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Foreword

We are surprisingly flexible in processing information in the real world. The human brain, consisting of
1011 neurons, realizes intelligent information processing based on exact and commonsense reasoning.
Scientists have been trying to implement human intelligence in computers in various ways. Acrtificial
intelligence (Al) pursues exact logical reasoning based on symbol manipulation. Fuzzy engineering uses
analog values to realize fuzzy but robust and efficient reasoning. They are macroscopic ways to realize
human intelligence at the level of symbols and rules. Neural networks are a microscopic approach to the
intelligence of the brain in which information is represented by excitation patterns of neurons.

All of these approaches are partially successful in implementing human intelligence, but are still far
from the real one. Al uses mathematically rigorous logical reasoning but is not flexible and is difficult to
iImplement. Fuzzy systems provide convenient and flexible methods of reasoning at the sacrifice of
depth and exactness. Neural networks use learning and self-organizing ability but are difficult for
handling symbolic reasoning. The point is how to design computerized reasoning, taking account of
these methods.

This book solves this problem by combining the three techniques to minimize their weaknesses and
enhance their strong points. The book begins with an excellent introduction to Al, fuzzy-, and
neuroengineering. The author succeeds in explaining the fundamental ideas and practical methods of
these techniques by using many familiar examples. The reason for his success is that the book takes a
problem-driven approach by presenting problems to be solved and then showing ideas of how to solve
them, rather than by following the traditional theorem-proof style. The book provides an understandable
approach to knowledge-based systems for problem solving by combining different methods of Al, fuzzy
systems, and neural networks.

SHUN-ICHI AMARI
TOKYO UNIVERSITY
JUNE 1995
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Preface

The symbolic Al systems have been associated in the last decades with two main issues—the
representation issue and the processing (reasoning) issue. They have proved effective in handling
problems characterized by exact and complete representation. Their reasoning methods are sequential by
nature. Typical Al techniques are propositional logic, predicate logic, and production systems.

However, the symbolic Al systems have very little power in dealing with inexact, uncertain, corrupted,
Imprecise, or ambiguous information. Neural networks and fuzzy systems are different approaches to
introducing humanlike reasoning to knowledge-based intelligent systems. They represent different
paradigms of information processing, but they have similarities that make their common teaching,
reading, and practical use quite natural and logical. Both paradigms have been useful for representing
inexact, incomplete, corrupted data, and for approximate reasoning over uncertain knowledge. Fuzzy
systems, which are based on Zadeh's fuzzy logic theory, are effective in representing explicit but
amgibuous commonsense knowledge, whereas neural networks provide excellent facilities for
approximating data, learning knowledge from data, approximate reasoning, and parallel processing.
Evidence from research on the brain shows that the way we think is formed by sequential and parallel
processes. Knowledge engineering benefits greatly from combining symbolic, neural computation, and
fuzzy computation.

Many recent applications of neural networks and fuzzy systems show an increased interest in using
either one or both of them in one system. This book represents an engineering approach to both neural
networks and fuzzy systems. The main goal of the book is to explain the principles of neural networks
and fuzzy systems and to demonstrate how they can be applied to building knowledge-based systems for
problem solving. To achieve this goal the three main subjects of the book-knowledge-based systems,
fuzzy systems, and neural networks—are described at three levels: a conceptual level; an intermediate,
logical level; and a low, generic level in chapters 2, 3, and 4, respectively. This approach makes possible
a comparative analysis between the rule-based, the connectionist, and the fuzzy methods for knowledge-
engineering.

The same or similar problems are solved by using Al rule-based methods, fuzzy methods, connectionist
methods, hybrid Al-connectionist, or hybrid fuzzy-connectionist methods and systems. Production
systems are chosen as the most widely used paradigm for knowledge-engineering.
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Symbolic Al production systems, fuzzy production systems, connectionist production systems, and
hybrid connectionist production systems are discussed, developed, and applied throughout the book.
Different methods of using neural networks for knowledge representation and processing are presented
and illustrated with real and benchmark problems (see chapter 5). One approach to using neural
networks for knowledge engineering is to develop connectionist expert systems which contain their
knowledge in trained-in-advance neural networks. The learning ability of neural networks is used here
for accumulating knowledge from data even if the knowledge is not explicitly representable. Some
learning methods allow the knowledge engineer to extract explicit, exact, or fuzzy rules from a trained
neural network. These methods are also discussed in chapter 5. There are methods to incorporate both
knowledge acquired from data and explicit heuristic knowledge in a neural network. This approach to
expert systems design provides an excellent opportunity to use collected data (existing databases) and
prior knowledge (rules) and to integrate them in the same knowledge base, approximating reality.

Another approach to knowledge engineering is using hybrid connectionist systems. They incorporate
both connectionist and traditional Al methods for knowledge representation and processing. They are
usually hierarchical. At a lower level they use neural networks for rapid recognition, classification,
approximation, and learning. The higher level, where the final solution of the problem has to be
communicated, usually contains explicit knowledge (see chapter 6). The attempt to use neural networks
for structural representation of existing explicit knowledge has led to different connectionist
architectures. One of them is connectionist production systems. The fusion between neural networks,
fuzzy systems, and symbolic Al methods is called "comprehensive Al." Building comprehensive Al
systems is illustrated in chapter 6, using two examples—speech recognition and stock market prediction.

Neural networks and fuzzy systems may manifest a chaotic behavior on the one hand. On the other, they
can be used to predict and control chaos. The basics of chaos theory are presented in chapter 7. When
would neural networks or fuzzy systems behave chaotically? What is a chaotic neural network? These
and other topics are discussed in chapter 7. Chapter 7 also comments briefly on new developments in
neural dynamics and fuzzy systems.
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This book represents an engineering problem-driven approach to neural networks, fuzzy systems, and
expert systems. The main question answered in the book is: If we were given a difficult Al problem,
how could we apply neural networks, or fuzzy systems, or a hybrid system to solve the problem? Pattern
recognition, speech and image processing, classification, planning, optimization, prediction, control,
decision making, and game simulations are among the typical generic Al problems discussed in the
book, illustrated with concrete, specific problems.

The biological and psychological plausibility of the connectionist and fuzzy models have not been
seriously tackled in this book, though issues like biological neurons, brain structure, humanlike problem
solving, and the psychological roots of heuristic problem-solving are given attention.

This book is intended to be used as a textbook for upper undergraduate and postgraduate students from
science and engineering, business, art, and medicine, but chapters 1 and 2 and some sections from the
other chapters can be used for lower-level undergraduate courses and even for introducing high school
students to Al paradigms and knowledge-engineering. The book encompasses my experience in teaching
courses in Knowledge Engineering, Neural Networks and Fuzzy Systems, and Intelligent Information
Systems. Chapters 5 and 6 include some original work which gives the book a little bit of the flavor of a
monograph. But that is what | teach at the postgraduate level.

