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Foreword

It is very hard to write a book that qualifies to be viewed as a significant
addition to the voluminous literature on neural network theory and its appli-
cations. Drs. Gupta, Jin, and Homma have succeeded in accomplishing this
feat. They have authored a treatise that is superlative in all respects and links
neural network theory to fuzzy set theory and fuzzy logic.

Although my work has not been in the mainstream of neural network theory
and its applications, I have always been a close observer, going back to the
pioneering papers of McCulloch and Pitts, and the work of Frank Rosenblatt.
I had the privilege of knowing these major figures and was fascinated by
the originality of their ideas and their sense of purpose and mission. The
coup de grace of Minsky and Papert was an unfortunate event that braked
the advancement of neural network theory for a number of years preceding
publication of the path-breaking paper by Hopfield. It is this paper and
the rediscovery of Paul Werbos' backpropagation algorithm by Rumelhart et
al. that led to the ballistic ascent of neural-network-related research that we
observe today.

The power of neural network theory derives in large measure from the fact
that we possess the machinery for performing large volumes of computation at
high speed, with high reliability and low cost. Without this machinery, neural
network theory would be of academic interest. The stress on computational
aspects of neural network theory is one of the many great strengths of "static
and dynamic neural networks" (SDNNs). A particularly important contribu-

xix



XX FOREWORD

tion of SDNN is its coverage of the theory of dynamic neural networks and
its applications.

Traditionally, science has been aimed at a better understanding of the world
we live in, centering on mathematics and the natural sciences. But as we move
further into the age of machine intelligence and automated reasoning, a major
aim of science is becoming that of automation of tasks performed by humans,
including speech understanding, decisionmaking, and pattern recognition and
control.

To solve some of the complex problems that arise in these realms, we
have to marshal all the resources that are at our disposal. It is this need
that motivated the genesis of soft computing — a coalition of methodologies
that are both complementary and synergistic — and that collectively provide
a foundation for computational intelligence. Neural network theory is one
of the principal members of the soft computing coalition — a coalition that
includes, in addition, fuzzy logic, evolutionary computing, probabilistic com-
puting, chaotic computing, and parts of machine learning theory. Within this
coalition, the principal contribution of neural network theory is the machinery
for learning, adaptation, and modeling of both static and dynamical systems.

One of the important contributions of SDNN is the chapter on fuzzy sets and
fuzzy neural systems (Chapter 15), in which the authors present a compact
exposition of fuzzy set theory and an insightful discussion of neurofuzzy
systems and their applications. An important point that is stressed is that
backpropagation is a gradient-based technique that applies to both neural and
fuzzy systems. The same applies to the widely used methods employing radial
basis functions.

Another important issue that is addressed is that of universal approximation.
It is well known that both neural networks and fuzzy rule-based systems can
serve as universal approximators. However, what is not widely recognized is
that a nonlinear system, 5, can be arbitrarily closely approximated by a neural
network, N, or a fuzzy system, F, only if S is known, rather than merely
given as a black box. The fact that S must be known rules out the possibility
of asserting that N or F approximates to S to within a specified error, based
on a finite number of exemplars drawn from the input and output functions.

An important aspect of the complementarity of neural network and fuzzy
set theories relates to the fact that, in most applications, the point of departure
in the construction of a fuzzy system for performing a specified task is the
knowledge of how a human performs that task. This is not a necessity in the
case of a neural network. On the other hand, it is difficult to construct a neural
network with a capability to reason through the use of rules of inference, since
such rules are a part of the machinery of fuzzy logic but not of neural network
theory.
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SDNN contains much that is hard to find in the existing literature. The
quality of exposition is high and the coverage is thorough and up-to-date. The
authors and the publisher, John Wiley and Sons, have produced a treatise that
addresses, with high authority and high level of expertise, a wide variety of
issues, problems, and techniques that relate in a basic way to the conception,
design, and utilization of intelligent systems. They deserve our applause.

University of California, Berkeley Lotfi A. Zadeh



This page intentionally left blank 



Preface

With the evolution of our complex technological society and the introduc-
tion of new notions and innovative theoretical tools in the field of intelligent
systems, the field of neural networks is undergoing an enormous evolution.
These evolving and innovative theoretical tools are centered around the theory
of soft computing, a theory that embodies the theory from the fields of neural
networks, fuzzy logic, evolutionary computing, probabilistic computing, and
genetic algorithms. These tools of soft computing are providing some intel-
ligence and robustness in the complex and uncertain systems similar to those
seen in natural biological species.

Intelligence — the ability to learn, understand, and adapt — is the creation
of nature, and it plays a key role in human actions and in the actions of many
other biological species. Humans possess some robust attributes of learning
and adaptation, and that's what makes them so intelligent. We humans react
through the process of learning and adaptation on the information received
through a widely distributed network of sensors and control mechanisms in
our bodies. The faculty of cognition — which is found in our carbon-based
computer, the brain — acquires information about the environment through
various natural sensory mechanisms such as vision, hearing, touch, taste, and
smell. Then the process of cognition, through its intricate neural networks
— the cognitive computing — integrates this information and provides ap-

xxin



XXiv PREFACE

propriate actions. The cognitive process then advances further toward some
attributes such as learning, recollection, reasoning, and control.

The process of cognition takes place through a perplexing biological pro-
cess — the neural computing — and this is the process of computation that
makes a human an intelligent animal. (More or less all animals possess in-
telligence at various levels, but humans fall into the category of the most
intelligent species.)

Human actions in this advancing technological world have been inspired by
many intriguing phenomena occurring in the nature. We have been inspired
to fly by birds, and then we have created flying machines that can fly almost
in synchrony with the sun.

We are learning from the carbon-based cognitive computer — the brain —
and now trying to induce the process of cognition and intelligence into robotic
machines. One of our aims is to construct an autonomous robotic vehicle
that can think and operate in uncertain and unstructured driving conditions.
Robots in manufacturing, mining, agriculture, space and ocean exploration,
and health sciences are just a few examples of challenging applications where
humanistic attributes such as cognition and intelligence can play an important
role. Also, in the fields of decisionmaking, such as health sciences, manage-
ment, economics, politics, law, and administration, some of the mathematical
tools evolving around the notion of neural networks, fuzzy logic, and, in
general, soft computing may contribute to the strength of the decisionmaking
field. We envision robots evolving into electromechanical systems — perhaps
having some attributes of human cognition.

The human cognitive faculty — the carbon-based computer — has a vast
network of processing cells called neural networks, and this science of neural
networks has inspired many researchers in biological as well as nonbiological
fields. This inspiration has generated keen interest among engineers, com-
puter scientists, and mathematicians for developing some basic mathematical
models of neurons, and to use the collective actions of these neural models to
find the solutions to many practical problems. The concepts evolved in this
realm have generated a new field of neural networks.

The idea for this textbook on neural networks was conceived during the
classroom teachings and research discussions in the laboratory as well as at
international scientific meetings. We are pleased to see that our several years
of work is finally appearing in the form of this book. This book, of course, has
gone through several phases of writings and rewritings over the last several
years.

The contents of this book, entitled Static and Dynamic Neural Networks:
From Fundamentals to Advanced Theory, follows a logical style providing
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the readers the basic concepts and then leading them to some advanced theory
in the field of neural networks.

The mathematical models of a basic neuron, the elementary components
used in the design of a neural network, are a fascinating blend of heuristic
concepts and mathematical rigor. It has become a subject of large interdis-
ciplinary areas of teaching and research, and these mathematical concepts
have been successfully applied in finding some robust solutions for problems
evolving in the many fields of science and technology. Our own studies
have been in the fields of neurocontrol systems, neurovision systems, robotic
systems, neural chaotic systems, pattern recognition, and signal and image
processing.

In fact, since the early 1980s the field of neural networks has undergone
the phases of exponential growth, generating many new theoretical concepts.
At the same time, these theoretical tools have been applied successfully to the
solution of many applied problems.

Over the years, through their teaching and research in this exponentially
evolving field of neural networks, the authors have collected a large volume of
ideas. Some of their works have appeared in the form of research publications,
and this present volume represents only a small subset of this large set of ideas
and studies.

The material in this volume is arranged in a pedagogical style, which, we
do hope, will serve both the students and researchers in this evolving field of
neural networks.

In designing the present book we strove to present a pedagogically sound
volume that would be useful as a main text for graduate students, as well
as provide some new directions to academic and industrial researchers. We
cover some important topics in neural networks from very basic to advanced
material with appropriate examples, problems, and reference material.

In order to keep the book to a manageable size, we have been selective in
our coverage. Our first priority was to cover the central concepts of each topic
in enough detail to make the material clear and coherent. Each chapter has
been written so that it is relatively self-contained. The topics selected for this
book were based on our experience in teaching and research.

This book contains 15 chapters, which are classified into the following four
parts:

Part I: Foundations of Neural Networks
(Chapters 1-3)

Part II: Static Neural Networks
(Chapters 4-7)
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Part III: Dynamic Neural Networks
(Chapters 8-12)

Part IV: Some Advanced Topics in Neural Networks
(Chapters 13-15)

Part I provides the basic material, but from Parts II, III, and IV, instructors
may choose material to suit their class needs. Part IV deals with some
advanced topics on neural networks involving fuzzy sets and fuzzy neural
networks as well, which have become very important topics in terms of both
the theory and applications.

Also, we append this book with two appendixes:

Appendix A: Current Bibliographic Sources on Neural Networks
Appendix B: Classified List of Bibliography on Neural Networks

(ftp://ftp.wiley.com/public/sci_tech_med/
neural_networks/)

Appendix A provides various sources from which a student or researcher
can find the current work in the field. Appendix B gives an extensive list of
references (over 1500) classified into various categories on the ftp site:

ftp://ftp.wiley.com/public/sci_tech_med/neural_networks/
that will provide the readers with the information on reference material from
its inception (early 1940s) to recent works.

This book is written for graduate students and academic and industrial
researchers working in this developing field of neural networks and intelligent
systems. It provides some comprehensive views of the field, as well as its
accomplishments and future potentials and perspectives.

We do hope that this book will provide new challenges to its readers, that
it will generate curiosity for learning more in the field, and that it will arouse
a desire to seek new theoretical tools and applications. We will consider our
efforts successful if the study of neural networks through this book raises the
level of curiosity and thirst of its readers.

University of Saskatchewan Madan M. Gupta
GlobespanVirata, Inc. Liang Jin
Tohoku University Noriyasu Homma
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4 NEURAL SYSTEMS: AN INTRODUCTION

The path that leads to scientific discovery often begins when one of us
takes an adventurous step into the world of endless possibilities. Scientists
intrigued by a mere glimpse of a subtle variation may uncover a clue or link,
and from that fragment emerges an idea that has to be developed and worked
into shape.

Humans have always dreamed of creating a portrait of themselves, a ma-
chine with humanlike attributes such as locomotion, speech, vision, and cog-
nition (memory, learning, thinking, adaptation, and intelligence). Through
our learning from biological processes and very creative actions, we have
been able to realize some of our dreams. In today's technological society we
have created machines that have some of the human attributes that emulate
several humanlike functions with tremendous capabilities. Some examples of
these humanlike functions are human locomotion to transportation systems,
human speech and vision to communications systems, and human low-level
cognition to computing systems. No doubt the machines that are an extension
of human muscular power (cars, tractors, aircraft, trains, robots, etc.), have
brought luxury to human life. But who provides control to these mighty
machines — human intelligence, the human cognition.

The subject of intelligent systems today is in such an exciting state of
research primarily because of the wealth of information that we researchers are
able to extract from the carbon-based computer—the neuronal morphology of
the brain, biological sensory systems such as vision, and the human cognition
and decisionmaking processes that form the elements of soft computing.

1.1 BASICS OF NEURONAL MORPHOLOGY

Humans have been learning from nature. They have imitated birds and have
created super flying machines. Now we are trying to imitate some of the
attributes of cognitions and intelligence of the brain, and are striving for the
creation of intelligent systems. Some of the recent work in the field of intelli-
gent systems has led us to a strong belief that our efforts should focus on the
understanding of neuropsychological principles and the development of new
morphologies of intelligent control systems encompassing the various disci-
plines of system science (Amari and Arbib 1982, Amit 1989, Anderson 1988,
Arbib 1987, Churchland 1988, Churchland and Sejnowski 1988, Hiramoto et
al. 2000, Kohara et al. 2001, Pedrycz 1991a, Skarda and Freeman 1987).

At this stage, we give an analogy from the field of aviation. Until the Wright
brothers invented the airplane, the basic scientific thinking had been to create
a flying machine that, in a way, would mimic a bird. Most scientists of those
days thought that the crucial component of flying was the flapping of wings.
It took the genius of the Wright brothers to understand that, although wings
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were required to increase the buoyancy in the air, they also needed power from
the propeller to make the flight possible. In the same way, although there is
significant emphasis in the current scientific community on the understanding
of the working of the human brain and developing the theory of soft computing
that can mimic the human linguistic expressions, feelings, and functioning
of the brain, there is a great danger in trying to mimic without a thorough
understanding of the functions of this carbon-based cognitive computer and
of human expression.

Figures l.la and l.lb show an artificial flying machine with fixed wings
that has evolved from the biological bird with flapping wings. Likewise,
Figs. 1.1 c-h show the evolution of the computing elements — the neuron, a
neural network, and a cognitive computing system — that are in the process
of evolving from their respective biological counterparts.

Thus, today's flying machines in many ways emulate the aerodynamic be-
havior of a flying bird, but they are not replicas of the natural bird. For many
centuries we have attempted to understand the neuronal computing aspect of
biological sensory and control mechanisms. This basic understanding, com-
bined with the strength of the new computing technology (optical computing,
molecular computing, etc.) and the thinking of the systems scientists, can
create artificial sensory and intelligent control mechanisms. These concepts
may also lead us in the development of a new type of computing machine: a
cognitive computing machine.

Figure 1.1 (Continued)
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Figure 1.1 From biological to artificial systems.
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Although it is very difficult, and often unwise to make predictions about
the future, we nevertheless feel that further research in neurosensory systems
(such as neurovision systems) and neurocontrol systems will be the key to the
development of truly intelligent control systems and, in general, intelligent
systems. We also believe that we are slowly progressing in that direction,
and early in the twenty-first century, may be able to see versions of intelli-
gent systems. To continue our analogy with aviation, most scientists in the
nineteenth century did not believe that it was possible to have flying machines
that were heavier than air, and a great deal of work was devoted to develop-
ing lighter-than-air flying machines, such as balloons and zeppelins. On the
other hand, today we have heavy flying machines (airplanes) that are much
faster and more versatile than biological birds. In the same way, it appears
quite probable that, as our understanding of cognitive faculty improves, we
may be able to develop intelligent control systems that may even surpass the
human brain in some respects. In this (twenty-first) century, we can expect
the evolution of intelligent robots that will be able to perform most routine
household and industrial work (Fig. 1.2).

Now, we are moving into a new era of information systems, the systems
for extracting some useful information from our working environment, and
making use of it in our decisionmaking processes. Humans and machines in
their decisionmaking process face two types of information: statistical and
cognitive. Statistical information arises from the physical processes, while
cognitive information originates from the human cognitive faculty.

New computing theories with a sound biological understanding are evolv-
ing. This new field of computing falls under the category of neural and soft

Figure 1.2 From human cognitive and control functions to robotics cognitive and
control function: an intelligent robot.
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computing systems. Some new computing technology is evolving under disci-
plines such as optical computing, optoelectronics, and molecular computing.
This new technology seems to have the potential of surpassing the micro-,
nano-, andpzcotechnologies. Neural computing has also been proven (theo-
retically) to be able to supplement the enormous processing power of the von
Neumann digital computer. Hopefully, these new computing methods, with
the neural architecture as a basis, will be able to develop a thinking robotic
machine, a low-level cognitive machine for which scientists have been striving
for so long.

Today, we are in the process of designing neural-computing-based infor-
mation processing systems using the biological neural system as a basis. The
highly parallel processing and layered neuronal morphology with learning
abilities of the human cognitive faculty — the brain — provide us with a new
tool for designing a cognitive machine that can learn and recognize compli-
cated patterns — like human faces and Japanese characters. The theory of
fuzzy logic, the basis for soft computing, provides mathematical power for
the emulation of the higher-order cognitive functions, the thought and per-
ception processes. A marriage between these evolving disciplines, such as
neural computing, genetic algorithms, and fuzzy logic, may provide a new
class of computing systems — the neural fuzzy systems — for the emulation
of higher-order cognitive power. The chaotic behavior inherent in biological
systems, the heart and brain, for example, and the neuronal phenomena and
the genetic algorithms are some of the other important subjects that promise
to provide robustness to our neural computing systems (Honma et al. 1999,
Skarda and Freeman 1987).

1.2 THE NEURON

Nature has developed a very complex neuronal morphology in biological
species (Fig. 1.3). Biological neurons, over one hundred billion in number,
in the central nervous systems (CNS) of humans play a very important role in
the various complex sensory, control, affective, and cognitive aspects of infor-
mation processing and decision making (Amari and Arbib 1982, Amit 1989,
Anderson 1988, Gupta and Sinha 1995, Sinha et al. 1999, Zurada 1992). In
neuronal information processing, there are a variety of complex mathematical
operations and mapping functions that act in synergism in a parallel cascade
structure forming a complex pattern of neuronal layers evolving into a sort
of pyramidal pattern. The information flows from one neuronal layer to an-
other in the forward direction with continuous feedback, and it evolves into
a dynamic pyramidal structure. The structure is pyramidal in the sense of
the extraction and convergence of information at each point in the forward
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Figure 1.3 Biological computing process: the brain and its neural neural networks.

direction. A study of biological neuronal morphology provides not only a clue
but also a challenge in the design of a realistic cognitive computing machine
— an intelligent processor.

From the neurobiological as well as the neuralmathematical point of view,
we identify two key neuronal elements in a biological neuron: the synapse
and the soma. These two elements are responsible for providing neuronal
attributes such as learning adaptation knowledge (storage or memory of past
experience), aggregation, and nonlinear mapping operations on neuronal in-
formation (Fig. 1.3). Neuronal morphology is described in detail in Chapter 2.

1.3 NEUROCOMPUTATIONAL SYSTEMS:
SOME PERSPECTIVES

Humans have always dreamed of creating a portrait of themselves — a ma-
chine that can walk, see, and think intelligently. The neuron, the basic in-
formation processing element in the central nervous systems (CNS), plays an
important and diverse role in human sensory processing, locomotion, control,
and cognition (thinking, learning, adaptation, perception, etc.).

The field of neurocontrol, has evolved since the early 1990s, particularly
since over late 1990s, and the intent of the researchers working in this field is
to create an intelligent machine with several levels of control, just as nature
does in the control of various biological functions (Gupta and Sinha 1995).

It should be noted that biological neurons, each with a bandwidth of the or-
der of about 400 Hz or so, possess some tremendous capacities and capabilities
that are unrealizable even by the nano- and picosilicon-based technologies.
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These capabilities for almost real-time and online processing are due to the
layered nature of the network of neurons with a high degree of parallelism.

Just imagine a machine that can learn and recognize human speech with
natural accents or handwriting with a fuzzy flow of characters and translate
it into typed text. Think also about a computerized slaverobotic system that
has learned the living habits of its master, and does all the household tasks
(cooking, vacuuming, cleaning, gardening, etc.) according to its master's
wishes. It would be wonderful to have a robotic gardener that can water the
flowers and vegetables, and also prune and weed the garden without damaging
the useful plants. Questions arise as to whether algorithm-based computing
can do all the wonderful things that humans can do so easily. The human
brain follows a nonalgorithmic approach with some wonderful attributes such
as genetics and learning.

The carbon-based cognitive faculty — the brain — is a mysterious machine
with a very complex neuronal morphology. All our actions and emotions are
controlled by this mysterious organ. We perceive, think, see, and learn.
We compose and recite poems and play musical instruments. We devise
mechanisms for solving complex problems, we think about what we know,
and we investigate new things. We enjoy the beauty of snow peaks and that
of the blue sky. Some events make us happy and we laugh, others make us
unhappy and we cry. Intuition tells us that the neuronal morphology of organs
doing all these wonderful things must be very complex. Indeed, this brain is
too complex to understand. It is wrong to call it a computer because, unlike
a computer, it does things beyond simple numerical computations, such as
cognition and perception. Nature has endowed the brain with a marvelous
and a complex neuronal morphology that is beyond human comprehension.
Yet we know that it is composed of a large number of nerve (neural) cells
with a high degree of interconnectivity. There are over 1011 (one hundred
billion) neural cells, and each neuron, on the average, receives information
from about 104 neighboring neurons. Thus, there are typically over 1015

connections (synapses) in the brain. The anatomic morphology of these
neurons and their connections are what make the brain so complex, and it is
very precise in conducting the various cognitive tasks.

It is important to study a broad view of the biological neuronal morphology
that forms the basis for our neurocontrol processes. Let us look at the neural
mechanism in our own vision and control mechanisms. When we write
and read these lines, the photonic energy emitting from these characters
strikes the photoreceptors — 125 million rods and 5 million cones — in
each retina. Complex biochemical reactions in the photoreceptors change
the photonic energy into equivalent electrical impulses. The task of the
retina and the rest of the brain is not only to coordinate the function of
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our hands (in writing) and eyes (in reading) but also to think and extract
useful cognitive information from these lines. It would be wonderful if we
could explain this neuronal computing phenomenon in our retina and brain.
In spite of tremendous progress in neurophysiology, our knowledge about
biological neuronal computing is shrouded by ignorance. However, since
the early 1990s or so, scientists and engineers have embarked on creating a
computational neural machine.

Although the subject of neurophysiology is relatively old, it was only
around the early 1990s that we started thinking in terms of neural computa-
tional systems — a science for developing neural models for computational
applications. Since 1985, the field has enjoyed an exponential growth, giving
rise to a vast volume of literature in the form of books, scientific journals, and
international scientific conferences and symposia sponsored by some major
scientific societies. At the same time, the field of neural computing has gen-
erated tremendous commercial interests, which in turn have resulted in many
major computer-oriented companies becoming involved in the development
of neural hardwares and softwares. Interestingly, at the same time, they gave
birth to many new commercial outfits around the globe.

The basic concepts of learning and adaptation in the field of control systems
were introduced in the early 1960s, and several extensions and advances
have been made since then. However, advances in the understanding of the
physiology of biological control has spurred the interest of system scientists to
explore the field of neurocontrol. Biology has certainly provided motivation
to the field of neurocontrol, as it has to the field of neurovision. More
recent mathematical models and the architectures of neurocontrol systems
have generated many theoretical and industrial interests. Recent advances
in static (memoryless) and dynamic (with memory) neural networks have
created a profound impact on the field of neurocontrol. Now, researchers
are moving toward the design of intelligent control systems using biological
neurocontrol as a basis (Werbos 1974). This work deals with a diverse group
of neurocontrol problems, such as the neural architecture for adaptation and
control, introduction to the backpropagation algorithms, and identification
and control problems for a general class of dynamic systems. There is an
extensive list of recent research literature in the following fields:

(i) Learning and adaptation (Asari 2001, Bengio and Bengio 2000, Castro
et al. 2000, Darken et al. 1992, Engelbrecht 2001, Gers et al. 2000, Gori
et al. 2000, Jin et al. 1993b, Leung et al. 2001, Nadeau and Benjio 2000,
Nishiyama and Suzuki 2001, Watanabe 2001, Yan and Miller 2000,
Zeng and Yeung 2001);
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(ii) Dynamic neural systems (Atiya and Parlos 2000, Bianchini et al. 200la,
2001b, Chen 2001, Chen and Amari 2001a, 2001b, 2001c, Gers and
Schmidhuber 2000, 2001, Homma et al. 2001, Jin and Gupta 1996a,
1999, Leistritz et al. 2001, Liang 200la, 2001b, Liang and Wang 2000,
Parlos et al. 2001, Rao et al. 2000, Sudharsanan and Sundareshan 1991b,
Zhang and Jin 2000, Zhao and Macau 2001, Zhao et al. 2000);

(iii) Self-learning and control (Alahakoon et al. 2000, Heskes 2001, Kohonen
et al. 2000, Pal et al. 2001, Vesanto and Alhoniemi 2000);

(iv) Adaptive filters and equalizers (Chen et al. 2000, 2001 a, 2001b, Cris-
tianini et al. 2000, Fu and Shortliffe 2000, Kewley et al. 2000, Konig
2000, Lee et al. 2000, Lin 2001, Lu 2000, Sebald and Bucklew 2000,
Shin et al. 2000, Tipping 2000, Zhang et al. 2000).

1.4 NEURONAL LEARNING

Biological species have adopted strategies that are based on learning, adap-
tation, and self-organization in an uncertain environment. "Learning while
functioning" is the most important attribute that makes these biological species
so robust and flexible. It is natural, therefore, that we adopt a similar strategy
in the design of intelligent systems.

Certainly, the process of neuronal learning and adaptation in biological
species is enormously complex, and the progress made in the understanding of
the neural network field through experimental observations in the fields such as
neurophysiology and psychology during the twentieth century was limited and
crude compared to the achievements in the physical sciences during the same
period. Nevertheless, neurophysiological and psychological understanding of
the biological process has provided a tremendous impetus to the emulation
of certain neurological morphologies and their learning behavior through the
fields of mathematics and system sciences. We have a long way to go before
we can speak of understanding the principles of cognition (learning, thinking,
reasoning, and perception) and, thus, of the field of cognitive computing to the
degree that we understand the principles of the electrochemical, biochemical,
and ionic behaviors of neuronal populations in biological species.

We have emphasized some of the difficulties in the understanding of neu-
rophysiology. Still, biology has inspired the work of system scientists in the
past, and at an accelerated pace more recently. There have been an expo-
nentially increasing number of attempts to develop neuronal paradigms for
application to problems such as machine vision and control systems. Indeed,
the neuronal learning paradigms developed more recently, combined with the
cognitive strength of the notion of graded membership, promise to provide
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robust solutions to problems in pattern recognition, decisionmaking, control
of complex dynamic flexible structures in space, and, in general, intelligent
robotic systems for applications to manufacturing and medical sciences.

1.5 THEORY OF NEURONAL APPROXIMATIONS

The theory of functions approximation is an important class of problems in
both static and dynamic processes. We would like to approximate a given
experimental curve by a class of polynomials, or a time evolution of a dynamic
process by a difference or differential equation. We would also like to ap-
proximate a complex periodic or almost periodic phenomenon using Fourier
analysis by a series of sinusoids. System identification, estimation of a signal
from a noisy measurement, or forecasting stockmarkets using the past history
and current economic trends are just a few examples that have baffled system
scientists and economists.

The theory of neuronal approximations has captured the attention of neural
scientists only recently. It was at the IEEE First International Conference of
Neural Networks in 1987 held at San Diego when R. Hecht-Nielsen reiterated
the theorem of Kolmogorov (1957) and made some comparisons with the
attributes of neural networks. Kolmogorov's theorem states that one can
express a continuous multivariable function, on a compact domain, in terms
of sums and compositions of single variable functions. Furthermore, the
number of single-variable functions required is finite. It implies that there
are no nemesis functions that cannot be modeled (approximated) by neural
networks.

Indeed, the parallel and layered morphology of the neural systems is re-
sponsible for solving a wider class of problems in fields such as system
approximation (identification), control, learning, and adaptation (Gupta and
Sinha 1995, Sinha et al. 1999). In this book, we have presented a representa-
tive chapter, Chapter 7, that deals with the theory of neuronal approximation.
This chapter provides a mathematical foundation of neural approximations,
and shows how layered networks can approximate given static and/or dynamic
physical entities to a desired degree of accuracy (Jin et al. 1994a, 1995a). Such
an approximation, in fact, forms the basis in problems dealing with pattern
classification, system identification, control, robotics manipulator problems,
and also in the design of neural filters and equalizers. Some recent works
in these fields can be found in Aonishi and Kurata 2000, Azimi-Sadjadi et
al. 2000, Bargiela 2000, Cabrelli et al. 2000, Chen and Wang 2001, Datta et
al. 2000, Gabrys and Bargiela 2000, Girolami 2001, Franco and Cannas 2001,
Hoppensteadt and Izhikevich 2000, Huang et al. 2000, Lehtokangas 2000,
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Li and Lee 2001, Lim et al. 2000, Nabney 1999, Papadpopoulos et al. 2001,
Simmon 2001, Simone and Moabito 2001, Yuan et al. 2000.

1.6 FUZZY NEURAL SYSTEMS

The faculty of cognition and perception in humans is very complex, but it pos-
sesses a very efficient mechanism for information processing and expression.
"The weather is just beautiful for playing a game of golf" conveys a large
amount of information in just a brief sentence. This is the attribute of graded
membership in our natural language and thinking processes that makes our
knowledge base and information processing abilities so efficient. This notion
of graded membership due to Lotfi A. Zadeh has been adopted in the calculus
of fuzzy logic. Now, this notion promises to provide some robust algorithms
for intelligent robotic systems.

Human cognition, which embodies all our thinking and logic processes and
our actions and decisions, is full of imprecision and uncertainties. The natural
world in which we live is a world of imprecision. Imprecision arises from
physical phenomena and is inherent in our cognitive process. The human
brain has evolved around cognitive uncertainties, and through the process of
learning, it is able to extract important information and make decisions. It is
a robust and, to a large measure, a fault-tolerant system. A mystery, however,
shrouds the working and mathematics of this cognitive process. This mystery
has existed for years because of the lack of the right mathematical tools for
understanding and modeling this mysterious cognitive process. Conventional
mathematical tools and artificial logical tools are nothing but paradoxes even
in simple human logical tasks. It was in the early 1960s when Professor
Lotfi A. Zadeh pondered over these paradoxes and the mathematical models
of human logic and reasoning. He carefully considered the relevance and
validity of the precision of our decisions and binary logic (yes or no, white or
black, 0 or 1) under cognitive uncertainties.

Zadeh's earlier works, prior to the mid-1960s, were devoted to the use
of "precise" mathematical tools in systems theory and decision processes.
No doubt, this work made a great contribution to the field of controls and
systems, but his seminal work on fuzzy logic, which appeared in a paper
in 1965, renewed a widespread interest in the fields of systems, decision
analysis, cognitive uncertainty, and modeling of human cognition (process of
learning, thinking, reasoning, and adaptation). Since the publication of that
work, a worldwide community of scholars and scientists have made many
important contributions to the field, leading to some important commercial,
industrial, and domestic applications. In growing numbers, investigators in
a wide variety of fields — ranging from psychology, sociology, philosophy,



1.7 APPLICATIONS OF NEURAL NETWORKS: PRESENT AND FUTURE 15

and economics to natural sciences, engineering, and computer sciences — are
exploring this new path (which seems to be very bright and promising) to the
understanding of human reasoning and cognition. They are also developing
novel methods for dealing with systems and processes that are too complex
to be analyzed by conventional quantitative techniques (Gupta et al. 1979;
Gupta and Yamakawa 1988a, 1988b; Gupta and Knopf 1994; Gupta and Rao
1994b; Gupta and Sinha 1995; Kauffman and Gupta 1985, 1988; Sinha et
al. 1999; Zadeh 1965, 1968, 1972a, 1972b, 1973, 1984, 1986, 1994, 1996,
1997, 1999).

In retrospect, it is evident that the trend toward the use of fuzzy logic —
a logic that is much closer in spirit to human cognition and language than
conventional logical systems — could have been anticipated during the past
century. What held back the development of fuzzy logic were the attitudes
from the mechanistic era of the nineteenth century and, more recently, the
habits of programmatic reasoning fostered by the rapidly widening use of
digital machine computation.

Fuzzy logic rests on the notion that the key elements in human cognition are
based not on precise numbers but on a class of numbers (objects) in which the
transition from membership to nonmembership is gradual rather than abrupt.

These newly developing fields of fuzzy neural network and soft computing
encompass features of the human brain: the cognitive aspects in fuzzy logic,
and the learning and adaptation strengths of neural networks. This new field,
combined with the genetic aspects of humans, promises to provide many
theoretical and applied advances. Some recent achievements in this new field
have been developed in Ding and Gupta 2000, Fujimori et al. 200la, Gupta
2001, Mitra and Hayashi 2000, Musilek and Gupta 2000, Yang and Wang
2000, Yidliz 2001, Yidliz and Alpaydin 2000.

1.7 APPLICATIONS OF NEURAL NETWORKS:
PRESENT AND FUTURE

1.7.1 Neurovision Systems

The emulation of biological vision and other functions of the human cen-
tral nervous system (CNS) presents numerous challenges that are theoretical,
algorithmic, technological, and implementational in nature. The processing
power of biological vision lies in the large number of dynamic neurons that
are linked by an enormous amount of synapses (interconnections). Currently
available technology does not permit dense "biological-like" interconnections.
However, since the early 1990s biology has motivated the design of neurovi-
sion systems, and many new computational architectures have evolved with
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some exciting applications (Gupta and Knopf 1994, Indiveri 2000, 200la,
2001b, Indiveri et al. 2001, Itti and Koch 2001).

Biological neurons have inspired scientists to generalize the neuronal math-
ematical notion and the neurons' intricate connectivity within the central ner-
vous system. This has further spurred the interest of engineers to develop new
neural computing architectures and their hardware implementations.

1.7.2 Neurocontrol Systems

The subject of adaptive control systems, with various terms such as neoad-
aptive control systems, intelligent control systems, cognitive control systems,
and neurocontrol systems, therefore, falls within the domain of control of
complex industrial and robotic systems with reasoning, learning, and adap-
tive abilities.

Novel neural morphologies with learning and adaptive capabilities have
infused new control power into the control of complex dynamic systems.
Theoretical developments in the field are evolving, and many new applications
are springing up (Gupta and Rao 1994a).

Mathematically formulated neural network elements, although biologically
inspired, represent certain neural models, abstract or computational architec-
tures, for some specific control tasks. In this book our objective is not to
mimic the central nervous system, but to develop some motivations for solv-
ing specific problems facing the system scientists.

1.7.3 Neural Hardware Implementations

J. J. Hopfield and D. W. Tank provide a new conceptual framework and
minimization principle for the understanding of computations in neural cir-
cuits (Hopfield and Tank 1986). The celebrated work of Hopfield and Tank
consists of nonlinear graded responses organized into networks with effec-
tively symmetric synaptic connections. This neural architecture attempts to
retain certain important biological computational features. The authors show
that certain complex optimization problems can be analyzed and understood
without the need to follow the circuit dynamics in detail. The basic concep-
tual details provided by some leading researchers may lead to various other
neuronal architectural morphologies.

Current computational models of neurons have somewhat merged in the
silicon-based environment of analog very large-scale integration (VLSI) cir-
cuits. One typical network design utilizes transconductor amplifiers as the
variable synaptic weights, both excitatory and inhibitory. The soma of this
neuron can be constructed using operational amplifiers acting as compactors.
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1.7.4 Some Future Perspectives

Progress in information-based technology has significantly broadened the ca-
pabilities and application of computers. Today's computers, however, are
being used merely for the storage and processing of numerical data (hard
uncertainty and hard information). Should we not reexamine the functions of
these computing tools in view of the increasing interest in subjects such as
knowledge-based systems, expert systems, and intelligent robotic systems, as
well as for solving problems related to decision and control? Human menta-
tion acts on cognitive information, and cognitive information is characterized
using relative grades. Human mentation and cognition functions use fresh
information (acquired from the environment by our natural sensors) together
with the information (experience, knowledge base) stored in the biological
memory.

Shannon's definition of "information" was based on certain physical mea-
surements of random activities in physical systems, in particular, in com-
munication channels. This definition was restricted, however, to a class of
information arising from physical systems.

If we wish to emulate in a machine, some of the cognitive functions (learn-
ing, remembering, reasoning, intelligence, perceiving, etc.) of humans, we
have to generalize the definition of information and develop new mathemat-
ical tools and hardware. These new mathematical tools and hardware must
deal with the simulation and processing of cognitive information and soft
logic. Many new notions, although still in primitive stages, are emerging
around the mathematics of fuzzy neural logic and, it is hoped, we will be
able to nurture some interesting studies in the not too distant future. Indeed,
biological processes have much to offer to engineers, system scientists, and
mathematicians for solving many practical problems of the world in which
we live today (Homma and Gupta 2002a, McClelland and Rumelhart 1988,
Skarda and Freeman 1987).

After we finish some initial studies on an intelligent machine, the next
natural stage for us would be to embark on the design of a robotic machine
that could play a game of pingpong with us with the same degree of emotion,
enthusiasm, and pleasure that we receive when we are playing with our
students, friends, and family members. Such studies would also, of course,
need basic understanding of the theory of metaphysics.

1.8 AN OVERVIEW OF THE BOOK

This book on neural systems contains fifteen chapters which are divided into
the following four parts:
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Part I: Foundations of Neural Networks
(Chapters 1 to 3)

Part II: Static Neural Networks
(Chapters 4 to 7)

Part III: Dynamic Neural Networks
(Chapters 8 to 12)

Part IV: Some Advanced Topics in Neural Networks
(Chapters 13 to 15).

After this introductory chapter, in Chapter 2 of Part I, to understand some
basic functions and architectural building blocks of the human brain from en-
gineering and mathematical perspectives, we briefly introduce some topics on
biological neural systems such as the morphology of biological neurons, neu-
ral signal processing, and human memory and learning systems. In Chapter
3, our discussion focuses on some basic and simple concepts, mathematical
models, and adaptive processes of neural units, as they are the basic building
blocks for complex neural network architectures. These chapters provide us
with a foundation for further exploring architectures and adaptive learning
process of neural networks.

In Part II of the book (Chapters 4-7), we study static neural networks.
In Chapter 4, we first introduce the basic notion of two-layered static neural
networks and their extension to multilayered feedforward neural networks
(MFNNs). We then give an extensive discussion of learning and adaptation
problems, including the backpropagation (BP) algorithms. In Chapter 5, to
provide a more comprehensive viewpoint of the neural network structures
and learning algorithms for MFNNs, some further problems associated with
MFNNs are presented. We then introduce the concepts of radial basis function
(RBF) neural networks and give some of its applications in Chapter 6. The
universal approximation capability of feedforward neural networks is studied
mainly using the Stone-Weierstrass theorem in Chapter 7, as the functional
approximation capability of a feedforward neural network architecture is one
of the most exciting properties of the neural structures and has potentials
for applications to problems such as system identification, communication
channel equalization, signal processing, control, and pattern recognition.

In Part III (Chapters 8-12), dynamic neural networks (DNNs) are studied.
In Chapter 8, we explore various configurations of dynamic neural units
(DNUs) and study some of their dynamic properties which will be useful in
forming neural architectures. In Chapter 9, using some of these continuous-
time dynamic neural units (CT-DNUs) with feedback connections, dynamic
neural networks (DNNs) are introduced. In Chapter 10, learning algorithms
for the dynamic neural units and for the dynamic neural networks are studied
extensively. Some stability analysis approaches and stability results for a
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general class of continuous-time dynamic neural networks (CT-DNNs) are
presented in Chapter 11, and the stability analysis is extended to the discrete-
time dynamic neural networks in Chapter 12.

In Part IV (Chapters 13-15), some advanced topics are discussed. In Chap-
ter 13, by using the dynamic system language, we present models of binary
neural networks that are a class of neural networks with only two states in a
discrete-time domain. In Chapter 14, feedback binary associative memories
are studied using the binary neural networks architecture. In Chapter 15, we
provide an overview of the basic principles, mathematical descriptions, and
the state-of-the-art developments of fuzzy neural networks.

The book is appended with an extensive list of references and bibliograph-
ical material along with the bibliographical sources on neural networks and a
classified list of bibliography on neural networks.
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The most fundamental understanding of the human brain is that its nervous
system is organized using a very large number of computational units called
neurons. These neurons are located in functional constellations or assemblies
and form complex connections through which the neurons communicate with
each other. A neuron is an individual cell characterized by architectural fea-
tures that represent rapid changes in voltage across its membrane as well as
voltage changes in neighboring neurons (Churchland and Sejnowski 1992).
There are over 1010 neurons forming a massively interconnected neural struc-
ture in the human brain. Biological neurons are involved in complex sensory,
control, thinking, perceptive, and various other cognitive operations. Various
complex cognitive mappings and mathematical processing functions can be
identified in biological processes. Different mechanisms for explanation and
classification of neurons on the basis of their neuronal morphology have been
investigated. However, there is some commonly accepted knowledge of bi-
ological neurons, which forms a basis for developing various mathematical
models of neurons.

The intellectual functions of the human brain, as well as its learning and
memory capabilities, set humans apart from animals. It is learning and
memory that make humans adaptive and intelligent for handling complex,
uncertain, and time-vary ing real-world environments. In order to understand
some basic functions and architectural building blocks of the human brain from
engineering and mathematical perspectives, this chapter briefly introduces
such topics of biological neural systems as the morphology of biological
neurons, neural signal processing, and human memory and learning systems.
This basic biological description of neuronal morphology will provide some
inspiration for the development of new neural structures for engineering and
science applications.

2.1 MORPHOLOGY OF BIOLOGICAL NEURONS

2.1.1 Basic Neuronal Structure

The basic building element of the central nervous system (CNS), including
the brain, retina, and spinal cord, is the neuron. This biological cell receives
and processes information and then communicates with various parts of the
human body. A simplified schematic view of a biological neural process
is shown in Fig. 2.1, and an ideal biological neuron is depicted in Fig. 2.2.
The nerve cell body is called the soma and is surrounded by a thin plasma
membrane filled with cytoplasm.
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Figure 2.1 A schematic diagram of five interconnected neurons. Each neuron re-
ceives numerous parallel input signals through its dendrites and yields
a single output that is transmitted to other neurons.

Figure 2.2 A schematic diagram of an ideal biological neuron. Each neuron
receives multiple inputs through its dendrites and generates a single
output along its axon.
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The soma is approximately 30 mm in diameter. Within the soma is a cell
nucleus. Each nerve cell receives many inputs (of the order of 104) through
the dendrites, and after some processing generates a single output along its
axon. The junction point of an axon with a dendrite is called the synapse. The
dendrites are 200-300 mm in length. The information generated by a nerve
cell is transmitted along its axon. The range of lengths for axons is from 50
mm to several meters. An axon terminates at the synaptic junctions of another
neuron. A single axon may have 10,000 synaptic connections on average.

Neurons, as shown in Fig. 2.3, are filled with and surrounded by fluids
containing dissolved chemical ions. The main chemical ions are sodium
(Na+), calcium (Ca2+), potassium (K+) and chloride (C1-). The Na+ and
K+ ions are largely responsible for generating the active neural response,
which is also called the action potential or nerve impulse. An action potential
is defined by a sharp positive pulse followed by a slowly decaying electrical
potential (Scott 1977). Figure 2.3(a) shows that the K+ ions are concentrated
mainly inside the cell of the neuron whereas, the Na+ ions are concentrated
outside the cell membrane. In the state of inactivity (rest), the interior of the
neuron, the protoplasm, is negatively charged compared to the surrounding
neural liquid. The action potential curve in Fig. 2.4 indicates that the neural
resting potential of about —70 mV is supported by the action of the cell
membrane, which is impenetrable for Na+ ions, causing a deficiency of
positive ions in the protoplasm (Miller and Reinhardt 1991).

Figure 2.3 Simplified structures of a biological neuron.
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Figure 2.4 An idealized version of two successive action potentials.

2.1.2 Neural Electrical Signals

In biological neural processes, the dendrites appear to provide receptive sur-
faces for input signals to the neurons. They transmit these signals passively
with no amplification to the soma, the main body of the neuron.

The soma carries out such mathematical operations on these synaptic sig-
nals as aggregation and nonlinear transformation, and yields a single action
potential that is passed to the axon. In the axons these action potentials ap-
pear as a train of impulses, called nerve impulses, nerve action potentials, or
simply spikes. The action potentials are propagated with no attenuation along
the axon and its branches to target cells such as other neurons, muscles, or
receptors.

The process of generating action potentials in either the neuron (where
the processing of information takes place) or the axon (through which the
transmission of information takes place) is due to the exchange of K+ and
Na+ ions caused by a change in the permeability of the cell membrane. The
axon of a neuron is connected to the dendrites of other neurons through a
synaptic junction. This synaptic junction employs a chemical transmitter to
convey a signal across the boundary of the junction. The action potentials
conducted along the axon are converted by the synapses to a voltage signal in
the dendrite.

A neuron is considered active if it is generating a sequence of action
potentials. When the nerve impulse, in the form of action potentials along the
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axon, reaches the synaptic junction the transmitter substance in the synaptic
vesicles is released onto the dendrite of the neuron, eliciting an electrical
response. This electrical response can be either excitatory or inhibitory, as
shown in Figs. 2.3(b) and 2.5. The nature of the electrical response depends
on the type of transmitter released and the nature of the dendrite membrane.
The dendritic inputs originating from the excitatory synapses tend to increase
the rate of neural firing, whereas inputs from the inhibitory synapses tend to
decrease this firing rate. A neuron receives many excitatory and inhibitory
inputs from other neurons and generates, in turn, a series of electrical impulses
with a frequency that depends on the aggregated behavior of the incoming
signals.

Simply speaking, if the excitatory inputs become strong enough, the output
impulse from the neuron becomes large. In contrast, if the inhibitory inputs
are strong, the output will be small or completely suppressed. Indeed, the
magnitude of the dendritic signal is proportional to the average frequency at
which the pulses arrive at the synaptic junction. The synaptic junction usually
occurs between the axons and dendrites, and it can also appear between axon
and axon, between dendrite and dendrite, and even between axon and cell
body.

A single neuron is capable of encoding stimulus signals into sequences of
frequency-modulated electrical pulses as shown in Fig. 2.4. Two important
properties of action potentials are directly related to the frequency encoding
ability of the axon potential. The first property is the latency or effective rise
time, which is defined as the time between the application of the stimulus
and the peak of the resulting action potential. This response time decreases
exponentially as the stimulus intensity increases. The second property, called
the refractory period, represents the minimum time required for the axon to
generate two consecutive action potential responses as shown in Fig. 2.4. In
other words, the refractory period is the minimum time between the occurrence
of two successive action potentials. The threshold for the second stimulus
to fire a neuron depends on this refractory period that exists independent of

Figure 2.5 Postsynaptic potentials.
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the strength of any new stimulus. There is also a deadzone period, called the
absolute refractory period. During this period it is impossible to generate
another output pulse. After the absolute refractory period has expired, the
stimulus intensity threshold for the second pulse decreases exponentially as
the refractory period increases. Therefore, from the preceding analysis it is
postulated that if a constant stimulus of suprathreshold intensity is applied to
an axon, both the latency and refractory periods will control the frequency of
the output pulses. For example, a stimulus with a high intensity will yield
a small refractory period and a faster rise time, thereby generating a higher
frequency action potential.

In the following section, we briefly describe the activities of a neuron with
respect to information processing.

2.2 NEURAL INFORMATION PROCESSING

The human brain has more than 10 billion neural cells, which have complicated
interconnections, and these neurons constitute a large-scale signal processing
and memory neural network. Indeed, the understanding of the neural mecha-
nisms of the higher functions of the brain is very complex. In the conventional
neurophysiological approach, one can obtain only some fragmentary knowl-
edge of the neural processes and formulate only some mathematical models
for various applications. The mathematical study of a single neural model
and its various extensions is the first step in the design of a complex neural
network for applications such as neural signal processing, pattern recognition,
control of complex processes, neurovision systems, and other decisionmaking
processes.

A simple neural model is presented in Fig. 2.6. In terms of information pro-
cessing, an individual neuron with dendrites as multiple-input terminals and
an axon as a single-output terminal may be considered a multiple-input/single-
output (MISO) system. The processing functions of this MISO neural pro-
cessor may be divided into the following four categories:

(i) Dendrites: They consist of a highly branching tree of fibers, and act
as input points to the main body of the neuron. On average, there are
103-104 dendrites per neuron, which form receptive surfaces for input
signals to the neurons.

(ii) Synapse: It is a storage area of the past experience (knowledge base). It
provides long-term memory (LTM) to the past accumulated experience.
It receives information from sensors and other neurons and provides
outputs through the axons.
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Figure 2.6 A simple neural model as a multiinput (dendrites) and single-output
(axon) processor.

(iii) Soma: The neural cell body is called the soma. It is the large, round
central neuronal body. It receives synaptic information and performs
further processing of the information. Almost all the logical functions
of the neuron are carried out in the soma.

(iv) Axon: The neural output line is called the axon. The output appears in
the form of an action potential that is transmitted to other neurons for
further processing.

The electrochemical activities at the synaptic junctions of the neurons
exhibit a complex behavior because each neuron makes hundreds of inter-
connections with other neurons. Each neuron acts as a parallel processor
because it receives action potentials in parallel from the neighboring neu-
rons and then transmits pulses in parallel to other neighboring synapses. In
terms of information processing, the synapse also performs a crude pulse
frequency-to-voltage conversion as shown in Fig. 2.6.

2.2.1 Neural Mathematical Operations

In general, it can be argued that the role played by neurons in the brain
reasoning processes is analogous to the role played by a logical switching
element in a digital computer. However, this analogy is too simple. A neuron
contains a sensitivity threshold, adjustable signal amplification or attenuation
at each synapse, and an internal structure that allows incoming nerve signals
to be integrated over both space and time. From a mathematical point of
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view, it may be concluded that the processing of information within a neuron
involves the following two distinct mathematical operations:

(i) Synoptic operation: The strength (weight) of the synapse is a represen-
tation of the storage of knowledge and thus the memory for previous
knowledge. The synaptic operation assigns a relative weight (signifi-
cance) to each incoming signal according to the past experience (knowl-
edge) stored in the synapse.

(ii) Somatic operation: The somatic operation provides various mathemat-
ical operations such as aggregation, thresholding, nonlinear activation,
and dynamic processing to the synaptic inputs. If the weighted aggre-
gation of the neural inputs exceeds a certain threshold, the soma will
produce an output signal to its axon.

A simplified representation of the above neural operations for a typical
neuron is shown in Fig. 2.7. A biological neuron deals with some inter-
esting mathematical mapping properties because of its nonlinear operations
combined with a thresholding in the soma. If neurons were only capable of
carrying out linear operations, the complex human cognition and the robust-
ness of neural systems would disappear.

Observations from both experimental and mathematical analysis have indi-
cated that neural cells can transmit reliable information if they are sufficiently
redundant in numbers. However, in general, a biological neuron is an unpre-
dictable mechanism for processing information. Therefore, it is postulated
that the collective activity generated by large numbers of locally redundant
neurons is more significant than the activity generated by a single neuron.

Figure 2.7 Simple model of a neuron showing (a) synaptic and (b) somatic oper-
ations.
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2.2.2 Sensorimotor Feedback Structure

The nervous system consists of millions of neurons that form the basis for
information processing units. Many neurons are packed together in layers,
and the synaptic connections are very intricate in such a system. It is the
interaction of many neurons that makes activities such as learning, recognition,
decisionmaking, discrimination, and generalization possible. Most operations
of the nervous system are complex. However, some examples of their neuronal
behavior may be given. For example, the pain reflex is mediated by a neural
sensorimotor mechanism. The sensory neurons detect a painful stimulus
and transmit this message to the spinal cord. The information is passed to the
motor neurons via a single set of synapses. The motor neurons transmit signals
to muscles that move the body away from painful stimuli. The information is
transmitted to the brain. However, the reflex process is simple in nature.

Sensors interface the real world to the brain, and from this point the in-
formation is passed through multiple levels of the nervous system. To carry
out this information transformation from lower to higher levels of the brain,
different levels of cerebral functions such as abstraction, conceptualization,
and feature detection are involved. The nervous system can detect specific
features while it deals with ambiguous information. These sensations may
not be understood until they are processed by many layers in several areas of
the brain. Information sensed by the eyes, ears, or touch is passed through
many layers of nerves.

Using systems language, biological neural behavior may be considered as
a sensorimotor scheme having the three functions, shown in Fig. 2.8. The
three blocks have internal feedforward and feedback information exchange.
The sensors receive stimulus inputs from the environment and transmit the
information to the nervous system or the brain. As soon as information
processing is conducted in the nervous system, the resulting control signals
represented in the emission of the impulse signals will drive the motor, such
as muscles and glands, to give a response.

Figure 2.8 Three functions involved in a sensorimotor control structure.
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2.2.3 Dynamic Characteristics

Several of the dynamic information processes that occur in biological neural
systems are integrally linked to the morphology of these neural processes.
These dynamic neural processors form the basis from which the higher-order
properties of the neural systems emerge. Some of the important features of
these dynamic neural information processes are briefly described now.

(i) Distributed and parallel processing: Neural information accessed by var-
ious biological sensors is distributed across multiple neurons. Further,
neural information processes seem to involve the activation of multi-
ple neurons that not only receive and transmit information in parallel
but also incorporate parallelism and distributed updating mechanisms
with an adaptive capability in order to learn, recognize, generalize, and
discriminate. In fact, there are two sensory distribution systems in the
brain; one is the specific sensorithalamocortical system, and the other is
a nonspecific system used for attention and motivation. These structures
verify the importance and plausibility of parallel distributed knowledge
in the brain.

(ii) Temporal encoding capability: Stimulus information received by neu-
rons is encoded as spike trains. A given axon will typically have a
constant spiking amplitude, but its frequency of response will carry the
information content. Usually the information is encoded in the form
of frequency modulation and is stored in the brain as either short-term
memory (STM) or long-term memory (LTM).

(iii) The role of lateral inhibition: Lateral inhibition introduces information
exchange from neuron to neuron and affects a neuron blocking the
action of another neuron. This inhibitive mechanism commonly exists,
and may be prevalent throughout the nervous system. However, lateral
inhibition is a mechanism of local neural interaction, and it gives rise to
significant global properties. From an information perspective, lateral
inhibition provides information on the changes of information. Thus,
lateral inhibition may be viewed simultaneously as a biological principle
and as a mathematical description of a biological neural system.

(iv) Feedforward and feedback processing: It appears that the brain uses
circular or reverberatory loops for processing information. This looping
occurs when one part of the brain processes an input and passes the
information to another area and the new area processes and passes the
information directly back to the originating location, or through other
intermediate locations for further updating. In the end, the information
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is returned through the original brain area to reverberate again through
the structures. This process obviously involves feedforward and feed-
back loops with some dynamic processing. This dynamic processing
caused by feedback provides some robust characteristics in information
processing.

2.3 HUMAN MEMORY SYSTEMS

One feature that distinguishes of humans from other animals is the immense
amount of information that humans can learn and remember. Learning and
memory are basic to human experience and constitute the basis of the brain
function. Memory involves time-dependent processing relying on encoding
and retrieval as well as storage of information. Simply speaking, memory is
information stored in the brain as a result of sensory experience.

2.3.1 Types of Human Memory

One approach to the understanding of biological memory processes is to
examine the differences that exist among memory mechanisms that deal with
different time frames of the storage process. As illustrated in Fig. 2.9, human
memory can be classified into three different categories: sensory memory,
short-term memory, and long-term memory. However, it is not clear that
different types of information to be stored must necessarily pass through all
of these mechanisms, but much of it clearly does.

(i) Sensory memory (SM): The first stage of storage in memory is frequently
referred to as sensory memory (SM). Incoming information from sensory
elements is placed into this temporary storage for a brief period. The
apparent function of sensory memory is to retain a record of the sensory

Figure 2.9 Three types of human memory.
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events long enough for perceptual mechanisms. One distinguishing
property of such memory is that the information spontaneously begins
decaying with time; older images appear fainter, which explains the
disappearing trail following the image. In addition to spontaneous decay
with time, several other features distinguish sensory memory from other
types of neural storage. The first is that all the information in the input
is stored in sensory memory. The second important feature of sensory
memory is that it is erasable.

(ii) Short-term memory (STM): All of the information in sensory memory
is not lost after approximately half a second or so. Obviously, if a page
full of characters is shown in a brief flash only, some of them will be
remembered for a few seconds. Hence, this more persistent form of
memory contains less information than sensory memory, but through
an attentionlike process any item of information in the sensory memory
may be transferred into it. This second state of the memory process
is commonly called short-term memory (STM). Several seconds of the
latest sensory information are sustained, presumably via reverberation
around neural feedback loops. If the sensory information is deemed to
be important, the store gate acts as a trigger and instructs the memory
stacks to permanently store the information. Several facts about short-
term memory can be established. Its capacity is relatively small. Also,
the addition of new items erases old ones in a temporal sequence, so
that adding new items causes the oldest to be dropped off the stack. As
attention shifts to new items, the content of the short-term memory is
continuously updated from the sensory memory.

(ii i) Long-term memory (LTM): The third stage in the information storage
sequence is usually referred to as long-term memory (LTM). Information
items are expected to be stored permanently or for a relatively long
time. In other words, long-term memory refers to the more or less
permanent form of information storage in the brain. The capacity of
a long-term memory is relatively large. Information seems to enter
long-term memory as a result of repeated rehearsal of the contents
of short-term memory. It may take many repetitions or activations
of data in short-term memory to establish it in long-term memory;
that is, the process of learning and memorizing. A loss of long-term
memory is usually associated with the phenomenon of forgetting, which
is a true loss of information from storage. It is almost universally
assumed that long-term memory is defined in the nervous system in
terms of variations in synaptic efficiency, and that biochemical changes
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associated with learning and memory act primarily by mediating such
changes in synaptic efficiency.

2.3.2 Features of Short-Term and Long-Term Memories

A hypothetical scheme of the human memory system is shown in Fig. 2.10.
Sensory information enters a sensory memory, where it is held in detail
for a brief period. Some of this information is transferred to short-term
memory. Moreover, some of the information in short-term memory can be
transferred to long-term memory, usually by rehearsing or repeating it. Other
information from short-term memory is lost (forgotten). When a person
remembers something, it is transferred from short-term memory into long-
term memory. Short-term memory is roughly equivalent to consciousness or
awareness. It should also be noted that in some books, sensory memory is
considered as a special type of short-term memory because of its fast decaying
feature.

In summary, some features of short-term memory processes versus long-
term memory processes are compared in Table 2.1. A neural system comprised
of the phase with rapid change dynamics would be particularly suitable for
emulating short-term memory because of the rapidity of storage and access
to storage of such a system. However, the neural system's dynamic process
would not be suitable for long-term memory because of its vulnerability to
disruptive forces and its relatively large energy demands for operation during
the period of recycling. Comparatively, a long-term memory system is energy
efficient, stable, and has a larger overall storage capacity.

Figure 2.10 The process of information storage in the human memory system.
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Table 2.1 Main features of short- and long-term memory

Advantages Disadvantages

Short-term memory (STM)

• Dynamic storage • Low robustness: vulnerable to
physical interruption, causing
loss of information

• Easy and speedy access • Small memory capacity
• High energy requirement

Long-term memory (LTM)

• Equilibrium storage • Processing is more complicated
• Stable and robust • Access is more difficult and

slower
• Large storage capacity • Time coupling between storage

and processing
• Erasing a stable memory is diffi-

cult

2.3.3 Content-Addressable and Associative Memory

In a conventional computer system, memory addresses are used to access the
storage location of a particular byte of information. More recently, content-
addressable or associative memory systems have appeared in which the un-
derlying principle is the provision for data retrieval by a keyword that is
associated with the desired information. The keyword is either an actual posi-
tion of the information, or simply associated with the information in storage.
It has been found that in this associative property of long-term memory, data
is obtained by assembling as many stimuli as possible that were associated
with the desired data at the time of its entry into the memory system.

As used, the term associative refers to the property of biological memories
that allows them to return items similar to the one specifically addressed.
This aspect is considered in more detail in later chapters of this book. In
the brain, long-term memory appears to store information according to its
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semantic category relationship rather than in sequential order, as in short-
term memory. Hence items that share some semantic-level properties will
have similar pointers or retrieval keys for their access. One function of this
type of memory system is the recognition of the final or intermediate goal
states that are similar to those involved in a current problem and with which
we have had some experience in the past. One may never have had to find
a path to the present goal state before, but its representation in a memory
recall operation may produce a similar past situation, which in turn has a
remembered path for its reproduction. If it is sufficiently similar to the desired
state, it may constitute a sufficient solution. If not, it may prove to be valuable
intermediate information. Associative memories are thus fundamental not
only to the operations that adapt the brain to real-world problems, but also in
the design of the artificial neural memory systems.

2.4 HUMAN LEARNING AND ADAPTATION

One of the most remarkable features of the human brain is its ability to
adaptively learn in response to knowledge, experience, and environment. The
basis of this learning appears to be a network of interconnected adaptive
elements by means of which transformation between inputs and outputs is
performed. Learning can be defined as the acquisition of new information. In
other words, learning is a process of memorizing new information. Adaptation
implies that the element can change in a systematic manner and in so doing
alter the transformation between input and output. In the brain, transmission
within the neural system involves coded nerve impulses and other physical
chemical processes that form reflections of sensory stimuli and incipient motor
behavior.

Many biological aspects are associated with such learning processes, in-
cluding (Harston 1990)

• Learning overlays hardwired connections

• Synaptic plasticity versus stability: a crucial design dilemma

• Synaptic modification, providing a basis for observable organism be-
havior

2.4.1 Types of Human Learning

Learning may also be considered as a change in behavior as a result of
experience. Neuroscientists have so far studied three kinds of simple learning:
(i) habituation, (ii) sensitization, and (iii) associative learning. These three
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types of learning are simple in the sense that they occur without the subject's
awareness of a change in behavior. Simple learning is different from those
kinds of human learning that are voluntary and that require, for example, the
formation of concepts or the use of classifications.

(i) Habituation: Habituation takes place when a stimulus organism that
has originally responded is presented so often that the organism stops
responding to it. In sensitization, the opposite of habituation, the human
learns to respond vigorously to a previous neural stimulus. Human adults
manifest habituation all the time. Suppose that you have just moved into
a house that is close to a highway with heavy traffic. For the first few
nights, the sound of heavy traffic under your window keeps you awake
all night. However, after a few days you manage to fall asleep with all
that noise. You have habituated to the sound of the traffic.

(ii) Sensitization: This is also a very adaptive aspect of behavior. A sudden
or painful stimulus increases the likelihood and strength of a variety of
responses. If you hear a loud and unexpected sound, you immediately
become alert and aroused. Your autonomic system becomes more active
and you look around for the source of the sound, which might indicate
danger. As soon as you find that the sound does not mean danger, you
stop being sensitized to it.

(iii) Associative learning: Unlike habituation and sensitization, associative
learning corresponds to a stimulus with a response to an event. Such
learning occurs most readily when it has adaptive consequences. One
form of associative learning, called classical conditioning, can be il-
lustrated by Pavlov's experiment, in which a dog learned to associate
the sound of a bell with food after repeated trials in which the bell al-
ways rang just before the food was provided (Pavlov 1993). Another
form of associative learning, called operant conditioning or instrumen-
tal learning, is illustrated by an experiment. A hungry rat is given the
opportunity to discover that a pellet of food is provided every time it
presses a bar when a signal light is on, but no food is provided when
the light is off. The rat quickly learns to press the bar only when the
light is on. In classical conditioning the conditioned stimulus is always
followed by the unconditioned stimulus regardless of the animal's re-
sponse. In operant conditioning, reinforcement is provided only when
the animal responds to the conditioning stimulus in the desired way.
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2.4.2 Supervised and Unsupervised Learning Mechanisms

A learning process requires adaptation. In fact, the changes in function that
distinguish complex learning from simpler forms of adaptation are the ones
that require a process of adaptation of the parameters that are sensitive to the
environment. They are also conducive to self-organization. The problem is
to produce orderly adaptation that can deal with the production of specific
outputs based on particular inputs. Then sensory perception, although still
somewhat distorted by repeated transmissions, will be orderly rather than
chaotic.

An important question is how neural adaptation might depend on contin-
gencies, both intrinsic and extrinsic, for each neuron and maintain organiza-
tion within a dynamic neural system of complex architecture. Two types of
adaptation are found in human learning:

(i) Supervised learning: One type of learning is based on a preprogrammed
response to a particular input. This type of adaptation, called supervised
learning, will occur regardless of the remaining system state or other
variables. The contingencies for its occurrence are preestablished and
fixed in supervised learning.

(ii) Unsupervised learning: The other type of learning is unsupervised
learning and admits further modification based on feedback of infor-
mation concerning the effects of prior learning. This information may
come, in part, from the adaptive element itself, providing an update of
the local system state, or it may arise extrinsically from the environ-
ment. Feedback to elements within the system permits an evolutionary
type of adaptation based on the past performance. In addition, it allows
interaction between past and present events.

2.5 CONCLUDING REMARKS

The human brain is the most complex structure in biological processes. The
highly parallel processing and layered morphology with learning and memory
facilities of the human cognitive faculty — the brain — provides us with a new
tool for designing an intelligent machine that can learn, recognize, and control
complicated tasks. Two important discoveries in the nineteenth century have
formed the foundation for the science of nervous systems (Churchland and
Sejnowski 1992): (i) macroimages displayed by nervous systems depend on
individual cells whose paradigm anatomic structures include both long axons
for sending signals and treelike dendrites for receiving signals; and (ii) these
cells are essentially electrical devices whose basic task is to transmit and
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receive signals by causing and responding to electric current. On the basis of
these discoveries, the mysteries of the human brain could be understood more
clearly.

This chapter has covered some basic knowledge of the human brain from a
biological point of view. First, the morphology of a single neuron, which is a
basic unit of the human neural structure, was reviewed to provide a preliminary
understanding of the human brain. Then, an engineering treatment of human
neural processing, such as neural electrical signal, and neural mathematical
operations, was presented. Finally, the memory and learning capabilities of
human beings were described.

2.6 SOME BIOLOGICAL KEYWORDS

For the sake of convenience, some of the biological terms used in the text are
described below.

Action potential: The pulse of the electric potential that is generated across
the membrane of a neuron (or an axon) following the application of a
stimulus greater than the threshold value.

Axon: The output fiber of a neuron that carries the information in the form
of action potentials to other neurons in the network.

Cortex: The layer of gray matter that covers most of the brain where much
of the cognitive faculty is housed.

Dendrite: The input line of the neuron that carries a temporal summation of
action potentials to the soma.

Excitatory neuron: A neuron that transmits an action potential that has an
excitatory (positive) influence on the recipient neural cells.

Inhibitory neuron: A neuron that transmits an action potential that has an
inhibitory (negative) influence on the recipient neural cells.

Lateral inhibition: The local spatial interaction where the neural activity
generated by one neuron is suppressed by the activity of the neighboring
neurons.

Long-term memory (LTM): The process of neural information retention by
adaptation to the strength of the neural synaptic connections.

Neuron: The basic neural cell for processing biological information.
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Neural population: An assembly of neurons that lie in close spatial proxim-
ity.

Neural state: A neuron is active if it is firing a sequence of action potentials.

Refractory period: The minimum time required for the soma to generate two
consecutive action potentials.

Retina: The sensory transducer of the visual system: the layers of neurons
at the back of the eye containing such basic cells as photoreceptors and
retinal ganglion cells.

Short-term memory (STM): The process of neural information retention for
a short period of time after the input stimulus is removed.

Soma: The body of a neuron that provides aggregation, thresholding, and
nonlinear activation to the dendritic inputs.

Stimulus: A signal of biological significance usually defined as being capable
of eliciting some response.

Synapse: The junction point between the axon (of a presynaptic neuron) and
the dendrite (of a postsynaptic neuron). This acts as a memory (storage)
of the past accumulated experience (knowledge).

Problems

2.1 Describe an idealized model of biological neurons.

2.2 Name the four main components of a neuron and explain the main
functions of these components in the sense of neural information
processing.

2.3 Describe an example of the human sensorimotor feedback structure.

2.4 Show a process when a short-term memory becomes the long-term
memory.

2.5 Use a block diagram to show a recall procedure of a long-term mem-
ory in the human brain.

2.6 Elaborate on the following statements:

(a) "The human mind is the source of facts, fantasies, creativity,
ideas, and feeling";
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(b) "The phenomenal attributes of the brain such as learning,
memory speech, and thought processes are associated with
the cerebrum".

2.7 Although, they may look identical, the twin halves of the brain per-
form totally different functions. Provide a functional view of the two
halves of the brain.

2.8 With every passing moment of our working lives, we experience
new things, and store them in our memories. Memory creates a
knowledge-base of our past experiences for our future reference. As
a result of our past knowledge, we act in certain ways. In fact,
learning influences every aspect of our lives. Describe briefly the
anatomy of learning in the biological process.

2.9 "Reinforcement or a reward in a behavioral situation is a most effec-
tive way of learning." Explain it.

2.10 "Learning from our mistakes (supervised learning) is another aspect
of learning." Explain it.

2.11 Memory involves the whole brain, but the most indispensable regions
invade the hippocampi and the mammillary bodies. Memory can
be classified into (i) short-term memory (STM) and (ii) long-term
memory (LTM). STM possesses very limited capacity and is useful
only for immediate recall, whereas LTM seems to have unlimited
capacity. Discuss the neural aspects of STM and LTM and give some
biological plausible models.

2.12 What is human intelligence? How to measure it? How does it
compare with biological species? Comment also on the emulation of
such intelligence for applications to robotic systems.

2.13 Discuss the neuronal morphology of biological neurons.

2.14 Give a brief description of the human central nervous systems (CNS).
Use appropriate sketches.

2.15 Identify the various sensory and control regions in the cognitive
faculty — the brain.

2.16 What aspects of the cognitive faculty can help system scientists in
the development of the neural computing field?
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2.17 Define the keywords: cognition, perception, learning, adaptation,
memory, thinking, and thought processes.

2.18 What are the main features and attributes of biological neurons that
have inspired and can inspire the field of neural computing?

2.19 In biology, a neuron is a basic information processing element (in
sensory, control, and cognitive functions). The neuron has basically
two mathematical operations: (i) Synaptic and (ii) Somatic.

(a) Discuss the action potential (which is the somatic operation)
and its biochemical reactions (in terms of K+ and Na+ ions
exchange);

(b) In neural action potential clearly identify the following:
threshold, depolarization, repolarization, refractory period,
bandwidth;

(c) How does the conductivity of the potassium and sodium
ionic channels change during the various phases of the action
potential?

2.20 The field of neural computing systems has been inspired by the
strength of cognition (reasoning, perception, learning, adaptation,
and control) that lies in the biological cognitive faculty — the brain,
in particular, and the central nervous system (CNS), in general. The
biological neuron is a basic computing element in CNS. Its response
(excitation) is purely dependent on ionic currents. Describe a model
of a biological neuron, its action potential, and how Na+, K+, and
other ionic currents contribute towards its phases such as the po-
larization, depolarization, threshold, and refractory (forced inactive)
periods, etc. (Kandel and Schwartz 1985, Nicholls et al. 2001).
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Artificial neural networks, as models of specific biological computational
structures, consist of distributed information processing units, and thus pos-
sess an inherent potential for parallel computation. The basis of an artificial
neural network is that it has many interconnected processing units, called
neurons, which form the layered configurations. Discussions appeared in the
existing literature often considers the behavior of a single neuron as the basic
computing unit for describing neural information processing operations. Each
computing unit in the network is based on the concept of an idealized neu-
ron. An ideal neuron is assumed to respond optimally to the applied inputs.
Neural network is a collective set of such neural units, in which the individual
neurons are connected through complex synaptic connections characterized
by weight coefficients and every single neuron makes its contribution towards
the computational properties of the whole system.

In nature, biological neurons are involved in various complex sensory, con-
trol, and cognitive aspects of mathematical and decision making processes as
discussed in Chapter 2. Various complex mathematical mapping and process-
ing functions can possibly be identified in biological processes. Studies on
the mathematical models of neural units started at the time when the problem
of the mathematical description of the human brain attracted the attention of
researchers. The first formal model of the neuron was proposed as early as
1943 by McCulloch and Pitts. More recently, the development of adaptive
methods offers an opportunity for emulating the learning function of biolog-
ical neural processes. Some of such neural models were developed in the
1960s (Widrow 1962, Rosenblatt 1958). In general, as an information pro-
cessor, an individual neuron performs an aggregation on its weighted inputs
and yields an output through a nonlinear activation function with a threshold.

In this chapter, our discussion focuses on basic and simple concepts, math-
ematical models, and adaptive processes of neural units, as they are the basic
building blocks for complex neural network architectures. The connections
between the classic threshold logic and neural logic are analyzed first. Ba-
sic and well-known adaptive concepts, approaches, and equations are then
introduced for some basic neural units. A simple three-neuron network is
presented as a beginning for studying neural networks. The results studied
in this chapter will lay a foundation for further exploring architectures and
adaptive learning processes of neural networks.

3.1 NEURONS AND THRESHOLD LOGIC:
SOME BASIC CONCEPTS

The reanalysis of threshold logic has attracted the attention of those interested
in switching circuit and neural networks. As an important technique for the
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design of switching circuits, the threshold networks, were studied extensively
in the 1960s. The usefulness of threshold logic in large scale digital systems
and integrated circuits (IC) design is determined by the availability, cost,
and capabilities of the basic building blocks, as well as by the existence of
effective synthesis procedures. Stimulation response characteristics of the
primitive neuron proposed by McCulloch and Pitts (1943) can be modeled
with a threshold element. As a result, similarities exist between threshold net-
works and binary neural networks. Tracing the basic concepts of the threshold
networks may help us understand the breakthrough of neural networks com-
pared with the traditional logic circuit in terms of both structure and systems.
Therefore, in this section we will use several examples for illustrating the ba-
sic concepts and similarities between basic binary logic operations and neural
networks.

3.1.1 Some Basic Binary Logical Operations

3.1.1.1 Unipolar Binary Logic
A switching algebra is a binary algebraic system consisting of the unipolar set
{0,1}, two binary operations called OR and AND, and one uniary operation
called NOT.

For a given unipolar set ( x 1 , x2), x1 ,x2 £ {0,1}, the binary logic opera-
tions are defined as follows:

(i) OR (logic sum) operation:

(ii) AND (logic multiplication) operation:

Table 3.1 Truth table for OR operation: y = x1 OR x2

X1

0
0
1
1

X2

0
1
0
1

y = x1 OR X2

0
1
1
1
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Table 3.2 Truth table for AND operation: y = x1 AND x2

X1

0
0
1
1

X2

0
1
0
1

y = x1 AND x2

0
0
0
1

Table 3.3 Truth table for NOT operation: y = NOT x1

X1

0
1

y=NOT x1

1
0

(Hi) NOT (logic complementation) operation:

3.1.1.2 Bipolar Binary Logic
Logic operations in Eqns. (3.1)-(3.3) are given for unipolar sets {0,1}. These
basic operations can be extended to the bipolar set { — 1,1} as well.

For a unipolar set {0,1} and its equivalent bipolar, the conversion is defined
as follows:

(i) Bipolar binary OR, AND, and NOT logic operations:
These OR, AND, and NOT binary logic operations for the bipolar set x1

and x2 are defined as in Table 3.4.

Table 3.4 Binary logic operation for bipolar sets

X1

__]_

-1
1
1

X2

-1

1

-1

1

x1 OR x2

_-1_

1
1
1

x1 AND x2

-1

-1
-1

1

NOT x1

1
1

-1

-1
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Table 3.5 Truth table for EXCLUSIVE-OR (XOR) or MODULO-2 addition

x1

-I
-1

1
1

x2

-1
1

-1
1

x1 XOR x2

-1
1
1

-1

(II) XOR (EXCLUSIVE-OR) operation:
Another binary operation on the set of switching elements is the EXCLUSIVE-

OR or XOR, which is denoted by the symbol © and is defined as

that is, x1 0 x2 = 1, if either x1 or x2 is 1, but not both. The XOR operation
is also called the modulo-2 addition operation. This operation is illustrated in
Table 3.5.

A switching function f ( x 1 , x 2 , . . . , xn) of n binary variables x 1 ,x 2 , . . . ,x n

is defined by assigning either —1 or 1 to the 2n points ( x 1 , x 2 , • •., xn)
T in

the finite state space {—1, l}n. In particular, a XOR function of n binary
variables x1, x2, • • • , xn, is defined as

This multivariable XOR function is also referred to as the odd parity function
since it assigns the value 1 if and only if the number of the variables that have
the value 1 is odd.

3.1.2 Neural Models for Threshold Logics

On the basis of the highly simplified considerations of the biological neural
systems described in Chapter 2, the first formal mathematical description
of a neural model for a threshold logic was provided by McCulloch and
Pitts (1943). This model forms the basis of a neural network structure in
contemporary neural computing.

In this section we will give a mathematical development of a neural model
for a threshold circuit, first for unipolar binary inputs, x 6 {0, l}n, and then
we will extend it to bipolar inputs, x e {—1, l}n.
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3.1.2.1 Neural Threshold Logic for Unipolar Inputs, x e {0, l}n

A McCulloch-Pitts neural model is an element with n two-valued inputs
x1,x2, • • • ,xn £ {0,!} and a single two-valued output y G {0,1}. Its
internal parameters are n two-valued weights w1, w2, • • •, wn £ {-1, 1},and
a threshold w0 € 5?, where each weight wi is associated with a particular input
variable x^. A positive weight Wi = 1 corresponds to an excitatory synapse,
while a negative weight wi = — 1 implies that xi is an inhibitory input.

Taking a refractory period as the unit of time, the neuron is assumed to be
operating on a discrete-time scale k = 1,2,3,.. . , and the firing rule of its
output at time (k + 1) is modeled as follows:

where the sum and product operations are the conventional arithmetic ones,
and the sum, S iwixi, is called the weighted sum of the binary inputs. The
firing rule given in Eqn. (3.7) indicates that the neuron fires an impulse along its
axon at time (k +1) if the weighted sum of its inputs at time k exceeds w0, the
threshold of the neuron. In a more compact vector form, introducing the input
vector x = [ x 1 , x 2 , . . . , xn]

T and the weight vector w = [ w 1 , w 2 , • •., wn]
T,

we can rewrite Eqn. (3.7) in a matrix form as

Define a unipolar step function g(v] as depicted in Fig. 3.1.

Figure 3.1 Unipolar step function, g(v), for the unipolar binary {0,1} convention.
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Thus, Eqn. (3.8) can be rewritten as

3.1.2.2 Neural Threshold Logic for Bipolar Inputs, x e {—l, 1} n

Without loss of generality, we may redefine the n binary inputs x1, x2, • • •, xn

and binary output y by assigning either -1 or 1, where the bipolar binary
{ — 1,1} convention is strictly equivalent to the unipolar binary {0,1} con-
vention. Then, a modified version of this McCulloch-Pitts neuron may be
represented as

Figure 3.2 Signum function, sgn(v), for the bipolar binary {—1,1} convention.

Figure 3.3 A schematic representation of a neural threshold logic element.
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(i) Block diagram of logic OR (ii) Symbolic representation of logic OR

(a) OR logic gate, y = x1 OR x2 = x1 + x2.

(i) Block diagram of logic AM) (ii) Symbolic representation of logic AND

(b) AND logic gate, y = x1 AND x2 = x1 • x2.

(i) Block diagram of logic NOT (ii) Symbolic representation of logic NOT

(c) NOT logic gate, y — NOT x1 = x1.

Figure 3.4 Example 3.1: OR, AND, and NOT neural threshold logic operations
for bipolar inputs, x e {—1,1}.
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or

where the signum function sgn(v), shown in Fig. 3.2, is defined as

The realization of this threshold neural logic unit can be achieved by
introducing the notion of the augmented vectors of the neural inputs and
weights, and is described in the next section.

The block diagrams and symbols representing this threshold neural logic
are given in Fig. 3.3. The element, defined algebraically by the relation
given in Eqn. (3.8), can be implemented using either the traditional resistor-
transistor gates or the magnetic core schemes. Even if the threshold neural
logic has a simple structure, it can be used to realize some logical operations
such as OR, AND, and NOT, through an appropriate choice of the weights
wi, i = l , 2 , . . . , n and the threshold parameter w0. Example 3.1 illustrates
this operation. Since these neural logic gates can be used to build some type of
computers, the computing potential of the neuron with some further extension
may form a complex neural computing scheme that is capable of simulating
any computing algorithm.

Example 3.1 The three main types of the logical operations, OR, AND, and
NOT, may be implemented with threshold elements shown in Fig. 3.4.

3.2 NEURAL THRESHOLD LOGIC SYNTHESIS

3.2.1 Realization of Switching Function

In this section we present a procedure for synthesizing a neural threshold
logic. In this procedure, the weights Wi are assigned an appropriate real value,
positive, negative, or zero. Thus, the values of the weights w1, w2,..., wn

and that of the threshold W0 may be a real, finite, positive, or negative number,
and there exists a wide range of weights and threshold combinations that can
realize a large class of switching functions. As to whether every switching
function is realizable by only one threshold element, the answer is "No", as
will be shown in the following examples.
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3.2.1.1 Notion of Augmented Vector
In order to simplify the notion of threshold w0 in the threshold neural logic
circuit, we will introduce the notion of an augmented vector of synaptic
weights wa and an augmented vector of neural inputs xa which is defined as
follows:

wa = [ w 0 , w 1 , w 2 , . . . , W n ] T e 3T+1

= augmented vector of synaptic weights including the threshold

weight w0

xa = [x0, x1 ,x2 , . . . ,xn]T e 3fcn+1, x0 = 1

= augmented vector of neural inputs, where x0 = 1 accounts

for the threshold (bias)

Thus, as illustrated in Fig. 3.5, we can write the neural signals using the notion
of the augmented vectors as

Figure 3.5 A generalized threshold logic neural unit with augmented vectors w a

and xa.
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and

Example 3.2 In this example, for a given set of neural weights, we will
attempt to synthesize the binary logic. Let us consider a three-neural-input

_ rj-(

threshold logic with the augmented neural input vector xa = [XQ , x\, #2 •» #3 j £
$R4, XQ = 1 and augmented synaptic weight vector wa = [—2,2,4 , — 1]T e
$ft4. Using the symbols shown in Fig. 3.5, the output signals are given by

and

This neural threshold logic is shown in Fig. 3.6, and the corresponding truth
table in Table 3.6.

Looking at the truth table (Table 3.6), it can be seen that this neuron forms
the following binary logic:

Figure 3.6 Example 3.2: a threshold neural logic for y = x^(x\ + £3).
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Table 3.6 Truth table for Example 3.2

Neural Inputs
x1 x2 X3

-I -I -I

-1 -1 1

-1 1 -1

-1 1 1

1 -1 -1

1 -1 1

1 1-1

1 1 1

v = wT
axa

= -2 + 2 x1 + 4x2 - x3

-7
-9

1
-1
-3
-5

5
3

y = sgn(v)
= sgn(wT

axa

-1
-1

1
-1
-1

-1
1
1

)

Example 3.3 Consider a switching function with the following form

If it can be implemented by a neuron with weights w1, w2, and w3, and a
threshold W0, the output of this element is — 1 for both the input combinations
x1 x2 x3 and x1 x2 x3. Thus

and

Clearly, the requirements in the above inequalities are conflicting, and no
weights and threshold values can satisfy them. Consequently, the switching
function y — f( x1, x2, x3) = x2( x1 + x3) cannot be realized by a single
threshold element.

A switching function that can be realized by a single threshold element
is called a threshold function. That is, given a switching function y =
f( x1, x2, • • •, xn), there is a threshold function if there exist weight coeffi-
cients w 1 ,W 2 , • •., wn and a threshold W0 such that

A threshold function is also called a linearly separable function because of
the following geometric interpretation. Consider an n-dimensional Euclidean
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space in which an arbitrary point is represented by ( x1, x2,. • • ,xn). For
continuous variables ( x0, x1, x 2 , . . . , xn), x0 = 1, the weighted sum of the
neural inputs

represents a hyperplane. All 2n points of {—1,1 }n are divided into two sets by
this hyperplane. By the definition of the threshold function f ( x0, x1, x 2 , . . . ,
xn), all the true points of / that yield / = 1 are on one side of the hyperplane,
and the false points of f that yield f = —1 are on the other side of the
hyperplane. Thus, when f is a threshold function, there exists a hyperplane
that separates the true points of / from the false points. If there exists no such
a hyperplane, a given function is not a threshold function.

In illustrations given in Figs. 3.7 and 3.8, a threshold element with two
binary inputs x1 and x2 e {—1,1} is considered and all possible binary
inputs to this element are represented using four dots in two-dimensional
pattern space.

In this space, the components of the input pattern vectors lie along the
coordinate axes. The straight line defined by setting the weighted sum of the
inputs including the threshold

Figure 3.7 A two-dimensional example of pattern separation: separating line in
pattern space. L : w0 + w1 x1 + w2 x2 = 0.
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Figure 3.8 A two-dimensional example of pattern separation: threshold element
WQ with two inputs x1, x2,wa = [—1) —1) 1]T, y = sgn(1 — x1 —
x2) = NOT[ x1 AND x2] = [ x1 OR x2].

separates the input patterns into two categories. One side of this separating
line corresponds to a positive output, while the opposite side of the separating
line corresponds to a negative output. For the linearly separable functions
sketched in Fig. 3.7, the binary patterns are divided into classes

An example of functions that are not linearly separable is the two-input
XOR function:

Since there is no straight line that can separate these patterns, we conclude
that the XOR function is not a linearly separable function. Indeed, with three
neural inputs ( x1, x2, x3 ) and one threshold X0, the separating boundary is a
two-dimensional plane; and with n neural inputs, the boundary is a (n — 1)-
dimensional hyperplane. On the other hand, if the threshold parameter is zero,
the separating hyperplane is homogeneous and passes through the origin in
the pattern space.

With n binary variables, since 2n rows in the truth table yield 22n com-
binations of output functions, there are a total number of 22n possible logic
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functions. Deriving an exact expression for the number of threshold logic
functions, which is denoted by NTL(n) , is a difficult task. However, the
following expression for boundedness is wellknown (Muroga 1971):

This is a vanishingly small percentage of the total number of switching func-
tions for a large n. For instance, when n = 2, then NTL(2) < 16; that is, the
number of the two-variable threshold functions is less than 16! A principal
goal in studying the threshold logic is the development of methods for the
identification and realization of threshold functions.

A straightforward approach to the identification problem of threshold func-
tions is to solve 2n linear inequalities that may be easily derived from the
truth table. From the input combinations for which f = 1, we obtain all the
weighted sums that must exceed or be equal to the threshold w0 and from
the input combinations for which f = — 1, all the weight sums must be less
than W0. If a solution of the inequalities described above exists, it provides
the values for the weights and threshold. Otherwise, no solution exists, and it
may be concluded that / is not a suitable threshold function.

3.2.1.2 Network Synthesis
If a given switching function is a threshold function, it can be realized by a
single threshold element. If not, a threshold network which consists of more
than one threshold elements can be used to realize the function. The input
variables and output of a threshold network, denoted by xi and y, respectively,
belong to the binary set { — 1,1}.

Example 3.4 As discussed in Example 3.3, the switching function

cannot be realized by a single neural unit, but it can be realized by a neural
network with two neural elements, as shown in Fig. 3.9, where the intermediate
variable z and the output y are formulated as follows:

That is
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Figure 3.9 Example 3.4: a neural network that realizes the logic function y =
x 2 (x 1 + x3).

Table 3.7 Truth table for Example 3.4, y = x2 [x1 + x3]

Neural inputs

x1 x2 x3

-1 -1 -1

-1 -1 1

-1 1 -1

-1 1 1

1 -1 -1

1 -1 1

1 1 -1

1 1 1

Intermediate variable

z = sgn(—l — x1 +x2 — x3 )

1
-1

1
1

-1
-1

1
-1

Neural output
y = sgn(-1+ z +

= x 2 [ x 1 +x3]
-1

-1
1
1

-1
-1

1
-1

x2 )

More compactly, the input-output relationship of the network may be given
as follows:

The truth table is given in Table 3.7.

An effective approach to such a neural network synthesis is to develop a
procedure for the decomposition of the non-threshold function into two or
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more terms, each of which will be a threshold function. Let Q be the mini-
mum number of the terms which are the neural functions required to express
the given function. Then any given switching function may be realized by a
two-layered threshold network with at the most Q threshold elements. How-
ever, the number of neural elements in this network may not be minimized.
Generally speaking, a switching function that is not a threshold function may
be realized by a two-layered threshold network as shown in Fig. 3.10, where
layer I has m neural units while layer 2 has only a single neural unit. The
intermediate variables z1, z2, ..., zm, which represent the outputs of the
elements in layer 1 may be computed by

that is,

where w\j is the weight to the neural input Xi in the first layer. Then, the
output that realizes a specified switching function may be obtained as follows:

Figure 3.10 A two-layered neural network that may realize an arbitrary switching
function.
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that is,

where w2
i is the weight of the neural element in the second layer associated

with the intermediate variable zi. Therefore, the input-output equation of the
threshold network may be represented as

It is a natural extension that, similar to the two-layered structure, a multilay-
ered neural network structure may also be constructed to realize a switching
function. It is worth noting that the realization of a switching function using
the neural network is not unique. To obtain a desired realization, some ad-
ditional requirements such as the minimum number of units or the minimum
number of connections may be attached.

Example 3.5 (Problem of realization of XOR using a single neural unit)
Consider a two-variable XOR function:

As shown previously, it is not a linearly separable function. In fact, if it can be
realized by a single neural unit with weights w0,w1, and w2, then the output
of this element is 1 for the input combinations x1 x2 or x1 x2 , and — 1 for the
input combinations x1 x2, or x1 x2- Therefore, we have

and

Obviously, there is no such solution for W0 ,W1 , and W2 that satisfies these con-
tradictory inequalities; that is, the XOR function is not an ordinary threshold
function that can be realized by a single neural unit.
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Example 3.6 (Realization of XOR using a two-layered neural network) As
shown in Fig. 3.11, the XOR function of Example 3.5 can be realized using a
neural network with three neural units.
In this case, one has

As shown in Fig. 3.12, in the x1 — x2 plane, the four binary patterns are
separated using two discriminant lines which are defined by

In the shaded region between the two lines L1 and L2, y = — 1, while in the
regions outside these two lines, y = I.

The operation implemented in this neural network may be treated also as
a static, nonlinear, and discontinuous mapping from the binary input space to
the binary output space with preprogrammed weight parameters. No adap-
tive weight updating and real dynamics are involved in the network. Neural
threshold logic is a unified theory of logic gates that is composed of the
major subjects of conventional switching theory, whereas automata theory
and formal-language theory apply respectively to computer organization and
computer programming. Since the idea of the logical operation based on

Figure 3.11 Example 3.6: a threshold network for XOR function y = x1 \ © x2 =
sgn(l — zi+Z2], zi = s#n(l — #1 +#2), z-2 — sgn(—l — X i + X 2 ) .
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Figure 3.12 Example 3.6: two discriminant lines for XOR function y = x i 0 x%.

the threshold principle is simple and general, there are many other applica-
tions of threshold logic such as in the field of adaptive networks and pattern
recognition.

3.3 ADAPTATION AND LEARNING FOR NEURAL
THRESHOLD ELEMENTS

3.3.1 Concept of Parameter Adaptation

In the previous section it was pointed out that the basic neural threshold
element can be used to realize some switching functions. An important task
not yet discussed is how to design an effective algorithm for adapting the
weights and threshold of the element. Linear programming may provide
an alternative for solving a set of inequalities that can be derived from a
given switching function. Since all the possible values of the function are
represented in such a synthesis procedure at the same time, this algorithm
might be characterized as being parallel in nature. In this case, a computer
programmed to perform the procedure must have sufficient memory to store
the entire switching function, either as a table of combinations or as a Boolean
function.



