Decrease each pixel value by c.
Multiply each pixel value by c.
Divide each pixel value by c.
For each pixel with value v, if v > 0, change its value
to sfv . Otherwise, to —/-v.

For each pixel with value v, if v > 0, change its value
to ln(V). Otherwise, to -ln(-v).
Replace the pixel value by the maximum pixel value
in a 3x3, 5x5 or 7x7 neighborhood.
Replace the pixel value by the minimum pixel value
in a 3x3, 5x5 or 7x7 neighborhood.
Replace the pixel value by the median pixel value in
a 3x3, 5x5 or 7x7 neighborhood.
Replace the pixel value by the average pixel value of
a 3x3, 5x5 oE 7x7 neighborhood.
Replace the pixel value by the standard deviation of
pixels in a 3x3, 5x5 or 7x7 neighborhood.

20 Chapter 2. Feature Synthesis for Object Detection

The fitness measure: It measures the extent to which the ground-truth and
the extracted ROI overlap. The fitness value of a composite operator is
computed in the following way. Suppose G and G' are foregrounds in the
ground-truth image and the resultant image of the composite operator
respectively. Let n(X) denote the number of pixels within region X, then
Fitness = n(GnG ') / n(G u G '). The fitness value is between 0 and 1. If G and
G' are completely separated, the value is 0; if G and G' are completely
overlapped, the value is 1.

Parameters and termination: The key parameters are: the population size
M; the number of generations N; the crossover rate; the mutation rate; and the
fitness threshold. The GP stops whenever it finishes the pre-specified number
of generations or whenever the best composite operator in the population has
fitness value greater than the fitness threshold.

2.3.2 Selection, crossover and mutation

GP searches through the space of composite operators to generate new
composite operators, which may be better than the previous ones. By
searching through the composite operator space, GP gradually adapts the
population of composite operators from generation to generation and improves
the overall fitness of the whole population. More importantly, GP may find an
exceptionally good composite operator during the search. The search is done
by performing selection, crossover and mutation operations [2], [7 11, [118].
The initial population is randomly generated and the fitness of each individual
is evaluated.

Selection: The selection operation involves selecting composite operators
from the current population. In this chapter, we use tournament selection,
where a number of individuals (in this case five) are randomly selected from
the current population and the one with the highest fitness value is copied into
the new population.

Crossover: To perform crossover, two composite operators are selected on
the basis of their fitness values. The higher the fitness value, the more likely
the composite operator is selected for crossover. These two composite
operators are called parents. One internal node in each of these two parents is
randomly selected, and the two subtrees rooted at these two nodes are

2.3 Genetic Programming for Feature Synthesis 21

exchanged between the parents to generate two new composite operators,
called offspring. The offspring are composed of subtrees from their parents. If
two composite operators are somewhat effective in detection, then some of
their parts probably have some merit. The reason that an offspring may be
better than the parents is that recombining randomly chosen parts of somewhat
effective composite operators may yield a new composite operator that is even
more effective in detection.

It is easy to see that the size of one offspring (i.e., the number of nodes in
the binary tree representing the offspring), may be greater than both parents.
So if we do not control the size of composite operators when implementing
crossover in this simple way, the sizes of composite operators will become
larger and larger as GP proceeds. This is the well-known code bloat problem
of GP. It is a very serious problem, since when the size becomes too large, it
will take a long time to execute a composite operator, thus, greatly reducing
the search speed of GP. Further, large-size composite operators may overfit
the training data by approximating various noisy components of an image.
Although the results on the training image may be very good, the performance
on unseen testing images may be bad. Also, large composite operators take up
a lot of computer memory. Due to the finite computer resources and the desire
to achieve a good running speed (efficiency) of GP, we must limit the size of
composite operator by specifying its maximum size. In our previous work
[17], if the size of one offspring exceeds the maximum size allowed, the
crossover operation is performed again until the sizes of both offspring are
within the limit. Although this simple method guarantees that the size of
composite operators does not exceed the size limit, it is a brutal method since
it sets a hard size limit. The hard size limit may restrict the search performed
by GP, since after randomly selecting a crossover point in one composite
operator, GP cannot select some nodes of the other composite operator as a
crossover point in order to guarantee that both offspring do not exceed the size
limit. However, restricting the search may greatly reduce the efficiency of GP,
making it less likely to find good composite operators.

One may suggest that after two composite operators are selected, GP may
perform crossover twice and may each time keep the offspring of smaller size.
This method can enforce the size limit and will prevent the sizes of offspring
composite operators from growing large. However, GP will now only search

22 Chapter 2. Feature Synthesis for Object Detection

the space of these smaller composite operators. With a small number of nodes,
a composite operator may not capture the characteristics of objects to be
detected. How to avoid restricting the GP search while at the same time
prevent code-bloat is the key to the success of GP and it is still a subject of
intensive research. The key is to find a balance between these two conflicting
factors.

In this chapter, we set a composite operator size limit to prevent code-
bloating, but unlike our previous work, the size limit is a soft size limit, so it
restricts the GP search less severely than the hard size limit. With a soft size
limit, GP can select any node in both composite operators as crossover points.
If the size of an offspring exceeds the size limit, GP still keeps it and evaluates
it later. If the fitness of this large composite operator is the best or very close
to the fitness of the best composite operator in the population, it is kept by GP;
otherwise, GP randomly selects one of its sub-trees of size smaller than the
size limit to replace it in the population. In this chapter, GP discards any
composite operator beyond the size limit unless it is the best one in the
population. By keeping the effective composite operators exceeding the size
limit, GP enhances the possibility of finding good composite operators, since
good composite operators usually contain effective components (sub-trees)
and these effective components are kept by the soft size limit and they may
transfer to other composite operators during crossover. Also, by keeping some
large composite operators, the size difference between composite operators in
the population is widened and this is helpful in reducing the possibility of
fitness bloat (in which an increasing number of redundant composite operators
in the population evaluate to the same fitness value), although it cannot get rid
of it. With a hard size limit, many composite operators in the population have
size equal or very close to the hard size limit in the later generations of GP.
This increases the possibility of fitness bloat. However, large composite
operators kept by the soft size limit take a long time to execute and many of
them have redundant branches. By getting rid of the redundant branches, we
can reduce the size and running time of composite operators without degrading
their performance. But, in order to identify the redundant branches, the fitness
of each internal node has to be evaluated and this is a time-consuming process.
Moreover, some redundant branches are effective components. They are
redundant just because they are in an inhospitable context and their effect is
cancelled by other nodes. Eliminating them does no good to the GP search
since these effective components may go into other friendly composite

2.3 Genetic Programming for Feature Synthesis 23

operators via crossover operation. Also, composite operators with redundant
branches are more resistant to destructive crossover and mutation. Without
redundant branches, each part of a composite operator is important to its
performance and breaking any component may have a major impact on the
performance of the composite operator.

Mutation: In order to avoid premature convergence, mutation is
introduced to randomly change the structure of some individuals to maintain
the diversity of the population. Composite operators are randomly selected for
mutation. In this system, there are three types of mutation invoked with equal
probability:

Randomly select a node of the binary tree representing the composite
operator and replace the subtree rooted at this node, including the node
selected, by a new randomly generated binary tree
Randomly select a node of the binary tree representing the composite
operator and replace the primitive operator stored in the node with another
primitive operator of the same arity as the replaced one. The replacing
primitive operator is selected at random from all the primitive operators
with the same arity as the replaced one.
Randomly select two subtrees within the composite operator and swap
these two subtrees. Of course, neither of the two sub-trees can be the sub-
tree of the other.

2.3.3 Steady-state and generational genetic programming

Both steady-state and generational genetic programming are used in this
chapter. In steady-state GP, two parent composite operators are selected on the
basis of their fitness for crossover. The children of this crossover replace a pair
of composite operators with the smallest fitness values. The two children are
executed immediately and their fitness values are recorded. Then another two
parent composite operators are selected for crossover. This process is repeated
until the crossover rate is satisfied. Finally, mutation is applied to the resulting
population and the mutated composite operators are executed and evaluated.
The above cycle is repeated from generation to generation. In generational
GP, two composite operators are selected on the basis of their fitness values
for crossover and generate two offspring. The two offspring are not put into
the current population and do not participate in the following crossover

24 Chapter 2. Feature Synthesis for Object Detection

operations on the current population. The above process is repeated until the
crossover rate is satisfied. Then, mutation is applied to the composite operators
in the current population and the offspring from crossover. After mutation is
done, selection is applied to the current population to select some composite
operators. The number of composite operators selected must meet the
condition that after combining with the composite operators from crossover,
we get a new population of the same size as the old one. Finally, combine the
composite operators from crossover with those selected from the old
population to get a new population and the next generation begins. In addition,
we adopt an elitism replacement method that keeps the best composite
operator from generation to generation. Figure 2.1 and Figure 2.2 show the
pseudo code for steady-state and generational genetic programming
algorithms, respectively.

2.3 Genetic Programming for Feature Synthesis 25

Steady-state Genetic Programming Algorithm:

I. randomly generate population P of size M and evaluate each composite
operator in P.
for gen = I to N do loop I // N is the number of generation.

keep the best composite operator in P.
repeat

select 2 composite operators from P based on theirfltness values for
crossover through tournament selection.

select 2 composite operators with the lowest fitness values in P for
replacement.

perform crossover operation and let the 2 offspring replace the 2
composite operators selected for replacement.

execute the 2 offspring and evaluate theirfltness values.
until crossover rate is met.
perform mutation on each composite operator with probability of

mutation rate and evaluate mutated composite operators.
//After crossover and mutation, a new population P ' is generated.
let the best composite operator from population P replace the worst

composite operator in P' and let P = P'.
i f the fitness value of the best composite operator in P is above fitness

threshold value, then stop.
for each composite operator in P, do loop 2

i f its size exceeds the size limit and it is not the best composite
operator in P, then replace it with one of its subtrees whose size is
within the size limit.

endfor // loop 2
endfor //loop I

Figure 2.1. Steady-state genetic programming algorithm.

26 chapter 2. Feature Synthesis for Object Detection

Generational Genetic Programming Algorithm:

I . randomly generate population P of size M and evaluate each composite
operator in P.

2. for gen = I to N do loop I // N is the number of generation
3. keep the best composite operator in P.
4. perform crossoveron the composite operators in P until crossover rate

is satisfied and keep all the offspring from crossover separately.
5. perform mutation on the composite operators in P and the offspring

from crossover with the probability of mutation rate.
6. perform selection on P to select some composite operators. The number

of selected composite operators must be M minus the number of
composite operators from crossover.

7. combine the composite operators from crossover with those selected
from P to get a new population P' of the same size as P.

8. evaluate offspring from crossover and the mutated composite operators.
9. let the best composite operator from P replace the worst composite

operator in P' and let P = P'.
10. if the fitness of the best composite operator in P is above fitness

threshold, then stop.
I I . for each composite operator in P, do loop 2.
12. if its size exceeds the size limit and it is not the best composite

operator in P, then replace it with one of its subtrees whose size is
within the size limit.

endfor // loop 2
endfor //loop I

Figure 2.2. Generational genetic programming algorithm.

2.4 Experiments 27

2.4 Experiments

Various experiments are performed to test the efficacy of genetic
programming in extracting regions of interest from real synthetic aperture
radar (SAR) images, infrared (IR) images and RGB color images. We provide
detailed results using examples from remote sensing, target recognition, and
survallence/monitoring application areas. We give several comparisons to
demonstrate the effectiveness of the approach. These include comparisons
with the image-based genetic programming and the traditional ROI extraction
algorithm. We also provide the performance of the GP with hard limit on the
composite operator size. The results from the hard size limit GP are compared
with those from the MDL-based GP in chapter 3. We provide examples of
both two-class classification and multi-class classification.

The size of SAR images is 128x128, except the tank SAR images whose
size is 80x80, and the size of IR and RGB color images is 160x120. GP in
chapter 2.4.1 Examples 1-5, 2.4.2, 2.4.5 and 2.4.6 is not applied to a whole
training image, but only to a region or regions carefully selected from a
training image, to generate the composite operators. The generated composite
operator (with the highest fitness) is then applied to the whole training image
and to some other testing images to evaluate it. The advantage of performing
training on a small selected region is that it can greatly reduce the training
time, making it practical for the GP system to be used as a subsystem of other
learning systems, which improve the efficiency of GP by adapting the
parameters of GP system based on its performance. Our experiments show
that if the training regions are carefully selected from the training images, the
best composite operator generated by GP is effective. In the following
experiments in sections 2.4.1, 2.4.2, 2.4.3, and 2.4.6, the parameters are:
population size (loo), the number of generations (70), the fitness threshold
value (1.0), the crossover rate (0.6), the mutation rate (0.05), the soft size limit
of composite operators (30), and the segmentation threshold (0). In each
experiment, GP is invoked ten times with the same parameters and the same
training region(s). The coordinate of the upper left comer of an image is (0,O).
The ground-truth is used only during the training, it is not needed during
testing. We use it in testing only for evaluating the performance of the
composite operator on testing images. The size, orientation or shape of the
objects in testing images is different from those in the training images.

28 Chapter 2. Feature Synthesis for Object Detection

2.4.1 SAR Images

Five experiments are performed with real SAR images. The experimental
results from one run and the average performance of ten runs are given in
Table 2.3. We select the run in which GP finds the best composite operator
among the composite operators found in all ten runs. The first two rows show
the average values of the above fitness values over all ten runs. The third and
fourth rows show the fitness value of the best composite operator and the
population fitness value (average fitness value of all the composite operators
in the population) on training region (s) in the initial and final generations in
the selected run. The fitness values of the best composite operators on the
entire training image (numbers with a * superscript) and other testing images
in their entirety are also given. The regions extracted during the training and
testing by the best composite operator from the selected run are shown in the
following examples.

Example 1 - Road extraction: Three images contain road, the first one
contains horizontal paved road and field (Figure 2.3(a)); the second one
contains unpaved road and field (Figure 2.10 (a)); the third one contains
vertical paved road and grass (Figure 2.10(d)). Training is done on the training
regions of training image shown in Figure 2.3(a). After the training, the
learned composite operator is evaluated on the whole training image and
testing images. There are two training regions, locating from (5, 19) to (50,
119) and from (82, 48) to (126, 124), respectively. Figure 2.3(b) shows the
ground-truth provided by the user and the training regions. The white region
corresponds to the road and only the training regions of the ground-truth are
used in the evaluation during the training. Figure 2.4 shows the sixteen
primitive feature images of the training image.

2.4 Experiments 29

Table 2.3. The performance on various examples of SAR images

Ave.
^initial

Ave.
ffinal

hitial

ffmal

ftest

Roa

lop

0.55

0.83

0.68

0.95
0.93;

Roa

0.90, 0.

d

fP

0.27

0.60

0.28

0.67

d

93

Lai

lop

0.59

0.95

0.56

0.97
o.93*

Lak

0.98

Trainin

e

fp

0.32

0.92

0.32

0.93

Testin

e

g Perfon

Riv

*Op

0.48

0.85

0.65

090
o:71*

g Performan

Riv

0.83

mance

sr

fP

0.18

0.77

0.18

0.85

mance

er

Fiel

lop

0.54

0.76

0.53

078
0:89*

Fiel

0.80

d

fP

0.37

0.59

0.39

0.64

d

Tan

lop

0.61

0.86

0.51

o'88
o.88*

Tan

0.84

k

fP

0.17

0.68

0.16

0.80

k

fop

P*.

finitial;

ffinal:

fitness

fitness of the best composite operator on selected region(s),
fitness of population on selected region(s),
indicate fitness on the entire training images,
fitness of the initial generation on selected region(s),
fitness of the final population on selected region(s),
fitness of the best composite operator on the entire testing images.

30 Chapter 2. Feature Synthesis for Object Detection

(a) paved road (b) ground- (c) composite (d) ROI
vs. field truth feature image extracted

Figure 2.3. Training SAR image containing road.

The generational GP is used to synthesize a composite operator to extract the
road and the results of the best of the ten runs (sixth run) are reported. The
fitness value of the best composite operator in the initial population is 0.68 and
the population fitness value is 0.28. The fitness value of the best composite
operator in the final population is 0.95 and the population fitness value is 0.67.
Figure 2.3(c) shows the output image of the best composite operator on the
whole training image and Figure 2.3(d) shows the binary image after
segmentation. The output image has both positive pixels in brighter shade and
negative pixels in darker shade. Positive pixels belong to the region to be
extracted. The fitness value of the extracted ROI is 0.93. The best composite
operator has 17 nodes and its depth is 16. It has only one leaf node containing
5x5 median image. The median image is less noisy, since median filtering is
effective in eliminating speckle noises. The best composite operator is shown
in Figure 2.5, where PFIM14 is 5x5 median image. Figure 2.6 shows how the
average fitness of the best composite operator and average fitness of
population over all 10 runs change as GP explores the composite operator
space. Unlike [17] where the population fitness approaches the fitness of the
best composite operator as GP proceeds, in Figure 2.6, population fitness is
much lower than that of best composite operator even at the end of GP search.
It is reasonable, since we don't restrict the selection of crossover points. The
population fitness is not important since only the best composite operator is
used in testing. If GP finds one effective composite operator, the GP learning
is successful. The large difference between the fitness of the best composite
operator and the population indicates that the diversity of the population is
always maintained during the GP search, which is very helpful in preventing
premature convergence.

2.4 Experiments 3 1

PFIMO

PFIM4

PFIM8

PFIM 12

PFIM 1 PFIM2 PFIM3

PFIM9 PFIM 10 PFIM 1 1

PFIM 13 PFIM14 PFIM 15

Figure 2.4. Sixteen primitive feature images of training SAR image containing road.

32 Chapter 2. Feature Synthesis for Object Detection

MED M

AATTT P

- MAX —- MAX M

MAY

- MULC —

CADT

- MAX —|

ATT7 A "NT
JYlJLAiN hn MULC MAX — MULC _ DIVC DIVC h

MAX PFIM14

Figure 2.5. Learned composite operator tree.

1

0.8

§0.6

0.4

0.2

best

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70

generation

Figure 2.6. Fitness versus generation (road vs. field).

2.4 Experiments 33

Ten best composite operators are learned in ten runs. After computing the
percentage of each primitive operator and primitive feature image among the
total number of internal nodes (representing primitive operators) and the total
number of leaf nodes (representing primitive feature images) of these ten best
cornpsite operators, we get the utility (frequency of occurence) of primitive
operators and primitive feature images, which is shown in Figure 2.7(a) and
(b). MED (primitive operator 15) and PFIM5 (5x5 deviation image) have the
highest frequency of utility. Figure 2.8 shows the output image of each node of
the best composite operator shown in Figure 2.5. From left to right and top to
bottom, the images correspond to nodes sorted in the pre-order traversal of the
binary tree representing the best composite operator. The output of the root
node is shown in Figure 2.3(c), and Figure 2.8 shows the outputs of other
nodes. The primitive operators in Figure 2.8 are connected by arrow. The
operator at the tail of an arrow provides input to the operator at the head of the
arrow. After segmenting the output image of a node, we get the ROI (shown as
the white region) extracted by the corresponding subtree rooted at the node.
The extracted ROIs and their fitness values are shown in Figure 2.9. If an
output image of a node has no positive pixel (for example, the output of
MEAN primitive operator), nothing is extracted and the fitness value is 0; if an
output image has positive pixels only (for example, PFIM14 has positive
pixels only), everything is extracted and the fitness is 0.25. The output of the
root node storing primitive operator MED is shown in Figure 2.3(d).

34 Chapter 2. Feature Synthesis for Object Detection

1 3 5 7 9 11 13 15 17

(a) primitive operator

0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5

(b) primitive feature image

Figure 2.7. Utility of primitive operators and primitive feature images.

2.4 Experiments 35

X ~ A V t---- SORT

I

'---- MEAN MULC MAX MULC

I
DIVC + DIVC + MAX + PFIM14

Figure 2.8. Feature images output by the nodes of the best composite operator. The
ouput of the root node is shown Figure 2.3(c).

36 Chapter 2. Feature Synthesis for Object Detection

4- MAX + MAX + MULC + MAX
(0.93) (0.76) (0.52) (0.12)

~ ~ m I l ~ MEAN MULC 4--- MAX MULC

- DIVC DIVC + MAX + PFIM14
(0) (0.25) (0.25) (0.25)

Figure 2.9. ROIs extracted from the output images of the nodes of the best composite
operator. The fitness value is shown for the entire image. The ouput of the root node
is shown Figure 2.3(d).

2.4 Experiments 37

We applied the composite operator obtained in the above training to the
other two real SAR images shown in Figure 2.10 (a) and Figure 2.10 (d).
Figure 2.10 (b) and Figure 2.10 (e) show the output of the composite operator
and Figure 2.10 (c) shows the region extracted from Figure 2.10 (a). The
fitness value of the region is 0.90. Figure 2.10 (f) shows the region extracted
from Figure 2.10(d). The fitness value of the region is 0.93.

(a) unpaved (b) composite (c) ROI
road vs. field feature image extracted

(d) paved road (e) composite (f) ROI extracted
vs. grass feature image

Figure 2.10. Testing SAR images containing road.

Example 2 - Lake Extraction: Two SAR images contain lake (Figure
2.1 l(a), Figure 2.12(a)), the first one contains a lake and field, and the second
one contains a lake and grass. Figure 2.1 1(a) shows the original training image
containing lake and field and the training region from (85, 85) to (127, 127).
Figure 2.11(b) shows the ground-truth provided by the user. The white region
corresponds to the lake to be extracted. Figure 2.12 (a) shows the image
containing lake and grass used only in testing.

38 Chapter 2. Feature Synthesis for Object Detection

(a)lake vs.field (b) ground-truth (c) composite (d) ROI
feature image

Figure 2.1 1. Training SAR image containing lake.

The steady-state GP is used to generate the composite operator and the
results of the best of ten runs (ninth run) are shown. The fitness value of the
best composite operator in the initial population is 0.56 and the population
fitness value is 0.32. The fitness value of the best composite operator in the
final population is 0.97 and the population fitness value is 0.93. Figure 2.1 1(c)
shows the output image of the best composite operator on the whole training
image and Figure 2.11(d) shows the binary image after segmentation. The
fitness value of the extracted ROI is 0.93.

We apply the composite operator to the testing image containing lake and
grass. Figure 2.12(b) shows the output of the composite operator and Figure
2.12(c) shows the region extracted from Figure 2.12(a). The fitness of the
region is 0.98.

(a) lake vs. grass (b) composite feature (c) ROI extracted
image

Figure 2.12. Testing SAR image containing lake.

2.4 Experiments 39

Example 3 - River Extraction: Two SAR images contain river and field.
Figure 2.13(a) and Figure 2.13(b) show the original training image and the
ground-truth provided by the user. The white region in Figure 2.13(b)
corresponds to the river to be extracted. The training regions are from (68, 3 1)
to (126, 103) and from (2, 8) to (28, 74). The testing SAR image is shown in
Figure 2.16(a).

(a) river vs. field (b) ground-truth (c) composite (d) ROI extracted
feature image

Figure 2.13. Training SAR image containing river.

The steady-state GP was used to generate the composite operator and the
results from the best of ten runs (fourth run) are reported. The fitness value of
the best composite operator in the initial population is 0.65 and the population
fitness value is 0.18. The fitness value of the best composite operator in the
final population is 0.90 and the population fitness value is 0.85. Figure 2.13(c)
shows the output image of the best composite operator on the whole training
image and Figure 2.13(d) shows the binary image after segmentation. The
fitness value of the extracted ROI is 0.71. The best composite operator has 29
nodes and a depth of 19. It has five leaf nodes that all contain 7x7 median
image shown in Figure 2.14. There are 17 MED operators that are very useful
in eliminating speckle noise. Figure 2.15 shows how the average fitness of the
best composite operator and average fitness of population over all 10 runs
change as GP explores the composite operator space.

40 Chapter 2. Feature Synthesis for Object Detection

(MED (MED (MED (ADD (MED (STDV (MED
PFIMlS))) (MED (MED (MED (MED (MED
(MIN2 (MED PFIMIS) (MED (MED (MED
(MIN2 (MED PFIMIS) (MED (MED (MIN2
PFIM 15 (SUBC (DIVC PFIM15)))))))))))))))))))

Figure 2.14. Learned composite operator tree.

In
V) population

E
0.3

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70

generation

Figure 2.15. Fitness versus generation (river vs. field).

(a) river vs. field (b) composite feature image (c) ROI extracted

Figure 2.16. Testing SAR image containing river.

2.4 Experiments 41

We apply the composite operator to the testing image containing a river and
field. Figure 2.16(b) shows the output of the composite operator and Figure
2.16(c) shows the region extracted from Figure 2.16(a) and the fitness value of
the region is 0.83. There are some islands in the river and these islands along
with part of the river around them are not extracted.

Example 4 - Field Extraction: Two SAR images contain field and grass.
Figure 2.17(a) and (b) show the original training image and the ground-truth.
The training regions are from (17, 3) to (75, 61) and from (79, 62) to (124,
122). Extracting field from a SAR image containing field and grass is the most
difficult task among the five experiments, since the grass and field are similar
to each other and some small regions between grassy areas are actually field
pixels.

(a) field vs. grass (b) ground-truth (c) composite (d) ROI extracted
feature imaae

Figure 2.17. Training SAR image containing field.

The generational GP was used to generate the composite operator and the
results from the best of ten runs (second run) are reported. The fitness value of
the best composite operator in the initial population is 0.53 and the population
fitness value is 0.39. The fitness value of the best composite operator in the
final population is 0.78 and the population fitness value is 0.64. Figure 2.17(c)
shows the output image of the best composite operator on the whole training
image and Figure 2.17(d) shows the binary image after segmentation. The
fitness value of the extracted ROI is 0.89.

42 Chapter 2. Feature Synthesis for Object Detection

(a) field vs. grass (b) composite feature image (c) ROI extracted

Figure 2.18. Testing SAR image containing field.

We apply the composite operator to the testing image containing field and
grass shown in Figure 2.18(a). Figure 2.18(b) shows the output of the
composite operator and Figure 2.18(c) shows the region extracted from Figure
2.18(a). The fitness value of the region is 0.80.

Example 5 - Tank Extraction: We use 80x80 size SAR images of a T72
tank that are taken under different depression and azimuth angles. The training
image contains a T72 tank at a 17" depression angle and 135" azimuth angle,
which is shown in Figure 2.19(a). The training region is from (19, 17) to (68,
66). The testing SAR image contains a T72 tank at a 20" depression angle and
225" azimuth angle, which is shown in Figure 2.22(a). The ground-truth is
shown in Figure 2.19(b).

(a) T72 (b) ground- (c) composite (d) ROI
tank truth feature image

Figure 2.19. Training SAR image containing tank.

2.4 Experiments 43

The generational GP is applied to synthesize composite operators for tank
detection and the results from the best of ten runs (first run) are reported. The
fitness value of the best composite operator in the initial population is 0.5 1 and
the population fitness value is 0.16. The fitness value of the best composite
operator in the final population is 0.88 and the population fitness value is 0.80.
Figure 2.19(c) shows the output image of the best composite operator on the
whole training image and Figure 2.19 (d) shows the binary image after
segmentation. The fitness value of the extracted ROI is 0.88. The best
composite operator, shown in Figure 2.20, has 10 nodes and its depth is 9. It
has only one leaf node, which contains the 5x5 mean image. Figure 2.21
shows how the average fitness of the best composite operator and average
fitness of population over all 10 runs change as GP proceeds.

Figure 2.20. Learned composite operator tree in LISP notation.

generation

Figure 2.21. Fitness versus generation (T72 tank).

44 Chapter 2. Feature Synthesis for Object Detection

We apply the composite operator to the testing image containing T72 tank
under depression angle 20" and azimuth angle 225". Figure 2.22(b) shows the
output of the composite operator and Figure 2.22(c) shows the region
corresponding to the tank. The fitness of the extracted ROI is 0.84.

(a) T72 tank (b) composite feature image (c) ROI extracted

Figure 2.22. Testing SAR image containing tank.

Our results show that GP is very much capable of synthesizing composite
operators for target detection. With more and more SAR images collected by
satellites and airplanes, it is impractical for human experts to scan each SAR
image to find targets. Applying the synthesized composite operators on these
images, regions containing potential targets can be quickly detected and
passed on to automatic target recognition systems or to human experts for
fbrther examination. Concentrating on the regions of interest, the human
experts and recognition systems can perform recognition task more effectively
and more efficiently.

Note that composite operators shown in Figure 2.5 and Figure 2.20 may be
called as ccprocessing chains," which is a simpler binary tree in which each
internal node has only one child. Most of the composite operators learned by
GP in our experiments are not processing chains.

2.4 Experiments 45

2.4.2 Infrared and color images

One experiment is performed with infrared (IR) images and two are performed
with RGB color images. The experimental results from one run and the
average performance of ten runs are shown in Table 2.4. As we did in chapter
2.4.1, we select the run in which GP finds the best composite operator among
the composite operators found in all the ten runs. The regions extracted during
the training and testing by the best composite operator from the selected run
are shown in the following examples.

Table 2.4. The performance results on IR and RGB color images.

Testing performance
RGB image - SUV

0.58 ftest
fop fitness of the best composite operator on selected region(s),
fp : fitness of population on selected region(s),
*: indicate finess on the entire training images,
finitial: fitness of the initial generation on selected region(s),
ffi,,,: fitness of the final population on selected region(s),

fitness of the best composite operator on the entire testing images.

IR image - people
0.84,0.81,0.86

RGB image - car
0.76

46 Chapter 2. Feature Synthesis for Object Detection

People extraction in IR images: In IR images, pixel values correspond to the
temperature in the scene. We have four IR images with one used in training
and the other three used in testing. Figure 2.23(a) and (b) show the training
image and the ground-truth. Two training regions are from (59, 9) to (106, 88)
and from (2, 3) to (21, 82), respectively. The left training region contains no
pixel belonging to the person. The reason for selecting it during the training is
that there are major pixel intensity changes among the pixels in this region.
Nothing in this region should be detected. The fitness of composite operator
on this region is defined as one minus the percentage of pixels detected in the
region. If nothing is detected, the fitness value is 1.0. Averaging the fitness
values of the two training regions, we get the fitness during the training. When
the learned composite operator is applied to the whole training image, the
fitness is computed as a measurement of the overlap between the ground-truth
and the extracted ROI, as we did in the previous experiments. Three testing IR
images are shown in Figure 2.26(a), (d) and (g).

-

(a) person (b) ground- (c) composite
truth feature image

(d) ROI
extracted

Figure 2.23. Training IR image containing a person.

The generational GP is applied to synthesize composite operators for person
detection and the results from the best of ten runs (third run) are reported. The
fitness value of the best composite operator in the initial population is 0.56 and
the population fitness value is 0.23. The fitness value of the best composite
operator in the final population is 0.93 and the population fitness value is 0.79.
Figure 2.23(c) shows the output image of the best composite operator on the
whole training image and Figure 2.23(d) shows the binary image after
segmentation. The fitness value of the extracted ROI is 0.85. The best

2.4 Experiments 47

composite operator (shown in Figure 2.24) has 28 nodes and a depth of 13
with 9 leaf nodes. Figure 2.25 shows how the average fitness of the best
composite operator and average fitness of population over all the 10 runs
change as GP proceeds.

(SQRT (SQRT (SUBC (SQRT (MAX2 (MAX2 PFIMl (SUB (MAX2
PFIM14 PFIM15) (DIV (MULC (SQRT (MAX (MAX (ADD
PFIM12 PFIMIS))))) PFIM9))) (DIV (MULC (SQRT (MAX (ADD
PFIM 12 PFIM9)))) PFIM9))))))

Figure 2.24. Learned composite operator tree in LISP notation.

9 c ":: population

4-

0.4

0.2
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70

generation

Figure 2.25. Fitness versus generation (person).

We apply the composite operator to the testing images shown in Figure
2.26. Figure 2.26(b), (e) and (h) show the output of the composite operator and
Figure 2.26(c), (f) and (i) show the ROI extracted. Their fitness values are
0.84,0.81 and 0.86 respectively.

48 Chapter 2. Feature Synthesis for Object Detection

Car extraction in RGB color images: GP is applied to learn features to
detect a car in RGB color images. Unlike previous experiments, the primitive
feature images in this experiment are RED, GREEN and BLUE planes of a
RGB color image. Figure 2.27(a), (b) and (c) show the RED, GREEN and
BLUE planes of the training image. The ground-truth is shown in Figure
2.27(d). The training region is from (21,3) to (91,46).

The steady-state GP is applied to synthesize composite operators for car
detection and the results from best of ten runs (fourth run) are reported. The
fitness value of the best composite operator in the initial population is 0.35 and
the population fitness value is 0.18. The fitness value of the best composite
operator in the final population is 0.84 and the population fitness value is 0.79.
Figure 2.27(e) shows the output image of the best composite operator on the
whole training image and Figure 2.27(f) shows the binary image after
segmentation. The fitness value of the extracted ROI is 0.82. The best
composite operator has 44 nodes and its depth is 21. It has ten leaf nodes with
one containing GREEN plane and the others containing BLUE plane. It is
shown in Figure 2.28, where PFG means GREEN plane and PFB means
BLUE plane. Note that only green and blue planes are used by the composite
operator. Figure 2.29 shows how the average fitness of the best composite
operator and average fitness of population over all 10 runs change as GP runs.

2.4 Experiments 49

(a) person (b) composite feature image R ~ I extracted

(d) person (e) composite feature image (f) ROI extracted

(g) Person (h) composite feature image (i) ROI extracted

Figure 2.26. Testing IR images containing a person.

50 Chapter 2. Feature Synthesis for Object Detection

--
3 b.

(a) RED plane (b) GREEN plane (c) BLUE plane

(d) ground-truth (e) composite feature (f) ROI extracted
image

Figure 2.27. Training RGB color image containing car.

(MED (MED (MED (MULC (MUL (SUB (MIN
(MEAN (MAX2 (MED (ADDC (MAX2 (ADDC
(ADDC (MED (MAX2 (MED (MED (MAX2 (MED
(ADDC PFB)) PFB))) PFB)))) PFB))) (MED PFG))))
(ADDC (MAX2 (ADDC (ADDC (MED (MAX2 (MED
(MED (MAX2 (MED (ADDC PFB)) PFB))) PFB))))
PFB))) (ADDC PFB))))))

Figure 2.28. Learned composite operator tree in LISP notation.

2.4 Experiments 5 1

generation

Figure 2.29. Fitness versus generation (car).

We apply the composite operator to the testing image whose RED plane is
shown in Figure 2.30(a). Figure 2.30 (b) shows the output of the composite
operator and Figure 2.30(c) shows the ROI extracted. The fitness value of
extracted ROI is 0.76.

(a) RED plane (b) composite feature (c) ROI extracted
image

Figure 2.30. Testing RGB color image containing car.

52 Chapter 2. Feature Synthesis for Object Detection

SUV extraction in RGB color images: In this subsection, GP is applied to
learn features to detect SUV (sports utility vehicle) in RGB color images. The
images containing a SUV have more complicated background than the images
containing the car, increasing the difficulty in SUV detection. This will be a
difficult example for any segmentation technique in computer vision and
pattern recognition. Figure 2.31(a), (b) and (c) show the RED, GREEN and
BLUE planes of the training image and Figure 2.3 1(d) shows the ground-truth.
The training region is from (20, 21) to (139, 100). Figure 2.3 1(f) and (g) show
the RED plane and the ground-truth of the testing image.

(a) RED plane (b) GREEN plane (c) BLUE plane (d) ground-truth

(e) ROI extracted (f) RED plane (g) ground-truth (h) ROI extracted

Figure 2.3 1. Training and testing RGB color image containing SUV.

The steady-state GP is applied to synthesize composite operators for SUV
detection and the results from the best of ten runs (fourth run) are reported.
The fitness value of the best composite operator in the initial population is
0.33 and the population fitness value is 0.22. The fitness value of the best
composite operator in the final population is 0.69 and the population fitness
value is 0.65. Figure 2.31(e) and (h) show the ROI extracted by the best
composite operator from training and testing images. The fitness values of the
extracted ROIs are 0.69 and 0.58, respectively. The extracted ROIs are not
very satisfactory, since the shapes of ROIs differ from the shapes of vehicles

2.4 Experiments 53

in images. However, the extracted ROIs contain SUVs in the training and
testing images, which means the locations of the vehicle are correctly detected.

2.4.3 Comparison with GP with hard limit on composite operator size

As stated in chapter 2.3, GP has a well-known code bloat problem in that the
size of individuals becomes larger and larger as GP proceeds if no measure is
taken to control the size. Large individuals cause problems such as reducing
the speed of GP, taking up a lot of computer memory, and overfitting the
training data. To resolve this problem, a simple way is to set a limit on the size
of individuals. If crossover or mutation produces an individual above the size
limit, the individual is discarded and crossover or mutation is performed again.

In this section, the performance of a hard-size GP (GP with hard limit on
composite operator size = 30) is compared with the soft-size GP (GP with soft
limit on composite operator size) whose performance is reported before. The
major difference between the soft-size GP and the hard-size GP, as stated in
chapter 2.3, is that in the soft-size GP, a composite operator with size above
the size limit is kept in the population if its fitness value is the highest (used in
this chapter) or above a certain threshold value. All the other parameters of
these two GPs are the same.

Table 2.5 shows the performance of the hard-size GP. In the following, the
results from the best composite operator found in ten runs are shown. The
average performance of hard-size GP over ten runs is compared with that of a
MDL-based GP with smart operators in chapter 3.

54 Chapter 2. Feature Synthesis for Object Detection

Table 2.5. The performance results on various examples of SAR images. The hard
limit on composite operator size is used.

fop fitness of the best composite operator on selected region(s),
fp : fitness of population on selected region(s),
*: indicate finess on the entire training images,
finitial: fitness of the initial generation on selected region(s),
ffinal: fitness of the final population on selected region(s),
f,,,,: fitness of the best composite operator on the entire testing images.

2.4 Experiments 55

Road extraction: Figure 2.3(a) shows the training image and Figure
2.10(a), (d) show the testing images. The generational GP is used to generate a
composite operator to extract the road and the best composite operator is found
in the seventh run. The fitness value of the best composite operator in the
initial population is 0.60 and the population fitness value is 0.27. The fitness
value of the best composite operator in the final population is 0.94 and the
population fitness value is 0.93. The fitness of the extracted ROI is 0.90.
Figure 2.32(a) shows the output image of the best composite operator in the
final population and Figure 2.32(b) shows the extracted ROI. We apply the
composite operator obtained in the above training to the two testing SAR
images. Figure 2.32(c) and (d) show the output image of the composite
operator and the ROI extracted from Figure 2.10(a), respectively. The fitness
value of the extracted ROI is 0.90. Figure 2.32 (e) and (0 show the output
image of the composite operator and the ROI extracted from Figure 2.10(d),
respectively. The fitness value of the extracted ROI is 0.93.

(a) composite (b) R01 extracted (c) composite
feature image from Figure 2.3(a) feature image

(d) ROI extracted from (e) composite (f) ROI extracted from
Figure 2.10(a) feature image Figure 2.1 0(d)

Figure 2.32. Results on SAR images containing road.

56 Chapter 2. Feature Synthesis for Object Detection

The best composite operator has 27 nodes and its depth is 16. It has five leaf
nodes, three contain 5x5 median image and the other two contain 7x7 median
image. It is shown in Figure 2.33, where PFIM14 and PFIMl5 are 5x5 and
7x7 median images, respectively. The median images have less speckle noise,
since median filtering is effective in eliminating speckle noise. Figure 2.34
shows the change in the average fitness of the best composite operators and
the average fitness of the populations over all the 10 runs as GP explores the
composite operator space. GP gradually shifts the population to the regions of
space containing good composite operators.

(MAX (MAX (MIN (DIVC (DIV (ADDC
(ADD (ADDC (ADD (SUBC (ADDC (ADD
(SUBC (STDV (MAX (SUBC PFIM15))))
(MAX (SUBC PFIM14))))) (MAX (SUBC
PFIM 14)))) (MAX (SUBC PFIM 14))))
PFIM15)))))

Figure 2.33. Learned composite operator tree in LISP notation.

generation

Figure 2.34. Fitness versus generation (road vs. field).

2.4 Experiments 57

Lake extraction: Figure 2.11(a) shows the training image and Figure
2.12(a) shows the testing image. The steady-state GP is used to generate the
composite operator and the best composite operator is found in the 4th run. The
fitness value of the best composite operator in the initial population is 0.62 and
the population fitness value is 0.30. The fitness value of the best composite
operator in the final population is 0.99 and the population fitness value is 0.95.
The fitness of the extracted ROI is 0.95. Figure 2.35(a) shows the output
image of the best composite operator in the final population and Figure 2.35(b)
shows the extracted ROI. We apply the composite operator to the testing SAR
image. Figure 2.35(c) and (d) show the output image of the composite operator
and the extracted ROI with fitness value 0.97, respectively. In Figure 2.35(a)
and (c), pixels in the small dark regions have very low pixel values (negative
values with very large absolute value), thus making many pixels appear bright,
although some of them have negative pixel values.

(a) composite (b) ROI extracted (c) composite (d) ROI extracted
feature image from Figure 2.1 1 (a) feature image from Figure 2.1 2(a)

Figure 2.35. Results on SAR images containing lake.

58 Chapter 2. Feature Synthesis for Object Detection

River extraction: Figure 2.13(a) shows the training image and Figure
2.16(a) shows the testing image. The steady-state GP is used to generate the
composite operator and the results from the first run are reported. The fitness
value of the best composite operator in the initial population is 0.59 and the
population fitness value is 0.19. The fitness value of the best composite
operator in the final population is 0.89 and the population fitness value is 0.86.
The fitness of the extracted ROI is 0.72. Figure 2.36(a) shows the output
image of the best composite operator in the final population and Figure 2.36(b)
shows the extracted ROI. We apply the composite operator to the testing
image. Figure 2.36(c) and (d) show the output image of the composite operator
and the extracted ROI with fitness value 0.83.

The best composite operator has 30 nodes and its depth is 23. It has four
leaf nodes, three contain 5x5 mean image and the other one contains 3x3 mean
image. There are more than ten MED operators that are very useful in
eliminating speckle noise. It is shown in Figure 2.37. Figure 2.38 shows how
the average fitness of the best composite operators and the average fitness of
the populations over all the 10 runs change as GP explores the composite
operator space.

(a) composite (b) ROI extracted (c) composite (d) ROI extracted
feature image from Figure 2.1 3(a) feature image from Figure 2.1 6(a)

Figure 2.36. Results on SAR images containing river.

2.4 Experiments 59

(MULC (MED (MED (MED (MED (MED
(MED (MED (MED (MED (MED (MIN

(ADDC (LOG (ADD (MAX (MIN (MULC
PFIM2))) (DIV (MIN (MULC (MED (MIN
(MAX (SUB PFIM2 (MULC PFIM2)))))))

PFIMl))))))))))))))))

Figure 2.37. Learned composite operator tree in LISP notation.

0 5 10 15 20 25 30 3540 45 50 55 60 65 70

generation

Figure 2.38. Fitness versus generation (river vs. field).

Field extraction: Figure 2.17(a) shows the training image and Figure
2.18(a) shows the testing image. The generational GP is used to generate the
composite operator and the results from the 7th run are reported The fitness
value of the best composite operator in the initial population is 0.52 and the
population fitness value is 0.38. The fitness value of the best composite
operator in the final population is 0.78 and the population fitness value is 0.77.
The fitness of the extracted ROI is 0.88. Figure 2.39(a) shows the output
image of the best composite operator in the final population and Figure 2.39(b)
shows the extracted ROI. We apply the composite operator to the testing
image. Figure 2.39(c) and (d) show the output image of the composite operator
and the extracted ROI with fitness value 0.8 1.

60 Chapter 2. Feature Synthesis for Object Detection

(a) composite (b) ROI (c) composite (d) ROI
feature image extracted from feature image extracted from

Figure 2.1 7(a) Figure 2.1 8(a)

Figure 2.39. Results on SAR images containing field.

Tank extraction: Figure 2.19(a) shows the training image and Figure
2.22(a) shows the testing image. The generational GP is used to generate the
composite operator and the results from the 6th run are reported. The fitness
value of the best composite operator in the initial population is 0.65 and the
population fitness value is 0.17. The fitness value of the best composite
operator in the final population is 0.88 and the population fitness value is 0.87.
The fitness of the extracted ROI is 0.88. Figure 2.40(a) shows the output
image of the best composite operator in the final population and Figure 2.40(b)
shows the extracted ROI. We apply the composite operator to the testing
image. Figure 2.40(c) and (d) show the output image of the composite operator
and the extracted ROI with fitness value 0.84.

The best composite operator has 28 nodes and its depth is 17. It has four
leaf nodes with two containing a 3x3 minimum image, one containing a 7x7
maximum image and one containing a 7x7 minimum image. It is shown in
Figure 2.41. Figure 2.42 shows how the average fitness of the best composite
operators and the average fitness of the populations over all the 10 runs change
as GP proceeds.

2.4 Experiments 61

(a) composite (b) ROI (c) composite (d) ROI
feature image extracted from feature image extracted from

Figure 2.1 9(a) Figure 2.22(a)

Figure 2.40. Results on SAR images containing tank.

(MED (MED (MUL (MIN PFIM 10) (MUL
(MAX PFIM12) (MIN2 (MAX (SUBC

(DIVC (MIN (MEAN PFIM9))))) (SUBC
(MED (SUBC (MAX (MAX (SUBC (MAX

(MAX (SUBC (MAX (MAX (SUBC
PFIM 10)))))))))))))))))
--

Figure 2.41. Learned composite operator tree in LISP notation.

