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Foreword

We are surprisingly flexible in processing information in the real world. The human brain, consisting of 
1011 neurons, realizes intelligent information processing based on exact and commonsense reasoning. 
Scientists have been trying to implement human intelligence in computers in various ways. Artificial 
intelligence (AI) pursues exact logical reasoning based on symbol manipulation. Fuzzy engineering uses 
analog values to realize fuzzy but robust and efficient reasoning. They are macroscopic ways to realize 
human intelligence at the level of symbols and rules. Neural networks are a microscopic approach to the 
intelligence of the brain in which information is represented by excitation patterns of neurons.

All of these approaches are partially successful in implementing human intelligence, but are still far 
from the real one. AI uses mathematically rigorous logical reasoning but is not flexible and is difficult to 
implement. Fuzzy systems provide convenient and flexible methods of reasoning at the sacrifice of 
depth and exactness. Neural networks use learning and self-organizing ability but are difficult for 
handling symbolic reasoning. The point is how to design computerized reasoning, taking account of 
these methods.

This book solves this problem by combining the three techniques to minimize their weaknesses and 
enhance their strong points. The book begins with an excellent introduction to AI, fuzzy-, and 
neuroengineering. The author succeeds in explaining the fundamental ideas and practical methods of 
these techniques by using many familiar examples. The reason for his success is that the book takes a 
problem-driven approach by presenting problems to be solved and then showing ideas of how to solve 
them, rather than by following the traditional theorem-proof style. The book provides an understandable 
approach to knowledge-based systems for problem solving by combining different methods of AI, fuzzy 
systems, and neural networks.

SHUN-ICHI AMARI
TOKYO UNIVERSITY
JUNE 1995
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Preface

The symbolic AI systems have been associated in the last decades with two main issues—the 
representation issue and the processing (reasoning) issue. They have proved effective in handling 
problems characterized by exact and complete representation. Their reasoning methods are sequential by 
nature. Typical AI techniques are propositional logic, predicate logic, and production systems.

However, the symbolic AI systems have very little power in dealing with inexact, uncertain, corrupted, 
imprecise, or ambiguous information. Neural networks and fuzzy systems are different approaches to 
introducing humanlike reasoning to knowledge-based intelligent systems. They represent different 
paradigms of information processing, but they have similarities that make their common teaching, 
reading, and practical use quite natural and logical. Both paradigms have been useful for representing 
inexact, incomplete, corrupted data, and for approximate reasoning over uncertain knowledge. Fuzzy 
systems, which are based on Zadeh's fuzzy logic theory, are effective in representing explicit but 
amgibuous commonsense knowledge, whereas neural networks provide excellent facilities for 
approximating data, learning knowledge from data, approximate reasoning, and parallel processing. 
Evidence from research on the brain shows that the way we think is formed by sequential and parallel 
processes. Knowledge engineering benefits greatly from combining symbolic, neural computation, and 
fuzzy computation.

Many recent applications of neural networks and fuzzy systems show an increased interest in using 
either one or both of them in one system. This book represents an engineering approach to both neural 
networks and fuzzy systems. The main goal of the book is to explain the principles of neural networks 
and fuzzy systems and to demonstrate how they can be applied to building knowledge-based systems for 
problem solving. To achieve this goal the three main subjects of the book-knowledge-based systems, 
fuzzy systems, and neural networks—are described at three levels: a conceptual level; an intermediate, 
logical level; and a low, generic level in chapters 2, 3, and 4, respectively. This approach makes possible 
a comparative analysis between the rule-based, the connectionist, and the fuzzy methods for knowledge-
engineering.

The same or similar problems are solved by using Al rule-based methods, fuzzy methods, connectionist 
methods, hybrid AI-connectionist, or hybrid fuzzy-connectionist methods and systems. Production 
systems are chosen as the most widely used paradigm for knowledge-engineering.
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Symbolic AI production systems, fuzzy production systems, connectionist production systems, and 
hybrid connectionist production systems are discussed, developed, and applied throughout the book. 
Different methods of using neural networks for knowledge representation and processing are presented 
and illustrated with real and benchmark problems (see chapter 5). One approach to using neural 
networks for knowledge engineering is to develop connectionist expert systems which contain their 
knowledge in trained-in-advance neural networks. The learning ability of neural networks is used here 
for accumulating knowledge from data even if the knowledge is not explicitly representable. Some 
learning methods allow the knowledge engineer to extract explicit, exact, or fuzzy rules from a trained 
neural network. These methods are also discussed in chapter 5. There are methods to incorporate both 
knowledge acquired from data and explicit heuristic knowledge in a neural network. This approach to 
expert systems design provides an excellent opportunity to use collected data (existing databases) and 
prior knowledge (rules) and to integrate them in the same knowledge base, approximating reality.

Another approach to knowledge engineering is using hybrid connectionist systems. They incorporate 
both connectionist and traditional AI methods for knowledge representation and processing. They are 
usually hierarchical. At a lower level they use neural networks for rapid recognition, classification, 
approximation, and learning. The higher level, where the final solution of the problem has to be 
communicated, usually contains explicit knowledge (see chapter 6). The attempt to use neural networks 
for structural representation of existing explicit knowledge has led to different connectionist 
architectures. One of them is connectionist production systems. The fusion between neural networks, 
fuzzy systems, and symbolic Al methods is called ''comprehensive AI." Building comprehensive AI 
systems is illustrated in chapter 6, using two examples—speech recognition and stock market prediction.

Neural networks and fuzzy systems may manifest a chaotic behavior on the one hand. On the other, they 
can be used to predict and control chaos. The basics of chaos theory are presented in chapter 7. When 
would neural networks or fuzzy systems behave chaotically? What is a chaotic neural network? These 
and other topics are discussed in chapter 7. Chapter 7 also comments briefly on new developments in 
neural dynamics and fuzzy systems.
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This book represents an engineering problem-driven approach to neural networks, fuzzy systems, and 
expert systems. The main question answered in the book is: If we were given a difficult AI problem, 
how could we apply neural networks, or fuzzy systems, or a hybrid system to solve the problem? Pattern 
recognition, speech and image processing, classification, planning, optimization, prediction, control, 
decision making, and game simulations are among the typical generic AI problems discussed in the 
book, illustrated with concrete, specific problems.

The biological and psychological plausibility of the connectionist and fuzzy models have not been 
seriously tackled in this book, though issues like biological neurons, brain structure, humanlike problem 
solving, and the psychological roots of heuristic problem-solving are given attention.

This book is intended to be used as a textbook for upper undergraduate and postgraduate students from 
science and engineering, business, art, and medicine, but chapters 1 and 2 and some sections from the 
other chapters can be used for lower-level undergraduate courses and even for introducing high school 
students to AI paradigms and knowledge-engineering. The book encompasses my experience in teaching 
courses in Knowledge Engineering, Neural Networks and Fuzzy Systems, and Intelligent Information 
Systems. Chapters 5 and 6 include some original work which gives the book a little bit of the flavor of a 
monograph. But that is what I teach at the postgraduate level.

The material presented in this book is "software independent." Some of the software required for doing 
the problems, questions, and projects sections, like speech processors, neural network simulators, and 
fuzzy system simulators, are standard simulators which can be obtained in the public domain or on the 
software market, for example, the software package MATLAB. A small education software environment 
and data sets for experimenting with are explained in the appendixes.

I thank my students and associates for the accurately completed assignments and experiments. Some of 
the results are included in the book as illustrations. I should mention at least the following names: Jay 
Garden, Max Bailey, Stephen Sinclair, Catherine Watson, Rupert Henderson, Paul Jones, Chris Maffey, 
Richard Kilgour, Tim Albertson, Grant Holdom, Andrew Gray, Michael Watts, and Jonas Ljungdahl 
from the University of Otago, Dunedin, New Zealand; Stephan Shishkov, Evgeni Peev, Rumen 
Trifonov, Daniel Nikovski, Nikolai Nikolaev, Sylvia Petrova, Petar
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Kalinkov, and Christo Neshev from the Technical University in Sofia, Bulgaria; and L. Chen and C. 
Tan, masters students from the University of Essex, England, during the year 1991.

In spite of the numerous experiments applying neural networks and fuzzy systems to knowledge-
engineering which I have conducted with the help of students and colleagues over the last 8 years, I 
would probably not have written this book without the inspiration I received from reading the 
remarkable monograph of Bart Kosko, Neural Networks and Fuzzy Systems (Englewood Cliffs, NJ, 
Prentice Hall, 1992); nor without the discussions I have with Shun-ichi Amari, Lotfi Zadeh, Teuvo 
Kohonen, John Taylor, Takeshi Yamakawa, Ron Sun, Anca Ralescu, Kunihiko Fukushima, Jaap van 
den Herik, Duc Pham, Toshiro Terano, Eli Sanches, Guido Deboeck, Alex Waibel, Nelson Morgan, Y. 
Takagi, Takeshi Furuhashi, Toshio Fukuda, Rao Vemuri, Janusz Kacprzyk, Igor Aleksander, Philip 
Treleaven, Masumi Ishikawa, David Aha, Adi Bulsara, Laslo Koczy, Kaoru Hirota, Jim Bezdek, John 
Andreae, Jim Austin, Lakmi Jain, Tom Gedeon, and many other colleagues and pioneers in the fields of 
neural networks, fuzzy systems, symbolic AI systems, and nonlinear dynamics. Before I finished the last 
revision of the manuscript a remarkable book was published by The MIT Press: The Handbook of Brain 
Theory and Neural Networks, edited by Michael Arbib. The handbook can be used for finding more 
detail on several topics presented and discussed in this book. It took me three years to prepare this book. 
Despite the many ups and downs encountered during that period I kept believing that it would be a 
useful book for my students. I thank my colleagues from the Department of Information Science at the 
University of Otago for their support in establishing the courses for which I prepared this book, 
especially my colleagues and friends Martin Anderson, Philip Sallis, and Martin Purvis. Martin 
Anderson carefully read the final version of the book and made many valuable comments and 
suggestions for improvement. I would like to thank Tico Cohen for his cooperation in the experiments 
on effluent water flow prediction and sewage process control. I was also encouraged by the help Gaynor 
Corkery gave me as she proofread the book in its preliminary version in 1994.

And last, but not least, I thank The MIT Press, and especially Harry Stanton for his enthusiastic and 
professional support throughout the three-year period of manuscript preparation.

  



Page 1

1
The Faculty of Knowledge Engineering and Problem Solving

This chapter is an introduction to AI paradigms, AI problems, and to the basics of neural networks and 
fuzzy systems. The importance and the need for new methods of knowledge acquisition, knowledge 
representation, and knowledge processing in a climate of uncertainty is emphasized. The use of fuzzy 
systems and neural networks as new prospective methods in this respect is briefly outlined from a 
conceptual point of view. The main generic AI problems are described. Some specific problems, which 
are used for illustration throughout the book, are also introduced. A heuristic problem-solving approach is 
discussed and applied to some of them. A general approach to problem solving and knowledge 
engineering is presented at the end of the chapter and developed further on in the book.

1.1 Introduction to AI Paradigms

Artificial intelligence comprises methods, tools, and systems for solving problems that normally require 
the intelligence of humans. The term intelligence is always defined as the ability to learn effectively, to 
react adaptively, to make proper decisions, to communicate in language or images in a sophisticated way, 
and to understand. The main objectives of AI are to develop methods and systems for solving problems, 
usually solved by the intellectual activity of humans, for example, image recognition, language and 
speech processing, planning, and prediction, thus enhancing computer information systems; and to 
develop models which simulate living organisms and the human brain in particular, thus improving our 
understanding of how the human brain works.

The main AI directions of development are to develop methods and systems for solving AI problems 
without following the way humans do so, but providing similar results, for example, expert systems; and 
to develop methods and systems for solving AI problems by modeling the human way of thinking or the 
way the brain works physically, for example, artificial neural networks.

In general, AI is about modeling human intelligence. There are two main paradigms adopted in AI in 
order to achieve this: (1) the symbolic, and (2) the subsymbolic. The first is based on symbol manipulation 
and the second on neurocomputing.

The symbolic paradigm is based on the theory of physical symbolic systems (Newel and Simon 1972). A 
symbolic system consists of two sets:
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(1) a set of elements (or symbols) which can be used to construct more complicated elements or 
structures; and (2) a set of processes and rules, which, when applied to symbols and structures, produce 
new structures. The symbols have semantic meanings. They represent concepts or objects. Propositional 
logic, predicate logic, and the production systems explained in chapter 2 facilitate dealing with symbolic 
systems. Some of their corresponding AI implementations are the simple rule-based systems, the logic 
programming and production languages, also discussed in chapter 2. Symbolic Al systems have been 
applied to natural language processing, expert systems, machine learning, modeling cognitive processes, 
and others. Unfortunately, they do not perform well in all cases when inexact, missing, or uncertain 
information is used, when only raw data are available and knowledge acquisition should be performed, or 
when parallel solutions need to be elaborated. These tasks do not prove to be difficult for humans.

The subsymbolic paradigm (Smolenski 1990) claims that intelligent behavior is performed at a 
subsymbolic level which is higher than the neuronal level in the brain but different from the symbolic 
one. Knowledge processing is about changing states of networks constructed of small elements called 
neurons, replicating the analogy with real neurons. A neuron, or a collection of neurons, can represent a 
microfeature of a concept or an object. It has been shown that it is possible to design an intelligent system 
that achieves the proper global behavior even though all the components of the system are simple and 
operate on purely local information. The subsymbolic paradigm makes possible not only the use of all the 
significant results in the area of artificial neural networks achieved over the last 20 years in areas like 
pattern recognition and image and speech processing but also makes possible the use of connectionist 
models for knowledge processing. The latter is one of the objectives of this book. As the subsymbolic 
models move closer, though slowly, to the human brain, it is believed that this is the right way to 
understand and model human intelligence for knowledge engineering.

There are several ways in which the symbolic and subsymbolic models of knowledge processing may 
interact:

1. They can be developed and used separately and alternatively.

2. Hybrid systems that incorporate both symbolic and subsymbolic systems can be developed.

3. Subsymbolic systems can be used to model pure symbolic systems.
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So, there is a third paradigm—a mixture of symbolic and subsymbolic systems. We shall see that fuzzy 
systems can represent symbolic knowledge, but they also use numerical representation similar to the one 
used in subsymbolic systems.

At the moment it seems that aggregation of symbolic and subsymbolic methods provides in most cases 
the best possible solutions to complex AI problems.

1.2 Heuristic Problem Solving; Genetic Algorithms

1.2.1 The Fascinating World of Heuristics

Humans use a lot of heuristics in their everyday life to solve various problems, from "simple" ones like 
recognizing a chair, to more complex problems like driving a jet in a completely new spatial environment. 
We learn heuristics throughout our life. And that is where computers fail. They cannot learn 
"commonsense knowledge," at least not as much and as fast as we can. How to represent heuristics in 
computers is a major problem of AI. Even simple heuristics, which every child can learn quickly, may not 
be easy to represent in a computer program.

For example, every small child can, after exercising for a little while, balance a pencil upright on the palm 
or finger. The child learns simple heuristics, for example, if the pencil is moving in one direction, then 
you move your palm in the same direction, the speed depending on the speed of movement of the pencil. 
If only two directions, that is, "forward" and "backward" are allowed, then the heuristics are simplified, 
for example, if the pencil is moving forward, then the palm is moved forward, or if the pencil is moving 
backward, then the palm is moved backward. The heuristic rules for solving this task are in reality more 
complex, involving, for example, the speed of movement of the pencil. But they number about a dozen. Is 
that all we use to do this very complicated task? And is it possible to teach a computer these heuristics? 
How many heuristic rules do we use when frying eggs, for example? Do we use millions of rules for the 
number of the different possible situations that may arise are, such as the size of the pan, the size of the 
eggs, the temperature of the heating element, the preferences of those waiting to eat the eggs, the 
availability of different ingredients, etc? Or do we use a simple set of heuristic rules, a "can" of rules 
only? The second suggestion seems to be more realistic
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as we cannot have billions of rules in our mind to do all the everyday simple and complex tasks. But now 
the question arises: How can we represent in a computer program this small set of rules for solving a 
particular problem? Can we represent commonsense skills and build a computer program which balances 
an inverted pendulum, or balances other objects or processes which need balancing, for example, the 
temperature and humidity in a room, an airplane when flying or landing?

Take another example—car or truck driving. Anyone who has a driving licence knows how to park a car. 
He or she applies "commonsense" knowledge, and skill. At any moment the situation is either very 
different or slightly different from what the person has experienced before. Is it possible to represent the 
"common sense" of an ordinary driver in a computer and to build a program which automatically parks 
the car when the parameters describing its position are known?

These examples show the fascinating world of heuristics—their power, their expressiveness, the 
"mystery" of their interpretation in the human mind, and the challenge for implementing them in 
computers. Articulating heuristics for solving AI problems is discussed and illustrated later in this 
chapter, and their computer implementation is given later in the book. Symbolic expert systems, fuzzy 
systems, neural networks, genetic algorithms, they all ease the efforts of the knowledge engineers to 
represent and interpret heuristics in computers.

1.2.2 The Philosophy of the Heuristic Problem-Solving Approach

When a problem is defined, it is usually assumed that a set of n independent input variables (attributes) x1, 
x2,. . . , xn, and a set of m variables of the solution y1, y2,. . . ,ym, are defined, for which observations or 
rules are known. Every possible combination of values for the input variables can be represented as a 
vector d = (a1, a2,. . . , an) in the domain space D, and every possible value for the set of output variables 
can be represented as a vector s = (b1, b2, . . . bm) in the solution space S.

An ideal case is when we have a formula that gives the optimal solution for every input vector from the 
domain space. But this is not the case in reality. The majority of the known AI problems do not have a 
single formula that can be used.

In general, problem-solving can be viewed as mapping the domain space D into the solution space S. 
Usually the number of all possible
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Figure 1.1
Heuristics as a means of obtaining restricted

projections from the domain space 
(D) into the solution space (S).

solutions is huge, even for simple problems. An exhaustive search in the solution space means testing all 
the possible vectors in the solution space and then finding the best one. This is unrealistic and some 
methods for restricting the zones where a solution will be sought have to be found. If we refer to the way 
people solve problems, we can see that they do not check all the possible solutions yet they are still 
successful at problem-solving. The reason is that they use past experience and heuristic rules which direct 
the search into appropriate zones where an acceptable solution to the problem may be found. Heuristics 
are the means of obtaining restricted projection of the domain space D to patches in the solution space S, 
as is graphically represented in figure 1.1.

Heuristic (it is of Greek origin) means discovery. Heuristic methods are based on experience, rational 
ideas, and rules of thumb. Heuristics are based more on common sense than on mathematics. Heuristics 
are useful, for example, when the optimal solution needs an exhaustive search that is not realistic in terms 
of time. In principle, a heuristic does not guarantee the best solution, but a heuristic solution can provide a 
tremendous shortcut in cost and time.

Many problems do not have an algorithm or formula to find an exact solution. In this case heuristics are 
the only way. Some examples are diagnosis of automobile problems, medical diagnosis, or creating a 
plan. All these problems belong to the AI area. When heuristics are used to speed up the search for a 
solution in the solution space S, we can evaluate the "goodness" of every state s in S by an evaluation 
function: h(s) = cost
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Figure 1.2
(a) Ill-informed and (b) well-informed heuristics. They are

represented as "patches" in the problem space. The patches have 
different forms (usually quadrilateral)depending on the way of 

representing the heuristics in a computer program.

(s, g), where g is the goal state. A heuristic H1 is "more informed" than a heuristic H2 if the cost of the 
states obtained by H1 is less than the cost of the states obtained by H2. Ill-informed heuristics require 
more search and lead to worse solutions, in contrast to well-informed heuristics. Figure 1.2 is a graphical 
representation of ill-informed heuristics (a), and well-informed heuristics (b), in a hypothetical problem 
space (D, domain space; S, solution space). Heuristics contain symbols, statements, and concepts, no 
matter how well defined they are. A general form of a heuristic rule is:

IF conditions , THEN conclusions

What heuristic for solving a given problem can we use when, for example, we have past data available 
only? One possible heuristic is the following:

IF the new input vector d' is similar to a past data set input vector di, THEN assume that the solution s' 
for d' is similar to the solution si for di.

Generally speaking, problem knowledge for solving a given problem may consist of heuristic rules or 
formulas that comprise the explicit knowledge, and past-experience data that comprise the implicit, 
hidden knowledge. Knowledge represents links between the domain space and the solution space, the 
space of the independent variables and the space of the dependent variables.
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Figure 1.3
The problem knowledge maps the domain space into the 

solution space and approximates the objective (goal)
function:(a) a general case; (b) a two-dimensional case.

The goal of a problem-solving system is to map the domain space into the solution space and to find the 
best possible solution for any input data from the domain space. The optimal, desired mapping is called 
objective or goal function. Two types of objective functions can be distinguished: (1) computable 
functions, that is, there exists an algorithm or heuristics to represent them; and (2) random functions, 
where the mapping is random and noncomputable. We deal in this book with the computable functions. 
This class also includes the chaotic functions, even though the latter seem to manifest random behavior.

Past, historical data can be represented as pairs (di, si) of input-output vectors, for i= 1, 2, . . . , p. 
Heuristic rules in a knowledge base can be represented in the form of: IF Xj, THEN Yj, j = 1, 2, . . ., N (or, 
simply Xj → Yj), where Xj is a collection of input vectors (a pattern, a "patch" in the input domain space) 
and Yj is a collection of output vectors (an output pattern, a "patch" in the output solution space). Figure 
1.3 represents the problem-solving process as mapping the domain space D into the solution space S.
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The heuristic rules should be either articulated or learned by a learning system that uses past data, 
instances, and examples of successful solutions of the problem. In order to learn heuristics from past data, 
learning methods are necessary, that is, heuristics which say ''how to learn heuristic rules from past data."

The information learned by a learning system may or may not be comprehensible to us. We may need to 
use both approaches and combine knowledge acquired by humans with that learned by a system. A 
formula that gives a partial solution to the problem may also be available. This formula should also be 
incorporated into the knowledge-based system for solving the given problem.

Of course, methods and tools are required to accomplish the problem-solving mapping. The symbolic AI 
methods, while designed to solve typical AI problems, cannot accomplish this task completely. They do 
not provide good tools for partial mapping, for learning to approximate the goal function, for adaptive 
learning when new data are coming through the solution process, for representing uncertain and inexact 
knowledge. These requirements for solving AI problems are fulfilled by the inherent characteristics of the 
fuzzy systems and neural networks, especially when applied in combination with the symbolic AI 
systems. Fuzzy systems are excellent tools for representing heuristic, commonsense rules. Fuzzy 
inference methods apply these rules to data and infer a solution. Neural networks are very efficient at 
learning heuristics from data. They are "good problem solvers" when past data are available. Both fuzzy 
systems and neural networks are universal approximators in a sense, that is, for a given continuous 
objective function there will be a fuzzy system and a neural network which approximate it to any degree 
of accuracy. This is discussed in detail in chapters 3 and 4.

Learning from data is a general problem for knowledge-engineering. How can we learn about an 
unknown objective function y = F(x)? Statistical methods require a predefined model of estimation 
(linear, polynomial, etc.). Learning approximations from raw data is a problem which has been well 
performed by neural networks. They do not need any predefined function type. They are "model-free" 
(Kosko 1992). They can learn "what is necessary" to be learned from data, that is, they can learn 
selectively. They can capture different types of uncertainties, including statistical and probabilistic. It is 
possible to mix in a hybrid system explicit
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heuristic rules and past-experience data. These techniques are demonstrated in chapter 6.

A brilliant example of a heuristic approach to solving optimization problems are the genetic algorithms 
introduced by John Holland in 1975.

1.2.3 Genetic Algorithms

A typical example of a heuristic method for problem solving is the genetic approach used in what is 
known as genetic algorithms. Genetic algorithms solve complex combinatorial and organizational 
problems with many variants, by employing analogy with nature's evolution. Genetic algorithms were 
introduced by John Holland (1975) and further developed by him and other researchers.

Nature's diversity of species is tremendous. How does mankind evolve into the enormous variety of 
variants—in other words, how does nature solve the optimization problem of perfecting mankind? One 
answer to this question may be found in Charles Darwin's theory of evolution. The most important terms 
used in the genetic algorithms are analogous to the terms used to explain the evolutionary processes. They 
are:

• Gene—a basic unit, which controls a property of an individual.

• Chromosome—a string of genes; it is used to represent an individual, or a possible solution of a 
problem in the solution space.

• Population—a collection of individuals.

• Crossover (mating) operation—substrings of different individuals are taken and new strings 
(offsprings) are produced.

• Mutation—random change of a gene in a chromosome.

• Fitness (goodness) function—a criterion which evaluates each individual.

• Selection—a procedure for choosing a part of the population that will continue the process of 
searching for the best solution, while the other part of the population "dies".

A simple genetic algorithm consists of the steps shown in figure 1.4. Figure 1.5 shows graphically the 
solution process at consecutive time moments in the solution state space. The solution process over time 
has been "stretched" in the space.
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Figure 1.4
An outline of a genetic algorithm.

There is no need for in-depth problem  knowledge when using this method of approaching a complex 
multioptional optimization problem. What is needed here is merely a "fitness" or "goodness" criterion for 
the selection of the most promising individuals (they may be partial solutions to the problem). This 
criterion may require a mutation as well, which could be a heuristic approach of the "trial-and-error" type. 
This implies keeping (recording) the best solutions at each of the stages.

Genetic algorithms are usually illustrated by game problems. Such is a version of the "mastermind" game, 
in which one of two players thinks up a number (e.g., 001010) and the other has to find it out with a 
minimal number of questions. Each question is a hypothesis (solution) to which the first player replies 
with another number indicating the number of correctly guessed figures. This number is the criterion for 
the selection of the most promising or prospective variant which will take the second player to eventual 
success. If there is no improvement after a certain number of steps, this is a hint that a change should be 
introduced. Such change is called mutation. "When" and "how" to introduce mutation are difficult 
questions which need more in-depth investigation. An example of solving the "guess the number'' game 
by using a simple genetic algorithm is given in figure 1.6.

In this game success is achieved after 16 questions, which is four times faster than checking all the 
possible combinations, as there are 26 = 64 possible variants. There is no need for mutation in the above 
example. If it were needed, it could be introduced by changing a bit (a gene) by random selection. 
Mutation would have been necessary if, for example,
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Figure 1.5
A graphical representation of a genetic algorithm.

there was 0 in the third bit of all three initial individuals, because no matter how the most prospective 
individuals are combined, by copying a precise part of their code we can never change this bit into 1. 
Mutation takes evolution out of a "dead end."

The example above illustrates the class of simple genetic algorithms introduced by John Holland, they are 
characterized by the following:

• Simple, binary genes, that is, the genes take values of 0 and 1 only.

• Simple, fixed single-point crossover operation: The crossover operation is done by choosing a point 
where a chromosome is divided into two parts swapped with the two parts taken from another individual.

• Fixed-length encoding, that is, the chromosomes had fixed length of genes.

Many complex optimization problems find their way to a solution through genetic algorithms. Such 
problems are, for example, the Traveling Salesman Problem (TSP)—finding the cheapest way to visit n 
towns without visiting a town twice; the Min Cut Problem—cutting a graph with minimum links between 
the cut parts; adaptive control; applied physics problems; optimization of the parameters of complex 
computational
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Figure 1.6
An example of a genetic algorithm applied to the game "guess the number."

models; optimization of neural network architectures; finding fuzzy rules and membership functions for 
the fuzzy values, etc.

The main issues in using genetic algorithms are the choice of genetic operations (mating, selection, 
mutation) and the choice of selection criteria. In the case of the Traveling Salesman the mating operation 
can be merging different parts of two possible roads (mother and father road) until new usable roads are 
obtained. The criterion for the choice of the most prospective ones is minimum length (or cost).

Genetic algorithms comprise a great deal of parallelism. Thus, each of the branches of the search tree for 
best individuals can be utilized in parallel with the others. This allows for an easy realization of the 
genetic algorithms on parallel architectures.
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Genetic algorithms are search heuristics for the "best" instance in the space of all possible instances. Four 
parameters are important for any genetic algorithm:

1. The encoding scheme, that is, how to encode the problem in terms of genetic algorithms—what to 
choose for genes, how to construct the chromosomes, etc.

2. The population size—how many possible solutions should be kept for further development

3. The crossover operations—how to combine old individuals and produce new, more prospective ones

4. The mutation heuristic—"when" and "how" to apply mutation

In short, the major characteristics of the genetic algorithms are the following:

• They are heuristic methods for search and optimization. As opposed to the exhaustive search 
algorithms, the genetic algorithms do not produce all variants in order to select the best one. Therefore, 
they may not lead to the perfect solution but to one that is closest to it taking into account the time limits. 
But nature itself is imperfect too (partly due to the fact that the criteria for perfection keep changing), and 
what seems to be close to perfection according to one "goodness" criterion may be far from it according 
to another.

• They are adaptable, which means that they have the ability to learn, to accumulate facts and 
knowledge without having any previous knowledge. They begin only with a "fitness" criterion for 
selecting and storing individuals (partial solutions) that are "good" and dismissing those that are "not 
good."

Genetic algorithms can be incorporated in learning modules as a part of an expert system or of other 
information-processing systems. Genetic algorithms are one paradigm in the area of evolutionary 
computation. Evolution strategies and evolutionary programming are the other (Fogel, 1995). Evolution 
strategies are different from the genetic algorithms in several ways: they operate not on chromosomes 
(binary codes) but on real-valued variables; a population is described by statistical parameters (e.g., mean 
and standard deviation); new solution is generated by perturbation of the parameters. One application of 
evolutionary computation is
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creating distributed AI systems called artifical life. They consist of small elementary elements that 
collectively manifest some repeating patterns of behavior or even a certain level of intelligence.

1.3 Why Expert Systems, Fuzzy Systems, Neural Networks, and Hybrid Systems for Knowledge 
Engineering and Problem Solving?

The academic research area for developing models, methods, and basic technologies for representing and 
processing knowledge and for building intelligent knowledge-based systems, is called knowledge 
engineering. This is a part of the AI area, directed more toward applications.

1.3.1 Expert Systems

Expert systems are knowledge-based systems that contain expert knowledge. For example, an expert 
system for diagnosing car faults has a knowledge base containing rules for checking a car and finding 
faults in the same way an engineer would do it. An expert system is a program that can provide expertise 
for solving problems in a defined application area in the way the experts do.

Expert systems have facilities for representing existing expert knowledge, accommodating existing 
databases, learning and accumulating knowledge during operation, learning new pieces of knowledge 
from existing databases, making logical inferences, making decisions and giving recommendations, 
communicating with users in a friendly way (often in a restricted natural language), and explaining their 
"behaviour" and decisions. The explanation feature often helps users to understand and trust the decisions 
made by an expert system. Learning in expert systems can be achieved by using machine-learning 
methods and artificial neural networks.

Expert systems have been used successfully in almost every field of human activity, including 
engineering, science, medicine, agriculture, manufacturing, education and training, business and finance, 
and design. By using existing information technologies, expert systems for performing difficult and 
important tasks can be developed quickly, maintained cheaply, used effectively at many sites, improved 
easily, and refined during operation to accommodate new situations and facts.
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Figure 1.7
The two sides of an expert system.

There are two easily distinguishable sides of an expert system—the expert's side, and the users' side 
(figure 1.7). Experts transfer their knowledge into the expert system. The users make use of it.

In spite of the fact that many methods for building expert systems have been developed and used so far, 
the main problems in building expert systems are still there. They are:

1. How to acquire knowledge from experts?

2. How to elicit knowledge from a huge mass of previously collected data?

3. How to represent incomplete, ambiguous, corrupted, or contradictory data and knowledge?

4. How to perform approximate reasoning?

These questions were raised at the very early stage of expert systems research and development. Ad hoc 
solutions were applied, which led to a massive explosion of many expert systems applied to almost every 
area of industrial and social activity. But the above questions are still acute. Good candidates for finding 
solutions to these problems are fuzzy systems and neural networks.

1.3.2 Fuzzy Systems for Knowledge Engineering

One way to represent inexact data and knowledge, closer to humanlike thinking, is to use fuzzy rules 
instead of exact rules when representing knowledge.

Fuzzy systems are rule-based expert systems based on fuzzy rules and fuzzy inference. Fuzzy rules 
represent in a straightforward way "commonsense" knowledge and skills, or knowledge that is subjective, 
ambiguous, vague, or contradictory. This knowledge might have come from many different sources. 
Commonsense knowledge may have been acquired from long-term experience, from the experience of 
many people, over many years.
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There are many applications of fuzzy logic on the market now. These include control of automatic 
washing machines, automatic camera focusing, control of transmission systems in new models of cars, 
automatic landing systems for aircraft, automatic helicopter control, automatic air-conditioning systems, 
automatic control of cement kilns, automatic control of subways, fuzzy decision making, fuzzy databases, 
etc. These, and many other industrial applications of fuzzy logic have been developed mainly in Japan, 
the United States, Germany, and France. They are spreading now all over the world. Many other 
applications of fuzzy logic in areas like control, decision-making and forecasting, human-computer 
interaction, medicine, agriculture, environmental pollution, cooperative robots, and so forth are in the 
research laboratories and are expected to enter the market.

The most distinguishing property of fuzzy logic is that it deals with fuzzy propositions, that is, 
propositions which contain fuzzy variables and fuzzy values, for example, "the temperature is high," "the 
height is short." The truth values for fuzzy propositions are not TRUE/FALSE only, as is the case in 
propositional boolean logic, but include all the grayness between two extreme values.

A fuzzy system is defined by three main components:

1. Fuzzy input and output variables, defined by their fuzzy values

2. A set of fuzzy rules

3. Fuzzy inference mechanism

Fuzzy rules deal with fuzzy values as, for example, "high," "cold," "very low," etc. Those fuzzy concepts 
are usually represented by their membership functions. A membership function shows the extent to which 
a value from a domain (also called universe) is included in a fuzzy concept (see, e.g., figures 3.1 and 3.2).

Case example. The Smoker and the Risk of Cancer Problem A fuzzy rule defines the degree of risk of 
cancer depending on the type of smoker (figure 1.8). The problem is how to infer the risk of cancer for 
another type of smoker, for example, a "moderate smoker," having the above rule only.

In order to solve the above and many other principally similar but much more complex problems, one 
needs to apply an approximate reasoning method. Fuzzy inference methods based on fuzzy logic can be 
used successfully. Fuzzy inference takes inputs, applies fuzzy rules, and pro-
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Figure 1.8
A simple fuzzy rule for the Smoker and the Risk of Cancer case example.

duces outputs. Inputs to a fuzzy system can be either exact, crisp values (e.g., 7), or fuzzy values (e.g., 
"moderate"). Output values from a fuzzy system can be fuzzy, for example, a whole membership function 
for the inferred fuzzy value; or exact (crisp), for example, a single value is produced on the output. The 
process of transforming an output membership function into a single value is called defuzzification.

The secret for the success of fuzzy systems is that they are easy to implement, easy to maintain, easy to 
understand, robust, and cheap. All the above properties of fuzzy systems and the main techniques of using 
them are explained in chapter 3.

1.3.3 Neural Networks for Knowledge Engineering

During its development, expert systems have been moving toward new methods of knowledge 
representation and processing that are closer to humanlike reasoning. They are a priori designed to 
provide reasoning similar to that of experts. And a new computational paradigm has already been 
established with many applications and developments—artificial neural networks.
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An artificial neural network (or simply a neural network) is a biologically inspired computational model 
that consists of processing elements (neurons) and connections between them, as well as of training and 
recall algorithms.

The structure of an artificial neuron is defined by inputs, having weights bound to them; an input 
function, which calculates the aggregated net input signal to a neuron coming from all its inputs; an 
activation (signal) function, which calculates the activation level of a neuron as a function of its 
aggregated input signal and (possibly) of its previous state. An output signal equal to the activation value 
is emitted through the output (the axon) of the neuron. Drawings of real and artificial neurons are given in 
figures 4.1. and 4.2, respectively. Figures 4.3 and 4.4 represent different activation functions. Figure 4.5 
is a graphical representation of a small neural network with four inputs, two intermediate neurons, and 
one output.

Neural networks are also called connectionist models owing to the main role of the connections. The 
weights bound to them are a result of the training process and represent the "long-term memory" of the 
model. The main characteristics of a neural network are:

• Learning—a network can start with "no knowledge" and can be trained using a given set of data 
examples, that is, input-output pairs (a supervised training), or only input data (unsupervised training); 
through learning, the connection weights change in such a way that the network learns to produce desired 
outputs for known inputs; learning may require repetition.

• Generalization—if a new input vector that differs from the known examples is supplied to the 
network, it produces the best output according to the examples used.

• Massive potential parallelism—during the processing of data, many neurons "fire" simultaneously.

• Robustness—if some neurons "go wrong," the whole system may still perform well.

• Partial match is what is required in many cases as the already known data do not coincide exactly 
with the new facts 

These main characteristics of neural networks make them useful for knowledge engineering. Neural 
networks can be used for building expert
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systems. They can be trained by a set of examples (data) and in that way they represent the "hidden" 
knowledge of an expert system. For example, if we have good clinical records about patients suffering 
from cancer, we can use the data to train a neural network. The same network can also accommodate 
expertise provided by experts where the expertise is represented in an explicit form. After that, the 
network can recognize the health status of a new patient and make recommendations. Neural networks 
can be used effectively for building user interface to an expert system. There are connectionist models for 
natural language processing, speech recognition, pattern recognition, image processing, and so forth. The 
knowledge-engineering applications of neural networks inspire new connectionist models and new 
hypotheses about cognitive processes in the brain. Neural networks have been applied to almost every 
application area, where a data set is available and a good solution is sought. Neural networks can cope 
with noisy data, missing data, imprecise or corrupted data, and still produce a good solution.

1.3.4 Hybrid Systems

These are systems which have rule-based systems, fuzzy systems, neural networks, and other paradigms 
(genetic algorithms, probabilistic reasoning, etc.) in one. Hybrid systems make use of all their ingredients 
for solving a given problem, thus bringing the advantages of all the different paradigms together. Hybrid 
systems are introduced in chapter 6.

1.4 Generic and Specific AI Problems: Pattern Recognition and Classification

1.4.1 An Overview of Generic and Specific AI Problems

Knowledge engineering deals with difficult Al problems. Three main questions must be answered before 
starting to develop a computer system for solving a problem:

1. What is the type of the problem, that is, what kind of a generic problem is it?

2. What is the domain and the solution space of the problem and what problem knowledge is available?

3. Which method for problem solving should be used?
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A generic problem (task) is a theoretically defined problem (task) for which methods are developed 
regardless of the contextual specificity of parameters and variables and their values. The variables used in 
the specification or a solution of the problem are domain-free.

A specific problem is a real problem which has its parameters, values, constraints, and so forth 
contextually specified by the application area the problem falls into.

In order to solve a specific problem, domain-specific knowledge is required. The problem knowledge 
could be a set of past data or explicit expert knowledge in the form of heuristic rules, or both. In spite of 
the fact that specific knowledge in a given area is required, we can use methods applicable for solving the 
corresponding generic problem, for example, methods for classification, methods for forecasting, etc.

What kind of methods do humans use when solving problems? Can we develop machine methods close to 
the human ones? Are fuzzy systems and neural networks useful in this respect? Which one to use, or 
maybe a combination of both? Answering these questions is one of the main objectives of this book.

1.4.2 Pattern Recognition and Classification; Image Processing

Pattern recognition is probably the most used generic AI problem in knowledge engineering. The problem 
can be formulated as follows: given a set of n known patterns and a new input pattern, the task is to find 
out which of the known patterns is closest to the new one. This generic problem has many applications, 
for example, handwritten character recognition, image recognition, speech recognition. Patterns can be: 
Spatial, for example, images, signs, signatures, geographic maps; and Temporal, for example, speech, 
meteorological information, heart beating, brain signals.

The methods used for solving pattern recognition problems vary depending on the type of patterns. Often, 
temporal patterns are transformed into spatial patterns and methods for spatial pattern recognition are 
used afterward.

Pattern recognition problems are usually characterized by a large domain space. For example, recognizing 
handwritten characters is a difficult task because of the variety of styles which are unique for every 
individual. The task is much more difficult when font-invariant, scale-invariant, shift-invariant, rotation-
invariant, or noise-invariant characters should be recognized.
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Figure 1.9
A pattern recognition system may allow for different variants of writing

the digit 3: (a) centered; (b) scale-invariant and shift-invariant;
(c) rotation-invariant; (d) font-invariant; (e) a noisy character.

Case Example: Handwritten Characters Recognition  This is a difficult problem because of the variability 
with which people write characters. This variability is illustrated in figure 1.9. But this is not a difficult 
problem for humans. So, humanlike problem-solving methods might be applied successfully. This 
problem is tackled in the book by using fuzzy logic methods in chapter 3 and neural networks in chapters 
4 and 5.

A pattern can be represented by a set of features, for example, curves, straight lines, pitch, frequency, 
color. The domain space of the raw patterns is transformed in the feature space before the patterns are 
processed. How many features should be used to represent a set of patterns is an issue which needs 
thorough analysis. Figure 1.10 shows how a defined set of features can be used for representing the letters 
in the Roman alphabet. But is the set of features used in figure 1.10 enough to discriminate all different 
characters? And what kind of extra features must be added in order to distinguish K from Y for example? 
Features can have different types of values: Symbolic, qualitative values, like ''black," "curve," etc., and 
numerical, quantitative values, which can be continuous or discrete.

The set of features must satisfy some requirements, for example: be large enough to allow unique 
representation of all the patterns; not be redundant, as this may reflect in a poor classification due to 
considering features that are not important for the object classification; this may introduce noise in the 
system; and allow flexibility in pattern representation and processing depending on the concrete task.

A class of patterns can be represented in two major ways: (1) as a set of pattern examples; and (2) as a set 
of rules defining features which the patterns (objects) from a given class must have.
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Figure 1.10
Features used to discriminate the letters in the Roman alphabet.

B, bottom; T, top; Y, yes; N, no/non.

The classification problem, as a generic one, is to associate an object with some already existing groups, 
clusters, or classes of objects. Classification and pattern recognition are always considered as either 
strongly related or identical problems.

Classes may be defined by a set of objects, or by a set of rules, which define, on the basis of some 
attributes, whether a new object should be classified into a given class.

Case Example. Iris Classification Problem   A typical example of such a problem is the Iris Classification 
Problem. This is based on a data set used by Fisher (1936) for illustrating discriminant analysis 
techniques. Afterward, it became a standard benchmark data set for testing different classification 
methods. The Iris data set contains 150 instances grouped into three species of the plant genus 
Iris—setosa, versicolor, virginica. Every instance is represented by four attributes: sepal length (SL), 
sepal width (SW), petal length (PL), and petal width (PW), each measured in centimeters. Ten randomly 
chosen instances from the Iris data set are shown in the example below. Figure 1.11 shows graphically all 
the 150 instances in the Iris data set. The data set is explained in appendix A.
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Figure 1.1
1 Graphical representation of the Iris data set. The first 50 instances belong

to class Setosa, the second 50 to class Versicolor, and the last 50 to class Virginica.
No. SL SW PL PW Class

1 5.1 3.5 1.4 0.2 Setosa

2 4.7 3.2 1.3 0.2 Setosa

3 5.0 3.6 1.4 0.2 Setosa

4 6.5 2.8 4.6 1.5 Versicolor

5 6.3 3.3 4.7 1.6 Versicolor

6 6.6 2.9 4.6 1.3 Versicolor

7 7.1 3.0 5.9 2.1 Virginica

8 6.5 3.0 5.9 2.2 Virginica

9 6.5 3.2 5.1 2.0 Virginica

10 6.8 3.0 5.5 2.1 Virginica

The problem is to classify a new  instance, for example, 5.4, 3.3, 4.7, 2.1, into one of the classes. The Iris 
Classification Problem is a specific
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problem which illustrates the generic classification problem. It is used throughout the book as a case 
example to illustrate different methods of classification.

Different groups of methods can be used for solving classification problems:

• Statistical methods, based on evaluating the class to which a new object belongs with the highest 
probability; Bayesian probabilities are calculated and used for this purpose (see chapter 2 for using 
probabilities to represent uncertainties)

• Discriminant analysis techniques, the most used among them being linear discriminant analysis; 
this is based on finding linear functions (linear combinations between the features) graphically 
represented as a line in a two-dimensional space, as a plane in three-dimensional space, or as a 
"hyperplane" in a more-dimensional space, which clearly distinguishes the different classes (figure 1.12.)

• Symbolic rule-based methods, based on using heuristic symbolic rules. A general form of a 
heuristic rule for classification is as follows:

IF (features), THEN (class)

Symbolic rules usually use intervals. The following rough rules can be articulated after having a quick 
look at figure 1.11. The rules attempt to discriminate the three classes of Iris.

Figure 1.12
Linear separation between two classes A and B 

in a two-dimensional feature space (x1 and x2

are features).
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IF PW 0.8, THEN Iris Setosa, else
IF PL  4.8 and PW  1.5, THEN Iris Virginica,

otherwise, Iris Versicolor.

The question is how good the discrimination is.

• Fuzzy methods, based on using fuzzy rules. Fuzzy rules represent classes in fuzzy terms, for 
example, a rule for classifying new instances of Iris into class Setosa may look like:

IF PL is Small and PW is Small, THEN Setosa

where Small is defined for the two attributes PL and PW separately by two membership functions.

Example  A heuristic fuzzy rule for recognizing the handwritten digit 3 is given below. The features are 
of the type "the drawing of the digit crosses a zone of the drawing space," "does not cross a zone," or "it 
does not matter'' (figure 1.13). If we divide the drawing space into five horizontal zones as was done in 
Yamakawa (1990), a heuristic rule to recognize 3 could be written as:

IF (the most upper zone is crossed) and
(the middle upper zone is uncrossed)
(the middle zone does not matter)
(the middle lower zone is uncrossed)
(the lowest zone is crossed),
THEN (the character is 3)

Figure 1.13
Using "crossing zones" as features for pattern
recognition. (Redrawn with permission from

Yamakawa 1990.)
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Fuzzy systems provide simple and effective methods for handwritten character recognition because the 
characters can be represented by fuzzy features. For example the digit 3 may have a small line in the 
central area of the drawing space if it is centered. Two fuzzy concepts were used in the last sentence when 
we described the shape of the digit 3, that is, "small line," and "central area."

• Neural networks and other machine-learning methods, based on learning from examples of objects 
and their respective classes. The task is to build a classification system when a set of patterns (instances) 
only is available. The machine-learning methods and the methods of neural networks are appropriate for 
this task. One can also look at the "hidden" knowledge in the data set and try to represent it by explicit 
heuristic rules learned from the data. Because of the variety of patterns and the difficulties in uttering 
heuristic rules, pattern recognition is very often based on training a system with patterns. Neural networks 
are especially suitable for this task.

• k- Nearest neighbor methods, based on evaluating the distance between a new object and k-nearest 
objects for which the classes they belong to are known. The class that appears most frequently among the 
k neighbors is chosen.

Here the concept of distance between objects (patterns) is introduced for the first time. A distance 
between two patterns a = (a1,a2,. . . .,an) and b = (b1, b2,. . . ,bn) can be measured in different ways, for 
example,

—Absolute distance,

—Euclidean distance,

— Various normalized distances, for example, a distance between a pattern and a center of a class is 
divided to the radius of the class region (cluster).

Based on measured distances between instances (objects) of different classes, areas in the problem space 
of all instances can be defined. These areas are called clusters. Clustering is an important procedure 
which helps
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Figure 1.14
A cluster in the problem space.

to understand data. A center ci of a cluster Ci is a point or an instance to which the mean of the distances 
from each instance in the cluster is minimum (figure 1.14). A cluster Ci can be defined by a characteristic 
function Mi: S→ {0, 1}. It defines whether an instance from the whole problem space S belongs (1) or 
does not belong (0) to the cluster.

If the class labels for the instances are not known, then clustering may be useful for classification 
purposes. In this case a number of clusters and class centers, which minimize the mean difference 
between all the instances and these centers, may be defined.

In order to better illustrate the important generic classification problem, another example is used 
throughout the book.

Case Example: Soil Classification Problem There are six main types of soil typical for a certain region. 
Each type of soil is characterized by different ion concentrations, the average being shown in the table 1.1 
(Edmeades et al. 1985). The task is to recognize the soil type from a sample of unknown soil after having 
measured those concentrations. The solution to this problem as a set of production rules is given in 
chapter 2 and as a neural network, in chapter 5. A small database on the problem is described in appendix 
F.

Image processing is a part of the generic pattern recognition problem area. The smallest data element 
from an image is called a pixel. Different image processing tasks are image recognition, image 
compression, and image analysis.

Image recognition associates a new image with an already existing one, or with a class of images. The 
recognition process is hard, as images are usually blurry, corrupted, noisy. Image compression aims at 
encoding an
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Table 1.1

The soil classification case example: Average concentration of elements in different types of soils

Soil NH NO SO - Ca2+ Mg2+ K+ Na+ Cl-

Egmont YBL 0.39 2.79 0.44 0.82 0.37 1.03 1.72 0.31

Stratford YBL 0.19 1.10 0.50 0.65 0.15 0.45 0.64 0.28

Taupo YBP 0.31 0.64 0.46 0.52 0.19 0.83 0.43 0.14

Tokomaru YGE 0.15 1.09 0.58 0.75 0.29 0.52 0.89 0.26

Matapiro YGE 0.09 0.21 0.45 0.34 0.18 0.24 0.98 0.30

Waikare YBE 0.17 0.86 0.59 1.12 0.17 0.38 0.74 0.25

Adapted from Edmeades et al. (1985).

image with a minimum number of bits per pixel in such a way that a decoding process reconstructs the 
image to a satisfactory approximation of the original image. The compactness of the compression is 
measured in number of bits used to encode a pixel of the image. Feature extraction, segmentation, and 
other tasks are part of the image analysis problem area.

Associative memories are often used as a means for pattern storage and recognition. They are devices 
which can store patterns and recall them from a partial presentation as an input.

1.5 Speech and Language Processing

Speech-processing tasks are among the most difficult AI problems. Basic notions of speech processing 
are presented here. Different solutions are presented elsewhere in the book.

1.5.1 Introduction to Speech-Processing Tasks

Speech processing includes different technologies and applications. Some of them, according to Morgan 
and Scofield (1991), are listed below:

• Speech encoding aims at voice transmission, speech compression, and secure communications.

• Speaker separation aims at extracting speech signals of each of the speakers when multiple talkers 
are present.

• Speech enhancement aims at improving the intelligibility of the speech signals.
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• Speaker identification aims at "identifying an uncooperative talker in an environment where a large 
number of talkers may be present."

• Language identification aims at discriminating languages.

• Keyword spotting, that is, recognizing spoken keywords from a dictionary (for database retrieval, 
etc).

But the most interesting and most rapidly developing of the speech-processing problems is the automatic 
speech recognition (ASR) problem. It aims at providing enhanced access to machines via voice 
commands. A voice interface to a computer is related strongly to analysis of the spoken language, concept 
understanding, intelligent communication systems, and further on, to developing "consciousness" in the 
machines. These are challenging problems for the AI community. Can neural networks and fuzzy systems 
help in getting better solution to ASR problems? Yes, they can.

The elaboration of practical systems for speech recognition takes two major trends: (1) recognition of 
separately pronounced words in extended speech; (2) recognition and comprehension of continuous 
speech.

Two approaches are mainly used in ASR: global and analytical. The global approach is based on 
comparison of the whole word with standard patterns, whereas in the analytical approach a word is 
broken into segments (subwords, units) on the basis of the phonetic characteristics of the speech signal. In 
both global and analytical approaches, obtained parametric vectors from the speech signal must be 
classified. A parametric vector of n elements can be represented as a point in n-dimensional space. This 
point can be seen as a pattern.

Phonemes are the smallest speech patterns that have linguistic representation in a language. They can be 
divided into three major conventional groups: vowels (e.g., /e/, /o/, /i/, /I/, /u/), semivowels (e.g., /w/) and 
consonants (e.g., /n/, /b/, /s/) (see appendix J). Vowels and consonants can be divided into additional 
subgroups. There are 43 phonemes in the received pronunciation (R.P.) English language, but their 
number varies slightly among the different dialects (American, Australian, New Zealand, etc.)

Before we discuss connectionist models for speech recognition and fuzzy models for speech and language 
understanding, a brief introduction to the nature of speech, speech features and transformations, and the 
technical and social problems that arise when building a speech recognition system, will be presented.
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1.5.2 The Nature of Speech

Speech is a sequence of waves which are transmitted over time through a medium and are characterized 
by some features, including intensity and frequency. Speech is perceived by the inner ear in humans. It 
activates oscillations of small elements in the media of the inner ear, which oscillations are transmitted to 
a specific part of the brain for further processing. The biological background of speech recognition is 
used by many researchers to develop humanlike ASR systems, but other researchers take other 
approaches. Speech can be represented on the:

• Time scale, which representation is called a waveform representation

• Frequency scale, which representation is called a spectrum

• Both a time and frequency scale, which is the spectrogram of the speech signal

The three factors which provide the easiest method of differentiating speech sounds are the perceptual 
features of loudness, pitch, and quality. Loudness is related to the amplitude of the time domain 
waveform, but it is more correct to say that it is related to the energy of the sound (also known as its 
intensity). The greater the amplitude of the time domain waveform, the greater the energy of the sound 
and the louder the sound appears. Pitch is the perceptual correlate of the fundamental frequency of the 
vocal vibration of the speaker organ. Figure 1.15(A) represents the time domain waveform of the word 
"hello" (articulated by the author). The quality of a sound is the perceptual correlate of its spectral 
content. The formants of a sound are the frequencies where it has greatest acoustic energy, as illustrated 
in figure 1.15(B) for the word "hello." The shape of the vocal tract determines which frequency 
components resonate. The short hand for the first formant is F1, for the second, F2, etc. The fundamental 
frequency is usually indicated by F0. There are four major formants for the word "hello,'' well 
distinguished in figure 1.15(B).

A spectrogram of a speech signal shows how the spectrum of speech changes over time. The horizontal 
axis shows time and the vertical axis shows frequency. The color scale (the gray scale) shows the energy 
of the frequency components. The darker the color, the higher the energy of the component, as shown in 
figure 1.16. This figure compares the spectra of a pronounced word by a male speaker and a female 
speaker. Similarities
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Figure 1.15
The word "hello" pronounced by the author: 
(A) Its waveform, time is represented on the

 x-axis and energy—on the y-axis.
 (B) Its frequency representation where four
 major formants can be depicted, the x-axis 
represents frequencies and the y-a the signal.
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Figure 1.16
Spectra of the word "one" pronounced by a male and a female

speakers. The second pronounciation has higher energy in higher 
frequency louds.
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Figure 1.17
Spectra of digits pronounced by a male speaker (Talker 1),

and the same speaker with a cold (Talker 2). The x-axis
represents time in milliseconds (0-800); the y-axis

represents frequency in kilohertz (0-11).

and differences in pronunciation depending on the health status of the same speaker, are illustrated 
graphically in figure 1.17.

1.5.3 Variability in Speech

The fundamental difficulty of speech recognition is that the speech signal is highly variable according to 
the speaker, speaking rate, context, and acoustic conditions. The task is to find which of the variations is 
relevant to speech recognition (Lee et al., 1993).

There are a great number of factors which cause variability in speech such as the speaker, the context, and 
the environment. The speech signal is very dependent on the physical characteristics of the vocal tract, 
which in turn depend on age and gender. The country of the speaker and the region in the country the 
speaker is from can also affect speech. Different accents of English can mean different acoustic 
realizations of the same

  



Page 34

phonemes. If English is the second language of the speaker, there can be an even greater degree of 
variability in the speech.

The same speaker can show variability in his or her speech, depending on whether it is a formal or 
informal situation. People speak precisely in formal situations and imprecisely in informal situations 
because the speaker is more relaxed. The more familiar a speaker is with a computer speech recognition 
system, the more informal his or her speech becomes, and the more difficult for the speech recognition 
system to recognize the speech. This could pose problems for speech recognition systems if they could 
not continually adjust.

Words may be pronounced differently depending on their context. Words are pronounced differently 
depending on where they lie in a sentence and the degree of stress placed upon them. In addition, the 
speaking rate can cause variability in speech. The speed of speech varies according to such things as the 
situation and emotions of the speaker. The duration of sounds in fast speech, however, do not reduce 
proportionately to their duration in slow speech.

Case Example: Phonemes Recognition Recognizing phonemes from  a spoken language is an important 
task because if it is done correctly, then it is possible to further recognize the words, the sentences, and 
the context in the spoken language. But it is an extremely difficult task. And this is because of the various 
ways people speak. They pronounce vowels and consonants differently depending on the accent, dialect, 
and the health status of the person (a person with the flu sounds differently). Figure 1.18 shows the 
difference between some vowels in English pronounced by male speakers in R.P. English, Australian 
English, and New Zealand English, when the first and the second formants are used as a feature space and 
averaged values are used. The significant difference between the same vowels pronounced in different 
dialects (except /I/ for the R.P. and Australian English; they coincide on the diagram) can be noted. 
Solutions to the problem of phonemes recognition is presented in chapters 5 and 6.

Case Example: Musical Signal Recognition This is a similar problem to that of speech recognition. The 
problem is how to recognize individual notes from a sequence of musical signals and how to eventually 
print them out. There are some differences also. The frequency band used for speech is usually [0, 10] 
kHz, but for music it is usually [0,20] kHz. Musical notes are easier to recognize as they are more similar, 
whatever the instru-
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Figure 1.18
The first two formants used to represent the vowels /u/, /1/,/i/ 

and /3/ pronounced by a male speaker in R.P English, Australian
English, and New Zealand English. (Redrawn and adapted with

permission from Maclagan 1982.)

ment is used to produce them, than phonemes pronounced by different persons. Still there may be 
difficulties for a computer system in recognizing a tune produced by one piano when a system is trained 
on signals produced by another.

A further problem for computer speech recognition is ambiguity of speech. This ambiguity is resolved by 
humans through some higher-level processing. Ambiguity may be caused by:

• Homophones—words with different spellings and meanings but that sound the same (e.g., "to," 
"too," and ''two" and "hear" and "here"). It is necessary to resort to higher levels of linguistic analysis for 
distinction.

• Overlapping classes, as in the example above illustrating overlapping of phonemes pronounced in 
different dialects of a language.

• Word boundaries. By identifying speech through a string of phonemes only, ambiguities will arise, 
for example, /greiteip/ could be interpreted as "gray tape"or "great ape"; /laithau skip3/ could be either 
"lighthouse
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keeper" or "light housekeeper." Once again it is necessary to resort to high-level linguistic analysis to 
distinguish boundaries.

• Syntactic ambiguity. This is the ambiguity of meaning until all the words are grouped into 
appropriate syntactic units. For example, the phrase "the boy jumped over the stream with the fish" means 
either the boy with the fish jumped over the stream or the boy jumped over the stream with a fish in it. 
The correct interpretation requires more contextual information.

The above examples show that the ASR problem is one of the most difficult Al problems. It contains 
features of other generic problems, like pattern recognition, classification, data rate reduction, and so 
forth. Once we know how to tackle it, we will have the skills and knowledge to tackle other Al problems 
of a similar nature.

1.5.4 Factors That Influence the Performance of the ASR Systems

All the speech recognition tasks are constrained in order to be solved. Through placing constraints on the 
speech recognition system, the complexity of the speech recognition task can be considerably reduced. 
The complexity is basically affected by:

• Vocabulary size (the range of words and phrases the system understands). Many tasks can be 
performed with a small vocabulary, although ultimately the most useful systems will have a large 
vocabulary. In general, vocabulary size is as follows:

Small, tens of words.
Medium, hundreds of words.
Large, thousands of words.
Very large, tens of thousands of words.

• The speaking format of the system, that is,

Isolated words (phrase) recognition.
Connected word recognition; this uses fluent speech but a highly constrained vocabulary, for 
example, digit dialing.
Continuous speech recognition.

• The degree of speaker dependence of the system, that is, whether it is:
Speaker-dependent (trained to the speech patterns of an individual user).
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Figure 1.19
Main blocks in a speech recognition system.

Multiple speakers (trained to the speech patterns of a limited group of people).

Speaker-independent (such a system could work reliably with speakers who have never used the 
system).

• The constraints of the task, that is, as the vocabulary size increases, the possible combinations of 
words to be recognized grows exponentially. Some form of task constraint, such as formal syntax and 
formal semantics, is required to make the task more manageable.

1.5.5 Building ASR Systems

Figure 1.19 shows a simplified diagram of a computer speech recognition system. It comprises five major 
blocks:

1. Preprocessing—sampling and digitizing the signal.

2. Signal processing—transforming the signal taken for a small portion of time into an n-dimensional 
feature vector, where n is the number of features used (fast Fourier transform, mel-scaled cepstrum 
coefficient; see below in this section).

3. Pattern matching—matching the feature vector to already existing ones and finding the best match.

4. Time alignment—a sequence of vectors recognized over a time are aligned to represent a meaningful 
linguistic unit (phoneme, word).

5. Language analysis—the recognized language units recognized over time are further combined and 
recognized from the point of view of the syntax, the semantics, and the concepts of the language used in 
the system.
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Here a short explanation of the different phases of the process of speech recognition will be given. 
Computer speech recognition is performed on digitized signals. Speech, however, is a continuous signal 
and therefore has to be sampled in both time and amplitude. To ensure that the continuous signal can be 
reconstructed from the digitized signal, the speech signal has to be band-limited and sampled at the so-
called Nyguist sampling frequency or higher. The Nyguist sampling frequency is twice the maximum 
frequency in the band-limited speech signal.

Digitized speech is not only discrete in the time domain but also in the amplitude domain. The average 
intensity of speech at conversational level is about 60 dB, increasing to about 75 dB for shouting and 
decreasing to about 35 to 40 dB for quiet but not whispered speech (silence is taken to be 0 dB). It is 
important that the amplitude quantization allow for an adequate representation of the dynamic range of 
speech. Typically, speech is quantized by using 8 or 16 bits.

Speech signals carry a lot of information, most of which is redundant. How to reduce the rate of data to 
be processed and not lose important information? This is the task of the signal-processing phase. For 
example, to store the information from a sampled speech for 1 second with a 20-kHz sampling rate, using 
16 bits, 40,000 bytes of memory are needed. After a signal transformation (spectral analysis), the whole 
signal may be represented as a 26-element vector, which occupies only 52 bytes. What transformation 
should be used for a compromise among accuracy, speed, and memory space?

When the speech signal is processed, the processing is performed on sequential segments of the speech 
signal rather than on the entire signal. The length of the segment is typically between 10 ms and 30 ms; 
over this period of time the speech signal can be considered stationary. Taking segments of the speech 
signal is usually done by using a window, thus removing the discontinuities at the edges. The 
discontinuities, if present, will distort the spectrum of the speech signal.

Different types of spectral analysis are used in speech recognition systems (Picone 1993). One of them is 
the Digital Filter Banks model. The filter bank is a crude model of the initial stages of transduction in the 
human auditory system. The model is based on so-called critical bands (Picone 1993). Two attempts to 
emulate these bands are the Bark and mel scale, with the mel scale being more popular in speech 
recognition. According to Lee et al. (1993) "[the] mel frequency scale is a psychologi-
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cally based frequency scale, which is quasi-linear until about 1 kHz and quasi-logarithmic above 1 kHz. 
The rational for using it [in speech recognition] is because the human ear perceives frequencies on a non-
uniform scale." Since the typical human auditory system can obviously distinguish speech sounds, it is 
desirable to represent spectral features for a speech recognition system on a psychologically based 
frequency scale. The following formula is used to calculate a pitch in mels:

where f is the frequency in hertz, p is the pitch in mels, and c = 1000/log10 2 is a constant.

Another transformation is the Fourier transform (FT). An alternative way of forming a filter bank is 
through the Fourier transform. The discrete Fourier transform (DFT) calculates frequency components of 
the speech signal from its waveform, a special, less computationally heavy version of it being the fast FT 
(FFT). The filter banks are then made up by adding up series of consecutive frequency components which 
fall within the bandwidth of each filter. The spacing of the filter banks depends on whether a linear, mel, 
or Bark scale was used.

The formula for the FT and some other transformations used on speech signals are given in fig. 1.39 and 
explained in section 1.10.

Once a parametric representation of speech has been obtained, the next step is to perform recognition on 
it. This step is called pattern matching. There are four major ways to do this: (1) template matching, (2) 
hidden Markov models, (3) neural networks, and (4) rule-based systems.

For the time-alignment phase different methods can be applied, for example, the Viterby method, 
dynamic programming, and fuzzy rules; see chapters 5 and 6.

1.5.6 Language Analysis: The Turing Test for AI

Natural language understanding is an extremely complex phenomenon. It involves recognition of sounds, 
words, and phrases, as well as their combining forms, comprehension, and usage. There are various levels 
in the process of language analysis:

• Prosody deals with rhythm and intonation.

• Phonetics deals with the main sound units of speech (phonemes) and their correct combination.
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• Lexicology deals with the lexical content of language.

• Semantics deals with the meaning of words and phrases seen as a function of the meaning of their 
constituents.

• Morphology deals with the semantic components of words (morphemes).

• Syntax deals with the rules, which are applied for matching words in order to form sentences.

• Pragmatics deals with the modes of use of language and their impact on the listener.

The importance of language understanding in communication between humans and computers was the 
essence of the Turing test for AI. Alan Turing, a British mathematician and computer scientist, introduced 
a definition of AI. A machine system is considered to posseses AI if, while communicating with a person 
behind a "bar," the person cannot recognize whether it is a machine or a human. To put it more simply, an 
AI system is a system that can communicate with humans in their natural language. This test has not been 
passed by any computer system so far, and it is unlikely to be passed by any machine in the near future.

Computer systems for language understanding require methods which can represent ambiguity, 
commonsense knowledge, and hierarchical structures. Humans, when communicating with one another, 
share a lot of commonsense knowledge which is inherited and learned in a natural way. This is a problem 
for a computer program. Humans use facial expressions, body language, gestures, and eye movements 
when they communicate. So they communicate in a multimodal manner. Computer systems that analyze 
speech signals, gestures, and facial expressions when communicating with users are called multimodal 
interfaces.

1.5.7 Intelligent Human-Computer Interfaces

One application of speech recognition and language modeling systems is for building intelligent human 
computer interfaces (IHCI). A general block diagram of an IHCI is graphically depicted in figure 1.20. 
The system allows for retrieving information from a database or for connecting the user to other 
communication ports by using both speech and text. It consists of the following major modules:

• Speech recognition and language modeling block. This module is trained on a speech corpus and 
uses a linguistic knowledge corpus. It recognizes
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Figure 1.20
A block diagram of an intelligent human computer interface (IHCI).

spoken words, phrases, and sentences from a defined dictionary. The input speech signals are first 
digitized, transformed into feature vectors, and then used in the speech recognition submodule to 
match with already known speech patterns and to recognize small speech units, for example, 
phonemes. The language modeling submodule takes the recognized speech units and combine them 
into meaningful and relevant words and sentences.

• Similarity-based query module. This module does approximate reasoning over user's query and 
allows for vague, fuzzy queries to be used. For example, the user can ask for a list of patients who have 
"high blood pressure" when the database contains the blood pressure parameter in a numerical form only. 
The module performs two levels of matching a query to a database. The first one is exact matching, when 
the query matches exactly the information in the database. The second one is similarity-based matching, 
which involves interaction between the user and the system. The module finds language or conceptual 
similarities based on previous knowledge represented in terms of fuzzy rules. Fuzzy logic can be used for 
implementing the module as fuzzy systems have proved to be good at representing humanlike reasoning 
based on similarities.
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• Knowledge acquisition module. The module is used to extract knowledge from different sources of 
information, for example, for extracting linguistic rules from linguistic database or extracting trading 
rules from a stock exchange database.

• Answer formation module. This module produces the answer to the user and performs a dialogue at 
any phase of the information retrieval. It has speech synthesis and text generation submodules.

A small-scale realization of the above general IHCI is presented in chapter 6.

1.6 Prediction

1.6.1 What Is the Problem?

Prediction (forecasting) is the process of generating information for the possible future development of a 
process from data about its past and its present development. Three different tasks can be distinguished 
under the generic prediction problem:

1. Short-term prediction (which is the restricted and default meaning of the word "prediction").

2. Modeling, which is finding global underlying structures, models, and formulas, which can explain the 
behavior of the process in the long run and can be used for long-term prediction as well as for 
understanding the past.

3. Characterization, which is aimed at finding fundamental properties of the process under consideration, 
such as degrees of freedom, etc. (Weigend and Gershefeld, 1993).

Prediction is something that is done every day in weather forecasting, agricultural harvest forecasting, 
commodity market forecasting, and stock and bond market forecasting. Prediction of earthquakes and 
other disasters, prediction of solar flares, prediction of the ozone layer movement, for example, are of 
extreme importance. Prediction is a very important generic AI problem. Predicting the future is what 
everybody wants to be able to do. But how?

If prediction is based on past data, the methods used might differ depending on the type of data available 
(Weigend and Gershefeld, 1993):
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• Natural vs. synthetic

• Stationary vs. nonstationary

• Low-dimensional vs. stochastic

• Clean vs. noisy 

• Short-term vs. long-term

• Linear vs. nonlinear

• Scalar vs. vector

• One trial vs. many trials

• Continuous vs. discrete.

Two types of data on which prediction is discussed in this section, are (1) time-series data, for example, 
predicting the stock market, predicting water flow coming to a sewage plant on an hourly basis; 
predicting gas consumption on a monthly basis; and (2) static, stationary data, for example, predicting 
the outcome of a disease, the effect of a new drug.

Before that, the major difficulties in solving the prediction problem should be mentioned, namely:

• Establishing whether a process is predictable at all

• Establishing the type of data and the process subject to prediction

• Defining the right features for presenting the prediction problem

• Defining how much past data are required for a good prediction

• Defining a methodology to test the accuracy of the prediction

1.6.2 Time-Series Prediction

Prediction of time-series events is called time-series prediction. When a prediction is done on the basis of 
only one independent variable it is called a univariate prediction; otherwise it is called a multivariate 
prediction. A general form of a heuristic rule for time-series prediction is:

IF (previous time-moment values for the features from the feature space are di), THEN (next time-
moment values for the predicted variable(s) will be sj)



Many techniques available for multivariate time-series analysis assume simple, often linear relationships 
between the variables. But, in reality,
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Figure 1.21
The Gas Consumption case example data; the average monthly minimum

temperatures and the gas consumption per capita are graphed (see appendix B).

temporal variations in data do not exhibit simple regularities and are difficult to analyze.

In general, the predicted value of a variable in a future time is based on k previous values. In this case k is 
a lag of the prediction. If we have the values of a variable x for the moments from I to t, that is, x(l), x(2), 
 . . ., x(t), we may predict x(t + 1), and also the next time interval values x(t + 2),  . . ., x(t + m). The 
variable subject to prediction can be different from the past data variables (independent variables).

Case Example:   The Gas Consumption Prediction Problem The problem is to predict the gas 
consumption per capita for next few months in the town of Hamilton, based on the average minimum 
temperatures and previous data (Gonzales 1992), as shown graphically in figure 1.21. The whole data set 
is given in appendix B. A simple prediction system is shown in figure
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Figure 1.22
Different prediction models for predicting average

gas consumption Gt for month t, based on the
average minimum temperature T7, time over a

 long period, and the month of prediction.

1.22a. It uses an assumption that the gas consumption Gt during the next month (t) can be predicted only 
on the basis of the prediction for the average minimum temperature Tt during this month. So one input 
variable is used only—Tt. Figure 1.22b shows another model for solving the same problem, but here two 
''lags" for the temperature are used, Tt -1 and Tt -2, in addition to the predicted Tt. This scheme assumes 
longer-term dependence of the next values on the previous, past data. If long-term trends are anticipated 
(e.g., decreasing consumption because of the global warming effect, or some other reason), then the 
prediction model should include a long term variable, Time, for example, represented in consecutive 
numbers (months) over a long period as in figure 1.22c. The model in figure 1.22d uses another variable, 
the calender month of prediction Montht, which gives the system an opportunity to learn a dependence 
between gas consumption and season. The different models shown in figure 1.22 use different feature 
spaces to deal with the same problem. Which of the prediction models would be better is discussed in 
chapter 5 where the models are implemented in a connectionist way.

Case Example:   The Water Flow to a Sewage Plant Prediction Problem The problem is as follows: 
Given a data set for the water flow (in cubic meters) incoming to a sewage plant and the hour and the day 
it is recorded, predict the water flow at the next hour, as well as the flow over the next several hours (see 
appendix C). This problem is discussed in chapters 6 and 7.
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Figure 1.23
Different states of a stock market (Reprinted,

with permission, from Financial Analyst Journal,
November/December 1990. Copyright 1990,
Association for Investment Management and

Research, Charlottesville, V.A. All rights reserved).

Case Example: The Stock Market Prediction Problem   A more complex specific prediction problem is 
the stock market prediction problem. Is a stock market predictable at all? According to the coherent 
market hypothesis (see Vaga 1990), a stock market can behave differently, depending on its state (figure 
1.23). Four states are defined on the feature space of two features only: (1) group sentiment, a measure of 
whether the level of "group thinking" is above or below a critical transition threshold; and (2) 
fundamental bias, a measure of external preference toward bullish or bearish sentiment. Only a market 
that is in a random walk state is unpredictable because it fluctuates randomly. A coherent market is easily 
predictable and a chaotic market is more or less predictable depending on the degree of chaos. A chaotic 
market is defined as a chaotic process, which is nonlinear, deterministic, strictly nonperiodic but nearly 
periodic, therefore predictable over a short term (see chapter 7).

Example The SE40 stock exchange index data over a period of several years is given in appendix C.

There are different theories for predicting the market, one of them being the moving averages theory. The 
theory says that by computing average values the volatility of the time series is smoothed and the trends 
of the market are indicated. A moving average is calculated by using
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Figure 1.24
The moving averages model of predicting the exchange

rate between the U.S. dollar and the British pound 
reprinted with permission from Goonatilake and Campbell 1994).

the formula:

where n is the number of the days, Pt-i is the opening price of the stock on the day t - i, and MAt is the 
moving average on day t. Two heuristic rules which implement the theory are:

R1: IF the short moving average crosses the long moving average from below, THEN the market is likely 
to rise (BUY)

R2: IF the short moving average crosses the long moving average from above, THEN the market is likely 
to fall (SELL)

Example  Figure 1.24 shows an example of using the above decision rules for predicting the US dollar 
and British pound exchange rate (Goonatilike and Campbell 1994).

1.6.3 Prediction Based on Static Data

Another type of prediction problem is when data are static or when time is not represented as a parameter. 
These tasks are in general easier to
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Figure 1.25
The effect of 15 drugs on 15 experimental tumors and on a tumor

in a patient with breast cancer.

handle because of the missing time variation problem, still subject to having enough representative past 
data or expertise on the problem.

Case Example  An example of such a problem is predicting the effect of a new chemotherapeutic agent 
for breast cancer treatment based on the presumed similarity between the tumor and a set of experimental 
tumors. Figure 1.25 contains the known effect of 15 established drugs on 15 experimental tumors and on 
a clinical tumor (malignant breast cancer) (Karaivanova et al. 1983). The problem is to find an analogous 
mapping between the set of 15 experimental tumors and the clinical tumor based on their known reactions 
to the same 15 drugs. In this way it may be possible to predict the effect of a new drug on the clinical 
tumor after having tested it on the experimental tumors and knowing the reactions, subject to established 
similarities between the new drug and those previously used. A solution to this problem is given in 
chapter 5.

1.6.4 About the Methods for Prediction

Prediction can be carried out based on:

• Past data, for example, the Gas Consumption Prediction
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• Heuristic expert rules, for example, rules which suggest whether to buy or sell depending on the 
current political situation, economic situation, business growth, exports, and so forth.

• Both past data and heuristic rules

Depending on the information used, the following methods have been applied to solving prediction 
problems:

• Statistical methods, based on regression analysis and probability analysis

• Neural networks, which perform pattern matching

• Rule-based systems, including fuzzy rule-based systems, which represent heuristic expert 
knowledge; rules might be extracted from past data by using machine-learning techniques

• Hybrid systems, which make use of past data and expert rules in one system

The last three methods are demonstrated in chapters 3, 5, 6, and 7. Several time-series data sets for 
experimenting with are given in appendix C.

1.7 Planning, Monitoring, Diagnosis, and Control

Planning, monitoring, diagnosis and control are three generic AI problems which are based on 
representing the object (process) under consideration by its state space and transitions between the states. 
The state space of the object is usually huge, which demands heuristic rules to search in it and to find the 
desired state (goal, set point, dangerous situation, fault).

1.7.1 Planning

Planning is a very important generic Al problem which is about generating a sequence of actions in order 
to achieve a given goal when a description of the current situation is available. The main terms used in 
planning systems are:

• A set of goals

• A set of actions

• A set of objects (processes)

• A set of conditions for the actions to take place

• Descriptors for representing relations between the objects
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Figure 1.26
A simple algorithm for a planning program.

Planning is usually realized as an interactive task which has four major phases repeated until the 
termination condition is reached (figure 1.26). A general heuristic rule for planning is in the form of:

IF (a given situation) and (a defined goal), THEN (a sequence of actions)

Example  A good example of a planning problem is the Blocks World Problem. The task is to move 
blocks ordered in piles (stacks). A simple blocks world of only two blocks (A and B) is shown in figure 
1.27a. When the goal to take block B is given, the system should produce a sequence of actions to achieve 
this goal. If there were three or more blocks, then the goal would have to be represented as a set of 
subgoals (e.g., to clear the upper and the lower blocks, to move blocks on the floor, etc.).

A planning system can be represented functionally as a graph where the nodes represent situations (states 
in the state space of all the possible situations) and the arcs represent actions that cause changes in the 
situations. This is illustrated in figure 1.27b for the above example.

Case Example:   The Monkey and Bananas Problem This is another typical example of a planning 
problem. It is actually a problem of planning the movement of a robot. This problem has been widely 
used as a benchmark problem for evaluating different implementations of rule-based production systems. 
The problem itself is the following: A monkey is in a room containing a couch, blanket, ladder, and a 
bunch of bananas. The objects are assembled on the floor and the bananas hang from the ceiling. Each 
object has its coordinates. The aim is to generate the steps the monkey should take to achieve the goal of 
grasping the bananas (figure 1.28). Here is an exemplary rule for this problem:
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Figure 1.27
A simple Blocks World Problem as a planning problem:
(a) the problem's input-output diagram; (b) a functional

diagram of the system execution.

IF (monkey is at position x on the floor) and (monkey does not hold anything) and (bananas are at 
position y on the ceiling) and (ladder is at position z, z being different from x and y),
THEN (monkey walks to position z in order to take the ladder)

1.7.2 Monitoring

Monitoring is a generic task which consists of a continuous recording of the states of a process or object 
and emitting messages about some extreme cases. Monitoring is the process of interpretation of 
continuous input information, and recommending intervention if appropriate. It could be, for example, a 
dangerous situation in a reactor when the alarm signals have to be triggered. Many medical, agricultural, 
and military systems are of this type. Monitoring is usually accomplished as a loop. A general form of a 
heuristic rule for monitoring looks like:
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Figure 1.28
The Monkey and Bananas Problem: (a) a graphical 

representation of the problem; (b) a possible plan shown
as actions changing the states in the states space.

IF (a situation is one of the predefined specific and possibly dangerous situations), THEN (report on the 
situation and consequences).

Case example:   Monitoring of a Car on the Road A specific simple problem of a monitoring type will be 
used to illustrate the generic one. The problem is to develop a monitoring system which monitors a car 
and gives a signal to the driver to stop the car when there is dangerous malfunctioning, for example, if the 
engine overheats or the brakes react slowly. The temperature sensor (gauge) and brakes sensor measure 
the adequacy of those devices. A real car monitoring problem of assessing when the driver should be 
alerted to stop the car is complicated and needs a lot of
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Figure 1.29
Two simple rules for the Car Monitoring case example.

checks without any guarantee that there can be a complete solution. Two simple rules of thumb are shown 
in figure 1.29.

1.7.3 Diagnosis

Diagnosis is another typical generic AI problem. This is the process of finding faults in a system. A 
simple way to represent a diagnostic system is to use a triple (M,D,R), where M is a set of manifestations, 
M = {m1,m2, . . . ,mk}, D = {d1,d2, . . . ,dl} is a set of possible faults, and R = {r1,r2, . . . ,rn} is a set of 
diagnostic rules which give the relations between the faults and the symptoms, if known. A set of 
examples which associate manifestation vectors to faults may also be used.

Considerable research work has been done on automating the fault diagnosis process. Most of the 
diagnostic procedures fall into two categories: (1) shallow, or symptom-based diagnostic reasoning; and 
(2) deep or model-based diagnostic reasoning.

The advantage of shallow or symptom-based reasoning is its efficiency and ease in representing 
knowledge. The symptom-based fault diagnosis systems can be developed by using rule-based expert 
systems, by using neural network techniques, or by using fuzzy logic. Two simple diagnostic problems 
are used as case examples in this book. One of them, the Smoker and the Risk of Cancer Problem, was 
introduced in a previous section. A fuzzy rule and the membership functions that define the fuzzy values 
are shown in figure 1.8. In general, a heuristic rule for diagnosis looks like:
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Figure 1.30
Diagnostic rules for the Medical Diagnosis case example.

Figure 1.31
An outline of a control loop.

IF (symptoms), THEN (diagnosis)

Case Example: Hypothetical Medical Diagnosis Problem The second diagnostic case example is adopted 
from Chen (1988) and modified for the purpose of this book. The example comprises a set M = {m1, m2, 
m3, m4} of four manifestations, a set of four faults (diseases) D = {dl, d2, d3, d4}, and a set of four 
medical diagnostic rules R = {r1, r2, r3, r4} which represent vague expressions, as given in figure 1.30. 
A solution to this problem is given in chapter 3.

1.7.4 Control

Control is the process of acquiring information for the current state of an object and emitting control 
signals to it in order to keep the object in its possible and desired states. A control loop is given in figure 
1.31. A general rule for the control problem would be:
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Figure 1.32
The Inverted Pendulum case example-a physical presentation

of an experimental system.

IF (the object is in a state di), THEN (emit a control signal sj)

Three groups of methods are mainly used today for solving control problems. These are:

1. Classic nonlinear control, based on mathematical formulas to calculate the values for the control 
variables when the values of the input variables and values for other parameters of the system under 
control are given

2. Fuzzy systems, based on fuzzy rules

3. Neural networks, based on training with input-output data collected when the object has been operating 
properly

Case Example: The Inverted Pendulum Problem This is a classic control problem used in many 
experiments, books, and real systems (Yamakawa 1989; Kosko 1992). Figure 1.32 is a graphical 
representation of the problem. A pendulum is fixed to a cart with two degrees of movement. The cart can 
move in two directions: forward and backward. The problem is to keep the pendulum standing vertical. 
To keep the pendulum balanced, a force y should be applied to the cart to move forward or backward 
continuously according to the current state of the pendulum, here represented by two parameters-the 
current value of the angle Θ of the pendulum with the vertical line and its angular velocity ∆Θ.
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The inverted pendulum problem is solved by using second-order differential equations for calculating the 
force to be used for moving the cart, when the current angle, the current angular velocity, and the values 
for the length of the pendulum, its mass, and the resistance of the medium (the air) in which the pendulum 
is moving are given. Solving a set of differential equations might be too slow for a fast real-type control 
process. Something more, a slight change in the parameters of the object (say the resistance of the 
medium increases a little bit) requires a new set of differential equations to be defined. These two major 
difficulties of using mathematical formulas are overcome in the fuzzy systems for control.

A fuzzy system for controlling the inverted pendulum is much easier to develop (Yamakawa 1989). 
Articulating fuzzy rules for controlling the inverted pendulum can be done similar to the way the heuristic 
rules for balancing a pencil on a palm were articulated:

Rule 1: IF the pendulum tilts to the right, THEN move the cart backward

Rule 2: IF the pendulum tilts to the left, THEN move the cart forward

Those two rules are far from being the solution to the problem. It must also be decided how far 
''backward" and "forward." This depends on the static and dynamic state of the pendulum. The initial 
heuristics have to be developed further, taking into account the domain values for the angle Θ (between -
90 and 90 degrees), the domain values for the angular velocity (the same), and the values for the force 
applied to the cart. In order to make the above two heuristic rules more precise, the intervals of all three 
parameters are discretized into five subintervals as follows: (1) positive medium  (PM); (2) positive small 
(PS); (3) zero (ZE); (4) negative small (NS); and (5) negative medium (NM). Having such a quantization, 
one can articulate more heuristic rules as a development of the initial two. This problem is discussed 
further in chapter 3, when the fuzziness of the intervals is defined. Some heuristic rules, which refine the 
rough heuristic rules above, are given in figure 1.33.

Fuzzy systems are robust, that is, changing the parameters of the object under control does not necessarily 
require changing the set of fuzzy rules. This was brilliantly demonstrated by Professor Takeshi 
Yamakawa. He implemented the above fuzzy rules in hardware and showed that an inverted pendulum 
can be controlled in this way. Then he put a glass of wine on top of the pendulum. Without changing the 
set of rules, the pendulum
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Figure 1.33
Seven heuristic rules for balancing the inverted pendulum.

(Adapted with permission from Yamakawa 1989.)

with the glass of wine was balanced. He then replaced the glass of wine with a live mouse which was 
trying to escape unsuccessfully from the platform on top of the pendulum. The pendulum stayed 
balanced. But, on the other hand, it is difficult to estimate how much the parameters may change without 
the need for changing the fuzzy rules. This problem is known as the stability problem (see details in L-X 
Wang 1994). For example, it is difficult to calculate the stability of the inverted pendulum if the mouse is 
replaced by a small rabbit.

Fuzzy and neural control techniques are used to control the landing of missiles and airplanes, track flying 
objects, in automatic control of trucks, and so forth (Kosko 1992). The pendulum toy example is actually 
a serious contribution to the human way of controlling the environment and objects in the universe. 
Similar problems of keeping objects or processes in balanced states can be found easily in any research 
and application area (air conditioning, "balancing" blood pressure, controlling heart beat, balancing the 
profits of a company, etc.)

1.8 Optimization, Decision Making, and Games Playing

These three generic AI problems are similar in the sense that the search for a solution needs to set a 
strategy.
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1.8.1 Setting Strategies and Evaluating Complexities

A strategy is usually expressed by a set of heuristic rules. The heuristic rules ease the process of searching 
for an optimal solution. The process is usually iterative and at one step either the global optimum for the 
whole problem (state) space is found and the process stops, or a local optimum for a subspace of the state 
space of the problem is found and the problem continues, if it is possible to improve.

Many simple specific problems which fall in the pools of these generic ones use simple strategies or 
straightforward heuristics.

The reason for setting a strategy when searching for the solution is to minimize the complexity of the 
system. Complexity is measured by the number of typical operations for reaching a solution. It is usually 
expressed as a function of the size of the problem, which is represented by a typical parameter of the 
problem that is dominant when evaluating the volume of data required to be processed for finding a 
solution. For example, for the Traveling Salesman Problem the size is defined by the number of the towns 
n to visit. The complexity is represented by a function f(n) defining how many operations (summation, 
comparison, etc.) overall are needed to find a solution to the problem.

Complexity can be represented by the asymptotic complexity function, which is the function f(n) when n 
grows to infinity. Typical values for estimating asymptotic complexity of algorithms are: log2 n, n, nlog2 

n, n2, polynomial function of n of k degree, etc. Problems for which the complete solution can be reached 
only by applying an algorithm (method) where asymptotic complexity is an exponential function, are 
called NP-complete problems (NP stands for nonpolynomial).

So, the difficult AI problems very often are NP-complete because of their huge state space in which 
finding a solution requires a lot of operations. And that is why good search strategies to search through 
the solution space are needed!

1.8.2 Optimization

Optimization problems are about finding optimal values for parameters of an object or a system which 
minimizes an objective (cost) function. There are many methods applicable to optimization problems. 
From the point of view of the solution achieved, one can distinguish methods that guaran-
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tee the complete optimal solution, and heuristic methods, which do not guarantee an optimal solution, but 
in most cases give a satisfactory solution for much less complexity.