3.3 ADAPTATION AND LEARNING FOR NEURAL THRESHOLD ELEMENTS 63

In contrast to this, there are a number of procedures that can be character-
ized as iterative or sequential. That is, at any instant of time the procedure
is presented with the value of the function for only the input combination,
and there is no memory available to store the previously presented functional
values. The necessary memory is needed to store the procedure's current esti-
mate of the correct realization that consists of the values of the weights and the
threshold. When the functional value for some particular input combination
is presented, an error signal between this functional value and the current esti-
mate can be obtained and fed back so that the procedure can change the current
estimate of the realization, but can store no other information. The idea is
that after each input combination has been presented a sufficient number of
times, the procedure's estimate of the realization will converge to a correct
one. This type of procedure is also called adaptation or learning because of
its somewhat tenuous relation to certain processes in biological neurons.

Given a set of n-input variables x\, # 2 , . . . , xn, as shown in Fig. 3.13, an
output of a linear combiner is simply defined as

Defining the augmented vectors of neural inputs and neural weights, we obtain

Figure 3.13 Block diagram of a linear combiner.
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then, Eqn. (3.24) can be rewritten as

Furthermore, given a switching function / (x i ,X2, . . . ,xn), an adaptive
process for a threshold element that may be considered as a linear combiner
cascaded with a hard-limiter is schematically described in Fig. 3.14. The
error signal between the known switching function and the output of the
neural threshold element is given as

where d(k) = /(#i, £2, • • • > xn) is the desired function of the variables Xi, i —
1,. . . , n. The adaptive algorithm, which is a key issue in such a procedure of
minimizing the error function, is discussed later.

Figure 3.14 Schematic representation of an adaptive process for a neural threshold
element.
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3.3.2 The Perceptron Rule of Adaptation

Rosenblatt's binary perceptron learning rule for a threshold element was first
presented in 1958 (Rosenblatt 1958). Given a desired response d(k), the
adaptive updating with the perceptron rule utilizes a "quantizer error" e(k),
defined to be the difference between the desired response and the output of
the threshold element

where there are only three possible values for e(k):

As in the procedure used for a-LMS algorithm described in a later section,
let wa (k) be an estimate of the weight vector at time k. One may then rewrite
the instantaneous error e(k) as

For the fixed input x ( k ) and the desired response d(k), the new instantaneous
error associated with the updated weight parameters at the instant (k +1) may
be represented as

where

Our goal here is to find an updating rule to update the weight wb(k) such that

or

In fact, if

or equivalently
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one may select

such that

On the other hand, if

or equivalently

one desires

which may cause

Thus, one wise choice of Awa(k) is

that is

and

where a > 0 is a so-called learning rate.
From Eqn. (3.37), we may conclude that the change Aitfc(fc) is correlated

with the input signal Xi(k) and the error signal e(k). If the correlation is
zero; that is, e(k}xi(k] = 0, then the change Awi(k) is also zero. The block
diagram of the preceding updating algorithm is given in Fig. 3.15.

For a threshold element with n inputs, the augmented input vector a^ =
[1, XT]T with x = [xi, £2, • • •, Xn]T £ ( — 1, l}n is repeatedly presented to
the learning procedure described above so that all the weights are adapted
during each cycle. Note that a threshold function can be realized by many
threshold elements with different combinations of the weight values. The
a-perceptron learning rule may converge to different solutions of weights
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with different choices of the initial weight values and the learning rate a.
The perception rule stops adapting once the training binary patterns are cor-
rectly separated. There is no restraining force controlling the magnitude of
the weights since the direction of the weight vector, and not its magnitude,
determines the separating function. The perceptron rule has been proven to
be capable of separating any linearly separable set of binary training patterns.
However, for a set of training patterns that are not linearly separable, it does
not lead to convergence.

Figure 3.15 Neural threshold element with perceptron rule of adaptation.

Figure 3.16 Example 3.7: the error curves for different learning rate a.
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Example 3.7 We will again consider the neural threshold function given in
Example 3.4 as follows:

A threshold element with the weight parameters W0, w1, w2, and w3 is trained
using the a-perceptron rule with two different values of the learning rate a:
(a) a — 1, and (b) a = 0.5. The instantaneous learning errors for both
learning rates, a = 1 and a = 0.5 are shown in Fig. 3.16. The initial values
of the weights are selected as zero. With these initial conditions, the weights
converge to

3.3.3 Mays Rule of Adaptation

The increment adaptation versions of the a-perceptron rule, as shown in
Fig. 3.17, were studied by Mays (1963). The increment adaptation in its
general form involves the use of a "dead zone" with a radius g > 0 for the
linear output

Figure 3.17 Mays rule of adaptation with linear output and linear error.
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If the linear output s(k) falls outside the dead zone 7, that is

then as in Eqn. (3.36), the adaptation follows a normalized variant of the
fixed-increment perceptron rule with a/|xa|

2 used in place of a. If the
linear output falls within the dead zone, s(k)\ < g, regardless of whether
the output response y(k) is correct or not, the weights are adapted by the
normalized variant of the a-perceptron rule with d/\Xa\2 used in place of e.
Mathematically, Mays incremental adaptation algorithm can be expressed as

where e(k) is the quantizer error at time k defined as

and d(k) is the desired response at time k.
It is obvious that if the radius of the dead zone is zero, that is, 7 = 0,

Mays incremental adaptation algorithm reduces to a normalized version of
the perceptron rule. Mays other rule, called the modified relaxation algorithm,
is designed using the error between the desired response and the linear output.
This error, called the linear error Q(&), is

However, the incremental adaptation rule changes the weights with increments
that are seldom proportional to the linear error Q (k). If the neural output y(k)
is wrong, or if the linear output s(k) falls within the dead zone, the adaptation
algorithm employs the linear error Q(k). If the quantizer output y(k} is
correct and the linear output s(k) falls outside the dead zone, the weights are
not adapted. The weight updating rule for this algorithm, thus, can be written
as

Mays proved that if the training patterns are linearly separable, both algorithms
will always converge and separate the patterns in a finite number of steps. It
was also shown that the use of the dead zone reduces the sensitivity to the
weighted errors.
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3.4 ADAPTIVE LINEAR ELEMENT (ADALINE)

The adaptive linear element (Adaline), used as the basic building block in
many feedforward neural networks, was first studied by Widrow and his
colleagues in the 1960s. A simple adaptive linear combiner is shown in
Fig. 3.18, where the output of the unit is a weighted sum of all the inputs.
Usually, an Adaline consists of an adaptive linear combiner cascaded with a
hard-limiting quantizer, which is used to produce a binary output y = sgn(s}.
The threshold parameter, or bias weight WQ, which is always connected to a
constant input X0 = 1, effectively controls the threshold level of the quantizer.

To perform an adaptive process in the discrete-time domain, one assumes
that this element receives an input pattern vector x ( k ) = [ x 1 ( k ) , x 2 ( k ) , . . . ,
xn(k)]T , and a desired response d ( k ] , which may be a function of time k. The
components of the input vector are weighted by a set of coefficients or weights
denoted by the weight vector w — [w1 , w 2 , . . . , wn]

T whose components may
have either positive or negative values. Using the notation of the augmented
vectors, a linear output at time k is then obtained by an inner product of the
augmented input pattern vector and the augmented weight vector as follows:

Figure 3.18 Adaptive linear element (Adaline).
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3.4.1 a-LMS (Least Mean Square) Algorithm

The a-LMS algorithm rule provides a simple and effective updating formula-
tion for the weights of the linear combiner given in Fig. 3.18. This algorithm is
derived using the minimal disturbance principle and was proposed by Widrow
and Hoff (1960).

Let wa(k} = [ w o ( k } , w 1 ( k } , w 2 ( k } , . . . ,wn(k}]T be an estimate of the
augmented weight vector wa at time k. The present linear error between the
desired response d(k) and the linear output s(k) with the current estimates of
the weights wa(k) is defined as

The next error is defined to be the difference between the desired response d ( k )
and the linear output s(k) with the next estimates of the weights w a ( k + 1)
as follows:

It can be seen that at time k changing the weights yields a corresponding
change in the error:

The next task is to find an updating rule so that the error q(k] will asymp-
totically converge to zero. To ensure the convergence of the error due to the
weights updating, one may assume

that is

where a is a constant that is chosen such that the error q (k} is asymptotically
stable:

Combining Eqns. (3.46) and (3.48), one obtains
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Multiplying both sides of this equality by xa(k) yields

Therefore, one finally obtains

and therefore

where

is an increment amount. Equation (3.52) is the Widrow-Hoff delta rule. Given
an arbitrary initial e/(0), e/(k) may be represented as

To ensure the convergence of q,(k), that is, the condition given by Eqn. (3.49)
is satisfied, one implies that

that is

Thus, the error is asymptotically stable if the constant a is chosen as

To avoid overcorrection, a practical range for a is



3.4 ADAPTIVE LINEAR ELEMENT (ADALINE) 73

Unlike the a-perceptron rale for the adaptive neural threshold elements, the
inputs to an Adaline may be either binary or analog patterns. An Adaline
can be used for realizing threshold functions by appropriately adjusting the
weights. Even if both the a-perceptron and cn-LMS learning rules are derived
from the error correction procedures and have very similar updating formu-
lations, they have in fact quite different behavior (Widrow and Lehr 1990).
The main difference between these two algorithms is that Rosenblatt's rule
employs a quantized error e = (d — sgn(s}}, while the a-LMS algorithm
rule employs a linear error, Q = d — s. This means that the a-perceptron
algorithm involves a nonlinear function of the signals via the hard-limiting
nonlinearity, whereas the a-LMS algorithm is essentially a linear process.

Example 3.8 In this simple simulation example, we consider an adaptive
linear combiner with three binary inputs x1, x2, and x3 G {—1,1}. Let the
weights and threshold used for the simulation studies be

As shown in Table 3.8 in this case, there are eight possible inputs and eight
corresponding outputs, which are obtained by d = w0+w1x1 + w2x2 + w3x3.

Using the a-LMS learning algorithm, the input-output data pairs are repeat-
edly used for the learning algorithm until the weights and threshold converge
to the correct values. The condition for terminating the learning algorithm is

Table 3.8 The input and desired output pairs

j
1
2
3
4
5
6
7
8

Neural Inputs
x1 x2 x3

-1
-1
-1
-1

1
1
1
1

-1
-1

1
1

-1
-1

1
1

-1
1

-1
1

-1
1

-1
1

Desired neural
d = -2 + x1 -

-3
-1

-5
-3
-1

1
-3
-1

output
x2+x3
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Figure 3.19 Example 3.8: the error curves for the different learning rates a: (a)
a = 1.9, (b) a = 1.2, (c) a = 0.7, and (d) a = 0.2.

designed as

and the initial values of the unknown weight parameters are selected as 0.5.
For the different choices of the learning rate a, the histories of the error q (k)
during the learning phases are given in Fig. 3.19 while the estimate of every
parameter converges to the corresponding correct value with the absolute value
error < 0.0001. The simulation results indicate that the learning procedure
has a better convergence speed with the choice of the learning rate a around
0.7.
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3.4.2 Mean Square Error Method

3.4.2.1 Non-iterative Formulation
As pointed out by Widrow and Lehr (1990), the concept of the mean square
error may be used to determine a weight vector for a given input and the
desired data patterns using either a non-iterative or an iterative algorithm.
Without loss of generality, we assume that the input x ( k ) and the desired
output d(k) are drawn from a statistically stationary population. The square
of the error between the output of the linear combiner and the desired output
at time k may be expanded as follows:

Since the linear combiner will produce an error Q(k) at every time k , the
ensemble average of error square in Eqn. (3.57) yields

The term on the left-hand side is called the mean square error (MSE). Let

which is the cross-correlation vector between the desired output d(k) and the
neural input vector xa(k}.

Similarly, define the input correlation matrix R as

which is a real, symmetric, and positive definite matrix, or in rare cases, a
positive semi-definite matrix. Thus, the expectation of the square error given
in Eqn. (3.58) may be rewritten as
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The gradient Vwa of the MSE function with respect to the weight vector wa

is obtained by differentiating Eqn. (3.59) as follows:

This is a linear vector equation of the weight vector. The optimal weight
vector w*, also called the Wiener weight vector, may be solved by setting the
gradient to zero. Thus, the optimal weight is

This solution involves a procedure for computing the inverse of the matrix R.
For very large number of inputs, this might be a very time-consuming task,
even if some advanced matrix computational algorithms, such as singular-
value decomposition (SVD), are being used to avoid a direct matrix inverse
calculation. Moreover, an iterative gradient descent approach will be intro-
duced to overcome this computing complexity.

Example 3.9 Reconsider the three-input linear combiner given in Example
3.8. From the input and desired output pairs, one may easily obtain

and

Thus, the optimal weight vector is given by

which is exactly equal to the desired weight vector.
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3.4.2.2 m-LMS (Least Mean Square) Algorithm
The m-LMS may be developed from the conventional gradient descent method,
where the searching optimal weight vector is performed in the weight space
along the direction provided by the gradient of an instantaneous square error
between the current output and the desired output. Since it is a quadratic func-
tion of the weights, this surface is convex and has a unique global minimum.
Using Eqn. (3.57), an instantaneous gradient may be obtained based on the
instantaneous linear error function as follows:

Thus, the gradient descent learning algorithm may be given as

This is Widrow's m-LMS algorithm, where the learning rate m> 0 determines
the convergence of the learning procedure. As pointed out by Widrow and
Lehr( 1990), ifm satisfies

the m-LMS algorithm converges in the mean to w*, which is the optimal
Wiener solution given by Eqn. (3.61).

A geometric representation of the m-LMS rule is given in Fig. 3.20.
According to Eqn. (3.63), wa(k + 1) equals wa(k) added to the increment
D w a ( k ) , and D w a ( k ) is in parallel with the neural input pattern vector x a ( k ) .
On the other hand, the change in error due to the change in the weight vector
is equal to the negative inner product of x a ( k ) and Dw a (k} . Since the m-
LMS algorithm selects Dw a ( k ) to be collinear with xa(k], the desired error
correction is achieved with a weight change of suitable magnitude. When
updating to respond properly to a new input pattern, the responses to the
previous training patterns are, therefore, on the average minimally updated.
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Figure 3.20 A geometric explanation of the a-LMS and m-LMS learning algo-
rithms.

When comparing the a-LMS and m-LMS algorithms, it is of interest to
understand that the a-LMS rule is a self-normalized version of the m-LMS
rule since the a-LMS rule may easily be rewritten as

where

are, respectively, the normalized error, normalized desired response, and
normalized input patterns. Equation (3.65) is the m-LMS learning rule with
2m replaced by a. Thus, the weight updating designed by the a-LMS rule is
equivalent to that of the m-LMS algorithm presented with a different training
set, which is the normalized training set defined by Eqn. (3.66).
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A continuous-time version of the above m-LMS algorithm can easily be
obtained by minimizing the error function

which is an instantaneous estimate of the mean square error, and wb(t} is an
estimate of the augmented weight vector wa at time t. Applying the gradient
steepest-descent method yields

A block diagram of the implementation of the continuous-time m-LMS algo-
rithm using analog multipliers and integrators is given in Fig. 3.21.

Figure 3.21 Block diagram of continuous-time m-LMS algorithm
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Figure 3.22 Block diagram of Adaline with sigmoidal function.

3.5 ADALINE WITH SIGMOIDAL FUNCTIONS

The Adaline elements considered so far use only the hard-limiting quantizer
at their outputs. The input-output mapping of the hard-limiting quantizer is
y = sgn(s], as shown earlier, in Fig. 3.15. Since the early 1980s, other forms
of nonlinear activation functions, such as the sigmoidal type, have come into
use as shown in Fig. 3.22. Compared with the hard-limiting nonlinearity, these
nonlinear functions not only retain saturation for output decision making but
also provide differentiable input-output characteristics so that the adaptation
procedure may be employed. In this section we describe the structure of
Adaline by using a sigmoid in place of the signum, and then present some
suitable adaptation algorithms associated with the sigmoidal functions used.

3.5.1 Nonlinear Sigmoidal Functions

The nonlinear neural activation function s(.) in the adaptive neural structures
maps the neural state x 6 5Rn to a bounded neural output space. In general, the
neural output is in the range of [0,1] for unipolar signals, and [—1,1] for bipolar
signals. Without loss of generality, we will assume that s(.) 6 [—1,1]. For
the continuous-time neural models, the nonlinear neural activation function
s(.) may be chosen as a continuous and differentiable nonlinear sigmoidal
function satisfying the following conditions:

(i) s ( x ) —> ±1 as x —>• ±00;

(ii) s ( x ) is bounded with the upper bound 1 and the lower bound — 1;

(iii) s ( x ) — 0 at a unique point x = 0;
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Figure 3.23 A sigmoidal nonlinear neural activation function s ( x ) = tanh(cx)
and its derivative s ' ( x ) — c sech2 (cx) for various activation gain
values c.
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(iv) s ' ( x ) > 0 and s'(x) —> 0 as x —* ±00 (monotonically increasing);

(v) s'(x) has a global maximal value c > 0.

Typical examples of such a function s(.) are

where c > 0 is a constant that determines the slope of s(x), the activation
gain. The above described nonlinear activation functions are bounded, mono-
tonic, and non-decreasing as shown in Fig. 3.23, and may be implemented by
nonlinear operational amplifiers in analog hardware circuit systems.

A commonly used hard-limiting, the signum function, is defined by

It should be noted that the signum function is a limiting case of the sigmoidal
function when the activation gain c —> oo:

3.5.2 Backpropagation for the Sigmoid Adaline

The adaptive learning algorithm discussed in the previous section may be
extended to the sigmoidal Adaline element, which incorporates a sigmoidal
nonlinearity. We shall adapt Adaline with the objective of minimizing the
mean square of the sigmoid error defined as
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An instantaneous gradient estimate obtained during presentation of the kth
input vector xa(k) is given by

Differentiating Eqn. (3.69) with respect to the augmented weight vector Wa
yields

Note that, since

we have

Substituting this result in Eqn. (3.71) gives

Inserting this into Eqn. (3.70) yields

Using this gradient estimate with the steepest-descent method provides a tool
for minimizing the mean square error e2 (k). Thus, the updating algorithm for
the augmented weight vector is given by

This is the backpropagation (BP) algorithm for the sigmoid Adaline element.
The representation by a block diagram of the updating process is given in
Fig. 3.24. The term backpropagation makes more sense when the algorithm
is developed in a layered network, which will be studied in a later chapter.
Usually, the sigmoidal function is chosen to be the hyperbolic tangent function
tanh(s). In this case, the derivative s(s) is given by
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Figure 3.24 Schematic representation of the backpropagation algorithm for a sig-
moid Adaline.

Thus, Eqn. (3.76) can equivalently be rewritten as

The algorithm described above can be easily converted into a continuous-
time version described by the following set of differential equations

The bracketed term [.] in Eqn. (3.79) provides a correlation between the error
e(t) and the neural input vector xa(i) for a change in the weight wa. Thus, the
change in the weight Wi(k) is proportional to the strength of the correlation
between the error e(k) and the corresponding neural input xi, i = 0 , l , . . . , n .

3.6 NETWORKS WITH MULTIPLE NEURONS

As computational models of biological neurons, some adaptive units, such as
adaptive threshold elements, Adaline, and sigmoid Adaline, were discussed
previously. From the structural point of view, this type of units involves a
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linear combiner cascaded with a nonlinear activation function. As a computa-
tional element, it deals with a weighted linear summation for the input signals
and a nonlinear operation on the output of the linear combiner. The former
part of the computing conducts a synaptic operation, while the latter part
performs a somatic operation. Because of the close similarity of these units
to biologic neurons, these models of adaptive units are also called models of
computational neurons, artificial neurons, or simply neurons. Accordingly
a single unit of these structures would be a single neuron acting as a basic
building block for more complex neural structures. In fact, a neural network
structure of a great number of such single neural units may provide more pow-
erful computation capability for solving science and engineering computing
problems than could a single neuron. A simple example given earlier in this
chapter is for a threshold network with multiple threshold elements that may
be used to implement an arbitrary switching function, but a single threshold
element can realize only a small class of switching functions, which are the
threshold functions.

It is important to point out that since the hard-limiting nonlinearity used
in McCulloch-Pitts neuron model can be considered, mathematically, as a
special limiting case of a sigmoidal nonlinear function with an infinite acti-
vation gain, the neural models with a sigmoidal activation function may be
employed as a general and useful neural structure. The differentiable prop-
erty of the sigmoidal nonlinearity provides the possibility of applying some
well-known mathematical tools such as optimization method, filtering, and
recursive estimation method for the adaptation processes.

3.6.1 A Simple Network with Three Neurons

3.6.1.1 Structure and Basic Equations
As a beginning for studying the architectures and adaptive learning pro-
cesses of neural networks, one exploits a simple two-layered neural network
with only three neurons as shown in Fig. 3.25. The two neurons, termed
neuron(l, 1) and newon(l,2), are located in the first neural layer, and
another neuron, named newron(2,1) is arranged in the second layer. The
neurons in the first layer receive n inputs x1, x2, • • -, xn G 3? and produce two
outputs y1

(1) and y2
(1) , respectively. The outputs y1

(1) and y2
(1) of the first layer

are applied as the inputs to the neuron in the second layer, and, finally, the
(2)single output y1
(2) of the network is generated directly from the neuron in the

second layer. Since the neuron in the second layer delivers the final output, it
is referred to as an output layer.

Let the weights associated with newron(l, 1), newon(l, 2), andnewron(2,
1) be, respectively, given as
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Figure 3.25 A two-layered neural network with three neurons.
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where w(1)
ij (i = l,2;j = l , 2 , . . . , n ) represents the connection weight from

the jth input to neuron(l, i) and iq- is the weight from the neuron(l,j)
to neuron(2,1). The superscript here represents the number of the layer, the
first subscript denotes the position of the neuron in the layer, and the second
subscript represents the number of the input associated with the weight and
applied to the neuron.

Furthermore, let s[\ s^> , and s[ ' be the outputs of the linear combiners
corresponding to neuron(1,1), neuron(l, 2), and nenron(2,1). Then, the
input-output equations of the three neurons may be obtained as follows

where w[Q , W^Q , and W[Q are the threshold corresponding to the neuron(l, 1),
neuron(l, 2), and newron(2,1), respectively, and s(.) is a bipolar sigmoidal
function as discussed in Section 3.5.

3.6.1.2 Vector Expressions
The vector of the weights are expressed as
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Using the notion of the augmented neural input vector and weighting function,
we write for the first layer

Augmented neural input vector: xa = [x1, , x2, • • •, xn]
T', X0 = 1

Augmented weight vector: w(1)
a1 = [w(1)

10 , w
(1)

11 , . . . , w(1)
1n ]

T

Augmented weight vector: w(1)
a2 = [w(1)

20 ,w(1)
21 ,• • • , w(1)

2n ]T

and, for the second layer neuron(2,1)

Augmented neural input vector: y(1)
a= [y(1)

0 ,y
(1)

1,y
(1)

2 ]
T, y(1)

0 = 1

Augmented weight vector: w(2)
a1 = [w(2)

10,w
(2)

11 , w(2)
12]

T

Therefore, the formulations regarding s(1)
1,s

(1)
2 , and s(2)

1 given in Eqns. (3.80)-
(3.82) may be rewritten as

3.6.2 Error Backpropagation Learning

3.6.2.1 Squared Error Function
The adaptive learning process for a simple neural network like the one de-
scribed in Fig. 3.25 can be summarized as follows. Given a known pattern
sequence or desired response d(k), design an adapting formulation for synap-
tic weights in the network such that the output of the network will approach
d(k) as closely as possible. As stated earlier, backpropagation derived using
the gradient or steepest-descent method can be used to solve the problem.
The details of this procedure are now given.

The instantaneous squared error between the desired response d and the
(2)

output y1 of the network at time k is

After the desired response d(k) as a supervised function has been presented
to the network, and the error of the output response has been calculated, the
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next step of the backpropagation algorithm involves finding the derivatives 6s
of the instantaneous squared error associated with each summing junction of
the linear combiner in the network.

3.6.2.2 Error Partial Derivatives ds
Without loss of generality, the time variable k is omitted in the following
derivations. The squared error derivatives associated with the neurons in the
network are then defined as

Expanding the squared-error term e2 on the right-hand side of Eqn. (3.89) by
Eqn. (3.88) yields

(2)Noting that d and s(2)
1 are independent yields

where the error is defined by

Developing the expressions for the squared error derivatives associated with
the neurons in the first layer is not very difficult. By using the chain rule, one
has
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and

Expanding the output s(2)
1 of the linear combiner associated with the newron(2,1)

by Eqns. (3.80)-(3.82) gives

and

Substituting these results into the right-hand sides of Eqns. (3.90) and (3.91),
respectively, yields

and

Now, let

and

(2)which are linear functions of the network output error q created in the
output layer. They may thus be considered as output errors of the neurons in
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the first layer due to the backpropagation of the network output error q ' with
respect to the desired response d.

Accordingly, we have

and

It can be seen that a squared error derivative 6 of the neuron is a product of
its output error and the derivative of the sigmoid function with the output of
its linear combiner as a variable.

3.6.2.3 Weight Updating Formulations
We have obtained the derivatives 6 for each neuron in the network. The next
step is to use these d values to obtain the corresponding gradients. First, for

(2}the augmented weight vector w(2)
a1 associated with the newron(2,1), one has

Indeed, from the output equation of the linear combiner involved in the
neuron(2,1), one has

which implies

Substituting this result into the right-hand side of Eqn. (3.95) gives
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Next, the gradient vector associated with the augmented weight vectors of the
neurons in the first layer is calculated.

Since the output s(1)
2 is independent of the augmented weight vector w(1)

a1,
one obtains

Indeed

implies

Hence, one finally obtains

Using the same procedure, one may derive the gradient vector associated with
the augmented weight vector w(1)

a2 of the neuron(l, 2). It is given by



Figure 3.26 A two-layered neural network with parameter adaptation.
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Using the method of steepest descent with instantaneous gradient, the
formulations of the updated augmented weight vectors in the network are
represented by

where m > 0 is a learning rate parameter. Equations (3.99), (3.100), and
(3.101) give the updating formulations for the augmented weight vectors
of newron(l, 1), neuron(l,2), and newon(2,1), respectively. A block
diagram representation of the updating scheme is given in Fig. 3.26. The result
obtained for this simple network structure indicates that the increment of the
augmented weight vector for each neuron involved in the network is parallel
to its augmented input vector and is directly proportional to its derivative d.
This fact is also true for a general multi-layered network structure.

3.7 CONCLUDING REMARKS

In this chapter, we introduced the basic concepts of neurons using some
examples of threshold logic and thus laid the basis of neural networks. Prop-
erties such as learning and adaptation associated with neural systems were
examined in great detail with examples. The sigmoidal function used in the
formulation of the neural output was also studied in detail. The well-known
method of backpropagation learning was also briefly presented in this chapter.

Thus, in this chapter we have introduced some basic mathematical models
and their learning and adaptation concepts. In the subsequent chapters these
basic mathematical neural concepts will allow us to introduce more complex
neural architectures for both static and dynamic neural networks. Therefore,
with a good understanding of the materials provided in this chapter, we gain
a basic theoretical foundation for this evolving field of neural networks.
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Problems

3.1 Present a static model of a biological neuron in terms of synaptic
and somatic operations. Can you identify some additional neuronal
operations not discussed in this Chapter?

3.2 Present some generalizations of synaptic and somatic operations for
a static neuron.

3.3 In Problems 3.1 and 3.2, we considered only the static neuronal
model. Present a survey of dynamic models highlighting the charac-
teristics of each model.

3.4 A synaptic operation is considered as a confluence operation between
the past experience (knowledge, memory, . . . ) , and fresh neural in-
puts. Present some models (with the logic behind each model) of the
synaptic operations (See also Problems 3.1 and 3.2).

3.5 A somatic operation is considered as an aggregation of the dendritic
inputs with a threshold and nonlinear mapping. Present some models
of the somatic operation. Give the logic behind each model. (See
also Problems 3.1, 3.2, and 3.4).

3.6 Develop the mathematics of a neuronal model combing appropriately
the synaptic and somatic operations.

3.7 In Problem 3.6, we moved the threshold operation from the somatic
to the synaptic operation. This necessitated the definitions of the
augmented vector of neural inputs xa(t) e 3ftn+1, and the augmented
vector of synaptic weights, wa(t) <E 3ftn+1. Present the mathematics
of this neural model

(a) Linear mapping operations for xa(t) e 3ftn+1, to v(t) e 3ft;
(b) Nonlinear mapping operations from v(t) € 3ft, to y ( t ) € 3ft.

3.8 Consider a unipolar neural input vector x(t] € 3ft1 and a unipolar
output vector y ( t ) e 3ft, y ( t ) G [0,1].

(a) Present a set of possible candidates for the nonlinear mapping
function y(i) — f ( v ( t ) ) , where f(.): 3ft" —> 3ft is the linear
mapping from x(t) e 3ftn to v(t) € 3ft;

(b) Derive the sensitivity function for each f(v) presented in (a)
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3.9 As presented in Problems 3.1 and 3.2, the neuronal processing may be
considered as a nonlinear mapping operation from many neural inputs
to one neural output. Present a graphical explanation (supported
by appropriate mathematics) of the mapping operation. (In biology,
there are over 1011 neurons, and each neuron receives, on the average,
about 104 neural inputs.)

3.10 Briefly describe a model of a single artificial static neuron. Clearly
define the synaptic and somatic operations and their functions in the
context of neural systems.

3.11 Given the unipolar signal: a 6 [0, +7], 7 > 0 and the bipolar signal:
b e [ — g , +g], g > 0, show that the relationship for converting
unipolar to bipolar is

and for bipolar to unipolar

Illustrate this conversion graphically.

3.12 Discuss the special mapping properties of the sigmoidal mapping
functions: y = f ( v ) = Sigmoid(g, v) with a gain g, for (i) unipolar
signals, and (ii) bipolar signals.

3.13 The response y(t) £ 3£ of the single static neuron may be modeled as

where xa(t) € 3ftn+1: vector of augmented neural inputs,
wa(t) e 3ftn+1: vector of augmented synaptic weights,
f ( v ) € 3ft: somatic nonlinearity (activation function), and
v G (—00, oo).

Given a unipolar nonlinear function

(a) Plot ( f ( v ) and s(v) — d f ( v ) / d v = f / ( v ) , and show the
effect of the neural somatic gain g e (0, oo);

(b) Convert f ( v ) into a bipolar neuronal nonlinear function (see
Problems 3.11 and 3.12);
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(c) Plot f ( v ) and f ' (v ) , and show the effect of the somatic gain
g e(0,oo).

3.14 Make a table of the various possible unipolar and bipolar neuronal
nonlinear (activation) functions giving the following information:

(a) Function f ( v ] and the plot;
(b) f ' ( v ) and the plot;
(c) The effect of the somatic gain g.

3.15 Substantiate the following statement using the appropriate references.
"Given a process (static or dynamic), one can approximate the be-
havior of the process with a degree of desired accuracy, using a
multilayered neural network". (See also Chapter 7).

3.16 As presented in several earlier problems, the nonlinear mapping from
v(t) E 5ft to y ( t ) = ( f ( v ( t ) ) E 5ft is an important neural somatic
operation. Here, we present a set of possible candidates for such a
mapping function f ( v ) .

(i) y ( t ) = f ( v ) = sgn(v)

(ii) y ( t ) = f(v) — exp(—gv), g: neural gain

(iii) y(t) = f (v ) = 1 - exp(-gv)

(iv) y ( t ) = f ( v} = [1 + exp(-gv)]-1

(v) y(t) = f (v ) = exp(-gv2)

egv _ e-gv
(vi) y(t) = f ( v ) = egv + e_gv = tanh(gv)

1 - e~ffa

(vii) y ( t ) = f ( v ) = 1 + e_gv

vn

(viii) y(t) = f ( v ) = —^

,. . ... .,, ( gv for v < vo
(ix) y(t) = f ( v ) = < •[ gvQSign(v) for v > VQ

(a) For each function < f ( v ) , derive the sensitivity function s (v) =
d f)(v) /dv = f ( v ) ;

(b) Using the information about f ( v ) and s(v), present some
discussions on the attributes of each function;
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(c) List other possible candidates for such a nonlinear function
not listed in this problem;

(d) Use "Mathematica", "Matlab", or other suitable software to
obtain a graphical sketch of ( f ( v ) and s(v).

3.17 Consider a two-dimensional neural input x(t) = [x1 X2]
T E [0,1]2.

Design the appropriate neural logic circuits for the following logic
operations:

(i)OR, (ii)AND, (iii) NOT, (iv) NOR, (v) NAND, and
(vi) EXCLUSIVE-OR (XOR)

and draw appropriate sketches for the discriminant lines or surfaces.

3.18 Repeat Problem 3.17 for bipolar neural inputs x(t) = [x1 X2]T E

[-1,1l2.

3.19 Repeat Problem 3.17 for bipolar neural inputs x ( t ) = [x1 x2 x3]T E
[—1,1]3: (Three dimensional case).

3.20 In an aircraft, three sensors are used to monitor the state of the cargo
door. The warning light is on if the majority of the sensors indicate
an improper state (the door is open). Design a neural logic circuit for
such an operation, and draw appropriate sketches for the discriminant
lines or surfaces.

3.21 Show that for bipolar signals x(t] = [x1 X2]
T E [—1,1]2, and draw

appropriate sketches for the discriminant lines or surfaces.

(a) x1 0 x2 = -sgn(x1 x x2): EXCLUSIVE-OR
(b) x1 o x2 = sgn(x1 x x2): EXCLUSIVE-NOR

3.22 Using a neural model (with only —1 or 1 weights), derive the follow-
ing n-variable logical functions

(a) OR function: y = x1 + x2 + • • • + xn;
(b) AM) function: y = x1x2 ... xn;
(c) Majority function:

3.23 Obtain a four-variable switching function f (x1, x2,x3 ,x4)that can-
not be realized using a single neural threshold unit.
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Figure 3.27 Problem 3.25: threshold element with linear and nonlinear inputs.

3.24 Design a neural threshold network for realizing the non-threshold
function obtained in Problem 3.23.

3.25 Consider a two-variable neural unit with linear and nonlinear inputs
shown in Fig. 3.27:

(a) Derive the input-output equation of this neural unit and ex-
press it in a matrix form;

(b) Show that this nonlinear neural unit is capable of separating
any two-dimensional binary pattern;

(c) Draw the separating boundary in the pattern plane.

3.26 Solve the pattern separation problem for a XOR function

using the nonlinear neural unit defined in Problem 3.25.

3.27 Given 2n binary patterns x = [xi, £2, • • •, %n]T € {—1, l}n, prove
that the (n + 1) x (n + 1)-dimensional matrix R defined by

is an identity matrix; that is

where xa = [1, XT]T is the augmented pattern vector.
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Figure 3.28 Problem 3.29: three-unit neural network.

3.28 Design a neural network for realizing the three-input XOR function

f ( x 1 , X 2 , X 3 ) = x1 0 x2©x3

3.29 Consider the three-unit neural network with n inputs as shown in
Fig. 3.28:

(a) Obtain the input-output equation y = f ( x 1 , x 2 .., xn);

(b) Design an adaptive learning algorithm for the weights up-
dating using the error-correction method.

3.30 Obtain a simulation result for realizing the two-input XOR function

using the algorithm developed in Problem 3.29.

3.31 Show the convergence of the backpropagation algorithm for the sig-
moid Adaline using the mean-value theorem.

3.32 Consider a continuous-time sigmoid neural network with three inputs
x 1 ( t ) , x 2 ( t ) and x3(t), and the desired output given by

Let the initial weights be chosen randomly between the interval
[—1,1]. Train the network to approximate the desired response for
the arbitrary inputs x1, x2, and x3 G $1.
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3.33 Show that the hyperbolic tangent function f ( x ) — tanh(x) satisfies
the following properties:

(a) f(x] is a strictly increasing function', that is, for x\ < X2,
f(x1) < f(x2);

(b) f ( x ) is a uniformly linear growing function; that is, there
exists a constant b. > 0 such that | f ( x ) | < b|x| for all
x e f t .

3.34 A four-neuron network is given in Fig. 3.29, where neitron(4) has
a linear activation function; that is, the network has a linear output
element:

(a) Give the input-output equation;
(b) Derive a backpropagation learning algorithm for the adapta-

tion of the weights.

Figure 3.29 Problem 3.34: a feedforward neural network with four neurons.
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As a tool for scientific computing and engineering applications, the mor-
phology of static multilayered feedforward neural networks
(MFNNs) consists of many interconnected signal processing elements called
neurons. These neurons form layered network configurations through only
feedforward interlayered synaptic connections in terms of the neural signal
flow. In general, an individual neuron aggregates its weighed inputs and yields
outputs through a nonlinear activation function with a threshold. The MFNN
is one of the main classes of static neural networks and it plays an important
role in many types of problems such as system identification, control, chan-
nel equalization, and pattern recognition. Since the early 1990s, significant
progress has been made on the principles, architectures, and applications of
this type of neural networks, but many unresolved issues concerning these
neural models still remain.

From the morphological point of view, a MFNN has only feedforward
information transmission from the lower neural layers to the higher layers.
On the other hand, a MFNN is a static neural model in the sense that its input-
output relationship may be described by an algebraic nonlinear mapping
function. The most widely used static neural networks are characterized by
nonlinear equations that are memory less; that is, their outputs are a function of
only the current inputs. An obvious characteristic of a MFNN is its capability
for implementing a nonlinear mapping from many neural inputs to many neural
outputs. The backpropagation (BP) algorithm (Werbos 1974, Rumelhart and
McClelland 1986, and Hecht-Nielsen 1989) is a basic and the most effective
weight updating method of MFNNs for performing some specific computing
tasks. The BP algorithm was originally developed using the gradient descent
algorithm to train multilayered neural networks for performing desired tasks.
Among supervised learning algorithms, the backpropagation algorithm is
probably the most widely used algorithm. Since the original BP learning
algorithm was developed, several extensions have evolved. The advantages
of the BP learning algorithm include its parallel computational structure, its
ability to store many more patterns than the number of network inputs, and
its ability to acquire a complex nonlinear mapping.

In this chapter, we will first introduce the basic notion of two-layered
static neural networks and their extension to multilayered feedforward neural
networks (MFNNs). We will then give an extensive discussion of learning
and adaptation problems including the backpropagation (BP) algorithms.
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4.1 TWO-LAYERED NEURAL NETWORKS

4.1.1 Structure and Operation Equations

4.1.1.1 Mathematical Description
A generalization of the simple two-layered neural network with only three
neural units, as addressed in the Chapter 3, to a two-layered network with
multiple neurons can be achieved by adding a number of neurons to each neural
layer. A general structure of a two-layered feedforward neural network is
given in Fig. 4.1, where the first layer has p neurons denoted as neuron(l, 1),
neuron(l, 2 ) , . . . , neuron(l, p}, and the second layer has ra neurons denoted
as neuron(2,1), neuron(2, 2), . . . , newon(2, ra). In this text, we refer to
the first layer as an input layer, and the second layer as an output layer, hence
the name, a two-layered feedforward neural network.

Before we discuss the mathematical description of such a feedforward
neural network, scripts that will be used as superscripts or subscripts in this
section are defined as follows:

Figure 4.1 A two-layered feedforward neural network: p input neurons, and m
output neurons:

Neural inputs: x — [x\ • •• Xi • • • xn]
T e !Rn

Neural outputs: y = [yi • • • yi ••• ym]T e 3?m
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Figure 4.2 Neurons in the input and output layers.

The detailed structures of the input and output neurons are shown in Fig. 4.2.
Letnewron(l,i), (i = 1 ,2 , . . . , p) in the first layer receive n input signals x1,
X2, . . . , xn', or a vector-valued signal x = [x1 x2 • • • xn]

T, and deliver
an output signal Zj, (i = 1 ,2 , . . . ,p). The outputs of all the neurons in the
input layer, represented by a p-dimensional vector z = [z\_ z<i • • • zp}

T,
are fed forward to the neurons in the second layer. Finally, neuron(2, j),
(j — 1, 2 , . . . , m) in the second layer generates an output signal ^, (j =
1, 2 , . . . , m), and the neural network has an output vector

Let the weights corresponding to neuron(l, i) in the first layer be w^ , w^2 ,

. . . , w^J, (i = 1 ,2, . . . ,p), and the weights corresponding to newon(2, j)
t<2\ (2\ (2) ( i )

in the second layer w^ , Wj2> • • • » wjp •> (J = 1 , 2 , . . . , m), where w\k is
(2)

the connection weight from the /cth input to the neuron(l, z), and m• } is the
connection weight from the input neuron(l, q) to the output neuron(2,j).
The vector expressions for the above weights can be represented as

and
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where the superscript represents the number of the layer, the firstsubscript
denotes the position of the neuron in the layer, and the secondsubscript rep-
resents the number of the input associated with the weight. The weights
associated with the input and output layers may also be represented by the
following weight matrices

(input layer)

and

where the ith row elements of W^ are obviously associated with neuron(l, i)
in the input layer, whereas the jth row of W^ corresponds to newon(2, j)
in the output layer.

Furthermore, let s\ and s - be, respectively, the outputs of the linear com-
biners of neuron(l,i) and neuron(2^j). Then, the input-output equations
of the neurons in the network can also be expressed as
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where <r(.) is a nonlinear activation function. These equations are also called
the transfer Junctions of the neurons.

Using the augmented expressions of the neural inputs and weights by
including the bias (threshold) as introduced in Chapter 3, we have

and

Then, the augmented versions of the input and weight vectors are defined as
follows. For neuron(l, i) in the input layer:

and for neitron(2, j ) in the output layer:

Thus, the outputs of the linear combiners associated with neuron(l,i] and
neuron(2,j} are given as

and

4.1.1.2 Nonlinear Neural Mapping
For an input vector signal x e 3 ,̂ the neural network produces a response
signal y €. 3^m through complex nonlinear operations. In fact, the neural
network generates a nonlinear mapping process from the n-dimensional input
signal space to the ra-dimensional output signal space, where the output signal
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domain is usually designed as a desired task space for some specified applica-
tions. To obtain an analytical expression of the nonlinear mapping equation
implemented by the neural network, we denote the augmented weights matri-
ces as

and

Furthermore, let

Thus, the input-output equations of a two-layered network may be rewritten
in the following vector forms
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Figure 4.3 Two-layered neural network: nonlinear mapping for input (x a 6
£(«+!)) to output (y € Km).

where the augmented vector-valued sigmoid function era(.) : 5?n —>
[-l,l](n+1) is defined as

and

Or simply

Thus, the neural output vector y E Iff71 is a vector-valued nonlinear function of
the input signal vector x E 5R"1. In other words, the neural network deals with
the operation on the input signals through a nonlinear mapping processing as
shown in Fig. 4.3.

4.1.2 Generalized Delta Rule

A feedforward neural network is capable of processing continuous-time or
discrete-time information through a nonlinear mapping function. However,
in the following discussions of this chapter, we will consider the discrete-
time version of the neural networks where both the inputs and outputs of the
network are considered in a discrete-time domain.
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Given a desired output response vector d(k] = [d\_(k) d^(k}
dm(k}]T, the adaptive weight learning rule characterized by the generalized
delta rule was proposed by Rumelhart and McClelland (1986). This rule
performs an optimization process such that each output error, defined as the
error between the desired output d ( k ) and the output of the neural network
y(k),is minimized.

To address this problem mathematically, an instantaneous error function
for the network is given as a sum of the squares of the output errors for all the
output units

where the output error ej describes the error between the j'th desired response
and the jth network output at the output neuron(2, j), and is defined as

The factor ^ in Eqn. (4.17) is introduced for convenience in calculating the
derivatives. The instantaneous sum of the output error squares E is a function
of all the synaptic weights and thresholds involved in the network.

For a given desired response {k,d(k}}, E represents the cost function
as the measure of the learning performance of the network. In a manner
similar to the gradient descent technique used in Chapter 3 for minimizing the
error function, the correction in the weight vectors are made in the direction
of decreasing error function and are, therefore, proportional to the negative
gradients of the error function with respect to the weight vectors; that is

and

~~j

where 77 > 0 is a learning rate constant whose choice will affect the conver-
gence speed of the updating process, and the gradient of E determines both
the magnitude and the directions in which to change the weight vectors.

Like the derivative procedure used in Chapter 3 for the weight learning,
the definition of the partial derivatives 6s plays an important role in the final
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learning formulations. For such a two-layered structure, these intermediate
variables are defined as

where <5Z- is the partial derivative for the neuron(l, i), and $ is the partial
derivative for the neuron(2,j}.

4.1.2.1 Adaptation for the Output Neurons
To obtain the detailed expressions of these delta variables, one starts the
derivation from the output layer, that is, with Eqn. (4.21). Expanding the
error function on the right-hand side of Eqn. (4.21) by Eqns. (4.7) and (4.17)
yields

^2^ C2\
Since dst, s: , and s) ' (I ^ j) are independent, we obtain

Thus, a <5 corresponding to the neuron in the output layer, & is the product
of the output error ej and the differential signal of the nonlinear activation

/2\
function cr'(s^ ').

In order to obtain the weight updating formulation, we will now evaluate
the gradient of the error index E with respect to the weight vector vf • using
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the notations of the derivatives (5s. First, we have

/9\ /o\

Since s^ } (I ^ j ) is independent of waJ, we have

Hence

yields

Thus

Finally, the weight updating formulations for the output layer are as follows:

4.1.2.2 Adaptation for the Input Neurons
To obtain the weight adapting formulations for the input neurons, the 6s
associated with the neurons in the input layer are calculated first by using the
chain rule
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From the input-output equations, Eqns. (4.6) and (4.7), one obtains

Thus

Now, we introduce the definition for the propagation error q ' as

This propagation error represents the error in the input layer due to all the
output errors. Substituting Eqn. (4.29) into Eqn. (4.28) gives

It can thus be seen that each output error produced in the output layer makes its
own contribution to the derivatives 6s associated with the neurons in the input
layer. This error backpropagation process is similar to the one that transmits
the forward input signals where each input signal is transmitted forward to
every neuron in the input layer, and each output of the input neurons is further
transmitted to the output neurons.

On the other hand, the gradient with respect to the input neural weight
vector may be conducted using the chain rule as follows:
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Figure 4.4 Backpropagation learning (generalized delta rule) for a two-layered
feedforward neural network: neural inputs, x G 3ftn; neural outputs,
y e 9?m and the desired outputs d e !Rm.

Figure 4.5 Matrix representation of backpropagation learning (generalized delta
rule) for a two-layered feedforward neural network.
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From the network equation, Eqn. (4.6), 4 (q ̂  i) is independent of w^:

Thus

Substituting the value of (5J ' from Eqn. (4.30) into this equation yields

Therefore, the weight updating formulations for the hidden layer are as fol-
lows:

Finally, in this generalized delta rule, note that both Eqn. (4.32) for the
weight vector i/r ' and Eqn. (4.26) for the weight vector w\ have a similar
form where the variables £s play a dominant role. Formulations given in
Eqns. (4.26) and (4.32) are called the generalized delta rule since a compu-
tation of the derivatives 8s is involved in the algorithm. It is also called the
backpropagation (BP) algorithm from the error signal transmission point of
view. This backpropagation algorithm is illustrated in Figs. 4.4 and 4.5.

4.1.3 Network with Linear Output Units

As discussed in the previous sections, the outputs of the feedforward neural
network are constrained by the nonlinear function. In this case it is the
sigmoidal function that yields the outputs yj e [— 1,1], j = 1 ,2 , . . . , p. To
modify this type of feedforward neural network so that the neural outputs
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may be any real value, the sigmoidal activation function used for the output
neurons is replaced with a simple linear function; that is, cr(x] = x. The
output neurons then become linear combiners whose functions are only the
sum of the weighted inputs. In this case, for a linear function in the output
layer the input-output relationship of the network is described by

or simply in a vectorform

Block diagram representations of the preceding vector operation equation are
given in Figs. 4.6—4.8.

The weight updating formulation derived in the previous section may thus
be changed for the output layer. The derivatives <!>s associated with the output
neurons given by Eqn. (4.23) become

Figure 4.6 Nonlinear mapping implemented by the two-layered network with
linear output neurons.
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Figure 4.7 Backpropagation learning for a two-layered feedforward neural net-
work with linear output neurons.

Figure 4.8 The matrix representation of backpropagation learning for a two-
layered feedforward neural network with linear output neurons.
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The updating equation for the output weight vector is simplified as follows:

This result also shows that the output neurons may be considered as m linear
combiners of the weighted input vector z. Thus, Eqn. (4.36) may also be
implied directly by applying the learning algorithm for the individual linear
combiner discussed in Chapter 3.

4.2 EXAMPLE 4.1: XOR NEURAL NETWORK

4.2.1 Network Model

It was shown in Chapter 3 that a two-variable exclusive or (XOR) function
/(xi ,X2) = x\ 0 #2 can be implemented by using a neural network with
three neurons and preselected connecting weights. This is of great historical
significance because it is one of the simplest logic functions that cannot be
realized by a single neuron; that is, it requires at least two layers of neurons.
This problem is now discussed using a network with three neurons as shown
in Fig. 4.9 incorporating the BP weight learning processing.

In this case, the augmented weight vectors associated with neuron(I, I ) ,
neuron(l, 2), and newron(2,1) may be denoted as

and the input vectors for layers 1 and 2 are respectively

where XQ — 1 and ZQ = I are the bias terms. Then, the input-output equations
of the neurons may be given as
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Figure 4.9 Example 4.1: a two-layered neural network with three neurons for the
implementation of XOR neural network.
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For the nonlinearity a(.), using the sigmoidal function

and its derivative

the incremental equations for the weight vectors may be derived. Thus, for
netiron(2,1) in the output layer, the change in the weight vector is

where the output error e = d — y. Similarly, changes in the weight vectors
for the neurons in the first layer are given by

and

4.2.2 Simulation Results

To implement the XOR function using the network shown in Fig. 4.9, the four
learning patterns corresponding to the four combinations of the two bipolar
inputs (xi, x2) = {(-1, -1), (-1,1), (1, -1), (1,1)} given in Table 4.1 were
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Table 4.1 Truth table of XOR function / (x i, x2) = xi 0 x2

Pattern
A
B
C
D

Input xi
__]_

-1
1
1

Input X2
-1

1
-1

1

Output d
-1

1
1

-1

Figure 4.10 Example 4.1: a XOR neural network obtained by the BP algorithm
with the learning rate 77 = 0.8 and the following initial weight condi-
tions:

used repeatedly in the learning process until a set of converged values of the
weight vectors are obtained. For this purpose, the learning rate chosen was
77 = 0.8, and the randomly chosen initial weight values were as follows:
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Figure 4.11 Example 4.1: the learning error e = d — y for a XOR neural network
with the learning rate rj = 0.8.

Figure 4.12 Example 4.1: the relationship between the learning rate and iteration
cycle for the XOR.
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Figure 4.13 Error surfaces of the XOR neural network.
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The learning process stopped when any one of the absolute values of the
output errors e overall the four patterns was less than the tolerance parameter
e = 0.0001, that is

where i = 1,2,3,4 corresponds to the patterns A, B, C, and D, respectively.
After 1173 learning cycles, or equivalently 1173 x 4 = 4692 iterations

through the four learning patterns, the resulting weight vectors were obtained
(Fig. 4.10)

The learning error is shown in Fig. 4.11.
Simulation studies for different learning rates from rj = O.ltorj = l.l were

also conducted. When the learning rate overtook this range the convergence
of the learning phase could not be ensured. The learning cycle required for
the learning processing with the same initial weights choice given in Fig. 4.10
is shown in Fig. 4.12 for different values of the learning rate. The results
indicate that the best choice of the learning rate 77 should be around 77 = 0.9.
However, this relationship between the learning cycle required for a successful
learning process and the learning rate could change for another choice of the
initial weight values. The convergence speed of a learning process depends
not only on the choice of the learning rate but also on the choice of the initial
weight values. It should be noted that for a suitable choice of the learning rate
77, a considerable improvement in the convergence speed can be achieved. In
other words, the BP algorithm can take varying amounts of time to solve this
problem depending on the values of the initial weights and the learning rate
77. The error surfaces of the error function with respect to two of the varying
weights of the neural network are illustrated in Fig. 4.13.

4.2.3 Geometric Explanation

Since the XOR neural network solves a pattern classification problem, the
nonlinear mapping from an input binary pattern space to an output binary
pattern space implemented by the neural network may be analyzed using a
geometric explanation as shown in Fig. 4.14. It can be seen from Fig. 4.14a
that neuron(l, 1) and neuron(l, 2) in layer 1 yield two discriminant lines in
the input pattern plane x\ — x%
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Figure 4.14 Example 4.1: a geometric explanation for the XOR neural network.
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which classify the patterns A, B, C, and D into two parts. This fact can be
found in Fig. 4.14a. The patterns A(x\ — — 1, x% = — 1) and D(x\ = 1,
X2 = 1) are located outside the two lines in the plane and correspond to the
output z\ of neuron(l, 1) and the output z% of neuron(l, 2) given below

and

Patterns B(x\ = — 1, #2 = 1) and C(x\ = 1, x% = —1) are positioned
between the two lines L\\ and L\i and produce

Furthermore, neuron(2,1) in layer 2 provides, as shown in Fig. 4.14b, a
discriminant line

on a new pattern plane z\ — z^ such that the network output y = 1 occurs
in the upper part of this line, and y = — 1 corresponds to the points in the
lower part of this line. The patterns A, B, (7, and D in the input pattern plane
xi — X2 are mapped into the plane z\ — z^ whose coordinates are the outputs
of the neurons in layer 1. The patterns A and D with y = — 1 are located in
the lower part of the line, whereas the patterns B and C, which correspond
to y = 1, are mapped to the upper part of the line. It should be noted that
there are many possible solutions to this problem, and that in this simulation
example the network has correctly learned one of these.

4.3 BACKPROPAGATION (BP) ALGORITHMS FOR MFNN

We now discuss the topic of backpropagation (BP) algorithms in more detail.
This arises from the realization that several hidden layers in a neural network
may be used to create a general neural computing structure.

A two-layered feedforward neural network is a simple structure of the
general multilayered feedforward network where multiple hidden layers are
employed. Since it has the potential of approximating a general class of
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nonlinear functions with a desirable degree of accuracy, it has been widely
employed in many applications such as system identification, control, and
pattern recognition problems. As a natural extension of this simple type of
feedforward neural network, a few results regarding a general model and
the BP learning algorithm of the multilayered feedforward neural network
(MFNN) with multiple hidden neural layers are now presented. The ideas and
methods used in the previous section provoke and inspire the development in
the following descriptions.

4.3.1 General Neural Structure for MFNNs

In a MFNN the neurons are organized into layers with no feedback or cross
connections. The lowest layer of the MFNN is the input layer in which
the processing elements have received all the weighted neural inputs, and
provide their outputs to the processing elements of the first hidden layer.
The highest layer of the MFNN is the output layer. The outputs from a
given layer are transmitted only to the higher layers. A basic structure of the
M-multilayered feedforward neural networks (MFNNs) with feedforward
connections is shown in Fig. 4.15.

Let the neural layers be numbered from the first layer and M be the total
number of layers of the MFNN including the input, hidden, and output layers.

Figure 4.15 A multilayered feedforward neural network with input layer, output
layer and (M — 2) hidden layers.
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Let the ^th neuron in the sth layer be denoted by neuron(s, i), and r^ be the
total number of neurons in the sth layer. The input to the first layer (input
layer) is x G 5Rn. The outputs of the first layer is a nonlinear function of
the sum of the weighted inputs, and these outputs are transmitted to all the
neural units of the second layer. This process is repeated for the following
neural layers. The basic notations with the corresponding meaning used in
the MFNN are listed in Table 4.2.

The signal processing involved in each single neuron is summarized in
Fig. 4.16.

Table 4.2 Basic notations used in MFNN

Notation
neuron(i,j)

(0SJ
(i)

X3
(i)

Wjl
jC 'j

Vi
Hi

M

Meaning
jth neuron in layer i

Output of linear combiner in neuron(i, j)

Output of neuron(i, j }

Weight between neuron(i,j) and neuron(i —
jth external input to the network
^th output of the network
Number of neurons in layer i
Number of layers in the network

M)

Figure 4.16 Block diagram representation for neuron(i, j) in the ith layer.
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Figure 4.17 Synaptic and somatic operations in the neuron(i, j).

A biological interpretation of the operation is demonstrated in Fig. 4.17,
which defines that the neuronal operation in a single neuron consists of
both synaptic and somatic operations. Mathematically, the operations of
neuron(i,j} are defined as

(a) Synaptic operation :

(b) Somatic operation :

As a biological equivalence, the first equation represents a synaptic operation
in which the signal through the synapse is multiplied by the synaptic weight
(the past experience, memory), and the second and third equations implement
a somatic operation that consists of the summation of all the synaptic outputs
and the threshold. The nonlinear operation on this summation is shown in
Fig. 4.17b. Equations (4.37) and (4.38) may be rewritten as
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(i}where s - is the output of the linear combiner corresponding to neuron

( i , j ] , w-g is the connection weight between the output of neuron(i — 1, £)

and neuron(i,j), x£~ is the output of neuron(i — l ,f), and u(.) is

the nonlinear activation function. Indeed, for convenience, let xf = xg,

(i = 1, 2 , . . . , no = n) be the ^th input of the network and x\ , (i =
1 ,2 , . . . , UM = m) the Ith output of the network. A multidimensional output
vector from layer (i — 1) is then used directly as an input vector to layer i.

The augmented forms of the neural inputs and neural weights, as introduced
in Chapter 3, may be written as

The introduction of the augmented output vectors and the weight matrices
is due to the existence of the thresholds in the nonlinear neural activation
function. With these notations, the operation equation or transfer function of
the network can be written, therefore, as

The total number of the weights UT in such a MFNN is, thus, given by

where the first term is the number of all the synaptic connection weights and
the second term represents the number of all the thresholds.

An explicit representation of the input-output relationship of the network
with n-dimensional input vector x 6 9^ and m-dimensional output vector
y 6 [—1, l]m may be given as follows
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where

and

A diagram representation of this nonlinear mapping is given in Fig. 4.18.
Since the nonlinear activation function u(.) is continuous and differentiable,
the mapping function /(.) in Eqn. (4.41) is a continuous and differentiable
nonlinear function from the input space to the output space. Therefore,
the nonlinear mapping function /(.) in Eqn. (4.41), which contains many
synaptic weights, may be considered as a nonlinear neural mapping function
from the input pattern space to the output pattern space, where this mapping

Figure 4.18 Nonlinear mapping implemented by an M-layered feedforward neu-
ral network.
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function is formulated through the process of learning as opposed to being
preprogramming as done in the conventional methods. In other words, in
the MFNN architecture, the input information is fed forward recursively
to the higher hidden layers, and finally to the output layer. It is for this
reason that the networks are also called propagation networks (Hecht-Nielsen
1989). Since the input-output relationship of a MFNN is described by static
algebraic manipulations, the neural outputs are computed in a straightforward
fashion. Note that the MFNNs are static neural networks and do not have any
dynamics. However, an extension of MFNN to dynamic neural networks will
be introduced in Part III of this book.

4.3.2 Extension of the Generalized Delta Rule to
General MFNN Structures

As seen in the previous section, the £s-based backpropagation paradigm pro-
vides a weight learning procedure for a static MFNN and is one of the most
important approaches to the training of such neural networks. The interest
in this backpropagation paradigm and its algorithm structure is due to the
function of the progress that makes it possible to propagate the output error of
the network from the output layer to the hidden layers and, thereby, to adapt
the synaptic weights.

4.3.2.1 Formulation of the BP Algorithm
Assuming that the discrete-time desired output vector d(k) is given, it can be
concluded that, as will be seen in a later discussion, based on the BP algorithm
developed for a two-layered feedforward neural network by Rumelhart et al.
(1986), an extension version of the BP algorithm to the M-layered MFNN,
which minimizes the error function E defined in Eqn. (4.17) as the summation
of squares of the differences between the desired output d(k) and actual neural
network outputs y(k), may be given as
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where

The starting condition for the recursive calculation is given from the output
layer as follows

with

For an individual neuron the above weight learning algorithm is schematically
shown in Fig. 4.19, and the feedforward and backward signal processing in
Fig. 4.20. Here, the feedforward path is used to propagate the input function
signal while the backward channels are designed for transmitting the output
error signals.

Figure 4.19 Backpropagation (BP) algorithm for the adaptation of the weights
Wj of the neuron(i, j).
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Figure 4.20 Schematic representation of the forward propagation process of the
function signal ( ) and backpropagation of the error signal (—)
between the layer i and the layer (i + l ) .
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4.3.2.2 Recursive Computation of 6s
The updating formulations given in Eqns. (4.42)-(4.46) involve a recursive
calculation of the 6s gradually from the output layer to the lower hidden layers.
A derivation of the preceding equations now follows. As key variables in the
algorithm, the error partial derivatives 6s are first determined as follows:

where

Thus

For convenience, the subscript ^+1 is replaced with t. The relationship
between s^ ' and Sj implied by the following network equation
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yields

Therefore

with

The gradient of E with respect to the weight vectors is

where the second term on the right-hand side depends only on the neuron
characteristics, and is not related to the error measure index E. Moreover,
since

one obtains

Hence, this shows the derivation of the backpropagation algorithm described
by Eqns. (4.42)-(4.46). During such a BP learning phase, each pattern pre-
sentation in the output components differs, in general, from the corresponding
desired (target) components. After a batch of presentations, corrections are
made to the parameters of the neural network described by the weights and
thresholds that minimize the mean squared error E.
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So far the term backpropagation has been used to represent an entire su-
pervised learning algorithm, complete with a particular choice of the neural
transfer function and the weight updating rule. On the other hand, it is often
convenient to use it in a more restrictive sense to represent the single compo-
nent of this algorithm that determines the relevant partial derivatives by means
of the backward pass. In this sense, it is simply a computational implemen-
tation of the chain rule. Thus, the backpropagation learning algorithm is a
supervised learning algorithm that uses backpropagation to compute partial
derivatives.

4.4 DERIVING BP ALGORITHM USING VARIATIONAL
PRINCIPLE

The BP learning algorithm has recently emerged as one of the most efficient
learning procedures for MFNNs. One reason for the success of this algorithm
is its simplicity. In fact, the BP algorithm is little more than an extremely
judicious application of the chain rule and the gradient descent method (LeCun
1988).

There are a number of approaches for deriving the BP algorithm. The
simplest derivation is the one presented in the previous section. Alternatively,
the variational principle may be used to obtain the BP algorithm formulations
as proposed by Fogelman-Soulie et al. (1987) and LeCun (1988). This
approach is inspired directly from the optimal control theory, which uses
Lagrange multipliers to find the optimal values of a set of control variables.
Variational calculus may help us find a function that minimizes an objective
function subject to constraints. A procedure for obtaining the BP algorithm
in terms of the variational principle is now reviewed.

4.4.1 Optimality Conditions

For a MFNN with M neural layers, the network or transfer equations of the
neurons in the different layers are

The parameter optimization problem for a specific desired task may be de-
scribed as follows
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To solve the problem described above, introduce the Lagrangian

where A^ € 3ft are Lagrange multipliers. As stated above, the Lagrangian
L consists of two terms. The first term is the squared output error while the
second term is due to the network equations that provide constraints on the
MFNN parameters. The first variation yields

It is easy to show that (Bryson and Ho 1969)

is a necessary condition that defines a local minimum of the error function E
with respect to the network constraint equations. This single condition, which
totally describes the behavior of the network, implies the following optimality
conditions

Each of these equations represents one of the three elements of the back-
propagation network. The first equation defines the feedforward pass of the
network represented by the network equations and the second, the backward
propagation pass in terms of the gradient. The third equation does not imply
a direct way to update the weight vectors, but it does give the optimality
condition that must be fulfilled.
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It is easy to show that Eqn. (4.54) implies the network equations. From
Eqn. (4.55) we have

and

The third optimality equation; that is, Eqn. (4.56) implies

that is

This condition states that the weight vectors ua^'- correspond to a stationary
point of L, that is, a local minimum or a saddle point.

4.4.2 Weight Updating

Finding a minimum of the error function with respect to the weight vectors is
equivalent to finding a minimum of L while satisfying the network equations
and Eqn. (4.53). The network equations, Eqn. (4.57), and Eqn. (4.60) form
a complete system for the problem represented by a two-point boundary-
value problem (TPBVP). There is even no magical solution. Fortunately, the
gradient descent method provides the following weight iterative algorithm

Substituting the results described by Eqns. (4.59) and (4.60) into the above
equation yields
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which is equivalent to the BP updating formulations given in the previous
section with the following relations

It is clear that this derivation procedure is simpler than the derivation procedure
used in the last section with the gradient descent method and the chain rule.
The physical meaning of the equations are not difficult to show.

4.4.3 Transforming the Parameter Space

The gradient descent method based BP learning algorithm is often considered
as an iterative search for a minimum of the error function in weight space. In
some cases, however, it is interesting to consider the weights not as indepen-
dent variables or elementary variables, but as functions of some elementary
parameters in a parameter space. The functions of utilizing these elementary
parameters may be considered from two perspectives: (1) this allows the
designer to insert a priori knowledge about the task into the network (e.g.,
some equality constraints between some weights can be enforced to make
the network response invariant under certain types of input signals) and (2)
when the weight space is ill-conditioned or too complicated to search, appro-
priate transformations can be applied to improve its geometric properties and
accelerate the learning.

For this purpose, one may assume that the weights are functions of a
rip-dimensional parameter vector p <G 3f^p:

Then, the optimality condition given in Eqn. (4.53) becomes

or equivalently

Thus, an iterative algorithm for the parameter vector may be obtained as
follows
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that is

It may also be assumed that several weights share a single parameter p. This
then provides a method of implementing equality constraints between the
weights with very little overhead.

4.5 MOMENTUM BP ALGORITHM

One of the most common variants of the standard BP algorithm is the mo-
mentum algorithm. In order to avoid oscillations due to a large r\ for rapid
learning and the acceleration of the learning speed, a modified version of
the backpropagation learning algorithm may be derived using the concept of
momentum term suggested by Rumelhart et al. (1986).

4.5.1 Modified Increment Formulation

Let a new output error index at the current time k be based on the overall
measure of the error among all the past and current patterns as

where

is the quadratic error function and m is the number of neural outputs. Then,
the gradient of the error function Em with respect to the weight vectors is as
follows:
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Hence, using the gradient descent method, the incremental change for the
weight updating may be expressed as

Note that the previous incremental term at time k — 1 is defined as

Thus, the weight vector updating process given in the standard generalized
delta rule may be modified as

with

Let us introduce a parameter a, 0 < a < 1, called the momentum constant,
in the second term on the right side of Eqn. (4.69).

In practice a is usually set between 0.8 and 0.9. The second term on the right-
hand side of Eqn. (4.70) is a momentum term that determines the influence of
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the past weight changes on the current direction of movement in the weight
space. In this algorithm, an inertia function is built in, and the momentum
in the rate of change is conserved to some degree. In fact, evaluation of the
system output error over a large number of steps in the updating process to a
solution will generally show that a finite a tends to dampen the oscillations
but can also serve to slow the speed of the learning convergence. It will be
shown analytically below that adding the momentum term is beneficial when
the values 77 and a are well chosen.

4.5.2 Effect of Momentum Term

To further explore the function of the momentum term in the modified formu-
lation given in Eqn. (4.70) for the weight updating process, consider a scalar
form of the incremental formulation for each individual weight given by

For convenience, omit the superscripts and subscripts in this equation and
define

where g(k] is the error gradient. Then, the momentum equation, Eqn. (4.71),
can be reexpressed as

Note that a first-order linear difference equation of a general form

has as its solution

The momentum equation, Eqn. (4.72), can then be rewritten as
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since a(k) — a and b(k) = rjg(k).
On the other hand, since

Equation (4.73) becomes

This, in turn, is a first-order difference equation in w, which can be solved in
the same way

Thus

Now assume that the error gradient g(k) is approximately constant in a certain
region of the weight space:

Hence,

Expressing the finite sum as a difference of infinite sums, and simplifying
gives

Using the binomial series expansion, this can be rewritten as

for |a| < 1.
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Figure 4.21 Example 4.2: simulation results for a XOR network comparing the
speed of convergence without and with the momentum term.
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This equation indicates clearly the effect of the acceleration term a on the
weight update formula. If the gradient is relatively small, as in a plateau, the
weight increment is small, and the number of iterations to cross the plateau
can be quite large. As k becomes larger, (1 — c^+l}/(k +1) becomes smaller,
and the effective acceleration factor approaches 1/(1 — a). The effect of the
momentum term for the narrow steep regions of the weight learning space is to
focus the movement in a downhill direction by averaging out the components
of the gradient which alternate in sign.

Example 4.2 In this example, we will reconsider the solution for the XOR
problem given in Example 4.1 in Section 4.2. For the initial weight values
given in Example 4.1, and as illustrated in Figs. 4.12 and 4.21a, the standard
BP algorithm with a learning rate 77 = 0.1 takes as many as 10,070 learning
cycles, or equivalently 10,070x4 =40,280 iterations, to train the three-neuron
network for implementing a two-variable XOR function. But the momentum
version of the BP algorithm with the learning parameters 77 = 0.1 and a = 0.9
performs the learning task, as illustrated in Fig. 4.21b, in only 877 cycles, or
equivalently 877 x 4 = 3,508 iterations. Obviously, the convergence speed
of the learning process may be improved through a suitable selection of the
parameters 77 and a.

4.6 A SUMMARY OF BP LEARNING ALGORITHM

4.6.1 Updating Procedure

The key distinguishing characteristic of a MFNN with the backpropagation
learning algorithm is that it forms a nonlinear mapping from a set of input
stimuli to a set of outputs using features extracted from the input patterns.
The neural network can be designed and trained to accomplish a wide variety
of nonlinear mappings, some of which are very complex. This is because the
neural units in the neural network learn to respond to features found in the
input. By applying the set of formulations of the BP algorithm obtained in
the previous subsection, a calculation procedure of such a learning process is
summarized in Table 4.3.

In the procedure listed in Table 4.3, several learning factors such as the
initial weights, the learning rate, and the number of the hidden neural layers
and the number of neurons in each layer, may be reselected if the iterative
learning process does not converge quickly to the desired point. This issue is
dealt with in Section 4.7.
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Table 4.3 The summary of the BP learning algorithm for MFNN

Given a finite length input patterns xi(k), x^k], ..., xn(k] G 3ft, (1 <
k < K] and the desired patterns d \ ( k ] , d%(k], .. .,dm(k} G 5R,

Step 1: Select the total number of layers M, the number HI (i = 1,2,
. . . , M — 1) of the neurons in each hidden layer, and an error
tolerance parameter e > 0.

(i)Step 2: Randomly select the initial values of the weight vectors itL-
for i = 1 ,2 , . . . , M and j = 1 ,2 , . . . , r^.

Step 3: Initialization:

Step 4: Calculate the neural outputs

for i = 1 ,2 , . . . , M and j = 1 ,2 , . . . , n^.

Step 5: Calculate the output error e3\ — d3\ — x^ ' for j = 1 ,2 , . . . , ra.

Step 6: Calculate the output delta's ^M) = e j a' (s^M)).

Step 7: Recursively calculate the propagation errors of the hidden
neurons

from the layer M - 1, M - 2 , . . . , to layer 1.

Step 8: Recursively calculate the hidden neuronal delta values:
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Step 9: Update weight vectors

Step 10: Calculate the error function

Step 11: If k = K then go to Step 12; otherwise, k <— k + 1
and go to Step 4.

Step 12: If E < e then go to Step 13; otherwise go to Step 3.

Step 13: Learning is completed. Output the weights.

4.6.2 Signal Propagation in MFNN Architecture

In a MFNN, with the backpropagation learning algorithm presented in the
previous sections, the information propagation is performed in two directions
on the synaptic connections. The input signals are propagated forward from
the lower neural layers to the higher layers, and meanwhile the output error
signals are propagated backward from the neurons in the output layer as shown
in Fig. 4.22.

Figure 4.22 An example of a backpropagation network.
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In addition to the feedforward information processing path mentioned pre-
viously, each unit of each layer receives an error feedback connection from
each of the units above it. In fact, after the network output y(k) is emitted
through a feedforward path at time k, each of the output units is supplied with

Table 4.4 Neural processing in feedforward and feedback paths

Forward Path

Synaptic Processing

Neural inputs used:
Weight value used:
Local memory value used:
Output:
Weight and local memory
value update:

Somatic Processing (Input and Hidden Layers)
(l<i<M-l)

Input used:
Local memory value used:
Output:

Local memory value stored:

Somatic Processing (Output Layer)

Input used:

Local memory value used:
Sigmoid output:

Linear output:

Local memory value stored:
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Backward Path

Synaptic Processing

Input used:

Weight value used:

Local memory value used:

Output:

Weight and local memory

value update:

Somatic Processing (Input and Hidden Layers)
(l<i<M-l)

Input used:

Local memory value used:

Output:
Local memory value stored:

Somatic Processing (Output Layer)

Input used:

Local memory value used:

Sigmoid output:

Linear output:
Local memory value stored:

its component of the desired output vector d(k), starting the second backward
sweep through the network (the backward path as shown in Fig. 4.23). For the
neurons in the output layer, the somatic operations give & ~ ' and transmit
these to their synaptic operations. The synaptic operations then update their
weights and transmit the values wfj6^ ~ to the neurons in the lower layer.
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This process continues until the neurons of layer 1 have been updated. The
cycle can then be repeated. In short, each cycle consists of the inputs to
the network "bubbling forward" from the input node to the output node of
the network and then the errors "percolating back" from the output node to
the input node of the network. Furthermore, these information processing
procedures in the forward and backward paths are summarized respectively
in Table 4.4.

Figure 4.23 The backward information processing of neuron(s,i).
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4.7 SOME ISSUES IN BP LEARNING ALGORITHM

Although, the BP learning algorithm provides a method for training MFNNs
to accomplish a specified task in terms of the internal nonlinear mapping
representations, it is not free from problems. Many factors affect the learning
performance and must be dealt with in order to have a successful learning
process. Mainly, these factors include the initial parameters, learning rate,
network size, and learning database. A good choice of these items may greatly
speed up the learning process to reach the target, and we will discuss some of
these issues in the following sections, although there is no universal answer
for these issues.

4.7.1 Initial Values of Weights and Learning Rate

4.7.1.1 Random Selection for Initial Weights
The values of the weights selected initially in the weight space for the BP
learning algorithm are one of the most important aspects that affect the learning
procedure. The learning convergence, however, is theoretically independent
of this initial point. It is difficult to choose the initial value of the weights
so that it is as close as possible to one of the global minima in the weight
space. Since a priori knowledge about the global minima is limited, the initial
weights must be estimated. It is common practice to initialize randomly the
weights with small values, for example, between -0.5 and 0.5. A simple
methodology for selecting a better starting point is one that first chooses a
few sets of the weights, and calculates the error function for these different
sets. Finally, a set of the weights that correspond to the minimum value of the
error function among these selections is made. It is obvious that the learning
procedure does not function well if the initial values of the weights are set at
the same value. The convergence of the learning procedure will not be ensued
if the initial point is too far from any minimum point. In such cases, the
network learning should be restarted with a new choice of the random initial
weights.

4.7.1.2 Learning Rate Adaptation
The learning rate 77, which determines the scale of the increments of the weight
at every updating step, definitely affects the learning performance. Roughly
speaking, an excessively large learning rate value may cause chattering or
unstable oscillations while a very small learning rate r\ may slow down the
learning procedure. In the conventional BP algorithm, described in the pre-
vious sections, the learning rate is assumed to be fixed and to be uniform for
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all the weights. Further, the learning rate is usually kept small to prevent
oscillations and thus to ensure convergence.

Analytically, at the beginning of the learning, a larger learning rate 77
is required to move the weights rapidly toward the minimum point since a
larger distance usually exists between the current point of the weights and
the minimum point in the weight space during the initial stages of learning.
A smaller learning rate is suitable for the final stage of the learning to avoid
overshooting the solution. On the other hand, with a different surface of the
error function in the weight space, which is associated with both the network
structure and the task especially when the error surface has a broad minima
with small gradient values, a larger value of the learning rate will result a
more rapid descent. However, for cases with steep and narrow minima, a
small value 77 should be chosen to guarantee the learning stability. This leads
to the conclusion that the learning rate 77 should be properly chosen so that it
reduces the learning time and thus obtains a faster convergence.

To select adaptively the learning rate 77, many attempts have been recently
carried out by researchers. Some of the results will be presented in the
following discussions. The search-then-converge strategy was proposed by
Darken and Moody (1991) and is a task-independent approach. This approach
provides an adaptive formulation for 77 that is only a function of the learning
time. In the first phase of learning, which is also called the search phase, the
learning rate is set to a large value and then it is decreased exponentially. In
the second phase, or the "convergent phase," the learning rate is set to a small
value and then is decreased gradually to zero. The two possible formulations
for 77 proposed by Darken and Moody (1991, 1992) are

and

where the parameters 770 > 0, c > 0, and k 3> 1 are appropriately chosen
Since rj(k} is not very sensitive to the choice of the constant A&, the range ove:
which it may be chosen is large. It has been indicated that the adoption o
these algorithms with the proper choice of parameters may have the potentia
for improving the convergence of the speed.

It is evident that the disadvantage of the preceding algorithm is linkd
with that of the characteristics of the network. In fact, the value of adaptiv
learning rate value should be kept as large as possible at each iterative ste
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while retaining a stable learning process. To implement this goal, one of the
simplest heuristic strategies for adapting 77 is to increase it if the total error
function E is decreased and to decrease it rapidly if the new error exceeds the
old error by more than a prespecified ratio. Mathematically, this process is
described as (Vogl et al. 1988)

where typical values of the parameters are a = 1.05, b — 0.7, and q = 1.04.
Except for the preceding adaptive algorithms for the learning rate that has

a uniform parameter for all the weights, some local algorithms that consider
the adaptation process for each learning rate parameter n^ corresponding

(i}to the individual weight parameter urj are useful. In other words, each

weight parameter wty involved in the network is updated by the BP algorithm
equation

u)where rf-J is a learning rate parameter.
To solve this problem, the following heuristics were introduced by Jacobs

(1988):

(i) When the gradient component dE/dw-g has the same sign for several
(i]iterations, the corresponding learning rate rfj is increased;

(ii) When the gradient component changes sign for several consecutive time
steps, the corresponding learning rate r$ is reduced exponentially to
allow rapid decay.

On the basis of these heuristics, a delta-bar-delta algorithm for adapting
(i}the learning rate rf~J at each iteration time was developed by Jacobs (1988) as
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with

where a is a parameter for an additive increase and b is a parameter for an
exponential decrease in the learning rate rr^, and 9 is a momentum parameter.
The typical ranges proposed for these parameters are

On the other hand, if the momentum version of the BP algorithm is applied
to train the MFNN, an adaptive process for both the learning rate 77 and the
momentum parameter a may speed up the learning procedure. One of the
simplest and most efficient algorithms with the locally adaptive algorithm for
the problem was proposed by Silva and Almeida (1990). This algorithm is
given by the following batch formulations

where the learning rate is computed at each instant by

The recommended values of the parameters were obtained as

4.7.2 Number of Hidden Layers and Neurons

It is known that the BP learning algorithm may be used to train a layered
neural network because of its efficiency. In addition to the issues of selecting
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the initial weights and the learning rate, the optimal numbers of the input
and hidden neurons as well as the hidden layers are not known in advance.
Usually, they have to be determined by trial and error. A structural capability
of a MFNN for implementing a nonlinear mapping is the basic requirement
for ensuring a successful learning for a desired task. Naturally, this capability
may be guaranteed by the neural network structure being assigned a sufficient
number of hidden neural layers and hidden neurons. From the computational
point of view, one always demands as few as possible hidden layers and input
and hidden neurons. Thus, the term optimal structure is defined here as the
network that has the fewest hidden layers, and input and hidden neurons, and
that is capable of performing the given task.

A simple example is given in Fig. 4.24 to explain this fact. To implement
a two-variable XOR logic function, the optimal structure is a two-layered
network with three neurons given in Fig. 4.24b. In fact, if the input neurons
are reduced from two to one as shown in Fig. 4.24a, the network is incapable
of realizing the function. On the other hand, as shown in Fig. 4.24c, even if
the network with three input neurons is employed to implement the problem,

Figure 4.24 Two-layered network implementing the XOR logic function
y = f(xi,x2) = xi ®x2.
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the unnecessary complexities of the network structure and computations are
increased.

Although the number of the output neurons may easily be decided for
a specific task, there is no universal criterion to determine an appropriate
number of inputs and hidden units. However, a strict mathematical proof, as
will be seen in a later chapter, has verified that networks with only an input
layer; that is, without hidden layers, are always capable of approximating
the arbitrary nonlinear mapping function. It seems sometimes that a network
with two hidden layers solves the problem easier than does a network with a
single hidden layer. In this case, the word easier indicates that the learning
procedure converges faster. It has been suggested that networks with more
hidden layers and fewer units in each layer may generate a better performance
than "shallow" networks with many units in a single layer. However, narrow
networks with many hidden layers are harder to train than the broad networks
with one or two hidden layers.

Selecting the appropriate number of the neural units involved in the input
and hidden layers is rarely as straightforward as determining the number of
the input and output neurons. To solve this problem, two approaches of
dynamically changing the number of input and hidden units may be used to
optimize the structure during the learning process. The first approach (Hirose
et al. 1991) initially uses a reasonable small number of input and hidden units
for the learning. When a learning procedure is trapped in a local minimum,
new input and hidden units are added. The learning process then proceeds
because the shape of the weight space is changed. A simple example is given
in Fig. 4.25, where a two-variable XOR function problem is considered. In
the second approach proposed by Sietsma and Dow (1991) a network, having
a larger number of the hidden units than actually required, is constructed.
Redundant units are then gradually removed during the learning process. An
example given in Fig. 4.26 is used to explain the procedure described above.

Figure 4.25 Optimizing network size by dynamical adding hidden units.
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Figure 4.26 Optimizing network size by dynamical deleting hidden units.

It seems that the former has a more practical potential for finding a proper
network size. There are two advantages of the approach in which we add
dynamically new units:

(i) The computation complexity will increase slowly when a new unit is
added to the input or hidden layer;

(ii) The optimal size of the network may always be obtained through such
an adjustment.

An important step involved in such an iterative procedure is the approach
for monitoring and examining the occurrence of the local minimum during
learning. To decide when and how the input and hidden units should be added,
Hirose et al. (1991) used an algorithm to conduct this task. In case the error
function does not decrease or decreases very slowly, for example, less than
1% every 100 iterations for the weights, then the network is probably trapped
in a local minimum or the number of input or hidden units is insufficient to
ensure convergence, and a new input or hidden unit is added. The network
is trained again, and if the error function E fails to decrease by more than
1% within the next 100 iterations of the learning, another unit is added to the
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input or hidden layer. This procedure is repeated until the network eventually
converges.

4.7.3 Local Minimum Problem

An ideal learning technique for the weights of a MFNN should search for an
optimal set of weights corresponding to a global minimum point of the error
function that is a hypersurface in the weight space. In fact, the hypersurface
of the error function may contain many global minima that correspond to
different sets of the weight permutations because a MFNN with different sets
of the weights may have the same output properties. However, the gradient
descent method based on the BP algorithm ensures that the converged point is
only a local minimum or even a saddle point. Generally speaking, the gradient
descent algorithm may reach a stationary point that is either a point of the
local minimum or a saddle point. Thus, the phenomenon of the local minima
as shown in Fig. 4.27 may occur in the BP learning procedure. Usually, these
local minima correspond to a very high level of the error surface.

Let E(w) be an error function with w G 3ft"'. Usually, a local minimum
occurs when the partial derivative dE/dw is zero or very small but E(w) is
still at a very high error level. Theoretically, in a gradient descent method the
searching algorithm with

Figure 4.27 Global minimum and local minima of the error function: a one-
dimensional example.
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or

would be stopped. Even though E(w) is at a higher level in the weight space,
the output errors of MFNN described with the weights learned are unaccept-
able. Naturally, the gradient descent searching is not capable of dropping the
iterative learning from the local minimum and continuing the learning toward
the global minima. At this point, an automatic judgment process for both the
magnitudes of the error function and the measure of the gradient vector must
be incorporated into the learning process to avoid nonstop iterations occurring
at a local minimum point. If the updating procedure indicates that there are
zero gradient vectors and an unacceptable error function, the procedure must
be restarted by a new permutation of the initial weights, a new learning rate
parameter, or a new network size, so that an acceptable value of the error
function is finally obtained. Of course, if the surface of the error function
is a monotonic function of the weights and does not have a local minimum,
the gradient learning procedure will always converge to the global minimum.
However, the descent speed becomes very low near the global minimum point,
and a smaller learning rate is more effective during this period of learning for
avoiding the chattering.

4.8 CONCLUDING REMARKS

Multilayered feedforward neural networks (MFNNs), as we have studied in
this chapter, are capable of solving complex problems as proved in many
engineering and science applications. In this chapter, we introduced the basic
notion of MFNNs with the network models and adaptive learning equations
as an extension of the delta rule discussed in Chapter 3.

The process of learning and adaptation associated with a MFNN was
demonstrated as key features of neural networks, and was explored in de-
tail by using the backpropagation (BP) learning algorithm. The mathematical
proofs, derivations, and equations of the BP learning algorithm presented in
this chapter provide a basis for further applications of MFNNs that are de-
scribed mathematically by a static nonlinear mapping for many science and
engineering applications. Several examples were used to help us to under-
stand the theoretical foundations. In summary, the following important results
were obtained in this chapter: (i) general mathematical model of MFNNs and
(ii) adaptation or learning equations for MFNNs by using the BP learning
algorithm. There are several factors that may affect the performance of a BP
learning algorithm as discussed in Chapter 5.
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Problems

4.1 Derive a continuous-time version of the BP learning algorithm for
the MFNN.

4.2 Consider the two-layered network with three input neurons and two
output neurons shown in Fig. 4.28. If an input pattern is given as

(a) Calculate s[ , s;> , Sg ', s[ , s^ , yi, and y^\
(b) Given a desired output pattern

Figure 4.28 Problem 4.2: a two-layered feedforward neural network with input
layer (three neurons) and output layer (two neurons).
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calculate the error partial derivatives 4 »<^> »^3 ' ^i »an^
*(2)02 .

4.3 In a MFNN with (M - 2) hidden layers, let wlz) represent the weight
matrix of the layer i. Derive the matrix version of the BP learning
algorithm for the MFNN.

4.4 A two-layered network with two input neurons and a linear output
neuron is given in Fig. 4.29:

(a) Using the BP algorithm, train the three-neuron network with
a linear output neuron as illustrated in Fig. 4.29 to realize a
two-variable XOR function f(x\, x^} = x\ © x^\

(b) Give a geometrical explanation for the realization of the XOR
logic in the pattern plane.

Figure 4.29 Problem 4.4: three-neuron network with a linear output unit for
implementing a XOR function /(xi, #2) = x\ ® x%.

4.5 Using the BP algorithm, train a two-layered neural network with two
input neurons and one output neuron to implement the logic function
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4.6 Given the following linearly nonseparable patterns

(a) Design a two-layered network to classify these two class
patterns;

(b) Give a geometric interpretation of the nonlinear mapping
implemented by the network in the pattern plane.

4.7 A three-variable XOR function is defined as

The eight learning patterns are given in Table 4.5. Using the BP
algorithm, train a two-layered network for the implementation of this
three-variable XOR function.

Table 4.5 Truth table of XOR function f ( x i , x2, x3) = xi © x2 © x3

Pattern
A
B
C
D
E
F
G
H

Input x\
-1
-1
-1
_!_

1
1
1
1

Input #2
-1
-1

1
1

-1
-1

1
1

Input £3
-1

1
-1

1
-1

1
-1

1

Output y
-1

1
1

_]_
1

-1
-1

1
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4.8 Give a geometric explanation for the three-variable XOR network
obtained in Problem 4.7 in the three-dimensional pattern space shown
in Fig. 4.30.

Figure 4.30 Problem 4.8: three-dimensional pattern space for the XOR function
y = f(xi,x2,x3) =xi ®x2 ®x3.

4.9 Find the optimal network size of a two-layered network that is capa-
ble of implementing the three-variable XOR logic function given in
Problem 4.7.

4.10 A two-element threshold network is illustrated in Fig. 4.31:

(a) Write the input-output equation y = y(x\,x<2)\
(b) Find a solution of the weights such that a two-variable XOR

function f(x\,x<z) = x\ 0X2 is implemented by the network;
(c) Give the separating plane provided by the network.

Figure 4.31 Problem 4.10: two-element threshold network with two inputs.
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4.11 A two-layered feedforward network with fully feedforward interlayer
connections is given in Fig. 4.32:

(a) Give input-output equations for the network;

(b) Using the gradient descent method, derive a weight learning
algorithm for the network.

Figure 4.32 Problem 4.11: two-layered feedforward neural network with fully
feedforward interlay er connections.

4.12 Using the learning algorithm obtained in Problem 4.11, train the two-
input, two-neuron network shown in Fig. 4.33 such that a two-variable
XOR function is implemented by the network.

Figure 4.33 Problem 4.12: two-layered feedforward neural network for imple-
menting a two-variable XOR function.
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4.13 Using the BP algorithm, design a two-layered feedforward network
to approximate the following nonlinear functions:

(a) yi = fi(xi,x2} = sin(xi + xix2 + x2);

(b) 2/2 = h(x\,X2] =

4.14 Show mathematically why the BP algorithm will not converge if all
the initial weights are selected as the same value.

4.15 Consider a sigmoid activation function a(x] = tanh(Ax) where A is
(i)the gain. If every neuron in a MFNN has a gain parameter A^- ' , derive

the updating formulation in terms of the gradient descent method:

4.16 Using the network equations of the MFNN, variational equation for
optimality and Eqn. (4.55), derive Eqn. (4.57).

4.17 Explain why the MFNN network equation [Eqn. (4.57)] and
Eqn. (4.60) form a so-called a two-point boundary-value problem
(TPBVP). Give an alterative solution for this problem.

4.18 Verify the following partial derivative formulations of the outputs of
a MFNN with respect to the weight vectors

where

with the initial condition
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4.19 When the weight updating is moving through a plateau region of
the error function surface, the gradient component dE/dw$ will
be approximated by a constant at each timestep. Show that in this
case the momentum BP learning algorithm may be approximately
represented as

where 0 < a < 1. This result means that the effective learning rate
increases to the new value ry/(l — a).
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The basic topics of multilayered feedforward neural networks (MFNNs),
such as the network structures, mathematical descriptions, and backpropa-
gation (BP) learning algorithms were discussed extensively in the previous
chapters. Beyond these aspects, significant progress has been made on many
related issues. In fact, numerous extensions to the basic MFNNs with the BP
algorithm have emerged. Most of these were developed to overcome some of
the inherent limitations of the basic BP learning algorithms.