0 . 1 1 1
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70

generation

Figure 2.42. Fitness versus generation (T72 tank).

62 Chapter 2. Feature Synthesis for Object Detection

Comparing Table 2.3 and Table 2.5, we find that there is not much difference
between the soft and hard size limits since both use a limit of 30 as the size of
a composite operator. The only difference between them is that in the case of
the soft size limit an exception is allowed if the fitness of an individual is the
highest in the population.

2.4.4 Comparison with image-based GP

This subchapter is an advancement to our previous work in [17], where we
also applied genetic programming to learn composite operators for object
detection. The three major differences between the method presented here and
that in [17] are:

1. Unlike [17] where a whole training image is used during training (Image-
based GP), here GP runs on carefully selected region(s) (Region-based GP)
to reduce the training time.

2. The hard size limit on the composite operator is replaced by the soft size
limit in this chapter. This removes the restriction on the selection of
crossover point in the parent composite operators to improve the search
efficiency of GP, as stated in chapter 2.3.2.

3. Only the first mutation type in chapter 2.3.2 and only the first seven
primitive feature images are used in [17]. With more mutation types and
more primitive feature images used, the diversity of the composite operator
population can be further increased.

We summarize the experimental results on SAR images in [17] for the
purpose of comparison. The parameters are: the same population size (loo),
100 generations (vs. 70), the same fitness threshold value (1.0), the same
crossover rate (0.6), 0.1 mutation rate (vs. 0.05), a hard limit of 30 on the
maximium size (number of internal nodes) of composite operators (vs. soft
limit of 30), and the same segmentation threshold (0). In each experiment, GP
is invoked ten times with the same parameters. The experimental results from
the run in which GP finds the best composite operator among the composite
operators found in all ten runs and the average performance of ten runs are
shown in Table 2.6.

2.4 Experiments 63

Road extraction: In this case, the entire training image (shown in Figure
2.3(a)) is used and the same testing images in Figure 2.10(a), (d) are used. The
generational GP was used to generate a composite operator to extract the road.
The fitness value of the best composite operator in the initial population is
0.47 and the population fitness value is 0.19. The fitness value of the best
composite operator in the final population is 0.92 and the population fitness
value is 0.89. Figure 2.43(a) shows the output image of the best composite
operator in the final population and Figure 2.43(b) shows the extracted ROI.
We applied the composite operator obtained in the above training to the two
testing SAR images. Figure 2.43(c) and (d) show the output image of the
composite operator and the ROI extracted from Figure 2.10(a). The fitness
value of the extracted ROI is 0.89. Figure 2.43(e) and (9 show the output
image of the composite operator and the ROI extracted from Figure 2.10(d).
The fitness value of the extracted ROI is 0.92.

Lake extraction: The entire training image in Figure 2.1 1(a) is used and
Figure 2.12(a) shows the testing image. The steady-state GP was used to
generate the composite operator. The fitness value of the best composite
operator in the initial population is 0.65 and the population fitness value is
0.42. The fitness value of the best composite operator in the final population is
0.93 and the population fitness value is 0.92. Figure 2.44(a) shows the output
image of the best composite operator in the final population and Figure 2.44(b)
shows the extracted ROI. We applied the composite operator to the testing
SAR image. Figure 2.44(c) and (d) show the output image of the composite
operator and the extracted ROI with fitness value 0.92. In Figure 2.44(a) and
(c), pixels in the small dark regions have very low pixel values (negative
values with very large absolute values), thus making many pixels appear
bright, although some of them have negative pixel values.

64 Chapter 2. Feature Synthesis for Object Detection

(a) composite (b) ROI extracted
feature image from Figure 2.3(a)

(d) ROI (e) composite
extracted from feature image
Figure 2.1 0(a)

I I

(c) composite
feature image

(f) ROI
extracted from
Figure 2.1 0 (d)

Figure 2.43. Results on SAR images containing road.

(a) composite (b) ROI extracted (c) composite (d) ROI extracted
feature image from Figure 2.1 1 (a) feature image from Figure 2.1 2(a)

Figure 2.44. Results on SAR images containing lake.

2.4 Experiments 65

Table 2.6. The performance results of image-based GP on various SAR images.

River extraction: The entire training image in Figure 2.13(a) is used and
Figure 2.16(a) shows the testing image. The steady-state GP was used to
generate the composite operator. The fitness value of the best composite
operator in the initial population is 0.43 and the population fitness value is
0.2 1. The fitness value of the best composite operator in the final population is
0.74 and the population fitness value is 0.68. Figure 2.5(a) shows the output
image of the best composite operator in the final population and Figure 2.5(b)
shows the extracted ROI. We applied the composite operator to the testing
image. Figure 2.5(c) and (d) show the output image of the composite operator
and the extracted ROI with fitness value 0.84. Like Figure 2.44(c), pixels in
the small dark region have very low pixel values, thus making many pixels
with negative pixel values appear bright.

Testing performance

ftest

fop fitness of the best composite operator on selected region(s),
fp : fitness of population on selected region(s),
*: indicate finess on the entire training images,
finitial: fitness of the initial generation on selected region(s),
ffinal: fitness of the final population on selected region(s),
f,,,: fitness of the best composite operator on the entire testing images.

Road

0.89,0.92

Lake

0.92

River

0.84

Field

0.68

66 Chapter 2. Feature Synthesis for Object Detection

(a) composite
feature image

(b) ROI extracted (c) composite (d) ROI extracted
from Figure 2.13(a) feature image from Figure 2.1 6(a)

Figure 2.45. Results on SAR images containing river.

(a) composite (b) ROI (c) composite (d) ROI extracted
feature image extracted from feature image from Figure 2.1 8(a)

Figure 2.1 7(a)

Figure 2.46. Results on SAR images containing field.

2.4 Experiments 67

Field extraction: In this case, the entire training image in Figure 2.17(a) is
used and Figure 2.18(a) shows the testing image. The generational GP was
used to generate the composite operator. The fitness value of the best
composite operator in the initial population is 0.62 and the population fitness
value is 0.44. The fitness value of the best composite operator in the final
population is 0.87 and the population fitness value is 0.86. Figure 2.46(a)
shows the output image of the best composite operator in the final population
and Figure 2.46(b) shows the extracted ROI. We applied the composite
operator to the testing image. Figure 2.46(c) and (d) show the output image of
the composite operator and the extracted ROI with fitness value 0.68.

Table 2.7. Average training time of region GP and image GP (in seconds).

Road

Region GP

From Table 2.3 and associated figures, it can be seen that if the carefully
selected training regions represent the characteristics of training images, the
composite operators learned by GP running on training regions are effective in
extracting the ROIs containing the object and their performance is comparable
to the performance of composite operators learned by GP running on whole
training images. By running on the selected regions, the training time is greatly
reduced. Table 2.7 shows the average training time of GP running on selected
regions (Region GP) and GP running on the whole training images (Image GP)
over all ten runs. Since the number of generations in [I71 is 100 and the
number of generations in this chapter is 70, the training time of "Image GP"
stated in Table 2.7 is normalized as the actual training time of "Image GP"
times 0.7. It can be seen that the training time using selected training regions is
much shorter than that using the whole image.

Lake

Image GP
1 12876

River

23608

Field

2263

9120

6560 9685

66476 21485

68 Chapter 2. Feature Synthesis for Object Detection

2.4.5 Comparison with a traditional ROI extraction algorithm

To show the effectiveness of composite operators in ROI extraction, they are
compared with a traditional ROI extraction algorithm. The traditional ROI
extraction algorithm uses a threshold value to segment the image into
foreground and background. The region consisting of pixels with value greater
than the threshold value is called the bright region and its complement is
called the dark region. If the bright region has a higher fitness than the dark
region, the bright region is the foreground. Otherwise, the dark region is the
foreground. The foreground is the ROI extracted by this traditional algorithm.
The threshold value plays a vital role in the ROI extraction and selecting an
appropriate threshold value is the key to the success of this traditional ROI
extraction algorithm. The performance of composite operators is compared
with that of the traditional ROI extraction algorithm when the best threshold
value is used. To find the best threshold value, every possible threshold value
is tried by the algorithm and its performance is recorded. In order to show the
effectiveness of composite features over that of primitive features, the
traditional ROI extraction algorithm is applied to all the 16 primitive feature
images (for SAR and IR images) or the 3 primitive feature images (RED,
GREEN AND BLUE planes of RGB color images), and the best result from
the 16 or 3 primitive feature images is recorded in Table 2.8 and Figure 2.47.

2.4 Experiments 69

The Traditional ROI Extraction Algorithm

find the maximum and minimum pixel values of the image.
if the maximum pixel value is greater than 1000

normalize the pixel values into the range of 0 to 1000. The pixel values
are changed according to the following equation.
newqixval = (orgqixval - minqixval) / (maxqixval - minqixval) *
1000
where newqixval and orgqixval are the new and original pixel values,
respectively and minqixval and maxqixval are the minimum and
maximum pixel values in the original image. After normalization, the
minimum and maximum pixel values are 0 and 1000, respectively.

else
do not normalize the image.

endif
each integer value between the minimum and maximum pixel values is
used as the threshold value and its performance in ROI extraction is
recorded.
select the best threshold value and output its corresponding ROI.

The fitness values of the extracted ROIs and their corresponding threshold
values are shown in Table 2.8. Figure 2.47 shows the ROIs extracted by the
traditional ROI extraction algorithm corresponding to the best threshold value.
For the purpose of comparison, Figure 2.48 shows the corresponding
performance of the GP-learned composite operators on the same images. From
Figure 2.47, Figure 2.48 and Table 2.8, it is clear that the composite operators
learned by GP are more effective in ROI extraction. Actually, its performance
is better than the best performance of the traditional ROI extraction algorithm
in all the examples except a couple of them where there is a minor difference.
Table 2.9 shows the average running time of the composite operators and the
traditional ROI extraction algorithm in extracting ROIs from training and
testing images. From Table 2.9, it is obvious that the composite operators are
more efficient.

70 Chapter 2. Feature Synthesis for Object Detection

Table 2.8. Comparison of the performance of traditional ROI extraction algorithm and
composite operators generated by GP.

person 1 96 1 PFIMl 1 2.47(1) 1 0.84

I Examples I Traditional techiniue GP-based

. .

SUV 1 106 1 PFIMl 1 2.47(s) 1 0.44

person
person
person

car
car

SUV

tech]
Fitness Fig.

94
99
95
101
107
68

PFIM13
PFIM7
PFIMl
PFIM2
PFIM2
PFIMl

2.47(m)
2.47(n)
2.47(0)
2.47(p)

2.47(q)
2.47(r)

0.83
0.81
0.84
0.45
0.41
0.30

2.4 Experiments 7 1

(a) paved road (b) unpaved (c) paved road
vs. field road vs. field VS. arass

(d) lake vs. field (e) lake vs. grass (9 river vs. field (g) river vs. field

(h) field vs. grass (i) field vs. grass (j) T72 tank (k) T72 tank

(I) person (rn) person (n) person (0) person

(P) car (4 car (r) SUV (s) SUV

Figure 2.47. ROIs extracted by the traditional ROI extraction algorithm.

72 Chapter 2. Feature Synthesis for Object Detection

(a) paved road (b) unpaved (c) paved road
vs. field road vs. field vs. grass

(d) lake vs. field (e) lake vs. grass (f) river vs. field (g) river vs. field

(h) field vs. grass (i) field vs. grass (j) T72 tank (k) T72 tank

(I) person (m) person (n) person (0) person

(P) car ((4) car (r) SUV (s) suv

Figure 2.48. ROIs extracted by the GP-evolved composite operators.

2.4 Experiments 73

Table 2.9. Average running time (in seconds) of the composite operators and the
traditional ROI extraction algorithm.

Composite
operator

Traditional
ROI

exaction
algorithm

Road

5

12.3

Lake

15

10

River

33

50.5

Field

8

32

Tank

3

23

Person

1

3.4

Car

2

5.5

SUV

6

20.5

2.4.6 A multi-class example

In the above examples, we showed the effectiveness and efficiency of
composite operators learned by GP in ROI extraction. In this section, a
complicated SAR image (shown in Figure 2.49(a)) containing lake, road, field,
tree and shadow is used as a testing image. Note that shadow is an unknown
region (reject class, not considered in this chapter) in this example. Figure
2.49(b), (c) and (d) show the ground-truth for lake, road and field.

We apply the composite operators for lake, road and field learned in
Examples 2, 1 and 4, respectively, to the above testing image. The lake
operator is applied first; then the road operator is applied to the rest of the
image excluding the lake ROIs; finally, the field operator is applied to the rest
of the image excluding both lake and road ROIs. The ROIs extracted are
shown in Figure 2.50. The fitness values are 0.85, 0 and 0.75, respectively.
These results are not promising. Since the pixel values of road and lake
regions are quite similar (see Figure 2.53, many pixels in the road and lake
regions have values between 0 and 20), the lake composite operator extracts
part of the road and the road composite operator extracts no road pixel. In
order to force GP to learn composite operators that can distinguish the subtle
difference between the lake and road pixels, a SAR image (shown in Figure

74 Chapter 2. Feature Synthesis for Object Detection

2.52) containing both lake and road is used as a training image. Figure 2.52(a)
shows the original image with the training regions from (4, 96) to (124, 119)
and from (2, 25) to (127, 86) used by GP to learn composite operators for the
lake extraction. To learn composite operators for the road extraction, the same
image with the training region from (90, 30) to (135, 117) shown in Figure
2.52(c) and the training image used in Example 1 are used for training. Figure
2.52(b) and (d) show the ground-truth for the lake and road, respectively. Note
that the images in Figure 2.49(a) and Figure 2.52(a) are quite different.

(a) original image (b) lake ground- (c) road ground- (d) field ground-
truth truth truth

Figure 2.49. SAR image containing lake, road, field, tree and shadow.

(a) lake ROI (b) road ROI (c) field ROI

Figure 2.50. Lake, road and field ROIs extracted by the composite operators learned in
Examples 1,2 and 4.

2.4 Experiments 75

0 20 40 60 80 100 120 140 160 180 200

pixel vaue

(a) Lake

0 20 40 60 80 100 120 140 160 180 200

pixel value

(b) road

Figure 2.5 1. Histogram of pixel values (range 0 to 200) within lake and road regions.

(a) original (b) lake (c) original (d) road
image ground-truth image ground-truth

Figure 2.52. SAR image containing lake and road.

76 Chapter 2. Feature Synthesis for Object Detection

(a) lake ROI extracted (b) road ROI extracted (c) road ROI extracted

Figure 2.53. lake and road ROIs extracted from training images.

The steady-state GP is applied to synthesize composite operators for lake
detection and the ROI extracted by the learned composite operator from the
training image is shown in Figure 2.53(a). The fitness value of the extracted
ROI is 0.95. The generational GP is applied to synthesize composite operators
for road detection. The ROIs extracted by the learned composite operator from
the training images (Figure 2.3(a) and Figure 2.52(c)) are shown in Figure
2.53(b) and (c). The fitness values are 0.78 and 0.90, respectively.

We apply the newly learned lake and road composite operators to the testing
image in Figure 2.49(a). The extracted lake and road ROIs are shown in Figure
2.54(a) and (b). The fitness values of the extracted ROIs are 0.93 and 0.46,
respectively. After extracting the lake and road from the image, we exclude the
regions corresponding to the extracted lake and road ROIs and apply the field
composite operator learned in Example 4 to the rest of the image. The
extracted ROI is shown in Figure 2.54(c) and its fitness value is 0.81. The
running times are 53, 127 and 26 seconds, respectively for the results shown in
Figure 2.54.

2.4 Experiments 77

(a) lake ROI (b) road ROI (c) field ROI

Figure 2.54. Lake, road and field ROIs extracted from the testing image.

(a) lake ROI (b) road ROI (c) field ROI

Figure 2.55. Lake, road and field ROIs extracted by the traditional algorithm.

Finally, the traditional ROI extraction algorithm is applied to the above
testing image. The extracted ROIs, corresponding to the best threshold values,
of the lake, road and field are shown in Figure 2.55(a), (b) and (c),
respectively. To extract road, the regions corresponding to the extracted lake
ROIs are removed and the algorithm is applied to the rest of the image. Figure
2.55(b) demonstrates that it is very difficult for the traditional ROI extraction
algorithm to distinguish road from field in SAR images. To extract field, the
regions corresponding to the ground-truth of the lake and road (not the ROIs
corresponding to the lake and road) are excluded. The reason that we do not
use extracted ROIs is that the extracted road ROIs are very bad. The fitness

78 Chapter 2. Feature Synthesis for Object Detection

values of the extracted lake, road and field ROIs are 0.86, 0.15 and 0.79,
respectively. The best threshold values are 16, 55 and 28.5, and the running
times are 192, 176 and 195 seconds, respectively. It can be seen that the GP
learned composite operators are more effective in the lake, road and field
detection, compared to the traditional ROI extraction algorithm.

2.5 Conclusions

In this chapter, we use genetic programming to synthesize composite operators
and composite features to detect potential objects in images. We use a soft
composite operator size limit to avoid code-bloating and severe restrictions on
GP search. We also compare it with the hard limit on composite operator size.
Our experimental results show that the primitive operators and primitive
features defined by us are effective. GP can synthesize effective composite
operators for object detection by running on the carefully selected training
regions of images and the synthesized composite operators can be applied to
the whole training images and other similar testing images. We do not find
significant difference between generational and steady-state genetic
programming algorithms.

As discussed, GP has code bloat problem. Controlling code bloat due to the
limited computational resources inevitably restricts the search efficiency of
GP. How to reach the balance between the two conflicting factors (size of the
composite operator and performance) is critical in the implementation of GP.
In the next chapter, we address this problem by designing a new fitness
function based on the minimum description length (MDL) principle to
incorporate the size of composite operators into the fitness evaluation process.

Chapter 3

MDL-BASED EFFICIENT GENETIC PROGRAMMING
FOR OBJECT DETECTION

3.1 Introduction

In chapter 2, the efficacy of genetic programming in learning composite
features for object detection is demonstrated. The motivation for using GP is
to overcome the human experts' limitation of considering only a very limited
number of conventional combinations of primitive features. Chapter 2 shows
that GP is an effective way of synthesizing composite features from primitive
ones for object detection. However, genetic programming is computationally
expensive. In the traditional GP with hard limit on the individual size (also
called a normal GP), crossover and mutation locations are randomly selected,
leading to the disruption of the effective components (subtree in this approach)
of composite operators especially at the later stage of the GP search. This
greatly reduces the efficiency of GP. It is very important for GP to identify and
keep the effective components of composite operators to improve the
efficiency. In this chapter, smart crossover and smart mutation are proposed to
better choose crossover and mutation points to prevent effective components
of a composite operator from being disrupted. Also, a public library is
established to save the effective components of composite operators for later
reuse. Finally, a fitness function based on the minimum description length
(MDL) principle is designed to incorporate the size of a composite operator

80 Chapter 3. MDL-Based Efficient Genetic Programming for Object Detection

into the fitness evaluation to address the well-known code bloat problem of GP
without imposing severe restrictions on the GP search. The GP with smart
crossover, smart mutation and MDL-based fitness function is called a smart
GP.

3.2 Motivation and Related Research

Crossover and mutation are two major mechanisms employed by GP to search
the composite operator space (also called feature combination space). As GP
proceeds, effective components are generated. The power of crossover lies in
the fact that by swapping sub-trees between two effective composite operators
(parents), the effective components (sub-trees) in these two parents can be
assembled together into child composite operators (offspring) and the new
offspring may be better than both parents. However, although crossover can
assemble good components to yield better offspring, it is also a destructive
force in the sense that it can disrupt good components due to the random
selection of crossover points. When the search begins, since the initial
population is randomly generated, it is unlikely that a composite operator
contains large good components and the probability of crossover breaking up a
good component is small. At this time, crossover is a constructive force and
the fitness of a composite operator is increased. As search proceeds, small
good components are generated and assembled into larger and larger good
components. When more and more composite operators contain large good
components to achieve high fitness, the good component accounts for a large
portion of a composite operator and the composite operator becomes more and
more fragile because the good components are more prone to being broken up
by subsequent crossover due to the random selection of crossover points. The
crossover can damage the fitness of a composite operator in ways other than
disrupting good components. Sometimes, a good component is moved into an
inhospitable context, that is, the crossover inserts a good component into a
composite operator that does not use the good component in any useful way or
other nodes of the composite operator cancel out the effect of the good
component. According to [82], crossover has an overwhelmingly negative
effect on the fitness of the offspring from crossover, especially in the later
stage of GP search.

3.2 Motivation and Related Research 81

Mutation is introduced to maintain the diversity of a population, since a
serious weakness of evolutionary algorithms is that the population recombined
repeatedly will develop uniformity sooner or later [82]. However, in the later
stage of GP search when more and more composite operators contain large
good components, the random selection of mutation points leads to a high
probability of disrupting good components and makes mutation a destructive
force. When both crossover and mutation become negative factors in the GP
search, it is very unlikely that better composite operators will be generated. To
improve the efficiency and effectiveness of GP, it is highly beneficial if good
components can be identified and kept from destructive crossover and
mutation operations and stored in a public library for later reuse. These
components are treated as atomic terminals and are directly inserted into
composite operators as a whole when the mutations are performed or during
initialization.

GP has a well-known code bloat problem in which the sizes of individuals
become larger and larger. In normal GP with individuals represented by tree
structures, a crossover operation is performed by swapping sub-trees rooted at
the randomly selected nodes called crossover points, and one of the mutation
operations is performed by substituting a randomly selected sub-tree with
another randomly generated tree. It is easy to see that the size of one offspring
(i.e., the number of nodes in the binary tree representing the offspring) may be
greater than both parents if crossover and mutation are performed in this
simple way. If we do not control the sizes of composite operators, they will
become larger and larger as GP proceeds, as stated in chapter 2. When the size
becomes too large, it takes a long time to execute a composite operator, greatly
reducing the speed of GP. Also, large-size composite operators may overfit
training data by approximating the noise in images. Although the result on the
training image is very good, the performance on unseen testing images may be
bad. Finally, large composite operators take up a lot of computer memory.

Usually in normal GP, a limit on the size of composite operators is
established when performing crossover or mutation. If the size of an offspring
exceeds the size limit, the crossover or mutation operation is performed again
until the sizes of both offspring are within the limit. Although this simple
method prevents the code bloat, the size limit may greatly restrict the search
performed by GP [17], since after randomly selecting a crossover point in one
composite operator, GP cannot select some nodes of the other composite

82 Chapter 3. MDL-Based Efficient Genetic Programming for Object Detection

operator as crossover point in order to guarantee that both offspring do not
exceed the size limit. Also, the size limit restricts the size of trees used to
replace sub-trees in mutation. However, the composite operator space is huge
[17], and to find effective composite operators, GP must search extensively.
Restricting the search greatly reduces the efficiency of GP, making it less
likely to find good composite operators. To allieviate the restrictions, in
chapter 2, the soft limit on the composite operator size is proposed. With a soft
size limit, GP allows the generation of large compsite operators above the size
limit and keeps those large composite operators only when they are the best, or
with performance very close the best composite operator(s) in the population,
thus taking off the restrictions on the selection of crossover and mutation
points without causing code bloat. However, with little knowledge on the
composite operator space and the object characteristics, it is very difficult, if
not impossible, to determine the appropriate hard or soft size limit to prevent
code bloat and overfitting while allowing the resulted composite operators to
capture the characteristics of objects. How to avoid restricting the GP search
without causing code bloat is the key to the success of GP search. Also, with
little knowledge on the objects to be detected, it is critical for GP to
automatically determine the appropriate size of composite operators that are
needed to capture the characteristics of objects. In this chapter, a fitness
function is designed based on the minimum description length (MDL)
principle [loo] to take the size of a composite operator into the fitness
evaluation process. According to the MDL principle, large composite
operators effective on training regions may not have good fitness and will be
culled out by selection. Thus, we can take off the restriction on crossover and
mutation while preventing composite operators from growing too large.

To improve the efficiency of GP, Tackett [I161 devises a method called
brood recombination to reduce the destructive effect of crossover. In this
method, when crossover is performed, many offspring are generated from two
parents and only the best two offspring are kept. D'haeseleer [24] devises
strong context preserving crossover (SCPC) to preserve the context. SCPC
only permits crossover between nodes that occupied exactly the same position
in the two parents. He finds modest improvement in results by mixing regular
crossover and SCPC. Smith [I l l] proposes a conjugation operator for GP to
transfer genetic information from one individual to another. In his conjugation
method, the parent with higher fitness becomes the donor and the other with
lower fitness becomes the recipient. The conjugation operator is different from

3.2 Motivation and Related Research 83

crossover and it simulates one of the ways in which individuals exchange
genetic materials in nature. Ito et al. [48] propose a depth-dependent crossover
for GP in which the depth selection ratio is varied according to the depth of a
node. A node closer to the root node of a tree has a better chance of being
selected as a crossover point to lower the chance of disrupting small good
components near leaves. Their experimental results show the superiority of the
depth-dependent crossover to the random crossover in which crossover points
are randomly selected. Bhanu and Lin [16], [69] propose smart crossover and
mutation operators to identify and keep the good components of composite
operators. Their initial experiments show that with smart GP operators, GP can
search the composite operator space more efficiently.

Unlike the work of Ito [48] that used only the syntax of a tree (the depth of a
node), the smart crossover and smart mutation proposed in this chapter
evaluate the performance of each node to determine the interactions among
them and use the fitness values of the nodes to determine crossover and
mutation points. Also, unlike our previous work [16], a public library is
introduced to keep the good components for later reuse and more types of
mutations are added to increase the population diversity. Nine more primitive
feature images are included to build composite operators. To reduce the
training time, the training in this chapter is performed on the selected regions
of training images, not the whole images as in the previous work. More
importantly, a new MDL-based fitness function is designed to reach a balance
point between the conflicting factors of code bloat and less restriction on the
GP search.

Quinlan and Rivest [97] explore the use of the minimum description length
principle for the construction of decision trees. The MDL defines the best
decision tree to be the one that yields the minimum combined length of the
decision tree itself plus the description of the misclassified data items. Their
experimental results show that the MDL provides a unified framework for
both growing and pruning the decision tree, and these trees seem to compare
favorably with those created by other techniques such as C4.5 algorithm. Gao
et al. [34] use the MDL principle to determine the best model granularity such
as the sampling interval between the adjacent sampled points along the curve
of Chinese characters or the number of nodes in the hidden layer of a three
layer feed-forward neural network. Their experiments show that in these two
quite different settings the theoretical value determined by the MDL principle

84 Chapter 3. MDL-Based Efficient Genetic Programming for Object Detection

coincides with the best value found experimentally. The key point of their
work is that using the MDL principle, the optimal granularity of the model
parameters can be computed automatically rather than being tuned manually.
In this chapter, a fitness function is designed based on the MDL principle to
incorporate the size of composite operators into the fitness evaluation to
address the code-bloat problem without imposing severe restrictions on the GP
search.

3.3 Improving the Efficiency of GP

The primitive feature images and primitive operators are the same as those
used in chapter 2. There are 16 primitive feature images: the original image
(0), mean (1-3), deviation (4-6), maximum (7-9), minimum (10-12) and
median (13-15) images obtained by applying templates of sizes 3x3, 5x5 and
7x7. 17 primitive operators are ADD, SUB, MUL, DIV, MAX2, MIN2,
ADDC, SUBC, MULC, DIVC, SQRT, LOG, MAX, MIN, MED, MEAN and
STDV. The key parameters are the population size M, the number of
generation N, the crossover rate, the mutation rate and the goodness threshold
(defined in chapter 3.3.1). The GP stops whenever it finishes the pre-specified
number of generations or whenever the best composite operator in the
population has goodness value greater than the goodness threshold.

3.3.1 MDL principle-based fitness function

To address the code bloat problem and prevent severe restriction on the GP
search, we design a MDL-based fitness function to incorporate the composite
operator size into the fitness evaluation process. The fitness of a composite
operator is defined as the sum of the description length of the composite
operator and the description length of the segmented training regions with
respect to this composite operator as a predictor for the label (object or
background) of each pixel in the training regions. Here, both lengths are
measured in bits and the details of the coding techniques are relevant. The
trade-off between the simplicity and complexity of composite operators is that
if the size of the composite operators is too small, it may not capture the
characteristics of objects to be detected, on the other hand, if the size is too
large, the composite operator may overfit the training image, thus performing

3.3 Improving the Efficiency of GP 85

poorly on the unseen testing images. With the MDL-based fitness function, the
composite operator with the minimum combined description lengths of both
the operator itself and image-to-operator error is the best composite operator
and may perform best on the unseen testing images. Based on minimum
description length principle, we propose the following fitness function for GP
to maximize:

F(COi) = - (rxlog (N,,) xSize(C0i) +

where COi is the ith composite operator in the population, N,, is the number of
primitive operators (including primitive feature images) available for GP to
synthesize composite operators, Size(COi) is the size of the composite operator
which is the number of nodes in the binary tree representing it, no and nb are
the number of object and background pixels misclassified, Wim and Hi, are the
width and height of the training image and r is a parameter determining the
relative importance of the composite operator size and the detection rate,
which is 0.7 in this chapter. The value r = 0.7 is selected experimentally. In
our experiments, we find 0.7 is an appropriate value to balance the composite
operator size and its performance. Note that the first term of the fitness
function is the description length of the composite operator. The description
length is the number of bits needed to encode a composite operator and it is
not the size of a composite operator (the number of nodes in the composite
operator). However, the description length is closely related to the size of a
composite operator. The larger the size of a composite operator, the longer is
its description length.

We now give a brief explanation of this fitness function. Suppose a sender
and a receiver both have the training image and the training regions and they
agree in advance that composite operators can be used to locate the object in
the image, that is, to determine the label (object or background) of each pixel
in the training regions. But only the sender knows the ground-truth (the label
of each pixel). Now, the sender wants to tell the receiver which pixels belong
to the object and which pixels belong to the background. One simple approach
to do this is to send a bit sequence of n (n is the number of pixels in the
training regions) bits where 1 represents the object and 0 represents

86 Chapter 3. MDL-Based Efficient Genetic Programming for Object Detection

background, provided that both the sender and the receiver know the order of
the training regions and they agree that the pixels are scanned in the top-to-
bottom and left-to-right fashion. However, n is usually very large, thus the
communication burden is heavy. To reduce the number of bits to be
transmitted, the sender can send the composite operator to the receiver. Then
the receiver applies the composite operator on the training regions to get
segmented training regions. When sending the composite operator, the sender
can send its nodes in a preorder traversal. Given Npo primitive operators
(including primitive features), log(Npo) bits are needed to encode each node.
Thus, the cost of sending composite operator is log(Npo) xSize(COi). However,
some pixels may be misclassified by the composite operator. In order for the
receiver to get the truth, the sender needs to tell the receiver which pixels are
misclassified. Each pixel is represented by its coordinate in the image. If the
width and height of the image are Wi, and Him respectively, then
log(Wim)+log(Him) bits are needed to encode each pixel. Thus, the cost of
sending the misclassified pixels is (no + nb) x(log(Wim)+log(Him)). If the
composite operator is very effective and its size is not too large, then only few
pixels are misclassified and the number of bits to send is much smaller than n.

In chapter 2, the fitness function is defined as n(GnG ') / n(G u G '), where
G and G' are foregrounds in the ground-truth image and the resultant image of
a composite operator respectively and n(X) denote the number of pixels within
the intersection of region X and the training region. It measures how the
ground-truth and the detection results are overlapped. In this chapter, this
measure is called the goodness of a composite operator. It is not used to drive
smart GP, but only used to measure the effectiveness of a composite operator.

3.3.2 Genetic programming with smart crossover and smart mutation

The selection operation selects composite operators from the current
population. In this chapter, as before, we use tournament selection with a
tournament size equal to five.

In the normal GP, to perform crossover, two composite operators are
selected on the basis of their fitness values. The higher the fitness value, the
more likely the composite operator is selected for crossover. These two
composite operators are called parents. One internal node in each of these two

3.3 Improving the Efficiency of GP 87

parents is randomly selected, and the two subtrees rooted at these two nodes
are exchanged between the parents to generate two new composite operators,
called offspring. The crossover is called random crossover due to the random
selection of the crossover point. Usually, at the later stage of GP search,
effective composite operators contain large effective components. These
components are prone to be disrupted by random crossover, leading to a
reduction in the efficiency of genetic programming.

To avoid this problem, we propose a smart crossover that can identify and
keep the effective components. To define smart crossover, the output image of
each node, not just the resultant image from the root node, is evaluated and its
fitness value is recorded. Based on the node fitness values, we define the
fitness of an edge as the fitness difference between the parent node and the
child node linked by the edge. If the fitness value of a node is smaller than that
of its parent node, the edge linking them is a good edge. Otherwise, the edge is
labeled as a bad edge. During crossover, all the bad edges are identified and
one of them is selected by random selection or roulette selection (based on the
fitness of the bad edges) invoked with equal probability. The child node of the
selected edge is the crossover point and the subtrees rooted at the crossover
points are swapped between parents. If a composite operator has no bad edge,
the crossover point is randomly selected.

Since GP evaluates the fitness of each node, GP knows the fitness of each
component (subtree) of a composite operator. A public library is established to
store effective components for later reuse by smart mutation. The larger the
library, the more effective components can be kept for later reuse, but the
likelihood of each effective component being reused is reduced. In this
chapter, the size of the public library is 100. After the library is full, a new
effective component replaces the worst one in the library if it is better than the
replaced one.

To avoid premature convergence, mutation is introduced to randomly
change the structure of some individuals to maintain the diversity of the
populationComposite operators are randomly selected for mutation. In a
normal GP, there are three types of random mutation, invoked with equal
probability, that involve randomly selecting mutation points as described in
chapter 2.3.2.

88 Chapter 3. MDL-Based Efficient Genetic Programming for Object Detection

In the smart mutation, however, the mutation point is the parent or child
node of a bad edge or a bad node whose goodness is below the average
goodness of all the nodes in the tree. The mutation point is selected from those
qualified nodes randomly or by roulette selection based on the goodness of bad
edges or bad nodes. There are four smart mutations invoked with equal
probability:

1. Select the parent node of a bad edge as the mutation point. If the parent
node has only one child, it is deleted and the child node is linked to the
grandparent node (parent node of the parent node). If no grand parent node
exists, the child becomes the root node; if the parent node has two children,
the parent node and the sub-tree rooted at the child with smaller goodness
value are deleted and the other child is linked directly to the grand parent
node. If no grand parent node exists, the child becomes the root node.

2. Select the parent node of a bad edge as the mutation point and replace the
primitive operator stored in the node with another primitive operator of the
same number of input as the replaced one.

3. Select two subtrees whose roots are child nodes of two bad edges within the
composite operator and swap them. Neither of the two sub-trees can be the
sub-tree of the other.

4. Select a bad node as the mutation point. Delete the subtree rooted at the
node and replace it with another randomly generated tree or a randomly
selected effective component from the public library.

The first two mutations delete a node that cancels the effect of its child or
children; the third mutation moves two components away from unfriendly
contexts that cancel their effects and inserts them into new contexts to see if
the new contexts are appropriate to them; the fourth mutation deletes a bad
component and replaces it with a new component or a good one stored in the
public library.

3.3 Improving the Efficiency of GP 89

We use an &-greedy policy to determine whether a smart operator (smart
crossover or mutation) or a random operator (random crossover or mutation) is
used. With probability E, the smart operator is invoked; with probability 1 - E,
the random operator is invoked. In this chapter, E is a variable that is adjusted
by the following formula:

where cmin is 0.5 and E,, is 0.9, Goodpo, is population goodness (the average
goodness of the composite operators in the current population). The reason for
using the random operators is that smart operators bias the selection of
crossover and mutation points. They avoid disrupting effective components,
but at the same time they restrict the GP search. According to our experiments,
restricting the search reduces the efficiency of GP. At the beginning when the
population is just initialized, few composite operators contain effective
components. At this time, GP should search extensively to generate effective
components and assemble them together. It is harmful to apply smart operators
at the early stage of GP search since they just restrict the search. Only after
some time when the effective components are gathered in composite operators,
smart operators should be applied to identify the effective components to
avoid disrupting them and keep them in a public library for later reuse. So, in
this chapter, smart operators are not used in the first 20 generations. In the last
50 generations, smart operators are applied with higher and higher probability
as the population goodness becomes larger and larger. Here, the number 20 is
experimentally determined, since in our experiments, it is observed that the
population fitness (the average fitness of all the composite operators in the
population) increases significantly in the first 20 generations, which means
after 20 generations, some effective components are generated and assembled
together.

90 Chapter 3. MDL-Based Efficient Genetic Programming for Object Detection

3.3.3 Steady-state and generational genetic programming

As in chapter 2, steady-state genetic programming and generational genetic
programming are used to synthesize composite operators. The major
difference is that in generational GP, the offspring from crossover are kept
aside and do not participate in the crossover operation on the current
population. The current population is not changed during crossover. But in
steady-state GP, the offspring from crossover are evaluated and replace the
worst individuals in the population immediately, and they participate in the
crossover operations on the current population. In smart GP, a MDL-based
fitness function is used, smart GP crossover and smart mutation are invoked
with probability determined by &-greedy policy and a public library is set up to
store the effective components of composite operators. Similarly, we adopt an
elitism replacement method to keep the best composite operator from
generation to generation. At the end of each generation, GP checks each
composite operator and replaces it with the subtree whose root node has the
highest goodness value among all the nodes of the composite operator. This is
helpful to further control the size of composite operators and avoid overfitting.
Figure 3.1 and Figure 3.2 show the pseudo code for modified steady-state and
generational genetic programming algorithms, respectively.

3.3 Improving the Efficiency of GP 91

Modified Steady-state Genetic Programming Algorithm:

0. randomly generate population P of size M and evaluate composite operators in P.
1. for gen = 1 to N do // N is the number of generation
2. keep the best composite operator in P.
3. repeat
4. select 2 composite operators from P based on theirfitness values for

crossover.
5. select 2 composite operators with the lowestfitness values in P for

replacement.
6. ifgen < 20 then
7. perform random crossover and let the 2 offspring replace the 2 composite

operators selected for replacement.
else

8. perform smart or random crossover and let the 2 offspring replace the 2
composite operators selected for replacement.

endif
9. execute the 2 offspring and evaluate their fitness values.
10. until crossover rate is met.
11. ifgen < 20 then
12. perform random mutation on each composite operator with probability of

mutation rate.
else

13. perform smart or random mutation on each composite operator with
probability of mutation rate.

endif
14. execute and evaluate mutated composite operators.

N after crossover and mutation, a new populationP'is generated.
15. perform elitism mechanism. let the best composite operator of P replace the

worst composite operator in P' and let P = P'.
16. update the value of E according to equation (3.2).
17. store good components of composite operators in the public library.
18. ifthe goodness of the best composite operator in P is above goodness threshold

value, then
19. stop.

endif
20. check each composite operator in P and use its best component to replace it.

endfor // loop

Figure 3.1. Modified Steady-state genetic programming.

92 Chapter 3. MDL-Based Efficient Genetic Programming for Object Detection

Modified Generational Genetic Programming Algorithm:

0. randomly generate population P of size M and evaluate each composite operator
in P.

I . for gen = I to N do // N is the number of generation
2. keep the best composite operator in P.
3. ifgen < 20 then
4. perform random crossover on the composite operators in P until crossover

rate is satisfied and keep all the offspring from crossover.
5. perform mutation on the composite operators in P and the offspring from

crossover with the probability of mutation rate.
else

6. perform smart or random crossover on the composite operators in P until
crossover rate is satisfied and keep all the offspring from crossover.

7. perform smart or random mutation on the composite operators in P and the
offspring from crossover with the probability of mutation rate.

endif
8, perform selection on P to select some composite operators and combine them with

the composite operators from crossover to get a new population P' of the same
size as P.

9. evaluate offspring from crossover and the mutated composite operators.
10. perform elitism mechanism. let the best composite operator from P replace the

worst composite operator in P' and let P = P'.
11. update the value of &according to equation (3.2).
12. store good components of composite operators in the public library.
13. if the goodness of the best composite operator in P is above the goodness

threshold, then
14. stop.

endif
15. check each composite operator in P and use its best component to replace it.

endfor //loop 1

Figure 3.2. Modified Generational genetic programming.

3.4 Experiments 93

3.4 Experiments

Various experiments are performed to test the efficacy of genetic
programming in extracting regions of interest from real synthetic aperture
radar (SAR) images. The SAR images are the same as used in chapter 2.4.1.
As in chapter 2 (except chapter 2.4.4), here, GP is not applied to the whole
training image, but only to a region or regions carefully selected from the
training image, to generate the composite operators. The generated composite
operator is then applied to the whole training image and some other testing
images to evaluate it. In each experiment in this chapter, both normal genetic
programming (GP with random crossover, random mutation and hard limit on
the composite operator size) and smart genetic programming (GP with smart
crossover, smart mutation and a MDL-based fitness function) are applied. For
the purpose of objective comparison, we invoke normal GP and smart GP with
the same set of parameters and training regions. The parameters in the
experiments are: populationsize (loo), the number of generations (70), the
goodness threshold value (1.0), the crossover rate (0.6), the mutation rate
(0.05), and the segmentation threshold (0). For normal GP, the hard size limit
of a composite operator is 30. These are the same parameters as used before in
chapter 2.

Five experiments (chapters 3.4.1 to 3.4.5) that are comparable to chapter
2.4.1 are performed with the same SAR images. In each experiment, GP is
invoked ten times with the same parameters and the same training region(s). In
this chapter, we present the results from the run in which GP finds the best
composite operator among the best composite operators found in all ten runs.
The comparison between normal GP and smart GP is provided in chapter
3.4.6. There is much randomness involved in GP, so for the purpose of
objective comparison, only the average performance over all ten runs is used
in comparison. Note that the fitness and goodness of composite operators are
the same in our previous work [17] and the definition of goodness in this
chapter is the same as the definition of fitness in [17] and in chapter 2, so the
comparison is based on the goodness of composite operators. Table 3.1 shows
the performance of the best composite operators learned by normal GP and
smart GP on various SAR images used in the experiments.

94 Chapter 3. MDL-Based Efficient Genetic Programming for Object Detection

Table 3.1. The performance of the best composite operators from normal and smart
GPs.

Normal GP

Size
Time

I Smart GP I

2.6 1 19 2
GP - the type of GP used to synthesize composite operators. G: generational

GP. S: steadv-state GP.
FBI - fitness of the best composite operator in the initial population (on

training region).
FBF - fitness of the best composite operator in the final population (on

training region).
G B ~ - goodness of the best composite operator in the initial population (on

training region).
GBF - goodness of the best composite operator in the final population (on

training region).
PF - performance, the goodness of the ROI extracted by the best composite

operator from training and testing images. * indicates the goodness of
ROI extracted from the training image.

Size - size of the best composite operator.

3.4 Experiments 95

Time - average running time (in seconds) of the best composite operator on
the training and testing images.

3.4.1 Road extraction

The training image contains horizontal paved road and field, as shown in
Figure 3.3(a); two testing images contain unpaved road vs. field and vertical
paved road vs. grass, as shown in Figure 3.9(a) and Figure 3.9 (f),
respectively. Two training regions (Figure 3.3(a)) are located from (5, 19) to
(50, 119) and from (82, 48) to (126, 124). Figure 3.3(b) shows the ground-
truth. The white region corresponds to the road and only the portion of ground-
truth in the training regions is used in the fitness evaluation. These testing and
training images (and regions) are the same as those previously used in chapter
2, Figure 2.3(a) and (b) and Figure 2.10(a) and (b), respectively.

(a) paved road
vs. field

(d) ROI extracted
(normal GP)

(b) ground-truth (c) feature image
(normal GP)

-*- .c
(e) feature image (f) ROI extracted

(smart GP) (smart GP)

Figure 3.3. Training SAR image containing road.

96 Chapter 3. MDL-Based Efficient Genetic Programming for Object Detection

The generational GP is used to synthesize a composite operator to detect the
road. For normal GP, the goodness value of the best composite operator in the
initial population is 0.60 and the goodness value of the best composite
operator in the final population is 0.94. Figure 3.3(c) shows the output image
of the best composite operator on the whole training image and Figure 3.3(d)
shows the binary image after segmentation. The goodness value of the
extracted ROI is 0.90. For smart GP, the fitness and goodness of the best
composite operator in the initial population are -2303.6 and 0.45, respectively.
The corresponding values in the final population are -325.4 and 0.94,
respectively. Figure 3.3(e) shows the output image of the best composite
operator on the whole training image and Figure 3.3(f) shows the binary image
after segmentation. The goodness value of the extracted ROI is 0.91. The best
composite operator has 18 nodes and a depth of 13. It has three leaf nodes all
containing 7x7 median image, which contains less speckles due to the median
filter's effectiveness in eliminating speckle noise. It is shown in Figure 3.4
where PFIM15 represents 7x7 median image. Compared to smart GP, the best
composite operator from normal GP has 27 nodes and a depth of 16.

(MAX (MAX (MAX (MAX
(MAX (SUBC (MUL (DIVC
(ADDC (MAX (MAX (MAX
(ADDC PFIM 15)))))) (DIV
PFIM 15 (STDV PFIM 1 5)))))))))

Figure 3.4. Learned composite operator tree in LISP notation.

3.4 Experiments 97

generation

Figure 3.5. Fitness versus generation (road vs. field).