Heuristic methods may aim at local optimization rather than at global optimization, that is, the algorithm 
optimizes the solution stepwise, finding the best solution at each small step of the solution process and 
"hoping" that the global solution, which comprises the local ones, would be satisfactory. A heuristic rule 
for such a strategy is:

WHILE the final solution is not reached DO
{IF (next step decision satisfies a local optimum criterion), THEN (choose it)}

Case Example:   The Traveling Salesman Problem A graphical representation of an example of the 
problem when n = 5 and for certain traveling costs cij to travel from town i to town j, is given in figure 
1.34. In the general case, there are (n - 1)! = (n - 1)(n - 2) . . .2.1 possible paths (this is the solution state 
space). Choosing the cheapest one is a NP complete optimization problem. A heuristic approach to 
solving this problem is possible. A heuristic rule to solve the problem is the following:

Figure 1.34
A graphical representation of a simple version of The

Traveling Salesman Problem (TSP) case example.
The nodes of the graph denote towns and the arcs

denote connections between the towns weighted by the
corresponding traveling costs.
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WHILE there are more towns to visit DO
{IF (j is a town which has not been visited yet) AND
(the cost from the last visited town to j is the lowest among the nonvisited ones),
THEN (visit town j)

The asymptotic complexity of this heuristic solution is n2, while the complete optimal solution achieved 
through an exhaustive search by generating and checking the cost of all the possible paths has a 
complexity of n! Applying this heuristic to the example given in figure 1.34, a path 1-4-2-3-5-1 with a 
cost of 23 is found for about 25 operations (comparison and summation), while applying an exhaustive 
search for finding the optimal path requires about 120 operations and in this case the same path as in the 
heuristic search is found to be the optimal one.

A brilliant example of a general heuristic optimization method is the genetic algorithms (see section 1.2). 
They are applicable to probably any optimization problem and it is up to us to compromise between the 
time for getting a solution (we can stop the algorithm at any step having the partial solution to the 
problem till that step) and its precision.

Some types of neural networks, for example, the Hopfield network, or more generally, the attractor type 
of neural networks, are also applicable to optimization problems. A neural network solution to the TSP is 
given in chapter 5.

1.8.3 Decision Making

Decision-making systems are AI systems which choose one among many variants as a solution to a 
particular problem. The solution is then recommended to the user. The decision-making systems may 
contain different subsystems, like systems for classification, optimization, and diagnosis. A general 
heuristic rule for a generic decision-making problem is:

IF (circumstances), THEN (decisions)

Case Example: The Bank Loan Decision Problem A decision-making system which advises on bank loan 
applications is considered here as a case example. The purpose of the system is to "decide" whether an 
applicant for a loan should be given a loan or not. The applicant is represented by three aggregate 
attributes. The first is called "critical score" (CScore, or simply
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Score)—a numerical rating on place of residence, employment, and bank accounts. The second attribute 
is "critical ratio" (CRatio, or simply Ratio) —the client's profile on loan repayment, mortgage, rent, and 
other expenses. The third attribute is "critical credit" (CCredit, or simply Credit)previous loans, credit 
cards, and the client's credit history in general. The problem has been introduced and used by Lim and 
Takefuji (1990) for a hardware implementation of a bank loan approval system, FXLoan. This problem is 
used throughout the book to show the similarity of fuzzy and connectionist reasoning as well as to 
demonstrate learning fuzzy rules through using neural networks (see chapter 5). The initial heuristic rules 
for loan approval suggested by the above authors are given here, but the full example is revealed in 
chapter 3, where the fuzzy concepts ''High," "Low," "Good," and "Bad" are defined:

R1: IF CScore is High, and CRatio is Good, and CCredit is Good,
THEN Decision is Approve

R2: IF CScore is Low, and CRatio is Bad, or CCredit is Bad,
THEN Decision is Disapprove

Decision-making systems can be incorporated in larger decision support systems, where access to a large 
database would be available, and different subsystems might be included for processing different 
subtasks.

Case Example:   Investment adviser Another typical decision-making problem is that of investment 
advising. The problem is to advise a client investing amounts of money either in a bank or in the share 
market when the following parameters are known: amount of money for investing, risk willing to be 
taken, period of investment, and income.

Another case example of decision-making problems considered also in this book is mortgage approval 
decision making (see appendix C).

1.8.4 Games Playing

Playing games is an intellectual activity of humans based on the following concepts:

• Rules of the game

• Opponent teams
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• Playing media, for example, board

• Criterion for ending the game and choosing the winner

Typical examples of games are chess, ticktacktoe, Go.

The difficulties in developing an AI system that plays a game are mainly due to the large problem space 
of all possible moves and the impossibility of checking or trying all of them in order to choose the 
optimal one which leads to a win. For example, at a certain stage of the game, all the possible moves in 
chess from a current position could be about 10200. In order to cut off moves that are not prospective, 
one has to use some strategic heuristic rules. Some questions which should be answered before we 
develop a computer game player are:

1. How should the game's rules and the game's media be represented in the system?

2. What heuristic strategy should we use to choose the next move?

3. Can we possibly create a system that will improve its playing with the number of games played?

Choosing the next move should be done in a realistic way (not counting all possible moves if there are 
many), but, if possible, not sacrificing the final outcome. For choosing the next move, heuristic strategies 
are used, which evaluate the goodness (fitness) of prospective moves. A simple general heuristic rule is:

IF (move j has highest goodness coefficient), THEN (choose move j)

This general rule is used in genetic algorithms (remember the illustrative example in section 1.2 for 
playing the "mastermind" game with the use of a genetic algorithm). Here, two other games are 
described, for which systems are developed later on in the book.

Case Example:   A Computer System for Playing Ticktacktoe This is an old game given as an example in 
many AI books. It is played between two opponents on a flat board marked out with three vertically 
aligned rows of three equally sized squares. A simple heuristic for playing ticktacktoe is: we choose the 
position which counts more for us than for our opponent. Every move is assigned a coefficient which 
estimates the "goodness" or the "fitness" of the move. The move that has the maximum "fitness" is 
chosen. Here, an example of a fitness (gain) function is given:
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Figure 1.35
(a) The board of the tictactoe (TTT) game case example;

(b) an example of implementing a heuristic strategy for choosing
the next best move.

g(n) = W(n) ­ O(n), for all possible moves n = 1, 2. . . ,N.

where W(n) is the number of all possible potential winning positions for "us" if we chose the nth possible 
move; O(n) is the same for our opponent. Following the strategy set by using the fitness function above, 
one of the moves 1, 4, 5, or 7 must be chosen in the example shown in figure 1.35, as they have the 
highest goodness coefficients. But which of them? Of course, the heuristic strategies may be made more 
sophisticated with a little cost to pay in time. More specific strategic rules to play ticktacktoe are given in 
figure 1.36.

Go-Moku is a similar game. The game board consists of 19 x 19 squares. The winner is the player who 
first puts in a row, in a column, or diagonal five successive pieces. The bigger the game board, the bigger 
the problem space and the more difficult the task.
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Figure 1.36
Several specific heuristic strategies for choosing the next move in the

tictactoe case example.

Computer games can be realized by using different methods, some of them being:

• Symbolic AI rule-based systems, which realize heuristic strategy rules; heuristic rules make 
ticktacktoe easily realizable as a symbolic AI rule-based system.

• Fuzzy systems, which realize fuzzy rules for playing the game.

• Neural networks, which are trained with examples of good moves without a need to articulate the 
fitness function or possible strategies, etc. Neural networks can learn from examples the strategy to play 
successfully. Connectionist realizations are more difficult, but they highlight new methods for modeling 
human cognition, especially when the "goodness" function is learned by the system during play with a 
skilled player or a skilled computer program.

• Genetic algorithms, which do not require heuristic strategies to be articulated in advance, but 
require a simple selection criterion.

1.8.5 Design

The generic design problem can be formulated as creating objects that satisfy particular requirements 
following a given set of constraints. This area is still to be developed, as design is one of the most 
intellect-demanding and imagination-demanding human creative activities. Heuristics are very often used 
in automatic solving of design problems. This is because the constraints and the goals of the design can 
often be articulated in a linguistic form. A general heuristic rule for design would be:
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IF (constraints Xi) and (goals Yj),
THEN (choose variant Zk with an estimated "goodness" CFk)

1.9 A General Approach to Knowledge Engineering

The main goal of the design of an intelligent system is to represent as adequately as possible the existing 
problem domain knowledge in order to better approximate the goal function, in most cases not known a 
priori. Problem solving was represented in section 1.2 as a process of mapping the domain space into the 
solution space of a problem by using problem knowledge—heuristic rules or data, or both.

Different methods can be used to achieve a solution. Figure 1.37 represents different methods and the 
relationship between them when used for problem solving. Different pathways, which map the domain 
space to the solution space through the problem knowledge, are shown. If we name a method (shown in a 
box) with the philosophical term paradigm, then we can distinguish single-paradigm pathways and 
multiparadigm pathways, comprising more than one path used in a chain. Depending on the type of the 
problem and the available problem knowledge, different methods could be recommended for use. Some 
considerations of when to use each of the methods for knowledge engineering and problem solving are 
the following:

• Statistical methods can be used when statistically representable data are available and the 
underlying type of goal function is known.

• Symbolic AI rule-based systems can be used when the problem knowledge is in the form of well-
defined, rigid rules; no adaptation is possible, or at least it is difficult to implement.

• Fuzzy systems are applicable when the problem knowledge includes heuristic rules, but they are 
vague, ill-defined, approximate, possibly contradictory.

• Neural networks are applicable when problem knowledge includes data without having any 
knowledge as to what the type of the goal function might be; they can be used to learn heuristic rules after 
training with data; they also can be used to implement existing fuzzy or symbolic rules, providing a 
flexible approximate reasoning mechanism.
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Figure 1.37
Different "pathways" can be used for knowledge engineering

and problem solving to map the domain space into the solution space.
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Figure 1.38
Usability of different methods for knowledge

engineering and problem-solving depending on
availability of data and expertise (theories) on

a problem.

• Genetic algorithms require neither data sets nor heuristic rules, but a simple selection criterion to 
start with; they are very efficient when only a little is known to start with.

Two generic operations are shown in figure 1.37 which are used by the methods: representation, when 
heuristic rules are available, and learning, when data are available. Different methods facilitate these two 
operations to a different degree, as shown graphically in figure 1.38. For example, symbolic AI methods 
are applicable when the problem knowledge is rich in theory and poor in data. Multiparadigm pathways 
involve more than one paradigm for solving a problem. Typical multiparadigm pathways are explained in 
chapter 6. Some of them are (see figure 1.37):

• A neural network is used to learn fuzzy rules, which are implemented in a fuzzy inference system.

• Symbolic AI machine-learning method is used and the rules learned are implemented in a symbolic 
AI reasoning machine.

• Symbolic AI rules are combined with neural networks in a hybrid system.

• Genetic algorithm is used to define values for some learning parameters in a neural network.
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• Fuzzy rules are either implemented in a connectionist architecture or combined with neural 
networks in a hybrid system.

1.10 Problems and Exercises

Part A: Case Example Solution

1. Solving speech recognition problems requires adequate transformation techniques to transform the raw 
speech signal into a set of features. This transformation reduces the data and makes the recognition easier 
through dealing with smaller amounts of data. In addition to the Fourier transform, the following 
transformation can be used:

• Cepstral coefficients: The cepstrum is defined as an aggregated coefficient calculated over 
logarithm transformation of filtered signals. Some computer speech recognition systems use mel-scaled 
cepstrum coefficients (MSCC) (Davis and Mermestein 1980). Cepstral parameters are often preferred for 
speech recognition applications in noisy environments because they have been derived from high-
resolution spectral estimators (Picone 1993). One segment of a wave speech signal is represented by a 
vector of n MSCC.

• Linear prediction: The linear prediction model of speech states that each speech sample can be 
predicted from the sum of weighted past samples of speech. The values of the coefficients are calculated 
by minimizing the error between the actual speech and the predicted speech.

Figure 1.39 shows the formulas that can be used to achieve the above transformations.

Part B: Practical Tasks

2. Give a definition of heuristics for problem-solving. What is "goodness" of a heuristic? What does it 
mean for a heuristic to be "informed?" Give examples of ill- and well-informed heuristics.

3. What is the difference between past historical data and heuristic rules? What is the difference between 
a rule and a formula? Give three examples of each for a different generic problem and a different 
application domain area.

4. Give a general form of a heuristic rule and explain it. Give general forms of heuristic rules for four 
generic problems and explain each of them.
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(1) Discrete Fourier Transform (DFT):

where S(k) is the kth frequency component, and N, is the size of the analysis frame.

(2) Cepstrum transformation:

where c(n) is the cepstrum coefficient and N, is the number of samples in a frame.

(3) Mel-scaled cepstrum coefficients (cm(n)):

where Nf is the number of mel-scaled filters, Xk, k=1,2,. . . Nf, represents the log-energy output of the kth filter and M is the 
number of cepstrum coefficients. Cepstral parameters are often preferred for speech recognition applications in noisy 
environments as they have been derived from high resolution spectral estimators (Picone, 1993).

(4) Linear prediction:

where s(n) is the current speech sample, NLP is the number of linear predictor coefficients, aLP(i) are the weights of the past 
speech samples, also known as predictor coefficients, and e(n) is the error of the model. The values of the coefficients are 
calculated by minimising the error between the actual speech and the predicted speech.

Figure 1.39
Different transformations applicable to speech signals.
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5. Give one more example of a specific problem for every generic problem type.

6. Suggest a minimum set of features which can be used to distinguish the two handwritten digits 3 and 5.

7. What is the meaning of data rate reduction in speech recognition systems? Give an example.

8. Why are speech signal transformations needed?

9. What are the difficulties in building ASR systems?

10. Is the stock market predictable according to figure 1.23? Explain your arguments.

11. What reasons should one use when choosing the feature space for prediction?

12. Give another example of a specific problem of prediction. Explain all the general issues given in 
section 1.6.1 for this particular problem.

13. Imagine that two more fuzzy values are defined for the angle and the angular velocity in the Inverted 
Pendulum control example, which are named positive large and negative large. Add some more fuzzy 
rules to the set given in figure 1.33 to describe the reaction of the control system if these values happen 
on the input.

14. Imagine a problem called the Ball and Beam Problem. The beam is made to rotate in a vertical plane 
around the center of rotation. The ball is free to roll along the beam. The task is to articulate an initial set 
of fuzzy rules for keeping the ball in a balanced position by applying a force to the beam, if the object is 
represented by four state variables—the distance between the center of the ball and the center of rotation; 
the change in the distance; the angle between the beam and the horizontal axis; and the change in the 
angle.

15. An example of an optimization problem is the Resource Scheduling Problem. A project consists of a 
set of activities on a time scale. Every activity has been assigned five parameters: the earliest possible 
starting day, the earliest possible completion day, the latest possible starting day, the latest possible 
completion day, and the number of workers involved. The problem is to find the most "leveled" (even) 
distribution of number of workers until completion of the whole project. Give heuristic rules for solving 
the problem after introducing reasonable restrictions.
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16. The Resource Assignment Problem consists of assigning n workers to n jobs in the best (most 
profitable) way, when given the profit cij of assigning every worker i to every job j. Give heuristic rules 
for solving that problem. How can you evaluate the ''goodness" of these heuristics?

17. What characteristic of neural networks makes them suitable for solving the specific problems given in 
this chapter?

18. Explain the difference between the different pathways in figure 1.37.

19. Looking at the data set of water flow into a sewage plant graphed in appendix C and in figure 7.1, try 
to elaborate rules for predicting the flow depending on the time (the hour) of day.

Part C: A Sample Project on Data Analysis

Topic: Speech Data Analysis

TASKS (see Appendixes G and J)

1. Speech data collection: Record three times each the digit words from 0 to 9 spoken by yourself. Save 
the recorded raw speech files on a disk. Explain in a few sentences what "sampling frequency" is and how 
it should be chosen for particular recordings. Report the values for the following parameters for one 
recorded digit from each of the groups: {0, 1, 2, 3}; {4, 5, 6}; {7, 8, 9}:

a. Recording time.

b. Sampling frequency.

c. Number of samples.

d. Size of the raw data (in kilobytes).

Explain the relationship between the recording time, sampling frequency, number of samples, and size of 
the raw signal.

2. Speech data display: Explain in a paragraph the principles of at least three ways of displaying speech 
data, for example, waveform, spectrum, frequency display. Display the spectra of the digits chosen for 
analysis.

3. Speech data grouping—phoneme analysis: Define by observation the boundary between the following 
phonemes in the pronounced words: /z/and /e/ in zero; /t/ and /u/ in two; /f/ and /o/ in four; /f/ and /ai/ in 
five; /s/ and /e/ in seven; /ei/ and /t/ in eight; /n/ and /ai/ in nine. Separate the areas of the different 
phonemes. Explain briefly some general differences
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between the spectra of the fricatives you have in your examples (/z/,/f/, /s/,/Θ/) and the vowels 
(/e/,/u/,/o/,/ai/, etc.). Such differences can be, for example, amplitude in the time domain, energy in the 
frequency domain, etc.

4. Variations of speech

a. Compare the spectra of one digit in its three pronunciations. Explain the difference.

b. Compare the spectra of different appearances of a phoneme in different words, for example, /f/ appears 
in "five" and "four." Explain the difference (the so-called coarticulation effect).

5. Speech data transformations

a. Explain why speech data transformation would be needed.

b. Explain the rationale of the Fourier and the mel-scale transformations.

c. Give an example of two small consecutive segments of a spoken digit where the waveforms look the 
same (or very similar), but the spectra are very different. Explain why this is happening.

d. Select a vowel segment from the spectrum of speech data and plot the "frequency vs. energy" for this 
segment. Find and report the frequency with the highest energy.

1.11 Conclusion

The main point of this chapter is to try to answer the following questions:

1. What is knowledge engineering about?

2. What is the "Beauty" of the heuristics?

3. What are the major AI generic problems, for example, pattern recognition, speech recognition and 
language analysis, prediction, control, decision-making, monitoring, diagnosis, games-playing, design? A 
particular emphasis is given on the problem of speech recognition.

4. What are the major difficulties in solving these problems and what are the main reasons for bringing 
the methods of fuzzy systems and neural networks to these areas?
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5. How do different methods of knowledge-engineering relate to one another? What major "pathways" 
can be followed when solving a particular problem?

I hope that after having read this chapter, you will proceed to the next chapters with a clearer idea of why 
you should read about data analysis, the symbolic AI and probabilistic methods (chapter 2), the methods 
of fuzzy systems (chapter 3), and the methods of neural networks (chapters 4 and 5); about using hybrids 
of all the above techniques (chapter 6), and finally, how to make use of chaos (chapter 7).

1.12 Suggested Reading

For the points discussed in this chapter the following references can be recommended for further reading.

Symbolic AI, expert systems—Giarratano and Riley (1989); Pratt (1994); Dean et al. (1995)

Genetic algorithms—Holland (1992); Goldberg (1989); Davis (1991); Michaliewicz (1992); Fogel (1995)

Pattern recognition—Weiss and Kulikowski (1991); Nigrin (1994); Pao (1989); Bezdek and Pal (1992)

Speech and language processing—Morgan and Scofield (1992); Owens (1993); Kasabov and Watson 
(1994)

Time-series prediction—Weigend and Gershenfeld (1993)

Financial and business prediction—Deboeck (1994); Kaufman (1987); Goonatilake and Kheball (1994)

Control—Werbos (1992); Wang (1994); for a mathematical solution of the Ball and Beam Problem, see 
Hanser et al. (1992)

Statistical methods—Metcalfe (1994) Generic and specific AI problems: Schwefel and Manner (1990)
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2
Knowledge Engineering and Symbolic Artificial Intelligence

This chapter begins with an explanation of the basic issues in knowledge engineering: representation, inference, 
learning, generalization, explanation, interaction, validation and adaptation. The methods of knowledge 
representation and methods of inference are discussed. Two main problems of today's expert systems, the problem 
of knowledge acquisition and the problem of reasoning in uncertainties (approximate reasoning), are discussed. 
Probabilistic methods of representing uncertainty, as well as nonprobabilistic ones are introduced. The chapter 
prepares the reader to look at fuzzy systems and neural networks as prospective "candidates" for solving those 
problems. It is demonstrated later in the book that the former are very powerful in representing and reasoning with 
vague heuristic knowledge, while the latter are excellent tools for knowledge acquisition and data-based 
reasoning.

Production systems are discussed more thoroughly here as they are used as a major AI paradigm implemented as 
symbolic AI production systems, as fuzzy production systems, as connectionist production systems, and as hybrid 
connectionist production systems elsewhere in the book.

2.1 Data, Information, and Knowledge: Major Issues in Knowledge Engineering

2.1.1 Data, Information, and Knowledge

What are data? What is information? What is knowledge? Well, data are the "raw material," the "mess of 
numbers." They could be numbers only, without contextual meaning, for example, 3, 78.5, -20. Data can also be 
contextually explained, structured, organized in groups and structures. Such data are called information. So, 
information is any structured data which have contextual meaning, for example, the temperature is 20°C. 
Knowledge is high-level structured information. Information, in its broad meaning, includes both structured data 
and knowledge, which is explained below.

Knowledge is "condensed" information. It is a concise presentation of previous experience. It is the "rules of 
thumb" which we use when we do things. How many rules of thumb do we use in our everyday life? Are there 
many, or are there only a few, very general ones, which are widely applicable to different problems? Is there 
anything else we apply in addition to these few rules of thumb, in order to be able to solve millions and millions of 
very different, or slightly different problems?
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2.1.2 Major Issues in Knowledge Engineering

In order to realize the pathways given in figure 1.37, which lead from the domain space D to the solution space S 
for a given problem and given problem knowledge, eight major issues have been considered. These are: (1) 
representation, (2) inference, (3) learning, (4) generalization, (5) interaction, (6) explanation, (7) validation, and 
(8) adaptation. The main characteristics of these issues are discussed briefly in this subsection and thoroughly in 
the remainder of the chapter.

1. Representation is the process of transforming existing problem knowledge to some of the known knowledge-
engineering schemes in order to process it by applying knowledge-engineering methods. The result of the 
representation process is the problem knowledge base in a computer format. Explicitly represented knowledge is 
called structured knowledge.

Some questions to be considered when choosing methods to represent problem knowledge are:

a. What kind of knowledge is it? Structured or unstructured? Exact or inexact? Precise or imprecise? Complete or 
incomplete?

b. Which method of representation best suits the way people solve that problem?

c. Are there alternative methods for representing the problem knowledge? Which one is the simplest? Using 
alternative methods for knowledge representation is recommended at the design stage of a knowledge-based 
system. The one which least "corrupts" the problem knowledge should be chosen.

2. Inference is the process of matching current facts from the domain space to the existing knowledge and 
inferring new facts. An inference process is a chain of matchings. The intermediate results obtained during the 
inference process are matched against the existing knowledge. The length of the chain is different. It depends on 
the knowledge base and on the inference method applied.

Fuzzy inference methods assume that all the rules are activated at every cycle and contribute collectively to the 
solution. It is a parallel one-shot inference, but the inference process can continue as the new inferred results can 
be fed again as inputs.

In the neural inference models no explicit rules are used. Neural structures are obtained as a result of training with 
past data. This is not true for
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the connectionist production systems which can interpret explicit production rules in a connectionist way.

A match can be either exact, with the new facts matching exactly the conditions in the heuristic rules, or partial, 
when the facts are allowed to partially match the existing knowledge base.

3. Learning is the process of obtaining new knowledge. It results in a better reaction to the same inputs at the next 
session of operation. It means improvement. It is a step toward adaptation. Learning is a major characteristic of 
intelligent systems. Three major approaches to learning are the following:

a. Learning through examples. Examples of the form of (xi, yi), where xi is a vector from the domain space D and 
yi is a vector from the solution space S, i = 1, 2,. . . , n, are used to train a system about the goal function F: D → 
S. This type of learning is typical for neural networks. Symbolic Al machine-learning methods based on learning 
from examples are also very popular.

b. Learning by being told. This is a direct or indirect implementation of a set of heuristic rules into a system. For 
example, the heuristic rules to monitor a car can be directly represented as production rules. Or instructions given 
to a system in a text form by an instructor (written text, speech, natural language) can be transformed into 
internally represented machine rules. This kind of "learning" is typical for symbolic AI systems and for fuzzy 
systems.

c. Learning by doing. This way of learning means that the system starts with nil or little knowledge. During its 
functioning it accumulates valuable experience and profits from it, so it performs better over time. This method of 
learning is typical for genetic algorithms.

Symbolic methods for machine learning are discussed in this chapter; connectionist methods for learning explicit 
rules are presented in chapter 5.

4. Generalization is the process of matching new, unknown input data with the problem knowledge in order to 
obtain the best possible solution, or one close to it. Generalization means reacting properly to new situations, for 
example, recognizing new images, or classifying new objects and situations. Generalization can also be described 
as a transition from a particular object description to a general concept description. This is a major characteristic 
of all intelligent systems.
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5. Interaction means communication between a system on the one hand and the environment or the user on the 
other hand, in order to solve a given problem. Interaction is important for a system to adapt to a new situation, 
improve itself, learn. Interaction between systems is a major characteristic of the distributed decision systems, 
where each module of a system takes part in the problem-solving process and communicates with the other 
modules. This is the essense of the so-called agent-based approach.

6. Explanation is a desirable property for many AI systems. It means tracing, in a contextually comprehensible 
way, the process of inferring the solution, and reporting it. Explanation is easier for the symbolic AI systems when 
sequential inference takes place. But it is difficult for parallel methods of inference and especially difficult for the 
massive parallel ones.



7. Validation is the process of testing how good the solutions produced by a system are. The results produced by a 
system are usually compared with the results obtained either by experts or by other systems. Validation is an 
extremely important part of the process of developing every knowledge-based system. Without comparing the 
results produced by the system with reality, there is little point in using it.

8. Adaptation is the process of changing a system during its operation in a dynamically changing environment. 
Learning and interaction are elements of this process. Without adaptation there is no intelligence. Adaptive 
systems are discussed in chapter 7.

2.1.3 Symbolic, Fuzzy, and Neural Systems—Which One Is the Best?

Symbolic AI, fuzzy, and neural systems facilitate differently the realization of the eight major issues of knowledge 
engineering discussed above. Table 2.1 gives a rough comparison between them.

While the symbolic AI and fuzzy systems facilitate representing structured knowledge, neural networks facilitate 
using predominantly unstructured knowledge. Inference is exact in the AI symbolic systems and approximate in 
the other two. Learning is difficult to achieve in the symbolic AI and fuzzy systems, but it is an inherent 
characteristic of neural networks. Generalization in the symbolic Al systems is not as good as it is in the fuzzy 
systems and neural networks as the latter can deal with inexact, missing, and corrupted data better. Good 
explanation is more difficult to achieve in the connectionist systems as knowledge in them, after learning, is 
distributed among many connections, while symbolic AI
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Table 2.1

A comparison of symbolic, fuzzy, and neural systems

Issue Symbolic Fuzzy Neural

Representation Structured Structured Unstructured

Inference Exact Approximate Approximate

Learning Modest No Very good

Generalization Weak Very good Very good

Interaction Good Good Good

Explanation Very good Very good Weak

Validation Good Good Modest

Adaptation Modest Modest Good

and fuzzy systems, if well written, could be self explaining. Of course, building a sophisticated explanation of 
what is happening in a system while solving a problem requires deep understanding of both the domain problem 
and the computer reasoning methods used in the system. Good adaptation is achieved in fuzzy neural networks. 
The above issues are discussed in this book.

2.1.4 Separating Knowledge from Data and from Inference in the Knowledge-Based Systems



There are many reasons for separating data from knowledge, and separating both from the control mechanism in a 
system. Some of these are the following:

• Data may represent a current situation, for example, the temperature of the cooling system in a car. A 
characteristic of data is that they may vary frequently.

• Rules are stable, long-term information. Rules do not depend on slight variations in data describing a 
current situation.

• Separating the control, as an inference procedure applicable to a set of rules and data, provides an 
opportunity to expand the knowledge when necessary without changing the inference procedure. It also makes the 
decision process clearer and the process of designing the whole program much easier.

Separating knowledge from data and from the inference means easier modification of each of these components. 
But they all make one system, so they should fit to one another, be coherent.
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In symbolic AI systems explicit knowledge is separated from the representation of the current data and from the 
inference mechanism. Separating data from knowledge and from control contrasts with standard programming 
techniques. Imperative computer languages, for example, C, PASCAL, MODULA 2, separate data (variables and 
constants) from knowledge (procedures), but the control mechanism is still embodied in the procedures. A full 
separation is achieved in the so-called declarative computer languages, for example, logic programming languages 
(PROLOG), and production languages (e.g., CLIPS). Both languages require the presence of structured problem 
knowledge.

In neural networks current data are usually represented by the activation level of neurons and knowledge is 
distributed among the connection weights. The principle of local processing in neurons means that every neuron is 
a separate processing element, but the results are obtained by the neural system as a whole. It is difficult to 
separate data and knowledge in a neural network unless special encoding is used to represent the information.

2.2 Data Analysis, Data Representation, and Data Transformation

We are surrounded by masses of data. Data may be very informative, containing a lot of information about 
different aspects of the processes. It is up to us to make use of it. Before developing sophisticated methods for 
problem solving, our first task is to scrutinize the data, look at it from different points of view. In order to do that, 
it might be necessary to apply certain transformations. This is the topic of this section.

2.2.1 About the Variety of Domain Data

Domain data can be of various types. Some of them  are described here:

• Quantitative vs. qualitative data. Quantitative data are a collection of numerical values; qualitative data are 
a collection of symbols, for example, red, small, John Smith. Quantitative data can be either numerical continuous 
or numerical discrete.



• Static vs. dynamic data. Static data do not change over time; while dynamic data describe the changes in a 
process over time.
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• Natural vs. synthetic. Natural data are data collected from a process during its operation; synthetic data are 
artificially generated according to some laws or rules describing the process.

• Clean vs. noisy data. Data obtained without any external disturbance or corruption are called clean; noisy 
data mean that a small random ingredient is added to the clean data.

2.2.2 Data Representation

It is very important to correctly represent data before they are processed in a computer system. Representation 
should satisfy some requirements:

• Adequateness. Data should be adequately represented in a computer system.

• Unambiguity. Different data items should possibly be represented differently before being processed.

• Simplicity. Data should be represented in the simplest possible way before being processed.

A tradeoff is sought between the above requirements.

Different representation schemes are known from the area of database systems. For example, an object can be 
described by a relation and represented as a tuple of the type of object-attribute-value : name_of_the_ object 
attribute1 value1 attribute2 value2 . . . attributek valuek),

Example

(example23 SL = 5.7 SW = 4.4 PL = 1.5 PW = 0.4), or in a shorter form,

example23 = (5.7 4.4 1.5 0.4)

In a general notation, a data set is characterized by an attribute vector X = (x1,x2, . . .,xk), where xi is the ith 
attribute. One data instance is a point (vector) in a k-dimensional attribute space. In the example above, the Iris 
instances can be represented as points in a four-dimensional space. Same objects can be represented by data points 
in different dimensional spaces. For example, data may contain information about the class, for example, 
example23 = (5.7 4.4 1.5 0.4 Setosa), which is the representation of the same instance, but this time in a five-
dimensional space.

How many dimensions should a problem space contain in order to adequately represent objects and to achieve 
satisfactory processing? Should
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we include the size of the stem for a better classification of new instances of Iris? If we consider, say, 50 attributes 
for the iris classification problem, would it be more difficult to do the classification because of considering too 
many unimportant attributes which may simply be noise?

The problem of choosing appropriate dimensionality for solving a given problem is called ''the curse of 
dimensionality." Two classes of data can be distinguished in this respect, namely, small-dimensional vs. large-
dimensional data.

Some objects or processes called fractals can be represented in a space that is composed of fractions of 
dimensions. A fractal space has noninteger dimensionality, for example, 2.5. A point has a dimensionality of 1, a 
straight line a dimensionality of 2, but a figure may occupy a small part of an embedding two-dimensional space, 
for example, a curving line around a point, or a spiral with a small radius, etc. One hypothesis about the stock 
market, called the fractal market hypothesis, says that a market is a nonlinear dynamical system with noninteger 
fractal dimensions (Deboeck, 1994).

Visualizing data may help to chose a good data representation, a proper dimensionality and a proper method for 
solving the problem. Different way of visualization can be used:

Bar graphs: Figure 2.1 shows the soil case example average data from table 1.1 as bar graphs. The bar "patterns," 
which represent different classes, seem different, which may be a hint that the chosen eight features should be 
enough for a good classification.

Scattered points graphs: Figure 2.2 shows a representation of the Iris data in a two-dimensional space of "petal 
length" and "petal width" attributes. This representation shows that there is overlapping between the classes 
Virginica and Versicolor and using the two attributes only would not be sufficient for building a classification 
system. If discretization on the data is required, the graphs from figure 2.2 can help to define in a reasonable way 
the discretization intervals. One possible discretization is shown in figure 2.3 and commented on in the next 
section (see figure 1.11).

2.2.3 Data Transformations

Data can be used in a system either as raw data or after some transformations. Why should data be transformed? A 
data transformation may have the following objectives:
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Figure 2.1
Bar graphs representing the data from table 1.1. The difference between

the class patterns is noticeable.

Figure 2.2
Iris data represented in the two-dimensional space of the

two variables Petal length and Petal width. Class denotation:
Setosa-diamond; Versicolor-square; Virginica-triangle.
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Figure 2.3
A set of intervals for Iris data discretization.

• Data rate reduction. Instead of using all the recorded data, some meaningful features are extracted from it 
and used further on, for example, Fourier transform on speech data and mel-scale cepstrum coefficients, which 
may reduce the data rate by several orders of magnitude.

• Noise suppression. Raw data may be noisy, a problem that is overcome by using transformed data values.

Different data transformations are possible.

• Sampling. This is the process of selecting a subset of the data available. Sampling can be applied to 
continuous time-series data, for example, speech data are sampled at a frequency of 22 kHz, or to static data in 
which a subset of the data set is taken for processing purposes.

• Discretization. This is the process of representing continuous-value data with the use of subintervals where 
the real values lie. In figure 2.3 Iris data are discretized such that the first attribute is discretized in four intervals, 
the second attribute in three intervals, the third attribute in six intervals, and the fourth attribute in three intervals. 
Having this discretization, the instance (5.3 4.7 1.2 3.0), for example, becomes, after discretization, (2 3 1 3). 
Instances in a data set may contain attributes with different types of values—numerical, linguistic, and so on. An 
instance (5.3 male 8.4 high ill), for example, after a discretization becomes (6 2 9 1 1), assuming that the first and 
the third attributes are discretized into 10 intervals having cardinal numbers as boundaries; the second attribute 
has two possible values; the fourth one, three; and all the instances are classified into two classes, "ill" or 
"healthy," where 1 represents "ill" and 0 repre-
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sents "healthy." Discretization is a kind of approximation. When we discretize we may lose information.

• Normalization. Normalization is moving the scale of the raw data into a predefined scale, for example, [0, 
1]. Normalization is usually required by most of the connectionist models. Normalization can be:

Linear; a formula which can be used for linear normalization of data in the interval [0, 1] is the following:

where v is a current value of the variable x, xmin is the minimum value for this variable, and xmax, is the maximum 
value for that variable x in the data set.

Logarithmic,

Exponential, etc.

• Linear transformations. These are transformations F(x) of data vectors x such that F is a linear function of 
x, for example, F(x) = 2x + 1.

• Nonlinear transformations. These are transformations F(x) of data vector x where F is a nonlinear function 
of x, for example, F(x)= 1/(1 + e-x·c), where c is a constant. Other typical nonlinear transformations are:

Logarithm function, for example, F(x) = log10x

Gaussian function (used later in the book)

Nonlinear transformations impose a "desirable distortion." For a comparison between a linear transformation (y = 
x) and a nonlinear transformation (gaussian function) on the same two values x1 and x2 for the independent variable 
x, see figure 2.4.

Two special nonlinear transformations are discussed below:

• Fast Fourier transform (FFT) is a special nonlinear transformation applied mainly to speech data to 
transform the signal taken for a small portion of time from the time-scale domain into the frequency-scale domain. 
The idea is as follows. The signal is assumed to be stationary within a small period of time (say 10 ms) called 
window. After having digitized the signal with, say, 20-kHz sampling rate, we take the raw data values of the 
energy of the signal falling in a window of 10 ms (in this case 200 points) and calculate the frequency distribution 
of this portion of the
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Figure 2.4
Linearly and nonlinearly transformed data.

signal on the frequency scale (usually up to half the sampling rate, this frequency being called the Kotelnikov-
Nyquist frequency). The discrete Fourier transform and its variant FFT are transformations used to find the 
frequency distribution of a signal from its digitized energy values over time for a small window of the signal (see 
figure 1.39). FFT can be applied not only on speech data but on any time-series data taken from a process, if 
frequency is considered to be an important characteristic of the process.

• Wavelet transformation is another nonlinear transformation. It can represent slight changes of the signal 
within the chosen window from the time scale (for the FFT it was assumed that the signal does not change or at 
least does not change significantly within a window). Here, within the window, several transformations are taken 
from the raw signal by applying wavelet basis functions of the form:

Wa,b(x) = f(ax - b),

where: f is a nonlinear function, a is a scaling parameter, and b is a shifting parameter (varies between 0 and a). 
So, instead of one transformation, several transformations are applied by using wavelet basis functions Wa, 0, . . ., 
Wa, 1,. . . Wa, 2, . . . Wa, a. An example of such set of functions when f(x) = cos(πx) is given in figure 2.5. 
Wavelet transformations preserve time variations of a signal within a certain time interval.

2.2.4 Data Analysis

Very often, when dealing with a complex task like stock market prediction, it is important to analyze the process 
by analyzing data available for this process, before any methods for solving the problem are applied.
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Figure 2.5
Wavelets.

Usually, the results from the analysis suggest the method that will be used later on. Data analysis aims at 
answering important questions about the process under investigation:

• What are the statistical parameters of the data available for the process —mean, standard deviation, 
distribution (see below)?

• What is the nature of the process—random, chaotic, periodic, stable, etc.?

• How are the available data distributed in the problem space—clustered into groups, sparse, covering only 
patches of the problem space and therefore not enough to rely on them fully when solving the problem, uniformly 
distributed?

• Are there missing data? How much? Is that a critical obstacle which could make the process of solving the 
problem by using data impossible? What other methods can be used, either by addition to, or substitution of, 
methods based on data?

• What features can be extracted from data?

Three groups of methods for data analysis are outlined below:

1. Statistical analysis methods discover the repetitiveness in data based on probability estimation. Simple 
parameters, like mean, standard deviation,
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Figure 2.6
Clustering data may help to classify new data.

distribution function, as well as more complex analysis like factor analysis, to weight the importance of different 
input variables on the values of output variables; regression analysis, to find a formula that approximates data for 
a given output variable, and so forth, can be used.

2. Clustering methods find groups in which data are grouped based on measuring the distance between the data 
items. Clustering in a two-dimensional space by using two circlelike clusters is illustrated in figure 2.6. The 
distances between a new data point and the two centers of clusters c1 and c2 can be either absolute or normalized 
values. In the case presented in the figure, the latter is more appropriate for classification purposes.

Let us have a set X of p data items represented in an n-dimensional space. A clustering procedure results in 
defining k disjoint subsets (clusters), such that every data item (n-dimensional vector) belongs to only one cluster. 
A cluster membership function Mi is defined for each of the clusters C1, C2, . . , Ck:

where x is a data instance (vector) from X.

There are various algorithms for clustering, one of them being the k-means clustering algorithm. It aims at finding 
k centers {c1,c2,. . . ,ck} in an n-dimensional space, such that the mean of the squares of the distances between each 
data point x ∈ X and the cluster center closest to it is minimized. In chapter 3 a fuzzy clustering algorithm is 
given, which uses
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fuzzy borders between the clusters, thus allowing one item to partially belong to more than one cluster.

3. Methods for feature extraction transform data into another space, a space of features. We can use different 
transformation techniques to transform raw data space into a feature space knowing how to calculate the features, 
for example, FFT points, wavelets, etc. But if there is no formula to calculate features, how are significant features 
extracted from data and how is the processing done over them? Extracting features is an ability of the human brain 
for abstraction. But how can computer systems do that? Different methods can be applied, depending on the 
application area and the generic problem under consideration. For example, in pattern recognition and image 
processing, specialized methods for extracting lines, curves, edges, and so forth from images or patterns can be 
applied. Neural networks can also be used for feature extraction.

2.3 Information Structures and Knowledge Representation

This section is a brief introduction to structures in which information and knowledge can be represented. Though 
the structures are for general use, they are widely used in AI methods and techniques.

2.3.1 What Is an Information Structure?

Information is a collection of structured data. In its broad meaning, it includes knowledge as well as simple 
meaningful data. But how to represent these structures in a computer in such a way that no significant information 
is lost, further processing of information is facilitated, representation is adequate to the nature of the data links and 
relations, and the representation is flexible, allowing expanding of information items, links, and the relations 
between them?

Representing data and knowledge in structures may, and usually does, influence the functionality of the system as 
a whole. Data should be handled with care and as much information as possible should be kept throughout the 
information processing for further use.

An information structure contains information elements and links between them. A structure can represent data 
and links between them from the solution space S, or from the domain space D of a problem, or from both of 
them, as they may be considered as a general problem state space
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P. Every state in the state space P is a data item, but there can be links between the states representing possible 
transitions between states (all or only some of them  might be possible). For the ticktacktoe game, for example, 
one state makes it possible to go on to other states afterward.

An information structure is a collection of information elements with a defined organization, operations over the 
elements, and a defined method of access to every element. Structures can be organized as static or dynamic. 
Static structures have a fixed number of elements. Dynamic structures do not have a fixed number of elements as 
the elements are created and deleted during the process of handling the information. Some ways of machine 
representation and operation over dynamic data structures are more useful than others. They are based on using 
elements called pointers. A pointer is a data element whose content is the location of another element. Sets, 
stacks, queues, linked lists, trees, and graphs are used as dynamic information structures.



2.3.2 Sets, Stacks, Queues, and Lists

The most common structure in mathematics and computing is the set. The set is a generic concept. It is defined as 
a collection of objects with operations defined over it as shown in figure 2.7. Typical set operations are union, 
intersection, complement, relative complement, difference, membership, equality, and subsethood.

A stack is a collection of ordered elements and two operations which can be performed only over the element that 
is currently at the "top," that is, to "push" an element on top of the stack, and "pop" an element from the stack. A 
stack has only one pointer element to point at the top of the stack. Figure 2.8 shows two realizations of a stack. 
The first is a dynamic stack where the elements do not have fixed positions in a memory space; they are ''floating" 
in this space, their positions being kept in a pointer field of the previous elements of the whole stack. The second 
is a static realization of a stack, where the stack elements occupy consecutive places in a memory space.

Queues are data structures similar to the stack structure, but here two pointers are used—one for the input, and one 
for the output element of the structure. In figure 2.9 two realizations of a queue are shown: dynamic and static.

Linked lists are more general structures than stacks or queues. Elements in a list may be linked in different ways 
(figure 2.10). Typical operations
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Figure 2.7
Set operations over two sets A and B.



Figure 2.8
The stack organization—two possible realizations.
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Figure 2.9
Organization in a queue structure: (a) dynamic realization;

(b) static realization.

over lists are insert an element into a list, delete an element from a list, search for an element in a list. The first 
two are illustrated in figure 2.10. The way in which these operations are realized is mainly an efficient use of 
pointer fields in each of the elements in a list.

2.3.3 Trees and Graphs

Very useful structures used in knowledge engineering are trees. They are often used for representing decision 
charts, classification structures, plans, etc. A tree is a special case of a more general structure called a directed 
graph. A directed graph consists of a finite set of elements called nodes or vertexes, and a finite set of directed 
arcs that connect pairs of vertexes.



A tree is a directed graph in which one of the nodes, called root, has no incoming arcs, but from which each node 
in the tree can be reached by exactly one path. Vertexes that have no outgoing arcs are called leaves. Nodes that 
can be reached directly from a given node using one directed arc are called the children of that node, and the node 
is said to be the parent. Examples of using trees for representing problem knowledge are shown in figure 2.11A (a 
genealogical tree), in (B) (a parsing tree), and in (C) (an algebraic expression tree).

Tree structures are often used for representing the decision process for solving diagnostic, classification, and other 
generic problems. Figure 1.10
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Figure 2.10
Linked lists: a general representation scheme and two operations over elements in

a list"—insert a new element" and "delete an element from a list."

is a good example of that. Such trees are called decision trees. If we consider every rule in a knowledge base as an 
item, then a decision tree links the rules such that if a conclusion in a rule Ri appears as a condition in another rule 
Rj, then Ri and Rj are connected in the tree structure.

Graphs are also often used as data structures. A graph is a set of nodes (vertexes) and a set of arcs connecting the 
nodes G = (V, C). Figure 2.12(a) shows a simple graph.



If the edges in a graph are directed (arrows), the graph is called a directed graph; otherwise it is nondirected. The 
edges may be weighted, that is, a number is bound to every edge. If we traverse a graph by following edges from 
one vertex to another, we are following a path in a graph. A path is a sequence of contiguous arcs in a graph. 
Different types of paths may be distinguished in a graph:
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Figure 2.11 (a) A genealogical tree. (B) Parsing tree.
(C) Algebraic expression tree.

  

Page 95

Figure 2.12
(a) A simple graph; (b) isomorphic graphs.

• A cycle. The path starts from one node and ends at the same node; a graph containing a cycle is said to be a 
cyclic graph; a graph with no cycles is acyclic.

• A spanning tree. A subset of edges of a graph that forms a tree (there are no cycles).

• An Euler path is a path in which every edge (arc) is traversed exactly once.

• A Hamiltonian path is a path in which every vertex (node) is traversed exactly once.

A fully connected graph contains a path between every pair of nodes. In a non-fully connected graph there should 
be at least one pair of nodes with no path between them.
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Many interesting and difficult problems for graphs have been explored in the literature and different solutions 
suggested. Some generic graph problems are listed and explained below:

• The shortest path problem—to find the shortest path between two arbitrary nodes in a graph.

• The Traveling Salesman Problem (TSP)—the problem (introduced in chapter 1) is to find the minimum-cost 
cycle path starting from an arbitrary node.

• Check for existence of a path with a given length K between two arbitrary nodes in a graph.

• Finding isomorphic graphs. Structurally identical graphs are called isomorphic. Formally, we define a pair 
of graphs G1 and G2 to be isomorphic if there is one-to-one correspondence between the nodes of the graphs, 
such that if two nodes of one graph are adjacent, then their corresponding nodes in the other graph are adjacent 
too. An example of two isomorphic graphs is shown in figure 2.12b.

• Transitive closure. A graph GT is called a transitive closure of a graph G if for every vertexes X and Y in G 
such that Y is reachable from X, X and Y are adjacent in GT, that is,

IF Reachable(X, Y in G), THEN Adjacent (X, Y in GT)

• Graph-coloring problem. The problem is to "color" the nodes of a graph in such a way that there are no 
adjacent nodes with the same color.

2.3.4 Frames, Semantic Networks, and Schemata

Frames are structures which represent structured information for standard situations. Frames consist of slots 
(variables) and fillers (values). The slots represent typical characteristics of objects. With such uniform 
representation it would be easy to process this information (compare, search, or update). An example of a frame 
representation is given in figure. 2.13. Slots may represent not only static information but dynamic information as 
well. For example, a slot may represent a procedure to be processed over data from other slots. Frames are 
valuable when explicit and exact data and knowledge are available for solving comparatively simple problems.

Semantic networks use directed graphs to represent contextual information. The nodes represent objects and 
concepts, and the arcs, relations. Typical relations are: is_a; part_of; implies; etc. Semantic networks are
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Slots Filler

age 21

sex female

name Judith

occupation programmer

hobby swimming

Figure 2.13
Frame representation.

Figure 2.14
A semantic network. The nodes denote features, objects 

or classes and the arcs the relations between them.

useful for representing either flat, or hierarchical knowledge, but they are static. Updating data by learning and 
changing knowledge may be difficult to handle. Figure 2.14 shows an example of a simple semantic network 
where the arcs represent relations and the nodes represent objects.

Schemata are more general structures than a semantic network. They are based on representing knowledge as a 
stable state of a system consisting of many small elements which interact with one another when the system is 
moving from one state to another. The state of a system is composed by the states of all these elements. This way 
of representing knowledge is a distributed one: knowledge is represented as a state of a coalition of elements. It is 
dynamic as well because a small change in the input values (stimulus) would most probably lead to a new stable 
coalition—a new state of the whole system. Schemata are a valuable way of
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representing knowledge currently being explored because of their physiological plausibility.

2.3.5 About the Variety of Problem Knowledge and the Limitations of Current Techniques for Its 
Representation

Knowledge, as pointed out in chapter 1 and in section 2.1 of this chapter, is the information which represents long-
term relationships, that is, ways of doing things, commonsense, ideas, methods, skills, and so forth. Knowledge is 
"condensed" information, "squashed" information, an extraction, the "essence" of things. A huge amount of 
knowledge has been accumulated worldwide during the conscious existence of humanity. This knowledge is 
changing all the time. How to make use of existing knowledge in a computer program? How to represent it in such 
a way that we keep the richness and the depth of the knowledge and also make it reasonable to use? To what 
extent do we compromise with these controversial requirements? Different categories of problem knowledge can 
be distinguished:

• Global vs. local knowledge. Knowledge can be global, for example, the knowledge that human beings have 
learned throughout their evolution, or local, for example, a rule on how to react to traffic lights.

• Shallow vs. deep knowledge. Knowledge can be shallow, for example, based on stimulus-reaction 
associations, or deep, for example, encapsulating complex models for explanation and analysis.

• Explicit vs. implicit knowledge. Knowledge can be explicit, for example, structured, or implicit, for 
example, unstructured, hidden, buried in data.

• Complete vs. incomplete knowledge. Knowledge is complete if it ensures a solution to the problem in all 
cases or situations, or incomplete if it has a restricted applicability.

• Exact vs. inexact knowledge. Knowledge is considered to be exact if it can be used and an exact solution to 
the problem is produced when exact input data are supplied, or inexact, uncertain, when it produces an 
approximate solution when exact or inexact data are supplied.

• Hierarchical vs. flat knowledge. Knowledge is hierarchical when some pieces of knowledge apply over 
others, or flat when all the knowledge
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is applicable at the same level. Hierarchical knowledge contains metaknowledge, knowledge applicable over 
knowledge, for example, "We know what we do not know."

We have discussed different methods to structurally represent domain information and problem knowledge. But 
knowledge engineering requires mathematical models and theories to represent and do reasoning over knowledge 
in a consistent way. Such theories are the logic systems. Three of them are presented in the next sections, namely: 
(1) propositional logic, (2) predicate logic, and (3) fuzzy logic. Each uses different kinds of rules of the form of:

IF A, THEN B, or shortly: A → B, where A is an antecedent (conditions), and B a consequent (conclusions, 
actions), and each uses different methods for reasoning (inference method).



Whatever method for representing problem knowledge is used in a computer system, it is usually a way of 
simplifying the problem to make it reasonable to handle. There is no universal method that can handle the variety 
of problem knowledge in the way humans do.

One problem should be mentioned when discussing the issue of knowledge representation. This is the so-called 
frame problem. What should we keep unchanged in the representation when the situation has changed? What 
should we update in the computer? How can the system know what has changed without checking all the data? 
For example, imagine that we have a computer system which maintains data about a house and monitors whether 
there is a possibility for a dangerous situation to occur (fire, burglary, earthquake, etc.). In order to monitor the 
house, the system keeps information about the location and many other properties and parameters of all the 
objects in the house. A camera takes pictures and the information in the computer is updated regularly, subject to 
an event which may happen. Suddenly, a glass drops on the floor in the kitchen. The global situation in the house 
has changed. Which data should be updated? To update all the data in the system may block the computer for days 
so that it is unable to react to new changes which might occur after this event and which might be really 
dangerous. Obviously, relationships between objects must be introduced in the computer system. But how many? 
This example illustrates the so-called frame problem.
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2.4 Methods for Symbol Manipulation and Inference: Inference as Matching; Inference as a Search

Inference is the process of acquiring new facts when interpreting existing knowledge with current data. The whole 
process of inferring new facts and their manipulation is called reasoning. Inference in an AI system is what 
corresponds to the control process in conventional computer programs and what corresponds to the process of 
''thinking" in the human brain (both analogies are extremely slight and vague). An inference process has many 
aspects, some of which are discussed in this section. It is differently realized in different logic systems and Al 
methods.

2.4.1 Inference as a Process of Matching and Generalization

Suppose the knowledge base contains input-output associations (rules, data pairs) Rj = (Xj, Yj), j = 1, 2, . . ., n. The 
problem is to find a solution for a new input vector x . This vector is mapped to the solution space S through a 
chain of rules until a solution y  in the solution space S is found. Figure 2.15 illustrates this process. The solution 
is found after firing three rules in a chain. The first two infer partial solutions which are used as input data for the 
next rules in the chain. In some cases, in the fuzzy rule-based systems, for example, the solution is a single 
parallel match of the new facts with all the rules. Partial solutions, obtained by individual rules, are combined in 
order to achieve the final solution. The inference process can be considered as a trace of states in the problem 
space, every state representing a closer approximation to the solution. The trace can be used for explaining the 
solution process later on. The trace itself may



Figure 2.15
Inference as a chain of matches.
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represent a solution to the problem. For example, a spoken word can be recognized as a sequence of phonemes on 
a phoneme map (the solution space).

The matching process can be either exact, or partial. Exact matching means that the matching facts coincide 
exactly with the condition elements in the left-hand side of the rules. For example, if the fact is x , there has to be 
a rule xj → yj, such that xj = x . Exact matching is typical for symbolic AI systems.

A partial match does not require equality between facts and the left-hand side of a rule. In this case an 
approximation or closeness is enough. But how approximately and how closely should a fact match a rule in order 
to fire that rule? This point has to be determined by the method used for approximate reasoning. Partial match is 
typical for fuzzy systems and for neural network models.

A generalization process can be represented as a chain of stepwise generalizations (see figure 2.15). At every step 
in the chain of inference, a generalization may be made.

2.4.2 Inference as a Search and Constraint Satisfaction

Generally speaking, inference is a process of searching for the solution in the solution space. The solution space 
for real problems is usually huge and contains states which have to be checked through as intermediate solutions 
to the problem. A search through the problem state space has to be performed in order to find out which state 
should be checked for a possible solution, or which rule should be applied to the new facts.

If the problem state space is not structured, that is, if there is no structure that represents relations between the 
states in the space, then a random search may be used and the generate and test strategy applied. A state is 
generated randomly, and a criterion for "fitness" (a function, a heuristic, etc.) is applied to evaluate how good the 
generated state is as a possible solution. To avoid generating all the possible states in the state space, a heuristic is 
required.

A simple strategy for search in the state space is the exhaustive search—trying all the possible states, either 
sequentially or in parallel, and then making a conclusion about the best one. This search is not practical because it 
requires an unrealistic number of operations, even for a problem of small size.
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An inference can be considered as a process of searching for a state which optimizes a goal function. In this case, 
gradient-descent, or hill-climbing methods can be applied. Such methods are often used in neural networks.

When the problem space is structured, for example, in a tree, then the most favored searching strategies are 
"breadth first search"—testing first all the states which are at a certain level in the tree and then going to search 
among their "children," and "depth first search"—searching for the leftmost leaf of the tree first and then for the 
next one. Figures 2.16A and B illustrates the two search strategies in a tree structure. The numbers assigned to the 
nodes of the trees represent the order in which the nodes are checked (visited). Each of the two search techniques 
has its extreme case in the exhaustive search when all the nodes (points) of the decision space are checked before 
the final decision is found.

If constraints are given which the solution must satisfy, then the search problem can be represented as a constraint 
satisfaction problem. It can be formulated as follows. Given a set Y of variables {y1, y2. . . .ym} each variable yi 
ranging over a domain Si, and a set of constraints C1,. . . ..,C1, each constraint Cj representing relations between 
variables in a subset of Y, to find tuples (s1, s2. . . ,sm) of values for the variables (y1, y2,. . . ,ym) such that all the 
constraints are satisfied. It might happen that this problem does not have a solution. If this is the case, i.e., one 
cannot satisfy the entire set of constraints, one has to "weaken" the constraints to find a solution. This process is 
called constraint relaxation. It is now an approximate solution that is sought rather than an exact solution. Both 
fuzzy systems and neural networks can be successfully used for finding approximate solutions.

2.4.3 Forward and Backward Chaining

An inference process is a chain of matchings. Two mechanisms to organize these matchings are called forward 
chaining inference and backward chaining inference. There is another mechanism, which uses both in a 
predefined order.

A forward chaining procedure applies all the facts that are available at a given moment to all the rules to infer all 
the possible conclusions.

Example   An example of a forward chaining inference is given in figure 2.17A where the car monitoring rule base 
is represented as a decision tree
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Figure 2.16
Searching in a tree structure: (A) Breadth first search. (b) Depth first search.
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Figure 2.17
(A) Forward chaining inference over the Car Monitoring decision tree.

(B) Backward chaining inference.
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(see the problem description in chapter 1). Forward chaining inference starts with data. It is data-driven. This 
mechanism is implemented in the production languages. Simple neural networks and fuzzy systems can also 
realize this type of reasoning because they require data to be supplied to the inputs in order to start reasoning.

In the backward chaining inference, which is a goal-driven inference, the inference process starts after a goal is 
identified. Then a search for a rule which has this goal in its antecedent part is performed, and then data (facts) 
which satisfy all the conditions for this rule are sought in the database. The process is recursive, that is, a 
condition in a rule may be a conclusion in another rule (other rules). The process of searching for facts goes 
backward.

Example   The same problem is used in figure 2.17B to demonstrate backward chaining reasoning methods. 
Backward chaining may imply backtracking, that is, if the goal is not satisfied with the first checked fact, then 
other conditions and facts are checked (if more are available). This mechanism is implemented in the AI logic 
programming languages.

2.4.4 The Variety of Reasoning Methods and The Role of Variables

Various types of reasoning methods can be used for knowledge engineering. Some of them are listed below:

• Monotonic vs. non-monotonic reasoning. An inference process is monotonic when every new fact 
contributes to an increase in present knowledge. It is non-monotonic when knowledge may decrease in "volume" 
as new facts are entered into the system. In the latter case, some facts that have been previously inferred based on 
the previous set of facts might need to be revised and retracted as being no longer valid.

• Exact vs. approximate reasoning. A reasoning process is exact if it produces exact solutions when current 
data are supplied; it is approximate if it ends up with an approximate solution or a degree of approximation 
attached to the inferred solution. An example of an exact solution is classification of an Iris exemplar to the class 
Setosa if two possibilities are given—yes or no. But if the classification procedure produces a confidence factor, 
say 0.93, to which the new exemplar belongs to Setosa, 0.01 for the class Virginica, and 0.203 for the class 
Versicolor, respectively, this is an approximate reasoning procedure.
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• Iteration vs. recursion. In an iterative process of searching for a solution, a rule (set of rules) is applied over 
input data many times, each time producing a better approximation to the solution; recursion is represented by a 
rule(s) or function that is defined by the same function but for different values of its variables. A recursive 
function is, for example, the factorial function:

Factorial(n) = n! = n.Factorial(n - 1) =. . . = n.(n - 1). . .2.1

The problem of finding a path of a length of K between two arbitrary nodes X and Y in a graph can be represented 
as a recursive problem, as shown below:

IF there exists a node Z, such that X and Z are adjacent, AND there is a path (Z, Y, K - 1) between Z and Y with a 
length of K - 1, THEN there is a path (X, Y, K) between X and Y with a length of K



Recursion is a way to express a solution to a problem over the whole problem state space as a sequence of 
solutions to the same problem on subspaces of the space. The same function, procedure, or rule represents a 
general solution to the problem as well as a local one. Recursion operates in two ways: (1) a backward way, which 
is the top-down way of consecutive moves from the general space to local subspace until the smallest possible 
element from the space is reached and the rule is evaluated; and (2) a consecutive forward propagation of the 
results obtained as local solutions to a wider subspace until the global solution is reached. This is illustrated in 
figure 2.18 by a procedure for calculating the factorial function.

Fuzzy recursive rules and systems are discussed in chapter 7.

Variables play a significant role in the process of inference. Unfortunately, the mechanism of brain "variables" is 
completely unknown. That is probably why variables are such a big problem to implement in connectionist 
systems. A variable x is an entity to which any value from its domain (range) can be bound. Variable binding is a 
dynamic process. A value is either temporarily or constantly bound to a variable during the operation of a system. 
Variables ensure a dynamic way of information updating. Many explicit rules use variables to express validity for 
different values which can satisfy the condition elements, for example:

IF [Temperature]  120, THEN there is overheating
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Figure 2.18
A recursive solution for the factorial function f(n) = n! The figure

represents a recursive execution of the function for n = 3. The recursive
process, which takes place in time, is here represented in space.

In the above rule [Temperature] is a variable and can be bound to any value for the cooling temperature of the car. 
Variable binding is done through searching in the variable domain space—the space of all the possible values for 
the variables in the system. There are some solutions to this NP complete problem. For example, a so-called 
RETE algorithm is used in the production languages. It makes possible an efficient variable binding without 
checking all the possible values of all the variables in the production rules each time a matching process between 
the facts and the rules in the system is performed.

Different types of variables are facilitated in the different logic systems and AI models and languages: no 
variables at all (propositional logic); local (within a rule or a function) or global (valid for the whole program); 
and variables that can be bound to single values, or bound to a whole multivalued fact or list of values, etc.



Symbolic AI systems are very good at representing variables, but not very efficient in variable binding. Variables 
can be used in fuzzy systems. Representing variables in the contemporary connectionist models is possible, 
though extremely difficult.

One interesting issue to be raised here is the difference between learning through reasoning and learning about 
reasoning. Through reasoning, new facts and rules can be obtained by the system. Whether a system can learn to 
do reasoning is a completely different question and much more difficult to answer. How do humans learn to 
reason? Do we learn how to reason
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from books and theories, or it is genetically embodied in our brain? How do we know about logic? Is logic a 
theory or it is simply "common sense" which we use in our everyday decision-making? Before we discuss logic 
systems, we shall have a look at simple, but universal computational mechanisms.

2.4.5 Turing Machines

The Turing machine, created by Alan Turing (1936), is a simple universal model for symbol manipulation. It is a 
device comprising indefinitely extendable tape, each discrete position of which can take one symbol from a 
predefined alphabet. Simple operations of reading a symbol from the tape, writing a symbol on the current 
position of the tape, moving the tape, are used. This simple model was proved to be universal in that it can be used 
for realizing any computation based on a finite and explicit set of rules if a suitable program to control the device 
is provided.

2.4.6 Finite State Automatons; Cellular Automatons

Simple symbol manipulation can be performed in a finite state automaton, the latter being a computational model 
represented by a set X of input states, set Y of output states, set Q of internal states, and two functions, f1 and f2:

where x ∈ X, q ∈ Q, y ∈ Y, and t and (t + 1) represent two consecutive time moments.

A simple automaton is illustrated in figure 2.19(A) (the tables defining the transfer function f1, and the output 
function f2); (B), a graphical representation of the transfer function, and (C), a block diagram of a possible 
realization of the automaton. This simple automaton can produce sequences of symbols of the two-element 
alphabet when sequences of inputs are fed into it. For example, if the state q1 denotes the letter A and the state q2 

denotes the letter B, then the sequence ABBA of internal states will be produced by the automaton when an input 
sequence of x2 x1 x2 is fed into it and the automaton is in an initial state q1. If the automaton was in an initial state 
q2, then for the same conditions as above, the sequence BAAB would be produced.
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Figure 2.19
Simple finite state automaton: (a) the transition and the output functions defined as

tables; (b) directed graph representing the transition function; (c) a structural realization.
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The applicability of the finite state automata theory to processes modeling and to building information-processing 
machines has been widely explored, not to mention that it is one of the basic theories of present-day computers. A 
finite automaton can be realized as a production system, as a neural network structure built on simple McCulloch-
Pitts neurons, on a recurrent neural network structure.

Except for the deterministic finite automatons illustrated above, probability finite automatons and fuzzy finite 
automatons can be used for approximate reasoning rather than for exact symbol manipulation.

A cellular automaton is a set of regularly connected simple finite automatons. The simple automatons 
communicate and compute when solving a single global task. Cellular automatons may be able to grow, shrink, 
and reproduce, thus providing a flexible environment for computations with arbitrary complexity. This area is of 
growing interest because of the possibility of implementing cellular automatons in a neural network environment.

2.5 Propositional Logic

A logic system consists of four parts:

1. An alphabet—a set of basic symbols from which more complex sentences (constructions) are made.

2. Syntax—a set of rules or operators for constructing sentences (expressions) or alternatively more complex 
structures from the alphabet elements. These structures are syntactically correct sentences.

3. Semantics—for defining the meaning of the constructions in the logic system.

4. Laws of inference—a set of rules or laws for constructing semantically equivalent but syntactically different 
sentences; this set of laws is also called a set of inference rules.

Propositional logic dates back to Aristotle. There are three types of symbols in propositional logic: (1) 
Propositional symbols (the alphabet), (2) Connective symbols, and (3) Symbols denoting the meaning of the 
sentences.

There are rules in propositional logic to construct syntactically correct sentences (called well-formed formulas) 
and rules to evaluate the semantics of the sentences.
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A propositional symbol represents a statement about the world, for example, ''The temperature is over 120." The 
semantic meaning of a propositional symbol is expressed by two possible semantical symbols—true or false. 
Statements or propositions can be either true or untrue (false), nothing in between.

Propositional logic has the following syntactic connective symbols for constructing more complex propositions 
from simple ones:

    AND, conjunction

    OR, disjunction

   NOT, negation

→  implication

=   equality

The semantics of the compound structures (sentences, expressions) are defined by the truth table given in figure 
2.20. Example  Given that the propositions P = "Temperature is high" and Q = "Humidity is high" are true, a 
compound proposition "P AND Q" is inferred to be true as well as the proposition "P OR Q."

Propositional logic has rules or laws for defining semantic equivalence of syntactically correct structures. These 
rules make the process of inference in the space of propositions possible. These rules give the truth values for 
some propositions when the truth values for other propositions are known. All the laws of inference can be proved 
for correctness using the truth table method, that is, by obtaining the truth table for the left and right sides of the 
equation and then comparing them.

Figure 2.20
The truth-table of the basic connectives in

propositional logic.
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Some laws of inference are given below. The most popular laws of inference in propositional logic are called 
modus ponens ("mood that affirms") and modus tollens ("mood that denies"). The rules are expressed as follows:

Modus ponens: P → Q, and P ∴Q

Modus tollens: P → Q, and Q ∴ P

Modus ponens and modus tollens are widely used in fuzzy logic in the form of generalized modus ponens and 
generalized modus tollens.

Two other important inference rules are the laws of De Morgan:

The following two rules, the "chain rule," or law of syllogism, and the law of contrapositive, are valid not only for 
propositional logic but as we shall see in chapter 3, they are also valid for some of the inference methods in fuzzy 
logic:

Law of syllogism: P → Q, and Q → R∴P → R

Law of contrapositive: P → Q∴ Q → P (Modus Tollens)

Some simple inference laws, which are obvious to the reader, are also valid in propositional logic:

Double negation:  ( P) ∴P

Disjunctive inference: P  Q, and P ∴Q       P  Q, and Q ∴P

Propositional logic is a useful way of representing a simple knowledge base consisting of propositions and logical 
connectives between them. The major problem is that propositional logic can only deal with complete statements. 
That is, it cannot examine the internal structure of the statement. A classic example given in all the AI books is the 
following:

Example   The following inference is not possible in propositional logic:

All humans are mortal.
Socrates is a human.
Therefore, Socrates is mortal.

Propositional logic cannot even prove the validity of a simple syllogism
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such as that above. With the use of propositional logic we can construct rules like this:

IF (the temperature is above 120), THEN (there is overheating),

where the left-hand and the right-hand sides of the rule contain propositions which can be only true or false. 
Variables cannot be used. A proposition is an unbreakable symbol element. Only an exact match is possible, that 
is, two propositions match if they are syntactically equivalent.

Propositional logic has been used in some simple expert systems for representing propositional rules.

Example:   The Car Monitoring Problem.  In propositional logic, this problem can be represented as follows:

Rule 1: (there is overheating)  (the brakes react slowly)→(stop the car)

Rule 2: (the cooling temperature is over 120) 
(the gauge works properly) → (there is overheating)

2.6 Predicate Logic: PROLOG

2.6.1 Predicate Logic

The following types of symbols are allowed in predicate logic:

• Constant symbols are symbols, expressions, or entities which do not change during execution. Constant 
symbols are the "true" and "false" symbols, for example, used to represent the truth of the expressions.

• Variable symbols are symbols which represent entities that can change during execution.

• Function symbols represent functions which process input values for a predefined list of parameters 
associated with the function, and obtain resulting values. The number of parameters in a function is called arity.

Constant symbols, variable symbols, and function symbols are called "terms."

• Predicate symbols represent predicates which are true/false-type relations between objects. Objects are 
represented by constant symbols. The number of arguments attached to a predicate define the arity of the 
predicate. For example, "father (person, person)" is a predicate of arity 2, and "father (John, William)" is a 
constant predicate.
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• Connective symbols are the same as those which are valid for propositional logic, that is, conjunction, 
disjunction, negation, implication, equivalence. They are defined by the same truth table as given for propositional 
logic.

• Quantifiers are valid for variable symbols—an existential quantifier (∃), which means "there exists at least 
one value for x from its domain," and a universal quantifier (∀), which means "for all x in its domain." For 
example, the Socrates syllogism can be expressed in predicate logic by two predicates, a universal quantifier, and 
an implication, as follows:

∀x, Human(x) → Mortal(x).
Human(Socrates)

Sentences can be created in predicate logic with the use of connectives and the allowed symbols. The truth of the 
sentences is calculated on the basis of the truth tables of the connectives. Well-formed expressions, sentences, and 
formulas in predicate logic are all the syntactically correct sentences. If a set of sentences in predicate logic is 
matched by a domain D, which means that every variable is assigned a value and every predicate is assigned a 
truth value, this is called interpretation.

First-order logic allows quantified variables to refer to objects and not to predicates or functions. This is not a 
limit for higher-order predicate logic.

In order to apply an inference to a set of predicate expressions, the system should be able to determine when two 
expressions match each other. The process of matching is called unification. In order to allow more freedom for 
matching and not restricting the variable domains, the existential quantifier has been eliminated by a so-called 
skolemization process. A skolem function replaces the existential quantifier 3 by a function which is returning a 
single value:

∀X, human(X) → ∃Y, mother (Y, X), can be skolemized as follows:

∀X, human(X) → mother (f(X), X), where f is a skolem function

2.6.2 Programming in Logic: PROLOG

In PROLOG, a quantifier-free, so-called Horn-clausal notation is adopted, which can adequately represent a first-
order predicate logic system. The Socrates syllogism is represented in PROLOG as follows:

mortal(X):-human(X)
human(Socrates)
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A rule (A1, A2,. . .,An)→ B in a Horn-clausal form has the following form:

B: -A1, A2, . . ., An

which means that the goal B is true if all the subgoals A1, A2, . . ., An are also true, where B, A1, A2, . . ., AN are 
correct predicate expressions.

A fact is represented as a literal clause with a right side being the constant "true." So the clause representing a fact 
is always true:

human (Socrates):-true

or shortly

human (Socrates)

Knowledge is represented in PROLOG as a set of clauses which have one conclusion (left side) and premises 
(right side of the clause). The character "," may be used in clauses to denote an "AND" connective, ";'' to denote 
an "OR" connective, and " " for a "NOT" connective. A backward chaining inference engine is implicitly built in. 
A program in PROLOG consists of clauses and facts. It is of a declarative, rather than of a procedural type. The 
engine starts when a goal is given. A goal can only be a predicate used in the program. A block diagram of a 
PROLOG program is given in figure 2.21.

An example program, searching for a family relationship, written in Turbo PROLOG, is given in figure 2.22. An 
AND-OR tree, which represents the relations between the rules from the example above, is shown in figure 2.23. 
The matching operation during the inference process is called "unification." That is, it matches predicates, 
variables, and facts between the clauses in the process of finding facts which prove the goal and the subsequent 
subgoals (figure 2.24). This is how variable binding is done in PROLOG. A sample dialogue between user and the 
program for searching for family relationship is given below:

Goal?- grandfather(John, Jilly).
yes
Goal?- grandmother(Helen, X).
2 solutions
X = Andy      X = Tom
Goal?- grandmother(X, Y), X = Y.
fail
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Figure 2.21
A block diagram of a PROLOG program.

Figure 2.22
A PROLOG program—searching for a relationship problem.
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Figure 2.23
AND-OR tree of the exemplar PROLOG program.

Figure 2.24
Unification in PROLOG exemplified on the family relationship example.
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Natural language structures can be easily represented in predicate logic. A parsing tree for simple sentences was 
given in figure 2.11 (B). The following expressions in PROLOG define parsing of simple sentences written in 
English:

sentence = sentence(noun, verb-phrase) (*a compound object*)

noun = noun(word) (*a noun is a simple word*)

verb-phrase = verb-phrase (verb, noun); verb (word) (*a verb-phrase is either a verb or a verb plus noun*)

verb = verb (word)



word = symbol

One of the limitations of first-order logic, and of PROLOG languages in particular, is that this mechanism can be 
used only for exact matching and exact reasoning over symbolic representations. But how many real-life and 
engineering problems are similar to those of finding exact family relations? We may know for sure that John is the 
father of William but we may not be so sure about the effect of virus V or machine fault F. These limitations are 
overcome in the connectionist and fuzzy reasoning systems, and in the hybrid connectionist-logic programming 
systems. Overall, logic programming systems are based on a rigid theory and have potential for further 
development by implementing higher-order predicate logic and mixing with fuzzy logic and connectionist 
systems.

2.7 Production Systems

2.7.1 The Production Systems Paradigm

Productions, from a terminological point of view, are known as transformation rules which are applied for 
obtaining one sequence of characters from another, for example:

ACDE → F

the patient has a fever → take an aspirin

A new development in the production systems idea was achieved after the introduction of Markov rules which 
define priorities for sequential application of productions in order to obtain desired transformations. Produc-
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tions are also used as a theoretical basis for developing compilers and other transformation systems.

A lot of the old ideas about productions are adopted in today's production systems which are the most common 
languages, methods, and formal systems for representing and processing of knowledge in expert systems and in 
AI systems in general.

A production rule has two sides: a left-hand side, which expresses the conditions or the premises, and a right-hand 
side, which defines what kind of actions are to be performed when the conditions are satisfied.

Example

(production example 
; condition elements
(there is an overheating) or
(the brakes respond slowly)
⇒; action
(give a message to the driver to stop the car))

Inference over production rules is based on the modus ponens law. A production system consist of three main 
parts:



1. A list of facts, considered a working memory (the facts being called working memory elements); the working 
memory represents the short-term memory of the system.

2. A set of productions, considered the production memory; this is the long-term memory of the system.

3. An inference engine, which is usually a forward chaining one; this is the reasoning procedure, the control 
mechanism.

Here, the three parts of a production system are explained in more details. The facts are represented within the 
framework defined by the user templates, for example:

( object or relation  attribute1  attribute2 . . . attributek ))

The templates for representing facts and their corresponding facts for the Family Relationship and the Car 
Monitoring problems are shown below:
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Example I

(is_a relationship  namel  name2 )—a template
(is_a father John Mary)—a fact

Example 2

((car_par  parameter  value )—a template
(car_par temperature 135)—a fact
((car_status  system  functioning status )—a template
(car_status brakes functioning slowly)—a fact
(car_status cooling functioning overheating)—a fact
(car_status gauge functioning OK)—a fact

Productions can have expressions as condition elements in their left-hand sides. If facts from the working memory 
match all the expressions in the left-hand side of a production, the production is called "to be satisfied" at the 
current matching phase.

Condition elements can be a negation of a fact (means absence of this fact); expressions with variables or wild 
cards; a wild card is a variable which can be satisfied by any value; and predicates, for example, temperature > 
120.

The right-hand side of a production contains actions which manipulate facts in the working memory (assert, 
retract, etc.) or perform interaction with the environment. These commands for CLIPS, a typical production 
language, are given in appendix D. CLIPS (C language interpreter of production systems) was developed by 
NASA (Giarratano and Riley 1989).

The inference engine of a production system performs a forward inference in the following way:



1. Matches all the facts from the working memory into the left-hand sides of all the productions and defines which 
of them are satisfied. Every combination of facts which satisfies a production is called instantiation. All the 
production rules which are satisfied by the current match form a conflict set, also called Agenda.

2. Selects one rule from the Agenda using selection strategies. Some of the selection strategies used in production 
systems are the following:

a. Recency. The rule matched by the most recent facts is selected.
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b. Specificity. The rules with more condition elements have higher priority; this restricts the matching as those 
rules are supposed to be matched by fewer instantiations.

c. Refraction. Once a rule is activated (fired) for a particular instantiation, it will not be fired again for the same 
instantiation; the refraction period for some systems can be controlled, that is, productions can be suspended for 
firing with the same instantiations for some cycles or "forever."

d. Salience. A priority number can be assigned to every rule and this will be the first criterion for selecting a rule 
from the Agenda.

e. Random selection. A rule is selected randomly from the Agenda.

3. Executes the selected rule (or rules, depending on the realization of the production system) performing the 
specified actions.
The inference engine works repetitively until there are no productions in the Agenda, or it is compulsorily 
stopped. Figure 2.25 represents the three phases of the inference engine and the data structures used in a 
production system.



Figure 2.25
A production system (PS) cycle.
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Figure 2.26
An example of a production  rule for searching and processing a

database (fact base).

2.7.2 How to Program in Production Rules

Here some techniques for programming simple tasks in production rules are given.

• Searching through databases. The match operation of the inference process can be used for searching 
through a database.



Example  An example of searching through bank records for accounts with 0.0 money in them is given in figure 
2.26. The symbols preceded by "?" in the rules represent variables. The rule will fire until there are no facts in the 
working memory that satisfy this rule.

• Programming logical inferences. The inference process in a production language is data-driven. It begins 
with entering data. Then data match rules, a rule fires and possibly changes the working memory, then again facts 
match rules, and so on. It is in contrast to the inference process in PROLOG-like languages which is a goal-driven 
backward-chaining inference mechanism with backtracking.

Example  In order to compare both languages, a program written in a production language for the Family 
Relationship Problem is given in figure 2.27. It can be easily compared with the program written in PROLOG (see 
section 2.6) and similarities and differences between both paradigms and languages picked up.
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Figure 2.27
A program written in a production language for the family relationship problem.



• Expressing the concept of "doesn't matter." Wild cards represent variables which can be bound to any value 
from the fact memory, that is, the value in that field "doesn't matter." The rule in the example below will cause 
printing out all the names of the persons from the fact base who are grandfathers without taking into account who 
the grandchildren are.

(defrule grandfather-print
(is_a grandfather ?name ?)
⇒(printout t ?name))

• Maintaining dynamic information structures. Retracting facts from the working memory, when they will no 
longer be used in the program
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execution, is necessary not only for saving memory space but sometimes for the correct functioning of a 
production system. A rule which retracts all the processed facts is given as an example:

(defrule print-all-facts 
?f ←(is_a ?relation ?namel ?name2)
⇒(printout t ?namel "is a" ?relation ?name2) (retract ?f))

Thus the working memory in a production system is a dynamic memory structure, that is, elements are asserted 
when necessary and retracted after use.

• Using two types of variables. Two types of variables can be used in production systems. The first is a 
variable for representing attribute values. The second is a variable for representing a whole fact from the working 
memory. In the example above two types of variables were used, "?relation," which takes values from the facts, 
and "?f," which takes as a value a whole fact. These two types of variables are an interesting property of 
production languages.

• Using logic expressions as condition elements in production rules. For the condition elements in the left-
hand sides of the productions, the propositional logic connectives are allowed, that is, AND(&), OR(|) and 
NOT—(~).

Examples

(person ?name ? brown  black);
(person ?namel ?eyes&blue|green ?hair& ~ black);
(and (or (person ?name has_a fever)
     (person ?name has-a cough));
(not (person ?name has-a high-temperature)))

• Functions and expressions are allowed in production languages but they are represented in different ways. 
For example CLIPS language allows representing functions only in a prefix form, for example, (+ 2 3).

2.7.3 Exact Matching and Generalization in Production Systems: Production Systems for Problem-Solving



Production languages have been widely used for problem-solving and knowledge-engineering. There are reasons 
for this, two of them being the following:
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1. Production systems are a universal computational mechanism, that is, every algorithm or set of heuristic rules 
can be represented as a production system.

2. Production systems are universal function approximators, that is, any function can be approximated to any 
degree of accuracy by a set of rules if the number of the rules is unlimited. In figure 1.3, one rule is shown, that is, 
IF x is in the interval [x1, x2], THEN y is in the interval [y1, y2], which covers part of the goal function. To cover 
the whole function more rules are needed. These rules are interval rules. In the extreme case the number of rules 
can be as many as the points describing the goal function, which for continuous functions is unlimited. The rules 
then have the form of: IF x is xj, THEN y is yj, for j = 1, 2, . . . Using an unlimited number of rules is not possible, 
and using a small number of rules may cause too big an error of approximation.

Here examples of solving some of the generic problems introduced in chapter 1 are given. These solutions are 
compared with possible solutions using fuzzy models and neural network models later in the book.

Symbolic AI production systems are very efficient when used for symbolic representation, for example, attribute 
color: values red, green, yellow; attribute sex: values male, female. Matching between facts and rules is exact. But 
numerical attributes can also be used. In this case intervals for the numerical values are defined in order to achieve 
generalization.

Some examples of using production systems for problem solving are given below, but the full solutions are 
explained in section 2.12.

Example   A production system which recognizes musical signals based on the energy of the signal in 10 different 
frequency bands, for example, 0-1000 Hz, 1000-2000 Hz, . . . has rules which define intervals for those values:

IF (average energy in the first frequency band is between 40 and 44 dB) and (average energy in the third 
frequency band is between 0 and 5), THEN (the musical signal is EaboveMidC)

Example   After discretizing the average values for the ion concentration for the class Egmont_Ybl (0.39 2.79 0.44 
0.82 0.37 1.03 1.72 0.31) where the attribute values correspond to the attributes described for this problem in 
chapter (table 1.1), the class template will look like (3 27 4 8 3 10 17 3). A
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classification rule for classifying soil in class Egmont_Ybl could be written as: IF (3 27 4 8 3 10 17 3), THEN 
(Soil class is Egmont_Ybl). An important task here is to properly choose the discretization intervals.

Production systems can be used for solving pattern recognition, classification, monitoring, planning, and decision-
making problems. Note that the use of intervals facilitates partial match, but at the same time introducing intervals 
may cause imprecision in the solution process. For example, what will happen if the average power of a musical 
signal for the first frequency band is not 40, but 39.999, and the average power of the third interval is 3? Will this 
signal be classified into EaboveMidC? According to the above rule, no. This simple example illustrates the 
imprecision of the interval approach and the lack of a smooth grayness at the border of the intervals. The 
drawback of crisp borders between intervals is overcome in fuzzy systems and neural networks. The examples 
below illustrate this.

Recognition and classification problems are implemented easily in production languages when heuristic rules are 
available in the problem knowledge. The rules are of the form ''IF (a set of features), THEN (class)." The 
templates and only two rules for classification of animals (a well-explored AI example) are given in figure 2.28.

Games modeling is usually done in AI production languages by using heuristic rules. This can be illustrated by a 
program given in (Giarratano and Riley, 1989). In the program, production rules are used to generate a move 
according to the current situation. First, the situation is recognized; second, a move is performed. The heuristics 
used for the game could be well-informed or ill-informed, could cover the whole problem state space, or could 
cover only a small part, etc. The success of the production program depends on how good the heuristics are (see 
chapter 1).

More examples of solving problems by using production languages are given in section 2.12. Each example takes 
a different approach to solving the problem, and the problems are the case examples introduced in chapter 1.

2.7.4 Advantages and Limitations of Production Systems

The advantages of using productions for representing structured knowledge (in the form of rules) are the 
following:

• Production systems are universal computational mechanisms and universal function approximators.
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Figure 2.28
The fact templates and two rules from a program for classification of

animals according to their features.

• They are very often close to how humans articulate their knowledge; this might be an explanation of why 
production systems have been used widely for cognitive modeling.

• Readability. It is easy to understand what a production rule represents as knowledge.

• Explanation power. When a production has been executed, it leaves a clear trace and an explanation can be 
easily provided.

• Expressiveness. Sometimes only one production is enough to express the solution of a whole problem (see 
the Soil Classification Program in section 2.12).

• Modularity. Every production is a separate piece or module of knowledge; knowledge can be easily added 
or deleted; it may contain local variables; the production rules do communicate with one another, but only through 
the facts in the working memory, and not directly.

The principal limitations of the production systems from the knowledge-engineering point of view are the same as 
the limitations of first-order logic. They are not efficient for approximate reasoning and they are sequential.
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Simple production systems have been implemented as neural networks (see chapters 5 and 6). The approximate 
reasoning and partial match achieved there are principally different from those achieved by interval match after 
data discretization in the symbolic production systems.

2.8 Expert Systems

After the introduction to expert systems in chapter 1, here are more details on the subject.

2.8.1 An Expert System's Architecture

Expert systems are knowledge-based systems that provide expertise, similar to that of experts in a restricted 
application area. An expert system consists of the following main blocks: knowledge base, database, inference 
engine, explanation module, user interface, and knowledge acquisition module (see figure 2.29), as explained 
below:

Figure 2.29
An expert system architecture.
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• The knowledge base module is where the problem knowledge resides. It may be a production memory in 
production languages; it may be a neural network that has been trained with past data in the connectionist expert 
systems; it may be a set of fuzzy rules in a fuzzy system.

• The database module contains current facts or past data. It is the working memory in the production 
languages. In some architectures this module, containing past data, can be used as a source of knowledge in 
addition to the knowledge base.

• The inference engine is a program that controls the functioning of the whole system. It contains an 
inference mechanism, either forward chaining, or backward chaining, or a combination of them.

• An explanation module is a module that traces the execution of the expert system and accumulates 
information about the course of the reasoning process; it then transfers this information to the user. An expert 
system should be able to explain its behavior, for example, WHY it is checking a condition element in a rule, or 
HOW it has inferred some conclusion. Usually, the WHY explanation is done by showing to the user what is 
expected to be proved or disproved after having received information about a particular condition. The HOW 
explanation aims at showing all the facts and inferred conclusions during the whole inference process that support 
the final decision.

Example  A possible HOW and WHY explanation for the Car Monitoring case example is shown graphically in 
figure 2.30.

• The user interface module's role is to communicate with the environment, to interact with the user in a 
friendly, yet sophisticated way. Natural language and speech processing may be used for communication with 
users.

• The knowledge acquisition module is designed to accumulate knowledge to build up the knowledge base.

2.8.2 Expert Systems Design

An expert systems design is very much a heuristic process although some global phases have been shared among 
expert systems designers. At each stage of the design process, some points should be discussed and made clear. 
Some possible questions, which need to be answered at different stages of an expert systems design, are given 
below as examples of the variety of problems.
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Figure 2.30
HOW and WHY explanation for the Car Monitoring

production system.

1. Stage I—identification of the problem

• What class of problems will the expert system be expected to solve?

• How can these problems be defined?

2. Stage 2—conceptualization

• What is given and what should be inferred?

• What types of data and knowledge are available? Is there a need for knowledge acquisition?

3. Stage 3—formalization. Here all the eight major issues from section 2.1.2 should be discussed, for example:

• Are data and knowledge sparse and insufficient, or plentiful and redundant? Is there a need to deal with 
uncertainty?

• Are data and knowledge reliable, accurate and precise, or unreliable, inaccurate, and imprecise? Are they 
consistent and complete?

• What kind of explanation is needed?

4. Stage 4—realization

• What methods and tools are appropriate for representing data and knowledge—data based systems, 
symbolic AI methods, fuzzy systems, neural networks, etc.? Is there a need for a hybrid system?

• Extendability, friendliness, reliability, robustness of the realization.
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5. Experiments and validation of the results

• How to evaluate the system and its error?