In order to provide a more comprehensive viewpoint of the neural net-
work structures and learning algorithms for MFNNs, some further problems
associated with MFNNs are presented in this chapter. First, the alternative
error measure criteria for the standard BP learning algorithm, where a least
squares error index is employed, are addressed in Section 5.1. Complex regu-
larization techniques are then discussed in Section 5.2 for both improving the
generalization capability of MFNNs and pruning the networks. Sensitivity-
calculation-based network pruning techniques for the purpose of optimizing
the network structure and accelerating the learning phase are then studied in
Section 5.3. In Section 5.4, a procedure for dealing with the second deriva-
tives of MFNNs is discussed. To improve the convergence speed of the BP
algorithm, some commonly used second-order optimization methods are pre-
sented in Section 5.5. An important class of supervised learning algorithms
for static feedforward neural networks, the linearized recursive estimation
methods, are discussed in Section 5.6. MFNNs with tapped delay inputs and
outputs signals are introduced for applications such as system identification,
control systems, and channel equalization in Section 5.7. An application of
such neural networks for nonlinear adaptive control is studied in Section 5.8.

5.1 DIFFERENT ERROR MEASURE CRITERIA

As shown in Fig. 5.1, the BP algorithm, or the generalized delta rule, for the
weight learning involved in a MFNN can be interpreted as an optimization
process where one of the most important choices is the selection of an op-
timality index or error function that gives a suitable global measure of the
distribution of the errors. The choice of an appropriate error measure norm
can be crucial for obtaining a reasonable solution of the problem at hand.
Several criteria exist to define an optimality index. Among them, those based
on an Lp norm (1 < p < oo) have the advantage of allowing an easy mathe-
matical formulation. In particular, the least squares (LS) criterion (Zg norm
criterion) is widely used because of its simplicity. In this section, we focus on
MFNNs with a BP algorithm. A general framework is proposed within which
it is possible to justify the selection of a particular Lp norm for carrying out
the BP learning procedure. On the other hand, if some stochastic factors are
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Figure 5.1 The weight learning process for neural networks.

considered for MFNNs, the choice of a particular Lp norm must be linked
to the particular distribution of the output errors because the particular Ip
norm is an overall measure of the output error components. Consequently,
the effort is to define a correspondence between the error distributions and the
Lp norms.

5.1.1 Error Distributions and Lp Norms

The BP algorithm discussed in Chapter 4 relies on a quadratic error measure,
regardless of the output error distributions. The focal point of the following
discussion was developed by Burrascano (1991). It is to define a possible
link between the error distribution at the output of a MFNN and the Lp
norms. Given a set of n-dimensional neural input vector x e ^ and an
m-dimensional desired neural output vector d e 5?71, what is generally used
for the learning phase of a MFNN is an additive error function

where D(.) denotes a distance measure between the zth desired output cf and
the ith current network output yi(x) for a given input x. If we consider the
nt-dimensional Euclidean space 3R"*, where nt is the number of parameters
consisting of all the weights and thresholds involved in the network, the
learning algorithm provides a strategy to minimize the error function. The
point w defining all the weights and thresholds in the network configuration
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space (w e !Rn*) is moved to obtain a network configuration approximating
the desired input-output mapping with a sufficient accuracy.

As shown by Denker (1986), Tishby et al. (1989) and Burrascano (1991),
it is possible to give a statistical description of the learning process. To
achieve this, we have to discuss the probabilities on the events (x, $\w}, that
is, to give a probabilistic measure of having the desired neural output c( in
correspondence to the neural input x when the network weight configuration is
w. Such probabilities should be, by definition, multiplicative for independent
samples. If such probabilities p(x, di\w] exist, we can alternately train the
network by maximizing the likelihood of the learning set over the network
parameters:

A fundamental requirement is that this maximization of the likelihood must
be equivalent to the minimization of the additive error given in Eqn. (5.1)
for every set of independent learning points. The only way that these two
optimization criteria can be simultaneously fulfilled is if the error functions
are directly related through an arbitrary monotonic and smooth function (f>:

This equation puts a strong constraint on the possible form of p(x, di\w}. It
can be shown that the only solution to the functional equation [Eqn. (5.3)] for
the smooth positive error function e(x, di\w) is given by

where X G !Rn and D £ 3ftnt are the admissible sets of the input signal vector
x and the weight vector w, respectively, and /3 is a positive constant that
determines the sensitivity of the probability p(x,di\w) to the error values.

Moreover, let the error function be defined in the Lp norm
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for x e X. If we can model the data distribution in the domain T with a
uniform distribution

then

and, therefore, Eqn. (5.7) gives us the desired result: when the output error
function is defined in the Lp norm, the consistentp(di\x, w) is the generalized
Gaussian of the order of p

In particular, for p = 2 (the quadratic error function in the range T), one has

with

5.1.2 The Case of Generic Lp Norm

In the backpropagation paradigm, as presented in the previous chapters, the
learning procedure is based on the minimization of a quadratic error measure
that is actually an error function defined by the square of the 1% norm of
the output error vector. Now, let us investigate how the generalized delta
rule must be changed in order to perform a minimization in the p\h power of
the generic Lp norm. We may reflect that the characteristic that renders the
backpropagation rule particularly interesting is the fact that the gradient of the
error function with respect to the weight vectors can be evaluated in a simple
way in terms of the definition of the derivative 6s since
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where

and the second term on the right-hand side depends on only the neural char-
acteristics, and is not related to the error measure index E. Furthermore, note
that the recursive algorithm for the 6s of the hidden layers given by

must start from the initial condition given in the output layer:

Thus, for a different definition of the error function E, only the formulations
for the derivative 6s of the output layer have to be modified. In fact, when
the error function is defined in terms of the generic Lp (I <p < oo) norm as
follows

one may easily obtain

The formulations for the <5s of the output layer are then given by

On the other hand, it can be seen that a modified version of the delta formu-
lations for the output layer in the particular case of the L^ norm may be of
some special interest. The problem of defining an L^ version error function
of the generalized delta rule must be approached by showing how the overall
error measure E°° is employed starting from the output error components,
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and how the derivative dE30 /ds} can be evaluated. Let us define the error
function in the Chebyshev case as

where max[.] denotes a function selecting the largest component in the error
vector defined by[d — y ( x ) ] . The preceding definition implies that the overall
error measure E°° equals the largest component of the error vector, while all
the other error components are neglected. Let us denote the index of this
output error component with f:

As far as the output layer is concerned, one has

Thus, the maximum output error in the output layer is propagated back to the
lower layers during the learning phase. In a practical updating process, this
unit with the maximum error must be determined at each instant.

5.2 COMPLEXITIES IN REGULARIZATION

The concept of generalization for a neural network is used to measure how
well the network performs on the actual problem once learning is complete. It
is usually tested by evaluating the performance of the network on the new data
set outside the learning set. As shown in Fig. 5.2, generalization is mainly
influenced by three factors: the number and performance of the learning
data samples, which represent how well the problem at hand is characterized,
the complexity of the learning algorithm employed, and the network size.
Generally speaking, a larger number of learning data samples can provide a
better representation for the underlying problem, and if a suitable learning
algorithm and network size are used, a better solution to the problem should
be obtained. The third factor, the network size of the generalization for the
neural networks, is discussed in the following text.
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Figure 5.2 Factors influencing the generalization for neural networks.

It is generally admitted that the generalization of performance of the back-
propagation architecture will depend on the relative size of the training data
and the trained network. However, it is observed that the BP networks are
sometimes very slow in learning. This is because the synaptic connection
weights, especially the hidden connection weights (connections among hid-
den neurons), are significantly smaller for a large network. This means that
the networks cannot utilize hidden connections efficiently. Thus, hidden neu-
rons cannot be appropriately used in speeding up the learning. This situation
is illustrated in Fig. 5.3. The network in Fig. 5.3a is a BP network in which the
hidden connections among the hidden neurons are inactive, while the input
and output connections are active. If the hidden connections are weak; that is,
the absolute values of the hidden weights are small, it is certain that the hidden
neurons are not appropriately used in speeding up the learning. As shown in
Fig. 5.3b, some hidden connections of the network are active. In this case,

Figure 5.3 The status of hidden neural connections.
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the hidden neurons are expected to be used in improving the generalization as
well as speeding up the learning.

In order to adapt the size of the BP network and activate hidden connections,
an approach of complexity regularization may be applied. In this approach,
a term is added to the error measure function that discourages the learning
algorithm from seeking solutions that are too complex. This term represents,
in fact, a measure of the network's complexity; that is, both the quantities and
number of weights. The resulting criterion or cost function is of the form

Cost = network error measure + model complexity measure

where the first term on the right-hand side measures the network error between
the network outputs and the task or desired outputs, while the second term is
determined only by the complexity of the network structure.

This type of criterion is sometimes referred to as the minimum description
length (MDL) criterion because it has the same form as the information-
theoretic measure of description length. Simply speaking, the description
length of a set of data is defined as the total number of bits required to
represent the data. But for a neural network that is designed to represent a
set of data, the total description length should be defined as the sum of the
number of bits required to encode the errors. The cost function introduced
above may be considered as one such form if the term of the network error
measure is related to the number of bits required to encode the errors, and
the term of complexity measure corresponds to the number of bits required
to describe the network model. The learning process that minimizes this cost
function then, to a certain degree, provides a minimal description of the data.

In the context of BP learning, or any other supervised learning procedure,
such a cost function may be represented as

where the first term on the right-hand side is the error function used in the
standard BP learning, Ec(w) is the complexity measure, and the parameter A
is a small positive constant that is used to control the influence of the term of
the complexity measure Ec(w} in relation to the conventional error measure
E(w}. Consequently, the learning algorithm derived using such a criterion is
a simple extension of the BP algorithm. Later, we will see that for different
choices of the complexity measure, the weight decay approach, the weight
elimination approach, and many similar approaches may be obtained.

5.2.1 Weight Decay Approach

The weight decay approach is a method of reducing the effective number of
weights in the network by encouraging the learning algorithm to seek solutions
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that use as many zero weights as possible. This is accomplished by adding a
term that is the sum of all the squared weights to the criterion function that
penalizes the network for using the nonzero weights. Then, the new criterion
function is formulated as

where the sum in the second term on the right-hand side performed over all
the weights represents the complexity measure EC of the network. It is to be
seen that in this modification of the standard BP learning algorithm, an extra
term of the form Xw is added for updating the weight vector. Therefore, one
has the following new updating formulation:

It is evident that the effect of A is to "decay" the weight vector by a factor
of (1 - r]X). The weight decay approach does not actually delete weights
from the network, nor does it typically produce weights that are exactly zero.
Weights that are not essential to the solution decay to zero and can be removed.
When some weights are forced to take on values near zero, some other weights
remain relatively large. The result is that the average weight size is smaller.

Another simple weight decay method is to define the cost function as

In this case, an additional term —Xsgn(w] is used in the weight vector
updating rule, Eqn. (5.18). If Wi > 0, the weight is decremented by A;
otherwise, if wi < 0, then it is incremented by A.

5.2.2 Weight Elimination Approach

Similar to the weight decay approach, an alternative technique is called the
weight elimination approach was proposed first by Rumelhart and McClelland
(1986). In this weight elimination approach the complexity regularization
term is of the form
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Figure 5.4 The curve for function (wi/w0}
2/[l + (wi/w0}

2] with various values
of WQ, WQ = 0.5, 0.8, and 1.5.

where WQ is a fixed weight normalization factor. As shown in Fig. 5.4,
when (WI/WQ) ^> 1, the terms inside the sum are close to unity, and thus this
criterion es sentially counts the number of weights. The purpose of introducing
a complexity term into the error function is to push the negative values of the
weights toward larger absolute values, while the positive values are pushed
toward zero. Thus, it can be expected that some hidden connections will
be large enough to speed up the learning that is due to the complexity term
Ec(w}. In fact, when (WI/WQ) <C 1, the term inside the sum is proportional
to w?, and this approach acts like the weight decay approach. Through the
appropriate choice of WQ, we can encourage the network to have a few large
weights with a small WQ, or many small weights with a large WQ.

5.2.3 Chauvin's Penalty Approach

To effectively prune the network by driving the weights to zero during learning,
Chauvin (1989) introduced the following complexity measure

where ("(•) is a positive monotonic function. The sums are over the set of the
output units, the set of the hidden neurons, and the set of the input patterns.
Chauvin indicated that this term measures the average "energy" expanded by
the hidden units. It is important to note that the "energy" expanded by a unit
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represents how much activity varies over the learning patterns. If the unit
changes a great deal, it probably encodes significant information. If it does
not change much, it probably does not carry much information.

Different results are obtained depending on the form of the function £.
Various functions are suggested here which have the derivative

or, by defining z = x2, we write

For n = 0, C is linear, and both the high- and low-energy units receive
equal penalties. As shown in Table 5.1, for n = 1, £ is logarithmic and
the low-energy units are penalized more heavily than the high-energy units.
For n = 2, the penalty approaches an asymptote as the energy increases,
which means that the high-energy units are not penalized much more than the
medium-energy units.

Chauvin also proposed the following two types of cost functions for con-
strained BP algorithms:

and

The numerical analysis results show that under these choices of the cost
functions, the network may be reduced to an optimal number of hidden units
independently of the starting size.

Table 5.1 Energy functions C for various values of n, Eqns. (5.21) and (5.22)
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5.3 NETWORK PRUNING THROUGH SENSITIVITY
CALCULATIONS

It is generally true that there is a large amount of redundant information
contained in the weights of a fully connected MFNN. In terms of information
content or complexity, some studies, like the concept of minimum description
length (MDL) (Rissanen 1989), have shown that a "simple" network whose
description needs a small number of bits is more likely to generalize correctly
than a more complex network. Presumably, this is because it has extracted the
essence of the data and removed the redundancy from them. Thus, it seems
plausible that we could remove explicitly some insignificant weights from
the network, and at the same time retain the functional capability needed to
solve the specified problem. This process is known as pruning the network.
Generally speaking, there are two advantages to pruning: (i) with a fixed
number of learning samples, the reduction in the amount of weights can lead
to a marked improvement in the generalization properties of the network; and
(ii) by isolating the relevant parameters, learning is easier.

The simplest approach to pruning is to delete the smallest weights in the
network. This, however, is not always the best approach since the network
output can be quite sensitive to these weights. A much better approach is
to eliminate the weights that contribute the least to the solution. According
to this theory, some network pruning methods have been developed through
sensitivity calculations for the units or the weights (Hassibi and Stork 1993,
Karnin 1990, LeCun et al. 1990, Reed 1993, Segee and Carter 1991). Because
of the evaluation procedures of the sensitivities, which may involve the first-
order or second-order error partial derivatives, these pruning methods are
categorized as first- and second-order pruning procedures. We will now
discuss these pruning methods.

5.3.1 First-Order Pruning Procedures

5.3.1.1 Relevance for Deleting Hidden Units
It is of interest to note that a simple network pruning algorithm for deleting
hidden neural units, rather than weights, was proposed by Mozer and Smolen-
sky (1989), who defined an important measure (measure of the relevance) for
every neuron and deleted the neurons with the least importance in the network.

The measure of the relevance p of a neuron is the error between the cost
function without the neuron and the cost function with the neuron. To avoid a
direct calculation for each neuron, p is approximated by introducing a gating
term a for each unit, as shown for a two-layered network in Fig. 5.5, such
that
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Figure 5.5 A three-layered network with attentional coefficients on the hidden
units.

where Xj is the output of unit j, Wij is the weight from unit i to unit j, and
<r(.) is the sigmoidal function. If a = 0, the unit has no influence on the
network; if a = 1, the unit behaves normally. The importance of a unit is
then approximated by the derivative

which can be calculated using the same approach as that of the BP algorithm.
Since the gating parameter a is unity in the calculation, it is only the notation
for the relevance evaluation rather than a parameter that must be implemented
in the network equations. When fa falls below a certain threshold, the unit
can be deleted.

Even though the squared error is usually used for the BP learning, it is wise
to use the absolute value error for measuring the relevance:

Because this provides a better estimate of relevance when the error is small.
In addition, an exponentially decaying average is proposed to suppress fluc-
tuations (Mozer and Smolensky 1989)
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This pruning method was used by Segee and Carter (1991) to determine
its effect on the fault tolerance of MFNNs. They pointed out that the pruned
network is not significantly more sensitive to a damage even though it has
fewer parameters. When the increase in error is considered as a function of
the magnitude of a weight that is deleted by a fault, the curves for the pruned
and unpruned networks are almost the same.

5.3.1.2 Karnin 's Pruning Method
In the network pruning method proposed by Karnin (1990), the procedure is
to estimate the first-order sensitivity of the error function for the exclusion of
each synaptic weight, and then to prune the weights with the low sensitivity
parameters. The sensitivity associated with a weight w is defined as

where w? is the final value of the weight w on the completion of the learning
phase, w = 0 represents its value on removal, and E(0) is the error when it is
removed.

Since E(0] is unknown, we consider a point 11? between 0 and w^. Then,
the slope of E(w) may be approximated by the average slope measured
between w1 and it/:

Finally, the following approximation is used for the evaluation of the sensi-
tivity to the removal of the connection weight Wi

where N is the number of learning patterns. All terms involved in the calcu-
lation above are available during the learning phase so that the evaluation is
easily performed and a separate sensitivity calculation is avoided. Moreover,
if a standard BP algorithm is employed, Eqn. (5.31) can be rewritten as

On the basis of the preceding algorithm, each weight has an estimated
sensitivity parameter and the weights with lower sensitivity are deleted. It is
readily seen that if all the output connection weights associated with a unit are
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Figure 5.6 The input and output weights of the neural unit i.

removed, the unit itself should be deleted. If all the input connection weights,
as shown in Fig. 5.6, are deleted, the network will have a constant output and
it can be deleted by adjusting the thresholds of the following units that receive
the output from the unit deleted.

5.3.2 Second-Order Pruning Procedures

Another effective pruning method, which is based on the second-order Taylor
series expansion of the error function, is the optimal brain damage (OBD)
(LeCun et al. 1990). It is used for reducing the size of a learning network by
selectively deleting the weights. Further development of this method is the
optimal brain surgeon (OBS) proposed by Hassibi and Stork (1993). The key
step in both strategies is that how to define the term saliency corresponding to
every weight parameter that measures the importance of the weight parameter
in terms of the network output. A reasonable deleting process is the one which
operates on the weights that have small saliency values. We will now start our
discussion of the second-order Taylor series expansion of the error function
around a local or global minimum point.

5.3.2.1 Taylor Expansion of Error Functions
Let E(w] : ffi1 —> $R be an error function of an n-dimensional weight
parameter vector w = [w\ w^ . . . wn]

T. Fortunately, it is possible to
construct a local model to analytically predict the effect of perturbing the
parameter vector around a point w*, called the nominal point, where the error
function has a local minimum. Expanding the objective function E(w}at this
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point by using the Taylor series yields

with

or

where Awi is the difference between the current value and the nominal value,
gi is the first-order partial derivative of the error function with respect to the
parameter w^ hij is the second-order partial derivative of the error function
with respect to the parameters Wi and Wj, and the last term contains all the
terms that are higher than second order.

First, one assumes that the error function E has a minimum value at the
point w = w*. Then at the minimum error value, we have

and

Second, one assumes that the error function around a local minimum or
global minimum is nearly quadratic. Thus, neglecting the higher-order terms
in Eqn. (5.33) yields

where AE1 represents the error due to the changes of the weights around the
nominal weight vector w*.
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5.3.2.2 Optimal Brain Damage (OBD)
The objective here is to find a set of parameters using the second-order Taylor
series expansion whose deletion will cause the least change of E. This
problem is practically insolvable in the general case. One reason is that the
number of the second-order partial derivatives is so enormous (6.76 x 1$
terms for a 2600-parameter network) that they are very difficult to compute.
Therefore, we must introduce some simplifications to the algorithm. An
effective method (LeCun et al. 1990) is a "diagonal" approximation which
considers only AE1 caused by deleting several parameters individually where
the cross terms are neglected. Thus, in Eqn. (5.34), deleting the terms of the
second derivative h^j for i ^ j; that is

gives

Furthermore, if the ith parameter Wi is deleted; that is, Wi = 0 or AiUj = iuj,
this deletion causes an error

Thus, the saliency for parameter w^ may be defined as

where the second-order partial derivatives may be recursively calculated using
the formulations obtained in Section 5.3.2.1.

In summary, the OBD (optimal brain damage) procedure for a MFNN is as
follows (LeCun et al. 1990):

(i) Select a reasonable network architecture;

(ii) Train the network until a desired solution is obtained;

(iii) Compute the second-order derivatives hn = d2E/dw?;

(iv) Compute the saliencies for weights: Sk = hu(w*)2/2;

(v) Delete some weights that have small saliencies;

(vi) Return to step (ii).
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It may be noted that deleting a parameter is carried out by setting it to zero.
As an interactive tool for network design and analysis, LeCun et al. (1989)
conducted a network pruning task for a backpropagation network applied to
the problem of handwritten digit recognition. The initial network was trained
on a database of segmented handwritten zip-code digits and printed digits
containing approximately 9300 training examples and parameters, 33, 210
test examples, and 1017 connections controlled by 21, 778 weight parameters.
To reduce the number of parameters in this network, the simulation studies
carried out by LeCun et al. (1989) indicated that up to approximately 800
parameters (approximately 30% of the parameters) could be deleted with
small changes in the error function.

An extension of the OBD method that uses the full second-order derivatives
instead of just the diagonal elements, called the optimal brain surgeon (OBS),
is described in the following discussion.

5.3.2.3 Optimal Brain Surgeon (OBS)
An important simplification used in the OBD is where only the diagonal
terms of the second-order Taylor series expansion are considered in defining
the saliency of the parameters. In other words, the nondiagonal elements
of the Hessian matrix are ignored. Sometimes this assumption may cause
large errors during the network pruning process. To overcome this drawback,
the more complex method, called the optimal brain surgeon (OBS), was
proposed by Hassibi and Stork (1993). The main difference between the
OBD and OBS methods is that the latter deals with a full consideration of the
second-order Taylor series expansion of the error function around a local or
global minimum point while the former neglects the nondiagonal elements of
the Hessian matrix.

Like the deleting procedure used in the OBD, the key task of the OBS is
to define the saliency of the weights, which is the incremental of the error
function E due to the elimination of the weight parameter u^. Let w* be the
weight vector where the error function E(w*) has a local or global minimum
value. If the ^th weight Wi is deleted, the elimination of this weight is
equivalent to the condition

or

where 1̂  is the unit vector whose ^th element is one and all other elements
are zero:
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Subject to the constraint condition given in Eqn. (5.37), a useful suggestion
proposed by Hassibi and Stork (1993) is one that defines the saliency pa-
rameter of Wi in the OBS as a minimum value of AE(w) with respect to
the incremental change Sw of the whole weight vector. Mathematically, this
problem can be described as

with the constraint condition given in Eqn. (5.37). To find an analytic solution
of this constrained optimization problem, the Lagrangian is given as

where A^ G 5ft is the Lagrangian multiplier with respect to the constraint
condition given in Eqn. (5.37). The optimality conditions may be obtained
by taking partial derivatives of the Lagrangian LI respectively with respect to
Aiu and A^ as follows:

In addition to the fact that the second equation implies constraint condition
given in Eqn. (5.37), Eqn. (5.40) yields

To solve the Lagrangian multiplier \, one may use the ^th equation of the
vector equation above:

By using the constraint condition given in Eqn. (5.37), we easily obtain

Hence, the optimal increment of the weight vector due to the elimination of
the weight Wi is

and the minimum value of the Lagrangian with respect to the weight vector
increment, which is also defined as the saliency of u^, is finally obtained as
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where H~l is the inverse of the Hessian matrix H, and [H~l]u is the ith
diagonal element of H~l. The preceding optimization procedure finds the
minimum value of the quadratic error function by using the results of deleting
the weight Wi and of the weight vector change Ait;.

However, the OBS procedure gives a more accurate definition of the
saliency of the parameters than that in the OBD approach discussed in Sec-
tion 5.3.2.2. The main difficulty of the OBS is associated with calculating the
inverse of the Hessian matrix. Of course, the algorithm requires the nonsingu-
larity of the Hessian matrix to ensure the existence of its inverse. In general,
the Hessian matrix, which is calculated at a local or global minimum point, is
nonsingular if the network is learned by the BP learning algorithm. A study
presented by Saarinen et al. (1991, 1992) shows that the neural network learn-
ing problems may be ill-conditioned, resulting in computational difficulties
of the inverse of the Hessian matrix.

5.4 EVALUATION OF THE HESSIAN MATRIX

The BP learning algorithm, which originally employed only the first-order
partial derivatives, has emerged as the most popular learning method for the
MFNNs. However, several of the more recent developments of the BP algo-
rithm require the second-order partial derivatives in addition to the first-order
derivatives. These second-order derivatives are typically partial derivatives
of either the network output or the error function with respect to the weights
and thresholds. Such a matrix of second-order derivatives is usually called a
Hessian.

As pointed out by Buntine and Weigend (1994), second-order derivatives
are important in the following different contexts:

(i) Direct second-order learning methods:
The standard BP algorithm is a first-order gradient descent method. The

convergence speed of the learning phase can be significantly improved if the
information pertaining to the second-order derivatives is available. As we
will see later, a typical example is the Newton-Raphson-type framework.
Since the second-order derivatives have to be computed at each instant, the
computation speed is crucial here.

(ii) Indirect second-order learning methods:
There is another class of second-order optimization algorithms that do

not require the direct calculation of the Hessian because they operate in an
iterative manner. The conjugate gradient and related algorithms are generally
considered the most powerful all-purpose minimization algorithms. Here, the
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second-order derivatives are used during line searches so that the full Hessian
is not required; only the product of the Hessian and a given vector is needed.

(Hi) Network pruning:
Second-order derivatives are also used in some postlearning phases such

as parameter evaluation and network pruning. Since these postlearning meth-
ods do not require second-order derivatives in each learning iteration, the
efficiency of their computation is less crucial here than in the previous two
cases.

Second-order derivatives can be calculated exactly, or calculated using
approximations and ignoring certain terms, or calculated using numerical
differentiation. Derivations of these calculation procedures are discussed in
detail in the following text.

5.4.1 Diagonal Second-Order Derivatives

As seen in the last section, an efficient method of computing the diagonal
second-order derivatives of the error function with respect to the weights
plays an important role in a weight-deleting process. A derivative procedure
that is very similar to the BP algorithm used for computing the first-order
derivatives was presented by LeCun (1987). The basic idea and formulations
are outlined in the following description.

We still assume that the error function is expressed as a mean-squared
error function; generalization to other additive error measures is straightfor-
ward. For convenience, the basic network transfer equations for an M-layered
network may be re-listed as follows:

An instantaneous error function is also defined as

Before discussing the second-order partial derivatives, one has to review some
basic results of the first-order partial derivatives. From the network transfer
equations one may directly obtain the following results:
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These basic first-order partial derivatives, which are derived from only the
network equations, are repeatedly used in the following derivations for dealing
with the second-order partial derivatives. Let us consider the first-order partial
derivative of the error function with respect to the weights, which is given by
the chain rule as

As shown previously, the first-order partial derivative dE/d& may be re-
cursively calculated from the output layer. In fact

and the initial conditions given in the output layer are

Using these results, the second-order partial derivatives may be evaluated as

Since Xp , the output of the neuron(i — l,p) in the layer (i — 1), is
(i)independent of the weights w-' for the neurons in the layer i, it yields

The next task is to obtain a recursive computing formulation for the second-
order partial derivative cPE/d(Sj}2. The partial derivative of the two sides
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of Eqn. (5.50) with respect to the parameter si- yields

Note that

Finally, for the hidden layers (1 <i < M — 1), we have

and for the output layer

Also, using the propagation errors associated with the hidden neurons and
the delta's notations, which were discussed extensively in Chapter 4, one may
simplify Eqn. (5.52) to

where

Here, the second-order derivative of the sigmoidal function cr(.) is shown in
Fig. 5.7.
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Using the same procedure as for the backpropagation, the computation will
start recursively from the output layer to the hidden layers. The calculation
procedure for the diagonal second-order partial derivatives is summarized in
Table 5.2. As can be seen, computing the second-order derivatives is of the
same order of complexity as computing the gradient.

Figure 5.7 Second-order derivative of sigmoid function
tanh"(x) = —2sech2(x)tanh(x).

Table 5.2 Computing the diagonal second-order partial derivatives

Step 1: Calculate initial conditions dE/dSj ' ,j = 1 ,2 , . . . , HM us-

ing Eqn. (5.51) and 8f2E/d(Sj )2, j = 1 ,2 , . . . , HM using
Eqn. (5.53);

Step 2: Let i <— M - 1, then calculate 8 f 2 E / d ( s f } ) 2 , j =
1, 2 , . . . , HI using Eqn. (5.54);

Step 3: If i < 1, then go to Step 4, otherwise, if i <— i — 1, go to
Step 2;

Step 4: Calculation is completed. Output ^E/d(s^}2, i =
1,2, . . . ,M.
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5.4.2 General Second-Order Derivative Formulations

The number of elements of the Hessian matrix is the square of the number
of the parameters including all the weights and thresholds involved in the
network. For example, if the number of the parameters is n then the number of
the elements of the Hessian matrix is n2. To evaluate the off-diagonal elements
of the Hessian matrix, one has to consider the second-order derivative of the

(i)error index E with respect to the weights w^ associated with the neuron in

the layer i, and Wqr, the weight associated with the neuron in the the layer I.
From the symmetry of the second-order derivatives, that is

it may thus be assumed that / < i in the following discussions.
From Eqn. (5.49), which gives the results of the first-order partial deriva-

tives of the error index with respect to the weights, one obtains

The partial derivative dE/ds^ can be calculated using Eqn. (5.50) with the
initial conditions given in Eqn. (5.51). Next, one has to derive the recursive
formulations for the partial derivatives dsp~ /dsq and d2E/dsqdSj.
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First, one has

with the initial condition

From Eqn. (5.50) one obtains

The initial conditions for the second-order partial derivative &E/dsqdSj
may be obtained from Eqn. (5.51) as follows:

Using the basic first-order partial derivatives, one finally obtains

The computing procedure of the second-order partial derivatives, which begins
from the output layer in the manner of the backpropagation, is summarized in
Table 5.3.
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Table 5.3 Computing the second-order partial derivatives of the error index
with respect to the weight parameters

Step 1: Calculate initial conditions for the first-order partial derivatives

dE/ds(™\j = 1, 2 , . . . , nM using Eqn. (5.51);

Step2: Let i <— M and I <— (M - 1) calculate dsf /ds(q\ (j =

l ,2 , . . . ,n M ;3 = 1 ,2 , . . . ,n/);

Step 3: Calculate the second-order partial derivatives $E/[dsq ds^'],
(j = 1, 2 , . . . , n^ q = 1 ,2 , . . . , m) using Eqn. (5.58);

Step 4: Calculate the second-order partial derivatives &EJ [dwgr &wjp}»
(q = l , 2 , . . . , n ; , r = 1, 2 , . . . ,nz_i; j = 1,2, . . . , n ^ , p =
1 ,2 , . . . , rii_i) using Eqn. (5.56);

Step 5: If / < 1 go to Step 6; otherwise let / <— (I — 1) then go to Step
2;

Step 6: If i < I go to Step 7, otherwise let i <— (i — 1) and I <— i — l
then go to Step 2;

Step 7: Calculation is completed. Output cPE/[dwqrdWjp],
(q = 1,2, . . . ,n z , r = 1, 2 , . . . ,n/_i;
j = 1,2, . . . , n t , p = l ,2 , . . . ,nt- i ) .

5.5 SECOND-ORDER OPTIMIZATION LEARNING ALGORITHMS

As discussed in the previous section, the backpropagation (BP) learning al-
gorithm and its modified versions which employ only the first-order partial
derivatives of the error function have proved their usefulness in dealing with a
large number of classification and function approximation problems. In many
cases, the large number of learning iterations needed to optimally adjust the
weights of the networks is prohibitive for online applications to problems such
as vision systems and adaptive control. An alterative way for speeding up
the learning phase is by using higher-order optimization methods that utilize
the second-order partial derivatives. In fact, numerical analysis has always
focused on methods using not only the local gradient of the function but also
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the second derivatives. In the former case the function is approximated by
only the linear terms that include the first-order derivatives in a Taylor series
expansion. In the second case the second-order nonlinear terms that include
the second-order derivatives are also used in the Taylor series expansion,
resulting in a more precise approximation.

In Section 5.4 we discussed the second-order pruning procedure. In the fol-
lowing discussion, we will study the use of the second-order partial derivatives
in the development of some learning algorithms.

Given a vector WQ in the weight space, a second-order Taylor series ap-
proximation of the error function around this vector is expressed as

where

are the gradient vector and the Hessian matrix, respectively. The minima of
the function E are located where the gradient of E expressed by Eqn. (5.60)
is zero:

Therefore, the optimal value of w is given by

Equation (5.62) is a basic formulation for the second-order optimization meth-
ods. The key issue related to the second-order methods is in computing the
inversion of the Hessian matrix H. The numerical approximation for such
a complex calculation may help us overcome the difficulties associated with
the exact calculation.

5.5.1 Quasi-Newton Methods

The objective of the quasi-Newton methods, such as the Broyden-Fletcher-
Goldfarb-Shannon (BFGS) and Davidson-Fletcher-Powell (DFP) methods,
is to iteratively compute matrices Q(k) such that

The term quasi-Newton is applied since
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is satisfied. Thus, the resulting Q(k) can then be used in the following
updating equation

until a minimum is reached. It is relatively easy to verify that the DFP updating
formulation for Q(k), which is

with

satisfies Eqn. (5.64). It can be shown that Q(k) converges to H l. A
slightly different version for updating Q(k) is the BFGS algorithm. Battiti
and Masulli (1990) pointed out that the BFGS algorithm, as an alternative
learning algorithm for the feedforward neural networks, yields an acceleration
in computation of about one order of magnitude compared to the BP learning
algorithm when tested on the parity problem. As with any second-order
optimization methods, the disadvantage of these methods is that the storage
of the matrix Q is quadratic in the number of weights of the network.

5.5.2 Conjugate Gradient (CG) Methods for Learning

Another second-order optimization method which has been used in supervised
neural learning is the conjugate gradient (CG) method. Several conjugate gra-
dient algorithms have been proposed as learning algorithms in neural networks
(Battiti 1992, Johansson et al. 1990, Moller 1993). Johansson et al. (1990)
described the theory of general conjugate gradient methods and how to apply
the methods in feedforward neural networks. They also concluded that the
standard conjugate gradient method with line search (CGL) is an order of
magnitude faster than the standard BP learning algorithm when tested on the
parity problem (Johansson et al. 1990). A novel conjugate gradient algorithm,
called the scaled conjugate gradient (SCG) method, was developed by Moller
(1993) to avoid the line search per learning iteration. The basic algorithm of
conjugate gradient and the related topics for neural learning are now reviewed.

The form of the basic updating equation of the CG algorithm is the same
as the general gradient algorithm and is given by
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where rj(k) is a time-vary ing learning parameter that may be updated using
the following line search method:

The conjugate condition for the incremental weight vector Ait; is designed as
(Smagt 1994)

where the Hessian matrix H(k) is calculated at the point w(k). The updating
for Aiu, in this case, is chosen as (Smagt 1994)

To satisfy the conjugate condition between the vectors Ait; (k) and Aiu(fc+1),
the expressions for the updating parameter a(k} are given as

(i) The Fletcher-Reeves formulation:

(ii) The Polak-Ribiere formulation:

(iii) The Hestenes-Stiefel formulation:

However, the best formula for updating a is highly problem-dependent. Many
studies indicate that the Polak-Ribiere and the Hestenes-Stiefel methods pro-
vide a better performance. It can be immediately concluded that Eqns. (5.67)-
(5.70) implement the momentum version BP learning algorithm with the learn-
ing rate rj(k) and the momentum parameter a, which is determined subject
to the conjugate condition given in Eqn. (5.69). Therefore, the CG learning
algorithm is a special type of BP learning algorithms, where the information
of the second-order partial derivatives is used to update the learning rate and
the momentum parameter. In fact, the preceding conjugate gradient algorithm
utilizes information about the direction search for Ait; from the previous itera-
tion in order to accelerate the convergence. Each search direction is conjugate
if the objective function is quadratic.



202 ADVANCED METHODS FOR LEARNING AND ADAPTATION IN MFNNs

5.6 LINEARIZED RECURSIVE ESTIMATION LEARNING
ALGORITHMS

If the structure of a MFNN is considered as a mapping from the neural input
to the neural output, which is at the heart of many problems in system iden-
tification, control, equalization, and pattern recognition, the weight learning
problem of MFNNs can be considered as the parameter identification problem
of a nonlinear system with a known structure. More recently, Singhal and Wu
(1989), using an extended Kalman filter (EKF) algorithm, and Douglas and
Meng (1991) using a least squares (LS) estimation algorithm, improved the
BP learning strategies for MFNNs. Although these two algorithms were de-
rived independently using different approaches, they are equivalent. In these
approaches, the convergence speed of the BP algorithms is significantly im-
proved, but they are computationally more complex and require more storage.
The weight updating requires a centralized computing facility, and this means
that the parallel computation structure of the learning is not exploited. The
practical applications of the EKF and LS algorithms are thus limited because
of their computational and storage complexities. Considering the real-time
capability of the learning algorithm, the important research topics in the field
of recursive estimation learning algorithm for MFNNs are the problems of
reducing the computational and storage requirements. To overcome the diffi-
culties associated with some of these complexities, some decoupled versions
of the recursive estimation learning algorithms have been developed.

5.6.1 Linearized Least Squares Learning (LLSL)

Linearized least squares learning (LLSL) can simply represent the input and
output transfer function of a MFNN as follows

where x G 3ft* and y e 3Rm are, respectively, the neural input vector and the
output vector of the network, and w G ffi1 is the weight parameter vector used
to describe the internal network structure. The purpose of weight learning
for MFNNs is to estimate the weight vectors w such that the output y(k) of
a MFNN tracks the desired output d(k] with an error that converges to zero
as k —> oo. Hence, if the weights of a MFNN are taken into account as the
unknown parameters of a nonlinear input-output system, the weight learning
problem of a MFNN can be phrased as the parameter identification process
of a nonlinear system.

In other words, if the network structure represented by the number of layers,
and the number of hidden neural units is predetermined, the implementation
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of a known task, which is either a function or input-output pattern pairs,
becomes the parameter estimation problem of finding the weight vector w
that "solves" the particular input-output mapping problem. However, if /(.)
is parameterized by the weight vector w, the equation is not linear in the
parameter vector w and thus it would seem that the well-known recursive
techniques for estimating parameters for stationary linear systems are unable
to be applied to the problem. The idea is to linearize the function f(w,x)
about the current estimate of the parameter vector w(k] to obtain a linearized
problem that we can approach with the standard techniques.

Assume that the known pattern pairs {x(k), d(k)} may be modeled using
the network given in Eqn. (5.74) as

where v(k) is a zero-mean stationary white noise disturbance. Let an estimate
of w at time k be w(k}. A simple linearization of /(.) about w(k] yields

where

is a Jacobian matrix dependent on the current estimate of the weight vector
w(k).

Define

Then, d(k), which is a linear in the unknown parameter vector w, can be
calculated at time k using the given weight vector estimate w(k). Thus, we
can apply a least squares minimization to w using the new "observed" data
d(k).

For this linearized problem, a cost function is expressed as

where a/ are the appropriate weighting factors. Minimization of E(w(k})
with respect to w yields the solution
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Let us introduce the conditional covariance matrix defined as

Then, one finally obtains (Douglas and Meng 1991)

The computational difficulty that existed in the algorithm above is the in-
version of the matrix R(k). Since the number of the weights is very large,
this calculation is almost prohibitive. However, the matrix inversion lemma
may help to simplify the computation of the LLSL algorithm described by
Eqns. (5.81)-(5.83) by reducing the order of the matrix involved in the inverse
computation. Defining the matrix P(k) — RTl(k] and the gain sequence
OL\ = Xk~l, 0 < A < 1, we may derive the following algorithm for the weight
vector updating (Singhal and Wu 1989, Douglas and Meng 1991)

where A(k) is an (ra x ra) matrix, and K(k] is an (n x m) matrix of the
filtering gains. Equations (5.84)-(5.87) are called an extended Kalman filter
(EKF), which reduces the computation of an (n x n) matrix inversion to that
of an (m x ra) matrix inversion. When ra -C n, that is, the number of the
neural outputs is much smaller than the number of the weight parameters,
the algorithm provides a significant improvement over the direct inversion of
R(k). Note that Eqn. (5.87) is similar to the weight updating equation in the
BP algorithm with the error term e(k) measured at the output layer of the
network. However, unlike the BP algorithm, this error is propagated to the
weights through the filtering gain matrix K(k), which updates each weight
through the entire gradient matrix G(k) and the conditional covariance matrix
P(fc).

5.6.2 Decomposed Extended Kalman Filter (DEKF) Learning

Since the dimension of the weight vector that consists of all the weights
of a MFNN is usually very high, an efficient approach for reducing the
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computational and storage requirements of the extended Kalman filter (EKF)-
based weight learning algorithm derived above is to decompose the weight
vector into several sub vectors as shown in Fig. 5.8. The decomposed extended
Kalman filter (DEKF) algorithm will be used in this section to perform the
weight learning algorithm of MFNNs.

Let the network contain Nn neurons. Naturally, it is easy to group the
input weights of a neuron as a sub-vector. Then, the weight vector w in
Eqns. (5.84)-(5.87) may be divided into several groups

where

is the total number of the weights involved in the network. Then, the decom-
posed extended Kalman filtering (DEKF) equations may be obtained from the

Figure 5.8 Weight learning by the decomposed extended Kalman filter (DEKF),
Eqns. (5.89)-(5.92).
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standard EKF formulations given in Eqns. (5.84)-(5.87) as follows

where Gi(k) are (n» x m), (1 < i < Nn) matrices of the filtering gains
and Pij(k) = (Pji(k}}T are (HI x rij] matrices of the error covariance
between the estimations Wi(k) and Wj(k). A comparison of the EKF and
DEKF shows that even if the storage requirements for the error covariance
matrices P^ (k} are the same, each step of the learning algorithm requires
O(n(n + l)/2) storage for the P{j matrices, whereas the DEKF algorithm
avoids the multiplications of the matrices with very high dimensions at every
iteration.

If the error covariance matrices Pij (k} of the estimations Wi (k} and Wj (k}
are neglected in the iterative procedure, the neuron-decoupled EKF, or the
NDEKF formulations, may be obtained from the DEKF as follows

where Pj(fc) = Pu(k) are the (rii x m) matrices of the error variance of
the estimations Wi(k). It is obvious that the NDEKF algorithm requires
0(X^i rii(ni + l)/2) storage for the Pi(k) matrices. It is easy to verify
that
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for Nn > 1. Thus

Hence, the computational and storage requirements of the NDEKF are signif-
icantly less than those of the DEKF, but the cost associated with this reduction
is a decrease in the accuracy of the recursive learning algorithm.

It is known that the NDEKF learning algorithm is a type of partial decoupled
algorithm in which the interactions between the neurons of each layer are
still considered in the updating process. Furthermore, in order to achieve
fully decoupled learning for each weight of the MFNN, a simple and natural
extension based on the parallel feature of the BP algorithm is assumed where
the error covariance pij (k] of the weights Wi(k) and Wj(k) is neglected in the
NDEKF algorithm. Another approximate weight-decoupled EKF (WDEKF)
may be derived from the NDEKF formulations given in Eqns. (5.93)-(5.96)
as follows

where Hiv(k) is the learning rate of the weight u^ at time k with respect to
the i>th output error, Oy(fc) are the central adjustment parameters, pi(k) are
the variances of the weights u>i(k), and all iterative variables are scalars. In
addition to the advantages associated with the computation and storage, the
other attractive feature of the WDEKF is that it can be integrated into the
parallel structure of the network similar to the conventional backpropagation
algorithm. The WDEKF algorithm is, of course, computationally more com-
plex than the gradient-search-based backpropagation algorithm. However,
the convergence rate of the former is much faster than that of the latter. This
characteristic of the WDEKF algorithm is very useful in real-time applica-
tions of neural networks such as neural identification and control problems.



208 ADVANCED METHODS FOR LEARNING AND ADAPTATION IN MFNNs

Equation (5.97) is similar to the weight updating equation of the conventional
BP learning algorithm, which is a learning algorithm with a constant learning
rate. In the course of numerical simulations with the conventional BP algo-
rithm, it becomes clear that the learning rate p is critical. If p is too large,
the algorithm will not converge, while if // is too small, the convergence will
be too slow to be practical. The \YDEKF learning algorithm overcomes this
difficulty by using a varying learning rate that is adjusted adaptively to reach
the optimal value at each instant. In other words, the WDEKF may be treated
as a type of the BP algorithm with an optimal learning rate.

5.7 TAPPED DELAY LINE NEURAL NETWORKS (TDLNNs)

The so-called tapped delay line neural networks (TDLNNs) consist of MFNNs
and some time delay operators as shown in Fig. 5.9. Let y(k) G 3ft be an
internal state variable at the time instant k. The delayed states y(k},y(k —
1) , . . . , 2/ (fc — ra) are used as inputs of a TDLNN. The various type of TDLNNs
can be further defined on the basis of specified applications.

For time series analysis, the one-step and g-step prediction equations of the
TDLNNs, as shown in Fig. 5.9, can be given as follows:

(i) One-step prediction:

(2) g-step prediction:

In these equations F(.} is a continuous and differentiate function that may
be obtained from the operation equation of the MFNN given in Section 5.6.
The input components of the neural networks are the time-delayed versions
of the outputs of the networks. In this case, Eqns. (5.103) and (5.104)
represent, respectively, a one-step-ahead nonlinear predictor and a g-steps-
ahead nonlinear predictor. For identification and control applications, the
input-output equations of TDLNNs with relative degree one and q steps as
illustrated in Fig. 5.10 are

and

respectively, where the inputs to the networks are the time-delayed terms
of the neural outputs and the current neural inputs. These neural network



5.7 TAPPED DELAY LINE NEURAL NETWORKS (TDLNNs) 209

Figure 5.9 Tapped delay line neural networks (TDLNNs) for time series analysis.
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Figure 5.10 Tapped delay line neural networks (TDLNNs) for identification and
control.
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structures have the potential to represent a class of nonlinear input-output
mappings of unknown nonlinear systems or communication channels without
internal dynamics, and have been successfully applied to the design of adaptive
control systems (Narendra and Parthasarathy 1990). Because there are no state
feedback connections in the network, the static backpropagation (BP) learning
algorithm may be used to train the TDLNN so that the processes of system
modeling or function approximation are carried out.

5.8 APPLICATIONS OF TDLNNs FOR ADAPTIVE CONTROL
SYSTEMS

Consider a single-input/single-output (SISO) unknown nonlinear system that
has the following input-output equation expressed in a canonical form

where x(k) = [yp(k] ••• yp(k — n}u(k — l} ••• u(k — m}]T is a state vector,
and /(.) is an unknown nonlinear function that satisfies df(x,u)/du ^ 0.
The canonical form of Eqn. (5.107) represents a general class of input-
output nonlinear systems without the internal dynamics. For a desired output
yd(k], some control schemes for the purpose of adaptive output tracking using
TDLNNs are now discussed.

In direct inverse control (DIG), as shown in Fig. 5.11, the input-output
equation of the TDLNN that produces the control signal to the system is

where r(k + 1) is a reference input defined by

Let the nonlinear mapping F(.} be trained to approximate the inverse system
of the unknown nonlinear system, that is

where fu
l(x, r) satisfies
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Figure 5.11 Direct inverse control (DIG) using tapped delay line neural network
(TDLNN).

Then

The output tracking control can be accomplished as long as the parameters
(3i, i — 1 , . . . , 7 are chosen so that the roots of the characteristic equation

lie inside the unit circle. If one chooses all fy = 0, i = 1 ,2 , . . . ,7, then
Eqn. (5.109) becomes

which describes an output deadbeat response. In terms of robustness, the
deadbeat response is not a good choice although the closed-loop response
of such a system is the fastest achievable closed-loop response in terms of
tracking the desired output yd(k] (Isermann 1989).

Furthermore, the error index used to train the TDLNN is defined as
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The partial derivative of E(k) with respect to the weight vector is

If the sign of the dyp/du is known, the BP learning algorithm may be applied
to train the TDLNN so that the output tracking control is accomplished.
Although TDLNN's simpler structure and a need for less computation are
significant advantages for the direct inverse control (DIG) scheme, this method
needs more a priori knowledge about the unknown plant.

An indirect inverse control (IIC) scheme is shown in Fig. 5.12. The input-
output equation of the TDLNN is

Let the TDLNN be used to approximate the unknown plant through a
weight learning process:

Figure 5.12 Indirect inverse control (IIC) using TDLNN.
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The controller may then be obtained by inverting the TDLNN equation as
follows

which, implicitly, is the inverse of the input-output equation of the TDLNN
with respect to the current control u(k). Let the reference input r(k + 1) be
designed as

where the parameters /%, i = 1,... ,7 are chosen so that the roots of the
characteristic equation

lie inside the unit circle. Substituting Eqn. (5.115) in Eqn. (5.113) yields

that is

On the other hand, if the output yp(k) of the unknown plant is approximated
by the output yn(k) of the TDLNN through a learning process

then the output tracking error of the unknown plant with respect to the desired
output satisfies

In this case, the error index is represented as
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5.9 CONCLUDING REMARKS

In this chapter we have provided a more comprehensive view of neural network
structures and learning algorithms. Generally speaking, neural network ar-
chitectures can be used to solve a variety of problems. However, each class of
problems that needs to be solved requires a different architecture and learning
approach. The exposition in this chapter has focused on some new learning
algorithms as extensions and additions to the commonly used BP learning
algorithm. Different error measure criteria, neural network pruning through
sensitivity calculations, second-order optimization learning algorithms, and
tapped delay line neural network structures are some of the important top-
ics that were discussed in this chapter. Some of these discussions may lead
to a better design of learning algorithms for situations such as incremental
learning, signal and image processing, and adaptive control systems (Brown
and Card 2001, Card 2001, Fernandez et al. 2001, Fu 2001, Fujimori 2001b,
Homma and Gupta 2002a, Hoya and Chambers 2001, Hyvarinen 2001, Hy-
varinen et al. 2001, Hyvarinen and Oja 1997, Iyer and Wunsch 2001, Jin
et al. 1993a, Kalman and Bertram 1960, Kim et al. 2000, Ko et al. 2000a,
2000b, Li et al. 2001, McLachlan and Peel 2000, Mozer et al. 2000, Pham
and Cardoso 2000, Wang 2000).

Problems

5.1 For the XOR network discussed in Section 4.2, define an error func-
tion in the LI norm as

Conduct a simulation process for the initial weight values used in
Section 4.2 and compare the results obtained with those presented in
Section 4.2.

5.2 Consider a two-layered neural network with a single output:

Derive the BP learning rule for the error function, called the loglike-
lihood loss or cross-entropy cost function, defined as
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5.3 For an m-layered MFNN, an exponential error function for the weight
learning is defined as

where

(a) Derive the gradient formulations

(b) Prove that

where

5.4 To minimize a function of the "energy" spent by the hidden neurons
throughout the MFNN, an error function may be defined as (Chauvin
1989)

where //i and //2 are weight coefficients. Using the gradient de-
scent algorithm, derive a weight learning algorithm and analyze the
possible advantages of the second term in the error function.

5.5 Consider a single-input/single-output (SISO) feedforward neural net-
work with the following transfer function

where w\ and w^ are, respectively, the input and output weights of
the hidden unit i, Qi is the threshold, and cr(.) is the sigmoidal function.
The cost function, which includes the term of the complexity measure,
is defined as
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where

Using the gradient descent algorithm, derive the weight updating
algorithm.

5.6 Verify the following approximate recursive form of the second-order
derivative formulation

where the second-order derivative of the sigmoidal function is ne-
glected.

5.7 Consider a MFNN with only linear output neurons. Derive the diago-
nal second-order partial derivative formulations of the error function
with respect to the output weights, that is, ̂ E/d(w\- ')2.

5.8 Consider a two-layered network given in Fig. 5.13. Let the neural
inputs and the desired neural output pairs be

(a) For given neural inputs XA-, XB, &c, and XD, calculate the
corresponding outputs;

(b) Calculate the saliency for all the weights;
(c) Remove the weight that has the smallest saliency and give

the new network structure diagram;
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Figure 5.13 Problem 5.8: a two-layered network with the neural inputs x =
[x\ X2\T and the neural output y = yi.

(d) For given inputs XA, XB, xc, and XD and the new neural
network structure derived in (c) calculate the corresponding
outputs.

5.9 Show that the optimal brain damage (OBD) method for the network
pruning may be obtained from the optimal brain surgeon (OBS)
method by neglecting the off-diagonal elements of the Hessian matrix.

5.10 Except for the quasi-Newton and conjugate gradient algorithms, give
another type of higher-order optimization methods for the weight
learning problem.

5.11 Show that in the Fletcher-Reeves conjugate gradient, if one takes

and

then,
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5.12 Consider the weight updating algorithm given by

where i < (k — 1). Give an algorithm for both the parameters QI and
0:2 such that Aw(k + 1) is not only conjugate to Aw(k] but also to
Aw(i} (Smagt 1994).

5.13 Consider a multiinput/multioutput (MIMO) linear network described
by

where y G 3ftm is the output vector, x € 3ftn is the input vector,
W e $ftmxn is the weight matrix, and v is the zero-mean stationary
white noise. Let {x(k), d(k)} be a desired task pair.
(a) Derive the recursive least squares algorithm for estimating

the matrix W;
(b) Derive the Kalman filter equation.

5.14 To simplify the linearized least squares learning (LLSL) algorithm
given in Eqns. (5.81)-(5.83), one assumes that the off-diagonal ele-
ments of the conditional variance matrix R(k) are negligible:

Give the learning formulation for each weight w^ and compare the
algorithm obtained with the WDEKF algorithm given in Eqns. (5.97)-
(5.102).

5.15 An unknown nonlinear plant to be controlled is assumed to be gov-
erned by the difference equation

Design a TDLNN to adaptive control such a nonlinear system. Show
simulation results for the system designed.
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5.16 Consider a system identification problem for the nonlinear system of
the form

where /(.) and g(.) are two continuous functions. Give a system
structure consisting of two TDLNNs for this system identification
problem.

5.17 Let the nonlinear function in the above problem be given by

and

Give the simulation results for this nonlinear system identification
problem.

5.18 An adaptive echo cancellation mechanism for a telephone system is
shown in Fig. 5.14. Let x(k) be a received signal from the channel,
and s(k) be a transmitted signal from the speaker. As the impedance
mismatch at the hybrid circuit of the system, the received signal x(k]
will be returned or reflected as an echo. The objective of the adaptive
echo cancellation is to remove the echo signal by using the output of
the echo canceller, that is

(a) Design a linear combiner for such a linear echo canceller.
Derive the training algorithm for online adaptation of the
echo canceller.

(b) Design a tapped delay line neural network (TDLNN) based
echo canceller for dealing with the nonlinear echo dynamics.

(c) Discuss the advantages of using such a neural network based
nonlinear version echo cancellation mechanism for a tele-
phone system.
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Figure 5.14 Problem 5.18: adaptive echo cancellation.

5.19 In Problem 5.18, let the nonlinear dynamics of the hybrid circuit for
generating echo is characterized by a discrete-time nonlinear model

where x(k) is the input of the echo path and r(k] is the output of
the echo path or simply echo. Design a neural network based echo
canceller for cancelling such a nonlinear echo signal.
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Radial basis Junction (RBF) neural networks have recently been studied
intensively. In addition to many applications and improvements, several
theoretical results have also been obtained. The RBF neural network has
the universal approximation ability, therefore, the RBF neural network can
be used for the interpolation problem. A Gaussian radial basis function,
an unnormalized form of the Gaussian density function, is highly nonlinear,
and it provides some good characteristics for incremental learning, and has
many well-defined mathematical features. Gaussian neural networks, which
have been found to be powerful scheme for learning complex input-output
mapping, have been used in learning, identification, equalization, and control
of nonlinear dynamic systems. In this chapter we introduce the concepts of
RBF and give some of its applications.

6.1 RADIAL BASIS FUNCTION NETWORKS (RBFNs)

6.1.1 Basic Radial Basis Function Network Models

The radial basis function network (RBFN), or the potential function network,
as an alternative to the multilayered feedforward neural networks (MFNNs),
has been studied intensively. A RBFN is a multidimensional nonlinear func-
tion mapping that depends on the distance between the input vector and the
center vector. A RBFN with an n-dimensional input x € ffl1 and a single
output y G ft can be represented, as shown in Fig. 6.1, by the weighted
summation of a finite number of radial basis functions as follows

Figure 6.1 Block diagram representation of the radial basis function network
(RBFN) with input x € $n and output y e ft.



6.1 RADIAL BASIS FUNCTION NETWORKS (RBFNs) 225

where 4>i(\\x — Cj||) is the radial basis function of x, obtained by shifting
0i(||x||) by Ci. For simplicity, it can always chosen the same type of radial
basis function <p f°r all weighted summation given in the above, therefore,
Eqn. (6.1) can be rewritten as

In this equation 0(.) is an arbitrary nonlinear function, \\.\\ denotes a norm that
is usually assumed to be Euclidean, the known vectors Q G 3£n are viewed as
the centers of the radial basis functions, and uj is a weight parameter. For in-
stance, the radial basis function 0(| \x — Q| |), which has been used in classical
physics, has the maximum value at x = Q and decreases monotonically to
zero as \\x — Q|| approaches infinity. The term radial basis function derives
from the fact that these functions are radially symmetric; that is, each node
produces an identical output for inputs that lie at a fixed radial distance from
the center. In other words, a radial basis function <p(\\x — Q||) has the same
value for all neural inputs x that lie on a hypersphere with the center q. A
two-dimensional example is shown in Fig. 6.2a.

If the individual elements of the input vector x belong to different classes,
it is more appropriate to introduce a weighted norm (Poggio and Girosi 1990)
in the radial basis function such that the RBFN may be represented as

where Ki e ytnxn is a weight matrix and the weighted Euclidean norm is
given by

In a simple case, Ki is a diagonal matrix, Ki = diag[kn, k^,..., kin]
and the diagonal elements kij are assigned a specific weight to each input
coordinate, and the standard Euclidean norm is obtained when Ki is set to
the identity matrix. However, the radially symmetric property is no longer
true for the weighted norms. The radial basis function (RBF) produces the
same value for all inputs x that lie on a hyperellipsoid with the center q and
the axes are determined by the weight matrix Ki as shown in Fig. 6.2b for a
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Figure 6.2 A two-dimensional example for || x — c \\2 and || x — c \2-^.

two-dimensional example. The introduction of the concept of the weighted
norm plays a critical role whenever different types of inputs are presented.

Like the MFNNs, the RBFNs can be used for both classification and func-
tional approximation. A simple classification example is given in Fig. 6.3,
where three classes of patterns can be effectively classified using a single
linear radial basis function neural unit

and the decision functions are easily obtained as

where c is selected as the center of the patterns, and decision radii r\ and r%
are appropriately valued to produce the circular decision boundaries as shown
in Fig. 6.3. However, a conventional single neuron with a sigmoidal activation
function will not be able to carry out such a classification task.

For the case of multiple-output, the RBFN given by Eqn. (6.2) can be
extended as
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Figure 6.3 An example of a two-dimensional classification example problem us-
ing RBF neural units.

or a vector form

where

6.1.2 RBFNs and Interpolation Problem

The radial basis function (RBFN) can naturally be derived from the classic
interpolation problem. The RBFN is one of the possible solutions to the real
multivariable interpolation problem for data that are nonuniformly sampled.
Mathematically, this problem can be stated as follows:

Given n different points {xi G 5RP, i = 1, 2 , . . . , n} and n real numbers
{yi G 3ft, i = 1 ,2 , . . . , n}, find a function f : 3ftn —>• 3ft such that the
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following interpolation conditions are satisfied:

In fact, the radial basis function (RBF) expansion given in Eqn. (6.2) may be
used to solve this problem. Let

Then, the interpolation conditions of Eqn. (6.7) may be interpreted as

where

Also, let

and

be the desired value vector, the weight vector, and the interpolation matrix,
respectively. Then, Eqn. (6.7) in a compact form is expressed as

A necessary and sufficient condition to solve the interpolation problem is the
invertibility of the matrix 4>. Hence, if we can suitably select the radial basis
function </>(.) such that $ is nonsingular, then the solution of the weight vector
w is obtained as
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Fortunately, the previous results due to Micchelli (1986) have shown that for
n distinct points x\, X2, • •., xn £ ^R.p, the following classes of radial basis
functions, as shown in Fig. 6.4, may guarantee the nonsingularity of <fr:
(i) Gaussian radial basis function:

(ii) Multiquadratic radial basis function:

(iii) Inverse multiquadratic radial basis function:

(iv) Thin plate splines radial basis function:

(v) Cubic splines radial basis function:

(vi) Linear splines radial basis function:

Functions given in Eqns. (6.12)-(6.17) can be used in practice for data
interpolation by means of the RBF given in Eqn. (6.8). In particular, in a
one-dimensional linear case, the Eqn. (6.17) RBF corresponds to piecewise
linear interpolation; that is, the simplest case of spline interpolation. The
function given in Eqn. (6.13) is multiquadric for /3 = ^, while the function
given in Eqn. (6.14) is inverse multiquadric for a =^. More recently, Light
(1992) proved that for the Gaussian radial basis function given in Eqn. (6.12)
and the inverse multiquadric function

the interpolation matrix is not only nonsingular but is also a positive definite
function. However, there exists a problem of selecting the parameters in these
radial basis functions.
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Figure 6.4 Radial basis functions that guarantee the nonsingularity of <l> in
Eqn. (6.11).
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Example 6.1 In this example we consider a two-variable XOR problem using
the RBFN with the linear radial basis function (RBF) </>(r) = r.

The RBF network with four linear radial basis functions, as shown in
Fig. 6.5, is assumed to be of the following form:

The four binary input vectors and the associated output vector are

and

respectively. Correspondingly, the center parameter vectors in the linear radial
basis functions are selected as

Figure 6.5 Example 6.1: a radial basis function network (RBFN) for the two-
variable XOR problem.
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111 this case, the interpolation matrix <I> may be calculated as

It is easy to verify that the 4 x 4 matrix 3> is nonsingular. Thus, the weight
vector w ~ \w\ w^ w^ W4\T may be solved by the matrix equation

that is

which yields

6.1.3 Solving Overdetermined Equations

Determining the proper number of hidden nodes and their specific locations
is of fundamental importance since they provide the basis to the interpolation
problem. As discussed in Example 6.1, the obvious choice for a RBF is to
place the center vectors of the radial basis functions on every known point
such that 3> is a nonsingular square matrix. Thus, an exact problem with the
weight parameters whose number is the same as that of the equations can be
easily solved.

It can be seen easily that, if the number n of the sample points is very
large, the above method is somewhat unrealistic (Lee and Kil 1991). In
this case, this scheme will encounter some limitations due to the speed and
memory problems in computer simulations, also due to hardware restrictions
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in VLSI implementations. Hence, it is of interest to study the problem for
using as small as possible the number of radial basis functions for solving the
interpolation problem. In this case, let

and

where

For a set of known Q e 3ftp, (i = 1, 2 , . . . , m), the interpolation problem may
be redescribed as a solution of the following equation:

The question is whether and how, for a given y, we can adjust <I> to find an
exact solution for w satisfying Eqn. (6.22) or an optimal solution minimizing
the error

In the case when m > n, there always exists one or more exact solutions
for w that satisfies Eqn. (6.22); this is because of the properties of the radial
basis function </>(.). However, the condition m > n is unrealistic since n is
usually selected very large for the minimization of the interpolation errors.
For m < n, Eqn. (6.22) represents an over-determined set of equations in
the sense that there are more data points than the weighted parameters to be
determined. The existence condition of the exact solution that depends on
both the matrix <fr and the vector y may be given as

Whether <I> can be chosen to satisfy this condition, by adjusting the parameter
vectors Q, is a problem that needs to be further studied.

In fact, the condition in Eqn. (6.24) is equivalent to the condition that y is
embedded in the subspace S^ defined by



234 RADIAL BASIS FUNCTION NEURAL NETWORKS

where 0^ — [<f>n $& • • • 0;n]
T e 3^n. In other words, the solvability condition

requires that y lies in the linear subspace spanned by the column vectors <$,
i — 1 ,2 , . . . , ra. However, there exists the possibility that an adjustment of
the center parameter vectors Q in the radial basis functions may provide the
setting of <&, i = 1 ,2 , . . . , m such that y is embedded in S<f>. In this case,
the solutions of the weight vector w may be given by the following recursive
formulations (Barmann and Biegler-Konig 1992)

where < •, • > represents the inner product of the two vectors, and

This algorithm is called the projection method. The computational procedure
has to be started recursively from the first component of the weight vector w.
Alternatively, an iterative version of this algorithm may be given as follows

with the initial condition m,(0) = 0 for all j = 1 , 2 , . . . , m. It is easy to see
that this algorithm will converge at least linearly to the projection solution
given above.

Note that with fixed 0i5 i = 1 , 2 , . . . , m, y € 8$ implies that no exact
solution for w exists. Alternatively, the optimal solution iif that minimizes
the error given in Eqn. (6.23) can be obtained by projecting y onto ̂  such
that

and

where 3>+ represents the generalized inverse of $ given by
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and P is the projection matrix described by

To avoid a direct computation for the matrix inversion that is involved in
the generalized inverse <I>+ given above, an effective and straightforward
algorithm is the singular-value decomposition. The detailed procedure of
this algorithm may be found in the text books on matrix analysis (Horn and
Johnson 1985) and signal processing (Haykin 1991).

6.2 GAUSSIAN RADIAL BASIS FUNCTION NEURAL
NETWORKS

6.2.1 Gaussian RBF Network Model

A Gaussian radial basis function neural network, or simply the Gaussian
neural network, which consists of an unnormalized form of Gaussian density
function given by

is the most important class network of the RBFNs. As shown in Fig. 6.6, a
Gaussian function which is bounded, strictly positive and continuous on 9?1,
has a peak at the center r = 0, and decreases monotonically as the distance
from the center increases. Note also that the Gaussian radial basis function

Figure 6.6 Gaussian radial basis function f(x] = exp(—|[(x — c)/cr]2) with
c = 2 and various values of a, (a = 1, 2,3,4).
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has a separable nonlinearity, that is

or any intermediate combination of such terms, so that instead of computing
a single nonlinear transform of the entire input vector, individual subspaces
of 5ftn may be transformed separately, and then multiplied to obtain the final
expression. The Gaussian networks are highly nonlinear and provide good
locality for incremental learning. It has been proved that Gaussian networks
have many well-defined mathematical features and can be used in the learning
and control of nonlinear dynamic systems, and as some powerful schemes
for modeling complex input-output mappings. Moreover, these properties
make the Gaussian networks particularly amenable for their implementation
in parallel analog hardware.

A typical Gaussian network is a three-stage network with an input stage,
an intermediate stage of Gaussian units and an output stage of conventional
summation units as shown in Fig. 6.7. A block diagram showing the input-
output of the Gaussian RBF is shown in Fig. 6.8.

Let x — [xi X2 ... xn]
T and y = [y\ y^ ... ym]T be the input and output

of the network, respectively, and u = \u\u-2 ... UI]T be the I outputs of the i
Gaussian units. A Gaussian radial basis function $ with a weighted norm is
defined by

where

with

and Ci € 5ftn and Hi e ?R.nxn represent, respectively, the mean vector and the
shape matrix defined by the inverse of the covariance matrix of the ith radial
basis function.

Furthermore, d(x, Q, Hi) can be rewritten in an expanded form

where QJ is the jth element of Q, and hijk is the (j, fc)th element of Hi.



6.2 GAUSSIAN RADIAL BASIS FUNCTION NEURAL NETWORKS 237

Figure 6.7 The schematic diagram of a Gaussian radial basis function neural
network (GRBF-NN).
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Figure 6.8 A block diagram of the input and output of a Gaussian RBF neural
network.

Without loss of generality, hijk can be represented as the ratio of the
correlation coefficient kijk and the product of the marginal standard deviations
aij and &ik. Thus

where cr^ is positive real number, and kijk — 1 for j = k, and \kijk < 1,

jVfc.
Instead of using the general form of hijk given by Eqn. (6.40), we may

simply assume that the shaping matrix Hi is positive diagonal; that is

where of- is the variance for controlling the width of the Gaussian function.
Therefore, the input-output relationship of a Gaussian neural network that
might have multiple outputs is described by

and

where HI is the output of the ith hidden Gaussian neuron described by a
Gaussian function that forms a hyperellipsoid in the n-dimensional space 9?1
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rather than a hyperplane; Q/- and o?k are respectively, the center and variance
parameters, of the ^th Gaussian function, which determine the geometric shape
and position of the hyperellipsoid in 3^; and i is the number of the Gaussian
neurons. As seen above, the intermediate stage in a Gaussian network consists
of an array of nodes Q that contain some parameter vectors called centers.
These intermediate nodes calculate the weighted Euclidean distance between
the center and the network input vector and the result is passed through a
Gaussian function. The output stage of the neuron is just a set of linear
combiners.

Using the notation of the variance matrices defined as

Eqns. (6.42) and (6.43) may be rewritten as

and

6.2.2 Gaussian RBF Networks as Universal Approximator

The approximation capability of such a Gaussian RBF network has been
addressed using the multipoint interpolation approximation technique in the
previous section. However, this issue is discussed extensively in Chapter 7
using the well-known Stone-Weierstrass theorem, which is a basis theorem
of functional analysis and approximation theory. A practical statement of the
theorem is given in Theorem 6.1.

Theorem 6.1 [Stone-Weierstrass Theorem II (Ray 1988)] Let S be a com-
pact set with n dimensions, and Q D C[S] be a set of continuous real-valued
functions on S satisfying the conditions:

(i) Identity function: The constant function f ( x ) = 1 is in £1;

(ii) Separability: For any two points x\, x% G S and x\ 7^ a?2, there exists
a f <E O such that f ( x \ ] ^ f(x^);



240 RADIAL BASIS FUNCTION NEURAL NETWORKS

(Hi) Algebraic closure: For any /, g G 17 and a, (3 G 3£, the functions f g
and (af + (3g} are in 17.

Then, 17 w dense in C[S]. In other words, for any e > 0 and any function
g G C[S], there is a Junction / G 17 swc/z ?/zo?

for all x £ S.

To ensure the function approximation capability of the Gaussian RBF
networks using the Stone-Weierstrass theorem, one has to verify that the
networks satisfy conditions (i)-(iii).

Note that the fact that exponential function can process the multiplication
into addition as follows:

Hence, it can be verified that the Gaussian RBF network satisfies the Stone-
Weierstrass theorem.

Theorem 6.2 Let 17 be the set of all functions that can be computed by
Gaussian RBF neural network on a compact set S D R1:

Then 17 is dense in C[S}.

Proof: The function f ( x ] — 1 belongs to 17 since it can be considered as
a Gaussian function with infinite variance <r, and for any distinct points x
and y G S, we can obviously verify that f ( x ) ^ f(y] since the exponential
function is strictly monotonic. Furthermore, we can show that the product of
two of the elements of 17 yields another element of 17. Let / and g be two
functions in 17 and be represented by the Gaussian functions as
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and

Since

where

Hence, the product fg is in £7 so that the Gaussian RBF neural network
satisfies the Stone-Weierstrass theorem. It follows that Q is dense in C[S].
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For the other choices of the radial basis functions given in the preceding
section, it can be shown that the resulting RBFNs do not satisfy the alge-
braic closure condition required by the Stone-Weierstrass theorem. Thus,
the approximation capability of this class of the RBFNs cannot be ensured
using the theorem. However, we have demonstrated their ability for solving
interpolation problems in the last section.

6.3 LEARNING ALGORITHMS FOR GAUSSIAN RBF NEURAL
NETWORKS

It has been shown that the Gaussian RBF neural networks are capable of
uniformly approximating arbitrary continuous functions defined on a compact
set to satisfy a given approximation error. This approximation process is
usually carried out by a learning phase where the number of hidden nodes and
the network parameters are appropriately adjusted so that the approximation
error is minimized. There are a variety of approaches for using the Gaussian
networks. Most of them start by breaking the problem into two stages:
learning in the intermediate stage, that is, adjusting the center and variance
parameters, followed by learning or adjusting the weight parameters of the
linear combiners in the output stage. Learning in the intermediate stage
is typically performed using the clustering algorithm, while learning in the
output stage is a supervised learning. Once an initial solution is found using
this approach, a supervised learning algorithm is sometimes applied to both
stages simultaneously to update the parameters of the network.

6.3.1 K-Means Clustering-Based Learning Procedures in
Gaussian RBF Neural Network

Numerous clustering algorithms can be used in the intermediate stage for
determining the center parameter vectors Q. The simplest way is to choose
these vectors randomly from the set of the learning data. However, this must
be done in such a way that the number of the hidden Gaussian units must be
relatively large to cover the input pattern domain. One of the most popular
choices is .ff-means clustering, which has been widely accepted because of its
simplicity and ability to produce good results. The basic idea of this algorithm
is to group the learning data into some subsets or clusters and further select
the centers according to the natural measure of the attracting centers in the
sense of the Euclidean distance. Each cluster center is associated with one
of the hidden Gaussian units. Next, let us examine not only the original
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Table 6.1 K-means clustering algorithm for Gaussian RBF

Step 1: Select the number I < m of the clusters;
Step 2: Take the first i learning data x\, x%, • • . , xg as the center

vectors:

Step 3: Assign Xi (i = t + 1, i + 2 , . . . , m) to one of the clusters
with the least distance criterion; that is, Xi belongs to the j*th
cluster if

Step 4: Recompute the center vectors using the new mean, that is

where m,j is the number of the learning data belonging to the
jth cluster Cj.

K-means clustering algorithm but also some modified versions proposed
relatively recently.

Given m data xi, x%, ..., xm G 3ftn, the standard K-means clustering for
the Gaussian networks is as given in Table 6.1.

The initial selection of the centers of the clusters dealt with in Step 2 may
also be carried out by randomly choosing t data from the data domain. As
soon as the clustering algorithm is complete, the variance or width parameters
may be taken into account. These parameters control the amount of overlap
of the radial basis functions as well as the network generalizations. A small
value yields a rapidly decreasing function, whereas a large value results in a
more gently varying function. Although they can be determined in a variety
of ways, the most common one is to make them equal to the average distance
between the cluster centers and the data; that is
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where Xkj is the jth component of x^. They represent a measure of the spread
of the data associated with each node.

It is to be noted that the problem existing in the K-meaning clustering
described above is that the data points that belong to the old clusters may
not be in the corresponding new clusters since the centers of the clusters
are updated. A simple two-dimension example is shown in Fig. 6.9 where
the datum d\ is initially in the cluster 1, but after updating the centers it
switches to the cluster 2 since it is closest to the new center 2. The so-called
convergent K -means clustering algorithm described by Anderberg (1973) and
Spath (1980) may be used to achieve the goal that the data points are finally
in the current clusters in the sense of the nearest distance. This task is easily
carried out by adding an additional iterative process to the K-means clustering
and as is shown in Table 6.2.

Figure 6.9 An example of the K-means clustering algorithm where the datum d i
switches from the cluster 1 to cluster 2 after the centers are updated.

Table 6.2 Convergent K-means clustering algorithm

Steps 1-4: These are the same as those in the K-means clustering algo-
rithm given in Table 6.1;

Step 5: Assign xi (i = 1, 2 , . . . , n) to one of the clusters with the
nearest distance criterion;

Step 6: If at least one data point switches to another cluster, then
recompute the centers using the new mean and go to Step 5;
otherwise, stop the procedure.
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It is worth indicating that the K-means clustering is a task-independent
procedure where no error feedback or supervised function are reflected in such
an algorithm. The number of clusters in the K-means clustering is preselected;
however, the algorithm is so fast that it can be repeated using different values
of t. Some self-organizing approaches for dynamically determining (, have
also been conducted by Weymaere and Martens (1991), Lee and Kil (1991),
and Musavi et al. (1992). In fact, large number of clusters may increase the
accuracy of the learning phase, but at the cost of additional computational
requirements.

6.3.2 Supervised (Gradient Descent) Parameter Learning in
Gaussian Networks

With the center and variance parameters that are initialized to nearly optimum
values using .ff-means clustering at hand, we may use either the well-known
least mean square (LMS) or the generalized inverse methods for updating the
unknown weights that are linear in the Gaussian network as discussed in the
previous section. The learning problem in such linear combiners that finally
produce the outputs of the network has been studied extensively in the previous
sections. Furthermore, like the BP algorithm for the MFNNs, if all of the
free parameters, such as the weights, centers, and variance parameters, in the
Gaussian network are considered as the unknown parameters, we may use the
gradient descent method to form the updating equations for the parameters.

Assume that the learning task is described by the input-output data pairs
{ x ( k ) , d ( k ) } . The number of such sets of data might be either finite or
infinite. As seen in the previous sections, the first step for developing such a
gradient-descent-technique-based supervised learning procedure is to define
the instantaneous value of the cost function as follows

where

Using both the above definition and the network equations, Eqns. (6.42)-
(6.43), the following set of the updating equations for the parameters may be
obtained
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where 771, 772, and 773 are the learning rates associated with the weights,
centers, and variance parameters, respectively. The verification of the above
formulations may easily be obtained, and is left as an exercise for the reader.
The iterative process goes repeatedly around the given learning data until the
convergence values of the parameters are obtained.

An obvious drawback of this supervised algorithm for all the free param-
eters is its computational complexity compared with the clustering method
just discussed. If the parameters QP and <JJP are predetermined using K-
means clustering, only Eqn. (6.50) is required to update the weights uij. This
might reduce the learning time and avoid problems of getting trapped into the
local minima. Furthermore, the supervised learning issues and approaches
discussed in the previous chapters for feedforward neural networks are also
applicable to the learning for RBF networks, as it can also be considered as a
class of feedforward neural networks in terms of their input-output relation-
ship.

6.4 CONCLUDING REMARKS

In this chapter, we have introduced the radial basis function (RBF), another
form of feedforward neural networks, which has been proved useful for solv-
ing many engineering problems such as adaptive communication channels,
adaptive modeling, classification, and clustering problems. In particular, we
introduced the Gaussian radial basis function neural networks (GRBF-NNs)
which have, unlike the conventional multilayered feedforward neural networks
introduced in previous chapters, some impressive neural network characteris-
tics for effectively resolving many approximation, adaptive, nonlinear issues
existing in many engineering applications.
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Problems

6.1 Let a Gaussian network with an n-dimensional input x € 9^ and a
single output ?/ G 3ft be described by the following equation:

Given an input-output data pair {x(k},y(k}} (k = 1,2, . . . , n ) ,
design a learning algorithm for adjusting the center parameters QJ,
the variances cr^, and the weight parameters u>i using the gradient
descent algorithm.

6.2 Verify the supervised learning algorithm given in Section 6.3.2 for
the Gaussian networks.

6.3 Use mathematical language to show that, in the classical interpolation
problem, the radial basis function / is determined such that f(a^) =
fk where /& are some data values. Also show that, in this case,
there is exactly one linear constraint per radial basis function, and the
corresponding linear system of equations is invertible.

6.4 Show that the Gaussian radial basis function with the weighted norm
has the following separable nonlinearity

where x, c e 3£n, K e 3£nxn, and

6.5 Given six data as follows
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Let the cluster number be chosen as t = 2. Use the convergent
K-meam clustering algorithm to group these data.

6.6 Consider a conventional two-layered feedforward neural network and
a Gaussian network that have the same number of inputs, outputs,
and intermediate units. Show that the Gaussian network represents
more degree of freedom than the conventional one in terms of the
free parameters.

6.7 Show that a RBF network with a multiquadratic radial basis junction

does not satisfy algebraic closure condition required by the Stone-
Weierstrass theorem.

6.8 A generalized Gaussian radial basis function network is described by
the equation

where

Derive the learning algorithm for the network parameters uj £ 3ft,
Ci G 5Rn, and Hi € Sift™ xn by minimizing an error function.

6.9 Given a time series of y(n), y(n — 1), . . . , y(n — m + 1). Find an
input-output mapping /(.) of the prediction model for the following
optimization problem
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where

The P is a differentiable operator. Show that with an appropriate
choice of the differential operator P, we obtain the solution

where w e ̂ N~\ Cj <E ftm, and K e ftmxm.

6.10 Using the extended Kalman filtering algorithm discussed in Chapter
5, derive a learning algorithm for a Gaussian network.

6.11 For a sinusoidal radial basis function network (RBFN) of the form

(a) Discuss the universal approximation capability of the above
RBFN by using Stone-Weierstrass theorem;

(b) Derive a learning algorithm for updating the parameters of
the RBFN.

6.12 In most communication systems, channel equalizers are employed to
deal with channel characteristics that are unknown a priori and, in
many cases, time-variant and nonlinear. In such a case, the equalizers
are designed to be adjustable to the channel response and, for time-
variant and nonlinear channels, to be adaptive to the time variations
and nonlinear characteristics in the channel response. As shown in
Fig. 6.10, a neural network based adaptive equalizer is used to process
on the received signal y(k) such that the output of the equalizer
satisfies
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Figure 6.10 Problem 6.12: adaptive channel equalizer.

(a) Design a linear combiner based linear tapped delay line neu-
ral network as an adaptive equalizer and give a training equa-
tion for online adjusting the parameters;

(b) Design a Gaussian radial basis function based tapped de-
lay line neural network as an adaptive equalizer and give a
training equation for online adjusting the parameters;

(c) Discuss the advantages of using such a Gaussian radial basis
function based equalizer for a communication system.

6.13 Let the channel model in Problem 6.12 be a nonlinear system

where n(k} is a white noise with zero mean value. Train the Gaussian
radial basis function network based equalizer designed in Problem
6.12 for the equalization of such a nonlinear channel.

6.14 Many digital communication channels can usually be characterized
by a finite impulse response (FIR) filter and an additive noise source
as shown in Fig. 6.11. Let x(k) be the digital data sequence passing

Figure 6.11 Problem 6.14: Digital communication channel.
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Figure 6.12 Problem 6.14: Feedforward channel equalizer.

through the channel of FIR, and y(k) be the received digital data
sequence, which is formed by adding Gaussian random noise n(k) to
the output of the FIR. The input and output equation of such a system
is given by

where N is the length of the impulse response.
The channel equalization problem is that of using the informa-

tion present in the observed channel output y ( k ) = [y(k) y(k —
1) • • • y(k — M + l)]r to generate an estimate x(k — d), as shown
in Fig. 6.12, of the channel input x(k — d). Therefore, the objec-
tive of designing such a channel equalizer is to find the decision
function f ( y ( k ) ) . One may use a Bayesian approach to select an
optimal decision boundary that is the locus of all values of y(k] for
which the probability x(k — d) = +1 is equal to the probability that
x(k — d) = — 1, given the same values of y ( k } . Show that such
a Bayesian decision function can be described by a Gaussian radial
basis function network of the form
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where

(2nci^)Nr^Nr is a scaling factor that can be normalized to unity, and
y\ are the parameters needed to be adaptively determined.

6.15 Derive a training algorithm for updating the parameters of the
Bayesian decision function obtained in Problem 6.14.
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The functional approximation capability of a feedforward neural network
architecture is one of the most exciting properties of the neural structures
and has potentials for applications to problems such as system identification,
communication channel equalization, signal processing, control, and pattern
recognition. Since the 1990's the rigorous investigation of the approximation
capabilities of various types of multilayered feedforward architectures has
received much research interest. A feedforward network structure may be
treated as a rule for computing the output values of the neurons in the Ith
layer using the output values of the (i — l)th layer, hence implementing a
class of mapping from the input space 3ft™ to the output space 5ftm. Of interest
in this study is what type and how well the mappings from 5?1 to ?ftm can
be approximated by the network, and how many neural layers and neurons
in such layers are sufficient for this approximating process. This issue has
been investigated by many authors, including Carroll and Dickinson (1989),
Cybenko (1989), Funahashi (1989), Gallant and White (1988), Hecht-Nielsen
(1989), Hornik et al. (1989, 1990), and Hornik (1991).

For function approximation, both the series expansion approach and the
Stone-Weierstrass theorem are effective analytic tools. Hecht-Nielsen (1987,
1989) first found the relationship between Kolmogorov's theorem and the ap-
proximation principle of the feedforward networks. On the other hand, func-
tional analytic methods have been used successfully to show that feedforward
neural structures with at least one hidden layer are capable of simultaneously
approximating continuous functions in several variables and their derivatives
if the neural activation functions of the hidden neural units are differentiable.

In this chapter, the universal approximation capabilities of feedforward
neural networks are studied mainly using the well-known Stone-Weierstrass
theorem. After an introduction of this theorem in Section 7.1, the function
approximation capabilities of the trigonometric function network structures
are discussed in Section 7.2. The functional approximation capabilities of
multilayered feedforward neural networks (MFNNs) are addressed in Section
7.3. In Section 7.4, the relationships between Kolmogorov's theorem and
feedforward neural networks are presented. As alternative structures of feed-
forward neural networks, some structures of higher-order neural networks are
proposed in Section 7.5 for the purpose of universal approximation. In Sec-
tion 7.6, for the purpose of the functional approximation, a modified version
of MFNNs is also presented.

7.1 STONE-WEIERSTRASS THEOREM AND ITS
FEEDFORWARD NETWORKS

There have been attempts to find a mathematical justification for employ-
ing MFNNs for function approximation. Typical studies have dealt with



7.1 STONE-WEIERSTRASS THEOREM AND ITS FEEDFORWARD NETWORKS 255

the possibility of approximating any continuous function using MFNNs. In
mathematical terms this means that approximation can be achieved by a dense
network in the space of continuous functions defined on some subset of 3fp.
We show next that the Stone-Weierstrass theorem plays an important role
in exploring the function approximation capabilities of feedforward neural
networks.

7.1.1 Basic Definitions

As seen in the following discussion, to study the approximation capabilities
of the neural networks, we have to know some basic concepts and definitions
of functional analysis. We will now review some of the definitions that will
be used in this chapter. First, every set will be assumed to have the structure
of metric space, unless specified otherwise, and the concepts of limit point,
infimum and supremum are assumed to be known. All these definitions and
theorems can be found in any standard text on functional analysis and in many
books on approximation theory. An important concept is that of closure.

Definition 7.1 If ft is a set of elements, then by the closure [ft] of ft, we mean
the set of all points in ft together with the set of all limit points of ft.

A definition of closed sets is as follows.

Definition 7.2 A set ft is closed if it is coincident with its closure [ft].

Thus, a closed set contains all its limit points. Another important definition
related to the concept of closure is that of dense sets.

Definition 7.3 Let V be a subset of the set ft. V is dense in ft if [V] = ft.

From the approximation theory point of view, if V is dense in ft, then each
element of ft can be approximated arbitrary well by elements of V. This
denseness will play a key role in our later discussions on the approximation
capabilities of neural networks. In order to extend some properties of the real-
valued functions defined on an interval to real-valued functions defined on a
more complex metric space, it is of interest to give the following concepts.

Definition 7.4 A set is said to be compact if every infinite subset of the set
contains at least one limit point.

It can be shown that, in finite-dimensional metric space, there exists a
simple characterization of compact sets. In fact, the following theorem holds.
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Theorem 7.1 Every closed, bounded, finite-dimensional set in a metric linear
space is compact.

Furthermore, a continuous function defined on a compact set has the following
property.

Theorem 7.2 A continuous real valued function defined on a compact set in
a metric space achieves its infimum and supremum on the set.

7.1.2 Stone-Weierstrass Theorem and Approximation

The Stone-Weierstrass theorem, as a basis theorem of functional analysis and
approximation theory, has been very useful for applications to neural networks
(Cotter 1990, Hornik 1991). Two equivalent descriptions of this theorem are
as follows (Ray 1988).

Theorem 7.3 [Stone-Weierstrass Theorem I (Ray 1988)] Let S be a com-
pact set with n dimensions, and ft D C(S) be a set of continuous real-valued
functions on S satisfying the following conditions:

(i) Identity function: The constant function f ( x ) = 1 is in fJ;

(ii) Separability: For any two points xi,x% € S, and xi ^ x%, there exists
a /(.) € ft such that f(xi) ^ f(x2);

(Hi) Linear subspace: For any /, g G £7 and a € 3R, the functions (a/) and
(f + g] are in Q;

(iv) Lattice property: For any /, g € O, the Junctions (f Vg) = max(/, g},
and (f A g} — min(/, g}, are in fi.

Then, Q is dense in C[S]. In other words, for any e > 0 and any Junction
g € C[S], there is a function f G 17 such that

for all x G S.

The lattice property is somewhat difficult to verify. Consequently, a slightly
different statement of this theorem with respect to the properties of algebraic
closure is sometimes more useful in applications.

Theorem 7.4 [Stone-Weierstrass Theorem II (Ray 1988)] Let S be a com-
pact set with n dimensions, and £7 D C[S] be a set of continuous real-valued
functions on S satisfying the following conditions:
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(i) Identity function: The constant function f ( x ) = 1 is in Q;

(ii) Separability: For any two points x\, X2 G S and x\ ̂  X2, there exists
a f E ft such that f ( x i ) ^ f(x2);

(Hi) Algebraic closure: For any /, g G O and a, (3 G 9ft, the functions f g
and (af + (3g) are in ft.

Then, ft is dense in C[S].

Although the Stone-Weierstrass theorem has a potential application for con-
tinuous function approximation, many interesting functions, including step
functions, are discontinuous. These functions are members of the set of
bounded measurable functions that are continuous and bounded functions and
have a finite number of discontinuities. Fortunately, the Stone-Weierstrass
theorem can be extended to bounded measurable functions by applying the
following theorem.

Theorem 7.5 Ifg is a measurable real-valued function that is bounded almost
everywhere on a compact set S D ffl1, then, given S > 0, there is a continuous
real-valued function f on S such that the measure of the set where f is not
equal to g is less than 6

In other words, the minimum total volume of open spheres required to cover
the set where f ^ g is less than 6.

Theorem 7.5 shows that the continuous functions are dense in the space
of the bounded measurable functions on a compact set S. Generally, for a
compact set S D ffi1, the space Lp [5], 1 < p < oo, which consists of all the
real measurable Lebesgue-integrable functions with finite Lp norm, is

where Lp, 1 < p < oo, norm is defined as

Therefore, the continuous function space C[S] in the Stone-Weierstrass theo-
rem may be replaced byLp[S] so that we can consider not only the continuous
function approximation problem but also discontinuous cases.

For the applications of neural networks we have to assume that S is an
arbitrary compact set in ffl1. An important concept of the uniformly denseness
is defined as follows.
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Definition 7.5 Let S E !Rn be a compact set, and Q D C[S\ be a set of
continuous real-valued functions on S. If Q for arbitrary S is dense in C[S]
then J7 is uniformly dense in C[S].