The material presented in this book is "software independent.” Some of the software required for doing
the problems, questions, and projects sections, like speech processors, neural network simulators, and
fuzzy system simulators, are standard simulators which can be obtained in the public domain or on the
software market, for example, the software package MATLAB. A small education software environment
and data sets for experimenting with are explained in the appendixes.

| thank my students and associates for the accurately completed assignments and experiments. Some of
the results are included in the book as illustrations. | should mention at least the following names: Jay
Garden, Max Bailey, Stephen Sinclair, Catherine Watson, Rupert Henderson, Paul Jones, Chris Maffey,
Richard Kilgour, Tim Albertson, Grant Holdom, Andrew Gray, Michael Watts, and Jonas Ljungdahl
from the University of Otago, Dunedin, New Zealand; Stephan Shishkov, Evgeni Peev, Rumen
Trifonov, Daniel Nikovski, Nikolai Nikolaev, Sylvia Petrova, Petar
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Kalinkov, and Christo Neshev from the Technical University in Sofia, Bulgaria; and L. Chen and C.
Tan, masters students from the University of Essex, England, during the year 1991.

In spite of the numerous experiments applying neural networks and fuzzy systems to knowledge-
engineering which | have conducted with the help of students and colleagues over the last 8 years, |
would probably not have written this book without the inspiration | received from reading the
remarkable monograph of Bart Kosko, Neural Networks and Fuzzy Systems (Englewood Cliffs, NJ,
Prentice Hall, 1992); nor without the discussions I have with Shun-ichi Amari, Lotfi Zadeh, Teuvo
Kohonen, John Taylor, Takeshi Yamakawa, Ron Sun, Anca Ralescu, Kunihiko Fukushima, Jaap van
den Herik, Duc Pham, Toshiro Terano, Eli Sanches, Guido Deboeck, Alex Waibel, Nelson Morgan, .
Takagi, Takeshi Furuhashi, Toshio Fukuda, Rao Vemuri, Janusz Kacprzyk, Igor Aleksander, Philip
Treleaven, Masumi Ishikawa, David Aha, Adi Bulsara, Laslo Koczy, Kaoru Hirota, Jim Bezdek, John
Andreae, Jim Austin, Lakmi Jain, Tom Gedeon, and many other colleagues and pioneers in the fields of
neural networks, fuzzy systems, symbolic Al systems, and nonlinear dynamics. Before | finished the last
revision of the manuscript a remarkable book was published by The MIT Press: The Handbook of Brain
Theory and Neural Networks, edited by Michael Arbib. The handbook can be used for finding more
detail on several topics presented and discussed in this book. It took me three years to prepare this book.
Despite the many ups and downs encountered during that period | kept believing that it would be a
useful book for my students. | thank my colleagues from the Department of Information Science at the
University of Otago for their support in establishing the courses for which | prepared this book,
especially my colleagues and friends Martin Anderson, Philip Sallis, and Martin Purvis. Martin
Anderson carefully read the final version of the book and made many valuable comments and
suggestions for improvement. | would like to thank Tico Cohen for his cooperation in the experiments
on effluent water flow prediction and sewage process control. | was also encouraged by the help Gaynor
Corkery gave me as she proofread the book in its preliminary version in 1994,

And last, but not least, | thank The MIT Press, and especially Harry Stanton for his enthusiastic and
professional support throughout the three-year period of manuscript preparation.



Page 1

1
The Faculty of Knowledge Engineering and Problem Solving

This chapter is an introduction to Al paradigms, Al problems, and to the basics of neural networks and
fuzzy systems. The importance and the need for new methods of knowledge acquisition, knowledge
representation, and knowledge processing in a climate of uncertainty is emphasized. The use of fuzzy
systems and neural networks as new prospective methods in this respect is briefly outlined from a
conceptual point of view. The main generic Al problems are described. Some specific problems, which
are used for illustration throughout the book, are also introduced. A heuristic problem-solving approach is
discussed and applied to some of them. A general approach to problem solving and knowledge
engineering is presented at the end of the chapter and developed further on in the book.

1.1 Introduction to Al Paradigms

Artificial intelligence comprises methods, tools, and systems for solving problems that normally require
the intelligence of humans. The term intelligence is always defined as the ability to learn effectively, to
react adaptively, to make proper decisions, to communicate in language or images in a sophisticated way,
and to understand. The main objectives of Al are to develop methods and systems for solving problems,
usually solved by the intellectual activity of humans, for example, image recognition, language and
speech processing, planning, and prediction, thus enhancing computer information systems; and to
develop models which simulate living organisms and the human brain in particular, thus improving our
understanding of how the human brain works.

The main Al directions of development are to develop methods and systems for solving Al problems
without following the way humans do so, but providing similar results, for example, expert systems; and
to develop methods and systems for solving Al problems by modeling the human way of thinking or the
way the brain works physically, for example, artificial neural networks.

In general, Al is about modeling human intelligence. There are two main paradigms adopted in Al in
order to achieve this: (1) the symbolic, and (2) the subsymbolic. The first is based on symbol manipulation
and the second on neurocomputing.

The symbolic paradigm is based on the theory of physical symbolic systems (Newel and Simon 1972). A
symbolic system consists of two sets:
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(1) a set of elements (or symbols) which can be used to construct more complicated elements or
structures; and (2) a set of processes and rules, which, when applied to symbols and structures, produce
new structures. The symbols have semantic meanings. They represent concepts or objects. Propositional
logic, predicate logic, and the production systems explained in chapter 2 facilitate dealing with symbolic
systems. Some of their corresponding Al implementations are the simple rule-based systems, the logic
programming and production languages, also discussed in chapter 2. Symbolic Al systems have been
applied to natural language processing, expert systems, machine learning, modeling cognitive processes,
and others. Unfortunately, they do not perform well in all cases when inexact, missing, or uncertain
information is used, when only raw data are available and knowledge acquisition should be performed, or
when parallel solutions need to be elaborated. These tasks do not prove to be difficult for humans.

The subsymbolic paradigm (Smolenski 1990) claims that intelligent behavior is performed at a
subsymbolic level which is higher than the neuronal level in the brain but different from the symbolic
one. Knowledge processing is about changing states of networks constructed of small elements called
neurons, replicating the analogy with real neurons. A neuron, or a collection of neurons, can represent a
microfeature of a concept or an object. It has been shown that it is possible to design an intelligent system
that achieves the proper global behavior even though all the components of the system are simple and
operate on purely local information. The subsymbolic paradigm makes possible not only the use of all the
significant results in the area of artificial neural networks achieved over the last 20 years in areas like
pattern recognition and image and speech processing but also makes possible the use of connectionist
models for knowledge processing. The latter is one of the objectives of this book. As the subsymbolic
models move closer, though slowly, to the human brain, it is believed that this is the right way to
understand and model human intelligence for knowledge engineering.

There are several ways in which the symbolic and subsymbolic models of knowledge processing may
interact:

1. They can be developed and used separately and alternatively.
2. Hybrid systems that incorporate both symbolic and subsymbolic systems can be developed.

3. Subsymbolic systems can be used to model pure symbolic systems.
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So, there is a third paradigm—a mixture of symbolic and subsymbolic systems. We shall see that fuzzy
systems can represent symbolic knowledge, but they also use numerical representation similar to the one
used in subsymbolic systems.