• How to validate the results—compare experimental results with the results obtained by experts; compare 
results with the results obtained by other methods, etc?

In order to speed up the design process, expert system shells have been developed. They have the architecture of 
an expert system, but are "empty" of knowledge. The problem knowledge is supposed to be entered in the empty 
knowledge-based modules of the shell.

2.8.3 The Knowledge Acquisition Problem

The most difficult part of creating an expert system is knowledge acquisition. Knowledge may be elicited from an 
expert or experts, data and examples, literature, etc. Knowledge can be either stored or learned. Learning can be 
performed in either of two ways: (1) in advance (past data are used; this is the case in learning by example or from 
experience); (2) during the functioning of the expert system (adaptive learning, learning by doing).

There are many reasons why knowledge acquisition should be difficult to implement in a computer program; 
some of them are discussed in section 2.11. Neural networks have proved to be one of the most promising 
paradigms for learning knowledge from examples. A section in chapter 5 is entirely devoted to learning explicit 
knowledge from raw data.

2.8.4 Difficulties with Symbolic AI Languages for Expert Systems

Knowledge-engineering, when using symbolic AI systems, has some difficulties in:

• Representing both exact and inexact knowledge.

• Knowledge formalization. What is the connective between the condition elements in a rule? Is it AND or 
OR or something else?

• Representing both explicit and implicit knowledge.

• Dealing with exact and inexact data (facts).

• Partial matching.

• Adaptive behaviour.

• Parallelism.
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These principal limitations of symbolic AI languages can be overcome by using fuzzy systems and neural 
networks, as well as by using hybrid systems, which incorporate both symbolic AI and connectionist methods for 
knowledge representation and processing.

Before we discuss them, we will have a look at the sources of uncertainty in domain data and problem knowledge, 
and at some of the existing methods for handling these uncertainties.

2.9 Uncertainties in Knowledge-Based Systems: Probabilistic Methods

There are many ways to represent and process uncertain knowledge and inexact data. One of them—fuzzy sets 
and fuzzy logic—is presented in chapter 3. But the most used so far is the classic probabilistic way discussed 
briefly here.

2.9.1 Uncertainties in Data and Knowledge

Representing existing uncertainties in data and knowledge is a major problem in knowledge engineering. How to 
infer a decision in the presence of inexact, incomplete, corrupted data and uncertain knowledge? Ambiguity is 
something that should not be underestimated when creating a knowledge-based system. The opposite is true. 
Ambiguity should be analyzed and treated properly in order to increase the validity of the inferred results. Sources 
of uncertainties and errors may be grouped into the categories objective uncertainty and subjective uncertainty.

The objective uncertainties are mainly due to incomplete data and uncertain evidence. The subjective ones are due 
to not well-known domain or unknown relations, functions, dependencies, etc. Uncertainty can be a characteristic 
of data or of the problem knowledge, or of both. Error in data can be due to acquisition of incorrect data, lack of 
precision and accuracy, or noise. Noise may be present in the environment, and instead of having a value of 
1.2345 for a given attribute, we acquire a value of 1.2346, for example. Uncertain data can be represented by 
using fuzzy terms or intervals. For example the cost between town A and town B in the TSP could be "about 
fifteen," or "between ten and twenty." The approximateness can be represented by fuzzy quantifiers, for example, 
"very much,'' "more or less," etc., or fuzzy qualifiers, which express
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the belief in the statement, for example, "very probable," "less probable," etc.

Uncertainty in data may also mean uncertainty relating to the presence of an event, or uncertainty of the 
appearance of the event. The former is treated by the fuzzy theory which "says" that an event or a concept is 
present to some degree, say 0.7. Other types of uncertainties are treated by the probability theory, which "says" 
that an event will happen with some probability of, say, 0.8.

Some main questions about uncertainty in data we should be clear about are:

• Is a fact uncertain because of some "noise?"

• Is a fact uncertain because it has not happened yet?

• Is a fact uncertain because it is present but only partially present?



Representing uncertainty in problem knowledge by using knowledge-engineering schemes is a more complex 
problem than representing uncertainties in data. There are different types of errors resulting from incomplete and 
uncertain knowledge: semantic, casual, systematic, logical. Semantic errors are due to the possibility of 
interpreting incomplete and uncertain knowledge in variable ways. Casual errors are due to variations in the cases 
which have to be treated by the same rules. Systematic or logical error is due to the inappropriateness of the 
scheme used for representing problem knowledge. An error may be derived either from individual rules or from 
rules interaction. The task of the knowledge engineer is to remove or minimize this error, if possible. The errors 
that emerge as a result of the interaction of rules can be caused by the incompatibility of some rules.

Most symbolic AI systems require a coherent knowledge base. That is, knowledge free of missing or superfluous 
rules, or rules that contradict one another to the point of total incompatibility. This is not a problem for fuzzy 
systems and neural networks, as they can accommodate ambiguous and contradictory data and rules. Some typical 
cases of uncertainty represented in rules are the following:

• Uncertain condition part C in a rule IF C, THEN A.

• Uncertain condition element Ci in the condition part of a rule IF C1, C2, . . ., Ck, THEN A.
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• Uncertain action (consequent) part in a rule; even if we assume that C is 100% matched by the existing 
facts, the conclusion A is a priorinot 100% sure but 75%; this type of uncertainty is represented mainly by the so-
called confidence factors (CF) and the rule has the form of
IF C, THEN A (0.75).

• Different degrees of importance for the antecedent elements; C2, for example, may be twice as important as 
C3, and C1 and C3 may be of equal importance. The rule will be:
IF C1(1) and C2(2) and C3(1), THEN A (CF).

• A noise tolerance of the rule, that is, a rule IF C, THEN A may react to small changes in the fact space, or it 
may be resistant to small changes and react only if substantial evidence of facts is present; a rule can be 
represented in the form of IF C (noise tolerance = 0.6), THEN A.

• A sensitivity of a rule to relevant facts, that is, a rule IF C, THEN A may be more sensitive to a higher 
degree of the presence of the relevant condition C facts, or the rule can be equally sensitive whatever the presence 
of a fact is—100% or 50%, etc.

Uncertainties in knowledge may be captured only approximately, but that could be sufficient. It is sometimes even 
preferable not to represent everything exactly, in order to make a good generalization.

Ambiguity in a rule base exists when there are at least two rules which infer different conclusions but have 
identical condition parts:

R1: IF C, THEN A

R2: IF C, THEN B



Different ways to deal with ambiguities are:

• To assign coefficients of uncertainty to the condition elements, which will make a difference during the 
matching process if the present fact C' is not certain

• To assign confidence factors to the action part of the rules

• To use fuzzy rules when more than one rule can be activated simultaneously and every one will contribute 
to the final solution, even in a case when the rules are contradictory. In this case a trade-off will be found, e.g., a 
trade-off between A and B is appropriate.
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2.9.2 Defining Probabilities

Generally speaking, there are two major approaches to processing uncertain knowledge: (1) probabilistic and (2) 
nonprobabilistic. The formal theory of probability relies on the following three axioms:

The axiom defines the probability p(E) of an event E as a real number in the closed interval [0, 1]. A probability 
p(E) = 1 indicates a certain event, and p(E) = 0 indicates an impossible event.

—problem space (universum)

The axiom reads that the sum of the probabilities of all mutually exclusive (disjoint) events fully covering the 
problem space U is 1. The following is a corollary:

where  E is the complement of the event E. The corollary shows that the sum of the probability of an event 
occurring and the probability that it will not occur is 1. This is the probability version of the excluded middle law 
known from Aristotelian logic and pointed out in section 2.5. An object or an event either exists or does not exist, 
either happens or does not happen, there is nothing in between. This law is broken in the nonprobabilistic theories 
and in the fuzzy theory in particular.

where E1 and E2 are mutually exclusive events.

This axiom indicates that if the events E1 and E2 cannot occur simultaneously, the probability of one or the other 
happening (disjunction) is the sum of their probabilities.

There are three main approaches to defining probabilities represented by the three schools in probability theory:

1. Classic probability:

p(E) = w/n,



where w is the number of occurrences of the event E for a total of n possible appearances. Laplace defines the 
probability as a ratio between
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the number of equally possible cases when an event has occurred to the number of all the possible cases. The 
classic approach to probabilities uses the principle of indifference, that is, if we do not have reasons to assume the 
opposite, we should judge the alternatives equally probable. The classic definition of probability assumes that 
probability exists objectively. It led some scientists to the deterministic theory which claims that the future is as 
predictable as the past.

2. Posterior, experimental, frequency probability:

p(E) = lim f(E)/n, when n → ∞,

where f(E) is the frequency of appearance of event E among a sequence of repetitive experiments. It is a 
characteristic of recurrent, experiment-based events. It is valid, if we have sufficient reason to believe, that the 
probability will tend to a fixed number when the number of experiments tend to infinity. Two main issues are to 
be discussed. How can we be 100% sure about the tendency of the events? And how many experiments will be 
enough to adequately approximate the probability?

3. Subjective probability. In contrast to the classic and experimental probabilities, subjective probability deals with 
events which are not recurrent and cannot be estimated through previous experiments. It is rather a belief, view, 
and estimation of experts, in the form of probability. For example observing dice we can articulate a subjective 
probability of 1/6 about the event that any of the numbers between 1 and 6 happens. Subjective probabilities are 
beliefs that meet the three probability axioms. There is rationalism, pragmatism, heuristics in their statements. The 
subjective probability theory does not deny the existence of objective probabilities. The subjectivist only claims 
that the estimation of objective probability has to be considered, but a pragmatic evaluation is the way the 
probability theory has to be applied to real problem-solving.

Probability characteristics can be learned from data sets by using standard statistical methods. Some of these 
characteristics are revised here:

• For a random scalar variable x, defined in a domain Ux, a probability density function is a function such as 
P(x): Ux→ [0, 1]. Typical distribution functions used in practice are uniform distribution, gaussian distribution 
(bell-like), an exponential distribution, trapezoidal, and triangular (figure 2.31). As we shall see, they look very 
much like membership functions of fuzzy sets, but they have a completely different meaning.
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Figure 2.31
Different probability distribution functions: (a) Uniform: N represents
all discrete units in the domain of the random variable x; (b) gaussian:
µ is the mean and σ is the standard deviation; (c) Poisson: λ is a rate

parameter, t is time.

• For a discrete random variable x, which takes values u1, u2, . . ., uk the mean is calculated as

• The mathematical expectation E(x) of a random continuous variable x is measured by the formula:

• A variance V(x), or a standard deviation σ, of a random scalar variable is measured by

• For two uncorrelated random  variables x and y the following is valid:

• When considering two random variables x and y, a correlation and a covariance can be calculated as 
follows:

• For a random vector x = (x1, x2,. . . .,xk) the probability distribution function is a surface in a k-dimensional 
space. The correlation Corr(x, y) and the covariance Cov(x, y) of two random vectors x and y are calculated as 
inner products:
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• If two random vector variables x and y are independent, their joint density function P(x, y) is represented 
as:

P(x, y) = P(x) P(y)

2.9.3 The Probabilistic Approach to Representing and Processing of Uncertainty: Bayesian Probabilities, 
Probability Automatons, Markov Models

In a rule IF C, THEN A, the "appearance" of A is conditional, depending on the condition element C. Here 
conditional probabilities can be used to represent uncertainty denoted as p(A/C). The probability p(A/C) defines 
the probability of the event A to occur, given that the event C has occurred. It is given by the formula:

where p(A  C) denotes the probability of both events to happen (conjuction).

For example, in medical diagnosis, the most probable causes of a disease must be detected from a set of 
symptoms. The conditional probability of nonrecurring events is interpreted as a degree of certainty (the expert's 
belief) that hypothesis A is true when condition C is given. The following formula, which represents the 
conditional probability between two events C and A, is known as the Bayes's theorem:

If instead of one event C there is a set of events C1, C2, . . ., Ck, which form the condition part in a rule IF C1, 
C2,. . ., Ck, THEN A, a probability p(C1, C2,. . ., Ck) has to be evaluated instead of p(C) in the above formula.

Using the Bayes's theorem involves difficulties, mainly concerning the evaluation of the prior probabilities p(A), 
p(C), p(C/A). In practice (e.g., in statistical pattern recognition), the latter is assumed to be of a gaussian type. 
Bayes's theorem is applicable if the condition C consists of condition elements C1, C2, . . ., Ck, that are 
independent (which may not be the case). Bayes's theorem does not consider the connectives between the 
condition elements. Are these elements connected by "AND" or by "OR"

  



Page 139

or by any other connective? Some ad hoc methods are applied to calculate the cumulative probability of the whole 
condition element. For "AND" connectives a MIN operation is used, and for "OR" connective, a MAX operation 
(Giarratano and Riley 1989). In practice, we may have many rules which infer different conclusions if a certain 
condition is true, that is, IF C, THEN Ai (i = 1,2,. . ., n). In this case Bayes's theorem fails, as it assumes than the 
conclusions are mutually exclusive in principle. For example, if a patient has a high temperature, the most 
probable diagnosis may be flu, but meningitis is also possible.

In brief, probabilistic methods imply estimation of a posterior probability for a certain conclusion in a rule to be 
accepted as correct, given the probabilities for the condition elements in the rule.

Probability (or stochastic) automatons are finite automatons, the transitions of which are defined as probabilities. 
The same example of a finite automaton as given in fig. 2.19, but this time as a probability automaton, is 
represented graphically in figure 2.32.

Figure 2.32
Directed graph representing 
the transition function of a 

simple probability automaton.

  



Page 140

Figure 2.33
A simple Markov model for recognizing the word "cat." The conditional
probabilities attached to the arcs represent the chances for the transitions

to happen.

Markov models and their variant hidden Markov models are stochastic finite automatons with some restrictions 
imposed on them (Rabiner 1989). They are called "hidden" because stochastically defined transitions are not 
possible to observe in advance. Figure 2.33 shows a hidden Markov model of the pronunciation of the word "cat" 
as a sequence of the phonemes /k/, /æ/,/t/ and probabilities attached to the transition from one phoneme to another. 
This is a "left-to-right" model. The flow of information and activation goes in one direction without feedbacks.

2.10 Nonprobabilistic Methods for Dealing with Uncertainties

Probabilities have some limitations. One is that they cannot represent ignorance. An event has to be either 
"present" or "not present" at every moment. If we don't know anything about the event we will have difficulty 
using probabilities. Some theories have extended the probability theory to overcome this limitation. Such theories 
are, for example, the Dempster-Shafer theory, certainty factors, and possibility theory. Some of them do not 
provide operational definitions for the new probability terms, that is, the definition does not necessarily state the 
way to find out the values for the parameters of uncertainty. But some axioms are given with formulas for 
calculating how to operate with a set of data or rules with parameters of uncertainty assigned to them.
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2.10.1 The Dempster-Shafer Theory: Credibility and Plausibility

Dempster (1967) and Shafer (1976) introduced a measure called mass m(E), or a basic probability assignment 
(bpa), associated with every event E or set of events, {E2, E3} for example, which is a subset of the domain space 
U of all the possible events. The idea is that a probability of an event E can be either concentrated in one element 
(as it is in probability theory), or it can be a distributed mass among some items—subsets of U where E appears as 
a member. We can have a solution of a problem, for example, in the following form:

The main idea is to represent the uncertainties of an event E not as a single probability p(E), but as an interval of 
lower probability and a higher probability. The following axioms are held for the Dempster-Shafer theory:

Defining the term mass allows us to determine the credibility Cr(E) (the lower possible probability) and the 
plausibility Pl(E) (the higher possible probability). A probability of any set E of events, subset of U, is represented 
as a probability interval [Cr(E), Pl(E)]. When dealing with single element sets E, the intervals are reduced to the 
probability p(E) = Cr(E) = Pl(E). So this theory is an extension of the probability theory. The measure of 
credibility Cr(E) is based on the mass m:

A measure of plausibility Pl(E) is introduced as:

It has been proved as a corollary that

The mass m(U) of the whole domain gives the level of the total ignorance about the whole domain knowledge. In 
case of complete ignorance about a focal point E, we will have Cr(E) = Cr( E) = 0, and Pl(E) = Pl( E) = 1. It is 
also true that: ∀E ⊆ U, Cr(E) ≤ Pl(E).
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Using uncertainty parameters for inference over rules means propagation of uncertainties along the inference 
chain. It also means combining uncertainties when two rules contribute to the certainty of the same fact. The 
combination rule suggested by Dempster and Shafer is simple. If the intersection of two focal points A1 and A2 is 
a nonempty set A3, then

m(A3) = m(A1) m(A2)

Let us consider two rules of the form of:

Rule 1: IF C, THEN Al (CF1)

Rule 2: IF P, THEN A2 (CF2),

where A , A2 ⊆ U. CF 1 and CF2 mean certainty of the conclusions A1 and A2 respectively. It can be either a prior 
probability or a subjective certainty. For A3 = Al ∩A2, we have m(A3) = m(A1) m(A2) = Cr(C)· CF1 Cr(P)·CF2. If 
A3 takes part in other rules as a condition, then Cr(A3) can be calculated based on axiom 3 above. An interval 
[Cr(A3), Pl(A3)] can be defined as well.

Example  The credibility Cr and the plausibility Pl of a set E = {C2, C3} are calculated as given below when the 
mass probabilities of the other focal points in U = {C1, C2, C3} are known: m(C1) = 0.2; m(C2) = 0.5; m(C3) = 
0.1; m(C1,C2,C3) = 0.1; m(C2,C3) = 0.1

Cr(E) = 0.5 + 0.1 + 0.1 = 0.7;

Pl(E) = 1 - Cr( E)= 1 - Cr(C1)

= 1 - 0.2 = 0.8

2.10.2  Measure of Belief and Measure of Disbelief: Certainty Factors

Another approach, introduced in the early expert systems, for example, MYCIN (see Giarratano and Riley, 1989) 
to overcome the limitation of the probability theory concerning the excluded middle, is called certainty factors. A 
measure of belief MB(A, C) that if the event C happens the event A will happen too, and a measure of disbelief 
MD(A, C) = MB( A, C), have been introduced. A certainty factor then is calculated as:

CF(A, C) = MB(A, C) - MD(A, C), or

CF(A, C) = (MB - MD)/(1 - min{MB, MD})
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The following formulas have been suggested and used in MYCIN to calculate the measures of belief and disbelief:

MB(A, C) = 1, if p(A) = 1, or

MB(A, C) = (MAX{p(A|C),p(A)} - p(A))/(1 - p(A)), otherwise

MD(A, C) = 1, if p(A) = 0, or

MD(A, C) = (MIN{p(A|C),p(A)} - p(A))/p(A), otherwise

Certainty factors are numbers between -1 and 1. A certainty factor CF(A, C) = + 1 means a proven true hypothesis 
A, while CF(A, C) = -1 means a proven untrue hypothesis A, when C is present. CF(A, C) = 0 denotes lack of a 
proof for the hypothesis A. It is true for the certainty factors, that CF(A, C)+ CF( A, C) = 0, but MB(A, C)+ 
MD(A, C) is not necessarily equal to 1.

There are ways to combine certainty factors from many condition elements in the condition part of a rule. Support 
for an inferred fact may be obtained from different rules and an integrated certainty of the fact has to be estimated. 
Let us discuss this having the two rules below as an example:

Rl: IF C, THEN A (CFrl)

R2: IF P, THEN A (CFr2)

An event C', which is supposed to match to some extent the condition C in the first rule, may happen with a 
certainty of CF(C'). The conditional certainty factor of the antecedent C will be CF(C, C) = CF(C'). The certainty 
factors inferred by the two rules for the action part A will be:

CF 1 = CF(A, C) = CF(C, C') CFr1; CF2 = CF(A, P) = CF(P, P') CFr2

Aggregating two certainty factors CF1 and CF2 inferred for one and the same fact A into one certainty factor 
CF(A) can be done by using different aggregating formulas:

MAX formula, that is, CF(A) = max{CF1, CF2};

The formula suggested by Shortliffe:

CF(A) = CF1 + CF2(1 - CF1), if CF1 and CF2 > 0;

CF(A) = (CF1 + CF2)/(1 - MIN{|CF1|,|CF2|}), if CF1 or CF2 < 0;

CF(A) = (CF1 + CF2)/(1 + CF1), if CFl and CF2 < 0
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Example

CF(C, C') = 0.5; CFr1 = 0.6; CF(P, P') = 0.4; CFr2 = 0.8;

CF(A) = 0.3 + 0.32 (1 - 0.3) = 0.524.

The combined CF(A) is greater than any of those inferred by the individual rules. This is logical as we have two 
sources (R1 and R2) that infer A.

When the condition part consists of more than one condition element, e.g., C = C1 AND C2 AND . . . AND Ck, 
the combined condition part certainty factor is usually calculated as a minimum of the certainty factors of all the 
condition elements:

CF(C, C') = min{CF(C1, C1'),. . ., CF(Ck, Ck')}

When the OR connective is used in the antecedent part of a rule, the maximum certainty factor of a condition 
element is taken. The formula above is heuristic. It does not follow from the main axioms for the certainty factors. 
Another limitation to applying certainty factors for approximate reasoning is that the precision of the certainties 
propagated through a chain of rules decreases rapidly with the length of the chain.

2.10.3 Possibility and Necessity

As a general concept to represent a measure of uncertainty of a event (or a set) E, Zadeh, Sugeno, Dubois and 
Prade, and others (see Dubois and Prade, 1988) developed a so-called confidence parameter—g(E): 0 ≤ g(E) ≤ 1, 
E ⊆ U, where E is an event from a domain U of all possible events. When an event is sure, it implies g(E) = 1. The 
implication in the other way is not necessarily true, for example, if g(E) = 1 it does not mean that E is a sure event. 
If an event is impossible, it implies g(E) = 0, but not the other way around.

Possibility is the degree to which an expert considers a hypothesis H to be feasible or simply possible. A 
possibility of an event A and the possibility of its complement event A are weakly connected, in contrast to their 
probabilities. Possibility is nonstatistical, while probability is statistical. Possibility is capacity or capability. It 
refers to allowed values, rather than to frequencies.

Example   The possibility that soccer team A will win against team B is 0.8, but the possibility that it won't win is 
0.4.
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Example  The possibility of getting 2 after having thrown a die could be 1, but the probability ideally is 1/6.

The following axioms are valid for the confidence parameter g:

A1. g is monotonic with respect to inclusion, that is,

E1 ⊆ E2 ⇒ g(E1) ≤ g(E2),

A2. ∋∋A, B ⊆ U, g(A ∪ B) ≥ max(g(a),g(b))

A3. ∀A, B ⊆ D, g(A ∩ B) ≤ min(g(A), g(B))

There is a measure for the confidence parameters of A and B that makes the axiom 2 an equality, and this measure 
is called possibility:

∀A, B ⊆ U, Π(A ∪ B) = max(Π(A), Π(B))

A function Π takes values in [0, 1] and is defined as follows:

Π(A) = 1, if A ∩ E ≠ 0  and the event E ⊆ U is considered to be sure; Π(A) = 0 otherwise.

An event A and its complement A are weakly connected:

MAX{Π(A), Π( A)} = 1

There is also a measure N that makes axiom 3 an equality, which is called necessity:

∀A, B ⊆ U, N(A ∩ B) = min(N(A), N(B))

The function U → [0, 1], such that E → Π(E), is called a possibility distribution function. The following formulas 
are true for the above-defined terms (see also Neapolitan, 1989):

A4. Π(A) = 1 - N( A)

A5. min(N(A),N(  A))= 0

A6. ∀A ⊆ U, Π(A) ≥ N(A)

A7. N(A) > 0 ⇒ Π(A) = 1

A8. Π(A) < 1 ⇒N(A) = 0

A9. Π(A)+ Π( A)≥ 1

A10. N(A)+ N( A)≤ 1
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It can be shown that credibility Cr is equivalent to necessity N and plausibility Pl to possibility Π if and only if the 
focal elements, defined in the Dempster-Shafer theory, form a nested sequence of sets (Dubois and Prade 1988). 
And something more, if the focal elements are elementary, then ∀A, Cr(A) = Pl(A) = p(A). A possibility 
distribution function can be induced from fuzzy membership function. From a given fuzzy set A, a possibility 
function can be obtained provided the fuzzy set is normalized, that is, ∃u ∈ U, µA(u) = 1, where µA is the 
membership function of A.

2.11 Machine-Learning Methods for Knowledge Engineering

2.11.1 Issues in Machine Learning

Machine-learning methods are computer methods for accumulating, changing, and updating knowledge in an AI 
computer system. Some major issues which concern the process of learning knowledge in general are:

• What can a system learn objectively from a set of data? The point is that if data do not contain enough 
information a system cannot "learn" much from it.

• What should a system learn? In order to solve a particular problem, a system has to learn specific features, 
dependencies, and so forth, relevant to the solution, but not learn everything, or even in the worst scenario, 
irrelevant features only.

• How to test how well the system has learned appropriate knowledge? Testing the learning process is usually 
done through measuring the learning error. The main approaches are:

Partitioning of data. A part of the data, say 70%, is used for training and the other part for testing; more 
sophisticated methods for partitioning are discussed in chapter 5.

The leaving-one-out method means that we train n times the system with (n - 1) examples and check the system's 
reaction to the left-out example. After doing this n times we can calculate the correct answer of the system as the 
ratio between the number of correctly processed examples and the number n of all the examples.

Methods of learning exact and fuzzy rules through neural networks is a new area and a very promising one (see 
chapter 5).
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2.11.2 Inductive Learning: Learning from Examples

These methods assume that a set of examples or instances is known. The instances are either of the form of (xi, yi), 
where xi ∈ D is a state of the domain space D and yi ∈ S is a state of the solution space S, or in the form of (xi), i = 
1, 2, . . ., n, where no output vectors are specified. The task is to create a system which can learn the input-output 
associations {(x, y)} or to learn inherent characteristics of the data {x}. The first case will be referred to as 
supervised learning, where the solution yi (a class label) for every input vector xi is provided. The examples will 
be called "labeled" examples. The second case will be referred to as unsupervised learning, that is, the system will 
learn some characteristics, features, clusters, concepts, etc. from unlabeled examples.

Example   A classic example of an inductive learning task adopted from psychology is given in figure 2.34A (also 
used in (Pratt, 1994)). The task is to observe the five examples classified into two classes A and B and learn 
common rules for placing examples into one of these groups. Figure 2.34B gives a truth table type of 
representation of this problem and figure 2.35 gives a boolean map for the same example. The following boolean 
rules can be articulated from this map: class A = t; class B = t. These boolean rules can be used to classify 
unknown examples. Other techniques may also be used for learning the common rules and for generalization. 
Some of them allow using non-boolean variables, for example, continuous values variables.

Inductive decision trees and the ID3 algorithm   How to discriminate the classes, what formula, or rule, or 
structure should be used for generalizing new examples? A technique called inductive decision tree "observes" the 
examples and builds a binary tree which can discriminate all the classes. The process of building the tree is based 
on recursive choosing of a node, an attribute, or any of its value, which divides the whole set of examples into two 
groups.

Example  Figure 2.36 shows a decision tree for classifying the objects from figure 2.34(A) into the two classes A 
and B. The paths in the tree can be represented as rules (also shown on fig. 2.36).

An inductive decision tree for classifying the Iris data examples is given in Barndorff-Nielsen et al. (1993). This 
tree can classify all the 50 examples of Setosa correctly, 49 of the examples of Virginica, and 47 of the examples
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Figure 2.34
Psychology example for inductive learning (adapted from Pratt 1994): (A) the

objects and their classes are given. (B) the task represented as a truth-table.

Figure 2.35
Inductive learning from boolean examples by using

boolean table of Carno—the example from fig. 2.34(B).
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If  is White THEN Class A
If  is Black THEN Class B

Figure 2.36
Decision-classification tree for the psychology example.

The decision tree is also represented as a set of rules.

of Versicolor. In order to improve the classification, a further refinement of the values at the leaves must be done.

The question is how to choose the attributes and their values when splitting the data? One possibility is to evaluate 
each "split candidate test" a in respect of a desired property C and choose the one with a highest information gain 
or minimal lack of information. Measuring the information gain and the lack of information can be done in 
different ways. One of them is by using the formulas (see also (Pratt, 1994)):

inf(C, a) = -p·log2 p - (1 - p) log2(l - p), p—proportion of examples which pass test a (experimental probability).
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inf(C, a) = -q·log2 q - (1 - q)·log2(1 - q), q-proportion of examples which fail to pass a

INF(C, a) = p inf(C, a) + (1 - p) inf(C, a)—lack of information.

At any step of deciding which test to allocate to a node, starting from the root of the decision tree, the test a with a 
minimal lack of information is chosen.

A well-known symbolic AI method for inductive learning of a decision tree from a set of symbolic examples is 
ID3 (Quinlan 1986). This method induces an "optimal" decision tree for classification problems from a set of 
labeled examples. Optimal here means that if a new example is to be classified, the system follows the decision 
tree and checks the fewest features of the example in order to classify it into one of the known classes (predefined 
labels given in the examples).

The decision trees learned can be translated into a form of IF-THEN rules or formulas. It is a compromise 
between the precisely learned examples and the generalization ability of a tree. A decision tree can be pruned to 
some depth which may accelerate the decision process but may lead to an increase in the error. Learning from 
examples can be:

• Incremental. Every new example contributes to the knowledge learned by the system from the previous 
examples. The system does not count all the previous examples again.

• "One-shot" learning. The system observes all the examples only once and extracts some features from the 
set.

Neural networks are very powerful techniques for learning from examples. They can be used for learning 
unstructured knowledge. Knowledge is captured in a neural network but it cannot be articulated explicitly. 
Learning structured knowledge can also be done in neural networks, but the rules in that case have to be 
formulated after analysis of a trained neural network. The rules can be fuzzy or exact. Different types of 
inexactness and uncertainty can also be extracted.

Learning in a system cannot be discussed separately from its generalization ability. For example, can the rules 
learned from figure 2.36 be used to place the case given in figure 2.37 into the most appropriate class from the two 
given in figure 2.34(A)? Here it is necessary to apply reasoning by analogy. This is natural for humans, but 
difficult to implement in a computer program.
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Figure 2.37
A different case from that
given in figure 2.34(A) to
be classified in the most
appropriate class there.

2.11.3 Other Methods of Machine Learning

• Learning by doing, learning by observation and discovery. The system starts without knowledge or with 
very little knowledge: for example, a "goodness" criterion. The goodness criterion may not be introduced to the 
system a priori. It can be learned from the reaction of the user or the environment. Gradually, the system 
accumulates correct solutions and learns how to react properly. A simple case is rote learning, that is, memorizing 
previous solutions and using one of them for new data. Genetic algorithms are another example. These methods 
can be implemented either as symbolic AI systems, where exact knowledge can be learned, or as neural networks, 
where approximate knowledge can be learned without any previous knowledge being provided. The latter include 
unsupervised learning in some neural network types.

• Learning by being told, learning from advice. This is simply the process whereby a system obtains 
knowledge in some form and transforms it to its internal form in order to use it effectively. Little learning is 
involved in these methods. It is more a kind of interpreting and a molding of given knowledge into well-known 
schemes. The method is a typical symbolic AI method.

• Learning by analogy. This is the case whereby a system learns how to solve a problem on the basis of 
previous solutions of analogous problems, or on the basis of previous solutions of the same problem but in a 
different domain. Learning by analogy has been explored through symbolic Al methods, but because it involves 
measuring similarities and approximate reasoning, this approach has not gone far. There is plenty of potential for 
using neural networks and fuzzy systems.

• Case-based learning is based on using a set of exemplars. The system stores only a selected set of examples 
(exemplars) and uses them for finding the best match between a new example and the exemplars in order to
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generalize, that is, to classify the new example. Here exemplars (not rules) are learned and stored in a system. 
Classification of a new instance in exemplar-based learning approaches is based on nearest-neighbor matching 
against those instances or exemplars already stored in the memory. Different criteria are used to measure the 
distance between the stored representations and a new instance. An exemplar-based method of learning, called 
template-based method, is given in the next subsection as an example of AI-symbolic methods and also as a basis 
for comparing different approaches to learning the same problem, in this case the problem of classifying Iris 
plants when the Iris data set is given as a set of examples.

2.11.4 A Template Case-Based Method for Learning and Classification (Optional)

A method for exemplar-based learning and classification is presented here. The learning method assumes a set of 
examples. The following main steps are performed:

1. Discretization of the data. Discretizing intervals chosen on the basis of statistical characteristics can be used. 
For the Iris data set the discretization interval scheme given in section 2.2.2 is used here. After discretizing an 
instance from the raw data set, it becomes a case, or a template.

2. A set of representative templates (SRT) with an associated probability coefficient (PC) indicating the number of 
instances associated with the same representative template (RT) is learned from the discretized data. A 
representative template RT for a class C is a template which represents some of the instances which belong to 
class C. An example of a representative template is (5 2 9 1 1 23) where the first four numbers are attribute-
interval values, the fifth is the class number, and the sixth is called the probability coefficient, the number of all 
the instances from class 1, represented by this RT.

3. A global probability vector (GPV) for the whole data set is calculated. The GPV consists of the global 
probabilities of all the different attribute-interval values over the entire data set.

The result of learning is a set of representative templates and the GPV. This approach is implemented as 
"supervised" and "unsupervised" learning, as they are called here. The first assumes labels attached to the 
instances; the second one does not assume or does not take into account
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Instances Discretised Instances Representative Templates ( RT)

A1 A2 A3 A4 Class A1 A2 A3 A4 Class A1 A2 A3 A4 Class PC

5.1 3.5 1.4 0.2 Set. 2 2 1 1 1 2 2 1 1 1 2

4.7 3.2 1.3 0.2 Set. 1 2 1 1 1 1 2 1 1 1 1

5.0 3.6 1.4 0.2. Set 2 2 1 1 1       

6.5 2.8 4.6 1.5 Vers. 3 1 4 2 2 3 1 4 2 2 2

6.3 3.3 4.7 1.6 Vers. 3 2 4 2 2 3 2 4 2 2 1

6.6 2.9 4.6 1.3 Vers. 3 1 4 2 2       



7.1 3.0 5.9 2.1 Virg. 4 2 5 3 3 4 2 5 3 3 1

6.5 3.0 5.9 2.2 Virg. 3 2 5 3 3 3 2 5 3 3 3

6.5 3.2 5.1 2.0 Virg. 3 2 5 3 3       

6.8 3.0 5.5 2.1 Virg. 3 2 5 3 3       

Figure 2.38
A small subset of 10 instances from the Iris data set, their discretized interval representation according to 
the intervals given in figure 2.3, and a set of representative templates (RT) obtained through a supervised template-
based learning algorithm.

class labels. After learning representative templates, a generalization procedure which classifies a new example 
into one of the classes known or extracted from unlabeled data is applied.

Example  A small subset of 10 instances taken from the Iris data set is used to illustrate the above algorithm. The 
same data are used with the "unsupervised" learning algorithm yet to be given. Figure 2.38 shows the raw data, the 
discretized data, and the SRT obtained by the supervised learning algorithm.

The classification algorithm classifies a new instance (denoted here as NEW) into one of the possible classes. The 
classification procedure developed here is based on a nearest-neighbor match of the new instance template (Tnew) 
and the SRT.

In the classification process, if there is an exact match between Tnew and RT, the probability coefficients PCi of 
each of the matched RTs belonging to the same class are summed and normalized. The class that has the highest 
sum is the winner if a single classification result is required.
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Otherwise a classification set with certainty degrees is created based on the normalized sums for all the classes. If 
Tnew does not match exactly any of the RTs, then the most typical attribute for the entire data set is turned into a 
wild card ("?") and the matching procedure continues with the rest of the attributes. The logic is that the most 
typical attribute value is assumed to appear in the majority of instances regardless of their class; therefore it 
cannot help in distinguishing between classes when classifying a new instance. So the most typical attribute for 
the whole data set is sacrificed in order to achieve a partial matching. To sacrifice a whole attribute may not be a 
good idea in many cases and it has been avoided in fuzzy and neural systems.



Using the SRT obtained in the example above, we can demonstrate how we would attempt to classify a new 
instance of the Iris data into one of the classes—Setosa, Versicolor, or Virginica. If the new instance is (4.4 2.9 
1.4 0.2), then its template (Tnew) after discretization is (1 1 1 1 ?). The corresponding probabilities for each 
attribute, stored in the GPV, are (.1.2.3.3). The first step fails to find an exact match. The next step replaces the 
most typical attribute value by a wild card ("?") which yields the template (1  1  ? ?). However there are still no 
matching templates. The next step is to turn the next most typical attribute (in this case the third attribute) into a 
wild card, but again there are no matching templates. As the general probabilities of PL = 1 and PW = 1 are the 
same (0.3), the first template was chosen arbitrarily over the second. But as we shall see later, this choice may turn 
to be important and ambiguity in such cases can be met by applying a classification with certainty degrees. Only 
on the third partial-matching cycle, when the second attribute is turned into a "?," a matching RT is found. The 
matching RT is (1 2 1 1 1 1), which belongs to classl. The classification for this example would be (classl/1, 
class2/0, class3/0).

In the case of Tnew = (3 2 4 3), the template (3 2 4 ?) matches class2's RT with a PC = 1 and the template (3 2 ? 
3) matches class3's RT with a PC = 3. The resulting classification set is (class 1/0, class2/0.25, class3/0.75).

Here "unsupervised" learning is performed on a data set when the instances do not contain any information on the 
classes (labels) to which they belong. In some cases the target number of classes (Ncl) may be given explicitly. If 
Ncl is not known, all the different representative templates are given a different class number and the 
corresponding PCs are created. If a
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given number (Ncl) of classes is required, then the procedure described below can be applied.

Using the same data set as above, but without class information in the examples, the data set is discretized and a 
set of representative templates SRT1 is created. The RTs are associated with (numerical) class labels based on the 
order in which they are derived. When the number of required classes is not known, SRT1 becomes SRT and is 
used for classification. If the number of classes required is provided (e.g., Ncl = 3), then the procedure is as 
follows:

1. Derive the Ncl class centers, a class center being an RT with the highest probability coefficient, PC, that is, 
representing most of the examples. In this case three centers, C1 = (2 2 1 1), C2 = (3 1 4 2), and C3 = (3 2 5 3), are 
chosen from  the RTs in SRT1. Their corresponding probability vectors are (.2 .8 .3 .3), (.6 .2 .3 .3) and (.6 .8 
.4.4).

2. Match C1, C2, and C3 against SRT1. All RTs are matched using the wild-carding of attributes, based on 
typicality, and associated with one of the classes. Figure 2.39 illustrates an implementation of the unsupervised 
learning algorithm to the data set above when the number of classes is given (Ncl = 3).

The extracted RTs during the so-called supervised and unsupervised learning can be represented by interval 
production rules, which written in the CLIPS syntax look like the rules shown in figure 2.40. The representative 
templates can also be used for articulating fuzzy rules, as shown in chapter 3. The confidence factors attached to 
the rules are calculated on the basis of the probabilities of an instance from a defined class to be represented by the 
rule.

2.12 Problems and Exercises



Part A: Case Example Solutions

1. The Soil Classification Example. The soil class templates are represented as facts (figure 2.41). The same 
problem, that is, the lack of a smooth match between facts and conditions in the rules, as pointed out in section 
2.7.3 for the Musical Recognition Problem, will appear here because of the principle of exact match ''(fact-
template) → (class template)" used.
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Discretized Instance SRT1 SRT

A1 A2 A3 A4 A1 A2 A3 A4 Class PC A1 A2 A3 A4 Class PC

2 2 1 1 2 2 1 1 1 2 2 2 1 1 1 2

1 2 1 1 1 2 1 1 2 1 1 2 1 1 1 1

2 2 1 1 3 1 4 2 3 2 3 1 4 2 2 2

3 1 4 2 3 2 4 2 4 1 3 2 4 2 2 1

3 2 4 2 3 2 5 3 5 1 4 2 5 3 3 1

3 1 4 2 4 2 5 3 6 3 3 2 5 3 3 3

4 2 5 3             

3 2 5 3             

3 2 3 3             

3 2 3 3             

Figure 2.39
An illustration of the "unsupervised" template based learning algorithm applied to the small subset of 10 discretized 
Iris instances from figure 2.37. The set SRT1 contains all the six different (class) templates. If the number of classes is 
a priori given, for example, Ncl = 3, then these six representative templates are labeledwith three labels only, thus 
producing a set SRT and probability coefficients for each of the representative templates.

2. Production systems are very useful for solving monitoring and diagnostic problems. Figure 2.42 shows a 
production system for solving the Car Monitoring Problem. In order to have a real monitoring system, the working 
memory should be fed with new facts from the car sensors every few seconds, for example.

3. Musical signals recognition production system (or converting sounds-into-notes program). Figure 2.43A shows 
graphically a musical signal represented as a fact and figure 2.43B shows two production rules for recognition of 
two notes. Intervals are used for representing typical values for the energy of the signal in the 10 frequency bands 
between 0 and 10,000 Hz. A real application would require either more bands or at least a higher value for the 
highest frequency to be considered. The borders of the intervals are either communicated by experts or articulated 
after analyzing samples of known signals. In both of the two cases, the interval values are
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Figure 2.40
Rules extracted from the representative templates in figure 2.38 for the

Iris classification.

not precise. On the other hand, they impose crisp borderlines between classes. This contradiction may result in a 
not very good generalization.

4. An example of a decision-making problem (briefly discussed in chapter 1) was the Investment Advisor 
Problem. The same approach, as used in the program above, is used here, that is, an attribute-value interval 
quantization in the condition elements of the rules. Figure 2.44 shows two rules for investment advising. Again, 
the same problem, that is, "lack of plausible partial match," may be experienced.

5. Planning systems are usually goal-driven. Using the built-in selection strategies appropriately, one can develop 
a goal-driven system within the data-driven inference mechanism of a production language. A typical
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Figure 2.41
A simple production system for solving the Soil Classification case

problem.

Figure 2.42
A production system for solving the Car Monitoring case problem.
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Figure 2.43
(A) A template of a musical signal. (B) A single production rule for

recognizing a note.
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Figure 2.44
Two production rules as part of a solution to the Investment Adviser

case example problem.

characteristic of planning systems is that they are sequential because a plan is a sequence of actions. Production 
systems are also sequential, that is, a single production is executed at every cycle. Therefore production systems 
may be good Al mechanisms for solving planning problems. The fact templates, an initial state, and some rules of 
a production system for the Monkey and Bananas Problem, are given in figure 2.45.

Part B: Practical Tasks and Questions

6. Explain how you recognize a cup. Can you formulate the rules? Give examples of three cups described in a set 
of features you think are important for the process of recognition.

7. Explain the eight main issues in knowledge engineering. Compare symbolic AI systems, fuzzy systems, and 
neural networks for knowledge engineering (see table 1.1).

8. What is discretization and what is normalization? Give examples.
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Figure 2.45
Part of a program for the Monkey and Bananas Problem written in CLIPS.
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9. What is the principle difference between FFT and wavelet transformation?

10. Why may data analysis be important?

11. Describe five symbolic AI methods for knowledge representation. Give examples.

12. What are modus ponens, modus tollens, forward chaining and backward chaining? What is the relationship 
between them? Do they relate to partial matching, or not?

13. What are the main types of symbol expressions used in predicate logic? Give examples of every one. Write a 
clause for recognizing a handwritten character 3.

14. Explain the main phases of the inference engine in a production system. Write down a production for 
recognizing a handwritten character 3.

15. What is a variable as a general term? How many types of variables are allowed in the production language 
CLIPS? Give examples. What kind of variables are allowed in PROLOG? How do they get bound to values?

16. Explain the matching process in CLIPS and in PROLOG. Give one example and explain how this example is 
executed in the both systems.

17. Explain how production languages can be used for solving the following generic AI problems introduced in 
chapter 1: classification; planning; decision making.

18. Give at least three points for discussion at each steps in developing an expert system.

19. Explain the ways data (facts) are represented in CLIPS and in PROLOG.

20. What is the difference between probability, credibility, plausibility, belief, disbelief, certainty factor, fuzzy 
membership function, possibility, necessity with respect to representing a set A and its complementary set A?

21. Give the main axioms for defining each of the following: probability p(A), mass parameter m(A), certainty 
factor CF(A, C), fuzzy set A, confidence measure g(A).

22. Outline three main methods for machine-learning.

23. Write a set of production rules for the game ticktacktoe. Be sure that the rules "cover" the whole domain 
space; otherwise the program may fail to make a move if some situations are present on the board.
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24. Write in CLIPS a heuristic rule for the Traveling Salesman Problem.

25. Create fact templates and a set of production rules for solving the assignment problem (explained in chapter 
1).

26. Create fact templates and write a set of production rules for the Resource Scheduling Problem explained in 
chapter 1.

27. Compare the partial interval match used in 2.11.4 and the exact interval match in the Soil Classification 
Problem example given in 2.12, part A. What is the difference?

28. How can a partial match be realized in PROLOG?

Part C: Project Specification

Topic: Developing a Small Rule-Based Production System

1. Choose a problem to solve as a production rule-based system. Explain the problem. You may use one of the 
problem domains listed below.

2. Develop a set of rules for solving the problem using the "matching facts against rules" principle. Represent facts 
as templates.

3. Develop a production system. Write the program (normally between 10 and 30 productions).

4. Make experiments with your production system  for different data inputs. Validate the results. What extension 
of the program can be done in the future?

Note. A list of problems from different application domains:

1. Printed characters recognition

2. Handwritten digits or character recognition

3. Objects recognition and classification: plants, earth samples, weather patterns, blood samples under a 
microscope

4. Speech recognition—a small subset of phonemes recognition

5. Musical notes recognition

6. Planning robot navigation

7. Device (plant) monitoring

8. Medical diagnosis

9. Technical diagnosis

10. Prediction of possible failure of a device
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11. Prediction of disasters (storms, earthquakes, floods, etc.)

12. Stock market prediction (see appendix C)

13. Control of manufacturing processes

14. Resource scheduling

15. Game simulation—playing ticktacktoe

16. Game simulation—playing Go-Moku (see chapter 1).

17. Decision-making—investment adviser

18. Mortgage approval (see appendix C)

2.13 Conclusion

This chapter was a brief presentation of symbolic AI methods for knowledge-engineering. But it also made the 
bridge to the fuzzy and neural network models. The main issues in knowledge-engineering, which are data and 
knowledge representation and inference, are also the main issues in using fuzzy systems and neural networks. The 
short presentation of propositional and predicate logic is used later to refer to and make comparisons between the 
fuzzy, connectionist, and the symbolic AI inference methods. The detailed presentation of production systems and 
its realization aim at deeper understanding of the principles in order to use them for practical applications as well 
as to implement them (or their modifications) in fuzzy and connectionist environments.

2.14 Suggested Reading

The following texts are recommended for further reading on general or specific topics:

Statistical methods for data analysis—Weiss and Kulikowski (1991); Barndoff-Nielsen et al. (1993)

Clustering algorithms—Hartigan (1975); Stolcke (1992)

Introduction to AI and expert systems—Pratt (1994); Robinson (1988); Ralston (1988); Schalkoff (1990); Dean et 
al. (1995); Luger and Stubblefield (1989)

AI logic systems—Doyle (1979)
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Principles of expert systems—Giarratano and Riley (1989); Feigenbaum (1989)

Introduction to AI, expert systems, and CLIPS language—Giarratano and Riley (1989)

CLIPS user's guide—Giarratano (1989)

Probability methods for approximate reasoning—Neapolitan (1989); Kanal and Lemmer (1986)

Nonprobability methods for approximate reasoning—Dempster (1967); Shafer (1976); Dubois and Prade (1980, 
1988); Whalen and Schott (1985); Yager and Zadeh (1992)

Machine-learning methods—Bratko and Lavrac (1987); Quinlan (1986); Clark (1989); Thornton (1992); Tsypkin 
(1973); Elliot and Scott (1991); Fisher (1936); Aha et al. (1991)

Methods for knowledge acquisition for expert systems—Hart (1992) Template-based method for learning 
representative templates (section 2.11 )—Kasabov and Clarke (1995)

Early expert systems—Waterman and Hayes-Roth (1978); Feigenbaum (1989)
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3
From Fuzzy Sets to Fuzzy Systems

In chapter 1 a short introduction to fuzzy sets was given. This chapter continues to present some basic 
notions about fuzzy sets, but it also introduces the process of designing real fuzzy systems for solving 
generic and specific problems. Different methods of fuzzy reasoning are discussed and illustrated. The 
process of a fuzzy system design is described as a process of articulating commonsense knowledge by 
using linguistically plausible terms, creating fuzzy rules and numerically defined membership functions 
for them, and applying a fuzzy inference method.

3.1 Fuzzy Sets and Fuzzy Operations

3.1.1 Fuzzy Sets

The notion of a fuzzy set was introduced first by Lotfi Zadeh in 1965, who later developed many of the 
methods of fuzzy logic based on this simple notion. It took a couple of decades for the rationale of fuzzy 
sets to be understood and applied by other scientists.

The traditional way of representing elements u of a set A is through the characteristic function:

µA(u) = 1, if u is an element of the set A, and

µA(u) = 0, if u is not an element of the set A,

that is, an object either belongs or does not belong to a given set.

In fuzzy sets an object can belong to a set partially. The degree of membership is defined through a 
generalized characteristic function called membership function:

µA(u): U → [0,1]

where U is called the universe, and A is a fuzzy subset of U.

The values of the membership function are real numbers in the interval [0, 1], where 0 means that the 
object is not a member of the set and 1 means that it belongs entirely. Each value of the function is 
called a membership degree. One way of defining a membership function is through an analog function. 
Figure 3.1 shows three membership functions representing three fuzzy sets labeled as ''short," 
"medium," and "tall," all of them being fuzzy values of a variable "height." As we can see, the value 170 
cm belongs to the fuzzy set "medium" to a degree of 0.2 and at the same time to the set "tall" to a degree 
of 0.7.
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Figure 3.1
Membership functions representing three fuzzy

sets for the variable "height."

If the universe is discrete, a membership function can be defined by a finite set in the following way:

A = µ(u1)/u1 + µ(u2)/u2 + . . . + µ(un)/un,

or simply

where the symbol / separates the membership degrees µ(ui) from  the elements of the universe ui ∈ U, 
and + stands for union. In a simpler form, a fuzzy set is represented as a sequence of membership 
degree/value pairs: (0/150, 0.3/160, 0.68/170, 0.9/180, 1/190, 1/250).

Venn diagrams, which were used in chapter 2 for graphical representation of ordinary sets, are not 
appropriate for representing fuzzy sets. The principle difference between an ordinary, crisp set and a 
fuzzy set is illustrated by the graphical representation shown in figure 3.2. Crisp sets use "clear cut" on 
the boundaries. Fuzzy sets use grades. The membership degree to which two values, for example, 14.999 
and 15.001, belong to the fuzzy set "medium" are very close to each other, which represents their 
closeness in the universe, but because of the crisp border between the crisp sets "cool" and ''medium," 
the two values are associated with different crisp sets.

Some basic notions of fuzzy sets are defined below:

• A support of a fuzzy set A is the subset of the universe U, each element of which has a 
membership degree to A different from zero (figure 3.3):

supp(A) = {u|u ∈ U, µA(u) > 0}
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Figure 3.2
Representing crisp and fuzzy sets as

subsets of a domain (universe) U.

Figure 3.3
Support of a fuzzy set A.

For example, the support of the fuzzy set "medium temperature" is the interval (10,30) on the Celsius 
scale. A fuzzy set A can be formulated entirely by its support, that is:

A = {µA(u)/u|u ∈ supp(A)}

• Cardinality of an ordinary, crisp set is defined as the number of the elements in the set, but 
cardinality of a fuzzy set M(A) is defined as follows:

• Power set of A is called the set of all fuzzy subsets of A.



• A fuzzy set A is called a normal fuzzy set if its membership function has a grade of 1 at least for 
one value from the universe U.
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Figure 3.4
I-cut of a fuzzy set.

• Every fuzzy set A can be represented by its x-cut, which can be defined as weak or strong (figure 
3.4). The x-cut of a fuzzy set A is a subset Aa of the universe U which consists of values that belong to 
the fuzzy set A with a membership degree greater (weak cut), or greater or equal (strong cut) than a 
given value x ∈ [0, 1].

• An interesting property of fuzzy sets, introduced by Kosko (1992), was called subsethood. It 
measures not the degree to which a fuzzy set belongs to the universe, but the other way round, the 
degree to which the whole universe U belongs to any of its fuzzy subsets. Thus, everything is subjective 
and depends on the viewpoint.

Fuzzy set theory can be considered as an extension of ordinary set theory. Operations similar to the well-
known ordinary set operations have been introduced for fuzzy sets, as shown in the next section.

3.1.2 Operations with Fuzzy Sets

Ordinary (crisp) sets are a special case of fuzzy sets, when two membership degrees only, 0 and 1, are 
used, and crisp borders between the sets are defined. All definitions, proofs, and theorems that apply to 
fuzzy sets must also be valid in the case when the fuzziness becomes zero, that is, when the fuzzy set 
turns into an ordinary one.

We shall now look at some fuzzy operators. An analog-function representation of membership functions 
is used in figure 3.5 to represent some operations with fuzzy sets. The following operations over two 
fuzzy sets A and B defined over the same universe U are the most common in fuzzy theory:
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Figure 3.5
Five operations with two fuzzy sets A and B approximately represented

in a graphical form.

• Union, A ∪ B:

µA∪B(u) = µA(u) ∨ µB(u),  for all u from U, where ∨ means MAX

• Intersection, A ∩ B:

µA∩B(u) = µA(u) ∧ µB(u), for all u from U, where ∧ means MIN; the De Morgan's laws are valid for 
intersection and union.

• Equality, A = B:

µA(u) = µB(u),  for all u from U

• Set complement, notA, A:

µnotA(u) = 1 - µA(u),  for all u from U

• Concentration, CON(A):

µCON(A)(u) = (µA(u))2,  for all u from U; this operation is used as a linguistic modifier "very"

• Dilation, DIL(A):

µDIL(A)(u) = (µA(u))0.5,  for all u from U; this operation is used as a linguistic modifier "more or less."

• Subset, A ⊆ B:

µA(u) ≤ µB(u),  for all u from U

• Algebraic product, A⋅· B:

µAB(µ) = µA(u) · µB(u),  for all u from U



• Bounded sum:

max{1,µA(u) + µB(u)},  for all u from U

• Bounded difference, A | -| B:

µA|-|B(u) = min{0,µA(u) - µB(u)},  for all u from U

  

Page 172

• Bounded product:

max{0, µA(u) + µB(u) - 1}, for all u from U

• Normalization NORM(A):

µNORM(A)(u) = µA(u)/MAX {µA(u)},  for all u from U

• Algebraic sum:

µA+B(u) = µA(u) + µB(u), for all u from U; the De Morgan laws are valid for the algebraic sum and 
difference.

The operations over fuzzy sets have some properties, for example, they are associative, commutative, 
and distributive, that is,

Associative: (a * b) * c = a * (b * c)

Commutative: a * b = b * a (not valid for the bounded difference)

Distributive: a * (b  c) = (a  b) * (a  c)

where * and  denote any operations from those listed above.

An interesting and most distinguishing property for fuzzy sets, when compared with ordinary sets, is that 
fuzzy sets break the law of the excluded middle and the law of contradiction, so the following may be 
true:

A ∪  A ≠ U

A ∩ A ≠ ∅



So the union of a fuzzy set A and its complement A should not necessarily give the whole universe U. 
And the intersection between the two is not necessarily equal to the empty set.

Measuring the ambiguity (the fuzziness) of a fuzzy set is an interesting issue. Kosko (1986) suggested 
that the fuzziness of a fuzzy set is measured by its entropy:

E(A) = M(A ∩  A)/M(A ∪  A)

where M denotes the cardinality. The greater the entropy, the greater the fuzziness. Crisp sets have an 
entropy of 0. This simple definition opens the doors for applying fuzzy sets to real problems as it is well 
known that an entropy of 0 is rather too idealistic a case. Another formula for measuring the entropy of a 
fuzzy set A is:
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Figure 3.6
Showing graphically one way of measuring similarity and distance

between fuzzy sets (a) and (b). The black area represents
quantitatively the measure.



Figure 3.7
A graphical representation of calculating
the similarity S between two fuzzy sets B
and A based on possibility P and necessity
N measures (see the formulas in the text).

where: k > 0 is a constant.

Different metric parameters have been introduced to measure similarity and distance between fuzzy sets. 
One graphical approach is shown in figure 3.6. Similarity S between two fuzzy sets A and B (which is 
also a measure of how much B matches A) can be measured by calculating possibilities P and necessities 
N as shown below and illustrated in figure 3.7 (see chapter 2 for the definitions of possibility and 
necessity):

S = P(A/B),   if N(A/B) > 0.5

S = (N(A/B)) + 0.5) * P(A/B),    otherwise
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where P(A/B) = max{min{µA(u),µB(u)}}, for all u ∈ U; N(A/B) = 1 - P( A/B) (see chapter 2). The above 
formula seems complicated, but it is really simple to implement, as illustrated in figure 3.7. For the 
example there N(A/B) = 0.2, and S = (0.2 + 0.5) · 0.8 = 0.56. The above method is widely used in fuzzy 
expert systems for calculating the degree to which an observation (B) matches a condition element (A) in 
a fuzzy rule.

3.1.3 Geometrical Representation of Fuzzy Sets

A geometrical interpretation of fuzzy sets as middle points in a hypercube is introduced by Kosko in his 
monograph Neural Networks and Fuzzy Systems (1992). The fuzzy power set of the universe U = 
{ul,u2,. . ., un} is an n-dimensional hypercube in this representation. This idea is illustrated in figure 3.8, 
where the concept of "heavy smoker," being defined as (0/0, 0.8/6, 1/10), is shown for the case example 
of the Smoker and the Risk



Figure 3.8
A geometrical representation of the concept of "heavy
smoker" from the Smoker and the Risk of Cancer case
example as a point in a (three-dimensional) cube and as

a (two-dimensional) membership function.

  

Page 175

of Cancer. A small discrete universe U = {0, 6, 10} of the number of cigarettes a person may smoke a 
day on average has been used. Any crisp subset of U is represented by a vertex on a coordinate axis. A 
fuzzy subset of U is represented by a point in three-dimensional space. The more fuzzy a fuzzy set is, 
the deeper inside the cube is its corresponding point. The fuzziest subset, the set with the highest 
entropy, is the center point. This is the set defined as (0.5/0, 0.5/6, 0.5/10).

3.2 Fuzziness and Probability; Conceptualizing in Fuzzy Terms; The Extension Principle

Let us suppose that a particular problem is not well defined, the existing knowledge is vague, and so 
forth. How to represent the problem in fuzzy terms? Should we use probability representation or a fuzzy 
representation? But first, what is the difference between them?

3.2.1 Fuzziness and Probability



In probability theory an event u ∈ U either happens or not and its probability p(u) represents the chance 
for the event to happen, that is, the chances that a random variable x takes a value u. A probability p(u) 
can be represented by the ratio between the number of experiments of a series when u happens and the 
total number of experiments (see chapter 2). For example, the probability that it will rain on August 22 
is 0.73, because 73 out of 100 days on this date were recorded for the last 100 years as rainy days. The 
probability density function P(x) gives the probability of each of the possible values of a random 
variable x (events u ∈ U). But August 22 comes and it is not quite clear whether it is "rainy" or not. The 
notion of rainy can be represented as a fuzzy set A on the universe of the rainfall and represented by its 
membership function µA. In general, a membership coefficient µA(u) measures the grade to which an 
event u, which has already happened, is a member of the concept labeled as A. The membership function 
represents the degree to which the total set U (every element from U) is contained in the subset A. For 
example, August 22 was a rainy day to a degree of 0.6. So the probability density function P(x) is a 
completely different concept from the membership function of a fuzzy set A. Another example, given 
below, is a classic example—throwing a dice. Figure 3.9 shows in tabular and graphical form the 
probability density
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Figure 3.9
Probability density function for throwing dice and the membership

functions of the concepts "Small," "Medium," "Big.''

function of the random number achieved after each throw, and the membership function that the number 
is "small."



In the above example two events can be distinguished—a crisp event, achieving a number of 2, and a 
fuzzy event, achieving a "small" number. One can calculate the probability for a crisp event, p(x = 2) = 
1/6, but it is also possible to calculate the probability p(A) of a fuzzy event, the probability that a small 
number will be achieved, p(x = "small").

In general, a probability of a fuzzy event is calculated as:

for uniformly distributed variable x having n discrete values, and

for the general case.

Example  For the membership functions shown in figure 3.9, we calculate:

p(x = "small") = 1.5/6;   p(x = "medium") = 2/6;   p(x = "big") = 2.5/6
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Probabilities of fuzzy events have same properties as probabilities of crisp events. For example, if A and 
B are two fuzzy events, then the following is held:

(1) if A ⊆ B, p(A) ≤ p(B)

(2) p( A) = - p(A)

(3) p(A ∪ B) = p(A) + p(B) - p(A ∩  B)

Is it true that probabilities are only "about future events" and "fuzziness" is only "about something that 
has happened?" Definitely not. A conditional probability for a crisp event may represent the probability 
of an event happening at moment t based on the probabilities of events which have happened at 
moments (t - 1) and (t - 2) and the events that will (or have) happen(ed) at the next moments, (t + 1) and 
(t + 2), for example. This is the philosophy behind the time-delay networks and the so-called delayed 
decision making approach. The idea is to wait until future events happen and decide what has happened 
at a previous moment in time. For example, the probability that a phoneme is pronounced at the moment 
t depends on the probability of some other phonemes being pronounced at the moments (t - 1), (t - 2) 
and also pronounced next at moments (t + 1) and (t + 2). The reason is that when a person talks he or 
she has in mind the whole word or a whole sentence before starting to articulate the sounds.



The conditional probability of fuzzy events is defined in the same way as the conditional probability of 
crisp events. For example, p(A/B) denotes the conditional probability for the fuzzy event A to happen if 
the fuzzy event B has happened. So fuzziness can also be used to represent future events either by 
calculating the probability for the fuzzy events or by applying existing knowledge, for example, 
"tomorrow's value for the stock index will be high, if today's value is moderate, and yesterday's value 
was low."

By analogy to calculating the entropy of fuzzy sets, we can calculate the probabilistic entropy of a fuzzy 
set:

and also the entropy for the occurrence of the fuzzy event A:

E(A) = -p(A) · log p(A) - p( A) · log p( A)
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Probabilities can be attached to fuzzy terms. And fuzzy terms can be attached to probabilities too. In fact 
every probability p can be considered as "about p" as in reality future events never happen exactly as 
defined by their probability to happen. For example, the probability of having a rainy day tomorrow 
might have been calculated very precisely to be 0.70135. But a fuzzy number "about 0.7" may better 
represent the chances of having a rainy day tomorrow. Fuzzy probability theory is discussed in D. 
Ralescu (1995).

The life-and-death phenomenon might be an example is worth investigating from the point of view of 
probability, fuzziness, probability for fuzzy events, and entropy of occurrence. For example, there is a 
probability that every single person will die at a certain time, but when this moment comes, there is a 
state of the brain which is between the two states.

3.2.2 Conceptualizing in Fuzzy Terms

One of the most important steps toward using fuzzy logic and fuzzy systems for problem-solving is 
representing the problem in fuzzy terms. This process is called conceptualization in fuzzy terms. We 
often use linguistic terms in the process of identification and specification of a problem, or in the process 
of articulating heuristic rules. If we look at the case examples in chapter 1 and at the heuristic rules 
there, we will note the use of the following linguistic terms: higher, lower, very strong, slowly, much 
dependent and less dependent, high, low, good, bad, and many others. All of these are fuzzy concepts 
representable as fuzzy sets.



We shall use the term linguistic variable to denote a variable which takes fuzzy values and has a 
linguistic meaning. A linguistic variable is "velocity" if it takes as values: "low," "moderate," or "high," 
for example. A linguistic variable is the variable ''Score" if it takes the values "high" and "low." 
Linguistic values, also called fuzzy labels, fuzzy predicates or fuzzy concepts, have semantic meaning 
and can be expressed numerically by their membership functions. For example a fuzzy variable "Score" 
may have as a universe all the numbers between 150 and 200. Linguistic variables can be Quantitative, 
for example, "temperature" (low, high); time (early, late); spatial location (around the corner); or 
Qualitative, for example, "truth," "certainty," "belief." The process of representing a linguistic variable 
into a set of linguistic values is called fuzzy quantization.
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Figure 3.10
Standard types of membership functions:

Z function; π function; S function;
trapezoidal function; triangle function;

singleton.

In many cases a linguistic variable can be quantized into some linguistic labels that can be represented 
by standard functional representations. Standard types of fuzzy membership functions are given 
graphically in figure 3.10. The following are the most favored in fuzzy expert systems design:

• Single-valued, or singleton, for example, u = b, where b is a scalar value.

• Triangular: µ(u) = 1 - |u - b|/|b - a|; if triangular membership functions µi, i = 1, 2, . . .,l, which 
represent a fuzzy variable, are uniformly distributed over the universe U, then this representation has the 
following interesting property:



and for each value u from the universe U at most two membership degrees to which u belongs to all 
membership functions µi, i= 1, 2, . . ., l, are not equal to zero. Examples of such representation are given 
in figures 3.11(A) and (B) where the Iris attributes and class variables are fuzzy-quantized by using l = 3 
fuzzy labels and l = 5 fuzzy labels respectively.

• Trapezoidal

• S-function (sigmoid function):

S(u)= 0,    u ≤ a,

S(u) = 2((u - a)/(c - a))2,    a < u ≤ b,

S(u) = 1 - 2((u - a)/(c - a))2,    b < u ≤ c,

S(u)= 1,    u > c.
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Two parameters must be defined for the quantization procedure: (1) the number of fuzzy labels, and (2) 
the form of the membership functions for each of the fuzzy labels.

Choosing the number and the form of all the fuzzy labels that represent a fuzzy variable is a crucial 
point for a fuzzy system. Are "Low" and "High" fuzzy labels sufficient to represent the fuzzy variable 
"Score,'' or do we need a third one, say "Medium," or are even more fuzzy labels needed? How do we 
place the standard labels on the universe U if this information is not provided by an expert? To answer 
the latter, Kosko (1992) uses a heuristic rule to choose how much the neighboring labels should overlap, 
which is about 25%. But this is very much a subjective choice.

If we have defined the fuzzy-quantizing labels, for example,"small," "medium," or "large," we can 
represent any particular data item as a set of membership degrees to the fuzzy labels. Do we lose 
information when representing raw data through fuzzy labels? Fuzzy discretization does not lead to loss 
of information if the fuzzy labels are correctly chosen (this is not the case with interval discretization). 
This can be experimented on figure 3.11 with the Iris case example. An attribute-value is uniquely 
represented by the membership coefficients obtained from the membership functions for the fuzzy 
labels. This process is called fuzzification, or fuzzifying.



Fuzzy values defined by standard membership functions have some useful properties when used in fuzzy 
rules, for example, the rules approximate the goal function as explained further on. Choosing a standard 
type of membership function, when not given or known a priori, resembles choosing the gaussian 
probability distribution for the conditional probability in the Bayes's theorem.

A good example of fuzzy-quantizing of a quantitative variable is the representation of natural or real 
number variables as fuzzy numbers. A fuzzy number represents the approximateness of a natural (real) 
number, for example, "about 600," represented graphically in figure 3.12. Fuzzy

  

Page 181



Figure 3.11
Fuzzy predicates (labels) defined as triangular, uniformly distributed

membership functions for the Iris data attributes and classes. (A) Three
labels used. (B) Five labels used.
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Figure 3.12
One representation for the fuzzy

 number "about 600."

Figure 3.13
Representing truthfulness (certainty)
of events as fuzzy sets over the [0, 1]

domain.

numbers can be manipulated in fuzzy theory as they are represented by fuzzy sets. Operations over fuzzy 
numbers, such as addition, subtraction, etc., are also possible. Some of them are similar to the operations 
with exact numbers. For example, if A and B are fuzzy numbers defined by their membership functions 
µA and µB respectively, then their sum is simply defined by:

µC = µA + µB,     where + is an algebraic summation.



Fuzzy quantization is possible not only on numerical variables but also on qualitative variables like 
"truthfulness of events." Fuzzy qualifiers give a fuzzy evaluation of the truthfulness of an event. Typical 
fuzzy qualifiers are "very true," "more or less true," and ''not true," Fuzzy qualifiers can be represented 
on the scale of truthfulness by fuzzy membership functions, as shown in figure 3.13.
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Figure 3.14
An illustration of the extension principle in
fuzzy theory: an example of transforming 
a fuzzy set "x is about 2" into a fuzzy set

"f(x is about 2)" for f(x) = (x - 1)2x ∈ [1,4].

The classic certainty factors used in MYCIN and in many other expert systems may be represented as 
single-value membership functions over the universe of all possible certainties between 0 and 1.

3.2.3 The Extension Principle

A useful principle, called the extension principle, defines how any single real value, or function, or set, 
can be represented by a corresponding fuzzy membership function, that is, how it can be fuzzified. If we 
have a function f: X → Y between two crisp sets X and Y, and we know the membership function µA of a 
subset A ⊆ X, we can obtain the fuzzy representation of f(A) in Y through the following formula:

µf(A)(f(x)) = µA(x)



Example   Given f(x) = (x - 1)2 and the fuzzy set A = "about 2" = (0.5/1, 1/2, 0.5/3, 0/4) as shown in 
figure 3.14, the membership function of the fuzzy set f ("about 2") can be calculated as shown in the 
same figure for x ∈ [1,4].

The extension principle allows for fuzzy quantization and makes possible many fuzzy logic applications. 
For example, if we have a set of patients
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X checked for risk of cancer and classified into risk groups which form a set Y, we have a function f: X 
→ Y. Applying the extension principle we can obtain the membership function for the risk of cancer of 
different fuzzy subsets A ⊆ X, for example, "hard smokers," "overweight people," etc.

3.3 Fuzzy Relations and Fuzzy Implications; Fuzzy Propositions and Fuzzy Logic

Fuzzy logic is an excellent tool for implementing commonsense knowledge, vague knowledge in a 
computer program, and performing reasoning over them. Fuzzy logic is based on fuzzy relations and 
fuzzy propositions, the latter being defined on the basis of fuzzy sets.

3.3.1 Fuzzy Relations, Fuzzy Implications, Fuzzy Composition

Fuzzy relations make it possible to represent ambiguous relationships like "the grades of the third- and 
second-year classes are similar," or "team A performed slightly better than team B," or ''the more fat you 
eat, the higher the risk of heart attack." Fuzzy relations link two fuzzy sets in a predefined manner.

If A is a fuzzy set defined over a universe U, and B is a fuzzy set defined over a universe V, then a fuzzy 
relation R(A, B) is any fuzzy set defined on the cross-product universe U x V = {(u, v)/u ∈ U, v ∈ V}. A 
fuzzy relation is characterized by its membership function

Example   A direct product of A and B may be defined as: µAxB = µA(u) ∧ µB(v).

A very important fuzzy relation is the fuzzy implication, denoted as A → B. In fuzzy logic there are 
different ways to define an implication, which is in contrast to propositional logic where the implication 
is defined by a single truth-table. There are 15 different implications studied by Mizumoto and 
Zimmermann (1982). Some of them are shown in figure 3.15. The first two implications from figure 
3.15 were introduced by Zadeh (1971), the third one, Rc, was introduced by Mamdani (1977). The rest 
of the implications were experimented on by Mizumoto and Zimmermann. The different implications 
can be used for building different inference methods, as is shown in the next section.
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Figure 3.15
Several useful fuzzy implications. The following short denotations are

used: u instead of µA(u); v instead of µB(v); "∧" is minimum; "∨"
is maximum; "+" is algebraic summation; ''-" is algebraic substraction.

A fuzzy relation can be represented by a matrix or a fuzzy graph. The Rc implication relation "heavy 
smoker" → "high risk of cancer" is represented in a matrix form in figure 3.16.

A composition relation or simply composition of fuzzy relations R1(A, B) and R2(B, C) is a relation R(A, 
C) obtained after applying relations R1 and R2 one after another.

A typical composition is the MAX-MIN composition (Zadeh 1965):

where ∨ denotes MAX and ∧ denotes MIN, a ∈ A, b ∈ B, c ∈ C.

Figure 3.17 shows the MAX-MIN composition applied over the membership function of "moderate 
smoker" and the implication Rc "heavy smoker → high risk." The inferred fuzzy set is the membership 
function representing the risk of cancer for the class of "moderate smokers." Two other composition 
operators have been successfully applied to fuzzy reasoning, the three composition operators being 
shown in figure 3.18. A composition and an implication make possible fuzzy inference, as they are the 
"ingredients" of the so-called compositional inference law: given
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Figure 3.16
(a) Membership functions for fuzzy sets for the Smoker and the Risk

of Cancer case example. (b) The Rc implication relation: "heavy 
smoker →high risk of cancer" in a matrix form.

an implication R: A → B, and a composition o, a fuzzy value B' can be inferred when a fuzzy value A' is 
known:

B' = A'  R

3.3.2 Properties of Fuzzy Relations

Fuzzy relations have different properties. Let R represent a relation on the cross-product universe U × V. 
Then the following properties may be held for R (Terano et al. 1992):

(1)  Reflexiveness: µR(u, u) = 1

(2)  Irreflexiveness: µR(u, u) = 0
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Figure 3.17
MAX-MIN composition applied over the fuzzy set
"moderate smoker" and the Rc implication "heavy
smoker ® high risk of cancer" from figure 3.16 for
the Smoker and the Risk of Cancer case example.

(3)   Symmetry: µR(u,v) = µR(v,u)

(4)   Transitivity: ∨v{µR(u,v) ∧ µR(v,p)} ≤ µR(u,p), for each v ∈ V

Based on the above properties, some other relations are defined in (Terano et al. 1992):

• Similarity relation, for which reflexiveness, symmetry, and transitivity are held

• Resemblance relation, for which reflexiveness and symmetry are held Different combinations of 
an implication and a composition can be compared based on different inference properties, for example, 
whether they satisfy or not two of the inference rules of propositional logic, syllogism and 
contrapositive:

A → B  and  B →   C ∴ A → C   (syllogism)

A → B ∴  B →  A   (contrapositive)

The following implications satisfy these two laws, when a MAX-MIN composition is used (Mitzumoto 
and Zimmerman 1982): Syllogism—Rc, Rs, Rg, Rgs, Rgg, Rsg, Rss; Contrapositive—Ra, Rb, Rs, Rss. 
This gives some hint to how different implications can be used for inference. In
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Figure 3.18
Fuzzy compositions; here (a → b) denotes membership degrees of the

values from the cross-product U × V; ∧ denotes minimum, and ∨ denotes
maximum; b', a' are membership degrees of corresponding values
from U and V; + is algebraic summation; - is algebraic subtraction.

order to achieve a fuzzy inference that satisfies predefined laws, we have to choose not only which 
implication to use but also which composition. If, for example, the laws of syllogism and contrapositive 
have to be satisfied for a given application and they are not satisfied for a preliminary chosen 
implication and a composition, then another composition may be tried.

3.3.3 Fuzzy Graphs

Fuzzy graphs are graphs which have membership degrees attached to their edges. A fuzzy graph may be 
used to represent a fuzzy relation. This is another application of the information structure graph (see 
chapter 2).

3.3.4 Fuzzy Propositions and Fuzzy Logic

The biggest restriction in classic propositional and predicate logic is the fact that the propositions can 
have their truth-values as either True or False. This restriction has its assets as well as its drawbacks. 
The main asset is that the decision obtained is exact and precise. The main drawback, however, is that it 
cannot reflect the enormous diversity of the real world, which is analog and not digital. The truth value 
of a proposition in classic logic cannot be unknown, for example.

In order to overcome this limitation of classic logic, multivalued logic has been developed. The truth of 
a proposition is represented by a set T of n possible truth-values, when n-valued logic is considered. For 
the three-valued logic, T = {0,0.5,1}. There are a huge number of theories, formulated on the basis of the 
multivalued nature of truth. Fuzzy logic can be considered an extension of the multivalued logic 
developed by Lukasiewicz
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Figure 3.19
Fuzzy logic connectives

AND, OR, NOT illustrated
over two fuzzy propositions
A and B. "∧" denotes min;

"∨" denotes max; and
"-" denotes algebraic 

substraction.

in 1930. The main operators in Lukasiewicz multivalued logic for calculating the truth-value of complex 
propositions having the truth-values for elementary ones are as follows:

A =- A;   A ∧ B = min{A,B};   A ∨ B = max{A,B};

A → B = min{1,1 + A - B}

Fuzzy logic operates with fuzzy propositions, fuzzy connectives, and fuzzy rules (or laws) of inference.

Fuzzy propositions are propositions which contain fuzzy variables with their fuzzy values. The truth 
value of a fuzzy proposition "X is A" is given by the membership function µA.

Examples   A person is a "heavy smoker." The temperature is "high." The speed is "moderate."

Fuzzy propositions are no more true or false only, but they have grayness of truth defined by the fuzzy 
values in them. In propositional logic every proposition is either true or false, nothing in between. The 
fuzzy connectives are the same as in propositional logic, but here applied differently (figure 3.19). The 
truth-values of the complex propositions are defined by the fuzzy membership function calculated by 
using MIN and MAX operations and complement. Operations over membership functions were 
discussed when fuzzy sets were introduced. So fuzzy logic operations are based on operations over 
fuzzy sets.

Fuzzy propositions may include modifiers, also called hedges. The general form of a fuzzy proposition 
with a modifier is X is mA. The negation "not" can be viewed as a modifier. Other modifiers are very A, 
denoted as A2 (concentration); more or less A, denoted as A½ (dilation). Their corresponding membership 
functions are shown in figure 3.5.

The most used laws of inference in fuzzy logic are given for two fuzzy propositions A and B:
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• Generalized modus ponens:

A → B  and  A' ∴ B',   where B' = A' (A → B)

• Generalized modus tolens (law of the contrapositive):

A → B  and  B' ∴ A',   where A' = (A → B)  B'

• Transitive law (law of syllogism):

A → B  and  B → C ∴ Α → C

• DeMorgan's laws:

(A ∧ B) = A ∨ B
(A ∨ B) = A ∧ B

Other laws for fuzzy inference are given in Yager and Zadeh (1992).

A combination of an implication operator and a composition operator is the key to realizing a proper 
fuzzy inference mechanism. For example, it can be easily shown that if we use Ra and MAX-MIN 
composition, the exact modus ponens law (when A' = A, then B' = B) is not satisfied, that is, the inferred 
value (membership function) is not µB, but for example, (1 + µB)/2. When any of the other composition 
operators are applied, the modus ponens law is satisfied. In order to realise a humanlike fuzzy reasoning, 
we may want that the system not only satisfies the exact modus ponens law, but should infer "Very B" if 
"Very A" is the input, "More or less B," if the input is "More or less A,'' etc. A thorough investigation of 
the properties of different implication relations has been done by Mizumoto and Zimmermann (1982). 
Figure 3.20 shows for which of the implications the following laws of inference are held: A → B, modus 
ponens, very A → very B; very A → B; more or less A → more or less B; more or less A → B; not A → 
unknown; not A → not B; not B → not A (modus tolens); not very B → not very A; not more or less B → 
not more or less A; B → unknown; B → A.

Why are the above properties so important? Suppose we had a rule "IF an apple is red, THEN the apple 
is ripe." Depending on the chosen implication and its properties, different conclusions can be inferred 
for one and the same input, for example, "the apple is very red," "the apple is more or less red," etc. As 
we could see, some of the implications do not obey the strict modus ponens law, so even if we had an 
input "the apple is red" there will be another value inferred for the ripeness and not the value "ripe," 
whatever the fuzzy definition of this concept is.
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Figure 3.20
Implications which satisfy ( + ) or do not satisfy (-) the laws of

inference in fuzzy logic. (From Mizumoto and Zimmermann 1982.)

  



Page 192

Fuzzy logic is the theoretical basis for the fuzzy rule-based systems and fuzzy reasoning methods 
described in the next section.

3.4 Fuzzy Rules, Fuzzy Inference Methods, Fuzzification and Defuzzification

A fuzzy system consists of three parts: (1) fuzzy input and output variables and their fuzzy values; (2) 
fuzzy rules; (3) fuzzy inference methods, which may include fuzzification and defuzzification. The first 
part was discussed in the previous section. The last two are discussed here.

3.4.1 Fuzzy Rules

Several types of fuzzy rules have been used for fuzzy knowledge engineering so far:
Zadeh-Mamdani's fuzzy rules:

IF x is A, THEN y is B,

where (x is A) and (y is B) are two fuzzy propositions; x and y are fuzzy variables defined over universes 
of discourse U and V respectively; and A and B are fuzzy sets defined by their fuzzy membership 
functions µA,: U → [0, 1] and µB: V → [0, 1]. A generalized form of the fuzzy rule is the following:

IF x1 is A  AND x2 is A2 AND . . . AND xk is Ak, THEN y is B,

where xl, x2, . . ., xk, y are fuzzy variables (attributes) over different universes of discourse Ux1, 
Ux2, . . ,Uxk, Uy and A1, A2,. . ., Ak, B are their possible fuzzy values over the same universes. A set of 
fuzzy rules has the following form:

Rule 1: IF x1 is Al, 1 AND x2 is A2, 1 AND . . . AND xk is Ak, 1, THEN y is B1, ELSE

Rule 2: IF x1 is A1,2 AND x2 is A2,2 AND . . . AND xk is Ak, 2, THEN y is B2, ELSE

. . .

Rule n: IF x1 is Al, n AND x2 is A2, n AND . . . AND xk is Ak, n, THEN y is Bn
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Example:   The Bank Loan Case Decision Problem This is represented here as a set of two fuzzy rules:

Rule 1: IF (CScore is high) and (CRatio is good_cr) and (CCredit is goodcc), then (Decision is approve) 
else

Rule 2: IF (CScore is low) and (CRatio is bad_cr) or (CCredit is bad_cc), then (Decision is disapprove)

The universes of all four fuzzy variables as well as the fuzzy values "high score," "low score," 
"good_cc," "bad_cc," ''good_cr," "bad_cr," "approve," and "disapprove" are shown in figure 3.21. This 
example is used as an experimental case study on which different inference methods are illustrated 
further on. The example consists of two fuzzy rules. Two fuzzy values (fuzzy sets) defined by their 
membership functions for each of the three fuzzy input variables take part in the rules. During the fuzzy

Figure 3.21
Fuzzy sets definitions for the the Bank Loan Decision Problem.
Adapted from Lim and Takefuji, 1990 (Copyright © IEEE 90).
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system design, more precise fuzzy quantization of the fuzzy variables and more rules may be required 
for a better inference.

In general, every rule that has two condition elements in its antecedent part connected by an OR 
connective can be represented by two rules, for example, the rule IF x1 is A1 or x2 is A2, THEN y is B is 
logically equivalent to the following two rules: IF x1 is A1, THEN y is B and IF x2 is A2, THEN y is B. 
This property is used in some fuzzy system realizations, which do not facilitate OR connectives.

• Fuzzy rules with confidence degrees: Apart from the simple form of Zadeh-Mamdani's fuzzy rules 
described above, fuzzy rules having coefficients of uncertainty have often been used in practice. A fuzzy 
rule that contains a confidence factor of the validity of the conclusion has the form of: if x is A, then y is 
B (with a CF).

Example

IF (current economic situation is good) and
(current political situation is good) and
(the predicted value for tomorrow is up),
THEN (action—buy) (CF = 0.9)

Fuzzy facts may have certainty factors attached to them, which show how certain is the fact. For 
example, a fuzzy set for the variable "current economic situation" can be assigned a certainty factor CF 
= 0.8. Fuzzy sets and certainty factors are processed differently, as shown in the next section.

• Takagi-Sugeno's fuzzy rules: Another type of fuzzy rule was introduced by Takagi and Sugeno 
(1985). A function is used in the consequent part:

Rule i: IF x is Ai and y is Bi, THEN z is fi(x, y)

If the function is linear, the rule takes the following form:

Rule i: IF x1 is A1, i and x2 is A2, i and. . . xm is Am, i, THEN z = C0,i + C1,i·· x1 + ··· + Cm,i · xm

Example   IF x is A and y is B, THEN z = 5x -2y + 3. These kind of fuzzy rules are very useful especially 
for function approximation.

• Gradual fuzzy rules: These are rules of the Zadeh-Mamdani type, but instead of using fuzzy 
values for the fuzzy variables in the rule, they use
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fuzzy representation of gradual properties, for example, "the more a tomato is red, the more it is ripe." 
By using gradual rules, one can reduce significantly the overall number of rules still covering the whole 
input space. These kind of rules are very useful for modeling social, political, and economic systems.

Example  The higher the FF (federal funds), the higher the U.S. short-term interest rate.

• Generalized production rules with degrees of importance, noise tolerance, and sensitivity factors. 
Very often the condition elements (the fuzzy propositions) in the antecedent part of the rule are not 
equally important for the rule to infer an output value. For example, one symptom might be five times 
more important than another, but the latter still has to be considered for tuning the diagnosis decision. 
Relative coefficients of importance DIi of the condition elements in the antecedents, noise tolerance 
(NT) coefficients and sensitivity factor (SF) coefficient, have been introduced in the generalized 
production rules in addition to the confidence factors (CF) already discussed (Kasabov and Shishkov 
1993, Kasabov 1994).

IF C1(DI1) and C2(DI2) and. . . Cn(DIn), THEN A1, A2, . . . , Ak (NT, SF, CF)

where the condition elements Ci are either fuzzy or exact propositions of the form (x is A) and the 
actions Aj are either insert or delete fuzzy or exact facts.

Example  IF M1 is High (2) and M2 is Medium (5) and M3 is High (1), THEN D1 is High and D2 is No 
(0.7, 1, 0.9), where M1, M2 and M3 are manifestations, and D1 and D2 are diagnoses.

• Generalized production rules with variables (Kasabov 1994). This is an option in the generalized 
production rules described above, where a fuzzy proposition can have a variable in the place of the fuzzy 
value.

Example  The following rule shows that whatever the index values for today and yesterday are, the 
former being twice as important as the latter, the same value will keep tomorrow with a certainty of 0.8. 
The variable is represented by the letter V and its possible values (not shown here) could be "low," 
"medium," ''high." For example, IF (the index yesterday is V) (DI = 1) and (the index today is V) (DI = 
2), THEN (the index tomorrow will be V) (CF = 0.8).
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More about the last two types of fuzzy rules is given in chapter 6.

• Recurrent fuzzy rules (see chapter 7).

3.4.2 Fuzzy Inference Methods

In chapter 2 the inference process was described as a process of matching. This is matching in a wider 
sense, that is, matching a domain space with a solution space. It is a matching in a narrower sense too, 
that is, matching a new fact, for example X', with a set of rules Ri (i = 1,2, . . .,n) and inferring a solution 
Y', the whole inference process being a chain of such matches. We saw that matching in the symbolic AI 
systems (e.g., production systems) is an exact matching. In the case of the modus ponens law, for 
instance, if we have X → Y, and X is present, exactly Y will be inferred. But in fuzzy representation we 
may not have exact values for the input variables. Some fuzzy input value X' is supplied instead. What, 
then, will the inferred result for Y' be? If X' and X are similar, will Y and Y' be similar as well, and how 
much similar? In a special case, if X' = X, will Y' = Y? These questions relate to fuzzy inference and are 
discussed here.

We refer here to fuzzy inference as an inference method that uses fuzzy implication relations, fuzzy 
composition operators, and an operator to link the fuzzy rules. The inference process results in inferring 
new facts based on the fuzzy rules and the input information supplied.

Different reasoning strategies over fuzzy rules are possible. Most of them use either the generalized 
modus ponens rule or the generalized modus tolens inference rule (see above). The generalized modus 
ponens inference law applied over a simple fuzzy rule can be expressed as follows: (IF x is A, THEN y is 
B) and (x is A'), then (y is B') should be inferred. The compositional rule of inference, discussed in 
section 3.2, is one way to implement the generalized modus ponens law:

B' = A'  (A → B) = A'  Rab,

where  is a compositional operator, and Rab is a fuzzy relational matrix representing the implication 
relation between the fuzzy concepts A and B.