An important consequence of the Stone-Weierstrass theorem is that the
polynomial functions are dense in C[a, &]. Since for two arbitrary sets of real
numbers c^ G 5R, (i = 1 ,2 , . . . , n) and bj £ *R, (j = 1, 2 , . . . , m), one has

where c/t is uniquely determined by <^ and bj, the product is still a polynomial
function in (7[a, 6]. Thus, the set

is dense in (7[a, &]. Indeed, let P[0, ITT] be a set of all the continuous functions
/ € C[0, 27r] satisfying /(O) = /(2?r), since

[cos(nx) + sin(nx)][cos(mx) + sm(mx}]

= cos(—nx] cos(mx) — sin(—nx) sin(rax)

+ cos(nx) sin(rax) + sin(nx) cos(mx)

— cos((m — ri)x) + sin((n + m)x]

It is easy to show that the span of (cos(nx) + sin(nx)}||^, 0 is dense in
P[0,2?r]. This property of trigonometric functions provides a foundation
for the Fourier series. Obviously, the Stone-Weierstrass theorem states the
principle for the infinitely close approximation; however, a finite number of
the terms of the sequence may be used to approximate a function over a
compact set as accurately as we desire.

7.1.3 Implications for Neural Networks

To establish the function approximation capabilities of nonlinear neural net-
works that are described by nonlinear mapping from input space to output
space directly using the Stone-Weierstrass theorem, one has to verify that the
networks satisfy the following three conditions:

(i) The ability of the approximating network to generate /(#) = 1. This
is always satisfied in many feedforward neural networks due to the
existence of the threshold parameters.



7.1 STONE-WEIERSTRASS THEOREM AND ITS FEEDFORWARD NETWORKS 259

(ii) The second condition that requires the separability of the function is
satisfied since the activation functions of the neural networks are strictly
monotonic. In fact, the neural networks generate different outputs for
different inputs.

(iii) The algebraic closure condition requires that the nonlinear mappings of
the neural networks are able to generate sums and products of functions.

If a network spans a function space that satisfies the conditions of the
Stone-Weierstrass theorem, then the network not only is able to approximate
arbitrary continuous real-valued functions on a compact set but can also
approximate the weighted sum (/ + g] and the product (fg) of arbitrary
two continuous functions, f , g , using two networks with smaller sizes. For
example, a polynomial expression may be separated into smaller terms that
can be approximated by neural networks. A simple recombination of these
networks may provide an exact approximation of the original polynomial.
Thus, the identity function condition and separability are satisfied for all the
feedforward neural structures discussed in this chapter. In fact, only the
multiplicative condition of the algebraic closure is needed to be verified for
these networks.

Since a feedforward neural structure satisfies these conditions, it can be
simply concluded that this network structure has the capability, on a compact
set, to approximate arbitrary continuous real-valued functions to any desired
degree of accuracy. However, the Stone-Weierstrass theorem gives only a set
of sufficient conditions for the universal approximation capabilities. In some
cases, even if the network transfer functions do not satisfy the conditions
given in the Stone-Weierstrass theorem, one may prove the approximation
capabilities of the networks using indirect approaches. A typical example
of this group of networks is the well-known multilayered feedforward neural
networks (MFNNs), where the function space formed by the network trans-
fer functions with sigmoidal functions such as the popular logistic function
cr(x) = 1/(1 + e~x), or the hyperbolic tangent function a(x) = tanh(x),
does not match the conditions of the theorem because the multiplication con-
dition is not satisfied; that is, the spanned function space is not algebraic.
However, as will be seen in the later discussion, the universal approximation
capabilities of this network structure may also be ensured.

Feedforward neural networks as described by nonlinear mappings from the
input pattern space to the output pattern space are said to be universal approxi-
mators in that they are capable of approximating arbitrary nonlinear functions
on compact sets to any degree of error. However, implementing such an ap-
proximation process fully depends on an effective weight learning procedure.
According to the principle offered by the Stone-Weierstrass theorem, as an-
other objective of the next several sections, we will design some feedforward
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neural network structures that are different from conventional MFNNs with
sigmoidal activation functions and that satisfy the Stone-Weierstrass theorem
so that they are also universal approximators.

7.2 TRIGONOMETRIC FUNCTION NEURAL NETWORKS

Trigonometric functions have been used extensively in Fourier series analy-
sis for representing functions in the form of trigonometric series consisting
of sines and cosines. In this section we will show that as a choice of the
nonlinear activation functions in the feedforward neural networks, trigono-
metric functions, in particular sines and cosines, may be employed in the
hidden neural units so that the resulting networks satisfy the conditions of
the Stone-Weierstrass theorem. Also, in this section studies on trigonometric
function networks will prepare us for exploring the universal approximation of
MFNNs, which are addressed in the next section. Without loss of generality,
the case of a single output is discussed. However, extension of the results to
networks with multiple outputs is straightforward.

By the basic trigonometric system, we mean the system of functions

All these functions have the common period 2?r.
A two-layered trigonometric network with a single hidden layer, as shown

in Fig. 7.1, is described by the following input-output transfer function

which is obtained by replacing the sigmoid function with a trigonometric func-
tion (f>(x) in the conventional two-layered neural network. The trigonometric
activation function 4>i may be chosen as

(i) All 4>i(x] — cos(x) (cosine network);
(ii) All 4>i(x] — sin(x) (sine network);

(iii) (f>i(x} = cos(x) or sin(x) (trigonometric network).

Trigonometric functions can process signals by transforming multiplication
into addition with the following familiar trigonometric formulas
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Figure 7.1 Block diagram of the trigonometric neural network, Eqn. (7.1).

Hence, the following theorem of the trigonometric network given in Eqn. (7.1)
ensures the universal approximation capability.

Theorem 7.6 Let Q be the set of all the functions that can be represented by
the trigonometric networks on a compact set S D 3?1:

Then, fi is dense in C[S}.

The proof of Theorem 7.6 is easy and is left as an exercise for the readers.
Trigonometric networks are a typical class of feedforward neural networks

with nonsigmoidal functions. A comparison of the classical trigonometric se-
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lies expansion and the network expression of a continuous function indicates
that the trigonometric network is more flexible and useful for many applica-
tions since the restriction of the periodic property of the function is removed,
and the coefficients of the trigonometric series have to be solved analytically
using the function to be approximated while the weights of the network can
be determined through a learning process.

The trigonometric activation functions used in the trigonometric networks
are well defined on the real axis in the sense of the continuity and differentiable
property. Having a closer look at these functions in an interval with only a
half period reveals that some similarities exit such as the characteristics of
nondecreasing and the boundedness between the trigonometric functions and
the sigmoidal functions used in MFNNs. The concept of the squashing
functions introduced by Hornik et al. (1989) may generalize the group of
the sigmoidal functions that are assumed to be continuous and differentiable.
For convenience, we will consider the bipolar squashing functions, which are
formally defined as follows.

Definition 7.6 A function ijj : !R —> [—1,1] is a squashing function if it is
nondecreasing and satisfies

Squashing functions have at the most countable discontinuities that are mea-
surable. In addition to the sigmoidal functions, which are obviously squashing
functions, some other examples of squashing functions are the signum func-
tion sgn(x) defined by

and the saturating function Sat(x) defined by

Trigonometric functions defined on the whole real axis do not belong to the
group of squashing functions. However, because of their periodic property,
they may be used to form a new class of squashing functions as seen in the
following discussion.

The Fourier network is a direct extension of the cosine network. It is
another two-layered network with a nonsigmoidal function and was proposed
by Gallant and White (1988) who implemented the Fourier series in the
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network structure. The activation function in the original Fourier networks
was obtained by chopping the sinusoids into halfcycle sections and adding flat
trails. The resulting function is called a bipolar sigmoidal cosine activation
function. Fourier neural networks with a bipolar activation function may be
represented, therefore, by

where -0(.) is a sigmoidal cosine squashing function, as shown in Fig. 7.2,
with the form

A slightly modified version of the sigmoidal cosine squashing function
ip(x) is a cosine squashing function, called a cosig function (Cotter 1990)

Figure 7.2 Sigmoidal cosine squashing function ip(x), Eqn. (7.6).
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Figure 7.3 Cosine squashing function cosig(x), Eqn. (7.7).

which is shown in Fig. 7.3.
Corresponding to the cosig activation function, a two-layered cosig network

is given by

which deals with only the left-half set of functions computed by the Fourier
neural networks given in Eqn. (7.5).

Theorem 7.7 Let O be the set of all the functions that can be represented
by either the Fourier neural network or the cosig network on a compact set
S D !Jftn, then £1 is uniformly dense in C[S\.

Proof: We only prove the denseness of the Fourier neural network here. In
this case, the set 17/y is defined as

where the function ip is given by Eqn. (7.6). Obviously, f ( x ) — 1 is an
element of the set 17AT.
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Now consider two arbitrary functions in fi^-

Then, for the arbitrary constants a and (3 G 3ft, af + (3g € fi. Furthermore,
noting the definition of the function tp(x), the product of V;(x) and V ;(2/)»
i{)(x)if)(y), can be expressed as
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where z\ = x + y and z^ = x — y. Therefore

where the parameters Uj, lu^, Oi and TV are uniquely determined by the
networks of f ( x ) and g(x). Therefore, from the Stone-Weierstrass theorem,
the set H = y QN is uniformly dense in C[S].

The critical step in the proof of Theorem 7.7 is to verify the multiplicative
condition. A similar approach may be employed to prove the denseness of
the cosig networks. It seems that the approach used in this proof provides
a basic procedure for showing that a neural network that satisfies the Stone-
Weierstrass theorem has the universal approximation capability. Both the
cosine squashing functions ^(x) and cosig(x) are nondecreasing and satisfy

and

The performance of such networks is very similar to that of three-layered
neural networks with sigmoidal functions. This important observation will
help us to establish the function approximation capabilities of the MFNNs in
the next section.

7.3 MFNNs AS UNIVERSAL APPROXIMATORS

The commonly used two-layered feedforward neural network with a con-
tinuous sigmoidal function does not satisfy the Stone-Weierstrass theorem
because the multiplicative condition fails. Hence, the denseness of such a
feedforward neural network cannot be immediately implied using the Stone-
Weierstrass theorem. Using the functional analysis methods, the capabilities
of MFNNs may be addressed in a constructive way. These analysis proce-
dures, however, require more mathematical explanation. The scope of all these
proofs is too ambitious, even if some significant proofs are worth reviewing.
In particular, the Hornik et al. proof (1989) used the trigonometric networks as
an intermediate tool to study the problem. However, trigonometric networks
are not the unique choice for the basis functions as pointed by Blum and Li
(1991). Chebyshev polynomials may replace the trigonometric functions as
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the basis functions. Blum and Li (1991) addressed the approximation of real
functions by feedforward neural networks based on the fundamental princi-
ple of approximation by piecewise-constant function. Other approaches to
the approximation problem by feedforward neural networks may be found in
Cybenko (1989), Lapedes and Farber (1987), and Funahashi (1989). All of
these studies used semilinear units and, for the most part, monotonic threshold
functions. The proofs are nonconstructive in a simple way, since they depend
on the Fourier transformation, Radon transforms, the Hahn-Banach theorem,
and so on.

7.3.1 Sketch Proof for Two-Layered Networks

In this section the approximation capabilities of MFNNs will be presented us-
ing the denseness of the cosig network presented above. Hornik et al. (1989)
proposed an elegant approach to indirectly prove the denseness of the space
spanned by two-layered networks with sigmoidal functions in continuous
function space. The first step shows that a single-variable cosine squasher
function can be uniformly approximated by a single-input, two-layered net-
work with a sigmoidal function. In the second step, one proves that the
arbitrary cosig network discussed above can be uniformly approximated by
a two-layered network with a sigmoidal function. Finally, the denseness of
the space spanned by the cosig network, as was shown above, implies the
denseness of the space of the two-layered networks with sigmoidal functions.
We will now outline a proof that is based mainly on the work of Hornik et
al. (1989), starting from the following lemma with a more readable descrip-
tion.

Lemma 7.1 Let a : ^ —>• [—1,1] be a sigmoidal function and cosig : $1 —»
[—1,1] be a cosine squashing function defined in Eqn. (7.7). For every e > 0
there exists a two-layered network

such that

Proof: For an arbitrary e > 0, without the loss of generality, assume e < 1.
We will now find a finite collection of constants KJ, Wi, and Oi such that
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Select N such that 1/(N + 1) < e/2. For i e {1,2, . . . , TV}, set

Choose M > 0 such that a(-M) < e/1(N + 1) and cr(M) > [1 - £/2(N +
1)]. Because <r(.) is a sigmoidal function such an M can be found as shown
in Fig. 7.4. Furthermore, for the i G {1,2, . . . , TV} set

and

Since cosig(.}, as shown in Fig. 7.4, is a continuous squashing function, such
TJ values exist.

Next, a choice of the constants Wi and Oi is given. Let

and

Then, a unique set of Wi and Oi may be determined using these two equations
as follows:

It is easy to verify that for Ui, Wi and Oi given in Eqns. (7.19) and (7.20)

on each of the intervals (—00, TI], (n,^], . . . , (rjv,rjv+i], (rjv+i,+oo).

Lemma 7.1 not only shows the capability of the two-layered networks
for approximating a cosig function that is a special class of the squashing
functions but also gives an analytic formulation for selecting the number of
the hidden units for a desired degree of approximation. Next, using the results
obtained in Lemma 7.1, we will show that an arbitrary cosig network may be
uniformly approximated by a two-layered network with a sigmoidal function.
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Figure 7.4 Choice of the constant used in the proof of Lemma 7.1.
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Lemma 7.2 Let x e $tn, be an arbitrary two-layered cosig network

and a : 3ft —> [—1,1] be a squashing function. For every e > 0 and an
arbitrary compact set S D JJ™, there is a two-layered feedforward network

such that

Proof: Since S is a compact set and N is finite, there is M > 0 such that for
z e { l , 2 , . . . , A T }

From Lemma 7.1, for every e > 0, there is a set of constants m,W£, and 0^
such that

Hence

that is



7.3 MFNNs AS UNIVERSAL APPROXIMATORS 271

Let

Then

Lemma 7.2 indicates that the function space spanned by the two-layered
networks with sigmoidal functions is uniformly dense in the cosig network
function space if both the networks are defined on a compact set. These
preliminary results allow the following main theorem to be derived.

Theorem 7.8 Let a : $R —> [—1,1] be a sigmoidal function and fJ be the
set of all functions that can be represented by a two-layered network on an
arbitrary compact set S D 3ftn:

Then fi is uniformly dense in Cffl1].

Proof: Since the function space spanned by the cosig network is uniformly
dense in C[S], and fJ is uniformly dense in the cosig network space by Lemma
7.2, the proof of the theorem is implied.

7.3.2 Approximation Using General MFNNs

The approximation capabilities of two-layered neural networks with sigmoidal
functions is ensured by Theorem 7.8. However, no information is given on the
number of the hidden units needed to achieve a satisfactory approximation
even for the continuous function that is to be approximated. On the other
hand, one may note that the continuity of the sigmoidal functions is not
necessary in the proof of Theorem 7.8. This leads to a natural extension that
the sigmoidal functions often used in conventional neural networks may be
replaced with a more general class of squashing functions for achieving the
universal approximation.
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Figure 7.5 Two-layered network with the Mc-P hidden units, Eqn. (7.23).

An interesting consequence is that the approximation using a two-layered
network (Fig. 7.5) with the hidden units of McCulloch-Pitts, called the "Mc-P
units," is easily implied. This type of feedforward neural network, called a
neural logic network may be obtained by replacing the sigmoidal function
a(x) with the signum function as follows

where the signum function sgn(.} is defined by

The network in Eqn. (7.23) consists of the hidden units of the threshold
elements that deal with a threshold logic on the real inputs x\_, #2, • • • , xn.
When the input x is restricted on a compact set in 3?1 the network is capable
of approximating any continuous function to a desired degree of accuracy.
This conclusion is summarized in the following corollary.
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Corollary 7.1 Let S D 9^n be a compact set and g € C[S] be a continuous
function. For any £ > 0, there is a two-layered network consisting ofMc-P
units in the hidden layer with the form

such that

Although two-layered networks with Mc-P hidden neurons are capable of
approximating arbitrary continuous functions, Blum and Li (1991) proved
that there is a class of piecewise constant functions which cannot be imple-
mented by a two-layered Mc-P network. Therefore, in the direct approach to
function approximation three-layered Mc-P networks with two hidden layers
are generally required. Using the results on the three-layered networks, the
approximation capabilities of the multilayered feedforward neural networks
(MFNNs) may be easily explored.

Corollary 7.2 Let S D 5ftn be a compact set and g G C[S] be a continuous
function. For any e > 0, there is a MFNN with arbitrary hidden layers and
the sigmoidal function that approximates g uniformly on S with error < e.

Proof: We need only to prove that the three-layered network

can approximate g on S with error < e.
For every £ > 0, using Theorem 7.8, there is a three-layered network

such that

for all x € S. On the other hand, the sigmoidal function a(x) is uniformly
continuous on the compact set S. Then for a given set of constants
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there are constants ̂ , and thus we may find a set of the three-layered networks

such that

and

Hence

Finally

Corollary 7.2 gives the results of the approximation capabilities of general
MFNNs with sigmoidal functions. In fact, the neural activation functions in
MFNNs may be relaxed to any continuous, bounded and nonconstant function
(Hornik 1991).

7.4 KOLMOGOROV'S THEOREM AND FEEDFORWARD
NETWORKS

Applications of Kolmogorov's superposition theorem, which is considered
as the representation of continuous functions defined on an n-dimensional
cube by sums and superpositions to feedforward neural networks, were first
studied by Hecht-Nielsen (1987, 1990). This study gives an existence of an
exact implementation of every continuous function in a structure of the three-
layered networks. As one of the pioneers in the field of neural networks,
Hecht-Nielsen gave some interpretations of the approximation principle of
Kolmogorov's theorem in terms of feedforward neural networks before some
more practical achievements of the universal approximation capabilities of
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feedforward networks were developed independently by Cybenko (1989),
Funahashi (1989), and Hornik et al. (1989). More recently, Sprecher (1993)
presented some new results that may be viewed as a stronger version of
the results obtained by Hecht-Nielsen. However, Poggio and Girosi (1989)
pointed out that the one-variable functions constructed by Kolmogorov (1957),
and its later improvements by Lorentz (1966, 1986) and Sprecher (1965),
are far from being any of the type of functions used in feedforward neural
networks.

Let / = [0,1] denote the closed unit interval and P = [0, l]n, (n > 2) be
the Cartesian product of /. The superposition theorem of Kolmogorov (1957)
established that for each integer n > 2 there are n x (In + 1) continuous
monotonically increasing function hpq, and (In + 1) continuous functions gq

which can be used to represent exactly every real-valued continuous function
/ : In — [0, l]n —> §R. The original statement of Kolmogorov is as follows.

Theorem 7.9 (Kolmogorov's Superposition Theorem) There exist a set of
increasing continuous functions hpq : I = [0,1] —> 5R such that each
continuous function f on I™ can be written in the form

where gq are the properly chosen continuous functions of one variable.

Kolmogorov's theorem shows that any continuous function of several vari-
ables can be represented exactly by means of the superposition of continuous
functions of a single variable and the operation of addition. Moreover, the
functions hpq are universal for the given dimension n; they are independent
of the given function /. Only the function ̂  is specific for the given function
/. Using the language of neural networks, we may explain Kolmogorov's
theorem as follows:

Any continuous function defined on an n-dimensional cube can be imple-
mented exactly by a two-layered feedforward network, as shown in Fig. 7.6,
which has n(2n + 1) units with the increasing continuous functions hpq :
I —> ?R in the first hidden layer and (In + 1) units with the continuous
functions gq in the second hidden layer.

The main improvements to the Kolmogorov's original theorem concentrate
on the possibility of replacing the function ̂  by a single function g (Lorentz
1962), and of transforming hpq into iphq (Sprecher 1965) as shown in Fig. 7.7.
Let H be the space with the uniform norm consisting of all nondecreasing
continuous functions on the closed interval / = [0,1] and Eft = H x • • • x H
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Figure 7.6 Systematic representation of the Kolmogorov superposition theorem
using a two-layered network structure, Eqn. (7.25).

be the kth power of space. Kahane (1975) modified Kolmogorov's theorem
using the following results.

Theorem 7.10 Lettp (p = 1 , . . . , n) be a collection of rationally independent
constants. Then for quasicollection {/ii,... ,/i2n+i} £ H2n+l, and any
function f G C(In}, it can be represented on P1 in the form

where g is a continuous function.

In order to give a geometric interpretation of Theorem 7.10, consider the
mapping of In into a (2n + 1)-dimensional space defined by
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Figure 7.7 The modified Kolmogorov network, where the connection weights
between the input and the hidden layers are equal to 1 and the weights
between the hidden and output layers are [i i , . . . , tn,..., t\,..., in},
Eqn. (7.26).

This is a continuous and one-to-one mapping. Otherwise, two points would
exist of In which are not distinguished by the family of functions y^(xi,...,
xn), q = 1 , . . . , (2n + 1). All functions would then be represented by
Eqn. (7.27) and would coincide at these two points. Equation (7.27) would
then be impossible for some functions / € C[P]. Indeed, since In is
compact, its image under mapping is

which is also compact, and the mapping given in Eqn. (7.27) is a homeo-
morphism between In and T. This implies that there exists a one-to-one
relationship between all the continuous functions / (xi , . . . , xn) on In and all
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the continuous functions F(yi,..., y^n+i) °n T. Therefore, Theorem 7.10
can be rewritten as follows:

There exists homeomorphic embedding given in Eqn. (7.27) from P into
the (2n + 1) -dimensional Euclidean space ffin+l; that is, yq : In —>
3£, g = l , . . . , (2n + 1), so that each continuous function F on the image
space T ofln has the form

More recently, an improved version of Kolmogorov's theorem due to Sprecher
(1965) was presented by Hecht-Nielsen (1987) concerning the existence of
feedforward neural networks. These results are summarized in the following
theorem.

Theorem 7.11 [Kolmogorov's Mapping Neural Network Existence Theorem
(Hecht-Nielsen 1987)] Given any continuous function f : P —> 5ftm with
n > 2, f ( x ] = y. Then f can be implemented exactly by the following
network

where the real constant A and the continuous real monotonically increasing
function h are independent of f although they do depend on n. The real and
continuous $ are dependent on the function fa and the constant e, where e is
a rational number 0 < e < 6, and 6 is an arbitrary chosen positive constant.

The proof of this theorem may be completed directly by applying the results
of Sprecher (1965) to each of the ra coordinates of y separately. As shown in
Fig. 7.8, the implementation given in Theorem 7.11 is a two-layered neural
network having n processing units in the input layer, (2n + 1) processing
units in the hidden layer that receive the input x and create the outputs
zi, Z2,..., Z2n+i, and m processing units in the output layer which give the
OUtpUtS ?/i, 2 / 2 , - . . , 2 / m -

Kolmogorov's theorem provides only a structure for a three-layered feed-
forward network that can represent exactly an arbitrary continuous function.
No further results concerning the network functions g and hq have been ob-
tained yet. The proof of the theorem is not constructive, as it does not show us
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Figure 7.8 A schematic representation of the Kolmogorov mapping neural net-
work existence theorem presented by Hecht-Nielsen (1987).

how to select these quantities. It is strictly an existence theorem, and this is the
main limitation for the application of Kolmogorov's theorem. As suggested
by Hecht-Nielsen (1987), a potentially high-payoff challenge is to discover
an adaptive mechanism where the $ values could self-organize themselves
in response to incoming x/y vector pairs. However, exact network expres-
sions of the arbitrary continuous functions are very attractive for function
approximation issues. In addition, some progress on the applications of Kol-
mogorov's theorem for constructing multilayered neural networks has been
made (Kurkova 1992, Sprecher 1993). In particular, work on the estimation of
the number of the hidden units of a three-layered network using Kolmogorov's
theorem presented by Kurkova (1992) is one of the more interesting examples
of these applications.

7.5 HIGHER-ORDER NEURAL NETWORKS (HONNs)

As seen previously, a conventional neuron in a MFNN has only a linear correla-
tion between the input vector and the synaptic weight vector. This correlation
was described as a type of synaptic operation. To capture the higher-order
nonlinear properties of the input pattern space, extensive attempts have been
made by Rumelhart et al. (1986), Giles and Maxwell (1987), Softky and Kam-
men (1991), Xu et al. (1992), Taylor and Commbes (1993), and Homma and
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Gupta (2002b) toward developing architectures of the neurons that are capable
of capturing not only the linear correlation between the components of the
input pattern but also the higher-order correlation between the components of
the input patterns. Higher-order neural networks have been proved to have
good computational, storage, pattern recognition, and learning properties and
are realizable in hardware (Taylor and Commbes 1993). Regular polynomial
networks that contain the higher-order correlations of the input components
satisfy the Stone-Weierstrass theorem, but the number of weights required to
accommodate all the higher-order correlations increases exponentially with
the number of the inputs. Higher-order neural units (HONUs) are the basic
building block for such a higher-order neural network (HONN). For such a
HONN as shown in Fig. 7.9, the output is given by

where x — [x\ x% • • • xn]
T is the vector of neural inputs, y is an output, and

</>(.) is a strictly monotonic activation function such as a sigmoidal function
whose inverse, <^~1(.)> exists. The summation for the fcth-order correlation is
taken on a set C(i\ • • • ij], (1 < j' < A/") which is a set of the combinations
of j indices 1 < i\ • • • ij < n defined by

Also, the number of the Nth order correlation terms is given by

The introduction of the set C(ii • • • ij) is to absorb the redundant terms due to
the symmetry of the induced combinations. In fact, Eqn. (7.33) is a truncated
Taylor series with some adjustable coefficients. The Nth-order neural unit
needs a total of

weights including the basis of all of the product up to N components.
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Figure 7.9 Block diagram of the higher-order neural unit (HONU), Eqns. (7.32)
and (7.33).

Example 7.1 In this example we consider a case of the third-order (TV = 3)
neural network with two neural inputs (n = 2). Here

and the network equation is

The higher-order neural units (HONUs) may be used in conventional feed-
forward neural network structures as the hidden units to form HONNs. In
this case, however, consideration of the higher correlation may improve the
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capabilities of the approximation and generalization of the neural networks.
Typically only second-order networks are usually employed in practice to give
a tolerable number of weights. On the other hand, if the order of the HONU is
high enough, as is known from the Stone-Weierstrass theorem, Eqns. (7.32)
and (7.33) may be considered as a network with n inputs and a single out-
put. This structure is capable of dealing with the problems of functional
approximation and pattern recognition as seen in the following discussion.

To get a closer look at Eqns. (7.32) and (7.33), we denote the higher
correlation terms of an n-dimensional input x <G ffl1 as follows:

Then network equations, Eqns. (7.32) and (7.33), may be represented as

and may be treated as a two-layered neural network as shown in Fig.7.9.
Here, u^.-.i are the outputs of the hidden neural units that are able to produce
the higher-order correlations between the components for each vector input
pattern x. The output neuron is a simple linear combiner with an activation
function <£(.).

To accomplish an approximation task for given input-output data {x (k) , y ( k } } ,
the learning algorithm for the higher-order neural network can easily be de-
veloped on the basis of the gradient descent method. Let us assume that the
error function is formulated as

where e(k) = d(k] — y ( k ) , d(k] is the desired output and y(k] is the output
of the neural networks. Minimization of the error function by a standard
steepest-descent technique yields the following set of learning equations

where (f)'(z) = d^/dz. Like the BP algorithm for a MFNN, a momentum
version of the above is easily obtained.

Alternatively, since all the weights of the higher-order networks appear
linearly in Eqn. (7.36), one may use the method for solving linear algebraic
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equations to carry out the preceding learning task if the number of patterns is
finite. To do so, one has to introduce the following two augmented vectors

where XQ = 1, so that the network equations, Eqns. (7.35) and (7.36), may be
rewritten into the following compact form:

For the given p pattern pairs {x(k), d ( k ) } , (1 < k < p), define the following
vectors and matrix

where u(k] = u(x(k)}, I < k < p. Then, the learning problem becomes
one of finding a solution of the following linear algebraic equation

If the number of the weights is equal to the number of the data and the matrix
U is nonsingular, then Eqn. (7.40) has a unique solution

A more interesting case is that when the dimension of the weight vector w is
less than the number of data p. Thus, the existence of the exact solution for
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the above linear equation is given by

In case this condition is not satisfied, the pseudoinverse solution is usually an
option and gives the best fit.

Examples 7.2 and 7.3 show how to use the higher-order neural network
presented in this section to deal with pattern recognition problems. It is
of interest to show that solving these problems is equivalent to finding the
decision surfaces in the pattern space such that the given data patterns are
located on the surfaces.

Example 7.2 Consider a two-variable XOR functions defined as

where xi, x% € { — 1,1} are the bipolar binary inputs. A second-order neural
network used to realize this logic function is assumed to be

whose weights may be determined by the following set of linear algebraic
equations:

It is easily observed that the coefficient matrix of these equations is nonsingular
and the equations have a unique solution

Hence, the logic function is implemented by a simple second-order polynomial

Example 7.3 Consider a three-variable XOR function defined as
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Table 7.1 Truth table of XOR function x\ 0 x2 0 x3

Pattern
A
B
C
D
E
F
G
H

Input x\
I

-1
-1
-1

1
1
1

-1

Input £2
1
1

-1
-1
-1

1
-1

1

Input £3
1
1
1

-1
-1
-1

1
_]_

Output y
1

-1
1

-1
1

-1
-1

1

The eight input pattern pairs and corresponding outputs are given in Table
7.1. This is a typical nonlinear pattern classification problem. A single linear
neuron with a nonlinear activation function is unable to form a decision surface
such that the patterns are separated in the pattern space. Our objective here is
to find all the possible solutions using the third-order network to realize the
logic function.

A third-order neural network is designed as

where #1, £2, ̂ 3 € {~1> 1} are the binary inputs, and the network contains
eight weights. To implement the above mentioned logic (XOR) function, one
may consider the solution of the following set of linear algebraic equations:

The coefficient matrix U is given by
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which is nonsingular. The equations have a unique set of solutions:

Therefore, the logic function is realized by the third-order polynomial y =
xiX2X%. This solution is unique in terms of the third-order polynomial. It is
of interest to mention that when a unipolar binary system is used for the XOR
problem, a numerical solution was introduced by Pao (1989). A comparison
of the convergence speed of the HONN described by

with a sigmoidal function

and a two-layered feedforward neural network with three hidden neurons
was given in this book. These results indicate that as far as the gradient
descent technique learning algorithms are considered, the HONN has a faster
convergence property than the MFNN.

These examples show that the higher-order networks are capable of dealing
with pattern classification problems. Xu et al. (1992), Taylor and Commbes
(1993) also demonstrated that they may be effectively applied to problems
using a model of a curve, surface, or hypersurface to fit a given data set.
This problem, called nonlinear surface fitting, is often encountered in many
engineering applications. Some learning algorithms for solving such problems
may be found in their papers. Moreover, if one assumes 4>(x] = x in
the HONU, the weight exhibits linearity in the networks and the learning
algorithms for the HONNs may be characterized as a linear LS procedure.
Then the well-known local minimum problems existing in many nonlinear
neural learning schemes may be avoided.



7.6 MODIFIED POLYNOMIAL NEURAL NETWORKS 287

7.6 MODIFIED POLYNOMIAL NEURAL NETWORKS

7.6.1 Sigma-Pi Neural Networks (S-PNNs)

Note that a higher-order neural unit (HONU) contains all the linear and
nonlinear correlation terms of the input components to the order n. A slightly
generalized structure of the HONU is a polynomial network that includes
weighted sums of products of selected input components with an appropriate
power. Mathematically, the input-output transfer function of this network
structure is given by

where Wi, Wij € !R, is the order of the network, and ui is the output of the
ith hidden unit. This type of feedforward networks is called a sigma-pi
network (Rumelhart et al. 1986). It is easy to show that this network satisfies
the Stone-Weierstrass theorem if 4>(x] — x is a linear function. From the
network structure point of view, the sigma-pi network shown in Fig. 7.10 may
be considered as a two-layered network with a hidden layer and an output
layer, where the units in the hidden layer create the products of selected input
components computed with a power operation, while, like the conventional
weighted combiners, the output unit makes a weighted summation of all the
outputs of the hidden units. Moreover, a modified version of the sigma-pi
networks, as proposed by Hornik et al. (1989) and Cotter (1990), is

where Wi,u>ij 6 3ft and P(XJ) is a polynomial of Xj. It is easy to verify
that this network satisfies the Stone-Weierstrass theorem, and thus, it can be
an approximator for problems of functional approximations. The sigma-pi
networks defined in Eqns. (7.42) and (7.43) is a special case of the above
network while P(XJ] is assumed to be a linear function of Xj, In fact, the
weights w^ in both the networks given in Eqns. (7.44) and (7.45) may be
restricted to integer or nonnegative integer values.
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Figure 7.10 Block diagram of the sigma-pi network, Eqns. (7.42) and (7.43).

7.6.2 Ridge Polynomial Neural Networks (RPNNs)

To obtain fast learning and powerful mapping capabilities, and to avoid the
combinatorial increase in the number of weights of the higher-order networks,
some modified polynomial network structures were introduced recently. One
of these is the pi-sigma network (PSN) (Shin and Ghosh 1991), which is a
regular higher-order structure and involves a much smaller number of weights
than the higher-order neural networks (HONNs). The mapping equation of a
pi-sigma network, as depicted in Fig. 7.11, can be represented as

The total number of weights for an TVth-order pi-sigma network with n
inputs is only (n + 1)JV. Compared with the sigma-pi structure, the number
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Figure 7.11 Block diagram of the pi-sigma network, Eqn. (7.46).

of weights involved in this network is significantly reduced. Unfortunately,
when </>(#) = x, the pi-sigma network does not match the conditions provided
by the Stone-Weierstrass theorem because the linear subspace condition is
not satisfied. However, some studies have shown that it is a good network
model for smooth functions (Shin and Ghosh 1991).

To modify the structure of the above mentioned pi-sigma networks such that
they satisfy the Stone-Weierstrass theorem, Shin and Ghosh (1991) suggested
considering the ridge polynomial neural network (RPNN). For the vectors
Wij = [wiji • • • Wijn]

T, and x = [x\ ••• xn]
T, let

which represents an inner product between the two vectors. A one-variable
continuous function f of the form < x, Wij > is called a ridge function. A
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ridge polynomial is a ridge function that can be represented as

for some 04j e ^andiu^ G $ftn. The operation equation of a ridge polynomial
neural network (RPNN) is expressed as

where 4>(x) = x. The denseness of this network can easily be verified and is
described in the following theorem.

Theorem 7.12 Let fJ be the set of all the functions that can be represented by
the ridge polynomial network on a compact set S D 3 :̂

Then, Q is uniformly dense in C\$a}.

As shown in Fig. 7.12, Theorem 7.12 shows that an arbitrary continuous
function / : [a, b]n —> !R may be uniformly approximated by

However, the results do not show how many neural units are needed to attain
a given degree of approximation.

The total number of weights involved in this structure is N(N+l)(n-\-l)/2.
A comparison of the number of weights of the three types of polynomial
network structures is given in Table 7.2. The results show that when the
networks have the same higher-order terms, the weights of a RPNN are
significantly less than those of a HONN. In particular, this is a very attractive
improvement offered by RPNNs.
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Figure 7.12 Ridge polynomial neural network (RPNN), Eqn. (7.47).

Table 7.2 The number of weights in the polynomial networks

Order of
Network

N
2
3
4

Number of Weights
Pi-sigma

n — 5
12
18
24

n = 10
22
33
44

RPNN
n = 5

18
36
60

n= 10
33
66
110

HONN
n — 5

21
56
126

n = 10
66

286
90

7.7 CONCLUDING REMARKS

The approximation capabilities of feedforward neural networks were dis-
cussed in this chapter. Feedforward neural networks, as intelligent computing
tools, contain many types of neural network structures that have various dif-
ferent mathematical expressions and have different similarities to biological
neural models. These studies focused only on a few commonly used static
neural network structures such as multilayered feedforward networks, trigono-
metric networks, and higher-order neural networks. On the other hand, the
Gaussian radial basis function networks are also universal approximators as
shown in Chapter 6. One may then conclude that feedforward neural networks
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are universal approximators for continuous functions. The accuracy of the
approximations not only depends on the network structures selected such as
the number of layers, and the hidden units, but is also strongly related to the
design of the learning algorithms of the network parameters.

The results presented in this chapter may provide a theoretical basis for
applications to problems such as neural identification and control. Any lack of
success in the applications of a neural network that is a universal approximator
must arise from inadequate learning, an insufficient number of hidden units,
or the lack of a deterministic relationship between the input and the target. It
is a fact that different neural networks result in different learning difficulties.
Therefore, the choice of an appropriate approximation structure ultimately
determines the success of an application. From this point of view, a successful
neural approximation procedure may be divided into the following three steps:

(i) Determine the universal approximation structure of the neural network;
that is, ensure the inherent approximation capabilities of the neural
networks by adjusting the numbers of the hidden units and layers.

(ii) Choose an adequate learning algorithm,

(iii) Use learning signals that contain sufficient information.

Problems

7.1 Prove the results given in Theorem 7.6.

7.2 Give five squashing functions that are continuous and differentiable.

7.3 The input-output transfer function of a decaying exponential network
defined on a compact set is given by (Cotter 1990)

Prove that the network is dense in C [S].

7.4 The modified logistic neural network (MLNN) (Cotter 1990) is de-
fined as
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Prove that the network is dense in C[S].

7.5 Let S D 5Rn be a compact set and g G (7 [5] be a continuous function.
Prove that for any e > 0, there is a MFNN with Mc-P hidden units
that approximates g uniformly on S with error < e.

7.6 For a single variable function a(x) (Kurkova 1992), let

and / e C[In] be a continuous function. Prove that for any e > 0,
there exist the functions, <$j, ?/V £ ^(cr) such that

7.7 For any e > 0, prove that the two-variable trigonometric network
(Blum and Li 1991)

may be used to approximate an arbitrary two-dimensional continuous
function f(x\, #2) defined on a compact set 5 with error < e.

7.8 Using trigonometric functions, design a two-layered neural network

such that

(a) i/>(x) = l i f x > 1, and VO) = -l,ifx < -1;
(b) The network satisfies the conditions of the Stone-Weierstrass

theorem.
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7.9 Prove that there exists a single-input two-layered network with a
sigmoidal function that can uniformly approximate the function ijj(x)
defined in Problem 7.5 to any degree of error on §£.

7.10 Find a single-variable continuous function / : S D 5R —>• 3ft defined
on a compact set S that cannot exactly be implemented by an arbitrary
two-layered neural network

7.11 A function g : S D 3ftn —> 3ft is simple with a finite range if S is
the union of a finite family of a pairwise disjoint sets, Lfc, such that
g is constant on each DI. Let / : [a, 6] —> 3? be a simple function
on a subinterval partition. Prove that / can be exactly implemented
by a two-layered network with Mc-P hidden units described by

7.12 Let £7 be the set of functions that can be represented by the cosig
networks on a compact set S D 3ft™. Prove that f£ is uniformly dense
inC[S}.

7.13 Given a two-variable nonlinear function

obtain the network representation of the function /(£i,£2) using
the two-layered cosine function network, Fourier network, cosig net-
work, and the conventional feedforward neural network with sig-
moidal function.

7.14 Using the gradient descent technique, design the weight learning
algorithms for both the pi-sigma and ridge polynomial networks
neural presented in Section 7.6.
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Neural units with learning and adaptive capabilities discussed so far had
only static input-output functional relationships. This implies, therefore, that
for a given input pattern to such a static neural unit, an instantaneous output
is obtained through a linear or nonlinear mapping procedure. The history of
these neural models is strongly related to the McCulloch-Pitts neuron model
and the threshold logic as seen in previous chapters. In fact, a biological
neuron not only contains a nonlinear mapping operation on the weighted
sum of the input signals but also has some dynamic processes such as the
state signal feedback, time delays, hysteresis, and limit cycles. To emulate
such a complex behavior, a number of dynamic or feedback neural units
have been proposed relatively recently. As the basic building blocks of the
dynamic feedback neural networks, these dynamic neural units may be used
to construct a complex dynamic neural network structure through internal
synaptic connections.

As a demonstration of a simple dynamic neural architecture, some struc-
tures and electronic implementations of dynamic neural units (DNUs), that is,
a single dynamic neuron that is the basic computing element of the dynamic
neural networks, are first discussed in this chapter. Some important aspects
of the nonlinear dynamic phenomena of such nonlinear elements are then
explored. Since a dynamic recurrent neural network is a population, or a
so-called large-scale system, which consists of individual neurons with some
complex synaptic connections, each neuron involved in the network makes its
own contribution to the dynamic properties of the whole system. From the
aspect of dynamic systems, a dynamic neural unit forms a nonlinear dynamic
subsystem that is described by a single-variable nonlinear dynamic equation.
The analysis of a dynamic neural unit provides an understanding of the dy-
namic properties of the network system in which the DNU is a basic unit fully
or partially connected to other neural units.

In this chapter we explore various configurations of dynamic neural units
and study some of their dynamic properties that will be useful in forming
neural architectures.

8.1 MODELS OF DYNAMIC NEURAL UNITS (DNUs)

8.1.1 A Generalized DNU Model

Dynamic feedback plays an essential role in the study of neural systems, where
we say that an organism or machine has feedback if its activity is controlled to
some extent by the comparison of its actual performance with some tested per-
formance. Dynamic neural units (DNUs), as the basic elements of dynamic
neural networks, receive not only external inputs but also state feedback sig-
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Figure 8.1 Schematic and symbolic representations of a dynamic neural unit
(DNU), Eqns. (8.1) and (8.2).
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Figure 8.2 A topological structure and schematic representation of a DNU net-
work.
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nals from themselves and other neurons. The synaptic connections in a DNU
contain a self-recurrent connection that represents a weighted feedback signal
of its state and lateral inhibition connections, which are the state feedback
signals from other DNUs in the network. In terms of information processing,
the feedback signals involved in a DNU deal with some processing of the past
knowledge and store current information for future usage. Each DNU has its
own internal potential or internal state that is used to describe the dynamic
characteristics of the network.

A general mathematical model of the ith DNU that is connected to other
(n — 1) DNUs in an n-neuron dynamic network structure may be described
as

where xa = [XQ x\x^ • • • xn]
T £ !>Rn+1 = augmented vector of n-neural

states (internal state of DNU
neurons) including bias

XQ = 1 = threshold (bias) of neuron
'Wai — [WIG Wii • ' ' Win\T £ 3^n+1 = augmented vector of synap-

tic weights vector associated
with ith DNU

Wij(l <i-,j<n] = synaptic connection between
ith DNU and state of jth
DNU associated with net-
work

yi(t) = output of ith DNU
fi(.} = nonlinear activation function

that is usually assumed to be
continuous and differentiable

<7i(.) = neural output function

Figure 8.1 illustrates schematic and symbolic representations of the indi-
vidual dynamic neural unit (DNU) described in Eqns. (8.1) and (8.2). An
ensemble of dynamic neural unit can be used to form a DNU network. A
topological structure and schematic representation of such a DNU network is
shown in Fig. 8.2.

8.1.2 Some Typical DNU Structures

Due to the different choices of the nonlinear function J in the general DNU
model given in Eqns. (8.1) and (8.2), and the different types of synaptic
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connection that possibly exists among the DNUs, one may have different
dynamic neural models as seen in the following discussion. In other words,
the general model of a dynamic neural unit (DNU), Eqns. (8.1) and (8.2),
may be further expanded into various mathematical representations based on
the selections of the nonlinear function fi. Some of these configurations are
discussed in this subsection, and their important nonlinear dynamics properties
are examined in the next section.

8.1.2.1 DNU-1
This dynamic neural unit, DNU-1, is the extension of the generalized DNU
described in Eqns. (8.1) and (8.2), and is based on the early work of Hopfield
(1982). The mathematical description of DNU-1 is given by

where vector-valued non-
linear functions
augmented state vec-
tor of n neural units

Figure 8.3 DNU-1: the state feedback structure associated with Eqns. (8.3) and
(8.4).
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In the neural state equation, Eqn. (8.3), the first term — o^Xi is called the self-
feedback term representing the passive exponential decay in the absence of
both the state recurrent signals and the direct external input. Also, wafi(xi)
is the self-recurrence term, and Y^j^oj^i Wijfj(xj) is the lateral recurrence
contributions from other neurons. The neural output ^ is defined by the
output equation, Eqn. (8.4). The state structure of the DNU-1 is shown in
Fig. 8.3.

8.1.2.2 DNU-2
It may be noted that the terms on the right-hand side of Eqn. (8.3) associated
with the recurrence synaptic connections may be directly represented using
the output feedback structure. Thus, the DNU-1, Eqns. (8.3)-(8.4), may be
rewritten as follows with the output feedback

where

Figure 8.4 Block diagram of the ith DNU-2: the output feedback structure asso-
ciated with Eqns. (8.5) and (8.6).



304 DYNAMIC NEURAL UNITS (DNUs): NONLINEAR MODELS AND DYNAMICS

is the output vector of the network. The block diagram of the above mentioned
DNU-2 is shown in Fig. 8.4.

8.1.2.3 DNU-3
The mathematical description of the DNU-3 (Pineda 1988) is given by

In terms of neural structure, unlike the neural models DNU-1 and DNU-2,
DNU-3, described by Eqns. (8.7) and (8.8) and shown in Fig. 8.5, provides
first a weighted summation that is associated directly with the state feedback
signals and the synaptic weights, and then a nonlinear operation is applied to
this summation. On the other hand, the output of DNU-3 is the same as the
internal state of DNU-3.

Figure 8.5 Block diagram of the ith DNU-3 structure associated with Eqns. (8.7)
and (8.8) in which the external input is summed before a nonlinear
operation /$.
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Figure 8.6 Block diagram of the ith DNU-4 associated with Eqns. (8.9) and (8.10)
in which the external inputs are summed after a nonlinear operation fi.

8.1.2.4 DNU-4
A slightly different version of the DNU structure (Pineda 1987), may be
obtained by moving the threshold input out of the nonlinear activation function
fi in Eqn. (8.7). Thus, DNU-4 is described as

The block diagram of the DNU-4 described by Eqns. (8.9) and (8.10) is
illustrated in Fig. 8.6.

8.1.2.5 DNU-5
DNU-5 can be used to form the so-called additive and shunting networks and
has the following mathematical form (Grossberg 1990):
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The DNU-5 model as expressed in Eqns. (8.11) and (8.12) and shown in
Fig. 8.7 may equivalently be represented in an output feedback form as follows

where the term (gi — b i x i ) represents the refractory process of the ith DNU
and the parameters gi and bi perform, respectively, an automatic gain control
and total normalization for the internal state of the ith DNU. Block diagrams
of the models given in Eqns. (8.11), (8.12) and Eqns. (8.13), (8.14) are shown
in Figs. 8.7 and 8.8, respectively.

A more general model of DNU-5 for additive and shunting networks may
be obtained by separating the contributions corresponding to the synaptic
connections and the external inputs into excitatory and inhibitory parts. Some
aspects of this model will be further addressed in the next section.

Figure 8.7 Block diagram of the ith DNU-5 with state feedback associated with
Eqns. (8.11) and (8.12).
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Figure 8.8 Block diagram of the equivalent ith DNU-5 with output feedback
associated with Eqns. (8.13) and (8.14).

8.2 MODELS AND CIRCUITS OF ISOLATED DNUs

8.2.1 An Isolated DNU

As described in Section 8.1, the dynamic neural response generated by a
population of dynamic neural units, such as DNU-1 through DNU-5, shows
highly coupled nonlinear activities and, as such, is extremely difficult to ana-
lyze because of the immense numbers of inherent nonlinearities and complex
feedback interactions involved. Therefore, in this section, an investigation of
such a nonlinear neural system will begin by examining a spatially isolated
DNU that has no lateral synaptic connections with other DNUs in the net-
work as shown in Fig. 8.9. In other words, the terms corresponding to the
lateral recurrent connections may be viewed as some external inputs on the
right-hand side of Eqn. (8.1), and these terms, without loss of generality, may
be absorbed into u. Consequently, the dynamic property of an isolated DNU
may be given by a single-variable nonlinear differential equation

where x and y are, respectively, the state and output of the DNU, and a, w,
and u are the neural parameters. For simplicity, the subscript that represents
the position of the DNU in the network is dropped from all the variables used
in describing the dynamics of an isolated DNU. The results developed for



308 DYNAMIC NEURAL UNITS (DNUs): NONLINEAR MODELS AND DYNAMICS

Figure 8.9 A block diagram of an isolated DNU described by Eqns. (8.15) and
(8.16).

this isolated case provide a basis for studying the complex dynamic neural
networks in later chapters.

8.2.2 DNU Models: Some Extensions and Their Properties

The neural network structure DNU-1 or DNU-2 initially proposed by Hopfield
(1982, 1984) is one of the most successful neural models developed since the
1980s. It has a strong biological motivation and can easily be implemented
by an electric circuit. The basic neural unit, or single neuron, in the Hopfield
neural network may be implemented by the circuit shown in Fig. 8. l0a, which
consists of a capacitor C, resistors R and p, and a nonlinear operational
amplifier with a sigmoidal transfer function s ( x ) . To ensure that all resistors

Figure 8.10 DNU-1 single neuron.
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simulating the synaptic weights have positive values, the amplifier is assumed
to provide dual voltage outputs, +y and —y, such that a positive synaptic
weight is realized by connecting the resistor R to +y and a negative weight
by connecting R to —y. The current u represents a bias or an external input
signal.

Let x represent a voltage at the input port of the amplifier. Using Ohm's and
Kirchhoff s laws, the dynamic equation of such a circuit may be expressed as

where

By means of biological interpretations, x may be viewed as the mean soma
potential of a neuron from the total effect of its excitatory and inhibitory
inputs, and y as the short term average of the firing rate of the cell.

The preceding dynamic equation for DNU-1 may also be rewritten as

where x <E §£ is an internal neural state, or neural potential, y e 3£ is an
output voltage or output potential, a = \/(RpC] is the inverse time-constant
or decay, w = l/(RC) is the synaptic weight, and v = u/C is the bias or
external input signal. The block diagram of the system is given in Fig. 8.1 Ob.

Since the sigmoidal function s ( x ) is monotonic, as shown in Fig. 8.11,
there exists a unique inverse function of s(x)

Thus, Eqn. (8.20) may be represented in terms of the neural output y as a
state variable. Therefore

where
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Figure 8.11 Sigmoid function y = s ( x ) and its inverse function x = s-1 (y).

Figure 8.12 An equivalent representation of DNU-1, Eqn. (8.24).

Equation (8.22) may be rewritten as follows using the output y as a state
variable

A block diagram of the above system is depicted in Fig. 8.12.

8.2.2.1 Convergence Properties of DNU-1
To study the state convergence of DNU-1, Eqn. (8.20), a Lyapunov function
for the DNU-1 may be expressed as
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where a > 0.
In order to apply LaSalle's invariant set principle (Khalil 1992), the deriva-

tive of the function E with respect to time t needs to be evaluated as follows:

Note that

with the derivative s'(x) > 0. Therefore, one has

and

This analysis shows that the state trajectory of DNU-1 given in Eqn. (8.20)
will always converge to one of the equilibrium points that satisfies

regardless of the initial value of the neural state x. At these equilibrium points,
the Lyapunov function E has the local minimum value.

8.2.2.2 DNU-6
The neural system described by Eqns. (8.24) and (8.25) has sets of equilibrium
points and asymptotically stable equilibrium points identical to those in the
following neural system shown in Fig. 8.13:

Verification of the preceding statement is straightforward and is left for the
readers as an exercise.
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Figure 8.13 Circuit implementation and block diagram of DNU-6, Eqn. (8.30).

8.2.2.3 DNU-7: Dynamic Neuron with Saturation
This DNU-7 is a modification of DNU-1 obtained by replacing the sigmoidal
function by a saturating function Sat(x] shown in Fig. 8.14 and defined as

In this case, the equations of the DNU may easily be obtained directly from
Eqns. (8.20) and (8.21) as follows:

Figure 8.14 The saturating function Sat(x) defined by Eqn. (8.31).
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Figure 8.15 DNU-7: neuron with the saturating function, Eqns. (8.32) and (8.33).

These two equations represent a linear system operating on a closed cube.
A circuit implementation that contains an ideal operational amplifier with a
saturation and a block diagram of this type of DNUs is given in Fig. 8.15.

8.2.2.4 DNU-8
DNU-8, an extended version of DNU-7 with the saturating neural activation
function and a double integrator, was proposed by Yanai and Sawada (1990).
The dynamic equations of DNU-8 are described by
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Figure 8.16 Circuit structure and block diagram of the double-integrator neuron
DNU-8, Eqns. (8.34) and (8.35).

The circuit implementation of the neural structure of DNU-8 is shown in
Fig. 8.16a. It shows that DNU-8 consists of the two integrators: an integrator
with losses and a lossless integrator with saturation. A block diagram of this
neural structure is given in Fig. 8.16b. As pointed out by Yanai and Sawada
(1990), if the autocorrelation type associative memory is considered, then,
from a hardware implementation perspective, the integrators are more useful
in a wider range of parameters than are the amplifiers. However, amplifiers
as the output part of a neuron may have a sufficiently rapid response to the
internal neural state.

8.2.2.5 DNU-9
Another type of DNU structure, shown in Fig. 8.17, based on the network
proposed in DNU-3 and DNU-4 is described by the following nonlinear
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Figure 8.17 A block diagram of DNU-9, Eqn. (8.36).

differential equation

where b ^ 0 is a neural gain. The nonlinear neural activation function in this
model acts on the summation of two terms: the product of the synaptic weight
w and the neural state x, and the bias v. If an affine coordinate transformation
is introduced

the system presented above may be equivalently represented as

where w = wb and v = av. Since w ^ 0, the coordinate transformation
expressed by Eqn. (8.38) is invertible. Hence, the single-neuron models
represented in Eqns. (8.20) and (8.36) are equivalent. If a — (3 — 1, they are
identical.

8.2.2.6 DNU-10
As shown in Fig. 8.18, after changing the position of the function s(.) in the
single neuron such that the neural activation function maps only the product
of the synaptic weight and the neural state, another type of dynamic neuron,
DNU-10, which was used by Pineda (1987), is described by
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Figure 8.18 A block diagram of the DNU-10, Eqn. (8.40).

where b ^ 0. Using a simple coordinate transformation

it is found that

where w = bw and v = wv. A comparison of the three neural models,
DNU-8, DNU-9, and DNU-10 reveals that in single neural structures, the
different structures which are due to the different positions of the nonlinear
neural activation function in the single neuron may be described by a unified
mathematical model. However, this convenient property may not be retained
in the dynamic neural network structures consisting of many such DNUs
because of the complexity of the nonlinear dynamic characteristics.

8.2.2.7 DNU-11
This type of dynamic neural structure is obtained from the more general
formulations of the dynamic neural network DNU-5 as was proposed by
Grossberg (1990). It is based on population biology, neurobiology, and
evolutionary theory. This single neuron structure is shown in Fig. 8.19 and
can be described mathematically by the following equations

where x is the internal neural activity, y is the neural output, which is related to
the internal neural activity x by the output equation, Eqn. (8.45); a is a constant
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Figure 8.19 A block diagram of DNU-11, Eqns. (8.44) and (8.45).

responsible for the state decay; (3 is the gain of the somatic operation; 7 is
the total activity normalization coefficient; and w is the synaptic weight. The
difference between the Hopfield's and Grossberg's neural models is the term
(g — bx) on the right-hand side of Eqn. (8.44), which represents a refractory
period of the neuron. In fact, the DNU-1 model given in Eqns. (8.20) and
(8.21) of the single neuron is one of the special cases of the DNU-10 model
in Eqns. (8.44) and (8.45) for 7 = 1 and (3 = 0.

8.3 NEURON WITH EXCITATORY AND INHIBITORY DYNAMICS

8.3.1 A General Model

As discussed in Chapter 2, in biological systems the electrochemical potential
of each neuron is determined by the integrated effects of all the excitatory (pos-
itive) and inhibitory (negative) postsynaptic potentials transmitted to the nerve
cell for an integrating period of several milliseconds. If an intrinsic threshold
of the potential is reached, then the neuron will fire an action potential. A
biological neural cell contains two groups of operations—the excitatory and
the inhibitory operations—and these two types of neural operations have the
same internal states and dynamics as shown in Fig. 8.20a.

The dynamic neural model as proposed in Eqn. (8.44) and shown in
Fig. 8.19 can be generalized to form a pair of excitatory-inhibitory neural
models. Thus
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Figure 8.20 Block diagrams of the single neuron that contains both the excitatory
and inhibitory parts.
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where gE,bE and gI, bI are, respectively, the excitatory and inhibitory
parameters; WE and wj are, respectively, the excitatory and inhibitory weights,
which are always positive; and VE and vI are, respectively, the excitatory and
inhibitory neural inputs. This particular model of the excitatory and inhibitory
neuron is shown in Fig. 8.20.

In this case, the sigmoidal activation functions s E ( X ) and sI(x) are as-
sumed to be always positive, that is

for all x G $1. Some commonly used choices of such a neural activation
function are

Figure 8.21 shows the sigmoidal function s ( x ) as denned in Eqn. (8.47)
and its derivative s / ( x } . Additionally, the terms (TE — PE%) and (77 — bIx)
represent, respectively, the refractory periods of the excitatory and inhibitory
processes in the single neuron. It is worth mentioning that the neural model
in Fig. 8.20 has two outputs that can be computed by

where yE and yi are, respectively, the excitatory and inhibitory outputs that
are the functions of the same internal state x. Many known models of the

Figure 8.21 The unipolar sigmoidal function s ( x ) = 1/2[1 + tanh(x)] and its
derivative s ' ( x ) = |[sech2(x)], Eqn. (8.47).
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dynamic neural units (DNUs) may be considered as special cases of this
general model.

8.3.2 Positive-Negative (PN) Neural Structure

The two parts in the excitatory-inhibitory neural structure described above
and shown in Fig. 8.20 have a similar dynamic structure but different feed-
back parameters from each other. A different type of neural structure has
been developed (Gupta and Knopf 1992) which introduces the notion of the
positive neuron (corresponding to the excitatory portion of the neuron) and
the negative neuron (corresponding to the inhibitory portion of the neuron).
This neural model has been referred to as a positive-negative (PN) neuron,
and is expressed by the following coupled nonlinear differential equations

and

where xE and xI are respectively the excitatory (positive) and inhibitory
(negative) states; yE and yI are respectively the output from the excitatory
and inhibitory parts; VE and vI are respectively the inputs to the excitatory and
inhibitory parts of the single neuron; and all the synaptic weights WEE, WEI,
WIE, and wu are positive. The terms (gE — b E X E ] and (gI — b I x I ) represent,
respectively, the excitatory and inhibitory refractory periods. Equations (8.51)
and (8.52) represent a two-state nonlinear dynamic system. We introduce the
following notations:
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Figure 8.22 Schematic representations of a PN neural structure containing
both positive (excitatory) and negative (inhibitory) dynamics,
Eqns. (8.51)-(8.53).
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Equations (8.51) and (8.52) may then be rewritten in the following compact
form

Mathematically, the PN neuron consists of two individual neurons with full
internal synaptic connections, as shown in Fig. 8.22. Since a PN neuron,
which is a two-input/two-output system, is treated as a basic neural unit or
building block in the computational neural network, it might provide more
properties such as transient behavior, hysteresis phenomena, and limit-cycle
oscillations to the network structure than those of a simple single-neuron
structure.

8.3.3 Further Extension to the PN Neural Model

As shown in Eqn. (8.51), the PN neural structure is formed by using a set
of two coupled nonlinear differential equations. The PN neuron can also be
formed by using different types of nonlinear differential equations such as we
have used in forming the dynamic neural units (DNUs) earlier, in Sections
8.1 and 8.2. For example, by taking the model of the dynamic neural unit
DNU-1, Eqns. (8.20) and (8.21):

and

A circuit implementation that contains two nonlinear operational ampli-
fiers and a block diagram of the above PN neuron are given in Fig. 8.23.
The oscillatory and excitable behaviors of the simplified PN neuron model
presented above when aE = aI = 1 were studied by Sakaguchi (1988).
Some applications in the neurocontrol and neurovision fields have also been
reported by Gupta and Rao (1994a) and Gupta and Knopf (1994).
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Figure 8.23 The simplified PN single neuron which contains both the excitatory
and inhibitory parts with different dynamics, Eqns. (8.54) and (8.55).
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8.4 NEURON WITH MULTIPLE NONLINEAR FEEDBACK

As discussed earlier, the simplest model of the dynamic neural structures,
the DNU, involves only a single nonlinear activation function that has a
nonlinear feedback of the neural state. A more complicated model of the
DNU that contains multiple nonlinear feedback operations is achieved by
neural activation functions and is introduced now. The mathematical model
of such a dynamic single neuron, as shown in Fig. 8.24, is represented as

where ai , bi , and ci are the parameters associated with the ith nonlinear feed-
back function. The neural model given in Eqn. (8.55) increases the capabilities
of the dynamic single neuron for storing information, and for approximating
an arbitrary nonlinear dynamic system as a universal approximator.

After introducing the notations

Eqn. (8.55) may be rewritten as

where the vector-valued sigmoidal function is defined as

The following description shows that the dynamic properties of the neural
model given in Eqn. (8.56) may be described by n dynamic single neurons
that are fully connected to each other. In other words, the neural model given
in Eqn. (8.56) can be represented by a dynamic neural network that contains
n neurons. At this point, a new vector is introduced

which yields
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Figure 8.24 Block diagram and circuit implementation of the dynamic neural unit
(DNU) with multiple nonlinear feedback, Eqns. (8.55) and (8.56).
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where

Or, in a compact form, Eqn. (8.57) can be expressed as

where the weight matrix

If a dynamic neural network with the form of Eqn. (8.58) is defined with a
synaptic matrix

and a threshold vector

it is not necessary that the neural model given in Eqn. (8.58) be transformed
equivalently into the dynamic single-neuron model given in Eqn. (8.56), ex-
cept when the following relationship between the weights is satisfied

and

with
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where ci are constants. In this case, let

and

Then, the dynamic model of the dynamic neural network (DNN) given in
Eqn. (8.58) is equivalent to the model of the dynamic neural unit (DNU)
given in Eqn. (8.56).

8.5 DYNAMIC TEMPORAL BEHAVIOR OF DNN

As pointed out in Chapter 2 on biological neurons, stimulus information is
encoded by a single neuron as spike trains that typically have a constant
spiking amplitude or potential and the information contents of the stimulus
are encoded in the form of frequency modulation. The temporal phenomena
generated by an isolated DNU with multiple steady states exhibit not only the
dynamic characteristics of the state trajectory of the DNU before it reaches
an equilibrium state but also an encoding capability for the external signal.
For a slowly time-varying external input signal, the temporal dynamics are
primarily the switching action between the stable equilibrium points as shown
in Fig. 8.25. For a rapidly varying external input signal, the DNU produces
a specific state trajectory that is the result of encoding the time-varying input
signal as shown in Fig. 8.26. These temporal responses generated by a
DNU are very useful for control systems, vision systems, and, in general,
for information processing. Some mathematical processes of such temporal
dynamics are as follows.

Consider a general model of an isolated DNU described by

where a > 0. Let the external input v be a time-dependent stimulus v = v(t}.
Then, for the arbitrary initial state value x(0) the solution of Eqn. (8.59) is
given by
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Figure 8.25 The temporal response of an isolated DNU-1 with the parameters
a = 1 and w = 1.5 for a narrow pulse stimulus input v(t).

Figure 8.26 The encoding capability of an isolated DNU-1 with the parameters
a = 1 and w — 1.5 for a rapidly varying stimulus input v ( t ) .

For a sufficiently long time t = t*, if

one may deal with the limitation for both sides of the equality in Eqn. (8.60),
yielding
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On the other hand, without loss of generality, let the activation function / be
a continuous function for both the variables x and v. Then

where

Hence

or simply denote

This relationship shows that for a time-varying input signal v(t) the neural
state's response eventually converges to a solution of a static algebraic equa-
tion at each time t. This algebraic equation is the equilibrium equation of
the DNU for the stimulus input at time t, and its solution is independent of
the initial state value. If v(t) is a slowly varying signal within an interval
t e [t*, t* +Dt], then

and Eqn. (8.61) can be rewritten as

where

In this case, within a time interval where the stimulus remains approximately
constant, the state trajectory reaches a steady state of that satisfies the equi-
librium given in Eqn. (8.61). This process is shown in Fig. 8.25, where an
isolated DNU-1 is considered.
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lfv(t] is a rapidly varying signal compared with the function /, the solution
x given in Eqn. (8.62) is an encoded representation of the input signal. In this
case, v(t) appears linearly on the right-hand side of the DNU model:

The neural state response at time t > t* may be determined by the following
equation:

Figure 8.27 The temporal response of an isolated DNU-1 with the parameters
a = 1 and w = 1.5 to an impulse stimulus v(t).

Figure 8.28 The damped oscillatory temporal response of an isolated DNU-1 with
the parameters a = 1 and w = 0.05.
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In this case, the solution of x in the above equation is almost a linear function
off, and the shape and frequency of the stimulus input signal, which contains
the most information, can be perfectly retained by the neural activity.

From this analysis it is observed that this important class of temporal
behavior is the transient activity that is generated around a single stable
attractor. A variety of neurons in the nervous system generate transient activity
in response to an impulse or narrow pulse stimulus. On the initial application
of a stimulus, the activity exhibited by a neural element corresponds to a
rapid rise, leading to a steady state value. After the stimulus is removed,
the neural activity returns to its original rest state. An example of the neural
state response to an impulse stimulus input is shown in Fig. 8.27. The
characteristics of the transient activity generated by a DNU are a function of
the parameters employed. In certain circumstances, the damped oscillatory
phenomenon is induced by small synaptic weight parameters as depicted in
Fig. 8.28.

8.6 NONLINEAR ANALYSIS FOR DNUs

8.6.1 Equilibrium Points of a DNU

Let us consider a DNU having the form described by the nonlinear differential
equation

where x € R, a ^ 0, w / 0, and v are the scalars. The special properties of
the sigmoidal function s(x) provide the possibility that we may analytically
exploit the equilibrium points of the DNU. The equilibrium points x* of the
DNU, Eqn. (8.65), are given by the roots of the equation dx/dt = 0, that is

where

Obviously, the equilibrium points x* may be determined by considering di-
rectly the roots of the nonlinear function f(x), or indirectly by the intersection
of the curve y — (w/a)s (x) + ( u / a ) and the line y — x in the x-y plane. The
former approach will now be used for determining the number and locations
of the equilibrium points.
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Note that for all x € 5ft, the function g(x) satisfies

that is

Hence, g(x) is a continuous nonlinear function that maps a closed interval
[ ( v / a ) — \ ( w / a ) \ , ( v / a ) + |(w/a)|] onto itself. Using Brouwer's fixed-point
theorem, there is at least one equilibrium point x* of the system in the interval
[ ( v / a ) - \ ( w / a ) l ( v / a ) + \ ( w / a ) ] :

Thus, x* is located in an interval with the center ( v / a ) and the radius | ( w / a ) \
as shown in Fig. 8.29. The equilibrium point x* may be placed anywhere in
the range ( — o o , +oo) by adjusting the parameters a,w, and v. The function
f(x) is a continuous and differentiate function, and satisfies f ( x ) —> oo as
x —> oo. If v = 0, the fact that f ( — x ) — — f ( x ) shows that the curve of f ( x )
is the skew-symmetric with respect to the axis x = 0 in the x-f(x) plane.
In this case, the system has a unique equilibrium point, or an even number
of equilibrium points. According to the sign and values of the parameters
a, w, and v, we may discuss the number and location of the roots of the
nonlinear function f ( x ) — —ax + w s ( x ) + v, which are the equilibrium
points of the system given in Eqn. (8.65). It can be further shown that a DNU
with a sigmoidal activation function has at the most three, and at the least one
equilibrium point in the interval x* — ( v / a ) \ < \ ( w / a ) \ .

Figure 8.29 Region of the equilibrium point for DNU, Eqn. (8.65).
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8.6.2 Stability of the DNU

An asymptotically stable equilibrium point, also called a state attractor, can
be used for storing information in the associative memories. Following the
results obtained in the last section, two questions immediately arise:

(i) Which of these equilibrium points are stable (or unstable) in the sense
of Lyapunov?

(ii) How is the stability (or instability) affected as the parameters are varied?

To answer these questions, the asymptotic stability of these equilibrium points
under the choice of the parameters of the single dynamic neural unit is now
briefly addressed.

For convenience, assume that the maximum slope of the sigmoidal function
s ' ( x ) is 1. Then, the nonlinear sigmoid function s ( x ) satisfies

Next, one may test the exponential stability of x* using the Lyapunov
function method. Let x = x — x* be a new variable of the system. Then

has a unique equilibrium point at z = 0 and the function f ( z ) = s(z + x*) —
s (x*} satisfies

To investigate the Lyapunov stability of the equilibrium point, let us choose
the function

Then, for a > 0 and w < 0



334 DYNAMIC NEURAL UNITS (DNUs): NONLINEAR MODELS AND DYNAMICS

Therefore, if a > 0 and w < 0, since V(z) > 0 and dV(z)/dt < 0, then
z — 0 or equivalently x = x* is a globally exponentially stable equilibrium
point. On the other hand, if a > 0, w > 0 with ( w / a ) < 1, then

Hence, z = 0, or equivalently, x = x* is a globally exponentially stable
equilibrium point.

In case of a < 0, w > 0, we have

Therefore, the equilibrium point x* is unstable. Also, if a < 0, w < 0 with
w > a, then

Thus, z — 0; that is, x — x* will be an unstable equilibrium point. For other
combinations of the parameters a and w of the DNU, the equilibrium stability
of the DNU can also be studied using the same analysis procedure.

8.6.3 Pitchfork Bifurcation in the DNU

The phenomenon of the appearance and disappearance of equilibrium points,
accompanied by changes of the stability properties when some parameters in
the differential equation are varied, is known as bifurcation. In other words,
bifurcation describes the process of quantitative changes of the parameters
leading to qualitative changes of the system properties such as the number of
equilibrium points and their stability. We now discuss the bifurcation phe-
nomenon in a single DNU whose properties of the equilibrium points were
addressed in the previous sections. Several kinds of equilibrium point bifur-
cations have been discussed in the literature. Kelly et al. (1993) reported that
a.pitchfork bifurcation exists in the dynamic neural unit (DNU) of Eqn. (8.65).
To study bifurcation in a single dynamic neuron, some preliminaries of bifur-
cation theory are discussed first.

Consider a single-variable first-order differential equation
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where m is a constant parameter. We assume that the right-side function in
this equation satisfies

Equation (8.74) is simply an equilibrium condition. Thus, Eqn. (8.74) implies
that for m = 0, x = 0 is an equilibrium point. Equation (8.75) provides the
nonhyperbolic equilibrium condition, which is one of the necessary conditions
that (x ,m) = (0,0) is a bifurcation point and m is a bifurcation value.

Without loss of generality, let the nonlinear function for a DNU be a
sigmoidal function, s ( x ) — tanh(x), and a. G R be a fixed constant in the
following discussion. Let the DNU be described by the following differential
equation

By defining w = (m + a), this equation can be rewritten as

The state x(t) of the DNU as described in Eqn. (8.76) is dependent on the
two variable parameters w and v. Alternatively, by defining w = (m + a), the
state x(t) of the DNU of Eqn. (8.76) is expressed in Eqn. (8.77) with another
set of two variable parameters m = (w — a) and bias v. It can be shown
that the preceding differential equation of the DNU has pitchfork bifurcation
when the bias v = 0 and the bifurcation is broken when v ^ 0.

8.6.3.1 Case (A) with zero bias, v = 0
In the case of a zero bias, that is, for v — 0, Eqn. (8.76) has a pitchfork
bifurcation at the origin in the x-m, plane, that is, at (x,m) — (0,0), or
equivalently at x = 0 and w = a in the x-w plane, that is, at (x, w} = (0, a).
Hence, (x, w} = (0, a) is a bifurcation point through which more than one
curve of the equilibrium point passes through this point in the w-x plane.
The stability of the locus of the equilibrium point x = 0 also changes when
passing through the point (0, a) as discussed in the last subsection. As well,
there are three equilibrium points, two of which are stable and one unstable
for w > a > 0, and two unstable and one stable for w < a < 0. The
bifurcation diagram for the DNU is shown in Fig. 8.30, where the dashed
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(continuous lines): locus of stable equilibrium points
(dashed lines): locus of unstable equilibrium points

(a) Dynamic neural unit: x = —ax + w tanh(x), a > 0

(i) For w < a, the DNU has a locus of a unique stable equilibrium point at x*= 0.

(ii) For w > a, the DNU has loci of two stable (x*1 and x*3) and one unstable (x*2)
equilibrium points.

(b) Dynamic neural unit: x = —ax + w tanh(x), a < 0

(i) For w > a, the DNU has a locus of a unique unstable equilibrium point at
x* = 0.

(ii) For w < a, the DNU has loci of two unstable (x*1 and x*3) and one stable (x^)
equilibrium points.

Figure 8.30 Case (A), with zero bias, v = 0, pitchfork bifurcation in the DNU
with v = 0, Eqn. (8.76).
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(continuous lines): locus of stable equilibrium points
(dashed lines): locus of unstable equilibrium points

(a) For a > 0 with increasing w, sudden appearance of two equilibrium
points

(b) For a < 0 with increasing w, sudden disappearance of two equilibrium
points

Figure 8.31 Case (B), DNU with bias v, the equilibrium curves of the single DNU,
Eqn. (8.78). When v ^ 0, the pitchfork bifurcation disappears.



338 DYNAMIC NEURAL UNITS (DNUs): NONLINEAR MODELS AND DYNAMICS

lines represent the locus of the unstable equilibrium points and the continuous
lines represent the locus of the stable equilibrium points. Obviously, when
w > a, the equilibrium point x* = 0 loses its stability for all values of a as
shown in Fig. 8.30a for a > 0, and in Fig. 8.30b for a < 0.

8.6.3.2 Case (B) with bias v, v ^ 0
For the case of v ^ 0, the dynamic neural system is described as

The pitchfork bifurcation of the single dynamic neural unit at (x,m,u) =
(0,0,0) is broken for v ^ 0. Figure 8.31 shows the behavior of the equilibrium
points of the dynamic neural system in Eqn. (8.78) for the DNU with bias v,
and a > 0 and a < 0. We make the following observations on the dynamic
behavior of equilibrium points with increasing w.

(i) In Fig. 8.3la, for a > 0 and w > 0, when the parameter w is increased,
two equilibrium points suddenly appear; one is stable and the other one
is unstable.

(ii) In Fig. 8.31b, for a < 0, when w is increased two equilibrium points
suddenly disappear.

8.7 CONCLUDING REMARKS

In this chapter we introduced the basic concept of feedback phenomenon
in neural units, thus laying the basic foundation for dynamic neural units
(DNUs). In contrast to static neurons, the output of a dynamic neural unit
depends on the present inputs as well as the past neural states. This concept of
a dynamic neural unit (DNU) gives rise to some very important characteristics
such as equilibrium memory and the dynamic temporal behavior of a DNU.

The input-output behavior of dynamic neural units as described in this
chapter is characterized by nonlinear differential or difference equations. Af-
ter introducing the basic equations of the dynamic neural units, we studied
various types of dynamic neural units, including neurons with excitatory and
inhibitory dynamics. The phenomena of multiple equilibrium points and their
stability characteristics are discussed. The concept of pitchfork bifurcation,
which can be found in certain parameter conditions in dynamic neural units
(DNUs), was also explored. The dynamic neural units studied in this chapter
provide a basic understanding for a further study of dynamic neural networks
(DNNs) in the following chapters.
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Problems

8.1 Given a nonlinear dynamic system of the form

where x E Rn is the state vector, u(t) e Rn is the external input
vector, and f : Rn x Rn —> Rn is a nonlinear function.

(a) Can dynamic responses of such a nonlinear dynamic system
with respect to a specific external input u(t) be used to
emulate the phenomenon of short-term memory?

(b) Can steady states of such a dynamic system with respect
to an specific external input u(t) be used to emulate the
phenomenon of long-term memory?

(c) Compare biological memory systems with that of the mem-
ory associated with this type of nonlinear dynamic system.

8.2 Show that the DNU model

has the identical set of equilibrium points and the identical set of
asymptotically stable equilibrium points as that of the following sys-
tem

where

8.3 Let all the parameters in the models of the Hopfield (DNU-1) and
Grossberg (DNU-5) be 1 and the initial values of the state x(0) = 0.
Give the numerical solutions of the states of both neurons.

8.4 Consider a two-neuron dynamic network described by
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Prove that this system is equivalent to the following single-neuron
structure with the two nonlinear activation operations

where y = x1 /b1= x2/b2.

8.5 Consider a nonlinear system described by the following differential
equation:

Give a block diagram of this system and compare the difference
between the model described above and the Hopfield neuron (DNU-
1).

8.6 Let the external input v(t) be a square-wave function with the ampli-
tude — 1 and 1, and period 0.1 second. Using computer simulation,
design an isolated DNU such that the error between the input v(t)
and the temporal neural state response x(t) is less than 0.2 at any
time t.

8.7 Consider a dynamic neural unit (DNU) with the following form:

(a) Determine all the equilibrium points of the above system;
(b) Discuss the stability of the equilibrium points.

8.8 Determine the parameters a, w, c, d, and v such that the following
neural equation

has three asymptotically stable equilibrium points.

8.9 For the continuous-time dynamic neural unit (CT-DNU)

use the first-difference approximation expression of dx/dt as
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where T is the timestep.
(a) Obtain the discrete version of the CT-DNU model;
(b) Draw the block diagram of the discrete-time DNU model;
(c) Determine the stable regions of the equilibrium points;
(d) Discuss the effect on the stability of the equilibrium points

for a different sampling period T.

8.10 Consider an isolated CT-DNU model of the form

(a) Show that the equilibrium points are given by

(b) Discuss the number and location of these equilibrium points;
(c) Discuss the stability of these equilibrium points.

8.11 Consider an isolated CT-DNU model of the form

Discuss the number and location of the equilibrium points of the
DNU for the following choices of parameters:

(a) a > 0, w > 0
(b) a < 0, w < 0, ( w / a ) < 1
(c) a< 0, w < 0, ( w / a ) > 1

8.12 Discuss the stability of the equilibrium points of the CT-DNU given
in Problem 8.11 and having the parameters given in (a), (b), and (c),
respectively.

8.13 Consider a linear differential equation

(a) Determine the solution of the above system;
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(b) Discuss the asymptotic stability condition of the equilibrium
point in terms of the parameters a, w, and v\

(c) Let a = 1, w = 0.5, and

Obtain the response of the system for the zero initial condi-
tion, z(0) = 0.

8.14 Consider an isolated DNU of the form

where -2 < v < 2.

(a) Select the parameters a and w such that the system has a
unique stable equilibrium point x * ( a , w , v } ;

(b) Let

Obtain the response of the system for zero initial condition.

8.15 Give a definition of the equilibrium bifurcation for a one-parameter
family of a one-dimensional differential equation.

8.16 Give two types of equilibrium bifurcations that exist in nonlinear
dynamic systems that are different with the pitchfork bifurcation.

8.17 Find a two-dimension nonlinear system

such that the system has at least one nonhyperbolic equilibrium point;
that is, at least one of the eigenvalues of the Jacobian

has a zero real part at the equilibrium point.
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8.18 Consider a differential equation

where x G R is the state and m € R is the parameter.

(a) Determine the equilibrium points of the system;
(b) Show that x = 0 is a nonhyperbolic equilibrium point;
(c) Analyze the change of the stability of the equilibrium for

m = 0.

8.19 Consider a differential equation

where x 6 3ft is the state and m e R is the parameter.

(a) Determine the equilibrium points of the system;
(b) Show that x = 0 is a nonhyperbolic equilibrium point;
(c) Analyze the change of the stability of the equilibrium at

m = 0.
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As seen in the previous chapters, a neural network consists of many inter-
connected simple processing units, called neurons, which form the layered
configurations. An individual neuron aggregates its weighed inputs and yields
an output through a nonlinear activation function with a threshold. In artificial
neural networks there are three types of connections: intralayer, interlayer,
and recurrent connections. The intralayer connections, which are also called
lateral connections or cross-layer connections, are links between neurons in
the same layer of the network. The interlayer connections are links between
neurons in different layers. The recurrent connections provide self-feedback
links to the neurons. In interlayer connections, the signals are transformed in
one of the two ways: either feedforward or feedback.

From the computational point of view, a dynamic neural structure that con-
tains the state feedback may provide more computational advantages than a
static neural structure, which contains only a feedforward neural structure. In
general, a small feedback system is equivalent to a large and possibly infinite
feedforward system (Hush and Home 1993). A well-known example is that
an infinite number of feedforward logic gates are required to emulate an arbi-
trary finite-state machine. Also an infinite order finite impulse response (FIR)
filter is required to emulate a single-pole infinite impulse response (IIR). A
nonlinear dynamic recurrent neural network structure is particularly appro-
priate for system identification, control and filtering applications because of
its distributed information processing ability as in biological neural systems.
In fact, a class of dynamic neural mechanisms has been exploited for learn-
ing, information storing, and using knowledge that might be found widely
in the brain. In these new neural machines the physics of the machines and
algorithms of the computation are intimately related.

The introduction of feedback in neural networks produces a dynamic neu-
ral system with several stable equilibrium points. A universally agreed-on
definition of neural network models does not exist, but for purposes of theo-
retical analysis and applications it is useful to define the most general features
of the dynamic neural systems that are to be considered in this book. The
entire discussion in this chapter, unless otherwise specified, will be limited to
systems that have continuous valued states and equations of motion that can
be expressed as differential equations.

9.1 DYNAMIC NEURAL NETWORK STRUCTURES:
AN INTRODUCTION

Consider a continuous-time dynamic neural network structure defined as
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where x G Rn represents the state vector, u G Rm is the external input
vector, and w G R is the neural parameters vector, which contains the
synaptic connection weights and somatic operational parameters; f(.) is a
function that represents the structure of the neural network, and h(.) is a
function that represents the relationship between the state vector x(t) and the
output vector y(i) € Rp.

Equivalently, a discrete-time dynamic neural structure can be defined as

These dynamic neural structures possess three general characteristics as
pointed out by Pineda (1988):

(i) First, they generally have many degrees of freedom. The human brain,
as a basis of these dynamic models, is believed to have between 1011

and 1013 biological neurons. The state of each of these neurons can
be modeled by different dynamic equations. It is generally believed
that the computational power and fault tolerance capabilities of the
neural systems result from the collective dynamics of the neural net-
works. Collective effects account for the properties of many physical
systems including magnetism, superconductivity, and fluid dynamics.
These static neural networks are trivial in some respects. They can
all be characterized by only one or two coupling constants. Dynamic
neural systems, on the other hand, are characterized by many synaptic
connecting weights.

(ii) The second general characteristic is that the dynamic neural structures
are nonlinear. Linear dynamic systems are characterized by the fact that
any two solutions of the system may be added together to produce a
third solution. Accordingly, linear dynamic systems can perform linear
mappings only and, therefore, are limited in their computational ability.
In fact, nonlinearity is a required property in associative memories if
they are to distinguish between two stored patterns.

(iii) The third characteristic of dynamic neural systems is that they are dis-
sipative. A dissipative system is characterized by the convergence of
the flow onto a manifold of lower dimensionality as the system evolves.
General dissipative systems, as shown in Fig. 9.1, can exhibit compli-
cated behavior. For example, they may converge onto manifolds with
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Figure 9.1 A two-dimensional (2-D) illustration for the orbit of a dissipative sys-
tem.

fractional dimensions (attractors) or onto a one-dimensional manifold
with periodic orbits.

Parallel to the development of static feedforward neural networks, dynamic
recurrent neural networks were first proposed in the context of associative or
content-addressable memory (CAM) problems (Hopfield 1982, 1984; Koho-
nen 1988) for pattern recognition. The uncorrupted pattern is used as a stable
equilibrium point and its noisy versions as its basin of attraction. In this way,
a dynamic neural system associated with a set of patterns is created. If the
whole working space is correctly partitioned by such a content-addressable
memory (CAM), then a system should have a steady-state solution corre-
sponding to the uncorrupted pattern for any initial condition which represents
a sample pattern. The neural network dynamics of such a classifier serve as a
filter.

A well-known model of dynamic recurrent neural networks with some
useful collective computational properties is due to Hopfield (1982, 1984).
This dynamic neural structure consists of a large number of the dynamic
neurons that were introduced in Chapter 8. A continuous-time model of an
analog neural network can be described by the following system of nonlinear
differential equations
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Figure 9.2 A basic dynamic neural network structure, Eqns. (9.5) and (9.6).

where xi represents the state of the ith neuron, yi is the output of the ith
neuron, wij is the synaptic connection weight from the ith neuron to the jth
neuron, Si is a constant external input, the constant ai is a positive constant,
and si(.) is assumed to be a monotonic sigmoidal function as discussed in the
previous chapters.

Figure 9.2 shows a single-layer dynamic neural structure as described by
Eqns. (9.5) and (9.6). Each dynamic neuron receives three types of input:

S i ( t ) : an external input signal for its dynamic processing

x i( t ) : self-connection: a state feedback signal

yi(t) : inter-layer connections: an output signal from each

neuron including the ith neuron

The accomplishment of both recurrent and interlayer connections involves
synaptic operations. From the system's perspective, the model of this dynamic
neural network is a continuous deterministic nonlinear dynamic system and
is illustrated by the block diagram in Fig. 9.3. More detailed studies about
this type of DNN will follow in the later sections of this chapter.
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Figure 9.3 Block diagram of a continuous-time dynamic neural structure,
Eqns. (9.5) and (9.6).
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9.2 HOPFIELD DYNAMIC NEURAL NETWORK (DNN) AND ITS
IMPLEMENTATION

This dynamic neural network (DNN), as introduced in Eqns. (9.5) and (9.6),
has evolved from the original work of Hopfield (1984), who used an electronic
circuit implementation of such a network.

In this section, we describe the Hopfield neural network and its electronic
circuit implementation. Some of its important properties, such as the stability
and equilibrium points, will be discussed. An extensive study of some of the
other dynamic characteristics that are useful in the design and applications of
these DNUs is addressed in the following sections.

9.2.1 State Space Model of the Hopfield DNN

A continuous-time dynamic neural network containing n dynamic neural
units (DNUs), introduced by Hopfield (1984), is described by the following
nonlinear differential equations

This nonlinear system can be implemented by an analog RC (resistance-
capacitance) network circuit. As shown in Fig. 9.4, such a circuit contains a
RC network at the input of each amplifier. The capacitance Q > 0 and the
resistance pi > 0 represent the total shunt capacitance and shunt resistance
at the input of the ith amplifier. Since the intrinsic delay exhibited by any
physical amplifier is modeled by an input resistanceri, and Ci, which are
drawn as external components in Fig. 9.4, an actual operational amplifier can,
therefore, be assumed as an ideal amplifier without delay. Furthermore, let
Rij be the resistor connecting the output of the jth amplifier to the input of
the ith amplifier, and Si the fixed external input current.

Let

ui = xi : input voltage of the ith amplifier

Vi = s i ( u i ) : output of the ith amplifier, where each operational

amplifier has two output terminals each providing

Vi and - Vi

One may write the current equation at the input node of the ith amplifier using
Kirchhoff's current law as follows
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or

and

By introducing a new parameter Ri defined as

the dynamic neural network given in Eqns. (9.9) and (9.10) may be rewritten
in a compact form as

where, Gij = 1 /R i j .
Moreover, by defining the neural weighting function wij as

the DNN in Eqn. (9.11) may be rewritten as

where

These equations are the same as those given in Eqns. (9.7) and (9.8).
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Figure 9.4 Circuit representation of continuous-time dynamic neural network
(DNN) structure; Eqns. (9.12) and (9.13).
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The product RiCi =ti is often referred to as the time constant of the ith
neuron. An identical time constant for each neuron would require Ci = C
and Ri = R for all i. The latter condition might be difficult to achieve in
practice if the parallel combination of the synaptic weights in Eqn. (9.11)
results in different values for each neuron. In this case, each individual value
for pi would have to be chosen in such a way that it compensates for these
variations and keeps Ri the same for each neuron. It is also important to
note that the time constant ti describes the convergence of the neural state ui.
Because of the potentially very high gain of the transfer function, the output
Vi might saturate very quickly. Thus, even if state ui is still far from reaching
its equilibrium point, output Vi might appear as if the circuit had converged
in merely a fraction of the time constant ti.

An electronic circuit consisting of operational amplifiers, capacitors, and
resistors should be able to operate as a Hopfield network. This circuit can
be designed by reconstructing the stable states that have been designed using
the proper value of w i j , and as long as wij is symmetric; that is, wij = w j i ,
and the amplifiers are quick compared with the characteristic of the neural
time constant RiCi. In this case, the neural system converges to stable states
and will not oscillate or display chaotic behavior. The novel concepts and
implementations of a single-chip electronic neural network along the lines
just discussed have been reported by several groups using very large-scale
integration (VLSI). Many details on the topics of electronic implementations
of dynamic neural networks may be found in the literature.

9.2.2 Output Variable Model of the Hopfield DNN

The Hopfield DNN model given in Eqns. (9.7) and (9.8), or equivalently
expressed in Eqns. (9.12) and (9.13), is in the form of a state space model.
These models can also be transformed into the output variable model form as
described below.

To rewrite the state space model of the Hopfield DNN expressed in Eqns.
(9.7) and (9.8) using the output variable yi = s i ( x i ) , i = 1, 2 , . . . , n, we have



9.2 HOPFIELD DYNAMIC NEURAL NETWORK (DNN) AND ITS IMPLEMENTATION 355

Figure 9.5 Sigmoidal function y = s ( x ) , its inverse x = s - 1(y), and its deriva-
tive s ' (x) = h(x) = d s ( x } / d x .
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Figure 9.6 Block diagram of the output variable model of the Hopfield dynamic
neural network, Eqn. (9.18).
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Define

Then Eqn. (9.14) can be rewritten as

for i = l , 2 , . . . , n . Note that, as shown in Fig. 9.5, due to the sigmoid
characteristic of si(yi), the function hi(yi) = dsi /dxi satisfies

Hence, the Hopfield dynamic neural networks can be written using the output
variable y i(t) as

This output variable model of the Hopfield DNN shown in Fig. 9.6 has
the same equilibrium points as the original state space model of the Hopfield
DNN defined in Eqns. (9.12) and (9.13).

9.2.3 State Stability of Hopfield DNN

The Hopfield dynamic neural network (DNN) is a nonlinear dynamic system
that has the potential for exhibiting a wide range of complex behaviors.
Depending on how the network parameters are chosen, the systems behavior
may be stable, oscillatory, or even chaotic. In fact, most applications of
the Hopfield DNN require that the network be a stable system with multiple
asymptotically stable equilibrium points. In this section, we will study the
stability behavior of its equilibrium points.