Figure 3.5 shows how the average fitness of the best composite operators
and the average fitness of the populations over all 10 runs change as GP
proceeds. In Figure 3.5, the population fitness is much lower than that of the
best composite operator even at the end of GP search. It is reasonable, since
the selection of crossover points is not restricted by a hard size limit on
composite operators. The difference between the sizes of the composite
operators in the population is large and so are their fitness values. The
population fitness is not important since only the best composite operator is
used in testing. If GP finds one effective composite operator, the GP learning
is successful. That's why we do not compare the population fitness between
normal GP and smart GP. The large difference between the fitness of the best
composite operator and that of the population indicates that the diversity of the
population is maintained during GP search, which is very helphl in preventing
premature convergence.

Ten best composite operators are obtained in the initial and final generations
of 10 runs, respectively. Figure 3.6 shows the frequency of primitive operators
and primitive feature images appearing in the best composite operators of
initial and final generations. To compute frequency, we first compute the total
number of each primitive operator and the total number of each primitive
feature image in the 10 best composite operators, then divide them by the total
number of internal nodes and leaf nodes of these 10 best composite operators,
respectively. From Figure 3.6(b), it can be seen that MED operator has the
most frequent occurrence in the best composite operators learned by GP. This
is similar to the results in chapter 2, Figure 2.7.

98 Chapter 3. MDL-Based Efficient Genetic Programming for Object Detection

primitive operator
(a) lnltial

0.4 1

primitive operator

(b) final
0.4

primitive feature image

(c) initial
0.4 1

primitive feature image

(d) final

Figure 3.6. Frequency of primitive operators and primitive feature images.

3.4 Experiments 99

Figure 3.7 shows the output image at each node of the best composite operator
shown in Figure 3.4. The primitive operators in Figure 3.7 are connected by
arrow. The operator at the tail of an arrow provides input to the operator at the
head of the arrow. After segmenting the output image of a node, we get the
ROI (shown as the white region) extracted by the corresponding subtree rooted
at the node. The extracted ROIs and their goodness values are shown in Figure
3.8. If an output image has positive pixels only (for example, PFIMIS has
positive pixels only), everything is extracted and the goodness is 0.25. From
Figure 3.8, it can be seen that since the feature image from subtree (DIV
PFIMIS (STDV PFIMIS)) has no pixel with negative value, it does not affect
the ROI extracted from the feature image output by its parent node MUL. This
branch of the composite operator is a redundant code. Note that the best
composite operator shown in Figure 3.7 does not use primitive operator MED.
MED is very effective in speckle noise elimination, so it is frequently selected
by GP to build effective composite operators as shown in Figure 3.6, but
Figure 3.7 shows that without it, GP may still generate effective composite
operators. The interaction among primitive operators and primitive features is
very complicated, indicating the high complexity of the search space structure
and the difficulty of the feature synthesis process. Also, some combinations of
other primitive operators and primitive feature images may approximate the
function of primitive operator MED.

100 Chapter 3. MDL-Based Efficient Genetic Programming for Object Detection

e m - + + - C n - m
MAX MAX MAX MAX MAX

PFIM 1 5

DIVC ADDC

MAX MAX ADDC PFIM 15

Figure 3.7. Feature images output at the nodes of the best composite operator learned
by smart GP.

3.4 Experiments 10 1

L L - - -
MAX MAX MAX MAX MAX (0.55)
(0.91) (0.77) (0.70) (0.62) 4

n sTDv PFIM 15
(0.25)

(0.25)

PFIM 15
(0.25)

(0.47)

DIVC ADDC MAX (0.25)

MAX MAX ADDC PFIM 15

Figure 3.8. ROIs extracted from the output images at the nodes of the best composite
operator from smart GP. The goodness value is shown for the entire image.

102 Chapter 3. MDL-Based Efficient Genetic Programming for Object Detection

(a) unpaved (b) feature (c) ROI (d) feature (e) ROI
road vs. field image extracted image extracted

(normal GP) (normal GP) (smart GP) (smart GP)

(f) paved road (9) feature (h) ROI (i) feature (j) ROI
vs. grass image extracted image extracted

(normal GP) (normal GP) (smart GP) (smart GP)

Figure 3.9. Testing SAR images containing road.

The composite operator obtained in the above training is applied to the other
two real SAR images shown in Figure 3.9(a) and Figure 3.9(f). Figure 3.9(b)
and Figure 3,9(g) show the output of the composite operator from normal GP
and Figure 3.9(c) and Figure 3.9(h) show the regions extracted from Figure
3.9(a) and Figure 3.9(f), respectively. The goodness values of the extracted
regions are 0.90 and 0.93. Figure 3.9(d) and Figure 3.9(i) show the output of
the composite operator from smart GP and Figure 3.9(e) and Figure 3.90')
show the regions extracted from Figure 3.9(a) and Figure 3.9(f), respectively.
The goodness values of the extracted regions are 0.91 and 0.93. The average
running time of the best composite operators from normal GP on training and
testing images is 5 seconds; the corresponding time of that from smart GP is
2.6 seconds.

3.4 Experiments 103

3.4.2 Lake extraction

Two SAR images contain lake. The training image, shown in Figure 3.10(a),
contains a lake and field, and the testing image, shown in Figure 3.1 1(a)
contains a lake and grass. The training region is from (85, 85) to (127, 127).
Figure 3.10(b) shows the ground-truth. These testing and training images (and
regions) are the same as those previously used in chapter 2, Figure 2.1 1(a) and
Figure 2.12(a).

(a) lake vs. field

(d) ROI extracted
(normal GP)

(b) ground-truth (c) feature image
(normal GP)

(e) feature image (f) ROI extracted
(smart GP) (smart GP)

Figure 3.10. Training SAR image containing lake.

The steady-state GP is used to generate composite operators. For the
normal GP, the goodness value of the best composite operator in the initial
population is 0.62 and the goodness value of the best composite operator in the
final population is 0.99. Figure 3.10(c) shows the output image of the best
composite operator on the whole training image and Figure 3.10(d) shows the
binary image after segmentation. The goodness value of the extracted ROI is
0.95. For the smart GP, the fitness and goodness of the best composite

104 Chapter 3. MDL-Based Efficient Genetic Programming for Object Detection

operator in the initial population are -1585.5 and 0.55, respectively. The
corresponding values in the final population are -158.9 and 0.97, respectively.
Figure 3.10(e) shows the output image of the best composite operator on the
whole training image and Figure 3.10(f) shows the binary image after
segmentation. The goodness value of the extracted ROI is 0.94.

The composite operator is applied to the testing image containing a lake and
grass. Figure 3.11(b) shows the output of the composite operator from normal
GP and Figure 3.1 1(c) shows the region extracted. The goodness value of the
region is 0.97. Figure 3.1 l(d) shows the output of the composite operator from
the smart GP and Figure 3.1 1(e) shows the region extracted. The goodness
value of the region is 0.98. The average running time of the best composite
operators from the normal GP on training and testing images is 15 seconds; the
corresponding time from smart GP is 1 second. The size of the best composite
operator from normal GP is 28. The best composite operator from smart GP
has size 13 and it is shown in Figure 3.12.

(a) lake (b) feature (c) ROI (d) feature (e) ROI
vs. grass image extracted image extracted

(normal GP) (normal GP) (smart GP) (smart GP)

Figure 3.1 1. Testing SAR image containing lake.

3.4 Experiments 105

(MAX (ADDC (MIN2 (LOG (SUB (DIV
PFIMlO (LOG PFIM2)) (ADDC (ADDC
PFIM2)))) PFIM4)))

Figure 3.12. Learned composite operator tree in LISP notation.

3.4.3 River extraction

Two SAR images contain river and field. Figure 3.13(a) and Figure 3.13(b)
show the original training image and the ground-truth provided by the user.
The white region in Figure 3.13(b) corresponds to the river to be extracted. The
training regions are from (68,31) to (126, 103) and from (2, 8) to (28,74). The
testing SAR image is shown in Figure 3.16(a). Note that Figure 3.13 (a), Figure
3.13(b) and Figure 3.16(a) are the same as those previously used in chapter 2,
Figure 2.13(a) and (b) and Figure 2.16(a), respectively.

(a) river vs. field (b) ground-truth (c) feature image
(normal GP)

I :
--

L A
(normal GP) (smart GP)

(d) ROI extracted (e) feature image (f) ROI extracted
(smart GP)

Figure 3.13. Training SAR image containing river.

106 Chapter 3. MDL-Based Efficient Genetic Programming for Object Detection

The steady-state GP is used to generate a composite operator. For normal
GP, the goodness values of the best composite operator in the initial and final
populations are 0.59 and 0.89, respectively. Figure 3.13(c) shows the output
image of the best composite operator on the whole training image and Figure
3.13(d) shows the binary image after segmentation. The goodness of the
extracted ROI is 0.72. For smart GP, the fitness and goodness of the best
composite operator in the initial population are -2480.8 and 0.23. The
corresponding values in the final population are -404.6 and 0.90. Figure 3.13(e)
shows the output image of the best composite operator on the whole training
image and Figure 3.13(f) shows the binary image after segmentation. The
goodness of the extracted ROI is 0.71. The best composite operator has 13
nodes and a depth of 12. It has one leaf node containing 3x3 mean image.
Among 13 nodes, seven of them are MED operators effective in eliminating
speckle noise. It is shown in Figure 3.14. Compared to smart GP, the best
composite operator from normal GP has 30 nodes with a depth of 23. Figure
3.15 shows how the average fitness of the best composite operators and the
average fitness of the populations over all 10 runs change as GP searches the
composite operator space.

(DIVC (SUBC (SUBC (MED (MED
(MIN (MED (MED (MED (MED (MED
(SUBC PFIMl))))))))))))

Figure 3.14. Learned composite operator tree in LISP notation.

3.4 Experiments 107

V)

3 -2000 population
s
CI " -4000

generation

Figure 3.15. Fitness versus generation (river vs. field)

The composite operator is applied to the testing image containing a river
and field. Figure 3.16(b) shows the output of the composite operator from the
normal GP and Figure 3.16(c) shows the region extracted from Figure 3.16(a).
The goodness of the region is 0.83. Figure 3.16(d) shows the output of the
composite operator from the smart GP and Figure 3.16(e) shows the region
extracted. The goodness of the region is 0.86. There are some islands along
with the river around them that are not extracted, since these islands look
similar to the field. The average running time of the best composite operators
from normal GP on training and testing images is 33 seconds; the
corresponding time of that from smart GP is 19 seconds.

(a) river (b) feature (c) R01 (d) feature (e) ROI
vs. field image extracted image extracted

(normal GP) (normal GP) (smart GP) (smart GP)

Figure 3.16. Testing SAR image containing river.

108 Chapter 3. MDL-Based Efficient Genetic Programming for Object Detection

3.4.4 Field extraction

Two SAR images contain field and grass. Figure 3.17(a) and Figure 3.17(b)
show the original training image and the ground-truth. The training regions are
from (17, 3) to (75, 61) and from (79, 62) to (124, 122). Extracting field from
a SAR image containing field and grass is considered as the most difficult task
among the five experiments, since the grass and field are similar to each other
and some small regions in the grass area are actually fields. The testing image
is shown in Figure 3.18(a). Note that Figure 3.17(a) and Figure 3.17(b) and
Figure 3.18(a) are the same as those in chapter 2, Figure 2.17(a) and (b) and
Figure 2.18(a), respectively.

(a) field vs. grass (b) ground-truth (c) feature image
(normal GP)

(d) ROI extracted (e) feature image (f) ROI extracted
(normal GP) (smart GP) (smart GP)

Figure 3.17. Training SAR image containing field.

The generational GP is used to generate composite operators. For the
normal GP, the goodness values of the best composite operators in the initial
and finally populations are 0.52 and 0.78, respectively. Figure 3.17(c) shows
the output image of the best composite operator on the whole training image

3.4 Experiments 109

and Figure 3.17(d) shows the binary image after segmentation. The goodness
value of the extracted ROI is 0.88. For the smart GP, the fitness and goodness
of the best composite operator in the initial population are -7936.2 and 0.39.
The corresponding values in the final population are -1999.4 and 0.79. Figure
3.17(e) shows the output image of the best composite operator on the whole
training image and Figure 3.17(f) shows the binary image after segmentation.
The goodness value of the extracted ROI is 0.90.

The composite operator is applied to the testing image containing field and
grass shown in Figure 3.18(a). Figure 3.18(b) shows the output of the
composite operator from normal GP and Figure 3.18(c) shows the extracted
region with goodness value 0.81. Figure 3.18(d) shows the output of the
composite operator from the smart GP and Figure 3.18(e) shows the extracted
region with goodness value 0.84. The average running time of the best
composite operators from normal GP on training and testing images is 8
seconds; the corresponding time of that from smart GP is 12 seconds. The size
of the best composite operator from normal GP is 9, and the size of best
composite operator from smart GP is 15 and it has 7 MED primitive operators.
It is shown in Figure 3.19. In this experiment, the best composite operator
learned by the smart GP has larger size and it takes a longer time to execute
than that learned by the normal GP. However, the time it takes a composite
operator to run on a particular image is not only determined by its size. It is
also related to the type of primitive operators it contains. For example, it takes
a longer time for primitive operator MED than primitive operator ADDC to
execute.

(a) field vs.
grass

(b) feature (c) ROI (d) feature (e) ROI
image extracted image extracted

(normal GP) (normal GP) (smart GP) (smart GP)

Figure 3.18. Testing SAR image containing field.

110 Chapter 3. MDL-Based Efficient Genetic Programming for Object Detection

From the experiment on the field extraction, we can see that the proposed
algorithm has difficulties in dealing with textures and objects with great
variations, and the reason lies in the fact that only domain-independent
primitive operators and primitive features are used in the feature synthesis.
The predefined primitive operators and primitive features have significant
impact on the performance of the learned composite operators. If texture-
specific primitive operators and primitive features are included for the
synthesis of composite operators, GP may learn composite operators that are
effective in dealing with textures.

Figure 3.19. Learned composite operator tree in LISP notation.

3.4.5 Tank extraction

GP is applied to synthesize features for the detection of T72 tanks. Their SAR
images are taken under different depression and azimuth angles and the size of
the images is 80x80. The training image contains T72 tank under depression
angle 17" and azimuth angle 135", which is shown in Figure 3.20(a). The
training region is from (19, 17) to (68, 66). The testing SAR image contains a
T72 tank under depression angle 20" and azimuth angle 225", which is shown
in Figure 3.23(a). The ground-truth is shown in Figure 3,20(b). These testing
and training images (and regions) are the same images (under the same
depression and azimuth angles) as those previously used in chapter 2, Figure
2.19(a) and (b) and 2.22(a), respectively.

The generational GP is applied to synthesize composite operators for tank
detection. For the normal GP, the goodness value of the best composite
operator in the initial population is 0.65 and the goodness value of the best
composite operator in the final population is 0.88. Figure 3.20(c) shows the
output image of the best composite operator on the whole training image and

3.4 Experiments 1 1 1

Figure 3.20(d) shows the binary image after segmentation. The goodness value
of the extracted ROI is 0.88. For the smart GP, the fitness and goodness of the
best composite operator in the initial population are -807.2 and 0.54,
respectively. The corresponding values in the final population are -190.8 and
0.89, respectively. Figure 3.20(e) shows the output image of the best
composite operator on the whole training image and Figure 3.20(f) shows the
binary image after segmentation. The goodness value of the extracted ROI is
0.89. The best composite operator has 5 nodes and a depth of 4. It has one leaf
node containing 3x3 maximum image. Two internal nodes are primitive
operator MED, which is useful in eliminating speckle noises in SAR image. It
is shown in Figure 3.21. Compared to the smart GP, the best composite
operator from normal GP has 28 nodes and a depth of 17. Figure 3.22 shows
how the average fitness of the best composite operators and the average fitness
of the populations over all 10 runs change as GP proceeds.

(a) T72 tank (b) ground-truth (c) feature image
(normal GP)

(d) ROI extracted (e) feature image (f) ROI extracted
(normal GP) (smart GP) (smart GP)

Figure 3.20. Training SAR image containing a tank.

112 Chapter 3. MDL-Based Efficient Genetic Programming for Object Detection

Figure 3.21. Learned composite operator tree in LISP notation.

Q)
c population
.r -3000 G

-5000
0 5 10 15 20 25 30 35 40 45 50 55 60 65 70

generation

Figure 3.22. Fitness versus generation (T72 tank).

The composite operator is applied to the testing image containing T72 tank
under depression angle 20' and azimuth angle 225". Figure 3.23(b) shows the
output of the composite operator from normal GP and Figure 3.23(c) shows
the region corresponding to the tank. The goodness of the extracted ROI is
0.84. Figure 3.23(d) shows the output of the composite operator from smart
GP and Figure 3.23(e) shows the region corresponding to the tank. The
goodness of the extracted ROI is 0.84. The average running time of the best
composite operators from normal GP on training and testing images is 3
seconds; the corresponding time from smart GP is 2 seconds.

3.4 Experiments 1 13

(a) T72 tank (b) feature (c) ROI (d) feature (e) ROI
image extracted image extracted

(normal GP) (normal GP) (smart GP) (smart GP)

Figure 3.23. Testing SAR image containing tank.

3.4.6 Comparison of smart GP with normal GP

This subchapter compares the performance of the smart GP with that of the
normal GP. For objective comparison, only the average performance over all
ten runs is used in comparison. The comparison is based on the goodness of
composite operators synthesized by normal and smart GPs. The reason for
using goodness as the comparison metric is that a composite operator having
higher fitness than another composite operator does not mean it always has a
higher performance than the composite operator with lower fitness, since its
size may be much smaller. Comparing the goodness values, it can be clearly
shown that on the average, composite operators from smart GP have a smaller
size and better or at least comparable performance with that from normal GP.

Figure 3.24 shows how the average goodness of the best composite
operators improves as normal GP and smart GP proceed. The thick line
represents the goodness of smart GP and the thin line represents the goodness
of normal GP. It shows that if normal GP already achieves very good
performance such as in the lake and tank cases, then it is difficult for smart GP
to significantly improve the performance, since there is not much room for
improvement. At this time, smart GP may achieve similar or a little better
performance than normal GP.

If primitive operators and primitive features are not suitable to the tasks to
be solved, both normal and smart GP may not generate effective composite
operators such as in the field case, since primitive operators and primitive
features have significant impact on the effectiveness of learned composite
operators.

114 Chapter 3. MDL-Based Efficient Genetic Programming for Object Detection

The smart GP operators have a bad side effect of restricting the GP search
by biasing the selection of crossover and mutation points to keep the effective
components generated during GP search. If effective components are
generated and assembled together in some composite operators in the first 20
generations, then it is beneficial to apply the smart GP operators in the
remaining generations to keep effective composite operators. Otherwise, it
may be harmful to apply smart GP. Note that even when smart operators are
not applied in the first 20 generations, smart GP and normal GP are different,
since the fitness functions used to drive smart GP and normal GP are different.
From Figure 3.24, it can be seen that on the average, smart GP finds good
composite operators more quickly.

Table 3.2 shows the average goodness and standard deviation of the best
composite operator in the initial and final populations. Table 3.3 shows the
average size of the best composite operators from normal GP and smart GP. It
also shows the average performance of the best composite operators on the
whole training image and other testing image(s). The standard deviation values
of size and performance are also provided. It can be seen that although smart
GP does not always generate composite operators with better performance, on
the average, the best composite operators learned by smart GP have better
performance and smaller size than those from normal GP, reducing the
computational expense during testing.

3.4 Experiments 1 15

1 1.1 1

smart GP smart GP
U) g 0.8 g 0.9 -

6 0.7 normal GP
g 0.6 normal GP g 0.7 -

0.5
0.4 0.5 -

0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70

generation generation

(a) road (b) lake

0.7
2 0.6 normal GP normal GP
8 0.5

0.4 0.5
0.3 0.4

0 10 20 30 40 50 60 70 0 10 20 30 40 50 60 70

generation generation

(c) river (d) field

smart GP
V)

0.8
6 0.7 normal GP

8 0.6
m 0.5

generation

(e) tank

Figure 3.24. The average goodness of the best composite operators versus generation.

116 Chapter 3. MDL-Based Efficient Genetic Programming for Object Detection

Table 3.2. The average goodness of the best composite operators from normal and
smart GPs.

Table 3.4 shows the average and standard deviation of training time (in
seconds) of normal GP and smart GP. By intuition, the training time of smart
GP should be much longer than that of normal GP, since in normal GP, only
the output image of the root node is evaluated and smart GP evaluates the
output image of each node of a composite operator. From Table 3.4, it can be
seen that the difference between the training times is not as much as expected.
In the experiments with lake and tank images, the training time of smart GP is
much shorter. The reason lies in the code bloat problem of GP. In normal GP,
a size limit of composite operator (in this chapter, it is 30) is specified. At the
later stage of the GP search, most of the composite operators have size equal
or close to the size limit. In smart GP, the MDL-based fitness function takes
the size of composite operators into the fitness evaluation. The difference
between the sizes of composite operators is large, even at the later stage of the
GP search. Although a few composite operators have a size larger than the size
limit in normal GP, many of them have a size smaller than the size limit. If the
size limit set in normal GP is large, it can be expected that the training time of
the normal GP will be longer than that of smart GP. Also, in the above
experiments, the goodness threshold value is set at 1.0 to force GP to finish the
pre-specified number of generations. If the goodness threshold value is smaller
than 1.0, the smart GP may run fewer generations, since it finds effective
composite operators more quickly, thus reducing its training time.

3.4 Experiments 117

Table 3.3. The average size and performance of the best composite operators from
normal and smart GPs.

l esting

mean
stdv

mean
stdv

mean
stdv

mean
stdv

mean
stdv

mean
stdv

Road
29.4
1.07

0.789
0.080

0.620, 0.797
0.274,0.151

Road
24.6
4.58
0.860
0.038

0.831,0.914
0.115,0.025

Nor
Lake
28.4
1.74

0.891
0.128
0.913
0.161

Sn
Lake
11.8
5.65

0.916
0.021
0.972
0.009

•malGP
River
27.6
4.43
0.583
0.112
0.754
0.129

lartGP
River
16.8
7.19

0.650
0.049
0.836
0.023

Field
20.2
8.93

0.794
0.101
0.675
0.124

Field
14.9
9.98

0.839
0.039
0.784
0.033

Tank
24.6
6.17

0.829
0.035
0.766
0.042

Tank
5.7
1.9

0.849
0.025
0.821
0.012

Table 3.4. Average training time of Normal GP and Smart GP.

Normal
GP

Smart
GP

mean

stdv

mean

stdv

Road
6915

5348

10249

8893

Lake
2577

1213

770

724

River
7951

8006

11035

10310

Field
3606

2679

5251

5506

Tank
2686

2163

649

589

118 Chapter 3. MDL-Based Efficient Genetic Programming for Object Detection

Table 3.5 shows the average performance of the best composite operators
(over 10 runs) from smart GP with and without the public library on training
and testing images containing road and tank images. From Table 3.5, it can be
seen that with the public library to keep the effective components for later
reuse, GP can generate more effective composite operators.

Table 3.6 shows the average running time of the composite operators from
normal and smart GPs on road, lake, river, field, and tank SAR images. The
time is measured in seconds. From Table 3.6 it can be seen that on average, the
composite operators from smart GP are more efficient.

Table 3.5. The average performance of the best composite operators from smart GPs
with and without the public library.

I Smart GP (Lib Size 100) 1 Smart GP (No Lib) I

Table 3.6. Average running time (in seconds) of the composite operators from normal
and smart GPs.

I Road I Lake I River I Field I Tank I

Training
image

Testing
image

Road

0.860

0.038

0.83 1,0.9 14
0.1 15,0.025

mean

stdv

mean
stdv

Smart GP
NormalGP

Tank

0.849

0.025

0.82 1
0.012

2.6

5

Road

0.800

0.106

0.640,0.812
0.1 13,0.083

Tank

0.820

0.052

0.782
0.050

1

15

19

3 3

12

8

2

3

3.5 Conclusions 1 19

3.5 Conclusions

In this chapter, we use genetic programming to evolve composite operators for
object detection. To improve the efficiency of genetic programming, we
design smart crossover and smart mutation that can identify and prevent the
effective components of composite operators from being disrupted and use a
public library to keep them for later reuse. To address the well-known code
bloat problem of GP, we design a new fitness function based on the minimum
description length to take the size of a composite operator into the fitness
evaluation process. The new fitness function prevents composite operators
from growing too large, while at the same time imposes relatively less severe
restrictions on the GP search. Our experimental results with real SAR images
show that with the MDL-based fitness function and the smart search operators,
the smart GP can learn better composite operators more quickly than the
traditional normal GP, improving the efficiency of GP. Compared to the
normal GP, the composite operators learned by smart GP have better
performance on the training and testing images and have smaller sizes,
reducing the computational expense and the running time during testing.
Currently, in order to get the goodness at each node, its output image has to be
evaluated against the ground-truth, which is a time consuming and inefficient
process. To further improve the efficiency of GP, it is important to find a way
to estimate the goodness of internal nodes based on the goodness of the root
node.

Chapter 4

FEATURE SELECTION FOR OBJECT DETECTION

4.1 Introduction

The goal of feature selection is to find the subset of features that produces the
best object detection and recognition performance and requires the least
computational effort. Feature selection is important to object detection and
recognition systems mainly for three reasons:

First, using more features can increase system complexity, yet it may not
always lead to higher detectionlrecognition accuracy. Sometimes, many
features are available to a detectionlrecognition system. However, these
features are not independent and may be correlated. A bad feature may greatly
degrade the performance of the system. Thus, selecting a subset of good
features is important.

Second, features are selected by a learning algorithm during the training
phase. The selected features are used as a model to describe the training data.
Selecting many features means a complicated model is used to approximate
the training data. According to the minimum description length (MDL)
principle, a simple model is better than a complex model [loo]. Since the
training data may be corrupted with a variety of noises, a complex model may

122 Chapter 4. Feature Selection for Object Detection

overfit the training data. Thus, a complex model may be sensitive to noise in
the training data and its performance on unseen test data may be bad.

Third, using fewer features can reduce the computational cost, which is
important for real-time applications. Also it may lead to better classification
accuracy due to the finite sample size effect.

In this chapter, we use genetic algorithm (GA) 1411, [42], [77] to select as
few features as possible to describe the training data effectively. The specific
application we focus on is the detection of targets in SAR images. Automatic
detection of potential targets in SAR imagery is an important problem [7],
[65]. A constant false alarm rate (CFAR) detector is commonly used to
"prescreen" the image to localize the possible targets [65]. Generally, targets
correspond to bright spots caused by strong radar return from natural or man-
made objects. Parts of the imagery that are not selected are rejected from
further consideration. In the next stage of processing, regions of interest are
further examined to distinguish man-made objects from natural clutter.
Finally, a classifier such as a Bayesian classifier, a template matcher or a
model-based recognizer is used to reject man-made clutter.

GAS are widely used in image processing, pattern recognition and computer
vision [7], [13], [23]. They are used to evolve morphological probes that
sample the multi-resolution images [loll , to generate image filters for target
detection [53], to select good parameters of partial shape matching for
occluded object recognition [89], to perform pattern clustering and
classification [113], etc. GAS are also used to automatically determine the
relative importance of many different features and to select a good subset of
features available to the system [95].

The problem we address is to select a minimal set of features to distinguish
targets from natural clutter. The approach is based on a closed loop system
involving GA based feature selection and a Bayesian classifier. GA uses a
MDL-based fitness function that combines the number of features to be used
and the error rate of the classifier. The results are presented using real SAR
images. The experimental results show that the MDL-based fitness function is
the most effective in selecting a minimal set of features to describe the data
accurately compared to other three fitness functions, and the subset of features

4.2 Motivation and Related Research 123

selected by GA can greatly reduce the computational cost while at the same
time maintaining the desired detection accuracy.

Chapter 4.2 presents the motivation and related research. Chapter 4.3
describes the approach, feature evaluation criteria, fitness functions, the
prescreener used to detect potential target regions, the features for target
discrimination and the application of GAS to feature selection. Experimental
results are presented in chapter 4.4 and chapter 4.5 provides the conclusions of
the chapter.

4.2 Motivation and Related Research

Bhanu and Lee [12] present a closed loop image segmentation system which
incorporates a genetic algorithm to adapt the segmentation process to changes
in image characteristics caused by various environmental conditions such as
time of day, time of year, clouds, etc. The segmentation problem is formulated
as an optimization problem and the genetic algorithm efficiently searches the
hyperspace of segmentation parameter combinations to determine the
parameter set which maximizes the segmentation quality criteria in terms of
edge-border coincidence, boundary consistency, pixel classification, object
overlap and object contrast. Their experimental results demonstrate that
genetic algorithm can continuously adapt the segmentation process to normal
environmental variations to provide robust performance when interacting with
a dynamic environment. Emmanouilidis et al. [30] discuss the use of multi-
criteria genetic algorithms for feature selection. With multi-criteria fitness
functions, genetic algorithm tries to minimize the number of features selected
while maintaining the high classification accuracy. The algorithm is shown to
yield a diverse population of alternative feature subsets with various accuracy
and complexity trade-off. It is applied to select features for performing
classification with fuzzy models and is evaluated on real-world data sets such
as a cancer data set in which each data point has 9 input features and one
output label (malignant or benign). Estevez and Caballero [31] propose a
genetic algorithm to select features for neural network classifiers. Their
algorithm is based on a niching method to find and maintain multiple optima.
They also introduce a new mutation operator to speed up the convergence of
the genetic algorithm. Rhee and Lee [99] present an unsupervised feature

124 Chapter 4. Feature Selection for Object Detection

selection method using a fuzzy-genetic approach. The method minimizes a
feature evaluation index which incorporates a weighted distance between a
pair of patterns used to rank the importance of the individual features. A
pattern is represented by a set of features and the task of genetic algorithm is
to determine the weight coefficients of features in the calculation of weighted
distance. Matsui et al. [74] use genetic algorithm to select the optimal
combination of features to improve the performance of tissue classification
neural networks and apply their method to problems of brain MRI
segmentation to classify gray matterlwhite matter regions. MDL related prior
work is described in chapter 3.2.

In this chapter, we use genetic algorithm to select a good subset of features
used for target detection in SAR images. The target detection task involves the
selection of a subset of features to discriminate SAR images containing targets
from those containing clutter. Our method is a novel combination of genetic
algorithm based optimization of a criterion function that involves classification
error and the number of features that are used for the discrimination of targets
from natural clutter in SAR images. The criterion (fitness) function we
propose in this chapter is based on the minimum description length principle
and it compares favorably with other three fitness functions. We assume the
joint distribution of features follows a Gaussian distribution. The criterion
function is optimized in a closed-loop with a Bayesian classifier evaluating the
performance of each set of features. The GA used in feature selection is
adaptive in the sense that it can automatically adapt the parameters, such as
crossover rate and mutation rate, based on the efficiency of GA search in the
feature space. As compared to this work, the feature selection presented in
[65], [84] for target vs. natural clutter discrimination measures exhaustively
the performance of each combination of the features by the Pd (probability of
detection) versus Pfo (probability of false alarm) plot produced by it. The
higher the Pd and the lower the Pfa, the better the combination of features.

4.3 Feature Evaluations and Selection 125

4.3 Feature Evaluations and Selection

The purpose of the genetic algorithm based feature selection approach
presented in this chapter is to select a set of features to discriminate the targets
from the natural clutter false alarms in SAR images. The approach includes
four stages: rough target detection, feature extraction from the potential target
regions, feature selection based on the training data and the final
discrimination. The first stage is based on the Lincoln Lab ATR system and
the second stage uses some of features (first 10 of the 20 features) used in
their system [65], [84], [85]. In the feature selection stage, we use GA to select
a best feature subset, defined as a particular set of features that is the best in
discriminating the target from the natural clutter. The diagram for feature
selection is given in Figure 4.1.

Input SAR Potential
Image Target Regions

Extracted
Features

Best Feature
r l S u b s e t Classifier rl . Selection

Feedback

Figure 4.1. System diagram for feature selection.

126 Chapter 4. Feature Selection for Object Detection

4.3.1 Feature selection

Adding more features does not necessarily improve discrimination
performance. An important goal is to choose the best set of features from the
discriminating features that are available. Before we do the feature selection, it
is appropriate to give a set of feature evaluation criteria, which measure the
discrimination capability of each feature or a combination of several features

Divergence: Divergence is basically a form of the Kulback-Liebler distance
measure between density fbnctions. If we assume that the target as well as the
natural clutter feature vectors follow Gaussian distributions, that is,
N(u,,C,) and N(u,,C,), whereu, and u,aremeanvalues and C, and C,
are covariance matrices, respectively, the divergence can be computed as
follows

One major drawback of the divergence dlz is that it is not easily computed,
unless the Gaussian assumption is employed. For SAR imagery, the Gaussian
assumption itself is in question.

Scatter matrices: These criteria are based upon the information related to
the way feature vector samples are scattered in the I-dimensional feature space.
We define two kinds of scatter matrices, that is, within-class scatter matrix and
between-class scatter matrix. Within-class scatter matrix for M classes is,

M
s = C p . ~ , where Si is the covariance matrix for class mi and 4 is the a

I I

i = l

priori probability of class mi. S, matrix measures how feature vector samples

are scattered within each class. Between-class scatter matrix S,, is defined as
M

follows: sb = pi (. -
-)T , where u,, is the global mean vector

i = l

and u i is the mean for each class, i = I, ..., M. The between-class scatter

matrix measures how the feature vector samples are scattered between
different classes. Based on the different combinations of these two scatter
matrices, a set of class separability criteria can be derived; one such measure

4.3 Feature Evaluation and Selections 127

I S I can be defined as: J = A. If the feature vector samples within each class
IS, I

are scattered compactly and the feature vector samples from different classes
are far away from one another, we expect the value for J would be high. This
also implies that the features we choose have high discrimination.

Feature vector evaluation using a classifier: Another method for feature
evaluation depends on the specific classifier. The task of feature selection is to
select or determine a set of features that, when fed into the classifier, will let
the classifier achieve the high performance. So it makes sense to relate the
feature selection procedure with the particular classifier used. During the
training time, we have all the features extracted from the training data. What
we can do is to select a subset of features and feed them into the classifier and
see the classification result. Then the goodness of each feature subset is
indicated by its classification error rate.

4.3.2 Various criteria for fitness function

We use GA to seek the smallest (or the least costly) subset of features for
which the classifier's performance does not deteriorate below a certain
specified level [95], [log]. The basic system framework is shown in Figure
4.1.

When the error of a classifier is used to measure the performance, a subset
of features is defined as feasible if the classifier's error rate is below the so-
called feasibility threshold. We search for the smallest subset of features
among all feasible subsets. During the search, each subset can be coded as a d-
element bit string (d is the total number of features). The ith element of the bit
string assumes 0 if the ith feature is excluded from the subset and 1 if it is
present in the subset.

In order for the GA to select a subset of features, a fitness function must be
defined to evaluate the performance of each subset of features. GA explores
the space of subset of features to try to find a minimum subset of features with
good classification performance.

128 Chapter 4. Feature Selection for Object Detection

Fitness function based on MDL

In our system, the classifier is a fixed Bayesian classifier, but the set of
features that is input into the classifier is a variable. In order to apply MDL to
feature selection, we view the features selected by GA as the model used to
describe the training data. Selecting more features means that a more complex
model is used to approximate the data. Although a complex model may have
perfect performance on the training data, it may not be a good model, since it
may be overly sensitive to statistical irregularities and idiosyncrasies of the
data and causes accidental noise to be modeled as well, leading to the poor
performance on the unseen test data.

To fix the above problem, we use an MDL principle to prevent the
overfitting of the training data. Roughly speaking, the MDL principle states
that among all the models approximating the data to or above certain accuracy,
the simplest one is the best one. To restrict the model from growing too
complex while maintaining the description accuracy, the cost of describing a
set of data with respect to a particular model is defined as the sum of the
length of the model and the length of the data when encoded using the model
as a predictor for the data. The description length of data-to-model error is
defined as the combined length of all data items failed to be described by the
model. GA is used to select the subset of features minimizing the above cost.
Here, both description lengths are measured in bits and the details of the
coding techniques are relevant. The trade-off between simplicity and
complexity of both lengths is that if a model is too simple, it may not capture
the characteristics of the data and lead to increased error coding length; if a
model is too complicated, it may model the noise and become too sensitive to
minor irregularities to give accurate prediction of the unseen data. MDL states
that among the given set of models, the one with the minimum combined
description lengths of both the model and data-to-model error is the best
approximation and can perform best on the unseen test data.

Based on MDL, we propose the following fitness function for GA to
maximize:

4.3 Feature Evaluation and Selections 129

where ci is a chromosome coding the selected set of features, f is the total
number of features extracted from each training data, k is the number of
features selected (ci has k bits of 1 and f - k bits of 0), n is the total number of
data items in the training set and n, is the number of data items misclassified.
It is easy to see that the fewer the number of features selected and smaller the
number of data items misclassified, the larger the value of the fitness function.

Chapter 3.2 provided an explanation of an MDL-based fitness function. In
the following, we give a brief simpler explanation of the above (equation 4.2)
fitness function. Suppose a sender and a receiver both know all the data items
and their order in the training set and also they agree in advance on the feature
extractor used to extract the f features from each data item and the classifier
used to classify each data based on the features extracted. But only the sender
knows the label (target or clutter) of each data item. Now, the sender wants to
tell the receiver the label of each data item. One simple approach to do this is
to send a bit sequence of n bits where 1 represents the target and 0 represents
the clutter. If n is large, then the communication burden will be heavy. In order
to reduce the number of bits to be transmitted, in an alternative approach, the
sender can tell the receiver which features can be used to classify the data,
since the receiver can extract the features and apply the classifier on the
features extracted to get the label of each data item. There are a total off
features and l o g o bits are needed to encode the index of each feature. If k
features are selected, k l o g o bits are needed in order to inform the receiver
which features should be extracted. However, some data items may be
misclassified, so the sender needs to tell the receiver which data items are
misclassified so that the receiver can get the correct labels of all the data in the
training set. Since there are a total of n data items, log@ bits are needed to
encode the index of each data item. If n, data items are misclassified, then n,
log@ bits are needed to convey to the receiver the indices of these
misclassified data items. If the set of features selected is effective in
discriminating targets from clutter, n, may be very small, thus the number of
bits needs to be transmitted is much smaller than n.

130 Chapter 4. Feature Selection for Object Detection

Other fitness functions

We have three other additional fitness functions to drive GA and compare their
performance with that of the MDL-based fitness function.

In order to define two other fitness functions, we first define the following
penalty function [1091:

where e is the error rate (the number of misclassified data item divided by the
total number of data items in the training set) of the classifier, t is the
feasibility threshold and m is called the "tolerance margin". In this chapter, t =

0.01 and m = 0.005. We can see easily that if e < t, p(e) is negative and as e
approaches zero, p(e) slowly approaches its minimal value. Note also that p(t)
= 0 and p(t + m) = 1. For greater values of the error rate, this penalty function
rises quickly toward infinity.

The second fitness function is defined as follows:

This fitness function considers only the error rate of the classifier and does
not care about how many features are selected. It can be predicted that this
fitness function may lead to the selection of many features.

The third fitness function takes the complexity of the model, that is the
number of features selected, into consideration. It combines the complexity of
the model and its performance on the training data and is defined as follow:

where k is the number of features selected by GA. The variable y ranges from
0 to 1 and it determines the relative importance of the number of features
selected and the error rate of the classifier. If we want to use fewer features,
we can assign a large value to y; if we think lower error rate is more important,

4.4 System Description 13 1

we can assign a small value to y. In our experiments, y takes value 0.1, 0.3 and
0.5.

The fourth fitness function is defined as follows:

where k is the number of features as defined in (4.5) and y ranges from 0 to 1
and is a parameter that determines the relative importance of the number of
feature selected and the error rate of the classifier.

GA tries to maximize these three fitness functions in order to find an
optimal set of features for discriminating targets from clutter.

4.4 System Description

The system has four major elements as shown in Figure 4.1 : a CFAR detector,
feature extractor, feature selector, and a typical Bayesian Classifier.

4.4.1 CFAR detector

A two-parameter CFAR detector is used as a prescreener to identify potential
targets in the image on the basis of radar amplitude. A guard area around a
potential target pixel is used for the estimation of clutter statistics. The
amplitude of the test pixel is compared with the mean and standard deviation
of the clutter according to the following rule:

x, - CC
X~~~~ = > KCFAR 3 target, otherwise clutter (4.7)

6 c

where X, is the amplitude of the test pixel, 6, is the estimated mean of the

clutter amplitude, 3, is the estimated standard deviation of the clutter

132 Chapter 4. Feature Selection for Object Detection

amplitude, and KCFAR is a constant threshold value that defines the false-alarm
rate. In this chapter, the value of KCFAR is 4.0.

Only those test pixels whose amplitude is much higher than that of the
surrounding pixels are declared to be targets. The higher we set the threshold
value of KCFAR, the more a test pixel must stand out from its background for it
to be declared as a target. Because a single target can produce multiple CFAR
detections, the detected pixels are grouped together if they are within a target-
sized neighborhood. The CFAR detection threshold in the prescreener is set
relatively low to obtain a high initial probability of detection for the target
data. It is the responsibility of the discriminator to capture and reject those
escaping clutter false alarms from the prescreener stage. An example SAR
image and corresponding detection results are shown in Figure 4.2.

4.4 System Description 133

(a) Example SAR image.

(b) Detection result.

Figure 4.2. SAR image and CFAR detection result.

134 Chapter 4. Feature Selection for Object Detection

4.4.2 Feature extractor

First, we use a target-sized rectangular template to determine the position and
orientation of the detected target [38]. The algorithm slides and rotates the
template until the energy within the template is maximized. Then we extract a
set of features from the target-sized template or the region of interest. By using
this set of 20 features, we attempt to discriminate the targets from the natural
clutter. The first ten features are the same as those used in [65]. The features
from eleven to twenty are general features used in pattern recognition and
object recognition

The standard-deviation feature (feature 1): The standard deviation of
the data within the template is a statistical measurement of the fluctuation of
the pixel intensities. If we use P(r, a) to represent the radar intensity in power
from range r and azimuth a, the standard deviation can be calculated as
follows:

S , = 10 log ,, P (r , a)
N where r , a e region

0 =
S2 = C [lo 1% 1, P (r , a) I 2 (4.8)

r , a e region

and N is the number of points in the region.

Targets usually exhibit much larger standard deviation than the natural
clutter, as illustrated by Figure 4.3.

4.4 System Description 135

(a) A typical object image with (b) A typical natural clutter image
standard deviation 5.2832 with standard deviation 4.51 87

Figure 4.3. Example of the standard deviation feature.

The fractal dimension feature (feature 2): The fractal dimension of the
pixels in the region of interest provides information about the spatial
distribution of the brightest scatterers of the detected object. It complements
the standard-deviation feature, which depends only on the intensities of the
scatterers, not on their spatial locations.

The first step in applying the fractal-dimension concept to a radar image is
to select an appropriately sized region of interest, and then convert the pixel
values in the region of interest to binary. One method of performing this
conversion is to select the N brightest pixels in the region of interest and
convert their values to 1, while converting the rest of pixel values to 0. Based
on these N brightest pixels, we approximate the fractal dimension by using the
following formula:

log M, - log M2 log M, - log M2
dim = - - -

log 1 - log 2 log 2 (4.9)

where MI represents the minimum number of 1-pixel-by-1 -pixel boxes that
cover all N brightest pixels in the region of interest (This number is obviously
equal to N) and M2 represents the minimum number of 2-pixel-by-2-pixel
boxes required to cover all N brightest pixels.

The bright pixels for a natural clutter tend to be widely separated, thus
produce a low value for the fractal dimension, while the bright pixels for the

136 Chapter 4. Feature Selection for Object Detection

target tend to be closely bunched, thus we expect a high value for the fractal
dimension, which is illustrated by Figure 4.4. Figure 4.4(a) shows a target
image chip. In Figure 4.4(b), the 50 brightest pixels from the target image are
tightly clustered, and 22 2x2-pixel boxes are needed to cover them, which
results in a high fractal dimension of 1.2. Figure 4.4(c) shows a natural clutter
image chip. In Figure 4.4(d), the 50 brightest pixels from this natural clutter
are relatively isolated, and 46 2x2-pixel boxes are needed to cover them,
which results in a low fractal dimension of 0.29.

(a) Object image (b) 50 brightest pixels in (a)

(c) Natural clutter image (d) 50 brightest pixels in (c)

Figure 4.4. Example of the fractal dimension feature.

Weighted-rank fill ratio feature (feature 3): This textural feature
measures the percentage of the total energy contained in the brightest
scatterers of a detected object. We define the weighted-rank fill ratio as
follows:

4.4 System Description 137

C P (r , a)
k brightest pixels

17 =
C P (r , a)

all pixels

This feature attempts to exploit the fact that power returns from most targets
tend to be concentrated in a few bright scatters, whereas power returns form
natural-clutter false alarm tend to be more diffuse. The weighted-rank fill ratio
values of target in Figure 4.3(a) and clutter in Figure 4.3(b) are 0.3861 and
0.2321 respectively.

Size-related features (feature 4 - 6): The three size-related features
utilize only the binary image created by the morphological operations on the
CFAR image. The morphological operations are applied in the order of clean
(remove isolated pixels), bridge (connect unconnected components if they are
close to each other, at most 3 pixels apart) and close (dilation followed by
erosion). The resulting largest component is called morphological blob.

1 . The mass (feature 4) is computed by counting the number of pixels in the
morphological blob.