At the moment it seems that aggregation of symbolic and subsymbolic methods provides in most cases
the best possible solutions to complex Al problems.

1.2 Heuristic Problem Solving; Genetic Algorithms
1.2.1 The Fascinating World of Heuristics

Humans use a lot of heuristics in their everyday life to solve various problems, from "simple"” ones like
recognizing a chair, to more complex problems like driving a jet in a completely new spatial environment.
We learn heuristics throughout our life. And that is where computers fail. They cannot learn
"commonsense knowledge," at least not as much and as fast as we can. How to represent heuristics in
computers is a major problem of Al. Even simple heuristics, which every child can learn quickly, may not
be easy to represent in a computer program.

For example, every small child can, after exercising for a little while, balance a pencil upright on the palm
or finger. The child learns simple heuristics, for example, if the pencil is moving in one direction, then
you move your palm in the same direction, the speed depending on the speed of movement of the pencil.
If only two directions, that is, "“forward" and "backward" are allowed, then the heuristics are simplified,
for example, if the pencil is moving forward, then the palm is moved forward, or if the pencil is moving
backward, then the palm is moved backward. The heuristic rules for solving this task are in reality more
complex, involving, for example, the speed of movement of the pencil. But they number about a dozen. Is
that all we use to do this very complicated task? And is it possible to teach a computer these heuristics?
How many heuristic rules do we use when frying eggs, for example? Do we use millions of rules for the
number of the different possible situations that may arise are, such as the size of the pan, the size of the
eggs, the temperature of the heating element, the preferences of those waiting to eat the eggs, the
availability of different ingredients, etc? Or do we use a simple set of heuristic rules, a "can" of rules
only? The second suggestion seems to be more realistic
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as we cannot have billions of rules in our mind to do all the everyday simple and complex tasks. But now
the question arises: How can we represent in a computer program this small set of rules for solving a
particular problem? Can we represent commonsense skills and build a computer program which balances
an inverted pendulum, or balances other objects or processes which need balancing, for example, the
temperature and humidity in a room, an airplane when flying or landing?

Take another example—car or truck driving. Anyone who has a driving licence knows how to park a car.
He or she applies "commonsense™ knowledge, and skill. At any moment the situation is either very
different or slightly different from what the person has experienced before. Is it possible to represent the
"common sense™ of an ordinary driver in a computer and to build a program which automatically parks
the car when the parameters describing its position are known?

These examples show the fascinating world of heuristics—their power, their expressiveness, the
"mystery" of their interpretation in the human mind, and the challenge for implementing them in
computers. Articulating heuristics for solving Al problems is discussed and illustrated later in this
chapter, and their computer implementation is given later in the book. Symbolic expert systems, fuzzy
systems, neural networks, genetic algorithms, they all ease the efforts of the knowledge engineers to
represent and interpret heuristics in computers.

1.2.2 The Philosophy of the Heuristic Problem-Solving Approach

When a problem is defined, it is usually assumed that a set of n independent input variables (attributes) x,,
X « ., Xy, @Nd a set of m variables of the solutiony,, v,,. . . ,Y., are defined, for which observations or
rules are known. Every possible combination of values for the input variables can be represented as a
vector d = (al, a,,. . ., an) in the domain space D, and every possible value for the set of output variables
can be represented as a vector s = (b, b,, . . . b,) in the solution space S.

An ideal case is when we have a formula that gives the optimal solution for every input vector from the
domain space. But this is not the case in reality. The majority of the known Al problems do not have a
single formula that can be used.

In general, problem-solving can be viewed as mapping the domain space D into the solution space S.
Usually the number of all possible
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< D > Domain space

Heuristics

Figure 1.1
Heuristics as a means of obtaining restricted
projections from the domain space
(D) into the solution space (S).

[/

solutions is huge, even for simple problems. An exhaustive search in the solution space means testing all
the possible vectors in the solution space and then finding the best one. This is unrealistic and some
methods for restricting the zones where a solution will be sought have to be found. If we refer to the way
people solve problems, we can see that they do not check all the possible solutions yet they are still
successful at problem-solving. The reason is that they use past experience and heuristic rules which direct
the search into appropriate zones where an acceptable solution to the problem may be found. Heuristics
are the means of obtaining restricted projection of the domain space D to patches in the solution space S,
as is graphically represented in figure 1.1.

Heuristic (it is of Greek origin) means discovery. Heuristic methods are based on experience, rational
ideas, and rules of thumb. Heuristics are based more on common sense than on mathematics. Heuristics
are useful, for example, when the optimal solution needs an exhaustive search that is not realistic in terms
of time. In principle, a heuristic does not guarantee the best solution, but a heuristic solution can provide a
tremendous shortcut in cost and time.

Many problems do not have an algorithm or formula to find an exact solution. In this case heuristics are
the only way. Some examples are diagnosis of automobile problems, medical diagnosis, or creating a
plan. All these problems belong to the Al area. When heuristics are used to speed up the search for a
solution in the solution space S, we can evaluate the "goodness™ of every state s in S by an evaluation
function: h(s) = cost
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(@) Hl-informed and (b) well-informed heuristics. They are
represented as "patches™ in the problem space. The patches have
different forms (usually quadrilateral)depending on the way of
representing the heuristics in a computer program.

(s, g), where g is the goal state. A heuristic H1 is "more informed" than a heuristic H2 if the cost of the
states obtained by H1 is less than the cost of the states obtained by H2. Ill-informed heuristics require
more search and lead to worse solutions, in contrast to well-informed heuristics. Figure 1.2 is a graphical
representation of ill-informed heuristics (a), and well-informed heuristics (b), in a hypothetical problem
space (D, domain space; S, solution space). Heuristics contain symbols, statements, and concepts, no
matter how well defined they are. A general form of a heuristic rule is:

IF <conditions., THEN %conclusions?

What heuristic for solving a given problem can we use when, for example, we have past data available
only? One possible heuristic is the following:

IF the new input vector d' is similar to a past data set input vector d;, THEN assume that the solution s
for d"* is similar to the solution s; for d..

Generally speaking, problem knowledge for solving a given problem may consist of heuristic rules or
formulas that comprise the explicit knowledge, and past-experience data that comprise the implicit,
hidden knowledge. Knowledge represents links between the domain space and the solution space, the
space of the independent variables and the space of the dependent variables.
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The problem knowledge maps the domain space into the
solution space and approximates the objective (goal)
function:(a) a general case; (b) a two-dimensional case.

The goal of a problem-solving system is to map the domain space into the solution space and to find the
best possible solution for any input data from the domain space. The optimal, desired mapping is called
objective or goal function. Two types of objective functions can be distinguished: (1) computable
functions, that is, there exists an algorithm or heuristics to represent them; and (2) random functions,
where the mapping is random and noncomputable. We deal in this book with the computable functions.
This class also includes the chaotic functions, even though the latter seem to manifest random behavior.