Consider an energy function E defined as

which is also referred to as the computational energy function of the system by
Hopfield (1984), and describes the macroscopic characteristic of the network
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behavior. It is easy to verify that for a symmetric weight matrix W

Hence, the time derivative of the computational energy function E is

Since yi = s ( x i ) , a substitution for (dxi/dt) in Eqn. (9.21) yields

Since cri(yi) is a monotonically increasing function, its derivative is positive-
definite and so is Ci. Hence, each term on the right-hand side of Eqns. (9.21)
and (9.22) is nonnegative. Therefore

and

This means that the dynamic neural system moves from any initial point in the
state space in the direction that decreases its energy E and comes to a stop at
one of the many local minima of the energy function. Hence, E is a Lyapunov
function for the system. Because of the existence of the multiple equilibrium
points in the system, the energy function E converges to the nearest stable
equilibrium point from the initial starting position, as will be seen in the later
discussions.

Equations (9.20) and (9.22) indicate that the convergence of the neural
state of the continuous deterministic Hopfield model to its stable equilibrium
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points is based on the existence of an energy function that directs the flows in
state space. Such a function can be constructed as a continuous deterministic
model when the weight matrix W is symmetric. The importance of this simple
symmetric system lies not only in its state convergence but also in its potential
as a computing device for applications to systems such as content-addressable
memory (CAM).

Example 9.1 Consider the Hopfield DNN described by Eqns. (9.7) and (9.10)
with the following set of parameters:

The DNN equations are, therefore, described as

The equilibrium points are defined as the solution of Eqn. (9.25) for dx1/dt =
dx2/dt = 0:

The solution of these equations yields two stable equilibrium points

which correspond to the two minima of the energy function E(x1 , x2) as
described in Eqn. (9.19).

There is also another solution of Eqn. (9.25) and this solution lies at the
unstable equilibrium point

Figure 9.7 shows the surface of the computational energy function E with
two stable and one unstable equilibrium points.

Figure 9.8 demonstrates an energy contour for this two neural system
showing both the stable (x*1, x*2) and unstable (x*3) equilibrium points. •
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Figure 9.7 Example 9.1: the surface of the computational energy function E. A
two-neuron system with the parameters C1 — C2 = 1, R1 = R2 = 1,
w11 = w22 = 1-0, w12 = w21 = 1.5, and s1 = s2 = 0. The system's
two stable equilibrium points are at x*1 = [2.4641 2.4641]T and
x*2 = [—2.4641 —2.4641]T, which correspond to the two minima of
the energy funct ionE(x 1 ,x 2) . Also, the unstable equilibrium point is
at x*3 = [0 0]T.
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Figure 9.8 Example 9.1: an energy contour map for the two-neural system.

9.2.4 A General Form of Hopfield DNN

A general form of the Hopfield dynamic neural network can be expressed as

or

where

and ai > 0 is the inverse of the time constant governing the rate of change of
the ith neuron. Moreover, a vector form of the system given in Eqn. (9.27)
can be expressed as
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Figure 9.9 A general form of the Hopfield DNN.
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where, x = [x1 • • • xn]
T is the state vector of the network, s — [s1 • • • sn]

T

is the input vector, y = s(x) = [ s 1 ( x 1 ) • • • sn(xn)]T, is the output vector,
A = diag[a1 • • • a n ] T , and

is the synaptic weight matrix. The block diagrams of the individual neuron
given in Eqn. (9.27) and the neural system given in Eqn. (9.29) are shown in
Fig. 9.9.

If W is symmetric, the energy function of the system expressed in Eqn.
(9.28) is denned as

9.3 HOPFIELD DYNAMIC NEURAL NETWORKS (DNNs) AS
GRADIENT-LIKE SYSTEMS

The state stability of the Hopfield DNN may also be referred to as the conver-
gence to its equilibrium points. This topic is explored in more detail by using
the energy function method in this section.

The continuous-time Hopfield dynamic neural network discussed in Sec-
tion 9.2 was represented by

where Si are the constant inputs, Ri > 0 and Ci > 0, and wij = wji satisfies
the symmetric condition. In matrix form, this system can be rewritten as
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where C = diag(C1 , . . . , Cn], and R-1 = diag[1 /R 1 , . . . , 1 /R n ] . Also,
as in Eqn. (9.16) using the output yi as the state variables, Eqn. (9.31) can be
rewritten as

or in matrix form as

where the function s i
- 1 ( y i ) is the inverse of the sigmoid function and

It is seen that the range of the state y in Eqn. (9.35) is an n-dimensional
hypercube

The computational energy function E ( y ) for this neural network may be
written as

or in vector form as

wheretR = [R1
-1 • • • Rn

-1]T and s ( y ) = \tf a^(s)ds • • • /„«" a-1(s)ds}T.
This function is continuously differentiable, but not positive-definite. From
the symmetric property, it is easy to verify that

Hence, the dynamic equation of the Hopfield neural network can also be
expressed in the form of the energy function as
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or

where, h(y) — d i a g [ h 1 ( y 1 ) , . . . , hn(yn}] is a positive-definite and invertible
matrix. Equation (9.42) describes a gradient-like system (Hirsch and Smale
1974). Some basic properties of the system in Eqn. (9.42) are now discussed.

Theorem 9.1 dE(y ) /d t < 0 for any y e Hn, anddE(y}/dt = 0 if and only
ify is an equilibrium point of Eqn. (9.40). Thus, the set of critical points of
E(y} is identical to the set of equilibrium points of the system in Eqn. (9.31).

Proof: The derivative of E(y] along the trajectories of the system is given by

where C lh(y) > 0 by assumption. Furthermore,

Hence, dE(y}/dt = 0 only at the equilibrium points.

Theorem 9.2 Let y* be an isolated local minimum of E(y). Then y* is a
locally asymptotically stable equilibrium point of the system in Eqn. (9.32).

Proof: For the isolated local minimum y*, one may define a function

for "y 6 W = {y : \\y — y*\\ < d, for 0 < d < I}. Then, the expansion
about the equilibrium point y* yields
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Since for the isolated local minimum y*

and

Hence

Therefore, V(y) is a Lyapunov function of the system in Eqn. (9.32), and this
proves the theorem. •

Theorem 9.3 The eigenvalues of the Jacobian of the system in Eqn. (9.32)
are real.

Proof: Note that

is symmetric. •

Theorem 9.4 All trajectories of the Hopfield dynamic neural network in
Eqn. (9.32) converge to one of the equilibrium points.

Proof: Consider a globally positive-definite function

where RC = diag[R1C1 , . . . , RnCn] is a diagonal positive definite matrix.
Then, along the trajectories we have
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for all x e W = {x : \\x\\2 < \ \R\ 2 \W \\2_\\y\\2 + \\s\\2}}. Consequently,
all solutions must converge to the closed set W. Additionally, using the results
given in Theorem 9.1, all the equilibrium points of the Hopfield dynamic
neural network in Eqn. (9.53) must be inside the set W. Since W consists
of isolated equilibrium points, it can be shown that a trajectory approaching
W must approach one of these equilibrium points. Thus, for all the possible
initial conditions, the trajectory of the system will always converge to one of
the equilibrium points. This ensures that the system will not oscillate. •

It is to be noted that the proof of Theorem 9.4 is independent of the
symmetry of the synaptic weight matrix W; it can be applied for any weight
matrix W. Thus, the conclusions drawn from Theorem 9.4 are beyond the
results derived by Khalil (1992) using LaSalle's well-known theorem.

In the following example, we will show that even if the trajectories of a
Hopfield dynamic neural network always converge to the equilibrium points
for all the possible initial conditions, the system may still contain isolated local
unstable equilibrium points. In other words, the trajectories will converge only
to the asymptotically stable equilibrium points.

Example 9.2 Consider a DNN with two-neurons without the self-feedback
connections described by

The Jacobian of the system in Eqn. (9.46) is given by

The eigenvalues of J ( x ) are

Obviously, if the weight w12 has the opposite sign to that of the weight w21,
the system eigenvalues are complex conjugate with negative real parts, and the
system in Eqn. (9.46) has a unique global asymptotically stable equilibrium
point. Otherwise, the system may have unstable equilibrium points.
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Figure 9.10 Example 9.2: phase plane diagram of the neural system in Eqn. (9.46).
w12 = —3, w21 = —2, and s1 = 0.6, s2 = 0.8, where
the equilibrium points x*1 = [3.0940 -1.1918]T and x*2 =
[—2.2763 2.7658]T are locally stable, and the equilibrium point
x*3 = [0.3808 0.0732]T is unstable.

For example, if w12 = -3.0, w21 = —2.0, and s1 = 0.6, s2 = 0.8, the sys-
tem in Eqn. (9.46) has three equilibrium points x*1 = [3.0940 -1.19179]T,
x*2 = [-2.3763 2.7658]T, and x*3 = [0.3808 0.0732]T. Then the eigen-
values of the Jacobian J(x) at the equilibrium points x*1, x*2 and x*3 are
respectively,

Hence, using the Lyapunov's first method (Khalil 1992), we find that the
equilibrium points x*1 and x*2 are only locally stable, not globally stable,
and x*3 is unstable. This fact is shown in the phase plane diagram of the
system in Eqn. (9.46), given in Fig. 9.10. •
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9.4 MODIFICATIONS OF HOPFIELD DYNAMIC NEURAL
NETWORKS

9.4.1 Hopfield Dynamic Neural Networks with Triangular
Weighting Matrix

The symmetric connection weighting matrix assumption in the Hopfield dy-
namic neural network is useful from a design viewpoint, especially for prob-
lems that can be described in terms of the minimization of a quadratic function.
Nevertheless, the existence of many equilibrium points for the energy function
E implies that, in general, a global asymptotically stable equilibrium point that
corresponds to a global minimum of the energy function E is not guaranteed;
that is, the network will compute the local stable equilibrium states that are
associated with the local minima of the energy function E. It follows, then,
that the Hopfield dynamic neural network has many equilibrium points and,
thus, it has the potential capability for implementing neural associative mem-
ories. Some applications demand that the network computing have a globally
optimal solution. For example, in the neuron-based analog-to-digital (A/D)
converter proposed by Hopfield and Tank (1986), the existence of many equi-
librium points for E requires in a practical implementation the use of separate
electronics to impose zero initial conditions before each conversion. Essen-
tially, this is due to the fact that for nonzero initial conditions, the network
may stop in a spurious state; that is, at an equilibrium point that corresponds
to a locally optimal solution and does not correspond to the correct digital
representation of the analog input signal.

To guarantee the uniqueness of the equilibrium point in the Hopfield dy-
namic neural network, the simplest structure is described by a strict lower
(upper) triangular weighting matrix, as will be seen in the following discus-
sion.

Consider a trivial network structure where the weighting matrix is strictly
a lower triangular matrix with wij = 0, for all j > i:

In this case, the neural network contains interlayer connections as shown in
Figs. 9.11 and 9.12.
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Figure 9.11 Hopfield dynamic neural network with a lower triangular weighting
matrix, Eqn. (9.47).

Figure 9.12 Circuit representation of the continuous-time Hopfield dynamic neu-
ral network with a lower triangular connection weighting matrix.
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Using the lower triangular weighting matrix, the dynamic neural networks
equations can be expressed as

or

The equilibrium equations of the dynamic neural network are defined by

that is

and

The analytic solution of the steady state of this system is given by

Furthermore, the general solution of the DNN system in Eqn. (9.49) for an
arbitrary initial condition xi(0) is derived as
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and

It is easy to verify that

Therefore

This implies that this type of Hopfield dynamic neural network has a unique
asymptotic stable equilibrium state xe for any arbitrary inputs s. The same
result can be obtained for the Hopfield DNN with a strict upper triangular
weighting matrix.

9.4.2 Hopfield Dynamic Neural Network with Infinite Gain
(Hard Threshold Switch)

The Hopfield dynamic neural network represented by the system of equations

can be realized by electronic circuits in which each nonlinear activation s(.)
is implemented by a nonlinear operational amplifier with an input voltage xi,
output voltage yi = s ( x i ) , and gain l. In practice, A is a very large positive
number. It is of interest to know what happens when A becomes arbitrarily
large. In this case, the nonlinear amplifiers may be viewed as hard threshold
switches. For instance, let s(xi) = tanh(lx i). Then
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and

Hence, for a sufficiently large enough gain l, the sigmoidal function s(.)
becomes discontinuous and can be replaced using the sgn(.) function defined
by

To understand the dynamic behavior of the neural network with this type of
activation function, we need to study an ideal mathematical model described
by the equation

where sgn(x) = [sgn(x 1 ) • • • sgn(xn)T .

9.4.3 Some Restrictions on the Internal Neural States of the
Hopfield DNN

The Hopfield dynamic neural network discussed in the previous section is
a continuous-time analog information processor in which the internal states
may lie in a large range as a function of the variable parameters. However,
the external behavior described by the neural outputs are bounded because of
the characteristics of the sigmoidal activation function. The advantage of this
model lies in its capabilities for dealing with temporal information processing
and steady-state memory problems even if there are some difficulties associ-
ated with the analysis and electronic implementation, as will be seen in the
following discussion.

(i) In the electronic implementation of Eqn. (9.58), since the internal state
variable x = [x1 x2 • • • xn]

T of the network varies in Rn, xi (1 <
i < n) may assume very large values, and scaling may pose problems
in implementation. Furthermore, whenever the value of Rij is altered
to adjust the corresponding value of wij in Eqn. (9.54), the value of Ri

also changes;

(ii) Because of the complicated nonlinearity of the sigmoidal function, the
analysis and determination of the equilibrium points from the equilib-
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rium equations

are difficult and, hence, it is difficult to check the performance of the
system;

(iii) The integrator term involved in the energy function

may cause some difficulties in the synthesis procedure of the system.

To overcome such drawbacks, some modified versions of the Hopfield dy-
namic neural network have been proposed. We now present two modified
versions.

9.4.4 Dynamic Neural Network with Saturation (DNN-S)

A simple modification for the Hopfield dynamic neural network, as introduced
by Li et al. (1989), is to restrict the internal state of the network in a closed
hypercube. This modified version of DNN is given by

with the constraints

This dynamic neural network, given in Eqn. (9.59), will be named as a dynamic
neural network with saturation (DNN-S). As discussed by Li et al. (1989), the
main difference between the DNN-S and the usual linear system is that the
former is defined on the closed subset of Rn, while the latter is defined on the
open subsets of Rn. The dynamic neural system in Eqn. (9.59) may also be
expressed in the following vector form

where x = [x1 • • • xn]
T e [—1, 1]n, C — d i a g [ c 1 , . . . , cn], R = diag[r 1 ,

. . . , rn], W = [wij]nxn, and s = [s1 • • • sn]
T- An energy function for the
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above system may be defined as

For a symmetric weight matrix W, it is easy to verify that

Hence, the convergence of the dynamic neural system given in Eqn. (9.60) is
ensured.

Figure 9.13 shows the block diagram of the DNN-S expressed by Eqn. (9.60).
The dynamic neural system in Eqn. (9.60) can be easily implemented using
the electronic circuit given in Fig. 9.14. There are n identical operational
amplifiers in this circuit. Let ui and Vi be the input and output voltages of the
ith amplifier, respectively, and let ±VCC denote the power supply voltage. The
input-output relation of the ith operational amplifier is, therefore, given by

where A is the gain of the operational amplifiers. By employing a feedback
capacitor Ci, the ith operational amplifier becomes an integrator. If we assign

Figure 9.13 Block diagram of the dynamic neural network with saturation (DNN-
S), Eqn. (9.60).
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Figure 9.14 The circuit implementation of the dynamic neural network with sat-
uration (DNN-S), Eqn. (9.60).

the values of unity to the gain A and voltage Vcc, then each component Vi can
vary from —1 to 1. In this case, the circuit can be described by a set of linear
differential equations as

with the constraints

Furthermore, let x — [V1 ... Vn]
T, s = [s1 ... sn]

T, and
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Then, Eqn. (9.64) may be transformed into the form of Eqn. (9.62). Without
loss of generality, if the first term B - 1 x ( t ) in Eqn. (9.60) is absorbed in the
second term Wx(t), the modified version of the DNN-S is

The system in Eqn. (9.65) may be implemented by the block diagram shown
in Fig. 9.15.

An electronic implementation of the circuit may also be expressed by the
equations

with the constraints

If, we let Ci = 1, (1 < i < n), x = [V1 ... Vn]
T, s = [s1 ... sn]

T, and
W = [wij]nx n, where wij = 1 /R i j , then Eqn. (9.66) may be written in the
same form as the DNN-S in Eqn. (9.65). Also, for the DNN-S in Eqn. (9.65),
the stability of the equilibrium points may be investigated by considering the
energy function defined as

Further analysis for the stability of equilibrium points can be conducted as
was done before.

Figure 9.15 Block diagram of the modified DNN-S, Eqn. (9.65).
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9.4.5 Dynamic Neural Network with Integrators

If at the output stages the nonlinear amplifiers in the Hopfield dynamic neural
network are replaced using integrators with saturation, then the dynamic
neural network is described by

or equivalently

Obviously, this is an integrator with decay to xi. An additional integrator may
seem meaningless, but in an analog neural network of this type the decaying
term in the dynamics provides a mechanism for avoiding unnecessary local
minima of the energy function of the Hopfield dynamic neural network.

For the DNN described in Eqn. (9.70), and depicted in Figs. 9.16 and 9.17,
we may define the following energy function

The time derivative of E is
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Figure 9.16 The circuit implementation of the dynamic neural network,
Eqn. (9.70).

Figure 9.17 Block diagram of the dynamic neural network, Eqn. (9.70).
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which guarantees the stability of the equilibrium points.
As seen from the previous discussion, the Hopfield dynamic neural network

is a nonlinear dynamic system with many individual subsystems or elements
with parallel computational capabilities. It has many attractors in the neural
state space that make possible the information patterns that are stored in
these attractors. For the modified DNN-S given in Eqn. (9.63), which is
a linear system defined in a closed-unit hypercube, the analysis procedure
presented by Li et al. (1989) provides a perfect understanding for the dynamic
properties, such as the set of asymptotically stable equilibrium points, the set
of unstable equilibrium points as well as the domains of attraction for the
elements of the former set of the DNN-S as a dynamic neural processor. The
synthesis procedure also proposes an efficient algorithm for a given pattern
vector storage.

9.5 OTHER DNN MODELS

As discussed in the beginning of this chapter, a dynamic neural network can
be described by either a set of continuous-time differential equations or a set
of discrete-time difference equations. The Hopfield DNN is a widely studied
model of DNNs, as it has very attractive nonlinear dynamics. Moreover, we
will present some other types of DNNs that may also show some interesting
and useful nonlinear behaviors.

9.5.1 The Pineda Model of Dynamic Neural Networks

The next model that we now discuss is very similar to the Hopfield network.
This model, called the continuous-time recurrent neural network, was first
studied by Pineda (1988). Like the Hopfield dynamic neural network, this
network consists of a single layer of neurons that are fully interconnected
and contains recurrent connections and intra-layer connections as shown in
Fig. 9.18. The dynamics of the network are described by the differential
equation

or

where, all ai ^ 0, i = 1 , . . . , n.
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The topological structure and the block diagram of this dynamic neural
network are shown in Figs. 9.18 and 9.19, respectively.

Let all ai = 1 and bi = 1, and s be a constant input; that is, matrices A
and B are unity matrices. It is easy to see that if the weighting matrix W
is invertible, then the preceding model is an equivalent form of the Hopfield
dynamic neural network expressed in Eqn. (9.5). In this case, let u = Wx+s.
Then

From the nonlinear system dynamics point of view, if the number of inputs
for the recurrent neural system is smaller than that of the neural states, then we
can introduce an input weight matrix such that the equation of the recurrent

Figure 9.18 Topological structure of the continuous-time recurrent neural net-
work, Eqn. (9.72).
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Figure 9.19 Block diagram of the continuous-time recurrent neural network.

Figure 9.20 Continuous-time recurrent neural network, Eqn. (9.76).

neural network becomes

or

where W(x) is a weight matrix associated with the neural state vector x and
W(s) is a weight matrix associated with the external input vector s. The block
diagram of this network is given in Fig. 9.20. The dynamic neural model in
Eqn. (9.76) has some advantages for control applications because most of the
control systems involve different numbers of inputs, outputs, and states.

9.5.2 Cohen-Grossberg Model of Dynamic Neural Network

From the absolute stability point of view, Cohen and Grossberg (1983) at-
tempted to represent a class of dynamic neural systems using a competitive
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dynamic system described as

The following hypotheses were made for the above neural model in Eqn. (9.77):

(i) Symmetry: wij > 0 and wij = wji;

(ii) Continuity: ai(x) is continuous for x > 0; function bi(x) is continuous
for x > 0;

(iii) Positivity: function ai(x) > 0 for £ > 0; function di(x) > 0 for
x e (-oo,oo);

(iv) Smoothness and monotonicity: function di(x) is differentiate and
monotonically nondecreasing for x > 0.

Obviously, condition (i), in which wij- > 0, is a strong condition. Furthermore,
Cohen and Grossberg assumed that

(v) lim[bi(x) - W i j g j ( x ) ] < 0, for all i = 1,2, . . . , n;

(vi) And either

limx->0+ bi(x) =oo, or
limx->+ bi(x) < 0 and

J0 dx/ai (0 = oo for some £ > 0.

Let us define a Lyapunov function for the neural system in Eqn. (9.77) as

and its time derivative satisfies

This Lyapunov function guarantees the stability of the equilibrium points.
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9.6 CONDITIONS FOR EQUILIBRIUM POINTS IN DNN

As stated earlier, equilibrium points are an important notion in dynamic
neural networks, which are essentially the steady-state points of a nonlinear
dynamic system. In this section we will study some existence conditions of
the equilibrium points for two different dynamic neural networks: DNN-1
and DNN-2.

9.6.1 Conditions for Equilibrium Points of DNN-1

First, let us consider the dynamic neural network, DNN-1, described earlier
by Eqn. (9.29):

Given a set of nonzero vectors {x1 , . . . , xm} = {x i } that represent some
specific information, we will now study the conditions for which the vectors
{x1} are the equilibrium points of the dynamic neural network in Eqn. (9.80).
For convenience, assume that the input or bias s = 0 and {xi} are the
equilibrium points of the system in Eqn. (9.80). Then, for each vector of
at the equilibrium points, dx i /dt = 0, and, the following equality is thus
satisfied

That is

or

where X = [xl • • • xm] and S = [ s ( x 1 } • • • s ( x m } ] . Furthermore, assume
that m > n, and r a n k [ s ( x l ) , . . . , s ( x r n ) ] = n, where n is the number of
neurons. Then Eqn. (9.83) leads to

Since W is a symmetric matrix, the right-hand side of this equation is equal
to the transposition of itself, that is
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which is equivalent to

The preceding equation is satisfied if

that is

or

Consequently, Eqn. (9.87) is a sufficient condition that the set of nonzero
vectors {x1,..., xm} are the equilibrium points of the system of Eqn. (9.80)
for the nonlinear vector function s(.).

In fact, the sufficient condition in Eqn. (9.87) is also necessary for all m.
To verify this, using Eqns. (9.82) and (9.87), we obtain

Using the same procedure, we obtain

Then, the symmetry of the matrix W gives

Therefore

These calculations are summarized into the following theorem.

Theorem 9.5 Let s = 0 in the system described in Eqn. (9.80) and x1..., xm

be a set of nonzero constant vectors in Hn. Then

(i) The condition given in Eqn. (9.82) is necessary for x1,... ,xm to be the
equilibrium points of the system in Eqn. (9.80),

(ii) If m > n and r a n k [ s ( x 1 ) , . . . , s(xm)] = n, the condition in Eqn.
(9.82) is also sufficient for xl, ... ,xm to be the equilibrium points of
the system in Eqn. (9.80).
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Proof: We only need to prove the sufficient part; that is, if m > n and
r a n k [ s ( x l ) , . . . , s ( x m } ] = n, then there is a symmetric matrix W such that
x1, ... ,xm are the equilibrium points of the system in Eqn. (9.80). In this
case, we construct

Then, using the condition in Eqn. (9.84), it is easy to verify that W is a
symmetric matrix. Multiplying both sides of the equality above by S =
[ s ( x l ) • • • s(xm}} yields the equilibrium equations

that is

Hence, xl,... ,xm are the equilibrium points of the system in Eqn. (9.80). •

9.6.2 Conditions for Equilibrium Points of DNN-2

Next, we consider the conditions that {x1} are the equilibrium points of the
following DNN-2 neural system

where B > 0 and W is symmetric. Let {x i} be the equilibrium points of the
system in Eqn. (9.94). Then each vector xi satisfies

By denoting s -1(.) as the inverse of s(.), we have

that is
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Furthermore, if m > n and rank[xl,..., xm] = n, using the same derivation
procedure as for DNN-1, we obtain the following condition:

These results may be summarized in the following theorem.

Theorem 9.6 Let x 1 , . . . , xm be a set of nonzero constant vectors in Hn.
Then

(i) The condition in Eqn. (9.98) is necessary for x1,... ,xm to be the
equilibrium points of the system in Eqn. (9.94),

(ii) If m>n and rank[xl,..., xm] = n, the condition in Eqn. (9.98) is
also sufficient for xl, ... ,xm to be the equilibrium points of the system
in Eqn. (9.94). •

If m > n and rank[xl,..., xm] = n, and the condition in Eqn. (9.98) is
satisfied, the weight matrix is calculated as follows:

9.7 CONCLUDING REMARKS

Dynamic neural networks, for both continuous and discrete time, are a very
important topic. Since these dynamic neural networks form complex nonlin-
ear dynamic equations, the study of their properties such as the equilibrium
points and their stability, are important notions. These notions lead to the
design of frameworks for the dynamic neural networks for specific tasks. In
this chapter we introduced basic mathematical models of continuous-time dy-
namic neural networks and their analog circuit implementations. In particular,
we discussed at length the model of the Hopfield DNN and its variations. We
also studied the state stability and the convergence properties of the equilib-
rium points for some important classes of dynamic neural networks.

Problems

9.1 Consider a system with the form

where A = [a i j] is an n x n constant matrix with aij = 0 for i < j,
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x E Rn is a n-dimensional state vector, and g: Rn —> Rn is a
continuous vector function g — [g1 g2 ... gn]

T such that

Prove that if the matrix A is stable, then the system in Eqn. (9.100)
has only one equilibrium point that is globally asymptotically stable.

9.2 Consider a nonlinear system of the form

Let y — T(x) with T(0) = 0 be a diffeomorphism in the neighbor-
hood of the origin, that is, the inverse map T -1(.) exists, and both
T(.) and T-1(.) are differentiable. The transformed system is

(a) Show that x = 0 is an equilibrium point of x = f ( x ) if and
only if y = 0 is an equilibrium point of y = f ( y ) ' ,

(b) Show that x = 0 is stable (asymptotically stable, unstable) if
and only if y = 0 is stable (asymptotically stable, unstable).

9.3 Let the nonlinear sigmoidal function in the continuous-time Hopfield
dynamic neural network be chosen as yi = si(lxi), where l > 0 is
an activation gain and the neural output y is used as the state variable
in a continuous-time system. Analyze the changes of the minima of
the continuous-time energy function due to the changes of the gain
l. [Hints: yi — s i ( l x i ) implies xi = ( 1 / l ) s i

- 1 ( y i ) . ]

9.4 Show that output variable model of the Hopfield DNN has the same
equilibrium points as that of the original state space model of the
Hopfield DNN.

9.5 Let the Hopfield DNN have a strict upper triangular weighting matrix
of the form
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Show that this type of Hopfield DNN has a unique asymptotic stable
equilibrium state for an arbitrary input.

9.6 Consider a general class of neural networks with the following form

or

where W G 3ftnxn. Show that for any given connection weight
matrix W and input v, there exists at least one equilibrium point
x* ^Hn = {x: \\x-v\\oo < I IWHo^cceSH such that

9.7 Consider a general class of neural networks with the following form

or

where A = diag[ai,..., an] and W e §£nxn. Let all a* ̂  0, i =
1 ,2 , . . . , n in Eqn. (9.101) and a = max{|l/c^| : i = 1 ,2 , . . . , n}.
Show that for any given input v and the connection weight matrices
W\ there exists at least one equilibrium point x* € Hn = {x : \\x —
v\\oo < a\\W\\oo,x € 3£n} of the dynamic system in Eqn. (9.102);
that is, Ax* = Wa(x*) + v.

9.8 Show that for any given connection weight matrix W and input
v, there exists at least one equilibrium point of e [—1, l]n of the
dynamic neural system

9.9 Consider a general class of recurrent neural network of the form
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or, equivalently, in vector form

where B = diag[/3i, /?2, • • •, j3n]. Let all o^ ^ 0, i — 1, 2 , . . . , n in
Eqn. (9.103) and /? = max{|$/c^ : z = 1, 2 , . . . , n}. Show that for
any given input v and the connection weight matrix W, there exists
at least one equilibrium point x* G [—/?, /3]n of the dynamic system
in Eqn. (9.103); that is, Ax* — Bcr(Wx* + v] will have at least
one solution x* G [-(3,{3]n.

9.10 Consider a general class of recurrent neural network of the form

or, equivalently, in vector form

where B = diag[(3i,j32,...,(3n\. Show that the dynamical neural
system has at least one equilibrium point x* G $tn if and only if the
given input v and the connection weight matrix satisfy

rank[W: —v] = n

Furthermore, show that the system has a unique equilibrium point if
and only if the weight matrix W is invertible, and this equilibrium
point is x* = — W~1v.

9.11 For the dynamic neural network (DNN)

if
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then f ( x ) = —Ax -\- Wcr(x) is a contraction. Show that

(a) The system has a unique equilibrium point x* that is globally
asymptotically stable;

(b) For any x° G ffi1, the sequence {xn} defined by xn+l =
f(xn) satisfies

that is, the sequence {xn} converges to x* at an exponential
rate.

9.12 For the neural system given in Problem 9.11, we may consider the
possibility of using the equilibrium point x* of a linear network

as an estimation of the equilibrium point x* of the nonlinear neural
network. Let

Show that

The simple observation is that if the equilibrium of the linear network
is within a region in which cr(x) is well approximated by x. In other
words, if x* is in a small neighborhood of the origin, then the equi-
librium point of the nonlinear network will be in that neighborhood.

9.13 (Multimodal Sigmoidal Function) A symmetric multimodal sig-
moidal function is given by

where the constants Q and d{ determine, respectively, the slope and
the positions of the inflation points of am(x). Show that a dynamic
neural network (DNN) with such a multimodal sigmoidal function
may have more equilibrium points than that with nonmodal sigmoidal
function a(x].
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9.14 Consider a two-neuron system with the external inputs described by

(a) Show that the system has only four equilibrium points;
(b) Give solutions of those four equilibrium pints;
(c) Show that three of those four equilibria are asymptotical

stable while another one is unstable.

9.15 Consider again a two-neuron system with the following form:

Show that the number of equilibrium points and their stability of this
dynamic neural system.

9.16 Consider again a two-neuron system with the following form

(a) Show that the system has only three equilibrium points;
(b) Give solutions of those three equilibrium points;
(c) Show that two of those three equilibria are asymptotical

stable while another one is unstable.
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As a demonstration of a simple dynamic neural architecture, some struc-
tures and essential dynamics of a single dynamic neuron which is a basic
computing unit of dynamic neural networks (DNNs) were discussed in Chap-
ter 8, and other earlier chapters. Generally speaking, a single dynamic neuron
is designed as a nonlinear and dissipative system, where the nonlinearities
ensure that the multiple equilibrium points occur in the steady state of the
neuron, and the dissipative property provides the convergence of the state
flow and exhibit some behaviors such as stable equilibrium points, periodic
orbits, and state attractors. Usually, discussion of dynamic neural systems is
confined to systems whose only behavior is to converge onto state attractors
for given ranges of neural parameters and initial conditions. As we discussed
earlier, the notion of state attractors is an important dynamic property in dy-
namic neural computing because the corresponding state values can be used
to represent specified patterns such as memories, data structures, or rules.

Apart from the complicated inherent architecture of the single dynamic
neuron, another important characteristic is the capability of learning from the
external environment. From the biological perspective, the phenomenon of
the general dynamic neural unit described in earlier chapters can be exploited
to construct filters. Here the term "filter" refers to an architectural component
that performs a nonlinear mapping operation from the input (receiving port)
to the output. The architecture of a processor, the design of a program,
or the organization of the brain can be described as a hierarchy of filters.
A single dynamic neuron, which is an intelligent processor when learning
algorithms are introduced, changes its nonlinear mapping operation. From
the systems point of view, if suitable learning algorithms are adapted, a single
dynamic neuron is capable of dealing with the processing of either time-
independent analog patterns or time-dependent continuous-time trajectories,
where the former is represented by steady states and the latter correspond to
temporal or state trajectories. Therefore, we conclude that dynamic neural
networks possessing the same structure but distinct learning algorithms can
exhibit different dynamic behaviors. In other words, the neural system is
a composition of two dynamic systems: the signal transmission and the
parameter adjusting systems. The overall input-output behavior thus is a
result of the interaction of both.

Roughly speaking, there are two general concepts of dynamic neural learn-
ing. Equilibrium point learning is designed for the purpose of implementing
neural associative memories and is aimed at making the system reach the
prescribed equilibrium points or perform steady state matching. The require-
ments of this dynamic learning are the stability of the equilibrium points with
decaying transients. Dynamic temporal learning performs an adjusting pro-
cess for the parameters of a neural system such that the state or output of the
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system follows the desired trajectory in time. In particular, when the time
becomes long enough, it will also reach the prescribed steady state, so the
latter algorithm can be considered as a generalization of the equilibrium point
learning algorithm.

In this chapter we introduce temporal learning methods for dynamic neural
units (DNUs) and dynamic neural networks (DNNs). These methods may be
expanded further; but, we will limit ourselves to some new notions and new
concepts of learning.

The temporal learning process, which represents the capability of dynamic
neural units for continuous and discrete-time processes, is discussed in Sec-
tions 10.2 and 10.3. Finally, in Section 10.4, we present dynamic backpropa-
gation (DBF) for dynamic neural networks. Hopefully, an exposition to some
of these advanced topics presented in this chapter will lead the readers to
some new directions in the field of neural network, memory, and processing
of signals and images.

10.1 SOME OBSERVATION ON DYNAMIC NEURAL FILTER
BEHAVIORS

As seen in the previous chapters, a universally agreed-on definition of dynamic
neural networks does not exist, but for purposes of analysis and applications
of DNNs, it is useful to define their most general features that are capable
of emulating biological neural behavior and, thus, providing some useful
tools for practical applications. With respect to the dynamic property, Pineda
(1988) pointed out that, in general, a successful model of dynamic neural
networks should involve the following important features:

(i) Collective or population effects due to many degrees of freedom: It is
generally believed that the computational capabilities of neural systems
result from the collective dynamics of the system. The number of
neurons in the human brain, for example, is believed to range between
1011 and 1013. The state of each of these neurons can be modeled by
one or more dynamic variables.

(ii) Nonlinear characteristics of dynamic neural dynamics: Nonlinearity is
a basic property in associative memories since it is required to store
multiple patterns and is thus capable of distinguishing between two
stored patterns. The conventional linear mechanisms fail to accomplish
such complicated tasks.

(iii) Dissipative dynamic property: A dissipative nonlinear dynamic system
is characterized by the convergence of the state flow onto a manifold of
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lower dimensions as the system evolves. Point attractors are important
in dynamic neural computing systems because the corresponding state
vector values can be used to represent specified computational tasks
such as associative memories and knowledge representations. Also,
from the biological cognitive perspective, chaotic attractors can be used
for knowledge representations (Skarda and Freeman 1987, Honma et
al. 1999b).

A general model of the continuous-time dynamic neural networks (CT-DNNs)
may be presented by the following set of nonlinear differential equations

where x is an n-dimensional internal state vector, W is an n x n synaptic
weighting parameters matrix, and s represents the set of the external control
vector or external bias. It is assumed that trajectories of this system converge
onto point attractors for some values of W and s, and an initial state vector
value x° in some operating region. The concept of an operating region of the
system means the set of x, W, and s that are permitted by the dynamics of
the external environment.

Quantities evaluated at equilibrium points will be denoted by a superscript
/. In particular, the point attractors will be denoted by a/, which are solutions
of a set of nonlinear algebraic equations:

For a given W, s and the set of initial state vectors cc(0) = aP, the basin of
attraction B(x°] that evolves into a particular equilibrium point a/ is defined
as

where x(x°, t] represents a state trajectory of the system in Eqn. (10.1) with
an initial state x(Q) = x°. Obviously, the locations of the equilibrium point
and the basin boundaries are inexplicit functions of W and s. Figure 10.1
shows a typical diagram for the points of attractors a/ and the attraction basin
B(x°) with initial condition x°.

Information processing in the basin of attractors of the dynamic neural
system described by Eqn. (10.3) may be exploited to construct neural filters.
The term filter in this context refers to an architectural component that per-
forms a mapping operation from some input to some output. The architecture
of a conventional computer that processes the input information through the
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Figure 10.1 Attraction basin B(x°) of the attractor x*\ From a set of initial
state vector x°, the solution of the system in Eqn. (10.1) with initial
condition x° converges to the attractor x$.

(a) Continuous-time mapper. In this type of filter the input of the filter is the
external environmental signal s, and the output x(W, s) is an implicit
continuous function of s.

(b) Autoassociative memory: For this second type of filter, the input to the
filter is the initial state x°, and the output a/(W, B(x°)} depends on
the basin of attraction which contains the input state, aP.

Figure 10.2 Structures of two possible types of dynamic neural filters.
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designed program, or the organization of the human brain, can be described
as a designed filter under such a meaning. A dynamic neural network that
involves some adaptive weight learning algorithms deals with the mapping
operation not only on the current input signals but also on the past history of
the inputs. Thus, it forms an adaptive filter structure.

If the filters are considered only in the steady states, there are two general
approaches of exploiting the dynamic neural filter structures for the system.
In both cases the steady states of the network are the outputs of the filters.
As shown in Fig. 10.2a, the first filter structure uses the bias s that represents
the external environment signals as the external input of the filter. The initial
states of the system are set to some constant vector aP for all external inputs.
In the second case, which is shown schematically in Fig. 10.2b, the initial state
x° of the dynamic neural system represents the external input to the filter,
and the bias s is set to some constant vector for all initial condition vector a?
as external inputs. The first filter is also called the continuous-time mapper,
while the second type of the filter is termed an autoassociative memory.

In fact, there are two well-known examples of these two types of filter
structures. As explored in the previous chapters, the continuous-time Hopfield
neural network is an example of the second filter, the autoassociative memory.
In a Hopfield network, information patterns are stored by attractors in the state
space that correspond to memories. The system will converge to a complete
memory attractor even if an incomplete memory or state vector is presented
as an initial state. The details of associative memory are discussed in later
chapters. On the other hand, the multilayered feedforward neural network
proposed by Rumelhart et al. (1986) is a limiting case of the first filter. In this
case, the bias s represents an input to the network.

10.2 TEMPORAL LEARNING PROCESS I:
DYNAMIC BACKPROPAGATION (DBP)

Since the late 1980s, there has been much interest in developing learning algo-
rithms that are capable of modeling time-dependent phenomena. In particular,
considerable attention has been devoted to capturing the time-dependent dy-
namics of dynamic neural systems embedded in some known or observed
temporal sequences. Note that this temporal learning can be applied for
providing time-independent equilibrium neural outputs for time-independent
inputs. The problem of temporal learning can typically be formulated as a
minimization of an appropriate error index function over an arbitrary but finite
time interval. The gradients of the index with respect to the parameters of the
neural system are essential elements of the minimization process. We discuss
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the basic framework of temporal learning in a dynamic neural unit (DNU) in
Sections 10.2.1 and 10.2.2.

10.2.1 Dynamic Backpropagation for CT-DNU

Consider a continuous-time dynamic neural unit (CT-DNU) with multiple
nonlinear operations described by the nonlinear differential equation

where a = [ai a<2 • • • an]
T, b = [bi 62 • • • bn]

T, and c = [c\ C2 • • • cn]
T.

The theoretical studies provided in a later discussion will show that for any
trajectory of a given nonlinear system defined on a compact set D with the
form

where the function on the right-hand side is Lipschitz', that is, with an initial
value x(0) € D and an arbitrary small number e > 0, there exist an integer n
and an appropriate initial state of the CT-DNU given in Eqn. (10.4) such that

These results show that the CT-DNU described by Eqn. (10.4) is capable
of approximating an arbitrary nonlinear system or a nonlinear continuous
function with a desired accuracy.

To simplify the description, Eqn. (10.4) is represented in the following
compact form

where w is a 3n-dimensional parameter vector defined by

and
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Let Xd(t) be a known time trajectory in the interval [fo, tf]. Usually, the time-
dependent external input s(t) is used to encode the target temporal pattern
via the expression s(t) = Xd(t). To proceed formally with the development
of a temporal learning algorithm, we will consider an approach based on the
minimization of an error function, E, defined over the fixed time interval
[to, tf] by the following expression

where e(i) = Xd(i) - x(t) represents the difference between the desired and
actual value of the neural state.

We may use the variational principle to study this fixed time optimization
problem in dynamic systems. Introducing the Lagrangian L as

where z € 5R is the Lagrange multiplier. Now, the first variation in L yields
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where 8x G 3ft, 8x e -R, 6a G $R, and <5iu £ 3R3n are the first variations of x,
i, a, and w, respectively; fx(x,w) = df/dx is a scalar; and fw(x,w] =
df/dw is a 3n-dimensional vector.

Defining the adjoint equation

it follows that

Since the initial condition x(to] does not depend on the parameters adapted,
5x(to) = 0. If, additionally, one chooses the boundary value

then

Therefore
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Finally, the parameter updating equations are

where rja > 0 and rjw > 0 are the learning rates associated with the parameters
a and w, respectively. Note that the partial derivatives involved on the right-
hand side of Eqns. (10.15) and (10.16) are constants. Hence, the algorithms
for the parameter adaptations for a and w are

When the state equation, given in Eqn. (10.4), has an initial condition
x(to) = #0, the adjoint equation involves a final condition z(tf) = 0. This
means that the state and adjoint equations must be integrated forward and
backward, respectively. Hence, the resulting formulations form a classi-
cal nonlinear two-point boundary-value problem (TPBVP) (Bryson and Ho
1969). Although much attention has been paid to this interesting compu-
tational problem, these iterative calculations should be performed off line,
even though, there exists the theoretical possibility of an online algorithm
(Williams and Zipser 1990), but the calculations would have to be performed
at every step, requiring unlimited memory and computational power.

The difference between the TPBVPs arising from optimal control processes
and the parameter optimization problems is that the forward state equations
contain backward adjoint variables that are used to represent the optimal
control variables in the former TPBVP and the forward state equations involve
only the parameters in the latter. Hence, in the procedure of iterative learning
computing, first the forward state equation, given in Eqn. (10.12), may be
integrated from the initial time to to the final time tf to obtain the final
state value x(tf] for a set of given values of the parameters. Afterward, the
forward and backward equations may be integrated together from the final
time tf to the initial time to because the adjoint equation contains both the
state and adjoint variables. Meanwhile, to update the parameters, the partial
derivatives dE/da and dE/dw in Eqns. (10.13) and (10.14) need to be
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computed in the backward process:

Of course, the history of x(t) (to < t < tf) may be memorized during
the forward integration for the utilization in the backward integration. The
updating could be finished, when the difference between the old and new
values of the performance index becomes as small as desired. This learning
algorithm is referred to as dynamic backpropagation by Williams and Zipser
(1990).

10.2.2 Dynamic Backpropagation for DT-DNU

Using Euler's method, the first-order derivative is approximated as

where T is the sampling period and k is the sampling instant. If T — 1, this
derivative can be approximated to

Thus, for a continuous-time dynamic neural unit (CT-DNU)

the equivalent model of the DNU in discrete time (DT-DNU) is given by

The block diagram of the above discrete-time model is given in Fig. 10.3.
Usually, the discrete-time representations of dynamic neural systems may
provide some computational advantages on digital computers.



404 LEARNING AND ADAPTATION IN DYNAMIC NEURAL NETWORKS

Figure 10.3 Block diagram of a discrete-time dynamic neural unit DT-DNU,
Eqn. (10.22).

Given a finite length discrete-time sequence Xd(k), k — 1 ,2 , . . . , N, we
wish to design a discrete-time temporal learning algorithm such that the state
of the following discrete-time dynamic neural unit (DT-DNU)

will asymptotically track the sequence o^(fc). Here

In this case, an error index with quadratic form is defined by

where e(k] = Xd(k} — x(k] and e(N) = Xd(N] — x(N). Using the discrete-
time variational principle, a discrete-time Lagrangian is defined by
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The reason that the discrete time (k + 1) is associated with the Lagrange
multiplier is due to the simplicity of the final condition, as will be apparent in
the following discussion.

Like the method used for the continuous-time case, the first variation of $
may be represented as

Let the Lagrange multiplier z(k) satisfy

or

Then
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Since the initial value x(0) does not depend on the parameters, &c(0) = 0. If
we choose additionally the final condition of the Lagrange multiplier

then

Therefore, the partial derivatives of the error index with respect to the param-
eters are given by

and the incremental terms of the parameters are

that is, the updating equations are obtained as
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The learning algorithm given above for such a fixed time sequence learning
problem involves a discrete-time two-point boundary-value problem (TPB VP)
that can be solved, in general, by reiterative technique. Here, the initial
condition x(0) of the state is known, and the final condition z(N) of the
Lagrange multiplier is a linear function of the unknown final condition x(N)
of the state.

10.2.3 Comparison between Continuous and Discrete-Time
Dynamic Backpropagation Approaches

Having discussed both the continuous and discrete-time dynamic backpropa-
gation (DBF) learning algorithms for the models of the dynamic neural units
(DNUs), we will now compare the two approaches. It is only natural to expect
that both the continuous and discrete-time backpropagation algorithms will
yield either very similar solutions, or the same solution to a given problem.
Obviously, there are two discrete-time backpropagation approaches. One
may be obtained directly from the results of the continuous-time backprop-
agation algorithm discussed in the previous section using the first-difference
discretization. The other was given in the last subsection using the discrete-
time variational principle for a DNU with the first-difference approximation.
We will show in this subsection that the two approaches that we have pro-
posed earlier are somewhat different. For some sample periods, however, the
computational solutions for the two approaches will be essentially the same.

Consider the continuous-time backpropagation using the first variational
calculus. We wish to minimize

subject to the equality constant

where e(t) = Xd(t) — x(t) and e(tf) = Xd(tf) — x(tf). The continuous-time
dynamic backpropagation learning algorithm, which involves the two-point
boundary-value problem (TPBVP), is obtained from the variational principle
as follows. The adjoint equation and associated boundary conditions are
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The parameter updating equations are determined by

Hence the continuous-time DBF problem to be solved is given by Eqns.
(10.37)-(10.41), where the neural state equation given in Eqn. (10.38) has
an initial condition and the adjoint equation given in Eqn. (10.39) has a final
condition. Using the first-difference approximations

and discretizing the integral in the parameter updating equations using an
infinite summation, the resulting discrete-time DBF becomes

The alternate approach, using the discrete-time variational principle as seen
in the last subsection is now given. The first-difference approximation to the
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equality constraint yields

A direct discretization of the continuous-time integral error index yields

where e(k) — Xd(k] — x(k) and e(N) = Xd(N) — x(N). Thus, the adjoint
equation with a final condition is given by

or

The parameter updating equations are easily obtained as

Equations (10.48)-(10.53) constitute the discrete-time two-point boundary-
value (TPBV) nonlinear difference equations to be solved. The state and
adjoint equations with the boundary conditions are Eqns. (10.48) and (10.51)
together with updating equations, Eqns. (10.52) and (10.53). It is immediately
apparent that these equations are not the same as those obtained when we
discretized the continuous nonlinear TPBVP consisting of Eqns. (10.38)-
(10.41). The discrete-time state equations given in Eqns. (10.38) and (10.48)
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of the DNUs and their initial conditions, are the same as the final conditions
of the adjoint equations. However, the parameters updating equations and
the adjoint equations are different, although similar. If the z(k + 1) term
in Eqns. (10.52) and (10.53) is replaced by z ( k ) , the two sets of parameters
updating equations are the same. For a sufficiently small sampling period, this
is not an unreasonable approximation since the change in z(k) from instant k
to instant (k + 1) will be small.

Moreover, for a sufficiently small sampling period T, a Taylor series ex-
pansion yields

where O(T2) includes the terms of T higher than the first. Hence, if OfZ12)
terms are neglected, we obtain

This is identical to Eqn. (10.45), the discretized adjoint equation for the
continuous-time dynamic backpropagation algorithm. Therefore, as previ-
ously stated, the computational results for the two approaches will be es-
sentially the same for small sampling periods. However, the sensitivity ef-
fects of the sampling periods are considerably important for discretization of
continuous-time dynamic neural systems.

The essential difference between the two approaches lies in the manner in
which the discrete approximation is made. The discrete-time DBF algorithm
yields a TPBVP in the form of a set of nonlinear difference equations whose
solution is precisely the solution that optimizes the stated discrete temporal
learning problem. The continuous-time DBF algorithm yields a TPBVP
in the form of a set of nonlinear differential equations whose solution is
precisely the solution that minimizes the stated continuous-time temporal
learning problem. The solution of a discrete version of this continuous-
time DBP yields a temporal state trajectory that does not optimize either the
continuous-time problem or a discrete-time version of the continuous-time
problem. For most situations, this creates no difficulties.
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10.3 TEMPORAL LEARNING PROCESS II:
DYNAMIC FORWARD PROPAGATION (DFP)

10.3.1 Continuous-Time Dynamic Forward Propagation
(CT-DFP)

The dynamic backpropagation through time discussed in the last section is
inherently an off line technique due to introducing an error index on the
fixed time interval. The following algorithm, which is a slight modification
of the algorithms proposed by Robinson and Fallside (1987) and Williams
and Zipser (1989), overcomes the difficulty associated with the two-point
boundary-value problem (TPBVP).

Let us consider a dynamic neural unit (DNU) of the form

where a and w are adjustable parameters. Define a time-varying error function
E over the time-varying interval [fo, t] by the following expression:

In this case, the error index is a function of time. Usually, learning algorithms
are constructed by invoking Lyapunov stability arguments; that is, by requiring
that the error index be monotonically decreasing during the learning time r.
This requirement may be translated into

One can always choose

Equations (10.58) and (10.59) implement the learning algorithms for the
adjustments of the parameters a and w in terms of an inherently local mini-
mization procedure. Attention should be paid to the fact that the state equation
and the learning equations may operate on different timescales with parame-
ter adaptation occurring at a slower rate. Integrating the parameter adaptive
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equations given in Eqns. (10.58) and (10.59) over the time interval [r, r + AT],
one obtains

;

These equations imply that, in order to evaluate the system parameters, one
must calculate the "sensitivity" or the gradient of E with respect to the pa-
rameters adapted. Using the error index equation, one can obtain

The derivatives on the right-hand side of these equations may be evaluated
from the original state system as follows:

Note that the derivative with respect to the time and the partial derivatives
with respect to the parameters on the left-hand side of these equations are
commutable:

Hence, let
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Then the partial derivatives of x with respect to the parameters may be gener-
ated by the following new dynamic system:

Since the initial condition x(0) does not depend on the parameters a and w,
the initial conditions of Eqns. (10.66) and (10.67) are set to

Equations (10.66) and (10.67) are referred to as equations of sensitivity systems
associated respectively with the parameters a and w (see Fig. 10.4). The

Figure 10.4 Block diagrams for the sensitivity functions for the partial derivatives
za = dx/da and zw = dx/dw.
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replacement of the final condition of the adjoint equation in the dynamic
backpropagation (DBF) algorithm discussed in the previous section with the
initial conditions of the above mentioned sensitivity systems allows online
calculations in the updating process.

10.3.2 Discrete-Time Dynamic Forward Propagation (DT-DFP)

For a given discrete-time sequence Xd(i), i = 1,2,. . . , we are given the
discrete-time model of the DNU

Define a time-vary ing error index over the interval [0, k] as

where e(i) = Xd(i) — x(i). Using the gradient descent method, the incremen-
tal terms of the parameters a and w are obtained as

On the other hand, the partial derivatives of x with respect to the parameters
may be dealt with using the state equation as follows:

By introducing the sensitivity parameters 2^ and zw defined as
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the parameter sensitivity equations may then be rewritten as in the following
form:

Hence, the updating equations for the parameters may be written as

Example 10.1 Let the desired discrete-time signal Xd(k) be a square wave
with a period of 10 iterations and an amplitude of — 1 and 1. Using the discrete-
time sequence learning algorithm presented above, we adapt the discrete-time
DNU model such that the sequence x ( k ) of the state of the DT-DNU with a
simple form

will approach the given sequence Xd(k).
Using the parameter sensitivity equations, Eqns. (10.74) and (10.75), the

parameter adaptation equations for the DT-DNU described in Eqn. (10.78)
are given by (see also Fig. 10.5)

The updating equations of the parameters are
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Figure 10.5 Example 10.1: block diagrams for the sensitivity functions for the
partial derivatives za = dx/da and zw — dx/dw.

The initial values of the parameters a and w were chosen randomly in the
interval [—1,1]. Assume that the external input of the DT-DNU is s(k) —
Xd(k). Using such a learning process, the parameters were adapted as a =
-0.22837, and w = -0.29986. The simulation results of the state x ( k ) of
the DT-DNU, the desired Xd(k], and the error e(k) between Xd(k) and x(k}
are shown in Fig. 10.6 for two different learning rates: (i) r^ = rja = 0.008,
and (ii) T]W = rja — 0.04. The convergence process of the parameters was
very fast for the higher learning rate of 0.04, and the smaller learning rate of
0.008 causes the convergence speed to decrease. •
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Figure 10.6 Example 10.1: simulation results with two different learning rates.
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Example 10.2 In this example we consider the problem of identification of
an unknown nonlinear discrete-time system described by

where xm € JR is the state variable and u e 3ft is the input to the unknown
system. The DT-DNU used for this system identification problem, as shown
in Fig. 10.7, is described as

Using the identification procedure, parameters a and w were updated so
that

In other words, the DT-DNU of Eqn. (10.84) becomes an approximate model
of the system given in Eqn. (10.83) with an acceptable error between the states

Figure 10.7 Example 10.2: system identification of an unknown discrete-time
nonlinear system using a discrete-time dynamic neural unit (DT-
DNU).
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Figure 10.8 Example 10.2: simulation results for identifying an unknown non-
linear dynamic system given in Eqn. (10.83) with a DT-DNU model,
Eqn. (10.84). After 50,000 iterations for system identification, sim-
ulation results were obtained for a square-wave input signal.
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Figure 10.9 Example 10.2: simulation results with sinusoidal inputs. After
50,000 iterations were carried out for identifying a unknown non-
linear system, Eqn. (10.83), using a DT-DNU, a sine-wave input
signal u(k) = sin(fc7r/10) was applied to both the unknown system
and the DT-DNU.
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of the unknown system and the DT-DNU adapted for an arbitrary input signal
u(k).

During the learning phase, the input signal u(k) was designed to be random
in the closed interval [—1,1], the initial values of the parameters a and w were
chosen randomly in the closed interval [—1,1], and the initial values of both
the unknown system and DT-DNU were set at zero. After 50,000 learning
iterations, the parameters converged to the following values

At this point, the learning phase was stopped and a binary square-wave with an
amplitude of [—1,1] and a period of 60 iterations was applied simultaneously
as the inputs to the unknown plant and the DNU model. Simulation results
are shown in Fig. 10.8. It is to be noted that the error during the transient
period is high; otherwise the DNU model is able to adapt the nonlinear plant
fairly well.

Figure 10.9 shows the simulation results for this system with a sinusoidal
signal of amplitude (—1,1) and a period of 50 iterations applied as inputs to
both the unknown plants and the DT-DNU model. These simulation studies
show that the DT-DNU model was able to identify fairly well the unknown
plant.

Such DT-DNU models with higher-order dynamics may be used for better
approximations of complex nonlinear and time-varying plants. Such analytic
tools provided by the neural processes may be useful for both the analysis and
design of the complex feedback control systems. •

10.4 DYNAMIC BACKPROPAGATION (DBP) FOR
CONTINUOUS-TIME DYNAMIC NEURAL NETWORKS
(CT-DNNs)

10.4.1 General Representation of Network Models

Consider a general form of a continuous-time dynamic neural network (CT-
DNN) shown in Fig. 10.10 and described by a continuous-time nonlinear
system of the following form
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Figure 10.10 Block diagram of the continuous-time dynamic neural network (CT-
DNN), Eqn. (10.86).

Figure 10.11 Block diagram of the ith neuron of the model given in Eqn. (10.87).

where x = [x\ • • • xn]
T G $Rn is the state vector of the dynamic neural net-

work, Xi represents the internal state of the ith neuron, A = diag[a±,..., an]
with all o.i > 0, W = [wij]nxn is the real-valued matrix of the synap-
tic weight matrix, 6 = [0\ • • • 9n]

T is a threshold vector (somatic vector),
y = [yi • • • ym]T is an observation vector or output vector, /: 9^ x 5Rnxn x
!Rn —> ffi1 is a continuous and differentiable vector-valued function, £(.)
and dfi/dx are respectively bounded and uniformly bounded, and h(x):
$tn —> $Rm is a known continuous and differentiable vector-valued function.

The dynamic neural network consists of both the feedforward and feedback
connections between the layers; thus, these neurons form a complex nonlinear
dynamic system. In fact, the weight W{j represents a synaptic connection
parameter between the ith and jth neurons, and $ is a threshold at the ^th
neuron. An arbitrary neuron in the network may have synaptic connections
with itself and all the other neurons. Also, the output of a neuron is not
only a function of its own state but also a combination of states of the other
neurons in the networks. Hence, as shown in Fig. 10.11, the nonlinear vector-
valued function on the right side of the system given in Eqn. (10.86) may be
represented as
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Table 10.1 Three continuous-time dynamic neural models
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where

and

Equation (10.87) indicates that the dynamics of the zth neuron in the net-
work are associated with all the states of the network, the synaptic weights
wn,..., Win, and the somatic threshold parameter ^.

The three main types of continuous-time dynamic neural models are given
in Table 10.1. These neural model describe the different dynamic properties
due to the different neural state equations. Models I and II are defined
by nonlinear differential equations. Model III, however, is defined by the
seminonlinear equations, which contain the linear terms on the right side of
the model and nonlinear terms in the output equation. In these neural models,
W = [wij]nxn is the synaptic connection weight matrix, $ is the neural gain
of the ith neuron, 0 < Oi < 1 is the self-state feedback gain of the ith neuron,
and Oi is a threshold at the ith neuron. The neural activation function <r(.) may
be chosen as the continuous and differentiable nonlinear sigmoidal function
as used in the previous sections.

10.4.2 DBF Learning Algorithms

The dynamic backpropagation (DBF) algorithm for a class of continuous-
time recurrent neural networks was first proposed by Pineda (1988). A
DBF learning algorithm for a general class of dynamic neural systems with
nonlinear output equations will be developed in this section for the purpose of
analog target pattern storage. Let t = [ti • • • tm]T be an analog target pattern
that is to be implemented by a steady state output vector that is a nonlinear
vector function of an equilibrium point a/ of the neural system given in
Eqn. (10.86); that is, t = h(x^). The purpose of the learning procedure
is to adjust the synaptic weights Wij and the somatic threshold parameter Oi
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such ti can be realized by the nonlinear function hi(x^}. Note that, however,
we can derive the learning procedure for two-point boundary-value problems
(TPBVPs) instead of steady state pattern.

Define an error function as

where

whose components are denned by

and xf is an equilibrium state vector of the system, which satisfies the fol-
lowing equilibrium equation

that is

Next, we discuss the learning formulations of the synaptic weights and
somatic parameters. After performing a gradient descent in E, the incremental
change of the weight w^j is given by

where rjw is a learning rate associated with the synaptic weights. On the other
hand, for the somatic parameter ^, the incremental formulation is
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where 770 is the learning rate associated with the somatic parameters.
Using Eqn. (10.90), one may easily obtain

Substituting this expression in Eqns. (10.92) and (10.93), respectively, yields

and

On the basis of the equilibrium point equation given in Eqn. (10.91), the
partial derivative of x? with respect to Wij, results in the following expression
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where 5ij is the Kronecker delta function:

Moreover, let us denote

Then, Eqn. (10.97) can be represented as

For convenience, let the matrix M be introduced whose elements are defined
by

Then, Eqn. (10.99) can be rewritten as

Let M l — [mii\nxn be the inverse of the matrix M. Then dx^/dwij may
be solved as

Hence, the updating equations for the weight wij and threshold ^ are ex-
pressed as

Using the same procedure, one obtains
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Hence

Furthermore, let us introduce a new n-dimensional vector

whose components are defined as

It can be shown that

that is

Hence, Eqns. (10.103) and (10.105) can be represented, respectively by

and

Equation (10.108) is said to be the steady adjoint equation associated with
the equilibrium point equation given in Eqn. (10.91) of the dynamic neural
system given in Eqn. (10.87). It is easy to define the adjoint equation for the
adjoint vector z(t) as follows
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or, in a more compact form

where Jj(x(t)) = U - hi(x(t)). Equation (10.111) is said to be the adjoint
equation associated with the dynamic neural systems given in Eqn. (10.86).

The updating rules given in Eqns. (10.109) and (10.110) are not able to
guarantee the stability of both of the systems given in Eqn. (10.86) and its
adjoint, Eqn. (10.112), and a checking procedure for the stability of both
equations is needed in such a dynamic learning process. The first approach is
to verify that the stability condition of the equilibrium may be carried out after
the dynamic learning process has been completed. In this case, if the network
is unstable, the learning phase must be repeated, and the steady states a/
and zf must be solved using the nonlinear algebraic equations, Eqns. (10.91)

Table 10.2 Four discrete-time dynamic neural models
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and (10.108), at each iterative instant. The second approach is to verify the
known stability of the network at each iterative instant. When the network is
unstable, [i.e., when Eqns. (10.91) and (10.108) do not converge to the stable
equilibrium points a/ and z?], the iterative process must be repeated by
adjusting the learning rates r^, and rjg, until the solutions of Eqns. (10.91) and
(10.108) converge to some stable equilibrium points as time k becomes large.
Both of these methods for studying the stability are very time-consuming.

For the discrete-time dynamic neural models given in Table 10.2, the DBF
learning algorithms for the synaptic weight 11%j, and the threshold BI are
respectively summarized in Table 10.3. The steady state adjoint equations
corresponding to these neural models are also summarized in Table 10.3.

Table 10.3 DBF learning algorithms for the models given in Table 10.2
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The preceding iterative process for updating the parameters toward a target
set is the adaptive learning process of the parameters. During this learning
phase, the parameters are adjusted according to the error between the equilib-
rium point of the current system at each learning instant and the target point.
In other words, the error is propagated into the neural system as a function of
supervision for updating the parameters. This is why this approach is called
error backpropagation. From the systems point of view, a system which
consists of the forward state equation and backward learning equations forms
a closed loop feedback system in which the error is a basic feedback signal.
From the biological point of view, the forward state equation of the neural
system describes a process of information receiving and transmission, and the
backward learning equations emulate a thinking process. It is evident that this
two-way information propagation exists in many human cognitive processes.

It is important to stress that this system evolves both in the space of ac-
tivations (state space) and in the space of weights (weight space or param-
eter space). The evolution in the state space is determined by Eqn. (10.86)
whereas the evolution in the parameter space is determined by Eqns. (10.109)
and (10.110). The iterative learning algorithm can be implemented online by
computing a set of differential equations. This will bring potential benefits
for applications to problems such as neurovision systems, real-time control
systems, and identification.

10.5 CONCLUDING REMARKS

Learning and adaptation are the two keywords associated with the notion of
neural networks. We have studied in detail dynamic backpropagation methods
for the temporal learning process for both continuous-time and discrete-time
dynamic neural networks. These learning algorithms provide a special at-
tribute for the design and operation of the dynamic neural network for a given
task such as in the processing of signals and images and their storage, and in
the design of controllers for complex dynamic systems.

This discussion will expose the readers to certain innovations in the field of
neural network learning and adaptation. Indeed, some of the advanced learn-
ing methods can make the neural network perform chaotic state trajectories
(Principe and Kuo 1995, Deco and Schurmann 1997, Honma et al. 1999a).
Also, some of the new learning methods such as the decomposed extended
Kalman filter (DEKF) and recursive least squares (RLS) approaches may
lead to a better design of learning algorithms for many practical applications
(Haykin 1991, Xu et al. 2002).
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Problems

10.1 Using the dynamic backpropagation (DBF) learning method devel-
oped in Section 10.2, train a dynamic neural unit with the following
form

to store an analog pattern, v = 6.0.

10.2 Derive a dynamic backpropagation learning algorithm for
continuous-time dynamic neural networks (CT-DNNs) to solve two-
point boundary-value problems (TPBVPs).

10.3 Consider the following CT-DNN with six dynamic neural units and
two neural outputs of the network given as

Train the CT-DNN to follow a circular trajectory by using the dy-
namic backpropagation learning method developed in Problem 10.2.

10.4 Determine the region of equilibrium points for discrete-time dynamic
neural models given in Table 10.2.

10.5 Prove the DBP learning algorithms given in Table 10.3 for the neural
models given in Table 10.2.

10.6 Design a discrete-time dynamic neural network for the time series
prediction of the Logistic or Feigenbaum map

10.7 Design a continuous-time dynamic neural network to model the
Mackey-Glass system (Mackey and Glass, 1977) described by the
following delay-differential equation

with Td = 30, sampled at 1/6 Hz.
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10.8 Design a continuous-time dynamic neural network to model the
Lorenz attractor whose dynamics are described by a coupled sys-
tem of three nonlinear differential equations (Haykin and Principe,
1998)

where a, 7, and b are dimensionless parameters. Typical values for
these parameters are a — 10, 7 = 28, and b = 8/3.

10.9 Consider a dynamic neural network with the following differential
equation

where x £ 3fcn, W £ ^nxn, / £ $n, and or: $ln —> ftn.
Let d(t) — [di(t] d,2(t) • • • dn(t)]

T be a differentiable trajectories.
Define an error function of the form

Derive the learning equation for the weight matrix W by minimizing

10.10 (Universal Approximation of Nonlinear Systems) Consider a
discrete-time dynamic neural network of the form

where x £ $1N, u £ 5Rm, and t/ £ !Rn are the neural state, input,
and output vectors, respectively. A £ §^/VxAr, B £ ?RNxn, and
C £ 3ftnxn are the connecting weight matrices associated with the
neural state, input, and output vectors, respectively, a is a fixed
constant for controlling state decaying and is chosen as — 1 < a < 1.
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cr(x] is a vector neural activation function.
Let S C 5Rn and U C 5ftm be open sets, Da C S and Du c *7 be

compact sets, Z C Ds be an open set, and /: S x U —> $tn be
a continuous vector-valued function. For a discrete-time nonlinear
system of the form

with an initial state z(0) £ Z, whose solution z(k) G Ds, show
that for an arbitrary e > 0 and an integer 0 < / < +00, there exist
an integer N and an appropriate initial state x(0) such that for any
bounded input u: !>ft+ = [0+, oo) —> Du

10.11 (Universal Approximation of Nonlinear Functions) Consider a sim-
plified version of the discrete-time dynamic neural network in Prob-
lem 10.10 of the form

Let /: 5R —> §ftn be a continuous function, and /(&), 0 < k <
I < +00, be a discrete-time trajectories. Show that for an arbitrary
number e > 0, there exist an integer TV and an appropriate initial
state x(0) such that

10.12 Define a class of continuous-time dynamic neural network that can
universally approximate a class of nonlinear systems as discussed in
Problem 10.10.
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Complex nonlinear structures of dynamic neural networks (DNNs) used in
computing tasks such as information processing, or in associative memory for
storing patterns, present a challenge in stability investigations. In this chapter,
some stability analysis approaches and stability results for a general class of
continuous-time dynamic neural networks (CT-DNNs) are presented.

The notion of the stability of an equilibrium point of a dynamic system is of
fundamental importance in dynamic neural networks. An equilibrium point
is stable if the state trajectory stays in the neighborhood of the point. It is
asymptotically stable if all nearby solutions not only stay in the neighborhood
but also approach the equilibrium point. The stability of the equilibrium
points of a dynamic neural network is one of the most basic and important
properties for many engineering applications. It is important to note that we
refer to stability in the sense of Lyapunov (Khalil 1992).

The dynamic behavior and the notions of stability of CT-DNNs described
by a set of nonlinear differential equations have been widely studied since
the early 1990s. A series of local and global stable conditions were derived
using different nonlinear analysis approaches by Cohen and Grossberg (1983),
Guez et al. (1988), Kelly (1990), and Matsuoka (1992) for a general class
of continuous-time dynamic neural networks, which may be considered as
generalized versions of the well-known Hopfield dynamic neural networks.

After discussing some basic results of Lyapunov stability theories, the local
asymptotic stability of the equilibrium points of continuous-time DNNs is
studied in Section 11.1. Using the position estimation of the eigenvalues of the
matrix, some local asymptotic stability criteria that contain the parameters of
the neural network and have simple algebraic expressions are also presented in
this section. On the basis of Lyapunov's second method, the global asymptotic
stability of neural systems is investigated in Section 11.2 using the Lyapunov
diagonal function approach, and the corresponding conditions are derived.
Also, the exponential stability of dynamic neural networks is studied in Section
11.3, and some explicit estimations formulations of the attraction domains are
given in these studies.

11.1 LOCAL ASYMPTOTIC STABILITY

The trajectories of a dynamic neural network (DNN) for an arbitrary set of
initial conditions are usually required to converge to the equilibrium points
that are asymptotically stable. In addition to the convergence properties of
the solutions, the local asymptotic stability, in the sense of Lyapunov, of
the isolated equilibrium points should be addressed such that the dynamic
orbits around the equilibrium points become clear. In fact, the attraction
behaviors of the asymptotically stable equilibrium points provide a basis for
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neural associative memories and for other applications of the dynamic neural
networks.

11.1.1 Lyapunov's First Method

Consider a general form of the continuous-time dynamic neural networks
given by

where / : 3ftn x sRnxn x 3ftn —>• !Rn is a continuously differentiable vector-
valued function. Although the convergence of dynamic neural networks
ensures that the trajectory of the system from a given initial condition will
converge to one of the equilibrium points, we are often interested in deter-
mining which equilibrium points are the target points or the convergent points
of the trajectories of the system for all possible initial conditions. In other
words, we need to discuss the stability of the equilibrium points. We study
the stability issue for the equilibrium points that are isolated; that is, if a?
is an equilibrium point of the system given in Eqn. (11.1), we may find a
neighborhood B = {x : \\x — x*\\ < r, r > 0} such that there is no other
equilibrium point in B of the system given in Eqn. (11.1).

Definition 11.1 The equilibrium point x* of the system in Eqn. (11.1) is

(i) Stable, if for each e > 0, there is 5 = 8(e) > 0 such that

(ii) Locally asymptotically stable, if it is stable and 5 can be chosen such
that

We now discuss the local asymptotic stability of an equilibrium point of
of the system in Eqn. (11.1). If x* is locally asymptotically stable, we may
find a constant 8 such that any trajectories that start in a 8 neighborhood of
the equilibrium x* will eventually tend to x*. The region of attraction, or
region of asymptotic stability, of an equilibrium point is defined as the set of
all points XQ such that the solution of the system in Eqn. (11.1) satisfies

However, determining analytically the exact region of attraction might be
difficult or even impossible for a nonlinear dynamic system (Khalil 1992).



438 STABILITY OF CONTINUOUS-TIME DYNAMIC NEURAL NETWORKS

Figure 11.1 The domains of the eigenvalues of the Jacobian J(x *).
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Let x* be an equilibrium point of the nonlinear system in Eqn. (11.1). The
Jacobian at this equilibrium point is given by

Lyapunov's first method, or Lyapunov's indirect method, which uses the real
part of the eigenvalues l ( J ( x * ) ) of the Jacobin J(x*), states that

(i) x* is asymptotically stable if R e [ l ( J ( x * ) ) ] < 0 for all eigenvalues of
J(x*).

(ii) x* is unstable if R e [ l ( J ( x * ) ) ] > 0 for one or more of the eigenvalues
of J(x*).

In other words, for the local asymptotic stability of the equilibrium point
x*, the eigenvalues of the Jacobian at the equilibrium point of need to be
examined as shown in Fig. 11.1. If all the eigenvalues of the Jacobian at x*
are in the left-half complex plane, then x* is a locally asymptotically stable
equilibrium point of the system in Eqn. (11.1), and this equilibrium point is a
sink (stable). If all the eigenvalues of the Jacobian at x* are in the right-half
complex plane, it is a source (unstable). If some eigenvalues are in the left-half
complex plane and some are in the right-half complex plane, the equilibrium
point is a saddle or unstable equilibrium point. Lyapunov's first method has
been used widely in the fields of engineering and sciences. However, when
some of the eigenvalues are located on the imaginary axis in the complex
plane, this approach fails to determine the stability of the equilibrium point.

Example 11.1 Consider a two-neuron system described by

We will consider the location of the equilibrium points for this two-neuron
interactive system. The Jacobian of this system is easily obtained as

The two eigenvaluesl1 and l2 of J ( x 1 , x2) are the solutions of the following
equation
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that is

Hence

Obviously, if x* = [x*1 x*2]
T = [0 0]T is an equilibrium point of the neural

system in Eqn. (11.2), then sech(0) = 1 is the maximum value of sech(x) for
all x € R. One may observe that

for x1,x2 ^ 0, which implies

for x1,x2 ^ 0, where Re(.) represents the real part of a complex number.
Therefore, if x* = [x*1 x*2 = [0 0]T is an asymptotically stable equilib-
rium point, the eigenvalues of the Jacobian always have negative real parts for
all xi, X2 / 0. In this case, the system in Eqn. (11.2) is a contractive system
that has a unique stable equilibrium point x* = 0.

On the other hand, Re(\i$( J(0,0))) < 0 if and only if

that is

Thus, the condition for the stability of the equilibrium states of the neural
system in Eqn. (11.2) is given by Eqn. (11.6). •

11.1.2 Determination of Eigenvalue Position

A dynamic neural system is usually a large-scale nonlinear dynamic system,
and the direct computation of the eigenvalues of the Jacobian is usually compli-
cated. The development of some indirect test approaches for the eigenvalues
of the dynamic neural network is usually useful. To discuss the positions
of the eigenvalues of a matrix W = [wij]nx n in the complex plane, some
mathematical preliminaries are required, which are given in the following
discussion.
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Let W = [wij]nxn be a complex matrix. We can always write W =
U + V, where U — d i a g [ w 1 1 , . . . , wnn] is the main diagonal part of W
and V represents the rest of the matrix with a zero main diagonal. If we
set We = U + eV for any e e C, then W0 = U and Wi = W. The
eigenvalues of WQ = C7 are easy to locate, for they are just the points of the
diagonal elements u>n,.. .,wnn in the complex plane. We suspect, however,
that if e is small enough, then the eigenvalues of We will be located in some
small neighborhoods of the points wu,.. .,wnn. There are indeed some easily
computed disks centered at the points wa that are guaranteed to contain the
eigenvalues. The following theorem makes this observation.

Lemma 11.1 [Gerschgorin's (1931) Theorem] Let W = [t%]nxn be a
complex matrix and

denote the deleted row absolute value sums of W. Then, all the eigenvalues
of W are located in the union of n closed disks in the complex plane with
the center wa and radius R^, i — 1, 2 , . . . , n. Furthermore, if a union ofk of
these n disks forms a connected region that is disjointed from the remaining
n — k disks, then there are precisely k eigenvalues of W in this region. •

Since W and WT have the same eigenvalues, one can obtain Gerschgorin's
np

theorem for the columns by applying that theorem to W and obtain a region
that contains the eigenvalues of W which are specified in terms of the deleted
column absolute value sums.

Corollary 11.1 Let W = [wij]nxn be a complex matrix and

denote the deleted column absolute value sums ofW. Then all the eigenvalues
of "W are located in the union of n closed disks in the complex plane with
the center wa and radius Q, i = 1 ,2 , . . . ,n. Furthermore, if a union of
k of these n disks forms a connected region that is disjointed from all the
remaining n — k disks, then there are precisely k eigenvalues of W in this
region. •

Let
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and

Then, all the eigenvalues of W lie in the intersection of the regions in
Eqns. (11.9) and (11.10); that is, in G(W}f\G(WT}.

For the stability analysis of continuous-time systems, we will determine
whether the eigenvalues of the Jacobian are located in the left-half complex
plane. The following corollary provides the sufficient conditions.

Corollary 11.2 Let W = [wij]nxn be a complex matrix, and Ri and Ci be
defined by Eqns. (11.7) and (11.8), respectively. If

or

all the eigenvalues of W are then located in the left-half complex plane. •

The proof of Corollary 11.2 is easily obtained from Gerschgorin's theorem.
The geometric meaning of Corollary 11.2 is given in Fig. 11.2. It is easy to
see that all wa < 0 are sufficient conditions of the conclusions obtained in
this corollary.

Figure 11.2 The positions of all the eigenvalues of a matrix W, where Ri and
Ci satisfy respectively the inequalities given in Eqns. (11.11) and
(11.12).



11.1 LOCAL ASYMPTOTIC STABILITY 443

11.1.3 Local Asymptotic Stability Conditions

Consider a general class of dynamic neural networks with the following form

or

where oti ̂  0, A = diag[a\,..., an], and the weight matrix W may not be
symmetric.

For the local asymptotic stability of the equilibrium point x* of the system
in Eqn. (11.14), the eigenvalues of the Jacobian at the equilibrium point x*
must be examined. The Jacobian of the function f ( x ) = -Ax + Wcr(x) + s
is given by

where 52(x) = diag[^u(x),..., Snn(x)] with Su(x) = ^(xi). The fol-
lowing theorem gives some local stability conditions that can be used to verify
whether an equilibrium point x* is stable.

Theorem 11.1 Let x* be an equilibrium state of the system in Eqn. (11.13).
If

or

then x* is a locally asymptotically stable equilibrium state of the neural
system in Eqn. (11.13).

Proof: This theorem may be proved using Corollary 11.2 to the Jacobian
[df/dx]. •
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The stability conditions in Theorem 11.1 involve only some algebraic ma-
nipulations about the network parameters such as the time constants, the
synaptic weights, and the elements of the Jacobian at an equilibrium point.
These results provide us with simple procedures for determining the local
asymptotic stability of an equilibrium point. The locally asymptotically stable
conditions given in Theorem 11.1 are derived using Lyapunov's first method.
It may be more conservative than directly verifying the position of the eigen-
values of the Jacobian; but, it is easier to use. Therefore, these conditions
are the indirect conditions for verifying the local asymptotic stability of an
equilibrium point.

11.2 GLOBAL ASYMPTOTIC STABILITY OF DYNAMIC
NEURAL NETWORK

11.2.1 Lyapunov Function Method

When x* is asymptotically stable and the trajectory X(£,XQ) approaches x*
as t —> oc, regardless of how large ||xo — x*\\ is, in other words, for an
arbitrary initial state x(0), the state of the system in Eqn. (11.13) converges
to x* for a given weight matrix W and input s. In this case x* is said to be a
globally asymptotically stable equilibrium point, and the system is referred to
as a globally asymptotically stable system. If x* is a globally asymptotically
stable equilibrium point of a neural system, it must be the unique equilibrium
point of the system. If there is another equilibrium point x*, the trajectory
starting at x* would remain at x* for all t > 0. Hence, it would not approach
x* which contradicts the evidence that x* is a globally asymptotically stable
equilibrium point. Therefore, the use of global asymptotic stability is not
applicable to a dynamic neural network having multiple equilibrium points.
The Lyapunov's second method or Lyapunov function method given below has
been widely used to build some globally asymptotically stable conditions.

Theorem 11.2 (Lyapunov Function Method) Let x* be an equilibrium point
for the system in Eqn. (11.1). LetV : ffl1 —> 3ft be a continuously differentiate
function such that

(i) V(x*) = 0 and V(x} > 0, Vx ^ x*

(H) V(x) —> oo when \\x\\ —> oc

<iu) « < o, V* * z-
at

Then, x — x* is globally asymptotically stable. •
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11.2.2 Diagonal Lyapunov Function for DNNs

The diagonal Lyapunov function method, first proposed by Persidskii (1969)
for studying the absolute stability, is based on the existence of a diagonal
solution of the Lyapunov equation. Kaszkurewicz and Bhaya (1993) used
this approach to discuss the robust stability of a class of continuous-time
and discrete-time nonlinear systems. Matsuoka (1992) derived a diagonal
Lyapunov function for a Hopfield neural network with an asymmetric weight
matrix, and established some absolute stability conditions.

We will now explore the global stability conditions of the system in
Eqn. (11.14) using a global diagonal Lyapunov function method in this sec-
tion. Let x* = [x* • • • x*]T be an equilibrium state of this system. We
introduce a new variable z as

Then, the system in Eqn. (11.14) can be rewritten in terms of z as

where

Since

we have

that is

Theorem 11.3 Let all on > 0 in Eqn. (11.13). The system in Eqn. (11.18)
is globally asymptotically stable if, for a positive diagonal matrix P =
diag\pi,... ,pn] with pi > 0, there exists a positive matrix Q > 0 such
that
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Proof: We will find a global Lyapunov function for the system in Eqn. (11.18).
Consider the following positive definite function of z

where

Differentiating V(z) with respect to time, we obtain

where dV(z]/dt = 0 for z = 0. Note, since the inequality in Eqn. (11.22)
implies

that the first term in Eqn. (11.25) satisfies

Hence, the differential of V(z) with respect to time can be modified as

Therefore, if
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then

This implies that V(z) is a Lyapunov function for the system in Eqn. (11.18)
and the origin z = 0 is the only globally asymptotically stable equilibrium of
the system. •

Remark 11.1 A limitation of the nonlinear-dependent Lyapunov function in
Eqn. (11.24) is that it is valid only for the diagonal state-dependent nonlinear
function s j ( x j ) .

Remark 11.2 When all a; = 1 in Eqn. (11.13), the result in Theorem 11.2 is
also valid for the dynamic neural model given by

Using the coordinate transformation defined as

Eqn. (11.29) can be rewritten as

Hence, the global asymptotic stability of the system in Eqn. (11.29) implies
the system described by Eqn. (11.31). The inverse implication needs the
inversion of the weight matrix W.

Furthermore, if all 04 > 0 in Eqn. (11.13), then A = d i a g [ a 1 , . . . , an]
> 0. One may set the positive diagonal matrix P = A"1 in Eqn. (11.28)
such that

which is equivalent to

or
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We summarize these results in the following theorem and its corollaries.

Theorem 11.4 //

then the system in Eqn. (11.13) is globally asymptotically stable.

Corollary 11.3 //

then the system in Eqn. (11.13) is globally asymptotically stable.

Corollary 11.4 //

then the system in Eqn. (11.13) is globally asymptotically stable.

11.2.3 DNNs with Synapse-Dependent Functions

We now consider a more general class of dynamic neural models that is
described by the equations

where ai > 0 and s i j ( x j ) are sigmoidal functions. Equation (11.37) rep-
resents a dynamic neural network (DNN) model with synapse-dependent
nonlinear activation functions. In other words, each neural unit in such a
network structure may have a set of its own nonlinear activation functions.

Since 0 < ^ •(#) < 1, using the mean-value theorem, it is easy to verify
that

where x — [xi • • • xn]
T and y — [y\ • • • yn]

T are two arbitrary n-
dimensional vectors. Letx* = [x\ ••• x*]T be an equilibrium state of the sys-
tem in Eqn. (11.37). We will now use the new state variables, z — \z\ • • • zn}

T
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and z = x — x*, such that

where

satisfies

It is easy to show that z = 0 is a unique equilibrium point of the system in
Eqn. (11.39). Define a Metzler matrix W as

We then have the following theorem.

Theorem 11.5 The system in Eqn. (11.37) is globally and asymptotically
stable if for a positive diagonal matrix P = diag\pi,... ,pn] with pi > 0,
there exists a positive matrix Q > 0 such that

Proof: Define the diagonal Lyapunov function

Computing dV(z)/dt along the trajectories of Eqn. (11.37) gives

Using the condition of Eqn. (11.41) gives
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Let z = \z\ • • • zn]
T, and let the vectorial norm (|.|) be defined as

Then, the inequality of Eqn. (11.45) can be rewritten in the form

where

that is

Hence, the global asymptotic stability of the system in Eqn. (11.37) is guar-
anteed. •

11.2.4 Some Examples

Example 11.2 (DNN with Lotka-Volterra Equations) Consider the nonaddi-
tive network or the generalized Lotka-Volterra equations (Guez et al. 1988)
given by

By assuming Xi(i] ^ 0, i — 1 , . . . , n, these equations can be rewritten as

which is equivalent to

Defining yi(t] = \uxi(t), we have
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where /(.) — exp(.). Let y* = [y\ • • • y^]T be an equilibrium state of the
system in Eqn. (11.51) that satisfies

Introducing the new variables Zi(t) = yi(t] — y* yields

where g(zi(t)) = exp(zi(t) + y*) — exp(y*). Therefore, p(0) = 0, and
g(zi)Zi > 0 for Zi ^ 0. Using Theorem 11.2, the global asymptotically
stability conditions for the Lotka-Volterra network in Eqn. (11.48) is one of
the following:

(i) For a positive diagonal matrix P = diag\pi,... ,pn] with pi > 0 there
exists a positive matrix Q > 0 such that

(ii) The matrix (W + WT} is negative:

(iii) The maximum eigenvalue of the matrix (W + WT) is negative:

Example 11.3 Let us consider a continuous-time dynamic neural network
(CT-DNN) in which the first n\ neural units have linear activation functions
and the other 712 neural units have nonlinear sigmoidal functions. Let u £ 5T1

and v £ 3ftn2 represent the state vectors of the first n\ neurons and the
remaining n^ neurons, respectively. The dynamic equations of this neural
model are given by
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where Au = diag[a%,...,<J, Av = diag[a%,..., <J, Wuu E 3fT lXni,
Wuv E $ftnixn2, Wvu E 3fcn2Xni, and W™ E $Rn2Xn2, and su E 3£ni and
sv E ^R712 are the input or bias constant vectors.

Without loss of generality, let su = 0 and sv = 0 in these system. Define
a diagonal Lyapunov function of the system as

where, pf > 0 for all i E [1, ni\, and PJ > 0 for all j E [1, n^]. Furthermore,
denote

Using the same derivation procedure used to prove Theorem 11.3, it can be
shown that one of the sufficient conditions for the global asymptotic stability
of the system is satisfying the Lyapunov equation given in Theorem 11.3. •

11.3 LOCAL EXPONENTIAL STABILITY OF DNNs

The exponential stability of an equilibrium point af guarantees that the state
trajectories of the neural system converge to the equilibrium point with a
specified degree of exponential convergence speed. Sudharsanan and Sun-
dareshan (199la) studied the exponential stability and instability properties of
the equilibrium points for a class of dynamic neural networks, and provided
an explicit estimation method for the degree of exponential stability and the
regions of attraction of the stable equilibrium points. Moreover, the stability
results were used in the synthesis procedure for associative memories. How-
ever, most results on the exponential stability introduced by Sudharsanan and
Sundareshan (1991a) are local. Obviously, the concept of the exponential sta-
bility is stronger than the asymptotic stability; that is, if an equilibrium point
x* of the system is exponentially stable, it must be asymptotically stable.

11.3.1 Lyapunov Function Method for Exponential Stability

Let a constant r > 0 and B — {x : \\x < r } c § R n b e a n r neighborhood of
the origin x* = 0.

Consider the dynamic system
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where x e 5Rn, and / : !Rn —>• 9?n. Assume that x* = 0 is an isolated
equilibrium point of the above system in B. We have the following definition.

Definition 11.2 The isolated equilibrium point x* = 0 of the system in
Eqn. (11.57) is exponentially stable in B with degree rj if every trajectory
of the system in Eqn. (11.57) starting at any initial condition x(%) = XQ € B
satisfies the condition

It should be noted that there is no loss of generality in the discussion of
the equilibrium point at the origin. If x* ^ 0, a coordinate transformation
y = x — x* will transfer this equilibrium point to the origin, which will be
an equilibrium point of the new system. A basic result for the exponential
stability can be given as follows and will be used in studying the exponential
stability condition for the equilibrium points of dynamic neural networks.

Lemma 11.2 The equilibrium point cc* = 0 of the system in Eqn. (11.57) is
exponentially stable in B with degree r\ if there exists a Lyapunov function
V : 3ftn —>• !R satisfying the following conditions:

(i) V(x] has a continuous partial derivative with respect to each element
ofx € 5ftn;

(ii) V(x] is positive-definite in B; that is, V(x) > 0, and V(0) — 0;

(Hi) The time derivative of V(x) along the trajectories of the system in
Eqn. (11.57) satisfies

11.3.2 Local Exponential Stability Conditions for DNNs

Consider a dynamic neural network (DNN) of the following form:

Let x* = [x\ • • • x*]T be an equilibrium state of the system in Eqn. (11.60),
for transforming the equilibrium point to the origin. If a new variable z is
introduced as
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Then, the system in Eqn. (11.60) can be rewritten in terms of z as

where

Theorem 11.6 For the equilibrium point x* of the system in Eqn. (11.60), let
(W£(x*) — A) be a stable matrix. There then exists a constant r > 0 such
that

for all z € B = {z : \\z\\ < r}. Then, the equilibrium point x* is locally
exponentially stable if

where Q = QT > 0 is an arbitrary positive symmetric matrix and P =
PT > 0 is a unique positive symmetric solution of the Lyapunov function

Proof: Since W£(x*) — A is a Hurwitz, for a given Q = QT > 0, the
Lyapunov equation

has a unique positive symmetric solution P — P^ > 0. A quadratic Lya-
punov function may be defined as

which satisfies
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The time derivative o f V ( z ) along the trajectories of the system in Eqn. (11.61)
is

Using the inequality of Eqn. (11.64), one obtains

if

Define

Then Eqn. (11.72) becomes

Hence, the origin is locally exponentially stable in B(r\

Remark 11.3 The inequality assumption of Eqn. (11.64) is trivial for nonlin-
ear functions / (z) whose elements satisfy the conditions stated in Eqn. (11.63).
Since a Taylor series expansion around z = 0 is

where 0(||z||2) contains the higher-order terms; that is
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then, for any given k it is possible to find a constant r = r ( k ) > 0 such that
0( l l z l | 2 ) — f ( z ] ~ 5](x*)z is bounded by the linear term fc||x||2 in the r
neighborhood B — {z : \\z\\ < r} of z = 0.