2. The diameter (feature 5) is the length of the diagonal of the smallest
rectangle that encloses the blob.

3. The square-normalized rotational inertia (feature 6) is the second
mechanical moment of the blob around its center of mass, normalized by the
inertia of an equal mass square.

In our experiments, we found the size features are not effective in scenarios
where the targets are partially occluded or hidden. After the prescreener stage,
the size and the shape of the detected morphological blob can be arbitrary. For
the clutter, there is also no ground to assert that the resulting morphological
blob will exhibit a certain amount of coherence. The experimental results in
Figure 4.5 show the arbitrariness of the morphological blobs for the targets as
well as the clutter.

138 Chapter 4. Feature Selection for Object Detection

(a) The left-hand side figures represent the object images and the right-
hand figures represent their corresponding morphological blobs.

(b) The left-hand side figures represent the clutter images and the
right-hand figures represent their corresponding morphological blobs.

Figure 4.5. Examples of images used to compute size features (4-6) for (a) object and
(b) clutter.

4.4 System Description 139

The contrast-based features (features 7 - 9): The CFAR statistic is
computed for each pixel in the target-shaped blob to create a CFAR image.
Then the three features can be derived as follows:

1. The maximum CFAR (feature 7) is the maximum value in the CFAR image
contained within the target-sized blob.

2. The mean CFAR (feature 8) is the average of the CFAR image taken over
the target-shaped blob.

3. The percent bright CFAR (feature 9) is the percentage of pixels within the
target-sized blob that exceed a certain CFAR value.

The maximum CFAR feature, the mean CFAR feature and the percent
bright CFAR feature values of target in Figure 4.3(a) are 55.69, 5.53 and 0.15,
respectively, and these feature values of clutter in Figure 4.3(b) are 10.32, 2.37
and 0.042, respectively. We can see that CFAR feature values for the target are
much larger than those for the natural clutter false alarm.

The count feature (feature 10): The count feature is very simple; it counts
the number of pixels that exceeded the threshold T and normalizes this value
by the total possible number of pixels in a target blob. The threshold T is set to
the quantity corresponding to the 98th percentile of the surrounding clutter.
The count feature values of target in Figure 4.3(a) and clutter in Figure 4.3(b)
are 0.6 and 0.1376, respectively. We can see that the count feature value for
the target is much larger than that for the natural clutter false alarm. This is
reasonable because the intensity values of the pixels belonging to the target
stand out from the surrounding clutter, while the natural clutter false alarms do
not have this property.

The following ten features: four projection features; three distance features
and three moment features, are common features used in image processing and
object recognition. They are extracted from binary image resulting from
CFAR detection. In these images, foreground pixels (pixels with value 1) are
potential target pixels.

140 Chapter 4. Feature Selection for Object Detection

Projection features (features 11 - 14): Four projection features are
extracted from each binary image:

1 . horizontal projection feature 11): Project the foreground pixels on a
horizontal line (x axis of image) and compute the distance between the
leftmost point and the rightmost point.

2. vertical projection feature 12): Project the foreground pixels on a vertical
line (y axis of image) and compute the distance between the uppermost
point and the lowermost point.

3. major diagonalprojection feature 13): Project the foreground pixels on the
major diagonal line and compute the distance between the upper leftmost
point and the lower rightmost point.

4. minor diagonalprojection feature 14): Project the foreground pixels on the
minor diagonal line and compute the distance between the lower leftmost
point and the upper rightmost point.

The average values of horizontal, vertical, major and minor diagonal
projection features of all the clutter images, we collected, are approximately
60.0, 60.0, 90.0 and 90.0, respectively. Their corresponding values for target
images are 34.5, 29.5, 46.7 and 47.8, respectively. It can be seen that the
feature values for the clutter are larger than those for the target. This result is
reasonable, since the bright pixels of a natural clutter tend to be widely
separated. This has already been shown by the fractal dimension feature value.

Distance features (features 15 - 17): Three distance features are extracted
from each binary image. Before computing distance features, we first compute
the centroid of all the foreground pixels in the binary image.

1 . minimum distance feature 15): Compute the distance from each foreground
pixel to the centroid and select the minimum one.

2. maximum distance featire 16): Compute the distance from each foreground
pixel to the centroid and select the maximum one.

3. average distance feature 17): Compute the distance from each foreground
pixel to the centroid and get the average value of all these distances.

4.4 System Description 141

The average values of minimum, maximum and average distance features of
all the clutter images we collected are approximately 40.0, 70.0 and 60.0,
respectively. Their corresponding values of target images are 3.8, 26.7 and
11.5, respectively. It can be seen that the feature values for the clutter are
larger than those for the target. This result is reasonable, since the bright pixels
of a natural clutter tend to be widely separated.

Moment features (features 18 - 20): Three moment features are extracted
from each binary image. All three moments are central moments, so before
computing moment features, we first compute the centroid of all the
foreground pixels in the binary image.

The central moments can be expressed as:

where (Z, 7) is the centroid and p and q are integers.

We compute p,, , p,, and p,, from each binary image and these are the

horizontal, vertical and diagonal second-order moments (features 18, 19, 20)
respectively.

The average values of horizontal, vertical and diagonal second-order
moment features of all the clutter images we collected are approximately
910.0, 910.0 and 374020.0, respectively. Their corresponding values of target
images are 80.5, 46.7 and 4021.6, respectively. It can be seen that the feature
values for the clutter are larger than those for the target. This result is
reasonable, since the bright pixels of a natural clutter tend to be widely
separated.

142 Chapter 4. Feature Selection for Object Detection

4.4.3 GA for feature selection

The genetic algorithm is an optimization procedure that operates in binary
search spaces (the search space consists of binary strings). A point in the
search space is represented by a finite sequence of 0's and l's, called a
chromosome. The algorithm manipulates a finite set of chromosomes, the
population, in a manner resembling the mechanism of natural evolution. Each
chromosome is evaluated to determine its "fitness," which determines how
likely the chromosome is to survive and breed into the next generation. The
probability of survival is proportional to the chromosome's fitness value.
Those chromosomes which have higher fitness values are given more chances
to "reproduce" by the processes of crossover and mutation. The function of
crossover is to mate two parental chromosomes to produce a pair of offspring
chromosomes. In particular, if a chromosome is represented by a binary string,
crossover can be implemented by randomly choosing a point, called the
crossover point, at which two chromosomes exchange their parts to create two
new chromosomes. Mutation randomly perturbs the bits of a single parent to
create a child. This procedure can increase the diversity of the population.
Mutations can be performed by flipping randomly one or more bits in
chromosomes. In this chapter, we implement an adaptive genetic algorithm
that can automatically adapt the parameters such as crossover rate and
mutation rate based on the performance of GA. To be specific, if the fitness
value of the best individual is not improved for 3 or 5 generations in a row,
GA will automatically raise the mutation rate to increase the diversity of the
population. Also, elitism mechanism is adopted such that the best individual
(set of features selected) is copied from generation to generation when
performing reproduction.

In this research, there are 20 features as described earlier. Each feature is
represented as a bit in the genetic algorithm. There are 220 possible
combinations of these features.

4.5 Experiments 143

4.5 Experiments

We use SAR images from MSTAR public data (target and clutter data) [I041
and generate 1008 target chips (small SAR images containing target) and 1008
clutter chips (small SAR images containing clutter) of size 120x120. We also
use SAR images that are downloaded from the website of MIT Lincoln Lab.
From these SAR images, 40 target chips and 40 clutter chips of size 120x120
are generated. By adding these two sets of images, we have 1048 target chips
and 1048 clutter chips. Some of the chips are used in training and the rest are
used in testing. The chips used in training are randomly selected. The GA
selects a good subset of features from the 20 features described previously to
classify a SAR image chip into either a target or clutter. We use the CFAR
detector in the prescreener stage to detect the potential target regions. Since we
know the ground-truth, we know which one is the real target and which one is
the clutter false alarm among the potential target regions detected. This allows
us to construct a set of training data (training target data and training natural
clutter false alarm data) for feature selection. Then we extract a set of 20
features from each potential target region and do the feature selection. Finally
in the testing stage we use the selected features to discriminate the targets from
the natural clutter false alarms.

For our GA-based feature selection framework, we adopt a Bayesian
classifier to classify the training data and the resulting error rate is used as the
feedback into the feature selection algorithm. The size of the population is
100, the initial crossover rate is 0.8 and the initial mutation rate is 0.01. If the
fitness value of the best individual is not improved for 3 generations in a row,
GA increases the mutation rate by 0.02. In order to reduce the training time,
we set an error rate threshold E. The GA stops when either the error rate of the
best set of features selected is below the specified threshold E or the mutation
rate is increased above 0.09.

We carried out a series of experiments to test the efficacy of GA in feature
selection. First, we use the MDL-based fitness function. Then we use the other
three fitness hnctions. Finally, we compare and analyze the performance of
these fitness functions. In order to have an objective comparison of various
experiments, the GA is invoked ten times for each experiment with the same

144 Chapter 4. Feature Selection for Object Detection

set of parameters and the same set of training chips. Only the average
performance is used for comparison.

4.5.1 MDL principle-based fitness function

We performed four experiments with this fitness function. In the first
experiment, 300 target chips and 300 clutter chips are used in training and 748
target chips and 748 clutter chips are used in testing, the error rate threshold
value E is 0.002; in the second experiment, 500 target chips and 500 clutter
chips are used in training and 548 target chips and 548 clutter chips are used in
testing, the error rate threshold value E is 0.0015; in the third and fourth
experiments, 700 target chips and 700 clutter chips are used in training and
348 target chips and 348 clutter chips are used in testing, the error rate
threshold values E are 0.00 15 and 0.00 1 1, respectively. The features selected
during training are used for classification during testing. It is worth noting that
the training chip set in the third and fourth experiments is the superset of that
in the second experiment and the training chip set in the second experiment is
the superset of that in the first experiment. The target and clutter chips used
during training are selected at random.

Table 4.1 shows the experimental results where 300 target and 300 clutter
chips are used in training. GA is invoked 10 times and each row records the
experimental results from the corresponding invocation. The last row records
the average results of 10 runs. The column "Best generation" records the
generation number in which the best set of features is found and the column
"Total generation" shows the total number of generations GA runs. Note that
Bg is often much less than Tg, which indicates that the termination criteria are
somewhat loose and, thus, we are somewhat inefficient in training time. It can
be seen that although the training error rate is 0.003 in each run, different
features are selected. In some runs, the same number of testing clutter chips
are misclassified, but the clutter chips that are misclassified in each run are
different. From the testing results, we can observe that sometimes clutter chips
are misclassified as target chips. The testing results show that GA finds an
effective set of features to discriminate target from clutter.

Table 4.2 and Table 4.3 show the experimental results when 500 target and
clutter chips and 700 target and clutter chips are used in training, respectively.

4.5 Experiments 145

The results in Table 4.2 are very good. On the average, 5.1 features are
selected and both the training and testing error rate are very low. However, the
results in Table 4.3 are not good. Although the training and testing error rates
are low, 9.2 features are selected on the average. From Table 4.3, we can see
that GA runs 4.9 generations on the average. It is clear that GA stops
prematurely. The reason for the premature termination is that the error rate
threshold value 0.0015 is high in this case, since there are 700 target chips and
700 clutter chips. In order to force GA to explore the search space, we lower
the error rate threshold value to 0.001 1 and get the results shown in Table 4.4.
These results are much better than those in Table 4.3. Only 5.3 features are
selected on the average, although the average testing error rate is almost
doubled. Considering both the test error rate and the number of features
selected, the first run in Table 4.1 and Table 4.4, and the sixth run in Figure
4.2 yield the best results. Figure 4.6 shows how fitness values change as GA
searches the feature subset space during these runs; Figure 4.7 shows how
training error rate changes and Figure 4.8 shows how the number of features
selected changes.

From the above experiments, we can see that the MDL-based fitness
function and adaptive GA are very efficient in feature selection. Only 4 to 6
features are selected on the average while the detection accuracy is kept high.

146 Chapter 4. Feature Selection for Object Detection

Table 4.1. Experimental results with 300 training target and clutter chips (MDL,
equation (4.2); E = 0.002).

B,: best generation. T,: total generation. F,: number of features selectc
T: target. C: clutter.

Training Number Testing
Features 1 selected 1 ::; ki ::;

0100101001
0000000000 0.003 0.001

Number
of
T

0

0

0

0

0

0

0

0

0

0

0

errors
C

2

116

116

7

225

110

116

116

5

7

12

4.5 Experiments 147

Table 4.2. Experimental results with 500 training target and clutter chips (MDL,
equation (4.2); E = 0.0015).

Run

1

2

3

4

5

6

7

8

9

10

Ave.

Bg

17

13

19

20

10

26

25

9

8

17

16.4

T*g

35

31

38

38

28

44

43

27

26

35

34.5

Fn

5

5

5

5

5

5

5

6

5

5

5.1

Features

seiecieu
0100001001
1000100000
0100001001
0000001001
0100001001
0000011000
0100001001
0000011000
0100001001
0010100000
0100001001
1100000000
0100001001
0000010100
0000001011
0000011010
0100001001
0000011000
0001001001
0011000000

Training
error
rate

0.002

0.002

0.002

0.002

0.002

0.002

0.002

0.002

0.002

0.002

0.002

Nu n
of ei
T

1

1

1

1

1

1

1

1

1

1

1

iber
Tors
C

1

1

1

1

1

1

1

1

1

1

1

Testing
error
rate

0.006

0.006

0.006

0.006

0.006

0.003

0.007

0.007

0.006

0.004

0.0057

Nun
of er
T

0

0

0

0

0

0

0

0

0

0

0

iber
rors
C

7

7

7

7

7

3

8

8

7

4

6.5

T: target. C: clutter.

148 Chapter 4. Feature Selection for Object Detection

Table 4.3. Experimental results with 700 training target and clutter chips (MDL,
equation (4.2); E = 0.0015).

Run

1

2

3

4

5

6

7

8

9

lo

Ave.

8

9

7

2

5

2

5

3

4

4

4.9

8

9

7

2

5

2

5

3

4

4

4.9

Fn

9

10

7

10

8

7

lo

lo

l1

lo

9.2

Features

selected
0101101001
1010001001
1101001001
1010101010
0000001011
0100101010
1101001001
0110011010
0100001001
0011111000
1000011011
0100001000
1101001001
0110101100
1100101011
0101010001
1101011001
1010111000
1101001001
0011111000

Training
error
rate

0.0014

0.0014

0.0014

0.0014

0.0014

0.0014

o.oo14

o.oo14

o.oo14

o.oo14

0.0014

Num
of err
T

1

1

1

1

1

1

1

1

1

1

1

?er
ors
C

1

1

1

1

1

1

1

1

1

1

1

Testing
error
rate

0.006

0.001

0.012

0.001

0.007

0.012

0.001

0.003

0.001

0.001

0.0045

Nun
of ei
T

0

0

0

0

0

0

0

0

0

0

0

iber
Tors
C

4

1

8

1

5

8

1

2

1

1

3.2
B,: best generation. T,:totalg
T: target: C: clutter.

total generation. F,: number of features selected.

4.5 Experiments 149

Table 4.4. Experimental results with 700 training target and clutter chips (MDL,
equation (4.2); E = 0.0011).

Run

1

2

3

4

5

6

7

8

9

10

Ave.

10

19

17

16

16

19

10

15

10

23

15.5

Tg

28

37

35

34

34

37

28

33

28

41

33.5

6

5

5

6

5

5

5

5

6

5

5.3

Features

seiecieu
0001001001
1000001010
0100001001
0000001010
0100001001
0010100000
0001011001
0010001000
0100001001
0000011000
0100001001
0010100000
0100001001
0000010100
0100001001
0000011000
0100011001
1000010000
0100001001
0000001001

Training
error
rate

0.0014

0.0014

0.0014

0.0014

0.0014

0.0014

0.0014

0.0014

0.0014

0.0014

0.0014

Nur
of e
T

1

1

1

1

1

1

1

1

1

1

1

ober
rrors
C

1

1

1

1

1

1

1

1

1

1

1

Testing
error
rate

0.004

0.012

0.01

0.006

0.01

0.01

0.01

0.01

0.007

0.01

0.0089

Nui
of e
T

0

0

0

0

0

0

0

0

0

0

0

nber
rrors
C

3

8

7

4

7

7

7

7

5

7

6.1
Bg: best generation.
T: target. C: clutter.

total generation. Fn: number of features selected.

150 Chapter 4. Feature Selection for Object Detection

0 5 10 15 20 25 30 35 40 45 50

generation

(a) 700 training target and clutter chips.

0 5 10 15 20 25 30 35 40 45 0 5 10 15 20 25 30

generation generation

(b) 500 training target and (c) 300 training target and
clutter chips. clutter chips.

Figure 4.6. Fitness values vs. generation number.

4.5 Experiments 15 1

0 5 101520253035404550

generation

(a) 300 training target and clutter chips.

generation generation

(b) 500 training target and (c) 700 training target and
clutter chips. clutter chips.

Figure 4.7. Training error rates vs. generation number.

152 Chapter 4. Feature Selection for Object Detection

0 5 10 15 20 25 30 35 40 45 50

generation

(a) 300 training target and clutter chips.

0 5 10 15 20 25 30 35 40 45 0 5 10 15 20 25 30

generation generation

(b) 500 training target and (c) 700 training target and
clutter chips. clutter chips.

Figure 4.8. The number of features selected vs. generation number.

4.5 Experiments 153

4.5.2 Other fitness functions

For the purpose of objective comparison, the training chip set in the following
experiments is the same as that in the second experiment above, that is, 500
target chips and 500 clutter chips are used in training and 548 target chips and
548 clutter chips are used in testing.

First, we use (4.4) as the fitness function and invoke GA 10 times. The error
rate threshold value is 0.0015. Table 4.5 shows the experimental results. This
function is only dependent on the error rate, so GA found a set of features with
very low error rate quickly. The selected features are shown by the "Number
of features" and "Features selected" columns. However, since the number of
features is not taken into consideration by the fitness function, many features
are selected. More than 10 features are selected on the average in 10 runs.

Next, we use (4.5) as the fitness function. We performed three experiments
with this function, and the values of y are 0.1, 0.3 and 0.5 in these three
experiments, respectively. The error rate threshold is 0.0015. Since this
function considers the number of features selected, only a few features will be
selected. Table 4.6, Table 4.7 and Table 4.8 show the corresponding
experimental results when y is 0.1,0.3 and 0.5.

From Table 4.6, we can see that since the training error rate is low, the
number of features selected accounts for a large percentage of the value of the
fitness function, forcing GA to select only 2 features in each run. However, the
error rate for testing results is not encouraging. It is more than 0.02 on the
average.

When y is 0.3, the number of features account for a larger part of the value
of the fitness function than when y is 0.1, forcing GA to select almost only one
feature. Actually, in 8 of the 10 runs shown in Table 4.7, GA selects the best
feature (feature 7) among all the 20 features (see Table 4.12) to discriminate
the target from clutter. When y is 0.5, the number of features almost dominates
the value of fitness function. The same phenomenon occurs and the
experimental results are shown in Table 4.8.

154 Chapter 4. Feature Selection for Object Detection

Finally, we use (4.6) as the fitness function. We did three experiments with
this function, and the values of y are 0.1, 0.3 and 0.5 in these three
experiments, respectively. The error rate threshold is 0.0015. Like (4.5), this
function considers both the number of features selected and the error rate.
When y is large, this function forces GA to select one feature. Usually, the best
feature (feature 7) is selected (see Table 4.12). Table 4.9, Table 4.10 and
Table 4.1 1 show the corresponding experimental results when y is 0.1, 0.3 and
0.5, respectively.

In order to show that GA selects the best feature when the number of features
dominates the fitness function, we examine the efficacy of each feature in
discriminating the targets from clutter. The data used in examination are 500
target chips and 500 clutter chips used in the above training. The results are
shown in Table 4.12. From this table, it can be seen that the best feature
(feature 7, the maximum CFAR feature) is selected by GA.

4.5.3 Comparison and analysis

Figure 4.9 shows the average performance of each of the above experiments
pictorially. The X-axis is the average number of features selected and the Y-
axis is the average training error rate. We use the average number of features
selected and the average training error rate to form a performance point and
evaluate the performance according to the location of performance point. A
good performance point should have lower values of both the average number
of features and the training error. The three points (shown as circles) are the
performance points when the MDL-based fitness function is used and the rest
are the performance points corresponding to other fitness functions.

From the above experimental results, we can see that GA is capable of
selecting a good set of features to discriminate the target from clutter. The
MDL-based fitness function is the best fitness function compared to the three
other functions. Fitness function (4.4) doesn't include the number of features.
Although GA can find a good set of features quickly driven by this function,
many features are selected. This greatly increases the computational
complexity in the testing phase. Fitness functions (4.5) and (4.6) take the
number of features selected into consideration. However, the number of
features dominates the fitness function value, forcing GA to select only one or

4.5 Experiments 155

two features, leading to the unsatisfactory training and testing error rates. In
order to balance the number of features selected and the error rate, parameter y
must be finely tuned. This is not an easy task and it usually takes a lot of time.
The MDL-based fitness function is based on a sound theory and it balances
these two terms very well. Only a few features are selected while the training
and testing error rates are kept low.

Table 4.5. Experimental results with 500 training target and clutter chips (penalty
function, equation (4.4); E = 0.0015).

Run

1

2

3

4

5

6

7

8

9

10

Ave.

B,

4

11

2

4

3

10

8

2

3

3

5

T

22

11

20

22

21

10

26

20

21

21

19.4

13

10

9

11

10

9

10

11

10

9

10.2

Features

selectede
0111111011
1100111000
1011011011
0001100100
0101101001
1011000100
1010011011
0101011100
1110001011
1010010100
0011011011
0000110100
1101101001
0011010010
1110101011
0001001110
0110011011
1101100000
1110011011
0000110000

Training

0.002

0.001

0.002

0.002

0.002

0.001

0.002

0.002

0.002

0.002

0.0018

Nui
of e
T

1

1

1

1

1

1

1

1

1

1

1

mber
rrors
C

1

0

1

1

1

0

1

1

1

1

1

Testing
error
rate

0.004

0.005

0.005

0.004

0.003

0.005

0.001

0.003

0.005

0.008

0.0043

Nui
of e
T

0

0

0

0

0

0

0

0

0

0

0

mber
rrors
C

4

5

5

4

3

5

1

3

5

9

4.4

T: target. C: clutter.

156 Chapter 4. Feature Selection for Object Detection

Table 4.6. Experimental results with 500 training target and clutter chips (penalty and
of features, equation (4.5); y = 0.1; E = 0.0015).

Run

1

2

3

4

5

6

7

8

9

10

Ave.

Bg

18

12

17

20

16

11

15

17

14

12

15.2

36

30

35

38

34

29

33

35

32

30

33.2

Fn

2

2

2

2

2

2

2

2

2

2

2

Features

selected
0000001001
0000000000
0000001000
0000001000
0000001001
0000000000
0000001001
0000000000
0000001001
0000000000
0000001001
0000000000
0000001001
0000000000
0000001001
0000000000
0000001001
0000000000
0000001000
0000001000

Training
error
rate

0.005

0.007

0.005

0.005

0.005

0.005

0.005

0.005

0.005

0.007

0.0054

Nur
of e
T
2

1

2

2

2

2

2

2

2

1

1.8

nber
rrors
C

3

6

3

3

3

3

3

3

3

6

3.6

Testing
error
rate

0.024

0.007

0.024

0.024

0.024

0.024

0.024

0.024

0.024

0.007

0.0206

Nui
of e
T
0

0

0

0

0

0

0

0

0

0

0

nber
rrors
C

26

8

26

26

26

26

26

26

26

8

22.4
B,: best generation. T,
T: target. C: clutter.

total generation. F,: number of features selected.

4.5 Experiments 157

Table 4.7. Experimental results with 500 training target and clutter chips (penalty and
of features, equation (4.5); y = 0.3; E = 0.0015).

Run

1

2

3

4

5

6

7

8

9

10

~ve.1

23

20

11

8

30

14

25

20

22

27

20

T

41

38

29

26

48

32

43

38

40

45

38

Fn

1

1

2

3

1

1

1

1

1

1

1.3

Features

selected

0000001000
0000000000
0000001000
0000000000
1000001000
0000000000
0000000010
0010010000
0000001000
0000000000
0000001000
0000000000
0000001000
0000000000
0000001000
0000000000
0000001000
0000000000
0000001000
0000000000

Training
error
rate

0.01

0.01

0.005

0.008

0.01

0.01

0.01

0.01

0.01

0.01

0.0093

Nur
ofe

T

1

1

1

4

1

1

1

1

1

1

1.3

nber
rrors

C

9

9

4

4

9

9

9

9

9

9

8

Testing
error
rate

0.036

0.036

0.033

0.005

0.036

0.036

0.036

0.036

0.036

0.036

0.0326

Nui
ofe

T

0

0

0

0

0

0

0

0

0

0

0

nber
rrors

C

39

39

36

5

39

39

39

39

39

39

35.3
B,: best generation. T,: total generation. F,: number of features selected.
TI target: C: clutter.

158 Chapter 4. Feature Selection for Object Detection

Table 4.8. Experimental results with 500 training target and clutter chips (penalty and
of features, equation (4.5); y = 0.5; E = 0.0015).

Run

1

2

3

4

5

6

7

8

9

10

Ave.

Bg

17

29

22

15

32

11

11

23

9

23

19.2

T

35

41

40

33

50

29

29

41

27

41

37.2

Fn

1

1

1

1

1

1

1

1

2

1

1.1

Features

selected

0000001000
0000000000
0000001000
0000000000
0000001000
0000000000
0000001000
0000000000
0000001000
0000000000
0000001000
0000000000
0000001000
0000000000
0000001000
0000000000
0000000010
0000001000
0000001000
0000000000

Training
error
rate

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.012

0.01

0.01

Nun
of ei

T

1

1

1

1

1

1

1

1

5

1

1.5

tiber
rrors
C

9

9

9

9

9

9

9

9

7

9

8.8

Testing
error
rate

0.036

0.036

0.036

0.036

0.036

0.036

0.036

0.036

0.011

0.036

0.0335

Nut
of e

T

0

0

0

0

0

0

0

0

0

0

0

nber
rrors

C

39

39

39

39

39

39

39

39

12

39

36.3
B,: best generation. T,:totalg
T: target. C: clutter.

total generation. F,: number of features selected.

4.5 Experiments 159

Table 4.9. Experimental results with 500 training target and clutter chips (error rate
and # of features, equation (4.6); y = 0.1; E = 0.0015).

Run

1

2

3

4

5

6

7

8

9

10

Ave.

21

16

14

25

13

17

17

33

22

12

19

T

39

34

32

43

31

35

35

51

40

30

37

Fn

1

1

2

1

1

1

2

1

1

1

1.2

Features

selected
0000001000
0000000000
0000001000
0000000000
0000100010
0000000000
0000001000
0000000000
0000001000
0000000000
0000001000
0000000000
0000100010
0000000000
0000001000
0000000000
0000001000
0000000000
0000001000
0000000000

Training

cuui idle

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

0.01

N u n
of ei
T

1

1

7

1

1

1

7

1

1

1

2.2

nber
rors
C

9

9

3

9

9

9

3

9

9

9

7.8

Testing
error
rate

0.036

0.036

0.006

0.036

0.036

0.036

0.006

0.036

0.036

0.036

0.03

Nur
of e
T

0

0

0

0

0

0

0

0

0

0

0

nber
rrors
C

39

39

7

39

39

39

7

39

39

39

32.6

B,: best generation. T,:
T- target. C: clutter.

total generation. F,: number of features selected.

160 Chapter 4. Feature Selection for Object Detection

Table 4.10. Experimental results with 500 training target and clutter chips (penalty and
of features, equation (4.6); y = 0.3; E = 0.0015)

Run

1

2

3

4

5

6

7

8

9

10

Ave.

Bs

11

27

17

11

11

11

20

30

7

12

15.7

T

29

45

35

29

29

29

38

48

25

30

33.7

Fn

1

1

1

1

1

1

1

1

1

1

1

Features

selected
0000001000
0000000000
0000001000
0000000000
0000001000
0000000000
0000001000
0000000000
0000001000
0000000000
0000001000
0000000000
0000000010
0000000000
0000000010
0000000000
0000000010
0000000000
0000001000
0000000000

Training
error
ected

0.01

0.01

0.01

0.01

0.01

0.019

0.01

0.019

0.019

0.01

0.013

Nur
of ei
T

1

1

1

1

1

7

1

7

7

1

2.8

mber
rors
c

9

9

9

9

9

12

9

12

12

9

9.9

Testing
error
ected

0.036

0.036

0.036

0.036

0.036

0.028

0.036

0.028

0.028

0.036

0.0336

Nur
or e
T

0

0

0

0

0

0

0

0

0

0

0

ber
error
c

39

39

36

36

39

31

39

31

31

39

36.3
B,: best generation. T,
T: target. C: clutter.

total generation. F,: nurber of features selected.

4.5 Experiments 161

Table 4.11. Experimental results with 500 training target and clutter chips (penalty and
of features, equation (4.6); y = 0.5; E = 0.0015).

Run

1

2

3

4

5

6

7

8

9

lo

Ave.

Bg

25

11

8

11

8

15

9

l2

29

24

15.2

Tg

43

29

26

29

26

33

27

30

47

42

33.2

Fn

1

1

1

1

1

1

l

1

1

1

1

Features

oeiecicu

0000000010
0000000000
0000001000
0000000000
0000000010
0000000000
0000001000
0000000000
0000001000
0000000000
0000001000
0000000000
oooooolooo
0000000000
oooooolooo
0000000000
0000001000
0000000000
0000001000
0000000000

Training
error
rate

0.019

0.01

0.019

0.01

0.01

0.01

0.01

0.01

o.ol

o.ol

0.013

Nur
of e
T

7

1

7

1

1

1

1

1

1

1

2.2

nber
rrors
C

12

9

12

9

9

9

9

9

9

9

9.4

Testing
error
rate

0.028

0.036

0.028

0.036

0.036

0.036

0.036

0.036

0.036

0.036

0.0344

Nu
ofe
T

0

0

0

0

0

0

0

0

0

0

0

mber
:rrors
C

31

39

31

39

39

39

39

39

39

39

37.4
B,: best generation. T,:totalg
T: target. C: clutter.

: total generation. F,: number of features selected.

162 Chapter 4. Feature Selection for Object Detection

Table 4.12. Experimental results using only one feature for discrimination (target
chips = 500, clutter chips = 500).

Feature

1
2
3
4
5
6
7
8
9
10

Error
rate

0.119
0.099
0.056
0.057
0.068
0.354
0.01
0.5

0.019
0.073

Num
en

Target
17
16
7
17
13
0
1

480
7
15

ber of
ors

Clutter
102
83
49
40
55

354
9

20
12
58

Feature

11
12
13
14
15
16
17
18
19
20

Error
rate

0.118
0.111
0.126
0.131
0.09
0.069
0.075
0.209
0.2

0.244

Num
en

Target
18
6
9
7
5
3
3
0
2
0

ber of
"ors

Clutter
100
105
117
124
85
66
72

209
198
244

&
2

i
CD
O)
c
"c
'CD

0.013
0.012
0.011
0.010
0.009
0.008
0.007
0.006
0.005
0.004
0.003
0.002
0.001

0

A

A

• MDLP-~~S~~ fitness function
• fitness function (4.4)
A fitness function (4.5)
• fitness function (4.6)

•

0 1 2 3 4 5 6 7 8 9

number of features

10 11

Figure 4.9. Average performance of various fitness functions

4.5 Experiments 163

Table 4.13. The number of times each feature is selected in MDL Experiments 1, 2
and 4.

Features
1
2*
3
4
5
6
7*
8
9
10*
11
12
13
14
15
16
17
18
19
20

Exp 1
0
8
2
1
1
1
10
0
2
10
1
2
3
1
4
0
0
0
0
0

Exp 2
0
8
0
1
0
0
10
0
1
10
2
1
2
1
2
4
5
1
1
1

Exp 4
0
8
0
2
0
2
10
0
0
10
1
0
3
0
2
4
6
1
2
1

Total
0
24
2
4
1
3
30
0
3
30
4
3
8
2
8
8
11
2
3
2

164 Chapter 4. Feature Selection for Object Detection

In order to evaluate which features are more important than others using the
MDL-based approach, we combine the results of first, second and fourth
experiments. Note that in the first, second and fourth experiments (shown in
Table 4.1, Table 4.2 and Table 4.4), GA is invoked for a total of 30 times.
Table 4.13 shows the number of times each feature is selected in these 30 runs.
It can be seen from Table 4.13 that the fractal dimension feature (feature 2),
the maximum CFAR feature (feature 7) and the count feature (feature 10) are
very useful in detecting targets in SAR images, while the standard deviation
feature (feature 1) and the mean CFAR feature (feature 8) are not used at all.
The major diagonal projection feature (feature 13), the minimum distance
feature (feature 15), the maximum distance feature (feature 16) and the
average distance feature (feature 17) have low utility while other features have
very low utility. These results are consistent with those shown in Table 4.12.
Considered individually, the maximum CFAR feature (feature 7) is the best
feature (see Table 4.12) and it is selected by GA (in combination with other
features) in all the 30 runs.

4.6 Conclusions

In this chapter, we introduced the GA feature selection algorithm into a
specific application domain to discriminate the targets from the natural
clutter false alarms in SAR images. Rough target detection, feature extraction,
GA feature selection and final discrimination are successfully implemented
and good results are obtained. Our experimental results show that the GA
selected a good subset of features. Also, we proposed a MDL-based fitness
function and compared its performance with three other fitness functions. Our
experimental results show that the MDL-based fitness function balances the
number of features selected and the error rate very well and it is the best
fitness function compared to other three functions.

Chapter 5

EVOLUTIONARY FEATURE SYNTHESIS FOR
OBJECT RECOGNITION

5.1 Introduction

In this chapter, we investigate the effectiveness of domain knowledge in
improving the efficiency of the evolutionary search and the efficacy of genetic
programming in synthesizing composite features for object recognition. The
basic task of object recognition is to identify the kinds of objects in an image,
and sometimes the task may include estimating the pose of the recognized
objects. One of the key approaches to object recognition is based on features
extracted from images. These features capture the characteristics of the object
and are fed into a classifier to perform recognition. The quality of object
recognition is heavily dependent on the effectiveness of the features. However,
it is difficult to extract good features from real images due to various factors,
including noise. More importantly, there are many features that can be
extracted. What are the appropriate features or how to select an appropriate set
of features from the available features? If it is very difficult or even impossible
to extract effective features from images, then how to synthesize usehl
features based on the available ones? To make use of knowledge about a
specific domain and improve the quality of synthesized features, the question
is how to incorporate domain knowledge in the feature synthesis? The answers

166 Chapter 5. Evolutionary Feature Synthesis for Object Recognition

to these questions are largely dependent on the instinct, knowledge,
experience, and the bias of human experts.

In this chapter, the effectiveness of coevolutionary genetic programming
(CGP) [57], [69], [94] in generating composite operator vectors for object
recognition is investigated. As presented in Chapter 2, genetic programming
(GP) is an evolutionary computational paradigm that is an extension of genetic
algorithm and works with a population of individuals. An individual in a
population can be any complicated data structure such as linked lists, trees and
graphs, etc. CGP is an extension of GP in which several populations are
maintained and employed to evolve solutions cooperatively. A population
maintained by CGP is called a sub-population and it is responsible for
evolving a part of a solution. A complete solution is obtained by combining
the partial solutions from all the sub-populations. In this chapter, individuals in
sub-populations are composite operators, which are the elements of a
composite operator vector. A composite operator is represented by a binary
tree whose internal nodes are the pre-specified domain-independent primitive
operators and leaf nodes are primitive features. It is a way of combining
primitive features. The advantage of using a tree structure is that it is powerfid
enough in expressing the ways of combining primitive features and unlike a
graph, it has no loops and this guarantees that the execution of individuals
represented by trees terminate and not be trapped in an infinite loop. The
primitive features can be directly extracted simple features or complicated
features designed by human experts based on the characteristics of objects to
be recognized in a particular kind of imagery (e.g., SAR images). The
primitive features are real value attributes in this chapter. With each element
evolved by a sub-population of CGP, a composite operator vector is
cooperatively evolved by all the sub-populations. By applying composite
operators, corresponding to each sub-population, to the primitive features
extracted from images, composite feature vectors are obtained. These
composite feature vectors are fed into a classifier for recognition. It is worth
noting that the primitive operators and primitive features are decoupled from
the CGP mechanism that generates composite features, so they can be tailored
to particular recognition tasks without affecting the other parts of the system.
Thus, the method and the recognition system are flexible and can be applied to
a wide variety of images.

5.2 Motivation and Related Research 167

Chapter 5.2 explains the motivation for using genetic programming as a tool
for learning composite features. It also surveys the related works. Chapter 5.3
provides the overall structure of the learning and recognition system and gives
the technical details used in this chapter. Experimental results are presented in
chapter 5.4 and chapter 5.5 summarizes the conclusions and proposes possible
future research directions.

5.2 Motivation and Related Research

5.2.1 Motivation

The recognition accuracy of an automatic object recognition system is
determined by the quality of the feature set used. Usually, it is the human
experts who design the features to be used in recognition. Designing a set of
effective features requires human ingenuity and insight into the characteristics
of the objects to be recognized and in general, it is very difficult to identify a
set of features that characterize a complex set of objects. Typically, many
types of features are explored before a recognition system can be built to
perform the desired recognition task. There are a lot of features available and
these features may be correlated, making the design and selection of
appropriate features a very time consuming and expensive process.
Sometimes, it is very difficult to figure out and extract simple features that are
effective in recognition directly from images. However, human experts
generally know what kinds of features are useful for a particular kind of
imagery. These simple features can be selected as primitive features. At this
time, synthesizing composite features that are effective to the current
recognition task from these primitive features becomes extremely important.

The process of synthesizing composite features can often be dissected into
some primitive operations on the primitive features. It is usually the human
experts who, replying on their knowledge and rich experience, figure out a
smart way to combine these primitive operations to yield good composite
features. The task of finding good composite features is equivalent to finding
good points in the composite feature space. However, the ways of combining
primitive features are almost infinite, leading to a huge composite feature
space. It is obvious that a smart search strategy is necessary in order to find

168 Chapter 5. Evolutionary Feature Synthesis for Object Recognition

good composite features in such a huge space. The human experts can only try
a very limited number of combinations due to time limits and usually only the
conventional combinations are tried due to knowledge, experience and even
the bias of human experts. CGP, on the other hand, may try many
unconventional combinations and in some cases it is these unconventional
combinations that yield exceptionally good recognition performance. Also, the
inherent parallelism of CGP and the concept of sub-populations (search by
many individuals) facilitate its implementation on multi-processor
supercomputers to further increase the search speed and allow a much larger
portion of the search space to be explored by CGP than that explored by
human experts, thus greatly enhancing the chance of finding good composite
features. As a result, CGP is a very usefid tool in comparison to human experts
in the feature design and synthesis.

5.2.2 Related research

In general, feature selection and feature synthesis are two kinds of feature
transformations. In feature selection [15], original features are not changed and
some original features are selected to form a subset of features to be used by
classifiers. Genetic algorithm is widely used in feature selection as discussed
in Chapter 4. In feature synthesis, a transformation, linear or nonlinear, is
applied to the original features to generate new features. Weighted summation
is a kind of linear transformation on the original features, and the weights of
features can be determined by genetic algorithm. In multi-layer neural
networks, each node of a neural network takes the weighted sum of the outputs
of its child nodes as input[l20]. The weights are determined by
backpropagation algorithm during training. The output of a node is determined
by the input and the activation function of the node. It can be viewed as a
nonlinear transformation on the original features. The CGP-based feature
synthesis is another kind of nonlinear transformation on the original features,
which are the primitive features in this chapter.

Genetic programming (GP) has been used in image processing, object
detection and recognition. Harris and Buxton [39] apply GP to the production
of high performance edge detectors for ID signals and image profiles. The
method is also extended to the development of practical edge detectors for use
in image processing and machine vision. Ebner and Zell [29] use GP to

5.2 Motivation and Related Research 169

automate the process of chaining a series of well known image processing
operators to perform image processing. Poli 1921 uses GP to develop effective
image filters to enhance and detect features of interest and to build pixel-
classification-based segmentation algorithm. Bhanu and Lin [14] use GP to
generate composite operators for object detection. The primitive operators and
primitive features used in their system are very basic and domain-independent,
so their object detection system can be applied to a wide variety of images.
Their experimental results showed that GP is a viable way of synthesizing
composite features from primitive features for object detection and ROI
(region-of-interest) extraction. Howard et al. [44] apply GP to automatic
detection of ships in low resolution SAR imagery using an approach that
evolves detectors. The detectors are algebraic formulae involving the values at
pixels belonging to a small region surrounding the pixel undergoing the test
and the detectors evolved by GP compare favorably in accuracy to those
obtained using a neural network. Roberts and Howard [103] use GP to develop
automatic object detectors in infrared images. They present a multi-stage
approach to address feature detection and object segregation and the detectors
developed by GP do not require images to be preprocessed. Stanhope and
Daida [I141 use GP paradigms for the generation of rules for targettclutter
classification and rules for the identification of objects. GP determines
relevant features from previously defined features to form a selected feature
set. It evolves logical expressions based on the comparison of the selected
features to both real-valued constants and other features in the selected feature
set to create a classifier. Krawiec and Bhanu [64] present a method for the
automatic synthesis of recognition procedures chaining elementary operations
for computer vision and pattern recognition tasks based on cooperative
coevolution and linear genetic programming. Each sub-population evolves a
part of the recognition procedure and all the sub-populations coevolve the
whole recognition procedure by selecting the best individual from each sub-
population and chaining them together. Their experimental results show that
linear genetic programming is effective in synthesizing a recognition
procedure from elementary image processing operations. They also show that
coevolutionary linear genetic programming is superior to regular single-
population linear genetic programming that is equivalent to genetic algorithms.

Unlike the work of Stanhope and Daida [114], the primitive operators in this
chapter are not logical operators, but operators on real numbers and the
composite operators are binary trees of primitive operators on real numbers,

170 Chapter 5. Evolutionary Feature Synthesis for Object Recognition

not binary trees of logical operators. In [114], GP is used to evolve logical
expressions and the final outcome of the logical expression determines the
type of the object under consideration (for example, 1 means target and 0
means clutter). In this chapter, CGP is used to evolve composite feature
vectors to be used by a Bayesian classifier [I201 and each sub-population is
responsible for evolving a specific composite feature in the composite feature
vector. The classifier evolved by GP in [114] is a logical expression
represented by the binary tree with the best classification rate in the
population, but the classifier evolved by CGP in this chapter is a Bayesian
classifier determined by the composite feature vectors obtained from the
training images. Unlike the work of Krawiec and Bhanu [64], composite
operators in this chapter are binary trees of primitive operators and primitive
features, whereas the recognition procedures in [64] are linked lists of simple
image processing operations.

5.3 Coevolutionary GP for Feature Synthesis

In the CGP-based approach proposed in this chapter, individuals are composite
operators represented by binary trees with primitive operators as internal nodes
and primitive features as leaf nodes. The search space is the set of all possible
composite operators. The search space is huge and it is extremely difficult to
find good composite operators from this vast space unless one has a smart
search strategy. The system consists of training and testing modules, which are
shown in Figure 5.l(a) and l(b), respectively. During training, CGP runs on
training images and evolves composite operators to obtain composite features.
Since a Bayesian classifier is derived from the feature vectors obtained from
training images, both the composite operator vector and the classifier are
learned by CGP.

5.3.1 Design considerations

To apply genetic programming, there are five major design considerations,
which involve determining the set of terminals, the set of primitive operators,
the fitness measure, the parameters for controlling the run and the criterion for
terminating a run.

5.3 Coevolutionary GP for Feature Synthesis 171

Primitive Coevolutionary Composite
Operators

Programming

Fitness
Evaluator

Feature
Extractor '

(a) Training module - Learning composite operator
vectors and Bayesian classifier

Fitness 1
Recognition -

Results
Bayesian
Classifier

(b) Testing module -Applying learned composite operator
vector and Bayesian classifier to a test image

Testing
Image

Figure 5.1. System diagram for object recognition using coevolutionary genetic
programming.

Feature Extractor

I

172 Chapter 5. Evolutionary Feature Synthesis for Object Recognition

The set of terminals: The set of terminals are the 20 primitive features
described in chapter 4.4.2. The first 10 of these features capture the particular
characteristics of synthetic aperture radar (SAR) imagery and are found useful
for object detection 1651. The other 10 features are common features used
widely in image processing and computer vision. In this chapter, we use these
same 20 primitive features as in chapter 4.

To extract some primitive features, the CFAR (Constant False Alarm Rate)
image of an original image is needed. The CFAR image is generated by
applying the method described in chapter 4.4.1. For the detailed description of
CFAR detector, the reader is referred to [65].

The set of primitive operators: A primitive operator takes one or two real
numbers, performs a simple operation on them and outputs the result.
Currently, 12 primitive operators shown in Table 5.1 are used, where a and b
are real numbers and input to an operator and c is a constant real number
stored in an operator.

Table 5.1. Twelve primitive operators.

Primitive
Operator
ADD (a, b)

SUB (a, b)

MUL (a, b)

DIV (a, b)

MAX2 (a, b)

SQRT (a)

I Primitive
Description

Operator
Add a and b. 11 ADDC (a, c)

Subtract b from a.

Multiply a and b.

Divide a by b. I DIVC (a, c)

Description

Add constant value c to a.

Subtract constant value c
from a.

Multiply a with constant
value c.

Divide a by constant value
C.