A fuzzy inference method combines the results Bi' for the output fuzzy variable y inferred by all the 
fuzzy rules for a given set of input facts. In a fuzzy production system, which performs cycles of 
inference, all the fuzzy
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rules are fired at every cycle and they all contribute to the final result. Some of the main else-links 
between fuzzy rules are:

• OR-link: The results obtained by the different rules are "OR-ed" in a monotonic fashion, so the 
more that is inferred by any of the rules, the higher the resulting degree of the membership function for 
B'. MAX operation is applied to achieve this operation.

• AND-link: The final result is obtained after a MIN operation over the corresponding values of the 
inferred by all the rules or fuzzy membership functions.

• Truth qualification-link: A coefficient Ti' is calculated for the inferred fuzzy set Bi' by every rule 
Ri. The result obtained by a rule Rj with the maximum coefficient is taken as a final result:

• Additive link: The fuzzy results Bi' inferred by the rules Ri are added after being multiplied to 
weighting coefficients:

The selection of the "else-link" depends on the context in which the rules are written.

We have described so far a fuzzy inference method as a triple Fi = (I, C, L), where I is an implication 
relation, C is one of the possible composition operators, and L is one of the possible "else-links." The 
general inference method discussed above is applicable not only when the number of condition elements 
in the antecedent part of the fuzzy rules is one (as in the examples above), but in the general case too:

Rule i: IF x1 is A1i and x2 is A2i . . . and xk is Aki,
THEN y is Bi (i =1, . . . ,n)

In this case the decompositional inference (also called the decompositional rule of inference) can be 
applied. It is based on the assumption that a rule of k condition elements is decomposed into k 
implications Aji → Bi (for j = 1,2,. . . ,k). Each implication is used separately to infer a value for Bi' by 
applying the compositional rule Bi' = Aji'  (Aji → Bi), (for j = 1,2,. . . . ,k). The values Bi' are 
aggregated by one of the aggregation operators
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Figure 3.22
The inference tree for the decompositional inference strategy over two

fuzzy rules. Adapted from Lim and Takefuji, 1990. (Copyright © IEEE 90).

(usually AND, OR). The decompositional fuzzy inference method is illustrated in figure 3.22 on the set 
of the following two rules:

Rule 1: IF x1 is A1,1 and x2 is A1,2 THEN y is B1

Rule 2: IF x1 is A2,1 and x2 is A2,2 THEN y is B2

Before applying the fuzzy rules for an inference procedure, input values for the input variables must be 
entered. The input values entered and the output values produced can be of two types: (1) fuzzy values, 
and (2) real values. The latter case is explained in the next section. The former is illustrated here.

Example:   The Bank Loan Case  The two rules for solving the problem and the membership functions of 
fuzzy values were given above. A bank loan applicant can be represented either by three membership 
functions for the three fuzzy input variables Cscore, Cratio, and Ccredit, or by three real numbers, 
Cscore, Cratio, and Ccredit, which are exact and nonfuzzy
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Figure 3.23
The inferred fuzzy value for "Decision" for a particular application

for the Bank Loan Decision system. Decompositional inference
rule is used with Rs implication, MAX-MIN composition, and

AND-link between the rules.

input values. The latter case is shown in the next section. The inferred fuzzy value for the output 
variable Decision when Rs implication, MAX-MIN composition, and AND-link between the rules are 
used for a set of input fuzzy values describing an applicant for a loan (or a group of applicants) is 
graphically shown in figure 3.23 as produced in a fuzzy inference system.

Having in mind the variety of different possible combinations between implications, compositions, and 
link operators, the difficulties in choosing the appropriate inference strategy for a given task, especially 
in a changing environment, are unavoidable. Of course, some of the combinations are not applicable 
according to the context of the fuzzy rules. It has been
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Figure 3.24
Three fuzzy input cases for testing the Bank Loan Decision fuzzy system.

Figure 3.25
The inferred decision membership functions for the three input

cases from figure 3.24 when different implication operators are applied.

suggested by several authors that the AND else-link be used for fuzzy production systems. Lim and 
Takefuji (1990) considered Rc, Rsg, Rgg, Rgs, and Rss as reasonably suitable implication operators for 
fuzzy production systems. They use Rsg, MAX-MIN composition, and AND-link in their hardware 
implementation, while in Togai and Watanabe's hardware implementation of a fuzzy inference engine 
(Togai and Watanabe 1986) Rc was assumed. It has been suggested in some research papers that the 
MAX-MIN composition operator is quite satisfactory for fuzzy production systems. The use of different 
implications with the MAX-MIN composition operator and the AND-link is illustrated over a set of 
input data for three cases shown in figure 3.24. The resulting decision fuzzy sets (decision vectors) 
obtained by using different implication operators are shown in figure 3.25. Analysis of the results shows 
that Rc does not infer appropriate results for case 1 and case 2; Rs and Rg do not work properly
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for case 3; the remaining four implication operators, Rgs, Rgg, Rsg, and Rss, perform reasonally well, 
but preference may be given to Rss or Rgs which infer most accurately what is supposed to be inferred 
according to the fuzzy rules. This is not surprising because they satisfy the most important properties for 
a fuzzy production system inference (laws), as shown in figure 3.20.

3.4.3 Fuzzification, Rule Evaluation, Defuzzification

When the input data are crisp and the output values are expected to be crisp too, then the "fuzzification, 
rule evaluation, defuzzification" inference method is applied over fuzzy rules of the type of IF x1 is A1 
and x2 is A2, THEN y is B.

Fuzzification is the process of finding the membership degrees µA1(x'1) and µA2(x'2) to which input data 
x'1 and x'2 belong to the fuzzy sets A1 and A2 in the antecedent part of a fuzzy rule. Singleton 
fuzzification is used in the example shown in figure 3.27. Through fuzzification the degrees to which 
input data match the condition elements in a rule are calculated. When fuzzy input data are used, such a 
degree can be represented by the similarity between the input membership function and the condition 
element as discussed in section 3.1.2. A similarity measure is a single number.

Rule evaluation takes place after the fuzzification procedure. It deals with single values of membership 
degrees µA1(x'1) and µA2(x'2) and produces output membership function B'. There are two major methods 
which can be applied to the rule above:

• Min inference:

• Product inference:

where · denotes algebraic multiplication.

In general aggregation operators must be used within a fuzzy rule with more than one condition 
elements to aggregate the matching results of new facts across the condition elements. Two general 
extensions of the operators AND and OR, called T-norms and T-conorms, were introduced by Dubois 
and Prade (1985).

A T-norm is a binary mapping T: [0, 1] x [0, 1] → [0, 1], which has the following properties: 
commutativity, associativity, monotonicity. A
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boundary condition is held: T(a,1) = a. The following T-norm operators have been used in practice: T(a, 
b) = min{a, b}; T(a, b) = a * b (product); T(a, b) = max{0, a + b - 1}.

A T-conorm S(a, b) differs from a T-norm in that it has the property of S(a, 0) = 0 instead of the 
boundary property of the T-norms. Widely used T-conorms are S(a, b) = max{a, b}; S(a, b) = a + b - ab; 
S(a, b) = min{l,a + b}.

If more fuzzy rules are activated simultaneously, for example:

Rule 1: IF x is A1, 1 and x2 is A1,2, THEN y is B1, and

Rule 2: IF x is A2, 1 and x2 is A2,2, THEN y is B2,

the inferred fuzzy sets B1' and B2' can be added algebraically after being multiplied to a weighting 
factor (additive system), or MAX-values of the corresponding membership degrees B1'(v) and B2'(v), 
for v ∈ V are taken.

Defuzzification is the process of calculating a single-output numerical value for a fuzzy output variable 
on the basis of the inferred resulting membership function for this variable. Two methods for 
defuzzification are widely used:

1. The center-of-gravity method (COG). This method finds the geometrical centre y' in the universe V of 
an output variable y, which center "balances" the inferred membership function B' as a fuzzy value for y. 
The following formula is used:

2. The mean-of-maxima method (MOM). This method finds the value y' for the output variable y which 
has maximum membership degree according to the fuzzy membership function B'; if there is more than 
one value which has maximum degree, then the mean of them is taken as shown in figure 3.26.

Example: The Bank Loan Case  Inference with crisp input and crisp output data is shown in figure 3.27 
as produced in the same fuzzy inference software system as in fig. 3.23 COG defuzzification is used.

3.4.4 Inference over Fuzzy Rules with Confidence Factors

When the fuzzy rules and the fuzzy facts have confidence factors attached to them, then in addition to 
the fuzzy inference done by using one of the methods described above, confidence factors for the 
resulting fuzzy facts are calculated.
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Figure 3.26
Methods of defuzzification: the center-of-
gravity method (COG), and the mean-of

-maxima method (MOM) applied over the
same membership function for a fuzzy output

variable y. They calculate different crisp
output values.

Example  Given a fuzzy rule:

IF (current economic situation is good) and
(current political situation is good) and
(the predicted value for tomorrow is up),
THEN (action is buy) (CFrule = 0.9),

which has a fuzzy output "buy" defined by a membership function and the following fuzzy input facts:

(current economic situation is A1') (CF = 0.9) (current political situation is A2') (CF = 0.8) (the 
predicted value for tomorrow is A3') (CF = 0.7),

then the fuzzy value for the output variable "action" will be inferred and a certainty factor CFres for it 
will be calculated as follows:

CFres = CFrule min{CFA1', CFA2', CFA3'} = 0.9 ⋅ 0.7 = 0.63.

If the consequent part of the rule did not have a fuzzy, but a crisp output variable (buy-yes/no), then the 
certainty factor for it will be calculated without a fuzzy inference to be performed, but the similarity 
between the corresponding input facts A 1', A2', and A 3' and the antecedent condition
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Figure 3.27
An illustration of "crisp input data, rules evaluation, deffuzification"
inference for a particular crisp input data for the Bank Loan Decision

system. A segment from the window of a fuzzy logic inference tool that
was used for this problem is shown.

elements Al, A2, A3 evaluated, say S1, S2, S3 (based on the similarity measure described earlier). Then a 
certainty factor for the crisp fact "buy" is calculated if the value "yes" for it is inferred:

CFres = CFrule·min{CFA1' · S1, CFA2'· ··S2,CFA3' ·⋅S3}

3.4.5 Other Methods for Fuzzy Inference: General Comments

Different inference methods may produce different results on the same rule base.

There are other methods for fuzzy inference than those discussed above. Some of them are specifically 
applied to fuzzy control systems, even though being more general (Tereno et al. 1992). There are 
methods for



  

Page 205

reasoning over fuzzy rules which are implemented in connectionist architectures (Kasabov, 1994). 
Fuzzy inference methods are sometimes called methods for approximate reasoning, which represents 
their inherent property for approximate reasoning and for dealing with uncertainties. Generally speaking 
fuzzy inference is based on the following: (1) evaluating the degrees to which input data match all 
condition elements in a rule; (2) aggregating these degrees over all condition elements in the antecedent 
part of the rule; (3) evaluating the rules and producing output fuzzy values; (4) aggregating all the 
produced for one output variable output values; and (5) producing final output values across all the 
rules.

Fuzzy finite automatons provide another paradigm for fuzzy inference. These are finite automatons 
which can simultaneously be in several states to a certain degree.

Which fuzzy inference method to choose for a particular application is a question to be decided by the 
knowledge engineer but usually only a few well-explored and established methods are used.

3.5 Fuzzy Systems as Universal Approximators: Interpolation of Fuzzy Rules

In chapter 1 a problem-solving process was represented as mapping the domain space into the solution 
space through existing problem knowledge. The mapping aims at achieving a goal function, which 
represents the desired solution for given input data. The desired solutions can be defined either as a set 
of ''input-output" data pairs (xi, yi), or by expert knowledge. The former task relates to the task of 
interpolation. Interpolation aims at finding a function y = f(x), such that it approximates to a certain 
level of accuracy all the data (xi, yi). The function f is then used to calculate the output value y' for a new 
input x' possibly not in the data set. Finding a function f is a task for the regression analysis. But can we 
use a fuzzy system to approximate the data?

Can fuzzy systems be used to achieve arbitrary complex mapping, that is, can fuzzy systems 
approximate any goal function? If they can, how can it be done? These two questions are discussed in 
this section.

3.5.1 Fuzzy Systems are Universal Approximators

We describe a family of systems as universal function approximators if for any function there exists a 
system from this family that approximates it to any degree of accuracy.
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Figure 3.28
A fuzzy rule IF xi, THEN yi covers a segment

of the goal function y(x) bounded in a
"quadrangular patch" of the problem space.
The figure illustrates the statement that by
using triangular-, trapezoidal, or π-shaped 

membership functions for the fuzzy
quantization labels, any goal functions

y(x) can be approximated to any
degree of accuracy through their

segmentwise approximation.

A fuzzy rule IF x is "about xi", THEN y is "about yi", covers a ''patch" in the problem space. After 
fuzzification and defuzzification, the fuzzy rule approximates a segment of a function y(x). Two 
examples, one for bell-shape membership functions and one for trapezoidal and triangular membership 
functions, are shown in figure 3.28. We discussed crisp and interval rules in chapter 2 and their 
characteristic of being universal approximators when the number of rules is unlimited. By analogy to the 
example given in Yamakawa (1993), it is shown in figure 3.29 that a set of crisp rules can cover a set of 
discrete points from a given function y(x) = (x - 1)2, and interval rules can cover the function in a 
stepwise manner. If the number of the intervals is small, the approximation is very rough. We can also 
see from the figure that if the number of the rules increases infinitely, a system of exact rules can 
approximate this and any other function. Unfortunately, a large number of rules are required to achieve a 
good generalization, which makes this approach impractical. But a small set of fuzzy rules, with 
carefully chosen membership functions of the fuzzy terms, can approximate the function. As we shall 
see, fuzzy systems are universal approximators.

THEOREM (Kosko 1992) An additive fuzzy system uniformly approximates a function f: x → y, if the 
domain of x is compact (closed and bounded) and f is continuous. The proof of the theorem is given in 
the reference above.
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Figure 3.29
Approximating a function y = f(x) = (x - 1)2,

x ∈ [1,4], by a set of crisp rules, a set
of interval rules, and a set of fuzzy rules.

The four exact rules cover only four points.
The interval rules approximate the function

very roughly as a step function. The four fuzzy
rules approximate the function precisely.

THEOREM (Wang, 1994)   For any given real continuous function f on a compact set U ⊆  and 
arbitrary , there exists a fuzzy logic system F with a COG deffuzifier, with a product inference, 
singleton fuzzifier, and gaussian membership functions (∏ functions) such that

The above result can be extended to discrete functions as well.



Similar theorems can be proved for other types of fuzzy inference and other membership functions 
(triangular, trapezoidal). The above theorems justify the application of fuzzy logic systems to almost any 
nonlinear modeling problems. They are existence theorems, that is, they proof that there exists a system, 
but they do not say how to find the system.
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3.5.2 Fuzzy Rules Interpolation: Inference with Gradual Rules

In figure 3.28 two fuzzy rules are graphically shown. They are obviously not sufficient to cover the 
whole goal function. Suppose there are no more rules. Such a set of rules is called a sparse rule base. A 
procedure, called rule interpolation, should be applied if we want to obtain an output value of y for any 
of the input values for x.

Example   The two rules:

IF a tomato is red, THEN the tomato is ripe, and
IF a tomato is green, THEN the tomato is unripe

are not enough to infer a conclusion if the observation does not overlap with any of the antecedent 
condition elements, for example, "a tomato is yellow."

The other extreme task is that we have a large number of rules, a so called dense rule base, which covers 
the goal function with redundant overlapping. How to find the minimal set of rules that is still sufficient 
for an approximate reconstruction of the dense rule base?

Different techniques can be applied to ensure that the inference process will cover the whole problem 
space. One of them is using gradual rules, introduced by Dubois and Prade (see Yager and Zadeh 1992). 
Gradual rules, described briefly in a previous section, refer to gradual properties, for example, "the 
more x is A, the more y is B," or "the more x is similar to A, the more y is similar to B." In order to use 
gradual fuzzy rules, the fuzzy variables have to be of a gradual type (a natural full ordering exists), for 
example, spatial position, speed, velocity, acceleration.

The results of an inference with a gradual rule "the more x is A, the more y is B" for an input value x' is 
not fuzzy, but imprecise; it is an interval y' = Bx (which is the x-cut of B), where x = µA(x') (figure 3.30).

3.6 Fuzzy Information Retrieval and Fuzzy Databases

Databases have been well developed and established so far. The current database systems are very 
efficient when storing and retrieving exact information. But when information for one attribute is fuzzy, 
vague or missing, the whole data item (record) is usually not stored and information is lost. So there is 
an obvious need for methods and tools which facilitate (1)
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Figure 3.30
Inference with a gradual rule "the more x is A, the more y is B"
for a particular crisp value x' for the input variable x. The result

is imprecise; this is the x-cut interval Bα.

fuzzy data to be stored and retrieved, and (2) better use of existing information through fuzzy interface 
for retrieving it. These two requirements can be achieved by using fuzzy information retrieval methods 
and fuzzy databases, the latter method currently in its infancy.

3.6.1 Fuzzy Information Retrieval

Information retrieval is considered here as a process of retrieving relevant information from an 
information storage, for example, retrieving relevant documents by specifying keywords when all the 
documents are stored and for each document a list of keywords is known.

The standard approach is to compare literally keywords, and if a document contains, say, 50% of the 
keywords specified in the query, it is retrieved. The problem with this approach is that if the keywords 
are spelled differently or substituted by similar ones, it does not work, as it does not have information 
about the conceptual similarity, or conceptual distance, between different keywords as has the librarian, 
who has read these documents. For example, if x is a specified keyword, and a and b are two keywords, 
then using conceptual distances d(x, a) and d(x, b) makes possible a comparison between them, for 
example, d(x, a) > d(x, b). The conceptual distance is also called conceptual affinity.

By using conceptual distance the keyword space can be structured in a priori knowledge space where a 
search will be performed. One way to measure the affinity is based on the simultaneous appearance, or 
frequency f(a, b), of two keywords a and b appearing in one document. Any query, based on a specified 
keyword x, can be represented as a fuzzy set A
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Figure 3.31
Defining a query by a keyword x as a

fuzzy set A over the domain of a structured
and quantized one-dimensional keyword space.

The difference between A and a crisp subset
defined for all the keywords between i and

j is represented by the shaded area. The
degree to which keywords b and a

belong to the concept A are also shown.

over this space as a universe. An example is given in figure 3.31. The universe is quantized into a one-
dimensional, structured keyword space. The difference and similarity between all the documents which 
have all the keywords between i and j in them and the query fuzzy set can be measured as a measure of 
similarity and distance between two fuzzy sets. The search can be done in an interactive mode, when the 
system asks questions whether the keyword j, for example, should be included or not, thus giving the 
user a chance to refine the membership function of the fuzzy set for the query. The above-described 
approach is based on representing ambiguity of documents by a structured feature space of keywords. 
After having searched in this space and having resolved ambiguities of the query, then the actual search 
in the document space is performed for retrieving the relevant documents.

3.6.2 Fuzzy Interfaces to Standard Databases

We consider here standard relational databases. The information in a relational database is structured in 
relations. A relation is a named tuple of n attributes (x1,x2, . . . ,xn), each of them xi having its own 
domain Di (i = 1,2, . . .,n). The queries to such databases, facilitated by standard database systems, 
include giving a particular value for an attribute, giving an interval, or ignoring an attribute. But if the 
query values do not match exactly what is in the data base, the answer will be an empty set.
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A fuzzy query interface allows giving fuzzy terms as values for the attributes, which values are not 
stored in the standard database.

Example  A fuzzy query: Find the towns in the country which have "high" average temperature in 
August and have "big" or "medium"-sized hotels. In general, a query can be formulated in fuzzy terms 
and for any of the attributes a fuzzy proposition formed: xi is Aij. Fuzzy queries are possible to ordinary 
databases if the fuzzy predicates used in the queries are represented in advance by their membership 
functions. The search through a standard database is also modified according to the requirements of 
fuzzy logic theory. An example is given below.

Example Here is a segment of an ordinary database, "Employees":
Name Age Salary Experience (yrs)

Brown 56 80,000 10

Long 44 56,000 20

Smith 28 40,000 2

Patrick 37 50,000 19

Let us assume that the following concepts (predicates) of the attributes "age," "experience," and "salary" 
are defined by membership functions, as shown in figure 3.32(A): age—''young," "middle-aged," 
"mature"; experience—"little," "moderate," "good"; salary—"low," "about average," "high." Let us now 
assume the following query: "Give me the names of the employees who are 'middle-aged' AND have 
'good experience' AND have 'average salary' ". In order to answer such a query, all the attribute-values 
for age, experience, and salary are fuzzified with the use of the defined membership functions. MIN 
operation is applied over the membership degrees of a particular data item. The results for Long is MIN 
{0.9, 0.95, 0.8} = 0.8, and for Patrick is MIN {0.85,0.89,0.87} = 0.85. Figure 3.32B shows an exampler 
distribution of the degrees to which all elements from a database match a fuzzy query.

A fuzzy query to a standard database resembles matching a fuzzy rule against crisp data, which is 
opposite to the fuzzy inference methods in fuzzy systems. Finding the data items which best match the 
"rule of query" might be computationally expensive; therefore special methods should be applied to 
speed up this process (see Bosc and Kacprzyk 1995).
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Figure 3.32
Defining fuzzy concepts for performing fuzzy queries to an ordinary database

"Employees" given in the text; (B) Distribution diagram of the degrees to
which all the elements from a standard database match a fuzzy query.
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Name Age Salary Experience

    

Brown 56 80,000 10

Long (55,56) average good

Smith young (30,000- 70,000)p (2,3)p

Patrick (middle, young)p (high, average)p unknown

Figure 3.33
A small fuzzy database which illustrates the use of possibility distribution
functions as values in a database on the example of the database
"Employees" given in the text.

3.6.3 Fuzzy Databases

Another approach to realizing fuzzy information retrieval is to build fuzzy databases, that is, databases 
which contain fuzzy information. There are different approaches toward creating fuzzy databases:

• The fuzzy database is an extension to a relational database. The membership degrees to which 
the data elements belong to the fuzzy concepts defined for every attribute are added to the database.

Example   An extended  relation with fuzzy terms for the database used in the previous example will 
look like: ("name"; "age"—young, middle-aged, mature; "experience"—little, moderate, good; 
"salary—"low, about_average, high).

Such fuzzy databases can be searched through quickly and efficiently, but they are appropriate when the 
fuzzy concepts used do not change frequently, as this requires change of the whole database.

• Possibility-distribution relational databases—facilitate entering fuzzy information when creating 
the database and processing it, and when searching through the database. The domains Di for the 
attributes xi include fuzzy information represented by membership functions, as well as exact 
information. A membership function is used to represent a possibility-distribution function, for example: 
age = (55,56)poss, that is, for the attribute age two values are equally possible; or age = 
(0.9/55,0.7/56)poss, but the first is more likely.



Example   In figure 3.33, a simple fuzzy database is given, similar to the relational database from the 
previous example. The values in some slots are not exact values, but possibility distributions instead.
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Figure 3.34
Propositional-, fuzzy-, and analogy-based reasoning are represented

by different inference laws.

• Modular fuzzy databases (Zemankova and Kandel 1984) consist of three parts: (1) the value 
database, which is the same as the possibility-distribution relational databases presented above; (2) the 
explanation database, which contains the definition of the fuzzy terms, and is subject to update 
depending on the particular applications; and (3) conversion rules for processing modifiers and 
qualifiers.

• Fuzzy object-oriented databases, in which fuzzy properties are allowed to be defined for objects 
in the database.

3.6.4 Conceptual Information Retrieval Through Natural Language Interfaces

Such interfaces facilitate communication between users and systems in a natural language allowing for 
fuzziness and imprecision. The natural language query is transferred into a semantic representation and 
reasoning is performed based on similarity between concepts. A non-fuzzy logic reasoning, fuzzy 
reasoning, as well as some other types of reasoning, for example, analogy-based fuzzy reasoning, can be 
applied. The difference between the last and the first two is depicted in figure 3.34. In analogy-based 
reasoning an analogy between the concept C given for a query and the concept A in the antecedent of the 
rule is found, and a new concept, D, is inferred as a result.

Example (Ozawa and Yamada 1994) Suppose a database contains information about available 
apartments for rent, having an attribute "floor size." An exact query to such a database will look like: "an 
apartment in which floor size is between 50 and 100 square meters." A fuzzy query will look like: "an 
apartment in which floor size is big." Conceptual query will look like: "an apartment for a big family."

In 1978, Zadeh developed a language called PRUF (possibility relational universal fuzzy) to evaluate 
possibilities related to natural language semantics (Zadeh 1978b). The aim of the theory is to estimate a 
fuzzy quantifier Q', if a proposition "QA is F" is known and the query is formed as "Q'A is mF."
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Example   Known fact: "Most foreigners are tall." Conceptual query: "How many foreigners are very 
tall?," where Q = most, A = foreigners, F = tall, m = very, and Q' is sought (e.g., could be "few").

The research on fuzzy information retrieval, natural language interfaces with fuzziness, and fuzzy 
databases is still finding its way. A large contribution is expected from this area to the development of 
intelligent human-computer interfaces.

3.7 Fuzzy Expert Systems

Fuzzy expert systems emerged as a result of applying fuzzy theory to building expert systems.

3.7.1 General Characteristics of Fuzzy Expert Systems

A fuzzy expert system is defined in the same way as an ordinary expert system, but here methods of 
fuzzy logic are applied. Fuzzy expert systems use fuzzy data, fuzzy rules, and fuzzy inference, in 
addition to the standard ones implemented in the ordinary expert systems. A block diagram of a fuzzy 
expert system is shown in figure 3.35.

The fuzzy rules and the membership functions make up the system knowledge base. In general, different 
types of fuzzy rules can be used in a fuzzy expert system. Some systems use production rules extended 
with fuzzy variables and confidence factors. In addition to exact productions, fuzzy productions can be 
handled as well, so different types of production rules can be processed depending on the type of the 
antecedent and the consequent part in the rule: crisp → crisp (CF); crisp → fuzzy (CF); fuzzy → crisp 
(CF); fuzzy → fuzzy (CF). These types of production rules are facilitated in FuzzyCLIPS (NRC Canada 
1994).

Data can be exact or fuzzy. The database which the fuzzy inference machine refers to can contain exact 
data or fuzzy data with certainty factors attached to them, for example, (economic_situation good CF = 
0.95).

A fuzzy inference machine is built on the theoretical basis of fuzzy inference methods. A fuzzy inference 
machine, which activates all the satisfied rules at every cycle, is different from the sequential inference 
in symbolic systems, but the control and search mechanisms implemented in the latter can be used 
successfully during the fuzzy reasoning process. A
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Figure 3.35
A block diagram of a fuzzy expert system.

significant characteristic of fuzzy expert systems is the realization of partial match between exact or 
fuzzy facts (observations, input data) and fuzzy condition elements in the antecedents of the rules. A 
measure of the degree of matching is calculated for every case, that is, (fuzzy fact-fuzzy condition); 
(crisp fact-fuzzy condition); (fuzzy fact—exact condition); (crisp fact—exact condition). A rule is fired 
only if the matching degree of the left-hand side of the rule is greater than a predefined threshold.

Fuzzification and defuzzification may be used in a fuzzy expert system depending on the type of 
inference machine implemented in the system.

The interface unit of the fuzzy expert system communicates with the user or the environment, or both, 
for collecting input data and reporting output results. Fuzzy queries might be possible when the user 
inputs information in fuzzy terms, for example, high temperature, severe headaches, devastating 
hurricane, etc.

An explanation module explains the way the expert system is functioning during the inference process, 
or explains how the final solution has been
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reached. HOW and WHY explanations are appropriate to use. The system may use fuzzy terms for 
explanation as well as exact terms and values.

A module for learning fuzzy rules is usually optional. Learning fuzzy rules can take place either before 
the inference machine starts the reasoning process, or during the fuzzy inference process. In the former 
case the learning module can be built on the basis of AI machine-learning methods (see further in this 
section) or neural networks (see chapter 5). Fuzzy neural networks can be used to implement the latter, 
(see chapters 6 and 7).

3.7.2 Fuzzy Systems Design

The following are the main phases of a fuzzy system design:

1. Identifying the problem and choosing the type of fuzzy system which best suits the problem 
requirements. A modular system can be designed consisting of several fuzzy modules linked together. A 
modular approach, if applicable, may greatly simplify the design of the whole system, dramatically 
reduce its complexity, and make it more comprehensible.

2. Defining the input and output variables, their fuzzy values, and their membership functions.

3. Articulating the set of heuristic fuzzy rules.

4. Choosing the fuzzy inference method, fuzzification, and defuzzification methods if necessary; some 
experiments may be necessary until a proper inference method is chosen.

5. Experimenting with the fuzzy system prototype; drawing the goal function between input and output 
fuzzy variables; changing membership functions and fuzzy rules if necessary; tuning the fuzzy system; 
validation of the results.

The main problem  in building fuzzy expert systems is that of articulating the heuristic fuzzy rules and 
membership functions for the fuzzy terms. Here are some methods for obtaining fuzzy rules:

• The first is to interview an expert. Sometimes, communication between expert and interviewer 
can be difficult owing to a lack of common understanding. The shape of membership functions, the 
number of labels, and so forth should be defined by the expert. However, sometimes the human expert is 
unfamiliar with fuzzy sets or fuzzy logic and the knowledge engineer is unfamiliar with the domain area.
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• The second approach, as formulated by Yamakawa (1993), is to imagine (in the designer's own 
mind) physical behaviour of the real system and think about the physical meaning in natural and 
technical languages. The system designer has to be particularly experienced with the system in order to 
imagine its behaviour. There is no need to explain the behaviour with mathematical equations, typically 
differential equations. In some cases, the designer has to assign by imagination and intuition, the 
consequences of the fuzzy rules which usually appear on the grid of the rule map.

• The third approach is to use the methods of machine-learning, neural networks, and genetic 
algorithms to learn fuzzy rules from data and to learn membership functions if they are not given in 
advance. Connectionist methods for learning fuzzy rules from data are introduced in chapter 5.

Another problem may arise when designing a fuzzy expert system that has its fuzzy rules already 
articulated, namely, the choice of inference method. For any particular fuzzy production system, several 
possible inference methods have to be considered before implementing one of them. In order to facilitate 
the choice of an appropriate inference method from among a set of possible ones, fuzzy expert system 
shells have been developed and put into practice. Choosing the inference method depends also on the 
type of fuzzy rules used.

3.7.3 Clustering-Based Methods for Learning Fuzzy Rules from Data

Here, two nonconnectionist methods for generating fuzzy rules from numerical data are explained. The 
methods are illustrated on the Iris data set.

Many methods for extracting fuzzy rules from data are based on clustering of data into groups (clusters). 
Algorithms for fuzzy clustering are discussed in the next section. These groups can later be assigned 
labels. Fuzzy labels and membership functions can be defined for different sub-domains of the problem 
space. The two methods presented below use different approaches. The first method uses fuzzy 
quantization (or fuzzification) only for the purpose of inference over already extracted rules. This means 
that the rules may not change after having changed the membership functions. The second method uses 
fuzzification during the rules extraction and the extracted rules are dependent on the chosen membership 
functions.
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Method 1

In section 2.11 a case-based method for learning representative templates from numerical data was 
presented and illustrated with the Iris data set. Here, the method is extended to a simple method for 
extracting fuzzy rules. The following steps are taken:

Step I   The attributes are discretized into intervals, for example, the four Iris attributes, that is, petal 
length, petal width, sepal length, and sepal width, are discretized in the example given there into 4, 3, 6, 
and 3 intervals respectively. The whole data set is then represented by a set of representative templates, 
which is a sort of clustering. For example, a representative template given in figure 2.38 is (SL = 2 SW  
= 2 PL = 1 PW  = 1 Class = 1 Frequency_coefficient = 2).

Step 2   The discretization intervals are represented as fuzzy intervals and membership functions are 
attached to them, as illustrated in figure 3.11. The intervals are labeled, for example, SM (or S), MED 
(or CE), LRG (or B). For the discretization used in the example of figure 2.38, these labels will read as 
follows: sepal length—S2, S1, CE, B; sepal width-—S, CE, B; petal length—S3, S2, S1, CE, B1, B2; 
petal width—S, CE, B. The fuzzy membership functions are defined as follows: triangular functions are 
used for intermediate intervals and trapezoidal membership functions are used for the end intervals; the 
center of a triangular membership function is placed at the center of the interval and the other two 
vertexes at the middle points of the neighboring intervals.

Step 3   A representative template is directly expressible as a fuzzy rule if the intervals are substituted by 
their fuzzy labels and the probability strength is used as a relative class rule strength (confidence factor), 
for example:

IF (SL is S1) AND (SW is CE) AND (PL is S3) AND (PW is S),
THEN (Class is Setosa) (rule_strength is 2/3).

A set of numerical data can be represented in a supervised mode (class labels are provided), or in an 
unsupervised mode (no class labels are attached to data) as a set of representative templates, therefore as 
a set of fuzzy rules.

Step 4   Inference over the set of fuzzy rules with fuzzification and defuzzification is performed. The 
accuracy of approximation depends on the
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discretization process. Using more intervals results in better approximation in general, but using too 
many of them slows down the learning and inference processes.

Method 2

A similar method for learning fuzzy rules from numerical data is presented in L.-X. Wang (1994). It 
differs from the above mainly in the following steps:

Step I   Data are first fuzzy-quantized and the membership functions are defined.

Step 2   All the data examples are fuzzified, for example, the instance (SL = 5.1, SW = 3.5, PL = 1.4, PW 
= 0.2, Class = Setosa) is fuzzified as follows: SL = 5.1 belongs to S2 to a degree of 0.3 and to S1 to a 
degree of 0.7; SW = 3.5 belongs to CE to a degree of 0.6 and to B to a degree of 0.4; PL = 1.4 belongs to 
SE3 to a degree of 0.55 and to S2 to a degree of 0.45; PW = 0.2 belongs to S with a degree of 1.0. The 
classes can also be fuzzy-quantized by using certainty degrees if such information is available.

Step 3   Each instance is represented by one fuzzy rule, where the fuzzy label to which an attribute-value 
belongs to the highest degree is taken. A degree for each of the rules is calculated by multiplying the 
membership degrees of the condition elements by one another, by the membership degrees of the 
antecedent, and also by a confidence factor for the validity of the data in that instance. We shall assume 
a membership degree to which the instances belong to classes to be 1.0, and the confidence factor for 
each of the examples to be equal to 0.95, that is, the data are sufficiently reliable. The above example 
generates the following rule:

Rule: IF (SL is S1) AND (SW is CE) AND (PL is SE3) AND (PW is S),
THEN (Class is Setosa) with a degree of confidence 0.22, calculated as:
0.7 × 0.6 × 0.55 × 1 × 1 × 0.95 = 0.22.

Step 4   The obtained fuzzy rules are aggregated and ambiguity in rules is sorted out by using the 
principle of the greater confidence factor, that is, if two rules have the same antecedents but a different 
consequent, the one with the higher confidence factor is left.

Step 5   A product fuzzy inference is used for the set of extracted fuzzy rules that is based on a 
multiplication operator between the degrees of
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membership to which a new instance belongs to the antecedent membership functions and the centroid 
defuzzification method (see section 3.4.3).

The method described above and illustrated with the Iris data set is generally applicable to any 
numerical data. It is especially effective when applied to learning fuzzy rules from chaotic time-series 
data and for approximating these data.

The methods based on clustering bear the curse of dimensionality burden, that is, the number of rules 
increases exponentially with the number of variables and number of fuzzy labels used. To resolve this 
problem, scatter (and not uniform) partitioning may be used when the whole problem space is not 
necessarily uniformly covered. Dynamic partitioning may also be used when the partitioning is not fixed 
in advance, but it changes iteratively with the change of the extracted rules until a satisfactory set of 
rules is found.

3.7.4 Learning Fuzzy Rules Through Genetic Algorithms

Genetic algorithms can be used for learning fuzzy rules from data as they can optimize the number of 
fuzzy labels to be used, the number of condition elements in a rule, and the total number of fuzzy rules 
subject to some constraints set in advance. The goodness criterion can be either a numerical assessment 
of testing the set of rules over a part of the data set (Lim et al. 1995) or an analytical goal function 
(Furuhashi et al. 1994).

A chromosome is defined as a set of rules, the genes being defined differently (condition elements, 
membership functions, action elements, certainty factors).

3.7.5 Fuzzy Expert System Shells

A fuzzy expert system shell is a tool which facilitates building and experimenting with fuzzy expert 
systems. It facilitates building the main modules in a fuzzy expert system. Examples of such shells are 
TIL Shell (1993), FuzzyCLIPS (1994), FLIE (fuzzy logic inference engine) which is part of a hybrid 
system FuzzyCOPE (Kasabov 1995b). Some of the built-in functions for dealing with fuzzy rules and 
fuzzy inference in FuzzyCLIPS are shown in appendix E. Functions of FLIE are given in appendix H.

Fuzzy system shells facilitate experimenting with different inference methods, different types of rules, 
and different membership functions, until the best fuzzy system is designed. Figure 3.36 shows the code 
of a fuzzy
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Figure 3.36
The code of a fuzzy system for the Bank Loan Decision Problem

prepared in the syntax of a fuzzy logic shell.

system for the Bank Loan case example written in the syntax of the shell FLIE and figure 3.37 shows a 
view of the shell. After having designed the fuzzy system, it can be compiled and linked with other 
programs. The fuzzy rule base is in a simple text format, thus portable and able to run on different 
platforms. A fuzzy inference can be activated as an external program from another program as shown 
below.

Example   A function call: (dcmfuzzy ''loan.rul" $?x 1 2 1), will activate a function for a 
decompositional inference over fuzzy rules, in the file "loan.rul," when an implication operator 
numbered as 1 in a list of possible operators for use, composition operator numbered by 2, and else-link 
operator numbered by 1, will be used.

Example   A section of a program for predicting the stock market index written in FuzzyCLIPS is given 
in figure 3.46 and explained in 3.12.
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Figure 3.37
A view of the menu of a fuzzy logic shell, FLIE (see appendix H).

Different inference methods can be selected in order to tune the
fuzzy inference to the domain problem.

3.8 Pattern Recognition and Classification, Fuzzy Clustering, Image and Speech Processing

3.8.1 Pattern Recognition and Classification

Pattern recognition tasks ideally suit fuzzy theory, as patterns are very often inexact, ambiguous, or 
corrupted. In the Handwritten Characters Recognition case example, described in chapter 1, the patterns 
to be recognized are not well defined and are ambiguous in many cases. Fuzzy rules for handwritten 
character recognition are given in Yamakawa (1990). The recognition of the handwritten digit 3 is based 
on the fuzzy rule given in chapter 1, but in addition to that, membership functions are defined and a 
fuzzy inference is applied.

Pattern recognition and classification are usually considered as very similar tasks as discussed in chapter 
1. Classes can be described by fuzzy classification rules, for example, the example above, or a set of 
examples
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(data points in the problem space) from which fuzzy classification rules are extracted.

Fuzzy rules can be used for classification purposes when the objects to be classified are noisy, corrupted, 
blurry, etc. Fuzzy rules can cope with those ambiguities. This is the case with the Blood Cells 
Classification Problem, the solution to which is shown in section 3.12. Fuzzy classification of Iris plants 
by using rules extracted from data is discussed in chapter 5.

Fuzzy systems, as we have already discussed, are robust. Contradictory fuzzy rules can be 
accommodated in one system, the tradeoff being achieved through the inference mechanism. This 
characteristic of fuzzy systems is very important for their applications in solving classification problems.

Classification problems, when data examples labeled with class labels are available, have been 
successfully solved by classic statistical methods, especially when the data set is unambiguous and 
dense. If the data set is sparse in the problem state space, the problem is rather difficult. A simple 
example of 19 data instances, which belong to two classes, is shown in figure 3.38. The instances are 
represented by two attributes Al and A2 discretized with three fuzzy labels—"Small," "Medium," and 
"Large." The following fuzzy rules can be articulated after an analysis of the data distribution. The 
confidence factors represent the percentage of instances of a given class which fall in a particular 
''patch" of the problem space:

Rule 1: IF A1 is M and A2 is S, THEN Class1 (CF = 1)

Rule 2: IF A1 is L and A2 is S, THEN Class1 (CF = 0.45)

Rule 3: IF A1 is L and A2 is S, THEN Class2 (CF = 0.55)

Rule 4: IF A1 is L and A2 is M, THEN Class2 (CF = 0.75)

Rule 5: IF A1 is L and A2 is M, THEN Class1 (CF = 0.25)

The above set of rules is ambiguous and contradictory. Rules 2 and 3 have the same antecedents, but 
different consequences, which is also true for rules 4 and 5. This situation is impossible for a symbolic 
production system to cope with. A fuzzy production system can infer a proper classification, as for every 
input data vector all rules may fire to some degree and all of them contribute to the final solution to 
different degrees. The
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Figure 3.38
A two-dimensional feature space representation of a data set

of 19 points which belong to two classes.

points at the border between the two classes should be correctly classified by the fuzzy rules as they take 
support not only from one of the contradictory rules but from a rule that has lateral fuzzy labels with it.

When the data examples are not labeled with the class or pattern labels, that is, when the classes they 
belong to are not known, then different clustering techniques can be applied to find the groups, the 
clusters, in which data examples are grouped. The clusters show the typical patterns, the similarity, and 
the ambiguity in the data set. In addition to the exact clustering (see chapter 1), fuzzy clustering can be 
applied too.

3.8.2 Fuzzy Clustering

Fuzzy clustering is a procedure of clustering data into possibly overlapping clusters, such that each of 
the data examples may belong to each of the clusters to a certain degree. The procedure aims at finding 
the cluster centers Vi (i = 1, 2, . . .,c) and the cluster membership functions µi
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which define to what degree each of the n examples belong to the ith cluster. The number of clusters c is 
either defined a priori (supervised type of clustering) or chosen by the clustering procedure 
(unsupervised type of clustering). The result of a clustering procedure can be represented as a fuzzy 
relation µi,k, such that:

for each k = 1, 2, . . .,n; (the total membership of an instance k to all the clusters equals 1)

for each i = 1, 2, . . .,c (there are no empty clusters)

A widely used algorithm for fuzzy clustering is the C-means algorithm suggested by J. Bezdek (see 
1992 and 1987). Its simplified version is given in figure 3.39. A validity criterion for measuring how 
well a set of fuzzy clusters represents a data set can be applied. One criterion is that a function S(c) 
reaches local minimum:

Figure 3.39
An outline of the C-means fuzzy clustering algorithm.
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where Mx is the average of x. If the number of clusters is not defined, then the clustering procedure 
should be applied until a local minimum of S(c) is found, which means that c is the optimal number of 
clusters. One of the advantages of the C-mean fuzzy clustering algorithm is that it always converges to a 
strict local minimum. A possible deficiency is that the shape of the clusters is ellipsoid, which may not 
be the most suitable form for a particular data set.

Fuzzy clustering is an important data analysis technique. It helps to understand better the ambiguity in 
data. It can be used to direct the way other techniques for information processing are used afterward. For 
example, the structure of a neural network to be used for learning from a data set can be defined to a 
great extent after knowing the optimal number of fuzzy clusters.

3.8.3 Image Recognition

Image recognition is an area where fuzzy representation and fuzzy reasoning can be successfully 
applied, mainly for two reasons: (1) ambiguity in the images to be recognized; and (2) the need for fast 
processing, that is, complicated formulas may not be applicable for a real-time recognition; in this case a 
fuzzy system may be more convenient.

Different approaches are possible depending on the image recognition tasks, two of them being (1) 
objects recognition, that is, recognizing shape, distance, and location of objects; and (2) texture analysis, 
for example, an image X of size m × n pixels can be represented as a set of fuzzy sets and membership 
degrees to which pixels belong to the fuzzy concepts, such as "brightness," "darkness," "edginess," 
''smoothness."

Fuzzy methods can be used at two levels of image recognition and image processing: (1) low-level 
image processing, tasks to be performed at this level being image segmentation, boundary detection, 
image enhancement, and clustering; and (2) high-level image understanding, which process ends up 
with a symbolic description of the image.

Example   The problem  is to identify the expression of a face from  a photograph. First, linguistic fuzzy 
features like "big eyes," "small nose," "round mouth" are extracted from a photograph of a face. In order 
to extract features, some facial characteristic points are detected. According to these features another 
categorization can be made which defines the
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expression of the face, for example, "happy," "surprised," ''normal," based on fuzzy rules. An 
experimental system was published in Ralescu and Hartani (1995).

3.8.4 Speech and Music Signals Recognition

The main difficulties in speech recognition were discussed in chapter 1. The extreme complexity of this 
task due to different levels and sources of ambiguities were pointed out.

Fuzzy systems can be applied at different levels of the speech recognition process, that is, at a low or 
pattern-matching level, at a higher or language analysis level, and at the highest level, concept 
understanding, subject to the rules available. Articulating rules for speech and language processing is a 
difficult task, even though there is a huge amount of literature on the subject. How to bring this 
knowledge to the computers through the methods of fuzzy logic is a challenging task.

Fuzzy rules can be automatically extracted from data mapped into a feature space. Figure 1.18, for 
example, shows a mapping of spoken phoneme signals into the two-dimensional space of the first 
formant frequency F1 and the second formant frequency F2. The intervals of these frequencies can be 
represented by fuzzy labels in a similar manner, as shown in figure 3.38 for a classification problem. If 
five labels are used to label consecutive intervals—VS, S, M, L, VL—then fuzzy rules can be articulated, 
such as:

IF F1 is S and F2 is L, THEN it is very likely that the pronounced phoneme is either /I/ in the R.P. 
English or /I/ in the general Australian English

IF F1 is M and F2 is M, THEN it is very likely that the pronounced phoneme is /I/ in New Zealand 
English

In spite of the existing ambiguity between different phonemes in the different English languages, a 
system of fuzzy rules can deal with the problem. Such fuzzy rules can be extracted from samples of 
spoken phonemes by using neural networks.

The problem of musical signals recognition is by nature similar to the problem of speech recognition. 
One solution to a simple problem is given in section 3.12.

  



Page 229

3.9 Fuzzy Systems for Prediction

Complex prediction tasks, such as the Stock Market Prediction Problem, are characterized by time 
variability and ambiguous information, as was discussed in chapter 1. They can be solved by using 
different techniques, or a combination of them, as, for example, fuzzy rules, neural network, and genetic 
algorithms. The use of fuzzy systems is discussed here. More examples are given in chapters 5, 6 and 7.

3.9.1 Fuzzy Rules for Solving Complex Prediction Tasks

In complex prediction tasks the next values (events) to be predicted depend on many variables, usually 
of different types. These tasks are usually solved in two stages: (1) state recognition, and (2) scenario 
evaluation.

For the state recognition stage, time-series data may be used, while the scenario evaluation stage 
requires expert knowledge. If we take the Stock Market Prediction example, during the first stage 
parameters such as volatility and trends can be evaluated. At the next stage, fuzzy rules can be applied 
for suggesting an investment decision (very short term, medium short, medium long, long, etc.).

Time-series prediction fuzzy rules can be learned from data. Suppose a time series of index prices, taken 
for a certain period of days, is mapped into a two-dimensional space: today's price, yesterday's price. 
The data can be visualized in a similar way, as the data in fig 3.38. Fuzzy rules, such as:

IF (today's price was medium) AND (yesterday's price was low),
THEN (tomorrow's price will be up) (0.8)

can be extracted by using different techniques. Extracting fuzzy rules for chaotic time-series prediction 
is illustrated in chapter 7. Higher-level rules, such as:

IF (current economic situation is good) and
(current political situation is good) and
(the predicted value for tomorrow is up),
THEN (action—buy) (CF = 0.9)

can be applied afterward.
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Figure 3.40
Inferencing over a gradual rule "the higher the FF, the higher the

U.S. short-term interest" with the use of two implications Ra and Rs;
the membership functions in the rule are drawn as a solid line;

the current value for the FF denoted as FF' is drawn as a dotted line;
the inferred function for the "US short-term interest" by applying
Ra is drawn as a dashed line and for Rs as a dotted-dashed line.

The Rs implication is more suitable than Ra. (Adapted with
permission from Katoh et al, 1992).

3.9.2 Using Gradual Rules

Very often economic, social, or psychological behavior can be represented by gradual fuzzy rules 
because of the gradual properties of the processes under consideration.

Example (Katoh et al. 1992) The gradual fuzzy rule is: "the higher the FF rate, the higher the U.S.-short-
term interest rate". When the membership function for the state of the FF rate is known, a membership 
function for the output variable can be inferred. In a previous section one way of inferencing over 
gradual rules was shown. Here, two different implications Ra and Rs are applied to inferring the fuzzy 
output membership function for the "U.S. short-term interest rate" when the membership function FF1 
for the current value of the input variable "federal funds'' (FF) is known (see figure 3.40). The Rs 
implication gives better results according to the experts' expectations.

3.10 Control, Monitoring, Diagnosis, and Planning

3.10.1 Fuzzy Control

Fuzzy control systems were one of the first industrial fuzzy systems. The first system was designed and 
implemented by Mamdany for cement kiln
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Figure 3.41
A block diagram of a fuzzy control system.

control in the United Kingdom  in the early 1970s. Since then many fuzzy control systems have been 
developed, for example, subway control, washing machines, camera focusing, automatic transmission 
control, rice cookers, dishwashers, and many other engineering applications. Intelligent robotics is an 
area where fuzzy control systems will be used in the future.

By fuzzy control, an application of fuzzy logic to control problems is meant. Fuzzy control is different 
from standard control, mainly in three respects: (1) the use of linguistically described concepts, rather 
than formulas; (2) the use of commonsense knowledge, rather than mathematical knowledge; and (3) the 
use of methods of fuzzy logic.

Ordinary controllers usually represent a system's uncertainty by a probability distribution. Probability 
models describe the system's behavior with the use of first-order and second-order statistics—means and 
covariances. Mathematical models of control systems facilitate a mean-square-error (MSE) analysis of 
the system's behavior. In case of many variables, it is extremely difficult to accurately articulate such 
mathematical models. They also require a lot of computations, which might be difficult to perform in 
real time. Fuzzy control systems consist of fuzzy rules and an inference machine which includes 
fuzzification and defuzzification. The system works in a cycle, as shown graphically in figure 3.41. The 
case example of the Inverted Pendulum Problem is discussed below. The problem was described in 
chapter 1, where heuristic rules for its possible solution were articulated and shown in figure 1.33. After 
fuzzy quantization of the two input parameters angle  and angular velocity
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Figure 3.42
A set of fuzzy rules and membership functions

for the Inverted Pendulum case problem.
(Adapted with permission from Yamakawa 1989.)

∆Θ, and the output parameter, the force applied to the cart, by using seven fuzzy labels (PL and NL are 
added to the fuzzy terms used in chapter 1), seven rules were set experimentally by Professor 
Yamakawa (1989). They are shown in the form of a rule map in figure 3.42 along with the membership 
functions of the fuzzy labels.

By using the same approach, much more complex tasks can be solved. For complex control tasks, a 
modular system, which comprises two or more simple control systems, can be designed as demonstrated 
in an example solved in section 3.12.

In the fuzzy control systems the control algorithm is described by fuzzy words and not analytically. 
Therefore it is difficult to evaluate the stability
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of the model, that is, how stable the system will be if some parameters of the objects change, for 
example, the length of the pendulum, the weight of the mouse put on top of a pendulum, and so forth. 
This problem has been thoroughly investigated by Li-Xin Wang (1994).

In adaptive fuzzy control systems the set of fuzzy rules dynamically change according to the changes in 
the process or object under control (see Brown and Harris 1994, Wang 1994).

3.10.2 Monitoring

Fuzzy theory is useful for creating monitoring systems when the parameters and the conditions to be 
monitored can be expressed in fuzzy linguistic terms. The simple problem of monitoring a car, described 
in chapter 1 and realized as an exact production system in chapter 2, is presented in section 3.12 as a 
fuzzy rule-based system.

Using fuzzy rules makes the system more sensitive to the borderline values for the parameters. 
Monitoring of a process that is described by a large number of parameters can be handled in a similar 
way.

3.10.3 Diagnosis

Diagnosis is a generic problem suitable for solving by the methods of fuzzy logic. This is because of 
ambiguity in the diagnostic process. The latter may have many causes; for example, the earlier we try to 
diagnose an abnormality, the more ambiguous the indicators are; the difference between the normal and 
abnormal state might be slight.

Fuzzy diagnostic systems can contain fuzzy rules of two different forms:

1. IF disorders (x), THEN symptoms (y); in this case x is sought from the set of equations: y = x  R, 
where R is the set of relations between the disorders and the symptoms and " " denotes a composition 
operator; this is the inverse problem of the fuzzy inference composition rule and more difficult to solve.

2. IF symptoms (x), THEN disorders (y); in this case y is sought from the fuzzy compositional equation 
y = x  R.

More sophisticated fuzzy diagnostic systems use fuzzy concepts for representing not only static 
symptoms but their dynamic properties too, for example, "tendency"—"increasing," "decreasing,'' "not 
changing," etc.
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In some fuzzy medical diagnostic systems patients are allowed to answer in fuzzy terms, for example, 
the question "Do you feel fatigue?" could be answered by using the fuzzy concepts "seldom," 
"sometimes," "always.'' There answers can be processed further as fuzzy input values.

3.10.4 Planning

Planning in uncertain and ambiguous conditions is also a problem, too difficult to be tackled by the 
traditional symbolic AI methods. Take the Monkey and Bananas case example. When the exact 
positioning of all the objects and exact goals are known, there is no problem. But suppose we do not 
have the exact positioning of the monkey and instead of the exact position, for example (5,8), we know 
that the monkey is "near" the couch, the ladder is "at about the most distant corner from the monkey," 
and bananas are on the ceiling "somewhere in the middle." The goal can be "monkey to grasp bananas." 
A plan in this case can be generated by using a set of fuzzy rules and a fuzzy inference machine to 
perform the reasoning process.

Complex planning problems can be solved in stages, for example, first stage, recognition of the 
situation; second stage, generation of a plan; third stage, execution of the plan. For each of the stages 
fuzzy rules may be used and combined with other techniques used for other stages.

3.11 Optimization and Decision Making

These two generic problems are about finding an optimal option among a set of options. This process is 
difficult to model when the decision is required to be "humanlike," especially in a group decision-
making process.

3.11.1 Optimization

Optimization problems sometimes do not have well-defined parameters and values. Finding an optimal 
solution in this case is extremely difficult. For example, the cost from one town to another for the TSP 
case example might not be a single value, but an interval or a fuzzy number, say, about 600. A fuzzy 
solution to this problem when inexact costs are provided instead of exact values is presented in Dubois 
and Prade (1988).
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3.11.2 Decision Making

Fuzzy logic, when applied to decision-making problems, provides formal methodology for problem 
solving, and human consistency. These are important general characteristics of fuzzy decision making 
systems. Such systems should have the following functionality:

• Explain the solution to the user

• Keep a rigorous and "fair" way of reasoning;

• Accommodate subjective knowledge

• Account for "grayness" in the solution process, when, for example, it is impossible to draw a rigid 
border between "bad" and "good."

Fuzzy logic can either be used instead of, or in addition to, probability theory. For example, suppose we 
have the probability distribution for the monthly sales of item x over a certain period of time. The 
distribution can be used to estimate the probability p(xi) that a certain amount of this item will be sold 
next month. But to make a decision on what should be produced next month, it is necessary to know 
whether the predicted through probability p(xi) sell of x is "good" or "bad," or "OK," from the point of 
view of the profit of the company. So we have to define the fuzzy concepts of "good" and "bad'' for this 
particular company.

Solving decision-making problems by using fuzzy systems was illustrated in previous sections of this 
chapter with the Bank Loan case example. Similar decision-making tasks are investment advising, 
mortgage approval, insurance risk evaluation, house pricing, selecting the best candidate for a job, 
assessing complex projects, assessing student papers, assessing the risk of failure of a company, and 
many others.

3.11.3 Group Decision Making

Fuzzy reasoning particularly suits modeling a group decision-making process. The following terms 
relate to this task:

• A group of individuals (experts): x1, x2, . . .,xp

• A set of options: s1, s2, . . .,sn

• Parameters describing the experts' opinions and preferences

And the task is to find the option si on which there is a consensus among the experts. Two approaches to 
using fuzzy logic for this problem are:
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1. Using linguistic quantified propositions of the form of QBx are F. For example, Q denotes "most"; B 
denotes "important"; x denotes "expert"; F denotes "convinced." Each of the fuzzy terms can be 
represented by a membership function on the universe X representing the degree to which each expert x 
∈ X ''belongs" to the fuzzy set. A value µF(xi) denotes how much convinced expert xi is with regard to 
the option under discussion for consensus. The final truth-value of the proposition "most important 
experts are convinced" is calculated as:

2. Using fuzzy preference relations. In this case a fuzzy relation Rk:SxS → [0, 1] represents the 
preference  of the expert xk between each of the pairs (si_sj) of options for decision. One way to 
process these fuzzy preference relations to achieve the final preference relation R over all the experts 
before finding the optimal solution from it is given below:

Fuzzy methods for modeling group decision-making is an area of growing interest.

3.12 Problems and Exercises

Part A: Case Example Solutions

1. Blood Cell Classification case example. Experts are very good at classifying blood cells by looking at 
a blood sample through a microscope. But when they try to explain how they do the classification, they 
usually come up with a set of ill-defined, incomplete rules. A set of such rules is given as an illustration 
in figure 3.43. The rules, though, are not difficult to implement as a fuzzy system. The five 
features—nucleus exists, segmented or granular cell, darkness of the nucleus, size of the nucleus, and 
size of granules—are used as input variables in the realization described here. Fuzzy values are defined 
for the input fuzzy variables, for example: "yes," "maybe," "no." The output variables are the blood cell 
classes. Their fuzzy values are defined as certainty degrees for the object to be classified in the
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class "yes," "likely," "possibly," "maybe," and ''not." Membership functions of singleton type for 
representing those fuzzy values are shown on the screenshot in figure 3.44. The three membership 
functions for representing the fuzzy variable nucleus-exists and the fuzzification result for a particular 
input data, as well as the classification result, are graphically and numerically presented there.

2. Recognition of musical notes. A partial solution to the problem with the use of exact production rules 
was shown in chapter 2. Instead of the intervals used there for representing variations of the energy of 
the signal in different frequency bands, fuzzy quantization can be applied and fuzzy rules can be 
articulated based on the exact interval rules (figure 3.45).

3. Decision-making on stock market trading. Figure 3.46 shows a part of a program written in 
FuzzyCLIPS for decision-making on future investments. Three fuzzy input variables are used (economic 
situation, political situation, trend of the predicted value) for which fuzzy values are defined by using 
standard membership functions. The FuzzyCLIPS functions are explained in appendix E. Extended 
program is given in appendix I.

4. Control of a two-stage inverted pendulum (figure 3.47). Fuzzy Controller 1 (which is similar to the 
one described in a previous section) takes data from the upper stage of the two-stage pendulum. It has 
two inputs—angle A2 and angular velocity V2. The output of it called "Stage 1" is used as an input 
variable to Fuzzy Controller 2, which takes two more parameters—angle A1 and angular velocity V1 
from  the lower stage—and actually controls the current to the motor by producing an output value for 
the control variable "Motor." For each output value of the variable "Stage 1," a separate rule map is used 
to represent the rules for Fuzzy Controller 2. The rule map for Stage 1 = ZR is given in figure 3.48 with 
the rule map of the rules for Fuzzy Controller 1. In case of stage 1 = ZR the two maps are identical, but 
not in the other cases.

5. Fuzzy system for the Car Monitoring Problem. Figure 3.49 shows a fuzzy quantization of the 
parameters of the task. The parameter "brakes' response" is represented here on the universe of time with 
three linguistic labels—"quick," "normal," and "slow." The state of the cooling system is represented by 
three linguistic fuzzy values—"underheating," "normal," and "overheating." The status of the 
temperature gauge is represented by two labels—"OK" and "damaged"—on the universe of grades of 
sensitivity of the gauge. The variable "temperature" is represented by the labels
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Figure 3.43
A set of expert fuzzy rules for the Blood Cell Classification Problem.
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Figure 3.43
(continued)

  



Page 240

Figure 3.44
Membership functions of one input fuzzy variable (Nucleus_Exists) and of one
output variable (Lymphocyte) and a graphical representation of an inference for
a particular input data for the Blood Cells Classification problem. The input and

output values are on a grade of 0 to 10. The particular sample has been classified to
class Lymphocyte to a degree of 7. The second numbers on the figure are internal

representation (from 0 to 255).

  



Page 241



Figure 3.45
(a) Membership functions for the
Musical Recognition Problem;

(b) some fuzzy rules for
classification of a musical signal.
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Figure 3.46
A part of a program written in FuzzyCLIPS for decision-making

on future investment in the stock market.



Figure 3.47
A sketch of the two-stages Inverted Pendulum Problem.
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Figure 3.48
Two maps of fuzzy rules for the two-stages Inverted Pendulum
Problem. The map for controller one and one map only of fuzzy

 rules for the controller two are shown.

"low," "normal," and ''high." The conclusion "stop the car," can be represented as a single-valued 
membership function representing the certainty of the advice. A chain fuzzy inference is performed in 
this case. When the system is realized by the use of the centroid defuzzification inference method, even 
slight matching of the conditions in the fuzzy rules by the current status of the car will cause a message 
to be communicated to the driver. The fuzzy rules are:



Rule 1: IF Brakes'_response is Slow, THEN Message is Stop_the_car

Rule 2: IF Cooling_status is Overheating, THEN Message is Stop_the_car

Rule 3: IF Temperature is High and Gauge_status is OK, THEN Cooling_status is Overheating

6. A fuzzy diagnostic system for the Medical Diagnosis case example described in chapter 1 is 
explained here. The rules vaguely articulated there are now presented in a more precise form as fuzzy 
rules, shown in figure 3.50. M1, M2, M3, and M4 are manifestations (symptoms), defined with their 
linguistic values, and D1, D2, D3, and D4 are disorders, defined with linguistically represented 
confidence factors CF1, CF2, CF3, and CF4. In the same figure, another representation of the same 
rules after substituting the fuzzy quantifiers with its corresponding typical numerical values, as given in 
Chen (1988), is shown. A table of corresponding fuzzy linguistic
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Figure 3.49
Membership functions of linguistic values for the Car Monitoring Problem.



labels, numerical intervals, and typical single values for the frequency of appearance and strength of 
symptoms is given in figure 3.51.

7. The Investment Adviser Problem. Here, a solution to this problem is presented. It can be compared 
with its solution as a production system (see chapter 2). A set of fuzzy rules for solving the problem are 
shown in figure 3.52. Standard triangular membership functions are specified for the fuzzy values. The 
system is written in the syntax of FLIE (see appendix H).

Part B: Practical Tasks and Questions

8. Why do fuzzy sets break the law of the excluded middle?

9. What is the main difference between propositional and fuzzy logic?

10. What major fuzzy inference methods can you outline?
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Figure 3.50
Two sets of similar rules for the Medical Diagnosis Problem.



Figure 3.51
Corresponding linguistic values, numerical intervals, and typical exact

values for representing frequency of appearance and strength of symptoms.
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Figure 3.52
A fuzzy system for solving the Investment Adviser Problem written

in the syntax of FLIE (see chapter 6 and appendix H). The
membership functions are chosen as triangular, defined by their
centers and uniformly distributed over the whole universe. The

output variable represents how much should be invested in bank.
The rest is meant to be invested in shares.

  

Page 247

11. From figure 1.18, write fuzzy rules for recognizing the vowels /u/, /i/ and /3/ in the R.P., New 
Zealand, and Australian English languages, similar to the rules given in section 3.8.4.

12. By using the fuzzy rule from chapter 1 for recognizing the handwritten digit 3 as an example, 
develop a set of fuzzy rules for recognizing and classifying all the digits in a handwritten form. How 
many fuzzy input variables will be needed?

13. Develop a set of fuzzy rules for a hypothetical air-conditioning control, where input variables are 
"temperature" and "humidity" and output variables are ''openness of the cooling valve" and "openness of 
the heating valve."

14. Articulate gradual fuzzy rules for solving the air-conditioning problem and show an example of how 
the system works.

15. Define membership functions and articulate fuzzy rules for solving the Monkey and Bananas 
Problem, as explained in section 3.10.

16. Develop a set of fuzzy rules for solving the TSP case problem when inexact values for traveling 
costs are given, as explained in section 3.11.

17. What is the stability problem in fuzzy control systems?

18. Develop a fuzzy system and make experiments for the Ball and the Beam Problem explained in 
chapter 1 (section 1.12).

Part C: Project Specification

Topic: A fuzzy System Development

Choose one of the problems listed below or a problem of your own. Develop a fuzzy system to solve the 
chosen problem following the requirements below:

1. Specify and identify the problem. Why is the problem suitable for using a fuzzy system?



2. Define the input and output variables for the fuzzy system. Define the membership functions of the 
fuzzy values for every input and every output variable. Explain the physical meaning of the membership 
functions.

3. Develop a set of rules for solving the problem. Explain the meaning of the rules.

4. Make experiments of fuzzy inference over different input data and validate the results. If necessary, 
change the rules or membership functions, or both.
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5. Draw a function between an input variable and an output variable when the rest of the input variables 
have fixed values. Explain the meaning of the function.

A list of suggested problems for the fuzzy system project

1. Automatic truck control [see Kosko (1992) for the specification of the problem]

2. Target-tracking system [see Kosko (1992) for the specification of the problem]

3. Pattern recognition: handwritten characters recognition

4. Pattern recognition-musical signals recognition

5. Recognition of three English vowels

6. Control: washing machine control, when two input variables, for example, "degree of dirtiness" and 
"type of dirt," and one output variable, for example, ''washing time," are used (see Aptronix 1993)

7. Control, air-conditioning control (see Aptronix Inc. 1993)

8. Control, camera-focusing control (see Aptronix Inc. 1993)

9. Control, airplane landing control (Terano et al. 1992; Yamakawa 1992)

10. Decision-making, bank loan approval case example

11. Decision-making, investment adviser

12. Diagnosis, medical diagnosis case example

13. Diagnosis, the Smoker and the Risk of Cancer case example

14. Monitoring, The Car Monitoring case example



15. Optimization, the TSP, when inexact constraints are given, for example, the cost from town A to 
town B is "about 50"

16. Planning, the Monkey and Bananas Problem, if parameters are not exactly specified, for example, 
monkey is "near" the ladder which is to the "left" of the bananas

3.13 Conclusions

Some of the main characteristics of the fuzzy systems are:

• Fuzzy concepts have to have linguistic meaning; they need to be articulated.
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• Membership functions are numerical representations of the linguistic concepts; they can be built 
either through learning from data, or through experts' opinion, or through both.

• Fuzzy rules can represent vague, ambiguous or contradictory knowledge.

• Fuzzy systems are robust; even if some rules are removed from the rule map, the system could 
still work properly; fuzzy systems are also robust toward changing conditions in the environment.

• Fuzzy systems are simple to build, easy to realize, easy to explain.

These characteristics of fuzzy systems make them suitable for solving practically all the generic 
problems in knowledge-engineering.

3.14 Suggested Readings

Further reading recommended on specific topics are:

Theory of fuzzy sets and fuzzy logic—Zadeh (1984); Terano et al. (1992); Dubois and Prade (1988); 
Sugeno (1974); Kosko (1992, 1987); Mizumoto and Zimmermann (1982)

General fuzzy system applications—Yamakawa (1990, 1992, 1994); Terano et al. (1992); Yager and 
Zadeh (1992); Aptronix (1993)

Fuzzy systems for pattern recognition—Bezdek and Pal (1992)

Fuzzy systems for control—Sugeno (1985); Yamakawa (1989); Wang (1994); Aptronix Inc. (1994); 
Brown and Harris (1994)

Fuzzy systems for financial prediction and decision-making—Deboeck (1994); Zimmermann (1987)



Fuzzy information retrieval and fuzzy databases—Terano et al. (1992); Gupta and Sanches (1982); 
Ozawa and Yamada (1994); Zemankova-Leech and Kandel (1984); Bosc and Kacprzyk (1995)

Fuzzy systems for image analysis—Ralescu and Hartani (1995); Hirota (1984); Zahzah et al. (1992)

Hardware implementation of fuzzy systems; fuzzy chips—Yamakawa (1987, 1988, 1993); Lim and 
Takefuji (1990); Hirota (1995)

Fuzzy expert systems: Kandel (1991); TIL Shell (1993)
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4
Neural Networks: Theoretical and Computational Models

Artificial neural networks realize the subsymbolic paradigm of representing and processing of 
information. The area of science that deals with methods and systems for information processing using 
neural networks is called neurocomputation. In this chapter, the basic principles of artificial neural 
networks are explained and illustrated. The chapter gives a background for going from neurons to 
models and systems, some of which are presented here from an engineering point of view. The material 
is meant to be sufficient for developing connectionist models and systems for problem-solving and 
knowledge-engineering, which is the topic of chapters 5, 6, and 7.

4.1 Real and Artificial Neurons

An artificial neural network (or simply a neural network) is a biologically inspired computational model 
which consists of processing elements (called neurons) and connections between them with coefficients 
(weights) bound to the connections, which constitute the neuronal structure, and training and recall 
algorithms attached to the structure. Neural networks are called connectionist models because of the 
main role of the connections in them. The connection weights are the "memory" of the system.

Even though neural networks have similarities to the human brain, they are not meant to model it. They 
are meant to be useful models for problem-solving and knowledge-engineering in a "humanlike" way. 
The human brain is much more complex and unfortunately, many of its cognitive functions are still not 
well known. But the more we learn about the human brain, the better computational models are 
developed and put to practical use. Therefore, it pays to have a look at the main characteristics of the 
human brain from the information-processing point of view and understand to what extent they have 
been realized in artificial neural networks.

This section emphasizes the main characteristics of real and artificial neural networks, namely:

• Learning and adaptation

• Generalization

• Massive parallelism

• Robustness

  



Page 252

• Associative storage of information

• Spatiotemporal information processing

The next subsection is far from being a detailed and precise presentation of the organization and 
functions of the human brain. It is only a brief introduction to its main characteristics which 
nonbiologists might find useful for understanding artificial neural networks and some of the trends in 
their development. But the question, how much should an artificial computational model be biologically 
plausible in order to be useful for engineering, is beyond the scope of this chapter.

4.1.1 Biological Neurons

At least three levels can be distinguished in the human brain from the point of view of the information 
processing performed in it: (1) the structural level: neurons, regions of neurons, and the connections 
between them; (2) the physiological level: the way the brain processes information as chemical and 
physical reactions and transmission of substances; and (3) the cognitive level: the way humans think.

Three points are briefly discussed here: (1) the brain's structure and organization, (2) the brain as a 
communication system which is massively parallel and robust, and (3) the major information-processing 
functions and characteristics of the brain: learning, recall and generalization, associative storage, chaotic 
behavior.

Let us look at brain organization first. The human brain contains about 1011 neurons participating in 
perhaps 1015 interconnections over transmission paths. Each of these paths could be a meter long or 
more. Neurons share many characteristics with the other cells in the body, but they have unique 
capabilities for receiving, processing, and transmitting electrochemical signals over the neural pathways 
that make up the brain's communication system. Figure 4.1 shows the structure of a typical biological 
neuron. The neurons are composed of a cellular body, also called the soma, and its one or several 
branches. According to the traditional definition, the branches conducting information into a cell 
(stimulus) are called dendrites, and the branch that conducts information out of the cell (reaction) is 
called an axon. An activation of a neuron, called an action potential, is transmitted to other neurons 
through its axon at the first instance. A signal (spike) emitted from a neuron is characterized by 
frequency, duration, and amplitude.
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Figure 4.1
A structure of a typical biological neuron. It has many

inputs (in) and one output (out). The connections between
neurons are realized in the synapses.

The interaction between neurons takes place at strictly determined points of contact called synapses. In 
the region of the synapses, the neurons almost "touch" each other; however, there always remains a tiny 
cleft between them. In a synapse, two parts can be distinguished: (1) a presynaptic membrane, belonging 
to the transmitting neuron, and (2) a postsynaptic membrane, which belongs to the receiving neuron. An 
impulse emitted from a transmitting neuron and fed to a presynaptic part of a synapse induces a release 
of a transmitter. The transmitter carries a substance known as a mediator. As the transmitter passes 
across the cleft, it takes the mediator to the postsynaptic part. There, under its influence, the permeability 
of the membrane of the receiving neuron changes proportionally to the algebraic sum of the potentials 
received in all postsynaptic parts of this neuron. If the result surpasses a threshold value established 
beforehand, the neuron in its turn takes on the function of transmitting an action potential. The electric 
potential on the two sides of the membrane is called the membrane potential. The membrane potential is 
formed by the diffusion of electrically charged particles. All cells contain a solution rich in potassium 
salts. At rest, the cellular membrane is 50 to 100 times more
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permeable to K+ ions than to Na+ ions. Chloride ions (C1-) are also of great importance in the process of 
information processing in the brain. The structure of the membrane is such that its permeability to ions 
changes under the influence of the mediators. When the postsynaptic part of the synapse receives 
mediators, the membrane potential shifts toward a positive end, because now the membrane is more 
permeable to Na+ than to K+, and there is more of it outside rather than inside the neuron. In other words, 
the action potential represents a change of the membrane potential in a positive direction. In general, an 
activation of a neuron is proportional to the difference between its current potential and the resting 
potential.

The brain consists of different types of neurons. They differ in shape (pyramidal, granular, basket, etc.) 
and in their specialized functions. There is a correlation between the function of a cell and its shape; for 
example, pyramidal cells are excitatory and basket cells are inhibitory. In terms of variety, over 50 kinds 
of functionally different neurons are found in the cerebellum (one of the major parts of the brain). This 
fact may influence the creation of heterogeneous neuronal computational models which consist of 
different types of specialized artificial neurons.

The human brain is a complicated communication system. This system transmits messages as electric 
impulses, which seem always the same, recurring in monotonous succession. A single nerve impulse 
carries very little information; therefore, processing of complex information is only possible by the 
interaction of groups of many neurons and nerve fibers, which are enormous in number and size. The 
total length of all neural branchings inside the human body comes to about 1014 m. The presence of such 
a high number of links determines a high level of massive parallelism, which is specific to the brain 
mechanisms. Indeed, while each neuron reacts to outside stimuli relatively slowly (the reaction of a 
neuron takes about 200 ms), the human brain as a whole is capable of solving complex problems in a 
comparatively short time—parts of a second or several seconds.

The brain's ability to analyze complex problems and to react adequately to unfamiliar situations is due to 
its heuristic faculty of taking decisions on the basis of previously stored knowledge and its ability to 
adapt to new situations. The human brain has the ability to learn and to generalize. The information we 
accumulate as a result of our learning is stored in the synapses in the form of concentrated chemical 
substances.
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The brain receives information through its receptors which are connected by dendrites to neurons of the 
respective part of the cortex (the part of the brain which receives signals from the human sensors). So 
two of the major processes which occur in the brain from the information-processing point of view are 
learning and recall (generalization).

Learning is achieved in the brain through the process of chemical change in synaptic connections. There 
is a hypothesis which says that the synaptic connections are set genetically in natal life and subsequent 
development (learning) is due to interactions between the external environment and the genetic program 
during postnatal life. Synapses either stabilize or degenerate. The learning process in the brain is a 
complex mixture of innate constraints and acquired experience. But learning is not only a process of 
"filtering" sensory inputs. "Brains actively seek sensory stimuli as raw material from which to create 
perceptual patterns and replace stimulus-induced activity" (Freeman and Skarda 1985). Brains are goal 
seekers. A brain activity pattern is a drive toward a goal (Freeman 1991). The activity patterns are 
spatial and temporal and large patterns of activity are self-organized.

The recall process activates a collection of neurons in time. Some experimental results on the 
hippocampus (a major part of the brain) of rats show that the mean activity of all 330,000 neurons upon 
a given stimulus is 0.001, that is, only 330 neurons on average are activated at one time. The distribution 
of the activated neurons over the time scale is not random. Neurons activate one another locally as the 
neurons are mainly connected on a neighboring basis (the probability of two neurons being connected 
decreases exponentially with the distance between them). The connectivity for the CA3 region of the 
hippocampus in the human brain is about 4% (Rolls and Treves 1993) and every neuron produces from 
zero to 50 spikes per second depending on its state of activity.

The recall process in the brain is characterized by generalization, that is, similar stimuli recall similar 
patterns of activity. The brain can react to an unseen stimulus in the "best" possible way according to 
previously learned patterns. The "distance" between a learned pattern and a newly recalled pattern 
defines the level of generalization.

The human brain stores patterns of information in an associative mode, that is, as an associative 
memory. Associative memory is characterized in general by its ability to store patterns, to recall these 
patterns when only parts of them are given as inputs, for example, part of a face we have seen
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before, or the tail of a rat. The patterns can be corrupted, for example, an airplane in foggy weather. It 
has been proved experimentally (Rolls and Treves 1993) that part of a region of the human brain called 
CA3 works as an associative storage and another part (which consists of "mossy" fiber connections) is 
nonassociative. The number of patterns which can be associatively stored can be calculated by the use of 
the formula

Pmax = c⋅ k/(a⋅ 1n(1/a)),

where a is the coefficient representing the sparseness of the connections between the neurons, c is the 
number of connections which connect one neuron to another, and k is a constant whose typical value is 
0.2 to 0.3. It has been estimated that at any given moment about 36,000 patterns can be stored in the 
CA3 region, but not all of them are "lifetime" patterns. Patterns evolve for a certain period of time and 
have a certain spatial structure, that is, the memorized patterns are spatiotemporal patterns.

The question of how information is stored in the brain relates to the dilemma of local vs. distributed 
representation. There is biological evidence that the brain contains parts, areas, and even single neurons 
that react to specific stimuli or are responsible for particular functions. A neuron, or group of neurons, 
which represent a certain concept in the brain, is referred to as a grandmother cell. At the same time, 
there is evidence that the activity of the brain is a collective activity of many neurons working together 
toward particular patterns, features, functions, tasks, and goals.

Study of the olfactory lobe gives evidence that the chaotic behavior of the brain is a global property 
(Freeman 1987). A chaotic process is, in general, not strictly repetitive. It does not repeat exactly the 
same patterns of behavior, but still certain similarities of patterns can be found over periods of time, not 
necessarily having the same duration. A chaotic process may be an oscillation between several states, 
called attractors, which oscillation is not strictly regular. A common oscillation in cortical potential over 
an entire array of neurons has been recorded (Rolls and Treves 1993). Elements of chaotic behavior in 
local neurons have also been seen. Chaos theory and its application to neural computing is discussed in 
chapter 7.

It is beyond the current level of existing knowledge and technology to simulate a human brain in a 
computer. Such a goal will be difficult to realize for many years to come, if ever, but useful 
computational models and systems can be developed based on the principles and characteristics
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Figure 4.2
A model of an artificial neuron.

observed in the human brain. The collective efforts of neuroscientists, biologists, and physiologists, 
computer and information scientists, mathematicians, physicists, chemists, and others have led to new 
explanations of brain processes and new neuronal computational models that modify the existing ones. 
Some simple artificial neuronal models are discussed later in this chapter.

4.1.2 Artificial Neurons

The first mathematical model of a neuron was proposed by McCulloch and Pitts in 1943. It was a binary 
device using binary inputs, binary output, and a fixed activation threshold. In general, a model of an 
artificial neuron is based on the following parameters which describe a neuron (see figure 4.2):

• Input connections (or inputs): x1, x2,. . . ,xn. There are weights bound to the input connections: w1, 
w2, . . . ,wn; one input to the neuron, called a bias, has a constant value of 1 and is usually represented as 
a separate input, say x0, but for simplicity it is treated here just as an input, clamped to a constant value.

• Input function f, calculates the aggregated net input signal to the neuron u = f(x, w), where x and 
w are the input and weight vectors correspondingly; f is usually the summation function: u = 

• An activation (signal) function s calculates the activation level of the neuron a = s(u).

• An output function calculates the output signal value emitted through the output (the axon) of the 
neuron: o = g(a); the output signal is usually assumed to be equal to the activation level of the neuron, 
that is, o = a.

According to the type of values which each of the above parameters can take, different types of neurons 
have been used so far. The input and
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Figure 4.3
The most used activation functions: (a) hard-limited threshold; (b) linear
threshold: if the input is above a certain threshold, the output becomes
saturated (to a value of 1); there are different variants of this function

depending on the range of the neuronal output values shown in (b-1) and
(b-2); (c) sigmoid function: logistic function (c-1); bipolar logistic function

(c-2); (c-3) gaussian (bell shape) function.

output values of a neuron can be binary, {0, 1} ; bivalent, {- 1, 1}; continuous, [0, 1]; or discrete 
numbers in a defined interval.

The most used activation functions are shown in figure 4.3. They are:

1. The hard-limited threshold function. If net input value u to the neuron is above a certain threshold, the 
neuron becomes active (activation value of 1); otherwise it stays inactive (activation value of 0) (figure 
4.3[a]).

2. The linear threshold function. The activation value increases linearly with the increase of the net input 
signal u, but after a certain threshold, the
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output becomes saturated (to a value of 1, say); there are different variants of this function depending on 
the range of neuronal output values (figure 4.3[b-1] and [b-2]).

3. The sigmoid function. This is any S-shaped nonlinear transformation function g(u) that is 
characterized by the following:

a. Bounded, that is, its values are restricted between two boundaries, for example, [0, 1], [- 1, 1].

b. Monotonically increasing, that is, the value g(u) never decreases when u increases.

c. Continuous and smooth, therefore differentiable everywhere in its domain. Different types of sigmoid 
functions have been used in practice. Most of them are The logistic function: a = 1/(1 + e-u), where e is a 
constant, the base of natural logarithm (e, sometimes written as exp, is actually the limit of the n-square 
of (1 + l/n) when n approaches infinity) (figure 4.3[c-1]). In a more general form, the logistic function 
can be written as:

a = 1/(1 + e-c·u), where c is a constant.

The reason why the logistic function has been used as a neuronal activation function is that many 
algorithms for performing learning in neural networks use the derivative of the activation function, and 
the logistic function has a simple derivative, g/ u = a(1 - a). Alternatives to the logistic function as S-
functions are the bipolar logistic: h(u) = (1 - e-u)/(1 + e-u) = 2 g(u) - 1; this function has a range of [- 1, 1] 
(figure 4.3 [c-2]) and hyperbolic tangent: tanh(u) = (eu - e-u)/(eu + e-u).

4. Gaussian (bell shape) function (figure 4.3 [c-3]).

An output signal from a neuron can be represented by a single static potential, or by a pulse, which 
either occurs (coded as 1) or does not occur (coded as 0) (see figure 4.4).

In addition to the types of the neurons described above, many other types have been developed and used: 
the RAM-based neuron, fuzzy neuron, oscillatory neuron, chaotic neuron, and wavelet neuron. They are 
presented later in this book. Which one is the most biologically plausible is difficult to say, but all of 
them have proved to be very useful for building artificial neural networks for engineering applications. 
We shall use the types of neurons described above later in the book, except when another type is 
explicitly defined.
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Figure 4.4
Pulse and potential encoding of an output signal of a neuron.

4.1.3 From Neurons to Systems; What Is Learning and What Is Generalization in Artificial Neural 
Networks?

Although a single neuron can perform certain simple information-processing functions, the power of 
neural computation comes from connecting neurons in networks. Developments in this area have been 
exciting, with periods of success and failure, promises and expectations, and periods of rapid 
development.

One way to understand the ideas behind the process of developing more and more complex artificial 
neural networks as computational models that comprise small processing elements (neurons) is to look 
at the history of this process.

Donald Hebb, in his psychological study published in 1949, pointed out the importance of the 
connections between synapses to the process of learning. Rosenblatt (1958) described the first 
operational model of a neural network, putting together the ideas of Hebb, McCulloch, and Pitts. His 
perceptron was inspired by studies of the visual system. In 1969 Minsky and Papert demonstrated the 
theoretical limits of the perceptron. Many researchers then abandoned neural networks and started to 
develop symbolic AI methods and systems. New connectionist models, among them the associative 
memories (Amari 1977; Hopfield 1982), the multilayer perceptron and backpropagation learning 
algorithm (Rumelhart et al. 1986b; see also Werbos, 1990; and Amari 1967), the adaptive resonance 
theory (ART) (Carpenter and Grossberg 1987a,b), self-organizing networks (Kohonen 1982), and 
others, were developed later, which brought
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Figure 4.5
A simple neural network with four input nodes, two intermediate
nodes, and one output node. The connection weights are shown,
presumably a result of training. The activation value of node n5

is shown too.

researchers back to the subsymbolic paradigm. Now, many more types of neural networks have been 
designed and used. The bidirectional associative memory (Kosko 1988), radial basis functions (Moody 
and Parken 1989), probabilistic RAM neural networks (Taylor and Mannion 1989; Aleksander, 1989), 
fuzzy neurons and fuzzy neural networks (Yamakawa 1990; Furuhashi et al. 1993), and oscillatory 
neurons and oscillatory neural networks (Freeman 1991; Kaneko 1990; Borisyuk, 1991), are only a 
small number of the neural network models developed, not to mention their enormous areas of 
application.

An artificial neural network (or simply neural network) is a computational model defined by four 
parameters:

1. Type of neurons (also called nodes, as a neural network resembles a graph)

2. Connectionist architecture—the organization of the connections between neurons

3. Learning algorithm

4. Recall algorithm

A simple neural network is shown in figure 4.5. It contains four input nodes, two intermediate, and one 
output node. The weights bound to the connections are achieved as a result of a training procedure with 
the use
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of a learning (training) algorithm. A new example, for example, (1 0 1 0), will drive the network to an 
output signal 1 when a threshold activation function is used with a threshold value of 0.

The functioning of a neural network, when an input vector x is supplied, can be viewed as a mapping 
function F: X → Y, where X is the input state space (domain) and Y is the output state space (range) of 
the network. The network simply maps input vectors x ∈ X into output vectors y ∈ Y through the ''filter" 
of the weights, that is, y = F(x) = s(W, x), where W is the connection weight matrix. The functioning of a 
network is usually based on vector-matrix real-number calculations. The weight matrix represents the 
"knowledge", the long-term memory, of the system, while the activation of the neurons represents the 
current state, the short-term memory.

Types of artificial neurons were discussed in the previous subsection, but the type of connections 
between neurons in a neural network defines its topology. Neurons in a neural network can be fully 
connected, that is, every neuron is connected to every other one, or partially connected, for example, 
only connections between neurons in different layers are allowed, or in general not all the possible 
connections between all the neurons of the neural network are present.

Two major connectionist architectures can be distinguished according to the number of input and output 
sets of neurons and the layers of neurons used (see figure 4.6): (1) autoassociative, that is, input neurons 
are

Figure 4.6
Autoassociative and heteroassociative types of neural networks.
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the output neurons too; the Hopfield network is an autoassociative type of network; and (2) 
heteroassociative, that is, there are separate sets of input neurons and output neurons; examples are the 
perceptron and the multilayer perceptron (MLP), the Kohonen network, etc.

According to the absence or presence of feedback connections in a network, two types of architectures 
are distinguished:

1. Feedforward architecture. There are no connections back from the output to the input neurons; the 
network does not keep a memory of its previous output values and the activation states of its neurons; 
the perceptron-like networks are feedforward types.

2. Feedback architecture. There are connections from output to input neurons; such a network keeps a 
memory of its previous states, and the next state depends not only on the input signals but on the 
previous states of the network; the Hopfield network is of this type.

The most attractive characteristic of neural networks is their ability to learn. Learning makes possible 
modification of behavior in response to the environment. A neural network is trained so that application 
of a set X of input vectors produces the desired (or at least a consistent) set of output vectors Y, or the 
network learns about internal characteristics and structures of data from a set X. The set X used for 
training a network is called a training set. The elements x of this set X are called training examples. The 
training process is reflected in changing the connection weights of the network. During training, the 
network weights should gradually converge to values such that each input vector x from the set training 
data causes a desired output vector y produced by the network. Learning occurs if after supplying a 
training example, a change in at least one synaptic weight takes place.

The learning ability of a neural network is achieved through applying a learning (training) algorithm. 
Training algorithms are mainly classified into three groups:

1. Supervised. The training examples comprise input vectors x and the desired output vectors y. Training 
is performed until the neural network "learns" to associate each input vector x to its corresponding and 
desired output vector y; for example, a neural network can learn to approximate a function y = f(x) 
represented by a set of training examples (x, y). It encodes the examples in its internal structure.
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2. Unsupervised. Only input vectors x are supplied; the neural network learns some internal features of 
the whole set of all the input vectors presented to it.