Past, historical data can be represented as pairs (d;, s;) of input-output vectors, fori=1,2,...,p.
Heuristic rules in a knowledge base can be represented in the form of: IF Xj, THEN Yj,j=1, 2, ..., N (or,
simply Xj - Yj), where X] is a collection of input vectors (a pattern, a "patch" in the input domain space)
and Yj is a collection of output vectors (an output pattern, a "patch" in the output solution space). Figure
1.3 represents the problem-solving process as mapping the domain space D into the solution space S.
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The heuristic rules should be either articulated or learned by a learning system that uses past data,
instances, and examples of successful solutions of the problem. In order to learn heuristics from past data,
learning methods are necessary, that is, heuristics which say "how to learn heuristic rules from past data."”

The information learned by a learning system may or may not be comprehensible to us. We may need to
use both approaches and combine knowledge acquired by humans with that learned by a system. A
formula that gives a partial solution to the problem may also be available. This formula should also be
incorporated into the knowledge-based system for solving the given problem.

Of course, methods and tools are required to accomplish the problem-solving mapping. The symbolic Al
methods, while designed to solve typical Al problems, cannot accomplish this task completely. They do
not provide good tools for partial mapping, for learning to approximate the goal function, for adaptive
learning when new data are coming through the solution process, for representing uncertain and inexact
knowledge. These requirements for solving Al problems are fulfilled by the inherent characteristics of the
fuzzy systems and neural networks, especially when applied in combination with the symbolic Al
systems. Fuzzy systems are excellent tools for representing heuristic, commonsense rules. Fuzzy
inference methods apply these rules to data and infer a solution. Neural networks are very efficient at
learning heuristics from data. They are "good problem solvers" when past data are available. Both fuzzy
systems and neural networks are universal approximators in a sense, that is, for a given continuous
objective function there will be a fuzzy system and a neural network which approximate it to any degree
of accuracy. This is discussed in detail in chapters 3 and 4.

Learning from data is a general problem for knowledge-engineering. How can we learn about an
unknown objective function y = F(x)? Statistical methods require a predefined model of estimation
(linear, polynomial, etc.). Learning approximations from raw data is a problem which has been well
performed by neural networks. They do not need any predefined function type. They are "model-free"
(Kosko 1992). They can learn "what is necessary" to be learned from data, that is, they can learn
selectively. They can capture different types of uncertainties, including statistical and probabilistic. It is
possible to mix in a hybrid system explicit
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heuristic rules and past-experience data. These techniques are demonstrated in chapter 6.

A brilliant example of a heuristic approach to solving optimization problems are the genetic algorithms
introduced by John Holland in 1975.

1.2.3 Genetic Algorithms

A typical example of a heuristic method for problem solving is the genetic approach used in what is
known as genetic algorithms. Genetic algorithms solve complex combinatorial and organizational
problems with many variants, by employing analogy with nature's evolution. Genetic algorithms were
introduced by John Holland (1975) and further developed by him and other researchers.

Nature's diversity of species is tremendous. How does mankind evolve into the enormous variety of
variants—in other words, how does nature solve the optimization problem of perfecting mankind? One
answer to this question may be found in Charles Darwin's theory of evolution. The most important terms
used in the genetic algorithms are analogous to the terms used to explain the evolutionary processes. They
are:

. Gene—a basic unit, which controls a property of an individual.

. Chromosome—a string of genes; it is used to represent an individual, or a possible solution of a
problem in the solution space.

. Population—a collection of individuals.

. Crossover (mating) operation—substrings of different individuals are taken and new strings
(offsprings) are produced.

. Mutation—random change of a gene in a chromosome.
. Fitness (goodness) function—a criterion which evaluates each individual.
. Selection—a procedure for choosing a part of the population that will continue the process of

searching for the best solution, while the other part of the population "dies".

A simple genetic algorithm consists of the steps shown in figure 1.4. Figure 1.5 shows graphically the
solution process at consecutive time moments in the solution state space. The solution process over time
has been "stretched" in the space.
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I Ininalize population of possible solutions

2 WHILE a criterion for termination is not resched DO
{
2a. Crossover two specimens {mather and father™ ) and genere new
indlivicuals;
2b. Select the most promising ones, sccording o a filness function;
2¢. Development (if ot all};
2 Possible mutation (rare) |

Figure 1.4
An outline of a genetic algorithm.

There is no need for in-depth problem knowledge when using this method of approaching a complex
multioptional optimization problem. What is needed here is merely a "fitness" or "goodness" criterion for
the selection of the most promising individuals (they may be partial solutions to the problem). This
criterion may require a mutation as well, which could be a heuristic approach of the "trial-and-error" type.
This implies keeping (recording) the best solutions at each of the stages.

Genetic algorithms are usually illustrated by game problems. Such is a version of the "mastermind™ game,
in which one of two players thinks up a number (e.g., 001010) and the other has to find it out with a
minimal number of questions. Each question is a hypothesis (solution) to which the first player replies
with another number indicating the number of correctly guessed figures. This number is the criterion for
the selection of the most promising or prospective variant which will take the second player to eventual
success. If there is no improvement after a certain number of steps, this is a hint that a change should be
introduced. Such change is called mutation. "When" and "how" to introduce mutation are difficult
questions which need more in-depth investigation. An example of solving the "guess the number" game
by using a simple genetic algorithm is given in figure 1.6.

In this game success is achieved after 16 questions, which is four times faster than checking all the
possible combinations, as there are 26 = 64 possible variants. There is no need for mutation in the above
example. If it were needed, it could be introduced by changing a bit (a gene) by random selection.
Mutation would have been necessary if, for example,
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the goal state

Figure 1.5
A graphical representation of a genetic algorithm.

there was 0 in the third bit of all three initial individuals, because no matter how the most prospective
individuals are combined, by copying a precise part of their code we can never change this bit into 1.
Mutation takes evolution out of a "dead end."

The example above illustrates the class of simple genetic algorithms introduced by John Holland, they are
characterized by the following:

. Simple, binary genes, that is, the genes take values of 0 and 1 only.

. Simple, fixed single-point crossover operation: The crossover operation is done by choosing a point
where a chromosome is divided into two parts swapped with the two parts taken from another individual.

. Fixed-length encoding, that is, the chromosomes had fixed length of genes.

Many complex optimization problems find their way to a solution through genetic algorithms. Such
problems are, for example, the Traveling Salesman Problem (TSP)—finding the cheapest way to visit n
towns without visiting a town twice; the Min Cut Problem—cutting a graph with minimum links between
the cut parts; adaptive control; applied physics problems; optimization of the parameters of complex
computational
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Figure 1.6

An example of a genetic algorithm applied to the game "guess the number."

models; optimization of neural network architectures; finding fuzzy rules and membership functions for
the fuzzy values, etc.

The main issues in using genetic algorithms are the choice of genetic operations (mating, selection,
mutation) and the choice of selection criteria. In the case of the Traveling Salesman the mating operation
can be merging different parts of two possible roads (mother and father road) until new usable roads are
obtained. The criterion for the choice of the most prospective ones is minimum length (or cost).