Get the smaller of a and b.

Return log(a) if a 2 0;
otherwise, return -
log(-a).

5.3 Coevolutionary GP for Feature Synthesis 173

Sub-population Sub-population i: Sub-population n: /I
Best Individual Individual j Best Individual

vectors

Ground-
truth

Figure 5.2. Computation of fitness of jth composite operator of ith sub-population.

assemble
evaluator

The fitness measure: The fitness of a composite operator vector is
computed in the following way: apply each composite operator of the
composite operator vector on the primitive features of training images to
obtain composite feature vectors of training images and feed them to a
Bayesian classifier. Note that not all the primitive features are necessarily used
in feature synthesis. Only the primitive features that appear in the leaf nodes of
the composite operator are used to generate composite features. The
recognition rate of the classifier is the fitness of the composite operator vector.
To evaluate a composite operator evolved in a sub-population (see Figure 5.2),
the composite operator is combined with the current best composite operators
in other sub-populations to form a complete composite operator vector where
composite operator from the ith sub-population occupies the ith position in the
vector and the fitness of the vector is defined as the fitness of the composite
operator under evaluation. The fitness values of other composite operators in
the vector are not affected. When sub-populations are initially generated, the
composite operators in each sub-population are evaluated individually without
being combined with composite operators from other sub-populations. In each
generation, the composite operators in the first sub-population are evaluated
first, then the composite operators in the second sub-population and so on.

I

Parameters and termination: The key parameters are the number of sub-
populations N, the population size My the number of generations G, the

174 Chapter 5. Evolutionary Feature Synthesis for Object Recognition

crossover and mutation rates, and the fitness threshold. GP stops whenever it
finishes the specified number of generations or the performance of the
Bayesian classifier is above the fitness threshold. After termination, CGP
selects the best composite operator of each sub-population to form the learned
composite operator vector to be used in testing.

5.3.2 Selection, crossover and mutation

The CGP searches through the space of composite operator vectors to generate
new composite operator vectors. The search is performed by selection,
crossover and mutation operations. The initial sub-populations are randomly
generated. Although sub-populations are cooperatively evolved (the fitness of
a composite operator in a sub-population is not solely determined by itself, but
affected by the composite operators from other sub-populations), selection is
performed only on composite operators within a sub-population and crossover
is not allowed between two composite operators from different sub-
populations.

Selection: The selection operation involves selecting composite operators
from the current sub-population. In this chapter, tournament selection is used
and the tournament size is five. The higher the fitness value, the more likely
the composite operator is selected to survive.

Crossover: Two composite operators, called parents, are selected on the
basis of their fitness values. The higher the fitness value, the more likely the
composite operator is selected for crossover. One internal node in each of
these two parents is randomly selected, and the two subtrees rooted at these
two nodes are exchanged between the parents to generate two new composite
operators, called offspring. It is easy to see that the size of one offspring (i.e.,
the number of nodes in the binary tree representing the offspring) may be
greater than both parents if crossover is implemented in such a simple way. To
prevent code bloat, we specify a hard limit on the composite operator size
(called hard size limit). If the size of one offspring exceeds the hard size limit,
the crossover is performed again. If the size of an offspring still exceeds the
hard size limit after the crossover is performed 10 times, GP selects two
subtrees of same size (i.e., the same number of nodes) from two parents and
swaps the subtrees between the parents. These two subtrees can always be
found, since a leaf node can be viewed as a subtree of size 1.

5.3 Coevolutionary GP for Feature Synthesis 175

Mutation: To avoid premature convergence, mutation is introduced to
randomly change the structure of some composite operators to maintain the
diversity of sub-populations. Candidates for mutation are randomly selected
and the mutated composite operators replace the old ones in the sub-
populations. There are three mutations invoked with equal probability:

1. Randomly select a node of the composite operator and replace the subtree
rooted at this node by a new randomly generated binary tree.

2. Randomly select a node of the composite operator and replace the primitive
operator stored in the node with another primitive operator randomly
selected from the primitive operators of the same arity as the replaced one.

3. Randomly select two subtrees of the composite operator and swap them. Of
course, neither of the two subtrees can be a subtree of the other.

5.3.3 Generational coevolutionary genetic programming

Generational coevolutionary genetic programming is used to evolve composite
operators. The GP operations are applied in the order of crossover,
mutationand selection. The composite operators in the initial sub-populations
are randomly generated. A composite operator is generated in two steps. In the
first step, the number of internal nodes of the tree representing the composite
operator is randomly determined as long as this number is smaller than half of
hard size limit. Suppose the tree has n internal nodes. The tree is generated
from top to bottom by a tree generation algorithm. The root node is generated
first and the primitive operator stored in the root node is randomly selected.
The selected primitive operator determines the number of children the root
node has. If it has only one child, the algorithm is recursively invoked to
generate a tree of n-I internal nodes; if it has two children, the algorithm is
recursively invoked to generate two trees of /(n-I) / 2_/and /&I) / 2 hnternal
nodes, respectively. In the second step, after all the internal nodes are
generated, the leaf nodes containing primitive features are attached to those
internal nodes that are temporarily the leaf nodes before the real leaf nodes are
attached. The number of leaf nodes attached to an internal node is determined
by the primitive operator stored in the internal node. In addition, an elitism
replacement method is adopted to keep the best composite operator from
generation to generation.

176 Chapter 5. Evolutionary Feature Synthesis for Object Recognition

Generational Coevolutionary Genetic Programming Algorithms:

randomly generate N sub-populations of size M and evaluate each composite
operator in each sub-population individually.

forgen = 1 to G do
for i =I to N do
keep the best composite operator in sub-population Pi.
perform crossover on the composite operators in Pi until the crossover rate is

satisfied and keep all the offspring from crossover.
perform mutation on the composite operators in Pi and the offspring from

crossover with the probability of mutation rate.
perform selection on Pi to select some composite operators and combine them

with the composite operators from crossover to get a new sub-population
PiJ of the same size as Pi,

evaluate each composite operator Cj in Pi1.
to evaluate Cj, select the current best composite operator in each of the
other sub-populations, combine Cj with those N-1 best composite operators
to form a composite operator vecter where composite operator from the kth
sub-population occupy the kth position in the vector (k=l, ..., N). run the
composite operator vector on the primitive features of the training images
to get composite feature vectors and use them to build a Bayesian
classijier. feed the composite feature vectors into the Bayesian class$er
and let the recognition rate be the fitness of the composite operator vector
and the fitness of Cj.

perform elitism replacement.
let the best composite operator from Pi replace the worst composite
operator in Pi9 and let Pi = Pi'

form the current best composite operator vector consisting of the best
composite operators from corresponding sub-populations and evaluate it.
if its fitness is above thefitness threshold, goto 11.

endfor //loop 2 iterates on each sub-population. after a new sub-population is
generated, the best composite feature vector is changed and we need to find
the best composite feature vector and evaluate it to determine if CGP can be
terminated

endfor //loop 1 iterates on each generation.
select the best composite operator from each sub-population to form the learned

composite operator vector and output it.

Figure 5.3. Generational coevolutionary genetic programming.

5.4 Experiments 177

5.3.4 Bayesian classifier

For each class Ci (i = 1, 2, 3 or 1, 2, 3, 4, 5 in this chapter), a Bayesian
classifier [I201 is generated based on GP-learned composite features. A
Bayesian classifier consists of a mean feature vector and a covariance matrix
of feature vectors of class Ci. Suppose A,, A2, . . ., J,, are the feature vectors
extracted from n training images of class Ci, then the mean feature vector and
the covariance matrix are computed by:

1 "
pi = -C f i j

n , = I

During testing, for a feature vector f from a testing image, we compute
distance di (d, = (f - p i)T c,?(f - p i)) and assign the object in the testing

image to the class corresponding to the smallest distance. Here, we assume
that the prior probability of each class is equal.

5.4 Experiments

Various experiments are performed to test the efficacy of genetic
programming in generating composite features for object recognition. All the
images used in the experiments are real synthetic aperture radar (SAR) images.
These images are divided into training and testing images. The 20 primitive
features described in Chapter 4 are extracted from each SAR image. CGP runs
on primitive features from training images to generate a composite operator
vector and a Bayesian classifier. The composite operator vector and the
Bayesian classifier are tested against the testing images. It is worth noting that
the ground-truth is used only during training. The experiments are categorized
into three classes: (1) distinguishing man-made objects from natural clutters,
(2) distinguishing between 3 kinds of man-made objects and (3) distinguishing
between 5 kinds of man-made objects. For the purpose of objective
comparison, CGP is invoked ten times for each experiment with the same set

178 Chapter 5. Evolutionary Feature Synthesis for Object Recognition

of parameters and the same set of training images. Only the average
performance is used for comparison. Some of the parameters of CGP used
throughout the experiments are shown in Table 5.2. The hard size limit is 10 in
experiment 1 and 20 in experiments 2 and 3. The real number c stored in
primitive operators ADDC, SUBC, MULC and DIVC can be any real number
from -20 to 20. When mutation is performed on these primitive operators, the
value c stored in these primitive operators may be changed.

Table 5.2. Parameters of CGP used throughout the experiments.

5.4.1 Distinguish objects from clutter

Sub-population size
Number of generations
Fitness threshold

Data: The data used here are the same 1048 SAR images containing objects
and 1048 SAR images containing natural clutters from the MSTAR public
data, as describled in chapter 4.5. An example object image and clutter image
are shown in Figure 5.4, where white spots indicate scatterers with high
magnitude. The 300 object images and 300 clutter images are randomly
selected as training images and the rest are used in testing.

Experiment 1: First, the effectiveness of each primitive feature in
discriminating the objects from the clutters is examined. Each kind of
primitive feature from the training images is used to train a Bayesian classifier
and the classifier is tested against the same kind of primitive features from the
testing images. The results are shown in Table 5.3. The percent bright CFAR
feature (feature 9) is the best single feature with a recognition rate of 0.98.

50
50
1.0

Crossover rate
Mutation rate
Tournament size

0.6
0.05
5

5.4 Experiments 179

(a) An object image (b) A natural clutter image

Figure 5.4. Example object and clutter SAR images.

To show the efficacy of CGP in synthesizing effective composite features,
we consider three cases: only the worst two primitive features (blob inertia (6)
and mean values of pixels within blob (8)) are used by CGP; five bad primitive
features (blob inertia (6), mean values of pixels within blob (a), moments p20

(IS), po2 (19) and p 2 ~ (20) of scatters) are used by CGP; 10 common features
(primitive features 11 to 20) not specifically designed to process SAR images
are used by CGP during feature synthesis. The number of sub-populations is 3,
which means the dimension of the composite feature vectors is 3. CGP is
invoked ten times with the same parameters. The average recognition
performance over ten runs is shown in Table 5.4 (first row), where 2f means
only features (6) and (8) are used as primitive features (case I), 5f means
features 6, 8, 18, 19 and 20 are used (case 2) and 10f means only 10 common
features are used in feature synthesis (case 3). The columns on the left show
the training results and those on the right show the testing results. The
numbers in the table are the average recognition rates over ten runs. Then the
number of sub-population is increased to 5. The same 2, 5 and 10 primitive
features are used by CGP to evolve composite features. The average
recognition performance over ten runs is shown in Table 5.4 (second row).
The performance of synthesized composite features is worse than the feature
set selected by GA in chapter 4. It is reasonable, since in chapter 4, a MDL-
based GA is applied to select a set of features from all the 20 primitive
features to distinguish target from clutter, and effective features are always
selected by GA. In this chapter, we deliberately let GP synthesize composite
features from 10 common features not specifically designed for SAR images
or from 2 or 5 worst primitive features selected from the 20 primitive features.

180 Chapter 5. Evolutionary Feature Synthesis for Object Recognition

Table 5.3. Recognition rates of 20 primitive features.

1 Feature 1 Primitive 1 Recognition 1 Feature
I Number I Feature I ate 11 Number

dimension

Weight-rank
fill ratio

1

4 Blob mass 0.94

Standard
deviation

1 6 1 Blob inertia 1 0.66 11 16

0.88

5

I T j -
Mean CFAR

1 1 1

I g I percent bright 1 0.98 11 19
CFAR

Blob
diameter

1 10 1 Count 1 0.92 11 20

Primitive I Rec;q&tion
Feature

0.94

Horizontal
projection 1 0.90

1 I5

Vertical
projection

Major
diagonal

projection

Minor
diagonal

projection

Minimum 1 0.92
distance

Maximum 1 0.95 distance

Mean 1 0.94
distance

Moment p20

Moment po2

Moment D~~ 1 0.75

5.4 Experiments 18 1

Table 5.4. Performance of composite and primitive features on object/clutter
discrimination.

I Train. 1 Test I Train. I Test I Train. I Test

Recognition Rate
2f

From Table 5.4, it can be seen that composite feature vectors synthesized by
CGP are very effective. They are much better than the primitive features upon
which they are built. Actually, if both features 6 and 8 from the training
images jointly form 2-dimensional primitive feature vectors to train a Bayesian
classifier for recognition, the recognition rates on training and testing data are
0.625 and 0.668, respectively; if features 6, 8, 18, 19, and 20 jointly form 5-
dimensional primitive feature vectors, the recognition rates on training and
testing data are 0.908 and 0.947, respectively; if all the 10 common primitive
features are used, the recognition rates on training and testing data are 0.963
and 0.978, respectively. These results are shown in Table 5.4 (third row),
where 2f, 5f and 1Of indicate both the primitive features used and the
dimension of primitive feature vectors. The average recognition rates of
composite feature vectors are better than all of the above results and this is the
value of using CGP for feature synthesis. Figure 5.5 shows the composite
operator vector evolved by CGP maintaining 3 sub-populations in the 6th run
when 5 primitive features are used, where PFi means the primitive feature i
and so on. In Figure 5.5, the least effective feature (feature 8) is used by the
effective composite operator evolved by CGP. This phenomenon is not
uncommon, since a feature is not isolated from other features and the
interaction of features (covariance) is complicated. Sometimes, a feature is not
effective if it is used alone, but when it is used in combination with other

3-dimensional
composite

feature vector
5-dimensional

composite
feature vector

primitive
feature vector

5 f 1 Of

0.989

0.990

0.625

0.986

0.982

0.668

0.991

0.994

0.908

0.989

0.992

0.947

0.971

0.977

0.963

0.984

0.986

0.978

182 Chapter 5. Evolutionary Feature Synthesis for Object Recognition

features, a high recognition rate may be achieved. At this time, all these
features form an effective feature set.

(SQRT (LOG PF8))))) PF18 PF6))) PF8)

(a) Composite (b) Composite (c) Composite
operator 1 operator 2 operator 3

Figure 5.5. Composite operator vector learned by CGP.

5.4.2 Recognize objects

Data: Five objects (BRDM2 armored personnel carrier, D7 bulldozer, T62
tank, ZIL truck and ZSU anti-aircraft gun) are used in the experiments. For
each object, 210 real SAR images under 15"-depression angle and various
azimuth angles between 0" and 359" are collected from MSTAR public data
[104]. Figure 5.6 shows one optical and four SAR images of each object. From
Figure 5.6, we can see that it is not easy to distinguish SAR images of
different objects. Since SAR images are very sensitive to azimuth angles and
training images should represent the characteristics of an object under various
azimuth angles, 210 SAR images of each object are sorted in the ascending
order of their azimuth angles and the first, fourth, seventh, tenth SAR images
and so on are selected for training. Thus, for each object, 70 SAR images are
used in training and the rest of the images are used in testing.

5.4 Experiments 183

Experiment 2 - Discriminate three objects: CGP synthesizes composite
features to recognize three objects: BRDM2, D7 and T62. First, the
effectiveness of each primitive feature in discriminating these three objects is
examined. The results are shown in Table 5.5. The mean CFAR (feature 8) is
the best primitive feature with a recognition rate of 0.73. Three series of
experiments are performed in which CGP maintains 3,5 and 8 sub-populations
to evolve 3, 5 and 8-dimensional composite feature vectors, respectively. The
primitive features used in the experiments are all the 20 primitive features and
10 common primitive features (primitive features 11 to 20). The average
recognition rates of 3, 5 and 8-dimensional composite feature vectors over ten
runs are shown in Table 5.6, where 10f and 20f mean primitive features 11 to
20 and all the 20 primitive features, respectively.

(a) Optical and SAR images of BRDM2.

184 Chapter 5. Evolutionary Feature Synthesis for Object Recognition

(b) Optical and SAR images of D7.

(c) Optical and SAR images of T62.

5.4 Experiments 185

(d) Optical and SAR images of ZlLl3l.

(e) Optical and SAR images of ZSU.

Figure 5.6. Five objects used in recognition.

186 Chapter 5. Evolutionary Feature Synthesis for Object Recognition

From Table 5.5 and Table 5.6, it can be seen that the learned composite
feature vectors are more effective than primitive features. If all the 20
primitive features from the training images are used to form 20-dimensional
primitive feature vectors to train a Bayesian classifier for recognition, the
recognition rates on training and testing data are 0.995 and 0.962, respectively.
This result, shown in the 4th row of Table 5.6 under the 20f heading, is a little
bit better than the average performance shown in the first and second rows of
Table 5.6, but the dimension of the feature vector is 20. However, the
dimensions of composite feature vectors in the first and second rows of Table
5.6 are just 3 and 5 respectively. If the dimension of composite feature vector
is increased to 8, the CGP results are better. If the last 10 primitive features are
used, the recognition rates on training and testing data are 0.863 and 0.812,
respectively. From these results, we can see that the effectiveness of the
primitive features has an important impact on the composite features
synthesized by CGP. In general, with more effective primitive features, CGP
can synthesize more effective composite features. Figure 5.7 shows the
composite operator vector. evolved by CGP with 5 sub-populations in the loth
run using 20 primitive features. The size of the first and second composite
operators is 20. The size of the third one and the last one are 9 and 15,
respectively. The fourth composite operator is just primitive feature 11. The
primitive features used by the learned composite operator vector are primitive
features 2, 3, 4, 5, 6, 7, 8, 11, 12, 14, 18, 19, 20. If all these 13 primitive
features form 13-dimensional primitive feature vectors for recognition, the
recognition rate is 0.960.

5.4 Experiments 187

Table 5.5. Recognition rates of 20 primitive features (3 objects).

Feature
Number

1

2

3

4

5

6

7

8

9

10

Primitive
Feature
Standard
deviation
Fractal

dimension

Weight-rank
fill ratio

Blob mass

Blob
diameter

Blob inertia

Maximum
CFAR

Mean CFAR

Percent
bright CFAR

Count

Recognition
Rate

0.376

0.662

0.607

0.717

0.643

0.495

0.588

0.726

0.607

0.633

Feature
Number

11

12

13

14

15

16

17

18

19

20

Primitive
Feature

Horizontal
projection
Vertical

projection
Major

diagonal
projection

Minor
diagonal

projection

Minimum
distance

Maximum
distance

Mean
distance

Moment u2o

Moment uO2

Moment u22

Recognition
Rate

0.414

0.545

0.460

0.455

0.505

0.417

0.376

0.421

0.443

0.512

188 Chapter 5. Evolutionary Feature Synthesis for Object Recognition

Table 5.6. Performance of composite and primitive features on 3-object
discrimination.

Runs

3-dimensional
composite

feature vector
5-dimensional

composite
feature vector
8-dimensional

composite
feature vector

Primitive
feature vector

10
Training

0.880

0.921

0.962

0.863

Recogniti
f

Testing

0.843

0.857

0.870

0.812

on Rate
20f

Training

0.969

0.990

0.999

0.995

f
Testing

0.943

0.961

0.970

0.962

5.4 Experiments 189

-

(DIV (MULC (SUB (SUB
(DIVC (SQRT PF6)) (MULC
(SUB PF18 (MULC (SUB
PF 18 (SQRT PF4))))))
(SQRT PF6))) (MIN2 PF12
PF 19))

(a) Composite operator 1

(DIV (MULC (ADD (ADDC
(MULC (MUL (MIN2 (ADDC
(DIV PF20 PF4)) PF14)
PF3))) (LOG (ADDC (DIV
PF20 PF4))))) (DIVC PF4))

(b) Composite operator 2

(c) Composite (d) Composite (e) Composite
operator 3 operator 4 operator 5

(DIV (MIN2 (SUBC

PF7 PF8)) PF8)

Figure 5.7. Composite operator vector learned by CGP with 5 sub-populations.

(LOG (ADDC (LOG (DIV
(SUBC (LOG (DIV (SUBC
(LOG PF5)) (SUBC PF5))))
(MUL PF2 PF5)))))

Experiment 3 - Discriminate five objects: With two more objects (ZIL
and ZSU) added, the recognition becomes more difficult. This can be seen
from Table 5.7, which shows the effectiveness of each primitive feature in
discriminating these five objects. Blob mass (feature 4) is the best primitive
feature with a recognition rate of 0.486. If all the 20 primitive features from
the training images are used jointly to form 20-dimensional primitive feature
vectors to train a Bayesian classifier for recognition, the recognition rates on
training and testing are 0.914 and 0.812, respectively; if only the 10 common
primitive features are used, the recognition rates on training and testing data
are 0.737 and 0.623, respectively. These results are shown in the 31d row of
Table 5.8. The composite features built on the primitive features 11 to 20 are
not very effective, since these 10 primitive features are common features and
are not designed with the characteristics of SAR images taken into
consideration.

190 Chapter 5. Evolutionary Feature Synthesis for Object Recognition

Table 5.7. Recognition rates of 20 primitive features (5 objects).

deviation

Weight-rank 3 1 fill ratio 1 0 . 3 6 1

*

I I Blob mass 1 0.486

6 1 Blob inertia 1 0.346

Fractal
dimension

7 Maximum
CFAR 0.379

0.473

8 1 Mean CFAR 1 0.471
Percent 1 bright CFAR 1 0.449

10 1 Count 1 0.453

Feature 1 Primitive 1 Recognition

Vertical
l 2 / projection I 0.343

diagonal 0.28 1
ro'ection 1 diagonal 0.265

I projection I
Minimum

l 5 1 distance I 0.277

Maximum 0.294

distance 0.266 2
Moment po2 0.267

20 1 Moment h2 1 0.340

Two series of experiments are performed in which CGP maintains 5 and 8
sub-populations to evolve 5 and 8-dimensional composite feature vectors for
recognition. The primitive features used in the experiments are 20 primitive
features and 10 common primitive features. The hard size limit is 20. The
average recognition rates of 5 and 8-dimensional composite feature vectors
over ten runs are shown in the first and second rows of Table 5.8.

5.4 Experiments 19 1

Table 5.8. Performance of composite and primitive features on 5-object
discrimination.

Runs

5-dimensional
composite

feature vector
8-dimensional

composite
feature vector

Primitive
feature vector

Recognition Rate

Training Testing Training Testing

From Table 5.8, we can see that when the dimension of the composite
feature vector is 8, the performance of the composite features is good and it is
better than using all 20 (0.812) or 10 (0.623) primitive features upon which the
composite features are built. When the dimension of the composite feature
vector is 5, the recognition is not satisfactory when using just 10 common
features as building blocks. Also, when the dimension is 5, the average
performance is a little bit worse than using all 20 or 10 primitive features, but
the dimension of the composite feature vector is just one-fourth or half of the
number of primitive features, saving a lot of computational burden in
recognition. When all the 20 primitive features are used and CGP has 8 sub-
populations, the composite operators in the best composite operator vector
evolved have sizes 19, 1, 16, 19, 15, 7, 16 and 6, respectively and they are
shown in Figure 5.8. The primitive features used by the synthesized composite
operator vector are primitive features 2, 3,4,5, 8,9, 10, 1 1, 12, 13, 14, 15, 16,
18, 19 and 20. If all these 16 primitive features directly form 16-dimensional
primitive feature vectors to train a Bayesian classifier for recognition, the
recognition rate is 0.80 on the testing images, which is lower than the average
performance of the composite feature vector shown in Table 5.8.

192 Chapter 5. Evolutionary Feature Synthesis for Object Recognition

(MIN2 PF 10 (MIN2 (MULC (MUL
PF9 (MIN2 (DIVC PF10) (MUL
PF9 (DIVC PF10))))) (MIN2
(MUL PF9 (DIVC PF 10)) PF 10)))

(a) Composite operator 1. (b) Composite operator 2.

(SQRT (DIV PFIO (SQRT (MAX2
(MULC (SUBC (DIV PF5 PF5)))
(MAX2 (SUBC (MULC (SUBC
(MULC (DIV PF15 PF5))))) PFIO)))))

(c) Composite operator 3. (d) Composite operator 4.

(LOG (MUL (LOG (SUB
(ADD PF16 (SQRT (LOG
(MUL (ADD PF16 PF16)
PF 12)))) PF 12)) PF20))

(SUB (LOG (DIVC
PF2)) (DIV PF9
PF 16))

(e) Composite operator 5

- -

(f) Composite operator 6.

(ADDC (ADD PF18 (ADD (MULC (LOG
PF18)) (MIN2 (SUB PF2 PF11) (SUB
PFI 8 (SUB PFl I PF2))))))

(g) Composite operator 7. (h) Composite operator 8.

Figure 5.8. Composite operator vector learned by CGP.

5.4 Experiments 193

5.4.3 Comparison with other classification algorithms

In chapters 5.4.1 and 5.4.2, the effectiveness of CGP-learned composite
features is shown and compared with that of original primitive features. The
comparison shows that CGP-learned composite features are more effective in
object recognition. In this subchapter, the performance of CGP-based
approach proposed in this chapter is compared with four other classical
classification algorithms: multi-layer feed forward neural networks trained
with (a) backpropagation algorithm, (b) stochastic backpropagation algorithm
and (c) stochastic backpropagation algorithm with momentum, and (d) the
C4.5 classification algorithm. For the detailed description of these algorithms,
refer to [28], [40], [78].

Multi-layer feed forward neural networks used in this chapter have three
layers: the output layer; the hidden layer; and the input layer. The output layer
has only one output node and the hidden layer has 3, 5 or 8 nodes. A node of
the input layer contains a primitive feature and the number of nodes in the
input layer is equal to the number of primitive features used in recognition.
The activation hnction of nodes in the output and hidden layers is:

ebx - e-bx 2
f (x> = a ebx + e-bx where a=1.716 and b = - 3 (5 .2)

The inputs to the neural networks are normalized primitive features. The
primitive features from training images and testing images are normalized
separately. The normalization is performed by the following formula:

f . . - p .
nf. I / = '--

g i

whereh, (j = 1, 2, ..., ni) are the feature values of original primitive feature i (i
= 1, 2, ... or 20) and nJ; (j = 1, 2, ..., n) are the corresponding normalized
feature values, n is the number of training or testing images, pi and o;: are the
mean and standard deviation of these n feature values. The reason for feature
normalization is that the values of some primitive features are very large,
making the value of ebx overflow. The weight values of connections between
nodes of different layers are initialized with small randomly generated real

194 Chapter 5. Evolutionary Feature Synthesis for Object Recognition

numbers in the range of [-I. 0, 1.01. The learning rate 77 of backpropagation
algorithms is 0.1 and the momentum a of stochastic backpropagation
algorithm with momentum is 0.5. Backpropagation algorithms stop when they
finish 300 weight-update loops or when the recognition rate on training data is
above 0.9, whichever occurs first. The best recognition rate and its associated
weight values are kept from loop to loop, and the trained neural network (the
one with the best recognition rate) is applied to the testing data. In each
experiment, backpropagation algorithms are invoked ten times with the same
parameters and input data to train a neural network. For the purpose of
objective comparison, only the average results over ten runs are reported. The
original backpropagation algorithm sometimes constructs a neural network
with very bad performance (below 0.1) due to the gradient descent
convergence to a poor local minimum point. We do not use the results from
these runs in the calculation of average performance and invoke the
backpropagation algorithm to perform training again.

The input to the C4.5 algorithm is the original set of primitive features, not
the normalized ones. For a particular primitive feature, if it has at most 10
unique feature values among the feature values extracted from training images,
it is treated as a discrete feature; otherwise, it is treated as a continuous feature
[78]. Since C4.5 is a deterministic algorithm, it is invoked only once in each
experiments.

Four experiments are performed: distinguishing between 3 objects using all
the 20 primitive features or 10 common primitive features; distinguishing
between 5 objects using all the 20 primitive features or 10 common primitive
features. As previously stated, in each experiment, the backpropagation is
invoked ten times to train ten neural networks, the average recognition rates of
trained multi-layer neural networks with 3, 5 and 8 hidden layers are shown in
Table 5.9 and Table 5.10, where 10f means using the primitive features 11 to
20 and 20f means using all the primitive features. Table 5.9 and Table 5.10
show the performance on distinguishing 3 and 5 objects, respectively, for the
three backpropagation algorithms. Table 5.1 1 shows the performance for the
C4.5 algorithm.

From the above tables and Table 5.6 and Table 5.8, it can be seen that the
CGP-based approach proposed in this chapter outperforms all the
backpropagation and C4.5 algorithms in testing and that the C4.5 algorithm is

5.4 Experiments 195

more effective than all the backpropagation algorithms. Stochastic
backpropagation and stochastic backpropagation with momentum outperform
the original backpropagation algorithm, since the original backpropagation
algorithm is more likely to converge to some local minimum points, yielding a
neural network with poor performance. According to our experiments, three
hidden nodes are enough, increasing the number of hidden nodes to 5 or 8
does not increase the performance significantly. In fact, sometimes it decreases
the recognition performance.

Table 5.9. Average recognition performance of multi-layer neural networks trained by
backpropagation algorithms (3 objects).

Number of
hidden
nodes

Number of
hidden
nodes

Number of
hidden
nodes

Recognition Rate 1
(Backpropagation)

1 Of 20f
Training I Testing I Training I Testing

0.548 1 0.526 1 0.634 1 0.623

Recognition Rate I
(Backpropagation - Stochastic)
1 Of 20f

Training Testing Training Testing
0.672 0.667 0.792 0.801
0.669 0.664 0.801 0.787

Recognition Rate 1
(Backpropagation - stochastic with momentum) 1

10f - means only 10 common primitive features are used in feature synthesis
20f - means all the 20 primitive features are used in feature synthesis

196 Chapter 5. Evolutionary Feature Synthesis for Object Recognition

Table 5.10. Average recognition performance of multi-layer neural networks trained
by backpropagation algorithms (5 objects).

Number of

niuuen
nodes

5
8

Number of

niaaen

5
8

Number of

maaen

5
8

1(
Training

0.274
0.292

(B
1(

Training
0.302
0.296

(Backpropa
1(

Training
0.319
0.331

Recogni
(Backpro

)f
Testing

0.267
0.290
Recogni

ackpropagati
)f

Testing
0.300
0.296
Recogni

gation - Sto
Of

Testing
0.304
0.328

tion Rate
pagation)

2
Training

0.346
0.330

tion Rate
on - Stochas

2
Training

0.370
0.366

tion Rate
hastic with

2
Training

0.376
0.369

Of
Testing

0.340
0.325

tic)
Of

Testing
0.366
0.366

momentum)
20f

Testing
0.367
0.368

10f- means only 10 common primitive features are used in feature synthesis
20f- means all the 20 primitive features are used in feature synthesis

5.4 Experiments 197

Table 5.1 1. Recognition performance of C4.5 classification algorithm.

3 objects

5 objects

1 Of
Training

0.962

20f

5.4.4 Discussion

Testing
0.679

Training I Testing
0.754 1 0.344

The above experiments demonstrate that:

It is important to introduce domain knowledge into the feature synthesis
for object recognition by defining the primitive features. In these
experiments, we compare the effectiveness of composite features built on
both domain-independent primitive features (10 common features) and
domain-dependent primitive features encoding demain knowledge (the
characteristics of SAR imagery in this chapter). The comparison shows
that more effective composite features can be generated in the feature
synthesis with primitive features encoding domain knowledge. It is also
observed from the experiments that with primitive features encoding
domain knowledge, CGP can evolve effective composite features within
the fewer number of generations, thus improving the efficiency of CGP
search.

Training
0.995

Training
0.917

In general, the effectiveness of composite features learned by CGP is
dependent on the effectiveness of primitive features. With more effective
primitive features available, more effective composite features can be
generated by CGP. But this does not mean that ineffective primitive
features are never used by CGP in the feature synthesis. As Figure 5.5
shows, an ineffective feature (primitive feature 8) is used to synthesize
effective composite features. The reason for the use of one or more

Testing
0.9 17

Testing
0.686

198 Chapter 5. Evolutionary Feature Synthesis for Object Recognition

ineffective primitive features in the synthesis of effective composite
features is due to the interaction between primitive features. Although
some features are ineffective when used alone, they can be elements of a
primitive feature set that is the building block for effective composite
features.

CGP is a viable tool to synthesize effective composite features from
primitive features for object recognition. In general, the synthesized
composite features are more effective than the primitive features upon
which these composite features are built, although there are a few
exceptions in our experiments. In experiment 1, the learned composite
features outperform the primitive features or any combination of primitive
features upon which they are evolved, although the improvement in
recognition rate is not significant when all the 10 common primitive
features are used to synthesize composite features, since the performance
of these 10 primitive features, when used together, is already very good
(0.963 in training and 0.978 in testing). In experiment 2, when 8-
dimensional composite feature vectors are evolved or when only 10
common primitive features are used in feature synthesis, the synthesized
composite features are more effective. But when all the 20 primitive
features are used and the dimension of composite feature vectors is 5 or 3,
the performance of primitive features is a little bit higher. However, the
dimension of primitive feature vectors is 20, much higher than that of
composite feature vectors, which is 5 or 3. In experiment 3, when 8-
dimensional composite feature vectors are evolved, the synthesized
composite features produce better recognition results. But if the dimension
of composite feature vectors is 5, the 10 or 20-dimensional primitive
feature vectors yield better performance. Since there is some randomness
involved in GP, we can still conclude that CGP can evolve composite
features that are more effective than the primitive ones upon which they
are evolved. More importantly, to achieve the same or similar recognition
rate, the number of composite features needed is smaller than the number
of primitive features needed (one-fourth or half), reducing the
computational expense during run-time recognition. Thus, the composite
features outperform the primitive ones with adequate number of sub-
populations.

5.5 Conclusions 199

The CGP approach synthesizes composite features for recognition that
outperform four basic recognition algorithms (three backpropagation
algorithms and the C4.5 algorithm).

5.5 Conclusions

This chapter investigates synthesizing composite features for object
recognition. Our experimental results using real SAR images show that CGP
can evolve composite features that are more effective than the primitive
features upon which they are built, although sometimes the improvement in
recognition rate may not be significant. To achieve the same recognition
performance of primitive features, fewer composite features are needed and
this reduces the computational burden during recognition. From the
experimental results, it can be seen that primitive features that provide domain
knowledge for the evolutionary process have a substantial impact on the
performance of the synthesized composite features. Although the effectiveness
of synthesized composite features is not solely dependent on the effectiveness
of primitive features, on the average, if primitive features do not capture the
characteristics of the objects to be recognized, it is difficult, if not impossible,
for CGP to synthesize effective composite features. Thus, it is important to
design effective primitive features. We cannot entirely rely on CGP to
generate good features. However, designing effective primitive features needs
human ingenuity. If human experts lack insight into the characteristics of the
objects to be recognized, they may not figure out effective primitive features.

Currently, there is only one object in an image during recognition, so all the
features come from the same object. If there are multiple overlapped objects
[19] in an image, the recognition becomes much more difficult. Some of the
features of an object may not be available due to occlusion and we need to
distinguish features from different objects before these features are fed into a
classifier. Recognizing multiple overlapped objects using this approach is a
challenging future research topic.

Chapter 6

LINEAR GENETIC PROGRAMMING FOR OBJECT
RECOGNITION

6.1 Introduction

In this chapter, we describe a feature construction method which uses a special
linear variety of genetic programming for feature construction. We provide
rationale for the design of the method and present its two varieties: using
evolutionary computation for evolutionary feature programming (EFP) and
cooperative coevolution for coevolutionary feature programming (CFP). We
discuss different decomposition strategies for breaking up the feature
construction process. The practical utility of EFP and CFP is verified in real-
case studies presented in chapter 7.

Evolutionary computation (EC) has several virtues which make it appealing
from a computer vision and pattern recognition perspective. As a general
template of universal search procedure, it needs relatively little task-specific
tailoring to make it work within a specific application. The evolutionary search
is usually characterized by low risk of being trapped in local minima, has
sound rationale in both computational biology and theory (schemata theorem)
[36], [42], and has proven effective in a wide spectrum of benchmarks and
real-world applications. In particular, it has found a significant number of
applications in image processing and analysis as discussed in the previous

202 Chapter 6. Linear Genetic Programming for Object Recognition

chapters. In this chapter we discuss the synthesis of entire feature extraction
procedures using linear genetic programming [59], [60], [61].

To make EC work as a search engine for feature construction, two important
questions have to be answered: how to represent feature mappings G as
solutions s E S, and how to evaluate individuals. This chapter gives answers to
these questions and provides rationale for the proposed EFP method. However,
we abstract here from any application-specific knowledge (e.g., knowledge
related to computer vision). The particular examples of applying the proposed
approach to specific applications will be, provided in chapter 7.

6.2 Explicit Feature Construction

In most machine learning and visual learning approaches, EC operates in the
space of hypotheses. An outstanding manifestation of this convention are the
famous 'Michigan' [43] and 'Pittsburgh' [I121 approaches for GA-based rule
induction 1761, [78]. In EFP, on the contrary, EC is employed to perform a
search in the space of feature definitions. The evolutionary computation has
been also applied to search such spaces, serving the purpose of transformation
of training data. Most of the work done, however, concerned feature selection.
There are several publications on applying evolutionary computation to feature
selection [98], [122], [129]. A new approach was presented in Chapter 4. The
superiority of global feature selection methods, EC in particular, over local
search methods, was shown experimentally in early 90's [45], [46].

In the framework of learning from examples, a complete description of the
learning problem is represented by the (often infinite) universe of examples
(instances, objects) x. The learning task posed to the learner (learning
algorithm, inducer) consists in finding a hypothesis h (classifier) that
optimizes some performance measure f defined with respect to the training
data T, which is in fact a sample from the universe. In the following we
assume that f is scalar and it is to be maximized, and that the learning is
supervised, i.e., a discrete decision class label d(x) is given for each training
example x E T.

6.2 Explicit Feature Construction 203

From a machine learning (ML) perspective, we focus here on explicit
feature construction, i.e., a deliberate process that aims at changing the form of
training data. More formally, we are interested in mappings G that transform a
given image x into its representation G(x) in derived feature space:

where m denotes the number of features in the transformed representation. The
goal of such feature construction process is to improve hypothesis, h,
performance (accuracy of classification in the most common case) i.e. to find
G such that h(G()) performs better than h alone, with respect to f. The pair
(G,h) in the following is referred to as a recognition system or decision
system.

Though an example x E T could essentially denote any data entity, we
identify it with a raster image. In general, the dimensionality m of the derived
space is not directly related to the amount of information carried over by x;
nevertheless, in most real-world studies the feature transformation method
should significantly reduce the dimensionality of the representation to avoid
learner's overfitting to the training data at the expense of losing generalization
ability. In the proposed approach, the dimensionality m of the resulting space
has to be fixed for all images x E T to form a so-called attribute-value
representation that most learners can work with.

We assume that each gi represents a real-valued function that is technically
realized by a feature extraction procedure and undergoes changes as the
system learns. In general, the form of gi is arbitrary: it could be a polynomial,
an artificial neuron, or even a lookup table. We try to maintain the explanatory
function of feature construction and aim at its symbolic variety. Therefore, we
limit our interest to gi being a (usually compound) function of x, which may be
expressed in terms of some meaningful symbols. We assume that those
symbols may be parameterized.

The methods described in this chapter (EFP and CFP) assume that the
mapping G is manipulated by an evolutionary process driven by the fitness
functionJ an estimate of recognition system performance. Now, one has to

204 Chapter 6. Linear Genetic Programming for Object Recognition

decide how to encode G as an EC solution (individual) s. Two qualitatively
different methodologies are possible here. One can fix the general form of
each gi E G and encode its parameters only. Alternatively, one can encode in
solution s the complete information that is required to restore G. The former of
these approaches is obviously less general than the latter one. In EFP and CFP,
to provide a more general approach, we choose the latter method, where the
solution s completely determines the actual working of G.

Next, one should decide how to encode the application-related individuals
(solutions) in generic representation used by a particular variant of EC (e.g.,
fixed-length strings over a binary alphabet in the case of GA). In evolutionary
terms, individuals' encoding is commonly referred to as genotype, and its
representation in application-specific terms - phenotype. These entities dwell
in two separate universes, genotypic search space and phenotypic search
space, respectively. In this context, the (maximized) fitness function f:
S + [0,1] that evaluates individuals s E S is in fact a compound function:

where& function implements the mapping from the space of genotypes to the
space of phenotypes (in other words, it decodes the individual). The& function
(phenotypic fitness) computes the fitness based on the phenotypic
representation f,(s) of the solution s [105]. Therefore, f, operates in the
problem domain and is usually much more application-specific than&.

Function f, implements the so-called genotype-phenotype mapping. An
important issue is here the extent to which & preserves the topology of the
search space. In EC literature, this issue is usually referred to as the locality of
representation [106]. Locality may be defined as a measure that reflects to
what extent (or, informally, with what probability) the neighbors in the
genotypic space remain neighbors when mapped to the phenotypic space. High
locality representations preserve search space topology to a great extent; low
locality representations do not and resemble more a kind of random mapping.
This notion becomes important in the discussion of properties of the proposed
representation for feature extraction procedures.

6.3 Linear Genetic Programming 205

6.3 Linear Genetic Programming

Prior to formal presentation of EFP, we devote a few paragraphs to describe
the EC paradigm, which inspired the proposed method. Linear Genetic
Programming (LGP) was originally proposed by Banzhaff [4]. Essentially,
LGP is a variety of GP with simplified, linear representation of individual's
code. The representation used in LGP is a hybrid of GA and GP, and combines
their advantages. The individual's genome represents a sequential program
composed of (possibly parameterized) basic and given a priori operators. This
feature makes LGP similar to GP. On the other hand, as opposed to GP, where
tree-like expressions are maintained (see chapter 2), LGP encodes such
procedures in a form of a fixed-length sequence that, at the genome level, is
essentially equivalent to GA representation. LGP encoding is, therefore, more
positional, i.e. the evolutionary process tends to bind some meaning to
particular code fragments. As a consequence, the standard crossover operator
used in LGP exchanges mutually corresponding code fragments. In GP, on the
contrary, the standard crossover picks at random subtrees in parent solutions
and exchanges them, and such an action most often affects unrelated code
fragments, leading to deterioration of evolution convergence. Therefore, LGP
is more resistant to destructive crossovers than regular GP [4].

Another important concept of LGP is the way the intermediate results are
passed from one operation to another. In GP, this is determined by the
structure of the expression tree. In LGP, the 'virtual machine' that interprets an
LGP program is equipped with extra registers. The registers serve as storage
for a program's input data, intermediate results, and a program's output
(response).

LGP proved successful in the experimental evaluation on a family of
different classification and regression tasks [22]. Another motivation for
developing LGP was the possibility of fast individual's compilation into the
machine code, which obviously may result in significant speedup of fitness
computation [83]. Note also that several other programming-like EC
paradigms came into being since GP's advent. These include Grammatical
Evolution 1871, [I071 (a variant of GP with strong control of individuals'
syntax), Linear-Tree GP [52] (a hybrid of GP and LGP), and Gene Expression
Programming [32] (individuals are represented as fixed-length strings at

206 Chapter 6. Linear Genetic Programming for Object Recognition

genotype level, but have tree representation at phenotype level). More general
program representations, like graphs, have been also considered [118], [119].

6.4 Evolutionary Feature Programming

The overall architecture of evolutionary feature programming (EFP) is
presented in Figure 6.1. It may be briefly characterized as a genetically-driven
search in the space of explicit, symbolic feature definitions, aimed at
maximizing the expected predictive accuracy of the entire decision
(recognition) system. The search is driven by a fitness function f evaluated on
the training net, and it uses an LGP-inspired representation to encode the
feature definitions. This compound function involves interpretation of encoded
feature extraction procedures (genotype-phenotype mapping f,) followed by
the evaluation of the resulting feature extraction procedures in the context of
the training data (phenotypic fitness&).

Learning takes place at two levels: at the upper level the evolutionary search
learns (generates and evaluates) solutions s that encode feature extraction
mappings G, i.e., G =f,(s). At the lower level, the learner built into the fitness
function learns (induces and verifies) hypotheses given a particular
representation. In other words, the working of the entire approach involves
two intertwined loops that provide feedback for corresponding search
algorithms: the outer learning loop involves the evaluation cycle and is closed
by the fitness function5 whereas the inner learning loop involves hypothesis
generation and testing within the fitness function itself.

6.4 Evolutionary Feature Programming 207

I Genetic Algorithm

Initialization
I
I
I

Within the proposed framework, the evolutionary algorithm is used mostly
because exact search methods are inappropriate here. The solution space,
containing all features that may be expressed as feature extractions procedures,
cannot be effectively searched by means of exact methods, mostly for the
following two reasons: Firstly, the number of possible feature extraction
procedures (FEPs) is prohibitively large. Even for the simplest setting of the
proposed method, the number of possible realizations is an exponential
function of feature extractions procedure's length and the number of operators.
This complexity increases if other elements of the approach are taken into
account. Secondly, we cannot make any assumptions concerning the fitness
function f that would simplify the search. As will be shown in following, the
EFP representation of solutions has low locality.