3. Reinforcement learning, sometimes called reward-penalty learning, is a combination of the above two 
paradigms; it is based on presenting input vector x to a neural network and looking at the output vector 
calculated by the network. If it is considered "good," then a "reward" is given to the network in the sense 
that the existing connection weights are increased; otherwise the network is "punished," the connection 
weights, being considered as "not appropriately set," decrease. Thus reinforcement learning is learning 
with a critic, as opposed to learning with a teacher.

Learning is not an individual ability of a single neuron. It is a collective process of the whole neural 
network and a result of a training procedure. The connection weight matrix W has its meaning as a 
global pattern. It represents "knowledge" in its entirety. We do not know exactly how learning is 
achieved in the human brain. But learning (supervised or unsupervised) can be achieved in an artificial 
neural network. And there are some genetic laws of learning which have been discovered and 
implemented.

The most favored learning law in contemporary connectionist models is the Hebbian learning law. The 
idea of this generic learning principle is that a synapse connecting two neurons i and j increases its 
strength wij if the two neurons i and j are repeatedly simultaneously activated by input stimuli. The 
synaptic weight change ∆wij is then calculated as a function of the product of the two activation values ai 
and aj of the neurons i and j:

∆wij = c · ai · aj

Other laws of learning are discussed in the following sections. Some learning methods include 
forgetting. This is the case when, for example, calculating the aggregation input signal ui to a neuron i 
coming from neurons j (j = 1,2, . . . ,n), connected to the neuron i, is done by using the so-called additive 
model:

where ui is the aggregated (net) input signal to the ith neuron; oj is the output signal of the jth neuron 
connected to the ith; t and (t + 1) are discrete time intervals; Ii is an external input signal to the ith 
neuron; and di is a decay coefficient. The decay coefficient represents the process of forgetting.
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When a forgetting ingredient is included in the Hebbian learning law, it becomes the following:

wij(t + 1) = - d · wij(t) + c · ai · aj

Other learning-with-forgetting formulas for calculating weight changes during learning have been 
developed, for example:

∆w'ij(t) = ∆wij(t) - a· sgn {wij(t)},

where a is a small "forgetting" coefficient, and sgn{wij(t)} is the sign of the weight. Learning with 
forgetting causes the unnecessary connections to fade away and a skeleton network to emerge after 
learning, which may result in better generalization (Ishikawa 1995).

The general process of learning in a neural network is described by a characteristic called convergence. 
The network reacts better and better to the same training example x, the more it is introduced to it 
through training, eventually ending up with the desired output y. After the network has stopped learning 
the training examples, the synaptic weights do not change any more, that is, ∆wij = 0, for every 
connection (i, j) in the network when training examples from the training set are further presented. The 
network can stop learning for two reasons: (1) the network has learned the training examples, and (2) the 
network has become saturated. Grossbergs saturation theorem states that large input signals saturate a 
neuron when it is sensitive to small input signals, but if it is sensitive to large input signals, small signals 
are ignored as noise.

Small random values introduced as noise during a learning process tend to increase the robustness of the 
performance of the neural network. In this case the Hebbian learning law will take the form of:

∆wij = c · ai · aj + n,

where n is a noise signal.

When noise is presented during learning, the neural network reaches a convergence when weights 
change within the magnitude of the noise (stochastic equilibrium):

∆wij ≤ n

The state of convergence may also be reached in a so-called oscillatory mode, that is, the synaptic 
weights oscillate between two or more states.
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Figure 4.7
The generalization principle illustrated as a mapping of

the domain to the solution space for a new input x'.
The figure below illustrates the case for one-dimensional

domain space and one-dimensional solution space.

The other general characteristic of artificial neural networks, similar to the ability of the human brain, is 
generalization. This happens when, after having trained a neural network, a new input vector x' is 
presented to the network and a recall procedure is activated. The network would produce an output y' 
which is similar to the output yi from the training examples, if x' is similar to the input vector xi. The 
general principle is that similar stimuli cause similar reactions. Figure 4.7 shows graphically how a 
neural network generalizes to a new input. Generalization may take several iterations of calculating 
consecutive states of the network, which is the case for the recurrent networks. Eventually, the network 
goes into a state of equilibrium, when the network does not change its state during the next iterations, 
that is, it "freezes" into this state. This phenomenon is seen in the Hopfield network. It is analogous to 
the process of trying to associate a face with one seen in the past, in order to remember where we have 
seen the person who said "hello" to us at a party.

  



Page 267

4.2 Supervised Learning in Neural Networks: Perceptrons and Multilayer Perceptrons

Learning is a major functional characteristic of artificial neural networks. We shall start discussing 
different ways of implementing learning in neural networks by introducing the most popular and simple 
learning method—supervised learning—when the data set for training contains information for the 
desired results (outputs, class labels, reaction) in the same way we have been given explicit answers by 
our teachers.

4.2.1 Supervised Learning in Neural Networks

Supervised learning is a process of approximating a set of "labeled" data, that is, each datum (which is a 
data point in the input-output problem space) contains values for attributes (features, independent 
variables) labeled by the desired value(s) for the dependant variables, for example, the set of Iris 
examples, each labeled by the class label.

Supervised learning can be viewed as approximating a mapping between a domain and a solution space 
of a problem: X → Y, when samples (examples) of (input vector, output vector) pairs (x, y) are known, x 
∈ X, y ∈ Y, x = (x1, x2, . . .,xn), y = (yl, y2, . . ., ym). How to achieve an approximation F' of labeled data by 
using a neural network such that it can generalize on new inputs x is the problem supervised learning is 
concerned with. Supervised learning in neural networks is usually performed in the following sequence:

1. Set an appropriate structure of a neural network, having, for example, (n + 1) input neurons (n for the 
input variables and 1 for the bias, x0) and m output neurons and set initial values of the connection 
weights of the network.

2. Supply an input vector x from the set of the training examples X to the network.

3. Calculate the output vector o as produced by the neural network.

4. Compare the desired output vector y (answer, from the training data) and the output vector o produced 
by the network; if possible, evaluate the error.

5. Correct the connection weights in such a way that the next time x is presented to the network, the 
produced output o becomes closer to the desired output y.
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6. If necessary, repeat steps 2 to 5 until the network reaches a convergence state.

Evaluating an error of approximation can be done in many ways, the most used being instantaneous 
error:

Err = (o - y), or Err = |o - y|;

mean-square error (MSE):

Err = (o- y)2/2;

a total MSE sums the error over all individual examples and all the output neurons in the network:

where:  is the output value of the jth output of the network when the kth training example is 
presented; is the desired result (the desired output) for the jth output (jth independent variable) for the 
kth training example; p is the number of training examples in the training data; and m is the dimension 
of the output space (the number of independent variables equal to the number of the output neurons in 
the neural network); and root-mean-square error (RMS), the root of the MSE.

Depending on how an error is calculated, two types of error can be evaluated for a neural network. The 
first, called apparent error, estimates how well a trained network approximates the training examples. 
The second, called test error, estimates how good a trained network can generalize, that is, react to new 
input vectors. For evaluating a test error we obviously have to know the desired results for the test 
examples.

Supervised learning is a very useful learning paradigm for solving problems like classification, or for 
learning a certain prescribed behavior, when the classes, labels, or desired behavior patterns are known. 
Supervised learning can be used for learning "microrules" of stimulus-reaction type, element-class type, 
source-destination type, etc.

The above general algorithm for supervised learning in a neural network has different implementations, 
mainly distinguished by the way the connection weights are changed through training. Some of the 
algorithms are discussed in this section—perceptron learning (Rosenblatt 1958); ADALINE (Widrow  
and Hoff 1960); the backpropagation algorithm
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(Rumelhart et al. 1986b; and others); and (learning vector quantization) LVQ1,2,3 algorithms (Kohonen 
1990).

Supervised learning uses as much of the information and knowledge as given in the data, but it is 
considered by many authors not to be plausible at a low, synaptic level. It is obviously plausible at a 
psychological level because people do learn by being supervised in one way or another, as well as 
through their own experience (which sometimes can be painful).

4.2.2 The Perceptron

One of the first models which made use of the McCulloch and Pitts (1943) model of a neuron was a 
neural network called the perceptron (Rosenblatt 1958). The aim of the experiment was to model visual 
perception phenomena. The neurons used in the perceptron have a simple summation input function and 
a hard-limited threshold activation function or linear threshold activation function. The input values are 
in general real numbers and the outputs are binary.

The connection structure of the perceptron is feedforward and three-layered. The first layer is a buffer, 
where sensory data are stored. The elements of the first layer are connected either fully or arbitrarily to 
elements of a second layer, called the "feature layer." Each neuron from this layer combines information 
coming from different sensory elements and represents a possible feature. The neurons from this layer 
are connected fully to output neurons from an output layer called the "perceptron layer." The weights 
between the buffer and the feature layer are fixed; that is why usually only the two layers are presented 
graphically. This is also the reason why perceptrons are sometimes called "single-layer networks." 
Figure 4.8 is an illustration of a simple perceptron with two elements in the feature layer and one 
perceptron element in the output layer. The bias (x0) is also shown.

A learning (training) algorithm for a perceptron is given in figure 4.9. A perceptron learns only when it 
misclassifies an input vector from the training examples. Then it changes the weights in such a way that 
if the desired output value is 1 and the value produced by the network is 0, the weights of this output 
neuron increase and vice versa. If the produced output value  equals the desired output value  for a 
training example (x, y)(k), then the weights wij (for i = 0, 1, . . ., n) do not change.

Widrow and Hoff (1960) proposed another formula for calculating the output error during training: 
. This learning rule was used in a neural machine called ADALINE (adaptive linear 

neuron).
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Figure 4.8
A simple two-input, one-output perceptron

and a bias.

Figure 4.9
The learning algorithm for a perceptron neural network. The perceptron

learns when it misclassifies a training example.
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Figure 4.10
Linearly separable classes A and B
represented by two points each in a

two-dimensional space (x1, x2).
Such classes can be learned by a

perceptron network.

The recall procedure of the perceptron simply calculates the outputs for a given input vector using the 
summation thresholding formulas given in figure 4.9.

An example of using a perceptron for recognizing points on the two-dimensional plane (x1, x2) where 
two possible areas (classes) A and B are distinguished is given in figure 4.10. If there are sufficient 
examples the perceptron can learn to approximate the training examples and converge after a number of 
training cycles (epochs). It will correctly recognize a new input vector whether it lies in the class B or 
class A area.

Minsky and Papert (1969) discovered a very severe limitation of perceptrons, that is, they can be trained 
to recognize only linearly separable classes. Examples of classes which are linearly separable lie on one 
side only of a hyperplane that separates the classes. If the input space is two-dimensional, the hyperplane 
degenerates into a line. Considering a two-input, one-output perceptron, the line that separates the two 
classes is analytically represented by the following equation:

x1 · w1 + x2 · w2 + w0 = 0,

where w0 is the weight that connects the bias to the output neuron. If the examples are not linearly 
separable, the perceptron fails to converge. A classic example of a classification problem with 
nonlinearly separable
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classes is the exclusive OR problem (also known as the XOR problem) presented in the following table:
(Point) x1 x2 y (Class)

p1 0 0 0 A

p2 1 0 1 B

p3 0 1 1 B

p4 1 1 0 A

A more general example, which the perceptron cannot solve, is the parity function given in the following 
table, where n = 3:
xl x2 x3 f

0 0 0 1

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 1 0 1

1 1 0 1

1 1 1 0

Perceptrons are still used for solving problems because of their very simple architecture and the 
unconditional convergence when linearly separable classes are considered. They are excellent linear 
discriminators.

A perceptron with a nonlinear logistic activation function can learn a logistic linear regression function 

from data, that is,  This function does not account for interactions between the 
independent variables xi, but is useful for statistical analysis of data. Interaction between the input 
variables can be learned in multilayer perceptrons (MLP), thus showing what the degree of interaction is 
between the variables and how important it is for approximating the goal function.

4.23 Multilayer Perceptrons and the Backpropagation Algorithm

To overcome the linear separability limitation of the perceptrons, MLPs were introduced. An MLP 
consists of an input layer, at least one interme-
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Figure 4.11
An MLP for solving the XOR problem.

It has one intermediate layer.

diate or ''hidden" layer, and one output layer, the neurons from each layer being fully connected (in 
some particular applications, partially connected) to the neurons from the next layer. An example of a 
multilayered network for solving the XOR problem is given in figure 4.11.

The MLPs were put into practice only when learning algorithms were developed for them, one of them 
being the so-called backpropagation algorithm (Werbos 1990; Rumelhart et al. 1986b; among others). 
The full name of the algorithm is the error backpropagation algorithm.

The neurons in the MLP have continuous value inputs and outputs, summation input function, and 
nonlinear activation function. A gradient descent rule may be used for finding optimal connection 
weights wij which minimize a global error E. A change of a weight ∆wij at a cycle (t + 1) is in the 
direction of the negative gradient of the error E:

where lrate is learning rate. The gradient rule ensures that after a number of cycles, the error E will 
reach a minimum value, or the lowest "plateau," if the error E is represented as a surface in the weights' 
vector space. A global error for all the training examples can be calculated as follows:
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where the error for an example (p) Errj(p) can be calculated, for example, as an MSE:

 

Amari, in 1967, suggested that a gradient descent algorithm can be used for training MLP, but 
propagating the error backward and adjusting the connection weights was suggested later.

The gradient descent rule for changing a connection weight between neuron i and neuron j can be 
expressed by the delta rule:

or alternatively by the generalized delta rule:

where Errj is the error between the desired output value yj and the value oj produced by the neuron j 
which can be simply expressed as Errj = |yj - oj|. The value g'(uj) is the derivative g/ u of the activation 
function g to the net input u, for a particular value of uj; and oi is the output value for the neuron i. When 
the activation function g is the logistic function, the derivative g'(uj) is expressed as oj ⋅ (1- oj). The 
formula above is simplified as follows:

At every learning cycle (a cycle, also called iteration or epoch, can be defined as the process of 
propagating through the network one or several of the training examples and calculating the error E for 
them) the training algorithm consists of two passes: (1) a forward pass, when inputs are supplied and 
propagated through the intermediate layers to the output layer; and (2) a backward pass, when an error is 
calculated at the outputs and propagated backward for calculating the weights' changes. This is the 
major feature of this algorithm illustrated in figure 4.12. During the backward pass, an error Erri for an 
intermediate node i is calculated by multiplying the errors Errj of all the neurons j to which the neuron i 
is connected by the corresponding weights wij. This error is then used backward to adjust the weights of 
the neurons k from a previous layer, connected to the neuron i. The training procedure is repeated for 
many epochs with the same training examples until the global error E is sufficiently small.

Calculating the error and changing the connection weights can be done either in a batch mode (an 
aggregating or average error is calculated for all or some training examples), or in an individual mode 
(the error is calculated and weights are changed after every training example).
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Figure 4.12
A schematic representation of learning in an MLP. The signal is

propagated forward and the error backward.

Each connection weight might have its individual learning rate (delta-bar-delta rule) (Jacobs 1988). If 
the weight changes alternate in sign the learning rate should be decreased. If the weight change is stable, 
the learning rate should increase. Several problems are encountered when using the backpropagation 
algorithm:

• If the learning rate (also denoted in many references by η) is chosen too high (e.g., 0.9) the 
weights oscillate with a large amplitude; a small learning rate causes a very slow convergence. It has 
been found that the optimal learning rate is inversely proportional to the number of hidden nodes. In 
Eaton and Oliver (1992) the following formula for calculating the learning rate has been suggested:

where pi is the number of all the instances which belong to an output class i. One way to accelerate 
learning when η is chosen small and to prevent oscillation of weights when η is big is to introduce a 
parameter called momentum (also denoted in the literature by a). This parameter brings inertia to the 
next change ∆wij (t + 1) of the weight wij depending on the direction of its previous change ∆wij(t). A 
modified backpropagation algorithm which uses momentum α is given in figure 4.13. The formula used 
for calculating weight changes is:
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Figure 4.13
A modified backpropagation algorithm, where momentum is used.

• As discussed above, the backpropagation algorithm is a gradient descent algorithm. The problem 
with backpropagation, as with many other gradient descent algorithms, is that it can stop learning at a 
local minimum instead at the global minimum. This problem is called the local minima problem. In 
order to overcome this problem, some practical recommendations are suggested: randomize the initial 
weights with small numbers in an interval [- 1/n, 1/n], where n is the number of the neuronal inputs; use 
another formula for calculating the output error; introduce "noise."

Learning with the presence of noise may help overcome the local minima problem. Noise can be 
introduced in the training patterns, synaptic weights, and output values. In this case the error is 
calculated as:

where σn is the variance of the external noise In.

• The backpropagation algorithm is very time-consuming. Various modifications to it try to 
improve its performance.
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• Training with a backpropagation algorithm may result in a phenomenon called overfitting, or 
overtraining, as explained in 4.2.4.

• There are problems in choosing the optimal number of hidden layers and hidden nodes (see 
section 4.2.5).

The backpropagation algorithm has many modifications and improvements, which are difficult to follow 
and present here. They differ in the following points: error calculation, activation function, the weights 
updating formula, number of epochs for updating the weights, and other parameters.

4.2.4 MLPs as Universal Approximators

Regardless of the training algorithm used for an MLP, there are some common features of MLP 
architectures. Some of them are:

• MLPs are universal approximators.

THEOREM (Hornik et al. 1989; Cybenko 1989; Funahashi 1989; others). An MLP with one hidden 
layer can approximate any continuous function to any desired accuracy, subject to a sufficient number of 
hidden nodes.

The proof of this fundamental theorem is based on the Kolmogorov theorem (1957), which states that 
any real-valued continuous function f defined on an n-dimensional cube can be represented as a sum of 
functions which have their arguments as sums of single-variable continuous functions. In a more precise 
form, it is as follows:

where: gk and ηk,i are continuous functions.

Thus, for any continuous function, there exists an MLP which can approximate it to a desired degree of 
accuracy if the continuous increasing functions are chosen to be, for example, the sigmoid functions. 
Unfortunately, this statement does not suggest how to construct the MLP, what number of layers and 
neurons in the layers can be used. The theorem supports the prove of the existence of such an MLP. As a 
corollary, any boolean function of n boolean variables can be approximated by an MLP.
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An easy proof can be shown by using 2" hidden nodes, but the optimal number of these nodes is difficult 
to obtain.

Example  A 1-6-1 MLP can learn to approximate the sine function after being trained with enough data.

• MLP are multivariate nonlinear regression models. A three-layer MLP, for example, with n 
inputs, h intermediate nodes, and one output, approximates a set of training data according to the 
formula:

where s is a sigmoid function;  is the output value of the ith intermediate 
node; wi and wki are the connection weights from the second and the first connection layers 
correspondingly; and w0: are bias weights. This formula represents interactions between variables in 
contrast to the single-layer perceptron, which can be viewed as a linear regression model.

• MLPs can learn conditional probabilities. We shall consider here MLPs without feedback 
connections, or the so-called memoryless MLPs. Such MLPs can learn the conditional probability 
density function p(y|x) between the output vectors y when input vectors x are presented (see section 
5.5.2).

4.2.5 Problems and Features of the MLPs

MLPs are probably the most used neural network models so far. However there are several problems 
when using them. Some of these problems, with their possible solutions, are presented below.

• The question of how to choose the number of neurons in the intermediate layer and the more 
general question, how to chose the structure of the MLP, are difficult. If the training data set is clustered 
in groups with similar features, the number of these groups can be used to chose the number of hidden 
neurons. In the other extreme case, when the training data are sparse and do not contain any common 
features, then the number of connections might need to be close to the number of training examples in 
order for the network to reach a convergence. There are many suggestions about how to choose the 
number h of the hidden neurons in an MLP. For example, the minimum number should be h ≥ (p - 1)/(n 
+ 2),
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where p is the number of training examples and n is the number of inputs of the network. The more 
hidden nodes in a network, the more characteristics of the training data it will capture, but the more time-
consuming the learning procedure will be.

Another heuristic for choosing the number of hidden nodes is that the number of hidden nodes is equal 
to the optimal number of fuzzy clusters (see chapter 3). This statement has been proved experimentally. 
Choosing the number of hidden layers is also a difficult task. Many problems require more than one 
hidden layer for a better solution.

In order to find the best neural network model, Ishikawa and Moriyama (1995) use structural learning 
with forgetting, so during training pruning of the connections with small weights is performed. After 
training, only the connections that contribute to the task are left, thus defining a skeleton of the neural 
network model.

• Neurons from an intermediate level in an MLP capture relations between the input data vectors. 
When solving the parity problem, for example, the activation of the intermediate neurons reflect the 
number of 1's in the input vector. The hidden neurons specialize during training to react to certain 
features in the training data, which features might not be known in advance. The intermediate layer 
learns and captures structures, clusters, "patches," and rules in the training data.

• Catastrophic forgetting is a phenomenon which represents the ability of a network to forget what 
it has learned from previous examples when they are no longer presented to it, but other examples are 
presented instead. This is due to a change in the weights according to the newly presented examples, if 
the past examples are no longer presented for training (or refreshing, retraining). In order to avoid this 
phenomenon, alternative training might be performed, that is, alternative training with new data and 
with old data. This is illustrated with an example of alternative training of a network with two sets of 
examples A and B (figure 4.14). When the network was started to be trained for a second time with the 
first set A, after being trained with A and then with set B, the initial error was higher than it was at the 
end of the first training cycle with A. There are methods for training with new data. For example, after 
several new examples are presented to the network, several old ones, chosen possibly randomly from the 
past examples, are presented too (rehearsal procedure). The
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Figure 4.14
An example of alternative training of a
network with two sets of examples A

and B. When the network was started to
be trained for a second time with the first

set A, after being trained with A and
then with set B, the initial error was

higher than it was at the end of
the first training cycle with A.

problem arises when the old examples are no longer available. Then pseudoexamples may be used 
to keep the weights as close to the previous ones as possible. Such pseudoexamples can be 
generated during training rather than kept in a table. Adaptive training is discussed in chapter 7.

• Learning hints in an MLP: In addition to the data set used for training, we can train the network 
with some existing hints about the unknown function. Prior knowledge (hints) can be introduced as a 
new set of examples, which the network learns alternatively to the training data set until the error for 
both training data sets (or more, if more than one hint is available) is sufficiently small. Except by 
generating new data, which represent a hint (a soft way for accommodating the hint), we can use an 
explicit, hard way for introducing the hint to the network by setting an extra connection between the 
nodes. For example, if we know that the attribute "character of the applicant" is the most important 
attribute for deciding on his or her loan application, we introduce an extra connection between the node 
which represents the attribute "character" and the output node "decision" (figure 4.15). We can also add 
some more data examples to the training data set, all of them having "character" = 1 (good) and 
''decision" = 1 (approve). The values of the other input attributes have to be consistent too. Hints can be 
presented in the form of rules. Rules map patches from the domain space into patches of the solution 
space. Here, in order to train a network to learn rules, there has to be a fair amount of data points taken 
from these patches and added to the training data set.
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Figure 4.15
A "hard" way of introducing "hints" to a neural network. The attribute

"character'' of the applicants is known to be the most important attribute
for deciding on their loan application. An extra connection between
the node which represents the attribute "character" and the output

 node "decision" is introduced.

• Overfitting is a phenomenon which indicates that the neural network has too closely 
approximated, learned, the data examples, which may contain noise. In such a case the network can not 
generalize well on new examples (figure 4.16). There are some ways to overcome this problem: early 
stopping of the training process: while the training error is calculated, the test error over test data is 
calculated also; the process of training stops when the test error is minimal; Using less hidden nodes; 
more hidden nodes lead to too good an approximation;

• How to choose the number of training examples to present to a chosen network architecture if we 
want the network to approximate a known function? The same problem can be formulated as follows: 
Given any probability distribution function and a fixed neural network architecture, how many randomly 
chosen training examples are necessary for its correct approximation? The answer involves the use of 
the VC dimension (Vapnic-Chervonenkis dimension), a quantitative measure of the set of functions that 
a neural network can compute. More precisely, the VC dimension of a class {F} of {0,1} valued 
functions is the size of the largest set of points that functions in {F} can classify arbitrarily, that is, for 
all possible desired classifications of the points, there is a function F ∈ {F}
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Figure 4.16
The "overtraining" phenomenon. After a certain

 number of training cycles, the test error Etest

begins to increase, while the training error Etrain

is continuing to decrease. The process of training
 should stop at that point.

that classifies each point in the appropriate way. The following formula holds for a neural network:

VC dimension < 2|W| log2 e.N,

where |W| is the number of connection weights, and N is the number of neurons in the network.

|W| log N training examples provide enough information for correct learning of a probability distribution 
function.

For a three-layered feedforward network with n1, n2, n3 number of neurons in the corresponding layers, 
the following holds:

VC dim ≥ n1 n2 + n2(n3 - 1)/2 + 1≈ ξ|W|,

where ξ is a constant.

The above formula represents in a precise form something which may not be obvious to a newcomer to 
the field of neural networks. Roughly speaking, the learning and generalization ability of a network in 
respect to the size of the training data set is defined by the size of the connection weight space.

In order to overcome some of the problems with MLPs, other neural network models have been 
developed. Some of them are discussed in the following sections.

4.3 Radial Basis Functions, Time-Delay Neural Networks, Recurrent Networks

The MLP networks with training algorithms, were a giant step forward. They influenced very much the 
development of new models of neural
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Figure 4.17
A radial basis functions network (RBFN).

networks, which borrowed some ideas from them, but which also generated new ideas. Three of these 
models are presented in this section.

4.3.1 Radial Basis Function Networks

Radial basis function networks (RBFNs) have been proposed and used by some authors (Moody and 
Darken 1989; Renals and Rohwer 1989; others). A general architecture of the RBFN is given in figure 
4.17. An RBFN consists of three layers. The first layer consists of n inputs.They are fully connected to 
the neurons in the second layer. A hidden node has a radial basis function (RBF) as an activation 
function. The RBF is a radially symmetric function (e.g., gaussian, bell-like, ∏ function):

f(x) = exp[-(x - M)2/2σ 2],

where M and σ are two parameters meaning the mean and the standard deviation of the input variable x. 
For a particular intermediate node i, its RBFi is centered at a cluster center ci in the n-dimensional input 
space. The cluster center ci is represented by the vector (w1i . . . ,wni) of connection weights between the n 
input nodes and the hidden node i. The standard deviation for this cluster defines the range for the RBFi. 
The RBF is nonmonotonic, in contrast to the sigmoid function. The second layer is connected to the 
output layer. The output nodes perform a simple
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summation function with a linear threshold activation function. Training of an RBFN consists of two 
phases: (1) adjusting the RBF of the hidden neurons by applying a statistical clustering method; this 
represents an unsupervised learning phase; (2) applying gradient descent (e.g., the backpropagation 
algorithm) or a linear regression algorithm for adjusting the second layer of connections; this is a 
supervised learning phase. During training, the following parameters of the RBFN are adjusted:

• The n-dimensional position of the centers ci of the RBFi. This can be achieved by using the k-
means clustering algorithm (see chapter 2); the algorithm finds k (number of hidden nodes) cluster 
centers which minimize the average distance between the training examples and the nearest centers.

• The deviation scaling parameter σi for every RBFi; it is defined by using average distance to the 
nearest m-cluster centers:

where cip is the center of the pth cluster near to the cluster i.

• The weights of the second layer connections.

The recall procedure finds through the functions RBFi how close an input vector x' is to the centers ci 
and then propagates these values to the output layer.

The following advantages of the RBFN over the MLP with the backpropagation algorithm have been 
experimentally and theoretically proved:

• Training in RBFNs is an order of magnitude faster than training of a comparably sized 
feedforward network with the backpropagation algorithm.

• A better generalization is achieved in RBFNs.

• RBFNs have very fast convergence properties compared with the conventional multilayer 
networks with sigmoid transfer functions, since any function can be approximated by a linear 
combination of locally tuned factorizable basis functions.

• There is no local minima problem.

• The RBF model can be interpreted as a fuzzy connectionist model, as the RBFs can be considered 
as membership functions.
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• The hidden layer has a much clearer interpretation than the MLP with the backpropagation 
algorithm. It is easier to explain what an RBF network has learned than its counterpart MLP with the 
backpropagation algorithm

There are also disadvantages to using the RBFN, one of them being finding the appropriate number of 
hidden nodes. Unsupervised learning might be necessary to apply first and find out the number of 
clusters. The number of hidden nodes is then set to be equal to this number. Too many, or too few, 
hidden nodes will prevent RBFN from properly approximating the data.

4.3.2 Time-Delay Neural Networks

Time-delay neural networks (TDNNs) are modifications of the MLP which use delay elements to feed 
input data through (figure 4.18a). The input layer is a shift register with delay elements. The shift 
register is used to keep several old values in a buffer. Then all values, old and new, are fed as input 
values for further processing in the network.

TDNNs have been developed to facilitate learning time sequences, where the next value of the sequence 
is correlated with its previous values. Standard MLP training algorithms (e.g., the backpropagation 
algorithm) can be applied.

The output layer can represent different concepts:

• Next values of the time sequence; this mode is called sequence reproduction

• The type (class) of the fed sequence; this task is called sequence recognition

• New patterns, belonging to another time sequence; this task is called temporal association

TDNNs transform time patterns into spatial patterns. In this transformation several problems arise:

• Does synchronization of the data shift in the input layer correspond to the real-time occurrence of 
events?

• The number of delay elements is set in advance, which may not represent the existing time 
correlation in the sequence. A dynamical adjustment may be needed.

TDNNs have been used intensively for speech recognition, as discussed in chapter 5, and for other time 
sequence-related tasks.
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Figure 4.18
(a) Time-delay neural network (TDNN). (b-d) Recurrent neural network architectures:

(b) with feedback connections from hidden nodes; (c) with feedback connections
 from output nodes; (d) buffered feedback connections.

4.3.3 Recurrent Neural Networks

Recurrent networks have feedback connections from neurons in one layer to neurons in a previous layer. 
Different modifications of such networks have been developed and explored. A typical recurrent 
network has concepts bound to the nodes whose output values feed back as inputs to the network. So the 
next state of a network depends not only on the connection weights and the currently presented input 
signals but also on the previous states of the network. The network leaves a trace of its behavior; the 
network keeps a memory of its previous states.
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Depending on the architecture of the feedback connections, there are two general models of recurrent 
networks: (1) partially recurrent, and (2) fully recurrent. The neural networks of the first type have 
carefully selected specific feedback connections which are meaningful. They represent (possibly time-) 
dependence between concepts represented in the network. Feedback connections to the input layer can 
be established from hidden nodes (Elman 1990); figure 4.18b); and output nodes (Jordan 1986; figure 
4.18c).

The weights assigned to the feedback connections may not be adjustable (e.g., may be they set to a value 
of 1). In this case a standard MLP training algorithm (e.g., the backpropagation algorithm) can be used 
to adjust the feedforward connection weights. In addition to the feedback connections, which make 
possible use of a previous-time moment output value for calculating the next one, a buffer of output 
values for more than one step back in time can be used as an additional input buffer. Such recurrent 
networks are called buffered networks (Elman 1990; see figure 4.18d).

It was shown that a recurrent network which keeps a track of its k-previous states can be represented as 
unfolded MLP with k layers of connections. Such networks were called backpropagation through time 
(Rumelhart et al. 1986b, Werbos 1990). The idea is to duplicate the nodes in space in order to achieve 
time-dependence.

In fully recurrent networks any node may be connected to any other. This is the case with the Hopfield 
network, presented in a later section.

Recurrent neural networks can model a finite state automaton (see chapter 2).

Difficult questions to deal with, when using recurrent networks, are:

• Synchronization is required in order to achieve proper timing when propagating the signals 
through the network.

• It is difficult to express in a linguistic form or in a formula the time-dependence learned in a 
recurrent network after training, that is, the balance which the network has achieved between forgetting 
previous states and remembering new ones. How much "back in time" can a recurrent network keep 
track of?

• Recurrent networks may manifest chaotic behavior, and therefore learning might be difficult.
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Recurrent networks suit time-series prediction problems, speech recognition problems, and many others, 
where in order to recognize a current state previous states have to be considered. For example, in 
language understanding and speech processing the semantic meaning of a word is recognized after 
taking into account the previously recognized words and possibly some of the following words.

Example   Two different meanings of the word "bank" are illustrated in the following sentences: "My 
bank account was empty" and "We went to the river bank.'' In order to recognize the meaning of "bank," 
we need to take into account the meaning of adjoining words which can be eventually done in a 
recurrent network.

4.4 Neural Network Models for Unsupervised Learning: Adaptive Resonance Theory

Unsupervised learning is considered to be more psychologically plausible, possibly because humans 
tend to learn more about nature and life through their own experience, rather than by listening to a 
teacher. For example, imagine that there is nobody to tell us which instance to classify into which class, 
that is, what we should derive. The patterns in this case are not labeled with class-labels.

There is evidence that unsupervised learning is plausible from a biological point of view too, that is, the 
way neurons change their connection weights, but we shall look at this paradigm here from an 
engineering point of view.

4.4.1 Unsupervised Learning in Neural Networks

Two principle learning rules are implemented in the contemporary unsupervised learning algorithms for 
neural networks: (1) noncompetitive learning, that is, many neurons may be activated at a time; and (2) 
competitive learning, that is, the neurons compete and after that, only one is activated at one time, e.g. 
only one wins after the competition. This principle is also called "winner takes all."

Most of today's training algorithms are influenced by the concept introduced by Donald O. Hebb (1949) 
(see 4.13). Hebb proposed a model for unsupervised learning in which the synaptic strength (weight) is 
increased if both the source and destination neurons are simultaneously activated. It is expressed as:
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where wij(t) is the weight of the connection between the ith and jth neuron at the moment t, and oi and oj 
are the output signals of neurons i and j at the same moment t. The weight wij(t + 1) is the adjusted 
weight at the next moment (t + 1). This principle was used in supervised learning, but then we knew the 
desired outputs. Here, the outputs are as they are produced by the network only. Different modifications 
of this rule have been suggested, for example: the differential Hebbian learning law (Kosko 1988(A)):

The differential Hebbian law introduces the first derivatives of the activation signals to the Hebbian law.

• Grossberg's competitive law (Grossberg 1982), expressed as:

• The differential competitive learning law (Kosko 1990):

The differential competitive learning law introduces the first derivative of neuronal output values to the 
competitive learning law.

• Adaptive vector quantization (Kohonen 1982, 1990); the learning law in a vector form is:

where c is a learning rate, x(t) is the input vector at moment t, and wj is the vector of the weights from 
the input neurons to the neuron j.

Unsupervised learning is also applicable when noise is present. For example, the random signal Hebbian 
law looks like:

where nij is a noise introduced to the connection i-j.

In the major competitive learning models, the neural networks are organized in layers. There are 
excitatory connections between neurons from different layers, and inhibitory connections between 
neurons in one layer. The neurons in the output layer compete, each one inhibiting the others with its 
current activation level. The winner takes all in the end, that is, the neuron that gets the highest 
activation level is activated. Then a
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"reward" follows; this neuron strengthens its weights according to the input pattern and possibly 
suppresses the other neurons' weights.

Unsupervised learning is applicable for conceptualization, that is, discovering and creating new concepts 
and categories from data examples. Unsupervised learning in neural networks can be used to learn 
structures, similarities, and relations.

Another major application for unsupervised learning networks is vector quantization. N-dimensional 
data vectors are represented as k-dimensional, when k < n. This is important for signal compression 
(images, speech, etc.), clustering, reducing dimensionality, etc.

In the following subsections we discuss the competitive learning algorithm based on adaptive resonance 
theory (ART), developed by Carpenter and Grossberg (1987a,b) and the self-organizing maps (SOMs), 
developed by Teuvo Kohonen (1982, 1984, 1990).

4.4.2 Adaptive Resonance Theory

Adaptive resonance theory makes use of two terms used in the study of brain behavior: (1) stability and 
(2) plasticity. The stability/plasticity dilemma is the ability of a system to preserve the balance between 
retaining previously learned patterns and learning new patterns. Two layers of neurons are used to 
realize the idea: (1) a "top" layer, an output, concept layer, and (2) a "bottom" layer, an input, feature 
layer. Two sets of weights between the neurons in the two layers are used. The top-down weights 
represent learned patterns, expectations. The bottom-up weights represent a scheme for new inputs to be 
accommodated in the network.

Patterns, associated to an output node j, are collectively represented by the weight vector of this node tj 
(top-down weight vector). The reaction of the node j to a particular new input vector is defined by 
another weight vector bj (bottom-up weight). The key element in Grossberg's realization of the 
stability/plasticity dilemma is the control of the partial match between new feature vectors and ones 
already learned, which is achieved by using a parameter called vigilance or the vigilance factor. 
Vigilance controls the degree of mismatch between the new patterns and the learned (stored) patterns 
that the system can tolerate.

Figure 4.19a shows a diagram of a simple ART1 (binary inputs only are allowed) architecture. It 
consists of two sets of neurons: n input (feature) neurons (first layer) and m output neurons (second 
layer). The bottom-up connections bij from each input i to every output j and the top-down
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Figure 4.19
(A) A schematic diagram of a three-input, two-output ART network.

(B) A realization of an ART1 algorithm.
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connections tji from the outputs back to the inputs are shown in the figure. Each of the output neurons 
has a strong excitatory connection to itself and a strong inhibitory connection to each of the other output 
neurons.

The ART1 learning algorithm is given in figure 4.19b. It consists of two major phases. The first presents 
the input pattern and calculates the activation values of the output neurons. The winning neuron is 
defined. The second phase calculates the mismatch between the input pattern and the pattern currently 
associated with the winning neuron. If the mismatch is below a threshold (vigilance parameter), this 
pattern is updated to accommodate the new one. But if the mismatch is above the threshold, the 
procedure continues for finding either another output neuron or a new one, as the input pattern has to be 
associated with a new-concept, new-output neuron.

An example of applying the algorithm, where a network learns to categorize sequentially fed patterns, is 
presented in figure 4.20. The network associates the first pattern with the first output neuron, the second 
pattern with the first output neuron again, and the third input pattern with the

Figure 4.20
Associating groups (concepts, classes) to input
patterns in ART1. The three presented patterns
are grouped in two groups. An ART1 network

with 20 input nodes and 10 output nodes is used.
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second output neuron. Every time the network associates a new input pattern with an old one, it changes 
the old one accordingly. For binary inputs, the simple operation of binary intersection is used.

The ART neural networks are ideal for conceptualization, clustering, and discovering existing types and 
number of classes in a database. Categorization between different unknown, but existing categories in a 
set of examples can be successfully achieved. A crucial parameter in the algorithm is the vigilance 
factor. If it is high, for example, 0.95, only small differences between patterns that will be categorized in 
one category and assigned to one output neuron will be tolerated. In its extreme value of 1, each of the 
output neurons will learn to represent a different input pattern, whatever the difference between patterns. 
If the vigilance factor is small, then slightly different patterns will be grouped in one output group and 
bound to one output neuron. The top-down weights, which represent the patterns bound to an output 
neuron, may change dramatically after associating a new pattern with an already existing category.

ART1 was further developed into ART2 (continuous values for the inputs) and ART3 (Carpenter and 
Grossberg, 1990). The ART3 model is closer to the synaptic processes in real neurons. Algorithms for 
supervised learning in ART3 architecture have also been developed

Fuzzy ARTMAP is an extension of ART1 when input nodes represent not "yes/no" features but degrees 
of membership, to which the input data belong to features, for example, a set of features (sweet, fruity, 
smooth, sharp, sourish) used to categorize wines based on their taste. A particular sample of wine can be 
represented as an input vector consisting of membership degrees, for example, (0.7, 0.3, 0.9, 0.2, 0.5). 
The fuzzy ARTMAP allows for continuous values in the interval of [0, 1] for the inputs and the top-
down weights. It uses fuzzy operators MIN and MAX to calculate intersection and union between the 
fuzzy input patterns x and the continuous-value weight vectors t.

4.5 Kohonen Self-Organizing Topological Maps

One of the most used neural network models, used mainly for vector quantization and data analysis but 
also applicable to almost all the tasks where neural networks have been tried successfully, is the self-
organizing map introduced and developed by Teuvo Kohonen (1982, 1990, 1993).
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Figure 4.21
A part of a Kohonen SOM with
two inputs xl and x2 and a two-

dimensional output map.

Some theoretical background of this type of network is given in this section, and more applications are 
presented in chapter 5. Practical applications of the SOM neural networks occur in the following 
problem areas: speech recognition, industrial automatic design of digital systems, and optimization, 
among others (Kohonen 1990).

4.5.1 The Philosophy of the Kohonen Network

Self-organizing topological or feature maps became popular because they tend to be very powerful at 
solving problems based on vector quantization. A SOM consists of two layers, an input layer and an 
output layer, called a feature map, which represent the output vectors of the output space (figure 4.21). 
The weights of the connections of an output neuron j to all the n input neurons, form a vector wj in an n-
dimensional space. The input values may be continuous or discrete, but the output values are binary 
only. The main ideas of SOM are as follows:

• Output neurons specialize during the training or recall procedure (both may not be distinguished 
here) to react to input vectors of some groups (clusters) and to represent typical features shared by the 
input vectors. This characteristic of the SOM tends to be biologically plausible as there is evidence to 
show that the brain is organized into regions that correspond to different sensory stimuli. There is also 
evidence for linguistic units being locatable within the human brain. A SOM is able to extract abstract 
information from multidimensional primary signals and to represent it as a location, in one-, two-, three-
, etc. dimensional space (Kohonen 1990).
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• The neurons in the output layer are competitive. Lateral interaction between neighboring neurons 
is introduced in such a way that a neuron has a strong excitatory connection to itself and fewer 
excitatory connections to its neighboring neurons within a certain radius; beyond this area, a neuron 
either inhibits the activation of the other neurons by inhibitory connections, or does not influence it. One 
possible rule is the so-called Mexican hat rule. In general, this is "the winner-takes-all" scheme, where 
only one neuron is the winner after an input vector has been fed in and a competition between the output 
neurons has taken place. The winning neuron represents the class, the label, and the feature to which the 
input vector belongs.

• The SOM transforms or preserves the similarity between input vectors from the input space into 
topological closeness of neurons in the output space represented as a topological map. Similar input 
vectors are represented by near points (neurons) in the output space. The distance between the neurons 
in the output layer matters, as this is a significant property of the network.

There are two possibilities for using the SOM. The first is to use it for the unsupervised mode only, 
where the labels and classes that the input vectors belong to are unknown. A second option is when 
SOM is used for unsupervised training followed by a supervised training. LVQ (learning vector 
quantization) algorithms (Kohonen 1990) have been developed for this purpose. In the LVQ algorithms, 
after an initial unsupervised learning is performed in a SOM, the output neurons are calibrated, labelled 
for the known classes, and a supervised learning is performed which refines the map according to what 
is known about the output classes, regions, groups, and labels. The two possibilities are presented and 
discussed in the next subsections.

4.5.2 Unsupervised Self-Organizing Feature Maps

The unsupervised algorithm for training a SOM, proposed by Teuvo Kohonen, is outlined in figure 4.22. 
After each input pattern is presented, the winner is found and the connection weights in its 
neighbourhood area Nt increase, while the connection weights outside the area are kept as they are. α is 
a learning parameter. It is recommended that the training time moments t (cycles) are more than 500 
times the output neurons. If the training set contains fewer instances than this number, then the whole 
training set is fed again and again into the network.
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Figure 4.22
A realization of the Kohonen SOM training algorithm.

SOMs learn statistical features. The synaptic weight vectors tend to approximate the density function of 
the input vectors in an orderly fashion (Kohonen 1990). Synaptic vectors wj converge exponentially to 
centers of groups of patterns and the whole map represents to a certain degree the probability 
distribution of the input data. This property of the SOM is illustrated by a simple example of a two-
input, 20 x 20-output SOM. The input vectors are generated randomly with a uniform probability 
distribution function as points in a two-dimensional plane, having values in the interval [0,1]. Figure 
4.23 represents graphically the change in weights after some learning cycles. The first box is a two-
dimensional representation of the data. The other boxes represent SOM weights also in a two-
dimensional space. The lines connect neighboring neurons, and the position of a neuron in the two-
dimensional graph represents the value of its weight vector. Gradually the output neurons become self-
organized and represent a uniform distribution of input vectors in the input space. The time (in cycles) is 
given in each box as well. If the input data have a well-defined probability density function, then the 
weight vectors of the output neurons try to imitate it, regardless of how complex it is. The
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Figure 4.23
Uniformly randomly distributed two-dimensional 

vectors are learned by a two-dimensional SOM
after 5000 iterations. The first image represents
the raw data and the next represent the weight

vectors of the SOM for each of eight consecutive
steps (following the experiments presented in

Kohonen (1990)).

weight vectors are also called reference vectors or reference codebook vectors, and the whole weight 
vector space is called a reference codebook. Figure 4.24 shows the adaptation of the same network to the 
generated input vectors in 2 when the latter are not uniformly distributed but have a gaussian 
distribution of a star type. Figure 4.25 shows the adaptation of a SOM to a distribution in 2 achieved 
with the use of fractal data.

The SOM  is very similar to an elastic net which covers the input vector's space.

4.5.3 Learning Vector Quantization Algorithms for Supervised Learning

The problem of distinguishing input vectors that "fall" in the bordering area between two output neurons 
and the necessity for using known labels of the neurons for better topological mapping of the input 
vectors into the
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Figure 4.24
Learning gaussian distributed random vectors by

a two-dimensional SOM.

output space have led to the development of learning vector quantization (LVQ) algorithms LVQ1, 
LVQ2, and LVQ3 (Kohonen 1990).

LVQ1 Algorithm   In LVQ1 several codebook vectors are assigned to each class, and each is labeled 
with the corresponding class symbol (label). Initial values of the codebook vectors are learned by the 
SOM algorithm. The output neurons are then labeled according to the classes. Then a correction of the 
weights with the use of the known labels is performed by applying the following formulas to update the 
weights vectors:

wj(t + 1) = wj(t) + α(t)(x(t) - wj(t)), if x is classified by the network correctly in class cj represented by 
the jth neuron
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Figure 4.25
Learning fractal data in a two-dimensional SOM.

wj(t + 1) = wj(t) - α(t)(x(t) - wj(t)), if x has been wrongly associated by the network with class-neuron j

wi(t + 1) = wi(t), for all i different form j

α(t) is a scalar gain factor which decreases monotonically in time.

LVQ2 Algorithm   In the LVQ2 algorithm, a further tuning of the weights of the immediate neighbors to 
the winning neuron, after a presentation of an input vector, is done. If, for example, ci is the class of the 
winning neuron, but x belongs to the class cj of its neighbor j, the following formulas are applied to 
calculate the new weight vectors for neurons i and j (figure 4.26):

  



Page 300

Figure 4.26
The LVQ algorithms use ''windows" between nodes
Ci and Cj (their weight vectors in the weight space).
If the input vector x "falls" in the window between
the two classes (nodes), the weights are adjusted
depending on the known information about the

desired label of that vector.

wi(t + 1) = wi(t) - α(t)(x(t) - wi(t)), or

wj(t + 1) = wj(t) + α(t)(x(t)- wj(t)), or

wk(t + 1) = wk(t), for the rest of the neurons k

LVQ3 Algorithm In the LVQ3 algorithm a window between the lateral output neurons i and j is 
considered. When the input vector x falls out of the window, it is the LVQ2 algorithm which determines 
one of the i or j neurons to be a winner and updates the new codebook vectors. But if the input vector x 
falls in the window, then other formulas are applied:

wi(t + 1) = wi(t) - α(t)(x(t) - wi(t)), if x falls in the "window" and x belongs to class cj

wj(t + 1) = wj(t) + α(t)(x(t) - wj(t)), for k ∈ {i, j}, if x falls in the "window" and x belongs to class cj

wk(t + 1) = wk(t) + α(t)(x(t) - wk(t)), for k ∈ {i, j}, if x falls in the window and i and j represent the same 
class

4.6 Neural Networks as Associative Memories

4.6.1 Learning Pattern Associations

Pattern association is the process of memorizing input-output patterns in a heteroassociative network 
architecture, or input patterns only in an
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Figure 4.27
The pattern association task, illustrated with three class patterns and

a new one, corrupted, which has to be associated to one from the
class patterns that is most similar.

autoassociative network, in order to recall the patterns when a new input pattern is presented. It is not 
required that the new input pattern be exactly the same as one that is memorized. It can be different, but 
similar to it. Three exemplar patterns are shown in figure 4.27. After memorizing them in a system, a 
new pattern is presented, a corrupted variant of the pattern 3. An associative memory system should 
associate this pattern with one of the memorized patterns. This is a task for an autoassociative network 
architecture.

Autoassociative neuronal architectures can be realized either by feedforward, or feedback networks. 
Hopfield networks and Boltzman machines are two examples of autoassociative networks. Other types 
of pattern associators are the heteroassociative network architectures. One of them is the bidirectional 
associative memory (BAM) (Kosko 1988). All the above-mentioned neural networks are discussed 
below.

4.6.2 The Hopfield Network

Hopfield networks, named after their inventor John Hopfield (1982), are fully connected feedback 
networks (figure 4.28). The neurons in Hopfield networks are characterized by the following: binary or 
bivalent input signals, binary or bivalent output signals, simple summation function, and hard-limited 
threshold activation function. There are alternative variants of realizations of a Hopfield network. Every 
neuron j, j = 1, 2, . . .,n in the network is connected back to every other one, except itself. Input patterns 
xj are supplied to the external inputs Ij and cause activation of the external outputs. The response of such 
a network, when an input vector is supplied during the recall procedure, is dynamic, that is, after 
supplying the new input pattern, the network calculates the outputs and then feeds them
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Figure 4.28
Hopfield autoassociative neural network.

back to the neurons; new output values are then calculated, and so on, until an equilibrium is reached. 
An equilibrium is considered to be the state of the system when the output signals do not change for two 
consecutive cycles, or change within a small constant. The weights in a Hopfield network are 
symmetrical for reasons of stability in reaching equilibrium, that is, wij = wji. The network is of an 
additive type, that is,

where oj = 1 if uj > Θj (threshold for the jth neuron); oj = 0 if uj < Θj; and oj is unchanged if uj =  Θj.

The training procedure for a Hopfield network is reduced to a simple calculation of the weights wij on 
the basis of the training examples with the use of the formula:

where the summation is held for all the training patterns x(p),xi(p) is the ith binary value of the input 
pattern p; and the expressions in parentheses can be only 1 or 0 according to the value of the input 
pattern.

An interesting characteristic of the weights wij is that they measure the correlation between the 
frequencies of firing of neurons i and j over the full
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Figure 4.29
Recall procedure for the Hopfield network.

set of examples. It is a variant of the Hebbian learning law, that is, the connection weights increase if 
two adjacent nodes fire simultaneously.

The recall process is executed as shown in figure 4.29. It can be organized in the following modes:

• Asynchronous updating: Each neuron may change its state at a random moment with respect to 
the others.

• Synchronous updating: All neurons change their states simultaneously at a given moment.

• Sequential updating: Only one neuron changes its state at any moment; thus all neurons change 
their states, but sequentially.

A few more words about the network's equilibrium: Borrowing from thermodynamics, Hopfield defined 
a parameter E called the energy of the network, which is a dynamical parameter and which can be 
calculated at any moment t as:

(i not equal to j)

The change in E based on a change in a single output value ∆oi, can be expressed as

(i not equal to j)

This is a steadily decreasing function as the network evolves. During the recall procedure, the network 
continues to calculate output values until it
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Figure 4.30
When a new input pattern X' is

presented the network relaxes in
an equilibrium  state, a "basin
of attraction" where the energy
E is minimum, thus associating

the new pattern with a class
pattern P3.

reaches a minimum of the energy function E, which is an equilibrium state. The energy E can be 
represented as a surface in n-dimensional space. The equilibrium in a trained Hopfield network can be 
explained by the attractor principle. During training, the network "sets" some basins of attraction which 
are stable states for the network corresponding to the training patterns (figure 4.30). When a new vector 
x' is supplied for a recall, the network will eventually rest after some cycles in an attractor, thus 
associating the new vector with one of the known patterns (attractors). In the extreme case, the number 
of basins of attraction is equal to the number m of training patterns. During the recall procedure, when a 
new input pattern is applied, the network tries to relax into the nearest basin of attraction, thus finding 
the right pattern to associate the new one with. The recall process is a process of relaxation.

There are some limitations to using the Hopfield network:

• Memory capacity. The number m of training patterns should be about the number of neurons n, or 
less (according to Hopfield, it should be less than 0.15 n; according to some new results, m ≤ 0.5n/log 
n). This means that the memorizing capacity of a Hopfield network is severely limited. Catastrophic 
"forgetting" may occur if we try to memorize more patterns than the network is supposed to handle. In 
this case the network may forget all the patterns that it has previously learned; an increase in capacity 
can be achieved by introducing a bias to the neurons during training and recall, and by introducing noise 
in the patterns (Burkitt 1993):
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Figure 4.31
A network may relax into a "spurious"
state, which phenomenon is called the

local minima problem.

where a is a bias and 0 < a < 1.

One solution to this problem, when the patterns are sparse in the input space, is suggested by Amari 
(1989). The memory capacity achieved there is approximately n2/log n2 if the density dn of the domain 
data tends to 0, that is, lim dn → 0 for n → ∞ .

Another solution to the problem has been achieved by using couple oscillatory neurons (see chapter 7).

• Discrepancy limitation. The new pattern to be recognized as one of the training patterns should 
not differ from any training pattern by more than about 25%.

• Orthogonality between patterns. The more orthogonal (dissimilar) the training patterns, the better 
the recognition.

• Spurious states of attraction. Sometimes the network learns some patterns (creates basins of 
attraction) called spurious states, which are not presented in the set of training patterns. An example of 
such a state is shown in figure 4.31. In order to overcome this limitation, Hopfield et al. (1983) 
introduced a "little bit of unlearning" for every learning pattern:

Spurious states may be useful, if the Hopfield network is used for partial matching and approximate 
reasoning (see NPS chapter 6). The input values are between 0 and 1 and represent the certainty of the 
facts or fuzzy membership degrees.
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• Weight symmetry. The weight matrix has to be symmetrical in order for the network to reach an 
equilibrium. The symmetrical synaptic weights are not at all biologically plausible, but they are a useful 
limitation here.

• Local minima problem. A major disadvantage of the Hopfield network is that it can rest in a local 
minimum state instead of a global minimum energy state, thus associating a new input pattern with a 
spurious state (see figure 4.31).

Hopfield networks are useful for many applications, including pattern recognition, finite state automaton 
realization, and implementation of Al-reasoning machines.

4.6.3 Boltzmann Machines

In order to overcome the local minima problem, a model based on using a variable called temperature 
was developed. The activation value of a neuron is calculated as a statistical probability:

where ui is the net input to the ith neuron, calculated as in the Hopfield network. This model is called a 
Boltzmann machine after its resemblance to processes in thermodynamics. During the recall process the 
temperature T decreases, which is similar to the process of annealing in metallurgy. The physical 
meaning is that by changing the temperature T we "shake" the neural network "box" and if it has 
happened that it has rested at a wrong local minimum attractor, it will "jump out" and continue to 
"move'' until its eventual relaxation at a global minimum attractor (which represents a correct pattern).

4.6.4 Kosko's Bidirectional Associative Memories

A bidirectional associative memory (Kosko 1988B) is a heteroassociative memory. It can memorize 
pattern associations of the type (a(p), b(p)) where a(p) is an n-dimensional vector (pattern) and b(p)is its 
corresponding m-dimensional pattern (figure 4.32).

The neurons are of the same type as in the Hopfield network-either bivalent or binary inputs and outputs. 
A threshold activation function is
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Figure 4.32
Kosko's bidirectional associative memory associates pattern

A with pattern B in both directions.

used. The training process of a BAM is simply calculating the weights with the use of the formula

A recall in both directions is possible, that is, either a(p) or b(p) or both, complete or corrupted, can be 
used to recall corresponding associated patterns. An example of two patterns A and B associated through 
a BAM network and some recall exercises are shown in figure 4.33.

A severe limitation of BAM is its small capacity, which is less than the minimum number between n and 
m. In order to overcome this limitation, BAM systems consisting of many BAM modules, BAM1, 
BAM2, . . .,BAMk, have been developed (Simpson 1990). Every association (a,b) is tried to be 
memorized in a BAM module. If it is not possible to memorize it in the BAMj module for example, then 
it is tried in the next one-the BAMj+i module, and so on, until all the pattern associations are memorized 
successfully. BAM networks have been applied to pattern recognition.

4.7 On the Variety of Neural Network Models

There is a tremendous variety of neural network models. Some are variants or improvements of the 
types already presented-MLP, ART, SOM, associative memories. Other connectionist models emerge 
and evolve with the development of knowledge about the way real neurons work. Neural network 
models may differ in the following points:
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Figure 4.33
An example of associating two patterns A and B in a 6-4 BAM

and different recall experiments.

• The type of neurons used, and type of calculations.

• The mathematical model used for representing and processing of information in the network 
(algebraic, statistical, fuzzy, etc.). This includes methods of training and recall, convergence and 
equilibrium properties, etc.

• The class of problems they are designed to solve (classification, optimization, pattern association, 
etc.).

A neural network model may be a hybrid between two connectionist models, for example, a model 
implementing competitive learning and a model for supervised learning.

It is difficult to present all the existing models here. It is also outside the scope of this book. But some 
derivatives of the above models and some new theoretical models will be presented.

4.7.1 Hamming Networks

The Hamming network performs the task of pattern association, or classification, based on measuring the 
Hamming distance. The network is a
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Figure 4.34
A Hamming associative neural network.

pattern associator of n-dimensional binary vectors labeled with m-class labels (m-class patterns). A new 
vector x' is associated with class pattern xi with the minimum Hamming distance, a Hamming distance 
being the number of different bits in the two patterns. The Hamming network is similar to the Hopfield 
network, but it has two layers of connections (figure 4.34). The first layer contains connections between 
all the n inputs, and all the m outputs. The second layer is a fully connected recurrent network with m 
neurons (similar to the Hopfield network). All nodes use linear threshold activation functions. The first 
layer of connections is finding the difference between the number n and the Hamming distance between 
the input pattern x' and each of the m-class patterns used to calculate the connection weights in advance. 
The second layer of connections is calculating the maximum of these values for finding the best-
matched-class pattern xi. Using a Hamming network has several advantages: it requires fewer 
connections than the Hopfield network, and it implements the "optimum minimum error classifier when 
bit errors are random and independent" (Lippman 1987), that is, the network always converges and finds 
the output node with the maximum value.

  



Page 310

4.7.2  Brain-State-in-a-Box

The brain-state-in-a-Box network (BSB) was developed by James Anderson. It is an autoassociative 
network, similar to the Hopfield network. The architecture of the BSB is characterized by the following:

• It is a recurrent, but not fully connected network.

• A connection from a neuron's output to its input is allowed.

• The interconnection weights are generally nonsymmetrical.

In a BSB each class pattern can be viewed as a corner of an n-dimensional hypercube, thus the network 
is forced to converge at the nearest corner during the recall procedure. The states of the network are 
restricted so as not to go beyond the n-dimensional hyperbox, where the name of the network came 
from. When a next state x(t + 1) is calculated based on the stimulus x(0) (the new input pattern) and the 
previous state x(t), the following formula is used, which limits the new state to be inside of the box:

where LIMIT is a parameter which limits the activation values to be in a range, typically [-1.5,1.5]; a, b, 
and c are constants; and W is the weight matrix.

The recall procedure of the BSB has several advantages, one being that it always converges, avoiding 
the local minima problem, as the BSB does not have spurious states.

4.7.3 Counterpropagation Networks

Counterpropagation networks, developed by Hecht-Nielsen (1987, 1988) are a hybrid between two well-
known connectionist models—competitive learning (performed by a first layer of connections) and 
supervised learning (performed by a following layer of connections) (figure 4.35). In this respect they 
are similar to the RBF networks. The idea behind this architecture is that competitive learning, which is 
fast, will cluster the input space, assigning one intermediate node to each group. After that, supervised 
learning is performed, but only on a single layer. The intermediate layer is of the "winner-takes-all" 
type. The major advantages of such a network are that (1) training is much faster than training a three-
layer MLP with the backpropagation algorithm, and (2) the hidden nodes have meanings associated with 
them.
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Figure 4.35
Counterpropagation neural network.

Applications of such networks have been developed for data compression, pattern classification, and 
statistical analysis.

4.7.4  RAM-Based Neurons and Networks, Weightless Networks

The strong development of digital electronic circuits and boolean algebra were influential in the 
development of connectionist models based on the idea of random-access memory (RAM). RAM is a 
device in which binary information can be stored and retrieved, each of the information elements (called 
words) having its own directly addressable space. The addresses are binary vectors. If n address lines are 
used, 2" addressable elements can be stored and retrieved, each consisting of m bits. Figure 4.36 shows a 
RAM-based structure and its representation as a neural network, where n-inputs, one-output RAM 
elements are used.

Using such a simple structure, different models have been developed and put into practice. They differ 
in their training algorithms, and application-oriented characteristics.

Using the above idea, so-called weightless neural networks were developed by Igor Aleksander (1989). 
The connections between neurons do not have real weights; they are binary, {0,1}, that is, a connection 
either exists or does not exist.
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Figure 4.36
(a) A structure of RAM elements can realize any
boolean function of n variables. (b) A weightless

neural network, that is, there are connections but there
are no weights associated with them.
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Probabilistic RAM (pRAM) models, developed by John Taylor and his group, use a probability 
parameter for an output of a RAM-neuron to become 1. These probabilities are learned during training 
and used during recall. For example, if an input vector 1100011 is supplied at the input of a pRAM, an 
output of 1 is generated with a probability of 0.7, learned during the training phase. A random number 
generator is used to generate signals (l's) with a given probability. Different reinforcement learning 
algorithms have been developed for the pRAM models (Glarkson et al. 1992).

4.7.5 Information Geometry of Neural Networks

Studying the geometry of a family of networks means to geometrically represent mutual relations 
between individual neural networks. A family of networks forms a geometrical manifold which can be 
studied when trying to find the best neural network model for a particular task (Amari, 1977, 1985, 
1990, 1993). Information geometry is applicable to manifolds (families) of different types of neural 
networks such as MLP, Hopfield and Boltzmann machines, and mixtures of models.

4.7.6 Neural Networks and Statistical Methods

Neural networks learn from data. But what kind of statistics can they learn? We summarize here some 
already-discussed properties of neural networks to learn statistical properties. We also introduce a new 
property of neural networks, which is that they can learn principal components similar to the way it is 
done through principal component analysis techniques. The following is a short list of some statistical 
properties of neural networks:

• A perceptron and an MLP with a hard-limited threshold activation function can be used as a 
discriminating technique.

• An MLP with a nonlinear activation function can be used for function approximation similar to 
statistical regression; but the neural networks are model-free, that is, they do not require that the type of 
the regression be defined in advance.

• MLP neural networks can learn posterior probabilities that do not strictly follow the probability 
axioms (see chapter 5);

• SOMs can learn the probability distribution function of the input space.

• MLPs can learn principal components. This feature is explained below.
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Principal component analysis is a technique to economically encode a distribution of input patterns. It 
finds a fixed number of principal components (eigenvectors) with the highest eigenvalues of the 
correlation matrix of the data that describe the distribution of the patterns. If we represent each of the m 
training patterns as an n-element vector xi in the input space, and create the covariance matrix A xix  of 
all the patterns, then finding eigenvectors means representing the data in a compact form. Eigenvectors 
x' are defined as k-dimensional vectors which multiplied by A do not change their direction in the space, 
the result being equivalent to multiplying them with scalars, that is, Α · x' = λ · x'. The scalars λ are 
called eigenvalues. Eigenvalues measure how much variance of the data set the eigenvectors account 
for. The larger the eigenvalues, the better the eigenvectors represent the data set. The principal 
components are the vectors that minimize the mean square error between the actual points in the data set 
and the points described by a smaller number of components.

There is a similarity between the covariance matrix and the matrix of connection weights in an 
autoassociative neural network. It was shown by several authors that a hidden node in a three-layer MLP 
learns one principal component if the MLP is trained in the autoassociative mode, that is, if the input 
patterns are used as output patterns too. In this case the activation values of the hidden nodes represent 
in a condensed form the input vectors. That was the idea behind using neural networks for compression 
of data (speech, images).

4.8 Fuzzy Neurons and Fuzzy Neural Networks

The neural network models presented so far use variants of McCulloch and Pitt's neuron to build a 
network. New types of neurons have been introduced which use fuzzy membership functions as 
activation functions or as functions attached to their connections. One of them is the so-called fuzzy 
neuron (Yamakawa 1990). Fuzzy neural networks, neural networks built on fuzzy neurons or on 
standard neurons but dealing with fuzzy data, have also been introduced and applied successfully. In 
fuzzy neural networks, connectionist and fuzzy paradigms are mixed at a low level, both paradigms are 
strongly blended, and there is a mutual penetration. Fuzzy neurons and fuzzy neural networks are 
explained in the following subsections.
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4.8.1 Fuzzy Neurons

A fuzzy neuron has the following features, which distinguish it from the ordinary McCulloch and Pitt's 
types of neurons:

• The inputs to the neuron x1, x2, . . .,xn represent fuzzy labels of the fuzzy input variables.

• The weights wi are replaced by functions µi which are the membership functions of the fuzzy 
labels xi (i = 1, 2, . . .,n).

• Excitatory connections are represented by MIN operation, and inhibitory connections by fuzzy 
logic complements followed by MIN operation.

• A threshold level is not assigned.

In the fuzzy neuron there is no learning. The membership functions attached to the synaptic connections 
do not change. The fuzzy neuron has been successfully used for handwritten character recognition.

The Neo-fuzzy neuron (Yamakawa et al. 1992(A)) is a further development of the fuzzy neuron. A block 
diagram of a neo-fuzzy neuron with a detailed diagram of its nodes and the membership functions 
attached to the connections is given in figure 4.37. The features of the neo-fuzzy neuron are:

• The inputs x1, x2, . . ., xn represent fuzzy variables.

• Each fuzzy segment xij attached to each of the fuzzy variables xi, i = 1, m; j = 1, n are represented 
as connections between the input i and the output.

• In addition to the membership function µij, which is bound to the input segment xij, weights wij are 
also assigned, subject to a training procedure.

• The segments xi1, xi2, . . .,xil have standard triangular membership functions; thus an input activates 
only two membership functions simultaneously; the sum of the degree to which an input value x'i 
belongs to any two neighboring membership functions µik(x'i) and µi,k+1(x'i) is always equal to 1. Thus 
the COG defuzzification does not use a division and the output of the neuron can be represented by the 
following simple equation:

Such a neuron can realize inference over a fuzzy rule.
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Figure 4.37
Yamakawa's neo-fuzzy neuron. Each of the m functions fi

(i = 1, 2,. . . ,m) bound to each of the m inputs xi are
represented by n = 9 fuzzy membership functions Tij,

standard triangular ones uniformly distributed over the
universe Uxi, as well as by corresponding weights wij

which are subject to change during training. (Adapted
with permission from (Yamakawa et al. 1992a.))
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There are some training algorithms applicable to the neo-fuzzy neuron. One of them is called 
incremental updating (stepwise training). If the neo-fuzzy neuron is to learn to associate an input pattern 
x(k) =  with an output value y(k), then the change of weights should be calculated as 
follows:

where α is a learning factor; yk is the actual output from the neuron, and dk is the desired output for the 
input pattern xk. All weights are initially assigned to zero. It has been proved that the neo-fuzzy neuron 
guarantees global minimum in the error-weight space. In addition to this property, experiments show 
that learning is faster by about 105 times and the accuracy achieved is better than in a three-layer 
feedforward network with the backpropagation algorithm.

Fuzzy neurons have been applied to prediction and classification problems.

4.8.2 Fuzzy Neural Networks

Similar to the way the fuzzy neuron and the neo-fuzzy neuron were created, different types of fuzzy 
neural networks have been developed and applied to different tasks. A fuzzy neural network (FNN) is a 
connectionist model for fuzzy rules implementation and inference. There is a great variety of 
architectures and functionalities of FNN. The FNNs developed so far differ mainly in the following 
parameters:

• Type of fuzzy rules implemented; this affects the connectionist structure used.

• Type of inference method implemented; this affects the selection of different neural network 
parameters and neuronal functions, such as summation, activation, and output function. It also 
influences the way the connection weights are initialized before training, and interpreted after training.

• Mode of operation: we consider here three major modes of operation by:

1. Fixed mode, ''fixed membership functions-fixed set of rules," that is, a fixed set of rules is inserted in 
a network, the network performs inference, but does not change its weights. It cannot learn and adapt. A 
representative of this type of system is NPS (see chapter 6).
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2. Learning mode, that is, a neural network is structurally defined to capture knowledge in a certain 
format, for example, some type of fuzzy rules. The network architecture is randomly initialized and 
trained with a set of data. Rules are then extracted from the structured network. The rules can be 
interpreted either in the same network structure or by using other inference methods.

3. Adaptation mode. A neural network is structurally set according to a set of existing rules, "hints," 
heuristics. The network is then trained with new data and updated rules are extracted from its structure. 
Two cases can be distinguished here: (1) fixed membership functions—adaptable rules and (2) 
adaptable membership functions—adaptable rules. The catastrophic forgetting phenomenon must be 
investigated in these cases, that is, how much the network forgets about previous data after having 
learned from completely new data without rehearsing the old ones.

To summarize the above, FNNs have two major aspects:

1. Structural. A set of rules is used to define the initial structure of a neural network; two types of neural 
networks have been mainly used so far: (a) multilayer perceptrons (MLPs), and (b) radial-basis 
functions networks.

2. Functional, parametric. After having defined the structure of a neural network and possibly having 
trained it with data, some parameters can be observed that would explain the inference which the 
network performs. Those parameters can be used to derive a (fuzzy) rule-based system represented in 
linguistic terms.

FuNN is an model of an FNN. It facilitates learning from data, fuzzy rules extraction, and approximate 
reasoning. FuNN uses an MLP network and a backpropagation training algorithm. It is an adaptable 
FNN as the membership functions of the fuzzy predicates, as well as the fuzzy rules inserted before 
training (adaptation), may adapt and change according to the training data. The general architecture of 
FuNN consists of five following layers (figure 4.38). In the input layer—a node represents an input 
variable. In the condition elements layer—each node represents a fuzzy predicate of an input variable. 
The activation values of the nodes represent the membership degrees of the input variables. Different 
summation function sc, activation function ac, and output function oc can be used for the neurons of this 
layer.
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Figure 4.38
General architecture of FuNN (fuzzy neural network).

In the Rule layer each node represents either an existing rule, or a rule anticipated after training. When 
FuNN is used to implement an initial set of fuzzy rules, the connections between the condition elements 
layer and the rule layers are set according to normalized degrees of importance attached to the 
antecedent elements in the corresponding rules. If degrees of importance are not attached to the 
condition elements of a rule Ri, then the connection weights wij to a rule node Ri are uniformly 
calculated for each connection as

wij = Neti/n,

where n is the number of condition elements in the rule Ri, and Neti is a constant defining what the net 
input to neuron Ri should be in order to fire the rule. The stronger the rule is as a piece of domain 
knowledge, the higher Neti should be, which means a higher contribution of this rule to the output value. 
For a weak rule Ri, Neti might take a value of 1, and for a strong rule Neti might need to be 5, provided a 
logistic activation
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function is used. The other connection weights are initialized to zero. The following characteristics of 
this layer define the inference method performed by the FuNN: summation function sR, activation 
function aR, neuronal output function oR Additional rule nodes may be preset with zero connection 
weights. This may give the structure more flexibility to adjust initial rules and antecedent elements in 
them and to possibly capture new rules. The way the connection weights are interpreted here is used in a 
rules extraction algorithm REFuNN.

In the Action elements layer each node represents one fuzzy predicate (label) in the "action" 
(consequent) elements of the rules. The connections between the rule nodes and the action nodes are set 
as normalized confidence factors (CFs) of the rules. The rest of the connections are set to zero. Again, 
three functions are defined for these nodes, (a) summation function sA,(b) activation function aA, and (c) 
output function oA. Additional nodes may be used to capture additional action (conclusion) predicates 
during training (adaptation).

The output variable layer represents the output variables of the system. It is defined by the three 
functions: summation so, activation ao, and output oo. Figure 4.38 depicts a FuNN for the following two 
rules:

R1: IF x1 is A1(DI1,1) and x2 is B1(DI2,1), THEN y is C1(CF1)

R2: IF x1 is A2(DI1,2) and x2 is B2(DI2,2), THEN y is C2(CF2)

An algorithm REFuNN for rules extraction from a trained FuNN is presented in chapter 5. The 
algorithm uses three layers from the FuNN architecture shown in figure 4.38 (FuNN-1), as the fuzzy 
predicates and membership functions are predefined. Fuzzification and defuzzification are supposed to 
be done outside the structure.

Figure 4.39 shows a simpler version of FuNN consisting of four layers. The output membership 
functions C1 and C2 are singletons attached to the connection weigths of the last layer.

4.9 Hierarchical and Modular Connectionist Systems

The flexibility of intelligence comes from the enormous number of different information-processing 
rules, modules, and the levels of operation of such modules. Hierarchical models are biologically and 
psychologically
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Figure 4.39
A simplified version of a FuNN fuzzy neural network.

plausible. Some possibilities for a connectionist realization of such models is discussed in this section.

Modular systems are systems consisting of several modules linked together for solving a given problem. 
Representing a system for solving a problem as a modular system may be justified for the following 
reasons:

• The whole task may be represented as a collection of simpler subtasks, each being solved in one 
submodel of the whole system, so each module solves a different part of the whole problem, for 
example, one module is used for feature extraction, and another for pattern classification (which is 
usually the case in speech recognition systems).

• Different modules may provide alternative solutions, the final one being the best of them or a 
combination of them; different modules may imitate different experts on the same problem, the final 
solution being a weighted compromise between the outputs from the modules.

Different modules in a multimodular system may specialize during training to give a good 
approximation of the solution for a subspace of the whole problem space. They become local experts. 
Another network (a gating network) aggregates the solutions produced by the different modules into a 
final solution (Jordan and Jacobs 1994). For example, a
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network that learns the function f = abs(x) can consist of two modules, one to produce the result f = x if x 
> 0, and another to learn the function f = x if x ≤ 0. A hierarchy of simple local experts and gating 
networks can be built, such that a multimodular network can be used as a local expert at a higher level of 
the decision structure.

If each of the modules in a modular system is realized in a connectionist way, the system is called a 
connectionist modular system. A connectionist modular system can be flat, if all the modules have the 
same priority for information processing; or hierarchical, if some modules have higher priority than 
other modules in the system. According to the types of neural networks used in a modular neural 
network, the latter can be classified as homogeneous, that is, all the neural networks are of the same 
type; or heterogenous, that is, different types of neural networks are used in one system; this is the case 
in the example below.

According to the type of connectivity between neural networks in modular neural network systems, the 
latter can be classified as fully connected, where every neural network is connected to every other one by 
at least one link, or partially connected, where only selected neural networks are linked together.

According to the way the neural networks in a modular system are used for solving a task, there are 
three types of operating modes in a system:

1. Sequential mode. Neural networks are used sequentially when different subtasks of the global task are 
performed; different neural networks are trained either separately or in conjunction with one another.

2. Parallel mode. All neural networks work in parallel, either on alternative solutions of one subtask, 
after which a final solution is worked out based on a given criterion, or on different subtasks if the 
problem allows a parallel solution.

3. Mixed mode. Both of the above modes are implemented in one modular system.

Modular and hierarchical multinetwork systems have been used for:

• Robot control;

• Time-series forecasting (Kohers, 1992);

• Classification of remotely sensed satellite images;

• Geometrical transformation and theorem-proving (Ishikawa, 1992);
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• General classification and pattern recognition (Fogelman et al., 1993);

• Planning and predicting of movement of temporospatial objects (Kasabov and Trifonov, 1993)

Sometimes it is possible to solve a problem either by using a single neural network or by using several 
smaller neural networks. Which way to go? The answer to this question depends very much on the type 
of task. Modular networks should be used when the task can be adequately represented in a modular or 
hierarchical way, and when using a single network is unacceptably time- and space-consuming. For 
more details see the next section.

4.10 Problems

Part A: Case Example Solutions

1. Using MLP and the Kohonen network for the Bank Loan approval case example. A two-level 
hierarchical, modular neural network for solving the Bank Loan case example is shown in figure 4.40. 
The lower-level network is an MLP using the backpropagation type of training. When

Figure 4.40
Two-layer multimodular network architecture for
the Bank Loan Decision Problem. The first layer
is an MLP network which produces the output
fuzzy vector for the fuzzy variable "Decision."
The second layer is an SOM which performs a 

two-dimensional vector quantization of the decision
vectors. The three cases discussed in chapter 3

are presented on the map as points C1, C2, C3. The
two parts are trained separately with training data.
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recalled with new input data, this network produces the membership function for the decision output 
variable. The output vector is then fed into a Kohonen SOM network which has quantized the decision 
space into two topologically distinguished spaces—"approved" and "disapproved." This is an effective 
way of representing a solution, as it also explains graphically WHY new applications should be 
approved or disapproved or why the decision is undefined (this is the area between the two clear areas 
on the SOM). The two parts are trained separately with existing (or generated) data.

2. Multimodular MLP network for object movement prediction. A single MLP and a three-modular MLP 
were trained and tested on the same training data. A comparison between using a single 20-30-40 MLP 
network and using three smaller MLP networks (figure 4.41A) for

Figure 4.41
(A) A hierarchical neural network architecture consisting of

three neural networks, 20 inputs, and 40 outputs. (B) A
graphical representation of a task of learning a movement of

two objects (denoted as 1 and 2; object I has two
sub-objects 1.1 and 1.2) from one position (1' and 2') to
another (1" and 2"), for which task the modular neural

network from (A) is used. Each object or subject is represented
by 5 geometrical points in the plain, therefore, by 10 variables.
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training with a set of training examples for movement of spatial objects (figure 4.41B) is given in figure 
4.42, where the number of neurons (Nneurons), number of connection weights (Nweights), number of 
training operations (Tlearn), and number of recall operations (Twork) are shown for the single neural 
network (NNs) and for the hierarchical, modular network (NNmod). The latter consists of three modules: 
NNml, NNm2, and NNm3. The figures show that multimodular neural network architecture may have 
more neurons in total, but a fewer number of connections, thus takes less time for training and less time 
for recall.

Part B: Practical Tasks and Questions

3. What are the main physical and functional similarities between real and artificial neurons, between 
real and artificial neural networks?

4. What is the main difference between supervised and unsupervised learning? What does competitive 
learning mean?

5. What is the essence of the Hebbian learning law?

6. Explain the meaning of the following concepts:
a. Autoassociative and heteroassociative networks
b. Autoassociative and heteroassociative memory
c. Universal function approximator
d. The winner-takes-all rule
e. Lateral inhibition;

Figure 4.42
Comparison between time and space parameters of a single network

NNs and the multimodular network NNmod from figure 4.41 for
solving the same problem with 20 input variables and 40 output variables.
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f. Feedforward and feedback connections, recurrent networks
g. Self-organization
h. Vector quantization
i. Vigilance factor in ART
j. Learning rate in the backpropagation algorithm
k. Gain factor in SOM
l. Overfitting (overlearning)
m. Linear separability
n. Sigmoid function
o. Radial-basis function
p. Logistic function
q. Mean-square error (MSE) and root-mean-square (RMS)
r. Euclidean distance
s. Generalization
t. Massive parallelism in the functioning of the real and artificial neural networks
u. Gradient-descent optimization algorithm
v. Momentum in a gradient-descent optimization algorithm
w. Convergence
x. Equilibrium
y. Local minima problem
z. Capacity of a neural network used as associative memory

7. Explain the meaning of the following concepts:
a. Castrophic forgetting
b. Rehearsal in a neural network as a measure against catastrophic forgetting
c. Deviation scaling parameter in RBF networks
d. Shift register in a time-delay neural networks
e. Finite state automatons and their relation to recurrent networks
f. Hebbian learning law, in case of unsupevised learning
g. Stability and plasticity in ART neural networks h. Codebook vectors in SOM
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i. Attractor point in Hopfield networks
j. Temperature parameter and annealing in Boltzman pattern associator neural networks
k. Learning with forgetting

8. What is the difference between ART and BAM networks?

9. What are the main drawbacks of the following neural networks?
a. Perceptron
b. MLP with a backpropagation algorithm
c. Kohonen SOM
d. Kohonen LVQ
e. Hopfield network
f. BAM g. ART

10. Why have LVQ1, LVQ2, and LVQ3 been developed and why have they become widely used? How 
do they differ from SOM?

11. Give an example of bidirectional pattern association with a possible use of BAM.

12. Change the vigilance factor of ART1 to 0.0 and try the examples given in figure 4.20. What will 
happen then? What will happen if the vigilance factor is 1.0?

13. Run a backpropagation simulator and train an MLP neural network with two randomly selected 
training subsets A and B from the Iris data set (see appendix A). Observe the change in the training error 
after each 500 training epochs of alternative training with A and B of the same network. How does the 
training error decrease?

Part C: Project Specification

Exploratory Analysis of Different Connectionist Models

1. Choose your exploratory data set that contains data and labels of the class elements (see appendixes).

2. Train an MLP neural network with the backpropagation algorithm, using 75% of the data examples 
for training and the remaining 25% for testing.
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a. Explore the correlation between the learning rate and momentum and the speed of training when a 
training error of 0.001 is chosen to stop the training process. For example, use different values such 
as:
i. Learning rate 0.1, momentum 0.5
ii. Learning rate 0.5, momentum 0.5
iii. Learning rate 0.5, momentum 0.9
iv. Learning rate 0.5, momentum 0.1

Which values for the learning rate and momentum do you think are the best for your neural 
network?

b. Explore the influence of the number of hidden nodes and number of layers on the training and test 
error and on the time for training

3. Train a Kohonen two-dimensional SOM and label it. Use 75% of the data for training and the same 
data for labeling. Test the SOM with the remaining 25% of the data. a. Explore the dependence between 
the classification error and the size of the map; use, for example, 5 x 5, 10 x 10, 20 x 20 SOMs. b. 
Explore the influence of the gain factor and the number of training epochs on the time for training. c. 
Would the classification error improve if the LVQ algorithm were used?

4. Train an MLP of type FuNN-1 (figure 4.38) after applying fuzzy quantization over the input and 
output variables. Test the network on the same data as in (2) and (3). Use the backpropagation 
algorithm.

5. Compare the results obtained by using different connectionist models on the same data set. Which 
model is the best one for your task?

4.11 Conclusion

Different connectionist models are introduced in this chapter. They are characterized by the types of 
neurons used, the organization of their connectionist structure, and methods for learning and recall. For 
this reason, they have different properties which can be used for solving different problems. But all of 
them are characterized by some common characteristics: learning, generalization, robustness, and 
massive parallelism.

  



Page 329

One of the structural characteristics of the connectionist models makes them very attractive for 
hardware realization, namely, their massive parallelism. A hardware realization of an artificial neural 
network makes possible building machines that will be faster than the human brain at solving difficult 
problems.

Some of the numerous applications of the different connectionist models presented in this chapter are 
discussed in chapter 5. They make these models extremely useful for solving problems and for 
knowledge-engineering regardless of how much they contribute to our understanding of how the real 
brain works.

4.12 Suggested Reading

The following references are given for further reading on specified subjects:

Computational models of the brain—Arbib (1987, 1995); Churchland and Sejnowski (1992); Amit 
(1989); Anderson (1983a,b); Stillings et al. (1995); McShane (1991)

Brief overall presentation on the major neural network models—Arbib (1995); Rumelhart and 
McClelland (1986); Lippman (1987)

Detailed presentation on the major connectionist models and their applications—Hertz et al. (1991); 
Zurada (1992)

Algorithms and programs for implementing the major connectionis models—Freeman and Skapura 
(1992)

Easy-to-read introduction to some basic principles of neural networks—Smith (1993); Davalo and Naim 
(1991); Anderson (1995)

Fuzzy neurons and fuzzy neural networks: Yamakawa et al. (1992a); Yamakawa (1994), Gupta (1992); 
Furuhashi et al. (1993); Kasabov (1995c, 1996); Khan (1993); Hashiyama et al. (1993)
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5
Neural Networks for Knowledge Engineering and Problem Solving

This chapter has two major objectives, namely, to present (1) approaches to using neural networks for 
problem solving and knowledge engineering, and (2) applications of neural networks for solving generic 
problems.

The main idea behind using neural networks for problem solving is their ability to learn from ''past" data 
and to generalize when responding to new input data. But there are other approaches to using neural 
networks, such as analyzing neural networks and extracting rules, and explicit knowledge, and inserting 
rules into connectionist architectures for the purpose of approximate reasoning.

This chapter also presents applications of connectionist systems for solving typical problems such as 
pattern recognition and classification, speech and language processing, time-series and analogy-based 
prediction, diagnosis, decision making, control, optimization, and game playing.

5.1 Neural Networks as a Problem-Solving Paradigm

Any of the generic problems discussed in chapter 1 can be solved with the use of neural networks, but 
how? What is it that makes neural networks such a powerful problem-solving tool?

5.1.1 The Paradigm

The generic characteristics of neural networks, discussed in chapter 4, make possible their use for:

• Function approximation, when a set of data is presented

• Pattern association

• Data clustering, categorization, and conceptualization

• Learning statistical parameters

• Accumulating knowledge through training

• "Extracting" knowledge through analysis of the connection weights

• Inserting knowledge in a neural network structure for the purpose of approximate reasoning



Neural network models provide massive parallelism, robustness, and approximate reasoning, which are 
important for dealing with uncertain, inexact, and ambiguous data, with ill-defined problems and sparse 
data sets. All the above-mentioned points are discussed here. The problem-solving process, when using 
neural networks, comprises two phases (figure
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Figure 5.1
Neural networks as a problem-solving paradigm.

5.1): (1) the training phase, when training examples are used for training a neural network, or rules are 
inserted in its structure; and (2) the recall phase, when new data are fed into the already trained network 
and a recall algorithm is used to calculate the results.

Following the representation of the problem-solving process as mapping the domain space into the 
solution space through problem knowledge, given in chapter 1, this process can be viewed here as 
mapping the problem domain space into an input state space of a neural network; mapping the solution 
space into an output space of the neural network; and mapping the problem knowledge (past data and 
rules) into the synaptic space of all the connection weights of a neural network (or collection of 
networks); the synaptic connection weights accommodate the problem knowledge (figure 5.2).

There are some general steps to follow when using neural networks as a problem-solving paradigm:

1. Problem identification. What is the generic problem and what kind of knowledge is available?

2. Choosing an appropriate neural network model for solving the problem.

3. Preparing data for training the network, which process may include statistical analysis, discretization, 
and normalization.

4. Training a neural network, if data for training are available. This step may include creating a learning 
environment in which neural networks are "pupils."

5. Testing the generalization ability of the trained neural network and validating the results. Different 
approaches can be used, as discussed below.
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Figure 5.2
Solving problems with neural networks as mapping.

6. Optimizing the architecture, if necessary, which may require a repetition of some of the above steps 
until satisfactory validation results are obtained. Special strategies to improve the neural network 
performance may be needed.

The following subsections discuss the implementation of these steps.

5.1.2 Problem Identification and Choosing the Neural Network Model

Before starting to develop a solution to a given problem, questions must be answered. What is the point 
of using a neural network for solving that specific problem? Why should a neural network be used? 
What are the benefits of using a network? The generic properties of different neural network types, and 
connectionist models in general, must be known to answer this question. What properties are going to be 
useful for solving the problem?
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Problem identification also includes analysis of the existing problem knowledge. The problem 
knowledge may contain data and rules. If data are available, the independent variables (the input 
variables) should be clearly distinguished from the dependent variables (the output variables) in order 
to choose a proper neural network architecture and a learning method. These variables can be discrete, 
continuous, linguistic, boolean, etc. In some cases, only input variables are present. In this case, 
unsupervised learning algorithms and appropriate neural networks can be used to cluster, to 
conceptualize, and to recognize patterns in the domain data.