Genetic algorithms comprise a great deal of parallelism. Thus, each of the branches of the search tree for
best individuals can be utilized in parallel with the others. This allows for an easy realization of the
genetic algorithms on parallel architectures.
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Genetic algorithms are search heuristics for the "best™ instance in the space of all possible instances. Four
parameters are important for any genetic algorithm:

1. The encoding scheme, that is, how to encode the problem in terms of genetic algorithms—what to
choose for genes, how to construct the chromosomes, etc.

2. The population size—how many possible solutions should be kept for further development

3. The crossover operations—how to combine old individuals and produce new, more prospective ones
4. The mutation heuristic—"when" and "how" to apply mutation

In short, the major characteristics of the genetic algorithms are the following:

. They are heuristic methods for search and optimization. As opposed to the exhaustive search
algorithms, the genetic algorithms do not produce all variants in order to select the best one. Therefore,
they may not lead to the perfect solution but to one that is closest to it taking into account the time limits.
But nature itself is imperfect too (partly due to the fact that the criteria for perfection keep changing), and
what seems to be close to perfection according to one "goodness" criterion may be far from it according
to another.

. They are adaptable, which means that they have the ability to learn, to accumulate facts and
knowledge without having any previous knowledge. They begin only with a "fitness" criterion for
selecting and storing individuals (partial solutions) that are “good™ and dismissing those that are "not
good."

Genetic algorithms can be incorporated in learning modules as a part of an expert system or of other
information-processing systems. Genetic algorithms are one paradigm in the area of evolutionary
computation. Evolution strategies and evolutionary programming are the other (Fogel, 1995). Evolution
strategies are different from the genetic algorithms in several ways: they operate not on chromosomes
(binary codes) but on real-valued variables; a population is described by statistical parameters (e.g., mean
and standard deviation); new solution is generated by perturbation of the parameters. One application of
evolutionary computation is
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creating distributed Al systems called artifical life. They consist of small elementary elements that
collectively manifest some repeating patterns of behavior or even a certain level of intelligence.

1.3 Why Expert Systems, Fuzzy Systems, Neural Networks, and Hybrid Systems for Knowledge
Engineering and Problem Solving?

The academic research area for developing models, methods, and basic technologies for representing and
processing knowledge and for building intelligent knowledge-based systems, is called knowledge
engineering. This is a part of the Al area, directed more toward applications.

1.3.1 Expert Systems

Expert systems are knowledge-based systems that contain expert knowledge. For example, an expert
system for diagnosing car faults has a knowledge base containing rules for checking a car and finding
faults in the same way an engineer would do it. An expert system is a program that can provide expertise
for solving problems in a defined application area in the way the experts do.

Expert systems have facilities for representing existing expert knowledge, accommaodating existing
databases, learning and accumulating knowledge during operation, learning new pieces of knowledge
from existing databases, making logical inferences, making decisions and giving recommendations,
communicating with users in a friendly way (often in a restricted natural language), and explaining their
"behaviour" and decisions. The explanation feature often helps users to understand and trust the decisions
made by an expert system. Learning in expert systems can be achieved by using machine-learning
methods and artificial neural networks.

Expert systems have been used successfully in almost every field of human activity, including
engineering, science, medicine, agriculture, manufacturing, education and training, business and finance,
and design. By using existing information technologies, expert systems for performing difficult and
important tasks can be developed quickly, maintained cheaply, used effectively at many sites, improved
easily, and refined during operation to accommodate new situations and facts.
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Figure 1.7
The two sides of an expert system.

There are two easily distinguishable sides of an expert system—the expert's side, and the users' side
(figure 1.7). Experts transfer their knowledge into the expert system. The users make use of it.

In spite of the fact that many methods for building expert systems have been developed and used so far,
the main problems in building expert systems are still there. They are:

1. How to acquire knowledge from experts?

2. How to elicit knowledge from a huge mass of previously collected data?

3. How to represent incomplete, ambiguous, corrupted, or contradictory data and knowledge?
4. How to perform approximate reasoning?

These questions were raised at the very early stage of expert systems research and development. Ad hoc
solutions were applied, which led to a massive explosion of many expert systems applied to almost every
area of industrial and social activity. But the above questions are still acute. Good candidates for finding
solutions to these problems are fuzzy systems and neural networks.

1.3.2 Fuzzy Systems for Knowledge Engineering

One way to represent inexact data and knowledge, closer to humanlike thinking, is to use fuzzy rules
instead of exact rules when representing knowledge.

Fuzzy systems are rule-based expert systems based on fuzzy rules and fuzzy inference. Fuzzy rules
represent in a straightforward way "commonsense” knowledge and skills, or knowledge that is subjective,
ambiguous, vague, or contradictory. This knowledge might have come from many different sources.
Commonsense knowledge may have been acquired from long-term experience, from the experience of
many people, over many years.
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There are many applications of fuzzy logic on the market now. These include control of automatic
washing machines, automatic camera focusing, control of transmission systems in new models of cars,
automatic landing systems for aircraft, automatic helicopter control, automatic air-conditioning systems,
automatic control of cement kilns, automatic control of subways, fuzzy decision making, fuzzy databases,
etc. These, and many other industrial applications of fuzzy logic have been developed mainly in Japan,
the United States, Germany, and France. They are spreading now all over the world. Many other
applications of fuzzy logic in areas like control, decision-making and forecasting, human-computer
interaction, medicine, agriculture, environmental pollution, cooperative robots, and so forth are in the
research laboratories and are expected to enter the market.

The most distinguishing property of fuzzy logic is that it deals with fuzzy propositions, that is,
propositions which contain fuzzy variables and fuzzy values, for example, "the temperature is high," "the
height is short.” The truth values for fuzzy propositions are not TRUE/FALSE only, as is the case in
propositional boolean logic, but include all the grayness between two extreme values.

A fuzzy system is defined by three main components:
1. Fuzzy input and output variables, defined by their fuzzy values
2. A set of fuzzy rules

3. Fuzzy inference mechanism

Fuzzy rules deal with fuzzy values as, for example, "high,"” "cold,” "very low," etc. Those fuzzy concepts
are usually represented by their membership functions. A membership function shows the extent to which
a value from a domain (also called universe) is included in a fuzzy concept (see, e.g., figures 3.1 and 3.2).

Case example. The Smoker and the Risk of Cancer Problem A fuzzy rule defines the degree of risk of
cancer depending on the type of smoker (figure 1.8). The problem is how to infer the risk of cancer for
another type of smoker, for example, a "moderate smoker," having the above rule only.

In order to solve the above and many other principally similar but much more complex problems, one
needs to apply an approximate reasoning method. Fuzzy inference methods based on fuzzy logic can be
used successfully. Fuzzy inference takes inputs, applies fuzzy rules, and pro-
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Fule:  IF a person is a “heavy _smoker™
THEN the nsk of cancer is “high”,

where the two fuzzy concepis “heavy-smoker” and "high” can be represented by their
membership functions, for example:

A fuzzy concept "heavy-smoker”:

Mo of cigareties per day 0 2 4 6 B 10

Grode (membership) 0 Q.1 L& 0.8 0.9 1.0

A fuzey concept: "High msk of cancer”

Level of risk: I 2 3 4 3
Cirade {membership) 0.0 02 07 9 [0
Figure 1.8

A simple fuzzy rule for the Smoker and the Risk of Cancer case example.

duces outputs. Inputs to a fuzzy system can be either exact, crisp values (e.g., 7), or fuzzy values (e.g.,
"moderate"). Output values from a fuzzy system can be fuzzy, for example, a whole membership function
for the inferred fuzzy value; or exact (crisp), for example, a single value is produced on the output. The
process of transforming an output membership function into a single value is called defuzzification.