Furthermore, for z ^ 0, we may rewrite the function f ( z ) as

where

Theorem 11.7 Let all oti > 0 in the system given in Eqn. (11.60). For a
constant r > 0, the equilibrium point x* of this system is locally exponentially
stable in B = {z : \\z\\ < r\} if there exists a constant 77 > 0 such that for
all z £ B and z ^ 0

where Q = QT > 0 is an arbitrary positive symmetric matrix and P =
PT > 0 is a unique positive symmetric solution of the Lyapunov function

Proof: Note that if the matrix A = diag[ai,..., an] > 0, then —A is a
stable matrix. Hence, for a given Q = QT > 0, the Lyapunov equation

has a unique positive symmetric solution P — F^ > 0. A quadratic Lya-
punov function may be defined as
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For z / 0 and r/ > 0, the time derivative of V(z] along the trajectories of the
system is

Hence, if

that is

then

This proves the theorem.

Lemma 11.3 Let x* be an equilibrium point of the system in Eqn. (11.60)
and

where E(z] = diag[e\(zi),..., en(zn)]. Then for an arbitrary e > 0, there
exists a r > 0 such that for all z £ B = {z : \\z\\ < r} and z ^ 0

Proof: The Taylor series expansion of the functions fi(zi) around zi = 0 is
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Hence, for Zi ^ 0, one has

that is

Since

for an arbitrary e > 0 there exists an r^ > 0 such that for all \Zi\ < n and
*^0

Setting r = minjri : i = 1, 2 , . . . , n}, it is easy to show that

for all z € B = {z : \\z\\ < r} and z ^ 0.

Corollary 11.5 Let o^ > 0 m f/ze system described in Eqn. (11.60) and x*
be an equilibrium point of the system. If the matrix

then x* is locally exponentially stable in the neighborhood ofx*.

Proof: Denote

Then, from Lemma 11.3, for a given e > 0 there exists a constant r > 0 such
that for all z e B = {z : \\z\\2 < r} and z ^ 0

On the other hand, since all cq > 0, A = diag[ai,..., an] > 0, we may
choose Q = s, then the solution of the Lyapunov equation, Eqn. (11.83), is
P = A~l/2. Hence, the purpose of the following proof is to verify that
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for all z E B and z ^ 0.
Note that

where

Furthermore

According to the assumption of the theorem, M is a positive-definite matrix;
that is, Xmax(M) > 0. Hence, if

where a.min = minjc^ : i = 1, 2 , . . . , n}, then

In this case, it can be shown that Eqn. (11.100) is satisfied if

or

which may be ensured by the choice of an appropriate e given in Eqn. (11.92).
Thus, the corollary is proved. •

Theorem 11.8 The equilibrium point x* of Eqn. (11.60) is locally exponen-
tially stable z/(W£(x*) — A) is a stable matrix and

where Q = Q > 0 is an arbitrary positive symmetric matrix and P —
P > 0 is a unique positive symmetric solution of the Lyapunov equation
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Proof: Note that in the transformed system in Eqn. (11.61) we have

It is easy to verify that

and

for alH > 0 and x G ?Rn. Since W£(x*} — A is a Hurwitz, for a given
Q = QT > 0, the Lyapunov equation

has a unique positive symmetric solution P = F^ > 0. A quadratic Lya-
punov function may be defined as

which satisfies

The time derivative ofV(z) along the trajectories of the system in Eqn. (11.61)
is
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Note that

with all

one obtains

Hence

if

and

then

Hence, the origin is locally exponentially stable.

11.4 GLOBAL EXPONENTIAL STABILITY OF DNNs

If the r neighborhood of the equilibrium point is replaced by the whole state
space !Rn in Definition 11.2 and Theorem 11.6, the exponential stability is
then global. In this case, for an arbitrary initial condition x(fo) — XQ € Oft71,
the trajectory of the system will tend to the unique equilibrium point with an
exponential convergence rate r\.
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Theorem 11.9 The system given in Eqn. (11.60) is globally exponentially
stable if (W — A] is a stable matrix and

where Q — Q > 0 is an arbitrary positive symmetric matrix and P —
P > 0 is a unique positive symmetric solution of the Lyapunov function

Proof: The proof procedure is the same as that used in Theorem 11.8. •

The results given in Theorem 11.9 do not have any restrictions on the sign of
the constants 0$ in Eqn. (11.79).

Corollary 11.6 Let all o^ > 0 in Eqn. (11.60). The system in Eqn. (11.60) is
globally exponentially stable if

where amin = ramjc^ : « = !,..., n}. In this case, the exponential conver-
gence degree is

Proof: Note that matrix A — diag[ai,... ,an] > 0 and -A is a stable
matrix. Hence, for a given Q = QT > 0 the Lyapunov equation

has a unique positive symmetric solution P = P7^ > 0. A quadratic Lya-
punov function may be defined as

which satisfies
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The time derivative of V (z) along the trajectories of the system in Eqn. (11.61)
is

If

and

then

Hence, the origin z = 0, that is, x = x* is globally exponentially stable.
Since this condition depends on the choice of Q, one may choose Q such that
the ratio \min(Q)/^max(P) reaches the maximum. In this case the optimal
solution is Q = s, and P may be solved from Eqn. (11.119) as

Hence

where amin = min{o;j : i = 1 , . . . , n}. Then, the global exponential stability
condition of Eqn. (11.124) may be simplified to

and the exponential convergence rate is
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11.5 CONCLUDING REMARKS

The notion of stability is of fundamental importance in dynamic systems.
Dynamic neural networks (DNNs) form a class of highly nonlinear dynamic
systems, and this chapter was devoted to study of the stability of continuous-
time dynamic neural networks (CT-DNNs) that are described by a set of
differential equations. In the study of the stability of continuous-time dy-
namic neural networks, we discussed the basic notions of local asymptotic
stability, global asymptotic stability, and exponential asymptotic stability. The
local stability conditions for a general class of DNNs are presented by using
Lyapunov's first method, while the global asymptotic stability are studied
by the well-known Lyapunov function method. The results presented in this
chapter form a basis for further investigating stability conditions of any type
of continuous-time DNNs with complex nonlinear dynamics.

Problems

11.1 Using Gerschgorin's theorem (Lemma 11.1), prove Corollary 11.2.

11.2 Using Corollary 11.2 to the Jacobian of the neural network given in
Eqn. (11.13), prove Theorem 11.1.

11.3 Discuss the stability of the following two-neuron network system
using Theorem 11.1:

11.4 Discuss the stability of the two-neuron network system in Problem
11.3 using the following stability condition, which can be derived
using Krasovskii's theorem (Krasovskii 1963): For an equilibrium
point x* of the system given in Eqn. (11.13), if

then x* is a locally asymptotic stable equilibrium point.
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11.5 Let all QJ = a > 0 in the system given in Eqn. (11.13). Show that
the system given in Eqn. (11.13) is globally asymptotic stable if the
weight matrix W is skew-symmetric; that is, W = —WT.

11.6 Consider a general class of neural networks having the form

or

where A = diag[ai,..., an] and W e !RnXn. Let W be a sym-
metric matrix and cr(x) be a monotonical sigmoidal function. Show
that if x* is an asymptotically stable equilibrium point of the sys-
tem in Eqn. (11.129), there is then no other asymptotically stable
equilibrium point y* that satisfies

\y* > x* , sgn(y*} = sgn(x*}, for alH such that x* ̂  0

or

\y* < xl , sgn(yt) = sgn(xl), foralH

11.7 For the dynamic neural network given in Problem 11.6, show that

(a) x = 0 is an equilibrium point of the system if and only if the
threshold v = 0;

(b) If the origin is an asymptotically stable point of the neural
system, then there are no other asymptotically stable points
of the system.

11.8 As pointed out by Kelly (1990), even though simplicity and the
theoretical tractability of a linear system is obvious, and the general
conclusion is that nonlinearity is an essential feature of biological
neural processes. The linear case can still be used to explain the
first-approximation model of the neural processing of input by the
primary sensory cortex. Give a stability analysis of a linear neural
network shown in Fig. 11.3 with the following form
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Figure 11.3 Problem 11.8: block diagram of the linear neural network.

where A = diag[ai,..., an].

11.9 Show that the linear neural system given in Problem 11.8 has a
unique global asymptotically stable equilibrium point erf if and only
if for any given positive-definite symmetric matrix Q there exists
a positive-definite symmetric matrix P that satisfies the Lyapunov
equation

Moreover, if (A—W) is a stable matrix, then P is the unique solution
of the Lyapunov equation.

11.10 Let all Oi > 0 or all en < 0 in the linear neural system. Show that
the system is globally asymptotically stable if

11.11 Let all OLi = a > 0 or all cx.i — a < 0 in the linear neural system.
Show that the system is globally asymptotically stable if

11.12 Let di = a and the weight matrix of the linear neural system be given
as a strict lower triangular matrix as follows:
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In this case, the linear neural system is called as a linear dynamic
feedforward neural network. Show that this linear neural system
is globally asymptotic stable regardless of the magnitudes of the
synaptic weights.

11.13 Show that the weight matrix in Problem 11.12 can also be a strict
upper triangular matrix.

11.14 (Skew-Symmetric Linear Neural Network) Consider a dynamic
linear neural network with n interconnected neural units. Let the
synaptic strengths from unit j to unit fc, and from the inverse prop-
agation direction have the same magnitude but a different sign; that
is, Wij = —Wji, and all self-connection strengths are set to zero. The
network is then said to be a skew-symmetric linear neural network
and is defined as

Show that

(a) The system is globally asymptotic stable regardless of the
magnitudes of the synaptic weights;

(b) Give the weight matrix of the skew-symmetric linear net-
work with four neural, and draw a diagram to show the
internal connections of those four neurons.

11.15 (Spatially Homogeneous Neural Network) Let a linear neural net-
work have a circulant weight matrix of the form

Show that a set of analytic solutions of the eigenvalues and eigenvec-
tors associated with the former may be obtained as
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and

where i is the imaginary unit, i2 = —1. An interesting fact is that the
eigenvectors of W are expressed in a complex spatial sinusoidal form
that, due to the properties of the circulant matrix, does not depend on
the values of the weights Wij.

11.16 Show that the spatially homogeneous neural network given in Prob-
lem 11.15 is globally asymptotically stable if and only if Re (A,;) < a
for all j.

11.17 Show that for the spatially homogeneous neural network given in
Problem 11.16, the equilibrium state components x^,x\,... ,#£,_!
can be obtained as

where
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The nonlinear dynamic behavior and stability of continuous-time dynamic
neural networks (CT-DNNs) described by a set of nonlinear differential equa-
tions were studied extensively in Chapter 11. It was shown that Lyapunov's
first and second methods can be used to study the equilibrium stability for
a general class of continuous-time dynamic neural networks. In this chap-
ter, the Lyapunov methods are extended to a general class of discrete-time
dynamic neural networks (DT-DNNs). In Section 12.1, the general model
of discrete-time DNNs is represented by a set of nonlinear difference equa-
tions. This model presents a number of discrete-time models derived from the
notions of population biology, neurobiology, and evolutionary theory. The
Lyapunov stability of the neural model is verified in Section 12.2. The stabil-
ity conditions of the neural model are studied in Section 12.3. More general
results on globally asymptotical stability are discussed in Section 12.4. For
a given discrete-time DNN model, these conditions are determined only by
the synaptic weight matrix of the network. It is shown that these results need
fewer constraints on the synaptic weight matrix than the models described in
the previous studies.

12.1 GENERAL CLASS OF DISCRETE-TIME DYNAMIC NEURAL
NETWORKS (DT-DNNs)

Consider a general class of discrete-time dynamic neural networks (DT-
DNNs) with continuous states as shown in Fig. 12.1 and described by the
following set of difference equations

or equivalently in a vector form, the discrete-time dynamic neural network is
described as

where x = [x\, # 2 , . . . , xn]
T is the neural state vector, W = [wij]nxn is the

synaptic weight matrix, s = [si, $2,. • . , sn]T is the constant threshold vec-
tor, A = diag[ai, a^,..., an] with oti < 1 is the self-feedback coefficient
matrix, Sfr — diaglni, //2, • • • , A*n] is the matrix of activation gains for con-
trolling the state decay, and cr(\I>x) = [<J(/L/I£I), <j(//2£2)> • • • , ̂ (/^n^n)]7" is
the vector-valued activation function with the gain matrix *&. The first term
in Eqn. (12.2) is called the self-feedback linear term of the network.
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Figure 12.1 Block diagram of the discrete-time dynamic neural network (DT-
DNN) defined in Eqn. (12.2).

As in continuous-time DNNs, the nonlinear neural activation function cr(.)
may be chosen as a continuous and differentiable nonlinear sigmoidal function
satisfying the following conditions:

(i) a(x) —> ±1 as x —> ±00;

(ii) cr(x] is bounded with the upper bound 1 and the lower bound — 1;

(iii) <j(x] — 0 at a unique point x = 0;

(iv) cr'(x) > 0 and &'(x} —> 0 as x —> ±00;

(v) cr'(x) has a global maximal value of 1.

In this section, cr(.) is chosen as the hyperbolic tangent sigmoidal function
<j(x) = tanh(x) shown in Fig. 12.2. The activation gain /j, > 0 is a constant
that determines the slope of a(/j,x). The activation function a(/4Xi] =
tanh(faXi) associated with the ith neuron in Eqn. (12.2) is assumed to have
its own gain fa > 0. It is easy to verify the following inequalities:

(i) \cr(p,iXi)\ < m Xi\;

(ii) tr(Vx)\ <^i\x\

(iii) <r(9x)\ < -y/n.
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Figure 12.2 The nonlinear neural activation function a(x) = tanh(^x) and its
derivative cr'(x) = //sech2(yux), where // = 1, JJL = 2.5, (i = 5,
p, — 7.5, and n = 10, respectively.
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Given an initial condition x(0) of the neural network given in Eqn. (12.2),
the state solution of the network at the instant k can be represented as

One important characteristic of Eqn. (12.2) is its equilibrium points defined
by the condition x(k + 1) — x(k). The equilibrium state equation of the
system may also be represented as

The equilibrium points of the neural system given in Eqn. (12.2) are the fixed
points of the mapping g(x) defined by Eqn. (12.3). For an arbitrary given
constant input s 6 9^n, let 17 be a hypercube defined by

where a = min{c^} and // = max{/^}, . is the Euclidean norm and ||. |
represents the induced matrix norm throughout this section. Then for an
arbitrary x £ O

holds. Hence, g(x] is a continuous mapping from a bounded, convex and
closed set fJ onto itself; that is, g(x) : £1 —> £1. According to Brouwer's
fixed-point theorem, g has at least one fixed point in £1 for any choice of the
weight matrix W.

As in conventional nonlinear systems, the neural network given in Eqn.
(12.2) is said to be globally asymptotically stable, or asymptotically stable in
large, if it has a unique equilibrium point that is globally asymptotically stable
in the sense of Lyapunov. In this case, for the arbitrary initial state x(0) e 3?
the state solution 0(fc, x(0), s) will converge to the unique equilibrium point
x* satisfying Eqn. (12.3):

Moreover, if for an arbitrary initial state x(0) € 5?1 the state solution
</>(/c,x(0), s) approaches this unique equilibrium point x* exponentially in
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terms of the norm, that is, if there exist two positive constants q, c^ > 0 such
that

then the network given in Eqn. (12.2) is globally exponentially stable.

12.2 LYAPUNOV STABILITY OF DISCRETE-TIME NONLINEAR
SYSTEMS

12.2.1 Lyapunov's Second Method of Stability

Let a discrete-time nonlinear system be described by

where x e 3ftn is the state vector, and f ( x ( k ) } is an n x 1 vector-valued
function. Let x* be an equilibrium point of the system; that is, x* = f(x*).
Introducing an equivalent coordinate transformation z = x — x*, the neural
system described by Eqn. (12.4) can be written in terms of z as

where f ( z ) = f(z + x*) — f(x*} and the origin z* = 0 is an equilibrium
point of the new system corresponding to the equilibrium point x* in the
original neural system defined in Eqn. (12.4). Therefore, in the following
discussion about the stability of the equilibrium point, we will study the
stability or instability of the origin x* = 0 for the discrete-time nonlinear
neural system given in Eqn. (12.4).

Lemma 12.1 [Local Stability Theorem of Lyapunov (Khalil 1992)] Letx =0
be an equilibrium point of the system in Eqn. (12.4) and V : D —> !R be a
continuously differentiable function in a neighborhood Dofx = Q such that

(i) V(x(k) = 0) = V(0) = 0

(ii) V(x(k)) = V(x) > 0 for x^Q and x£D

(iii) AF(JE) = V(x(k + l))-V(x(k)) < 0 for x^O and xtD

Then the equilibrium point x — 0 is asymptotically stable and V(x) is a
local Lyapunov function. •
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Lemma 12.2 [Global Stability Theorem of Lyapunov (Khalil 1992)1 Let x =
0 be an equilibrium point of the system in Eqn. (12.4) and V : ffi —> K be
a continuously differentiate function such that

(i) V(x(k) = 0) = V(0) - 0

(ii) V(x(k)) = V(x) > 0 for x^O

(Hi) V(x] —> oo, as ||x|| —> oo

(iv) AF(cc) < 0 for x^O

Then the equilibrium point x = 0 is asymptotically stable and V(x} is a
global Lyapunov function. •

The stability and instability theorems of Lyapunov are valid for both linear
and nonlinear systems. In fact, a successful execution of the Lyapunov test
depends on the selection of V(x) or AV(x), which is always a difficult task.

LaSalle's invariance principle can be extended to discrete-time systems for
deriving stability conditions based on the so-called energy function, which is
not a Lyapunov function in the strict mathematical sense. The discrete-time
version LaSalle's invariance principle can be stated as follows.

Lemma 12.3 (Energy Function Method) Let O be a compact set with the
property that every solution of the neural system in Eqn. (12.4) that starts in
Q remains for all future time instants k in £1. Let E : J7 —> $R be a function
such that

(i) AE(x) = E(x(k + 1)) - E(x(k)) < 0 for x e ft

(ii) AE(x) = E(x(k + 1)) - E(x(k)) = 0, only Ax(fc) = x(k + 1) -
x(k) = 0

Then, for any x(0) 6 ft, the solution of the neural system given in Eqn. (12.4)
will approach one equilibrium of the system as k —>• oo. •

Unlike the Lyapunov function method, the energy function approach does
not require the function E(x) to be positive define. The system satisfying the
conditions in Lemma 12.3 has a global state convergence that ensures that the
state of such a nonlinear system will converge to an equilibrium.

12.2.2 Lyapunov's First Method

In general, finding a suitable Lyapunov function for a given nonlinear dy-
namic system is a difficult task. Special stability properties of the nonlinear
neural activation function cr(x) were discussed earlier. An equivalent analysis
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process using the Lyapunov function approach is to test the positions of all
the eigenvalues of the Jacobian of the neural system. This approach is known
as Lyapunov's indirect method or Lyapunov's first method.

The Jacobian of the function f ( x ) is defined as

which can also be used to analyze the stability of the equilibrium points.
For the local asymptotical stability of the equilibrium point x*, the eigen-

values of the Jacobian at the equilibrium point x* should be examined. Let
us go back to the nonlinear system

where / : D —» 5Rn is a continuously differentiable map from a domain
D e Kn into 3ftn. The following lemma gives the local stability and instability
conditions.

Lemma 12.4 (Lyapunov's First Method) Letx* — 0 be an equilibrium point
of system

where f : D —> 3ftn is continuously differentiable and D is a neighborhood
of the origin. Define the Jacobian ofEqn. (12.7) in the neighborhood of the
equilibrium point x* = 0 as

Then

(i) The origin is locally asymptotically stable if all the eigenvalues ofJ are
inside the unit circle in the complex plane;

(ii) The origin is unstable if one or more of the eigenvalues of J are outside
the unit circle in the complex plane. •

Lemma 12.4 shows that, as illustrated in Fig. 12.3, if all the eigenvalues of
the Jacobian A at x* are within the unit circle, then x* is a local asymptotical
stable equilibrium point of the neural system given in Eqn. (12.7), and this
equilibrium point is called a sink. If all the eigenvalues of the Jacobian at of
are outside the unit circle, then x* is unstable and it is called a source. If some
eigenvalues are inside and some are outside the unit circle, the equilibrium
point is a saddle equilibrium point. For a local asymptotical stable equilibrium
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point, it is important to find the region of attraction of the point. Khalil (1992)
indicates that whenever the Jacobian matrix A at the equilibrium point a? is
a stable matrix, that is, when all the eigenvalues are located inside the unit
circle, we can estimate the region of attraction for that equilibrium point.

Figure 12.3 Positions and classification of the equilibrium points.



478 DISCRETE-TIME DYNAMIC NEURAL NETWORKS AND THEIR STABILITY

12.3 STABILITY CONDITIONS FOR DISCRETE-TIME DNNs

If the self-feedback or linear term in Eqn. (12.2) is neglected; that is, A = 0
in Eqn. (12.2), a simplified model of discrete-time dynamic neural networks
(DT-DNNs) is shown in Fig. 12.4a and given by

or

Figure 12.4 Block diagrams of the dynamic neural networks without the linear
term.
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Using a linear coordinate transformation x = Wy + s, Eqn. (12.10) may be
written equivalently in terms of the new state vector y G 371 as follows:

This network is shown in Fig. 12.4b. Therefore, the two neural networks
illustrated in Fig. 12.4 have the same stability property. As seen in the
previous section, to apply the Lyapunov function method, Eqn. (12.10) can
be transferred into the following equivalently form

where the vector-valued function / : ffl1 —» $Rn is given by

and satisfies /(O) = 0. Thus, z = 0 is a unique equilibrium point of the new
system expressed in Eqn. (12.12).

12.3.1 Global State Convergence for Symmetric Weight Matrix

Like continuous-time Hopfield neural networks, one can also explore the
global state convergence of the discrete-time DNN with a symmetric weight
matrix. For instances, when the synaptic weight matrix W is symmetric,
that is, when W — WT, Marcus and Westervelt (1989) proposed an energy
function for the neural system given in Eqn. (12.11), which is of the form

where
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Using symmetry, Wij = Wji, the change in E(k) between the time k and
k + 1, defined as AE(k) = E(k + 1) - E(k), can be given as

where Ay(fc) = y(k 4- 1) — y ( k ) and

Considering up to the second derivatives, one obtains the following inequality
(Marcus and Westervelt 1989)

where G^(yi(k + 1)) is the derivative of Gi(yi) at the point yi = yi(k + 1).
Since the minimum curvature of Gi is given by the inverse number of the
maximum slope of the function <r(.); that is 1, the minimum second derivative
can be expressed as

Equations (12.16)-(12.18) and equality Gfyi) = e^l(yi] from Eqn. (12.15)
yield

If the matrix *&W + / is positive-definite; that is

then
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Therefore, all the attractors of the dynamic neural system described in Eqn.
(12.11) are fixed points, and the condition in Eqn. (12.20) is a global conver-
gence condition. A sufficient condition for W + *&~l to be positive-definite
is

where \min(W} represents the minimum eigenvalue of the matrix W. If this
condition is satisfied, the states of the system in Eqn. (12.10) or Eqn. (12.11)
will always converge to one of their asymptotically stable equilibrium points
regardless of the initial values of the states.

12.3.2 Norm Stability Conditions

We will now obtain a sufficient condition that guarantees the origin £ = 0 to
be a globally asymptotical stable equilibrium point. The contraction of the
nonlinear neural function can be used to develop a stability condition. It is
easy to verify that the nonlinear neural function satisfies

Therefore, we can choose another Lyapunov function for the equivalent neural
system in Eqn. (12.12) as

Furthermore, we have

Hence, if

then AF is negative-definite, and the neural system in Eqn. (12.10) is glob-
ally asymptotically stable. Equation (12.23) is the so-called norm stability
condition.

12.3.3 Diagonal Lyapunov Function Method

In the discrete-time domain, the well-known Lyapunov equation for a test
matrix M is given by
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If there exists a positive-definite matrix Q > 0 such that this Lyapunov
equation has a positive diagonal solution P, then the matrix M is said to
be diagonally stable. The diagonal stability implies the Schur stability of
the matrix. Moreover, if the tested matrix is a nonnegative or M matrix, the
diagonal stability is equivalent to the Schur stability (Kaszkurewicz and Bhaya
1993, Michel and Miller 1977), or simply speaking, in this case, the diagonal
stability is equivalent to all the eigenvalues of the matrix being located inside
the unit circle.

Theorem 12.1 The neural system in Eqn. (12.12) is globally asymptotically
stable if for annx n positive diagonal matrix P = diag\pi,p2,..., pn] with
Pi > 0 for all\ < i < n, there exists a positive-definite matrix Q > 0 such
that

Proof: Let a function be defined as

where P = diag\pi,p2,. • • ,pn] > 0. This function satisfies

and

Noting that

one obtains

Therefore, the theorem is proved.
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The Lyapunov function defined by Eqn. (12.25) is a diagonal Lyapunov
function (Kaszkurewicz and Bhaya 1993), and Eqn. (12.24) is consequentially
a diagonal Lyapunov equation. Theorem 12.1 indicates that if there exists
a positive-definite matrix Q such that the solution P of Eqn. (12.24) is a
positive diagonal matrix, then the neural system in Eqn. (12.12) is globally
asymptotically stable. In other words, if the product of the synaptic weight
matrix W and the gain matrix *, that is, W*&, is diagonally stable, the
neural system in Eqn. (12.12) is then globally asymptotically stable. As a
consequence of Theorem 12.1, the following corollaries can be stated:

Corollary 12.1 The neural system in Eqn. (12.12) is globally asymptotically
stable if one of the following conditions is satisfied

Proof: The stability condition given in Eqn. (12.24) can be represented
equivalently as

Let P = I in the matrix inequality above. One then obtains

Thus, a sufficient condition is

which proves condition (i).
Moreover, applying Gerschgorin's theorem (Horn and Johnson 1985) to

the matrix
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This proves conditions (ii) and (iii). •

When the absolute values of the elements of the weight matrix are consid-
ered, the following results can be obtained.

Corollary 12.2 The neural system in Eqn. (12.12) is globally asymptotically
stable if there exist a positive-diagonal matrix P = diag[pi,p2,... ,pn] and
a positive definite matrix Q > 0 such that

Proof: Since for a positive diagonal matrix P > 0

Thus

This means that if Eqn. (12.29) is valid, then Eqn. (12.24) is satisfied. The
result is proved. •

Corollary 12.2 shows that if the nonnegative matrix |W^|^ is diagonally
stable, the neural system in Eqn. (12.12) is globally asymptotically stable.

Noting that the equivalence between the diagonal stability and the Schur
stability when the matrix is nonnegative (Kaszkurewicz and Bhaya 1993),
Michel and Miller 1977), one obtains the conditions for asymptotically sta-
bility as given in the following corollary.

Corollary 12.3 The neural system in Eqn. (12.12) is globally asymptotically
stable if one of the following conditions is satisfied:

(i) There exist positive matrices P > 0 and Q > 0 such that

(ii) All eigenvalues of the matrix \W\*& are located inside the unit circle.

Proof: For the nonnegative matrix jT^lSlf, the diagonal stability is equivalent
to the Schur stability. Thus, conditions (i) and (ii) are true. •

Moreover, a real square matrix is said to be an M matrix (Kaszkurewicz
and Bhaya 1993, Michel and Miller 1977) if all the off-diagonal elements
of the matrix are nonpositive and all the principal minor determinants of the
matrix are positive. The following results may then be stated.
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Corollary 12.4 The neural system in Eqn. (12.12) is globally asymptotically
stable if

(i) The matrix D = I - \W\9 is an M matrix;

(ii) There exist n constants c\, c<2, ..., cn > 0 such that

(Hi) There exist n constants iji, rj2, .. •, f]n > 0 such that

where 6ij is a delta function defined by ^ = I/or i — j and by 8ij = Ofor
i / j-

Proof: Equation (12.24) has a positive diagonal solution P > 0 if and only
if matrix (/ - W|^) is an M matrix (Michel and Miller 1977). Thus,
condition (i) is proved. Moreover, matrix (/ — | W|*) being an M matrix is
equivalent to conditions (ii) and (iii) (Michel and Miller 1977). •

Remark 12.1 The global stability conditions presented above are indepen-
dent of the threshold vector s of the network.

Remark 12.2 The global stability conditions presented above for the neural
system in Eqn. (12.12) are also the sufficient conditions of the global stability
for the neural network described by Eqn. (12.11).

Note that the discrete-time diagonal Lyapunov equation given in Eqn.
(12.24) may be relaxed as

If the positive diagonal matrix P is chosen as an identity matrix /, the fact
that (WTW — I//J?} is negative-definite is equivalent to

In this case, a globally asymptotical stability condition is given by
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which is equivalent to Li's norm stability condition (Li 1992), where the
Euclidean norm is applied, given as

Thus, the norm stability condition is, in fact, a special case of the result given
in Theorem 12.1 in terms of the Euclidean norm.

rr\

Furthermore, if W is a symmetric matrix; that is, W = W , then

is a sufficient condition for the global stability. When this condition is true,
the global convergence condition in Eqn. (12.22) is always satisfied.

12.3.4 Examples

Example 12.1 In this example it will be shown that if a suitable positive diag-
onal matrix P is chosen, the global stability condition presented in Theorem
12.1 is more relaxed than the norm conditions of Eqn. (12.34). Consider
a simple two-neuron system without external inputs and with the following
form

where the 2 x 2 weight matrix is

The stability of this neural system can now be tested using the norm stability
condition of Eqn. (12.34) as follows:

Unfortunately, according to the choices of the matrix norms indicated above,
the norm stability conditions cannot ensure the stability of the neural system
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defined in Eqn. (12.35). The global stability condition given in Theorem 12.1
will now be used to test the stability of the system. Let P = diag\p\_, p2\ with
Pi > 0 and p2 > 0; then

If we let pi = 1 and p2 — 2, then

where

is positive-definite. Therefore, the neural system of Eqn. (12.35) is globally
asymptotically stable. •

Example 12.2 Consider a discrete-time dynamic neural network (DT-DNN)
with three neurons described by

where

Using the norm stability condition of Eqn. (12.34), one obtains the follow-
ing global stability condition

where /j, = max{^}.
On the other hand, since
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the global stability condition may be represented as

Obviously, in some cases, the condition in Eqn. (12.38) is more relaxed than
that in Eqn. (12.37). For example, if

then the condition in Eqn. (12.37) fails to establish the stability of this neural
network. However, the condition given in Eqn. (12.38) ensures the global
stability of this neural network. •

12.4 MORE GENERAL RESULTS ON GLOBALLY ASYMPTOTIC
STABILITY

To apply the Lyapunov function method for studying the global stability
of the neural system of Eqn. (12.2), one has to transfer this neural system
into a new system where the origin is an equilibrium point. Let of =
[x\, #2, • • • •> xn]T t>e an equilibrium state of the original neural system and
z = [zi, z < 2 , . . . , zn]

T = x — x* be a new state vector. Then, Eqn. (12.2) can
be represented in terms of z as

where the vector-valued function / : W —> ffl1 is defined by Eqn. (12.13).
Thus, z — 0 is a unique equilibrium point of the new neural system given by
Eqn. (12.39). Since

one obtains

The contraction property of a nonlinear mapping may be used to determine
the global stability of the nonlinear neural systems (Kelly 1990, Li 1992). For
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two arbitrary vectors x\ and x% £ 3ftn, using the mean-value theorem, one
obtains

This implies that for two arbitrary vectors z\ and z^ £ 3^n, one obtains

Thus

From the contraction mapping theorem (Hirsch 1989), if

then the neural network of Eqn. (12.39) is a contractive system and has a
unique equilibrium point z — 0 that is globally asymptotically stable, so that
the inequality of Eqn. (12.40) is a sufficient condition for the global stability.
Furthermore, as far as the matrix norms 11. | |i, 11. | 2, and 11. | |oo are concerned,
one has the following three sufficient conditions for the global stability of the
neural system given in Eqn. (12.39):

where lmax(.) represents the maximum eigenvalue of the matrix. Equations
(12.41)-(12.43) are referred to as the norm condition for the global stability
in this section. In this case, the equilibrium point of the network may be
iteratively computed (Kelly 1990) since the state of the network starting from
an arbitrary initial position will converge to the unique equilibrium point.

Moreover, note that the state solution of the neural system defined in
Eqn. (12.39) at the instant k



490 DISCRETE-TIME DYNAMIC NEURAL NETWORKS AND THEIR STABILITY

yields

that is

Applying Gronwall's inequality (Hirsch and Smale 1974) yields

or equivalently

Thus, a sufficient condition for the globally exponential stability is obtained
as

12.4.1 Main Stability Results

Even if there is no universal way to find a global Lyapunov function for such a
nonlinear system, because of the structures of the dynamic neural networks and
the properties of the sigmoid function, one may attempt a diagonal Lyapunov
function for the network as seen in the following discussion which starts with
Theorem 12.2.

Theorem 12.2 The neural system given in Eqn. (12.39) is globally asymp-
totically stable if there exist a 7 > 0, a positive diagonal matrix P =
diag\pi,p2,..., pn] > 0, and a positive definite matrix Q > 0 such that
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Proof: Consider the following diagonal Lyapunov function

where P = diag\pi,p2,... ,pn] > 0. Then

For 7 > 0

that is

Substituting this inequality into the right-hand side of Eqn. (12.47) yields

Since

implies that

Therefore

and

Therefore
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If there exists a positive definite matrix Q > 0 such that

then D V ( z ] < 0, and z = 0 is a globally stable equilibrium point of the
network. •

The matrix equation given in Eqn. (12.46) is a modified diagonal Lyapunov
equation and involves an adjustable parameter 7 > 0. This matrix equation
can equivalently be written as

or

When A = 0, letting g —>• +00 in Eqn. (12.50) one obtains

which was derived in Theorem 12.1. In this sense, the result obtained in The-
orem 12.1 can be treated as a special case of that presented in Theorem 12.2.
It follows, therefore, that the choice of the parameter 7 > 0 in Eqn. (12.46)
plays an important role in determination of the global stability of the network.
Some corollaries of Theorem 12.2 are now presented.

Theorem 12.3 The neural system in Eqn. (12.39) is globally asymptotically
stable if there exist a positive diagonal matrix P — diag\pi,p2,..., pn] > 0
and a positive-definite matrix Q > 0 such that

where am = max{|a1|}.

Proof: In the proof of Theorem 12.2, an optimal selection of the parameter 7
is such that

Then 7 can be chosen as
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In this case, for all |a1| < 1, we obtain

that is, condition (i) in Theorem 12.2 is satisfied. Substitution of Eqn. (12.53)
in Eqn. (12.46) yields Eqn. (12.52). •

If all the neural units of the network have the same self-feedback coefficient
on = a with a < 1, that is, A — a/, then Eqn. (12.52) can be simplified to

In the derivations above, only the contribution of the maximum absolute
value of the self-feedback coefficients was considered in the selection of
the parameter 7 > 0. To replace the scalar parameter 7 in the proof of
Theorem 12.2 with a positive diagonal matrix associated with all self-feedback
coefficients OLI < 1, a theorem can be stated as follows.

Theorem 12.4 The neural system in Eqn. (12.39) is globally asymptotically
stable if there exist a positive diagonal matrix P — diag\pi,p2,..., pn] > 0
and a positive-definite matrix Q > 0 such that

Proof: First, let all 04 ̂  0, i = 1 ,2 , . . . , n, and let there be a positive diagonal
matrix F = diag[7i, 72, • • • ?7n] whose elements satisfy

Indeed, for a positive diagonal matrix P

that is

Noting that
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one obtains

Thus, if there exists a positive definite Q > 0 such that

then AV(z) < 0 and z = 0 is a globally stable equilibrium point of the
network. Moreover, if one selects 7^ such that Eqns. (12.56) and (12.57) are
satisfied and

then

It can be verified that for |c^| < 1, the choice of 7^ satisfies

The matrix F is then given by

Thus

Substituting this result in Eqn. (12.59) proves Eqn. (12.55). When there are
an i* such that c^* = 0 and c^ ^ 0, (1 < i < n, i ^ i*), and the elements of
the matrix F = diag[ji^2, • • •, 7n] are chosen as



12.4 MORE GENERAL RESULTS ON GLOBALLY ASYMPTOTIC STABILITY 495

and

then Eqn. (12.59) is still valid. Furthermore, let the elements of a nonsingu-
larly diagonal matrix B = diag[bi, 62, • • •, bn] be defined as

and the matrix F be given by

It can be seen that for a positive diagonal matrix P > 0

Thus, Eqn. (12.55) is valid. Using the same procedure, one may also prove
that the theorem is valid when there exist more than one c\ = 0. •

Theorem 12.5 The neural system in Eqn. (12.39) is globally asymptotically
stable if there exist a positive-diagonal matrix P = diag\pi,p2,..., pn] and
a positive definite matrix Q > 0 such that

Proof: Since for a positive diagonal matrix P > 0

Thus, if the condition given in Eqn. (12.61) holds, then the condition of
Eqn. (12.55) is satisfied. This proves the theorem. •

A sufficient condition of Eqn. (12.61) for the global stability is also reported
by (Jin and Gupta 1996b) who applied a different technique. The matrix
equation, Eqn. (12.61), is a diagonal Lyapunov equation in terms of the
nonnegative matrix | A\ +1 W|^. Theorem 12.5 shows that if the nonnegative
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matrix | A\ + | W)1^ is diagonally stable, then it implies that the neural system
given in Eqn. (12.39) is globally asymptotically stable.

Remark 12.3 Unlike continuous-time dynamic neural networks (CT-DNNs)
where the negative self-feedback coefficients increase the stability degree of
the network (Matsuoka 1992), the self-feedback coefficients |c^| < 1 that are
either positive or negative in Eqn. (12.39) reduce the degree of stability for the
network in terms of the global stability conditions obtained from Theorems
12.4 and 12.5.

To determine the global stability of a given network using the preceding
results, the positive diagonal matrix P and the positive-definite matrix Q
must be found. Usually, for a given Q > 0, it is difficult to verify that
these matrix equations have such a positive diagonal solution. Corollaries of
these theorems, which give simplified expressions of the theorems, have been
presented by Jin and Gupta (1996b). It is noted that these corollaries involve
only network parameters such as the self-feedback coefficients, connection
weights, and the gains. In the following, one of the corollaries will be
presented, and it will be used in the next examples.

Corollary 12.5 The neural system in Eqn. (12.39) is globally asymptotically
stable if one of the following conditions is satisfied:

(i) There exist positive matrices P > 0 and Q > 0 such that

(ii) All eigenvalues of the matrix ( A\ + | W^) are located inside the unit
circle.

Proof: For the nonnegative matrix (|A| 4- | W|\I>), the diagonal stability is
equivalent to the Schur stability. This proves the corollary. •

12.4.2 Examples

Example 12.3 Consider a trivial discrete-time dynamic neural network (DT-
DNN) structure, as shown in Fig. 12.5, where some feedback connections in
the network have been eliminated so that the network has become a dynamic
feedforward network. In this case, the weight matrix is a lower triangular
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Figure 12.5 Block diagram of a dynamic feedforward neural network discussed
in Example 12.3.

matrix (possibly after a renaming of all the neurons) of the form

In this case

and the eigenvalues of the above matrix are obtained as

It is seen that the global stability condition given by condition (ii) of Corollary
12.5 becomes

Thus, the global stability of the network is determined by only the self-
recurrence connections described by the weights wa. Moreover, even if
all the self-recurrence connections wa are removed, the network is always
satisfied for the arbitrary connection weights. Hence, the network without
the recurrent connections (wij = 0, for j > i) is inherently globally stable
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for the arbitrary connection weights, thresholds, and activation gains. These
characteristics of such a network provide a potential solution for the problem
that arises with the use of A/D converters (Avitabile et al. 1992). •

Example 12.4 Consider a discrete-time dynamic neural network (DT-DNN)
with n neurons that are arranged in a circular fashion. Assume that except
for the self-feedback connections, the ith (2 < i < n) neuron receives only a
feedback connection from the (i — l)th neuron, and the first neuron receives
a connection from the nth neuron as shown in Fig. 12.6.

The mathematical model of such a network is given by

where 0 < a < 1 and all the weight parameters are positive.
Using the norm stability condition of Eqn. (12.40), one obtains the follow-

ing global stability condition

where ^ = max{/^}.
On the other hand, using the new condition given by condition (ii) of

Corollary 12.5, one tests the eigenvalues of the following matrix:

If n is odd, then
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Figure 12.6 Block diagram of a circle dynamic neural network discussed in Ex-
ample 12.4.

If n is even, then

and

Thus, the global stability condition may be represented as
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Obviously, in some cases the condition of Eqn. (12.64) is more relaxed than
that of Eqn. (12.63). For example, for the three-neuron structure if

then, the condition in Eqn. (12.63) fails to determine the stability of the
network. However, the condition in Eqn. (12.64) ensures the global stability
of the network because of

12.5 CONCLUDING REMARKS

In this chapter, we have studied the stability problems for a general class
of discrete-time dynamic neural network (DT-DNN) using Lyapunov's first
and second methods. On the basis of the special nonlinear structures of the
neural networks and properties of the neural activation function, some stability
conditions were derived. For a given dynamic neural network with bounded
derivatives of the nonlinear activation functions, these stability conditions,
which are determined only by the synaptic connection weight matrix W of
the network, are easy to check by using simple algebraic manipulations on the
connecting weights. The analytic approaches and results that were presented
in this chapter can be generalized to other models of discrete-time neural
networks and to more complicated discrete-time neural networks.

Problems

12.1 Consider a discrete-time linear system described by

(a) Show that x ( k ) —*• 0 as k —> oo if and only if all eigenvalues
of A satisfy |A;| < 1;

(b) Can we conclude that the mapping Ax is a contraction map-
ping if all eigenvalues of A satisfy \\\ < 1?

12.2 Consider a discrete-time nonlinear system
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Let

be the linearization of the above system. Show that the origin is
asymptotically stable if all the eigenvalues of A have magnitudes
less than one.

12.3 Consider a discrete-time linear system described by

where x is an n-dimensional vector and A is an n x n matrix. Letting
P be a positive-definite real symmetric matrix, show that

is a Lyapunov function for the system, and the equilibrium state
x* = 0 is asymptotically stable if and only if for a given positive-
definite real symmetric matrix Q, there exists a positive-definite real
symmetric matrix P such that

12.4 A vector function f ( x ] is said to be a "contraction" if

where 1 1 . 1 1 is the norm of the vector (.). For the neural system in
Eqn. (12.4), if / is a contraction for all x, show that the neural
system in Eqn. (12.4) is globally asymptotical stable, and one of its
Lyapunov functions is

12.5 Consider a discrete-time DNN described by

where x E 3ftn, W = WT E 5Rnxn, s E 5R71, and / is a sigmoidal
function, / = [/i /2 • • • fn]

T with fi = tanh(.). Show that the
attractors of the neural system are either fixed points or period 2 limit
cycles by constructing an energy function E(k] as
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where

12.6 Discuss the stability of the following two discrete-time neural net-
work system using Lyapunov's first method:

12.7 Discuss the stability of the following two discrete-time neural net-
work system:

12.8 Rederive the results obtained in Section 12.3.1 for the global state
convergence for a symmetric weight matrix and give a two-neuron
system that satisfies the global state convergence condition.

12.9 In Example 12.4, let the weight matrix have a form of

Analyze the global stability conditions of the network by using both
the norm stability condition of Eqn. (12.40) and Corollary 12.5.
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12.10 Consider a two-neuron discrete-time system

Discuss both local and global stability conditions of the system.

12.11 Consider a discrete-time dynamic neural network of the form

Show that V(x) = XTX is a Lyapunov function if (WTW — /)
is a negative definite matrix. Discuss the global stability condition
derived by this Lyapunov function.

12.12 Consider a single-input/single-output (SISO) nonlinear system

(a) Give a state equation expression of the above system;

(b) If the external input u(k) is designed as a state feedback

Derive the Jacobian of the system and discuss the local sta-
bility of the equilibrium point of the system based on the
Jacobian obtained.

12.13 Consider a nonlinear discrete-time dynamic neural network of the
form

where x 6 3£n, A e ^nxn, B e 3£nxn, W 6 Knxn, and s e ftn.

(a) Let P e 3?nxn be a nonsingular matrix. Show that
P~1WP has the same eigenvalues as W;

(b) LetP = diag\pi,p2,. • • ,pn]forallpi > 0, i — 1,2, . . . ,n.
Show that the neural system

has the same local stability of the system given in
Eqn. (12.65).



504 DISCRETE-TIME DYNAMIC NEURAL NETWORKS AND THEIR STABILITY

Figure 12.7 Problem 12.14: the three-neuron system.

12.14 As shown in Fig. 12.7, consider a three-neuron network with the
following equation

(a) Analyze the equilibrium points of the above system;

(b) Study global stability condition of the system;

(c) Let

Calculate all equilibrium point of the system and study the
stability of those equilibrium points.

12.15 Consider the global stability condition of an n-neuron system with
a circle connection as shown in Fig. 12.8, which is a generalized
version of the three-neuron system discussed in Problem 12.14
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Figure 12.8 Problem 12.15: the n-neuron system with a circle connection,

where

(a) Analyze the equilibrium points of the above system;

(b) Study global stability condition of the system.
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Most models of the neural networks discussed in the previous chapters
were described mathematically by a set of either continuous-time differential
equations or discrete-time difference equations with continuous state values.
Those neural networks can be implemented by analog integrated circuits or
by computer emulations. The binary neural networks to be studied in this
chapter are a class of neural networks with only two states in a discrete-time
domain. This type of neural networks can be considered as an extension
of finite-state machines and can be implemented by integrated digital logic
circuits for various engineering applications.

In this chapter, we will first present models of binary neural networks
by using the dynamic system language. As the most famous and typical
binary neural network, the binary Hopfield neural networks are then studied
extensively in terms of their operation mode and convergence. A Lyapunov
function or energy-function-based method for analyzing the stability of such
nonlinear and discrete-time dynamic systems is introduced. Moreover, the
convergence of various types of binary neural networks is also studied in this
chapter. The results form a basis for the further study of neural associative
memories in Chapter 14.

13.1 DISCRETE-TIME TWO-STATE SYSTEMS

13.1.1 Basic Definitions

13.1.1.1 Binary States of Neural Systems
From a dynamic system point of view, discrete-time binary neural networks
shown in Fig. 13.1 may be considered as a special class of discrete-time
dynamic systems, where the state space is a unipolar or bipolar two-state
hypercube. Let S = {—l,l}n be a bipolar two-state hypercube. A general
state space equation of a discrete-time binary neural network containing n
neurons is given by
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Figure 13.1 Block diagram of the discrete-time binary neural network.

where Xi is the state of neuron i that is either 1 or — 1, Wij is the synaptic weight
from neuron j to neuron i, 9i is the threshold of neuron i, and the nonlinear
activation function fa : { —1, l}n —> {—1,1} is a Boolean function whose
value is either 1 or — 1. Let the neural state values 1 and —1 represent the
active (firing) and nonactive (rest) states of the neurons, respectively. The
ith neuron has n two-valued inputs, xi(k), x z ( k ) , ..., xn(k), and a single
two-valued output xi(k 4- 1). Its internal parameters are weights wn, Wi%,
. . . , Win and its threshold is Oi, where each weight w^ is associated with a
particular input variable Xj. The values of the weights w^ and the threshold
Oi may be any real, finite, positive, or negative values.

Equation (13.1) may be rewritten in the following vector form

where

and
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Figure 13.2 A two-neuron discrete-time binary neural network, where the state
space is {[-1 -1]T,[-1 1]T,[1 -1]T,[1 1]T}.

Generally speaking, the state space in a continuous-time dynamic system
is taken to be a topological space or smooth manifold, and the function /
is assumed to be continuous or smooth. For a discrete-time binary neural
network, the state space will be a finite set and the conditions of continuity or
smoothness will not be applied. A two-neuron system is shown in Fig. 13.2.

Definition 13.1 The state trajectory x G {—1, l}n under f is the set

which is a subset of the state space {—1, l}n. •

The points of the state space { —1, l}n whose trajectory exhibits persistent
steady state behavior are the basis for the analysis of the neural system given
inEqn. (13.2).

Definition 13.2 x G { — 1, l}n is an equilibrium point of the system described
by Eqn. (13.2) if x(k} = x(k — 1) for time k; that is, /(x, W,0) = x.
x e { —1, l}n is a periodic point of the system if there exists a positive integer
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p such that x(k + p) — x(k) for time k; that is, f ( f • • • (/(/(«)))) =
f p ( x ) = x. The minimum number of such an integer pis called the "period"
of the system. •

13.1.1.2 Modes of Neural State Updating
Note from Eqns. (13.1) and (13.2) that every unit in the neural network is
a linear threshold element with inputs Xi(k), i — 1 , . . . , n and threshold 9i.
For a given neural weight w and threshold 9, the next state x(k + 1) of the
neural network is computed from the current state x(k). Depending on the
number of the states Xi(k), i — 1 ,2 , . . . , AT, where TV is a subset integer of
n employed in Eqn. (13.2), the network operation may be divided into three
different modes of operation. To define these modes, let us denote a subset N
of the integer set n (where n is the number of neural units), and assume that
there are TV neural units Nu(N) in operation during each interval of time.
Then, these three modes of operation of the neural networks are defined as
follows:

(i) Asynchronous or serial mode of operation: For this case, only one unit
is in operation during any time interval:

(ii) Synchronous or (fully) parallel mode of operation: For this case, the
computation is performed in the synchronous mode. All the neural units
are in operation during each time interval:

(iii) Block Sequential or partial parallel mode of operation: For this case,
only a specified block of neural units are in operation during any time
interval:

In all these modes of operation the integer set N e n can be chosen randomly
or by using some deterministic rule.

An n-dimensional state vector x G { — 1, l}n is called a stable state if and
only if

that is, if there is no change in the state of the network no matter what the
mode of operation is.
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13.1.1.3 Cycle Length and Transient Time
A state vector x is said to be stable if and only if there is no further change in
the state of the network. Obviously, the equilibrium points may be considered
as special cases of the periodic points. Clearly, since the state space of the
system, which is an n-dimensional two-state hypercube {—1, l}n, is a finite
set, all the state trajectories {x(k)}k>o of any updating mode are ultimately
periodic. Hence, the length of such a periodic sequence and the maximum
time that the state vector enters the periodic iteration plays an important
role in analyzing the dynamic characteristics of the network. They are also
referred to as the cycle lengths and the transient time of the system. The exact
mathematical definitions of those two key parameters, the cycle length and
the transient time, for a given binary neural network system are now studied.

Definition 13.3 For every x 6 { —1, l}n let two functions p(x) and t(x) of
x satisfy

Then, for the neural system defined in Eqn. (13.2) two constants are defined:

The transient time T(W, 9) describes the dynamic temporal process, while
the cycle length P(W, 9} shows the internal structure of the steady states that
are either stable equilibrium points or periodic points with a certain period.
The above definition can be used to describe the dynamic properties of the
binary Hopfield neural network with an asynchronous operating mode as well
as other operating modes such as synchronous and block sequential operating
modes as discussed later. Also, from Definition 13.3, it is worth noting that if

that is, the length of the periodic state sequence is one, then the system has
only stable equilibrium points, called the attractors. The exact positions of
the equilibrium states, which represent the ultimate position of the states,
depend on the initial points. As discussed later, the application of associative
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Figure 13.3 The steady states of a four-neuron binary neural network, where each
circle represents a state of the system, and the heavy circle represents
the steady state of the normal system.
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memories utilizes the attraction function of an equilibrium to ensure the recall
or retrieval capability of associative memories.

In fact, these two parameters T(W, 0} and P(W, 9} must satisfy

and

where 2n is the total number of the states for a network with n neural units.
In case these two inequalities become equalities, two trivial results can be
obtained as follows. If

or

the network has only equilibrium states; that is, all 21 possible states are
isolated stable equilibrium states, but they are not attractors. Indeed

and

imply that the network has a cycle with length I1. Figure 13.3 illustrates
an example of a system exhibiting stable equilibrium points (attractors) and
a periodic cycle. We now present two examples to illustrate the dynamic
behaviors of such neural networks.

Example 13.1 Consider an n-neuron network with a weight matrix

W = 1

where J is an identity matrix. The vector-valued nonlinear activation function
is selected as
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where the signum function, or the so-called hard-limiting quantizer sgn(.), is
defined as

Then, all the possible 2n binary states are the equilibrium points of the fol-
lowing binary network

For a binary network, the equilibrium states satisfy

Hence, for such a binary network, one has

Example 13.2 Consider a two-neuron binary network, as shown in Fig. 13.4a,
described by

The corresponding weight matrix

is skew-symmetric, and the system has four possible states

As depicted in Fig. 13.4b, the system starting from any one of the four states
will go back to the original starting point after four steps of updating. Thus
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Figure 13.4 Example 13.2: cyclic phenomenon in a two-neuron binary network.
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13.1.2 Lyapunov Function Method

It is well known that the nature of the stability of deterministic dynamic
systems can be determined if Lyapunov functions with certain specified prop-
erties are constructed. The Lyapunov stability analysis method has been
widely used in studying the state convergence and the stability of discrete-
time neural networks as well. Let E(x) : {—1, l}n —> 3£ be a Lyapunov
function, or the so-called energy function, which is defined on the state space
{ —1, l}n and is nonincreasing along all the state trajectories

and there exists a constant E~ such that

In this case, the steady state of the system may be one of the following three
possible types:

(i) Stable equilibrium points: If

then

and the neural system has only stable equilibrium points;

(ii) Limit-cycle oscillations: If there is a positive integer p such that

the neural system then has limit-cycle oscillations with a period p;

(\\\) Stable equilibrium points and limit-cycle oscillations: If there is a
positive integer p such that

the system may have then either stable equilibrium points or a limit-cycle
oscillation with a period p.

Furthermore, assume that an upper bound E^ of the energy function E(x)
is given by
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and before the system reaches the steady state the minimum absolute value of
the difference of the energy function E(x] from time k to (k + 1) is

Since the time that the energy function E reaches the minimum value from
its maximum value must not be less than the transient time of the system, one
obtains

Hence

Figure 13.5 shows the relationship between the transient length T(W, 0} and
the energy function E(x).

Figure 13.5 The relationship between the transient length T(W, 9} and the energy
function E(x), where x\ (0) is the first component of the initial state
cc(0), and x\ is the first component of the stable state x*.
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13.2 ASYNCHRONOUS OPERATING HOPFIELD NEURAL
NETWORK

13.2.1 State Operating Equations

The original discrete-time Hopfield neural network defined by Hopfield (1982)
is a binary pattern processor consisting of n two-state neurons, and it was
designed only for the unipolar step function shown in Fig. 13.6a and defined
as

where

is the internal potential of the ith neuron. As an intermediate variable, the
expression of the internal potential plays an important role in dealing with
binary neural computing.

The bipolar choice, as shown in Fig. 13.6b, is often mathematically prefer-
able and is used in the following discussion, is described by the hard-limiting
nonlinearity

Figure 13.6 Nonlinear activation functions for binary neural network.
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where xi is the state of neuron i, which is either 1 or — 1; ̂  is the internal field;
Wij is the synaptic weight from neuron j to neuron i; and $ is a threshold
of neuron i. Let the neural state values 1 and —1 represent the states of the
active and rest of the neurons, respectively. In the asynchronous operating
mode, only one neuron is assumed to be in the state of firing (active), and
all the others neurons are in the state of rest at each operating time. In other
words, only the state of one neuron is updated, and the states of all other
neurons are unchanged at each time. Moreover, as shown in Fig. 13.7, the
number p of the unique active neuron is chosen randomly from the integer set
Nn — {1, 2 , . . . , n}; that is, the firing probability of every neuron is 1/n.

In this case, the information processing of the neurons in the neural system
is accomplished in the asynchronous mode or the serial mode. The state
equation of the neural system is given as follows

where the right-hand function is defined as

and the state space is { —1, l}n. Hence, the discrete-time Hopfield neural
network may be viewed as a special class of discrete-time dynamic systems.
The steady states are reached if

that is, if none of the states x\, x%, . . . , xn change during an operation,
then the network is said to be in a steady state. From the state equation
given in Eqn. (13.18) of the network, it is determined that a binary vector
x € { — 1,1}T is a steady state of the network if it obeys

for all 1 < i < n such that

In this serial mode of operation, the final steady state depends not only on the
initial state but also on the updating sequence of the neurons.
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Figure 13.7 Block diagram of a binary Hopfield dynamic neural network with an
asynchronous operating mode, where only the pth neuron is in active
state.
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13.2.2 State Convergence of Hopfield Neural Network with
Zero-Diagonal Elements

An energy function was introduced by Hopfield to facilitate the study of
convergence and other properties of the neural network. Like the energy
function for the continuous-time neural network, the scalar-valued energy
function with a quadratic form for above discrete-time neural model given in
Eqns. (13.16)-(13.19) is defined as

Assume that a given state vector at time k is

then any changes to xp(k) change the state vector at time (k + 1) as

as a result of operation in the pth neuron, where

Let the connecting weight matrix W be symmetric with zero-diagonal ele-
ments:
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The assumption of the zero-diagonal element means that no units have self-
connections. To show that the energy function does not change when the time
increases

we may express the changes in the energy function as

In view of the operation equation, we may note that if

implies that

and

and if

implies that

Thus, one obtains
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that is, when x(k] / x(k + 1), the energy function E decreases strictly with
each updating. Furthermore, either of the following results are obtained:

Hence, using such an asynchronous mode of operation, the discrete-time
neural network presented above will finally converge to a stable steady state.
In fact, the energy function E cannot decrease infinitely because it is bounded
from below

that is, once the minimum energy state is reached, no further transitions are
possible and the network is said to have reached a steady state as an attractor.
It is evident that the main reason for showing the convergence properties of
the state is to define a so-called energy function and to prove that this energy
function is nonincreasing when the state of the network changes as a result
of computation. Since the energy function is bounded from below, it may be
concluded that the network will converge to some steady state as an attractor.

Example 13.3 (Serial Operation) A general structure of a two-neuron net-
work with serial operation is shown in Fig. 13.8. Consider the neural network
with the weight matrix

and the threshold 9 is a 0 vector. It can be verified that when the neural
network is operating in a serial mode, the state of the system with an arbitrary
initial condition will converge to one of the following stable equilibrium points

and the energy function E at every state is given as
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Figure 13.8 Example 13.3: block diagram of a two-neuron system with an asyn-
chronous operating mode. Switches s1 and s2 always have different
positions. For example, when the switch si is in the position pi,
switch «2 is in the position p%.
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Figure 13.9 Example 13.3: the surface of energy function E for a two-neuron
system with parameters wu — 11*22 = 0, Wi2 = w^i = 1.0, and
Oi = 92 = 0. The system has two stable equilibrium points x\ =
[1 1]T and Xrj = [—1 — 1]T, which correspond to the two minima of
the energy function E(XI, x^}.
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Figure 13.10 State transfer diagram of a sequence operating processing of a two-
neuron system using a serial (asynchronous) mode. The parameters
of the network are: w11 = w22 — 0, w12 = w21 = 1-0, and
q1 = q2 = 0. The possibly final stable states are either [1 1]T

or [—1 — 1]T. The heavy cycle represents the neuron tha is in
operation.
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Hence, the energy function E has the minimum value in the equilibrium states,
as shown in Fig. 13.9. A state transfer diagram, which describes the state
updating process from an initial state to a stable equilibrium point or a cycle,
is given in Fig. 13.10. •

13.2.3 State Convergence of Dynamic Neural Network with
Nonnegative Diagonal Elements

The requirement of zero-diagonal elements in the connection weight matrix
originally proposed by Hopfield may be relaxed as that of positive diagonal
elements. Thus, in the energy function the change is defined as

Note that in the results given by Eqns. (13.28) and (13.29) if

then the last term on the right-hand side of Eqn. (13.30) is always negative.
Hence, from the analysis procedure above, one may conclude that

Furthermore, since

therefore, for Dx p (k ) ^ 0

which implies

Therefore, one may summarize the above results in the following theorem.
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Theorem 13.1 (Convergence Theorem for Serial Operating Mode) Let the
weight matrix W be symmetric with nonnegative diagonal elements. Then,
the Hopfield neural network with an asynchronous operation is such that

(i) "k, x(k + 1) ̂  x(k) —> E(x(k + 1)) < E(x(k));

(ii) The system has only stable equilibrium points

(Hi) The transient length satisfies

where

Proof: Conditions (i) and (ii) follow from the discussion above, and only
condition (iii) needs to be proved. It is easy to see that, for any x(k) e
{ —1, l}n, the energy function

satisfies

and
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On the other hand, for k < t(x), x(k 4+1) ^ x(k), which implies

and, from condition (i)

which proves condition (iii). •

In a serial mode of operation, each neuron in the network may be fired
several times until the states of all the network neurons converge to an asymp-
totically stable steady state that depends not only on the initial state but also
on the operating sequence of neurons as shown in Example 13.3. The major
advantage of the asynchronous update mode is that since the units are inde-
pendently updated, and if we look at a short time interval, we see that only
one unit is being updated at a time. Among other things, as discussed above,
this system can help the stability of the network by preventing oscillations
that are more readily entered into with such a serial mode of updating.

Example 13.4 Consider a binary neural network with 10 x 10 = 100 neural
units. Let the (100 x 100)-dimensional symmetric weight matrix with zero-
diagonal elements be determined by

where the 100-dimensional binary pattern vector xj represents digit 5 and
has the bitmap pattern as depicted in Fig. 13.11J, where the state —1 or 1
of the network represents, respectively, a white and a black image block. In
fact, the preceding algorithm for the weights is Hebb's rule, which will be
studied in Chapter 14. The asynchronous operating process for such a binary
network with 100 units is illustrated in Fig. 13.11. The desired stable state of
the network, which represents a desired or stored binary pattern, is designed
to represent the pattern of digit 5. If the input pattern, which is viewed as a
corrupted or noisy version of the desired pattern and is given in Fig. 13.1 la, is
used as an initial state of the network. The states of the network converge to
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Figure 13.11 Example 13.4: the asynchronous updating process of a 10 x 10
bitmap of digit 5.

Figure 13.12 Example 13.4: the energy of the network during the state updating
process.

the stable states, as shown in Fig. 13.11j, after 10 states updating. During such
an updating process, since the asynchronous operating mode was employed,
only one of the states was fired at each updating instant. The decreasing phase
of the energy function during the state updating is shown in Fig. 13.12. •
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13.2.4 Estimation of Transient Time

For applications of neural networks to associative memories, all elements of
the weight matrix W are usually integers. In this case, a uniform bound for
e(W, q} may be found so that the exact estimations of the transient time may
be obtained. We shall start this topic with the following two lemmas, which
will be used not only in this subsection but also in later discussions as well.

Lemma 13.1 Let n x n matrix A = [aij]nxn have only integer entries. If

then

Proof: If all components of the state vector x have the same sign, that is, all
components of x are 1 or — 1, the result is obvious. Let x e { —1, l}n and

with

and

If

one has
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Substituting an* into the left-hand side of Eqn. (13.36) yields

Since all aij are integers, the left side satisfies

Therefore, the contradiction is due to the assumption in Eqn. (13.36). The
result is proved. •

Lemma 13.2 Let n x n matrix A = [aij]nxn have only integer entries. If

then

The proof of this lemma is left to the readers as an exercise. One may use the
same approach that was used in the proof of Lemma 13.1.

Corollary 13.1 Let the integer weight matrix W with nonnegative diagonal
elements and the threshold vector 6 have integer entries. Then

Proof: Since for any x(k), and x(k + 1) e {-1, l}n and x(k + 1) ̂  x(k},
one has
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which are equivalent to

respectively. Thus, for Dx p ( k ] ^ 0, one obtains

Furthermore, one has

Therefore

Substituting this result in Eqn. (13.35) in Theorem 13.1 leads to the proof of
the corollary. •

Corollary 13.2 Let the integer weight matrix W with nonnegative diagonal
elements and the threshold vector 9 have integer entries. If

then

Proof: Using the result of Lemma 13.2, one obtains
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that is

Thus, in this case

The result is obvious.

Example 13.5 Consider a binary neural network with 30 x 30 = 900 neural
units with an asynchronous updating mode. Given a 30 x 30 xd 6 { —1>1}900

binary pattern that corresponds to the bitmap depicted in Fig. 13.13i, to store
this known binary pattern as one of the stable equilibrium points, the elements
of a symmetric and zero-diagonal weight matrix W are computed using the
Hebb's rule as follows:

Since all components of the weight matrix W are integers, the bound of the
transient time of this network may be estimated according to the formulation
given in Corollary 13.1. In this case, it is easy to obtain

and

If the initial binary state values of the network are chosen randomly, the
convergence time from an initial point to a stable equilibrium, which is a
known and is a desired binary pattern vector, consists of 899 steps. The state
updating process is shown in Fig. 13.13, where the bitmaps are used to express
the state vectors at a different time k. For such an asynchronous network with
a large number of neural units, and since only one unit is updated at each
time, the system takes a long time to reach an equilibrium state. However,
the convergence is ensured in the asynchronous updating mode of operation.
The energy function during such a state updating is given in Fig. 13.14. •
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Figure 13.13 Example 13.5: state bitmaps of an asynchronous network with
30 x 30 = 900 units. The elements of the symmetric weight matrix
with zero-diagonal elements are determined using Hebb's rule. All
the initial state values are selected as 1. The convergence time of the
network from the initial state (a) at k = 0 to the stable equilibrium
state shown in (i) is k = 898.
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Figure 13.14 Example 13.5: the energy curve of the network during the state
updating.

13.3 AN ALTERNATIVE VERSION OF THE ASYNCHRONOUS
BINARY NEURAL NETWORK

13.3.1 Binary State Updating

A slight modification of the original Hopfield binary neural network may be
made for the definition of the state values when the corresponding internal
potentials are zero. For an asynchronous updating mode, a state equation that
appears very often in the literature is

It can be seen that the difference between the above model and Hopfield's
original network, discussed extensively in Section 13.2 is the definition of
xp(k + 1) when yp(k] = 0. The value of xp(k + 1) is always set to 1 for
yp(k) = 0 in Eqn. 13.46, while xp(k + 1) remains unchanged for yp(k) = 0
in the Hopfield's original neural model. The preceding model is also called
the Hopfield neural network in much of the literature. A binary vector x G
{ —1, l}n is a stable state of the network described in Eqn. (13.46) if it obeys

In the following discussion, the state convergence property of this model is
first considered by using the energy function method. The dynamics of the
model is then addressed in detail.
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For the function E of the preceding system as defined in Eqn. (13.20),
when an asynchronous updating mode is applied, one has

and

Thus, when x(k) ^ x(k + 1), the energy function satisfies

that is, the energy function E either decreases or remains constant. Further-
more

or

Hence, one may conclude that this analysis results in the following theorem.

Theorem 13.2 Let the weight matrix W be symmetric with nonnegative di-
agonal elements. Then, the Hopfield neural network in Eqn. (13.46) with an
asynchronous operation is such that
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(ii) The system has only stable equilibrium points:

(iii) The transient length satisfies

where

It is important to note the following facts:

(i) The energy function E is not always decreasing even before the state
reaches one of the stable equilibrium states. However, the energy func-
tion has a local minimum value at the arbitrary stable equilibrium point;

(ii) If x* is the state where the energy function has the minimum value, then
a?* is a stable equilibrium state only if

(iii) Let 6 = 0 in the network and x* be a stable state that must satisfy

Then — x* is also a stable equilibrium state only if

It is to be noted that points (ii) and (iii) show that the two networks may have
different stable states, and that the stable equilibrium states of the modified
model must be the stable equilibrium states of the original Hopfield neural
network, but the inverse implication is not always true.
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Example 13.6 Consider a three-neuron network with a zero threshold vector
and a weight matrix

The energy function as defined in Eqn. (13.20) is obtained as

The minimum value of E is

It is easy to verify that there are four binary vectors such that E has a minimum
value. These vectors are

and

Since

Thus, x(1) and x(2) are two stable equilibrium points of the network. On the
other hand, since
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Figure 13.15 Example 13.6: state transfer map of the network.

the complements x(3) = —x(1) and x(4) = —x(2) are not stable states. The
instability for x(3) and x(4) as inputs arises mainly because of the definition
of the sgn(.) function at x = 0; that is, sgn(0) = 1. The state transfer map
of the network with such a weight matrix is shown in Fig. 13.15. •

13.3.2 Formulations for Transient Time in Asynchronous Mode

13.3.2.1 The Case with Positive Diagonal Elements of W
To obtain an estimation of the transient time of the network, one needs first to
derive the bound of the DE when x ( k ) = x(k +1}. Note that if
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Thus, for x(k + 1) ̂  x(k}, one has

where the elements of both W and 9 are integers. This inequality implies

and the following corollary is obvious.

Corollary 13.3 Let the weight matrix W have positive diagonal elements.
Then

13.3.2.2 Improved Results of Transient Time
When the weight matrix W has at least one zero-diagonal component, the
formulation given in Corollary 13.3 fails to provide an estimation of the
transient time. It is of interest to develop a new algorithm for the transient
time. It is important to note that the definition of the energy function used
previously plays a key role in the analysis of the state convergence as well as
the transient time for a binary neural network with an asynchronous updating
rule. However, since the state convergence of the network is invariant, there is
the need to find again a monotonic energy function that is associated with the
network under consideration so that a better estimation of the transient time
may be found. Floreen (1991) modified the original energy function defined
by Hopfield for the network when W and 0 have only integer components.
On the basis of this novel energy function, a formulation of transient time is
now presented.

Let the weight matrix W be a symmetric integer matrix with nonnegative
diagonal elements and 6 be an integer vector. Choose the energy function as
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where

and the coefficients ei are defined as

The last term on the right-hand side of E creates a difference between this
novel energy function and the one defined previously. Now, let us study
the change of the energy function from time k to time k 4+ 1 when, in the
asynchronous mode, only the pth state is updated at time k and the other states
remain unchanged. The difference in the energy function E is given by

The energy function E is then bounded as follows:

In view of the operating equation, we know that for x(k + 1) = x (k ) there
are only two choices for Dxp, namely

or
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On the other hand, noting the definition of ei and using Lemma 13.1, one has

which is equivalent to

and using Lemma 13.2, one has

which is equivalent to

We will examine the following cases to determine a minimum bound of | DE):

Thus

Note that without the ep values, this bound would be

as used previously,

(ii) If Dxp(k) = 2 and ep = 0, we have

Thus

(iii) If Dxp = — 2 and ep = 1, we have

Thus
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(iv) If Aojp(A;) = — 2 and ep = 0, we have

Thus

Consequently, whenever the state value of the pth neuron changes, the absolute
value of the energy decreases at least by an amount of

that is

Hence, an estimation of the transient time of the network may then be given
by

Hence, the preceding results can be summarized in the following corollary.

Corollary 13.4 (Floreen 1991) Let W be a symmetric integer matrix with
nonnegative diagonal elements, and 0 be an integer vector. Then, the transient
time of the network satisfies

13.4 NEURAL NETWORK IN SYNCHRONOUS MODE OF
OPERATION

13.4.1 Neural Network with Symmetric Weight Matrix

13.4.1.1 State Operating Equation
The state of a Hopfield neural network consisting of a symmetric connecting
weight matrix W with nonnegative diagonal elements and operating in an
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asynchronous operating mode always converges to one of the stable equilib-
rium points. In some neural models there is a central timing pulse, and after
each timing pulse a new value of the state is determined simultaneously for
all the neural units. This is a synchronous state mode of operation. If the
operations of the neurons in the Hopfield neural network are synchronously
coordinated at each instant with the hard limit nonlinearity (sign function)
given in Eqn. (13.17), then the operational equations of the neuron states, as
illustrated in Fig. 13.16, may be represented as

where

and

that is

Equation (13.84) may also be rewritten into the following compact form

where
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Figure 13.16 Discrete-time Hopfield neural network with synchronous operating
structure.
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Figure 13.17 Example 13.7: block diagram of a two-neuron system with a syn-
chronous operating mode.
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represents the vector-valued activation function of the network, 9 is the thresh-
old vector, and W = [wij]nxn is the connecting weight matrix. Equation
(13.87) describes a fully parallel operating mode. However, the function E
defined earlier is no longer an energy function for the synchronous neural
network model in Eqn. (13.87).

The following example shows that the states of the Hopfield neural network
with the fully parallel operating mode do not always converge to a set of stable
equilibrium states even if the connection weight matrix W is chosen as a
symmetric matrix with nonnegative diagonal elements.

Example 13.7 (Synchronous Operation with Symmetric Matrix) A two-
neuron system with a synchronous (fully parallel) operation is given in
Fig. 13.17. Let the weight matrix be the same one as discussed in Exam-
ple 13.3:

When the network is operating in a fully parallel mode, as shown in Figs. 13.17
and 13.18, the state of the system may converge to one of the stable equilibrium
states

Figure 13.18 Example 13.7: state transfer diagram of a sequence processing
of a two-neuron system in a synchronous operation (fully paral-
lel). Here, the network parameters are the same as those given in
Fig. 13.17, and the states of the network converge to a periodic
sequence of length 2.
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or one of the periodic cycles

and

The energy function E is a constant in the cycles.

13.4.1.2 Energy Function for Convergence
For instances in which the synaptic weight matrix W is symmetric, an energy
function for the neural system in Eqn. (13.84) was presented by Goles et
al. (1985) of the following form:

For the evaluation of the function E, one may have

Using the synchronous operational equation, the following relationships may
be derived:

Hence
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Furthermore

or

Thus, DE(k) < 0, and the state of the system with the synchronous (fully
parallel) operating mode always converges to either a stable equilibrium state
or a periodic sequence of length 2. It is also seen that

These results may be summarized in the following theorem.

Theorem 13.3 (Convergence Theorem for Synchronous Operating Neural
Network) Let the weight matrix W be symmetric. The Hopfield neural
network with a synchronous operating mode is such that

Figure 13.19 Schematic representation of a state transient process of a neural
network in a synchronous operating mode. Trajectory with initial
state x1 (0) results in a periodic cycle with length 2, and trajectories
with initial states x2(0) and x3(0) converge to a stable attractor.
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Figure 13.20 Example 13.8: state bitmaps of a synchronous network with 40 x 40
neural units. Elements of a symmetric and zero-diagonal weight
matrix W and initial state values are chosen randomly from the
binary set { — 1,1}. The convergence time of the network from the
initial state in (a) at k = 0 to a cycle of length 2 as illustrated in (c)
and (d) is k = 86.
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(ii) The system has either a stable equilibrium state or aperiodic sequences
of length 2:

(iii) The transient length satisfies

where

The results of this theorem are illustrated in Fig. 13.19. Note that the trajectory
with the initial state x1(0) results in a periodic cycle of length 2, while the
trajectories with the initial states x2 (0) and x3 (0) converge to a stable attractor.

Example 13.8 (Synchronous Network with 40 x 40 Neural Units) Consider
a synchronous network with 40 x 40 = 1600 neural units. Let a (1600 x 1600)-
dimensional weight matrix be symmetric and have a zero-diagonal component.
The elements of the weight matrix are selected randomly from the binary set
{—1,1}. As shown in Fig. 13.20, from an initial 1600-dimensional binary

Figure 13.21 Example 13.8: the energy curve of the network described in
Fig. 13.20 during the synchronous state updating.
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state vector selected randomly, the network state converges to a periodic cycle
of length 2 after 86 fully parallel iterations according to the network equation
defined by Eqn. (13.86). The energy function E(k) in Eqn. (13.88), illustrated
in Fig. 13.21 decreases during such an iterative procedure and finally reaches
its minimum value. •

13.4.2 Neural Network with Skew-Symmetric Weight Matrix

An interesting case considered by Goles (1986) is a synaptic weight matrix in
the neural system given in Eqn. (13.84), having a skew-symmetric form with
zero-diagonal elements

and a zero threshold vector. In this case, the neural system equation, Eqn.
(13.84), can be simplified to

where the vector-valued function / is defined by Eqn. (13.85). Furthermore,
we shall assume that the weight matrix W satisfies

that is

Because of the skew-symmetry of W, this condition is equivalent to

That is

In this case, the energy function is defined as
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Since W is skew-symmetric, we have

Since WT = — W, we have

Hence

That is

and

Hence, it is concluded that in the steady state the energy is constant and the
only possible period is 4; that is

where q is a transient length. The state of the network will converge to a cycle
of length 4 for such a choice of the network parameters.

Example 13.9 (Synchronous Mode Operation with Skew-Symmetric Weight
Matrix) Consider a two-neuron system with the skew-symmetric weight
matrix

where the threshold 0 is the zero vector. The block diagram of the network is
depicted in Fig. 13.22. It can be verified that when the network is operating
in a synchronous (fully parallel) mode, there are no stable states and the set
of the states

results in a cyclic process with the period 4 as illustrated in Fig. 13.23.
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Figure 13.22 Example 13.9: block diagram of a two-neuron system operating in
a synchronous mode with a skew-symmetric weight matrix. The
neural network parameters of the network are wu = w22 = 0,
w12 = — 1, w21 — 1, and q1 = q2 = 0.

Figure 13.23 Example 13.9: state transfer diagram of a sequence operating pro-
cessing of a two-neuron system with a skew-symmetric weight
matrix operating in a synchronous mode. The network parameters
are w11 = w22 = 0, w12 = —1, w21 = 1, q1 = q2 = 0. The states
of the network converge to a periodic sequence with length 4.
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Figure 13.24 Example 13.10: state bitmaps of a synchronous network with 40 x
40 = 1600 neural units. The elements of the skew-symmetric
weight matrix are chosen randomly from {—1,1}. All the selected
initial state values are 1. The convergence times of the network
from the initial state described in (a) to the final state as shown in
(b) is k — 37. This state is a periodic cycle of length 4 as shown in
panels (b)-(f).
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Example 13.10 (Synchronous Mode Operation with 40 x 40 Skew-Symmetric
Weight Matrix) Consider a synchronous neural network with 40 x 40 =
1600 neural units. Let the elements of the skew-symmetric weight matrix
be selected randomly from the binary set {—1,1}. If all the initial states are
chosen as 1, which corresponds to the state bit map given in Fig. 13.24a, the
state of the network converges to a periodic cycle of length 4 as shown in
Figs. 13.24b-f. It is to be noted in Fig. 13.24 that the pattern in (b) at k = 37
repeats pattern (f) at k = 41. •

13.4.3 Estimation of Transient Time

The concept of the transient time of the neural system operating in a syn-
chronous mode that gives a upper bound of the convergence time of the
system state from an arbitrary initial state to a periodic cycle will now be
addressed. The results given in Lemma 13.1 can be applied to any n x n
matrix with integer entries. For a symmetric or a skew-symmetric matrix,
one may show that if a row-sums condition

or column-sums condition

is satisfied, then

is always true. Let (x(0) , . . . , x(q — 1)) be a transient trajectory and x(q) be
the first state vector of a cycle. Then

and

Hence

Furthermore, since x(q) is the first state vector belonging to a periodic cycle,
one obtains
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Hence

We summarize these results in the following theorem.

Theorem 13.4 (Goles 1986) Let W be a skew-symmetric matrix with in-
teger entries and all row sums or all column sums are odd. Then the transient
length T(W) of the system in Eqn. (13.96) is bounded by

13.5 BLOCK SEQUENTIAL OPERATION OF THE HOPFIELD
NEURAL NETWORK

As seen in the previous sections, the convergence properties of the two-state
discrete-time Hopfield neural network are dependent on the structure of the
weight matrix W and the method by which the states of the units are updated.
When an asynchronous (serial) operating mode is employed, the state of the
Hopfield neural network that has a symmetric weight matrix with nonnegative
diagonal elements will always converge to one of its stable equilibrium states
regardless of the position of the initial states. However, the stable equilibrium
points of the target must have an attracting region in which the initial state is
located. When a synchronous (parallel) operating mode is used, the Hopfield
neural network with a symmetric weight matrix converges to either one stable
equilibrium state or a periodic sequence of length (period) 2, and the state of
the Hopfield neural network with a skew-symmetric converges to a periodic
sequence with length 4.

The operating mode considered in this section is a block sequential (BS)
operating mode for the Hopfield neural network. It is a state updating process
by which some of the units are fired simultaneously and the others are in the
rest state at each operating time. The block sequential operating mode may
be considered as a generalization of both the asynchronous and synchronous
operating modes discussed in the previous sections.

13.5.1 State Updating with Ordered Partition

A partition (N l) l=1,.. . ,p of the integer set {1,..., n} must satisfy
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where the elements of N£ (I = 1,... ,p) are the integers between 1 and n.
For example, a partition of the integer set {1,2,... ,10} may be given as

An ordered partition of the integer set {1,..., n} is a partition (A£)^=i,...,p
such that

implies

For example, an ordered partition of the integer set {1,2,. . . , 10} is

Let a known ordered partition of the integer set {1,..., n} be (Nl)£=i,...,p-
The block sequential (BS) operation of the Hopfield neural network associated
with the ordered partition (Nl)^=1V..)P assumes that only the units belonging
to the set Nl are fired at time k. Hence, the state updating equations for the
BS operation may be expressed as

Furthermore, let

which satisfies

rig — element number of Nl

otherwise

and the ordered partition expressions for the state vector x, weight matrix W,
and threshold vector 9 may be expressed as
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Then, the operating equation can be rewritten in the following vector form

where l represents the units belonging to the ordered partition Nl that are
fired at the time k, and vector-valued function sgn(.} is defined by

Particular cases of the block sequential operation discussed above that
correspond to particular choices of the partition may be expressed as follows:

(i) When the partition is

that is, ({l})l=1,...,n» the BS operation mode becomes as an asyn-
chronous operation mode for the Hopfield neural network. This case
was discussed in Section 13.2;

(ii) When the partition is trivially reduced to

that is, the unique integer set {1,2,..., n}, the BS operation becomes
the synchronous operation mode of the Hopfield neural network, which
was studied extensively in Section 13.4.
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As pointed out previously, since {—1, l}n is a finite set, the possible states
of the system are 2n, and all the trajectories (x(k}}k>o of any block sequential
(BS) operating mode are ultimately periodic. It is obvious that, for a given
weight matrix W and threshold 0, the different block sequential operation,
or different ordered partitions of the integer set {1,2, . . . , n}, have the same
stable equilibrium points, but they may have different periodic sequences.

13.5.2 Guaranteed Convergence Results for Block Sequential
Operation

The energy function approach is still used to deal with the state convergence
properties of the block sequential operating neural network. In this case, an
energy function at time k is defined as

which, for the block sequential form, can be written as

Let the units belonging to the partition N^ be fired at time k, and the state
vector at time k

changes to a new state vector at time (k + 1)
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where

Let the weight matrix W be symmetric, that is

and all matrices WM (I = 1,. . . ,p) be nonnegative definite. Then, the
increment of the energy function E(k) at time k can be evaluated as follows:

Since the matrix WM is nonnegative definite, this implies that

Applying the same analysis procedure as used in Section 13.1, one may
conclude that

and

The results of this analysis can be summarized in the following theorem.

Theorem 13.5 Let the weight matrix W be symmetric and for any ordered
partition (A^)£=1)><->n of the integer set {1,2,.. . , n} the matrices Wn be
nonnegative-definite. Then, the Hopfield neural network with a block se-
quential operating mode associated with the partition (A£)^=i,...,n is such
that
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(i) Vfc, x(k + 1) ̂  x(k) —> E(x(k + 1)) < E(x(k))

(ii) The system has only stable equilibrium states:

(in) The transient length satisfies

where

Example 13.11 (Block Sequential Operating Mode with Three Neurons)
Consider a three-neuron system with the following weight matrix and thresh-
old vector:

Let {JN/i, N?} be a partition of the integer set {1,2,3} and the neurons be-
longing to N£ (1 < t < 2) be fired at time k. Then, the updating equation
may be represented as

where

otherwise

The energy function E given in Eqn. (13.106) is obtained as
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This neural system has 2s = 8 states, and the values of the energy function E
at these possible states are as follows:

Thus, the neural system has the least energy function £"([1 —1 if) = —5,
and it has a unique stable equilibrium state

Two sets of ordered partitions of the integer set {1,2,3} are selected as

For the following eight possible initial states

the transient processes of the Hopfield network with the BS operating mode
that are, respectively, associated with the ordered partition F{ in Eqn. (13.110)
and the ordered partition PZ in Eqn. (13.111) are shown in Fig. 13.25. It is
evident that because of the different choices of the partition, even if the
transient processes of the neural system state from the initial point to the
stable equilibrium point are different, each state still converges to the same
stable equilibrium point [1 — 1 1]T. •



568 BINARY NEURAL NETWORKS

Figure 13.25 (Continued)
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Figure 13.25 (Continued)
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Figure 13.25 Example 13.11: state transfer diagram of a block sequential oper-
ating processing of a three-neuron system. The parameters of the
network are chosen as wu = u>22 = 1^33 = 0, ^12 = ^21 = — 1,
wis = wsi — 1, w23 = u>32 = 1, and 0i = 1, 02 = -1, 03 = 2.
The 2-ordered partitions of the integer set {1, 2,3} considered are
as follows:
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13.6 CONCLUDING REMARKS

Binary neural networks can be described by a set of discrete-time and discrete-
state nonlinear difference equations. One of the most interesting properties
of the binary neural network model is the fact that, since the state space of
the neural network is finite, it will converge to stable states or enter into a
periodic cycle in the binary state space { —1, l}n. However, the convergence
properties of a binary network are dependent on the structure of the weight
matrix W and the method by which the states of the neurons are updated. The
Lyapunov function or energy function method can be employed to analyze
the stability of the networks in terms of their equilibrium points. As the most
famous and important class of binary neural networks, the binary Hopfield
neural networks demonstrate the stability of their equilibrium points. More
details on the convergence analysis for various types of binary neural networks
can be found in the next chapter.

The main idea in deriving the convergence properties of a binary network is
to define an energy function and to show that it is nonincreasing when the state
of the network changes as a result of computation. Since the energy function
is a bounded function from below, it follows that the states will converge to
some value. Meanwhile, as an alternative method, it is interesting to note that
the undirected graph theory may be applied to address the issue of the state
convergence (Bruck 1990b) where the concept of an energy function may not
be involved.

The convergence properties of some important network architectures dis-
cussed in this chapter may be summarized as follows:

(i) Convergence to a stable state when the neural network is operating in
a serial (asynchronous) mode with a symmetric nonnegative diagonal
weight matrix W.

(ii) Convergence to a cycle of length at the most 2 when the neural network is
operating in a fully parallel (synchronous) mode with symmetric weight
matrix W.

(\\\) Convergence to a periodic process of length 4 when the neural network is
operating in a fully parallel (synchronous) mode with a skew-symmetric
W.

(iv) Convergence to a stable state when the neural network is operating in a
block sequential mode with a symmetric weight W and all nonnegative-
definite main diagonal submatrices.
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Problems

13.1 Compare the similarities and differences of the Lyapunov function
approach for both continuous and discrete-time systems.

13.2 Consider a unipolar Hopfield binary neural network with an asyn-
chronous operating equation

where

and

(a) Find an energy function for this binary neural network and
analyze the state convergence of the network.

(b) Give a formula for the transient time of the network.

13.3 Consider a three-neuron binary neural network with a zero-threshold
vector and the weight matrix

(a) Give all the possible binary states of the binary neural net-
work.

(b) Analyze the characteristics of the equilibrium points of the
network.

(c) Calculate the transient time and cycle length of the network.

13.4 Consider a two-neuron binary Hopfield neural network with the
weight matrix



PROBLEMS 573

Show that given any initial state, the network will not converge to a
stable state in any sequential mode.

13.5 Prove the results given in Lemma 13.2.

13.6 Show that the binary Hopfield neural network with a zero-threshold
vector converges for any hybrid mode of operation if the weight
matrix W is symmetric, and positive-semidefinite (i.e., 3?Wx > 0
for all x 6 $Rn).

13.7 For the binary Hopfield neural network with an asynchronous oper-
ation mode, if an energy function is defined as

show that the energy function E is bounded from below as

13.8 Consider a Hopfield binary neural network with the weight matrix

and an asynchronous updating equation

otherwise

where p e {1, 2 , . . . , n} is selected randomly at every discrete-time
k.

(a) Calculate all the stable states of the network.
(b) Draw the state transfer map of the network.
(c) Give an estimate of the transient time of the network.
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13.9 Redefine the asynchronous updating equation in Problem 13.8 as
follows:

Repeat (a), (b), and (c) of Problem 13.8.

13.10 Show that for the original Hopfield binary neural network, if there
exists a nonnegative-definite diagonal matrix

such that

then a ? E { —l , l} n i s a stable state of the network.

13.11 Consider a Hopfield binary neural network defined by

Prove that if

where C is a nonnegative-definite diagonal matrix, C =
diag[c\, 02,..., Cn] with Q > 0, i = 1, 2 , . . . , n, and when

then x £ {—1, l}n is a stable state of the network.

13.12 Consider a Hopfield binary neural network with the weight matrix

and an asynchronous updating equation



PROBLEMS 575

otherwise

where p E { l , 2 , . . . , n } i s selected randomly at every discrete-time
k.
(a) Calculate all the stable states of the network.
(b) Draw the state transfer map of the network.
(c) Give an estimate of the transient time of the network.

13.13 Let the elements of the threshold vector 0 satisfy

Show that there exists an integer weight matrix W with nonnegative
diagonal elements such that the transient time of the Hopfield neural
network with an asynchronous operating mode is

where

13.14 Let A/o and N\ be a partition of an integer set {1, 2 , . . . , n}. A binary
network with a symmetric weight matrix and nonnegative diagonal
elements has the following asynchronous operating equation

where the integer p represents the pth unit that is fired at time k, and
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Let the energy function of this system be defined by

Prove that
(a) Vfc, x(k + 1) ̂  x(k) —» AE(fc) < 0;

(b) In any limit-cycle oscillations, the states of all the units i
with i e NQ are stable, and the states of all the units i with
i G A/i are changed only when ̂  = 0.

13.15 Let (A/^)/=i)2,...,p (p > 1) be the partition of the integer set
{1,2, . . . , n} and the weight matrix W be symmetric with all non-
negative definite partition matrices, that is, Wu < 0. Prove that if
the weight matrix W and the threshold vector 0 have integer entries,
the Hopfield network with the block sequential operation associated
with the partition (Ni)i-i^,...,p has

where E(k) is the energy function defined by Eqn. (13.106).

13.16 A multivalued Hopfield neural network is defined as

where /$ is a multivalued function defined by

where ̂  = Y^j=i(wijxj(k) + ^)> an(^ A7" > 1 is a integer. Define
the energy function
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Show that
(a) If W is symmetric, then the neural network with an asyn-

chronous operating mode will converge to the stable equilib-
rium point states;

(b) If W is a positive-definite and symmetric matrix, then the
network with a synchronous operating mode will converge
to the stable equilibrium state;

(c) Discuss the upper bound on the transient time.

13.17 Consider a four-neuron Hopfield binary neural network with the fol-
lowing weight matrix:

Two sets of ordered partitions of the integer set {1,2,3,4} are selected
as

and

Obtain the transfer maps for the partitions P\ and P^.

13.18 [Traveling Salesman Problem (TSP)] Given n cites Q, i =
1,2, . . . , n , and the distances Wij between cities Ci and Cj. A
salesman wants to make a closed tour that visits each city once and
then return to its starting point. TSP is to find a closed tour of the
minimum length among all possible choices. Show that a selection
of weight w^ and threshold Oi in a way such that the global minimum
of

would correspond to a minimum length valid tour.
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In the preceding chapters we studied the equilibrium analysis and memory
capacity of dynamic neural networks (DNNs). In those studies we showed
that the dynamic behavior of such neural networks exhibits stable equilibrium
points during the system's evolution in time. In this chapter we study feedback
binary associative memories.