If rules are available in the problem knowledge, they can be implemented in an appropriate neural 
network structure. Especially suitable for connectionist implementation are fuzzy rules. If both rules and 
data are available, then hybrid systems, which incorporate both neural networks and symbolic AI 
techniques, can be used, or a neural network can be trained by using both data and rules, the latter being 
treated as hints or input-output associations.

Choosing the neural network model depends on the type of problem knowledge and on the context of 
the problem to be solved.

5.1.3 Encoding the Information

Neural networks consist of inputs, outputs, neurons, connections, and so forth. How should existing 
knowledge and information about the problem be encoded to solve the problem with a neural network? 
Two possible ways of representing knowledge in neural networks are (1) local representation, where 
every neuron represents one concept or one variable, etc., and (2) distributed representation, where a 
concept or a value for a variable is represented by the collective activation of a group of neurons.

Each way has alternatives. For example, we can represent an output variable that has the context of 
"percentage" as one neuron (activation values from 0 to 1, a value of 0.01 corresponding to 1%, etc.). 
Another possible neuronal encoding may use 10 neurons for a "thermometer" encoding (the first neuron 
represents percentage from 0% to 10%, the second, from 10% to 20%, etc., 100% being represented by 
the activation of all the output neurons).

When MLP with logistic activation function is used, the output (target) values o are usually chosen in 
the interval [0.1,0.9] rather then in [0.0, 1.0] as the derivative of the logistic function which is o(1-o) has 
a value of 0.0 for o = 0.0 and o = 1.0.
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Output activation values can be interpreted differently, depending on the context of the problem, either 
as a kind of probability for an event to happen, or as a kind of certainty, confidence, or degree of an 
event that has happened but only in part, or simply as a value of an output variable.

Encoding the input information is sometimes difficult. This can be caused by problems such as missing 
values for some of the variables, and unknown dependencies between the problem variables and 
difficulties in choosing the appropriate set of features. This is the problem with the feature space. Should 
it be large, or can a better solution be achieved if a smaller number of input variables are used, thereby 
achieving a smaller problem space?

There are some approaches to solving the first problem. For example, the data instances (training 
examples) with missing information can be omitted if there are enough other examples. But a better 
solution may be obtained if the missing values are substituted by the mean value for the corresponding 
variable over the whole data set.

The second problem seems to be more difficult. Too many variables require much space and time (for 
training) and may be the cause of a degraded solution due to the introduction of noise through redundant 
variables and their (possibly) numerous values. Too small a number of variables may not carry sufficient 
information for solving the problem.

One possible solution to this problem is to analyze the sensitivity (Si) of the neural network to individual 
variables, say xi. In this case all the values for xi in the training data set are substituted with the mean 
value Mxi for xi, and for each individual example j = 1, 2, . . ., p, the error E(M(xi)) is compared to the 
error E(xij) when xi is used with its real value xij:

Variables with small sensitivity are deleted from the data set, which will increase the speed of training 
and reduce the size of the network.

Some techniques are often used when preparing data for training a neural network, one of them being 
normalization. The neuronal input signals may be normalized into the same scope, usually in the interval 
of [0, 1], or [-1, 1]. This makes all the neuronal inputs of equal importance. Normalization can be:

• Linear, with the use of the formula:
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where xij is a real value, xij,norm is a normalized value, and xi,min and xi,max are, respectively, the 
minimum and the maximum values for the variable xi.

• Logarithmic normalization, where logarithms of the values for the variable xi are used instead of 
using the real values from the data. This is necessary if the domain of a variable is very broad, for 
example, winning cash from a lotto competition can be between $1 and $1 million; a person's income or 
a company's weekly profit can be any value between $0 and, say, $10,000. There is also evidence (see 
Cornsweet 1970) that logarithmic scaling is used in biological systems. This also affects the information 
processing in neural networks, e.g.: log x1 + logx2 = log(x1 · x2).

Transforming the output-values of the neural network back to real attribute-values, requires the 
application of an inverse formula, which for the case of linear normalization is:

where oi is the value of the output from a neuron that represents the output variable yi, and oi,min and oi,max 
are the minimum and maximum output values for the neuron.

Actually, input data to a neural network represent values of a set of features. What features to use 
depends on the task and the goals. One possibility is to use fuzzy representation (transformation) or real 
data as input features of neural networks. Using fuzzified data for training neural networks has the 
following advantages:

• Faster training and better generalization.

• Easier rules extraction and network interpretation.

• Fuzzy labels are extra information (knowledge), which may lead to a better solution.

• It is easy to adjust fuzzy labels according to new situations, thus making the whole system 
adaptable to new circumstances. For example, 30 years ago, a weakly wage of $400 was considered to 
be "good", now it is "low." So, using "old" data is still possible but appropriately labelled.

5.1.4 Training Neural Networks and Validating the Results

Training a neural network requires answering the following two groups of questions, which have 
specific answers depending on the task and the type
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of the network used. The first group of questions relates to the design of a learning environment where 
neural networks are "artificial pupils" that are expected to learn something. The following questions 
should be discussed here:

• What features should neural networks learn?

• What learning strategies to apply, for example: learning simple features first; dividing the whole 
task into smaller sub-tasks and training the system on each of the sub-tasks individually, etc.?

• Preparing data for training according to the set strategies; Use of real and synthetic data, etc.

The answers of the above questions may require bringing to this field knowledge from educational 
psychology, design and engineering, mathematics, and cognitive science.

The second group of questions relates to technical issues, such as:

• What are the neural network architecture and the training algorithm which best suit the task?

• How to initialize the network before starting the training procedure?

• How long to train the network (how many epochs, cycles, iterations, should the training take)? 
When to stop training?

• How to calculate the training error?

• What training error can assure a good generalization? How to evaluate the generalization ability 
of the network and its validation?

• How to recognize the convergence?

• How to choose the training parameters, for example, the learning rate, momentum, etc., 
depending not only on the training algorithm used but also on the training data?

The problem of choosing the best neural network type and architecture and a corresponding training 
algorithm is discussed briefly later in this section, but it is a heuristic process based on analysis on the 
available neural network techniques and the requirements of the problem.

Initialization of a neural network means setting the connection weights to some initial values before 
starting the training algorithm. The initial set of weighs brings the initial error Eo of the network over the 
training data to a certain point in the error surface in the weight space. This starting
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point is important because sometimes, depending on the algorithm, the network goes to the nearest local 
minimum to this point instead of going to the desired global minimum. Small random numbers set as 
initial weights usually improve the training results. But there are other algorithms for initialization, 
which make use of available information, fuzzy rules, which are extracted from the data set can be used 
to set the initial weight matrix Wo to a point in a region possibly near to where the global minimum is 
expected to be (Kasabov 1996).

Two types of error can be calculated in general: (1) when training and (2) when using a network. The 
error calculated on the basis of the reaction of the neural network to the data used for its training is 
called apparent error or training error. It is usually calculated as a mean-square error (see chapter 4). It 
is important to achieve a small (e.g., 0.001) apparent error, but the network may overlearn data, that is, it 
may be bound too strongly to the training data and therefore perform an inaccurate generalization.

The test (validation) error is calculated when, after having a network trained with a set of training data, 
another set (test, validation, cross-validation), for which the results are also known, is applied for a recall 
procedure. The test error (Etest) can be calculated differently, two formulas being

where ojp is the jth output value for the pth testing example, yjp is the desired output for the pth testing 
example, and Ntest is the number of test examples, and

where Ncorrect, is the number of correctly processed test examples and Ntest is the total number of test 
examples.

Some schemes to conduct validation are as follows:

• Divide the whole data set into two disjoint sets, training and test, the first being, for example, 
75%, and the second being 25%. This approach is applicable when there are enough data examples. The 
problem of which data to use for training and which for validation can be solved by random selection, or 
by applying some specific selection criteria imposed by the nature of the problem. If there are not 
enough data, this method is not very appropriate. It is always tempting to use the whole data set of N
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examples for training, but the problem then arises of how to then validate the results.

• Use the leave-one-out method: One example x(p) is left for validation, and the remaining (N - 1) 
examples are used for training. This is repeated N times, when N different neural networks are trained 
and then tested with the one left out example. The average of all the validation errors is then calculated:

This method may be very time-consuming for a big training set.

• Fold cross-validation: Here, all the N data examples from a data set D, are used for training and 
the trained network is then used as an initial set W0 of weights for validation. The validation is done by 
dividing the whole data set randomly into several disjoint subsets, Dj (j = 1,2, . . ., k), where k is a small 
number, usually k = 5, k = 10. Then the network Wo is trained k times with each of the data sets D/Dj 
and validated with Dj, the error being Etest(Dj) The total validation error is calculated as an average value 
of all the errors Etest(Dj), for j = 1, 2, . . ., k (Geisser 1975).

5.1.5 The Problem of Choosing the "Best" Neural Network Model

Neural networks are universal function approximators. They are "model-free estimators" (Kosko 1992) 
in the sense that the type of function is not required to be known in order for the function to be 
approximated. One difficulty, though, is how to chose the best neural network architecture, that is, the 
neural network model with the smallest approximation error. When a multilayer perceptrons (MLPs) are 
used, this is the problem (already discussed in chapter 4) of finding the optimal number of hidden nodes. 
In addition to the heuristics given there, some other techniques are applicable, such as:

• Growing neural networks. Training starts with a small number of hidden nodes and, subject to the 
error calculated, the number of the hidden nodes may increase during the training procedure.

• Pruning. This technique is based on gradually removing from the network the weak connections 
(which have weights around 0) and the neurons connected by them during the training procedure. After 
removing redundant connections and nodes, the whole network continues to be trained and the rest of 
the connections "take the functions which the
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pruned ones might have been doing." Pruning may be implemented through learning-with-forgetting 
methods, when the weak connections gradually fade away and eventually get pruned (Ishikawa 1995).

Growing and pruning are also applicable to input neurons, thus making the whole neural network 
dynamically changing according to the existing information in the data set.

5.2 Connectionist Expert Systems

In chapters 2 and 3 we presented block diagrams of a symbolic A5 expert system and a fuzzy expert 
system. Here we introduce connectionist expert systems. These are expert systems as previously defined, 
which have their knowledge base represented in a connectionist structure. The neural network properties 
of learning and generalization, adaptability, robustness, associative storage of information, massive 
parallelism, and other characteristics make them a very powerful paradigm for building knowledge-
based expert systems.

5.2.1 Architectures and Approaches to Building Connectionist Expert Systems

A general architecture of a connectionist expert system (CES) is given in figure 5.3. It is distinguished 
from the symbolic AI and fuzzy expert systems in the way problem knowledge is used. Here problem 
knowledge need not only be a set of heuristic rules but can also be given as a set of past experience 
examples, for example, case studies of how a physician has previously treated patients. A CES may 
contain the following modules:

• A connectionist knowledge-based module, represented (either partially or fully) as a connectionist 
architecture. Four different approaches to its building are:

1. Past, historical data are used to train a network. After training, the network contains the system's 
knowledge.

2. Existing problem knowledge, for example, rules, is implemented in a neural network. One way to do 
this is to represent the rules in the form of a set of training examples and train a neural network with 
these examples using standard training algorithms, as presented in chapter 4. The rules are considered as 
input-output associations to be learned by a neural network.
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Figure 5.3
Connectionist expert system.

3. Existing problem knowledge, for example, rules, is used to prewire (to calculate the connection 
weights) a network structure instead of training it. This is the case of inserting explicit knowledge in a 
neural network structure. Such systems, one of them being the class of connectionist production 
systems, are discussed later in this chapter.

4. All of the above methods are used for building the system. For example, the neural network is 
prewired according to an existing (initial) set of rules and then trained with data—either past data or 
current data accumulated when the system is running.

Apart from the above approaches it is possible to combine knowledge represented in a symbolic or fuzzy 
form with knowledge represented in a connectionist form. Such systems are called hybrid systems and 
are discussed in chapter 6.

• A connectionist inference control module, which controls the information flow between all the 
modules and initiates inference over the connectionist knowledge base. A connectionist inference is 
characterized by some desirable features, one of them being approximate reasoning, that is, if the new 
input data do not match exactly the previous examples or the conditions in the problem knowledge rules, 
a solution close to an optimal one is found. Approximate reasoning in connectionist systems is possible 
because of their faculty for generalization. Different methods for approximate reasoning in connectionist 
systems have been developed, depending
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on the task and on the neural network architecture used. Some of them are discussed below. 
Connectionist systems can realize different reasoning strategies and methods, including fuzzy 
reasoning methods, finite automata reasoning, and exact symbolic AI reasoning.

• Rules extraction module, which analyzes the connectionist knowledge base and produces the 
underlying rules that are inherent, or ''buried," in the data. Methods for rules extraction are presented 
later.

• Explanation module, to explain to the user the behavior of the system when reasoning over 
particular input data.

• User interface module, which "communicates" with the user or with the environment. As a user 
interface, a spoken or natural language interface can be used, developed on the basis of using neural 
networks or other techniques.

Different techniques for building connectionist systems for problem-solving and connectionist expert 
systems in particular, and their applications for solving generic and specific AI problems, are given in 
the remainder of this chapter. The first two approaches to building a connectionist knowledge-based 
module are explained in the next two subsections.

5.2.2 Building Connectionist Knowledge Bases from Past Data

When problem knowledge is represented by a set of past data, a neural network can be used and trained 
with the data. The network should then be treated as a connectionist knowledge base. The data used can 
be exact or fuzzy or a combination of both.

Example   To illustrate training a neural network with exact data and with fuzzy data, we use data for 
bank loan applicants. Instead of having fuzzy rules, as was the case in chapter 3, we have a set of 
examples of loan applications and their degree of approval, each of the examples consisting of three 
input variables (CScore, CCredit, CRatio) and one output variable—the decision level (DL).

a. Using exact training data an MLP neural network, with 3 input neurons, 11 intermediate nodes, and 1 
output neuron, to be trained with the use of the backpropagation algorithm, is shown in figure 5.4. The 
number of hidden nodes is assigned to be equal to the number of supposed
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Figure 5.4
A neural network for training with the exact data for the

Bank Loan Decision problem.

different groups of applicants. Such a relatively large number of hidden nodes would facilitate effective 
training on a very large data set. Testing the validity of the neural network after training can be done 
with an use of a test set.

b. Using fuzzy input data: The three exact input variables above are fuzzy-quantized into six fuzzy 
values using the fuzzy membership functions given in chapter 3; the output value is represented by two 
fuzzy numbers, corresponding to the two membership functions of the fuzzy output labels "approve" and 
"disapprove" (figure 5.5). Figure 5.6 shows the results for three test data examples. The results for the 
first and for the second application cases are as expected. The network does not infer any particular 
decision for the third application case, which is also correct. The neural network's "answer" is "don't 
know." The neural network "cannot suggest'' anything about this application.

Some advantages to using this approach to building connectionist knowledge bases are easy and fast 
knowledge base development, no need for interviewing experts, etc.; easy accommodation of new case 
examples
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Figure 5.5
A neural network for training a connectionist system for the Bank Loan

Decision problem with fuzzified data.

Figure 5.6
Testing the neural network from figure 5.5 with three test cases. Here, SH,

SL, RE, RB, CE, CB denote the membership degrees to which the input
data belong to the input fuzzy values, and DA and DD are the inferred

degrees for Decision Approve and Decision Disapprove, DL is the level
of approval after defuzzification.
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as they come through further experience; and good approximate reasoning facilities; new cases are 
judged on the basis of the closest past cases.

There are also disadvantages to this approach, namely, it is difficult to understand and explain the 
solution; therefore there is a need for neural network analysis and explicit knowledge extraction for 
justification and explanation.

5.2.3 Neural Networks Can Memorize and Approximate Fuzzy Rules

When problem knowledge includes explicit (fuzzy) rules, a connectionist system can be trained with 
them, as with input-output associations where the input patterns are the antecedent parts of the rules and 
the output patterns are the consequent parts. A fuzzy association A → B where A and B are fuzzy values, 
defined, for example, by their membership functions, can be memorized in an n-input, m-output neural 
network, where n is the cardinality of the universe Ux, m is the cardinality of the universe Uy, and x and 
y are fuzzy variables with corresponding fuzzy values A and B (Kosko 1992).

This is the basis for using connectionist architectures for reasoning over fuzzy rules of the type IF x is A, 
THEN y is B. An MLP neural network can be trained with a set of fuzzy rules. The rules are treated as 
input-output training examples. When a new fuzzy set A' is supplied as a fuzzy input, the network will 
produce an output vector that is the desired fuzzy output B'. The generalized modus ponens law can be 
realized in a connectionist way. The following inference laws can also be satisfied by the same neural 
network, subject to a small error: A → B (modus ponens); Very A → Very B; More-or-less A → More-or-
less B.

A method for implementing multiantecedent fuzzy rules on a single neural network is introduced in 
Kosko (1992) and Kasabov (1993a). The dimension of the input vector is the sum of the used discrete 
representation for the cardinality of the universes of all the fuzzy input variables. The dimension of the 
output vector is the sum of the corresponding discrete cardinality of all universes of the output fuzzy 
variables in the fuzzy rules. The fuzzy rules are assumed to have the same input and output variables but 
different combinations of their fuzzy values. If OR connectives are used in a rule, it may require that 
more training examples are generated based on combinations between antecedent parts of the rules. This 
approach is illustrated in figure 5.7 on the set of the two fuzzy rules
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Figure 5.7
33-11-11 neural network for the Bank Loan

Decision Problem.

Figure 5.8
Fuzzy decision for three test cases for loan approval, obtained by using

an MLP neural network.

for the Bank Loan Decision problem. The MLP consists of 33 input nodes, 11 intermediate nodes, and 
11 output nodes. The inferred bank loan fuzzy decision values for the same three bank loan applicants as 
used in the example above, but here represented as fuzzy input values, are given as fuzzy membership 
functions in figure 5.8. The experiments show that the decisions inferred by the neural network for the 
three representative cases defined as fuzzy sets are correct. The ambiguity in the third solution vector 
clearly suggests 'not known decision' case.

A chain of neural networks can be designed if the fuzzy rules base consists of chains of fuzzy rules, for 
example:

Rule 1: IF X is A and Y is B, THEN Z is C

Rule 2: IF Z is C, THEN P is D
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Using a chain of neural networks is a multimodular realization of the law of inference called 
"syllogism". A chain of neural networks is the simplest possible multineural network architecture that 
can realize simple time and space hierarchies in the solution process.

Some advantages when using the discussed here approach to building connectionist knowledge bases 
are: a possible mixture of rules and data examples, if available, in one system, and fast realization on 
specialized hardware.

Possible disadvantages of the approach may be poor generalization, if the number of the rules is small 
and the problem space large, because one rule is treated as one example, and inference results then may 
be difficult to explain.

5.3 Connectionist Models for Knowledge Acquisition: One Rule Is Worth a Thousand Data 
Examples

Indeed, a rule, being a "patch" in the problem state space, may cover thousands of data examples. But 
the number of the examples covered by a rule is not the most important point here.

We have already shown that neural networks can learn from data. But can we use what has been learned 
by them to improve our understanding of the problems? Can we learn from what a network has? One 
way to do this is to try to extract explicit knowledge, (e.g., rules) from a trained network. A module for 
analyzing a connectionist knowledge base and extracting explicit knowledge may be crucial for putting a 
connectionist expert system in practice, as many decision-making systems are not acceptable if they 
cannot explain their behavior and "reveal" the knowledge and the reasoning used in solving problems. 
The rationale of the problem of knowledge acquisition is presented first.

5.3.1 Why Acquisition of Knowledge from Data Is Important

The traditional approach to building knowledge-based systems is to use rules articulated by experts and 
to build an expert system. If only this approach is used, some problems arise:

• Experts develop their own internal representation of reality, which is only one aspect of the whole 
process; a data set may contain much more than that.
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• Rules valid in one framework may not be valid in another, so it is desirable to be able to extract, 
to learn rules regularly and easily from fresh, new data.

• Experts may not be aware of the underlying rules in existing data.

• It takes time for experts to learn rules from experience, which rules may reside peacefully in data 
and may have been deeply buried there.

• It is extremely difficult to articulate, maintain, update, and implement a huge number of rules.

• The path from the expert to the machine is very noisy, that is, information can be easily lost or 
corrupted.

One alternative to the standard approach is to build automatic learning machines which learn explicit 
rules from data, if enough data are available. Rules extracted from data can be subsequently used for the 
purpose of reasoning, explanation, understanding problems, and trying alternative techniques for solving 
problems, for example, fuzzy inference machines and AI rule-based techniques.

Neural networks are appropriate candidates for the task of knowledge acquisition from data because of 
the following:

• Neural networks can learn from past data and generalize over new data.

• Neural networks can learn to approximate a function from a table of input-output data.

• Neural networks can learn features from data.

• Neural networks can learn to distinguish groups, categories in which elements are grouped, either 
in a supervised or unsupervised mode.

• Neural networks can learn probabilities and statistical distribution from data.

• Rules are associations between groups ("clusters" and "patches") from the domain space and 
"patches" from the solution space. Neural networks trained with data learn these associations.

The problem is how to extract the knowledge that a neural network has accumulated during training, that 
is, how to open the "black box" and see the rules there.
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There are different methods that can be applied for rules extraction from neural network architectures. 
They can be classified in two major groups: (1) destructive learning, that is, learning by pruning the 
neural network architecture during training; (2) nondestructive learning of rules.

Learned (or articulated) initial set of rules can be used to "prewire" a neural network before consecutive 
training with real data for the purpose of better generalization. Two ways of achieving this task are (1) 
setting only selected connections in a fuzzy neural network, and (2) weights initialization of a fully 
connected neural network before training. The above groups of methods are presented in the following 
subsections.

Extracting rules from data may subsequently mean loss of information. The way knowledge is extracted 
restricts aspects of that knowledge and directs and biases the knowledge acquisition process. A data set 
may contain much more than is extracted from it, for example, many more interdependencies between 
attributes, many more relations, many more inference paths. Neural networks are only one technique. 
Other techniques may be used alternatively or additionally, for example, genetic algorithms.

5.3.2 Destructive Learning of Rules in Neural Networks: Learning Through Forgetting and Pruning

Destructive learning is a technique that destroys the initial neural network architecture for the purpose 
of better learning. One method in this class is structural learning with forgetting (Ishikawa 1995; 
Ishikawa and Moriyama 1995), described below. The method is based on the following assumptions:

• Training of a neural network starts with all the connections present.

• A standard algorithm for training is used, but the weights "forget" a little bit when they change 
(see the "learning-with-forgetting" rule in chapter 4).

• After a certain number of cycles, the connections, which have small weights (around 0), are 
deleted from the structure (pruned).

• Training continues until convergence.

• The trained network consists of connections only, which represent underlining rules in data 
between the input variables and the output variables.
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Forgetting can be selective, that is, only certain connections with small weights forget.

Some advantages of using this approach are that better generalization can be achieved when compared 
with that of a fully connected trained neural network, and training is faster because unnecessary 
connections are deleted.

A definite drawback of the method is that the neural network structure is destroyed after training; it may 
not be possible to accommodate new data, significantly different from the data already used.

5.3.3 Using Competitive Learning Neural Networks for Rules Extraction

Clusters in the input-output problem space represent "patches" of data, which can be represented as 
rules. Neurons in competitive learning neural networks learn to represent centers of clusters. A weight 
vector wj may be viewed as a geometrical center of a cluster of data.

The above characteristic of competitive learning neural networks can be used for the purpose of rules 
extraction, and finding fuzzy rules in particular (Kosko 1992). Figure 5.9 shows a two-dimensional input-
output space for learning rules of the form of IF X is A, THEN Y is B, where A and B can be defined 
either as intervals for extracting interval rules or as fuzzy

Figure 5.9
A two-dimensional input-output space for learning rules. A

fuzzy rule represents a quadruple "patch" from the space
with which points of data have been associated.
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labels for extracting fuzzy rules. This clustering can be achieved in a competitive learning neural 
network. The main requirement of learning rules through clustering in competitive learning algorithms is 
that the training data set should include a significant number of samples. There are some characteristics 
of this type of learning rules:

• The set of extracted rules may only partially cover the whole input-output space.

• If fuzzy quantization of the input and the output variables is used, then the set of fuzzy rules may 
overlap, that is, one input data vector may be covered by several fuzzy rules.

• The number of rules can be controlled by a threshold of significance, being proportional to the 
number of data elements in a cluster, so only significant rules may be extracted.

Figure 5.10 shows a three-dimensional space for learning rules for the Inverted Pendulum case example.

Example   Fuzzy rules extracted from Water Flow to a Sewage Plant data (see appendix C) are given in 
figure 5.11A. The rules have two input variables: the day, a holiday or workday and time of the day, and 
one output variable: the water flow. The number of rules extracted can be controlled by a threshold 
which defines how many data points at minimum have to be associated with a "patch" so that this 
"patch" is represented as a rule. The rules extracted may be approximate and further

Figure 5.10
A three-dimensional space for learning rules for the Inverted

Pendulum case example.
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Figure 5.11
(a) Fuzzy rules extracted through differential competitive learning

implemented in a tool (TIL Shell, 1993) for the water flow prediction
(see appendix C). (B) The rules are applied for predicting new values

through max-min compositional inference.
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refinement may be needed. This is illustrated in figure 5.11 B, where the extracted rules have been 
applied through a MAX-MIN compositional fuzzy inference method for predicting the next-hour water 
flow for a set of test data for 199 hours ahead. The prediction is too rough, even though the tendency and 
the peaks in the next-hour water flow have been predicted. Because there are no rules for the ''Low" 
value of the water flow, the flow predicted by using the rules is much higher than the actual. After a 
rough set of fuzzy rules is extracted, further refinement of these rules may be achieved by.

• Using more fuzzy labels to quantize the input and output variables

• Using another inference method one more suitable for the actual application task

• Using a more precise form of rules by adding coefficients of importance and other parameters for 
representing the uncertainty in the data set

• Inserting the initial rules into a connectionist structure, with further training and consecutive 
(refined) rules extraction (Okada et al. 1992; Kasabov 1996).

The approach presented here uses real data for training a competitive learning neural network. Fuzzy 
rules were then extracted based on fuzzy quantization. But a neural network can also be trained with 
fuzzified data, which is the case in the method presented in the next subsection.

5.3.4 Neural Networks for Learning Fuzzy Rules with Degrees of Importance and Certainty Factors: 
The REFuNN Algorithm

An algorithm called REFuNN (rules extraction from  a fuzzy neural network) is presented here. The 
REFuNN algorithm, first published in Kasabov (1993b) and further refined in Kasabov (1995c), is a 
simple connectionist method for extracting weighted fuzzy rules and simple fuzzy rules in the form of:

Rulei: IF x1 is A1i (DI1i) and x2 is A2i(DI2i) and . . . and xk is Aki(DIki), THEN y is Bi (CFi)

where Aji, Bi (i = 1, 2, . . .,n;j = 1, 2, . . .,k) are fuzzy values (labels) defined by their membership 
functions, DIji are relative degrees of importance attached to the condition elements in the rules, and CFi 
is a confidence factor attached to the rule.
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The method is based on training an MLP architecture with fuzzified data. The REFuNN algorithm, 
outlined below, is based on the following principles:

1. Simple operations are used and a low computational cost is achieved.

2. Hidden nodes in an MLP can learn features, rules, and groups in the training data.

3. Fuzzy quantization of the input and the output variables is done in advance; the granularity of the 
fuzzy representation (the number of fuzzy labels used) defines in the end the "fineness" and quality of 
the extracted rules. Standard, uniformly distributed triangular membership functions can be used for 
both fuzzy input and fuzzy output labels.

4. Automatically extracted rules may need additional manipulation depending on the reasoning method 
applied afterward.

The REFuNN Algorithm

Step 1. Initialization of an FuNN   A fully connected MLP neural network is constructed as shown in 
figure 5.12 where an exemplary structure for the Bank Loan case example is also shown. This FuNN is a 
part of the fuzzy neural network architecture shown in figure 4.38 (see the explanation in chapter 4). The 
functional parameters of the rule layer and the output fuzzy predicates layer can be set as follows: 
summation input function; sigmoid activation function; direct output function.

Figure 5.12
A general architecture of a network for learning fuzzy rules and a

particular architecture for the Bank Loan Decision Problem. Each of
the fuzzy input variables is discretized, the last one, xk, being discretized

into m labels. The output variable has l fuzzy labels.
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Step 2. Training the FuNN   A supervised training algorithm is performed for training the network with 
fuzzified data until convergence. A backpropagation training algorithm can be used. A part of the 
trained FuNN with data generated for the Bank Loan case example is shown in figure 5.13. Stepwise 
training and zeroing can also be applied.

Step 3. Extracting an initial set of weighted rules   A set of rules {rj} is extracted from the trained 
network as follows. All the connections to an output neuron Bj that contribute significantly to its 
possible activation (their values, after adding the bias connection weight if such is used, are over a 
defined threshold Tha) are picked up and their corresponding hidden nodes Rj, which represent a 
combination of fuzzy input labels, are analyzed further on. Only condition element nodes that support 
activating the chosen hidden node Rj will be used in the antecedent part of a rule Rg (the connection 
weights are above a threshold Thc). The weights of the connections between the condition-element 
neurons and the rule nodes are taken as initial relative degrees of importance of the antecedent fuzzy 
propositions. The weights of the connections between a rule node Rj and an output node Bj define the 
initial value for the certainty degree CFj. The threshold Thc can be calculated by using the formula:

Figure 5.13
A part of the trained network for learning fuzzy rules from

data about the Bank Loan Decision Problem.
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Figure 5.14
Initial set of fuzzy rules extracted from an MLP trained with fuzzified data

for the Bank Loan Decision Problem.

where Netmax is the desired value for the net input to a rule neuron to fire the corresponding rule, and k is 
the number of the input variables. Figure 5.14 shows a set of initial set of weighted rules extracted for 
the Bank Loan example.

Step 4. Extracting simple fuzzy rules from the set of weighted rules   The threshold Thc. used in step 3 
was defined such that all the condition elements in a rule should collectively trigger the activation of this 
rule. This is analogous to an AND connective. The number of fuzzy predicates allowed to be represented 
in the antecedent part of a rule is not more than the number of input variables (one fuzzy predicate per 
variable at most). The initial set of weighted rules can be converted into a set of simple fuzzy rules by 
simply removing the weights from the condition elements. Some antecedent elements, however, can 
trigger the rules without support from the test of the condition elements, that is, their degrees of 
importance DIij = wij (connection weights) are higher than a chosen threshold, for example, ThOR = 
Netmax. Such condition elements form separate rules, which transformation is analogous to a 
decomposition of a rule with OR connectives into rules with AND connectives only.

Example   If there is an initial weighted rule

IF x1 is A (8.3) and x2 is B (1.2), THEN y is C,
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and a threshold of ThOR = 5.0 is chosen, then two separate simple fuzzy rules will be formed:

IF x1 is A and x2 is B THEN y is C
IF x1 is A, THEN y is C.

The AND and OR connectives used here are vague, weak, and loosely defined. An AND connective 
should rather be expressed as a "mutual support" between variables or as synergism.

Step 5. Aggregating the initial weighted rules   All the initial weighted rules {ri, ri2. . .} that have the 
same condition elements and the same consequent elements, subject only to different degrees of 
importance, are aggregated into one rule. The relative degrees of importance DIij are calculated for every 
condition element Aij of a rule Ri as a normalized sum of the initial degrees of importance of the 
corresponding antecedent elements in the initial rules rij. The following two rules R1 and R2 were 
obtained by aggregating the initial rules from figure 5.14:

R1: SH(1.2) AND RG(1) AND CG(2.5) → DA

R2: SL(1.1) AND RB(1) AND CB(1.8) → DD

An additional option in REFuNN is learning NOT connectives in the rules. In this case negative weights 
whose absolute values are above the set thresholds Thc and Tha are considered and the input labels 
corresponding to the connected nodes are included in the formed simple fuzzy rules with a NOT 
connective in front. This algorithm is illustrated on the Iris data set in section 5.11 of this chapter.

Other algorithms for fuzzy rules extraction from a trained fuzzy neural network can be found in d'Alche-
Buc et al. (1992); Yi and Oh (1992); Mukaidono and Yamaoka (1992); and Hayashi (1991).

5.3.4 Tuning Fuzzy Rules and Membership Functions in Fuzzy Neural Networks

One of the main problems in building fuzzy systems is the problem of defining fuzzy membership 
functions for the fuzzy-quantizing concepts (fuzzy sets) in addition to the problem of defining fuzzy 
rules. Fuzzy neural networks (FNNs) can be used for this purpose. An FNN is set according to an initial 
set of fuzzy rules and initially defined membership functions, as explained in chapter 4. After training 
with data, more precise fuzzy rules
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can be extracted from the FNN and more precise membership functions, both of which reflect the 
information contained in the training data used. The FNN tunes the membership functions in the 
antecedents of the rules and identifies the fuzzy rules by adjusting the connection weights. Figure 5.15A 
and B shows an FNN and the 10 rules about bond rating implemented in the structure of the FNN 
(Okada et al. 1992). After training, the membership functions change (see figure 5.15C) and so do the 
weighting coefficients for the fuzzy rules. As well as being useful for tuning and extracting fuzzy rules 
and membership functions, the FNN provides better results. The FNN is in this case faster than an MLP 
when training, and more accurate when tested. A bell-shape membership function for the label 
"Medium" is realized in figure 5.15A by adding two sigmoids multiplied to 1 and -1 correspondingly.

The connection weights between the input layer and the second layer, which are subject to change 
during training, represent the sigmoid parameters. The connection weights between the rule neurons and 
the consequent fuzzy labels nodes represent the weighting (confidence) of the rules. The sixth, seventh, 
and eighth layers realize COG defuzzification. That could be done in a simpler connectionist structure 
(see Neo-Fuzzy Neuron, chapter 4) if uniformly distributed triangular membership functions were 
assumed for the output variable.

5.3.5 Using an Initial Set of Rules for Initialization of Connection Weights Before Training

A set of existing or initial fuzzy rules extracted from a data set can be used for achieving better 
generalization in an MLP neural network, still keeping all the connections in it for possible further use. 
Initial rules can be used for defining the number of hidden nodes and for calculating the initial values for 
the connection weights. If n rules of the form of the ones used in the REFuNN algorithm (see above) are 
known, then a three-layer MLP can be initialized as follows: , if the fuzzy label Aij 
takes part in the rule Rj, or wij = 0 otherwise, for the connections between the input nodes i (i = 1, 
2,. . . ,k) and hidden nodes j (j = 1, 2,. . . ,n), and wjl = CDj, (j = 1,2,. . . ,n) for the connections between 
hidden nodes j (j = 1,2,. . . ,n) and output nodes l. Initialization by using fuzzy rules brings the starting 
weight vector W0 of the network into a region where the convergence state is anticipated, thus resulting 
in faster convergence and better generalization (Kasabov 1996). It is not required here that the
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neural network be set with a few connections only, as is the case with the FNN (Okada et al. 1992). 
Here, all the connections are kept during the initialization, but some of them, which represent initial 
rules, have values different from zero. Training and zeroing techniques may be applied.

We have discussed so far fuzzy rules insertion and implementation into connectionist structures, fuzzy 
neural networks. But what about symbolic rules, i.e. propositional rules, production rules, predicate 
clauses, etc.? These are discussed in the next section and in chapter 6.

5.4 Symbolic Rules Insertion in Neural Networks: Connectionist Production Systems

Building a connectionist rule base is possible not only by training a neural network with a set of data 
examples but by inserting existing rules into a neural network structure (see 5.2). Using connectionist 
representation of problem knowledge has all the advantages of the connectionist systems. It therefore 
deserves attention. This problem was discussed for fuzzy rules and fuzzy neural networks. Here it is 
discussed for rigid, symbolic rules.

5.4.1 Representing Symbolic Knowledge as Neural Networks—Why and How?

The standard neural network models have been developed for solving problems based on learning from 
examples. They have been inspired by the physiology of the human brain and what is known of its 
structure and organization.

On the other hand, there are many methods for representing and processing explicit knowledge that are 
claimed to be psychologically plausible. The gap between the physiological processes in the brain and 
the cognitive processes is still not understood. But from an engineering point of view, it is possible to 
design artificial neurons and neural networks that are dedicated to representing and processing existing 
structured knowledge. This approach brings the advantages of connectionism, that is, learning, 
generalization, robustness, massive parallelism, etc., to the elegant and beautiful methods for symbolic 
processing, logical inferences, and goal-driven reasoning.

How can both paradigms be blended at a low, neuronal level? How can structured knowledge be built up 
in a neuron and in a neural network, and a connectionist rule-based system realized?
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Figure 5.15
Implementing 10 rules for bond rating as a fuzzy neural network

(FNN). (Adapted with permission from Okada et al. 1992.)
(A) The structure of the FNN defined and initialized according
to the initial set of fuzzy rules. (B) The initial set of fuzzy rules

for bond rating. (C) The initial and modified membership
functions after training.

  



Page 361

Figure 5.15
(continued)

Representing symbolic knowledge, for example, production rules, predicates and clauses, frames, etc., in 
a neural network structure requires appropriate structuring of the neural network and special methods.

A neural network that has been built to represent structured knowledge may have connections that are 
fixed, that is, the network cannot learn and "improve" its knowledge; and adaptable, that is, the network 
can learn in addition to its previously inserted structured knowledge; it can adjust, improve, and modify 
it in a similar way to the FNN (see figure 5.15).

Once rules are represented in a neural network, the type of inference has to be defined. A great 
advantage to using neural networks for
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Figure 5.16
A simple binary neuron which realizes AND and OR

propositional rules in different ways.

implementing rule-based systems is their capacity for approximate reasoning. It is true only if the 
neurons used in the network allow for grades. If, for example, they are binary, only exact reasoning 
would be possible.

5.4.2 Neurons and Neural Networks that Represent Simple Symbolic Rules

A boolean propositional rule of the form of

IF x1 and x2 and . . . xn, THEN y,

where xi (i = 1,2,. . . ,n) and y are boolean propositions, can be represented in a binary input-binary 
output neuron which has a simple summation input function and an activation thresholding function (a 
threshold of θ) (figure 5.16a and c). Similarly, the boolean propositional rule:

IF xi or x2 or . . . or xn THEN y

will be realized in a similar binary neuron but with different connection weights and thresholds [figure 
5.16(b) and (d)]. The neurons cannot learn. These two simple neurons can be used for building neural 
networks that represent a whole set of rules, but which are not adaptable. A network that represents a set 
of simple propositions is shown in figure 5.17 (Botha et al. 1988).

Propositional rules that are constructed of more terms in their antecedent parts can also be realized in a 
similar way. A general scheme of a connectionist system that realizes more complex rules is given in 
figure 5.18.
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Figure 5.17
A network that realizes a set of simple propositions. A feedback may be
used for a chain inference. For each connection a weight of 1 is assumed

(Botha et al. 1988.)

Figure 5.18
A general scheme of a connectionist system for realizing a
set of production rules. Each layer realizes one stage of the

inference process over production rules.

Symbolic rules that contain different types of uncertainties can also be realized in a connectionist 
structure. These include rules where uncertainty is expressed by probabilities; in this case a neural 
network is set in such a way that it calculates conditional probabilities; and rules with confidence 
factors, that is,

IF x1 is A1 and x2 is A2 and . . . xn is An, THEN B (CF)

can be realized either by: (1) inserting the rule into the connections of n-input, one output neuron, or (2) 
applying a training procedure to a neuron with training examples, whose input and output values 
represent
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certainties for the existing facts to match the condition elements and confidence for the inferred 
conclusion.

Example  By applying the second approach from above the rule ''IF (high temperature) and (headache), 
THEN (flu) (CF = 0.7)" can be realized by a single two-input, one-output, continuous-value neuron 
trained with the training example: 1,1, 0.7. The neuron will make a correct inference and calculate the 
certainty of the flu transpiring if the two input parameters had different certainties from 1 for a new case, 
say (high temperature = 0.7) and (headache = 0.9).

Realizing more than one rule in a single neuron of the perceptron type may not be appropriate, having in 
mind the restrictions of perceptrons pointed out by Minski and Papert (1969). The system described in 
Fu (1989) represents MYCIN-like symbolic rules. Their certainty factors are bound to the connections in 
the neural network as initial weights. The weights may be adjusted further by using the backpropagation 
algorithm.

5.4.3 Connectionist Production Systems: Representing Variables

Production systems that consist of productions of the form IF C, THEN A, where C is a set of conditions 
and A a set of actions, are good as models of cognition as well as practical tools for knowledge 
engineering, as we have already discussed. A connectionist realization of production systems is an 
important issue because it can bring all the benefits of the connectionist approach to AI systems and 
symbolic computation. In connectionist production systems, the following features are achievable:

• Massive parallelism

• Partial match

• Reasoning with inexact, missing, or corrupted data

• Graceful degradation of the system

• Fault tolerance

• Learning and adaptation.

These characteristics would help in overcoming the two major concerns of present-day expert systems: 
(1) approximate reasoning and (2) knowledge acquisition.

A few connectionist production models and systems have been developed so far. They concentrate on 
solving some of the basic problems of
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realizing classic production systems: representing rules and data, chain reasoning, and variable binding.

One of the main problems in the connectionist realization of production systems is the problem of 
representing variables and variable binding. The variables used in an antecedent part of a production rule 
should be bound to allowed values. The following example is an illustration of a production with 
variables:

(deffrule "a rule_from_the_monkey_and_bananas_example"
(object ladder at ?x on ?)
(object banana at ?x on ceiling)
?monkey ← (monkey on ladder holds nil)
⇒
(retract ?monkey)
(assert (monkey on ladder holds bananas)))

This production is satisfied when the variable ?x in the first two condition elements is bound. A 
distributed representation for solving the variable binding problem has been used in a model of a 
connectionist production system called DCPS, developed by Touretzky and Hinton (1988). It assumes a 
fixed number of two condition elements in each production rule and one variable at most, for example:

C0383-01.gif

The two possible actions in the right-hand side of a production are insert a fact (+) and delete a fact (-). 
DCPS uses distributed representation to realize the variable binding and store facts in its working 
memory. Two gates open at different times, to enable the two phases of the execution cycle: "recognize" 
and "act."

The system TPPS (Dolan and Smolensky, 1989) has the same limitations as DCPS, but it utilizes a 
tensor product representation which makes the process of computing the weights easier. In chapter 6 
another connectionist architecture, called NPS, is presented in more detail.

5.5 Connectionist Systems for Pattern Recognition and Classification; Image Processing

Having introduced some general approaches to using neural networks for problem solving and 
knowledge engineering, we can go on to discuss
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applications of neural networks to solving generic AI problems. This section discusses using 
connectionist models for pattern recognition. Along with specific techniques for applying standard 
connectionist models, new models are introduced as well. These are the leaky integrator, a type of 
neuron for representing time patterns, and the cognitron and neocognitron, for vision.

5.5.1 Representing Spatial and Temporal Patterns in Neural Networks

Representing space and time is an important issue in knowledge engineering. How can these concepts be 
represented in a connectionist system? Space can be represented in a neural network by:

• Using neurons that take spatial coordinates as input or output values. Fuzzy terms for representing 
location, such as "above," "near," and "in the middle" can also be used. An example of representing 
spatial objects in a neural network was shown in chapter 4.

• Using topological neural networks, which have distance defined between the neurons and can 
represent spatial patterns by their activations. Such a neural network is the SOM; it is a vector quantizer, 
which preserves the topology of the input patterns by representing one pattern as one neuron in the 
topological output map.

Representing time in a neural network can be achieved by:

• Transforming time patterns into spatial patterns.

• Using a "hidden" concept, an inner concept, in the training examples.

• Using an explicit concept, a separate neuron or group of neurons in the neural network, takes time-
moments as values.

Different connectionist models for representing "time" and the way they encode time are explained 
below (figure 5.19):

1. Feedforward networks may encode consecutive moments of time as input-output pairs.

2. Multilag prediction networks encode time in the input vector as well as in the case of (1).

3. Recurrent networks, in addition to (1) and (2), also encode time in the feedback connection.
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Figure 5.19
Different models for representing "time" in a neural network:

 (a) feedforward networks encode consecutive moments of time
 in the input-output pairs; (b) multilag prediction networks encode

 time in the input vector as well as in the case of (a);
 (c) recurrent networks, in addition to (a) and (b) methods,

 also encode time in the feedback connection; (d) time-delay
 networks encode time in a similar way as (b) but some

 lags of input values from the past as well as from the future
 are used to calculate the output value.

4. Time-delay networks encode time in a similar way as (2) but some lags of input values from the past 
as well as from the future are used to calculate the output value.

An interesting type of a neuron, which can be successfully used for representing temporal patterns, is the 
leaky integrator (figure 5.20a). The neuron has a binary input, a real-valued output, and a feedback 
connection. The output (activation) function is expressed as:

y(t + 1) = x(t), if x is present, or

y(t + 1) = f(y(t)), if x is not present,

where the feedback function is usually an exponential decay. So, when an input impulse is present (i.e., 
x = 1), the output repeats it (y = 1). When the input signal is not present, the output value decreases over 
time, but a
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Figure 5.20
The leaky integrator neuron: (a) a general model, where the feedback

function is usually an exponential decay; (b) when the input signal
is not present, the output value decreases over time.

"track" of the last input signal is kept at least for some time intervals (figure 5.20b). The neuron 
"remembers" an event x for some time, but "forgets" about it in the distant future.

A collection of leaky integrators can be used, each representing one event happening over time, but all 
of them able to represent complex temporal patterns of time correlation between events. If another 
neural network, for example, ART, is linked to the set of leaky integrators, it can learn dynamic 
categories, which are defined by time correlation between the events.

5.5.2 Pattern Recognition and Classification

Both supervised and unsupervised learning in neural networks have been used for pattern recognition 
and classification. The steps to follow when creating a connectionist model for solving the problem are 
to define (1) the set of features to be used as input variables, and (2) the neural network structure and the 
learning and validation methods.

A crucial point in using neural networks for pattern recognition is choosing the set of features X = {x1, 
x2,...,xn} which should represent unambiguously all the patterns from a given set P = {p1, p2, ...,pm}, In a 
simple case, the task of character recognition, some methods use the values of the pixel from a grid 
where the pattern is projected. Other methods use other features: lines, curves, the angle which a 
drawing hand makes with the horizontal axis, picked up at some points etc. Some
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preprocessing operations may be needed to make the recognition scale-invariant, translation-invariant, 
and rotation-invariant. Preprocessing is a crucial task in pattern recognition. For the task of recognizing 
ambiguous, noisy, and ill-defined patterns, it is not recommended that primary signal elements be used, 
such as temporal samples of speech, waveforms, or the pixel of an image, etc.

Figure 5.21A shows an MLP neural network trained to recognize handwritten characters. The inputs 
represents pixels and the outputs the classes they belong to. After training the network with the training 
examples from figure 5.21B, centered as in figure 5.21A for learning rate 0.1, momentum 0.5, and 
number of iterations 50,000, the training MSE became 0.000023.

Instead of using pixels as features, the patterns can be represented by fewer features. A set of features 
could be a set of (Nc + Nr) features, where Nc is the number of the columns in the grid and Nr is the 
number of rows. A value for the feature Ni for a given pattern is the number of cells in the ith row 
(column) crossed by the pattern. Figure 5.22 shows an MLP trained with the backpropagation algorithm 
for recognizing 10 digits in this way.

A system that recognizes ZIP codes was developed with the use of a five-layered MLP and the 
backpropagation algorithm (Le Cun et al. 1990). It was implemented on an electronic chip. The learning 
set consists of 7291 handwritten digits and 2549 printed digits in 35 different fonts.

Other application areas for connectionist handwritten character recognition are banking, fraud detection, 
automated cartography, automatic data entry, and so forth.

SOM and LVQ algorithms have been successfully applied to pattern recognition tasks. The training 
algorithm places similar input patterns into topologically close neurons on the output map. An example 
for recognizing four classes of patterns (letters) is shown in figure 5.23. The new pattern is classified 
(topologically placed) in the region of A's. These networks have been used successfully for phoneme 
recognition, as discussed later in this chapter.

When compared with statistical methods, connectionist methods for pattern recognition and 
classification have several advantages when:

• A large number of attributes (features) describe the input data and the interdependencies between 
them are not known.
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Z0388001.gif

Figure 5.21
(A) A neural network for Handwritten Characters Recognition.

(B) The set of training examples (patterns) for the Handwritten Characters
 Recognition Problem.
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Figure 5.22
An MLP network with the backpropagation algorithm for

recognizing 10 digits by representing them with 17 features
(7 columns plus 10 rows).

Figure 5.23
A Kohonen SOM  for

recognizing handwritten
letters, each represented
as a 17-element feature
vector. The new input is
likely to be the letter A.

  



Page 372

Z0390001.gif

Figure 5.24
An MLP with the backpropagation algorithm for

classification of Iris instances.

• Irrelevant, contradictory, or ambiguous instances are present in the data set.

• Noise is present in the input data.

• Underlying distributions are unknown.

Two specific classification problems from chapter 1 are solved here using neural networks.

Example 1: The Iris Classification Problem   An MLP with the backpropagation algorithm (figure 5.24) 
is trained with the Iris data set and then used to classify new Iris instances into the three classes: Setosa, 
Versicolor, Virginica. The unknown goal function between the input space of all the Iris plants and the 
output space of the three classes has been implicitly approximated by the networks. For the network of 
figure 5.24, a set of 120 randomly chosen instances was used for training, and a set of 30 instances for 
testing. The MLP, after having been trained to an MSE of 0.0001, classified all the test examples 
correctly.

A SOM was set and trained with the same Iris data (figure 5.25). A small-sized SOM (e.g., 10 x 10) 
would not be enough to obtain a good classification. The problem is simplified in figure 5.25. The 
neuron denoted by the asterisk was activated by an instance which belongs to the Versicolor class and 
by an instance which belongs to the class Virginica. This ambiguity can be avoided by using a larger 
SOM (e.g., 20 x 20) or by using LVQ algorithms for supervised classification.

A solution to the same problem using a fuzzy neural network is shown in section 5.11.
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Figure 5.25
Learning Iris classes through SOM and
 LVQ algorithms. LVQ algorithms can

 deal better with the ambiguity in classifying
 new instances (a new instance activates the

neuron denoted by the asterisk).

Example 2: The Soil Classification Problem   A MLP was set for eight input variables, six intermediate 
nodes, and six output variables (classes) and trained with 72 training examples, 12 for each type of soil 
(see appendix D). Figure 5.26 shows the training error for 10,100,500, 1000, and 1500 training epochs. 
A set of six new samples of soil (one for each class) was used for testing (figure 5.27a). Figures 5.27b 
through e show the test results of the network after having been trained for 10, 100, 500, and 1000 
epochs respectively. It can be seen that even after the first 500 epochs of training, the network 
generalizes very well on the test set.

In the above two examples of using neural networks for classification some conditions were satisfied:

1. There is an output neuron bound to each of the classes.

2. A class pattern is encoded in "1 out of N" mode, that is, only one 1 is present in a class pattern for 
training.

3. The training examples were sufficient.

4. The hidden nodes in the MLP were sufficient to approximate the underlying mapping function.

When the above conditions are met in an MLP classifier, then its outputs express the posterior class 
probabilities. This is an important characteristic of the connectionist classifiers.

Connectionist methods are widely applied nowadays for classifying satellite images and creating maps 
of regions, for example, corn, tussocks, bare ground, woods, etc.
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Figure 5.26
The RMS training error for an MLP neural network trained with

the data for the Soil Classification Problem.

5.5.3 Neural Networks for Vision

Specialized neural network architectures called cognitron and neocognitron, developed by K. 
Fukushima, have been used for recognizing connected characters (Fukushima 1993). The cognitron 
architectures use specialized units which recognize small parts of the image, for example, a corner 
element. The results from all units are aggregated and the entire object is reconstructed in the last layer.

5.5.4 Image Processing

Three main tasks in image processing, where connectionist methods can be successfully applied, were 
discussed and illustrated in chapter 1: (1) image compression and restoration, (2) feature extraction, and 
(3) image classification. Bart Kosko (1992) shows that competitive learning techniques lead to similar, 
even slightly better, image compression when compared with mathematical transformations. A 
satisfactory restoration was achieved when the 256 x 256 black-and-white image was compressed and 
represented by 0.5 bit/pixel. Modified SOM can also be used for image
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compression. Other connectionist methods for image compression use MLP with the backpropagation 
algorithm. The ability of the hidden layer to capture unique representation of the input vectors is 
exploited here. The hidden layer does the compression. The hidden layer in this case performs a 
principal component analysis (Gallinary et al. 1990). An MLP with n inputs and n outputs is trained 
with the same patterns for inputs and outputs, where n is the dimension of the input vectors. Restoration 
of an image is done after transmitting the activation values of the neurons in the hidden layer. Figure 
5.28 shows a small simplified network of 256 inputs, 16 hidden nodes, and 256 outputs. The 
compression here is 0.5 bit/pixel, when one byte is assumed to represent the activation level of a hidden 
neuron. Better quality of the restored images can be achieved with the use of larger networks, and 
possibly, structured multinetwork systems, where one neural network is used for compression of only a 
portion of the original image.

Another well-explored problem in image processing is features extraction. Features, such as contours, 
lines, curves, corners, junctions, roofs, ramps, and so on, can be extracted from an original image. For 
many image-processing systems these features are enough to classify the image or to apply successfully 
other processing methods. Connectionist models can be used for different types of feature extraction, 
such as those that are region-based, where areas of images with homogeneous properties are found in 
terms of boundaries; edge-based, where the local discontinuities are detected first and then curves are 
formed; and pixel-based, which classify pixels based on gray levels.

5.6 Connectionist Systems for Speech Processing

Speech processing, and speech recognition in particular, is one challenging problem where neural 
networks have a lot to offer. The problems of speech processing and speech recognition were discussed 
broadly in chapter 1. Neural networks have been widely used for solving many tasks and subtasks of 
speech processing.

5.6.1 Speech Synthesis: NETtalk

One of the first neural network applications of speech processing was NETtalk, developed by Sejnowski 
and Rosenberg (1987). This is an MLP
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Figure 5.27
(a) Six test examples to test the neural network trained with
the soil data. The activation values of the six output neurons
are captured in bar graphs after (b) 10, (c) 100, (d) 500, and

(e) 1000 epochs of training the network.
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Figure 5.27
(continued)
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Figure 5.28
A multilayer perceptron for compression of a 256-cell image into a

16-cell image.

trained with a backpropagation algorithm to pronounce an English text. The input of the network 
consists of seven input modules, one for a letter, each consisting of 29 input nodes (26 for the letters in 
the alphabet plus three for punctuation), 80 hidden nodes, and 26 output nodes, encoding phonemes. The 
input text to the network ''slides" from left to right as in a window. The desired output is the phoneme 
that corresponds to the letter at the center of the window. The outputs are connected to a speech 
generator for the recognized phonemes. The network is trained on 1024 words from English phoneme 
source. The accuracy after only 50 epochs was 95%. When tested, an accuracy of 78% was achieved.

5.6.2 Speech Recognition

The phases in a speech recognition process were discussed in chapter 1. Neural networks can be used for 
pattern matching, as well as for the language analysis phase. Here we discuss the former.

The signal processing may be performed in a standard way: a digitizing frequency of 22,050 Hz, a 256-
point FFT, and 26 mel-scale cepstrum coefficients obtained for each segment of 11.6 ms of the speech 
signal. The time segments overlap on 50%. Some of the most commonly used connectionist models for 
speech recognition are MLP, SOM, time-delay networks, and recurrent networks. These models are 
discussed and illustrated below. Their use depends on the type of the recognition performed, for 
example, whole word recognition, or subwords recognition, for example, phoneme recognition.
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Figure 5.29
"Yes"/"no" words recognition by an MLP neural

network. The input vectors are 26 mel-scale
cepstrum coefficients (MSCCs).

5.6.3 Using MLP for Speech Recognition

Figure 5.29 shows a "yes"/"no" whole-word recognition MLP. It has 26 input nodes for the 26 mel-scale 
coefficients, which in this case are averaged over several segments, to cover the whole words. The two 
words' speech signals are transformed into 26-element vectors. Samples of" yes"/ "no" spoken words are 
collected from different speakers-male, female, various age groups, etc. The network is trained and then 
tested on newly pronounced "yes''/"no" words. If the test words are pronounced by one of the speakers 
whose spoken words were used for training, and the system recognizes them, then the system is said to 
be of a multiple-speaker type. If the system recognizes a new speaker, then the system is called speaker-
independent.

Phoneme recognition is a difficult problem because of the variation in the pronunciation of phonemes, 
the time alignment problem (the phonemes are not pronounced in isolation), and because of what is 
called the coarticulation effect, that is, the frequency characteristics of an allophonic realization of the 
same phoneme may differ depending on the context of the phoneme in different spoken words (see 
chapter 1).

There are two approaches to using MLP for the task of phoneme recognition: (1) using one, big MLP, 
which has as its outputs all the possible phonemes, and (2) using many small networks, specialized to 
recognize from one to a small group of phonemes (e.g., vowels, consonants, fricatives, plosives, etc.). A 
multimodular neural network architecture for recognizing several phonemes-/w/, /∧/, /n/, /silence/—is 
shown in figure 5.30(A). One 78-10-1 MLP network is trained for each of the
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Figure 5.30
(A) Multimodular MLP network for phoneme recognition. (B) The activation values

of four neural network phoneme units for the phonemes /w/, /∧/, /n/ and /silence/ when
a new signal is fed over time. (C) The output values of the same neural networks after

additional training. (D) The output values after averaging.
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Figure 5.30
(continued)
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phonemes. The outputs of these networks need to be monitored, the winner being chosen (and labeled by 
the corresponding phoneme class label) for any time segment of 11.6 ms. The time sequence of labels, 
for example, /wwwnww ∧ ∧ ∧ snnsnn/, then may be translated into a corresponding word, for example, 
"one." An example of solving a phoneme recognition task is given in section 5.11. Using multimodular 
structure of specialized neural network units allows for experimenting with different learning strategies, 
which were discussed in section 5.1.4. Two of them are illustrated here:

1. Additional training/adjustment of individual modules (e.g. neural network units);

2. Using 3-frames moving average of recognized speech signals.

These strategies are illustrated here on a small experimental system in which 21 units are trained with 
same training data for the 21 phonemes from the digits (silence is included), but each training set for an 
individual neural network unit has different output labels corresponding to the respective phoneme class 
as shown in figure 5.30A. Speech data from six male and five female speakers was used for training. 
The activation values of four neural network units when test data of spoken word "one" is fed at the 
input, are shown on the Y-axis of figure 5.30b. On the X-axis the 5.8 ms time intervals are shown. The 
phonemes /w/, /∧/, /n/ are supposed to be recognized in certain time intervals; for example, the phoneme 
/n/ should ideally be recognized between the 115 and the 133 time intervals. Before and after the 
recognition of the phonemes /w/, /∧/, and /n/, "silence" should be ideally recognized, that is, the output 
value from the "silence phoneme unit'' should be the highest one. As can be seen from figure 5.30b, the 
recognition of the phonemes /w/ and /∧/ is good, but the /n/-phoneme network reacts falsely to /silence/. 
This ambiguity may be suppressed in following modules of a speech recognition system, but it will be 
better if it can be resolved at this stage and not passed to the next stages.

It can be seen from figure 5.30b that there are a lot of peak activation values of the /n/ unit instead of the 
/silence/ unit. Smother output values can be achieved by using averaging techniques. It is obvious from 
figure 5.30b that the /w/ and /∧/ units ("pupils") react appropriately, but the /n/ unit needs more training 
in order to suppress its false positive reaction to silence. The original /n/ unit from figure 5.30b is now 
trained with a new
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data set which has all the previous examples, but the examples of silence (negative examples) were 
doubled. The /n/ network was additionally trained for small number of epochs. Figure 5.30c shows the 
activation of the same units to the same input data as in figure 5.30b. The true-positive activation of /n/ 
has increased and now the time interval between 115 and 133 is recognized as a realization of /n/. Still 
there are some false positive activation peaks of the /n/ unit to /silence/ signals. They are suppressed by 
averaging the outputs over three consecutive time intervals as shown in figure 5.30d.

An inherent limitation of MLP networks for computer speech recognition is that they cannot implicitly 
account for variations of speech in time.

5.6.4 Using SOM for Phoneme Recognition

The feature vectors obtained after signal processing e.g. the mel-scale cepstrum coefficients vectors, can 
be used as training examples for training a SOM. Vectors representing allophonic realizations of the 
same phoneme are taken from different windows (frames) over one signal sample and from different 
signals, that is, different realizations of this phoneme. After enough training, every phoneme is 
represented on the SOM by the activation of some output nodes. One node fires when an input vector 
representing a segment of the allophonic realization of this phoneme is fed into the network. The 
outputs, which react to the same phoneme pronounced differently, are positioned closely. The outputs 
that react to similar phonemes are positioned in proximity on the map. This is due to the ability of the 
SOM to activate topologically close output neurons when similar input vectors are presented.

This approach has been used and phonemic maps have been created for Finnish (Kohonen, 1990) (figure 
5.31), Japanese, English, Bulgarian (Kasabov and Peev 1994) (figure 5.32), and other languages. Figure 
5.33A is a two-dimensional drawing of the coordinates of the neurons in a SOM that was labeled with 
eight phonemes in English selected from digits pronounced by a small group of speakers. Figure 5.33B 
shows how allophonic segments of phonemes were segmented for training the SOM. It is clear from this 
drawing that the phonemes are well distinguished, and there are areas where the network cannot produce 
any meaningful classification.

Instead of having a large, and therefore slow-to-process single SOM, hierarchical models of SOMs can 
be used. A model published in (Kasabov
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Figure 5.31
SOM of the phonemes in Finish language. (Reprinted with permission

from Kohonen 1990, Copyright IEEE@90.)

Figure 5.32
SOM of six vowel and ten consonant phonemes in the Bulgarian

language. The symbols used to denote phonemes have similar
sounds as English, except "%" which denotes the sound "st,"

as in "Stuttgart," "$" which denotes the sound ''sh" as in "shift"
and "3" which denotes a similar sound as the beginning of

"zip" (From Kasabov and Peev 1994).
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Figure 5.33
SOM of several phonemes in the English language. (From Kasabov et al,

1994). (A) The coordinates of the neurons from a SOM labeled with
corresponding phoneme labels. (B) The way the speech samples were

segmented for training the SOM.
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and Peev 1994) uses one 4 × 4 SOM at the first level and sixteen 4 × 4 KSOMs at the second level. 
Every SOM at the second level is activated when a corresponding neuron from the first level becomes 
active. The asymptotic computational complexity of the recognition of the two-level hierarchical model 
is 0(2 ⋅ n ⋅ m) where n is the number of inputs and m is the size of a single SOM. This is much less than 
the computational complexity O(n · m2) of a single SOM with a size of m2 (m = 16). For a general r-level 
hierarchical model, the complexity is O(r · n · m). The first-level SOM is trained to recognize four 
classes of phonemes: a pause, a vocalized phoneme, a nonvocalized phoneme, and a fricative segment. 
The network is trained with three features of the speech signal: (1) the mean value of the energy of the 
time-scale signal within the segment; (2) the number of the crossings of zero for the time-scale signal; 
and (3) the mean value of the local extremes of the amplitude of the signal on the time scale.

5.6.5 Time-Delay Neural Networks for Speech Recognition

Time-delay neural networks (TDNNs) capture temporal speech information. Time-delay input frames 
allow the weights in the initial layers to account for time variations in speech (Waibel et al. 1989a). Like 
the MLP, they are feedforward networks. Figure 5.34 shows a general TDNN scheme for the phoneme 
classification task. TDNNs are good at recognition of subword units from continuous speech. For the 
recognition of continuous speech, a higher-level parsing framework is required in addition.

It was discovered (see Waibel et al. 1989b) that a single monolithic TDNN was impractical for 
recognizing all the phonemes in Japanese. It was then suggested that a modular TDNN be used.

5.6.6 Recurrent Neural Networks for Speech Recognition

Recurrent neural networks, like the TDNNs, account for temporal variations in speech. A feedback loop 
connects the output nodes to the input nodes which makes them capable of encoding and recognizing 
sequential speech structures.

Figure 5.35 is an example of using a recurrent network for phoneme recognition. The previously 
recognized phoneme (or segment of a phoneme) is used at the net cycle, which helps the recognition 
process. The network can learn temporal dependencies from the speech sequences used for training.
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Figure 5.34
A TDNN for phoneme recognition. Each group of neurons has as
many neurons as the number of the elements in the input vector

representing a segment of the speech signal, for example, the number
of the mel-scale cepstrum coefficients. The delay elements ensure that
the network learns time-dependencies between the segments within a

phoneme.

Figure 5.35
An example of using a recurrent neural network for

phoneme recognition.
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The recurrent networks are good for recognition of short isolated speech units. Owing to their structure 
they include some kind of time-warping effect. For continuous speech recognition, however, the 
recurrent neural networks must be used within some hybrid system.

5.6.7 Extracting Speech and Language Rules from Data

Extracting explicit knowledge, rules, from speech and language data is an important task for the 
following reasons:

• Speech is an ambiguous sequence of sounds. This ambiguity cannot be handled at the pattern-
matching phase only. It also has to be dealt with at a higher knowledge-based level. The solution to the 
problem of building a continuous-speech, speaker-independent, unlimited-vocabulary speech 
recognition system is more likely to be found in a hybrid system, which combines data and knowledge 
processing; rules and data processing should reside in one system.

• There is plenty of speech and language repository corpus data, which are easily obtainable and 
may be very useful.

• Articulating speech and language rules is an extremely difficult task for linguists.

That is why a knowledge acquisition module is included in the general architecture of an intelligent 
human-computer interface (see figure 1.20).

Mitra and Pal (1995) used fuzzy rules to represent vowel phonemes. An example of such a rule is given 
below:

IF F1 is very low and F2 is very low,
THEN the vowel is very likely to be /u/,

where F1 and F2 are the first and the second formants respectively.

An example of using fuzzy linguistic rules (either extracted from data, or articulated by experts) in a 
hybrid system is given in chapter 6.

5.7 Connectionist Systems for Prediction

Prediction, as discussed in chapter 1, is a difficult problem, when either chaotic time series are involved 
or the available static data are sparse. Prediction can be viewed as (temporal) pattern recognition task, 
for which purpose neural networks suit very well.
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5.7.1 Time-Series Prediction with Neural Networks

In reality, temporal variations in time-series data do not exhibit simple regularities and are difficult to 
analyze. The connectionist approach has proved so far to be applicable to some difficult cases of 
multivariate time-series analysis.

In general, the predicted value of a variable x at a future time is based on k previous values. In this case, 
k is a lag of the prediction. If we have the values of the variable x for the moments from 1 to t, that is, 
x(1), x(2), . . .,x(t), we can try to predict x(t + 1), and also future values x(t + 2), . . .,x(t + m), which is 
univariate prediction. Multivariate prediction uses more variables rather than x only. Figure 5.36 shows 
neural network structures for univariate and multivariate prediction.

Figure 5.36
(a) Connectionist univariate time-series

prediction; (b) connectionist multivariate (two)
time-series prediction.
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The variable subject to prediction (dependent variable) can be different from the past data variables 
(independent variables), but both are on the time scale. A case problem of one independent variable (the 
average monthly minimum  temperature) and one dependent variable (gas consumption per capita was 
presented in chapter 1 and called the Gas Consumption Prediction Problem. This example is used for 
illustrating different connectionist models for time-series prediction and comparing the results with 
statistical regression analysis.

Example 1:  The Gas Consumption Prediction Problem   Four experiments with different MLP neural 
network architectures are presented here on the gas consumption time series (see figure 1.21). They 
realize the four general solutions to the problem as given in figure 1.22. As the past data set consists of 
55 records, 48 of them (the years 1988-1991) have been used for training. The seven records for 1992 
(January-July) are used for testing. The results obtained by the four neural network architectures are 
compared with similar experiments using the statistical regression technique (Gonzales 1992).

a. The first neural network architecture does a static prediction, that is, gas consumption is related only 
to the corresponding monthly temperature, without introducing time lags (figure 5.37). After 10,000 
epochs of

Figure 5.37
A simple neural network for the Gas Consumption Prediction Problem.
One input variable is used: the average monthly temperature forecast

Temp(t) for predicting the gas consumption Gas(t).
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training the network, for learning rate 0.1 and momentum 0.3, the calculated root mean-square training 
error (RMSE) was 0.0957 and the test error per example was 0.0122. The regression analysis done over 
the same data set produces a regression function Gas = 10.5 - 0.660 Temp, which explains 87.1% of the 
data variation.

b. The second neural network architecture (figure 5.38), has an input lag of 2 months, that is, gas 
consumption for the present month is assumed to depend not only on the average temperature for the 
month but also on the average temperatures of the preceding 2 months. The achieved training and test 
error per example were, respectively, 0.0795 and 0.0083.

c. In a third experiment, time was represented as an input variable (figure 5.39). Time is presented as 
consecutive numbers (indices) of the months. Such a feature can help the network capture trends in gas 
consumption over time: for example, the decrease in gas consumption year after year. The obtained 
training and test error per example are 0.0772 and 0.0063. Through a regression technique, the following 
regression function was found: Gas = 11.3 - 0.681 Temp - 0.0207 Time, which explains 89.1% of the 
variation in the data.

d. The last experiment was performed when, in addition to the time trend used in the previous 
experiment, monthly (seasonal) trends were introduced by adding 11 new inputs, each representing the 
month of the prediction

Figure 5.38
A second connectionist model for the Gas Consumption Prediction

Problem. Two time lags are introduced here.
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Figure 5.39
A third connectionist model for the Gas Consumption Prediction

Problem.

(the 12th month is assumed by default if no others are given). The network architecture is shown in 
figure 5.40. After 30,000 epochs, the total training and test errors were 0.00366 and 0.01066. When a 
regression technique was used, the following regression function was obtained: Gas = 5.93 - 0.299 
Temp - 0.00895 Time + 0.523. Jan + 0.424 Feb + 0.191 Mar + 0.797 Apr + 2.47 May + 3.60 Jun + 3.98 
Jul + 3.30 Aug + 1.98 Sep + 1.22 Oct + 0.492 Nov. The percentage of variation in gas consumption 
explained by this regression model is 97.4%.

A crucial point for a prediction system, as can be seen from the experiments above, is the set of 
independent variables (features). The problem above was not difficult because about 90% of the gas 
consumption was explained by the temperature as a single parameter. If we assume that the price of gas 
varies over time, we have to include "price" as an independent variable also. The prediction would then 
become more difficult if a new non-gas heating system was introduced into the subject town.

Connectionist methods for time-series prediction have the following advantages over statistical methods:

• There is no need to know the type of regression function; an assumption of a linear function may 
lead to a wrong prediction; the ability of the networks to approximate any continuous function 
represented by a data set is the key to their success in this case.

  



Page 393

Figure 5.40
A network architecture for the Gas Consumption Prediction Problem

with "time trends" and "seasonal trends" introduced as input variables.

• Neural network models are more robust than regression models.

• Neural networks are easier to experiment with.

Example 2: The Stock Market Prediction Problem (See appendix C for a description of the SE40 stock 
index data.) Figure 5.41 shows two possible models for the SE40 prediction—(a) an MLP and (b) a 
recurrent neural network, both using one time lag of data. Several different MLP architectures were 
trained with 1358 data examples and tested with 379 data points. The results for different number of 
hidden nodes (HD) over the test data are similar (figure 5.41c). Other models were also tested. The 
network with four input variables, namely Time, SE40(t), the 5-day moving average, Avg(5), and the 
mean across all the previous examples, Avg(All), gave the best test result.

5.7.2 Rules Extraction from Time-Series Data

Extracting rules from time-series data may have a significant contribution to make to understanding time-
series processes. Again, the selection of appropriate features is crucial. For example, the stock market 
SE40 data (see appendix C) can be used to extract fuzzy rules for calculating the next
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Figure 5.41
Stock exchange market SE40 prediction with a

feedforward MLP neural network and a recurrent
neural network structures using one time lag:

testing the two models for different numbers of
hidden nodes (HD).

value of the index from its two previous values. The rules can be in the form of:

IF SE(t) is A and SE(t - 1) is B, THEN SE(t + 1) is C

where A, B, and C are fuzzy values (e.g., small, medium, high). A differential competitive learning 
(DCL) algorithm may be used with fuzzy labels defined as triangular membership functions for the 
fuzzy values ''small," "medium," "high".

Extracting rules from time-series data may not make any sense if the time series is random, but if it is 
not the rules represent an approximation of the underlying rules in the data. If the input-output space is 
not properly selected, it becomes very difficult to extract meaningful rules from it. According to the 
results from Example 2 in the previous subsection it will be more appropriate if rules are extracted from 
the neural network
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Figure 5.41
(continued)
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trained with the four input attributes as described there. A rules extraction module is included in the 
hybrid system for stock trading given in chapter 6.

5.7.3 Analogy-Based Prediction

Analogy-based prediction is considered here as predicting the behavior of one set of objects Q = {Q1, 

Q2,. . . ,Qn} when stimulus Sj (j = 1, 2,. . . ,s) is applied to them, on the basis of the behavior of another 
set of objects P = {P1, P2,. . . ,Pm} which have similarities with the first set when the same or similar 
stimuli are applied.

The main idea of using neural networks for discovering analogies is that similar stimuli will activate 
corresponding (analogical) neurons to a similar degree of activation. This idea has been employed to 
discover structural similarity, semantic similarity, and pragmatic centrality.

A connectionist model for a functional analogy-based prediction is introduced here. The input-output  
pairs for training such a network are {(Pi)j} - {(Ql)j , where i = 1, 2,. . . , m;l = 1, 2,. . . , n;j = 1, 2,. . . ,s. 
The network is used to learn the analogy between two sets of objects on the basis of their behavior 
(reaction) to the same stimuli. The learned analogy is then used to predict the reaction of the objects Ql 
(l = 1, 2,. . . ,n) to an unseen stimulus S' when the reaction of the first set of objects Pi (i = 1, 2,. . . , m) 
to the same stimulus is known.

Example:   The problem of predicting the effect of a new drug on breast cancer   The problem as 
explained in chapter 1, is to find an analogical mapping between the set of 15 experimentally induced 
tumors and a clinical tumor, based on their known reactions to the same drugs, so that we are able to 
predict the effect of a new drug on the clinical tumor after having studied the experimental tumors. The 
solution is based on the presumed similarity between this tumor and a set of experimental tumors. A set 
of 15 chemotherapeutic agents was used for training (see figure 1.25) and a set of 11 for testing the 
prediction. An MLP with 15 input nodes, 3 intermediate nodes, and 1 output node was trained for 
10,000 epochs with the use of a backpropagation algorithm (figure 5.42). The predicted effect for the 11 
test drugs on the clinical tumor was exactly the same as the clinical data suggested except test case No. 4 
(figure 5.43). The learned analogy between experimental tumors and a clinical tumor is a deep analogy. 
Its explanation lies in the transformation (mapping) of
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Figure 5.42
A neural network for learning analogy between

15 experimental tumors AT1 to AT15  and a
clinical tumor HT.

Figure 5.43
Testing results for the neural network for predicting the effect of a

new drug on malignant breast cancer. Eleven test examples are
used. If a threshold of 0.65 is chosen to decide on an active neuron,

the effect of all the new drugs tested, except one (no. 4), are
correctly predicted.
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structural, chemical, and biochemical similarities between the medicines used and also similarities 
between experimental reactions and the reaction of a clinical tumor. Obviously the neural network 
model from figure 5.42 needs more tuning, explanation and validation before used in practice.

5.7.3 Other Neural Network Techniques for Prediction

Many other connectionist models, in addition to the ones described, above, are applicable to the 
prediction task, for example, neo-fuzzy neurons can be used for predicting chaotic time series 
(Yamakawa et al., 1992a); unsupervised learning and categorization can be applied to predicting series 
of events.

5.8 Connectionist Systems for Monitoring, Control, Diagnosis, and Planning

5.8.1 Monitoring

Monitoring problems may be solved by using a simple neural network model or a hierarchical and 
modular neural network model.

In the former case, the input nodes take data for the current situation. The output activation signals 
represent values for the monitored parameters. The network has to be trained with enough examples of 
the monitoring process. Such a task could be the monitoring of a car for which a simple neural network 
can be trained subject to enough data available for the input parameters—the cooling temperature, status 
of the gauge, status of the brakes—and for the output variable level of risk for the driver.

In the latter case, layers of neural networks may need to be used, each performing a different task. For 
example, bedside critical care monitoring of patients in intensive care may require a complex neural 
network to recognize dynamic states of several events occurring over a short or long period of time and 
predicting a dangerous state, such as heart failure, etc. Snapshots are not enough in this case. They 
contain local information only. It is necessary to observe two or more successive snapshots in their order 
of occurrence. In this case, two connectionist modules are required: (1) short-term memory, to represent 
temporal information; (2) a categorization unit, to recognize and categorize dynamic temporal patterns 
of events which may happen in the future.
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Figure 5.44
A connectionist architecture for the problem of balancing an

inverted pendulum.

5.8.2 Control

Control is similar to the monitoring task, as described in chapter 1, but here signals that change the 
status of the object (the process) under control are to be emitted. Figure 5.44 gives the structure of an 
MLP network for the Inverted Pendulum Problem. The network is trained in a supervised manner by a 
sufficient number of input-output pairs of data. The network will perform the control task as well as the 
fuzzy control system did, as both of them gently approximate the same control (goal) function when it is 
not known in advance. Both control systems are robust. The difficulties in articulating the membership 
functions for the fuzzy sets in the fuzzy control rules may give a superiority to hybrid fuzzy 
connectionist models. A crucial point in building connectionist systems for control is time 
synchronization. The control process is not only about mapping input vectors to output vectors but about 
mapping them on the time scale. Time is presented either implicitly or explicitly (Werbos 1992).

5.8.3 Connectionist Systems for Diagnosis

Diagnostic systems can be realized in neural networks in which the symptoms are represented by input 
nodes and the set of diseases by output
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Figure 5.45
A connectionist diagnostic system.

nodes (figure 5.45). The input nodes take input data, which, depending on the type of the symptoms, can 
be:

• Real values (possibly normalized)

• True/false values

• Certainty degrees of the presence of symptoms

• Fuzzy values, like "pulse rate high"

On the output nodes, the network can produce, depending on the context of the disease, different values 
to indicate a diagnosis:

• Real values for output variables

• Probability of a disease occurring

• Certainty or fuzzy membership degrees for a disease that has occurred

A connectionist diagnostic system can evaluate for a given input vector of values for the symptoms the 
degree of certainty of not only one but a number of diseases that may occur simultaneously. This makes 
a dramatic difference when comparing the connectionist with Bayesian approaches to approximate 
reasoning.

The usual way to develop connectionist diagnostic systems is to train a network with a set of past data 
recorded through experience. Neural networks can also be trained with a set of rules.

Example   The Medical Diagnosis Problem A set of rules, presented in chapter 1, is realized here as a 
connectionist system. The symptoms take
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Figure 5.46
Comparative analysis of the use of four small neural networks, each
trained with diagnostic rules, and a fuzzy inference method over the

same three test cases.

part in the rules with their typical values which represent degrees of occurrence of the symptom, rather 
than with fuzzy values, for example, "weak," "more or less strong," "very strong,'' etc. (see figure 3.51):

Rule 1: IF M1 = 1 and M2 = 0.2 and M3 =0 and M4 = 0,
THEN D1 (CF = 0.99)

Rule 2: IF M1 = 0 and M2 = 1 and M3 = 0.1 and M4 = 0,
THEN D2 (CF = 0.97)

Rule 3: IF M1 = 0.3 and M2 = 0 and M3 = 1 and M4 = 0,
THEN D3 (CF = 0.98)

Rule 4: IF M1 = 0.2 and M2 = 0.2 and M3 = 0 and M4 = 0.9,
THEN D4 (CF = 0.96)

Those rules have been used in Chen (1988) for illustrating a new method (MFCG) for fuzzy reasoning. 
Here the backpropagation algorithm was applied to train four networks (units, "pupils"), each having 
four inputs, two hidden nodes, and one output, each trained with four training examples, the 
corresponding rules in a numerical form encoded differently for the different diagnostic units. The 
certainty degree of the four possible diagnoses for three new input vectors when using neural networks 
and when using the MFCG method are given in figure 5.46 for comparison. A better discrimination is 
achieved in the neural network solution.

In this example we trained a neural network with rules. Why not training it with examples? Suppose we 
have many examples which are in the
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"patch" of a rule R and we train the network with them. The network will learn the center of the cluster, 
which is represented exactly by R. So if we have the rules, they can be used as examples of centers, and 
we train a network with them. If we do not have those centers, we let the network learn them from the 
examples available, which might be sparse in a certain area (patch) of the problem space. The neural 
network approach allows for using both data and expert rules in one system.

5.8.4 Planning

Planning usually consists of two main phases: (1) situation recognition and plan reminding, and (2) plan 
execution and manipulation.

The former is automatic and "subconscious." After inputting a set of goals, context, constraints, and the 
current status, a network can relax in a stable coalition of neurons which constitutes a plan. The latter 
phase is sequential and "conscious." It can be realized by symbolic A1 methods. Planning is a suitable 
task mainly for hybrid connectionist AI systems and for connectionist production systems, when neural 
networks can be used to recognize the current situation and a goal-driven, logic inference is activated.

5.9 Connectionist Systems for Optimization and Decision Making

5.9.1 Optimization

Neural networks have proved to be efficient at solving some optimization problems. Optimization 
problems are about finding a minimum of a goal function. A neural network, for example, the Hopfield 
network, can be represented by an energy function which tends to its minimum during convergence. 
Now, the problem of using a neural network for solving an optimization task is how to represent the 
optimization goal function as an energy function of a network.

As an example, a solution to the Traveling Salesman Problem (TSP) is given here. One connectionist 
solution of the TSP was suggested by Hopfield and Tank (1985). They represented the problem as an N2-

dimensional Hopfield network. The rows represent N towns, and the columns the position of the town in 
the route.
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Example
Towns Position    

 1 2 3 4 5

P 0 0 1 0 0

Q 1 0 0 0 0

R 0 0 0 0 1

S 0 1 0 0 0

T 0 0 0 1 0

The boolean matrix shows a possible tour, where 1 denotes an activation of the corresponding neuron. 
The path in the example is Q S P T R. There are some constraints to be satisfied by the system when 
using such a representation: only one 1 in every row; only one 1 in every column; only N 1's in the 
whole matrix; the shortest path (a minimum sum of the distances Dxy).

The constraints are fulfilled respectively by the following optimization functions (Hopfield and Tank 
1985; see also Davalo and Naim 1991):

where Mxi denotes the value of the xth row and ith column (town x being at the ith position in the matrix 
M of the towns and positions; x and y denote towns; i and j denote positions; dxy is the distance between 
x and y; and xi is town x placed on the ith position in the tour. The four constraint terms can be 
aggregated in a global optimization goal function:

F = - aC1 - bC2 - cC3 - dC4

where a, b, c and d are constants. F takes a minimum value when all the terms are at minimum values. 
Each of the four terms in the above optimization function has its minimum value when a corresponding 
constraint is satisfied. If we make the energy function E of a Hopfield network equal to the optimization 
function F above, the following formulas can be derived for calculating the weights of the network:
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The symbol ∆ij is the Cronecker function, ∆ij = 1, if i = j, otherwise ∆ij = 0. There are some other 
connectionist methods for solving the TSP, for example, with the use of SOM (Angeniol et al. 1988).

Other optimization problems, like the shortest path problem, dynamic programming problems, the 
transitive closure problem, the assignment problem, and so on, have also been solved using 
connectionist models (Lam and Su 1992).

5.9.2 Decision Making

The decision-making tasks are usually characterized by a tremendous variety of data and available 
knowledge, different requirements and constraints, and a dynamically changing environment, which 
make the use of neural networks quite appropriate. For example, a decision-making system might 
require taking into account exact data, fuzzy data, and fuzzy rules and membership functions.

Different problems have been discussed so far and connectionist models for their decision making 
presented, for example, bank loan applications approval, bond rating, and stock market decision making. 
Decision-making may require good explanatory facilities, for which purpose rules extraction from data 
might be a useful technique. SOM can well be used for visualization of a decision and placing it in 
regions of similar cases. An example of using SOM for the Bank Loan Decision Problem is shown in 
figure 5.47. The applicants Cl, C2, and C3 are "placed" by the network in the areas of "approve," 
"disapprove," and "not known," respectively. These are the same three cases used in chapter 2 (to 
illustrate fuzzy inference) and in the beginning of this chapter (to illustrate using a neural network for 
problem-solving through training).

As another example, a neural can be used to evaluate the possible ranking of a new model of car on the 
market. The decision is based on training a neural network with ranking data for different models of cars 
represented by a set of attributes (price, fuel consumption, maintenance, etc.). The system evaluates the 
ranking if a set of values for the input variables of a new model is entered.

The idea of ranking a new model can also be used in the area of design. Which variant to choose when 
designing an object can be evaluated on the
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Figure 5.47
A Kohonen SOM for the Bank Loan approval case example.

basis of a set of training examples and a set of constraints introduced to an appropriate neural network 
architecture. Constraints can be implemented as a second level of knowledge, "above" the network. 
Fletcher and Goss (1993) used a neural network for predicting bankruptcy of large companies. The 
evaluation is based on three ratio parameters and training data for 18 "failed" and 18 "nonfailed" real 
companies. There are many more applications of neural networks for decision-making. References to 
some of these can be found in Zahedi (1993) and Davalo and Naim (1991).

5.10 Connectionist Systems for Modeling Strategic Games

Symbolic AI systems have proved to be efficient in cognitive modeling and modeling of intelligent 
games in particular. It has been a long time since computers started to play chess. Production systems, 
and symbolic AI systems in general, implement the rules of the game that work out the future 
consequences of a move. Many moves ahead can be simulated, their consequences evaluated, and, the 
most prospective move chosen. Can neural networks contribute anything to this paradigm of games 
simulation?

5.10.1 Game Playing as Pattern Recognition

The way of playing games by revealing consequences through applying logic and heuristic rules is only 
one approach to game playing. Another approach, mainly applicable to simple board games, is to learn 
how to react to certain patterns on the board. Such a stimulus-reaction approach can be represented by 
associations in the form of:

IF pattern i , THEN move j
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Figure 5.48
A feedforward neural network for training

with examples of playing ticktacktoe.

This strategy does not require the program (the computer system) to know many concepts, like rows, 
columns, etc. The program can learn how to react to certain patterns. This is exactly what neural 
networks can do. This approach is implemented by setting a proper neural network architecture and 
training the network with associations of the type:

input pattern  → output move

that is, it is trained with "good" moves; "bad examples" or examples of "what not to do" should not 
necessarily be used in this approach as they may be too many.

Example:   Playing Ticktacktoe by MLP   Figure 5.48 shows a feedforward neural network for training 
with good examples for playing ticktacktoe. A disadvantage to this approach is that for bigger game 
boards and games that are not as simple, many examples of good moves are required, which may be 
impossible to supply.

5.10.2 Hierarchical Multimodular Network Architectures for Playing Games

This approach is based on building different layers of neural networks that perform different consecutive 
tasks in the process of finding the best next move, for example, layer 1, an input layer, receives data 
from the board; layer 2, an intermediate layer of receptor neurons, recognizes pat-
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Figure 5.49
A neural network with predefined connections for

modeling ticktacktoe game.

terns, features, and situations on the game board; and layer 3, an output layer of effector neurons, selects 
the best next move.

The patterns on the board are detected, and appropriate neurons in the intermediate layer are activated 
accordingly. This requires prewired connections. The weights are preset and no training is required. A 
connectionist model of this type was presented in Rumelhart et al. (1986a). The idea is illustrated in 
figure 5.49 for ticktacktoe. Having established the links between the neurons from different layers in the 
network, the system will "play," performing the algorithm given in figure 5.50.

The representation of game strategies in the suggested connectionist model is carried into effect in the 
following way. The operator, creating or perfecting the network, defines the most important 
configurations (characteristics) generated in the game process. The presence or absence of one such 
characteristic determines the need for performing, or refraining from performing, certain moves. For 
every major characteristic of the game a neural element is constructed in the second layer of the 
network, sensitive to the appearance (or absence) of the respective configuration characteristic on the 
game board. If we consider that the appearance of a certain configuration on the board implies a 
responsive move, we have to connect the neuron from the second layer corresponding to this 
configuration to the effector from the third layer corresponding to the move, with a positive link. If it is 
required that the absence of a certain characteristic implies a certain move (or moves), a neuron is 
introduced at the second layer which is activated by the absence of that characteristic and is similarly 
connected to the respective effectors with positive links. When certain moves become
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Figure 5.50
An algorithm for playing the game by the hierarchical multimodular neural

network of figure 5.49.

undesirable owing to the presence or absence of a certain configuration, their corresponding effector 
elements are connected to the neuron responsible for detecting this particular configuration, with a 
negative link.