The secret for the success of fuzzy systems is that they are easy to implement, easy to maintain, easy to
understand, robust, and cheap. All the above properties of fuzzy systems and the main techniques of using
them are explained in chapter 3.

1.3.3 Neural Networks for Knowledge Engineering

During its development, expert systems have been moving toward new methods of knowledge
representation and processing that are closer to humanlike reasoning. They are a priori designed to
provide reasoning similar to that of experts. And a new computational paradigm has already been
established with many applications and developments—artificial neural networks.
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An artificial neural network (or simply a neural network) is a biologically inspired computational model
that consists of processing elements (neurons) and connections between them, as well as of training and
recall algorithms.

The structure of an artificial neuron is defined by inputs, having weights bound to them; an input
function, which calculates the aggregated net input signal to a neuron coming from all its inputs; an
activation (signal) function, which calculates the activation level of a neuron as a function of its
aggregated input signal and (possibly) of its previous state. An output signal equal to the activation value
Is emitted through the output (the axon) of the neuron. Drawings of real and artificial neurons are given in
figures 4.1. and 4.2, respectively. Figures 4.3 and 4.4 represent different activation functions. Figure 4.5
Is a graphical representation of a small neural network with four inputs, two intermediate neurons, and
one output.

Neural networks are also called connectionist models owing to the main role of the connections. The
weights bound to them are a result of the training process and represent the "long-term memory" of the
model. The main characteristics of a neural network are:

. Learning—a network can start with "*no knowledge™ and can be trained using a given set of data
examples, that is, input-output pairs (a supervised training), or only input data (unsupervised training);
through learning, the connection weights change in such a way that the network learns to produce desired
outputs for known inputs; learning may require repetition.

. Generalization—if a new input vector that differs from the known examples is supplied to the
network, it produces the best output according to the examples used.

. Massive potential parallelism—during the processing of data, many neurons "fire" simultaneously.
. Robustness—if some neurons ""go wrong," the whole system may still perform well.
. Partial match is what is required in many cases as the already known data do not coincide exactly

with the new facts

These main characteristics of neural networks make them useful for knowledge engineering. Neural
networks can be used for building expert
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systems. They can be trained by a set of examples (data) and in that way they represent the "hidden"
knowledge of an expert system. For example, if we have good clinical records about patients suffering
from cancer, we can use the data to train a neural network. The same network can also accommodate
expertise provided by experts where the expertise is represented in an explicit form. After that, the
network can recognize the health status of a new patient and make recommendations. Neural networks
can be used effectively for building user interface to an expert system. There are connectionist models for
natural language processing, speech recognition, pattern recognition, image processing, and so forth. The
knowledge-engineering applications of neural networks inspire new connectionist models and new
hypotheses about cognitive processes in the brain. Neural networks have been applied to almost every
application area, where a data set is available and a good solution is sought. Neural networks can cope
with noisy data, missing data, imprecise or corrupted data, and still produce a good solution.

1.3.4 Hybrid Systems

These are systems which have rule-based systems, fuzzy systems, neural networks, and other paradigms
(genetic algorithms, probabilistic reasoning, etc.) in one. Hybrid systems make use of all their ingredients
for solving a given problem, thus bringing the advantages of all the different paradigms together. Hybrid
systems are introduced in chapter 6.

1.4 Generic and Specific Al Problems: Pattern Recognition and Classification
1.4.1 An Overview of Generic and Specific Al Problems

Knowledge engineering deals with difficult Al problems. Three main questions must be answered before
starting to develop a computer system for solving a problem:

1. What is the type of the problem, that is, what kind of a generic problem is it?
2. What is the domain and the solution space of the problem and what problem knowledge is available?

3. Which method for problem solving should be used?
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A generic problem (task) is a theoretically defined problem (task) for which methods are developed
regardless of the contextual specificity of parameters and variables and their values. The variables used in
the specification or a solution of the problem are domain-free.

A specific problem is a real problem which has its parameters, values, constraints, and so forth
contextually specified by the application area the problem falls into.

In order to solve a specific problem, domain-specific knowledge is required. The problem knowledge
could be a set of past data or explicit expert knowledge in the form of heuristic rules, or both. In spite of
the fact that specific knowledge in a given area is required, we can use methods applicable for solving the
corresponding generic problem, for example, methods for classification, methods for forecasting, etc.

What kind of methods do humans use when solving problems? Can we develop machine methods close to
the human ones? Are fuzzy systems and neural networks useful in this respect? Which one to use, or
maybe a combination of both? Answering these questions is one of the main objectives of this book.

1.4.2 Pattern Recognition and Classification; Image Processing

Pattern recognition is probably the most used generic Al problem in knowledge engineering. The problem
can be formulated as follows: given a set of n known patterns and a new input pattern, the task is to find
out which of the known patterns is closest to the new one. This generic problem has many applications,
for example, handwritten character recognition, image recognition, speech recognition. Patterns can be:
Spatial, for example, images, signs, signatures, geographic maps; and Temporal, for example, speech,
meteorological information, heart beating, brain signals.

The methods used for solving pattern recognition problems vary depending on the type of patterns. Often,
temporal patterns are transformed into spatial patterns and methods for spatial pattern recognition are
used afterward.

Pattern recognition problems are usually characterized by a large domain space. For example, recognizing
handwritten characters is a difficult task because of the variety of styles which are unique for every
individual. The task is much more difficult when font-invariant, scale-invariant, shift-invariant, rotation-
invariant, or noise-invariant characters should be recognized.
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Figure 1.9
A pattern recognition system may allow for different variants of writing
the digit 3: (a) centered; (b) scale-invariant and shift-invariant;
(c) rotation-invariant; (d) font-invariant; (e) a noisy character.

Case Example: Handwritten Characters Recognition This is a difficult problem because of the variability
with which people write characters. This variability is illustrated in figure 1.9. But this is not a difficult
problem for humans. So, humanlike problem-solving methods might be applied successfully. This
problem is tackled in the book by using fuzzy logic methods in chapter 3 and neural networks in chapters
4 and 5.

A pattern can be represented by a set of features, for example, curves, straight lines, pitch, frequency,
color. The domain space of the raw patterns is transformed in the feature space before the patterns are
processed. How many features should be used to represent a set of patterns is an issue which needs
thorough analysis. Figure 1.10 shows how a defined set of features can be used for representing the letters
in the Roman alphabet. But is the set of features used in figure 1.10 enough to discriminate all different
characters? And what kind of extra features must be added in order to distinguish K from Y for example?
Features can have different types of values: Symbolic, qualitative values, like "black,” "curve," etc., and
numerical, quantitative values, which can be continuous or discrete.