Note also that, in the case of feature construction, proving any properties of
f is much more difficult than in case the of feature selection, where, e.g., some
methods profit from f ' s monotonicity with respect to the number of features

208 Chapter 6. Linear Genetic Programming for Object Recognition

[25]. Search techniques that would reduce the time complexity by analogously
exploiting some properties of the objective function (e.g., branch and bound),
are, therefore, not applicable here.

For these two reasons, only exhaustive search guarantees finding the global
optimum (with respect ton. Heuristic or metaheuristic search is, therefore, the
only plausible method that can be used to approach the feature construction
task posed as above, and that can yield reasonably good suboptimal solutions
in polynomial time. This is consistent with the rather practical attitude chosen
here, where we assume that well-performing suboptimal recognition systems
are usually satisfactory. In fact, solutions found during the heuristic search
may even be globally optimal; however, as we usually do not know the
application-specific upper bound of recognition performance, we cannot
discern such solutions from the suboptimal ones.

6.4.1 Representation and its properties

Representation of individuals used in EFP is mostly inspired by LGP but does
not strictly implement LGP as proposed by Banzhaff [4]. On the phenotype
level, a solution s encodes one or more feature extraction procedures; feature
definitions, or features for short. Each feature extraction procedure is
conceptually equivalent to mapping G defined in (6. I), and is able to yield one
or more scalar values gi(x) given input image x. It is encoded by a fixed-length
sequence of 1 elementary steps, or, for short, instructions Oi. Instructions are
executed sequentially; the proposed approach does not provide for branching
of control flow or iterative computations (loops). Such sophisticated constructs
have been introduced in some related approaches [119]; here, to avoid the
possible overfitting to the training data, we keep feature extraction procedures
simpler.

Instructions are built using operators oi E 0 from the set of elementary
operators 0. Instruction Oj is a specific instantiation of an elementary operator
oi. Their indices are not related: here, i enumerates operators in 0 , while j
denotes order of instructions within a feature extraction procedure. In other
words, an operator is a function that may be called for some set of arguments,
whereas an instruction is a particular call to such a function, technically
encoded as a fragment of a feature extraction procedure code in individual's

6.4 Evolutionary Feature Programming 209

genome. In the following operators will be identified with unique ids called
opcodes.

The set 0 constitutes the knowledge base for the feature construction
algorithm and is usually domain-dependant. For computer vision and pattern
recognition applications, operators from 0 may be effectively calls to image
processing functions, feature extraction hnctions, and other data processing.
For other application domains, 0 may contain appropriate domain-specific
operators. Obviously, the more knowledge is provided in 0 and the more
application-oriented it is, the better. Nevertheless, our goal is to prove that the
proposed approach works well even if 0 contains only general domain-related
knowledge, and not necessarily application-related knowledge. In particular,
we expect to obtain satisfactory results in different computer vision and
pattern recognition applications using general image processing and computer
vision knowledge implemented by operators from 0.

A specific instruction Oj within a particular feature extraction procedure is
composed of two components: an opcode that determines the operator oi E 0
to be used, and arguments, which are usually references to registers and tell
where to fetch input data from and store the result. Registers may be thought
of as temporary variables (working memory) that are used by instructions as
input and output arguments. Registers are typed: the numeric registers (rj,
j = I.. .n,) store only scalar values (intermediate results and final feature
values). Aiming at computer vision and pattern recognition applications, we
define also image registers (rj ', j = 1.. .n ',), which store input image and
processed images (image registers have the same dimensions as the input
image x).

The number of numeric registers n, determines the number of scalar features
gi computed by a feature extraction procedure. Commonly, we impose lower
bounds on n, and nPr , based on the maximum arity of operators from 0.
Formally, setting even n, = n ', = 1 is correct, as no constraints are imposed on
the way the instructions exchange data with registers. For instance, an operator
that requires two input arguments may fetch them both from the same register,
and even store the result in the same register. This would, however, seriously
limit the computational power of feature extraction procedures, thus in real-
world studies we usually set n, = n ; = 2...5.

210 Chapter 6. Linear Genetic Programming for Object Recognition

Preliminary experiments have also indicated the usefulness of such setting.
Though greater values of nr and n : are possible, one should note that the more
registers, the less effective is the passing of intermediate results between
consecutive instructions, it is less likely that a result produced by instruction
Oi will be used by any instruction Oj, j > i. To overcome this, a feature
extraction procedure has to be longer, that, in turn, increases the processing
time. This may be prohibitive in the feature construction phase, because, as it
will be shown, each individual's evaluation involves multiple execution of the
feature extraction procedure it encodes.

Therefore, a feature extraction procedure may be represented as a directed
graph, with nodes corresponding to instructions and arcs representing data
flow. Figure 6.2 shows an exemplary graph representing a single feature
extraction procedure, with extra nodes (marked by squares) that denote the
initial and final register contents (the intermediate register contents are not
explicitly depicted here). It can be observed that the proposed representation is
flexible and not constrained by strict syntactic rules: feature extraction
procedure is allowed to ignore input data (here: contents of register rl), create
dead-ends (instruction 02), and it is not obliged to produce novel features in all
numeric registers (an arrow connecting the initial and final states of r2 means
that its contents remains intact during the execution of feature extraction
procedure, so feature g2 is equivalent to initial contents of r2).

As register contents may be used more than once by the consecutive
instructions, tree representation is, in general, not sufficient to visualize feature
extraction procedure processing, though any such graph may be converted into
a tree by repeating some code fragments (subexpressions). From another
perspective, each feature extraction procedure may be viewed as a compound
function made of nested calls of operators oi E 0.

6.4 Evolutionary Feature Programming 21 1

,- .---------------------7

i Initial register j
i contents i

Figure 6.2. Graph representation of an exemplary feature extraction procedure.

The practical applicability of a recognition system based on global features
would be very limited. For non-trivial computer vision and pattern recognition
applications, local features are required. Therefore, the feature extraction
procedure representation allows each instruction to be executed in a local
mode. The mask flag, a single bit hidden inside the opcode, decides whether
the instruction should be global (work on the entire image register) or local
(limited to a mask on the image).

To support this extension, each image register maintains a rectangular mask.
The mask may be used by an instruction (if it is local), and limits the
processing to its interior. Global instructions ignore masks and operate on the
entire image. Mask placement and dimensions, stored as upper left and lower
right comer, are initialized prior to the execution of a feature extraction
procedure, but may be also changed by instructions.

Given the phenotype representation of a solution s, we are able now to
summarize the genotype-phenotype mapping& in Figure 6.3. On the genotype
level, a feature extraction procedure is encoded as a fixed-length sequence of
bits, with consecutive chunks (substrings) of bits encoding successive
instructions. On the phenotype level, for each instruction Oi, particular
elements of its encoding within EC solution s correspond to separate variables
si in the formulation of evolutionary search. In EC terminology, these elements
are referred to as genes.

212 Chapter 6. Linear Genetic Programming for Object Recognition

Interpretation of genes representing arguments depends on the particular
elementary operator. If an operator requires only one input argument, the
output argument is stored in the second gene, and the third gene is ignored.
Thus, the representation used here is positional in the sense that each
instruction component is encoded by a fixed-length bit sequence, and, as a
result, each instruction has fixed length. The positional representation implies
convenient properties discussed in chapter 6.3.

Genotypic representation -solution s (fixed-length bit string)

Sk Sk+l Sk+2 Sk+3 Sk+4 S k + ~ .
opcodelj7ag I arg, I arg2 I arg3

I I

I i" instruction i+ 1 lh instruction I

! Phenotypic representation -feature !
extraction procedure G

Figure 6.3. Details on genotype-phenotype mapping.

Technically, all instructional elements are binary-encoded integer variables
(genes) si. For each gene, its upper limit is determined by corresponding
parameter setting (the lower limit is always 0). For instance, the number of
registers n, imposes the upper limit on the values of variables si encoding
arguments (arg,, argz, arg3), and the number of operators 101 determines the
range for the gene representing opcode to [0,101-11. However, the number of
distinct values of particular gene si (alleles in EC terminology) does not
necessarily have to be a power of two, which is inconsistent with binary
encoding. To resolve this incompatibility, a 'modulo mapping' is used during
feature extraction procedure interpretation. f, maps the corresponding gene by
computing the actual gene si value modulo its upper limit+l. For instance, with
101 = 70 elementary operators, the minimal possible number of bits for

6.4 Evolutionq Feature Programming 2 13

encoding the opcode is 7 (26= 64 < 70 < 128 = 2'). Therefore, the opcode
10010002= 7210 will be effectively translated into opcode 2, as 72 modulo 70
amounts to 2.

Except for trivial cases, real-world tasks usually require feature extraction
procedures that refer to some constants. Constants are important as, among
others, they parameterize instructions and provide fixed components in
arithmetic expressions. In EFP, constants are encoded in individual's genome
and evolve together with it. In particular, a feature extraction procedure may
use constants in two ways. Both methods assume that one bit in binary
encoding of each argument (argl.. .arg3 in Figure 6.3) determines its actual
function. In the first method, if this bit is set, the argument is interpreted as a
register number; otherwise, the remaining bits of argument encoding are
interpreted as a constant integer number. In the latter case, depending on the
application, the resulting constant may be directly passed to the phenotype or
it may undergo scaling to provide a more appropriate range of values.

This method is simple, but suffers from limited precision andlor range of
encoded constants, as each argument is encoded to one byte, i.e., 8 bits. With
one bit acting as a register-constant flag, 7 bits are left for constant encoding.
This provides only 128 distinct values, which may not be enough to provide
both sufficient range and precision. Thus, another, more indirect method of
constant encoding is also provided. Similar to the first method, the choice
between register reference and constant value is made according to the state of
appropriate flag in argument encoding. If the state of the flag indicates
constant, the constant value is fetched from an extra part of genome ('tail')
that each individual is equipped with, which is exclusively dedicated to
constant storage.

In the following, we summarize some properties of the feature extraction
procedure representation from the perspective of evolutionary computation,
and computer vision and pattern recognition. From an evolutionary
computation perspective, the feature extraction procedure representation may
be qualified as positional. The proposed representation is also complete and
robust, in the sense that all solutions are feasible: any bit string has valid
phenotypic representation as a feature extraction procedure. Thus, we do not
have to test the solutions for feasibility and use repair algorithms to mend
infeasible solutions (see, e.g., [76]), which could be quite time-consuming.

214 Chapter 6. Linear Genetic Programming for Object Recognition

And, last but not the least, feature extraction procedure representation makes
some types of problem decomposition easy and elegant (see chapter 6.5).

The genotypic representation of solutions is essentially equivalent to
standard GA. As a result, we are able to use the common genetic operators
(mutation and crossover) to process the individuals. This allows us to rely on
widely accepted EC standards and avoid possible controversies concerning the
particular type of genetic operators.

Feature extraction procedure representation supports the schemata theorem
[42]. Short bit substrings correspond to conceptually independent elements of
solution's phenotype (e.g., single instruction or a sequence of instructions).
Therefore, short feature extraction subprograms/subprocedures are less likely
to be disrupted by the genetic operators than the long ones. Thus, if a building
block contributes positively to the overall performance of the solution, it has
more chance to propagate its offspring to the next generations.

The modulo mapping introduced in gene interpretation causes that& is not
bijective and two different bit strings may represent the same feature
extraction procedure. This obviously makes some modifications of the genetic
material ineffective, leading, among others, to neutral mutations - changes in
the genotype that do not affect individual's fitness. This may apparently be
disadvantageous, but, as the experiments show, it has a marginal effect on the
convergence of the evolutionary search and may be easily compensated by
increasing the mutation rate. Moreover, such encoding is somehow consistent
with the working of natural evolution, where most of the genetic material
seems to be redundant. Such dead code fragments are usually referred to as
introns. It has been shown in the past, that introns may have positive impact on
the effectiveness of search, as they enable performing a background search
concerning some aspects of the task, without influencing the individual's
fitness. More than that, some successful work has been done on explicit
introduction of introns into genetic code [75], [81].

Within an instruction, its opcode determines the types of its arguments, and
the arguments, being stored in registers, are always accessible. For instance, if
the opcode refers to pixel-wise image subtraction, the consecutive genes are
interpreted as references to three image registers (two input images, one output
image); if the opcode refers to image thresholding, the consecutive genes are

6.4 Evolutionary Feature Programming 2 15

interpreted as references to image register (input image), numeric register
(threshold), and image register (output image). Therefore, there is no need for
extra means that usually have to be undertaken in standard GP. In GP, when
genetic operators modify solutions, they have to control the type compatibility:
the type of values returned by node of expression tree has to be compatible
with its parent's input type. This principle, known as strong typing [57],
implies extra computational overhead. As there is no need for such control
here, the feature extraction procedure representation may be characterized by
weak typing.

From computer vision and pattern recognition perspective, the proposed
approach represents the category of feature-based recognition, as opposed to
model-based algorithms that recognize an object by measuring its similarity to
models from the database of objects. The recognition process is also image-
driven (bottom-up, or, more generally, data-driven or example-driven), as
opposed to some model-based approaches which implement model-driven
(top-down) strategies.

The proposed representation models the processing of visual information in
a stepwise manner. This feature is consistent with neurobiology and cognitive
science research, which indicates that primates' visual perception is organized
and works in a modular way [72], [80]. Many stages of processing and the
ability to perform local operations enable grouping, an essential property of
any non-trivial vision system [33]. The presence of image registers also helps
the EFP to obey the principle of least commitment [72] which states that
algorithms, especially those that process imperfect (noisy, incomplete,
imprecise) information, should avoid making crisp decisions as long as
possible, since it is very difficult (if not impossible) to recover from a wrong
crisp decisions made at the early stages of processing. This is particularly true
in computer vision and pattern recognition systems, where there are several
stages at which decisions are made.

216 Chapter 6. Linear Genetic Programming for Object Recognition

6.4.2 Execution of feature extraction procedure

Given the description of feature extraction procedure encoding, we now
explain its execution, i.e., processing of a single training instance. This
process, together with evaluation, constitute the second component of the
fitness function, the phenotypic fitness&.

The processing of an example x by a feature extraction procedure G
encoded by an individual s proceeds in three steps (Figure 6.4):

1. Initialization: The registers are set to values derived from x.

2. Execution: The instructions Oi, i = 1.. .l, encoded by s are carried out one
by one; each of them fetches andlor writes some data (intermediate results)
fromlto registers.

3. Exploitation: The scalar values computed in the numeric registers rj,
j= 1.. .n,, after program execution are interpreted as features g(x) that form
the feature vector G(x). In particular, if one feature extraction procedure is
used, the contents of scalar registers fully determines G(x) (i.e., m = n,).

Solution s

: Instruction #I i+

Initialization:
lmage registers
initialized by
processed
input image x
with masks set to
distinctive features

lnstruction #2 Instruction #3 -
Exploitation:
Feature values
g(x), i = I , ..., n
filched from h&e

interpreter aiter execution of
enire LGP program

Figure 6.4. Execution of feature extraction procedures for a single training example
(image) x.

6.4 Evolutionary Feature Programming 2 17

In the initialization phase, both numeric and image registers have to be
prepared for the execution of feature extraction procedure. The simplest way,
copying the input image x into all the image registers, is correct, yet not
optimal from a practical viewpoint. It seems more reasonable to advance the
learning process already in its beginning, by providing it with different 'views'
of the training data. This effect may be easily obtained by differentiating the
initial contents of image registers. Therefore, each of the image registers r) is
initialized by an image resulting from global processing of x by an image
filter. All filters used for this purpose are unary image operations
(Image + Image) from the set 0 (see, e.g., list of operators presented in Table
7.1, which serves as a background knowledge base for real-world applications
considered in chapter 7). The choice of filters is determined by a separate
fragment of feature extraction procedure encoding, which, for clarity, was not
shown in Figure 6.3 and Figure 6.4. For each register, its mask is centered on
the most distinctive fragment of the image resulting from this preprocessing;
in practice, it is the brightest point in the processed image. Initially, the mask
is rectangular, and its dimension is determined by a parameter (here: 5 pixels).

The numeric registers ri are also initialized according to some information
derived from the input image x. In particular, the center coordinates of the
mask of ith image register rIi determine the contents of numeric registers rzi.,
(horizontal coordinate) and 1-2~ (vertical coordinate). This process is obviously
limited by the number of available numeric registers n,; in general, only the
coordinates of the first In , 121 image registers may be stored in this way.

Another motivation for making the register initialization rather sophisticated
comes from time complexity considerations. The technical implementation of
the approach (chapter 7.2) maintains a cache memory for the initial register
contents and for all the training examples. Image preprocessing takes place in
the initialization phase and is carried out only once, prior to the evolutionary
run, for all training examples and all registers, and its results are stored in the
cache. When a feature extraction procedure is about to be run on a particular
training image x, the appropriate part of the cache is copied to registers, which
may be done quickly even for relatively large images. This technical trick
saves a significant fraction of computation time.

218 Chapter 6. Linear Genetic Programming for Object Recognition

6.4.3 Locality of representation

In this subchapter, we take a closer look at feature extraction procedure
representation and its locality. For this purpose we perform a qualitative
analysis of the impact genetic modifications (particularly mutations) have on
similarities and dissimilarities of solution phenotypes.

As we use common GA recombination operators to manipulate feature
extraction procedure representation, the probability of genetic change is
distributed evenly across the genome of solution s. All stages of information
processing are, therefore, equally likely to be subject to genetic change. This is
a substantially different than in GP, where initial processing stages (tree leaves
and nodes close to them) are more likely to be modified than the final steps
(tree nodes close to the root and the root itself). Nevertheless, the influence
('strength') of mutation does depend on instruction placement in feature
extraction procedure code. Note that some fragments of feature extraction
procedure code are potentially 'dead', i.e., the instructions' results stored in
registers are overridden by another instruction. The closer Oi to the end of
feature extraction procedure code, the less likely its result may be overridden
by subsequent instructions, and, therefore, the more important it is. Thus, the
mutations taking place close to the end of feature extraction procedure code
are more influential, on the average, than the mutations affecting the initial
feature extraction procedure fragments.

Within a single instruction, mutation affects a feature extraction procedure
in different ways. With respect to the instruction components, a single-bit
mutation may be of the following types:

1. change the opcode;

2. change the register the instruction refers to;

3. change the constant arguments used by the instruction;

4. change the mode of instruction (local vs. global).

Mutations of type 1 are potentially the strongest ones in terms of their
influence on solution's phenotype and the way the 'feature extraction procedure
processes the training data. They may lead to two qualitatively different
effects. The influence of such mutation is minor if it does not change the

6.4 Evolutionary Feature Programming 2 19

category (image - scalar) of the operation nor its arity; for instance, when a
unary image processing operation is mutated into another unary image
processing operation. A major change occurs when the resulting instruction is
qualitatively different from its original, e.g., when an image processing
operation is replaced by scalar operation or vice versa.

Mutations of type 2 result in a change of the register the operation refers to
as an argument. Such mutations are less profound than those of type 1.
However, their effects are often stronger for the scalar operations than for the
image ones, as the numeric registers usually contain different values. Image
registers are initialized with the input image preprocessed by different unary
image processing procedures, and are in most cases similar in visual terms, so
applying mutation on an argument of an image operation has usually a minor
effect.

Mutations on constants (type 3) have the smallest influence on the working
of an feature extraction procedure. The particular impact on the working of a
feature extraction procedure procedure depends on operation-specific
argument interpretation. For most operations, that impact is minor and may
consist, for instance, in a change of image binarization threshold or change of
mask width and/or height.

Mutations on instruction mode (type 4) may significantly change the
working of a feature extraction procedure code. The particular effect of this
type of mutation depends on the actual mask placement.

The assumed representation implies that interpretation of some genome
fragments is conditional, i.e. it depends on other genome fragments. For many
operations, some element's genes are ignored. For instance, the mode of an
operation (global/local) is ignored for scalar operations. This, together with the
phenomenon of neutral changes ('modulo mapping', chapter 6.4.1), implies
that when performing experiments on real-world data, the mutation probability
has to be set to rather high values to provide a sufficiently thorough search in
the solution space.

In the overall picture, the feature extraction procedure representation cannot
be univocally classified as having high or low locality (cf. chapter 6.2; [105]).
In general terms, its locality is probably comparable to that of common genetic

220 Chapter 6. Linear Genetic Programming for Object Recognition

programming, where application of the standard mutation operator may also
lead to qualitative changes (subtree replacement) or quantitative changes
(replacement of a constant value in a leaf). Analogously, the locality of feature
extraction procedure representation may be characterized as hybrid, as some
variables (e.g., those related to constants) exhibit high locality, whereas others,
with the opcode, as the most prominent example, demonstrate low locality.

For strong advocates of high-locality representations, we emphasize that
lack of high locality is unavoidable for such representations like feature
extraction procedure. This is an inherent feature of many knowledge-intensive
representations, i.e., representations that heavily relate to background
knowledge. With the growing complexity of problems that we attempt to solve
by means of EC and, in particular, by means of different varieties of genetic
programming, it becomes very difficult to design high-locality representations.
Nevertheless, as long as the evolutionary process is not deprived of the
possibility of local search, this situation should not be perceived as
disadvantageous. For feature extraction procedures, though some actions of
genetic operators fundamentally change the working of the procedure, causing
warpinglswitching of fitness landscapes (mutations of type 1, 4 and some of
the mutations of type 2), there are still some possibilities of local search
(mutations of type 3 and some mutations of type 2).

One could even hypothesize that some extent of low locality is probably
advantageous. The way from the genotype to the final evaluation is long and
involves feature extraction procedure decoding, its execution on the body of
training data, and multiple classifier induction and testing (see chapter 6.4.4).
Therefore, the genome has to undergo substantial changes to impact the
fitness. This also indicates that the fitness landscape is here probably filled
with many flat plateaus, which are extremely inconvenient for pure local
search. In this case, 'far-reaching mutations' resulting from low-locality
representation may be beneficial.

6.4 Evolutionary Feature Programming 221

6.4.4 Evaluation of solutions

The primary objective of the learning process is to provide good predictive
accuracy of the recognition system. From the explanatory perspective of
knowledge discovery, the second important goal is to promote simple
(readable) solutions. For the sake of simplicity, this second objective is not
explicitly taken into account in the following, for two reasons. Firstly,
allowing both objectives requires either their aggregation or solving multi-
objective (bi-objective) problem. Aggregation of objectives usually involves
parameter setting and often deteriorates the thoroughness of the search. Multi-
objective approach, on the other hand, would significantly complicate the
entire approach [12], [108], [123], and address topics that are beyond the
scope of this book. Secondly, there are other means that enable control of the
complexity of the evolved solutions: the parameter 1 that determines the
feature extraction procedure length, and the numbers of registers (n, and n',),
to mention the most relevant ones.

Therefore, the fitness function fused here relies only on the predictive
performance assessment, done in the context of the training set of images T.
The feature extraction procedure G encoded in a solution s is run for all
images x E T and produces feature vectors {G(x), x E T). These vectors,
together with decision class labels d(x), constitute the derived dataset with
examples given in attribute-value form:

T'= {(G(x), d (x)), x E T) .

We want f to promote transformations G that provide better predictive
performance. In feature selection and construction, f usually measures the
decision class separability, information contents, coherence, statistical
properties, or consistency provided by G; the term filter approach has been
coined to denote such methods. Alternatively, in a so-called wrapper approach
one estimates the accuracy of classification/recognition that may be attained
using G, by carrying out an internal multiple train-and-test experiment. The
practical superiority of the wrapper approach over the filter approach has been
shown in many different contexts [25]. Moreover, wrappers do not make
demanding assumptions concerning f 's monotonicity and the types of
variables (e.g., most consistency measures accept only nominal variables).

222 Chapter 6. Linear Genetic Programming for Object Recognition

For these reasons, EFP relies on a wrapper approach. The derived training
set T' is randomly partitioned into n,, folds (subsets) irl, of possibly equal size.
Given this partitioning, a multiple train-and-test experiment is carried out
using an inductive learning algorithm, and the resulting average recognition
ratio (accuracy of classification) becomes the fitness of evaluated solution s
and its phenotypic representation G.

Let us note that the wrapper methodology implies a kind of classifier bias.
More formally, given two different learners LI and L1, the corresponding f
values are usually different. A representation (mapping) G evaluated in this
way usually provides good results with the same classifier; however, for a
different classifier good results are less likely.

The above measure is an estimate of predictive accuracy; the actual test-set
recognition ratio may be different fromfis). In most cases, overfitting occurs.
Fortunately, from the evolutionary perspective, the absolute value of this
measure is not as crucial as it appears to be - the mutual relations between
fitness values of different individuals are more important. This is particularly
true if selection schemes other than fitness-proportional selection are used. For
this reason, the random partitioning of T' into folds is static, i.e., it does not
change during the evolutionary run. Technically, this partitioning is carried out
prior to the evolutionary run and kept fixed.

Another consequence of using a wrapper for evaluation is the discrete
character of$ fitness can take on only ITl+l distinct values. Thus, when the
training set is small, the probability of getting equal evaluations for even
substantially different solutions is quite high. This weakens the selective
pressure, i.e. f s ability to discriminate good solutions from the better ones.
This observation is another argument for using large training sets, apart from
the obvious argument that a big (and representative) training set increases a
learner's chance to produce a well-generalizing classifier. This is, however, in
conflict with the computational cost, as the more data, the longer the learning
process, and, consequently, the longer the fitness computation. This tradeoff is
unfortunate and inescapable; some extra measures that may be taken to avoid
it have been elaborated elsewhere [62], but are not used here.

6.5 Coevolutionary Feature Programming 223

Here the solution evaluation involves inductive learning, i.e. an adaptive
process. This makes the proposed approach, and all the approaches based on
wrapper-like fitness assessment, belong to the category of so-called
Baldwinian learning [3], [76]. The Baldwin effect takes place whenever the
genome does not determine directly the working of the phenotype, but offers
some space for solution's adaptation. The Baldwin effect is clearly observable
in nature, where organisms learn through interaction with an environment
during their lifetime. In the approach proposed here, this adaptation affects
only the solution's fitness; the traits acquired during learning that takes place
within f do not propagate back to the solution being evaluated. Therefore, the
learning here is 'Baldwinian' but not 'Lamarckian'. Jean-Baptiste Lamarck
(1744-1 829) hypothesized that the acquired traits can be inherited. This theory,
referred to as 'Lamarckism' or 'Lamarckianism', is currently widely
recognized as incorrect (see, e.g., [90], [I261 for more details)

6.5 Coevolutionary Feature Programming

Similar to many other applications of EC, the feature construction task is
difficult due to the unknown characteristics of the objective function$ More
precisely, f is known to the feature construction algorithm, but its analytical
form is very complex, as it is determined by the training set T and the
inductive learner working in a wrapper.

In following we show how to tackle the difficulty of feature construction by
exploiting its modularity and decomposing it. Like in Chapter 5 by
decomposing the feature construction process, we would like to improve the
quality of induced decision/recognition system (G,h). The practical benefits
we expect from decomposition include:

faster convergence of the learning process, the possibility of obtaining
better recognition systems at the same computational expense, or
comparable recognition systems in a shorter computation time,

better scalability of learning with respect to the size of the problem (number
of decision classes andlor number of evolved features),

better understanding of obtained solutions (feature extraction procedures).

224 Chapter 6. Linear Genetic Programming for Object Recognition

As formulated earlier in this chapter, explicit feature construction consists in
an intertwined search in two spaces: the space of hypotheses and the space of
feature definitions. Therefore, one could conceptually consider decomposition
concerning both of these spaces. However, as in EFP the hypothesis search is
merely an element of fitness computation within a wrapper, so we focus here
more on decomposing the search process in the space of feature definitions.

Formally, by a decomposable problem we mean a problem, for which each
solution s may be assembled from conceptually disjoint entities called modules
si, i.e., there exists a mapping C, which, given I modules si, i=I, ..., 1, composes
them into the overall solution:

S = C(s ,,..., s,)

We concentrate on the specific, yet common in practice, case of modules
being sets of variables. In this context, by problem decomposition we mean the
partitioning of the original set of variables si into a set of disjoint modules. In
the following, we identify a module with a subset (vector) of original problem
variables such that each variable si belongs to exactly one module sj.

When humans apply decomposition, they usually specify a subobjective for
each module. By any means, from a practical viewpoint, this is the best
approach possible. After decomposition, subobjectives guide the independent
searches for particular modules and the overall complexity of the problem is
usually reduced. Problems representing this class are sometimes referred to as
separable [125].

However, not all decomposable problems are separable, as it is not always
possible to define subobjectives, because the existence of C does not
automatically imply that there is a way to disassembly the objective function.
This is the case when (1) the particular modules are (partially) interdependent
and the objective function cannot be decomposed, or (2) there is not enough
knowledge available to the human expert to specify subobjectives.

It has been shown recently [I241 that decomposition may also be useful for
non-separable problems with average interdependency of modules. Such
problems have been referred to as nearly decomposable [110], [I241 or
exhibiting modular dependency [125]. Fortunately, most of the non-separable

6.5 Coevolutionary Feature Programming 225

real-world problems belong to this category of problems with a modest
'amount' of interdependency. A thorough analysis of module interdependency
and separability is beyond the scope of this book; the reader is referred to other
work that goes into more detail [124].

Cooperative coevolution (CC), one of EC paradigms that this book is
devoted to, is especially well-suited for tacking non-separable yet nearly
decomposable problems [94], [128]. As already emphasized in Chapter 1 and
Chapter 5, the major advantage of CC is that it provides the possibility of
breaking up a complex problem into subproblems without specifying explicitly
the objectives for them. This makes CC especially appealing to a broad class
of practical problems, where it is possible to design a decomposition of the
problem into subproblems, however, the objective functions for the particular
subproblems are not known. The way the individuals from populations
cooperate emerges as the evolution proceeds.

In this chapter, we propose a way to decompose the task of evolutionary
feature programming of linear feature extraction procedures by means of CC.
This leads us to coevolutionary variety of the proposed methodology,
coevolutionary feature programming (CFP).

In CFP, the CC search engine is responsible for searching the space of
mappings G [63]. Similar to EFP, this search is guided by a fitness fbnctionJ
which consists in cross-validation on the training data (a wrapper approach).
The best feature mapping G found in the search, together with the trained
classifier h, constitute the resulting recognition system (G,h). However, G is
not encoded in a single solution/individual s. Rather than that, particular
individuals si from populations Pi describe components of the mapping G. The
populations and their semi-independent evolutionary processes correspond to
modules in the terminology introduced here. In the next subchapter, we
discuss and present four different ways of defining those components
(modules) and their composition method C.

226 Chapter 6 . Linear Genetic Programming for Object Recognition

6.6 Decomposition of Explicit Feature Construction

Problem decomposition consists in designing a mapping C that allows for
assembling the complete solution from some modules (Equation 6.4). For most
problems, the total number of possible problem decompositions is very large.
However, only some of them are reasonable in the sense that they enable the
genotype-phenotype mapping to preserve the modularity (or the 'degree' of
modularity). To design successful decompositions, i.e. such that they increase
the chance of finding feature transformations that are (a) feasible, and (b)
outperform the feature transformations obtained without referring to
decomposition, we use the background knowledge about the nature of the
feature construction task and the way the solutions are evaluated. In the
following, we attempt to investigate the 'reasonable' decomposition strategies,
though we do not claim that all the possible strategies are considered here.

We describe four qualitatively different decompositions, in the same order
as the stage at which they take place within solution evaluation process. In
CC-related terms, they correspond to different levels on which the cooperation
takes place: instruction, feature, class and decision levels.

Instruction Level Decomposition: The lowest possible level at which
decomposition may be applied is the instruction level. In this decomposition
strategy, each population is delegated to specific fragment of feature extraction
procedure. A module si is equivalent to a continuous fragment of feature
extraction procedure, which constitutes the entire solution s (organism). The
compositional mapping C is a straightforward concatenation of modules that
preserves the order of instructions as given by module indices. As the
subsequences of feature extraction procedure instructions correspond directly
to substrings of bits in the genotype, this way of decomposition may be
characterized as genotypic.

For this type of decomposition, no matter what the number of modules, the
number of evolved features m is determined by the number of numeric
registers n,: m = n,.. Note also that, as this type of decomposition'is genotypic,
it may significantly affect the purely evolutionary aspects of the
searchllearning; for instance, the more populations, the shorter individuals'
genome, and the less effective the crossover.

6.6 Decomposition of Explict Feature Construction 227

In case of nontrivial real-world applications, there is usually need for using
multiple features gi. Even for binary learning tasks, one scalar feature is
usually not enough to discriminate decision classes if they are entangled in
decision space in a complex way. The importance of possible inter-feature
influences is obvious and present in almost all real-world application (see, for
instance [25], [26]).

Note that the non-coevolutionary EFP already enables simultaneous
computation of multiple features, as one feature extraction procedure may
potentially compute up to n, features gi, where n, denotes the number of
numeric registers. However, in most cases, one cannot expect obtaining a
single FEP that implements qualitatively different features that would lead to
useful synergy. Moreover, as already discussed in chapter 6.4.1, a large
number of registers calls for longer FEPs, which, in turn, increases
prohibitively the searchllearning time.

Features should discriminate the decision classes as well as possible on one
hand, and be mutually non-redundant on the other. A desirable phenomenon
here is synergy, i.e., working together of two or more elements to produce an
effect greater than their individual effects.

More precisely, the mutually redundant features cause their combined effect
to be smaller than or equal to the individual contributions. For a simple case
two features gl and g2, this means:

In a simple case, such redundancy may usually be detected using, for
instance, statistical tools like correlation (for continuous features) or 2
statistics (for nominal features). However, the statistical approach fails if the
dependencies are difficult (e.g., complex non-linear), affected by noise, or
when the sample (training set T) size is not large enough to provide statistical
evidence. The synergy of features, on the contrary, provides a better value of
the objective function than any of the features attains individually:

Apparently, to stimulate synergy, one could construct several different
features independently, but the chance that such features would complement

228 Chapter 6. Linear Genetic Programming for Object Recognition

each other in discriminating decision classes is rather scant. More likely, the
resulting features, being drawn from similar 'traits' in the training data T,
would be highly correlated. To benefit from feature synergy, the processes that
elaborate particular features have to exchange some information. This,
together with the pressure on discrimination mentioned earlier, shows that the
task of explicit feature construction at feature level exhibits intermediate
interdependency of modules. This makes it an excellent candidate for
application of cooperative coevolution.

Feature Level Decomposition: The decomposition at feature level
consists of delegating each population Pi to work on a separate feature
extraction procedure. To evaluate a solution s within CC, the following steps
are undertaken. For each module si, we first decode it and obtain the feature
extraction procedure Gi, and then run it on the training data to produce the
derived training data Tji. These steps proceed for each module separately as in
regular EFP. The fusion of information takes place after all the modules si
produce their TIi's: the composition mapping C performs a concatenation of
the feature vectors Gi(x) produced by particular modules si for all training
images x E T (feature fusion). Here the number of evolved features m is a
multiple of the number of populations n,: for n, numeric registers, m = npnr.

Class Level Decomposition: The multi-class learning problems exhibit
another kind of inherent modularity that consists of the presence of many
decision classes (nd> 2). TO correctly classify an unknown example, the
learner has to discriminate it from examples representing all the remaining
decision classes. Instead of solving this as one learning task, one can
decompose it into binary base learning tasks. The base learners produce so-
called base classifiers. Usually, one obtains such decomposition by applying a
one-vs.-all approach (each base classifier discriminates one decision class
from the remaining ones) or a painvise approach (each base classifier
discriminates between a pair of decision classes). Though other decomposition
schemes are conceptually possible, these two have been most extensively
studied in past.

Such class-level decomposition leads to separable modules: by maximizing
discrimination of a pair of decision classes (or discrimination of ith decision
class and the remaining classes), the overall recognition system performance is
improved too. Thus, a feature construction process is run separately for each

6.6 Decomposition of Explict Feature Construction 229

base learning task and yields a base decision system (Gi,hi). The composition
C takes place off-line here, after all the learning processes related to particular
subproblems produce (Gi,hi), and consists in assembling them into one
decision system (G,h) in a way that depends on the particular architecture
chosen.

The particular form of C may vary; within the real-world case studies
described in chapter 7, we use the one-vs.-all decomposition and a simple
aggregation rule that produces univocal class assignment if and only if one
base classifier yields positive response (i.e., votes for the decision class it is
assigned to). Other response patterns (no base classifier responding or more
than one base classifier responding) are interpreted as 'no-decision', and
counted as errors in the final results. This setting implies that the number of
base decision systems is equal to the number of decision classes nd.

As this decomposition leads to separable subproblems, the number of
evolved features m is not directly related to any parameter of EFP. However, if
we assume that the base learners are homogenous, i.e., each of them produces
the same number of features k, m amounts to hzd for the one-vs.-all
decomposition.

Decision level Decomposition: The last decomposition method
considered here relates to the concept of multiple (compound) classifiers. This
way of decomposition resembles the class-level decomposition to some extent.
In decomposition at decision level, each module encodes a complete base
decision system that solves the entire learning task (including all decision
classes). The responses of particular base systems (classification decisions) are
aggregated by a decision rule (e.g., simple voting) to yield the overall decision.

This setting implies reducibility, provided each base system does its best,
any module may be dropped (cancelled) without significant deterioration of
the result (fitness). The objective of decomposition is not mere enabling the
learning process to find a satisfactory decision system, rather the goal here is
boosting the recognition performance. The decompositions produced by this
approach are also symmetric: if all modules attempt to solve the entire task,
their roles are interchangeable, provided that the aggregating decision rule is
symmetric too.

230 Chapter 6. Linear Genetic Programming for Object Recognition

The separability of decision level decompositions is difficult to assess.
Apparently, this method is similar to feature-level decomposition. As each
base decision system attempts to solve the entire learning task, the objective
function for each module is known, the marginal search may be thus
performed, and the decomposition should be claimed separable. On the other
hand, if no other means are applied, base decision systems are identical or very
similar, as they optimize virtually the same objective, so they yield no synergy
when combined.

A more thorough analysis shows that the similarity of this decomposition
method to feature-level decomposition is only apparent. In feature level, the
synthesized features cooperate and span together a common feature space
glxg2x.. .xg,. The placement of each training example x in that space does
matter, because, with high probability, it has direct influence on the resulting
fitness. In decision level decomposition, on the contrary, each module
produces features that are used for separate learning process and the
cooperation takes place in the space of decisions. As the base decision systems
cooperate by majority-vote decision rule, it is much more likely that an.
erroneous decision made by a particular base decision system will not affect
the overall system performance (fitness). In other words, the poor module's
performance may be concealed by the other modules. Thus, we hypothesize
that the cooperation is difficult at this level, and we label this type of
decomposition as separable.

To clarify possible misinterpretations, Figure 6.5 compares the four
decomposition methods described in this section: instruction-level, feature-
level, class-level, and decision level. It presents data flows that start with
individuals (modules) in sub-populations Pi and end up with complete
recognition systems (G,h). In this presentation, class-level and decision level
decomposition look the same, as they differ only in data used for training.

6.6 Decomposition of Explict Fcaturc Construction 23 1

instruction-level decomposition

...............................
Genome

1. y--$
'recognition system

feature-level decomposition ...

classldecision-level decomposition

Figure 6.5. Comparison of particular decomposition levels for evolutionary feature
programming.

232 Chapter 6. Linear Genetic Programming for Object Recognition

6.7 Conclusions

In this chapter, we described evolutionary feature programming, an
evolutionary approach to explicit synthesis of recognition systems that uses
linear representation of feature extraction procedures. We discussed properties
of the assumed feature extraction procedure representation and its genetic
encoding. We also proposed a general framework for coevolutionary approach
to decomposition of feature construction task, and outlined four different
decomposition schemes, providing rationale for each of them. In the following
chapter 7, we verify practical utility of different varieties of this methodology
in an extensive computational experiment concerning view-independent
recognition of real-world 3D objects imaged using passive and active sensing
techniques.

Chapter 7

APPLICATIONS OF LINEAR GENETIC
PROGRAMMING FOR OBJECT RECOGNITION

7.1 Introduction

This chapter is a logical continuation of chapter 6 and presents results of
applying the methodology described there to real-world computer vision and
pattern recognition problems. In particular, the configurations verified here
include basic, single-population evolutionary feature programming (EFP), and
selected variants of coevolutionary feature programming (CFP) working on
different decomposition levels.

To provide experimental evidence for the generality of the proposed
approach, we verify it on two different tasks. First of them is the recognition of
common household objects, a popular benchmark used in computer vision
community. It concerns the visible part of the electromagnetic spectrum and
relates to so-called passive sensing, as usually no active dedicated source of
light is required to acquire the images. On the contrary, the second considered
application concerns the non-visual modality of radar imaging and represents
active sensing, as the source of radiation (radar wave transmitter) is required.
Therefore, the problems considered are entirely different; the only features
they have in common are (a) recognition of 3D objects from different
viewpoints, and (b) using mid-size one-channel raster images.

234 Chapter 7. Applications of Linear Genetic Programming for Object Recognition

7.2 Technical Implementation

To provide an experimental testbed we developed a software environment
named CVGP (Computer Vision by Genetic Programming). CVGP, written in
Java and C, is a universal platform for experimenting with explicit feature
construction in both machine learning and computer vision. To conform to the
existing standards and benefit from the ready-to-use background knowledge,
CVGP integrates several existing libraries:

Soft-computing libraries written in Java:
- machine learning library WEKA [127],
- evolutionary computation library ECJ [70].
Image processing and computer vision libraries (C and machine code):
- Intel Image Processing Library (IPL) [47],
- Open Computer Vision Library (OpenCV) [88],

Figure 7.1 presents the overall software architecture of the system. Java
Native Interface (JNI) has been used to integrate modules and libraries written
in Java with those written in C. Thanks to this choice of components, the most
time-consuming evaluation of Feature Extraction Procedures (FEP) is
efficiently carried out in well optimized libraries written in C and machine
code, whereas the less computationally demanding ML and EC computation
takes place in Java. The IPL and OpenCV libraries function as a repository of
background knowledge. Though originally designed to serve explicit feature
construction in CV, CVGP may also be applied to ML problems; in such a
case, WEKA and ECJ are sufficient to run an experiment. On the other hand,
CVGP may be easily combined with other libraries to use background
knowledge and input representation relating to other domains (sound, video,
etc.).

7.3 Common Experimental Framework 235

learning only

Recognition system

Used both in Machine Learning
learning and
testing of the
synthesized

- Java

recognition ,--------------------------------
I Intel Com uter Vision
j Library bpencv)

------------------*--
-tern I I Intel 1.1- processing .i

L~brary (IPL) i
L........ ----...-..--------------,

' ' 1 r:ne code

Figure 7.1. Software implementation of CVGP. Dashed-line components implement
background knowledge.

7.3 Common Experimental Framework

7.3.1 Background knowledge

For the proposed methods (EFP and CFP), the only source of background
vision knowledge is the set of elementary operators 0 provided by the human
expert (see Figure 7.1). This set could be tailored independently to each visual
learning task presented here. However, to demonstrate generality of EFPICFP,
we use the same set 0 for both CV tasks and make it contain only general-
purpose image processing and feature extraction operations. Therefore, both
applications share the same vision-related background knowledge and do not
refer to any application-specific domain knowledge. For instance, though the
concept of scattering point is usually applied in analysis of radar images (see,
e.g., [lo]), there is no ready-to-use operation in 0 that could detect such
features in the image.

The set 0 contains approximately 70 elementary operations listed in Table
7.1. Technically, operations refer to functions implemented in Intel Image

236 Chapter 7. Applications of Linear Genetic Programming for Object Recognition

Processing library [47] and OpenCV library [MI. They embrace image
processing, feature extraction, mask-related operations, and arithmetic and
logic operations.

Table 7.1. Elementary operations used in the visual learning experiments (k and 1
denote the number of the input and output arguments, respectively).

Convolution filters Prewitt, Sobel, Laplacian, Gaussian, Highpass,
owpass, Sharpening

Median filter, Min filter, Thresholding, Normalized
cross-correlation
2-D Fast Fourier Transform

erations Erosion, Dilatation, Opening, Closing
Absolute difference, Addition, Subtraction,
Multiplication

ations And, Or, Xor
- -- - - - - -- -- --- - - -- - -

Image norms Dot product, L1 (city-block), L2 (Euclidean)
Feature extraction Spatial 2D moments (up to 3rd order), Central 2D

1 Operations

moments (up to 3rd order), Normalized central 2D
moments (up to 3rd order), Mass center, Location of

i the brightest pixel, Location of the darkest pixel.
Number of non-zero pixels, SumIAveragelStandard

I- --. - - - ---- -- -- -

gk + 93'
Scalar arithmetic +, -, *, % (protected division)
Scalar functions Max, Min, Abs, Sgn, If (c

--- - - Tan, - E 3 1 L o g
other
Mask-related operations Set rectangular mask, Set mask upper left comer, S

mask lower right corner, Shift mask in specific
direction, Get mask height, Get mask width, Get
mask mid - X, Get mask mid Y

7.3 Common Experimental Framework 237

The experiments presented in the following may be roughly divided into
two categories: basic study experiments focus on the dynamics of evolutionary
search, its sensitivity to different parameter setting, and the convergence of
evolutionary process; performance experiments focus on maximizing the
overall recognition performance and on the predictive (related to the test set)
properties of evolved recognition systems. Quite obviously, the latter
experiments are usually much more time-consuming.

7.3.2 Parameter settings and performance measures

EFP and CFP use the wrapper approach to estimate the fitness of a particular
set of features. Unfortunately, the wrapper approach, widely recognized as
very accurate, is quite time-consuming. As ncv-fold cross-validation involves
ncv-times classifier induction and nCv-times classifier querying, we need to use
an inducer that is fast in both of these aspects.