5.10.3 Building Adaptable Connectionist Models for Game Playing

There is a third way to build connectionist systems to learn how to play a game. One of them is based on 
the following assumptions:

1. The system starts playing with a good player ("expert") without any preknowledge.

2. While playing, the system records all the moves.

3. The system is told when the game is over and who the winner is.

4. The system analyzes the game, punishing itself for bad moves and rewarding itself for good moves 
(good moves may be considered those
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generated by the expert or by the winner). An expert could be a human, a computer program, or another, 
"more experienced" neural network.

A connectionist system that has learned to play GO-Moku was described in Freisleben (1995). A 
feedforward neural network without predefined weights, but with predefined connections (the network is 
not fully connected), was trained. During play it evaluates every square for every move and the neuron 
(the square) that receives the highest activation level is the winner. During the learning session (when 
the network analyzes its moves, comparing them to the expert's moves) the network corrects its weights. 
The network can start playing even without any preliminary set connections. In this case it can learn any 
board game that is played between two opponents.

These connectionist models for game simulation are good exercises for developing cognitive models 
that simulate human behavior. They are becoming useful for building intelligent robots.

5.11 Problems

Part A: Case Example Solutions

1. Phoneme recognition experiment. The task is to build a small modular neural network for recognizing 
several English phonemes and to test it with new speakers. The multi-modular neural network structure 
of figure 5.30(A) is used, that is, one phoneme is recognized by one neural network. We shall call them 
the phoneme neural networks. The phoneme neural networks were trained for 200 epochs, with 
segmented and transformed into 26 mel-scale cepstrum coefficient (MSCCs) speech, produced by five 
male speakers of New Zealand English. Each MSCC vector represents one frame (12 ms). A graphical 
representation of 19 vectors of 26 MSCCs for a produced phoneme /n/ is given in figure 5.51. The 
neural networks were tested on new speech samples produced by a New Zealand speaker and by a 
Swedish student (Jonas Ljungdahl) who spoke English. Figure 5.52 shows the output values of the 
trained networks for the phonemes /f/ and /ai/ when tested with the word "five" pronounced by the New 
Zealand speaker, and figure 5.53 shows the same networks when tested by the Swedish student. Figure 
5.54 is a multiple graph showing the activation of the phoneme networks /f/, /ai/ and /n/ when the word 
"five" was pronounced by the Swedish student.
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Figure 5.51
A three-dimensional graphical representation of 19 consecutuve

vectors of 26 MSCC each, for a realized phoneme /n/.

It can be seen that a small erroneous activation of the phoneme /n/ neural network appears, but it does 
not influence the final recognition results. The false positive activation of /n/ is not so strong as it was in 
figure 5.30(B). So, this time the "pupil" /n/ does not need additional training.

2. Iris classification through fuzzy neural networks, fuzzy rules extraction, and fuzzy inference with the 
extracted rules. By using the REFuNN algorithm several sets of fuzzy rules were extracted from the Iris 
data set (see appendix A and figures 1.11 and 2.2) (Kasabov 1995c). First, three fuzzy predicates, small 
(Sm), medium (Med), and large (Lrg), were used to represent each of the four input attributes and each 
of the three output variables, the latter representing possibilities for a data example to be classified into 
one of the three classes as shown in figure 3.11 (A). A FuNN structure having 12 input nodes, 6 
intermediate nodes, and 9
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Figure 5.52
Output values of the trained networks for the phonemes
/f/ and /ai/ when tested with the word ''five" pronounced

by a New Zealand speaker.

output nodes was trained with fuzzified Iris training data for 1000 training cycles, a learning rate of 0.1 
and momentum of 0.3 until an RMS error of 0.023. Fuzzy rules were then extracted. Figure 5.55 shows 
the set of initial weighted rules, the sets of simple rules for each of the classes, and a set of rules which 
has the last two input variables only. It can be seen from the list of extracted rules that the most 
important for the classification task attributes are petal length and petal width. Several experiments with 
30 test examples were conducted and the results are shown in figure 5.56, which is the "confusion" table 
of the desired classification (left column) and the classification produced by the network (top row). All 
the test examples were classified correctly by the fuzzy neural network (a). When the extracted simple 
fuzzy rules
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Figure 5.53
Output values of the trained networks for the

phonemes /f/ and /ai/ when tested with the word
"five" pronounced by the Swedish speaker.

were tested with the MAX-MIN composition fuzzy inference method (see chapter 3) for classification, 
one example of Virginica was classified incorrectly and two received ambiguous classifications (b). But 
when only the rules for the last two attributes were used, the classification deteriorated (c).

Another set of rules was extracted when five membership functions were used for the input and output 
variables shown in figure 3.11 B. An MLP having the structure of a 20-10-15 FuNN was trained with 
fuzzified training data for 1000 cycles, with the same learning rate and momentum values as above. An 
RMS error of 0.014 was achieved this time. In this case the fuzzy neural network and the MAX-MIN 
compo-
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Figure 5.54
Multiple graph showing the activation of the phoneme networks /f/, /ai/
 and /n/, when tested with the word "five" pronounced by the Swedish

student. A small false positive activation of the phoneme /n/ neural network
can be noticed, but it is not going to influence the final recognition results.

sition fuzzy inference method over the simple fuzzy rules achieved a 100% correct classification. It can 
be seen that when simple rules are used, a better classification is obtained for the rules having five 
membership functions. This can be explained as follows: the loss of information when "cutting off some 
weights" for the purpose of simple rules extraction needs to be compensated by a higher granularity in 
the fuzzy representation.

Part B: Practical Tasks and Questions

3. Explain the main ideas of:

a. Learning fuzzy rules through supervised learning in an MLP.

b. Learning fuzzy rules through clustering.

  



Page 414



Figure 5.55
The set of initial weighted rules, the set of simple

rules for each of the classes and a set of rules
which have the last two input variables only,

extracted from a fuzzy neural network trained with
the Iris data set when the REFuNN algorithm is

used for three membership functions to fuzzy quantize
the input and the output variables (see figure 3.11).
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Figure 5.56
Test results with 30 test examples from Iris data set presented in the form

of "confusion tables" of the desired (left column) and the produced
(the top row) classification. (A) All the test examples are classified correctly

by the fuzzy neural network. (B) The extracted simple fuzzy rules are
tested with the compositional MAX-MIN fuzzy inference method. (C) The

rules for the last two attributes only are used with the compositional
MAX-MIN fuzzy inference method.



4. With the use of the fuzzy rules for The Smoker and the Risk of Cancer Problem and the membership 
functions given in chapter 3, generate a set of 100 data examples for the "number of cigarettes per day-
risk of cancer" input-output relation. On this data set, train an MLP and use the REFuNN method to 
extract simple fuzzy rules. Compare the learned fuzzy rules with the initial fuzzy rules. How can you 
explain the difference?

5. On the topic of using neural network for prediction (forecasting):

a. Explain what the forecasting problem is about.

b. Explain briefly the main principles and possible schemes of applying neural networks for time-
series forecasting.
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c. Outline the main steps of using a neural network for forecasting on an example problem.

6. On the topic of using MLP with the backpropagation algorithm for the task of phoneme recognition:

a. Create a speech data set of all the digits spoken by four female and four male speakers between 20 
and 50 years old, each of whom has an academic education and all of whom belong to the same 
ethnic group; use 22,050-Hz digitizing frequency.

b. Segment small segments from the wave signals to represent the different allophonic realizations of 
the phonemes; use 26 MSCCs as a set of features.

c. Create a multi-modular MLP neural network similar to the one shown in figure 5.30(A), and train 
it with the backpropagation algorithm on the prepared training sets as explained in 5.10 and in the 
case study above.

d. Make experiments for phoneme recognition for a multiple speaker mode, and a speaker-
independent mode. Which mode gives better classification results?

7. Phoneme recognition with the use of SOM:

a. With the use of the training data set created in (6), train a SOM. Calibrate it and explain the 
resulting topological phonemic map (see, for example, figure 5.33A).

b. Make experiments for phoneme recognition with the trained network and define the accuracy of 
recognition. Use the same test set as in (6).

8. Comparative study: Imagine a problem that requires recognition of the following handwritten letters: 
A, E, O, I, and U. Choose ONE of the options (a), (b), or (c) for solving this problem:



a. Define a set of features and represent each of the qualified letters in it. Write production rules for 
the recognition task.

b. Give an outline of a fuzzy system for recognizing the qualified letters.

c. Give an outline of a neural network solution to the problem.

d. Compare the above three approaches to solving the specified problem.
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Part C: Project Specification

Topic: Problem-Solving and Rules Extraction with Neural Networks

Solve a chosen problem by training an appropriate model of a neural network or a combination of 
several models. Extract rules from the neural network. Follow the steps:

a. Explain WHAT is the chosen problem.

b. Explain WHY a neural network should be used for its solution.

c. Explain HOW you are going to solve the problem.

d. For the chosen task create a data set that has a set of input and a set of output variables.

e. Create an appropriate neural network structure.

f. Prepare data sets for training and for validation (choose an appropriate method for validation).

g. Train the model; evaluate the training error.

h. Validate the network.

i. Analyze the internal structure of the neural network (the weights), the dependencies between the input 
and output variables.

j. Use one of the methods for extracting rules from a trained neural network.

k. After having analyzed the extracted rules, can you suggest alternative solutions to the same problem?

Use one of the following problems for the project:

1. Iris Classification (see appendix A)



2. The Smoker and the Risk of Cancer

3. Gas Consumption Prediction (see appendix B)

4. Handwritten Characters Recognition

5. Bank Loan Decision

6. Inverted Pendulum

7. Medical Diagnosis

8. Mortgage approval (see appendix C)

9. Traveling Salesman
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10. Resource Scheduling

11. Unemployment prediction (see appendix C)

12. Musical signals-to-notes transformation

13. Playing ticktacktoe

14. Predicting beer sales (see appendix C)

15. Stock Market Prediction (see appendix C)

16. Water Flow to a Sewage Plant Prediction (see appendix C)

5.12 Conclusions

The applications of neural networks to solving knowledge-engineering problems are numerous. All of 
them are based on the abilities of neural networks to learn from past data or rules, and to generalize over 
new, previously "unseen" input data. Neural networks provide a smooth approximation of a goal 
function which maps the domain space into the solution space. Neural networks facilitate approximate 
mapping, which means that they can handle approximate data, unknown or missing data, and corrupted 
data. The outputs may have different contextual meaning, that is, probabilities, certainties, real values, 
symbolic concepts, categories, etc.



Using neural networks for learning explicit knowledge has been presented. The use of neural networks 
for knowledge acquisition is becoming an important issue because neural networks can learn rules with 
uncertainties, which are objectively represented in a data set. So it is up to us to extract as much 
information and knowledge from data as possible, the ultimate goal being to extract and make use of 
ALL the existing knowledge in data, which goal is not achievable at present, if ever.

5.13 Suggested Readings

For further reading on specific topics, see the following references:

General readings on connectionist models and applications—Arbib (1995); Kosko (1992); Gallant 
(1993); Zurada (1992); Hertz et al. (1991); Davalo and Naim (1991)

Connectionist models for learning from hints—Abu-Mostafa (1993, 1995)
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Differential competitive methods for clustering and learning fuzzy rules—Kosko (1992)

Learning fuzzy rules through neural networks—d'Alche-Buc et al. (1992); Yi and Oh (1992); 
Mukaidono and Yamaoka (1992); Hayashi (1992); Binaghi (1992); Limkens and Nie (1992); Kasabov 
(1995c)

Connectionist symbol processing and connectionist production systems—J. Hinton (1990); Shavlik 
(1994); Gallant (1993); Touretzy and Hinton (1988); Dolan and Smolensky (1989); Kasabov and 
Shishkov (1993); Fodor and Pylyshyn (1988)

Neural networks for pattern recognition—Pao (1989); Nigrin (1994); Bezdek and Pal (1992)

Various applications of neural networks—D. Touretzky (1989); Yamakawa (1994)

Variable binding in connectionist rule-based systems—Ajjanagadde and Shastri (1991); Shastri (1988, 
1991); Sun (1992); Kasabov and Shishkov (1993)

Neural networks for prediction—Deboeck (1994); Chakraborty et al. (1992); Hoptroff (1993); Jia and 
Chua (1993); Schoenenburg (1990)

Neural networks for diagnosis—Hoskins and Himmelbaum (1990); Peng and Reggia (1989)

Neural networks for signal and speech processing—Kosko (1991); Morgan and Scofield (1991); Waibel 
et al. (1989a,b); Lippman (1989)
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6
Hybrid Symbolic, Fuzzy, and Connectionist Systems: Toward 
Comprehensive Artificial Intelligence

Hybrid systems mix different methods of knowledge engineering and make them "work together" to 
achieve a better solution to a problem, compared to using a single method for the same problem.

This chapter shows that standard AI methods, fuzzy system methods, and the methods of neural 
networks complement one another according to the properties they possess. Different hybrid models are 
introduced and illustrated by solving generic problems, such as speech recognition and decision making.

6.1 The Hybrid Systems Paradigm

Here, three points are discussed: (1) the need for hybrid systems; (2) why it is useful to mix symbolic AI 
systems, fuzzy systems, and neural networks; and (3) generic hybrid models.

6.1.1 Hybrid Systems: Why?

There are at least two main reasons for using hybrid systems for problem solving and knowledge 
engineering: (1) Some requirements for solution of a problem may not be possible to meet by using a 
single method (see the eight issues of knowledge engineering discussed in chapter 2); (2) there exist 
models for AI problem solving that cannot be implemented by using a single method, or they would be 
implemented better if more than one method were used.

Problem-solving requirements for knowledge representation and processing when solving difficult AI 
problems are growing with technological and social development. Some of these requirements, from the 
knowledge-engineering point of view, are:

• Representing exact and inexact knowledge in one system

• Representing explicit and implicit knowledge

• Learning knowledge from data

• Approximate reasoning and partial match between data and knowledge to find the best possible 
solution in a new situation

• Adaptive behavior according to changes in the environment

• Fault tolerance, robustness



• Modularity, expansibility, hierarchy; building multimodular, multiparadigm systems
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• Accommodating both commonsense knowledge and past-experience data

• Good explanation

• Trying alternative solutions

All or some of the above requirements may need to be considered when looking for a method to solve a 
problem, and there is no single method so far which can satisfy all of them. Knowledge engineering has 
been around for decades. Many models for solving generic problems have been developed, some of 
them multimodular, hierarchical. One general hierarchical model for problem solving is the two-level 
hierarchical model for knowledge representation and processing (Kasabov 1990). The first (low) level 
communicates with the environment, recognizes images and more complex situations, learns new 
knowledge in a stimulus-reaction way, and so forth, but the final solution is communicated at a higher 
level, which performs ''deliberate thinking," planning, and symbol processing. The low level is fast, 
flexible, adaptable, and subconscious. The high level is slow, serial, and conscious. The low level 
operates mainly with numbers. The high level is mainly symbolic. It operates with objects, relations, 
concepts, rules, premises, hypotheses, plans, strategies, classes, etc. Both levels communicate either in a 
loosely coupled way (only one bottom-up way), or in a tightly coupled way (intensive communication in 
both bottom-up and top-down ways) until the final solution is reached (figure 6.1).

Each of the two main levels of the general two-level model can consist of more sublevels. This is 
illustrated in figure 6.2 where two examples of the general model are shown. They represent two 
different modes of functioning:

1. The feedforward mode. The low level passes information to the higher level, but does not receive 
feedback. In figure 6.2(a), the low level consists of three submodules (preprocessing, feature extraction, 
pattern matching), and the higher level consists of one submodule only; such a structure is suitable for 
realizing speech recognition systems, pattern recognition, decision-making, and many other generic 
problems.

2. The recurrent mode, where the two levels communicate before the final solution is made by the 
system (figure 6.2b); this structure can also be used for the speech recognition task and for solving other 
generic problems.
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Figure 6.1
A two-level model of knowledge

representation and processing.
(From Kasabov 1990.)

Figure 6.2
Examples of multimodular, multiparadigm systems: (a) feedforward

structure; (b) feedback structure.

It will be advantageous if different methods for implementing the different levels and sublevels of the 
models above are available for use in one system. This will make it possible to find the best solution to 
the whole problem, based on the possible use of already existing optimal solutions for the different 
subtasks. A hybrid system may be the best solution to the problem. For example, neural networks may 
be used for pattern matching, when frequency feature vectors have to be classified into phoneme classes, 
but fuzzy rules may be the most appropriate to use for words, sentence, and language recognition and 
context understanding. For the latter subtask, there may also be symbolic AI and connectionist solutions 
available.
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On the other hand, looking for a hybrid solution to the problem, requires from the knowledge engineer:

• Knowledge and skills about different paradigms and methods

• Investigation and comparison of alternative solutions

• Suitable software environment and simulation equipment

Developing such environments requires analysis of the suitability of combining different paradigms and 
methods. This is the topic of the next subsection.

6.1.2 Symbolic AI Systems, Fuzzy Systems, and Neural Networks Overlap and Complement One 
Another

Among the methods used for knowledge-engineering so far are the symbolic AI methods, the fuzzy logic 
methods, and the methods of neural networks. In order to better understand why these paradigms should 
be combined when solving problems, we must look again to their strengths and limitations as presented 
in chapters 2, 3, 4, and 5. Each of the paradigms has a contribution to make to the ultimate solution of a 
problem, as is pointed out below:

Symbolic AI systems can contribute with:

• Rigid theory for symbol manipulation; theorem proving

• Rigorous exact reasoning mechanisms, including chain reasoning and different reasoning 
strategies

• Universal computational models (e.g., the production systems)

Fuzzy systems can contribute with:

• Well-developed fuzzy logic theory

• Humanlike reasoning mechanisms; using linguistic terms

• Accommodating commonsense knowledge, ambiguous knowledge, imprecise but rational 
knowledge

• Universal approximation techniques

• Robustness, fault tolerance

• Low cost of development and maintenance



• Low computational cost
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Neural networks can contribute with:

• Learning from data

• Modeling empirical behavior of humans

• Universal approximation techniques

• Good generalization

• Methods for extracting knowledge from data

• Methods for data analysis

• Associative memories and pattern-matching techniques

• Massive parallelism

• Robustness

We showed that the three paradigms are applicable to solving the same problems, for example, function 
approximation and diagnosis. They may provide similar or equivalent solutions, that is, they "overlap" 
as problem-solving techniques (figure 6.3.).

We can also view these three groups of methods as complementary for three reasons: (1) They facilitate 
dealing with different kinds of knowledge representation, different inference, different accuracy and 
fault tolerance, etc. (2) Each of them may be superior to the others when solving a concrete subtask of a 
problem; for example, the symbolic approach and the connectionist approach have demonstrated 
strengths in solving different tasks. The former has been successful in high-level cognitive tasks, 
whereas the latter is more successful in low-level perceptual and learning tasks. (3) One method may be 
applied to improve the performance of another, as shown graphically in figure 6.4, for example:



Figure 6.3
Different paradigms and methods
overlap as problem-solving and

knowledge-engineering techniques.
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Figure 6.4
Different paradigms and methods complement

one another.

• Fuzzy rules can be used to "prewire" a neural network structure for faster training and better 
generalization.

• Fuzzy rules can be used for initialization of connection weights.

• Neural networks can be used for learning fuzzy rules.

• Neural networks can be used to refine fuzzy rules and membership functions.

• Genetic algorithms can be used to learn fuzzy rules from data and membership functions.

• Genetic algorithms can be used to adjust the connection weights during training, instead of a 
gradient-descent algorithm.

• Neural networks and fuzzy systems can be used as parts of a symbolic reasoning machine.

The area of integrating ordinary, symbolic, neural networks, fuzzy systems, and other AI techniques 
(genetic algorithms, evolutionary programming, etc.) is called here comprehensive artificial intelligence. 
Comprehensive AI deals with hierarchical, multiparadigm systems. Building comprehensive AI is 
possible by integrating different AI methods as shown in the remainder of this chapter. Comprehensive 
AI is a more general area than the area of soft computing. The latter integrates fuzzy logic, neural 
networks, genetic algorithms, and probabilistic reasoning.

6.1.3 How to Combine Different Paradigms in One System



A hybrid system is a mixture of paradigms in the philosophical sense. In a technical sense, it is a mixture 
of methods and tools used in one system. There are three major modes of functioning in which different 
knowledge-engineering paradigms can be coupled:
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Figure 6.5
Some structural and functional models of hybrid systems.

1. Loosely coupled: Different paradigms are applied separately, either in parallel, or, more typically, in a 
sequence, on different subtasks of the problem. For example, a neural network can be used for feature 
extraction and rule extraction, and a rule-based system for inference.

2. Tightly coupled: The paradigms are used in different subsystems, which work in a close 
"collaboration" to reach the solution; they communicate intensively and possibly frequently.

3. Blended at a low structural and functional level. Paradigms are mixed at a very low level so that they 
are not separable from a structural and functional point of view. For example, a neuron may have an 
activation function that is a membership function of a fuzzy set. Both paradigms are embodied 
structurally into "one body" and are functionally indistinguishable. Examples of such systems are fuzzy 
neural networks and connectionist production systems. The former were discussed in chapter 4, and the 
latter in part in chapter 5. A concrete connectionist production system, the neural production system 
(NPS), is introduced in this chapter.

Loosely and tightly coupled systems are multimodular. The modules can be organized in different 
architectures: hierarchical vs. flat; sequential vs. parallel; or a combination of the above.

Different combinations between architectures and modes of functioning are possible in a hybrid system, 
as illustrated in figure 6.5. For example, in a sequential hybrid system a connectionist system may be 
used for preprocessing or initial processing of raw data, and a symbolic rule-based system used to 
suggest a solution. An example of a sequential, loosely coupled model is given below.
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Example   SCRuFFY (signals, connections and rules, fun for everyone) (Hendler and Dickens 1991) was 
developed for the purpose of classifying signals. A sensor signal feeds through a digital signal-
processing program which converts it into a vector of discrete values. An MLP was trained with set of 
known signals to perform the signal classification task. After training, the neural network is ready to 
receive a new signal, classify it, and pass on the result for signal-to-symbol conversion. After that a rule-
based inference machine does the symbol-processing task to make a recommendation on possible 
actions.

An example of a flat and tightly coupled architectural model is given below.

Example   LIFIA HS (Giacommeti et al. 1992) is a one-level hybrid system composed of two processing 
modules: (1) a logic module (LM) and (2) a connectionist module (CM). The LM is a standard expert 
system using IF-THEN rules. It performs both forward and backward chaining inference. The CM 
combines two neural classifiers, Ns and Nd, linked by an associative network Nsd. When a situation is 
presented to the hybrid system, it activates first the CM, which proposes an intuitive decision. This 
decision is sent to an interaction administrator which asks the LM to prove it by backward chaining. If 
LM proves the intuitive decision of the CM, then the decision is explained. If LM does not have enough 
information to prove the CM's decision, it communicates with the user and collects more facts. The CM  
is then activated again for a new decision-making cycle. If no more information is available and still the 
CM and the LM "do not agree upon the decision," then a forward chaining inference is run in the LM, 
the LM infers a decision, and the CM is "asked" whether it will agree with this decision. In this way, 
after repetitive communication, the system produces a solution that is proved by both LM and CM. 
During functioning of the whole hybrid system, the CM can continually acquire new knowledge, which 
is then transferred to the LM.

Loosely and tightly coupled hybrid systems, in their structural varieties, can be realized if the following 
steps are taken:

1. The whole task is first structured into modules connected with one another, for example, an output 
from one module is an input to another. Recurrent connections are allowed.

2. The input variables and the output variables for each of the modules are defined.
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3. The solution procedure for each of the modules is defined as a symbolic Al solution (e.g., production 
rules), as a neural network, to be trained with data, as a set of fuzzy rules with an inference mechanism, 
or by using some other method.

4. The whole system is assembled in a way to be controlled by either a global control (external control), 
or by the flow of data (internal, self-control).

The next two sections present techniques of coupling neural networks with symbolic production rules 
and logic programming clauses, respectively. Section 6.4 introduces a methodology for building hybrid 
systems with the use of the three paradigms, as well as an illustrative software environment that can be 
used for this purpose. Sections 6.6 and 6.7 illustrate the methodology by building hybrid systems for 
solving two generic AI problems.

6.2 Hybrid Connectionist Production Systems

The topic of this section is mixing one of the symbolic AI paradigms—the production systems—with 
neural networks. The presented material is based on one methodology only. The same idea is used in 
section 6.3 for mixing neural networks and clauses in logic programming environments, and also in the 
hybrid fuzzy connectionist production systems (see section 6.4). Other methodologies are referenced in 
section 6.10.

6.2.1 Incorporating Neural Networks into Production Rules

The idea of two-level knowledge processing, discussed in the previous section, is implemented here by 
using a standard production system for higher-level processing and neural networks for low-level 
processing.

The main idea of incorporating neural networks into a production rule is to activate the networks as 
actions in the right-hand side of the production. Facts from the working memory are passed as input 
vectors to the neural networks. The output vectors, produced by the neural networks, are considered new 
facts. They may be either asserted in the working memory and possibly affect other productions during a 
next match-select-act cycle of the production system, or they can be used in the current production by 
activating other actions (figure 6.6A). The following example illustrates how neural networks are 
incorporated into productions.
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Figure 6.6
(A) Incorporating a neural network into a production rule as an action.
(B) The execution cycle of a hybrid connectionist production system

with neural networks participating in it. (From Kasabov 1993a).
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Example   The problem is to classify a new object into defined categories, and to make a decision how to 
react to it—to "greet" or "destroy" it. We assume that there are plenty of examples available about 
different objects which can be used to train a neural network to do the classification task. The final 
decision will be taken as a conclusion in a production rule (higher-level processing). The following three 
rules realize the whole task. A neural network is called for the classification task:

(Rule 1 "classify"
IF (the goal is to classify a new object O) AND

(data about the object O is available in the working memory),
THEN (activate a trained neural network NN to classify the object O)

(assert the classification result into the working memory))
(Rule 2 "destroy"
IF (the object O is classified as "an enemy"),
THEN (send a message and "destroy" the object O))
(Rule 3 "greet"
IF (the object O is classified as a "friend"),
THEN (send a message and "greet" the object O)

The first rule in the example above activates an already trained network for rapid recognition of a new 
object O supplying the data about the object from the working memory to a trained neural network as an 
input vector. It saves the result from the connectionist classification (the network outputs) back into the 
working memory. The second and third rules are to make the decision.

In this way, productions in a production system may deal with incomplete data and perform approximate 
reasoning, in this case a best-fit classification.

Neural networks can accumulate knowledge during operation. A neural network, for example, can be 
trained during execution of the production system. A rule that illustrates training a network as an action 
in a production and consequent use of the trained network to recognize an object are shown in the next 
example.

Example

(Rule "train_and_activate"
IF (the goal G is to classify a new object O) AND

(data about the object O is available) AND
(there is no rule or neural network to perform the goal G),
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THEN (train a network NN with existing data to perform the task G—in this case classification)
(activate the trained network NN with data about the new object O)
(put the classification results for the object O into the working memory))

The above rule illustrates a learning activity in an adaptive production system, which is a difficult task 
for symbolic production systems in general.

6.2.2 Building Hybrid Connectionist Production Systems

Using the above-described method of incorporating neural networks into production rules, where data 
communication between productions and neural networks take place through the working memory, 
makes it possible to use the execution cycle of the production system as a control cycle for the whole 
hybrid connectionist production system. Figure 6.6B is a block diagram of the execution cycle of a 
hybrid system. The overall control is done with the use of production rules. Through production rules 
different modules can be chained in a sequence, one module using the output from another, the whole 
chain solving one task. The inference is controlled through the production system's inference engine.

Loosely and tightly coupled hybrid connectionist production systems, in their structural varieties, can be 
realized in the above connectionist production system environment. To achieve this, the steps given in 
the previous section should be taken with respect to the specificity of the production systems and 
connectionist paradigms. The solution procedure for each of the modules is defined either as a set of 
production rules, or as a neural network, to be trained with data. The whole system is assembled in a 
way to be controlled by the inference engine of the production system, taking into account inference 
strategies, priorities and other requirements.

By mixing the symbolic production systems paradigm with the connectionist paradigm, each is enriched 
with the advantages of the other. To summarize, a connectionist production system can perform:

• Chain reasoning

• Approximate reasoning

• Fast computations
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• Learning during execution

• Dealing both with data and rules as problem knowledge

6.3 Hybrid Connectionist Logic Programming Systems

In the same way neural networks were incorporated into production rules, here they are incorporated 
into clauses, thus enhancing the logic programming systems. One method is presented here.

6.3.1 Incorporating Neural Networks into a Clause

A logic program is a declaration of objects, predicates, and clauses dealing with them. A standard 
backward chaining with backtracking inference mechanism is applied.

A neural network is considered an object in a logic programming environment, with three predicates 
defined over it. Such predicates, for example, are the following:

• create_net (Net_file, NumInp, NumHidd, NumOut) creates and initializes a three-layer MLP 
network with the given values for the self-explaining parameters.

• train_net (Net_file, Exmp_file, NEpochs, Lrate, Weights_file) trains a network with the given 
parameters; the initial network is taken from a file ''Net_file" and the resulting one after training, in the 
file "Weights_file"; the training examples are taken from a file "Exmp_file"; the rest of the parameters 
specify training parameters, in this case parameters for training an MLP with the backpropagation 
algorithm.

• recall_net (Net_file, Inpvec, Out_vec) activates a network "Net_file" with an input vector 
Inp_vec; the result produced by the network is returned as a vector Out_vec.

Example 1   This is the same example as in 6.2.1. The predicate "data" checks whether for an object X, a 
data vector Y exists:

destroy(X):- classify(X,enemy).
classify(X,Z):- data(X,Y), recall_net(Net_file, Y, Z).

A neural network can be trained while a clause is being executed. This is illustrated by the next 
example:
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Example 2

classify (X,Z):- data(X,Y), recall_net(Net_file, Y, Z).
classify (X,Z):

data (X,Y),
create_net (Net_file, NumInp, NumHidd, NumOut),
train_net (Net_file, Exmp_file, NEpochs, Lrate, Net_file),
recall_net (Net_file, Y, Z).

The communication between the symbolic logic part and neural networks is achieved by using shared 
variables within a clause. The input and output vectors are represented as lists.

More than one neural network can be activated within one clause. For example, suppose that a SOM  
was trained in advance to quantize n-dimensional vectors into two-dimensional ones, and to display 
them in such a way as to assist the user making a final decision on loan applications.

Example 3 A clause in a connectionist logic programming system, which calls in a sequential mode the 
two neural networks, one of MLP type—netl, and the other of a SOM  type—net2 for the Bank Loan 
Decision Problem, is given below (see figure 4.40):

fxloan (Cscore, Cratio, Ccredit):append (Cscore, Cratio, Ccredit, InputV), recall_net (net1, InputV, 
Decision1), recall_SOM (net2, Decision1, Decision2).

6.3.2 Building Hybrid Connectionist Logic Programming Systems

Building a whole system is possible by using the built-in inference mechanism in a logic programming 
environment. This process is illustrated by the problem of medical diagnosis presented in chapter 1 and 
solved in chapters 3 and 5. Here, one network is trained for each of the four possible disorders, as 
explained in chapter 5.

Example   The Medical Diagnosis Problem. The following program controls the reasoning process and 
ends up with a diagnostic solution:

diag(X,Y):- recall_net (net1, X, Diag1),
recall_net (net2, X, Diag2),
recall_net (net3, X, Diag3),
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recall_net (net4, X, Diag4),
append (Diag1, Diag2, Diag3, Diag4, Y).

where X is the input vector of the manifestation values.

In such a way, reasoning with inexact data is possible. For example, if the following goal is given to the 
hybrid connectionist logic programming system:

goal:- diag( [0.9, 0.0, 0.0, 0.2], Y),

the following solution will be produced:

Y = [0.883, 0.06, 0.156, 0.302].

To summarize, incorporating neural networks into logic programming systems brings new power to the 
classic logic programming paradigm with respect to two new characteristics: (1) approximate reasoning, 
and (2) learning.

6.4 Hybrid Fuzzy Connectionist Production AI Systems

Here, the idea of incorporating neural networks into production rules (see section 6.2) is used for 
building comprehensive AI systems. Fuzzy inference modules are incorporated into production rules in a 
similar way. An environment for building comprehensive AI systems is presented here and illustrated in 
the following sections.

6.4.1 Building Comprehensive AI Systems

Building comprehensive AI systems requires methodologies for mixing different paradigms; and 
software environments that facilitate these methodologies. These two requirements are discussed in this 
and the next subsection.

A methodology for building comprehensive AI systems should include means for:

• Building complex multimodular and hierarchical hybrid systems

• Experimenting with different combinations of methods (symbolic AI, fuzzy logic methods, 
connectionist) for solving a given problem before choosing the best model

• Improving the human's understanding of the problem under consideration through extracting, 
refining, and interpreting explicit knowledge (e.g., fuzzy rules).
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• Mixing explicit expert knowledge, raw data, and extracted knowledge from data when creating a 
system

• Tuning and revising existing or extracted knowledge

• Data analysis: clustering, feature extraction, principal component analysis, etc.

• Data transformations: FFT, mel-scale cepstrum transformations, wavelet transformations, etc.

• Knowledge-processing that meets all the current knowledge engineering requirements, as listed in 
section 6.1.

• Automation of the decision process on choosing the best model An exemplar software 
environment for building comprehensive AI systems is presented next.

6.4.2 Hybrid Fuzzy Connectionist Production Systems Environments

Using hybrid fuzzy connectionist production systems environments is only one possibility for building 
comprehensive AI systems, as discussed above. They include:

• Production rules and forward chaining reasoning

• Fuzzy rules and different methods of fuzzy reasoning, when fuzzy variables and fuzzy 
membership functions are defined in advance

• Different types of neural networks

• Different methods for rules extraction

• Methods for data analysis

The idea of building such environments is illustrated with a concrete environment called FuzzyCOPE 
(Kasabov 1995b). FuzzyCOPE is a software environment that has five main modules (figure 6.7). 
Relevant modules are compatible from the point of view of linking output from one module as input to 
another. This is also shown in the figure. The modules are explained below:

The FuzzyCOPE production system module is an extension of FuzzyCLIPS (presented briefly in chapter 
3; see also appendix E) with functions to call fuzzy inference methods, rules extraction methods, and 
neural networks and data-processing methods, all of them being available for experimenting with in the 
corresponding modules of the environment. A user
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Figure 6.7
Block diagram of FuzzyCOPE—a hybrid fuzzy
connectionist production systems environment.

program can be written in the FuzzyCOPE production language and compiled to executable code. A list 
of built-in functions in FuzzyCOPE to facilitate the above is given in appendix H.

The fuzzy inference module offers different fuzzy inference methods for experimenting with, while 
tuning the fuzzy reasoning over a set of fuzzy rules. The compositional inference methods, as well as the 
decompositional method for reasoning with fuzzy inputs and fuzzy outputs, are implemented. This 
module processes a set of fuzzy rules either designed by the user or by the expert, or automatically 
extracted from raw or preprocessed data in the rules extraction module.

The neural networks simulation module contains several neural network simulators which can be 
initialized, trained with raw or fuzzified data, and tested either as separate modules, or as a part of 
production rules written and executed at the higher level. The fuzzification of the raw data may be done 
in the data-processing module. The output from this module can be used as input to the rules extraction 
module.

The data processing module does operations over raw data, like fuzzification, normalization, 
clusterization. The output of this module can be used as input to the neural network module.

The rules extraction module includes several connectionist methods for rules extraction from raw or 
fuzzified data. One of them is for extracting a
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set of rough rules when the membership functions for the fuzzy predicates are chosen of a standard 
triangular type. The method is based on a standard feedforward neural network architecture and the 
backpropagation algorithm. The neural network structures are initialized, trained, and tested either in the 
neural network module or directly in the production system at the higher level, where the neural network 
functions are called as actions in the production rules.

With the use of the above explained modules and functions, different techniques of building hybrid 
systems are possible as discussed and illustrated below:

• Calling functions from production rules for operations facilitated in the neural networks module, 
fuzzy systems module, data analysis module, and rules extraction module. For example, the following 
function will perform a decompositional inference over fuzzy input "inp" for a set of rules which are in 
the file "loan.rul," when implication 3, composition 1, and else-link 3 are used:

(dcmfuzzy "loan.rul" inp 3 1 3)

The following function will perform a fuzzification-evaluation-defuzzification  inference over crisp  
input values "inp" for a  rule  base "pendulum.rul":

(fidfuzzy "pendulum.rul" inp)

• Having available different decompositional inference methods in the fuzzy inference module, the 
question which one to choose for a particular application is quite reasonable. The answer depends on the 
inference laws we want our system to obey. Different inference methods satisfy different laws of logical 
inference. As fuzzy inference functions are available either for direct use from the fuzzy inference 
module, or can be called from higher-level production rules, the selection and execution of the most 
suitable fuzzy inference method can be done automatically by interpreting the following production 
rules:

Rule 1:
IF (a set of fuzzy rules "fuzz1.rul" is available) AND

(there is a fuzzy inference method fi which has not been tested),
THEN (run the fuzzy inference method fi over the set of fuzzy rules
"fuzzl.rul" for a set of test data "test.dat")

(save the method fi as f_best if it produces better results than the methods tested before)
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Rule 2:
IF (a set of fuzzy rules "fuzzl.rul" is available) AND

(new input data "new.dat" is available),
THEN (run the fuzzy inference method f_best on "fuzzl.rul" for

"new.dat")
(assert the results in the working memory)

• The whole process of initialisation, training, and recalling neural networks can be controlled from 
a higher level of production rules. This option is illustrated in figure 6.8A and B on the Iris 
Classification Problem.

• Different transformations over raw data, like fuzzification, normalization, and clusterization may 
be crucial for the accuracy of the final results. They can be dynamically controlled and executed from a 
higher level, as illustrated in the example below.

Example   Calling data fuzzification function for a stock index data set "stock.dat":

(fuzzify "stock.dat" "stock.fuz" 3),

where the value 3 for the third parameter stands for the number of fuzzy labels used for the input and 
output variables. Standard triangular membership functions are used.

• Rules extraction from data can also be controlled from higher level, as shown below for the stock 
index data set.

Example   Calling rules extraction function for the stock index data set. The prediction neural network 
model from figure 5.41(A) is used.

; training a network and analyzing the network
(fuzzify "stock.dat" "stock.fuz" 3)
(newbp "stock-net.wgt" 6 6 3)
(trainbp "stocknet.wgt'' "stock.fuz" 10000 0.5 0.01 0.05))
(extract "stocknet.wgt" "stock.rul" 1 1)

• The process of the whole system design can be optimized and automated through interpreting a 
set of production rules. After having represented the problem solution as a multimodular structure as 
explained earlier, for each of the modules different alternative solutions can be tried until the optimal 
one is found. Different techniques can be experimented with—symbolic rules, fuzzy inference, neural 
network techniques,
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Figure 6.8
Initialization, training, and recalling an MLP with the backpropagation

algorithm as function calls from production rules in FuzzyCOPE for
the problem of Iris Classification. (B) A hybrid system for fuzzifying

the Iris data, initializing and training a fuzzy neural network, extracting
fuzzy rules, and running fuzzy inference over the extracted rules.

and combinations of these; rules extraction and refinement; and many others.

Example

Rule 1:
IF (past data "data.dat" is available),
THEN (train a neural network "net .net" with data ''data.dat" for a low-level processing)

(fuzzify data from "data.dat" into "data2.dat" by using special membership functions defined by 
experts)
(train a neural network "net2.net" with data "data2.dat" for rules extraction)
(extract fuzzy rules "fuzz2.rul" for higher level processing from the network "net2.net")

  



Page 441



Figure 6.8
(continued)
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• Controlling the execution process of a hybrid system by calling different modules and then 
combining the partial solutions to produce the final one.

Example

Rule:
IF (a neural network "net1.net" for low-level processing has been trained)
AND
(a fuzzy rule system "fuzz1.rul" for higher-level processing is available)
AND
(higher-level processing fuzzy rules "fuzz2.rul" are available),
THEN (read new input data ''inp")
(recall the network net1 with the input data "inp"; bind the resulting vector to "res 1")
(run a fuzzy inference method over fuzzy rules "fuzzl.rul" for input vector res ; bind the resulting vector 
in "res2")
(run a fuzzy inference method over fuzzy rules "fuzz2.rul" for input vector res1; bind the resulting 
vector in "res3")
(find the trade-off between "res2" and "res3" and bind it to "res4")
(assert "res2", "res3" and "res4" into the working memory for further analysis)

Two examples of building comprehensive AI systems are given in sections 6.6 and 6.7.

6.5 ("Pure") Connectionist Production Systems: The NPS Architecture (Optional)

The major principles of connectionist production systems (CPS) were explained in chapter 5. They are 
connectionist systems "prewired" according to a set of production rules, that is, the connection weights 
are precalculated. CPS are hybrid systems-a mixture between the symbolic production systems 
paradigm  and the connectionist paradigm, where both paradigms are "blended at a low level, at a 
structural and functional level" (this is the third type of hybrid systems according to the classification 
given at the beginning of this chapter). Some CPS are very appropriate for realizing fuzzy rules, in 
addition to their ability for realizing symbolic production rules. Such a CPS is the neural production 
system (NPS) described in this section (Kasabov and Shishkov 1993).
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Figure 6.9
Block diagram of the NPS architecture.

6.5.1 The NPS Architecture

An NPS is a "pure" connectionist system. A concrete NPS system is constructed for each defined set of 
production rules. An NPS consists of three neural subnetworks (figure 6.9): (1) production memory 
(PM); (2) working memory (WM); and (3) variable binding space (VBS).

The PM  contains r neurons, where r = r1 + r2 is the total number of rules (productions), r1 the number of 
productions with variables, and r2 the number of productions without variables. Only one variable is 
allowed in a rule.

All the facts held in the WM have the form of attribute-value  pairs. WM is a matrix of v× a neurons, 
where a is the number of attributes and v is the number of their possible values. Each neuron in the WM 
corresponds to one fact, either boolean, or fuzzy proposition.

VBS is a matrix of v × r1 neurons. Each column of this matrix corresponds to one production with a 
variable, and each row to one of v possible values of the variables. The PM and the VBS form one 
attractor neural network and the WM provides the external inputs to its neurons.

The inference cycle of an NPS is similar to the cycle of the classic symbolic production systems 
(recognize-act), but it is implemented in a connectionist way. Here, the match and select parts of the 
"recognize" phase are mixed, which is different when compared with the symbolic production systems. 
The act phase consists of updating the WM after opening two gates, one from the PM and another from 
the VBS.

Simple propositional "true/false" rules can be realized as an NPS system:
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Ri: IF C1 AND C2. . . and Cn THEN A1,A2,. . .,Am,

where Ci, i = 1, 2,. . . , n, are "true/false" condition elements and Aj,j = 1, 2,. . . , m, are actions of the 
form of "assert"/"retract" a proposition in the working memory.

For these kinds of simple production rules, the connection weights of the attractor network can be 
calculated in such a way that each rule is considered to be a "pattern," a stable attractor. During the 
match phase, when the facts in the WM  match the production memory, the PM  network goes into an 
equilibrium state after several iterations, which state is an attractor representing one rule. Then the 
activated rule (a neuron in the PM) updates the WM  according to its consequent part (asserts or deletes 
propositions). The propositions (the facts) are represented by activation values of 0 and 1 of the neurons 
in the WM.

The PM  always converges into a stable state representing a rule when input values are supplied to 
exactly match the condition elements in the rule. NPS can realize any production system that consists of 
propositional rules. The inference results are equivalent to those, produced by the built-in inference in a 
production language (e.g., CLIPS).

The existence of a huge amount of spurious states in attractor neural networks, which may cause a local 
minima problem, can be used for approximate reasoning when the facts can have any truth value 
between 0 and 1; therefore the condition elements in a rule are partially matched. In this case, the 
attractor PM network will relax in a spurious state, which means that more than one rule may get 
activated to a certain degree. The WM  then can be updated either by the rule with the highest level of 
activation (sequential updating), or by all the rules, which level of activation is above a threshold 
(parallel updating).

Using partial match for approximate reasoning in an NPS is a very strong point, which makes an NPS 
applicable to solving difficult A1 problems. This is actually the focus of the material presented in this 
section.

In general, production rules to be realized in an NPS can have the following form:

Ri: IF Ci1(DIi1) & Ci2(DIi2) & . . . & Cik(DIik),

THEN Ai1, Ai2,. . . , Ail (Θi, Pi, βi, CDi),

where Cij are condition elements of the form of attribute-value  pairs representing boolean or fuzzy 
propositions of the type " attribute  is
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value ," or their negation; DIij is a relative degree of importance of the ij-th condition element Cij; and 
Aij is one of the actions insert or delete a fact in the WM. Four inference control coefficients (Θi, Pi, βi, 
CDi) may be attached to every production. Θi is a threshold which determines the noise tolerance. The 
lower the value of Θi, the greater the noise tolerance, but at the same time, the greater the possibility of 
erroneous activation of the rule. Pi is a data sensitivity factor which controls the sensitivity of the rule Ri 
toward the presence of relevant facts. Θi and Pi control the partial match in NPS. βi is a reactiveness 
factor for the rule Ri. It regulates the activation of the rule Ri depending on how much it is matched by 
the current facts in the working memory. It is an important element in conflict resolution when only one 
rule has to be chosen and updated. The fourth coefficient, CDi, is the certainty degree (confidence 
factor) of the rule, representing the uncertainty in the conclusions when the condition elements in the 
rule are fully matched by the current facts.

The number of conditions and actions in a production rule Ri is arbitrary and each condition element Cij 
and action Aij may or may not have a variable (denoted by x) in the place of the value. The relative 
degrees of importance are used in NPS to regulate the partial match and the approximate reasoning. The 
proper use of DIs may prevent the rules from firing when the most important facts are not known. The 
lack of evidence about an unimportant fact for a particular rule should not stop its firing. All the facts of 
a production system are held in the WM subnetwork.

NPS has two modes of representing facts in the production rules and in the WM, respectively (1) 
without negated condition elements, and (2) with negated condition elements. In the first mode, the facts 
are represented in the WM  with a truth (certainty) degree between 0 and Ie (Ie is a constant parameter of 
NPS with a default value of 1) representing how certain the presence of the fact is at the moment. In the 
second mode, the facts are represented in the WM  by certainty degrees in the interval [-Ie, Ie]. A 
negative evidence for the fact is represented by a negative number and a positive evidence by a positive 
number. An unknown fact (the case "don't know") is represented by a certainty degree of 0.

The NPS model is designed to facilitate partial match and to be used afterward for approximate 
reasoning. In this context, the inference control coefficients are plausible from an engineering point of 
view. The noise tolerance shows how much a production will be resistant to the presence of limited 
evidence of facts, that is, should it be activated or will it be

  



Page 446

assumed that this little evidence for the facts might be a noise? The data sensitivity factor represents the 
dynamics of the relations between the facts and the rules. The certainty degrees CD define the relations 
between the activation level of the productions and the final certainty degrees of the inferred facts.

In an NPS, there are values for the parameters Θi, Pi, βi, and CDi attached by default, if they are not 
declared explicitly in the rules. It is also possible to declare global values for all inference control 
coefficients in a PS. The example below gives an idea of the syntax of NPS and the partial match 
provided.

Example

Productions:

Ax Bx - CA CB → Dx AB (0.5,1,1,1);
AB - CA → -CC (0.5,1,1,1);

Facts:

AA = 1; BA = 1; CA = -0.8;

Let us follow the inference according to a simulation performed in an NPS simulator. The facts partially 
match the rules, but the support for the first one is stronger. The neuron in the PM corresponding to the 
first rule will fire with an activation of 0.6. The variable x will be bound to the value A, and two new 
facts, DA and AB, will be added to the WM with certainty degrees of 0.6. In the next cycle, the second 
rule will fire (the refractoriness of the neurons in PM will prevent the first rule from firing again). The 
final result is the fact CC with a certainty degree of -0.9.

Another example will illustrate the use of relative degrees of importance, Dlij, attached to the condition 
elements of the rules.

Example

Productions:

Ax(9) Bx(1) → CC - Ax; BA → CC; Cx - Dx → CA;

Facts:

AB = 0.8; BB = 0.3;
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In this example, only the first rule is matched by the content of the WM. As the contribution of the first 
condition element Ax to firing the rule is 90% (very high), the limited information for the second 
condition element may not prevent the rule from firing. After the first inference cycle, this rule will fire 
with a certainty degree of 0.7 and x will be bound to the value B with the same certainty degree. If we 
exchange the degrees of importance of the conditions in the first production, it will not fire because the 
evidence for the more important fact (BB in this case) is very low.

The "act" phase is done in an NPS after the match-select phase. Then a "gate" from the PM  to the WM  
and a "gate" from the VBS to the WM open and allow updating the WM nodes. The weights of the 
connections from the PM and the VBS to the WM represent the actions in the right-hand side of the 
rules and have the following values: CDi (assert), - CDi (delete), where CDi is the certainty degree of the 
ith production. The neurons in the WM use the following activation functions:

where 0 ≤ d ≤ 1 is a decay factor for the WM; oijold is the output signal of the ijth neuron in the WM 
calculated at its last updating cycle, oijnew being its new updated value; and Iij is the aggregated signal 
from the VBS and the PM to the ijth neuron in the WM. Iij is not equal to 0 only if the ijth neuron in the 
WM is connected to the winner in the PM and possibly to the winner in the VBS.

In general, a new state of a neuron in the WM depends on its previous state, and on the input signal from 
the PM and the VBS. The decay factor d is used to implement forgetting in the WM.

A truth-value (certainty degree) of a fact in the WM can be changed (increased or decreased) after every 
"recognize-act" cycle, thus making the whole inference process nonmonotonic.

6.5.2 Partial Natch in NPS

A partial match is defined here as a process of matching the uncertain, inexact, and missing facts from 
the WM with the production rules. The
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main problem is to decide when the facts sufficiently match a rule in order to determine whether the rule 
is ready to be activated, and what level of activation it should receive. This problem is solved in NPS at 
three stages of matching: (1) partial match for binding variables; (2) partial match of the whole left-hand 
side of the rules; and (3) calculation of the activation level of the matched productions (including the 
already bound variables).

We should note that these three stages of matching are accomplished concurrently, as a process of 
relaxation in the attractor network, formed by the two subspaces—the PM  and the VBS. This separation 
is to facilitate the explanation only. Otherwise the PM  and VBS form  a single network. Every neuron is 
connected to every other. The weights bound to the connections are calculated in such a way that every 
neuron from the PM  has excitatory connections to itself and to the neurons in the VBS, which represent 
possible binding of its variable and inhibitory connections to all the rest of the neurons. Every neuron 
from the VBS has excitatory connections to itself and to the corresponding neuron in the PM which 
represents the rules where the variable appears, and inhibitory connections to the rest of the neurons.

In order to achieve the mechanism of partial match, the two coefficients Θi (noise tolerance) and Pi 
(sensitivity factor) bound to a production Ri, and the two coefficients noise tolerance ΘVBS and sensitivity 
PVBS (global for all neurons in the VBS) are used. The degree of importance DIij, attached to a condition 
element Cij in Ri, is also used for the purpose of partial match. Connectionist realization of the three 
stages of partial match is described below.

In order to realize the first two stages of the partial match, the WM's contribution S (called support) to 
every neuron in the PM and in the VBS is calculated after every WM update. There is a connection from 
a neuron k in the WM  to a neuron i in the PM, with a strength of wik= ) if the first 
neuron k represents a pair which takes part as a condition element in the rule Ri, represented by the 
second neuron i, DIik being the relative degree of importance of this pair within the rule. 

 is the sum of the degrees of importance for all the condition elements in the 
production Ri.

There is a connection from a neuron k in the WM, representing an attribute-value pair, to a neuron 
corresponding to a value j from column i in the VBS, if the rule Ri contains the pair in its LHS. This is to 
ensure a consistent variable binding. The weights of the connections from the WM
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to the VBS have the following values: wjik =  is the sum of the degrees of 
importance of the condition elements with a variable in the ith production Ri, and DIik is the degree of 
importance of the condition element with a variable matched by a fact, represented by the kth neuron in 
the WM. The sign of the weights is negative if the kth condition element has a negation.

There is a connection from every neuron p in the ith column of the VBS to the neuron Ri in the PM  with 
a weight of wip, = , where the sums  and  have the same meaning as above. The 
formulas for calculating the support from the neurons k in the WM to a neuron in the VBS (Svbsji), to a 
neuron in the PM representing a rule with a variable (Srvi), and to a neuron in the PM representing a rule 
without a variable (Sri), are as follows:

where the sums  above are over the neurons k in the WM  which support the corresponding neurons 
in the PM and in the VBS, Vk being their output values, Vp the output value of the winning neuron p in 
the VBS representing the binding of the variable in the rule Ri, and wip being the weight of the 
connection from this neuron to the neuron Ri in the PM.

In order to control the calculation of the activation levels of the matched productions (third stage of the 
partial match), the support Si from the WM to the neuron i in the PM, or in the VBS, is filtered as 
follows:

where Ii is the net input to the ith neuron in the PM, or in the VBS; Ie is the maximum activation level of 
the neurons in the WM (1 by default); Θi is the noise tolerance of the ith neuron (i.e., the noise tolerance 
of the rule Ri, or a global value for all the neurons); and Pi is the sensitivity of the ith neuron toward the 
supporting facts in the WM. The above formula was selected empirically after experiments to find out a 
way to effectively control the partial match in NPS.
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The filters allow a fine-tuning of the influence of the facts from the WM to the firing of the rules. The 
filters have the following characteristics:

If Si = Ie, then Ii = Ie (maximum support)

If Si ≤ Θi, then Ii = 0 (lack of support)

If Θi = 0 and Pi = 1, then Ii = Si (the filter is omitted)

If Pi = 0, the filter works like a threshold element

This formula is simple, effective, and comprehensive. The introduction of a filter between the current 
data and the knowledge, captured in a connectionist structure, is a way of representing metaknowledge. 
The filter controls how the neuronal "knowledge" should be used when data are present, and to what 
extent. This is an example of how we can introduce psychologically plausible parameters to a 
connectionist PS at a low, neuronal level.

The partial match between the facts in the WM and the rules in the PM is due to the activation values of 
the nodes in the WM, the degrees of importance of the condition elements, and the two coefficients Θi 
and Pi. Θi is a threshold that is used to restrain the input from the WM  to the neurons in the PM and the 
VBS assuming that it is a "noise". It separates "noise" from  the relevant information. This coefficient 
determines the noise tolerance of the neurons and thus the extent of the partial match. Pi regulates the 
sensitivity of a rule Ri, or of a variable binding, toward the presence of relevant facts. If Pi increases, the 
sensitivity decreases, and it is more difficult to activate the rule Ri even if the support from the WM is 
above the noise tolerance threshold Θi. Θi and Pi can be used to control the process of the partial match 
at the level of the whole knowledge base (by their default values), as well as at the level of each 
particular rule (see the examples below). Two cases of filtering are represented graphically in figure 
6.10.

The partial match can be tuned to specific requirements by tuning the values of the noise tolerance 
parameters Θ and the sensitivity factors P as global values (valid for all productions and variable 
bindings), as well as by setting individual values for every production.

An important element of every production system is the way a rule is chosen for firing among the other 
satisfied rules if a sequential mode of updating the WM is used. The partial match explained in the 
previous
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Figure 6.10
Different noise tolerance θi and sensitivity
factor Pi define different values for the net

input Ii to a rule-neuron Ri for a same
data support Si from the current facts in
the working memory and the variable

binding space.

section makes the realization even more difficult, as the term "satisfied" means here "partially satisfied." 
But how "partially" should a rule be satisfied in order to be chosen for execution? (This does not impose 
a problem in the parallel mode of realization, when all the rules satisfied above a given threshold fire 
and update the WM in parallel.)

Different conflict resolution criteria are realized in NPS as follows:

• Refractoriness. All the neurons in the PM and in the VBS are refractory —once fired, they may 
not fire again during the next inference cycles. The period of prohibition can be different for each group 
of neurons. This prohibition may not extend indefinitely. The prohibition is controlled by four time-
delay parameters, implemented through inhibitory weights from a special highly activated neuron to the 
rest of the neurons in the PM and in the VB.

• Priorities among the rules. They can be imposed in two ways. The first is to use suitable values 
for the two partial match control coefficients Θ (noise tolerance) and P (sensitivity). In this case 
different rules having the same support S from the WM receive different external input signals after the 
filter. If the support S is less than some critical value Sc, then the first rule will have greater priority; if 
the support S is above Sc, than the other rule will win. This method of assigning dynamic priorities is a 
side effect of the connectionist realization of the partial match in NPS. It does not work if the rules 
receive the maximum support Ie. These dynamic priorities represent a feature not seen in existing 
symbolic production systems. Another way to realize priorities—this time, explicit priorities—is to use 
the third inference control coefficient possibly attached to every rule Ri, the



  

Page 452

reactiveness factor βi. As the connections between the neurons in the PM are inhibitory, the ''fastest" 
neuron (rule) would suppress the others and would win (attain the highest activation value). By 
assigning different values for the reactiveness of the productions, we can better differentiate the 
productions as different knowledge modules.

6.5.3 Approximate Reasoning in NPS

We consider approximate reasoning in NPS as a process of inferring new facts and achieving 
conclusions when inexact facts and uncertain rules are present. The process of approximate reasoning in 
an NPS can be described as matching facts represented by their truth degrees against antecedents of 
rules. Then the truth values (certainty degrees) of the new facts (conclusions) are computed. This is 
repeated as a chain of inferring new facts, matching the newly inferred facts (and the old facts of course) 
to the productions again, and so forth. The reasoning process is nonmonotonic; processing of new facts 
may decrease the certainty degree of an already inferred fact. The main idea of controlling the 
approximate reasoning in an NPS is that by tuning the inference control parameters we can adjust the 
reasoning process for a particular production system to the requirements of the experts. Approximate 
reasoning in an NPS is a consequence of its partial match. For example, by using the noise tolerance 
coefficients Θi, an NPS can separate facts that are relevant to the decision process from irrelevant facts. 
Rules with different sensitivity coefficients Pi react differently to the same set of relevant facts.

An NPS can work with missing data. One rule may fire even when some facts are not known. By 
adjusting the degrees of importance DIij we declare that some condition elements are more important 
than others and rules can fire if only the important supporting facts are known.

Adjustment of the inference control parameters facilitates the process of choosing an appropriate 
inference for a particular production system.

Example   A simple diagnostic production system  with four manifestations, M1 through M4, three rules 
R1, R2, and R3, and three diagnoses D1, D2, and D3 is represented in an NPS as follows:

R1: Ml(10) M2(2) → D1 (0.4, 0.8, 1.0, 0.9);

R2: M2(8) M3(7) → D2 (0.2, 0.3, 2.0, 1.0);

R3: M3(10)-M4(8) → D3 (0.7, 1.5, 0.8, 0.6);
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Rule R2 is the most sensitive one to the facts, rule R1 is less sensitive, and R3 is least sensitive. The 
same distinctions apply to the reactiveness and certainty degrees of the productions. The noise tolerance 
threshold Θ3 of the third rule is highest, which means that this rule needs more strong evidence to be 
activated. The final values for these coefficients are to be set after experiments with real data and 
consultations with experts who are supposed to evaluate the correctness of the inference process. The 
attached inference coefficients are used to represent uncertainties based either on a statistical or on a 
heuristic evaluation. They can also be adjusted during the experiments.

For a concrete set of manifestation values, M1 = 0.8, M2 = 0.3, M3 = 0.5, M4 = -0.9, and for an output 
threshold of the PM 0.15, the inferred diagnoses are D1 = 0.9, D2 = 1.0, D3 = 0.0. It could be seen that 
even having the strongest evidence for its supporting facts M3 and M4, the third rule fails to infer 
anything. This is due to its low noise tolerance (high value of 03) and low sensitivity (high value of P3). 
The second production is very sensitive (low value of P2) and has a high noise tolerance (low value of 
P2), so it reaches its diagnosis with the highest certainty degree. The first rule reaches a high certainty 
degree because its most important manifestation M1 (DI11 = 10 > DI12 = 2) is strongly supported by the 
fact M1 = 0.8 in the WM.

The simple diagnostic rules may be extended to fuzzy diagnostic rules, when the manifestations and the 
diagnoses are given linguistic values, for example:

If M1 is Strong and M2 is More-Or-Less-Small, Then D1 is Medium

Implementing fuzzy production systems in an NPS is discussed in the next subsection.

6.5.4 NPS for Knowledge-Engineering

Fuzzy production systems have already been implemented in this book with the use of fuzzy logic 
inference techniques, with the use of multilayer perceptrons and the backpropagation learning algorithm, 
and with some other inference techniques. The use of an NPS for approximate reasoning over fuzzy 
productions is illustrated here by the simple Bank Loan problem. The main idea of realizing fuzzy 
production systems as an NPS is that activation values of nodes in the WM contextually represent 
membership degrees when dealing with fuzzy variables.
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Figure 6.11
The Bank Loan Decision fuzzy rules implemented in an NPS.

Example   The Bank Loan fuzzy rules are implemented in an NPS, as shown in figure 6.11. New input 
values (e.g., Score = 190, Ratio = 0.4, Credit = 3) must be fuzzified first and then used as activation 
values for the neurons in the WM. After a run of the NPS, new facts about the decision are inferred. The 
latter can be applied over the Decision Approve and Decision Disapprove fuzzy membership functions, 
and the final value for the Decision variable obtained after deffuzification.

A realization of a fuzzy production system using an NPS assumes that fuzzification and defuzzification 
are done as preprocessing and postprocessing.

By adjusting different values for the inference control parameters attached to an NPS realization, 
different approximate reasoning methods can be realized (Kasabov 1994, 1996).
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6.6 Hybrid Systems for Speech Recognition and Language Processing

6.6.1 Hybrid Systems for Speech Recognition: What to Combine?

The speech recognition process is representable as a two-level hierarchical process, consisting of a low-
level—subwords recognition, for example, phoneme recognition, and a high-level—words, sentences, 
contextual information recognition, language analysis; each of the levels being representable in a 
recursive manner as many other levels of processing. For example, subwords recognition may include 
feature extraction; allophonic segments classification; and grouping the recognized segments over time 
into subwords (time-alignment problem). Different combinations of techniques for low-level and higher-
level processing have been explored so far, with one of the most used techniques being:

• Template matching and dynamic time warping for low-level processing. Speech recognition using 
template-matching involves comparing an unclassified input pattern to a dictionary of patterns 
(templates) and deciding which pattern in the dictionary the input pattern is closest to. Distance 
measures are used to decide the best match. Before the matching is done it is necessary to perform some 
time alignment between the input pattern and each reference template. Owing to the variability of speech 
there will be local and global variations in the time scale of two spoken examples of the same word, 
regardless of whether the two examples were uttered by the same speaker or not. An effective technique 
utilized in computer speech recognition for time-aligning two patterns is a nonlinear time-normalizing 
technique, dynamic time warping. Speech recognition systems based on dynamic time warping have 
been used successfully for isolated word recognition. Usually the vocabulary is medium-sized or less 
(i.e., < 100 words) because the dictionary of reference templates takes up a lot of storage space. 
Dynamic time-warping systems are also usually speaker-dependent. For speaker-independent systems 
reference templates have to be collected from a large number of people; these are then clustered to form 
a representative pattern for each recognition unit (Owens 1993). Speech recognition systems utilizing 
dynamic time warping have also been used for connected speech recognition and recognizing strings of 
words such as a series of digits (e.g., a telephone number).

A limitation of dynamic time warping, when the recognition units are words, is that its time-aligning 
capabilities can lead to confusion between

  



Page 456

words when the principle distinguishing factor is the duration of a vowel, for example, "league" and 
"leek". A further limitation is the large memory required for a speaker-independent, large-vocabulary 
speech recognition system.

• Hidden Markov models for low-level and higher-level processing. Like dynamic time warping, 
they can account for the variations of speech in time. While dynamic time warping is a template-
matching technique, hidden Markov models are statistical modeling techniques. A set of training speech 
data is used to generate a probabilistic model (see chapter 2 and figure 2.33). This training can be time-
consuming and requires large amounts of memory. However, once trained, the hidden Markov model is 
fast and requires little memory. The hidden Markov model represents a process with a finite set of states. 
The states cannot be observed, they are hidden. Each state contains statistical probabilities and functions 
that perform pattern-matching and time-normalization. The structures of hidden Markov models fall into 
three major categories: (1) unconstrained; (2) constrained serial; and (3) constrained parallel.

The constrained serial and constrained parallel models are used for isolated word recognition. They 
allow for temporal variation because they "move from left to right." Once a state is passed in the 
constrained serial and constrained parallel models, it cannot be revisited later on. The states in a 
hidden Markov model are not necessarily physically related to any single observable phenomenon. 
The limitations of the hidden Markov models are (Lippman 1989): poor low-level modeling of 
speech (at the acoustic-phonetic level), which leads to confusions between acoustically similar 
words; and poor high-level modeling of speech (semantic modeling), which restricts systems to 
simple situations where finite state or probabilistic grammars are acceptable. It is difficult to model 
linguistic rules directly.

• Neural networks for each of the phases at the low-level and higher-level processing. This was 
discussed in chapter 5.

• Symbolic Al rule-based systems for higher-level processing (discussed in chapter 2).

• Fuzzy systems, mainly for higher-level processing (discussed in chapter 3).

Combinations of the above techniques lead to more powerful systems. For example, a simple speech 
recognition system may consist of a low-
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Figure 6.12
A hybrid system for speech recognition. The phoneme

recognition task is performed at a low level and is
realized as an SOM. The higher level performs a text

recognition task and is realized as a rule-based system.

level SOM for phoneme segments classification and a higher-level, rule-based system (figure 6.12.). 
Before using rules (or instead of using rules) a method for time alignment may be applied to the 
sequence of segment labels recognized at consecutive time intervals by the SOM (Kasabov et al. 1993).

A more comprehensive hybrid connectionist fuzzy model is presented in the next subsection.

6.6.2 A Hybrid Connectionist Fuzzy Logic Model for Speech Recognition and Language 
Understanding

The model described here is based on the assumption that the whole process of speech recognition and 
language analysis is an integrated continuous process and the border between the two is not well 
defined. Where does the speech recognition process end and where does the language analysis process 
really begin? Are they not two overlapping processes?

This process can be viewed in two dimensions—time and type of knowledge applied in order to 
recognize and understand a spoken sequence, where the speech recognition and language analysis 
phases overlap in both dimensions. For example, correctly recognizing a spoken phoneme may require 
understanding the context of the whole word, and also some words pronounced before and after it. 
Figure 6.13 represents the applicability of neural networks and fuzzy systems to solving different 
subtasks from the speech recognition and language understanding processes
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Figure 6.13
The use of neural networks and fuzzy systems for

different types of processing during speech recognition
and language understanding processes. As both processes

overlap over the time scale and over the "type of
recognition" scale (the scale between data driven and
knowledge-driven recognition) so do the applicability

of the two paradigms.

represented in the two dimensions: "time" and "type of recognition." As both processes overlap over the 
"time" scale and over the "type of recognition" scale (the range between data-driven and knowledge-
driven recognition) so does the applicability of the two paradigms.

Based on the general architecture of an intelligent human computer interface given in figure 1.20 and on 
the applicability of neural networks and fuzzy systems to different phases of this task, a multimodular 
hybrid model for speech recognition and language modeling can be developed, as shown in figure 6.14. 
It has the following main modules:

• Preprocessing module. This performs nonlinear transformations over the raw speech signal and 
extracts features. Different standard transformations could be applied.

• A neural network module for low-level, phoneme recognition. This can be a single neural network 
or a multinetwork structure of many specialized neural networks for recognizing patterns of sub-units, 
for example parts of phonemes or phonemes. Different types of networks can be used. This module is 
adaptable and trainable with speech samples of phonemes from a speech corpus.

• A higher-level fuzzy rule-based system performs approximate reasoning over fuzzy rules for 
phoneme, words, sentence, concept, and meaning recognition. The higher level is, in general, a 
multilayer structure of fuzzy rules which represent different layers of speech and language knowledge.
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Figure 6.14
A multimodular hybrid system for speech recognition and language understanding.

It can be a simple flat fuzzy rules system or a quite complicated system, depending on the task. For 
example, the fuzzy system realizes linguistic rules from a set of linguistic knowledge, forms words and 
matches the recognized words into a pre-defined dictionary.

The following principles are used when building a concrete speech recognition system based on the 
model of figure 6.14:

• The principle of hierarchy. The speech elements are recognized through their natural hierarchy of 
subunits, units, strings.

• The principle of a delayed decision. A lower-level decision is temporarily accepted for further 
processing, but is subject to correction due to the higher-level knowledge available and the interaction 
between the levels in the system.

• The principle of the fuzzy winner. At each level, not one, but many possible subunits and units are 
kept for further processing and not just the one winning at that moment.

• The principle of making use of both data and knowledge when building a speech recognition 
system. This principle means also applying both "unconscious," "blind," or "stimulus-reaction" 
recognition, and "conscious," rule-based or directed, recognition.
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• The principle of adaptability. A system based on the model is adaptable to new variations of 
speech, new vocabularies, etc. The adaptability is achieved in three ways: (1) additional training of the 
neural networks at the lower level with examples of new speech variations; (2) adding or changing fuzzy 
rules in the higher-level module for representing the new speech characteristics; (3) learning fuzzy rules 
from new speech data and adding these rules to the already existing ones for higher-level processing.

• The principle of biological, physiological, and psychological plausibility. At each level of 
recognition the system tries to imitate as much as possible what is known about the human's ear, brain, 
and mind.

Higher-level fuzzy processing can be implemented by using fuzzy inference methods, facilitated in 
different fuzzy engineering tools; and connectionist systems that process fuzzy rules, an example of such 
a system being NPS.

The above described model is illustrated by an examplar system for phoneme-based spoken digits 
recognition in section 6.8.

6.7 Hybrid Systems for Decision Making

Complex decision-making problems very often require considering huge amounts of information 
distributed among many variables and also different techniques for processing of this information. 
Hybrid systems are appropriate for solving such problems as it is explained below.

6.7.1 Why Hybrid Systems for Decision Making?

Building decision-making systems, whatever type of knowledge is available, requires:

• Good explanation facilities and preferably presenting the decision rules used

• Dealing with vague, fuzzy information, as well as with crisp information

• Dealing with contradictory knowledge, for example, two experts who predict different trends in 
the stock market

• Dealing with large databases with a lot of redundant information, or coping with lack of data
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Figure 6.15
A block diagram of a hybrid system for stock market prediction and

action recommendation.

Decision making is not usually a one-level process. Just the opposite: it involves different levels of 
considering the problem, comparing different possible solutions and offering alternatives.

6.7.2 Hybrid Systems for Stock Market Prediction and Decision Making

Stock market index prediction is a good example of a complex AI problem. Figure 6.15 shows a block 
diagram of a variant of a hybrid system for solving this problem. There are several tasks within the 
global one: (1) to predict the next value for the index; (2) to predict longer-term values taking into 
account rules on the political and economic situation; (3) to extract trading rules from the system. A 
neural network can be used to predict the next value of the index based on the current and the previous-
day value of this index. The predicted value from the neural network module can be combined with 
expert rules on the current political and economic situation in a fuzzy inference module. These two 
variables are fuzzy by nature and fuzzy values are used as inputs for them. The final decision suggested 
is produced as a fuzzy one and as a crisp one after defuzzification.

Another branch in the solution diagram  leads to extracting fuzzy trading rules that may be used to 
explain the current behavior of the market. A partial implementation of the above model in FuzzyCOPE 
is given in appendix I.
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6.8 Problems

Part A: Case Example Solutions

1. Speech recognition: the phoneme recognition task-building a hybrid system for spoken digits 
recognition. A small experimental system is presented here as published in (Kasabov et al. 1995) to 
illustrate the hybrid model in figure 6.14. The experiment is conducted on recognizing 21 speech 
units—20 phonemes and a silence which take part in the digits words. 21 neural networks are used, each 
for recognizing segments of each of the spoken phonemes as shown in figure 5.30A. A set of fuzzy rules 
is applied to two consecutive segments recognized by the neural networks over the time scale, labeled 
by the label of the corresponding phoneme, in order to decide on the whole unit pronounced. Here, 
details on the experimental system are given.

a. Speech data compilation, and preprocessing. Digitized speech is recorded and a fast fourier 
transform (FFT) is performed over 11.6-ms segments of speech with the use of a Hamming window 
and with a overlapping between the segments of 50%. Two hundred fifty-six-point FFTs are 
calculated from the speech, sampled at 22,050 Hz. Mel-scaled cepstrum coefficients are then 
calculated from the FFTs. Mel-scale transformation is considered to be plausible in the sense in which 
the inner ear works. Twenty-six coefficients are obtained from  each 256-point FFT  for this 
experiment.

b. Two-layer neural network-module is used at the low-level. To train the 21 neural networks from the 
first layer, examples of the allophonic realizations of the phonemes were extracted from the speech 
corpus described in appendix G of a selected group of speakers (see figures 5.30A and 5.33B). The 
extracted portions were taken from the stable parts of the phonemic realization; therefore each of the 
segments taken carried substantial information about the realized phoneme. This meant the portions 
were very short in duration, but informative. Mel-scale cepstrum coefficients were calculated for these 
portions and used to train the phoneme neural network from the first layer (see section 5.6.3 for more 
details). The second-layer neural network module is a single neural network that takes three 
consecutive over time 21-element output vectors

  



Page 463

Figure 6.16
The second-layer neural network in

the neural network speech recognition
module; a general diagram for all

the 45 phonemes in English.

from the first-layer neural networks (the phoneme units) and produces a 21-element output vector of 
the recognized phonemes in a three times bigger time-frame as shown in figure 6.16. This network 
performs time-alignment and aggregates the already classified phoneme segments over three speech 
time intervals. The training of the second-layer network is done with the use of both real data as 
obtained through the first-layer classification of the training data from  the speech corpus and labeled 
correctly according to the desired classes, and synthetic data, which are synthetically generated. For 
example, one rule for generating synthetic training examples is the following: The activation value of 
the phoneme is 0.8 in all three time frames (the three 21-element input vectors) and the rest of the 
inputs are 0 then the output for the same phoneme is 1.0 while the rest of the output values are 0. We 
can denote this rule as: 0.8, 0.8, 0.8 → 1.0. Examples of other rules for generating allowed 
combinations in the synthetic training data are: 0.6, 0.9, 0.6 → 0.8; 0.6, 0.6, 0.6 → 0.5. For shorter 
phonemes, e.g., /f/, two consecutive input values of 0.8 are used in the first rule, rather than three, e.g., 
0.8, 0.8, 0 → 1, etc.
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Figure 6.17
Different clusters of rules for recognizing the syllable

boundaries and the correct sequences of phonemes in each part
of a syllable.

c. Language modeling block based on fuzzy logic techniques. The module has two submodules:

i. A fuzzy rule-based system. Fuzzy rules represent the likelihood of a phoneme to happen or not to 
happen when certain phoneme has preceded it (has been recognized at the previous timeframe). 
Again, the principle of specialization (modularity) is used here. This block is multimodular, that is, 
one fuzzy rule-base module is used for each of the phonemes. This allows for easy tuning of the 
fuzzy rules for a particular phoneme according to the performance of the whole system (Kasabov et 
al. 1995). There are separate clusters of fuzzy rules for syllables boundary recognition, onset, 
syllabic and coda, based on the allowed phoneme sequences in the language (see appendix J and 
also Gimson 1989). The different clusters of rules and their relations are shown in figure 6.17. The 
fuzzy system submodule takes as inputs the certainty degrees to which two consecutive time-
segments belong to different phonemes and produces a certainty degree to which the second 
phoneme segment is correctly recognized. The fuzzy system works continuously over time as shown 
in figure 6.18. Three exemplar fuzzy rules are given below:

IF (Onset) AND (/s/t-1 is High) AND (/n/t, is High), THEN
/n/out is High

IF (Onset) AND (/s/t-1 is Medium) AND (/n/t, is Medium),
THEN /n/out is Low

IF (Onset) AND (/n/t, is Low), THEN /n/out is Low,
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Figure 6.18
The fuzzy system submodule takes as inputs the
certainty degrees to which two consecutive time-

segments belong to different phonemes as produced
in the neural network module and produces a

certainty degree to which the second phoneme
segment is correctly recognized. The fuzzy system

works continuously over time.

where the membership functions shown in figure 6.19 are used. After ''filtering" the activation 
values of the phonemes from the first, speech recognition module, through the fuzzy rules, an output 
sequence is produced. The output from the fuzzy system for the pronounced word "one" as used in 
the experiment of figure 5.30 is shown in figure 6.20.

ii. A look-up table that contains the dictionary words (e.g., the digits) to be matched partially by 
the fuzzy system sequence of phonemes. Many-to-many matchings are allowed; for example, any 
of the recognized phoneme sequences of /f//ai//f/ and /f//ai//v/ will match the word "five" from the 
look-up table (figure 6.21). In the look-up table module a level of system's tolerance is introduced 
to define the level of partial match which the system should tolerate. In an extreme case, the level 
of tolerance can be set high enough that a sequence of /z//e//ou/ or /z//e/ may match sufficiently 
the word "zero."

2. NPS realization of fuzzy rules for phoneme recognition. General and specific fuzzy rules are 
articulated for deciding on eight spoken phonemes based on speech segments recognized in a previous 
module at time moments t and (t + 1). These segments are used as condition elements in the rules, called 
"input 1" and "input 2." The conclusion in a rule is called "output." The realization of the fuzzy rules is 
done with the use of NPS. Nine rules represent the expert knowledge. NPS allows for a variable to be 
used in a rule that reduces the number of the rules when compared with a standard fuzzy inference 
engine (see the previous case example). The rules written in the syntax of NPS are
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Figure 6.19
Membership functions for the input and output variables of the

fuzzy system for language modeling.

given in figure 6.22. The system is tested on continuous speech. The output from an NPS for a 
pronounced word "one" is shown in figure 6.23. Before displaying the output values, defuzzification 
was done on the fuzzy values inferred by NPS. The figure shows a clearly recognized sequence of 
phonemes.

3. Hybrid system for the Bank Loan case example. Two variants of a hybrid solution of the Band Loan 
problem are given below. The first uses a neural network trained to produce the membership function of 
the variable "decision" when the membership functions for the three fuzzy variables are entered. The 
final solution is taken after the value
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Figure 6.20
After "filtering" the activation values of the phonemes from the first, speech
recognition module, through the fuzzy rules, an output sequence is produced.

The output from the fuzzy system for the pronounced word "one" as used in the
experiment of figure 5.30.

Figure 6.21
Possible variations in pronunciation of the digit words that the system

tolerates.
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Figure 6.22
Fuzzy rules in the syntax of NPS for the small task of recognizing eight
 English phonemes, where the following notation is used: for the first

letter in a fuzzy proposition: A, output high; B, output medium; C, output
low; D, input 1 is high; E, input I is medium; F, input I is low; G, input
2 is high; H, input 2 is medium; I, input 2 is low; for the second letter in
the fuzzy propositions, represented as a variable x, possible values for

binding are the following phonemes: A, silence; B, /w/; C, /∧/;
D, /n/; E, /z/; F, /e/; G, /r/; H, /ou/.



Figure 6.23
Recognized phonemic segments over time for a pronounced

word "one" in a hybrid system consisting of eight neural networks
for low-level pattern matching and NPS, for aggregating

recognized by these neural network segments.
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Figure 6.24
A set of two production rules written in FuzzyCOPE to realize a hybrid

decision-making system for the Bank Loan Decision Problem.

produced by the network is logically analyzed. Figure 6.24 shows a segment of a program written in the 
syntax of FuzzyCOPE. In another variant of a solution (figure 6.25), two neural networks are used. A 
neural network "Net2" is trained to make the final solution at a higher level.

4. Hybrid system for prediction and control of the effluent flow to a sewage plant. A simplified block 
diagram of a sewage plant is given in figure 6.26 (see Railton et al. 1995) Incoming flow is pumped to 
the plant from three pump sites which operate independently based on local conditions. A flow time-
series data is explained and graphed in appendix C. Once the flow reaches the plant it is held in an 
anaerobic tank to allow suspended solids to settle. This tank operates as a storage unit and is limited to 
650 cubic meters. Predicting the flow for the next hour or next few hours is crucial for the operation of 
the whole plant because of the physical and biological constraints of the plant. The flow from the 
anaerobic tank to the denitrification and nitrification tanks and to the clarifiers is controlled through a 
penstock gate whose aperture can be controlled. The task here is to control the level in the anaerobic 
tank based on the external conditions. This task has two subtasks: (1) to control the penstock; (2) to
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Figure 6.25
A production rule written in FuzzyCOPE to realize a hybrid decision-making

system for the Bank Loan Decision Problem that uses two neural
networks for implementing two modules of the solution.

Figure 6.26
A block diagram of a sewage plant. A data set for the
sewage water flow is given in appendix C (part A).

  



Page 471

predict the incoming flow to prevent an overflow in the tank. A fuzzy system with two input variables, 
the level of the sewage in the anaerobic tank and the difference in the level for two time intervals, and 
one output variable, the penstock aperture, is used in this task (Bailey et al. 1995). For the subtask of 
prediction a neural network, a fuzzy system  or a fuzzy neural network can be used as shown in chapter 
7.

Part B: Practical Tasks and Questions

5. Explain the following concepts

a. Comprehensive AI

b. Multimodular hybrid system

c. Hierarchical hybrid system

d. Recurrent hybrid system

e. Hybrid connectionist production system

f. Hybrid connectionist logic programming system

g. Hybrid connectionist fuzzy production system

h. ("Pure") connectionist production system (CPS)

i. Refractoriness in a CPS

j. Random selection of a rule in a CPS

k. Selection strategy in a CPS

l. Production execution cycle in a CPS

m. Hidden Markov model

n. Dynamic time-warping method

o. Time-alignment problem in speech recognition

p. Speech segments classification into phonemic classes

6. In order to change the criterion for decision-making used at the higher level in the production rules for 
loan approval (see figure 6.24) to be: approve, if x10 > 0.8, or (x9 > 0.9 and x10 > 0.6), or (x8 > 0.8 and 
x9 > 0.8 and x10 > 0.7), do you need to retrain the neural network?



7. In order to change the criterion for decision-making at the higher production level in the production 
from figure 6.25, do you need to retrain the neural network "Net2?"
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8. Use the general two-level model of figure 6.1. Can you imagine what the two levels of processing 
may mean in the case of predicting stock index? What about predicting the movement of the ozone 
hole?

9. In an example in section 6.3, a goal to a hybrid connectionist logic programming diagnostic system is 
shown. What are the similarities and the differences between the ways a goal is given to a hybrid system 
and a goal is a given to a PROLOG program (see chapter 2)? What can be expected as answers in the 
two cases?

10. List the advantages and disadvantages of using hybrid connectionist systems for character 
recognition.

11. List all the steps to be taken for developing a hybrid, phoneme-based speech recognition system as 
part of an intelligent human computer interface (see figures 1.20 and 6.14) to a database containing 
clinical data.

Part C: Project Specification

Topic: Small Hybrid System Development

Create a small hybrid system for solving a chosen problem by following the given steps below.

1. Explain on one page the main characteristics of hybrid systems.

2. For the task chosen from the list below, create a multimodular block diagram of a possible solution to 
the problem.

3. Choose appropriate techniques for solving each subproblem represented as a module. What 
alternatives are there for each of them?

4. Create subsystems for solving each of the subproblems. Compile the whole hybrid system.

5. Make experiments with the hybrid system and validate the results.

List of Possible Problems for the Project
(See appendix C for some data sets and for a detailed description of some of the problems.)

1. Handwritten digits recognition



2. Bank loan approval decision-making system

3. Mortgage approval (see appendix C)

4. Stock market prediction (see appendix C)
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5. Unemployment prediction (see appendix C)

6. Phoneme recognition

7. Spoken words recognition, for example, "on"/"off"; "yes''/"no"; "stop"/ "go."

6.9 Conclusion

This chapter introduces the basic approaches, techniques, and applications of hybrid systems as a 
beginning to the development of comprehensive AI systems. The hybrid systems presented in the 
chapter incorporate different connectionist techniques, symbolic AI methods, and methods of fuzzy 
logic into one system. A hybrid systems environment, FuzzyCOPE, and a connectionist production 
system, NPS, are introduced and used for solving complex AI problems like speech recognition and 
stock market prediction.

6.10 Suggested Reading

Many applications of hybrid systems for solving AI problems have been reported in the literature. 
Further information on the material presented in this chapter and some additional material can be found 
in the following:

General principles of hybrid systems—Medsker (1995); Sun and Bookman (1994); Takagi (1990); 
Kasabov (1990, 1993a,b, 1995b); Arbib (1995)

Hybrid connectionist production systems that use CLIPS as a production language—Kasabov (1993a, 
1995b); Wang et al. (1993); Rocha et al. (1993)

General hybrid connectionist platforms-Schwinn—(1993); Kasabov (1995b); Rocha et al. (1993)

Soft computing—Sanchez (1992); Yamakawa (1994)

Hybrid systems for speech recognition and language analysis—Lange and Dyer (1989); Kasabov 
(1995a); Morgan and Scofield (1991); Kasabov et al. (1995, 1994)

An overview of currently used hybrid connectionist systems for decision-making—Goonatilake and 
Khebbal (1994)



Geographic information processing through hybrid connectionist production systems—Kasabov and 
Trifonov (1993)
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Robot planning in a hybrid connectionist system—Morasso et al. (1992)

Hybrid systems for financial forecasting—Deboeck (1994)

Connectionist logic programming systems (see section 6.3)—Kasabov and Petkov (1992); Ding (1992)

Connectionist fuzzy production systems and FuzzyCOPE—Kasabov (1995b)

Neural production system (NPS)—Kasabov and Shishkov (1993)
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7
Neural Networks, Fuzzy Systems, and Nonlinear Dynamical Systems. 
Chaos; Toward New Connectionist and Fuzzy Logic Models

Having discussed the use of neural networks and fuzzy systems as knowledge-engineering methods in 
previous chapters, this chapter introduces links between chaos theory, neural networks, and fuzzy 
systems. Connectionist and fuzzy logic models are under constant development along with the 
improvement of our knowledge on the human brain and the advance of technology. There are several 
points of interest here:

• What is chaos? The usefulness and the "nastiness" of chaos? How to control chaos?

• Some connectionist and fuzzy logic models manifest chaotic behavior and can predict chaotic 
processes.

• What new connectionist and fuzzy logic models are emerging?

7.1 Chaos

Here, some basic notions from chaos theory are presented.

7.1.1 What Is Chaos?

If a system seems to behave randomly we call such a system chaotic or say that it demonstrates chaos. 
Two types of chaotic systems are:

1. Deterministic chaos. The system's behavior can be approximately or exactly represented by a 
mathematically or heuristically expressed function; the seemingly unpredictable random behavior is 
produced by a completely deterministic function; this type of chaos is discussed here and is referred to 
as "chaos."

2. Nondeterministic chaos. The system's behavior is not expressible by a deterministic function and 
therefore is not at all predictable.

Chaos is a complicated behavior of a nonlinear dynamical system. It is also a self-organized process 
according to some underlying rules.

Nonlinear dynamical systems are those whose next state on the time scale can be expressed by a 
nonlinear function from its previous time states. Dynamical systems can evolve in continuous or discrete 
time, and can thus be expressed by the formulas:
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dx(t)/dt = F(x(t))—continuous time,

x(n + 1) = F(x(n))—discrete time,

where x is a variable from the domain space.

Example 1   A chaotic function used to model fish population growth (Gleick 1987) has become very 
popular:

y(n + 1) = y(n)(1 - y(n))

We can represent this function in a slightly modified form as:

y(n + 1) = 4gy(n)(1 - y(n))

The behavior of this first-order differential equation changes dramatically when the bifurcation 
parameter g is altered. When g < 0.25 the output y goes to zero. For 0.25 < g < 0.75 the output 
converges to single non-zero value. When g goes beyond 0.75 the output begins to oscillate between two 
values initially, then between four values, then between eight values, and so on. For g > 0.89, the output 
becomes chaotic.