The set of features must satisfy some requirements, for example: be large enough to allow unique
representation of all the patterns; not be redundant, as this may reflect in a poor classification due to
considering features that are not important for the object classification; this may introduce noise in the
system; and allow flexibility in pattern representation and processing depending on the concrete task.

A class of patterns can be represented in two major ways: (1) as a set of pattern examples; and (2) as a set
of rules defining features which the patterns (objects) from a given class must have.
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Features used to discriminate the letters in the Roman alphabet.
B, bottom; T, top; Y, yes; N, no/non.

The classification problem, as a generic one, is to associate an object with some already existing groups,
clusters, or classes of objects. Classification and pattern recognition are always considered as either
strongly related or identical problems.

Classes may be defined by a set of objects, or by a set of rules, which define, on the basis of some
attributes, whether a new object should be classified into a given class.

Case Example. Iris Classification Problem A typical example of such a problem is the Iris Classification
Problem. This is based on a data set used by Fisher (1936) for illustrating discriminant analysis
techniques. Afterward, it became a standard benchmark data set for testing different classification
methods. The Iris data set contains 150 instances grouped into three species of the plant genus
Iris—setosa, versicolor, virginica. Every instance is represented by four attributes: sepal length (SL),
sepal width (SW), petal length (PL), and petal width (PW), each measured in centimeters. Ten randomly
chosen instances from the Iris data set are shown in the example below. Figure 1.11 shows graphically all
the 150 instances in the Iris data set. The data set is explained in appendix A.
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1 Graphical representation of the Iris data set. The first 50 instances belong

SW
3.5
3.2
3.6
2.8
3.3
2.9
3.0
3.0
3.2
3.0

PL
14
1.3
14
4.6
4.7
4.6
5.9
5.9
5.1
5.5

PW
0.2
0.2
0.2
1.5
1.6
1.3
2.1
2.2
2.0
2.1

to class Setosa, the second 50 to class Versicolor, and the last 50 to class Virginica.

Class
Setosa
Setosa
Setosa
Versicolor
Versicolor
Versicolor
Virginica
Virginica
Virginica

Virginica
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The problem is to classify a new instance, for example, 5.4, 3.3, 4.7, 2.1, into one of the classes. The Iris
Classification Problem is a specific
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problem which illustrates the generic classification problem. It is used throughout the book as a case
example to illustrate different methods of classification.

Different groups of methods can be used for solving classification problems:

. Statistical methods, based on evaluating the class to which a new object belongs with the highest
probability; Bayesian probabilities are calculated and used for this purpose (see chapter 2 for using
probabilities to represent uncertainties)

. Discriminant analysis techniques, the most used among them being linear discriminant analysis;
this is based on finding linear functions (linear combinations between the features) graphically
represented as a line in a two-dimensional space, as a plane in three-dimensional space, or as a
"hyperplane” in a more-dimensional space, which clearly distinguishes the different classes (figure 1.12.)

. Symbolic rule-based methods, based on using heuristic symbolic rules. A general form of a
heuristic rule for classification is as follows:

IF (features), THEN (class)

Symbolic rules usually use intervals. The following rough rules can be articulated after having a quick
look at figure 1.11. The rules attempt to discriminate the three classes of Iris.

'y Linear Separation
Ky

Class A

Class B

Figure 1.12
Linear separation between two classes A and B
in a two-dimensional feature space (x; and x,

are features).
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IF PW 0.8, THEN Iris Setosa, else
IF PL » 4.8 and PW 2 1.5, THEN Iris Virginica,

otherwise, Iris Versicolor.
The question is how good the discrimination is.

. Fuzzy methods, based on using fuzzy rules. Fuzzy rules represent classes in fuzzy terms, for
example, a rule for classifying new instances of Iris into class Setosa may look like:

IF PL is Small and PW is Small, THEN Setosa
where Small is defined for the two attributes PL and PW separately by two membership functions.

Example A heuristic fuzzy rule for recognizing the handwritten digit 3 is given below. The features are
of the type "the drawing of the digit crosses a zone of the drawing space," "does not cross a zone," or "it
does not matter" (figure 1.13). If we divide the drawing space into five horizontal zones as was done in
Yamakawa (1990), a heuristic rule to recognize 3 could be written as:

IF (the most upper zone is crossed) and
(the middle upper zone is uncrossed)
(the middle zone does not matter)

(the middle lower zone is uncrossed)
(the lowest zone is crossed),

THEN (the character is 3)

{.-—-— Cross-detecting lime

Crossing region |
Forbidden region —f————» |1
Cron't care region >
Forbidden ragion |

ST

Crossing region >

Figure 1.13

Using "crossing zones™ as features for pattern
recognition. (Redrawn with permission from
Yamakawa 1990.)
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Fuzzy systems provide simple and effective methods for handwritten character recognition because the
characters can be represented by fuzzy features. For example the digit 3 may have a small line in the
central area of the drawing space if it is centered. Two fuzzy concepts were used in the last sentence when
we described the shape of the digit 3, that is, “small line," and "central area."

. Neural networks and other machine-learning methods, based on learning from examples of objects
and their respective classes. The task is to build a classification system when a set of patterns (instances)
only is available. The machine-learning methods and the methods of neural networks are appropriate for
this task. One can also look at the "hidden" knowledge in the data set and try to represent it by explicit
heuristic rules learned from the data. Because of the variety of patterns and the difficulties in uttering
heuristic rules, pattern recognition is very often based on training a system with patterns. Neural networks
are especially suitable for this task.

. k- Nearest neighbor methods, based on evaluating the distance between a new object and k-nearest
objects for which the classes they belong to are known. The class that appears most frequently among the
k neighbors is chosen.

Here the concept of distance between objects (patterns) is introduced for the first time. A distance
between two patterns a = (a,,a,,. . . .,a,) and b = (b, b,,. . . ,b,) can be measured in different ways, for
example,

—ADbsolute distance,

Dy, = ) abs{a, — k)

=1

—Euclidean distance,
E = .“r (a, — h)?
1'!." |'Ei
— Various normalized distances, for example, a distance between a pattern and a center of a class is

divided to the radius of the class region (cluster).

Based on measured distances between instances (objects) of different classes, areas in the problem space
of all instances can be defined. These areas are called clusters. Clustering is an important procedure
which helps
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A cluster in the problem space.

to understand data. A center c; of a cluster C, is a point or an instance to which the mean of the distances
from each instance in the cluster is minimum (figure 1.14). A cluster C;can be defined by a characteristic

function M;: S— {0, 1}. It defines whether an instance from the whole problem space S belongs (1) or
does not belong (0) to the cluster.

If the class labels for the instances are not known, then clustering may be useful for classification
purposes. In this case a number of clusters and class centers, which minimize the mean difference
between all the instances and these centers, may be defined.

In order to better illustrate the important generic classification problem, another example is used
throughout the book.