In the following experiments, the popular tree induction algorithm C4.5 [96]
is used for that purpose. Precisely, we use the last public release of C4.5
implemented in WEKA under the name 54.8 [127]. C4.5 has low
computational complexity of learning and linear (with respect to tree depth)
complexity of querying. Another advantage of this inducer is that its
biaslvariance trade-off may be easily controlled by the pruning confidence
level. In following experiments, we use C4.5'~ default settings: pruning
confidence level: 0.25, node evaluation measure: gain ratio, subsetting: off.
The cross-validation runs with n,, = 3 folds. The feature construction is the
time-critical phase of EFP. After the evolutionary run is over, we use the best
feature transformation G found for training the classifier for the final
recognition system. As this is a single event, for some of the final recognition
systems presented in the following, we use a sophisticated, yet more time-
consuming in training, support vector machine (SVM) classifier. In particular,
we rely here on SVM trained by means of the sequential minimal optimization
algorithm [91] implemented in WEKA library [127]. The SVM classifier uses
polynomial kernels of degree 3 and is trained with the complexity parameter
set to 10.

Peformance is measured by the recognition ratio which measures the
classification performance on the training or testing data for all the classes

238 Chapter 7. Applications of Linear Genetic Programming for Object Recognition

under consideration. The value of recognition ratio on the training data is the
fitness value. True positive ratio, TP = P (positive decision 1 positive example)
and False Positive ratio, FP = P (positive decision I negative example).

7.4 Recognition of Common Household Objects

7.4.1 Problem and data

For the test of passive sensing, we use the COIL20 database [79], a popular
computer vision benchmark. COIL20 contains a total of 1440 grayscale (one-
channel) images of 20 household objects taken at different aspects (72 images
of each object taken at 5' aspect intervals). Figure 7.2 depicts the
representatives of all decision classes.

Figure 7.2. Exemplary images from COIL20 database (one representative per class).

7.4 Recognition of Common Household Objects 239

We use the processed version of COIL2O. Each image in this collection was
obtained from the unprocessed image by cropping its contents to a minimum
bounding rectangle (MBR) embracing the object, and scaling it to 128x128
pixels (see [77] for details). To speedup the computation, we downsample the
original images to 64x64 pixels. The downsampled images are directly used
by the learning system; they do not undergo any other processing.

Appearances to the contrary, recognition of processed images may be more
difficult than the unprocessed ones, as (i) the actual size differences between
particular objects are lost in scaling, and (ii) the use of MBR cropping may
cause an object to have apparently different sizes for different aspects (see
Figure 7.3). Due to (i), inter-class differences of size-related features are
possibly reduced. Due to (ii), the intra-class variance of some features is larger
than for the unprocessed data.

Cup, 55" Cup, 180" Car3, 180" Car3,260°

Figure 7.3. Apparent size changes resulting from MBR cropping for different aspects
of two selected objects from the COIL20 database.

The COIL20 database comes with a predefined partitioning of data into a
training set T and testing set W. In particular, for each object class, the training
set T contains every fifth image from the entire collection (15 images per class,
aspect every 24O), and the testing set W gathers all the 57 remaining images of
that object. Such partitioning provides that the training data well represents the
entire learning task.

240 Chapter 7. Applications of Linear Genetic Programming for Object Recognition

7.4.2 Parameter settings

In this COIL20 experiment, we use feature level CFP. The detailed parameter
settings are presented in Table 7.2. This experiment runs in a minimum
configuration, with np = 2 populations and n, = n > = 2 registers. Small np
allows us to verify the approach in a simple setting and provides relatively
high search mobility. Standard genetic operators are used for recombination
and selection. The probability of mutation refers to single bits. Therefore,
given fixed mutation probability, the longer the feature extraction procedure
code, the more mutations it undergoes on the average. The crossover
probability 1.0, what implies that all individuals undergo recombination and
none of them is directly transferred to the subsequent generation (i.e., there is
no elitist sampling [76]). To motivate this choice, we argue that the primary
task of evolutionary algorithm within EFPJCFP is to perform effective search,
and that maintaining continuity between consecutive generations is of
secondary importance.

No constraints have been imposed on genome loci where the one-point
crossover operator starts to exchange the 'tails' of genetic material. As a result,
recombination may break apart the feature extraction procedure instructions
(for instance, opcode may be detached from its arguments and replaced by
different arguments). This setting may seem strange at first sight, as apparently
one should treat entire operations as genes and not allow recombination to
break them apart. Nevertheless, the preliminary experiments have shown that
such an approach is much more effective as far as search convergence is
concerned, because it provides more flexibility.

Setting the tournament pool size to 5 is a compromise between values 2 and
7 used commonly in genetic algorithms and genetic programming,
respectively. In each experiment, if no ideal individual is found, evolutionary
search stops after 4000 seconds (from a practical viewpoint, about an hour
seemed to be a reasonable amount of time to be devoted to the design of a
recognition system). The results presented have been obtained using
computers equipped with a Pentium 1.4 GHz processor.

To provide for statistical significance, each evolutionary run is repeated 10
times, starting from different initial populations. Technically, this is provided
by changing the seed of the random number generator. Therefore, if not

7.4 Recognition of Common Household Objects 241

otherwise stated, the following tables and graphs show the mean performance
of best individuals obtained from ten independent runs.

Table 7.2. Parameter settings for COIL20 experiments.

Crossover operator
bit flip, probability 0.1

"one point, probability 1.0

7.4.3 Results

Binary classification tasks. In this setting, we evolve recognition systems
to recognize one class (positive class, d) against the remaining 19 classes of
COIL20 objects, which are temporarily grouped to form the negative class d.
Figure 7.4 and Figure 7.5 present the results of training the feature-level CFP
on the COIL20 data (means over 10 runs). For brevity, classes are referenced
by numbers with respect to the order they appear in Figure 7.2 (rows, then
columns). Figure 7.4 presents final fitness, test set recognition ratio, and test
set true positive ratio of evolved binary recognition systems for particular
binary problems. Figure 7.5 depicts test set false positive ratio (left vertical
axis) and mean decision tree size (right vertical axis). For selected data series,
these figures also present 0.95 confidence intervals.

For 13 out of 20 binary problems, CFP yields recognition systems having
perfect fitness 1.0 (with respect to the training data). In the remaining cases,
the training-set performance of evolved recognition systems is very close to
ideal. Note however, that the a priori probability for the negative class d
amounts here to 0.95 (nd = 20), and this is the reference point for recognition

242 Chapter 7. Applications of Linear Genetic Programming for Object Recognition

ratio assessment (the performance of the so-called default classzj?er). The
evolutionary runs last for 12.5 generations on the average.

Fitness, RR. TP

-E- Fitness

&Test set RR

-+TP ratio

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Class

Figure 7.4. Fitness of the best individual, test set recognition ratio, and test set TP ratio
for binary COIL20 experiments (means over 10 runs and 0.95 confidence intervals).

7.4 Recognition of Common Household Objects 243

FP ratlo Mean tree slze
14

+ FP ratlo 12

& Mean tree size 10

8

6

4

2

0

Class

Figure 7.5. Test set FP ratio and tree size for binary COIL20 experiments (means over
10 runs and 0.95 confidence intervals).

For each binary task, after the evolutionary search is over, we build a simple
recognition system (G, h) using the best representation G evolved in the run
and the C4.5 decision tree classifier h trained on this representation. Therefore,
the final recognition system uses the same inducer as the wrapper-based
fitness function and may benefit from concordance of inductive biases.

As expected, training set-based estimate (fitness function) is in most cases
overoptimistic: test-set recognition ratio is usually inferior to solution's fitness
value. Nevertheless, this deterioration does not exceed 0.01, and for class 2
('Blockl') even some improvement may be observed (from 0.997 to 0.999).
Thus, for the COIL20 problem, CFP seems to generalize well and no
significant overfitting is observed.

Also in terms of true positive (TP = Pr(h(x) = dt 1 d(x) = dt)) and false
positive (FP = Pr(h(x) = dt I d(x) = d)) ratios, the charts vote in favor of CFP.
Only a few cases exhibit significantly worse performance when compared to
other classes. The classes most affected by this are those for which there are
visually similar objects in the database: classes 3 and 19 (cars), and 5 and 9
(elongated boxes). Nevertheless, the overall performance is still sound. Even
for the worst case (decision class 19), the mean TP value is 0.8804, that means

244 Chapter 7. Applications of Linear Genetic Programming for Object Recognition

that only about 12% of positive class instances are not detected by the
recognition system. Taking into account that the negative decision class
comprises in fact images of 19 different objects, and that the approach is
feature-based, the obtained rates should be regarded as good.

The FP results are even more appealing. In the worst case (class 18, 'Cup'),
the mean FP rate is 0.0032. Thus, only 0.32% images of other 19 objects are
identified as cups on the average. For many other classes, this figure is much
smaller. Among the total of 200 recognition systems considered in this
experiment (nd = 20 decision classes x 10 runs per class), 109 recognition
systems attained zero FP rate. These results are comparable and, in some
cases, superior to past experimental studies concerning COIL20 database
which, in most cases, use a model-based approach (e.g., [I], [73]). The
confidence intervals are narrow and ensure stability of the results obtained.
This is especially important from a practical viewpoint, where the method is
expected to yield a reasonable result in one run, without any need for
redesigning the settings and repeating computation.

These encouraging results have been obtained using simple decision tree
classifiers. Figure 7.5 presents (on the right vertical axis) the average number
of tree nodes used by decision trees induced from the transformed training
data. In particular, difficult problems (e.g., for decision classes 6, 9, and 19)
result in larger trees. Figure 7.6 shows one of the induced trees. Numbers in
parenthesis denote leaf weight (number of training examples that reached tree
node; the total number of training examples is 14 = 15nd = 300). Due to
uneven distribution of decision classes in the data (19:1), the tree is heavily
imbalanced and classifies the greater part of the examples in the root node.
Most of the remaining trees induced for this binary problem and for other
binary COIL20 problems have a similar structure. Relatively small trees (6.8
nodes for all 200 experiments on the average) clearly indicate, that the most
difficult part of recognition takes place within feature extraction procedures.
Otherwise, the results would be probably much worse, as C4.5 often fails
when faced with highly imbalanced decision classes. The readable structures
of trees enable human inspection and analysis.

7.5 Object Recognition in Radar Modality 245

Figure 7.6. Decision tree h used by the final recognition system evolved in one of the
COIL20 binary experiments.

Complete recognition task. For the complete recognition task, we use CFP
to discriminate all 20 decision classes present in the COIL20 dataset, that is
obviously much more difficult than the binary recognition tasks. For this
purpose, we treat the evolved binary recognition systems synthesized in the
previous experiment as base classifiers, and combine their votes. Therefore, in
fact we apply off-line one-versus-all problem decomposition on class level;
such proceeding is fully justified as class-level decomposition leads to
separable modules (cf. chapter 6.6). The assembled compound classifier
comprises 20 base classifiers, one for each decision class. We build 10 such
compound recognition systems (each binary CFP run was repeated 10 times).
The resulting mean accuracy of classification for these compound recognition
systems on the test set amounts to 0.9877f0.0036. Thus, only about 1% of the
images are mistakenly labeled by the compound recognition system. Analysis
of error occurrences in test-set confusion matrices confirms the conclusions of
the binary experiments: the most often confused classes are the ones that
exhibit visual similarity: 3 'Car' and 5 'Boxl', 3 'Car' and 6 'Car2', 3 'Car'
and 18 'Cup', 3 'Car' and 19 'Car3' , 5 'Boxl' and 6 'Car2' .

7.5 Object Recognition in Radar Modality

As another experimental testbed, we chose the task of object (vehicle)
recognition in synthetic aperture radar (SAR) images [88]. Imaging in radar
modality, due to particular wavelengths and their properties (specular
reflections), is fundamentally different from the general diffuse reflection for
the visible spectrum. Radar senses in wavelengths outside the visible and

246 Chapter 7. Applications of Linear Genetic Programming for Object Recognition

infrared spectrum, providing information on surface roughness, and other
shape properties. Radar waves may penetrate some materials, e.g., vegetation,
sand, and snow. Radar imaging is active in the sense that it requires
illumination (source of radiation).

Synthetic aperture radar (SAR) imaging is a specific technology [86] that
makes a relatively small antenna work like it is much larger, due to the
receiver (aircraft) motion and the Doppler principle. SAR sensors can operate
24 hours a day; there are many other interesting properties of SAR images and
the reader is referred to [86]. Nevertheless, from the viewpoint of human
perception, the subjective quality of the acquired images is generally
disappointedly low. In particular:

SAR images are non-literal. There is not 1:1 appearance similarity with
visible imagery and one needs to understand the physics of SAR image
formation to interpret the imagery.

Usually only so-called scattering centers are visible.

The features do not persist under rotation (aspect change).

SAR images are noisy and have low resolution.

These properties make SAR image interpretation difficult. This is
particularly true for this study, which concerns recognition of relatively small
(when compared to one foot image resolution) man-made objects like vehicles.

We use the MSTAR public database [I041 as the benchmark for
evolutionary feature programming. The MSTAR database contains SAR
images of several objects, mostly vehicles, taken at different elevation angles
and azimuth (aspect) angles. In this study, we consider only images acquired at
15" elevation angle (MSTAR contains also images for different elevation
angles). The spatial resolution is 1 foot and the objects are centered in the
image. Figure 7.7 presents selected images of the vehicles considered: BRDM
armored personnel carrier (APC), ZSU anti-aircraft gun, T62 tank, ZIL truck,
T72 tank, 2S1 gun, BMP2 (APC), and BTR70 (APC). Figure 7.8 shows
selected SAR views of particular object classes. Note also the presence of
radar shadow behind each object. Table 7.3 shows the image data used for the
experiments on three selected objects (Figure 7.9).

7.5 Object Recognition in Radar Modality 247

SAR images are originally two-channel (complex), with each image pixel
described by signal amplitudelmagnitude and signal phase [88]. We use the
magnitude component only. The images are cropped to 48x48 pixel window
centered in the original image. No other form of preprocessing (e.g., speckle
removal) is applied.

7.5.1 Problem decomposition at instruction level

In this experiment, we compare the performance of evolutionary feature
programming (EFP) and coevolutionary feature programming (CFP), where
the cooperation in CFP takes place at the instruction level. To make this
comparison reliable, we consider equal total genome length: for EFP
experiment with code length I, in the corresponding CFP experiment each of
np populations works on code fragment of length llnp. Similarly, we fix the
total number of individuals: the total number of individuals in all np
populations in CFP is equal to the number of individuals maintained in the
single population of the corresponding EFP run (see Table 7.4).

The task is to recognize three different objects: BRDM2, D7, and T62 (see
Figure 7.9). From the MSTAR database, 507 images of these objects have
been selected by means of appropriate sampling procedure. The resulting set
of images has been split into disjoint training and testing parts to provide
reliable estimate of the recognition ratio of the learned recognition system (see
Table 7.3). This selection was aimed at providing uniform coverage of the
azimuth; for each class, there is a training image for approximately every 5.62'
of azimuth (aspect), and a testing image every 2.9'-5.37', on the average.

Table 7.4 compares the recognition performance obtained by the proposed
coevolutionary approach (CFP) and its regular counterpart (EFP). To estimate
the performance the learning algorithm is able to attain in a limited time, if no
ideal solution is found, we stop evolution when its run time reaches a
predefined limit. Two different limits have been imposed on the evolutionary
learning time, 1000 and 2000 seconds. To obtain statistical evidence, all
evolutionary runs are repeated 10 times, so the table presents the average
performance of the best individuals found. The results presented in Table 7.4
show the superiority of the instruction-level CFP to instruction-level EFP. This

248 Chapter 7. Applications of Linear Genetic Programming for Object Recognition

applies to both the performance of the synthesized systems on the training as
well as on the test set. In all cases, the observed increases in accuracy are
statistically significant with respect to the one-sided t-Student test at the
confidence level 0.05. Though it is not shown in the table, CFP usually ran for
a smaller number of generations on the average, due to the extra time required
to maintain (perform selection and mating) multiple populations. Table 7.5 and
Table 7.6 show, respectively, the confusion matrices for the best individuals
found in the first two test set of experiments in Table 7.4 (time limit: 2000
seconds, total # of individuals: 300).

7.5 Object Recognition in Radar Modality 249

BRDM ZSU T62 ZIL

Figure 7.7. Selected vehicles represented in MSTAR database.

Figure 7.8. Exemplary images from the MSTAR database.

250 Chapter 7. Applications of Linear Genetic Programming for Object Recognition

Figure 7.9. Three vehicles and their correspondings SAR images.

Table 7.3. Description of data for the experiment concerning cooperation on genome
level.

1 Class 1 Number of images --a I I Total 1 Training set 1 / Testing set1
interval interval Aspect I

- .- -.

Total 1 507 1 192 -- 1315

7.5 Object Recognition in Radar Modality 25 1

Table 7.4. Performance of recognition systems evolved by means of cooperation at
genome level.

, Method

EFP
CFP
EFP
CFP

Parameter
setting;

Recognition ratio

Table 7.5. Test set confusion matrix for selected EFP recognition system.

Table 7.6. Test set confusion matrix for selected CFP recognition system.

252 Chapter 7. Applications of Linear Genetic Programming for Object Recognition

7.5.2 Binary classification tasks

To illustrate the performance of the proposed approach let us first consider the
simple two-class experimental setting. The overall architecture of the
recognition system is straightforward in this case: it consists of two modules:
the best feature extraction procedure G and classifier h trained using those
features.

For this performance experiment, we designed a more thorough dataset
sampling procedure. To provide for good representation of the problem in the
training data, we implemented an aspect-aware division procedure of the
original MSTAR collection into training and test data. Similarly to COIL20
database partitioning, we attempt to build the training set so that a
representative spectrum of different view angles (aspects) is present in T. For
each decision class, its representation in the training data T consists of two
subsets of images sampled from the original MSTAR database; two subsets
are necessary to provide proper operation of the cross-validation experiment
involved by the fitness function. For both subsets, the images are selected from
MSTAR collection as uniformly as possible with respect to 6' azimuth step.
Note that as opposed to the COIL20 database, MSTAR images do not observe
precisely equidistant view angles. Therefore, the training set T contains
2x36016 = 120 images from each decision class, so its total size is 120nd,
where nd denotes the number of decision classes.

The corresponding test set W contains all the remaining images from the
original MSTAR collection (for the decision classes considered with 15'
elevation angle). In this way, the T and Ware disjoint, yet the learning task is
well represented by the training set as far as aspect is concerned. Thus, we can
be confident in the credibility of the results; performing time-consuming
multiple train-and-test experiment would probably not change the overall
picture much. For simplicity, we keep the numbers of numeric registers and
image registers as low as possible, similar to COIL20 experiment. This implies
setting n, = n ',. = 2, as some of the elementary operations from 0 are binary
and need two registers to fetch input arguments. The number of coevolving
populations np is 4 this time, as the SAR task is more difficult than the
COIL20 problem. This implies m = npn ', = 8 scalar features gi computed by
the four coevolving feature extraction procedures. The settings of remaining
parameters are the same as in COIL20 experiments.

7.5 Object Recognition in Radar Modality 253

The task is the recognition of the positive decision class 8 represented here
by the BRDM vehicle. The objects representing the remaining categories build
up the negative class d. We run several experiments of different difficulty,
starting with d containing images from a single decision class ZSU; let us
denote this task by Bl. Next, we define subsequent tasks, denoted, hereafter,
B2 to B7, by extending d by other vehicles in the following order: T62, ZIL,
T72,2Sl, BMP2, and BTR70. In all these tasks, 8 remains fixed and contains
exclusively images of the BRDM vehicle.

On each of these seven binary classification problems from B1 to B7, ten
independent CFP processes have been run to provide statistical significance.
Each run started with different, randomly created, initial population of
solutions. Figure 7.10 presents fitness graphs of the best individuals for
evolutionary learning process run on the B2 problem, i.e. BRDM (8) versus
ZSU and T62 (d). Particular data series depict 10 independent evolutionary
runs starting from different initial states. All learning processes attain fitness
over 0.9 within the first three generations. The fitness f of the best solutions
found varies from 0.964 to 0.992, depending on the run. Runs end up in
different generations (57th to 75th), as the stopping condition concerns time
limit (4000 seconds), and particular individuals contain feature extraction
procedures that require different amounts of time when executed. Note that
this learning process seems to be quite resistant to the problem of local
minima: after long periods of leveling-off, several runs show improvement.

254 Chapter 7. Applications of Linear Genetic Programming for Object Recognition

0 10 20 30 40 50 60 70
Generation

Figure 7.10. Fitness graph for binary experiment (fitness of the best individual for
each generation).

The fitness graphs presented in Figure 7.10 reflect the behavior of the
recognition systems on the training data. The performance of the synthesized
recognition systems on the test data is shown in Table 7.7 and Figure 7.1 1.
Two variants of recognition systems are considered here: those using C4.5
classifier and those using support vector machine (SVM). In each learning
task, the recognition systems use the same best solution evolved in the training
phase. Figure 7.11 and Table 7.7 present true positive (TP) and false positive
(FP) ratios that the recognition systems attain on test set (averages and 0.95
confidence intervals for 10 independent runs). It may be observed that in all
experiments, recognition systems using C4.5 and SVM perform similarly. At
first sight this may seem surprising, taking into account the simplicity of C4.5,
especially its limited capability of fusing and combining attributes. On the
other hand, the synthesized features are especially well-suited for C4.5, as this
induction algorithm is used for fitness computation in the process of feature
synthesis. In terms of machine learning, the features generated are biased
towards C4.5.

7.5 Object Recognition in Radar Modality 255

Table 7.7. True positive (TP) and false positive (FP) ratios for SAR binary recognition
tasks (testing set). Table presents averages over 10 independent synthesis processes
and their 0.95 confidence intervals.

Task
1

~1 -
1 ~ 2
B3
B4
B5
B6
B7

The number of decision classes in the negative class controls the complexity
of this learning task. More decision classes lower the a priori probability of
the positive class (Figure 7.11). The TP ratios of synthesized recognition
systems also decrease with growing task complexity. Nevertheless, the results
obtained are still impressive if we keep in mind that the classifier operates in
the space spanned over only 8 scalar features computed by the best solution
from raw, difficult to recognize, raster images. Let us also point out, that
objects BMP2 and BTR70, used in problems B6 and B7, the last two instances
of the problem, are visually very similar to the positive class BRDM (see
Figure 7.7 and Figure 7.8). Note also that a priori probabilities of the positive
class in these instances are relatively low, amounting to 0.15 and 0.14,
respectively.

In terms of false positives, all the synthesized systems perform well. Here,
SVM outperforms C4.5 in a statistically significant way (significance level
0.01), exceeding 2% FP ratio only for the simplest problem Bl (BRDM (dt)
versus ZSU (d)). Compared to C4.5, SVM reduces the FP rate from by 32%
(B6) to by 75% (B2).

256 Chapter 7. Applications of Linear Genetic Programming for Object Recognition

. I0 FP

.09

.08

.07

.06

.05 + C4.5 Tme positiws (TP axis)

,04 + SVM Tme positiws (TP axis)

.03 Positive class a priori prob. (TP axis)

.02
o C4.5 False positives (FP axis)

x SVM False positiws (FP axis)
.01

B1 82 83 84 85 B6 87

Task

Figure 7.1 1. True positive (TP) and false positive (FP) ratios for binary recognition
tasks (testing set, single recognition systems). Chart presents averages over 10
independent synthesis processes and their .95 confidence intervals.

7.5.3 On-line adaptation of population number

The results presented in Table 7.7 and Figure 7.1 1 have been obtained with
np = 4 populations, each of them evolving n, = 2 features. Determining the
number of populations n required to attain acceptable performance on a
particular task prior to test set evaluation may be difficult in general.
Therefore, we developed a variant of the approach, adaptive cooperative
feature programming (CFP-A), which adapts the number of cooperating
populations to the problem difficulty. The coevolutionary algorithm starts with
a single population. In this special case, the solution the algorithm works on, is
composed of a single part (individual). In this configuration, evolution
proceeds until saturation, i.e. until the fitness of the best solution does not
improve for a certain number of generations (here: 5). In such a case, a new,
randomly initialized population is added to the cooperation (np t np +I), and
the evolutionary process continues with two populations. Consecutive
saturations of the evolutionary search cause addition of other populations.
However, with np populations at hand, the extension to np +1 populations is

7.5 Object Recognition in Radar Modality 257

allowed only if the best solution has been improved since the insertion of np th

population.

Table 7.8 and Figure 7.12 present results of the evolutionary runs carried
out using the above algorithm. Also Table 7.9 depicts the mean and maximum
number of populations in various experiments. These figures decrease as the
complexity of the problem grows. This is due to the fact, that the runs on more
difficult problems last usually for a smaller number of generations (fitness
function is more time-consuming). As a result, within the fixed time limit of
4000 seconds per evolutionary run, the CFP-A algorithm has fewer
opportunities to add new populations on the difficult problems.

Table 7.8. True positive (TP) and false positive (FP) ratios for SAR binary recognition
tasks (testing set, CFP-A; means over 10 independent synthesis processes and 0.95
confidence intervals).

Task -- . -- SVM
TP

- I - - -

- - I
t- * .010- 1.012

.012 1013
h .026 :014
* .035 1.021
* .038 1.015
* .058 1.018
=k .082 .014 - - - . - -- -

258 Chapter 7. Applications of Linear Genetic Programming for Object Recognition

Table 7.9. Mean and maximum number of populations for SAR binary recognition
tasks (CFP-A).

Task

The results suggest that the test set performance of the recognition systems
synthesized using CFP-A do not differ much from those obtained using CFP.
The observed slight differences in both TP and FP ratios are not statistically
significant. We can, therefore, draw a positive conclusion that CFP-A allows
attaining results that are not worse than those obtained by CC, with the
advantage of relieving the system designer from fixing the number of
cooperating populations.

7.5 Object Recognition in Radar Modality 259

0.5 -- .05
- .04 + C4.5 True posit im

0.3 - .03 + SVM True posit im

0.2 - ---o--- C4.5 False positiws
0.1 - .01 - x SVM False pos i t i ~s
0.0 .oo

B1 82 B3 B4 B5 B6 87

Task

Figure 7.12. True positive (TP) and false positive (FP) ratios for binary recognition
tasks (testing set, single recognition systems, adaptive CC). Chart presents averages
over 10 independent synthesis processes and their 0.95 confidence intervals.

7.5.4 Scalability

From a practical viewpoint, our interest is not limited to binary classification
only. To investigate the ability of the proposed approach to handle multiple
class recognition tasks [49], in this section we consider several problems with
increasing number of decision classes, similar to the binary classification
experiments. The simplest problem involves n d = 2 decision classes: BRDM
(Dl) and ZSU (D2). Consecutive problems are created by adding decision
classes in the following order: T62 (D3), ZIL (D4), T72 (D5), 2S1 (D6),
BMP2 (D7), and BTR70 (D8). In this task, the architecture of the compound
recognition system is the same as the one used in Chapter 7.5.2, however, this
time each base recognition system makes a decision concerning n d > 2
decision classes. The number of base systems (voters) is 10; each of them is a
result of an independent evolutionary run that started from different initial
population. Simple voting (argmax-like) is used.

260 Chapter 7. Applications of Linear Genetic Programming for Object Recognition

Figure 7.13 presents the accuracy of classification (recognition) rate as a
function of the number of decision classes nd. It can be observed, that the
scalability of the proposed approach with respect to the number of decision
classes depends heavily on the base classifier. Here, SVM clearly outperforms
C4.5. The major drop-offs of accuracy occur when T72 tank and 2S1 self-
propelled gun (classes D5 and D6, respectively), are added to the training data;
this is probably due to the fact that these objects are similar to each other (e.g.,
both have gun turrets) and significantly resemble the T62 tank (class D3). On
the contrary, introducing consecutive classes D7 and D8 (BMP2 and BTR60)
did not affect the performance much; more than this, an improvement is even
observable for class D7.

Figure 7.14 shows the curves obtained, for the recognition systems using
SVM as a base classifier [91], by introducing and modifying the confidence
threshold that controls voting among base classifiers. The higher this
threshold, the more classifiers are required to vote for particular class to make
the final decision. Too small a number of votes causes an example to remain
unclassified. The curves in Figure 7.14 may be regarded as generalization of
ROC (receiver operator characteristics) curves to nd > 2 decision classes. Let
n,, n,, and nu denote respectively the numbers of test objects correctly
classified, erroneously classified, and unclassified by the recognition system.
In this chart, the error rate is defined as ne/(nc+ne+nu), and the accuracy of
classification as n&+n,+n,). Also here the results are encouraging, as the
curves do not drop rapidly as the error rate decreases. By modifying the
confidence threshold, one can easily control the characteristics of the
recognition system, for instance, to lower the error rate by accepting a
reasonable rejection rate n,l(nc+ne+n,).

7.5.5 Recognizing object variants

From a computer vision perspective, a desirable property of an object
recognition system is an ability to recognize different variants of the same
object, i.e. to generalize the knowledge acquired from the training data. In
vehicle recognition in SAR modality, different configuration variants of the
same vehicle often vary significantly; major differences result from the
presence of extra equipment mounted on the vehicle. The MSTAR database
contains images of different configuration variants for selected vehicles; these

7.5 Object Recognition in Radar Modality 261

variants will be distinguished in following by the pound (#) sign and vehicles'
serial number following class name. For instance, 'BMP2#C217 denotes
variant C21 of BMP2 APC.

To provide comparison with human-designed recognition systems, we use
the experimental setting as in [S]. In particular, we synthesize two separate
recognition systems using the following training data:

1) a 2-class recognition system trained with BMP2#C21, T72#132;

2) a 4-class recognition system trained with BMP2#C21, T72#132,
BTR70#C7 1, and ZSU#d08.

Figure 7.16 shows the representative images of objects. After training, these
systems are tested on a testing set that contains two other variants of BMP2
(#9563 and #9566), and two other variants of T72 (#812 and #s7). Therefore,
the testing set is not only disjoint with the training sets, but it also contains
significantly different variations of the objects to be recognized.

++ C4.5 recognition ratio

0.1 + SVM recognition ratio

0.0 I I I I I I I I

D2 D3 D4 D5 D6 D7 D8

Task

Figure 7.13. Test set recognition ratios of compound recognition systems for different
number of decision classes.

262 Chapter 7. Applications of Linear Genetic Programming for Object Recognition

classes
classes 7c1asses - --

- - -

6 classes

8 classes

Error rate

Figure 7.14. Curves for different number of decision classes (base classifier: SVM).

Table 7.10. Confusion matrices for recognition of object variants for 2-class
recognition system.

7.5 Object Recognition in Radar Modality 263

Table 7.11. Confusion matrices for recognition of object variants for 4-class
recognition system.

Predicted class I
-- ----

Object T - - -"-T-- - - r -
1 1 B M P ~ X C ~ I T72Ul32 BTRUC71

--+. - - - -!.
' 6~2#!%63,9566, 293 1 27 - ; 27-

Table 7.10 and Table 7.1 1 present test set evaluation of the synthesized
recognition systems shown in the form of confusion matrices. The results
suggest that, even when the recognized objects differ significantly from the
models provided in the training data, the approach is still able to maintain high
performance. The true positive rate equals 0.804 and 0.793, for 2- and 4-class
systems, respectively. If we consider only test cases for which the systems
make any decision (83.3% and 89.2% of test examples for 2-class and 4-class
decision system, respectively), then the classification accuracy amounts to
0.966 and 0.940, respectively. These figures are comparable to the forced
recognition results of the human-designed recognition algorithms reported in
[9], [lo], which are 0.958 and 0.942, respectively. However, for a fair
comparision we must force a recognition decision on the "no decision" class in
Table 7.10 and Table 7.1 1. Without other information, a random choice
applied to the no decision results (with 50% and 25% success rates for the 2
and 4 class decisions) yields forced recognition accuracies of 0.888 and 0.820,
which are less than the comparable human-designed recognition algorithm
results. Note that in this experiment we do not use confusers, i.e. test images
from different classes than those present in the training set. In [8] the BRDM
class has been used for that purpose. Synthesizing features for recognizing
object variants is challenging and further work is needed.

264 Chapter 7. Applications of Linear Genetic Programming for Object Recognition

7.5.6 Problem decomposition at decision level

Some preliminary experiments have been run for the vehicle recognition task
decomposed at decision level. For this purpose, we design an evolutionary
experiment as described in chapter 7.5.4: each individual in population Pi
implements one or more complete feature extraction procedures. For
evaluation, the feature extraction procedures encoded by the individual are run
on the training data T and produce the derived dataset T, which is
subsequently passed to the wrapper-based within fitness function J Till this
stage, the evaluation process is independent from the remaining populations.

In each cross-validation fold, the wrapper induces a compound classifier
from the training data. The number of voters is equal to the number of
populations np , and each base classifier hi works exclusively with features
developed by the corresponding population Pi (precisely speaking, the
remaining base classifiers work with features computed by the representatives
of the remaining populations). In testing, the base classifiers cooperate by
voting on the class assignment of each example; their votes are aggregated into
overall decision by simple (unweighted) majority rule. This process is repeated
for each cross validation fold. As in all other cooperation levels, the predictive
accuracy resulting from this cross-validation is assigned to the evaluated
individual as a fitness.

This process resembles the class-level decomposition used in some COIL20
experiments (cf. chapter 7.4). Here, however, each of the base classifiers
solves the complete, multi-class training task; in class-level decomposition,
base classifiers handle (usually simpler) binary classification tasks. As a result,
the computational cost of individual evaluations is much higher here.

In decision level decomposition the cooperation is postponed as long as
possible. The cooperating individuals (and representatives) do the prevailing
part of their work prior to cooperation. As already predicted in chapter 6.6,
some properties of this cooperation model may prevent it from providing
significant improvements in comparison to EFP. In particular, voting makes it
probable that a base classifier's incorrect decision is concealed by its peers: the
'bad and ugly' will not show up in the crowd of 'goods'. This becomes
especially probable when the number of voters is high.

7.5 Object Recognition in Radar Modality 265

The computational experiment we performed with decision level CFP
confirmed this hypothesis. The fitness of the best solutions found during
evolutionary search and the test set performance of the resulting recognition
systems usually did not show significant improvement in comparison to EFP.
Even worse, in time-complexity terms, the results obtained with decision level
cooperation were usually inferior to other CFP decomposition methods and
EFP, as the computational overhead resulting from the presence of a
compound classifier inside the fitness function is overwhelming. Therefore,
the results concerning this cooperation model are not presented in detail here.

Note that these observations may be interestingly related to Marr's principle
of least commitment [72], which states that reasoning should postpone making
crisp (qualitative, discrete) decisions as long as possible, because erroneous
crisp decisions are difficult to withdraw. This principle, though formulated
within vision science, is applicable to all decision-making systems that
perform reasoning in stages, especially those that work with imperfect real-
world data. In decision level decomposition, cooperating populations make
their crisp choices prior to decision aggregation. As the aggregation consists in
simple voting and does not involve any adaptation, these decisions cannot be
withdrawn and, if incorrect, deteriorate the overall performance.

An important conclusion of this decision level CFP experiment is that, with
the cooperation taking place on such a high abstraction level, the CC does not
seem to be able to provide for successful decomposition of the training task,
or, more precisely, for enough diversification among voting recognition
subsystems. A natural question that may be asked at this point is: why not treat
the modules in this decomposition method as separable and enforce
diversification of voters by other means?

Such diversification may be naturally provided by the random nature of
genetic search. For this purpose, we detach, in a sense, the populations that
would run in the framework described above, and run many independent
genetic searches that start from different initial states (initial populations). The
best solution evolved in each run gives rise to a separate recognition system,
which serves as a voter in the overall recognition system architecture. This
assembling of the final recognition system takes place off-line, i.e., after all
genetic searches come to an end. The base recognition systems are, therefore,
homogenuous as far as their structure is concerned.

266 Chapter 7. Applications of Linear Genetic Programming for Object Recognition

Table 7.12. True positive and false positive ratios for binary recognition tasks (testing
set, off-line decision level decomposition).

In this experiment, we attempt to maximize the predictive performance and
verify scalability of the resulting recognition system. Thus, 10 recognition
subsystems are engaged. In particular, as base recognition systems we use here
the solutions obtained in the experiments described in chapter 7.5.2.

Table 7.12 and Figure 7.15 present test-set TP and FP ratios of the
compound recognition systems built using the described procedure. Quite
naturally, the cooperation of ten classifiers using different features makes the
compound recognition system superior to all the single recognition systems
examined in earlier in this section. This applies to both C4.5 and SVM, as well
as to both performance measures: true positives and false positives. In
particular, the FP ratios are here approximately one order of magnitude smaller
than in the case of single recognition systems.

7.5 Object Recognition in Radar Modality 267

TD 1 0 1
TP

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1
n n

"~~" —$ X- M-^
\^-x

\ \ -

0 o

9 ~

6 X /

\ / \;

/ x̂ / \ ' \ -

X X -
^ ' - , ' ' '

B1 B2 B3 B4 B5 B6 B7

Task

010

- .009
- .008
- .007

.006
- .005
- .004

- .003
- .002
- .001

nnn
.uuu

FP

—o—C4.5 True positives (TP axis)
—x—SVM True positives (TP axis)

o C4.5 False positives (FP axis)
x SVM False positives (FP axis)

Figure 7.15. True positive and false positive ratios for binary recognition tasks (testing
set, compound recognition systems).

Figure 7.16. Representative images of objects used in experiments concerning object
variants (all pictures taken at 191° aspect/azimuth, cropped to central 64x64 pixels,
and magnified to show details).

268 Chapter 7. Applications of Linear Genetic Programming for Object Recognition

7.6 Analysis of Evolved Solutions

One of the advantages of symbolic feature construction is the readable form of
the acquired knowledge. To illustrate this virtue, we present an example of a
complete evolved recognition system. The recognition system considered here
is the best solution found in one of the learning processes concerning binary
classification tasks described in the beginning of Chapter 7.5.2, more precisely
the Bl task (BRDM versus ZSU). This particular solution has perfect fitness
(f= 1 .O) on the training set, and attains test set TP and FP ratios of, 0.974 and
0.058, respectively, when combined with C4.5 classifier, and .974 and 0.0,
respectively, when used together with a SVM classifier.

The experiment referenced here concerned CFP with 4 populations
cooperating at the feature-level. Therefore, in Figure 7.18 to Figure 7.21, we
present four feature extraction procedures, each of them working with two
image registers and two numeric registers. The figures depict feature
extraction procedures encoded by particular individuals that the solution is
composed of. Each row in these figures corresponds to execution of a single
elementary operation. The figures depict the processing carried out for a
selected image representing the negative class (ZSU in this experiment), taken
at 6" azimuth (see Figure 7.17).

In all the figures from Figure 7.18 to Figure 7.2 1 the first row presents the
initial register contents, which is determined by initial fragment of solution
encoding (see chapter 6.4.2). Before carrying out the feature extraction
procedure, the image registers are initialized by passing the original input
image through one of the predefined filters. The masks of the registers are
initially set to the brightest spot, and the numeric registers are initialized by
mask coordinates. This genome-dependent initialization method proved useful
in preliminary experiments, speeding up the convergence by enabling feature
extraction procedure to start with an already preprocessed image. It also
provides more diversity among individuals and causes the effective code to be
shorter by one chunk (4 bytes). This is why, though originally the parameter
determining feature extraction procedure length has been set to 9 operations
(implying genome length of 36 bytes), the effective number of operations is 8.

7.6 Analysis of Evolved Solutions 269

Figure 7.17. Image of the ZSU class taken at 6' azimuth angle (cropped to input size,
i.e. 48x48 pixels).

In Figure 7.18 to Figure 7.21, the original binary code (solution genome) is
not presented, as it would not be readable. Rather than that, in each row, the
first column presents the textual description of the operation being carried out,
whereas the second column contains the argument lists. An argument list
contains references to registers; for better readability, numeric registers are
denoted here by lower-case symbols (rl and r2), and image registers by upper-
case symbols (R1 and R2). Registers in square brackets are output or input-
output arguments, i.e. their contents changes when the operation is executed;
lack of brackets denotes an input (read only) argument. Each subsequent table
column corresponds to a particular register and illustrates how its contents
changes during feature extraction procedure execution. For clarity, only
register changes are shown in the figures; blank table cells denote no change
of register contents. Arrows illustrate data flow or, in other words,
dependencies between particular nodes of the processing graph.

Small gray boxes mark the current position of the image mask. Local
operations process the image within that mask only; global ones ignore them.
Mask position and size may be controlled by the feature extraction procedure,
either explicitly (see, for instance, operation #7 in Figure 7.18 and operation
#5 in Figure 7.21), or as a side effect of some image processing operations
(e.g., operation #4 in Figure 7.19). As a consequence, a particular feature
extraction procedure may apply and use a different mask positionlsize
depending on the input image. Any violations of required ranges of scalar
values (e.g., mask comer coordinate exceeding the actual image dimension)
are handled by modulo operation.

270 Chapter 7. Applications of Linear Genetic Programming for Object Recognition

Note that some operations involve constants that are not fetched from the
registers but are encoded directly in the feature extraction procedure code. For
clarity, such constant parameters are not shown in these examples. For
instance, they determine the orders of geometrical moments to be computed
(see operation #3 in Figure 7.18, and operation #6 in Figure 7.20).

It may be observed that, due to the heuristic nature of evolutionary search,
only a part of feature extraction procedure code is effective, i.e. produces
feature values that are fetched from numeric registers after execution of the
entire procedure. As mentioned in chapter 6.4.1, feature extraction procedure
fragments may constitute dead code that does not influence the final feature
values. This phenomenon takes place when an operation writes to a image
register that is not being read until the end of the entire procedure execution
(e.g., operations #7 and #8 in Figure 7.18), or the register contents (image or
numeric) becomes overwritten by a subsequent operation without being read
(e.g., operation #1 in Figure 7.18). Seemingly superfluous, this redundancy is
a normal and positive phenomenon characteristic to all variants of genetic
programming.

For the input image x considered here, the four individuals described above
return feature values gi(x) of, respectively, 2.1 and 2577, 14.2 and 7.0,343 and
4386817, and 0 and 0. These eight feature values build up the final feature
vector G(x) that is subsequently passed to the classifier h. Both C4.5 and SVM
yield correct decisions for this image, pointing to the ZSU decision class.

7.6 Analysis of Evolved Solutions 271

1

2

3

4

5

6

7

8

Fin

O~eration

Initial register contents (input

image a h inibal, genome-

dependent preprocessing)

Scalar multiplication

Move mask to minimum

brightness

Normalized central moment

Image dot product (pixelwise,

global)

Median filter

Average brightness

Move mask's lower right corner

to specified point

Highpass filter 5x5 (global)

al feature values

Arauments

r2,r1,[r1]

[R1],[r2],[r1]

R1,[r1]

R1,R2,[r2]

R1,[R2]

R2,[r1]

[R1],r2,r1

R2,[R1]

Ni

r

20

\

-6

12

0

2

2

Numeric regis

1 I r

20.0 -3

\y
0.0 S

S
6 J | 3

\ 257

' f ~
1

i i

.1 ! 257

ers
2

.0

o

i

7.0

•

7.0

Irr
F

I
f
7

1

Imager

U

I
]
\

-

regi:

F

I

\
\

I——

ars

I

1

Figure 7.18. Processing carried out by one of the evolved solutions (individual 1 of 4;
see text for details).

272 Chapter 7. Applications of Linear Genetic Programming for Object Recognition

1

2

3

4

5

6

7

8

Fin

O~eralion

Initial register contents (input

image a b r inifial, genome-

dependent preprocessing)

Scalar multiplication

L2 norm between image and

itself

Logarithm (In)

Morphologic erosion

Scalar maximum

Median filter

Erase entire image (global)

Standard deviation of pixel

values

al feature values

Araumenis

rl,r2,[r2]

R2,[r2]

r2,[r2]

R2,[R1]

r2,r2,[r2]

R1,[R2]

[R2]

R1,[r1]

Numeric

rl

19.0

14.2

14.2

regis

V

26

11:

\
7

7

/

\

7

ters

2

, . l\
6.0

28.3

\

.0

•0 y

f

.0

Image registers

R1 | R2

/

1

I

j

Figure 7.19. Processing carried out by one of the evolved solutions (individual 2 of 4;
see text for details).

7.6 Analysis of Evolved Solutions 273

1

2

3

4

5

6

7

8

Fin

Operation

Initial register contents (input

image after initial, genome-

dependent preprocessing)

Shift the mask towards adjacent

local brightness maximum

Highpass filter (global)

Scalar multiplication

Scalar minimum

Central moment

Cental mment (global)

Exclusive OR of a pair of images

(pixelwise, global)

Count non-zero pixels (global)

al kature values

Arguments

[R1],[r2]

R1,[R2]

r1,r2,[r1]

r2,r2,[r2]

R2,[r2]

R2,[r2]

R1,R1,[R2]

R2,[r1]

Nu
r

14

34

34

meric

1

.0

/

V
3.0

t

3.0

agis

r

\A

24

l

r

24

67£

438

r

438

ters
2

•1
.5

T

.5 ^

8.5/

/
5817

T

5817

Image

R1

T

registers

R2

\

Figure 7.20. Processing carried out by one of the evolved solutions (individual 3 of 4;
see text for details).