Example 2   A typical chaotic function is the Mackey-Glass chaotic time series, which is generated from 
the following delay differential equation:

dx(t)/dt = [0.2x(t - D)]/[1 + x10(t - D)] - 0.lx(t),

where D is a delay; for D > 17 the function shows a chaotic behavior.

Example 3   Another example of a chaotic process is the movement in the value of the stock market (see 
appendix C). As we can see from figure 1.23 chaos is one possible state of it. The next value of a stock 
index depends in a nonlinear fashion on its previous values and it usually depends on some other 
parameters as well. The patterns of the index do not repeat over time exactly, but there are underlying 
rules which make them repeat approximately.

Example 4   The Water Flow to a Sewage Plant case example (see appendix C, figure C.1). Water comes 
to a sewage plant from three major sources: (1) domestic water; (2) industrial water; and (3) rainwater. 
For a certain period of the year rain can be assumed to be at a constant level and for simplicity in the 
experiments it will be ignored. The patterns of water flow are always different. This time series seems to 
be not random and not
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Figure 7.1
Smaller portions from the water flow data show clear patterns of

repetition which may be possible to capture in a set of rules.

periodic, but rather chaotic. Figure 7.1 shows three consecutive "patterns" from the water flow data.

There is evidence that parts of the brain, as well as individual neurons, exhibit chaotic behavior. 
(Freeman 1987; Freeman and Skarda 1985).

The noiselike behavior of chaos includes very important information. Understanding of a chaotic 
process is a crucial step toward its prediction and control. In order to better understand chaotic behavior, 
one needs to become familiar with some basic notions that characterize every chaotic process:

• The phase space of a chaotic process is the feature space where the process is traced over time. 
For example, the movement of an inverted pendulum can be traced over time in the two-dimensional 
space of the two parameters, the angle and the angular velocity. The position of the pendulum at any 
moment in time can be represented as a point in this space. Traces of points recorded over time are 
called trajectories. If a process goes periodically through the same points in the phase space at each time 
moment (t0 + n ∆t), where n = 1, 2, . . . , and At as a time interval (period), such a process is periodic, 
not chaotic. A chaotic process does not repeat the same trajectory pattern over time. Choosing the phase 
space is very important for understanding any process. For example, if the state space
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for representing a stock market index comprises two consecutive values V(t) and V(t + 1), where t 
represents a day, then the process may be seen either as random or chaotic; but if V(t) and V(t + 1) 
are two averaged values of the index over a year (t represents a year), then the same index may look 
periodic and stable.

• A chaotic process goes around areas or points of its phase space, but without repeating the same 
trajectory; such areas, or points, from the phase space are called chaotic attractors. One chaotic process 
may have many attractors in the phase space, many unstable fixed points. How to find them to predict 
chaotic behavior is a crucial question.

• Sensitivity to initial conditions is an important characteristic of a chaotic process. A slight 
difference in the initial values of some parameters that characterize the chaotic process will result in 
quite different trends in its further development.

• Stretches and contractions of a chaotic process may be observed in its phase space. A parameter 
called the Lyapunov exponent provides the average rate of divergence or convergence for a chaotic 
process. Based on the Lyapunov exponent, another parameter q called predictive power can be 
calculated for any chaotic process, as q = 1/L, where L is the largest Lyapunov exponent. This parameter 
can be used, for example, to evaluate roughly how many days in the future a stock index can be 
predicted, based on today's value and on some previous values of the index.

• Fractal dimension indicates the complexity of a chaotic system, for example, a low-dimensional 
attractor (3-4) would suggest that the problem is solvable. A chaotic process has a fractal dimension. 
Imagine a random process in two-dimensional space (see figure 4.23). The process occupies the whole 
space. It has two dimensions: d = 2, or simply d2. Now imagine that a process occupies a small fraction 
of the whole space, for example, all the points are grouped around the center forming a chaotic attractor 
(see the second square in figure 4.23). This process has a dimension between 1 (the dimension of a 
point) and 2, say d1.2, so it has fractal dimensions, or is a fractal. Fractal geometry was first described 
by Benoit Mandelbrot (see McCauley 1994). The dimensions of the space where the fractal lies are 
called embedding dimensions. The fractal dimension of a chaotic process is defined by its attractors. 
Some tasks that are very useful to perform for a particular chaotic process are finding the fractal 
dimension of a process, and finding the minimum embedding dimension.
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• Lyapunov exponents (LEs) play an important role in the process of analyzing a chaotic process 
(chaotic function f). There is one LE for each dimension x in the phase space. The LE λ can be 
calculated with the use of the formula:

where N is the number of points from the trajectory of the function f used over time and N tends to 
infinity.

A positive LE measures stretching in phase space, that is, how rapidly nearby points diverge from one 
another. A negative LE measures contractions, that is, how long it takes for a system to reestablish itself 
after it has been perturbed. Any chaotic system contains at leats one positive LE. The magnitude of this 
LE reflects the time scale on which the system becomes unpredictable (Wolfe 1985).

So chaotic processes seem random, but they are not. They are not periodic, but they do repeat almost the 
same patterns in their phase space. They are predictable, but only for a short time in the future.

7.1.2 What Is the Difference Between Chaos and Noise?

Noise is any small random signal added to the general function that describes the underlying behavior of 
a process. For example, recording speech for the task of phoneme recognition in a room where people 
come and go, telephones ring, etc., adds noise to the speech signal. Noise is a small random ingredient r 
to a function f (not necessarily nonlinear) y(x) = f(x) + r. Having noisy measures y(x) means that the 
value f(x) can be estimated for any value of the independent variable x, subject to a small error due to the 
noise.

The above is not true for a chaotic function. There is no formula y(x) that can be used to calculate the 
value for the dependant variable, say the stock index, for any given value of the independent variable, 
say a certain day over a period of 100 years, or the value of a parameter such as the interest rate. A 
chaotic process can be noisy too, if a small ingredient is added to the underlying nonlinear dynamical 
function.

Adding noise can be useful when doing computer simulations, as it makes them more "realistic." For 
example, noise added to training examples makes the neural network more robust to variations in data 
and leads to a better generalization.
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7.1.3 Applications of Chaotic Systems

Some systems whose behavior can be described as nonlinear dynamics are:

• Macroeconomic systems, where many factors have to be considered and the state of a system 
depends in a nonlinear fashion on its previous states

• Financial systems, for example, exchange rates

• Market systems, for example, the stock market, the bond market

• Biological systems, for example, the brain, the heart beat when a heart attack occurs

• Geographic and ecologic systems, for example, the ozone hole movement, and many others.

• Some tasks for dealing with chaos are:

• Chaos prediction: The goal is to predict the next state of a chaotic process.

• Chaos suppression: In this case the chaotic behavior is not desirable, as in the case of a heart 
attack. The goal is to suppress it and to return the process to its periodic mode.

• Chaos restoration: This is the case when the chaotic behavior is desirable. It is the natural 
behavior of a system. If the behavior of such a system becomes periodic, that is the undesirable mode 
and the goal is to restore as far as possible the chaotic behavior. There is evidence that epilepsy, for 
example, is an anomalous periodic behavior of a small part of the brain and its treatment may consist in 
restoring the previous chaotic behavior (in one way or another, e.g., inputting impulses to the brain). The 
latter two tasks can be unified under the name of chaos control.

There are numerous applications of computer models, including mathematical modeling theory, neural 
networks, and fuzzy systems, for dealing with chaotic processes. Here, only a few application-oriented 
systems are listed to give an impression of the variety of chaos applications:

• Chaotic systems identification and signals identification

• Nonlinear systems diagnosis

• Modeling of brain seizures

• Information encryption systems development
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• Simulation of biological populations

• Simulation of natural phenomena, like earthquakes, floods, etc.

• Simulation in astronomy

• Control and recovery from epilepsy, recovery from a heart attack

• Turbulence control

• Stock market control

• Energy saving by tracking the chaotic behavior of consumers

• Modeling a congress

• Modeling electrical circuits

• Modeling insect populations

• Modeling chemical and atomic reactors

• Modeling the spread of diseases

• Modeling the solar system

To create information systems for modeling nonlinear dynamic systems and control, special software 
and hardware are needed. The first chaotic chip was developed by Yamakawa and colleagues (1992b). It 
consists of three elements: (1) a nonlinear delay element; (2) a linear delay element; and (3) a 
summation element. Using these elements connected with links including feedback connections, an 
arbitrary chaotic function describable by a three-segment piecewise linear function can be programmed.

The connection between neural networks and fuzzy systems on the one hand and chaos on the other is 
twofold: (1) neural networks and fuzzy systems may manifest chaotic behavior under certain conditions; 
(2) neural networks and fuzzy systems can be used to predict and control chaos. These are discussed in 
the next two sections, along with some other new models of neural networks and fuzzy systems.

7.2 Fuzzy Systems and Chaos: New Developments in Fuzzy Systems

A set of fuzzy rules can be learned from data that represent either a nonchaotic or a chaotic process. The 
rules can then be used to model this process and control it. One of the advantages of using fuzzy rules is 
that they express in a linguistic form the process which may lead to its better understanding.
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7.2.1 Fuzzy Systems for Modelling Nonlinear Dynamical Systems

Modeling chaotic time series with the use of fuzzy logic techniques can be achieved by articulating 
fuzzy rules by experts after observing past data and using their experience, using the rules in a fuzzy 
inference machine; and by extracting fuzzy rules from data and their consecutive use in a fuzzy 
inference machine. Both approaches may include refining the rules and choosing an appropriate 
inference method for better processing. The two approaches are illustrated in case examples below.

Example I   Predicting water flow to a sewage plant by using rules articulated by experts. Through 
analyzing smaller portions of the data about the problem [one such portion is shown in figure 7.1] and 
analyzing the "fuzzy graph" of more data points (figure 7.2A), one can see patterns of repetition which 
may be captured in a set of fuzzy rules. By analyzing these patterns a set of fuzzy rules, was articulated 
as shown in figure 7.2B. The fuzzy labels and their membership functions were defined in advance. 
These rules are now used in a fuzzy inference machine to predict the water flow on test data. Figure 7.3 
shows the predicted vs. the real test values. This example demonstrates that a chaotic process can be 
predicted to a sufficient degree of accuracy subject to the availability of an adequate set of rules. The 
rules used here are simple fuzzy rules. We can see from figure 7.3 that the above set of rules performs 
much better than the set of rules extracted through using competitive learning (see figure 5.11B). The 
reason is simple, here more appropriate features are used, i.e. Time and Previous flow, rather then Time 
and Day of week.

The two examples on the same data point out at three conclusions: (1) It is very important to use 
appropriate feature set; (2) human intuition may perform better than an automatic tool; (3) when 
automatic extraction of rules is performed, tuning may be required to find out the best possible set of 
rules which approximate the process. This approach is illustrated on the Mackey-Glass chaotic time 
series (L.-X. Wang 1994). Near-optimal values for the number of fuzzy labels and their membership 
functions are found experimentally. The following steps describe the experiment:

1. Define the number l of previous values (lags) for the time-series data to be used for predicting k future 
values; here l = 9 and k = 1 is used.

2. Define the number of fuzzy discretization intervals and their membership functions; here 29 fuzzy 
labels are used for each of the 10 input and output values.

  



Page 483

Figure 7.2
(A) The ''fuzzy" graph of the flow. (B) Fuzzy rules for the Water
Flow to a sewage plant prediction problem articulated by experts.
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Figure 7.3
Prediction of the water flow on test data done with the intuitive fuzzy rules

and a fuzzy MAX-MIN inference method.

3. Extract fuzzy rules; for this purpose 700 out of 1000 values are used and the second method from 
subsection 3.7.3 is applied.

4. Test the generalization ability of the model.

Approximating a function (chaotic or not) from a set of data may be more difficult than in the example 
presented above. This is the case when data contain noise and there are some sections missing from the 
time series. A method for extracting fuzzy rules from such data that approximates the real function 
(without the noise) is presented in Uchino et al. (1993). Modeling a chaotic time series through a set of 
fuzzy rules has several practical applications:

• Having extracted a set of fuzzy rules which model a chaotic process means that we "store" all the 
important information about this process in a small memory space; the rules can be used to restore the 
functioning of the process again in the same chaotic manner if it has been disrupted for some reasons 
(e.g., a brain seizure or epilepsy).

• If a chaotic behavior is a new, "wrong" phase of a process that is normally described by a set of 
fuzzy rules, for example:

IF x1 is CE and x2 is CE, then y is CE,
THEN fuzzy rules can be extracted from the new chaotic behavior, for example:

IF x1 is S3 and x2, is CE, then y is B.
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When the two sets of fuzzy rules are compared, this may give some indication what the reason for the 
new chaotic phase of the process is and how to bring it back to the old, periodic phase, for example, 
increase x1.

Unfortunately, achieving a good generalization over chaotic time-series data by extracting fuzzy rules of 
the above type may be difficult for the following reasons:

• There is no procedure to define the optimal number of fuzzy quantization intervals and the 
optimal number of fuzzy labels.

• For a high accuracy of modeling, a huge number of fuzzy rules may be needed.

• If the number of the fuzzy labels and the number of the "lags" used for prediction is too high, and 
therefore the number of fuzzy rules too large, the whole procedure is slow and inefficient.

A "flat" set of fuzzy rules, as used above, may not be the best choice when modeling a nonlinear 
function, because a fuzzy rule of this type does not express recursive information, and the chaotic 
nonlinear functions are recursive. This is one of the reasons for the development of the so-called 
recurrent fuzzy systems.

7.2.2 Recurrent Fuzzy Systems

Recurrent fuzzy systems consist of recurrent fuzzy rules and fuzzy inference methods. A recurrent fuzzy 
rule uses in its antecedent one or more previous time-moment values of the output fuzzy variable, for 
example:

IF x1(t) is A 1 AND x2(t) is A2 AND y(t - 1) is B1, THEN y(t) is B,

where t and (t - 1) are two consecutive time moments. This rule can be represented graphically, as 
shown in figure 7.4.

In general, a fuzzy recurrent rule can be represented as follows:

IF x1(t) is A1 AND x2(t) is A2 AND . . . xk(t) is Ak AND y(t - l) is B1
AND y(t - l+ 1) is B2 AND . . . y(t - 1) is Bl, THEN y(t) is B,

where l consecutive "lags" of previous values of y are used to calculate its next value. A set of recurrent 
fuzzy rules may include internal fuzzy variables, for example:
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Figure 7.4
A graphical representation of a
recurrent fuzzy rule with two
inputs and one delay element.

Rule 1: If x1(t) is A1 AND x2(t) is A2 AND y(t - 1) is B1, THEN y(t) is B

Rule 2: IF x1(t) is A3 AND y(t - 1) is B2 AND y(t) is B3 AND z(t - 1) is C1, THEN z(t) is C,

where y is an internal variable, the output variable being z.

Fuzzy inference over recurrent fuzzy rules may include fuzzy rule evaluation, based on multiplication of 
the membership degrees to which new data belong to the membership functions of the antecedent 
elements, and on the center-of-gravity defuzzification method. The major advantage of using recurrent 
fuzzy rules is that a small number of such rules can model a complex nonlinear dynamic system. For 
example, a simple network of several recurrent fuzzy rules can model the Duffing chaotic time-series 
oscillator (Teodorescu et al. 1994).

7.3 Neural Networks and Chaos: New Developments in Neural Networks

New connectionist models continue to emerge. Some of them have been inspired by chaos theory itself, 
but more have been inspired by the new discoveries about the cognitive functions of the brain. By 
presenting only few of them here, one should be aware of the need to continually update this section.

7.3.1 Neural Networks for Modeling Nonlinear Dynamical Systems

Neural networks are universal approximators. The type of the function to be approximated does not have 
to be known. A nonlinear dynamic function of the form of:

x(t + 1) = f(x(t), x(t - 1), x(t- 2),. . . , x(t- /)),

  



Page 487

Figure 7.5
Real test data for the (chaotic) Water Flow to a

Sewage Plant Prediction Problem and the network
predicted by a trained MLP.

can be approximated in a properly set neural network with l inputs and one output-subject to enough 
points in the data set.

Example   An MLP network for predicting water flow to a sewage plant (see appendix C). In the 
previous section some solutions to the Water Flow prediction problem were given based on fuzzy 
techniques. A better prediction can be achieved if more variables are considered. A statistical analysis 
on the data produces correlation coefficients between the current flow and the flows at the previous four 
hours, correspondingly 0.85, 0.59, 0.30, 0.05. An MLP is set with five inputs (the input variables are 
time in hours; day—workday or holiday; the last three values for the water flow, e.g., three lags) and one 
output, the value of the water flow in the next hour. Two intermediate layers are used, each having six 
neurons. After 20,000 epochs of training, the network was tested on the same test data as in the previous 
section (figure 7.5). The network prediction for one hour ahead is quite good. The absolute mean error 
over the whole test data is 6.8 cubic meters per hour. Iterative prediction of the flow for several hours 
ahead can be also done (see figure 7.6).

For the purpose of modeling chaotic functions, a recurrent neural network would perform better than an 
MLP network, as the feedback connections help to learn time-dependencies over short periods of time. 
An
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Figure 7.6
Iterative prediction of the water flow for several hours ahead by using the

MLP from fig. 7.5.

example of using an MLP and a recurrent network for chaotic function modeling of the SE40 stock 
index was shown in chapter 5.

Fuzzy neural networks can be successfully used as it is shown in section 7.4 on the water flow data.

Can we expect a failure when using neural networks for predicting chaotic behavior? The answer is yes. 
A failure of a neural network to learn a nonlinear dynamic function could be due to several factors:

1. An improper neural network architecture, for example, an MLP network trained with the 
backpropagation algorithm can get "stuck" to a local minimum, when expected to converge to the global 
minimum.

2. Lack of sufficient training examples, or lack of sufficient time for training. The number of epochs 
used for training may not be enough for the network to learn the behavior of a system.
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3. Training data are characterized by chaotic behavior at a higher dimensionality than the dimension of 
the input space. We may not have considered some important variables while modeling the process, for 
example, we might have considered fewer "lags" than necessary.

4. Data are characterized by too difficult a chaotic behavior at a lower dimensional space for the 
architecture of the network.

In Yamakawa et al. (1992b), the following nonlinear dynamic system has been used for testing the 
predicting abilities of the neo-fuzzy neuron:

y(t + 1) =f1(y(t)) +f2(y(t - 1)) +f3(y(t - 2))

= 5 ⋅ y(t)/(1 + y(t)2) - 0.5y(t) - 0.5y(t - 1) + 0.5y(t - 2)

A feedback from the output to the inputs of the neo-fuzzy neuron is also used. The neo-fuzzy neuron 
was used successfully for several future time unit predictions. The number of the time units ahead a 
network can successfully predict depends on how much chaotic the process is. For the water flow 
prediction this number was three.

7.3.2 Chaotic Neurons

Chaos theory has inspired the development of new connectionist models. A chaotic neuron with graded 
output and exponentially decaying refractoriness has been reported by Aihara et al. (1990). The neuron's 
output is calculated with the use of the following output function:

where o is the neuron's output value (between 0 and 1); u is the external stimulus; g is the output 
function; r is a refractory function; α is a scaling parameter; k is a decay parameter; and Θ is the 
threshold.

Another model of a chaotic neuron has been developed and investigated by Dingle et al. (1993). The 
neuronal output is calculated as:

and  where xi are the input signals to the neuron, and wi are the weights. The behavior of this 
neuron depends on its net input u. When u < 0.11 the neural unit displays chaotic activity; for 0.11 < u < 
0.25 it produces periodic activity, while for u > 0.25 it produces a single value which increases with u 
and becomes 1 when u ≥ 0.75. This chaotic neuron
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was used by the authors for creating a self-organizing chaotic map, analogous to the Kohonen SOM. The 
SOM neural network is chaotic. Chaos introduces a controlled randomness into the self-organizing 
maps, which, according to the authors, results in an improved ability for clustering.

Further development of the idea of building chaotic neurons and using them for modeling the chaotic 
behavior of large ensembles of neurons leads to oscillatory neurons and oscillatory neural networks.

7.3.3 Oscillatory Neurons and Oscillatory Neurocomputers

Oscillatory models of different brain functions (memorizing, attention, hearing, etc.) and parts of the 
brain (visual cortex, olfactory bulbs, etc.) have been around for quite some time (Freeman 1987; 
Hoppensteadt 1986). It was proved experimentally that oscillations of about 40 to 60 Hz can occur in the 
visual cortex after application of a stimulus. In some cases, synchronized oscillations can occur between 
parts of the brain which are not geometrically close to one another. K. von den Malsburg raised the 
hypothesis that the brain aggregates separate features into an integrated object as a result of correlated 
and synchronized oscillations of groups of neurons. A short introduction to some oscillatory models and 
oscillatory neurocomputer architectures follows.

An oscillator is an elementary functional unit of an oscillatory system. Its functioning is described as 
oscillation, characterized by three parameters: (1) frequency, (2) phase, and (3) amplitude. An 
oscillatory element can be built up of two neurons (or groups of neurons), one of them being excitatory, 
and the other inhibitory (figure 7.7). An ensemble of oscillatory neurons can become synchronized. 
Synchronization can be described as the moment when all the oscillatory units in an ensemble stabilize 
their frequency to a constant value, and stabilize their phase difference to zero:

Fk(t) → Fconst, for t → ∞,

|Pk(t) - P[k + 1](t)| → 0, for t → ∞ and every k = 1, 2, . . ., n - 1,

where Fk(t) is the frequency of the kth oscillator at a time moment t in the ensemble of n oscillators, and 
Pk(t) is its phase at the same time moment t. Major questions are when and how can synchronization 
occur in an oscillatory ensemble?

We can represent information processing as a sequence of collective states of oscillatory units (neurons). 
Each of them is characterized by its
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Figure 7.7
An oscillatory unit comprising one excitatory

(E) and one inhibitory (I) neuron (or group
of neurons).

frequency, phase, and amplitude. This representation is different from the way information is 
represented as binary vectors in the von Neumann computers. But what kind of operations can be 
applied over such oscillatory representation? How can operations like "AND," "OR," "multiply," 
"divide,'' and so on, be handled? Is it really necessary to use these operations for information processing, 
or will different ones "serve" better?

A simple oscillatory neural network and an oscillatory computer architecture have been proposed by 
Inoue and Nagayoshi (1992). An oscillatory neuron is made up of two coupled oscillators, one 
excitatory, and one inhibitory, as shown in figure 7.8. The output of the unit oi(t) at a discrete time 
moment t is expressed in the version of a binary neuron as:

oi(t) = 1, if ∆i(t) < ε (synchronized), and 0, otherwise,

and in the version of an analog neuron as

oi(t) = 1/(1 + exp(-z/z0), with z = ε/∆i - 1.

The following parameters describe the behavior of the neuron:

• An analog parameter z0, which is 1 when the neuron is binary

• Difference ∆i(t) = |xi(t) - yi(t)|

• Activation values xi(t) and yi(t), calculated with the use of the following activation functions:
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Figure 7.8
The oscillatory neuron of Inoue

and Nagayoshi (1992).

xi(t + 1) = f(x(t)) + Di(t)(yi(t + 1) - xi(t + 1)),

yi(t + 1) = g(yi(t)) + Di(xi(t + 1) - yi(t + 1)),

where Di(t) is the coupling coefficient between the two oscillators in the ith neuron at the time moment t. 
The functions f and g are chosen to be, respectively,

f(x) = ax(1 - x); g(x) = by(l - y),

where a (0 < a < 4) and b (0 < b < 4) are control parameters. When the coupling coefficient becomes 
large, the two units are synchronized if a = b, and nearly synchronized if a ≈ b. An asynchronous motion 
appears if Di(t) takes certain small values.

In order to build a neural network from the above-described oscillatory neurons, ith and jth neurons are 
connected to each other with a weight of wij. The relation between wij and Di(t) is expressed by the 
formulas:

Di(t) = DDi(t), if DDi(t) > 0, and 0, otherwise

Here Ii is the input stimulus, and Θi is the threshold value. All the neurons in such an oscillatory neural 
network are simultaneously updated, that is, the mode of processing is parallel and synchronous. Such a 
mode is extremely fast when implemented on parallel-processing hardware.
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The oscillatory neural network described above can be used to simulate the standard backpropagation 
algorithm and Boltzman machine. But it has more advantages when dealing with noisy and chaotic 
information.

Another development in this area is the so-called globally coupled maps which are networks of chaotic 
neural elements that are globally coupled (each neuron is coupled with every other). Such a network is 
shown to have a much bigger capacity as an associative memory and is free of spurious states.

Research in the area of neural dynamic systems has been very productive in the last few years thanks to 
the work of Walter Freeman, John Taylor, Stephen Grossberg, Kunihiko Kaneko, Harold Szu, and 
others. The question as to why oscillatory neural networks have not been implemented and applied 
widely for knowledge engineering is difficult to answer. Some of the reasons may be that the binary 
logic elements, which today's computers are built of, do not particularly suit the oscillatory models; and 
there has been no real necessity to develop such models, as the standard neural network models have 
served very well so far, that is, they have been applied successfully in many areas of science and 
industry.

There are indications that the coming decades will be devoted to the ultimate goal of understanding how 
the human brain works. In addition, new information-processing technologies are becoming available, 
for example, optical-processing technologies, which seem to be suitable for implementing oscillatory 
information-processing models. Will the oscillatory brainlike models become the new information-
processing paradigm? Or will some other more biologically and psychologically plausible models take 
over?

7.3.4 Other Neural Network Models

Spatiotemporal artificial neural networks represent patterns of activities which have some spatial 
distribution and appear at certain times. For example, the input signals xl, x2, and x3 appear at the inputs 
of the neural network in figure 7.9 at different time moments, have different amplitudes, and have 
different duration in time. In this case, the input space is not three-dimensional, but four-dimensional, 
where time is included.

Figure 7.10 shows the architecture of a neural network where there are not only weights but time-delay 
elements as well, both adjustable through training, thus contributing to learning temporal and spatial 
patterns.
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Figure 7.9
A training example can represent a temporal

pattern for a certain period of time.

Figure 7.10
A neural network can learn spatiotemporal patterns

by adjusting the delay elements and the weights
associated with each of the connections.

Using temporal networks becomes useful when artificial neural networks have to cooperate with real 
biological processes and real neural networks in one system, for example, when implanting artificial 
neural networks to control heart or brain functions in a human body (Eckmiller et al. 1993).

As pointed out by Kosko (1992) and discussed in chapter 2, a fuzzy set is a point in n-dimensional 
space. A pattern of activation in the brain can also be viewed as a point in n-dimensional space, where n 
is the number of neurons whose activation, defines the pattern. We can represent a state of a 
spatiotemporal object in an n-dimensional space by a spatiotemporal fuzzy pattern. The elements of the 
space belong to this pattern to certain degrees, and rarely to a degree of 1. The level of activation of a 
group of neurons can be represented as a fuzzy set which defines the grade to which each neuron 
contributes to that pattern.

The classic stimulus-reaction paradigm, used in many models of biological neural networks, fails to 
explain some phenomena observed in the
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brain, which the hypothesis of the goal-seeking neuron tries to explain (Freeman 1991; Kaneko 1989). 
According to it, the neurons in the brain not only process received information (stimuli) to create 
patterns. They also seek information (stimuli) with which to confirm already existing patterns or create 
new ones. The stimulus-reaction mode is a data-driven inductive-type reasoning mode. The goal-seeking 
mode is rather a backward-chaining reasoning. There are implementations of this theory in the area of 
neural network hardware.

An interesting connectionist model is the wavelet neuron (Yamakawa 1994), which has wavelets instead 
of connection weights. Wavelets are spatiotemporal transformations of signals with many applications in 
knowledge-engineering (see chapter 2).

The goal of achieving in artificial neural networks the functioning abilities of a biological brain has led 
to experimentation with biological computers, that is, computers that use biological substances to 
process information, along with electronic, optic, and other technologies.

7.3.5 Adaptive Intelligent Information Systems: Adaptation and Forgetting in Fuzzy Neural Networks

Adaptation is a feature of intelligence. Adaptation means ability of a system to change its structure and 
functionality according to dynamically changing environment for a better reaction. Adaptive intelligent 
information systems should be able to change their knowledge base during operation. For example, a 
fuzzy system should be able to change its rules, a neural network should learn new data "on the fly."

Two different ways to make space in a neural network in order to adapt to new data are: (1) to expand 
the structure if necessary by adding new nodes as new data come; and (2) to make the system forget 
about old data, thus making space for the new ones.

Forgetting happens when an already trained neural network is further trained with new data without 
having been rehearsed with the old ones (see chapter 4). This prevents connectionist models from being 
used as adaptive systems without retraining them with both new and old data. It may be crucial to know 
how much a trained neural network would forget after having been trained with new data in situations 
when forgetting is desirable, or in situations where it is not desirable. For example, a neural network that 
predicts stock market prices should be able to gradually forget the old values two years back and keep 
only general "rules" for a
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future trading. On the other hand, some connectionist models are required to adapt quickly to new data 
without forgetting the old ones. An example of this case is a connectionist system trained on speech 
corpus data and required to adapt in real time to new speakers. Adaptive control systems should adapt to 
changes in the process under control. Controlling the level of forgetting and adaptation in a system 
might be as important as controlling the level of learning and generalization.

There are different ways to introduce forgetting in a neural network structure: (1) use of decay parameter 
when calculating a next neuronal activation value based on the previous one; (2) decay of connection 
weights during training; (3) pruning of weak connections; and (4) zeroing weak connections, which is 
discussed below.

The following steps form a general methodology for evaluating the adaptation and forgetting in a 
connectionist model:

1. A data set is randomly divided into sections (sets) A, B, C, etc.

2. A connectionist model is initialized, trained on set A, and tested for generalization on set B. 
Corresponding errors Etrain and Egener are calculated. RMS error may be applicable depending on the type 
of the data set.

3. The model is further trained on the set B (error Ead.train) and tested on the set A (error Eforget). It is also 
tested on the set C.

4. Coefficients of adaptation CAd and forgetting CFr are calculated as follows: CAd = Egener/Ead.train); CFr = 
Eforget/Etrain.

5. The above steps from (1) to (4) are repeated on next data sections and average values are calculated.

The following are steps for updating a fuzzy neural network structure FuNN (see figure 4.38 and section 
5.3.4) through zeroing, in order to make the FuNN structure adaptable to new data and to control the 
adaptation/ forgetting phenomenon: (1) A FuNN architecture is initialized (either randomly or according 
to an existing set of initial rules). (2) The FuNN is trained with data. (3) Fuzzy rules are extracted from 
the trained FuNN. for example by using REFuNN algorithm (a threshold is set in advance, e.g., 0.7). (4) 
The FuNN architecture is then updated according to the extracted fuzzy rules by zeroing the connection 
weights which are less than the threshold (or their absolute values are less than the threshold if NOTs are 
used in the extracted fuzzy rules). A new updated FuNN is
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obtained. (5) The process of further training and updating (zeroing) the FuNN structures and adapted 
rules extraction continues.

Zeroing small connection weights seems to be biologically plausible in the sense that small synapses 
which have not been updated for a certain amount of time die out.

7.3.6 Representing Emotions, Consciousness, and Awareness in Artificial Neural Networks and 
Fuzzy Systems

Recent research in this area conducted by John Taylor and Igor Aleksander moves the area of artificial 
neural networks to its border with psychology. Can a neural network or an information system be aware 
of what it really is, of what it can do, of what it knows, and of what its "colleagues," also artificial neural 
networks, are? Fuzzy systems have been used to model emotions (Yanaru et al. 1994). But can two 
"emotional" fuzzy systems interact with each other? And, how?

This question will be left open here, as it is too early now to try to give an adequate answer. We must 
work for the answer, but it should not prevent us from making some speculations. The reader is invited 
to do so.

7.4 Problems

Part A: A Case Example Solution

1. Comparative analysis on different techniques for the water flow series prediction (Kasabov 1996). 
The water flow time series from figure C.1 was divided into four equal sections, as shown in figure 7.11. 
The first section was used for rules extraction by using the REFuNN algorithm and human intuition. 
Five triangular uniformly distributed membership functions were used to fuzzify the two input variables, 
time (in hours) and current flow, and the output variable, the next flow. The second section was used for 
training a neural network architecture until a minimum test error was achieved, measured on the third 
section of the data. The fourth section was used for validation of the different systems. First, an MLP 
was trained with the backpropagation algorithm and validated. Two types of fuzzy neural networks were 
also tried, as shown in figure 4.38. The first (FuNN-1), a three-layer network (the layers within the 
dashed vertical lines), uses membership degrees as inputs and produces membership degrees for the five 
output labels.
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Figure 7.11
The water flow data set is divided into four sections: rules extraction,

training, testing, and validation of different models for solving the problem.

After training it for 10,000 epochs until RMS = 0.02 rules were extracted by using the REFuNN 
algorithm. The strongest five rules are shown in figure 7.12. The second (FuNN-2), a five-layer network, 
has two inputs and one output as described in section 4.8 in chapter 4. Each of the two architectures was 
randomly initialized, trained and validated, and separately initialized by inserting the intuitive rules (see 
figure 7.2) and the extracted rules (figure 7.12), and then trained and tested. NPS (see chapter 6) was 
also used to implement the REFuNN extracted rules and was validated. The test and validation RMS 
error for the different systems are shown in table 7.1. The best neural network model in terms of 
compromise between training time and RMS seems to be the FuNN-2 model initialized with the 
automatically extracted rules.

Part B: Practical Tasks and Questions

2. Is the following function, used for generating pseudorandom numbers, chaotic:

y(t) = a + b ⋅ y (t - 1),

where a and b are real numbers (constants)? Give an explanation.

3. Is the SIN function a nonlinear chaotic function? Explain.
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Figure 7.12
Five strongest rules extracted by
using the REFuNN Algorithm
from a fuzzy neural network

(see figure 4.38).
Table 7.1
A comparison of different models for solving the Water Flow Prediction Problem (see text)

 Epochs Test_error Val_error

NPS — 0.05 0.09

FuNN-1 150 0.0213 0.0196

Randomly initialized    

FuNN-1 
Extracted rules used

100 0.0205 0.0185

FuNN-1 
Intuitive rules used

70 0.0230 0.0215

FuNN-2 
Randomly initialized

950 0.043 0.037

FuNN-2 
Extracted rules used

600 0.017 0.018

MLP(2-8-1) 2900 0.005 0.005
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4. Give an example of a three-dimensional chaotic function.

5. Explain the following concepts:

a. Phase space

b. Attractor

c. Unstable fixed point

d. Random process

e. Nonlinear dynamic process

f. Chaotic process

g. Oscillator

h. Oscillatory neuron

i. Recurrent fuzzy rule

j. Recurrent neural network

k. Coupled oscillators

1. Chaotic neuron

m. Neo-fuzzy neuron

n. Wavelet neuron

o. Goal-seeking neuron

p. Spatiotemporal neural network

q. Biological computer

r. Frequency, phase, and amplitude of an oscillator

s. Oscillator synchronization

t. Sensitivity to initial conditions

u. Trajectory in a phase space



v. Lyapunov exponent of a chaotic process

w. Stretches and contractions of a chaotic process

x. Chaotic time series

y. Mackey-Glass chaotic time series

z. Consciousness and awareness in artificial neural networks

6. Is a deterministic chaos predictable? Why?

7. Is a stock market predictable? When? (see figure 1.23)
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8. Draw a diagram of the simple nonlinear function:

y(t) = 2y2(t - 1),

for values of t = 0, 1, 2, 3, 4, 5; y(0) = 0 ⋅ 2; y(0) = 0 ⋅ 3.

9. Outline different models to approximate the above function:

a. MLP

b. Recurrent neural network

c. Neo-fuzzy neuron

d. Fuzzy neural network (figure 4.38).

Part C: Project Specification

Topic: Comparative Analysis on Different Techniques for Non-linear Function Prediction

This project aims at comparing different ways to predict time series: fuzzy rules articulated by humans 
which describe the process; fuzzy rules automatically extracted from data; MLP neural network; 
recurrent neural network; statistical regression analysis. The following steps define how the project 
should be done.

1. Collect time-series data which seem to represent chaotic behavior (You may choose one of the 
problems listed below.) Explain its characteristics if possible. Divide it into a training and a test data set.



2. Articulate, with the help of an expert, fuzzy rules which describe the process. Apply fuzzy inference 
over the fuzzy rules for the test data. Evaluate the error.

3. Use one of the methods for fuzzy rules extraction from data presented in the book. Apply the set of 
rules to the prediction task. Evaluate the test error over the test data used in the previous point.

4. Train an MLP feedforward neural network with the backpropagation algorithm using the training 
data. Evaluate the test error over the test data set.

5. Train a recurrent neural network and evaluate the test error.

6. Apply stepwise linear regression analysis and find an approximation of the goal function. Calculate 
the test error over the test data set.

7. Make a comparative analysis between the different techniques used for prediction.

  

Page 502

List of Problems for the Project

1. Gas consumption prediction (see appendix B)

2. Unemployment prediction (see appendix C)

3. SE40 stock market prediction (see appendices C and I)

4. Water flow to a sewage plant prediction (see appendix C)

5. Beer sales prediction (see appendix C)

6. Fish population prediction

7. Migration of birds (use your own data set)

8. Animal population growth (use your own data set)

9. Plant growth (use your own data set)

10. The ozone hole movement (use your own data set)

11. Spread of a fire in a forest (use your own data set)

12. Spread of weeds (use your own data set)

7.5 Conclusion



This chapter is the closing chapter. Chaos, as a concept and as a practical model, was introduced. It was 
shown that processes that have chaotic behavior can be predicted in a short term by using neural 
networks and fuzzy systems.

Several new connectionist and fuzzy logic models are discussed. The presentation in this chapter is far 
from being exhaustive, but it demarcates areas for future development of new models and their 
applications.

This chapter was also designed to encourage speculation on future possibilities of fuzzy and 
neurosystems development and applications. In this respect, the reader is asked to speculate freely in 
answering the following questions:

• How is memory organized in the human brain? How is information stored there? Are artificial 
neural networks biologically plausible in this respect?

• What are ''emotions," "free will," "consciousness?" Do they have a role to play in the future 
development of models for knowledge-engineering and information processing?
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• Which technique would better suit representing "emotions," "free will," and 
"consciousness"—artificial neural networks, fuzzy logic, genetic algorithms, symbolic AI, or some 
combination of these?

• Should we continue to build humanlike information-processing systems, that is, systems based on 
modeling the way the human brain works and the way people solve problems?

• After all, is it really possible to understand how the brain works? Or we can only see the surface? 
If we ever manage to see further, will it in any way benefit the information technologies?

• Could a machine be more intelligent than a human?

7.6 Suggested Readings

The following are recommended to those wanting to learn more on specific topics:

A general introduction to chaotic systems—Ditto and Pecora (1993); Deboeck (1994); Abarbanel 
(1993); McCauley (1994)

Neural networks and dynamical systems—Barndorff-Nielsen et al. (1993)



Neuronal models with oscillatory and chaotic behavior—Kaneko (1990), Bulsara (1993); Bulsara et al. 
(1991)

Use of chaos theory for controlling epilepsy and heart failure—Shiff et al. (1994)

Chaotic models for financial applications—Deboeck (1994); Peters (1991)

Hardware implementation of spatiotemporal neural networks—Eckmiller and Napp-Zinn (1993)

Oscillatory neural networks—Freeman (1987); Borisyuk (1991); Borisyuk and Kirillov (1991, 1992); 
Hoppensteadt (1986, 1989); Kaneko (1989, 1990)

Wavelets and wavelet neurons—Yamakawa (1994)

Learning fuzzy rules for chaotic function prediction—L.-X. Wang (1994)

Consciousness in real and artificial neural network systems—Aleksander and Morton (1993); Arbib 
(1995)

Adaptive fuzzy neural networks and systems—Brown and Harris (1994); Wang (1994)

Fuzzy systems for modeling emotions—Yanaru et al. (1994)
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Appendixes

The following appendixes give more information on suggested software and data sets for the exercises in the 
book. They cite previous use, references, and provide File Transfer Protocol (FTP) addresses and World Wide 
Web (WWW) sites from which free copies of software products or data sets can be obtained.

Appendix A Iris Plants Database

The following database is available free from the University of California, Irvine Repository of Machine 
Learning Databases and Domain Theories (Murphy and Aha 1992). Some other databases can also be found 
there. The FTP address is: ics.uci.edu:pub/machine-learningdatabases. The Web page is: 
//www.ics.uci.edu/vmlearn/MLRepository.html.

The following information is provided with the Iris database:

Sources

Creator: R.A. Fisher
Donor: Michael Marshall (MARSHALL%PLU@io.arc.nasa.gov)
Date: July 1988

Past usage

Fisher RA. 1936. The use of multiple measurements in taxonomic problems. Annals of Eugenics 7 (pt 2): 179-
188.

Duda RO, Hart PE. 1973. Pattern Classification and Scene Analysis. New York, John Wiley & Sons.

Dasarathy BV. 1980. Nosing around the neighbourhood: A new system structure and classification rule for 
recognition in partially exposed environments. IEEE Transactions on Pattern Analysis and Machine 
Intelligence 1, 2: 67-71.

Relevant Information

This is perhaps the best-known database to be found in the pattern recognition literature. Fisher's paper is a 
classic in the field and is referenced frequently to this day (e.g., see Duda and Hart 1973). The data set contains 
three classes of 50 instances each, where each class refers to a type of Iris plant. One class is linearly separable 
from the other two; the latter are not linearly separable from each other.

Number of instances

One hundred fifty (50 in each of three classes)

Number of Attributes



Four numeric, predictive attributes and the class attribute. Attribute information: sepal length, sepal width, 
petal length, petal width (in centimeters). Classes: Iris Setosa, Iris Versicolor, Iris Virginica.

Missing Attribute Values

None
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Summary Statistics
 MIN MAX Mean SD Class Correlation

Sepal length: 4.3 7.9 5.84 0.83 0.7826

Sepal width: 2.0 4.4 3.05 0.43 -0.4194

Petal length: 1.0 6.9 3.76 1.76 0.9490

Petal width: 0.1 2.5 1.20 0.76 0.9565

Class distribution: 33.3% for each of 3 classes.

The database is also available through anonymous  FTP from: eros.otago.ac.nz/pub/programs/ai/data-
sets.

Appendix B Gas Consumption Database
The following database is published in Gonzales (1992). It contains data on the average monthly gas consumption (in gallons 
per capita) and the average minimum temperatures (in degrees Celsius) in the city of Hamilton, New Zealand, for the period 
January 1988 to July 1992.

No. Month Gas Temperature No. Month Gas Temperature

1. Jan 88 2.3 12.10 28. Apr 2.84 10.70

2. Feb 2.20 15.10 29. May 5.77 7.30

3. Mar 2.48 11.10 30. Jun 7.24 4.80

4. Apr 4.44 8.20 31. Jul 8.59 5.10

5. May 5.89 7.80 32. Aug 7.05 6.00

6. Jun 8.07 6.10 33. Sep 6.44 6.10

7. Jul 7.79 5.80 34. Oct 3.78 9.50

8. Aug 7.32 6.00 35. Nov 2.68 9.80

9. Sep 4.92 8.80 36. Dec 2.04 12.00

10. Oct 4.35 9.50 37. Jan 91 2.22 12.70

11. Nov 3.19 11.60 38. Feb 2.09 12.60

12. Dec 1.88 14.00 39. Mar 2.71 10.10



13. Jan 89 2.38 15.50 40. Apr 3.89 8.60

14. Feb 1.57 12.60 41. May 5.99 6.20

15. Mar 2.26 11.00 42. Jun 7.91 5.30

16. Apr 3.78 8.60 43. Jul 8.70 3.00

17. May 6.33 7.20 44. Aug 6.29 6.70

18. Jun 7.46 4.50 45. Sep 5.16 7.40

19. Jul 9.73 2.10 46. Oct 4.18 9.00

20. Aug 7.98 5.80 47. Nov 3.17 9.40

21. Sep 5.05 8.00 48. Dec 2.02 11.10

22. Oct 3.82 10.20 49. Jan 92 2.29 12.70

23. Nov 3.26 10.40 50. Feb 2.24 12.60

24. Dec 2.29 11.00 51. Mar 3.15 9.20

25. Jan 90 1.79 14.10 52. Apr 4.66 6.50

26. Feb 2.22 14.80 53. May 6.32 6.10

27. Mar 2.58 12.70 54. Jun 8.32 3.60

The database is available through anonymous FTP from: eros.otago.ac.nz/pub/programs /ai/data-sets and from http: 
//divcom.otago.ac.nz:800/COM/INFOSCI/KEL/software.htm.
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Appendix C Sample Data Sets for Time Series Prediction and Decision-Making

All data sets are available through anonymous FTP. The following data sets are part of a data sets library 
available through anonymous FTP from: eros.otago.ac.nz/pub/programs/ai /data-sets, and from Web page: 
//divcom.otago.ac.nz:800/COM/INFOSCI/KEL/software.htm.

A Water Flow to a Sewage Plant

The problem is as follows: Given a data set for the water flow (in cubic meters) incoming to a sewage plant 
and the hour and the day it is recorded for a certain period, to predict the water flow at the next hour, as well as 
the flow at the next several hours. The data set contains three attributes: "time in hours," "day," and "water 
flow." Figure C.1 shows graphically part of the data.

B The SE40 Time-Series Data Set

This is a data set for the stock exchange index SE40 collected daily for a period of several years. Figure C.2 
shows graphically part of the data.

C Beer Sales Data Set



The data set has five attributes: (1) the consecutive time (in months); (2) the month; (3) the maximum average 
monthly temperature (in degrees Celsius); (4) the minimum average monthly temperature (in degrees Celsius); 
and (5) the total monthly sale of beer (in gallons) (figure C.3).

Figure C.1
A graph of the data for the Water Flow to a Sewage Plant

Prediction Problem.
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Figure C.2
Stock market SE40 index data collected daily for a period of several years.



Figure C3
The beer consumption data. Series 1 is the beer consumption; series 2 the

maximum monthly temperatures; series 3 the minimum monthly temperatures.
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Figure C.4
Bar graphs representing the unemployment rate data set.

D Unemployment Rate Data Set

The data set contains five attributes: (1) time in quarters; (2) quarter; (3) private consumption expenditure; (4) 
government expenditure; (5) exports of goods and services. Figure C.4 represents the data as a bar graph.

E Mortgage Approval Data Set

This data set has nine attributes: (1) character (0, doubtful; 1, good); (2) total assets; (3) equity; (4) mortgage 
loan; (5) budget surplus; (6) gross income; (7) debt servicing ratio; (8) term of loan; (9) decision (0, 
disapprove; 1, approve).

Another group of data sets concerning time-series prediction problems was used in a competition of prediction 
methods organized by the Santa Fe Institute. These data sets, as well as other time-series data sets on which 
methods for prediction can be tried, can be accessed free from the FTP address: ftp@santafe.edu. Experimental 
results and analysis connectionist and statistical methods for prediction applied over different time-series data 
sets can be found in Weigend and Gershefeld (1993).

Appendix D CLIPS Commands

CLIPS stands for C language interpreter of production systems. It is produced by NASA (Giarratano 1989; 
Giarratano and Riley 1989) and by COSMIC Company, University of
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Georgia, Athens. Information about the latest versions of CLIPS can be received from the Internet e-mail 
address: service@cossack.cosmic.uga.edu.

The following functions are available in the CLIPS production language.

Math Functions

+    Addition
-     Subtraction
*    Multiplication
/     Division
**  Exponent

Comparison Predicate Functions



=    Numeric equal
!=   Numeric not equal
>    Numeric greater than
<    Numeric less than
⇐   Numeric less than or equal
⇒   Numeric greater than or equal
eq   Non-numeric equal
neq  Non-numeric not equal

Other Predicate Functions

numberp value   Tests for numeric value
stringp value   Tests for string value
wordp value   Tests for word value
integerp value   Tests for integer value
evenp value   Tests for even value
oddp value   Tests for odd value

Flow of Control Functions

if predicate-function , then actions    Procedural "if" [else actions ]
while predicate-function  [do] actions    Procedural "while"
halt Halts execution

Input/Output (I/O) Commands

read [ logical name of a file ]   Reads a single field
readline [logical name of a file]   Reads a line of input
printout logical name  print information
open file name  logical name  [ file access ]   Opens a file
close [ logical name ]   Closes a file
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Other Useful Functions and Commands

bind variable  value  Binds a variable
system values  Executes a system command
gensym Returns unique symbol

Other Math Functions

min, max, log, logl0, exp, sqrt, trunc, abs, mod

Trigonometric Functions



cos, sin, tan, sec, csc, cot, acos, asin, atan, asec, etc.
String functions and conversion functions are implemented in CLIPS as well

Examples of How to Use Different Functions in Productions

(assert (number =(+ ?n 1))
(bind ?var (read)); Binds the variable var to the input value.
(test (> ?size 20)); A condition element with a constraint about an already introduced variable.
(stack-size ?size&:(> ?size 20)); Constrained field in a condition element

Appendix E Functions of FuzzyCLIPS for Dealing with Fuzzy Variables and Fuzzy Inference

An extension of CLIPS called FuzzyCLIPS was released in April 1994 by the National Research Council of 
Canada [NRC Canada 1994]. FuzzyCLIPS is available free via anonymous FTP from  the following address: 
ai.iit.nrc.ca and via the WWW address: http://ai.iit.nrc.ca/fuzzy/fuzzy.html.

FuzzyCLIPS has built-in functions to deal with fuzzy variables and fuzzy inferences, some of them being:

Defining Fuzzy Variables

(deftemplate name
from  to  [ unit ]

( list of primary terms))
[ list of modifiers ])

Example

(deftemplate temperature
0 30 Celsius
((low (0 1) (5 1) (10 0.5)
(OK (PI 10 20))
(high (20 0.5) (25 1) (30 1))
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((very sqr)
(quite user_function)))

In the above example one standard membership function PI was defined. Other standard membership functions 
are "s" and "z" (see chapter 3).

Defining Fuzzy Facts

(deffacts name>
( fuzzy fact  [ CF ]))

Example



(deffacts "dd"
((temperature (z 2 15) CF 0.85)))

Assertion of Fuzzy Facts

(assert (temperature (0 1) (5 1) (10 0.2) CF 0.95))

COG  Defuzzification

(moment-defuzzify ? fact-variable  or integer value of the fact number))

The fact-variable must be bound first to a fuzzy value whose COG will be calculated and returned after the 
execution of the above function.

Mean of Maxima Defuzzification

(maximum-defuzzify ? fact-variable  or integer value of the fact number )

Accessing the Universe of a Fuzzy Variable

(get-u ? fact-variable )

Accessing a Fuzzy Set

(get-fs ? fact-variable )

Accessing the Certainty Factor

(get-cf ? fact-variable )

Setting an Evaluation Certainty Factor in a Rule

(set-CF-evaluation value )

This is similar to the "salience" in the ordinary production rules in CLIPS.

Accessing the Rule Evaluation Certainty Factor

(get-CF-evaluation)
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Appendix F   Data Set for the Soil Classification Case Example

The data have been collected and used by Max Beily. It is available through ftp from: 
eros.otago.ac.nz/pub/programs/ai/data-sets and from http:  //divcom.otago.ac.nz: 800/COM 
/INFOSCI/KEL/software.htm. A short description follows:

Attributes

Eight input variables represent the average concentration of the following elements: (1) NH4+, (2) NO3-, (3) 
SO42-, (4) Ca2+, (5) Mg2+, (6) K+, (7) Na+, (8) C1- (see table 1.1).

Classes

(1) Egmond YBL, (2) Stratford YBL, (3) TaupoYBP, (4) Tokomaru YGE, (5) Matapiro YGE, (6) Waikare 
YBE

Data Set

Contains 12 examples of each class.

Appendix G    University of Otago Speech Data Base

A speech database of New Zealand English containing pronounced digits by 11 male and 10 female speakers 
of New Zealand origin is available through anonymous ftp from: eros.otago. ac.nz: /pub/programs/ai/speech 
and from the Web page given. Each pronounciation is kept in

Figure G.1
Phonemic representation of the digits ''zero" to "nine" spoken in English.



  

Page 514

Figure G.2
Samples of speech from the Otago Speech database represented

by their spectra.
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one file as a wave form (.pcm file) of the speech sample. Segments of these files, which contain realizations of 
certain phonemes, can be extracted either by using speech software systems available in the public domain or 
by using a program for automatic segmentation. Such a program, called "segment" and instructions for its use, 
can also be found in the above given site. Figure G.1 shows the phonemic representation of the spoken digits 
and figure G.2 shows speech samples from the database. Some of the figures contain lines that indicate a 
possible starting point to extract a segment. Different transformations can be applied on the extracted 
segments, for example, FFT, mel-scale cepstrum coefficients, etc. Web page: //divcom.otago. 
ac.nz:800/COM/INFOSCI/KEL/speech.htm.

Appendix H FuzzyCOPE: Commands and Programming Examples

FuzzyCOPE (Fuzzy connectionist production systems environment) is available free through anonymous FTP 
from: eros.otago.ac.nz/pub/programs/ai/fuzzy-cope and from Web page: 
//divcom.otago.ac.nz:800/COM/INFOSCI/KEL/fuzzycop.htm.

Here, some of the functions are given and also some examples of how to use these functions. Full description 
can be found in the Manual which is also available free.

User Functions

User functions for calling neural networks, fuzzy inference, data transformations, and rules extraction modules:

Functions for Fuzzy Inference

Max-min compositional inference (fidfuzzy) and decompositional inference (dcmpfuzzy): fidfuzzy (char 
*rulefile, MF inputs), returns output vector.

Example   (bind $?out (fidfuzzy "a:\\loan.rul" $?in))

dcmpfuzzy (char *rulefile, MF inputs & optional IOtype = 1 (singleton = 0, fuzzy = 1), implication = 0 (Rm = 
0, Ra = 1, Rc = 2, . . ., R$ = 14), composition = 0 (Max-min = 0, Max-lambda = 1, Max-theta = 2), link = 0 
(AND = 0, OR = 1), returns output

Example   (dcmpfuzzy "a:\\loan.rul" $?a 1 2 0 1))

Functions for Neural Networks

Initialize, train and recall MLP and SOM, and also labelling a SOM (labelkoh):

newbp (char *weightsfile, int in, hid, out), returns 1 if ok.

Example   (bind $?status (newbp "a:\\bp.wgt" 4 10 3))

trainbp (char *weightile, *trainfile, int epochs, & optional float alpha = 0.01, eta = 0.03, errSqConv = 0.01. 
returns int trainingError.

Example   (bind $?error (trainbp "a:\\bp.wgt" "a:\\bpiris.trn" 2000 0.5 0.01 0.05))



recallbp (char *weightsfile, MF inputs), returns MF outputs, or
recallbp (char *weightsfile, *inputfile), returns MF outputs, or
recallbp (char *weightsfile, *inputfile, *outfile), returns 1 if ok.
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Examples   (bind $?outputset (recallbp "a:\\bp.wgt" inputset))

(bind $?outputset (recallbp "a:\\bp.wgt" "a:\\bpiris.rcl"))
(bind $?status (recallbp "a:\\bp.wgt" ''a:\\bpiris.rcl" "a:\\bpiris.out")) newkoh (char *weightsfile, int inputs, 
mapsize), returns I if ok.

Example   (bind $?status (newkoh "a:\\kohiris.wgt" 4 25))

trainkoh (char *weightsfile, *trainfile, *gainterm,int radius,learnPeriod), returns 1 if ok.

Example   (bind $?status (trainkoh "a:\\kohiris.wgt" "a:\\kohiris.trn" 0.5 2 300))

labelkoh (char *weightsfile, MF labels), returns MF coordinates, or
labelkoh (char *weightsfile, *labelfile), returns MF coordinates, or
labelkoh (char *weightsfile, *labelfile, *outfile), returns 1 if ok.

Examples   (bind $?XYcoords (labelkoh "a:\\kohiris.wgt" $?in))

(bind $?status (labelkoh "a:\\kohirs.wgt" "a:\\kohiris.lbl" "a:\\kohiris.out"))

Functions for Data Conversion and Rules Extraction

Data normalization, fuzzification, rules extraction according the REFuNN method (see chapter 5).

normalize (char *infile, *outFile, & optional int type = 0 (standard = 0, lg10 = 1, 1gE = 2)), returns 1 if ok.

Example   (bind $?status ( normalize "a:\\kohiris.trn" "a:\\nrmlris.trn"1))

fuzzify (char *infile, *outFile, int number of membership Sets), returns 1 if ok.

Example   (bind $?status ( fuzzify "a:\\iris.trn" "a:\\fzlris.trn"3))

extract (char *weightsfile, *rulefile, & optional int method = 0 (no weighting-simple = 0, -using  bias = I  
weighted-simple = 2, -using  bias = 3), float  threshold = 0.05,  int IncludeNOTs = 0 (don't = 0), returns 1 if ok.

Example   (bind $?status ( extract "a:\\bpfuzz.wgt" "a:\\fzlris.rul" 3 1.0 1))

Appendix I A Hybrid Connectionist Fuzzy Production Rules System



;********************************************************************* 
;Hybrid system 
;********************************************************************* 
;A Decision Support System to make recommendations on
;whether to buy or sell shares, based on output from
;a neural net, input from the user, and a number of
;business rules. 
;********************************************************************* 
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
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;defining fuzzy variables and their fuzzy values 
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
  (deftemplate economic-climate ;fuzzy variable
09
((bad (z 2 7))    ;Z function
(good (s 2 7)))    ;S function
((very sqr)))    ;modifier very 
  (deftemplate political_climate ;fuzzy variable
09
((bad (z 2 7))
(good (s 2 7)))
((very sqr))) 
  (deftemplate predicted_value
09
((down (z 3 5))
(same (pi 2 5))    ;Pi function
(up (s 5 7)))) 
  (deftemplate shares
09
((sell (z 3 5))
(hold (pi 2 5))
(buy (s 5 7)))) 
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
;defining input data for the current run 
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
  (deffacts initial
(current_price 0.3)    ;crisp normalized value
(yesterdays_price 0.2)    ;crisp normalized value
(political_climate    ;fuzzy value
(6 0.5) (7 1) (8 0.5) CF 0.8)
(economic_climate    ;fuzzy value
(very good) CF 0.8)
(start)         ;to start the initial rule) 
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
;the set of production rules 
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
  (defrule hybrid_system_rule_1
(declare (CF 0.95))



?step1 ← (start)
(current_price ?current_price)
(yesterdays_price ?yesterdays_price) 
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  ; initialize, train and recall a backpropagation neural network:
(bind $?net_input ?current_price ?yesterdays-price)
(bind ?m (newbp "stockbp.wgt" 2 6 1))
(bind ?e (trainbp "stockbp.wgt" "stock21.trn" 0.5 10000 0.01 0.05))
(bind ?predicted_price (recallbp "stockbp.wgt" $?net_input))
(printout t "The predicted price is: " ?predicted_price crlf)
(retract ?stepl)
(assert (step_2))
(assert (predicted_price ?predicted_price)))

  ;A rule which categorizes the predicted value from the neural network
(defrule hybrid_system_step_2_rl
(declare (CF 0.9))

?step2 ← (step_2)
(current_price ?cp) (predicted_price ?pp)

⇒

  (if (< ?cp ?pp), then
(assert (predicted_value up))

  else (if( < (abs ?cp ?pp) 0.1), then
(assert (predictedvalue same))

  else (assert (predictedvalue down)))
(assert (step_3))
(retract ?step2))

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
business rules follows, but only one is shown here 
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

  (defrule hybrid_system_step_3_rl
(declare (CF 0.9))
?step3 -(step_3)
(political_climate good)
(economic_climate good)
(predicted_value up)

⇒

  (assert (shares buy) CF 0.9)
(assert (end_run))
(retract ?step3))



;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
;final rule for printing the results and extracting fuzzy trading rules 
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 
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defrule final
(end_run)

?f ← (shares ?)

⇒

;printout the suggested decision as a fuzzy set and as a defuzzified

;(crisp) value

(printout t crlf "THE DECISION OBTAINED BY THE SYSTEM  IS:" crlf (get-fs ?f) crlf 
"with a degree of certainty of:" (get-cf ?f) crlf "On the scale of 0-9 levels, where 0 
means definitely sell, 5 means hold, and 9 means definitely buy, the suggested action 
is" (moment-defuzzify ?f))

;extract fuzzy trading rules through fuzzification of the training data, training a 
network and
;analyzing the network

  (bind ?s (fuzzify "stock21.trn" "stock21f.trn" 3)
(bind ?s (newbp "stockbpf.wgt" 6 6 3))
(bind ?s (trainbp "stockbpf.wgt" "stock21f.trn" 0.5 10000 0.01 0.05))

  ;extracted fuzzy trading rules will be placed in a file *.rul
(extract "stockbpf.wgt" "stock21f.rul" 1 1)

Appendix J The English Phonemes and Their Clusters

This material is offered as a background for some of the speech recognition examples in the book and also the 
exemplar hybrid system presented in chapter 6. A list of the English vowels with examples of words they 
appear in is given in figure J.1. Figures J.2 and J.3 give corresponding lists for the diphthongs (the complex 
vowels that are formed by a connected pronunciation of two elementary vowels) and the consonants.

There are different clusters (sequences) in which phonemes appear in different parts of the English words and 
English syllables (see Gimson 1989). Knowing these clusters, one can anticipate one phoneme following 
another and some sequences of phonemes not happening at all in spoken English. This linguistic knowledge 
has been used and implemented as a multimodular fuzzy system in chapter 6. Figure J.4 shows the allowed 
phoneme clusters of two consecutive consonants appearing in the beginning part (onset) of a syllable (see 
figure 6.17). Figure J.5 shows allowed clusters for the coda (the last part of a syllable). The syllabic is a vowel 
or a vowel cluster. Different combinations of onset, syllabic, and coda are possible (figure 6.17).
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Figure J.1
A list of the English vowels with examples

of words they appear in.

Figure J.2
A list of the diphthongs in English.
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Figure J.3
A list of the consonants in English.
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Z0540000.gif

Figure J.4
The allowed phoneme clusters of two consecutive consonants appearing in

the beginning part (onset) of a syllable.

Z0540002.gif

Figure J.5
The allowed clusters for the coda (the last part of a syllable).
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Glossary

A

Adaptive intelligent systems Information systems that are able to change their knowledge base and 
their structural and functional characteristics during operation in a dynamically changing environment 
for a better reaction.

Adaptive resonance theory (ART) A neural network invented and developed by Carpenter and 
Grossberg. The network learns to categorize and adopt new patterns (''plasticity") while retaining 
previously learned patterns ("stability").

Alan Turing's test for artificial intelligence (AI) Definition for AI introduced by the British 
mathematician and computer scientist Alan Turing. It states approximately that a machine system is 
considered to possess AI if while communicating with a person behind a "bar," the person cannot 
recognize whether it is a machine or a human.

α-cut of a fuzzy set Subset of the universe of the fuzzy set consisting of values that belong to the fuzzy 
set with a membership degree greater (weak cut) or greater or equal to (strong cut) a given value α ∈ [0, 
1].

Apparent error The error calculated on the basis of the reaction of a neural network to the data used for 
its training. It is usually calculated as a mean square error (MSE) or root MSE (RMS).

Approximate reasoning A process of inferring new facts and achieving conclusions in an intelligent 
information system when inexact facts and uncertain rules are present.

Artificial neural network Biologically inspired computational model consisting of processing elements 
(called neurons) and connections between them with coefficients (weights) bound to the connections, 
which constitute the neuronal structure. Training and recall algorithms are also attached to the structure.

Automatic speech recognition system (ASRS) A computer system which aims at providing enhanced 
access to machines and information via voice commands (instructions, queries, communication 
messages).

B



Backward chaining Goal-driven inference process which starts after a goal is identified. A search for a 
rule which has this goal in its consequent part is performed, and then data (facts) which satisfy all the 
conditions for this rule are sought in the database. The process is recursive, that is, a condition in a rule 
may be a conclusion in another rule (other rules). The process of searching for facts goes backward.

Bidirectional associative memory (BAM) A neural network which has the characteristic of a 
heteroassociative memory. It can memorize pattern associations of the type (a(P),b(P), where a(P) is an n-
dimensional vector (pattern) and b(P) is its corresponding m-dimensional pattern. If at least one of the 
patterns, even corrupted, is given as input, the network eventually produces the two patterns associated 
during training.

Brain-state-in-a-box network (BSB) An autoassociative network that is a recurrent but not fully 
connected network, in which a connection from a neuron's output to its input is allowed; the 
interconnection weights are nonsymmetric in general. The state space of the system is restricted to a 
hyper-cube ("box"), the edges being the desired states [previously learned patterns].

C

Catastrophic forgetting Phenomenon representing the ability of a network to forget what it has learned 
from previous examples, when they are no longer presented to it, but other examples are presented 
instead.

Center-of-gravity defuzzification method (COG) Method for defuzzification, for example, 
transforming a membership function B' into a crisp value y' such that y' is the geometrical
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center of B'. The following formula is used: y' =  where v are all the values from the 
universe V of the fuzzy variable y.

Chaos A complicated behavior of a nonlinear dynamical system according to some underlying rules.

Chaotic attractor An area or points from the phase space of a chaotic process where the process often 
goes through time, but without repeating the same trajectories.

Chaotic neuron An artificial neuron whose output is calculated with the use of a chaotic output 
function.

Classification problem A genetic AI problem which arises when it is necessary to associate an object 
with some already existing groups, clusters, or classes of objects.

Comprehensive artificial intelligence The area of integrating ordinary, symbolic AI, neural networks, 
fuzzy systems, and other AI techniques (genetic algorithms, evolutionary programming chaos, etc.)



Connectionist expert system (CES) An expert system that has its knowledge represented as a neural 
network.

Connectionist production system A connectionist system that implements productions of the form IF 
C, THEN A, where C is a set of conditions and A is a set of actions.

Control Process of acquiring information for the current state of an object and emitting control signals 
to it in order to keep the object in its possible and desired states.

D

Decision-making systems AI systems which choose one among many variants as a solution to a 
particular problem. The solution is then recommended to the user.

Defuzzification Process of calculating a single output numerical value for a fuzzy output variable on the 
basis of an inferred membership function for this variable.

Design Creating objects that satisfy particular requirements following a given set of constraints.

Destructive learning Technique which destroys the initial neural network architecture, for example, 
removes connections, for the purpose of better learning.

Diagnosis Process of finding faults in a system.

Distributed representation A way of encoding information in a neural network where a concept or a 
value for a variable is represented by a collective activation of a group of neurons.

Dynamical system A system which evolves in continuous or discrete time.

E

Expert system A computer system for solving difficult problems usually solved by experts; the system 
can provide a similar expertise to the one provided by experts in a restricted area, for example diagnosis 
of breast cancer, finding a cheap route for a round-the-world trip, etc.

Expert system shells Systems which have the architecture of an expert system but are "empty" of 
knowledge. They are tools which facilitate rapid phototyping of an expert system.

Explanation in expert systems Tracing, in a contextually comprehensible way, the process of inferring 
the solution, and reporting it.
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Extension principle A method which defines how to find the membership function of a fuzzy set f(A) in 
the universe V, where A is a fuzzy set in the universe U and the function f: U → V is given.

F

Fast Fourier Transform (FFT) Special nonlinear transformation applied on (mainly speech) data to 
transform the signal taken at a small portion of time from the time-scale domain into a vector in the 
frequency-scale domain.

Feedforward neural network A neural network in which there are no connections back from output to 
input neurons.

Feedback neural network A network in which there are connections from output to input neurons.

Fitness See Goodness.

Forecasting See Prediction.

Forward chaining inference A inference method of applying all the facts available at a given moment 
to all the rules in a rule-based system in order to infer all the possible conclusions, and repeating this 
process until there are no more new facts inferred.

Fractals Objects which occupy fractions of a standard (integer number of dimensions) space called the 
embedding space.

Frames  Information (knowledge) structures that represent structured information for standard 
situations. Frames consist of slots (variables) and fillers (values). The slots represent the most typical 
characteristics of the objects.

Fuzzification Process of finding the membership degree µA(x') to which input value x' for a fuzzy 
variable x defined on an universe U belongs to a fuzzy set A defined on the same universe.

Fuzzy ARTMAP  Extension of ART1 neural network models (see Adaptive Resonance Theory) when 
input nodes represent not "yes/no" features, but fuzzy features instead, for example, a set of features 
(sweet, fruity, smooth, sharp, sourish) used to categorize different samples of wines based on their taste.

Fuzzy control In a broad sense, this is application of fuzzy logic to control problems. A fuzzy control 
system is a fuzzy system applied to solve a control problem.

Fuzzy clustering Procedure of clustering data into possibly overlapping clusters, such that each of the 
data examples may belong to each of the clusters to a certain degree, but all its membership degrees sum 
up to 1.



Fuzzy expert system An expert system to which methods of fuzzy logic are applied. Fuzzy expert 
systems may use fuzzy data, fuzzy rules, and fuzzy inference, in addition to the standard ones 
implemented in the ordinary expert systems.

Fuzzy expert system shell A tool that facilitates building and experimenting with fuzzy expert systems. 
It facilitates building the main modules in a fuzzy expert system.

Fuzzy neural network (FNN)  Neural network designed to realize a fuzzy system, consisting of fuzzy 
rules, fuzzy variables, and fuzzy values defined for them and the fuzzy inference method.

Fuzzy propositions Propositions which contain fuzzy variables and their fuzzy values. The truth value 
of a fuzzy proposition "X is A" is given by the membership function µA.
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Fuzzy query interface Interface to a standard database which allows the users to use fuzzy terms 
(values) in their queries, which values are not stored in the database.

Fuzzy relations A relation which links two fuzzy sets by assigning a number between 0 and 1 to each 
element of the cross-product U × V of the universes of the two fuzzy sets. It makes it possible to 
represent vague or ambiguous relationships.

G

General linear transformation Transformation f(x) of data vectors x such that f is a linear function of 
x, for example, f(x) = 2x + 1.

Generalization The ability of an information system to process new, unknown input data in order to 
obtain the best possible solution, or one close to it.

General nonlinear transformation Transformation f of data vectors x where f is a nonlinear function of 
x, for example, f(x) = 1/(1 + e-x · c), where c is a constant.

Genetic algorithms  Algorithms for solving complex combinatorial and organizational problems with 
many variants, by employing analogy with nature's evolution. The general steps a genetic algorithm 
cycles through are: generate a new population (crossover) starting at the beginning with initial one; 
select the best individuals; mutate, if necessary; repeat the same until a satisfactory solution is found 
according to a goodness (fitness) function.

Goodness criterion A function which evaluates the appropriation of prospective decisions when solving 
an AI problem, for example, playing games.



Growing neural network  A neural network which has the ability to start training with a smaller 
number of nodes, and subject to the error calculated, to increase this number if necessary.

H

Hamming network  Network which performs the task of pattern association, or pattern classification, 
based on measuring the Hamming distance, i.e., the number of bits two boolean vectors differ in.

Hebbian learning law Generic learning principle which states that a synapse connecting two neurons i 
and j increases its strength wij if repeatedly the two neurons i and j are simultaneously activated by input 
stimuli.

Homophones  Words with different spelling and meaning but which sound the same, for example, "to," 
"too," "two" and ''hear," "here."

Hopfield network Fully connected feedback network which is an autoassociative memory. It is named 
after its inventor, John Hopfield.

Hybrid connectionist logic programming system A system which consists of a logic programming 
language and neural networks.

Hybrid fuzzy connectionist production system A system which consists of a production rule-based 
system, neural networks, fuzzy inference machine, and, possibly, some other modules which facilitate 
communication between the above, for example, rule extraction module, data processing (normalization, 
fuzzification, etc.).

Hybrid connectionist production system A system which consists of a production rule-based system 
and neural networks.

I

Inference Process of matching current data from the domain space to the existing knowledge in a 
knowledge-based information system and inferring new facts until a solution in the solution space is 
reached.
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Fuzzy query interface Interface to a standard database which allows the users to use fuzzy terms 
(values) in their queries, which values are not stored in the database.

Fuzzy relations A relation which links two fuzzy sets by assigning a number between 0 and 1 to each 
element of the cross-product U × V of the universes of the two fuzzy sets. It makes it possible to 
represent vague or ambiguous relationships.

G

General linear transformation Transformation f(x) of data vectors x such that f is a linear function of 
x, for example, f(x) = 2x + 1.

Generalization The ability of an information system to process new, unknown input data in order to 
obtain the best possible solution, or one close to it.

General nonlinear transformation Transformation f of data vectors x where f is a nonlinear function of 
x, for example, f(x) = 1/(1 + e-x · c), where c is a constant.

Genetic algorithms  Algorithms for solving complex combinatorial and organizational problems with 
many variants, by employing analogy with nature's evolution. The general steps a genetic algorithm 
cycles through are: generate a new population (crossover) starting at the beginning with initial one; 
select the best individuals; mutate, if necessary; repeat the same until a satisfactory solution is found 
according to a goodness (fitness) function.

Goodness criterion A function which evaluates the appropriation of prospective decisions when solving 
an AI problem, for example, playing games.

Growing neural network  A neural network which has the ability to start training with a smaller 
number of nodes, and subject to the error calculated, to increase this number if necessary.

H

Hamming network  Network which performs the task of pattern association, or pattern classification, 
based on measuring the Hamming distance, i.e., the number of bits two boolean vectors differ in.

Hebbian learning law Generic learning principle which states that a synapse connecting two neurons i 
and j increases its strength wij if repeatedly the two neurons i and j are simultaneously activated by input 
stimuli.

Homophones  Words with different spelling and meaning but which sound the same, for example, "to," 
"too," "two" and ''hear," "here."



Hopfield network Fully connected feedback network which is an autoassociative memory. It is named 
after its inventor, John Hopfield.

Hybrid connectionist logic programming system A system which consists of a logic programming 
language and neural networks.

Hybrid fuzzy connectionist production system A system which consists of a production rule-based 
system, neural networks, fuzzy inference machine, and, possibly, some other modules which facilitate 
communication between the above, for example, rule extraction module, data processing (normalization, 
fuzzification, etc.).

Hybrid connectionist production system A system which consists of a production rule-based system 
and neural networks.

I

Inference Process of matching current data from the domain space to the existing knowledge in a 
knowledge-based information system and inferring new facts until a solution in the solution space is 
reached.
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Information Collection of structured data. In its broad meaning it includes knowledge as well as simple 
meaningful data.

Information retrieval Process of retrieving relevant information from a database by using a query 
language.

Initialization of a neural network The process of setting the connection weights in a neural network to 
some initial values before starting the training algorithm.

Interaction (human computer interaction) Communication between a computer system on the one 
hand and the environment or the user on the other hand, in order to solve a given problem.

K

Knowledge Concise presentation of previous experience which can be interpreted in a system.

Kohonen SOM A self-organised map neural network invented and developed by Teuvo Kohonen.

L



Language analysis A process where a command or enquiry from user given in a restricted natural 
language is recognized by a computer program from the point of view of the syntax, the semantics, and 
the concepts of the language used before the command is interpreted in the system.

Leaky integrator An artificial neuron which has a binary input, a real-value output, and a feedback 
connection, which keeps the output of the neuron gradually decreasing in value after the input stimulus 
has been removed from the input.

Learning Process of obtaining new knowledge.

Learning vector quantization algorithms LVQ1, LVQ2, and LVQ3 A supervised learning algorithm, 
which is an extension of the Kohonen self-organized network learning algorithm.

Linguistic variable Variable which takes fuzzy values, for example "speed" takes values of "high," 
"moderate," and "low."

Local representation in neural networks A way of encoding information in a neural network in which 
every concept or a variable is represented by the activation of one neuron.

Lyapunov exponent A parameter which provides the average rate of divergence or convergence for a 
chaotic process.

M

Machine-learning methods Computer methods for accumulating, changing, and updating knowledge in 
an AI computer system.

Membership function Generalized characteristic function which defines the degree to which an object 
from a universe belongs to a fuzzy set.

Memory capacity  Maximum number m of patterns which can be learned properly in a pattern 
associator neural network.

Methods for feature extraction Methods used for transforming raw data from one input domain space 
into another; a space of features.

Modular system System consisting of several modules linked together for solving a given problem.

Monitoring Process of interpretation of continuous input information to an information system, and 
recommending intervention if appropriate.
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Moving averages One of the theories used mainly for predicting stock market time-series. The theory 
says that by computing average values over periods of time the volatility of the time series is smoothed 
and the trends of the market are indicated. This is also a general method for time-series data processing.

N

Neural network See Artificial neural network.

Noise Any small random signal that is added to the function which describes the underlying behavior of 
a process.

Nonlinear dynamical system A system whose next state on the time scale can be expressed by a 
nonlinear function from its previous time states.

Normalization Moving the scale of raw data into a predefined scale, for example [0, 1], or [-1, 1], etc.

O

Optimization Finding optimal values for parameters of an object or a system which minimize an 
objective (cost) function.

Oscillatory neuron An artificial neuron built up of two elements (or two groups of elements), one of 
them being excitatory and the other inhibitory. Its functioning is described as oscillation, characterized 
by three parameters: frequency; phase; amplitude.

Overfitting Phenomenon which indicates that a neural network has approximated, learned, too closely 
the data examples, which may contain noise in them, so that the network can not generalize well on new 
examples.

P

Pattern matching  Matching a feature vector, a pattern, with already existing ones and finding the best 
match.

Phase space of a chaotic process The feature space where the process is traced over time.

Phonemes Linguistic elements which define the smallest speech patterns that have linguistic 
representation in a langauge.

Planning Important generic Al problem which is about generating a sequence of actions in order to 
achieve a given goal when a description of the current situation is available.

Power set of a fuzzy set Set of all fuzzy subsets of a fuzzy set.



Prediction Generating information for the possible future development of a process from data about its 
past and its present development.

Productions Transformation rules applied to obtaining one sequence of characters from another, usually 
represented in the form of: IF  conditions , THEN  actions .

Production system A symbolic AI system consisting of three main parts: (1) a list of facts, considered a 
working memory (the facts being called "working memory elements"); (2) a set of production rules, 
considered the production memory; (3) an inference engine, which is the reasoning procedure, the 
control mechanism.

Pruning Technique based on gradual removing from a neural network the weak connections (which 
have weights around 0) and the neurons which are connected to them during the training procedure.

Q

Queues Data structures similar to the stack structure, but here two pointers are used-one for the input 
and one for the output element of the structure. They are also called FIFO structures (first input, first 
output).
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R

Recall phase Phase of using a trained neural network when new data are fed and results are calculated.

Recurrent fuzzy rule A fuzzy rule that has as condition elements in its antecedent part one or more 
previous time-moment values of the output fuzzy variable.

Recurrent networks Networks with feedback connections from neurons in one layer to neurons in a 
previous layer.

Reinforcement learning, or reward-penalty learning A neural network training method based on 
presenting input vector x and looking at the output vector calculated by the network. If it is considered 
"good", then a "reward" is given to the network in the sense that the existing connection weights get 
increased, otherwise the network is "punished"; the connection weights, being considered as "not 
appropriately set," decrease.

Representation Process of transforming existing problem knowledge into some known knowledge-
engineering schemes in order to process it in a computer program by applying knowledge-engineering 
methods.

S



Sensitivity to initial conditions A characteristic of a chaotic process in which a slight difference in the 
initial values of some parameters that characterize the chaotic process will result in quite different trends 
in its further development.

Spatio-temporal artificial neural networks  Artificial neural networks that represent patterns of 
activities which have some spatial distribution and appear at certain times.

Spurious states of attraction Patterns in which an associative memory neural network can wrongly 
converge during a recall process. These patterns are not presented in the set of training examples.

Stability/plasticity dilemma Ability of the ART neural networks to preserve the balance between 
retaining previously learned patterns and learning new patterns.

Stack A collection of ordered elements and two operations which can be performed only over the 
element that is currently at the "top," that is, "push" an element on top of the stack, and "pop" an element 
from the stack.

Statistical analysis methods Methods used for discovering the repetitiveness in data based on 
probability estimation.

Supervised training algorithm Training of a neural network when the training examples comprise 
input vectors x and the desired output vectors y; training is performed until the neural network "learns" 
to associate each input vector x with its corresponding and desired output vector y.

Support of a fuzzy set A Subset of the universe U, each element of which has a membership degree to 
A different from zero.

T

Test error An error that is calculated when, after having trained a network with a set of training data, 
another set (test, validation, cross-validation), for which the results are also known, is applied through a 
recall procedure.

Time alignment A process where a sequence of vectors recognized over time are aligned to represent a 
meaningful linguistic unit (phoneme, word).

Time-Delay neural network (TDNN)  Modification of a multilayer perceptron which uses delay 
elements to feed input data through. The input layer is a shift register with delay elements.

  



Page 546

Time-series prediction Prediction of time-series events.

Training error See apparent error.

Training phase  A procedure of presenting training examples to a neural network and changing the 
network's connection weights according to a certain learning law.

Tree Directed graph in which one of the nodes, called root, has no incoming arcs, but from which each 
node in the tree can be reached by exactly one path.

U

Unsupervised training algorithm A training procedure in which only input vectors x are supplied to a 
neural network; the network learns some internal features of the whole set of all the input vectors 
presented to it.

V

Validation  Process of testing how good the solutions produced by a system are. The solutions are 
usually compared with the results obtained either by experts or by other systems.

Validation error See Test error.

Variable binding Substituting variables with possible values in an information system.

Vigilance Parameter in the ART network which controls the degree of mismatch between the new 
patterns and the learned (stored) patterns which the system can tolerate.

W

Wavelets transformation Nonlinear transformation which can represent slight changes of a signal 
within a chosen "window" from the time scale.

  



Page 547

Index

A

Activation function, 257

gaussian bell-shaped, 259
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Artificial intelligence (AI), 1-3

Artificial life, 14

Artificial neural network. See Neural network

Attractor principle, 304

Automatic speech recognition (ASR), 29-30, 36-37

B

Backpropagation algorithm, 273

Backward chaining, 105
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C

Catastrophic forgetting, 279, 304
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Chaotic neuron, 489

Chaotic systems, 480

Chaotic time series, 482
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Clustering methods, 88

Complexity, 58

Comprehensive artificial intelligence, 426, 435
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Connectionist production system, 359, 442
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Control, 49, 54-57, 399

Convergence, 265
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Counterpropagation network, 310

D

Data, 75, 79-89

Decision making, 235, 404
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Dempster-Shafer theory, 141

Design, 64

Diagnosis, 49, 53-54, 233, 243, 399-400

file:///C|/Website%20Rips/Foundations/n<A HREF=


Distributed representation, 334

Dynamical system, 475

Dynamic time warping, 455

E

Eigenvectors, 314

Equilibrium, 266, 302-304

Error apparent, 268, 338

instantaneous, 268

mean-square (MSE), 268

root-mean-square (RMS), 268

test, 268, 338

Euclidean distance, 26

Evolution strategies, 13

Expert system, 14, 128 shells, 131

Explanation (in AI systems), 78, 129, 216, 342

Extension principle, 183

F

Fast Fourier transformation (FFT), 39

Feature extraction, 89, 375

Finite state automaton, 108, 287

Fitness function. See Goodness function
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Forward chaining, 102

Fractals, 82, 478

Frames, 96

Fuzzification, 201, 216, 218, 219

Fuzziness, 172, 175

Fuzzy ARTMAP, 293

Fuzzy clustering, 226-227

Fuzzy control, 230-232

Fuzzy databases, 208, 213

Fuzzy expert system, 215, 221

shell, 218, 221

Fuzzy finite automaton, 205

Fuzzy inference, 196-199, 204-203, 215, 437
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Fuzzy information retrieval, 208

Fuzzy logic, 16, 41, 184, 188

Fuzzy neural network (FNN), 314, 317-320, 357

Fuzzy neuron, 314-317

Fuzzy proposition, 16, 184, 188

Fuzzy relation, 184

Fuzzy rules, 16, 192, 202, 208, 215, 217, 221

Fuzzy sets, 167-175, 182, 200



Fuzzy system, 15, 41, 65, 78, 205, 206, 217, 424

G

Games, 61, 405-409

Gas consumption prediction, 44-45, 390-393
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Hamming network, 308-309

Handwritten digits recognition, 369

Hebbian learning law, 260, 264, 303

Heuristic problem solving, 3

Heuristic rules, 8
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Hidden Markov model, 39, 456

Hopfield, John, 260, 266, 301, 303, 304, 305, 402

Hopfield network, 287, 301, 304, 305, 306, 309, 402-404

Hybrid connectionist logic programming system, 433-434

Hybrid connectionist production system, 429-432

Hybrid fuzzy connectionist production system, 435-437

Hybrid system, 19, 421, 455, 460, 461

I

Image processing, 20, 27, 227, 374

Image recognition, 227

Inference, 76, 79, 100-105

Information, 75

Information structure, 89

Intelligence, 1

Intelligent human-computer interfaces (IHCI), 40

Interaction, 78

Inverted pendulum, 55-57, 231-232, 399



Investment adviser, 61, 157, 244

Iris classification, 219, 372, 410-415

K

Knowledge, 75, 98

acquisition, 42, 129, 131, 388

complete, 98

deep, 98

engineering, 14, 15, 65, 74, 76, 131, 192

exact, 98

explicit, 98

flat, 98

global, 98

hidden, 6

hierarchical, 98

implicit (see hidden) incomplete, 98

inexact, 98

local, 98

processing, 2

representation, 99, 115
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Kohonen, Teuvo, 260, 269, 289, 290, 293-298, 383

Kohonen self-organizing map (SOM), 293-298, 324, 371, 405



Kosko, Bart, 55, 57, 170, 174, 206, 261, 289, 306, 339, 345, 350, 374, 418, 419, 494

L

Language analysis, 37, 39

Language modeling, 464

Law of inference, 189-190

Leaky integrator, 367

Learning, 77, 255, 263-265

from advice, 150

by analogy, 150

case-based, 150

by doing, 151

from examples, 147

with forgetting, 265

hints, 280

mode, 318

pattern associations, 300

with presence of noise, 276

rate, 273, 273

about reasoning, 107
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through reasoning, 107

reinforcement, 264

supervised, 152, 263, 267

unsupervised, 152, 264, 288

vector quantization algorithms, 298-300

Linear transformation, 85

Linear separability, 24, 271

Linguistic variable, 178

List, 90

Local minima problem, 276, 306

Local representation, 334

Logic predicate, 113

propositional, 110-113

programming, 2

Logistic function. See Activation function
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M

Machine learning methods, 14, 146

Mackey-Glass chaotic time series, 476
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Monitoring, 49, 51-53, 233, 398
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N
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time-delay, 285

Neural production system, 442-447, 452-454

Neural system, 78



Neurocomputation, 251

Noise, 479

Nonlinear dynamical system, 475, 482, 486

Nonlinear transformation, 85
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<

O

Objective function. See Goal function

Optimization, 58, 234, 402
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Oscillatory neuron, 490

Overfitting, 277, 281

P

Pattern matching, 39

Pattern recognition, 20-21, 223, 368

Perceptron, 269

Phase space, 477

Phoneme, 29

Planning, 49-51, 234, 402

Possibility, 144

Prediction, 42-49, 388

analogy-based, 396

drug effect, 48



linear, 68

stock market, 46, 222, 229, 393
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Probability, 135, 175

Problem solving, 4, 7, 124-126
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Production rules, 122, 429

Production system, 118-128

inference engine, 120

memory, 119

working memory, 119

Productions, 118

PROLOG, 114, 118

Pruning, 339

Q

Queues, 90

R

Radial-basis function (RBF) networks, 283-284

Reasoning, 105

Recall, 255, 266, 332

Recurrent fuzzy rules, 196, 485

Recurrent fuzzy systems, 485-486



Recurrent mode, 422

Recurrent networks, 386-388

Refractoriness, 121, 451

Representation, 76

Rule-based systems, 39, 65

S

Schemata, 96

Semantic networks, 96

Sensitivity to initial conditions, 478

Set, 90

Shift register, 285

Sigmoidal function. See Activation function
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Signal processing, 37
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Spatiotemporal artificial neural networks, 493

Speech processing, 28
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Stack, 90
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