An associative memory can store a large number of patterns. Those stored
patterns can be recalled through the association of the key pattern and the
information stored.

Donald Hebb (Hebb 1949) was the first to propose a neural learning scheme
for updating the synaptic weights for associative memories, now known as
the Hebbian learning rule. He stated that the information can be stored in
synaptic weights, and postulated the learning techniques that have had a pro-
found impact on some of the developments in the field of neural learning and
associative memories. Indeed, Hebb's learning rule has made some profound
contributions to the theory of neural networks and associative memories.

In this chapter we first discuss Hebb's learning mechanisms and study
the convergence consideration of such mechanisms. Then, in Section 14.2,
we study the information retrieval process and self-recall of stored patterns.
In Section 14.3, we discuss the convergence property and pattern storage
for nonorthogonal fundamental memories. Other learning algorithms for
associative memory such as the projection learning rule and the generalized
learning rule are discussed in Section 14.4. In Section 14.5 we discuss
an interesting topic that is the information capacity of the binary Hopfield
network.

14.1 HEBB'S NEURAL LEARNING MECHANISMS

14.1.1 Basis of Hebb's Learning Rule

A neural network of the type discussed in Chapter 13 exhibits the so-called
associative (or content-addressable) memory property. A system is said to
possess the property of associative memory if it is capable of storing several
types of patterns in its memory, and when presented with a corrupted version
of one of these patterns, it retrieves the corresponding prototype pattern.
Given a binary n string with 1 and —1 as the initial state of a system, the
mathematical recognition amounts to a sequence of state transitions to one of
several attractors referred to as associative memories. An associative memory
acts, therefore, as a classifier of input patterns by assigning each of them to
one of the stored prototypes. As we know, a Hopfield neural network can be
used as an associative memory since it can be constructed so that it has many
stable states, each corresponding to a prototype pattern.
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The Hebbian learning rule is one of the most popular approaches for ad-
justing the weights of a binary neural network for an associative memory.
The concept of Hebb's learning rule comes from experimental data on bio-
logical neural systems, whereby the synaptic weight between two neurons is
enhanced if both neurons are active at the same time. The original statement
given by Hebb (1949) in his classical book Organization of Behavior is quoted
as

When an axon of cell A is near enough to excite a cell B, and re-
peatedly or persistently takes part in firing it, some growth process or
metabolic change takes place in one or both cells such that A's efficiency
as one of the cells firing B is increased.

In mathematical language, if the neural activities of the source neuron
i and the destination neuron j at time k are denoted, respectively, by the
state variables Xi(k] and Xj(k), the basic interpretation of Hebb's learning
mechanism then can be expressed as

that is, the increment of the weight Wij between the two neurons is the
product of the states of the neurons i and j. Hebb's learning rule described
by Eqn. (14.1) indicates two basic facts:

(i) The connection weight between the two neurons should be increased
when the two neural states have the same sign such that a position
correlation between the two neural states takes place.

(ii) The increment of the weight from neuron i to neuron j is equal to that
from neuron j to neuron i.

Some further modifications of Eqn. (14.1) can be also given as follows

or

where /ii(.), h<2(.}, and /is(.) are some suitable functions of the states Xi and
Ju -i •

Since Hebb's learning rule was proposed, many extended versions of it have
been developed for designing weight learning processes for neural networks.
The most direct extension of Eqn. (14.3) for the individual neuron is the vector
correlation technique, which can be employed to deal with the weight learning
process for the neural network structure.
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14.1.2 Hebb's Learning Formulations

Given m (m < n) n-dimensional bipolar binary pattern vectors t/fc) G
{-l,l}n,fc = l , 2 , . . . ,m :

Hopfield proposed that Hebb's learning rule may be used to encode m binary
patterns, y^k\ k = 1 , . . . , m, as stable equilibrium points of the binary neural
network with the synaptic weight matrix W by choosing

and the threshold weight WQQ = 0.
The second term 8ij on the right-hand side is the Dirac's delta function

and is used to ensure that the diagonal elements are zero. This Dirac's delta
function 5ij is defined as

Equation (14.5) shows that if two neurons have correlated states, the weights
between them increase. It is easy to see that this process gives the same value
for Wij as for Wji leading to the symmetric network with the nonnegative
diagonal elements. The formulation of Eqn. (14.5) may be rewritten in the
following matrix form

and

where W& is a (n x n)-dimensional matrix that represents the contribution
associated with the pattern y(k\ Equations (14.6) and (14.7) lead to the
following rule, which is called the outer-product rule.

The pattern storage algorithm given in Eqns. (14.5) and (14.7), as originally
proposed by Hopfield for the unipolar binary vector ̂ l\ y^\ ..., t/m) €



14.1 HEBB'S NEURAL LEARNING MECHANISMS 583

{0, l}n, can also be modified for bipolar binary vectors through a simple

mapping process with the entries (1y\ ' — 1) and (2?r. — 1) in Eqn. (14.5).
This leads to the following formulation for bipolar binary vectors

or in a compact matrix form

and

where 1 is an n-dimensional unity vector 1 = [1 1 • • • I]7".
Recall the binary neural networks with a zero-threshold vector discussed

in Chapter 13 of the form

With the choice of W given by Eqn. (14.7), the energy function E for this
binary neural network may be evaluated as follows:

It can be noted from Eqn. (14.7) that W is a symmetric real matrix with
zero-diagonal elements, and that the binary patterns if^ are all orthogonal,
specifically
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or

As a consequence, all the eigenvalues of W are real and their sum is zero.
This implies that if W is not a zero matrix, it must involve both the positive
and negative eigenvalues. One may prove that the energy function E will
have the same minimum at each yW:

Thus, all the given pattern vectors have the same energy, which is the lowest
possible energy. Hopefully, the dynamics of the system will have a region
of attraction about each pattern 2/fc) that associates the initial state values of
the neural input vector x. To ensure this property, we should first give the
Hebbian rule encoding process, by which the binary pattern j/fc) is supposed
to be stored or encoded as the equilibrium points of the binary neural network
with the weight matrix W'.

14.1.3 Convergence Considerations

Using the analysis method described below, we may verify that the given
binary pattern vectors y(l\ y^\ ..., y^m\ which are orthogonal, are stored
as stable equilibrium states of the network with the choice of W given by the
formulation in Eqn. (14.7):

To prove this, we consider the internal field of the neural network defined by
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It is easy to understand that when the "direction" of ̂  (1 < i < n) coincides
with the "direction" of xi (1 < i < n), or simply speaking, when all the ̂
are zero or have the same sign as the corresponding component oj, the system
attains a stable equilibrium state. In this case, the following relationship must
be satisfied:

Let us test this for the given patterns j/1),..., y(m) by calculating x^i for the
case when the weight matrix W is designed by Hebb's learning rule, namely,
Eqn. (14.7). For the pattern y^ (1 < i < m) and an arbitrary 1 < i < n, let

and

Then

Invoking the orthogonality relation, one obtains
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and

Hence, Eqn. (14.15) reduces to

Thus, the stored pattern t/^ is indeed a stable equilibrium state. The discus-
sion above is summarized in the following theorem.

Theorem 14.1 (Convergence for Orthogonal Pattern) Given m (m < n)
binary pattern vectors, y^l\ y(2\ ..., y^> that are orthogonal, then all the
m patterns are the stable states of the neural network with a zero threshold
vector and a weight matrix

This conclusion may be confirmed using the results of the eigenvalues of the
weighting matrix W'. Thus, using Eqns. (14.5) and (14.18), we have

that is
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Hence, the stored patterns, y^\ (1 < £ < m), are the eigenvectors of the
matrix W with the eigenvalue (n — m). Also, since n > m

which implies that yW is a stable vector.
However, in the discussion above, we selected the threshold vector as a zero

vector. We may find from the previous derivation that the threshold vector 9
is not necessary to be selected as a zero vector. Let the components of the
threshold vector 9 satisfy

Then

or

Therefore, we have the following corollary.

Corollary 14.1 (Convergence for Nonzero Threshold) Given m, (m < n),
orthogonal binary pattern vectors y^l\ y(2\ ..., y^m\ then all the m patterns
are the stable states of the neural network with the weight matrix

and with the threshold vector 0 whose components satisfy
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Table 14.1 Orthogonal patterns storage using Hebb's learning rule

Given m bipolar pattern vectors
y< 1W 2>, . . . , t /<m>€{-l , l} n

that satisfy

±(y®)T(yW) = 6ii, l<i,l<n
fL

Step 1: The (n x n)-dimensional weight matrix W is
W <— 0, k <— 1

Step 2: Storing the pattern vector yW results in
W <— ( y ( k } } ( y ( k } } T -I

Step 3: If k < m then k <— k + 1 and go to Step 2. Otherwise,
go to Step 4.

Step 4: The n-dimensional threshold vector is
e <— o

Step 5: Storing is completed. Output the weight matrix W.

Figure 14.1 Schematic representation of the pattern storage process.

If all prototype patterns y^ are orthogonal, as originally assumed, then
every such pattern can be represented as a vector in an n-dimensional Eu-
clidean space. Since the total number of orthogonal vectors in this space
cannot exceed the dimensionality of the space, we immediately see that the
network of n neurons can store as many as n orthogonal patterns. Given m
orthogonal binary pattern vectors, the weight construction process, as shown
in Fig. 14.1, is summarized in Table 14.1.

Example 14.1 Given three binary pattern vectors
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where, n = 4 and m = 3.
It is easy to verify that the three patterns are orthogonal since

Using Hebb's learning rule, we have

Finally, the weight matrix is obtained as

Moreover, we have

This implies that the iih component of W^ (I = 1,2,3) has the same sign
as the iih component of the pattern j/^. Hence, all three patterns are at the
stable equilibrium points of the neural network with the weight matrix W
and a zero-threshold vector 0. Figure 14.2 shows the state transfer map of the
neural network containing four neurons. •
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Figure 14.2 Example 14.1: state transfer map of the four-neuron network where
the network has the four stable states [-1,1, -1,1]T, [1, -1,1, -1]T,
[-l,-l,-l,-l]T,and[l,l,l,l]T
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14.2 INFORMATION RETRIEVAL PROCESS

14.2.1 The Hamming Distance (HD)

The concept of the Hamming distance (HD) between two binary patterns has
been widely used to evaluate the performance of the associative memory. For
two n-dimensional bipolar binary vectors x and y, the similarity between two
binary patterns may be shown by counting the number of the same position
components that have the same sign. When the two patterns have more
numbers of the same components, the similarity is higher. The Hamming
distance between the two binary patterns x 6 3^ and y e $tn,Xi,yi e —1,1
is defined as

which gives a measurement for dissimilarity between the two patterns. In
other words, the Hamming distance is the number of elements in which
the two vectors differ from one another. When the two patterns have more
numbers of the same components, the similarity is smaller. Obviously, the
Hamming distance function satisfies

and the maximum value of the Hamming distance between x and y is n; that
is, if x 7^ y, then

Also, for x — y, then

If a network is designed using the Hebbian learning rule and a pattern
y(l\ which is a stable state vector, the complement —y^ is also a stable
state vector. It is useful to evaluate the Hamming distance between a pattern
y(fi and y^ and the distance between y^ and —y^. To simplify this
comparison Dasgupta et al. (1989) introduced the following concept of the
effective Hamming distance (EHD) between two binary vectors.

Given two binary patterns x and y, the EHD between the two binary vectors
x and y is defined as

Since
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and

Thus

On the other hand, the EHD between the pattern vector and itself, or between
a vector and its complement, is zero. Similarly, the EHD between x and y
equals that between —x and — y. To facilitate further analysis, we state the
following simple lemma. The proof may be obtained by the reader as an
exercise.

Lemma 14.1 Given two n-dimensional binary patterns x and y, x,y £
-l,ln,then

Using this relationship, it is seen that if the patterns x and y are orthogonal,
that is

then

14.2.2 Self-Recall of Stored Patterns

Given m, (TO < n), the binary pattern vectors that are to be stored as stable
states (memories) of a binary neural network, the weight matrix W and the
threshold vector 0 may be constructed using the method discussed in Section
14.2.1. The weight matrix W obtained is also referred to as a memory
matrix. The network designed by Hebb's learning rule may have not only the
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m pattern vectors but also other pattern vectors as the stable states that are,
however, usually undesirable. Here, the m given pattern vectors are referred
to as the fundamental memories, while the other stable states are the spurious
memories. In fact, if t/1), y(2\ . . . , 2/m) are the fundamental memories, then
the complements of the original patterns, —i/-l\ —y^2\ ..., —j/m) are the
spurious memories since

Note that the weight matrix W for the pattern y^ and its complement
_ yO) are me same since

Fundamental and spurious memories are shown in Fig. 14.3.
For a network with the weight matrix W and the threshold vector 9, the

information retrieval or recall, as shown in Fig. 14.4, works as follows. Let
an n-dimensional binary pattern vector x = [x\ x% • • • xn]

T be given as
a so-called key pattern vector or probe vector. Then, using the network
structure and the updating procedure discussed earlier, we wish to find the
"correct memory" cc* which is the stored memory closest to x in the sense of
Hamming distance. In fact, for a network with a weight matrix W obtained

Figure 14.3 Fundamental (y^) and spurious (z^) memories stored in a seven-
neuron network.
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by Hebb's learning rule, the state that starts from any key pattern vector x
will always reach a stable equilibrium point when an asynchronous updating
mode is employed. Although all the fundamental memories themselves may
be stored as stable equilibrium points, the resulting memory that is one of
stable equilibrium points may not be one of the fundamental memories, or
even if it is, it may not be the "correct (nearest) memory." An undesirable
convergence to a fundamental memory that is not the closest to the pattern
vector will be illustrated in the next example, Example 14.2. The process of
self-recall is summarized in Table 14.2, with a schematic representation in
Fig. 14.5.

Figure 14.4 Schematic representation of a memory recall process.

Figure 14.5 Schematic representation of self-recall process.
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Table 14.2 Information recall process using an asynchronous updating

Given an (n x n)-dimensional weight matrix W with nonnegative diag-
onal elements, an n-dimensional threshold vector 6, and an n-dimensional
key pattern vector x(0).
Step 1: Initialize

x<—x(0) , k<—1, t<—1
Step 2: Choose randomly an integer i from the integer set {1,2,. . . , n};
Step 3: Compute the internal potential ^:

n

Vi=Y< Wijx3 + &i
j=l

Step 4: Update the state of the neuron i:
( sgn(yi), if yi ^ 0

J^l S •£ r\\ Xi, if 2/t = 0
Step 5: If t 7^ i and Xiyi > 0, then go to Step 6. Otherwise,

k <— k + \,i <— i and go to Step 2;
Step 6: Recall is completed. Output the recalled pattern x(k) and k.

Example 14.2 (McEliece et al. 1987) Given the following three pattern
vectors

then, we have
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Hence

and the threshold is chosen as a zero vector.
Also, since

the three patterns y(l\ y(2\ and t/3) are memorized as the stable equilibrium
points of the network with the weight matrix W.

Now suppose that a key pattern x is given as

The Hamming distances between the key pattern x and the memories |/H
y(2\ and y^ are easily obtained as

Hence, we assume that the key pattern should converge to the correct target
memory j/2) that has the least HD(x, t/2)) = 1. In fact
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where the signs of the third and fifth components are different from that of
x. Hence, only the third and fifth components of x will change when an
asynchronous operating mode is applied. If we had decided to update the fifth
component of x first, the new state vector would be

Hence, the state has converged to the "correct memory" y^2\ which is closest
to the initial key pattern x.

On the other hand, as noted earlier, the convergence to the correct memory
is not guaranteed by the Hopfield neural network. Indeed, if we select the
third component to be updated first, the new state will be

Furthermore, we compute

It is easy to see that we will ultimately have to update the second component
of the state x7 to 1, reaching the fundamental memory t/1). However, j/1)
is at a distance 2 from x, whereas t/2), the "correct memory" is only at a
distance 1 from x. In this case, the system has converged to an incorrect
memory. •

14.2.3 Attractivity in Synchronous Mode

Synchronous information retrieval from the synaptic matrix W proceeds as
follows (Dasgupta et al. 1989).

Given a binary probe vector cc(0), the object is to find the stored funda-
mental memory y^ that is, in a sense, closest to x(0). A sequence of binary
vectors x(k), k > 1, are generated using a synchronous operating mode such
that

where

with the following definition:



598 FEEDBACK BINARY ASSOCIATIVE MEMORIES

The process of information recall using the synchronous updating mode is
summarized in Table 14.3.

A key function of a content-addressable memory relates to its error-
correcting ability. Given a key pattern vector that is not identical to any
fundamental memories, then such a content-addressable memory is able to
identify the key pattern with the memory contents closest to it. Indeed, the
updating equation given in Eqn. (14.37) may be viewed as an algorithm for
performing this task with x(0) as an incorrect word. The role of Eqn. (14.37)
is to generate a sequence x(k) whose limit point is the memory content i/^ or
—y^\ closest in the effective Hamming distance (EHD) to x(0). As pointed
out in the previous section, the state vector of such a network with the weight
matrix W may converge either to a stable state that represents a memory, or
to a cycle with length 2. Next, we present the conditions that the probe vector
#(0) converges to a cycle and to a fundamental memory vector using the
description of the Hamming distance between the probe and the fundamental
memories.

Table 14.3 Information recall process using a synchronous updating

Given an (n x n)-dimensional weight matrix W with nonnegative
diagonal elements, an n-dimensional threshold vector 6, and an n-
dimensional key pattern vector x(0).
Step 1: Initialize

x<—x(0), z<—z(0), fc<—1, £<—1
Step 2: Compute the internal potential vector

y = WX + 6

Step 3: Update the neural states for i = 1 ,2, . . . , n
_( sgnfa), if 2/» ^ 0

*"i — i •£ r\\ Xi, if 2/i = 0
Step 4: If Xiyi > 0 for alH = 1 ,2 , . . . , n or ZiXi > 0 for all

i — 1,2,... ,n
then go to Step 6. Otherwise, k <— k + 1, t <— t + 1
and go to Step 5.

Step 5: If £ = 2, update vector z by
Z*i = Xi, 1 — 1 , Z , . . . , 7 7 /

and i <— 0, then go to Step 2. Otherwise, go to Step 6.
Step 6: Recall is completed. If Xiy^ > 0 for alH — 1 ,2 , . . . , n,

then output x and k. Otherwise, output x, z, and k.
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Let or(0) be a binary probe vector. After p iterations using a synchronous
operating mode, one obtains

It is seen that the zth component of the vector (Wo;) is

Since Wij = Y!k=i 2/I 2/j U ~ ™<%), we have

Hence

and

Hence, if one chooses

or, equivalently
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then

which implies

that is

This result may be summarized in the following theorem.

Theorem 14.2 (Dasgupta et al. 1989) Given a key pattern x, if there exists
an integer p such that x = x(p) that satisfies

then the state converges to only a cycle of length 2. •

This theorem shows that if a probe vector x satisfies the condition of the
theorem, it is inadequate for reaching a fundamental memory vector in the
sense that the synchronous operating algorithm fails to register any impact on
it. The successive x(k) simply oscillates between x1 and — x'.

Next, we study the condition where a probe x can be identified with a
fundamental memory yW that is closest to it in the Hamming distance. If a
given probe x(0) is close enough to a particular if^ and far enough from all
other fundamental memories, the probe a?(0) may be updated to reach j/^
using a synchronous operating mode.

Theorem 14.3 Given a probe vector x(0), if there exist integers p and t e
{1, 2 , . . . , n} such that x = x(p) satisfies

then the state converges to the fundamental memory y^>,

Proof: Using the expressions of the Hamming distance (HD) and the effective
Hamming distance (EHD) given in Lemma 14.1, one has
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Hence, if

then

that is

Because of the existence of the spurious memory — t/^, one further con-
clusion proposed by Dasgupta et al. (1989) is as follows:

If the condition in Theorem 14.3 is modified as

then

That is, in this case, if the Hamming distance (HD) between x and $/^
is smaller than that between x and —y^\ then the state converges to y^\
Otherwise, the state converges to the spurious memory — j/^.

This analysis shows that the convergence of an initial probe vector varies
with respect to one of the fundamental memories. It can be applied to the
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case of either orthogonal or nonorthogonal fundamental memories. Given an
initial probe vector, the possibility of updating that probe vector to one of
the fundamental memories may be verified using Theorem 14.3. The explicit
estimation of the attractive region in the sense of the Hamming distance of a
fundamental memory is somewhat difficult to obtain.

Next, we present a method for analyzing the attractive regions of the
fundamental memories (see Fig. 14.6). This method was first proposed by
Personnaz et al. (1986) for orthogonal patterns, and then was extended to the
nonorthogonal patterns.

Let x be a probe vector that differs from the fundamental memories. We
investigate the evolution of the system when started with state x. Using the
result given in Lemma 14.1, one has

To study the attractivity of the pattern vector ?/^, we try to find a sufficient
condition for the system to evolve from the state x to the state i/^ in one
iteration. It may be concluded that if each component of Wx has the same

Figure 14.6 Attractive regions of fundamental memory.
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sign as the corresponding component of i/^, the network evolves from the
state x to the state y^ in one iteration.

This condition can be expressed as

Also

This condition is satisfied if

Using the notation of the correlation coefficient r^e, one has

Using the triangular inequality, one has

and

which implies
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Therefore

Consequently, if the condition

or equivalently

then the inequality given in Eqn. (14.56) is verified. Thus, the network will
certainly reach the fundamental memory y^). It can be checked from the
inequality given in Eqn. (14.62) that if a probe state lies within a distance of
(n — m — nt)11m from a fundamental memory, its distance from any other
fundamental memory is greater than (n — m — /^)/2ra

Hence

Theorem 14.4 Given a probe vector x(Q], if there exist integers p and i G
{1, 2 , . . . , n} such that x = x(p) satisfies

then the state converges to the fundamental memory t/^.

If the fundamental memories are orthogonal, then

In this case, however, these fundamental memories are guaranteed to be stable
states.
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Figure 14.7 The attractive radius R of nonorthogonal fundamental memories as
a function of the number of patterns m and various values of // £.

Figure 14.8 The attractive radius R of orthogonal fundamental memories as a
function of the number of patterns m and various values of n.
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Now we need to explore the attract!vity of these memory vectors. If the
weight matrix is determined by

then the diagonal elements of the weight matrix are m.
Figure 14.7 shows the attractive radius R as a function of the number

of patterns ra, n — 100, and various values of /j# for the nonorthogonal
fundamental memories. Figure 14.8 shows the attractive radius R as a function
of the number of patterns m and various values of n.

An analysis of the attractive regions of the memories was presented by
Personnaz et al. (1986), which indicates that any initial probe vector lying
within a Hamming distance (n/2m) from the fundamental memory will con-
verge to this memory in one step. This result may be easily extended to the
weight matrix with zero-diagonal elements using the procedure given in the
following corollary.

Corollary 14.2 Let all the fundamental memories be orthogonal. Given a
probe vector x(Q), if there exist integers p and t G {1, 2 , . . . , n} such that
x = x(p) satisfies

then the state converges to the fundamental memory t/^. •

If the dimension of a network is fixed, the analytic results given in Theorem
14.4 and Corollary 14.2 on the attractive regions present the following facts:

(i) When the absolute values of the correlation coefficients of a fundamental
memory with rest memories are increased, the attractive radius of this
memory is decreased;

(ii) When the number of fundamental memories is increased, the attractive
radius of each memory is decreased;

(iii) The choice of zero-diagonal elements of the weight matrix reduces the
attractive radii of the fundamental memories. However, this structure
of the weight matrix, as discussed in a later section, may eliminate the
undesirable spurious memories.
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Example 14.3 Consider the memory storage case when n = 24, ra = 4, and
there are four patterns to be stored

where

is a vector of six Is. Clearly these four vectors are mutually orthogonal.
Hence, the neural network with the weight matrix W designed by the Hebb
learning rule is able to recognize each of the four patterns. In this case

Hence, if

the network transforms x to y^> in a single timestep. This means that the
network is able to recognize even a corrupted version of the pattern y^\
provided the number of errors is no more than 2.

Now, if 2/4 ' is changed to — e, the first three patterns continue to be mutually
orthogonal, but the fourth pattern is no longer orthogonal to the others. The
correlation coefficients r^ can be readily computed as follows:

Hence

Since

these four patterns stored in the neural network are stable. Furthermore

Hence, if the weight matrix is chosen by Hebb's learning rule, the network
continues to recognize each of the four patterns. However, the attractive
region of the fourth pattern, which is not orthogonal with the other patterns,
is reduced. •
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14.3 NONORTHOGONAL FUNDAMENTAL MEMORIES

14.3.1 Convergence for Nonorthogonal Patterns

As an associative memory mechanism, a memory pattern is valid only if it is
stable or retrievable. The memory pattern is valid when all the given patterns
belong to a set of orthogonal vectors. However, nonorthogonal pattern vectors
may not be the stable states if Hebb's learning rule with a zero-threshold vector
is applied as shown in Example 14.4. This means that these pattern vectors
may not be retrievable regardless of the state updating modes used. Since

a necessary condition that the fundamental memory y^ is a stable state is
that y^ is an eigenvector of W with a positive eigenvalue A^) > 0. This
condition is always satisfied for m orthogonal fundamental memory vectors.
However, it may not be true when the given m fundamental memories are
nonorthogonal because y^ may not be an eigenvector of W.

Example 14.4 In this example we shall show that the Hebb learning rule
given by Eqns. (14.6) and (14.7) fails to store two pattern vectors that are
nonorthogonal if these two pattern vectors differ in only one component.
Assume that there exist two stable vectors i/1) and y^ of the weight matrix
with zero diagonal elements so that

and

Since both y^> and i/2) are stable vectors of the network, we have
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Since we started with the assumption that 2/1) and y^ are different, the result
in this equation represents a contradiction. In fact

that is, T/1) and t/2) are two nonorthogonal vectors. •

Example 14.5 Given two n-dimensional patterns y^ and y^> defined by

and

it is easy to verify that

which means that the two pattern vectors are nonorthogonal. Using Hebb's
learning rule, we have
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Thus

Since

neither j/1) nor y^> is stable. •

An inspection of the patterns in Example 14.5 gives the effective Hamming
distance between patterns y^ and y^ as

which is "too small." This fact may be considered as the reason that the
patterns could not be stored as stable states. This leads us to finding the
sufficient conditions that the nonorthogonal patterns can be stored as the
stable states using the measurement of the Hamming distance between the
patterns. We will review the results obtained by Dasgupta et al. (1989).

Given m binary pattern vectors y^l\ y^\ . . . , y^m\ which may be
nonorthogonal, for \/k,l G {1, 2 , . . . , n}, define the correlation coefficient
as

Since

one has

Hence, r^ is a measure of the nonorthogonality of the patterns t/^ and y^>
and is called the correlation coefficient between the two patterns.

Let us define an integer /^ as a measure of how y^ is correlated with the
remaining (m — 1) patterns as
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Note that ̂  can be large in a number of ways:

(i) yW is strongly correlated with some other patterns t/fc);

(ii) yW is somewhat correlated with several other patterns;

(iii) A combination of conditions (i) and (ii): j/^ is strongly correlated with
some patterns and somewhat correlated with several others.

Lemma 14.2 Given m binary vectors, y^l\ y^\ ..., y^m\ if

then the pattern y^> is in the stable state of the neural network designed by
Hebb's learning rule, Eqn. (14.7).

Proof: As discussed previously, a sufficient and necessary condition for
ensuring the stability of these patterns is

where

and

Thus
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This implies that

Then, the inequality given in Eqn. (14.73) is satisfied and the pattern j^ is
in the stable state of the network designed using Hebb's learning rule. •

Furthermore, from Lemma 14.1 one has

that is

If

or

then

that is, the inequality given in Eqn. (14.73) is satisfied. A summary of the
above derivation is given in the following theorem.
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Theorem 14.5 (Dasgupta et al. 1989) Given m binary pattern vectors j/1),
2/2\ ..., y(m\ if one of the following conditions is satisfied

(i) forte {1,2,...,m}

or

(ii) for I, k e {1, 2 , . . . , m} and k ^ I

then the pattern y^ is in the stable state of the network if it is designed using
Hebb's learning rule given in Eqn. (14.7). •

14.3.2 Storage of Nonorthogonal Patterns

Hebb's learning rule is suitable for designing an associative memory that
guarantees perfect retrieval of the stored information if the given binary pattern
vectors are orthogonal. If the given pattern vectors are not orthogonal, the
stable condition given in Eqn. (14.1) is no longer true. The requirement
of strict orthogonality imposes severe restrictions on the possible prototypes
or memory vector to be stored. On the other hand, it is known that if n
is large, any two randomly selected patterns will almost be orthogonal, and
this is usually sufficient in many practical applications. However, in many
practical problems one has to deal with finite systems having a small n. In
this case, the information to be stored is neither random nor orthogonal, and
the prototype patterns will, in general, be correlated, causing a low storage
capacity. Therefore, it is important to develop a weight learning method
exhibiting the same stability property for any set of pattern vectors, as we are
going to explore in this section.

Given m binary pattern vectors that are nonorthogonal, the stability condi-
tions of the states associated with the given patterns may be expressed as
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Here, the unknown variables are the n components 6£ of 0. Hence, a proper
choice of the threshold 9 may ensure the stability of the stored pattern vectors.
Moreover, the determination of such a vector requires solving a system of
n x m inequalities. These inequalities cannot be solved easily and do not
always have a solution.

Next, a simplified approach is introduced to find the solutions of the set of
inequalities given in Eqn. (14.84). In fact, small deviations from orthogonality
lead to random variations in the internal field ^, and an estimate of this
variation can be obtained by calculating the actual value of ̂  when it coincides

if\
with one of the stored patterns; that is, when Xi — y\. Then

Using rki as the correlation coefficients between the patterns ?/fc) and y^
yields

The second term of this equation shows a contribution from all the other stored
patterns due to their nonorthogonality. In order to ensure the stability of the
pattern y^ that is an equilibrium state, one may assume o^ > 0, that is
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Table 14.4 Nonorthogonal patterns storage using Hebb's learning rule,
Eqn. (14.7)

Given m bipolar pattern vectors:
y < 1 > , y < 2 > , . . . , y < ' n > e { - l , l } w

Steps 1-3: These are the same as that in Table 14.3;
Step 4: The correlation coefficients are:

rkl <— 0, k <— 1, t <— 1
StepS: r w <—(y< f c ) ) (y«>)
Step 6: If k < m, then k <— k + 1 and go to Step 5; otherwise go to

Step 7;
Step 7: If I < m, then I <— £ + l,k <— 1, and go to Step 8;
Step 8: Initialization: TH <— 0, i <— 1, i <— 1, k <— 1

(k)Step 9: If k ^ I, then TH <— r^yl and go to Step 8; otherwise, go
to Step 10;

Step 10: lfk<m, then k <— k + 1, and go to Step 9; otherwise go to
Step 11;

Step 11: lfi<n, then i <— i + l,k <— 1, and go to Step 9; otherwise
go to Step 12;

Step 12: If I < m, then t <— t + 1, and go to Step 9; otherwise go to
Step 13;

Step 13: Initialization:
7z

r <— 7tf> 7Z
+ <— 7i^> ^ *— 1, A; <— 1

Step 14: If £ < m then t <— i + 1, and go to Step 15; otherwise, go
to Step 16;

Step 15: If 7z~ < 7^ then go to Step 14; otherwise, 7" = 7^ and go to
Step 14;

Step 16: If fc < 77i then k <— k + 1, and go to Step 17; otherwise, go
to Step 18;

Step 17: If 7Z
+ > 7^ then go to Step 16; otherwise, 7^" — 7^ and go to

Step 16;
Step 18: The threshold vector 0 is

-(n - m) - 7" < Oi < (n - m) - 7+, i = 1, 2 , . . . , n
Step 19: Storing is completed. Output W and 6J.
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Kence the component Oi of the threshold vector that satisfies the inequality
may be chosen such that

Define the coefficients

Then, a further relationship may be given by

where

and

A storage process for m binary pattern vectors that may be nonorthogonal is
summarized in Table 14.4.

Example 14.6 Given three binary pattern vectors

It is to be noted that the two patterns are nonorthogonal since the correlation
coefficient between the two patterns is

Using Hebb's learning rule, the weight matrix is obtained as



14.3 NONORTHOGONAL FUNDAMENTAL MEMORIES 617

Therefore, the weight matrix is given by

Since

it follows that if the threshold vector 9 is chosen as zero, the patterns j/1) and
2/2) are not the stable equilibrium points of the designed network. One has
to reselect the threshold vector using the procedure given in Table 14.4. By
using Eqn. (14.89), we have

Hence

and

Therefore, the four components of the threshold vector 9 may be chosen as
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or

In this case

Hence, with the weight matrix W and the threshold vector 9 as given in
Eqns. (14.91) and (14.92), respectively, all three patterns are in the stable
equilibrium states of the neural network. •

14.4 OTHER LEARNING ALGORITHMS FOR ASSOCIATIVE
MEMORY

In this section we will show that there exists a choice of the coupling weight
matrix W which guarantees the stability for a set of given binary pattern
vectors, which are either orthogonal or nonorthogonal. We will also analyze
to what extent the neural structures designed with such a weight matrix can
be useful as associative memories.

14.4.1 The Projection Learning Rule

For the known m binary pattern vectors j/1),..., y(m\ it is easy to show that
one of the sufficient conditions that the following equilibrium equation exists
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n (f}
where z = [zi ••• zn]

T, Zi = ]T) w^ + /;, (i = 1, 2 , . . . , n) and
j=i

with

is

This sufficient condition for equilibrium can be rewritten equivalently as

where Y is an (n x m) pattern matrix defined by

Equation (14.96) represents an orthogonal projection in the subspace spanned
by the pattern vectors family {y^}, and W is the orthogonal projection
matrix, which can be solved from Eqn. (14.100) as

where Y1 is the Moore-Penrose pseudoinverse of Y. Equation (14.102) is
termed as the projection rule or the pseudoinverse rule. The weight matrix
W, being an orthogonal projection matrix, is symmetric.

It should be noted that this projection rule does not place any limit on the
storage capacity of a network. Nevertheless, this property does not mean that
the network will always achieve the desired associative memory function. In
fact, the memory capacity can be expressed directly in terms of the rank r
of the family of the m pattern vectors. If r — n, (n < m), the projection
matrix is the identity matrix and the I1 states of the network are stable. If
r < n, the associative memory function is possible; the retrieval efficiency of
a pattern will fall sharply as (r/n) becomes of the order of 0.5. Therefore,
it is possible to memorize more than n patterns without complete memory
degeneracy; the only condition is r < n. Among the m patterns, therefore,
the linear combinations of r are linearly independent pattern vectors. The
detailed analysis about those conclusions is left as an exercise for the readers.
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In a general case, the coupling matrix W can be computed conveniently
without matrix inversion using an iterative algorithm. It yields the exact
solution of the system given in Eqn. (14.102) after a finite number of iterations,
which is equal to the number of pattern vectors. This kind of computation is
typical of a learning process. Once the synaptic matrix has been computed
from a given set of pattern vectors, the addition of one extra item of knowledge
does not require that the whole computation be performed again; one just has to
run one iteration, starting from the previous matrix. Therefore, memorization
through the projection rule retains the same iterative nature as the classical
Hebb rule. In fact, the following points should be noted:

(i) In a particular case where the pattern vectors ̂ \ t = 1, 2 , . . . , m are
linearly independent, the synaptic matrix W takes the form

Since for orthogonal vectors

where U is the identity matrix, the projection rule reduces exactly to
Hebb's rule:

(ii) A zero-diagonal matrix has been used by several authors. Since the
diagonal coefficients of the projection matrix are smaller than or equal
to one, the stability of the pattern vectors after canceling the diagonal
terms is preserved, but their attractivity is altered.

(iii) Finally, one can ensure the stability of the pattern vectors with the
projection rule without any restriction on the thresholds. The thresholds
Vi are directly related to the scaling of the matrix. If one has — A < 14 <
X for all i, one can just chose W = XYY1.

14.4.2 A Generalized Learning Rule

The learning rules discussed above provide some effective approaches for
storing given binary pattern vectors as stable equilibrium states with an as-
sociative memory function. We now present a generalized learning rule for
the association that was first introduced by Personnaz et al. (1986). This
generalized learning rule not only implies the mere stability of the pattern
vectors but also provides a possible method to design binary Hopfield neural
networks that satisfy a given set of constraints. For instance, one may wish to
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design a neural network that exhibits a given set of stable states, and a given
set of transitions as well as a given set of cycles.

There are two sets of given pattern vectors {t/^} and {z^}, t — 1 , 2 , . . . ,
n. Suppose that we want to determine the synaptic weight matrix W such
that the network has the following transitions in state space

that is, using the function signa(.) given as Eqn. (14.97), we obtain

Note that if z^> — y^ for all 1 < t < ra, the problem reduces to imposing
the stability condition on the pattern vectors. The problem described by
Eqn. (14.107) can be expressed as a system consisting of n x m inequalities

from which the elements of the matrix W should be solved. As pointed out
by Personnaz et al. (1986), in analogy to magnetic systems, these inequalities
express simply the fact that the spin vector j/^ will flip into the direction of
its local field with the bias vector 9 as

to give the spin vector z^. Instead of trying to solve the inequality system
given in Eqn. (14.108), one may transform it to a linear problem

where A^> is an arbitrary diagonal matrix with all the positive diagonal
elements. Equation (14.110) may further be reduced into a single matrix
equation

where

with

Equation (14.111) does not always have an exact solution, as indicated in the
following discussion.
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14.4.2.1 Case A: Exact Solution
If

Equation (14.111) has an exact solution, the general form of which is

where Y1 is the Moore-Penrose pseudo-inverse, and B is an arbitrary (n x n)
matrix. Without loss of generality, assume B = 0 so that Eqn. (14.112) is
simplified to

However, in some cases, B provides a degree of freedom that has already
been proved fruitful for the modeling of biological processes. Since Yf Y
is the orthogonal projection matrix into the subspace spanned by the rows
of Y, the condition FYTY = F, which can be rewritten equivalently as
YTYF — F1, means that the rows of F are linear combinations of the rows
ofW.

In the particular case where the vectors t/^ are linearly independent, as
mentioned earlier, the pseudoinverse has the form

14.4.2.2 Case B: Inexact Solution
If

where

with

there is no exact solution but W = FY1 is the matrix that minimizes the
Euclidean norm of the error matrix (WY — F).
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14.4.2.3 Discussion
In Case A, when an exact solution exists, there are still an infinite number
of possible matrices W satisfying the required set of constraints given in
Eqn. (14.115) depending on F.

The computation of the coupling matrix W may be further simplified by
the following argument. For a given 0, it is possible to find A such that

It can be easily shown that a set of positive diagonal matrices A^' exists if
we choose

so that matrix W reduces to

This rule is called the associating learning rule because it allows us to impose
the condition that the network performs the associations j/^ —» z^ for
I = 1 , 2 , . . . , m. If Z = Y, disregarding the scaling factor A, the learning
rule in Eqn. (14.118) reduces to the projection rule.

Example 14.7 Consider a two-neuron system with the given two sets of
binary pattern vectors

We determine a synaptic weight matrix W such that every pattern t/^ (1 <
t < 2) will be followed by the pattern z^ (1 < I < 2). In this case, the
weight matrix W may be solved by the matrix equation

that is

where
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Figure 14.9 Example 14.7: the transition process of the network for different
initial conditions. Here, the given pattern vectors y^ (1 < t < 2)
and z^ (1 < i < 2) are associatively implemented.

Then

and

This transition process of the designed network, with a cycle length of 4 with
all the different possible initial conditions, is shown in Fig. 14.9. •

14.5 INFORMATION CAPACITY OF BINARY HOPFIELD
NEURAL NETWORK

From the information theory point of view, a discrete-time binary Hopfield
dynamic neural network is a dynamic memory that can store information in
the form of a collection of specified binary pattern vectors. A binary pattern
with n dimensions and components either 1 or —1 is called an n-bit pattern.
We may now ask how many n-bit patterns can be stored in a Hopfield dynamic
neural network with n neurons or what is the information storage capacity of a
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Hopfield dynamic neural network. In order to study the information capacity
C of a Hopfield dynamic neural network, let us first look at the following
example given by Abu-Mostafa and Jacques (1985).

As shown in Fig. 14.10, a random access memory (RAM) with M address
lines and one data line [i.e., an (M x 1) RAM] contains 2M memory locations.
Each location contains 1 bit of stored data and is accessed by an M-bit address
line. It is easy to see that in a RAM with an M-bit address line, 2^ bits of
information can be stored. This is because, given an arbitrary string of 2?^
bits, we can load the (M x 1) RAM with a string and then later retrieve the
string from the memory. On the other hand, since there are 2? strings of 2M

bits, the memory can distinguish between the 2P cases. Consequently, the
information capacity C of a memory may be defined as the logarithm of the
number of cases that it can distinguish:

Figure 14.10 A random access memory (RAM) with M address lines and C =
2M bits information capacity.
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Information in the Hopfield dynamic neural network is stored as stable
states. As seen from the previous subsections, each state of the neuron in a
Hopfield dynamic neural network is randomly and repeatedly fired through
the threshold function operation on the weighted sum of all previous states
that are the inputs to the current neural operation. It is of interest to determine
n neurons. In other words, how many n-bit binary patterns can be stored and
retrieved in a Hopfield dynamic neural network as stable states? Abu-Mostafa
and Jacques proposed a result that shows the number of stable states K can
be at the most n, no matter how the synaptic weight matrix W is designed.

Theorem 14.6 (Abu-Mostafa and Jacques 1985) Let W denote a real-
valued zero diagonal n x n matrix, and let v denote a real-valued n vector.
For any K n-bit binary patterns y^l\ ..., y^K\ there is a matrix W and a
vector v such that

then K <n. •

This theorem indicates the fact that a binary Hopfield dynamic neural net-
work cannot have more than n arbitrary stable states. Hence, the information
capacity C of a Hopfield neural network with n neurons is at most 2\

14.6 CONCLUDING REMARKS

The binary associative memories that we have studied in this chapter are es-
sentially a class of binary neural networks that are capable of implementing
complex associative mapping in a space of information vectors. The domain
of such mapping is a set of memory vectors having binary values. Those
memories are stored as a set of stable equilibrium points. Hebb's learning al-
gorithm, discussed extensively in this chapter, provides a simple approach for
such an associative memory implementation. The theory of the information
capability of binary neural networks was also studied in this chapter.

Neural associative memories have the capabilities of storing patterns, im-
ages, signals, and speech. The characteristics of retrievalable memories stored
are ensured by the operational modes of the binary neural networks. There
are many other avenues of dynamic neural networks, which are to be explored
in the context of design and applications of feedback binary associative mem-
ories.
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Problems

14.1 For the discrete-time Hopfield neural network

with the threshold vector 9 = 0, let m, (m < n), binary pattern
vectors y(l\ . . . , y(m) £ 5ftn be an orthogonal set of vectors, and let
the weight matrix W determined by Hebb's learning rule be defined
as

(a) Calculate all the eigenvectors and the corresponding eigen-
values of W\

(b) If the energy function is defined as

then for an arbitrary x e W1 and yW <E 3£m, x ^ y(*\
1 < t < m, show that

14.2 Show that Hebb's learning rule may be modified to

14.3 A model of the full 2-order discrete-time binary neural network is
given by Psaltis et al. (1988) as follows

(a) Design a Hebb learning rule for the above network;
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(b) Give a model of the arbitrary full r-order discrete-time binary
neural network and design a Hebb learning rule for this
model.

14.4 A model of the single 2-order discrete-time binary neural network is
given by Psaltis et al. (1988):

(a) Use Hebb's learning rule for designing the network above;
(b) Find a possible energy function for the system;
(c) Give a model of the arbitrary single r-order discrete-time

binary neural network and design a Hebb learning rule for
the model.

14.5 Given three binary vectors x, y, and z G — 1, ln. Prove that the
following inequalities for both Hamming distance (HD) and effective
Hamming distance (EHD):

(a) HD(x,z)<HD(x,y) + HD(y,z)
(b) EHD(x, z) < EHD(x, y) + EHD(y, z]

14.6 Given two binary vectors x and y G — 1, ln, prove that the effective
Hamming distance (EHD) satisfies

(a) EHD(x,x) = Q
(b) EHD(x, -x) = 0
(c) EHD(x,y) = EHD(-x,-y)
(d) 2 EHD(x, y) + xTy\ = n

14.7 Let W be an n x n symmetric real matrix with zero-diagonal ele-
ments.

(a) Prove that all eigenvalues of W are real and their sum is
zero.

(b) Give a formulation for calculating all eigenvalues of W.

14.8 For a set of m, (m < n), binary pattern vectors y^l\y^\ .. .,y(m\a
Hebb learning rule for the weight matrix W and the threshold vector
6 of an n-dimensional binary Hopfield neural network is given by
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that is

Prove that all the given pattern vectors are stored as stable equilibrium
states of the neural network.

14.9 (Gram-Schmidt Orthogonalization) Given ra binary pattern vec-
tors 2/1), y^\ . . . , ?/m) that may be mutually correlated. Construct
m new pattern vectors as

Show that the new pattern vectors z^\ z^\ ..., z^ are orthogonal.

14.10 Consider ten 5 x 5 = 25-dimensional pattern vectors which are used
to represent 10 digits 0 , . . . , 9 as shown in Fig. 14.11, where the
black square corresponds to 1 and the white square represents — 1.
The binary patterns are represented as below.
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(a) Determine whether these 10 pattern vectors are orthogonal;

(b) Calculate the weighting matrix W such that these pattern
vectors are stored as memories of a binary neural network;

(c) Discuss whether these memories stored are retrievable.

Figure 14.11 Problem 14.10: bitmaps of 10 sample digit patterns, 0 ,1 , . . . , 9.
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14.11 Given three binary patterns

(a) Design a four-neuron binary network using Hebb's learning
rule such that the patterns y(l\ y(2\ and i/3) are the stable
equilibrium states of the network;

(b) Given a key pattern x = [I 1 — 1 — 1]T, compute the
Hamming distance (HD) between the key pattern x and the
memories y(l\ y^\ and y^\

(c) Let an asynchronous operating mode be applied. Draw the
state transfer diagram for the given key pattern.

14.12 Prove the results given in Lemma 14.1.

14.13 Consider the case where n — 16, m = 4, and four pattern vectors to
be stored are

where e* = [—1 1 1 1]T is a vector of one —1 and three Is and
e = [I 1 1 1]T is a vector of four Is.

(a) Calculate the weight matrix W using Hebb's learning rule;

(b) Verify the stability of the given four patterns;

(c) Estimate the attractive regions of the memories patterns.

14.14 Let an (n x n) memory matrix W be determined by Hebb's rule with
a unique n-dimensional pattern vector y as follows:

For a probe vector x given by
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Prove that if n\ < ((n/2) + 1), then x can be updated to the memory
vector y in a single step.

14.15 For the binary patterns given in Problem 14.11, use the projection
rule discussed in this chapter to calculate the projection matrix W.
Also, discuss the stability of these stored memory patterns.

14.16 Given m binary patter vectors j/1), y^\ ..., y(m) e {-1, l}n. Let
Y be an (n x m) pattern matrix defined by

and r be the rank of the matrix Y.

(a) Prove that if r = n, the projection matrix

is an identity matrix;

(b) Prove that 2n states of the binary neural network are stable;

(c) Show that if r < n, the retrieval efficiency of a pattern vector
stored will fall sharply as (r/n) becomes of the order of 0.5.
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Fuzzy logic, which was introduced by Lotfi A. Zadeh in 1965 (Zadeh 1965),
is a powerful tool for modeling human thinking and cognition. Instead of bi-
valent propositions, fuzzy logic systems deal with reasoning with multivalued
sets, stored rules, and estimated sampled functions from linguistic input to
linguistic output. The effectiveness of the human brain not only is due to the
numerical data but also depends on fuzzy concepts, fuzzy judgment, fuzzy
reasoning, and cognition. The most successful domain of fuzzy logic has been
in the field of feedback control of various physical and chemical processes
such as temperature, electric current, flow of liquid/gas, and the motion of
machines (Gupta 1994; Gupta and Rao 1994b; Jang and Sun 1993; Kauf-
mann and Gupta 1988; Kiszka et al. 1985; Langari and Berenji 1992; Lee
1990a, 1990b). Fuzzy logic principles can also be applied to other areas as
well. For example, these fuzzy principles have been used in the area such as
fuzzy knowledge-based systems that use fuzzy IF-THEN rules, fuzzy soft-
ware engineering, which may incorporate fuzziness in data and programs, and
fuzzy database systems in the field of medicine, economics, and management
problems. It is exciting to note that some consumer electronic and automo-
tive industry products in the current market have used technology based on
fuzzy logic, and the performance of these products has significantly improved
(Al-Holou et al. 2002; Eichfeld et al. 1996).

Conventional forms of fuzzy systems have low capabilities for learning
and adaptation. Fuzzy mathematics provides an inference mechanism for
approximate reasoning under cognitive uncertainty, while neural networks
offer exciting advantages such as learning and adaptation, generalization,
approximation and fault tolerance. These networks are also capable of dealing
with computational complexity, nonlinearity, and uncertainty. The integration
of these two fields, fuzzy logic and neural networks, has given birth to an
innovative technological field called fuzzy neural networks (FNNs) (Gupta and
Qi 1991, 1992a, 1992b; Gupta and Rao 1994b; Jin et al. 1995a). Extensive
studies have indicated that FNNs, with the unique capabilities of dealing with
numerical data, and linguistic knowledge and information, have the potential
of capturing the attributes of these two fascinating fields—fuzzy logic and
neural networks—into a single capsule, fuzzy neural networks. In view of the
robust capabilities of FNNs, it is believed that they posses a great potential
as emulation machines for a variety of behaviors associated with human
cognition and intelligence (Sinha and Gupta 1999).

Although much progress has been made in the field of fuzzy neural networks
(FNNs), there are no universally accepted models of FNNs so far. Two main
classes of FNNs have been studied extensively, and have been proved to
have robust capabilities for processing fuzzy information for specified tasks.
The first category of FNNs has fuzzy triangular inputs and outputs, and it



FUZZY SETS AND FUZZY NEURAL NETWORKS 635

implements a mapping from a fuzzy input set to a fuzzy output set, and has
the potential for realizing fuzzy logic functions on a compact fuzzy set. The
other class of FNNs deals with crisp input and output signals. However, the
internal structure of this type of FNN contains many fuzzy operations and
approximate reasoning using the rule-based knowledge framework. It can be
expected that this type of FNNs could implement fuzzy systems for real-world
applications. Studies on the first class of FNNs can be traced back to 1974
(Lee and Lee 1974), when the concepts of fuzzy sets into neural networks
were introduced for the generalization of the McCulloch-Pitts (Mc-P) model
by using intermediate values between zero and one. Various types of fuzzy
neurons were developed using the notions of standard fuzzy arithmetic and
fuzzy logic such as £-norm, £-conorm, and fuzzy implications (Buckley and
Hayashi, 1993a, 1993b, 1993c, 1994a, 1994b; Pedrycz 1991b, 1993). Some
applications of this class of FNNs have been reported (Jang and Sun 1993;
Kosko 1992; Wang 1993). Important contributions have also been made on the
universal approximation capabilities of fuzzy systems that can be expressed in
the form of FNNs, and genetic algorithms have also been used in the learning
schemes of FNNs (Buckley and Hayashi 1994b; Jang and Sun 1990; Jang
1992; Kosko 1994; Pedrycz 1995; Wang and Mendel 1992b, 1993; Wang
1993).

The objective of this chapter is to provide an overview of the basic prin-
ciples, mathematical descriptions, and the state-of-the-art developments of
FNNs. It contains seven sections. In Section 15.1 the foundations of fuzzy
sets and systems are briefly reviewed in order to provide the necessary math-
ematical background. The basic definitions of fuzzy neurons with fuzzy
input signals and weights are introduced in Section 15.2. Following this
introduction, some basic methods of fuzzy neural learning and adaptation
are introduced in Section 15.3. Fuzzy neural networks (FNNs) formed by a
number of interconnected fuzzy neurons are addressed in Section 15.4. Fuzzy
backpropagation (FBP) is also introduced in this section. Both the structures
and learning mechanisms of hybrid fuzzy neural networks (HFNNs) are stud-
ied in Section 15.5. A fuzzy basis function network (FBFN), which is used to
express a fuzzy system that has a singleton fuzzifier, product inference, and
centroid defuzzifier, is discussed in Section 15.6. These results indicate that
if a Gaussian membership function is applied, the fuzzy system is function-
ally equivalent to a modified Gaussian network. Thus, well-known results
for the Gaussian network such as online and offline learning algorithms, and
universal approximation capabilities might be employed directly in the de-
sign and analysis of fuzzy systems. The material presented in this chapter
not only provides an overview of the existing results but also presents some
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state-of-the-art new achievements and open problems in the field of fuzzy
neural computing.

15.1 FUZZY SETS AND SYSTEMS: AN OVERVIEW

Fuzzy set theory is a generalization of conventional set theory and was intro-
duced by Zadeh in 1965 (Zadeh 1965, 1972a, 1973). It provides a mathemati-
cal tool for dealing with linguistic variables associated with natural languages.
Some introductory definitions of fuzzy sets, fuzzy logic, and fuzzy systems
are reviewed in this section. Systematic descriptions of these topics can be
found in several texts (Bellman and Zadeh 1977; Dubois and Prade 1980;
Kaufmann and Gupta 1985, 1988). A central notion of fuzzy set theory, as
described in the following sections, is that it is permissible for elements to be
only partial elements of a set rather than full membership.

15.1.1 Some Preliminaries

A "fuzzy" set is defined as a set whose boundary is not sharp. Let X = {x}
be a conventional set with generic elements x. A fuzzy set A is characterized
by a membership function /M(^) defined on X, a set of ordered pairs A =
{x, IJLA(X)} , x e X, where HA(X] is the grade of membership of x in A, and
is defined as

Thus, a fuzzy set A in X can also be represented as

The set X may be either a discrete set with discrete elements or a continuous
set with continuous elements. For instance, X = {1,2,3,...,35} is a
discrete set, and X — K+ — [0, +00) is a continuous set. In this case, an
alternative way of expressing a fuzzy set A of X is

where the signs ]T and / do not mean conventional summation and integra-
tion, and "/" is onty a marker between the membership //A(^) and its element
Xi and does not represent division.
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A fuzzy set is said to be a normal fuzzy set if and only if

Assume that A and B are two fuzzy sets defined on X with membership
functions IIA(X) and HB(X)- The set-theoretic definitions and operations
such as inclusion (c), intersection (fl), union (U), and the complement of the
two fuzzy sets are defined as follows:

(i) The intersection of fuzzy sets A and B corresponds to the connective
"AND." Thus, A n B = A AND B.

Table 15.1 Fuzzy set-theoretic definitions and operations

Inclusion: A c B implies that HA(X) < IJ>B(X), Vx 6 X;
Intersection: A n B, an intersection of A and B, implies that

VAr\B(x) = mm[^A(x),fJ.B(x)] = HA(X) A HB(X)
= A AND B, Vx e X

Union: A U B, a union of A and B, implies that

VAUB(X) = max[//A(z), A*B(Z)] = VA(X) V HB(X)
_ =AORB, Vx e X

Complement: A, a complement of A, implies that
IL-A = 1 - HA(X) = NOT A, Vx G X;

Figure 15.1 Some logic operations on fuzzy sets.
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(ii) The union of fuzzy sets A and B corresponds to the connective "OR."
Thus, A U B = A OR B.

(iii) The operation of complementation corresponds to the negation NOT.
Thus,]4 = NOT A.

Fuzzy set operations are summarized in Table 15.1.
Given two sets A and B as shown in Fig. 15.la, the logic operations listed

above are shown in Figs. 15.lb-15.ld. An example is also given below.

Example 15.1 Assume X = {a, 6, c, d, e}. Let

and

Then

and

and

Some other operations of two-fuzzy sets are defined as follows:

(i) The product of two fuzzy sets A and B, written A • B, is defined as

(ii) The algebraic sum of two fuzzy sets A and B, written as A © B, is
defined as

(iii) A fuzzy relation R between the two (nonfuzzy) sets X and Y is a fuzzy
set in the Cartesian product X x Y\ that is, R c X x Y. Hence, the
fuzzy relation R is defined as
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(iv) The max-min composition of two fuzzy relations R C X x Y and
S C Y x Z, written Ro S, is defined as a fuzzy relation Ro S C X xZ
such that

for each x € X, z £ Z, where A = min.

(v) The Cartesian product of two fuzzy sets A C X and B C Y, written
as A x B, is defined as a fuzzy set in X x Y", such that

for each x e X and y € V.

15.1.2 Fuzzy Membership Functions (FMFs)

The definitions of fuzzy membership functions (FMFs) of fuzzy sets play
an important role in fuzzy set theory and its applications. The following
are several types of fuzzy membership functions, as illustrated in Fig. 15.2,
which are either continuous, or discontinuous in terms of a finite number of
switching points:

(i) Triangular function:

(ii) Trapezoidal function:

(iii) Sinusoidal function:

(iv) Gaussian function:
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Figure 15.2 Examples of some membership functions (FMFs), Eqns. (15.8)-
(15.13).
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where c is a center parameter for controlling the center position of
/z(x, a, c) and a is a parameter for defining the width of //(x, cr, c).

(v) Generalized bell function:

(vi) Sigmoidal function:

where the parameter c determines the position of /u(x, a, c)[c=c = 0.5.

It should be noted that a FMF contains a set of parameters that define
the shape of the membership function. Usually, these parameters can be
predetermined by human experience, knowledge, or known data. However,
in fuzzy-neural systems they can be adapted online according to the specified
environment in order to achieve the optimal performance.

Since the early 1970s, because of the simplicity in their formulations and
computational efficiency, both triangular and trapezoid functions have been
used extensively as FMFs in fuzzy logical systems (Kaufmann and Gupta
1985, 1988). However, these two types of FMFs consist of straight line
segments, and are not smooth at the switching points, which are determined
by the preselected parameters. This raises some difficulties for fuzzy neural
computing. Some studies have indicated that continuous and differentiable
FMFs such as Gaussian functions, sigmoidal functions, and sinusoidal func-
tions are good candidates for fuzzy neural computing (Jang and Sun 1993; Jin
etal. 1994a, 1995a).

15.1.3 Fuzzy Systems

A fuzzy system with a basic configuration as depicted in Fig. 15.3 has four
principal elements: fuzzifier, fuzzy rule base, fuzzy inference engine, and
defuzzifier. Without the loss of generality, we will consider here multiinput
single-output fuzzy systems: S C ffl1 —>• !R, where S is a compact set.

In such a fuzzy system, the fuzzifier deals with a mapping from the input
space S G §ftn to the fuzzy sets defined in S, which are characterized by a
membership function //p : S —> [0,1], and is labeled by a linguistic variable
F such as "small," "medium," "large," or "very large." The most commonly
used fuzzifier is a singleton fuzzifier, which is defined as follows:
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Figure 15.3 A schematic representation of a fuzzy system.

Thus, the fuzzifier changes the range of crisp values of input variables into a
corresponding universe of discourse, and converts nonfuzzy (crisp) input data
into suitable linguistic values.

The fuzzy rule base consists of a set of linguistic rules of the following
form: "IF a set of conditions are satisfied, THEN a set of consequences are
inferred."

In other words, a fuzzy rule base is a collection of IF-THEN values.
Moreover, we consider in this text a fuzzy rule base having M rules of the
following forms

where Xi(i = 1 , 2 , . . . , n) are the input variables to the fuzzy system, y is the
output variable of the fuzzy system, and ̂  and B^ are the linguistic variables
characterized by the fuzzy membership functions //^ -and p,Bj, respectively.

i
In practical applications, the rules can be extracted from either numerical data
or human knowledge for the problem of concern. A simple example is given
in Fig. 15.4.

Each rule Rj can be viewed as a fuzzy implication

which is a fuzzy set in S x 3ft with
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Figure 15.4 An example of the fuzzy IF-THEN rule.

for x e S and y € §ft. The most commonly used operations for <g> are product
and min operations defined as

The fuzzy inference engine is a decisionmaking logic that uses the fuzzy rules
provided by the fuzzy rule base to implement a mapping from the fuzzy sets
in the input space S to the fuzzy sets in the output space $R. The efficiency of
a fuzzy inference engine greatly depends on the knowledge base of the system
considered. Let Ax be an arbitrary fuzzy set in S. Then each Rj of the fuzzy
rule base creates a fuzzy Ax o Rj in 3ft based on the sup-star composition:

The defuzzifier provides a mapping from the fuzzy sets in 3ft to crisp points
in 3ft. The following centroid defuzzifier, which performs a mapping from the
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fuzzy set Ax o Rj(j = 1 ,2 , . . . , M) in 31 to a crisp point y € !R, is the most
commonly used method (Mendel 1995), and is defined as follows:

where Cj is the point in $1 at which HBJ(CJ) achieves the maximum value

P>Bi(Cj) = I-
Next, if one assumes that 0 is a product operation (product inference), then

for HAX (x) = 1 and HAX (x'} = 0 for all x' E S with xf ^ x, replacing ® in
Eqn. (15.19) with the conventional product yields

Thus, the analytical relationship between the crisp input x and the crisp output
2/is

Other types of defuzzifiers, such as a maximum defuzzifier, mean of maxima
defuzzifier, and height defuzzifier, can also be applied to form the mapping
from the crisp input x to the crisp output y G 5ft.

15.2 BUILDING FUZZY NEURONS (FNs) USING FUZZY
ARITHMETIC AND FUZZY LOGIC OPERATIONS

Following the basic mathematics of fuzzy logic and the basic structure of the
neurons discussed in the previous sections, some models of fuzzy neurons
(FNs) are introduced in this section.
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15.2.1 Definition of Fuzzy Neurons

When we consider fuzzy uncertainties within neural units, the inputs and/or the
weights of a neuron can be expressed in terms of their membership functions,
and several types of fuzzy neurons (FNs) based on fuzzy logic operations can
be defined. According to the nature of neural inputs and weights (fuzzy or
nonfuzzy), we define the following three types of fuzzy neurons:

(i) FNi has nonfuzzy neural inputs but fuzzy synaptic weights;

(ii) FN2 has fuzzy neural inputs and nonfuzzy synaptic weights;

(iii) FNs has fuzzy neural inputs and fuzzy synaptic weights.

Restricting the synaptic weights to fuzzy quantities may avoid deformation
of fuzzy input signals in fuzzy neural computation. Since FNt and FN2 may
be considered as special cases of FNs, emphasis will be devoted only to FNs,
which will be simply referred to as a FN in the following discussion.

It has been seen that the mathematical operations involved in a conventional
neuron discussed in the previous chapters are

(i) The weighting of the neural inputs with synaptic weights;

(ii) The aggregation of these weighted neural inputs;

(iii) The nonlinear operation on this aggregation.

The mathematical operations in fuzzy neural networks can be carried out
using either fuzzy arithmetic operations or fuzzy logic operations. In this sec-
tion, we briefly describe fuzzy neurons first using fuzzy arithmetic operations
and then using fuzzy logic operations.

15.2.1.1 Fuzzy Arithmetic-Based Fuzzy Neurons
The weighting of fuzzy neural inputs using the synaptic weights can be ex-
pressed by fuzzy multiplication, and the aggregation operation of weighted
neural inputs by fuzzy addition, and these modifications lead to a fuzzy neural
architecture. On the basis of fuzzy arithmetic operations, the mathematical
expression of such a FN is given by the following equation

where (+) and (•) respectively are the fuzzy addition and fuzzy multiplication
operators, and WQ is the threshold.

Fuzzy neural inputs and fuzzy synaptic weights are defined on an n-
dimensional hypercube in terms of their membership functions x^ and Wi,
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Figure 15.5 OR-AND-type fuzzy neuron,

and are as follows:

15.2.1.2 Fuzzy Logic-Based Fuzzy Neurons
Alternatively, fuzzy logic operations, using OR, AND, and NOT, or their
generalized versions, can be employed to perform fuzzy neural operations. In
this case, fuzzy logic operations can be expressed by the following two neural
models

(i) OR-AND-type fuzzy neuron (Fig. 15.5):
This type of fuzzy neuron is shown in Fig. 15.5, and is described by

A schematic representation of this neuron is shown in Fig. 15.5. This OR-
AND fuzzy operations-based neuron is similar to that of the conventional type
of neurons described in the earlier chapters.

(ii) AND-OR-type fuzzy neuron (Fig. 15.6):
This type of fuzzy neuron is shown in Fig. 15.6, and is described by

This AND-OR-type of fuzzy neuron is similar to that of the radial basis
function (RBF) neurons, and is useful for pattern recognition and other de-
cisionmaking problems. However, only the OR-AND-type of fuzzy neurons
are explored in the following discussions.
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Figure 15.6 AND-OR-type fuzzy neuron.

15.2.2 Utilization of T and S Operators

15.2.2.1 Definition and Properties
The T operator (t-norm) and S operator (i-conorm), which are generalized
AM) and OR operations, respectively, can be employed effectively to deal with
the fuzzy operations given in Eqns. (15.25) and (15.26). Let 01,0:2 G [0,1]
be two triangular fuzzy numbers. The T operator T : [0,1] x [0,1] —» [0,1]
represents the generalized AND operation, and is defined as

Similarly, the S operator S : [0,1] x [0,1] —> [0,1] represents the generalized
OR operation, and is defined as

In fact, a T operator (t-norm) is a nonlinear mapping from [0,1] x [0,1] onto
[0,1]. For three fuzzy numbers x, y, and z € [0,1] the T operator satisfies the
following properties

(i) T(x, y] = T(y, x] (commutativity)
(ii) T(T(x,y),z) = T(or ,T(y , z)) (associativity)
(iii) T(xi,yi) > T (#2,2/2) if x\ > ̂ 2 and y\ > y2 (monotonicity)
(iv) T(x, 1) = x (boundary condition)

A S operator (t-conorm) is also a nonlinear mapping from [0,1] x [0,1] onto
[0,1] that differs from a T operator only in the property (iv), the boundary
condition. For the S operator, the boundary conditions are

Some additional properties of the T and S operators are
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Also, using the T and S operators, De Morgan's theorems are stated as follows

and

Indeed, negation N on x\ € [0,1] is defined as a mapping

which implies N(0) = 1, N(l) = 0, and N(N(x)) = x.

15.2.2.2 Fuzzy Logic Neuronal Equations
By means of the T and S operators just discussed, the input-output function
y = f(xi, X2, • • • , xn) of the OR-AND fuzzy neuron defined in Eqn. (15.25)
can be represented further as

and

where u G [0,1] is an intermediate variable that is introduced to simplify the
mathematical expression of such a fuzzy neural operation. It can be noted
that even if a bipolar activation function cr(-) is employed in Eqn. (15.35), the
output y, which is also a fuzzy quantity in terms of the membership grade, is
always located in the unit interval [0,1] because u > 0.

There are many alternative ways to define the expressions for the T and S
operators. However, for simplicity, only the three types of T and S operators
proposed previously are summarized in Table 15.2. Since in fuzzy neural
computing, the operations of the T and S operators defined in Table 15.2 are
often on more than two fuzzy variables, the generalized versions of T and S
operators given in Table 15.2 are provided in Table 15.3 for dealing with n
fuzzy variables x\,x<i,...,xn G [0,1].

According to the three definitions of the T and S operators given in Tables
15.2 and 15.3, we now give the mathematical expressions for three different
types of OR-AND fuzzy neurons.
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Table 15.2 T and S operators on fuzzy variables x and y € [0,1]

No.
1
2
3

T (re, y): AND operation
min(x, y)
xy
max(z + y — 1,0)

S (x,y}\ OR operation
max(x, y)
x + y — xy
rnin(x + ?/, 1)

N(x)
l - x
l - x
1 -x

Table 15.3 T and S operators for n fuzzy variables x\, ^ 2 , . . . , xn e [0,1]

f/^ Type / (min-max fuzzy neuron):
The operational equation for this type of min-max FN is obtained using

the first type of T and S operators given in Table 15.3 as follows

and
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Type II (product-sum fuzzy neuron):
The product-sum fuzzy neuron is of the second type and is expressed by

the following recursive formulations

and

or equivalently

and

For instance, when n = 2, Eqn. (15.37) becomes

and

Type III (max-min fuzzy neuron):
The third type of fuzzy neuron is the max-min fuzzy neuron, which is

obtained by using the third type of T and S operators given in Table 15.3.
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Noting that since for x\ and x% € [0,1]

Eqn. (15.41) can equivalently be expressed as follows:

and

Example 15.2 Consider a fuzzy neuron with four inputs xi, ̂ 2,^3, and £4
as shown in Fig. 15.7. Let the nonlinear activation function be a sigmoidal

Figure 15.7 Example 15.2: the fuzzy neuron.

Table 15.4 Example 15.2: output of the fuzzy neurons

Type
I: min-max
II: product-sum
III: max-min

u
0.6
0.6441
0.5

Output y = tanh(w)
0.8090
0.8478
0.7071
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function a(u) — tanh(ii). Using the three types of fuzzy neural operations
just discussed above, the output of the function neuron can be obtained as
given in Table 15.4. •

15.3 LEARNING AND ADAPTATION FOR FUZZY NEURONS
(FNs)

In order to update the connection weights involved in the fuzzy neurons
(FNs), some learning and adaptation mechanisms for the FN models that
were proposed in the last section are presented in this section. Like the least
square error functions used in the conventional BP algorithm for multilayered
feedforward neural networks (MFNNs), the generic performance index used
here is also expressed as a squared error between the output of the fuzzy
neuron and a desired value.

15.3.1 Updating Formulation

For the batch of learning data x(i),i = 1 , . . . , A/", described as the following
input-output pairs

let the adjustable parameters for a FN be the synaptic weights wa = [WQWI •••
wn]

T. An instantaneous error function is defined as

where (e(k) = (yd(k] - y(xa(k},wa}), and y(xa(k),wa} represents the
output of the FN for the neural input xa(k] and the neural weight wa.
The updating algorithms for the parameters of such a FN can be derived
using the standard gradient decent technique. For the unipolar weights
WQ,WI, ... ,wn €. [0,1], the updating formulations for the weights are

where sat(-) is a unipolar saturating function as shown in Fig. 15.8 and which
is mathematically defined as
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Figure 15.8 Unipolar saturating function sat(x).

Figure 15.9 Schematic representation of the weight updating process of a fuzzy
neuron.
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The incremental term Au^(fc) in Eqn. (15.46) is given as

where 0 < 77 < 1 is the learning rate associated with the weights. Unlike
the conventional BP algorithm, Eqn. (15.46) involves a saturating function
sat(-) by which the updated weights are still the unipolar quantities on the unit
interval [0,1]. A block diagram of this updating process is given in Fig. 15.9.

15.3.2 Calculations of Partial Derivatives

To evaluate further the updating formulations presented above, the partial
derivatives on the right-hand side of Eqn. (15.48) must be computed using the
operations equations of the OR-AND FN given in Section 15.3. It has been
known that the operation of a FN can be expressed as

Table 15.5 Partial derivative formulation for fuzzy neuron (FN),
Eqns. (15.36), (15.37), and (15.41)
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Thus, the partial derivatives of the output with respect to the weights can be
expressed using the chain law as follows:

On the basis of the different definitions of the T and S operators and the
corresponding operation equations of the FNs, the detailed expressions of the
partial derivatives du/dwi and du/dxi corresponding to the three types of T
and S operators as illustrated in Fig. 15.9 and defined in Table 15.2 can be
obtained as shown in Table 15.5. Even if the various versions of the partial
derivatives are conceptually quite different, their final numerical effects of
learning should be similar.

15.4 REGULAR FUZZY NEURAL NETWORKS (RFNNs)

The three types of fuzzy neural units discussed in the previous section can
be used to form a class of fuzzy neural networks (FNNs). These FNNs
can be used for approximating mappings from the input hypercube [0,lf to
the output hypercube [0,l]m in a fuzzy logic-based format. Since these FN

Figure 15.10 A two-layered regular fuzzy neural network (RFNN).
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models are built by using the standard fuzzy logic, the networks formed by
these FNs are termed regular fuzzy neural networks (RFNNs).

15.4.1 Regular Fuzzy Neural Network (RFNN) Structures

The RFNN shown in Fig. 15.10 with one hidden layer is considered in this
section. In such a RFNN, the neurons are organized into layers with no
feedback or cross-layer connections. A basic structure of such a RFNN is
shown in Fig. 15.11.

Figure 15.11 First and second neural layers in regular fuzzy neural networks
(RFNNs).
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Assume that the neurons in the first layer are denoted by FN(1,«) (i =
1 ,2 , . . . , p) and the neurons in the output layer; that is, in the second layer,
are denoted by FN(2, j ) (j = 1 , 2 , . . . , m). Let the neuron FN(1, i} in the
first layer receive n input signals x\,x<i,... ,xn G [0,1], and deliver an
output signal x\ . The outputs of all the neurons in the first layer are
feedforwarded to every neuron in the second layer as input signals. Finally,
FN(2, j) (j = 1, 2 , . . . , m) in the second layer generates an output signal ^.
Then, using the notations of the T and S operators, the input-output equations
of the neurons in such a RFNN can be expressed as

where w^'(l = 0,1, 2 , . . . , n) are the weights associated with FN(1, i) and
(2)JQ (^ = 0,1, 2 , . . . ,p) are the weights of FN(2,j). These equations are also

called the transfer functions of the neurons.

15.4.2 Fuzzy Backpropagation (FBP) Learning

The learning procedure for the free parameters in such a neural network is
considered on the basis of the elements of the set of the training patterns.
Given a set of input and desired output pairs (x(k}^(k}}(k = 1 , 2 , . . . , N},
the adaptive weight learning rule performs an optimization process such that
the output error function, defined as the summation of the square of the errors
between the desired and the real outputs of the network, is minimized. To
address this problem mathematically, an instantaneous error function for the
network is defined as
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where the output error ej describing the error between the jth desired output
response and the jth neural network output at FN(2, j) is defined by

In a manner similar to the gradient descent technique used in the conventional
backpropagation (BP) network, the following updating formulations can be
obtained

where

and

and j]\ and 772 are the learning rates associated with the weights in the hidden
layer and the weights in the output layer, respectively. The choice of these
learning rates will affect the convergence speed of the updating process. The
detailed formulations of the partial derivatives in Eqns. (15.55) and (15.56)
can be obtained using the method given in Section 15.3.

15.4.3 Some Limitations of Regular Fuzzy Neural Networks
(RFNNs)

As learned in the previous subsection, a regular fuzzy neural network (RFNN)
can be considered as a nonlinear mapping from an n-dimensional input hy-
percube [0,l]n to an m-dimensional output hypercube [0,l]m. This nonlinear
mapping is based on standard fuzzy arithmetic and fuzzy logic operations. The
universal approximation capability of neural networks is one of the promising
advantages for their applications to areas such as identification, control, and
pattern recognition. How well does a neural network approximate an unknown
function? This is an important question that is asked about all types of neu-
ral networks, including multilayered feedforward neural networks (MFNNs)
and dynamic neural networks (DNNs). A neural network with an augmented
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neural input xa and an augmented weight vector wa, and an input-output
mapping f(wa, xa) : $ftn+1 —>• $Rm, is a universal approximator for a given
continuous vector-valued function g : 3ft^+1 —> !Rm if there exists a tua such
that f(wa, xa] can approximate # uniformly on an arbitrary compact set of
?fcn+1 to any degree of accuracy. We will show that the RFNNs developed
above are not universal approximators in this context.

First, the two layered fuzzy network equations, Eqns. (15.50) and (15.51),
can equivalently be represented as

(i) Output of the first layer:

(ii) Output of the second layer:

or equivalently in a vector form, the mathematical expression of Eqns. (15.57)
and (15.58) can be rewritten as

where xa = [XQX\ • • • xn]
T is the augmented input vector, x^ = \x^ • • •

X p \ is the output vector of the first neural layer, w^ = \w\0 w^ • • •
T

w.-n'\ is the augmented weight vector of the neuron FN(l,f)» Wi =

w^i • • • Wap represents the augmented weight matrix of all the weights

(2) f (2} (2} (2)1 "^in the first neural layer, w^ •' — ur0
; w^ • • • wr is the augmented

weight vector associated with the neuron FN(2, j ) in the output neural layer,
(2) f (2] (2} 1and Wa = w^al

j • • • Wam represents the augmented weight matrix of the
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weights in the output neural layer. Thus, Eqn. (15.59) describes the input-
output relations of the RFNN by means of a nonlinear mapping / : [0,lf —>
[0,1]-.

Noting the monotonicity of the T and S operators, and the sigmoidal
function <j(-), thus, for an arbitrary input vectors x — [x\ #2 • • • xn]

T, x =
rri

[xi #2 • • • xn] e [0,l]n, with Xi < Xi, it can be implied that

and

It can also be verified that the Jacobian of the output vector y with respect to
the input vector x defined by

has only nonnegative elements:

Therefore, it can be concluded that for fixed fuzzy weights on the unit interval
[0,1], the nonlinear mapping realized by such a RFNN is a monotonically
increasing function in terms of the fuzzy inputs. Assume that a vector in-
equality implies inequality for each component of the vector. For example,
if x G [0,l]n < x e [0,l]n, it implies that x{ < x^, (i = 1, 2 , . . . , n). This
analysis results can be summarized in the following theorem.

Theorem 15.1 (Monotonicity of RFNNs) A regular fuzzy neural network
(RFNN) with a neural input x e [0,l]n, an output y e [0,l]m, and a net-

work equation y = f (w(a\ W(a\xa} : [0,l]n -> [0,l]m implements a
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monotonically increasing mapping from [0,1]™ to [0,l]m; that is, given two
arbitrary vectors x e [0,l]n andx e [0,l]n satisfying x <x, then

RFNNs can be used to implement a special class of fuzzy logic-based
nonlinear functions which are monotonically increasing. In fact, this type
of FNN can be used to approximate any fuzzy function that consists of only
AND and OR operations. On the other hand, it will be seen in the following
example that such a RFNN is incapable of implementing a simple binary two-
variable XOR function that may be considered as a special nonlinear fuzzy
logic function.

Example 15.3 The two-variable XOR (exclusive OR) logic function y =
x\ © £2 with binary input variables x\ and x% that are either 0 or 1 may be
considered as a special fuzzy logic function as shown in Fig. 15.12. Design a
two-layered RFNN with the inputs x\ and x%, a single output y, two hidden
fuzzy neurons, and a linear activation function a(x] = x. It is easy to derive
the input-output equations of such a network as follows:

(i) Input layer:

Figure 15.12 Example 15.3: a RFNN with two neurons in the input layer and one
neuron in the output layer fails to implement a two-variable XOR
function y — x\ © x2-
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(ii) Output layer:

Noting that y = x\ © x<± is 0,1,1, and 0, respectively, for the binary patterns
(0,0), (0,1), (1,0), and (1,1), the output of the RFNN can be represented as

The output given in Eqn. (15.64) contradicts the outputs given in Eqns. (15.65)
and (15.66). Therefore, no solution exists for the weights for the implemen-
tation of the XOR logic, and the XOR function cannot be realized by such a
RFNN. It can be verified that an increase in the number of the hidden units
will not change this conclusion. •

15.5 HYBRID FUZZY NEURAL NETWORKS (HFNNs)

To modify the fuzzy operations in the regular fuzzy neural network (RFNN)
described in the last section so that the universal approximation capability of
the fuzzy neural networks is ensured, some new structures of fuzzy neurons
are discussed in this section.

15.5.1 Difference-Measure-Based Two-Layered HFNNs

A new architecture of a hybrid fuzzy neural network (HFNN) is shown in
Fig. 15.13, where the HFNN has multiple inputs and a single output, and
consists of an input neural node, one hidden fuzzy neural layer, and an output
neural layer.

In the HFNN, all of the neural inputs are distributed to all the neurons in
the hidden fuzzy neural layer. In such fuzzy neural computing, it is proposed
that this operation be replaced by a difference measure of the input signal
Xi € [0,1] and the weight Wi £ [0,1] defined by



Figure 15.13 A difference-measure-based two-layered hybrid fuzzy neural network (HFNN).
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Thus, the output of the neurons in the hidden fuzzy neural layer can be
obtained as follows

and

where 0j ' is a threshold associated with the neuron FN(l,f)-
There are only two neurons in the output layer. The output of the first

neuron in the output layer is simply the summation of the outputs of all the
neurons in the first layer:

The output of the second neuron in the output layer is a weighted summation
of the form

Finally, the output of the network is defined as

In this definition all the weights and thresholds are assumed to be triangle
fuzzy numbers. Thus, the operation from the hidden layer to the output layer

deals with a centroid defuzzifier, where the input signals rq •> X2 > • • • > x^i
are unipolar binary signals (Buckley and Hayashi 1993c, 1994a). These
unipolar binary signals can easily be extended to bipolar binary signals as
well as to some modified neural architectures and different types of fuzzy
numbers.

It has been proved that the HFNN described above is a universal approxi-
mator (Buckley and Hayashi 1993c). However, no related learning algorithm
has been reported to carry out such an approximation.

It is to be noted that the input-output mapping of such a HFNN is dis-
continuous since the max operation and hard-limiting functions are used in
forming the input-output mapping. This may cause some difficulties with the
learning phase.
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15.5.2 Fuzzy Neurons and Hybrid Fuzzy Neural Networks
(HFNNs)

As has been seen earlier, a conventional neuron involves a somatic operation,
which is a confluence or similarity measure operation between the input
signals and the corresponding synaptic weights. In the FN model discussed
in Section 15.2, this operation was replaced by the T operator. This operation
can also be replaced with a difference measure on the neural input signal
Xi € [0,1] and the synaptic weight Wi G [0,1]. This difference measure
operation, as discussed in Section 15.5.1 on two-layered HFNNs and as seen
in Eqn. (15.67), is denoted by d(xi, Wi}, which satisfies 0 < d(xi, wi) < 1.
For example, d(xi,Wi) can be selected as

In the following discussion, we assume that d(xi, Wi) is of the quadratic
form

This difference measure operation is then used to replace the T operator in
the fuzzy neuron introduced in Section 15.3. As shown in Fig. 15.14, all
these difference measures between the inputs and the associate weights can
be combined by means of the standard S operator.
Thus, the output of such a fuzzy neuron is given by

and, finally, the neural output is given by

Figure 15.14 A fuzzy neuron with the difference measure and S operator,
Eqns. (15.75) and (15.76).
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Obviously, this type of fuzzy neuron is no longer monotonic in terms of its
fuzzy inputs #1, #2, • • • , xn.

Using this type of fuzzy neuron, a two-layered fuzzy neural network, the
hybrid fuzzy neural network, can easily be formed. The operational equations
of such a HFNN are as follows:

It seems that this HFNN has a capability for approximation of functions,
but no strict mathematical proof is currently available as to its universal
approximation for this network. The following example will show that the
HFNN is capable of solving the XOR problem.

Example 15.4 From this example, it will be seen that a two-variable binary
XOR function y = x\ 0 £2 can be implemented by a difference-measure-
based two-layered HFNN with two neurons in the hidden layer and one in the
output layer, as shown in Fig. 15.15. In fact, if the S operator is selected as a
max operation, the input-output equation of such a network can be obtained

Figure 15.15 Example 15.4: a difference-measure-based HFNN with two neu-
rons in the hidden layer and one neuron in the output layer for the
implementation of a two-variable XOR function, y = x i © x^.
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Table 15.6 Example 15.4, fuzzy XOR operation

Xi

0
0
1
1

#2

0
1
0
1

y = xit
0
i
i
0

Dx 2

as

The input-output relationship for this HFNN is given in Table 15.6, which
clearly shows a XOR operation of this network.

It is to be noted that in this example, although we have used the S-operation
as a max operation, other types of the S-operation, as tabulated in Table 15.2,
can also be used. •

15.5.3 Derivation of Backpropagation Algorithm for Hybrid
Fuzzy Neural Networks

Given a set of desired data pairs ( x ( k ) , y ( k ) ) , an error index is defined as

For a two-layered hybrid fuzzy neural network (HFNN) with the operational
equations, Eqns. (15.77) and (15.78), the fuzzy backpropagation (FBP) algo-
rithm is given by the following updating formulations

where
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In order to derive these updating formulations, the concept of the error partial
derivatives Ss is introduced below. For such a two-layered fuzzy neural
structure these intermediate variables are denoted as

where 6\ ' is the partial derivative of FN(l,i) and $ ' is that of FN(2,j).
Therefore, Eqns. (15.81) and (15.82) can be represented as

It is seen that the definition of these partial derivatives not only keeps the
derivation simple but also plays an important role in the final learning formu-
lations. It is easy to derive the 6s for the output neurons as follows:

For simplicity, assume that the S operator is defined as a max operation in
the following derivation. Then

otherwise

Thus, the updating formulations for the weights in the output layer are obtained
as follows:

otherwise
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The next task is to derive the updating formulations for the weights asso-
ciated with the hidden neurons. To do so, we first deal with the 6s associated
with the hidden neurons. By means of the chain law, Eqn. (15.83) can be
represented as

Noting the relationship between u- ' and x\ ' given by Eqn. (15.88), the
following partial derivative formulations can be obtained:

otherwise

Furthermore

otherwise

In this case, the weight updating formulations are obtained as follows

otherwise

The fuzzy backpropagation (FBP) algorithm obtained above has a two-
way information transfer. First the input fuzzy signals are calculated in
the feedforward path and then the error signals that are used for updating
the process are produced in the backward path. In other words, the input
signals are processed starting from the input layer to the output layer. The
error signals are calculated in the output layer and then propagated to the
lower neural layers. The term backpropagation is used here to reflect this
interesting fact.
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15.5.4 Summary of Fuzzy Backpropagation (FBP) Algorithm

The key distinguishing characteristic of a fuzzy neural network (FNN) with the
fuzzy backpropagation (FBP) learning algorithm is that it forms a nonlinear
mapping from a set of fuzzy input stimuli to a set of output units using features
extracted from the input patterns. This network can be designed and trained
to accomplish a wide variety of fuzzy mappings, some of which are very
complex. This is because the units in the hidden layers of the network learn
to respond to features found in the input stimuli. By applying the set of
formulations of the FBP algorithm obtained in Section 15.5.3, a calculation
procedure of such a learning process is summarized in Table 15.7. In this
procedure, several learning factors such as the initial weights, the learning
rate, and the number of hidden neurons may be reselected if the iterative
learning process does not converge rapidly to the desired point.

Table 15.7 The fuzzy backpropagation (FBP) learning algorithm for
a two-layered FNN

Given N desired input-output pairs ( x ( k } , y d ( k } } with x ( k ) e [0,l]n

andyd(k)e [0,l]m:

Step 1: Select the number p of the hidden neurons, learning rate rj
and 772, error tolerance parameter e > 0, random initial values
of the weights w$ e [0,1] and wf^ e [0,1].

Step 2: Initialize w(£ *- w$(Q),w$ «- ̂ (0), E <- 0, and k «-
1.

Step 3: Calculate the neural outputs

and

Step 4: Calculate the partial derivatives du^ /dx\ \du^ ' /dw^ ,

and du\ ' ldx\ .j ' i
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Step 5: Calculate the output error ej = y^ — yj.

Step 6: Calculate the output deltas $ ' = ejv' (u\ ' } .j \ j j
Step 7: Calculate the hidden neuronal deltas

Step 8: Update the weights

Step 9: Calculate the error function E <- E + ± Y%Li e]-
Step 10: If k = N then go to Step 11. Otherwise, k —» k + 1 and go to

Step 3.
Step 11: If E > e then go to Step 12. Otherwise go to Step 2.
Step 12: Learning is completed. Output the weights.

15.6 FUZZY BASIS FUNCTION NETWORKS (FBFNs)

As discussed in Section 15.1.3 and illustrated in Fig. 15.3, a fuzzy system
is composed of four principal components: a fuzzifier, a fuzzy rule base, a
fuzzy inference engine, and a defuzzifier, and it is an information process-
ing machine. In such a machine, the crisp inputs are first converted into
fuzzy quantities for the processing purposes. After some knowledge-based
operations and processing on these fuzzy variables, the corresponding crisp
outputs are obtained. The fuzzy neural network (FNN) structures discussed
so far dealt only with the fuzzy input signals for a specified task as shown
in Fig. 15.16. From the fuzzy systems point of view, this type of FNN is an
important component and performs only a partial operation of a fuzzy system.
A natural question raised here is how a FNN act as an entire fuzzy system
for the purpose of information processing as shown in Fig. 15.17. In this
section, some FNNs, namely, the fuzzy basis function networks (FBFNs), are
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Figure 15.16 A fuzzy neural network (FNN) as a component of a fuzzy system.

Figure 15.17 A fuzzy neural network (FNN) implements an entire fuzzy system.

presented to implement an entire fuzzy system in the context of forming a
desired input-output mapping function for crisp signals.

15.6.1 Gaussian Networks versus Fuzzy Systems

15.6.1.1 Single-Output Fuzzy System
Consider a fuzzy system with crisp inputs, x G 3 ,̂ M IF-THEN rules, the
membership function HAJ for the jth rule (j = 1 , 2 , . . . , M), and the ith

component Xi of the input vector x. If a singleton fuzzifier is used, the total
result of the jth rule on the input vector x is given by

A FNN can simply be constructed by means of the weighted summation of
these quantities to form the output of the fuzzy system as follows

where Wj € $ftn(j = 1 ,2 , . . . , M) are the weight parameters. Since the
membership functions are nonlinear parameterized functions, Eqn. (15.95)
represents a nonlinear network with a nonfuzzy input vector x, with member-
ship functions (MFs) \LAJ (xi), weights Wj, and the nonfuzzy output y e !>ft. A

i

schematic representation of this network is given in Fig. 15.18. It can be seen
that such a fuzzy network structure can deal with not only some approximate
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Figure 15.18 A fuzzy neural network as described in Eqns. (15.94) and (15.95).

reasoning that is involved in a fuzzy system but also a defuzzifier in a fuzzy
system.

Furthermore, if a Gaussian radial membership function (GRMF)

is employed, Eqn. (15.95) can be rewritten as follows
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where

is the j'th Gaussian basis function. The parameters QJ and o~ij associated with
the Gaussian membership functions are initially determined by some rules.
Equation (15.97) is a standard Gaussian radial basis Junction neural network
(GRBFNN) (Chen et al. 1991, Cotter 1990, Poggio and Girosi 1990). Using
the Stone-Weierstrass theorem, it can be proved that the Gaussian network
is a universal approximator (Cotter 1990, Jin et al. 1994a, Poggio and Girosi
1990) that can be used to uniformly approximate continuous functions on a
compact set. However, if other types of MFs such as the triangular or trape-
zoidal function are employed in such a network, the universal approximation
capability cannot be easily verified. On the other hand, a very large number
of rules may be needed to carry out a function approximation.