274 Chapter 7. Applications of Linear Genetic Programming for Object Recognition

1

2

3

4

5

6

7

8

Fin

Operation

Initial register contents (input

image after initial, genome-

dependent preprocessing)

Scalar subtraction

Shift the mask towards adjacent

local brightness maximum

Scalar maximum

L2 norm between image and

itself (global)

Move mask's lower right corner

to specified point

Vertical Previtt filter (global)

Move mask to the pixel of

maximum brightness

L1 norm between image and

itself

al feature values

Arguments

r1,r2,[r1]

[R1],[r1]

r2,r1,[r1]

R2,[r2]

[R2],r2,r2

R2,[R1]

[R1],[r2],[r2]

R1,R1,[r1]

Numeric

r1

17.0

5.0

2 4 - s /

M

0.0
0.0

registers

r2

12.0

909.2 -

/ .

/

0.0

Image r

R1

EJ
T

egist

F

/

srs
t2

1

_
I

Figure 7.21. Processing carried out by one of the evolved solutions (individual 4 of 4;
see text for details).

7.7 Conclusions 275

7.7 Conclusions

The results presented show that the proposed methodology of visual learning
is a promising tool for automatic and semi-automatic synthesis of robust
computer vision and pattern recognition systems operating in real-world
environments.

In particular, the results show that EFP and its coevolutionary variety, CFP,
meet demands of different imaging fi-ameworks: passive and active sensing,
visual and invisible spectrum. They yield good results for difficult real-world
problems, where one has to rely on imperfect (especially noisy) training data.
Recognition statistics are comparable superior to approaches discussed in the
literature.

Without an explicit database of object models and 3D vision knowledge,
EFPICFP perform effective view-independent visual learning and recognition
using a feature-based recognition algorithm. They are able to capture relevant
patterns in multidimensional sparse spaces of images, discarding the details of
secondary importance. Small sizes of investigated decision trees for the
COIL20 problem indicate, that the evolutionary process is able to elaborate
compact yet efficient view-independent internal representations. These
representations generalize well to novel examples.

No application-specific tuning is required to maintain high quality of results
- both visual learning studies use the same background knowledge comprising
a set 0 of general-purpose vision operators. The evolved feature extraction
procedures may be conveniently represented as data-flow diagrams that give
good insight into the inner wiring of the recognition system. Such graphs
represent explicitly the knowledge acquired by the learner (recognition
system) and may be analyzed and tuned by the human expert. Further re-use in
other applications is also possible.

Cooperative coevolution enables decomposition of the EFP task at different
levels of abstraction. For levels that exhibit average interdependency (mainly
instruction-level decomposition and feature-level decomposition), CFP
delivers recognition statistics that outperform the non-coevolutionary approach
in a statistically significant way. For other cooperation levels (class and

276 Chapter 7. Applications of Linear Genetic Programming for Object Recognition

decision), EFP and CFP deliver robust base recognition systems that cooperate
off-line (post-learning). The random nature of genetic search provides natural
diversification of evolved image features. That, in turn, enables performance
boosting and good scalability with respect to problem difficulty and with
respect to the number of decision classes. CFP may also be equipped with
automatic adaptation of the number of coevolving populations, without
significant performance decrease of resulting recognition systems.

As there is no need for matching the recognized image with models from a
database, EFP and CFP offer high recognition speed. The average time
required by the entire recognition process for a single 48x48 image, starting
from the raw image and ending up at the decision, ranged on the average from
2.2 ms to 20.5 ms for single classifiers and compound recognition systems,
respectively. This impressive recognition speed makes our approach suitable
for real-time applications.

Despite the impressive results presented in this chapter, the methodology
needs to be extended so that it can be easily generalized to a greater number of
categories (decision classes) - model-based extension seems to be desirable.
Further research is necessary to investigate the issues of interdependency and
modularity in CFP is more-depth and to identify more precisely the
prerequisites for more deterministic success.

Chapter 8

SUMMARY AND FUTURE WORK

8.1 Summary

This book investigates the efficacy of evolutionary computation such as a
variety of genetic programming and genetic algorithms in learning
programs/procedures and selecting features for object detection and object
recognition. The reason for incorporating learning into object detection and
recognition is to avoid the time consuming process of feature generation and
selection. With learning incorporated, an object detection and recognition
system can automatically explore many unconventional features that may yield
exceptionally good detection and recognition performance, thus overcoming
human expert limitations of concentrating only on a small number of
conventional features. A learning integrated system is more flexible and is able
to automatically generate features on the fly that are particularly effective to
the type of objects and images to which it is applied. The ultimate goal is to
lower the cost of designing object detection and recognition systems and to
build more robust and flexible systems with human-competitive performance.

The contributions of this book include:

Investigates the effectiveness of genetic programming in synthesizing
composite operators and composite features for object detection. It shows
that GP is effective in synthesizing effective composite operators based on

278 Chapter 8. Summary and Future Work

domain-independent primitive operators and domain-independent primitive
feature images that can be easily generated from the original image for
object detection. The synthesized composite operators can be applied to
other testing images that are similar to the training images. The composite
features discovered by GP are much more effective than the human-
designed primitive features from which they are built. The GP learned
composite features are generally unconventional features and different than
the features designed by human experts. Thus, the learning method will be
of a great help in the design of practical object detection and recognition
systems.

Proposes an MDL-based fitness function and smart GP operators to improve
the efficiency of genetic programming. An MDL-based fitness function is
proposed to address the well-known code bloat problem of GP. The MDL-
based fitness function takes the size of a composite operator into the fitness
evaluation process to prevent composite operators from growing too large
without setting a hard limit on the size of a composite operator, imposing
relatively less restrictions on the GP search and greatly improving the GP
efficiency. To further improve the efficiency of genetic programming,
smart crossover and smart mutation are proposed to identify and prevent the
effective components of composite operators from being disrupted by
destructive crossover and mutation. Also, a public library is set up to keep
effective components for later reuse. Compared to traditional genetic
programming, the smart GP, driven by the MDL-based fitness function and
equipped with smart crossover and smart mutation, synthesizes composite
operators with better performance and smaller size, reducing the
computational expense during recognition and the possibility of overfitting
the training images.

Proposes an MDL-based fitness function to drive GA in the selection of
features for object detection and recognition. The performance of the
MDL-based fitness function is compared with those of three other fitness
functions. The MDL-based fitness function balances the number of features
selected and the recognition error rate very well and it is the best fitness
function compared to other three functions. With fewer features selected,
the computational expense and the possibility of overfitting the training data
is reduced.

Chapter 8.1 Summary 279

Investigates coevolutionary genetic programming to synthesize composite
feature vectors for object recognition. The experimental results show that
CGP can evolve composite features based on domain-independent primitive
features and the learned composite features are more effective than the
primitive features upon which they are built. The book explores the role of
domain knowledge and public library in evolutionary computation by
providing general and domain specific primitive features. To achieve the
same recognition performance of primitive features, fewer composite
features are needed and this greatly reduces the computational burden
during recognition. Applications and extensions of these ideas to fingerprint
classification [117], facial expression recognition [8], and imge databases
[27] have been highly encouraging.

Investigates evolutionary and coevolutionary linear genetic programming
(LGP) techniques to synthesize feature extraction procedures to generate
features for object recognition. LGP is a variety of GP with simplified,
linear representation of individuals and it is a hybrid of GA and GP and
combines their advantages. LGP is similar to GP in the sense that each
individual actually contains a sequence of interrelated operators. On the
other hand, a feature extraction procedure has a fixed number of
instructions and an instruction is encoded into a fixed-length binary string
at the genome level, which is essentially equivalent to GA representation. A
feature extraction procedure consists of a sequence of instructions, which
are primitive image processing operators that are executed sequentially one
after another. Each instruction in a procedure is composed of an opcode
determining the operator to be used and arguments referring to registers
from which to fetch the input data and to which to store the result of the
instruction. LGP encoding is, therefore, more positional and more resistant
to destructive crossovers. When coevolutionary computation is applied, the
problem of feature construction can be decomposed at different levels. We
explore decomposition at the instruction, feature, class and decision levels.
The experiments on visible and SAR images show the superiority of
decomposition at the instruction level. With different segments of a feature
extraction procedure evolved by sub-populations of coevolutionary
computation, a better feature extraction procedure can be synthesized by
concatenating the segments from sub-populations. The benefits we expect
from the decomposition of feature construction by coevolutionary

280 Chapter 8. Summary and Future Work

computation include faster convergence, better scalability and better
understanding of the obtained solutions.

8.2 Future Work

Although this book covers a deep and extensive research on using a variety
of genetic programming and genetic algorithms for feature generation and
selection, there are still issues that merit further consideration.

In this book, smart crossover and smart mutation determine the interactions
among the nodes of a composite operator based on their performance. The
fitness value at each node is used to determine the crossover and mutation
points. Currently, in order to get the fitness at each node, its output image has
to be evaluated against the ground-truth during the training, which is a time
consuming and inefficient process. To further improve the efficiency of GP, it
is important to find a way to estimate the fitness of internal nodes based on the
fitness of the root node.

From the experiments with SAR images containing road in chapters 2 and 3,
it can be seen that the relations and interactions between different nodes of a
composite operator is very complicated. Thus, it is difficult to determine how
the performance of a node is dependent on the performance of descendent
nodes.

Currently, there is only one object in an image or a ROI during recognition,
so all the features come from the same object. If there are multiple overlapped
objects in an image or a ROI, the recognition becomes much more difficult.
Some of the features of an object may not be available due to occlusion and
we need to distinguish features from different objects before these features are
used into a classifier. How to extend the approach to recognize multiple
overlapped objects is a challenging future research topic.

From chapter 5, it can be seen that primitive features still have a substantial
impact on the goodness of the synthesized composite features. It will be
difficult for CGP to yield effective composite features based on ineffective
primitive features. If primitive features do not capture the characteristics of

Chapter 8.2 Future Work 28 1

the objects to be recognized and cannot discriminate between them, no matter
how hard CGP works, it still cannot yield effective composite features.
However, designing effective primitive features needs human ingenuity. If
human experts lack insight into the characteristics of the objects to be detected
and recognized, they may not figure out effective primitive features.
Sometimes, due to various factors, including noise, it is very difficult, to
extract effective primitive features from images. How to let CGP evolve
relatively effective composite features based on those somewhat ineffective
primitive ones using a variety of sophisticated operators is an important and
challenging future research area. Also synthesizing highly effective features
for the recognition of articulated and oculated objects [20], [Sl] will be very
interesting

For coevolutionary feature programming presented in Chapter 7, the most
interesting future research direction is the further exploration of the possible
approaches to problem decomposition. This may include exploring higher-
order decomposition schemes (hierarchies of subprocedures), or even explicit
preservation of useful code chunks (subprocedures), similarly to automatically
defined functions in standard genetic programming [59], [60]. In particular, it
would be interesting to verify if the knowledge (e.g., subprocedures) acquired
in the training process related to one application may be somehow reused in
(ported to) another vision application.

As far as technical aspects of evolutionary feature programming and
coevolutionary feature programming are concerned, it would be nice to further
reduce the number of parameters that control the feature synthesis procedure;
this may include on-line adaptation of procedure length and number of
registers. It would be interesting to reduce the time complexity of the fitness
function, i.e., by caching and re-using intermediate processing results
(images).

Lastly, concerning applications, it would be interesting to extend the
approach to problems that change with time andor analysis of video streams.
Extension to vision tasks other than recognition, like object tracking, will also
be interesting.

References

[l] A. Ahmadyfard and J. Kittler. A comparative study of two object recognition
methods. In P.L. Rosin and A.D. Marshall (editors), Proceedings of the British
Machine Vision Conference 2002, Cardiff, UK, 2002.

[2] P. Angeline. Subtree crossover: Building block engine or macromutation? In
J. Koza et al. (editor), Genetic Programming 1997: Proceedings of the Second
Annual Conference (GP97), pages 240-248, San Francisco, 1997. Morgan
Kaufmann.

[3] J.M. Baldwin. A new factor in evolution, American Naturalist, 30,441-45 1, 1896.
[4] W. Banzhaf, P. Nordin, R. Keller, and F. Francone. Genetic Programming: An

Introduction: On the Automatic Evolution of Computer Programs and its
Application. Morgan Kaufmann, 1998.

[5] T. Belpaeme. Evolution of visual feature detectors, Proc. Evolutionary
Computation in Image Analysis and Signal Processing, Goteburg, Sweden, pp. 1-
10, 1999.

[6] H.N. Bensusan and I. Kuscu. Constructive induction using genetic programming.
In T. Fogarty and G. Venturini (editors), Proc. Int. Con$ Machine Learning,
Evolutionary Computing and Machine Learning Worhxhop, 1996.

[7] B. Bhanu, D. Dudgeon, E. Zelnio, A. Rosenfeld, D. Casasent and I. Reed
(editors), IEEE Trans. on Image Processing, Special Issue on Automatic Target
Recognition, Vol. 6, No. 1, New York, USA, Jan. 1997.

[8] B. Bhanu, J.Yu, X. Tan and Y. Lin, Feature synthesis using genetic programming
for facial expression recognitions, Proc. Genetic and Evolutionary Computation
Conference, pp. 896-907, Seattle, WA, June 26-30,2004.

[9] B. Bhanu and G. Jones. Increasing the discrimination of SAR recognition models,
Optical Engineering, 12:3298-3306,2002.

[10]B. Bhanu and G. Jones. Recognizing target variants and articulations in SAR
images, Optical Engineering, 39(3):7 12-723, 1999.

[11]B. Bhanu and S. Fonder. Functional template-based SAR image segmentation,
Pattern Recognition, Vol. 37, No. 1, pp. 61-77,2004.

[12]B. Bhanu and S. Lee. Genetic Learning for Adaptive Image Segmentation.
Kluwer Academic Publishers, 1994.

References 283

[13]B. Bhanu and T. Poggio (editors), Special section on machine learning in
computer vision, IEEE Trans. on Pattern Analysis and Machine Intelligence,
Vol. 16, No. 9, pp. 865-919, September, 1994.

[14]B. Bhanu and Y. Lin. Object detection in multi-modal images using genetic
programming, Applied Soft Computing, Vol. 4, pp. 175-201,2004.

[15]B. Bhanu and Y. Lin. Genetic algorithm based feature selection for target
detection in SAR images, Image and Vision Computing, Vol. 2 1, No. 7, pp. 59 1 -
608,2003.

[16]B. Bhanu and Y. Lin. Learning feature agents for extracting terrain regions in
remotely sensed images, Proc. Pattern Recognition for Remote Sensing
Workshop, Niagara Falls, NY, USA, pp 1-6, August 12,2002.

[17]B. Bhanu and Y. Lin. Learning composite operators for object detection, Proc.
Genetic and Evolutionary Computation Conference, New York, USA, pp. 1003-
1010, July 2002.

[18]B. Bhanu and I. Pavlidis (editors), Computer Vision Beyond the Visible
Spectrum. Springer, 2004.

[19]B. Bhanu and Y. Lin. Stochastic models for recognition of occluded objects,
Pattern Recognition, Vol. 36, No. 12, pp. 2855-2873, Dec. 2003.

[20] B. Bhanu, Y. Lin, G. Jones, J. Peng. Adaptive target recognition, Int. Journal of
Machine Vision and Application, Vol. 11, No. 6, pp. 289-299,2000.

[21] B. Bhanu and Y. Lin. Synthesizing feature agents using evolutionary computation,
Pattern Recognition Letters, Special Issue on Remote Sensing, Vol. 25, pp.
1519-1531, Oct. 2004.

[22] M. Brameier and W. Banzhaf. Evolving teams of predictors with linear genetic
programming. Genetic Programming and Evolvable Machines, 2:381-407,2001.

[23] S. Cagnoni, A. Dobrzeniecki, R. Poli and J. Yanch. Genetic algorithm-based
interactive segmentation of 3D medical images, Image and Vision Computing,
Vol. 17, No. 12, pp. 881-895, October 1999.

[24] P. D'haeseleer. Context preserving crossover in genetic programming, Proc. IEEE
World Congress on Computational Intelligence, Vol. 1, pp. 256-26 1, 1994.

[25] M. Dash and H. Liu. Feature selection for classification. Intelligent Data Analysis,
1(3):131-156, 1997.

[26] V. Dhar, D. Chou, and F. Provost. Discovering interesting patterns for investment
decision making with GLOWER - a genetic learner overlaid with entropy
reduction, Data Mining and Knowledge Discovery, 4:251-280,2000.

[27]A. Dong, B. Bhanu and Y. Lin, Evolutionary feature synthesis for image
databases, Proc. IEEE Workshop on Application of Computer Vision,
Breckenridge, Colorado, Jan. 5-7,2005.

[28]R. Duda, P. Hart and D. Stork. Pattern Recognition (2nd edition). A Wiley-
Interscience Publication, 200 1.

[29]M. Ebner and A. Zell. Evolving a task specific image operator, Proc.
Evolutionary Image Analysis, Signal Processing and Telecommunications, First

284 References

European Workshops, EvoIASP'99 and EuroEcTelY99, Berlin, Germany, pp. 74-
89. Springer-Verlag, 1999.

[30] C. Emmanouilidis, A. Hunter, J. MacIntyre, and C. Cox. Multiple-criteria genetic
algorithms for feature selection in neuro-fuzzy modeling, Proc. Int. Joint Con$
on Neural Networks, Vol. 6, pp. 4387-4392, Piscataway, NJ, USA, 1999.

[3 11 P. Estevez and R. Caballero. A niching genetic algorithm for selecting features for
neural classifiers, Proc. 8th Int. Con$ on Artificial Neural Networks, Vol. 1, pp.
3 11-3 16. Springer-Verlag, London, 1998.

[32] C. Ferreira. Gene expression programming: A new adaptive algorithm for solving
problems. Complex Systems, 13(2):87-129,200 1.

[33]D. Forsyth, J. Mundy V. Gesu, and R. Cipolla (editors), Shape, contour and
grouping in computer vision, lecture notes in computer science, Vol. 1681.
Springer, Berlin, 1999.

[34]Q. Gao, M. Li and P. Vitanyi. Applying MDL to learn best model granularity,
Artificial Intelligence, Vol. 121, pp. 1-29,2000.

[35] A. Ghosh and S. Tsutsui (editors), Advances in Evolutionary Computing - Theory
and Application. Springer-Verlag, 2003.

[36] D. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning.
Addison-Wesley, Reading, 1989.

[37]R.C. Gonzalez and R.E. Woods. Digital Image Processing. Addison-Wesley,
Reading, 1992.

[38] S. Halversen. Calculating the orientation of a rectangular target in SAR imagery,
Proc. IEEE National Aerospace and Electronics Con$, pp. 260-264, May 1992.

[39] C. Harris and B. Buxton. Evolving edge detectors with genetic programming,
Proc. Genetic Programming, 1st Annual Conference, Cambridge, MA, USA, pp.
309-3 14, MIT Press, 1996.

[40] J. Hertz, A. Krogh, and R.G. Palmer. Introduction to the Theory of Neural
Computation. Addison-Wesley, Redwood City CA, 1991.

[41] J.H. Holland. Escaping brittleness: the possibilities of general-purpose learning
algorithms applied to parallel rule-based systems. In R.S. Michalski, J.G.
Carnoell, and T.M. Mitchell (editors), Machine Learning: An Artificial
Intelligence Approach 2, pages 48-78. Morgan Kaufmann, 1986.

[42] J.H. Holland. Adaptation in Natural and Artificial Systems (2nd edition), The MIT
Press, 1992.

[43] J.H. Holland and J.S. Reitman. Cognitive systems based on adaptive algorithms.
In D.A. Waterman and F. Hayes-Roth (editors), Pattern-Directed Inference
Systems. Academic Press, New York, 1978.

[44] D. Howard, S. C. Roberts, and R. Brankin. Target detection in SAR imagery by
genetic programming, Advances in Engineering Software, Vol. 30, No. 5, pp.
303-3 11, Elsevier, May 1999.

[45] J. Huang J. Bala, H. Vafaie, K. DeJong, and H. Wechsler. Hybrid learning using
genetic algorithms and decision trees for pattern classification, in International

References 285

Joint Conference on Aritifical Intelligence, pp. 719-724, Montreal, August 19-
25, 1995.

[46] I.F. Imam and H. Vafaie. An empirical comparison between global and greedy-
like search for feature selection, in Proceedings of the Florida A I Research
Symposium-FLAIRS, 1994.

1471 Intel@ image processing library: Reference manual, 2000.
[48] T. Ito, H. Iba and S. Sato. Depth-dependent crossover for genetic programming.

Proc. IEEE Int. Con$ on Evolutionary Computation, pp. 775-780, 1998.
[49] J. Jelonek and J. Stefanowski. Experiments on solving multiclass learning

problems by n2-classifier7 in Proceedings 20th European Conference on
Machine Learning, Volume 1398, Springer Lecture Notes in AI, pages 172-177.
Chemnitz, 1998.

[50] M. Johnson, P. Maes and T. Darrell. Evolving visual routines, Artificial Life, 1 :4,
1994.

[5 11 G. Jones and B. Bhanu. Recognition of articulated and occluded objects, IEEE
Trans. on Patern Analysis and Machine Intelligence, Vol. 21, No. 7, pp. 603-
613,1999.

[52] W. Kantschik and W. Banzhaf. Linear-tree GP and its comparison with other GP.
In Julian F. Miller, Marco Tomassini, Pier Luca Lanzi, Conor Ryan, Andrea
G. B. Tettamanzi, and William B. Langdon (editors), Genetic Programming,
Proceedings of EuroGP72001, Volume 2038 of LNCS, pages 302-312.
Springer-Verlag, Lake Como, Italy, 18-20 200 1.

[53] A. Katz and P. Thrift. Generating image filters for target recognition by genetic
learning, IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol. 16,
No. 9, September, 1994.

[54] M. Koppen and B. Nickolay. Genetic programming based texture filtering
framework. In N.R. Pal (editor), Pattern Recognition in Soft Computing
Paradigm, Chapter 12, pp. 275-305, World Scientific, 2001.

[55] J.R. Koza. Human-competitive applications of genetic programming. In A. Ghosh
and S. Tsutsui (editors), Advances in Evolutionary Computing, pages 663-682.
Springer, 2003.

[56] J.R. Koza et al. Genetic Programming IV: Routine Human - Competitive Machine
Intelligence. Kluwer Academic Publishers, 2003.

[57] J.R. Koza. Genetic Programming 11: Automatic Discovery of Reusable Programs.
MIT Press, 1994.

[58] J.R. Koza. Genetic Programming: On the Programming of Computer by Means of
Natural Selection. MIT Press, Cambridge, MA, 1992.

[59] K. Krawiec. Genetic programming-based construction of features for machine
learning and knowledge discovery tasks, Genetic Programming and Evolvable
Machines, 4:329-343,2002.

[60] K. Krawiec. Genetic programming with local improvement for visual learning
from examples. In W. Skarbek (editor), Computer Analysis of Images and

286 References

Patterns, Lecture Notes in Computer Science (LNCS), Volume 2124, pages
209-2 16. Springer Verlag, Berlin, 2001.

[61]K. Krawiec. On the use of painvise comparison of hypotheses in evolutionary
learning applied to learning from visual examples. In P. Perner, editor, Machine
Learning and Data Mining in Pattern Recognition, Lecture Notes in Artificial
Intelligence, Volume 2 123, pages 307-32 1. Springer Verlag, Berlin, 200 1.

[62] K. Krawiec. Painvise comparison of hypotheses in evolutionary learning. In C.E.
Brodley and A. Danyluk (editors), Proc. Eighteenth International Conference on
Machine Learning, pages 266-273. Morgan Kaufmann San Francisco, 2001.

[63] K. Krawiec and B. Bhanu. Coevolution and linear genetic programming for visual
learning, Genetic and Evolutionary Computation Conference, Part I, pp. 332-
343, Chicago, IL, July 12-16,2003.

[64]K. Krawiec and B. Bhanu. Visual learning by evolutionary feature synthesis.
Proc. International Conference on Machine Learning, pp. 376-383, Washington
D. C., August 21-24,2003.

[65]D. Kreithen, S. Halversen, and G. Owirka. Discriminating targets from clutter,
Lincoln Laboratory Journal, Vol. 6, No. 1, pp. 25 - 52, Spring 1993.

[66] W.B. Langdon and R. Poli, Foundations of Genetic Programming, Springer 2002.
[67] Y. Lin and B. Bhanu. Learning composite features for object recognition, Genetic

and Evolutionary Computation Conference, Part 11, pp. 2227-2239, Chicago, IL,
July 12- 16, 2003. An extended version, "Evolutionary feature synthesis for
object recognition," ZEEE Trans. on Systems, Man and Cybernetics, Part C,
Special Issue on Knowledge Extraction and Incorporation in Evolutionary
Computation (In Press).

[68]Y. Lin and B. Bhanu. Discovering operators and features for object detection,
Proc. 1 61h International Conference on Pattern Recognition, Vol. 3, pp. 339-342,
August 2002.

[69]Y. Lin and B. Bhanu. MDL-based genetic programming for object detection,
Proc. ZEEE Workshop on Learning in Computer Vision and Pattern Recognition,
Madison, WI, June 22, 2003. A modified version, Object detection via feature
synthesis using MDL-based genetic programming, ZEEE Trans. on Systems, Man
and Cybernetics Part B, (accepted), In press.

[70] S. Luke. ECJ evolutionary computation system, 2002.
[71] S. Luke and L. Spector. A revised comparison of crossover and mutation in

genetic programming. In J. Koza et al. (editor), Proc. of the Third Annual
Genetic Programming Conference (GP98), pages 208-2 13. Morgan Kaufmann,
San Fransisco, 1998.

[72] D. Marr. Vision. W.H. Freeman, San Francisco, CA, 1982.
[73] J. Matas, J. Burianek, and J. Kittler. Object recognition using the invariant pixel-

set signature. In M. Mirmehdi and B.T. Thomas (editors), Proc. of the British
Machine Vision Conference, Bristol, UK, 2000.

References 287

[74]K. Matsui, Y. Suganami, and Y. Kosugi. Feature selection by genetic algorithm
for MRI segmentation, Systems and Computers in Japan, Vol. 30, No. 7, pp. 69-
78, Scripta technical, June 30 1999.

[75] H.A. Mayer. ptGAs-genetic algorithms evolving noncoding segments by means
of promoterlterminator sequences, Evolutionary Computation, 6(4):361-386,
Winter 1998.

[76]Z. Michalewicz. Genetic Algorithms + Data Structures = Evolution Programs.
Springer Verlag, Berlin Heidelberg, 1994.

[77] M. Mitchell. An introduction to genetic algorithms. MIT Press: Cambridge, 1998.
[78] T. Mitchell, Machine Learning. McGraw-Hill, 1997.
[79] S.A. Nene, S.K. Nayar, and H. Murase. Columbia object image library (COIL-

20). Technical Book CUCS-005-96, Columbia University, February 1996.
[80]A. No& and E. Thompson (editors), Vision & Mind: Selected Readings in the

Philosophy of Perception. The MIT Press, Cambridge MA, 2002.
[81]P. Nordin. Explicitly defined introns in genetic programming. In J. P. Rosca,

F. Francone, and W. Banzhaf (editors), Proc. Workshop on Genetic
Programming: From Theory to Real-World Applications - Twelfth Int.
Con$ Machine Learning, pages 6-22, Tahoe City CA, July 9,1995.

[82] P. Nordin and W. Banzhaf. Complexity compression and evolution, Proc. Sixth
Int. Con$ on Genetic Algorithms, pp 3 10 - 3 17, 1995.

[83] P. Nordin, W. Banzhaf, and F. Francone. Efficient evolution of machine code for
CISC architectures using blocks and homologous crossover. In L. Spector,
W. Langdon, U. O'Reilly, and P. Angeline (editors), Advances in Genetic
Programming 111, pages 275 - 299. MIT Press, Cambridge, MA, 1999.

[84]L. Novak, G. Owirka, and C. Netishen. Performance of a high-resolution
polarimetric SAR automatic target recognition system, Lincoln Laboratory
Journal, Vol. 6, No. 1, pp. 11-24, Spring 1993.

[85] L. Novak, M. Burl, and W. Irving. Optimal polarimetric processing for enhanced
target detection. IEEE Trans. Aerosp. Electron. Syst. 29, pp. 234 - 244, 1993.

[86] C. Oliver and S. Quegan, Understanding Synthetic Aperture Radar Images, Artech
House, Inc. 1998.

[87]M. O'Neill and C. Ryan. Grammatical Evolution. Evolutionary Automatic
Programming in an Arbitrary Language. Kluwer Academic Publishers, Boston,
2003.

[88] Open Source Computer Vision Library: Reference Manual, 2001.
[89] E. Ozcan and C. Mohan. Partial shape matching using genetic algorithms, Pattern

Recognition Letters, Vol. 18, pp. 987-992, 1997.
[90]P.V. Parthasarathy, D.E. Goldberg, and S.A. Burns. Tackling multimodal

problems in hybrid genetic algorithms. Technical Book 200 10 12, March 200 1.
[91] J. Platt. Fast training of support vector machines using sequential minimal

optimization. In B. Scholkopf, C. Burges and A. Smola (editors), Advances in

288 References

Kernel Methods -- Support Vector Learning. MIT Press, Cambridge, Mass.,
1998

[92] R. Poli. Genetic programming for feature detection and image segmentation. In T.
C. Forgarty (editor), Evolutionary Computation, pp. 1 10- 125. Springer-Verlag,
Berlin, Germany, 1996.

[93]R. Poli. Exact schema theory for genetic programming and variable-length
genetic algorithms with one-point crossover, Genetic Programming and
Evolvable Machines, 2(2):123-163, June 2001.

[94]M.A. Potter and K.A. De Jong. Cooperative Coevolution: An architecture for
evolving coadapted subcomponents, Evolutionary Computation, Vol. 8(1), pp. 1-
29,2000.

[95]W. Punch and E. Goodman. Further research on feature selection and
classification using genetic algorithms, Proc. 5th Int. Con$ on Genetic
Algorithms, pp. 557-564, 1993.

[96] J. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann: San
Mateo, 1992

[97] J. Quinlan and R. Rivest. Inferring decision tree using the minimum description
length principle, Information and Computation, Vol. 80, pp. 227-248, 1989.

[98] M.L. Rayrner, W.F. Punch, E.D. Goodman, L.A. Kuhn, and A.K. Jain.
Dimensionality reduction using genetic algorithm, IEEE Trans. on Evolutionary
Computation, 4(2): 164-1 7 1,2000.

[99]F. Rhee and Y. Lee. Unsupervised feature selection using a fizzy-genetic
algorithm, Proc. IEEE Int. Fuzzy Systems Con$, Vol. 3, pp. 1266-1269,
Piscataway, NJ, 1999.

[loo] J. Rissanen. A universal prior for integers and estimation by minimum
description length, Ann. of Statist, Vol. 1 1, No. 2, pp. 41 6-43 1, 1983.

[lol l M. Rizki, L. Tamburino and M. Zmuda. Multi-resolution feature extraction
from Gabor filtered images, Proc. of the IEEE National Aerospace and
Electronics Conference, Dayton, OH, USA, pp. 24-28, May 1993.

[I021 M. Rizki, M. Zmuda and L. Tamburino, Evoluting pattern recognition systems,
IEEE Trans. on Evolutiona ry Computation, 6, pp. 594-609,2002.

[103] S.C. Roberts and D. Howard. Evolution of vehicle detectors for infrared line
scan imagery, Proc. Evolutionary Image Analysis, Signal Processing and
Telecommunications, First European Workshops, EvoIASP'99 and
EuroEcTel'99, Berlin, Germany, pp. 1 10- 125, Springer-Verlag, 1999.

[104] T. Ross, S. Worell, V. Velten, J. Mossing, and M. Bryant. Standard SAR ATR
evaluation experiments using the MSTAR public release data set, in SPIE
Proceedings: Algorithms for Synthetic Aperture Radar Imagery V, Vol. 3370,
pages 566-573, April 1998.

[105] F. Rothlauf. On the locality of representations. Technical book, University of
Mannheim, Department of Information Systems 1,2003.

References 289

[I061 F. Rothlauf. Representations for Genetic and Evolutionary Algorithms.
Physica-Verlag Heidelberg New York, 2002.

11071 C. Ryan C., J.J. Collins, and M. O'Neill. Grammatical evolution: Evolving
programs for an arbitrary language, in First European Workshop on Genetic
Programming, Lecture Notes in Computer Science. Vol. 1391, 1998.

[I081 J.D. Schaffer. Multiple objective optimization with vector evaluated genetic
algorithms, In Proc. First International Conference on Genetic Algorithms and
their Applications, Hillsdale, 1985. Lawrence Erlbaum Associates.

[I091 W. Siedlecki and J. Sklansky. A note on genetic algorithms for large-scale
feature selection, Pattern Recognition Letters, Vol. 10, pp. 335-347, November
1989.

[I101 H.A. Simon. The Sciences of the Artificial. MIT Press, Cambridge, MA, 1969.
[I l l] P. Smith. Conjugation - A bacterially inspired form of genetic recombination.

In J. R. Koza (editor), Late Breaking Chapters at the Genetic Programming
ConE, pp. 167 - 176,1996.

[112] S.F. Smith. A learning system based on genetic algorithms. Ph.D. thesis,
University of Pittsburgh, 1980.

[I131 R. Srikanth, R. George, N. Warsi, D. Prabhu, F. Petry and B. Buckles. A
variable-length genetic algorithm for clustering and classification, Pattern
Recognition Letters, Vol. 16, pp. 789-800, 1995.

[114] S.A. Stanhope and J. M. Daida. Genetic programming for automatic target
classification and recognition in synthetic aperture radar imagery, Proc. Seventh
Conference on Evolutionary Programming VII, Springer-Verlag, Berlin,
Germmany, pp. 735-744, 1998.

[I151 W. Tackett. Genetic programming for feature discovery and image
discrimination, Proc. Fifth International Conference on Genetic Algorithm,
Morgan Kaufinann, San Mateo, CA, USA, pp. 303-31 1,1993.

[I161 W. Tackett. Recombination election and the genetic construction of computer
programs. Ph.D. thesis, Univ. of Southern California, Dept. of Electr. Engg.
Systems, 1994.

[117] X. Tan, B. Bhanu and Y. Lin. Learning features for fingerprint classification.
International Conference on Audio- and Video-based Person Authentication,
pp. 318-326, Guildford, UK, June 9-1 1, 2003. An extended version, Fingerprint
classification based on learned features, IEEE Transactions on Systems, Man
and Cybernetics Part C, Special issue on Biometrics (In Press).

[I181 A. Teller. Algorithm evolution with internal reinforcement for signal
understanding, Ph.D. thesis, School of Computer Science, Carnegie Mellon
University, Pittsburgh, PA, 1998.

[I191 A. Teller and M.M. Veloso. PADO: A new learning architecture for object
recognition. In K. Ikeuchi and M. Veloso (editors), Symbolic Visual Learning,
pages 77-1 12. Oxford University Press, 1997.

290 References

[120] S. Theodoridis and K. Koutroumbas. Pattern Recognition. Academic Press,
1999.

[I211 S. Ullman. Visual routines, Cognition, Vol. 18, pp. 97-159, 1984.
[122] H. Vafaie and I.F. Imam. Feature selection methods: Genetic algorithms vs.

greedy-like search, in Proc. of International Conference on Fuzzy and
Intelligent Control Systems, 1994.

[123] D.A. van Veldhuizen. Multiobjective evolutionary algorithms: Classifications,
analyses, and new innovations. Ph.D. thesis, Department of Electrical and
Computer Engineering. Graduate School of Engineering, Wright-Patterson
AFB, Ohio, 1999.

[124] R.A. Watson. Modular interdependency in complex dynamical systems. In
Bilotta et al. (editor), Worhhop Proceedings of the 8th International
Conference on the Simulation and Synthesis of Living Systems, UNSW
Australia, December 2003.

[125] R.A. Watson. Compositional Evolution. Ph.D. thesis, Brandeis University,
2002.

[126] D. Whitley, V.S. Gordon, and K. Mathias. Lamarckian evolution, the Baldwin
effect and function optimization. In Y. Davidor, H.-P. Schwefel, and
R. Maenner (editors), Proc. Third International Conference on Parallel
Problem Solving from Nature (PPSN), Lecture Notes in Computer Science,
Vol. 866. Springer Verlag, New York, 1994.

[I271 I.H. Witten and E. Frank. Data Mining: Practical Machine Learning Tools and
Techniques with Java Implementations. Morgan Kaufmann: San Francisco,
1999.

[128] L. Wlodarski. Coevolution in decomposition of machine learning problems.
Master's thesis, Institute of Computing Science, Poznan University of
Technology, 2003.

[129] J. Yang and V. Honavar. Feature subset selection using a genetic algorithm. In
H. Motoda and H. Liu (editors), Feature Extraction, Construction, and Subset
Selection: A Data Mining Perspective. Kluwer Academic: New York, 1998.

Index

&-greedy policy, 89,90
activation function, 168, 193
active sensing, 233,275
adaptive cooperative feature

programming (CFP-A), 256
alleles, 2 12
arguments, 7,208,212,214,218,269,

279
average distance features, 141
backpropagation algorithms, 194, 195
bad edges, 87,88
Baldwin effect, 223
base classifier, 229,260,262,264
Bayesian classifier, 122, 128, 170,

173, 174,176
between-class scatter matrix, 126
binary mask, 12
binary trees, 12, 15, 169, 170
bright region, 68
brood recombination, 82
C4.5 classification algorithm, 193, 197
CFAR Detector, 13 1
chromosome, 129,142
class-level decomposition, 228,229,

245,264
clutter chips, 143, 158
code bloat, 6, 8, 14,21, 78,80, 81, 83,

84,116,119,174,278
coevolutionary feature programming

(CFP), 9,201,225,233,247
coevolutionary genetic programming

(CGP), 5,166
COIL20 database, 238,239,244,252

composite feature vectors, 8, 166, 170,
176,181,186,190,198

composite features, 2,7, 12,68, 165,
173,179,183,186,191,193

composite operator, 8, 12, 15,20,2 1,
45,65,96, 119, 166, 170, 173

composite operator vector, 166, 173,
174,176,177,186,192

compound classifier, 245,264,265
confusers, 263
conjugation operator, 82
Context preserving crossover, 283
contrast-based features, 139
conventional features, 3,6,277
convolution operators, 18
cooperative co-evolution (CC), 225
count feature, 139, 164
crisp decisions, 215,265
crossover, 20,62,79,89,97, 114, 124,

142,174,205,214,226,240
crossover points, 22,30,81,83, 87,97
crossover rate, 20,23,25,62, 84,91,

124,142,176
dark regions, 57,63
dead code, 2 14,270
decision-level decomposition, 230,

264,265,266
depth-dependent crossover, 285
destructive crossover, 23,81,278
destructive crossovers, 7,205,279
deviation image, 16, 17
diagonal second-order moment

features, 14 1

Index 292

distance features, 140
EC solution, 204,211
elitism mechanism, 91, 92, 142
elitism replacement, 24, 90, 175, 176
evolutionary computation (EC), 201
evolutionary feature programming, 9,

201,206,225,232,246
false positive, 241, 243, 254, 266
feasibility threshold, 127, 130
feature combination space, 4, 80
feature extraction procedure, 6, 203,

208,211,252,279
feature extraction procedures, 202,

206, 232, 253
feature selection, 5, 121, 143, 164,

202,207,221,277
feature subset space, 4, 145
feature synthesis, 7, 99, 110, 165, 281
feature-based recognition, 215, 275
feature-level decomposition, 230, 275
filter approach, 221
fitness measure, 16, 20, 170
fitness threshold, 20, 25, 62, 174
fractal dimension feature, 135, 136,

140, 164
generational genetic programming, 23,

90
genes, 212, 214, 219, 240
genetic algorithm, 4, 13, 122, 142,

166, 168, 277, 288, 290
genetic programming (GP), 5, 12
genotype, 204, 206, 211, 220, 226
genotype-phenotype mapping, 204,

206,211,212,226
genotypic search space, 204
global features, 211
good edge, 87
gradient descent, 4
grandparent, 88
ground-truth image, 20
guard area, 131
hard size limit, 15, 21, 97

high locality, 220
Hill climbing, 4
horizontal projection feature, 140
image GP, 67
image registers, 209, 214, 217, 252,

268, 269
image-driven, 215
image-to-operator error, 85
infrared (IR) images, 27, 45
inhospitable context, 22, 80
instruction, 211
instructions, 6, 208, 213, 216, 218,

226, 240, 279
Intel Image Processing Library (IPL),

234
introns, 214, 287
linear genetic programming (LGP), 6,

8,279
local features, 211
low locality, 204, 207, 219, 220
major diagonal projection feature, 140,

164
mask flag, 211
mass feature, 137
maximum CFAR feature, 139, 154,

164
maximum distance feature, 164
maximum image, 17, 111
mean CFAR feature, 139, 164
mean image, 16, 17,43, 106
median image, 17, 30, 39, 96
minimum description length (MDL)

principle, 79
minimum description length principle,

83,85, 121,124,128,288
minimum distance feature, 164
minimum image, 17
minor diagonal projection feature, 140
model granularity, 83
model-driven, 215
modular dependency, 224
moment features, 139, 141

293 Index

MSTAR public data, 143
mutation, 4, 15, 20, 62, 79, 91, 114,

123, 142, 174, 214, 218, 240, 278,
280, 286

mutation points, 79, 83, 89, 114, 280
mutation rate, 20, 62, 84, 91, 124, 142,

176,214
mutations, 81, 83, 88, 175, 218, 219,

220, 240
mutually redundant features, 227
nearly decomposable, 224, 225
neutral mutations, 214
numeric register, 215
numeric registers, 209, 216, 226, 252,

268, 269, 270
object detection, 1, 11, 18, 62, 78, 168,

172, 277, 283
object recognition, 1, 8, 11, 122, 139,

165, 171, 177, 193,260, 277, 279,
289

offspring, 14, 21, 80, 87, 90, 142, 174,
176,214

opcode, 7, 209, 211, 214, 218, 220,
240, 279

Open Computer Vision Library
(OpenCV), 234

overfitting, 6, 8, 82, 90, 128, 203, 208,
222, 243, 278

parent, 23, 62, 82, 87, 99, 142, 205,
215

passive sensing, 233, 238
penalty function, 130, 155
percent bright CFAR feature, 139
performance point, 154
phenotype, 204, 206, 208, 211,218,

223, 226
phenotypic fitness, 204, 206, 216
phenotypic search space, 204
population, 5, 13, 15, 20, 38, 52, 80,

103, 123, 142, 166, 226, 233, 241,
253, 264

population fitness, 28, 30, 38, 52, 55,
57, 63, 89, 97

positional, 7, 205, 212, 213, 279
primitive feature image, 15, 33, 97
primitive feature images, 12, 15, 28,

31,48,62,68,83,97,278
primitive feature vectors, 181, 186,

189, 191, 198
primitive operator library, 18
primitive operators, 12, 13, 18, 23, 33,

78,84,97,110, 113,166, 169,172,
175, 178, 278

principle of least commitment, 215,
265

problem decompositions, 226
processing chains, 44
public library, 79, 81, 83, 87, 118, 278
random crossover, 83, 87, 89, 91
random mutation, 87, 91
random operator, 89
real-time applications, 2, 11, 122, 276
region GP, 67
regions-of-interest, 11
register-constant flag, 213
RGB color images, 27, 45, 48, 52
selection, 5, 20, 24, 26, 30, 62, 80, 86,

92,97,114,121, 130,143, 164,
167, 174, 202, 222, 240, 247, 278,
283

selective pressure, 14, 222
separable, 224, 225, 228, 245, 265
signal-to-symbol problem, 2
simulated annealing, 4
size limit, 21, 22, 25, 26, 62, 78, 81,

116
size-related features, 137, 239
smart crossover, 6, 8, 79, 83, 87, 89,

93,119,278,280
smart genetic programming, 93
smart mutation, 6, 8, 79, 83, 87, 88,

90,93,119,278,280
smart mutations, 88

Index 294

synergy, 227, 230
synthetic aperture radar (SAR)

images, 27, 93, 177
target chips, 143, 153, 162
terminals, 16, 17, 81, 170, 172
tournament selection, 20, 86, 174, 241
traditional GP, 79
training region, 27, 37,42, 52, 74, 86,

93,103, 110
true positive, 241, 243, 254, 263
unconventional features, 3, 277, 278
vertical projection feature, 140
visual routines, 14, 285
weak typing, 215
within-class scatter matrix, 126
wrapper approach, 221, 225, 237

smart operator, 89
soft size limit, 15, 22, 27, 62
square-normalized rotational inertia,

137
standard-deviation feature, 134, 135
steady-state genetic programming, 78,

90
stochastic backpropagation algorithm,

193, 194
stochastic backpropagation algorithm

with momentum, 193, 194
strong typing, 215
sub-population, 166, 169, 173, 176,

179
support vector machine (SVM), 237,

254

	Cover
	Contents
	List of Figures
	List of Tables
	Preface
	Chapter 1 INTRODUCTION
	Chapter 2 FEATURE SYNTHESIS FOR OBJECT DETECTION
	Chapter 3 MDL-BASED EFFICIENT GENETIC PROGRAMMINGFOR OBJECT DETECTION
	Chapter 4 FEATURE SELECTION FOR OBJECT DETECTION
	Chapter 5 EVOLUTIONARY FEATURE SYNTHESIS FOROBJECT RECOGNITION
	Chapter 6 LINEAR GENETIC PROGRAMMING FOR OBJECTRECOGNITION
	Chapter 7 APPLICATIONS OF LINEAR GENETICPROGRAMMING FOR OBJECT RECOGNITION
	Chapter 8 SUMMARY AND FUTURE WORK
	References
	Index