15.6.1.2 Tuning Weights and Membership Functions (MFs)
Like the backpropagation (BP) learning algorithm for the membership func-
tion neural networks (MFNNs), if all of the free parameters, such as the
weights Wj, centers QJ, and variance cr^ in the Gaussian network are con-
sidered as unknown, we may use the gradient descent method to form the
updating equations for these parameters as shown in Fig. 15.19. Assume that
the learning task is described by the input-output pairs { x ( k } , y ( k } } . The
number of such data sets might be finite or infinite. As seen in the previous
sections, the first step for developing such a gradient descent technique-based
supervised learning procedure is to define the instantaneous value of the cost
function as follows

where

Using the cost function relations given in Eqns. (15.99) and (15.100), and the
network equations expressed in Eqns. (15.97) and (15.98), the following set
of the updating equations for the parameters are obtained
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Figure 15.19 Adaptation and learning of Gaussian membership functions
(GMFs).

where 771,772, and 773 are the learning rates associated with the weights, centers,
and variance parameters, respectively. The iterative process goes repeatedly
around the given learning data until the convergence values of the parameters
of the membership functions (MFs) are updated for carrying out the task
whose features are described by the known data.

15.6.1.3 Multiinput/Multioutput (MIMO) Fuzzy Systems
Fuzzy systems may have multiple outputs yi, y < 2 , . . . , ym. To describe such a
multiinput/multioutput (MIMO) fuzzy system, the fuzzy rule base, which is
a set of fuzzy of the IF-THEN relationships between the inputs and outputs,
may be modified to
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A Gaussian network is also capable of implementing a fuzzy system with
multiple outputs. In fact, a slight modification of Eqn. (15.97) gives the
following equations for a Gaussian network with ra outputs

or equivalently in a vector form

where y = [yi y2 • • • 2/™]T is an output vector, u — [u\ U2. • • • UM]T is
a kernel vector consisting of Gaussian basis functions, and W — [%]mxM

Figure 15.20 A Gaussian neural network with multiple inputs x E 3ft n and mul-
tiple outputs y 6 3ftm, Gi, i = 1, . . . , M represents the Gaussian
operation as defined in Eqn. (15.98) and the output of the network
as denned in Eqn. (15.104).
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is the weight matrix. This network structure is shown in Fig. 15.20. Such
a Gaussian network is capable of approximating uniformly a vector-valued
continuous function on a compact set.

15.6.2 Fuzzy Basis Function Networks (FBFNs) Are Universal
Approximators

15.6.2.1 Equations for Fuzzy Basis Function Networks (FBFNs)
As the last topic of this section, the approximation capabilities of FBFNs
are now discussed (Mendel 1995, Wang and Mendel 1993, Wang 1993).
Fuzzy systems, as fuzzy basis function expansions, can be represented as
two-layered feedforward network structures. On the basis of this idea, the
fuzzy systems may be trained to realize the desired input-output relationship
using various learning algorithms such as the FBP algorithm. As pointed out
by Wang and Mendel (1992a), the most important advantage of using fuzzy
basis functions, rather than polynomials, radial basis functions, or other terms,
is that a linguistic fuzzy IF-THEN rule is naturally related to a fuzzy basis
function.

Figure 15.21 A fuzzy basis function network (FBNN) described by Eqn. (15.106).
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It is known that the input-output equations of a fuzzy system with singleton
fuzzifier, product inference, and centroid defuzzifier may be expressed as

where

are called the fuzzy basis functions. Equation (15.106) gives an expression
for a fuzzy basis function as shown in Fig. 15.21.

In particular, if a Gaussian radial basis function is chosen as the membership
function, then

where

Fuzzy basis neural networks (FBNNs) may be considered as an extended
version of the Gaussian network. However, a fuzzy basis function network
(FBFN) represents directly a conventional fuzzy system. In other words,
a fuzzy system is functionally equivalent to a fuzzy basis function network
(FBFN) with the form given in Eqns. (15.106)-(15.109). From these two
different aspects, the fuzzy basis function network (FBFN) rediscovers some
interesting advantages of fuzzy systems; one is the universal approximation
capability, and the other is learning and adaptation, which have not been dealt
with in fuzzy systems. In fact, by applying the equations in question to the
preceding network structures representing the fuzzy systems, the recursive
algorithms for the computation of parameters of membership functions (MFs)
can be obtained.
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15.6.2.2 Universal Approximation Capability of Fuzzy Systems
In this case, let

These results are summarized in the following theorem.

Theorem 15.2 For an arbitrary continuous Junction g : S C ffl1 —> 3ft
defined on the compact set S C ffl1 and arbitrary e > 0, there exists a
function / € fi such that max \g(x) — f ( x ) \ < e for x e S. •

The proof of this theorem is based on the Stone-Weierstrass theorem.
This result show that the fuzzy basis function network (FBFN) with the
Gaussian membership function is a universal approximator. It might be noted
that Eqns. (15.106)-(15.109) define only one type of FBFNs. Using the
different definitions of a fuzzifier, fuzzy rule base, and defuzzifier, one may
create other forms of FBFNs. In addition to carrying out such an input-
output approximation process, learning algorithms such as the analog form of
the backpropagation and orthogonal least square algorithms can be obtained
(Funahashi 1989, Kosko 1992, Wang and Mendel 1992a).

15.7 CONCLUDING REMARKS

Fuzzy neural networks (FNNs) incorporate both neural networks and fuzzy
mathematics. A neural network is a computational network that has some
special characteristics such as learning, adaptation, and generalization. On the
other hand, fuzzy mathematics has the capacity for processing the approximate
reasoning and knowledge based information by using fuzzy logic operations.
FNNs retain the advantages of both of these two structures and are capable of
dealing with both numerically expressed and knowledge-based information.
In practice, the learning and adaptation mechanisms of FNNs can enhance the
approximate reasoning power of fuzzy systems.

Neural structures employing fuzzy logic operations, such as /j-norm, t-
conorm, and fuzzy implications, can be used for classification, approximation,
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and rule generation. Although the various definitions of t-norm and i-conorm
could give different mathematical descriptions for a network mechanism, the
final results of the mapping realized by the network are quite similar. This
suggests that more attention to this type of FNN should be placed on hybrid
fuzzy neural networks (HFNNs), which may have functional approximation
capability. Also, fuzzy backpropagation (FBP) learning algorithms and ge-
netic algorithms can be applied effectively to tune the parameters in such a
fuzzy network using the data or online sensor measurements. On the other
hand, fuzzy basis function networks (FBFNs) can be used to express fuzzy
systems such that the learning and adaptation capabilities are easily enhanced
for adapting both system parameters and membership functions. Both the gra-
dient descent technique-based online learning schemes and clustering, and the
generalized inverse approaches-based offline approaches can be employed in
the learning of FBFNs to perform tasks such as modeling, control, and pattern
recognition.

The purpose of this chapter is to help the reader learn not only the existing
results in the field but also the state-of-the-art achievements. The topics
studied in this chapter cover definition, structure, mathematical models, and
learning and adaptation mechanisms of FNNs. The materials reported here
form a basis for applications such as fuzzy modeling and control, pattern
recognition, and fuzzy neural reasoning. Behind the foundations presented in
this chapter, the advanced topics such as fuzzy genetic algorithms, dynamic
fuzzy neural structures, and real-time implementations of FNNs have also
been studied extensively since the mid-1990s. However, these topics are not
discussed in this chapter. An extensive list of references at the end with this
book will help the readers explore this field in more detail.

Problems

15.1 Assume X = {a, 6, c} be a conventional set with generic elements
{a, 6, c}. Consider the following two fuzzy sets:

Using the definition given in Table 15.1, obtain the intersection Ar\B,
the union A U B, and the complement A.

15.2 Consider a differnce-measure-based two-layered hibrid fuzzy neural
network (HFNN) with two neurons in the hidden layer and one in
the output layer. Using an S operation on the fuzzy variables x\ and
x2 G [0,1] defined in Tables 15.2 and 15.3
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implement the two-variable binary XOR function y = x\ © #2-

15.3 Let S be a fuzzy set on X that is either a discrete set with discrete
elements or a continuous set with continuous elements. Show that
there exists an operation in S, namely, addition and denoted by "(+),"
for any x, y, and z e S such that

(a) (x(+)y)(+)z = x(+)(y(+)z) (associative law)
(b) x(+)y = y(+)x (commutability)
(c) x(+)0 = x (zero element)

15.4 Following the previous problem, show that there exists a scalar multi-
plication operation <g> for any fuzzy scalars a, b G [0,1] and a ® x G 5
such that

(a) a ® ( 6 ( 8 ) x ) = ( a ( 8 ) & ) ® x (associative law)
(b) ( a(+)6 ) ® x = a ® x (+) 6 <g> x (distributive law)
(c) a® ( x(-\-)y } = a <S> x (+) a <g> ?/ (associative law)
(d) x (8) 0 = 0 (zero element)

15.5 On the basis of the results obtained in Problems 15.3 and 15.4, com-
pare similarities and differences between a fuzzy set and a conven-
tional set.

15.6 List the basic building blocks of a fuzzy control system.

15.7 Human perception to daily temperature changes results in a typical
fuzzy wording. Let the set X be defined as

where

On the basis of your perception to the daily temperature changes,
design a fuzzy membership function and use the fuzzy set theory to
describe this fuzzy logic reasoning.
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15.8 Let fuzzy sets A and B be defined by

Calculate

(a) //AusO)
(b) VAHB(Z)
(c) VA®B(X)
(d) jj,A(x) and HB(X)

15.9 Let fuzzy sets A, B, and C be defined by

Calculate

(a) HA(jBuc(x}
(b) /MnsncW
(c) /Me^ecCs)
(d) VA(X)> VB(X)> and A*c(;r)

15.10 Let A\,...,An be fuzzy sets in the universes of discourse
X\,..., Xn = 3R, characterized by Gaussian membership functions

Show that the Cartesian product of the fuzzy sets A\,..., An in the
universe of discourse X\ x • • • x Xn = $tn, is a fuzzy set A\_ x • • • x An

with the following membership function

where
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15.11 Show that the various T and S operations given in Table 15.2 satisfy
the following properties

(i) T(x,y) = T(y, x] (commutativity)
(ii) T(T(z, y ) , z ) = T(x, T(j/, z)) (associativity)
(iii) T(xi,yi)>T(x2,y2) (monotonicity)

if x\ > x2 and yi > y2

(iv) T(x, 1) = x (boundary condition)

and

(i') S(x,y) = S(y,x) (commutativity)
(ii') S(S(x,y),z) = S(x,S(y,z)) (associativity)
(iii') 8(0:1,2/1) > S(x2,y2) (monotonicity)

if xi > x2 and y\ > y2

(iv') S (x ,0 )=x (boundary condition)

15.12 If in Eqn. (15.19), the operation <g> is chosen as a min operation as
shown in Eqn. (15.18), give the equation between the crisp input x
and output y of the fuzzy system discussed in Section 15.1.

15.13 Prove the input and output equation of the fuzzy system given by
Eqn. (15.95).

15.14 For the fuzzy system described by Eqn. (15.95), find a non-Gaussian
membership function HAJ (xi) such that the fuzzy system with singlet
fuzzifier, product inference, and centroid defuzzifier is a universal
approximator.

15.15 Consider a function that is a sine function in the interval [0, TT] and is
zero elsewhere:

otherwise

A scaled sinusoidal membership function is defined as

otherwise
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where 0 < dji < 1, o^ and bji are the parameters associated with
^Ai(xi). Prove that

(a) The input-output equation of such a fuzzy system can be
represented as

where the parameters m, Vj, Qji, and Oji can be determined
using the parameters dji, o^, and 6^;

(b) Prove that the above input-output equation is a universal
approximator.

15.16 Consider a discrete-time nonlinear system of the form

(a) Design a fuzzy system to approximate such a nonlinear sys-
tem;

(b) Give adaptation equations for updating such a fuzzy system;

(c) Give simulation results for such a nonlinear system identifi-
cation problem.

15.17 Consider the fuzzy basis function network (FBFN) discussed in this
chapter and the radial basis function network (RBFN) discussed in
Chapter 6.
(a) State the similarities and differences both in structure and

equation between the two networks;

(b) Can the FBFN as a universal approximator infer that the
RBFN is also a universal approximator, and vice versa?

(c) Derive an orthogonal least squares learning algorithm of the
FBFN.
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15.18 For the fuzzy basis function network with a singleton fuzzifier and
input-output equation

if the membership function p,Aj (xi) is chosen as a triangular function

where a] ^ b? and c? ^ b?. Derive a training algorithm for updating
the parameters of this FBFN.

15.19 Derive an input-output equation of a fuzzy basis function network
of a non-singleton fuzzifier and discuss the universal approximation
capability of this class of FBFNs.



This page intentionally left blank 



References and Bibliography*

[1] Al-Holou, N., Lahdhiri, T., Sung, J. D., Weaver, J., and Al-Abbas, F. (2002).
"Sliding Mode Neural Network Inference Fuzzy Logic Control for Active Sus-
pension Systems," IEEE Trans. Fuzzy Syst., Vol. 10, No. 2, pp. 234-246.

[2] Abu-Mostafa, Y. and Jacques, J. St. (1985). "Information Capacity of the
Hopfield Model," IEEE Trans. Inf. Theory, Vol. 7, pp. 1-11.

[3] Alahakoon, L. D., Halgamuge, S. K. and Srinivasan, B. (2000). "Dynamic
Self Organizing Maps with Controlled Growth for Knowledge Discovery," IEEE
Trans. Neural Networks, Vol. 11, No. 3, pp. 601-614.

[4] Amari, S. and Arbib, M. A. (eds.) (1982). "Competition and Cooperation in
Neural Nets," Lecture Notes in Biomathematics, Springer-Verlag, New York,
Vol. 45.

[5] Amit, D. J. (1989). Modeling Brain Function: The World of Attractor Neural
Networks, Cambridge Univ. Press, Cambridge, UK.

[6] Anderberg, M. R. (1973). Cluster Analysis for Applications, Academic Press,
New York.

[7] Anderson, D. (ed.) (1988). Neural Information Processing Systems, American
Institute of Physics, New York.

*A classified extended bibliography is listed in Appendix B on the following ftp site:
ftp://ftp.wiley.com/public/sci_tech_med/neural_networks/

657



688 REFERENCES AND BIBLIOGRAPHY

[8] Aonishi, T. and Kurata, K. (2000). "Extension of Dynamic Link Matching by
Introducing Local Linear Maps," IEEE Trans. Neural Networks, Vol. 11, No. 3,
pp. 817-822.

[9] Arbib, M. A. (1987). Brains, Machines and Mathematics, 2nd ed., Springer-
Verlag, New York.

[10] Asari, V. K. (2001). "Training of a Feedforward Multiple-Valued Neural Net-
work by Error Backpropagation with a Multilevel Threshold Function," IEEE
Trans. Neural Networks, Vol. 12, No. 6, pp. 1519-1520.

[11] Atiya, A. and Parlos, A. (2000). "New Results on Recurrent Network Training:
Unifying the Algorithms and Accelerating Convergence," IEEE Trans. Neural
Networks, Vol. 11, No. 3, pp. 697-709.

[12] Avitabile, G., Forti, M., Manetti, S., andMarini, M. (1992). "On a Class of Non-
symmetrical Neural Networks with Application to ADC," IEEE Trans. Circuits
Syst., Vol. 38, No. 2, (Feb.), pp. 202-209.

[13] Azimi-Sadjadi, M. R., Yao, D., Huang, Q., and Dobeck, G. J. (2000). "Under-
water Target Classification Using Wavelet Packets and Neural Networks," IEEE
Trans. Neural Networks, Vol. 11, No. 3, pp. 784-794.

[14] Bargiela, A. (2000). "Operational Decision Support through Confidence Limits
Analysis and Pattern Classification," Plenary Lecture, 5th Int. Conf. Computer
Simulation andAI, Mexico, Feb.

[15] Barmann, F. and Biegler-Konig, F. (1992). "On a Class of Efficient Learning
Algorithms for Neural Networks," Neural Networks, Vol. 5, pp. 139-144.

[16] Battiti, R. (1992). "First and Second-Order Methods for Learning: Between
Steepest Descent and Newton's Method," Neural Comput., Vol. 4, pp. 141-166.

[17] Battiti, R. andMasulliF. (1990). "BFGS Optimization for Faster and Automated
Supervised Learning," Proc. INCC 90 Paris, Int. Neural Network Conf., pp. 757-
760, Kluwer, Dordrecht, Germany.

[18] Bellman, R. E. and Zadeh, L. A. (1977). "Local and Fuzzy Logics," in Modern
Uses of Multiple-Valued Logic., Dunn, J. M. and Epstein, G. (eds.), Reidel,
Dordrecht, Netherlands, pp. 103-165.

[19] Bengio, S. and Bengio, Y. (2000). "Taking on the Curse of Dimensionality
in Joint Distribution Using Neural Networks," IEEE Trans. Neural Networks,
Vol. 11, No. 3, pp. 550-557.

[20] Bianchini, M., Gori, M., and Scarselli, F. (2001a). "Theoretical Properties
of Recursive Networks with Linear Neurons," IEEE Trans. Neural Networks,
Vol. 12, No. 5, pp. 953-967.



REFERENCES AND BIBLIOGRAPHY 689

[21] Bianchini, M, Gori, M., and Scarselli, F. (2001b). "Processing Directed Acyclic
Graphs with Recursive Neural Networks," IEEE Trans. Neural Networks, Vol. 12,
No. 6, pp. 1464-1470.

[22] Blum, E. K. and Li, L. K. (1991). "Approximation Theory and Feedforward
Networks," Neural Networks, Vol. 4, No. 4, pp. 511-515.

[23] Brown, B. D. and Card, H. C. (2001). "Stochastic Neural Computation I and II,"
IEEE Trans. Comput., Vol. 59 (Sept.).

[24] Bruck, J. (1990b). "On the Convergence Properties of the Hopfield Model,"
Proc. IEEE, Vol. 78, No. 10, pp. 1579-1585.

[25] Bryson, A. E. and Ho, Y.-C. (1969). Applied Optimal Control, Blaisdell.

[26] Buckley, J. J. and Hayashi, Y. (1993a). "Numerical Relationships between Neural
Networks, Continuous Functions and Fuzzy Systems," Fuzzy Sets Syst., Vol. 60,
pp. 1-8.

[27] Buckley, J. J. and Hayashi, Y. (1993b). "Hybrid Neural Nets can be Fuzzy
Controllers and Fuzzy Expert Systems," Fuzzy Sets Syst., Vol. 60, pp. 135-142.

[28] Buckley, J. J. and Hayashi, Y. (1993c). "Can Fuzzy Neural Nets Approximate
Continuous Fuzzy Functions," Fuzzy Sets Syst., Vol. 61, pp. 43-52.

[29] Buckley, J. J. and Hayashi, Y. (1994a). "Fuzzy Genetic Algorithm and Applica-
tions" Fuzzy Sets Syst., Vol. 61, pp. 129-136.

[30] Buckley, J. J. and Hayashi, Y. (1994b). "Fuzzy Neural Networks: A Survey,"
Fuzzy Sets Syst., Vol. 66, No. 1, pp. 1-13.

[31] Buntine, W. and Weigend, A. S. (1994). "Computing Second Derivatives in
Feed-forward Networks: A Review," IEEE Trans. Neural Networks, Vol. 5,
No. 3, pp. 480-488.

[32] Burrascano, P. (1991). "A Norm Selection Criterion for the Generalized Delta
Rule," IEEE Trans. Neural Networks, Vol. 2, No. 1, pp. 125-130.

[33] Cabrelli, C., Molter, U., and Shonkwiler, R. (2000). "A Constructive Algorithm
to Solve 'Convex Recursive Deletion' (CoRD) Classification Problems via Two-
Layer Perceptron Networks," IEEE Trans. Neural Networks, Vol. 11, No. 3,
pp. 811-816.

[34] Card, H. C. (2001). "Compound Binomial Processes in Neural Integration,"
IEEE Trans. Neural Networks, Vol. 12, No. 6, pp. 1505-1512.

[35] Carroll, B. W. and Dickinson, B. D. (1989). "Construction of Neural Net Using
The Radon Transform," Proc. Int. Joint Conf. Neural Networks, Vol. I, pp. 607-
611.



690 REFERENCES AND BIBLIOGRAPHY

[36] Castro, J. L., Delgado, M., and Manias, C. J. (2000). "SEPARATE: A Ma-
chine Learning Method Based on Semi-Global Partitions," IEEE Trans. Neural
Networks, Vol. 11, No. 3, pp. 710-720.

[37] Chauvin, Y. (1989). "A Back-propagation Algorithm with Optimal Use of Hidden
Units," in Advances in Neural Information Processing Systems, Touretzky, D. S.
(ed.), Vol. 1, Morgan Kaufmann, San Jose, CA.

[38] Chen, K. and Wang, D. L. (2001). "Perceiving Geometric Patterns: From Spirals
to Inside-Outside Relations by a Neural Oscillator Network," IEEE Trans. Neural
Networks, Vol. 12. pp. 1084-1102.

[39] Chen, S., Cowan, C. F. N., and Grant, P. M. (1991). "Orthogonal Least Squares
Learning Algorithm for Radial Basis Function Networks," IEEE Trans. Neural
Networks, Vol. 2 (Feb.), pp. 302-309.

[40] Chen, S., Gunn, S. R., and Harris, C. J. (2000). "Decision Feedback Equalizer
Design Using Support Vector Machines," Proc. Inst. Elect. Eng. Vision, Image,
Signal Processing, Vol. 147, No. 3, pp. 213-219.

[41] Chen, S., Gunn, S. R., and Harris, C. J. (2001a). "The Relevance Vector Machine
Technique for Channel Equalization Application," IEEE Trans. Neural Networks,
Vol. 12, No. 6, pp. 1529-1531.

[42] Chen, S., Samingan, A. K., and Hanzo, L. (2001b). "Support Vector Ma-
chine Multiuser Receiver for DS-CDMA Signals in Multipath Channels," IEEE
Trans. Neural Networks, Vol. 12, pp. 604-611.

[43] Chen, T. (2001). "Global Convergence of Delayed Dynamical Systems," IEEE
Trans. Neural Networks, Vol. 12, No. 6, pp. 1532-1535.

[44] Chen, T. P. and Amari, S. (200la). "Exponential Convergence of Delayed
Dynamical Systems?" Neural Comput., Vol. 13, No. 3, pp. 621-636.

[45] Chen, T. P. and Amari, S. (2001b). "New Theorems on Global Convergence of
Some Dynamical Systems," Neural Networks, Vol. 14, No. 3. pp. 251-255.

[46] Chen, T. P. and Amari, S. (2001c). "Stability of Asymmetric Hopfield Networks,"
IEEE Trans. Neural Networks, Vol. 12, pp. 159-163.

[47] Churchland, P. S. (1988). Neurophilosophy, MIT Press, Cambridge, MA.

[48] Churchland, P. S. and Sejnowski, T. J. (1988). "Perspectives on Cognitive
Neuroscience," Science, Vol. 242, pp. 741-745.

[49] Churchland, P. S. and Sejnowski, T. J. (1992). The Computational Brain, MIT
Press, Cambridge, MA.

[50] Cohen, M. A. and Grossberg, S. (1983). "Absolute Stability of Global Pattern
Information and Parallel Memory Storage by Competitive Neural Networks,"
IEEE Trans. Syst. Man Cybernet., Vol. 13, pp. 815-826.



REFERENCES AND BIBLIOGRAPHY 691

[51] Cotter, N. (1990). "The Stone-Weierstrass Theorem and Its Application to Neural
Networks," IEEE Trans. Neural Networks, Vol. 1, No. 4, pp. 290-295.

[52] Cristianini, N. and Shawe-Taylor, J. (2000). An Introduction to Support Vector
Machines and Other Kernel-Based Learning Methods, Cambridge Univ. Press,
Cambridge, UK.

[53] Cybenko, G. (1989). "Approximation by Superpositions of a Sigmoidal Func-
tion," Math. Control Signal System, Vol. 2, No. 3, pp. 303-314.

[54] Darken, C, Chang, J., and Moody, J. E. (1992). "Learning Rate Schedules for
Faster Stochastic Gradient Search," Proc. Neural Networks for Signal Processing
2.

[55] Darken, C. and Moody, J. E. (1991). "Note on Learning Rate Schedules for
Stochastic Optimization," in Advances in Neural Information Processing Sys-
tems, Lippmann, R. P., Moody, I.E., and Touretzky, D. S. (eds.), Vol. 3, Morgan
Kaufmann, San Mateo, CA, pp. 832-838.

[56] Darken, C. and Moody, J. E. (1992). "Towards Faster Stochastic Gradient
Search," in Adcances in Neural Information Processing Systems, Morgan Kauf-
mann, San Mateo, CA, Vol. 4, pp. 1009-1016.

[57] Dasgupta, S., Ghosh, A., and Cuykendall, R. (1989). "Convergence in Neural
Memories (Corresp.)," IEEE Trans. Inform. Theory, Vol. 35, pp. 1069-1072.

[58] Datta, A., Pal, S., and Pal, N. R. (2000). "A Connectionist Model for Convex-Hull
of a Planar Set," Neural Networks, Vol. 13, pp. 377-384.

[59] Deco, G. and Schiirmann, B. (1997). "Dynamic Modelling Chaotic Time Series,"
Computational Learning Theory and Neural Learning Systems, Vol. 4 of series,
Making Learning Systems Practical, MIT Press, Cambridge, MA, Chapter 9,
pp. 137-153.

[60] Denker, J. S. (1986). "Neural Network Models of Learning and Adaptation,"
Physica D, Vol. 22, pp. 216-232.

[61] Ding, H. and Gupta, M. M. (2000). "Competitive and Cooperative Adaptive
Reasoning with Fuzzy Causal Knowledge," J. Intell. Fuzzy Syst., Vol. 3, No. 6,
pp. 245-254.

[62] Douglas, S. C. and Meng, T. H. Y. (1991). "Linearized Least-Squares Training of
Multilayer Feedforward Neural Networks," Proc. IEEE IJCNN, Vol. I, pp. 307-
312, Seattle, WA, June.

[63] Dubois, D. and Prade, H. (1980). Fuzzy Sets Syst.: Theory and Applications.,
Academic Press, Orlando, FL.



692 REFERENCES AND BIBLIOGRAPHY

[64] Eichfeld, H., Kunemund, T., and Menke, M. (1996). "A 12b General-Purpose
Fuzzy Logic Controller Chip," IEEE Trans. Fuzzy Syst., Vol. 4, No. 4, pp. 460-
475.

[65] Engelbrecht, A. P. (2001). "A New Pruning Heuristic Based on Variance Anal-
ysis of Sensitivity Information," IEEE Trans. Neural Networks, Vol. 12, No. 6,
pp. 1386-1399.

[66] Fernandez de Canete, J., Barreiro, A., Garcia-Cerezo, A., and Garcia-Moral,
I. (2001). "An Input-Output Based Robust Stabilization Criterion for Neural-
Network Control of Nonlinear Systems," IEEE Trans. Neural Networks, Vol. 12,
No. 6, pp. 1491-1497.

[67] Floreen, P. (1991). "Worst-Case Convergence Times for Hopfield Memories,"
IEEE Trans. Neural Networks, Vol. 2, No. 5, pp. 533-535.

[68] Fogelman-Soulie, F, Gallinari, P., LeCun, Y., and Thiria, S. (1987). "Automata
Networks and Artificial Intelligence," in Automata Networks in Computer Sci-
ence: Theory and Applications, Princeton Univ. Press, pp. 133-186.

[69] Franco, L. and Cannas, S. A. (2001). "Generalization Properties of Modular
Networks: Implementing the Parity Function," IEEE Trans. Neural Networks,
Vol. 12, No. 6, pp. 1306-1313.

[70] Fu, H. C., Lee, Y. P., Chiang, C. C., and Pao, H. T. (2001). "Divide-and-Conquer
Learning and Modular Perceptron Networks," IEEE Trans. Neural Networks,
Vol. 12, pp. 250-263.

[71] Fu, L. M. and Shortliffe, E. H. (2000). "The Application of Certainty Factors to
Neural Computing for Rule Discovery," IEEE Trans. Neural Networks, Vol. 11,
No. 3, pp. 647-657.

[72] Fujimori, A., Nikiforuk, P. N., and Gupta, M. M. (2001a). "A Flight Control
Design of a Re-Entry Vehicle Using a Double-Loop Control System with Fuzzy
Gain Scheduling," Proc. Inst. Mech. Engineers, Vol. 215, Part G, pp. 1-12.

[73] Fujimori, A., Teramoto, M., Nikiforuk, P. N., and Gupta, M. M. (2001b). "Coop-
erative Collision Avoidance between Multiple Mobile Robots," /. Robotic Syst.,
Vol. 17, No. 7, pp. 347-363.

[74] Funahashi, K. (1989). "On the Approximate Realization of Continuous Map-
pings by Neural Networks," Vol. 2, No. 3, pp. 183-192.

[75] Gabrys, B. and Bargiela, A. (2000). "General Fuzzy Min-Max Neural Network
for Clustering and Classification," IEEE Trans. Neural Networks, Vol. 11, No. 3,
pp. 769-783.

[76] Gallant, A. R. and White, H. (1988). "There Exists a Neural Network that Do
Not Make Avoidable Mistakes," Proc. IEEE Conf Neural Networks, San Diego,
Vol. 1, pp. 657-664.



REFERENCES AND BIBLIOGRAPHY 693

[77] Gers, F. A. and Schmidhuber, J. (2000). "Recurrent Nets that Time and Count,"
Proc. Int. Joint Conf. Neural Networks, Como, Italy.

[78] Gers, F. A. and Schmidhuber, J. (2001). "LSTM Recurrent Networks Learn
Simple Context-Free and Context-Sensitive Languages," IEEE Trans. Neural
Networks, Vol. 12, No. 6, pp. 1333-1380.

[79] Gers, F. A., Schmidhuber, J., and Cummins, F. (2000). "Learning to Forget:
Continual Prediction with LSTM," Neural Comput., Vol. 12, No. 10, pp. 2451-
2471.

[80] Gerschgorin, S. (1931). "Uber die Abgrenzung der Eigenwerte Einer Matrix,"
Izv. Akad. Nauk SSSR, Ser. fiz.-mat., Vol. 6, pp. 749-754.

[81] Giles, C. L. and Maxwell, T. (1987). "Learning Invariance, and Generalization
in Higher-Order Networks," Appl. Optics, Vol. 26, pp. 4972-4978.

[82] Girolami, M. (2001). "The Topographic Organization and Visualization of Bi-
nary Data Using Multivariate-Bernoulli Latent Variable Models," IEEE Trans.
Neural Networks, Vol. 12, No. 6, pp. 1367-1374.

[83] Goles, E. (1986). "Antisymmetric Neural Networks," Discrete Appl. Math.,
Vol. 13, pp. 97-100.

[84] Goles, E., Fogelman, F., and Pellegrin, D. (1985). "Decreasing Energy Functions
as a Tool for Studying Threshold Networks," Discrete Appl. Math., Vol. 12,
pp. 261-277.

[85] Gori, M., Maggini, M., Martinelli, E., and Scarselli, F. (2000). "Learning User
Profiles in NAUTILUS," Proc. Int. Conf. Adaptive Hypermedia Adaptive Web-
Based Systems-Lecture Notes Computational Science, 1892, Trento, Italy.

[86] Grossberg, S. (1990). "Content-addressable Memory Storage by Neural Net-
works: A General Model and Global Lyapunov Method," in Computational
Neuroscience, Schwartz, E. L. (ed.), MIT Press, Cambridge, MA, pp. 56-68.

[87] Guez, A., Protopopsecu, V, and Bahren, J. (1988). "On the Stability, Stor-
age Capacity, and Design of Continuous Nonlinear Neural Networks," IEEE
Trans. Syst. Man Cybernet., Vol. 18, No. 1, pp. 80-87.

[88] Gupta, M. M. (1994). "Fuzzy Logic and Neural Networks," in Neuro Control,
Gupta, M. M. and Rao, D. H. (eds.), IEEE Press, New York, pp. 403-416.

[89] Gupta, M. M. (2001). "Fuzzy Sets, Fuzzy Logic and Fuzzy Systems," in En-
cyclopedia of Physical Science and Technology, Meyer, R. A. (ed.), Academic
Press, San Diego.

[90] Gupta, M. M. and Knopf, G. K. (1992). "A Multitask Visual Information Proces-
sor with a Biologically Motivated Design," J. Visual Commun. Image Represent.,
Vol. 3. No. 3 (Sept.), pp. 230-246.



694 REFERENCES AND BIBLIOGRAPHY

[91] Gupta, M. M. and Knopf, G. K. (eds.) (1994). ^euro-Vision Systems: Principles
and Applications, a volume of selected reprints, IEEE Neural Networks Council,
IEEE Press, New York.

[92] Gupta, M. M. and Qi, J. (1991). "On Fuzzy Neuron Models," Proc. 1991IJCNN,
Vol. 1, July, pp. 431-456.

[93] Gupta, M. M. and Qi, J. (1992a). "On Fuzzy Neuron Models," in Fuzzy Logic
for the Management of Uncertainty, Zadeh, L. and Kacprzyk, J. (eds.), Wiley,
New York, pp. 479-491.

[94] Gupta, M. M. and Qi, J. (1992b). "Theory of T Nouns and Fuzzy Inference
Method," Fuzzy Sets Syst., Vol. 40, pp. 431^50.

[95] Gupta, M. M., Ragade, R. K., and Yager, R. R. (eds.) (1979). Advances in Fuzzy
Set Theory and Applications, North-Holland Publishing, Oct.

[96] Gupta, M. M. and Rao, D. H. (eds.) (1994a). Nemo-Control Systems: Theory
and Applications, a volume of selected reprints, IEEE Neural Networks Council,
IEEE Press, New York.

[97] Gupta, M. M. and Rao, D. H. (1994b). "On the Principles of Fuzzy Neural
Networks," Fuzzy Sets Syst., Vol. 61, No. 1, pp. 1-18.

[98] Gupta, M. M. and Sinha, N. K. (eds.) (1995). Intelligent Control Systems:
Theory and Applications, a volume of 29 invited chapters, Sponsor: IEEE Neural
Networks Council and Co-sponsor: IEEE Control Systems Society, IEEE Press,
New York (Revised 2nd ed., 1997).

[99] Gupta, M. M. and Yamakawa, T. (eds.) (1988a). Fuzzy Computing: Theory
Hardware and Applications, North Holland.

[100] Gupta, M. M. and Yamakawa, T. (eds.) (1988b). Fuzzy Logic in Knowledge-
Based Systems, Decision and Control, North Holland, Amsterdam, New York.

[101] Harston, C. T. (1990). "The Neurological Basis for Neural Computation," in
Handbook of Neural Computing Applications, Maren, A. J., Harston, C. T., and
Pap, R. M. (eds.), Academic Press, New York, pp. 29-44.

[102] Hassibi, B. and Stork, D. G. (1993). "Second-Order Derivatives for Network
Pruning: Optimal Brain Surgeon," inAdvances in Neural Information Processing
Systems, Hanson, S. J., Cowan, J. D., and Giles, C. L. (eds.), Vol. 5, Morgan
Kaufmann, San Jose, CA, pp. 164-172.

[103] Haykin, S. (1991). Adaptive Filter Theory, Prentice-Hall, Englewood Cliffs, NJ.

[104] Haykin, S. and Principe, J. (1998). "Making Sence of Complex World: Using
Neural Networks to Dynamically Model Chaotic Events Such as Sea Clutter,"
IEEE Signal Processing Magazine, Vol. 15, No. 3, pp.66-81.



REFERENCES AND BIBLIOGRAPHY 695

[105] Hebb, D. O. (1949). The Organization of Behavior, Wiley, New York.

[106] Hecht-Nielsen, R. (1987). "Kolmogorov's Mapping Neural Network Existence
Theorem," Proc. 1987 /CAW, Vol. Ill, pp. 11-14.

[107] Hecht-Nielsen, R. (1989). "Theory of the Back-Propagation Neural Network,"
Proc. Int. Joint Conf. Neural Networks, Vol. I, pp. 593-605.

[108] Hecht-Nielsen, R. (1990). Neumcomputing, Addison-Wesley, Reading, MA.

[109] Heskes, T. (2001). "Self-Organizing Maps, Vector Quantization, and Mixture
Modeling," IEEE Trans. Neural Networks, Vol. 12, No. 6, pp. 1299-1305.

[110] Hiramoto, M., Hiromi, Y., Giniger, E., and Hotta, Y. (2000). "The Drosophila
Netrin Receptor Frazzled Guides Axons by Controlling Netrin Distribution,"
Nature, Vol. 406, No. 6798, pp. 886-888.

[Ill] Hirose, Y, Yamashita, K., andHijiya, S. (1991). "Back-Propagation Algorithm
which Varies the Number of Hidden Units," Neural Networks, Vol. 4, pp. 61-66.

[112] Hirsch, M. W. (1989). "Convergent Activation Dynamics in Continuous Time
Networks," Neural Networks, Vol. 1 (May), pp. 331-349.

[113] Hirsch, M. W. and Smale, S. (1974). Differential Equations, Dynamical Systems,
and Linear Algebra, Academic Press, New York.

[114] Homma, N. and Gupta, M. M. (2002a). "Superimposing Neural Learning by
Dynamic and Spatial Changing Weights," Proc. 7th Int. Symp. Artificial Life and
Robotics, Vol. 1, pp. 165-168.

[115] Homma, N. and Gupta, M. M. (2002b). "A General Second-order Neural Unit,"
Bull Coll. Med. Sci. Tohoku Univ., Vol. 11, No. 1, pp. 1-6.

[116] Homma, N., Sakai, M., Gupta, M. M., and Abe, K. (2001). "Stochastic Analysis
of Chaos Dynamics in Recurrent Neural Networks," Proc. Joint 9th IPS A World
Congress and 20th NAFIPS Int. Conf., Vancouver, BC, Canada, July, pp. 1372-
1376.

[117] Honma, N., Kamauchi, T., Abe, K., and Takeda, H. (1999a). "Auto-Learning
by Dynamical Recognition Networks," Proc. IEEE Int. Conf. Systems, Man, and
Cybernetics, Vol. Ill, pp. 211-216.

[118] Honma, N., Sakai, M., Abe, K., and Takeda, H. (1999b). "Control Method of the
Lyapunov Exponents for Recurrent Neural Networks," Proc. 14th IFAC World
Congress, Beijing, Vol. K, pp. 51-56.

[119] Hopfield, J. (1982). "Neural Networks and Physical Systems with Emergent Col-
lective Computational Abilities," Proc. Nat. Acad. Sci. USA, Vol. 79, pp. 2554-
2558.



696 REFERENCES AND BIBLIOGRAPHY

[120] Hopfield, J. (1984). "Neurons with Graded Response Have Collective Computa-
tional Properties Like Those of Two-State Neurons," Proc. Nat. Acad. Sci. USA,
Vol. 81, pp. 3088-3092.

[121] Hopfield, J. and Tank, D. W. (1986). "Computing with Neural Circuits: A
Model," Science, Vol. 233, pp. 625-633.

[122] Hoppensteadt, F. C. and Izhikevich, (2000). "Pattern Recognition via Synchro-
nization in Phase-Locked Loop Neural Networks," IEEE Trans. Neural Networks,
Vol. 11, No. 3, pp. 734-738.

[123] Horn, R. A. and Johnson, C. R. (1985). Matrix Analysis, Cambridge Univ. Press.

[124] Hornik, K. (1991). "Some New Results on Neural Network Approximation,"
Neural Networks, Vol. 6, No. 8, pp. 1069-1072.

[125] Hornik, K., Stinchcombe, M., and White, H. (1989). "Multilayer Feedfor-
ward Networks Are Universal Approximators," Neural Networks, Vol. 2, No. 5,
pp. 359-366.

[126] Hornik, K., Stinchcombe, M., and White, H. (1990). "Universal Approximation
of an Unknown Mapping and Its Derivatives Using Multilayer Feedforward
Networks," Neural Networks, Vol. 3, No. 6, pp. 551-560.

[127] Hoya, T. and Chambers, J. A. (2001). "Heuristic Pattern Correction Scheme
Using Adaptively Trained Generalized Regression Neural Networks," IEEE
Trans. Neural Networks, Vol. 12, pp. 91-100.

[128] Huang, G. B., Chen, Y. Q., and Babri, H. A. (2000). "Classification Ability
of Single Hidden Layer Feedforward Neural Networks," IEEE Trans. Neural
Networks, Vol. 11, No. 3, pp. 799-801.

[129] Hush, D. R. and Home, B. G. (1993). "Progress in Supervised Neural Networks,"
IEEE Signal Process. Mag., Vol. 10, No. 1 (Jan.), pp. 8-39.

[130] Hyvarinen, A. (2001). "Blind Source Separation by Nonstationarity of Variance:
A Cumulant-Based Approach," IEEE Trans. Neural Networks, Vol. 12, No. 6,
pp. 1471-1474.

[131] Hyvarinen, A., Karhunen, J., and Oja, E. (2001). Independent Component
Analysis, Wiley, New York.

[132] Hyvarinen, A. and Oja, E. (1997). "A Fast Fixed-Point Algorithm for Indepen-
dent Component Analysis," Neural Comput., Vol. 9, No. 7, pp. 1483-1492.

[133] Indiveri, G. (2000). "Modeling Selective Attention Using a Neuromorphic Ana-
log VLSI Device," Neural Comput., Vol. 12, No. 12, pp. 2857-2880.

[134] Indiveri, G. (200la). "A Current-Mode Analog Hysteretic Winner-Take-All
Network, with Excitatory and Inhibitory Coupling," J. Analog Integrated Circuits
Signal Process., Vol. 28, pp. 279-291.



REFERENCES AND BIBLIOGRAPHY 697

[135] Indiveri, G. (2001b). "A Neuromorphic VLSI Device for Implementing 2-D
Selective Attention Systems," IEEE Trans. Neural Networks, Vol. 12, No. 6,
pp. 1455-1463.

[136] Indiveri, G., Murer, R., and Kramer, J. (2001). "Active Vision Using an Analog
VLSI Model of Selective Attention," IEEE Trans. Circuits Syst. II, Vol. 48,
pp. 492-500.

[137] Isermann, R. (1989). "A Review on Detection and Diagnosis Illustrates that
Process Faults Can Be Detected When Based on the Estimation of Unmeasurable
Process Parameters and State Variables," Automatical IFAC J., Vol. 20, No. 4,
pp. 387^04.

[138] Itti, L. and Koch, C. (2001). "Computational Modeling of Visual Attention,"
Nature Neurosci. Rev., Vol. 2, pp. 194-204.

[139] Iyer, M. S. and Wunsch, I. I. (2001). "Dynamic Reoptimization of a Fed-
Batch Fermentor Using Adaptive Critic Designs," IEEE Trans. Neural Networks,
Vol. 12, No. 6, pp. 1433-1444.

[140] Jacobs, R. A. (1988). "Increased Rates of Convergence through Learning Rate
Adaptation," Neural Networks, Vol. 1, No. 4, pp. 295-308.

[141] Jang, J. S. R. (1992). "Self-Learning Fuzzy Controllers Based on Temporal
Back-Propagation," IEEE Trans. Neural Networks, Vol. 3 (Sept.), pp. 714-723.

[142] Jang, J. S. R. and Sun, C. T. (1990). "Neuro-Fuzzy Modeling and Control," Proc.
IEEE, Vol. 83, No. 3 (March), pp. 378-406.

[143] Jang, J. S. R. and Sun, C. T. (1993). "Functional Equivalence between Radial
Basis Function Networks and Fuzzy Inference Systems," IEEE Trans. Neural
Networks, Vol. 4, No. 1 (Jan.), pp. 156-159.

[144] Jin, L. and Gupta, M. M. (1996a). "Equilibrium Capability of Analog Feedback
Neural Networks," IEEE Trans. Neural Networks, Vol. 7, pp. 782-787.

[145] Jin, L. and Gupta, M. M. (1996b). "Globally Asymptotical Stability of Discrete-
Time Analog Neural Networks," IEEE Trans. Neural Networks, Vol. 7, No. 4,
pp. 1024-1031.

[146] Jin, L. and Gupta, M. M. (1999). "Stable Dynamic Backpropagation Learning in
Recurrent Neural Networks," IEEE Trans. Neural Networks, Vol. 10, pp. 1321-
1334.

[147] Jin, L., Gupta, M. M., and Nikiforuk, P. N. (1993a). "Computational Neural
Architectures for Control Applications," in Soft Computing: Fuzzy Logic, Neu-
ral Networks, and Distributed Artificial Intelligence, Prentice-Hall, Englewood
Cliffs, NJ, Chapter 6, pp. 121-152.



698 REFERENCES AND BIBLIOGRAPHY

[148] Jin, L., Nikiforuk, P. N., and Gupta, M. M. (1993b). "Stable Fixed Point Learning
Using Parallel Synaptic and Somatic Adaptation," Proc. 1993 World Congress
on Neural Networks, Vol. II, pp. 945-950.

[149] Jin, L., Gupta, M. M., and Nikiforuk, P. N. (1994a). "Approximation Capabilities
of Feedforward and Recurrent Neural Networks," in Intelligent Control Systems,
Gupta M. M. and Sinha, N. K. (eds.), IEEE Press, Chapter 10, pp. 234-264.

[150] Jin, L., Nikiforuk, P. N., and Gupta, M. M. (1994b). "Absolute Stability Con-
ditions for Discrete-time Recerrent Neural Networks," IEEE Trans. Neural Net-
works, Vol. 5, pp. 954-964.

[151] Jin, L., Gupta, M. M., and Nikiforuk, P. N. (1995). "Neural Networks and Fuzzy
Basis Functions for Functional Approximation," in Fuzzy Logic and Intelligent
Control, Li, H. and Gupta, M. M. (eds.), Kluwer Academic Publishers, Chapter
2, pp. 17-68.

[152] Jin, L., Nikiforuk, P. N., and Gupta, M. M. (1995). "Approximation of Discrete-
time State-space Trajectories Using Dynamic Recurrent Neural Networks," IEEE
Trans. Automatic Control, Vol. 40, pp. 1266-1270.

[153] Johansson, E. M., Dowla, F. U., and Goodman D. M. (1990). Backpropaga-
tion Learning for Multi-Layer Feed- Forward Neural Networks Using the Conju-
gate Gradient Method, Lawrence Livermore National Laboratory, Berkeley, CA,
Preprint UCRL-JC-104850.

[154] Kahane, J. P. (1975). "Sur le Theoreme de Superposition de Kolmogorov,"
J. Approx. Theory, Vol. 13, pp. 229-234.

[155] Kalman, R. E. and Bertram, J. E. (1960). "Control System Analysis and Design
via the Second Method of Lyapunov: II Discrete-time systems," Trans. ASME
J. Basic Eng., Vol. 82, pp. 394^00.

[156] Kandel, E. R. and Schwartz, J. H. (1985). Principles of Neural Science, New
York, North-Holland.

[157] Karnin, E. D. (1990). "A Simple Procedure for Pruning Back-propagation
Trained Neural Networks," IEEE Trans. Neural Networks, Vol. 1, No. 2, pp. 239-
242.

[158] Kaszkurewicz, E. and Bhaya, A. (1993). "Robust Stability and Diagonal Lia-
punov Functions," SIAM J. Matrix Analy. Appl, Vol. 14, No. 2, pp. 508-520.

[159] Kaufmann, A. and Gupta, M. M. (1985). Introduction to Fuzzy Arithmetic,
Theory and Applications, 2nd ed., Van Nostrand Reinhold, New York (Japanese
transl. by Atsuka, M., Ohmsha Ltd., Tokyo, 1991).

[160] Kaufmann, A. and Gupta, M. M. (1988). Fuzzy Mathematical Models in En-
gineering and Management Science, North Holland, Amsterdam (revised 1992;
Japanese transl. by Matsuoka, H. and Tanaka, H., Ohmsha Ltd., Tokyo).



REFERENCES AND BIBLIOGRAPHY 699

[161] Kelly, D. G. (1990). "Stability in Contractive Nonlinear Neural Networks," IEEE
Trans. Biomed. Eng., Vol. 37, pp. 231-242.

[162] Kelly, K. A., Caruso, M. J., and Austin, J. A. (1993). "Wind-forced Variations in
Sea Surface Height in The Northeast Pacific Ocean," J. Phys. Oceanogr., Vol. 23,
pp. 2392-2411.

[163] Kewley, R., Embrechts, M., and Breneman, C. (2000). "Data Strip Mining for the
Virtual Design of Pharmaceuticals with Neural Networks," IEEE Trans. Neural
Networks, Vol. 11, No. 3, pp. 668-679.

[164] Khalil, H. (1992). Nonlinear Systems, Macmillan, New York.

[165] Kim, T., Kim, Y, Park, J., Ko, K., Choi, S., Kang, C., and Hong, D. (2000).
"Performance of an MC-CDMA System with Frequency Offsets in Correlated
Fading," Proc. IEEE ICC 2000, Vol. 2, pp. 1095-1099.

[166] Kiszka, J., Gupta, M. M., and Nikiforuk, P. N. (1985). "Energetistic Stability
of Fuzzy Dynamic Systems," IEEE Trans. Syst. Man Cybernet., Vol. 15, No. 5,
pp. 783-792.

[167] Ko, K., Choi, S., and Hong, D. (2000a). "Multiuser Detector with an Abil-
ity of Channel Estimation Using an RBF Network in an MC-CDMA System,"
Proc. IJCNN2000, Vol. 5, pp. 348-353.

[168] Ko, K., Choi, S., Kang, C., and Hong, D. (2000b). "RBF Multiuser Detector
with Channel Estimation Capability in a Synchronous MC-CDMA System,"
IEEE Trans. Neural Networks, Vol. 12, No. 6, pp. 1536-1538.

[169] Kohara, K., Kitamura, A., Morishima, M., and Tsumoto, T. (2001). "Activity-
Dependent Transfer of Brain-Derived Neurotrophic Factor to Postsynaptic Neu-
rons," Science, Vol. 291 (March), pp. 2419-2423.

[170] Kohonen, T. (1988). "An Introduction to Neural Computing," Neural Networks,
Vol. l,No. 1, pp. 3-16.

[171] Kohonen, T., Kaski, S., Lagus, K., Salogarvi, J., Honkela, J, Paatero, V, and
Sarrela, A. (2000). "Self-Organization of a Massive Document Collection,"
IEEE Trans. Neural Networks, Vol. 11, No. 3 (May), pp. 574-585.

[172] Kolmogorov, A. N. (1957). "On the Representation of Continuous Functions of
Several Variables by Superposition of Continuous Functions of One Variable and
Addition," Dokl. Akad. Nauk USSR, Vol. 114, pp. 953-956.

[173] Konig, A. (2000). "Interactive Visualization and Analysis of Hierarchical Neural
Projections for Data Mining," IEEE Trans. Neural Networks, Vol. 11, No. 3
(May), pp. 615-624.

[174] Kosko, B. (1992). "Neural Networks and Fuzzy Systems," Prentice-Hall, Engle-
wood Cliffs, NJ.



700 REFERENCES AND BIBLIOGRAPHY

[175] Kosko, B. (1994). "Fuzzy Systems as Universal Approximators," IEEE Trans.
Comput., Vol. 43, No. 11, pp. 1329-1333.

[176] Krasovskii, N. N. (1963). Stability of Motion, Stanford Univ. Press.

[177] Kurkova, V. (1992). "Kolmogorov's Theorem and Multilayer Neural Networks,"
Neural Networks, Vol. 5, No. 3, pp. 501-506.

[178] Langari, R. and Berenji, H. R. (1992). "Fuzzy Logic in Control Engineering," in
Handbook of Intelligent Control., Van Nostrand, New York, pp. 93-140.

[179] Lapedes, A. and Farber, R. (1987). "How Neural Nets Work," in Neural Informa-
tion Processing Systems, Anderson, D. Z. (ed.), American Institute of Physics,
New York, pp. 442-456.

[180] LeCun, Y. (1987). Modeles Connexionnistes de I'apprentissage (Connectionist
Learning Models), Ph.D. thesis, Universite' P. et M. Curie (Paris 6).

[181] LeCun, Y. (1988). "A Theoretical Framework for Back-Propagation," in Proc.
1988, Connectionist Model Summer School, Touretzky, D., Hinton C., and Se-
jnowski T. (eds.), June 17-26, Morgan Kaufmann, pp. 21-28.

[182] LeCun, Y, Boser, B., and Denker, J. S. (1989). "Backpropagation Applied to
Handwritten Zip Code Recognition," Neural Computation, Vol. 1, pp. 541-551.

[183] LeCun, Y, Boser, B., and Solla, S. A. (1990). "Optimal Brain Damage," in
Advances in Neural Information Processing Systems, Touretzky, D. S. (ed.),
Vol. 2, Morgan Kaufmann, pp. 598-605.

[184] Lee, C. C. (1990a). "Fuzzy Logic in Control Systems: Fuzzy Logic Controller,
Part I," IEEE Trans. Syst. Man Cybernet., Vol. 20, No. 2, pp. 404-418.

[185] Lee, C. C. (1990b). "Fuzzy Logic in Control Systems: Fuzzy Logic Controller,
Part II," IEEE Trans. Syst. Man Cybernet., Vol. 20, No. 2, pp. 419-435.

[186] Lee, R. S. T. and Liu, J. N. K. (2000). "Tropical Cyclone Identification and
Tracking System Using Integrated Neural Oscillatory Elastic Graph Matching
and Hybrid RBF Network Track Mining Techniques," IEEE Trans. Neural Net-
works, Vol. 11, No. 3 (May), pp. 680-689.

[187] Lee, S. and Kil, R. M. (1991). "A Gaussian Potential Function Network with
Hierarchically Self-organizing Learning," Neural Networks, Vol. 4, pp. 207-224.

[188] Lee, S.C. and Lee, E.T. (1974). "Fuzzy Sets and Neural Net works,"/. Cybernet.,
Vol. 4, pp. 83-101.

[189] Lehtokangas, M. (2000). "Cascade-Correlation Learning for Classification,"
IEEE Trans. Neural Networks, Vol. 11, No. 3 (May), pp. 784-794.



REFERENCES AND BIBLIOGRAPHY 701

[190] Leistritz, L., Galicki, M., Witte, H., and Kochs, E. (2001). "Initial State Train-
ing Procedure Improves Dynamic Recurrent Networks with Time-Dependent
Weights," IEEE Trans. Neural Networks, Vol. 12, No. 6 (Nov.), pp. 1513-1518.

[191] Leung, C. S., Tsoi, A.-C, and Chan, L. W. (2001). "Two Regularizes for Recur-
sive Least Squared Algorithms in Feedforward Multilayered Neural Networks,"
IEEE Trans. Neural Networks, Vol. 12, No. 6 (Nov.), pp. 1314-1332.

[192] Li, J. H., Michel, A. N., and Porod, W. (1989). "Analysis and Synthesis of a
Class of Neural Networks: Linear Systems Operating on a Closed Hypercube,"
IEEE Trans. Circuits Syst., Vol. 36, pp. 1405-1422.

[193] Li, L.-H., Lin, I.-C, and Hwang, M.-S. (2001). "A Remote Password Authen-
tication Scheme for Multiserver Architecture Using Neural Networks," IEEE
Trans. Neural Networks, Vol. 12, No. 6 (Nov.), pp. 1498-1504.

[194] Li, L. K. (1992). "Fixed Point Analysis for Discrete-Time Recurrent Neural
Networks," Proc. Int. Joint Conf. Neural Networks, June, Vol. IV, pp. 134-139.

[195] Li, W.-J. and Lee, T. (2001). "Hopfield Neural Networks for Affine Invariant
Matching," IEEE Trans. Neural Networks, Vol. 12, No. 6 (Nov.), pp. 1400-1410.

[ 196] Liang, X. B. (2001 a). "A Recurrent Neural Networks for Nonlinear Continuously
Differentiable Optimization Over a Compact Convex Set," IEEE Trans. Neural
Networks, Vol. 12, No. 6 (Nov.), pp. 1487-1490.

[197] Liang, X. B. (2001b). "Qualitative Analysis of a Recurrent Neural Network for
Nonlinear Continuously Differentiable Convex Minimization over a Nonempty
Closed Convex Subset Set," IEEE Trans. Neural Networks, Vol. 12, No. 6 (Nov.),
pp. 1521-1524.

[198] Liang, X. B. and Wang, J. (2000). "A Recurrent Neural Network for Nonlinear
Optimization with a Continuously Differentiable Objective Function and Bound
Constraints," IEEE Trans. Neural Networks, Vol. 11 (Nov.), pp. 1251-1262.

[199] Light, W. A. (1992). "Some Aspects of Radial Basis Function Approximation,"
in Approximation Theory, Spline Functions and Applications, Singh, S. P. (ed.),
Kluwer Academic, Boston, NATO ASI Series Vol. 256, pp. 163-190.

[200] Lim, T.-S., Loh, W.-Y., and Shih, Y.-S. (2000). "A Comparison of Prediction
Accuracy, Complexity, and Training Time of 33 Old and New Classification
Algorithms," Machine Learning, Vol. 40, pp. 203-228.

[201] Lin, C.-J. (2001). "On the Convergence of the Decomposition Method for
Support Vector Machines," IEEE Trans. Neural Networks, Vol. 12, No. 6 (Nov.),
pp. 1278-1287.

[202] Lorentz, G. G. (1962). "Metric Entropy, Widths, and Superposition of Func-
tions," Am. Math. Monthly, Vol. 69, pp. 469^85.



702 REFERENCES AND BIBLIOGRAPHY

[203] Lorentz, G. G. (1966). "Metric Entropy and Approximation," Bull. Am. Math.
Soc., Vol. 72 (Nov.), pp. 903-937.

[204] Lorentz, G. G. (1986). Approximation of Functions, Chelsea Publishing, New
York.

[205] Lu, H. (2000). "On Stability of Nonlinear Continuous-Time Neural Networks
with Delays," Neural Networks, Vol. 13, No. 10, pp. 1135-1144.

[206] Mackey, M. C. and Glass, L. (1977). "Oscillation and Chaos in Physiological
Control Systems," Science, Vol. 197, pp. 287-289.

[207] Marcus, C. M. and Westervelt, R. M. (1989). "Dynamics of Iterated Map Neural
Networks," Phys. Rev. A, Vol. 40, No. 1, pp. 577-587.

[208] Matsuoka, K. (1992). "Stability Conditions for Nonlinear Continuous Neural
Networks with Asymmetric Connection Weights," Neural Networks, Vol. 5,
pp. 495-500.

[209] Mays, C. H. (1963). Adaptive Threshold Logic, Ph.D. thesis, Technical Report
1557-1, Stanford Electron. Labs., Stanford, CA.

[210] McClelland, J. L. and Rumelhart, D. E. (1988). Exportations in Parallel Dis-
tributed Processing, MIT Press, Cambridge, MA.

[211] McCulloch, W. S. and Pitts, W. H. (1943). "A Logical Calculus of the Ideas
Imminent in Nervous Activity," Bull. Math. Biophys., Vol. 5, pp. 115-133.

[212] McEliece, R., Posner, E., Rodemich, E., and Venkatesh, S. (1987). "The Capacity
of the Hopfield Associative Memory," IEEE Trans. Inform. Theory, Vol. 33,
pp. 461-482.

[213] McLachlan, G. and Peel, D. (2000). Finite Mixture Models, Wiley series, Prob-
ability and Statistics, Wiley, New York.

[214] Mendel, J. M. (1995). "Fuzzy Logic Systems for Engineering: A Tutorial," Proc.
IEEE, Vol. 83, No. 3 (March), pp. 345-377.

[215] Micchelli, C. A. (1986). "Interpolation of Scattered Data: Distance Matrices and
Conditionally Positive Definite Functions," Construct. Approx., Vol. 2, pp. 11-
22.

[216] Michel, A. N. and Miller, R. K. (1977). Qualitative Analysis of Large Scale
Dynamical Systems, Academic Press, New York.

[217] Mitra, S. and Hayashi,Y. (2000). "Neuro-Fuzzy Rule Generation: Survey in Soft
Computing Framework," IEEE Trans. Neural Networks, Vol. 11, No. 3 (May),
pp. 748-768.

[218] Moller,M. (1993). "A Scaled Conjugate Gradient Algorithm for Fast Supervised
Learning," Neural Networks, Vol. 6, No. 4, pp. 525-534.



REFERENCES AND BIBLIOGRAPHY 703

[219] Mozer, M. C. and Smolensky, P. (1989). "Skeletonization: A Technique for
Trimming the Fat From a Network via Relevance Assessment," in Advances in
Neural Information Processing Systems, Touretzky, D. S. (ed.), Vol. 1, Morgan
Kaufmann, pp. 107-115.

[220] Mozer, M. C., Wolniewicz, R., Grimes, D. B., Johnson, E., and Kaushanksy, H.
(2000). "Predicting Subscriber Dissatisfaction and Improving Retention in the
Wireless Telecommunications Industry," IEEE Trans. Neural Networks, Vol. 11,
No. 3 (May), pp. 690-696.

[221] Miiller, B. and ReinhardtJ. (1991). Neural Networks: An Intro auction, Springer-
Verlag, Berlin.

[222] Muroga, S. (1971). Threshold Logic and Its Application, Wiley, New York.

[223] Musavi, M., Ahmed, W, Chan, K. H., Paris, K. B., andHummels, D. M. (1992).
"On the Training of Radial Basis Function Classifiers," Neural Networks, Vol. 5,
pp. 595-603.

[224] Musilek, P. and Gupta, M. M. (2000). "Fuzzy Neural Models Based on Some
New Fuzzy Arithmetic Operations," J. Adv. Comput. Intell., Vol. 3, No. 6,
pp. 245-254.

[225] Nabney, T. (1999). "Efficient Training of RBF Networks for Classification,"
Proc. 9th ICANN, Vol. 1, pp. 210-215.

[226] Nadeau, C. and Benjio, Y. (2000). "Inference for the Generalization Error,"
in Advances in Neural Information Processing Systems, Vol. 12, MIT Press,
Cambridge, MA.

[227] Narendra, K. S. and Parthasarathy, K. (1990). "Identification and Control of
Dynamical Systems Using Neural Networks," IEEE Trans. Neural Networks,
Vol. l,No. 1, pp. 4-27.

[228] Nicholls, J. G., Martin, A. R., Wallace, B. G., Fuchs, P. A. (2001). From Neuron
to Brain, 4th ed., Sinauer Assoc., Sunderland, MA.

[229] Nishiyama, K. and Suzuki, K. (2001). "H^— Learning of Layered Neural
Networks," IEEE Trans. Neural Networks, Vol. 12, No. 6 (Nov.), pp. 1265-1277.

[230] Pal, S. K., Datta, A., and Pal, N. R. (2001). "A Multilayer Self-Organizing
Model for Convex-Hull," IEEE Trans. Neural Networks, Vol. 12, No. 6 (Nov.),
pp. 1341-1347.

[231] Pao, Y. H. (1989). Adaptive Pattern Recognition and Neural Networks, Addison-
Wesley, Reading, MA.

[232] Papadpopoulos, G., Edwards, P. J., and Murray, A. F. (2001). "Confidence
Estimation Methods for Neural Networks: A Practical Comparison," IEEE
Trans. Neural Networks, Vol. 12, No. 6 (Nov.), pp. 1278-1287.



704 REFERENCES AND BIBLIOGRAPHY

[233] Parlos, A. G., Menton, S. K., and Atiya, A. F. (2001). "An Algorithmic Ap-
proach to Adaptive State Filtering Using Recurrent Neural Networks," IEEE
Trans. Neural Networks, Vol. 12, No. 6 (Nov.), pp. 1411-1432.

[234] Pavlov, I. P. (1993). Psychopathology and Psychiatry, revised ed., Transaction
Publishers, New Brunswick, Canada.

[235] Pedrycz, W. (1991a). "Neurocomputations in Relational Systems," IEEE Trans.
Pattern Anal Machine Intell., Vol. 13, pp. 289-297.

[236] Pedrycz, W. (1991b). "A Referential Scheme of Fuzzy Decision Making and Its
Neural Network Structure," IEEE Trans. Syst. Man Cybernet., Vol. 21, pp. 1593-
1604.

[237] Pedrycz, W. (1993). "Fuzzy Neural Networks and Neurocomputations," Fuzzy
Sets Syst., Vol. 56, No. 1, pp. 1-28.

[238] Pedrycz, W. (1995). "Genetic Algorithms for Learning in Fuzzy Relational
Structures," Fuzzy Sets Syst., Vol. 69, No. 1, pp. 37-52.

[239] Persidskii, S. K. (1969). "Problem of Absolute Stability," Automation Remote
Control, Vol. 12, pp. 1889-1895.

[240] Personnaz, L., Guyon, I., and Dreyfus, G. (1986). "Collective Computational
Properties of Neural Networks: New Learning Mechanisms," Phys. Rev. A,
Vol. 34, pp. 4217^228.

[241] Pham, D.-T. and Cardoso, J.-F. (2000). "Blind Separation of Instantaneous Mix-
tures of Nonstationary Sources," Proc. Int. Workshop on Independent Component
Analysis and Blind Signal Separation (ICA2000), Helsinki, Finland, pp. 187-
193.

[242] Pineda, F. J. (1987). "Generalization of Back-propagation to Recurrent Neural
Networks," Physical Rev. Lett., Vol. 59, No. 19, pp. 2229-2232.

[243] Pineda, F. J. (1988). "Dynamics and Architecture for Neural Computation,"
J. Complexity, Vol. 4, pp. 216-245.

[244] Poggio, T. and Girosi, F. (1989). "A Theory of Networks for Approximation and
Learning," AI Memo No. 1140, July, CBIP Paper 31.

[245] Poggio, T. and Girosi, F. (1990). "Networks for Approximation and Learning,"
Proc. IEEE, Vol. 78, pp. 1481-1497.

[246] Principe, J. C. and Kuo, J. (1995). "Dynamic Modelling Chaotic Time Series
with Neural Networks," in Advances in Neural Information Processing System,
Tesauro, G., Touretzky, D., and Leen, T. (eds.), Vol. 7, MIT Press, Cambridge,
MA, pp. 311-318.



REFERENCES AND BIBLIOGRAPHY 705

[247] Psaltis, D., Sideris, A., and Yamamura, A. A. (1988). "A Multilayered Neural
Network Controller," IEEE Control Syst. Mag., Vol. 8, pp. 17-21.

[248] Rao, D. H., Gupta, M. M., and Sinha, N. K. (2000). "Dynamic Neural Networks:
An Overview," Int. Conf. Industrial Technology, Gao, India, Jan., pp. 491-496.

[249] Ray, W. O. (1988). Real Analysis, Prentice-Hall, Englewood Cliffs, NJ.

[250] Reed, R. (1993). "Pruning Algorithms—A Survey," IEEE Trans. Neural Net-
works, Vol. 4, No. 5, pp. 740-747.

[251] Ridella, S. and Zunnio, R. (2001). "Empirical Measure of Multiclass Gen-
eralization Performance: The K-Winner Machine Class," IEEE Trans. Neural
Networks, Vol. 12, No. 6 (Nov.), pp. 1525-1528.

[252] Rissanen, J. (1989). Stochastic Complexity in Statistical Inquiry, World Scien-
tific, Singapore.

[253] Robinson, A. J. and Fallside, F. (1987). "Static and Dynamic Error Propaga-
tion Networks with Application to Speech Coding," Proc. Neural Information
Processing Systems, Anderson, D. Z. (ed.), American Institute of Physics.

[254] Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986). "Learning Internal
Representations by Error Propagation," in Parallel Distributed Processing: Ex-
plorations in the Micro structure of Cognition, Rumelhart, D. E. and McClelland,
J. L. (eds.), Vol. 1, MIT Press, Cambridge, MA, pp. 318-362.

[255] Rumelhart, D. E. and McClelland, J. L. (1986). Parallel Distributed Processing:
Explorations in the Micro structure of Cognition: Foundations, Vol. 1, MIT Press,
Cambridge, MA.

[256] Rosenblatt, F. (1958). "The Perceptron: A Probabilistic Model for Information
Storage and Organization in the Brain," Psychological Review, Vol. 65, pp. 386-
408.

[257] Saarinen, S., Bramley, R., and Cybenko, G. (1991). The Numerical Solution of
Neural Network Training Problems, CRSD Report 1089, Center for Supercom-
puting Research and Development, Univ. Illinois, Urbana, IL.

[258] Saarinen, S., Bramley, R., and Cybenko, G. (1992). "Neural Networks, Back-
propagation, and Automatic Differentiation," in Automatic Differentiation of Al-
gorithms: Theory, Implementation, and Application, Griewank, A. and Corliss,
G. F. (eds.), SIAM, Philadelphia, pp.31-^2.

[259] Sakaguchi, H. (1988). "Oscillatory and Excitable Behaviours in a Population of
Model Neuron," Progress Theor. Phys., Vol. 79, No. 5, pp. 1061-1068.

[260] Scott, A. C. (1977). Neurophysics, Wiley, New York.



706 REFERENCES AND BIBLIOGRAPHY

[261] Sebald, D. J. andBucklew, J. A. (2000). "Support Vector Machine Techniques for
Nonlinear Equalization," IEEE Trans. Signal Process., Vol. 48 (Nov.), pp. 3217-
3226.

[262] Segee, B. E. and Carter, M. J. (1991). "Fault Tolerance of Pruned Multilayer
Networks," Proc. Int. Joint Conf. Neural Networks, Vol. II, Seattle, pp. 447-452.

[263] Shin, C. K., Yu, S. J., Yun, U. T., and Kim H. K. (2000). "A Hybrid Ap-
proach of Neural Network and Memory-Based Learning to Data Mining," IEEE
Trans. Neural Networks, Vol. 11, No. 3 (May), pp. 637-646.

[264] Shin, Y. and Ghosh, J. (1991). "The Pi-sigma Network: An Efficient Higher-
order Neural Network for Pattern Classification and Function Approximation,"
Proc. Int. Joint Conf. on Neural Networks, Vol. I, Seattle, WA, July, pp. 13-18.

[265] Sietsma, J. and Dow, R. J. F. (1991). "Creating Artificial Neural Networks that
Generalize," Neural Networks, Vol. 4, pp. 67-79.

[266] Silva, F. M. and Almeida, L. B. (1990). "Speeding up Backpropagation," in
Advances of Neural Computers, Eckmiller, R. (ed.), Elsevier Science Publishers
B.V., North-Holland, pp. 151-158.

[267] Simmon, D. (2001). "Distributed Fault Tolerance in Optimal Interpolative Nets,"
IEEE Trans. Neural Networks, Vol. 12, No. 6 (Nov.), pp. 1348-1357.

[268] Simone, G. and Morabito, F. C. (2001). "RBFNN-Based Hole Identification
System in Conducting Plates," IEEE Trans. Neural Networks, Vol. 12, No. 6
(Nov.), pp. 1445-1454.

[269] Singhal, S. and Wu, L. (1989). "Training Multilayer Perceptrons with the Ex-
tended Kalman Algorithm," in Advances in Neural Information Processing Sys-
tems I, Morgan Kaufmann, San Mateo, CA, pp. 133-140.

[270] Sinha, M., Gupta, M. M., and Nikiforuk, P. N. (2001). "A Compensatory Wavelet
Neuron Model," Joint 9th IFSA World Congress and 20th NAFIPS Int. Conf.,
Vancouver, BC, Canada, July 25-28, pp. 1372-1376.

[271] Sinha, N. K. and Gupta, M. M. and Zadeh, L. A. (1999). Soft-Computing and
Intelligent Control Systems, Theory and Applications, Academic Press, New
York.

[272] Skarda, C. A. and Freeman, W. J. (1987). "How Brains Make Chaos in Order to
Make Sense of the World," Behav. Brain Sci., Vol. 10, pp. 161-195.

[273] Smagt, P. (1994). "Minimisation Methods for Training Feedforward Neural
Networks," Neural Networks, Vol. 7, No. 1, pp. 1-11.

[274] Softky, R. W. and Kammen, D. M. (1991). "Correlations in High Dimensional
or Asymmetrical Data Sets: Hebbian Neuronal Processing," Neural Networks,
Vol. 4, No. 3, pp. 337-347.



REFERENCES AND BIBLIOGRAPHY 707

[275] Spath, H. (1980). Cluster Analysis Algorithms for Data Reduction and Classifi-
cation of Objects, Ellis Horwood Ltd., Chichester, UK.

[276] Sprecher, D. A. (1965). "On the Structure of Continuous Functions of Several
Variables," Trans. Amer. Math. Soc., Vol. 115, pp. 340-355.

[277] Sprecher, D. A. (1993). "A Universal Mapping for Kolmogorov's Superposition
Theorem," Neural Networks, Vol. 6, No. 8, pp. 1089-1094.

[278] Su, M. C. and Chang, H.-T. (2000). "Fast Self-Organizing Map Algorithm,"
IEEE Trans. Neural Networks, Vol. 11, No. 3 (May), pp. 721-733.

[279] Sudharsanan, S. I. and Sundareshan, M. K. (1991a). "Equilibrium Character-
ization of Dynamical Neural Networks and a Systematic Synthesis Procedure
for Associative Memories," IEEE Trans. Neural Networks, Vol. 2, No. 5 (Sept.),
pp. 509-521.

[280] Sudharsanan, S. I. and Sundareshan, M. K. (1991b). "Training of a Three-Layer
Dynamical Recurrent Neural Network for Nonlinear Input-Output Mapping,"
Proc. Int. Joint Conf. Neural Networks, Nov., pp. III-l 15.

[281] Taylor, J. G. and Commbes, S. (1993). "Learning Higher Order Correlations,"
Neural Networks, Vol. 6, No. 3, pp. 423^28.

[282] Tipping, M. E. (2000). "The Relevance Vector Machine," in Advances in Neural
Information Processing Systems 12, Solla, S. A., Leen, T. K., and Muller, K.-R.
(eds.), MIT Press, Cambridge, MA.

[283] Tishby, N., Levin, E., and Solla, S. (1989). "Consistent Inference on Proba-
bilities in Layered Networks, Predictions and Generalization," Proc. Int. Joint
Conf. Neural Networks, Washington, DC, IEEE Press, pp. 403-410.

[284] Vesanto, J. and Alhoniemi, E. (2000). "Clustering of the Self-Organizing Map,"
IEEE Trans. Neural Networks, Vol. 11, No. 3 (May), pp. 586-600.

[285] Vogl, T. P., Mangis, J. K., Rigler, A. K., Zink, W. T., and Allcon, D. L. (1988).
"Accelerating the Convergence of the Back-propagation Method," Biol. Cyber-
net.,Vol. 59,pp. 251-263.

[286] Wang, L. X. (1993). "Stable Adaptive Fuzzy Control of Nonlinear Systems,"
IEEE Trans. Fuzzy Syst., Vol. 1 (Jan.), pp. 146-155.

[287] Wang, L. X. and Mendel, J. M. (1992a). "Fuzzy Basis Functions, Universal
Approximation, and Orthogonal Least Square Learning," IEEE Trans. Neural
Networks, Vol. 3, No. 5, pp. 807-814.

[288] Wang, L. X. and Mendel, J. M. (1992b). "Generating Fuzzy Rules from Nu-
merical Data, with Applications," IEEE Trans. Syst. Man Cybernet., Vol. 32,
pp. 1414-1472.



705 REFERENCES AND BIBLIOGRAPHY

[289] Wang, L. X. and Mendel, J. M. (1993). "Fuzzy Adaptive Filters, with Application
to Nonlinear Channel Equalization," IEEE Trans. Fuzzy Syst., Vol. 1 (March),
pp. 161-170.

[290] Wang, Y. F, Luo, L., Freedman, M. T., and Kung, S.-Y. (2000). "Probabilistic
Principal Component Subspaces: A Hierarchical Finite Mixture Model for Data
Visualizations," IEEE Trans. Neural Networks, Vol. 11, No. 3 (May), pp. 625-
636.

[291] Watanabe, S. (2001). "Learning Efficiency of Redundant Neural Networks in
Bayesian Estimation," IEEE Trans. Neural Networks, Vol. 12, No. 6 (Nov.),
pp. 1475-1486.

[292] Werbos, P. J. (1974). Beyond Regression: New Tools for Prediction and Analysis
in the Behavioral Sciences, Ph.D. thesis, Applied Mathematics, Harvard Univ.,
Boston, MA, Nov.

[293] Weymaere, N. and Martens, J. P. (1991). "A Fast Robust Learning Algorithm for
Feedforward Neural Networks," Neural Networks, Vol. 4, pp. 361-369.

[294] Widrow, B. (1962). "Generalization and Information Storage in Networks of
Adaline Neurons," in Self-Organizing Systems, Yovitz, M., Jocobi, G., and Gold-
stein, C. (eds.), Spartan Books, Washington, DC, pp. 435-461.

[295] Widrow, B. and Hoff, M. E. (1960). "Adaptive Switching Circuits," in IRE
WESCON Convention Record, Vol. 4, New York, pp. 96-104.

[296] Widrow, B. and Lehr,M. A. (1990). "30 Years of Adaptive Neural Networks: Per-
ceptron, Madaline, and Backpropagation," Proc. IEEE, Vol. 78, No. 9, pp. 1415-
1442.

[297] Williams, R. J. and Zipser, D. (1989). "A Learning Algorithm for Continually
Running Fully Recurrent Neural Networks," Neural Comput., Vol. 1, pp. 270-
280.

[298] Williams, R. J. and Zipser, D. (1990). Gradient-based Learning Algorithms for
Recurrent Connectionist Networks, Technical Report NU-CCS-90-9, Northeast-
ern Univ., College of Computer Science, Boston.

[299] Xu, L., Oja, E., and Suen, C. Y. (1992). "Modified Hebbian Learning for Curve
and Surface Fitting," Neural Networks, Vol. 5, No. 3, pp. 441-457.

[300] Xu, X., He, H. G., and Hu, D. (2002). "Efficient Reinforcement Learning Using
Recursive Least-Squares Methods," J. Artificial Intelligence Research, Vol. 16,
pp. 259-292.

[301] Yan, L. and Miller, D. J. (2000). "General Statistical Inference for Discrete
and Mixed Spaces by an Approximate Application of the Maximum Entropy
Principle," IEEE Trans. Neural Networks, Vol. 11, No. 3 (May), pp. 558-573.



REFERENCES AND BIBLIOGRAPHY 709

[302] Yanai, H. and Sawada, Y. (1990). "Integrator Neurons for Analog Neural Net-
works," IEEE Trans. Circuit Syst., Vol. 36, pp. 854-856.

[303] Yang, T.-N. and Wang, S.-D. (2000). "Fuzzy Auto-Associative Neural Net-
works for Principal Component Extraction of Noisy Data," IEEE Trans. Neural
Networks, Vol. 11, No. 3 (May), pp. 799-801.

[304] Yidliz, O. T. (2001). "Omnivariate Decision Trees," IEEE Trans. Neural Net-
works, Vol. 12, No. 6 (Nov.), pp. 1539-1546

[305] Yidliz, O. T. and Alpaydin, E. (2000). "Linear Discriminant Trees," Proc. 17th
Int. Conf. Machine Learning, Langely, P. (ed.), Morgan Kaufmann, San Mateo,
CA, pp. 1175-1182.

[306] Yuan, C, Azimi-Sadjadi, M. R., Wilbur, J., and Dobeck, G. (2000). "Underwater
Target Detection Using Multichannel Subb and Adaptive Filtering and High
Order Correlation Schemes," IEEE J. Ocean. Eng., Vol. 25 (Jan.), pp. 192-205.

[307] Zadeh, L. A. (1965). "Fuzzy Sets," Inform. Control, Vol. 8, pp. 338-353.

[308] Zadeh, L. A. (1968). "Probability Measures of Fuzzy Events," J. Math. Anal. Appl.,
Vol. 23, pp. 421-427.

[309] Zadeh, L. A. (1972a). "A Fuzzy-Set - Theoretic Interpretation of Linguistic
Hedges," /. Cybernet., Vol. 2, pp. 4-34.

[310] Zadeh, L. A. (1972b). "A Rational for Fuzzy Control," J. Dynamic Syst.,
Meas. Control, Vol. 34, pp. 3-4.

[311] Zadeh, L. A. (1973). "Outline of a New Approach to the Analysis of Complex
Systems and Decision Processes," IEEE Trans. Syst. Man Cybernet., Vol. 3,
pp. 28-44.

[312] Zadeh, L. A. (1984). "Making Computers Think Like People," IEEE Spectrum,
Vol. 21, No. 8 (Aug.), pp. 26-32.

[313] Zadeh, L. A. (1986). "Outline of a Computational Approach to Meaning and
Knowledge Representation Based on a Concept of a Generalized Assignment
Statement," Proc. Int. Seminar on Artificial Intelligence and Man-Machine Sys-
tems, Thoma, M. and Wyner, A. (eds.), Springer-Verlag, Heidelberg, Germany,
pp. 198-211.

[314] Zadeh, L. A. (1994). "Fuzzy Logic, Neural Networks, and Soft-computing,"
Commun. ACM, Vol. 37, pp. 77-84.

[315] Zadeh, L. A. (1996). "Fuzzy Logic = Computing with Words," lEEETrans. Fuzzy
Systems, Vol. 4, pp. 103-111.

[316] Zadeh, L. A. (1997). "Toward a Theory of Fuzzy Information Granulation and
its Centrality in Human Reasoning and Fuzzy Logic," Fuzzy Sets Syst., Vol. 90,
pp. 111-127.



770 REFERENCES AND BIBLIOGRAPHY

[317] Zadeh, L. A. (1999). "From Computing with Numbers to Computing with
Words—from Manipulation of Measurements to Manipulation of Perceptions,"
IEEE Trans. Circuits Syst., Vol. 45, pp. 105-119.

[318] Zeng, Z. and Yeung, D. S. (2001). "Sensitivity Analysis ofMultilayerPerceptron
to Input and Weight Perturbations," IEEE Trans. Neural Networks, Vol. 12, No. 6
(Nov.), pp. 1358-1366.

[319] Zhang, J. and Jin, X. (2000). "Global Stability Analysis in Delayed Hopfield
Neural Models," Neural Networks, Vol. 13, No. 7, pp. 745-753.

[320] Zhang, Y. Q., Eraser, M. D., Gagliano, R. A., and Kandel, A. (2000). "Gran-
ular Neural Networks for Numerical-Linguistic Data Fusion and Knowledge
Discovery," IEEE Trans. Neural Networks, Vol. 11, No. 3 (May), pp. 658-667.

[321] Zhao, L. and Macau, E. E. N. (2001). "A Network of Dynamically Coupled
Chaotic Maps for Scene Segmentation," IEEE Trans. Neural Networks, Vol. 12,
No. 6 (Nov.), pp. 1375-1385.

[322] Zhao, L., Macau, E. E. N., and Omar, N. (2000). "Scene Segmentation of the
Chaotic Oscillator Network," Int. J. Bifurcation Chaos, Vol. 10, No. 7, pp. 1697-
1708.

[323] Zurada, J. M. (1992). Introduction to Artificial Neural Systems, West Publishing
Company, St. Paul, MN.



Appendix A

Current Bibliographic
Sources on Neural

Networks

SOCIETIES

Canadian Society for Fuzzy Information and Neural Systems (CANS-FINS)

Canadian Society for Computational Studies of Intelligence (CSCSI)

Dutch Foundation for Neural Networks (SNN)

European Neural Network Society (ENNS)

IEEE Neural Networks for Signal Processing Committee

International Fuzzy Systems Association (IFSA)

Italian Neural Network Society (SIREN)

Japanese Neural Network Society (JNNS)

Neural Computing Applications Forum (NCAF)

North American Fuzzy Information Processing Society (NAFIPS)

Stimulation Initiative for European Neural Applications (SIENA)
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• Swedish Neural Network Society (SNNS)

• The International Neural Network Society (INNS)

JOURNALS

• Adaptive Behavior

• Behavioral and Brain Sciences

• Biological Cybernetics

• Biophysical Journal

• Connection Science

• Fuzzy Sets and Systems

• IEEE Transactions on Fuzzy Systems

• IEEE Transactions on Image Processing

• IEEE Transactions on Neural Networks

• IEEE Transactions on Signal Processing

• International Journal of Approximate Reasoning

• International Journal of Neural Systems

• Journal of Artificial Intelligence Research

• Journal of Cognitive Neuroscience

• Journal of Fuzzy Sets and Systems

• Journal of Uncertainty, Fuzziness and Knowledge-Based Systems

• Network: Computation in Neural Systems

• Neural Computation

• Neural Networks

• Neural Network World

• Neural Processing Letters

• Neurocomputing

CONFERENCES

• Annual Conference on Evolutionary Programming

• Annual Meeting on Neural Control of Movement

• Artificial Neural Networks in Engineering (ANNIE)

• European Congress on Intelligent Techniques and Soft Computing (EUFIT)

• European Meeting on Cybernetics and Systems Research

• From Animals to Animate — International Conference on Simulation of Adaptive
Behavior (SAB)

• Genetic Programming Conference
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• IEEE International Conference on Fuzzy Systems (FUZZ IEEE)

• IEEE International Conference on Neural Networks (IEEE ICNN)

• IEEE International Conference on Systems, Man, and Cybernetics

• IEEE International Conference on Tools with Artificial Intelligence (ICTAI)

• IEEE Workshop on Neural Networks for Signal Processing

• IFAC Symposium on Intelligent Autonomous Vehicles

• Industrial Fuzzy control and Intelligent Systems Conference (IFIS)

• Intelligent Systems and Control (ISC)

• International Conference on Artificial Neural Networks (ICANN)

• International Conference on Evolutionary Computation

• International Conference on Evolvable Systems: From Biology to Hardware (ICES)

• International Conference on Intelligent Robots and Systems (IROS)

• International Conference on Neural Networks and Brain

• International Conference on Simulation of Adaptive Behavior

• International Fuzzy Systems and Intelligent Control Conference (IFSIC)

• International ICSC/IFAC Symposium on Neural Computation

• International Symposium on Intelligent Systems (AMSE-ISIS)

• International Symposium on Robotics with Applications (ISORA)

• International Symposium on Soft Computing (SOCO)

• International Workshop on Neural Networks for Identification, Control,

• Joint Conference on Information Sciences (JCIS)

• Neural Information Processing Systems - Natural and Synthetic (NIPS)

• Robotics, and Signal Image Processing (NICROSP)

• World Congress on Computational Intelligence (IJCNN, FUZZ-IEEE, ICEC)

• World Congress on Neural Networks (WCNN)

INTERNET RESOURCES

• IEEE Neural Network Council

http://engine.ieee.org/nnc/

• Fuzzy Logic and Neurofuzzy Resources

http://www-isis.ecs.suton.ac.uk/research/nfinfo/fuzzy.html

• Fuzzy Logic Entry at Yahoo

http://www.yahoo.com/Science/Computer_Science/
Artificial_lntelligence/Fuzzy_logic

• Neural Networks Entry at Yahoo

http://www.yahoo.com/Science/Engineering/Electrical_Engin



714 CURRENT BIBLIOGRAPHIC SOURCES ON NEURAL NETWORKS

• NeuroNet European Network of Excellence

http://www.neuronet.ph.kcl.ac.uk

• North American Fuzzy Information Processing Society

http://seraphim.csee.usf.edu/nafips.html

• Web Dictionary of Cybernetics and Systems

http://pespmcl.vub.ac.be/ASC/indexASC.html

• Classified List of Bibliography on Neural Networks

ftp://ftp.wiley.com/public/sci_tech_med/neural_networks/
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synapse-dependent nonlinear —, 448
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Adaptive algorithm, 64
Adaptive filter, 398
Adaptive weight learning rule, 113
Additive and shunting network, 305
Adjoint equation, 401
Affine coordinate transformation, 315
Algebraic closure, 240, 257
Algorithm, 64
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m-LMS —, 77
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modified relaxation —, 69
momentum —, 144

Algorithm-based computing, 10
AND operation, 45
Associating learning rule, 623
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516,580
Associativity, 647
Asymptotic stability, 333
Asymptotically stable, 474-475

— equilibrium point, 311, 357
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globally —, 473
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Asynchronous mode, 513
Asynchronous operating mode, 561
Asynchronous updating mode, 594
Attraction basin, 396
Attractive radius, 606
Attractive region, 606
Attractor, 514
Autoassociative memory, 398
Axon, 24, 28, 39, 581
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— through time, 411

Basin of attraction, 348
BFGS method, 199
Bias, 301
Bifurcation, 334
Binary logic, 14, 45
Block sequential mode, 513
Block sequential operating mode, 561
Boolean function, 511
Boundary condition, 647
Bounded measurable function, 257
BP.83, 106, 118, 172
Brain, 4, 8, 10
Brouwer's fixed-point theorem, 332, 473
Broyden-Fletcher-Goldfarb—Shannon

method, 199
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CAM, 348, 359
Canonical form, 211
Carbon-based cognitive faculty, 10
Carbon-based computer, 4
Cartesian product, 275, 638
Central nervous system, 8, 22
CG, 200
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Chain rule, 89
Chaotic attractor, 396
Classification, 226
Closed set, 255
Closure, 255
Clustering algorithm, 242
CNS, 8, 22
Cognition, 4, 634
Cognitive computing machine, 5
Cognitive information, 7
Commutativity, 647
Compact, 255
Complement, 637
Complexity measure, 179
Complexity regularization, 179
Computational complexity, 246
Computational energy function, 357
Conjugate gradient method, 200

— with line search, 200
scaled —, 200

Content-addressable memory, 348, 359, 580,
598

Continuity, 383

Continuous-time, 346
— dynamic neural network, 346, 396, 421,

436
— dynamic neural unit, 399
— mapper, 398
— recurrent neural network, 380

Contraction mapping theorem, 489
Convergent K-means clustering algorithm,

244
Correlation coefficient, 610
Correlation matrix, 75
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Cosine squashing function, 263
Cost function, 113
Critical point, 365
Cross-layer connection, 346
CT-DNN, 421,470
CT-DNU, 399
Cubic splines radial basis function, 229
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D

Davidson-Fletcher-Powell method, 199
DBF, 395
De Morgan's theorem, 648
Dead zone, 68
Deadbeat response, 212
Decaying-exponential network, 292
Decomposed extended Kalman filter, 205,

431
Defuzzifier, 641, 643
DEKF,205,431
Dendrite, 24, 27, 39
Dense set, 255
DFP method, 199
Diagonal Lyapunov equation, 483
Diagonal Lyapunov function, 483
Diagonal stability, 482
DIG, 211
Diffeomorphism, 388
Dirac's delta function, 582
Direct inverse control, 211
Discrete-time, 347

— binary neural network, 510
— dynamic neural network, 470
— dynamic neural structure, 347
— dynamic neural unit, 404

Dissipative property, 394
Dissipative system, 347
DNN, 351,395, 436
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DT-DNU, 404
Dynamic backpropagation, 395, 403
Dynamic memory, 624
Dynamic neural network, 18, 298, 351, 395,

436, 470
— with saturation, 374
continuous-time —, 346, 436
discrete-time —, 470
Hopfield —, 436

Dynamic neural unit, 18, 298, 338, 395

E

Effective Hamming distance, 591
Effective rise time, 26
Eigenvalue, 366, 439
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