Case Example: Soil Classification Problem There are six main types of soil typical for a certain region.
Each type of soil is characterized by different ion concentrations, the average being shown in the table 1.1
(Edmeades et al. 1985). The task is to recognize the soil type from a sample of unknown soil after having
measured those concentrations. The solution to this problem as a set of production rules is given in

chapter 2 and as a neural network, in chapter 5. A small database on the problem is described in appendix
F.

Image processing is a part of the generic pattern recognition problem area. The smallest data element
from an image is called a pixel. Different image processing tasks are image recognition, image
compression, and image analysis.

Image recognition associates a new image with an already existing one, or with a class of images. The
recognition process is hard, as images are usually blurry, corrupted, noisy. Image compression aims at
encoding an
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Table 1.1

The soil classification case example: Average concentration of elements in different types of soils

Soil NH4 NO: SOi - Caz+ Mgz2+ K+ Na* Cl-

Egmont YBL 0.39 2.79 0.44 0.82 0.37 1.03 1.72 0.31
Stratford YBL 0.19 1.10 0.50 0.65 0.15 0.45 0.64 0.28
Taupo YBP 0.31 0.64 0.46 0.52 0.19 0.83 0.43 0.14
Tokomaru YGE 0.15 1.09 0.58 0.75 0.29 0.52 0.89 0.26
Matapiro YGE 0.09 0.21 0.45 0.34 0.18 0.24 0.98 0.30
Waikare YBE 0.17 0.86 0.59 1.12 0.17 0.38 0.74 0.25

Adapted from Edmeades et al. (1985).

Image with a minimum number of bits per pixel in such a way that a decoding process reconstructs the
image to a satisfactory approximation of the original image. The compactness of the compression is
measured in number of bits used to encode a pixel of the image. Feature extraction, segmentation, and
other tasks are part of the image analysis problem area.

Associative memories are often used as a means for pattern storage and recognition. They are devices
which can store patterns and recall them from a partial presentation as an input.

1.5 Speech and Language Processing

Speech-processing tasks are among the most difficult Al problems. Basic notions of speech processing
are presented here. Different solutions are presented elsewhere in the book.

1.5.1 Introduction to Speech-Processing Tasks

Speech processing includes different technologies and applications. Some of them, according to Morgan
and Scofield (1991), are listed below:

. Speech encoding aims at voice transmission, speech compression, and secure communications.

. Speaker separation aims at extracting speech signals of each of the speakers when multiple talkers
are present.

. Speech enhancement aims at improving the intelligibility of the speech signals.
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. Speaker identification aims at "identifying an uncooperative talker in an environment where a large
number of talkers may be present."

. Language identification aims at discriminating languages.
. Keyword spotting, that is, recognizing spoken keywords from a dictionary (for database retrieval,
etc).

But the most interesting and most rapidly developing of the speech-processing problems is the automatic
speech recognition (ASR) problem. It aims at providing enhanced access to machines via voice
commands. A voice interface to a computer is related strongly to analysis of the spoken language, concept
understanding, intelligent communication systems, and further on, to developing "consciousness™ in the
machines. These are challenging problems for the Al community. Can neural networks and fuzzy systems
help in getting better solution to ASR problems? Yes, they can.

The elaboration of practical systems for speech recognition takes two major trends: (1) recognition of
separately pronounced words in extended speech; (2) recognition and comprehension of continuous
speech.

Two approaches are mainly used in ASR: global and analytical. The global approach is based on
comparison of the whole word with standard patterns, whereas in the analytical approach a word is
broken into segments (subwords, units) on the basis of the phonetic characteristics of the speech signal. In
both global and analytical approaches, obtained parametric vectors from the speech signal must be
classified. A parametric vector of n elements can be represented as a point in n-dimensional space. This
point can be seen as a pattern.

Phonemes are the smallest speech patterns that have linguistic representation in a language. They can be
divided into three major conventional groups: vowels (e.g., /e/, /o/, i/, /l/, lul), semivowels (e.g., /w/) and
consonants (e.g., /n/, /b/, /s/) (see appendix J). Vowels and consonants can be divided into additional
subgroups. There are 43 phonemes in the received pronunciation (R.P.) English language, but their
number varies slightly among the different dialects (American, Australian, New Zealand, etc.)

Before we discuss connectionist models for speech recognition and fuzzy models for speech and language
understanding, a brief introduction to the nature of speech, speech features and transformations, and the
technical and social problems that arise when building a speech recognition system, will be presented.
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1.5.2 The Nature of Speech

Speech is a sequence of waves which are transmitted over time through a medium and are characterized
by some features, including intensity and frequency. Speech is perceived by the inner ear in humans. It
activates oscillations of small elements in the media of the inner ear, which oscillations are transmitted to
a specific part of the brain for further processing. The biological background of speech recognition is
used by many researchers to develop humanlike ASR systems, but other researchers take other
approaches. Speech can be represented on the:

. Time scale, which representation is called a waveform representation
. Frequency scale, which representation is called a spectrum
. Both a time and frequency scale, which is the spectrogram of the speech signal

The three factors which provide the easiest method of differentiating speech sounds are the perceptual
features of loudness, pitch, and quality. Loudness is related to the amplitude of the time domain
waveform, but it is more correct to say that it is related to the energy of the sound (also known as its
intensity). The greater the amplitude of the time domain waveform, the greater the energy of the sound
and the louder the sound appears. Pitch is the perceptual correlate of the fundamental frequency of the
vocal vibration of the speaker organ. Figure 1.15(A) represents the time domain waveform of the word
"hello" (articulated by the author). The quality of a sound is the perceptual correlate of its spectral
content. The formants of a sound are the frequencies where it has greatest acoustic energy, as illustrated
in figure 1.15(B) for the word "hello.” The shape of the vocal tract determines which frequency
components resonate. The short hand for the first formant is F1, for the second, F2, etc. The fundamental
frequency is usually indicated by F,. There are four major formants for the word "hello," well
distinguished in figure 1.15(B).

A spectrogram of a speech signal shows how the spectrum of speech changes over time. The horizontal
axis shows time and the vertical axis shows frequency. The color scale (the gray scale) shows the energy
of the frequency components. The darker the color, the higher the energy of the component, as shown in
figure 1.16. This figure compares the spectra of a pronounced word by a male speaker and a female
speaker. Similarities
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Figure 1.15
The word "hello" pronounced by the author:
(A) Its waveform, time is represented on the
x-axis and energy—on the y-axis.
(B) Its frequency representation where four
major formants can be depicted, the x-axis
represents frequencies and the y-a the signal.
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Female Speaker - "one"

Figure 1.16
Spectra of the word "one™ pronounced by a male and a female
speakers. The second pronounciation has higher energy in higher
frequency louds.
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. Talker 1 - Digit “zerg”

Figure 1.17
Spectra of digits pronounced by a male speaker (Talker 1),
and the same speaker with a cold (Talker 2). The x-axis
represents time in milliseconds (0-800); the y-axis
represents frequency in kilohertz (0-11).

and differences in pronunciation depending on the health status of the same speaker, are illustrated
graphically in figure 1.17.

1.5.3 Variability in Speech

The fundamental difficulty of speech recognition is that the speech signal is highly variable according to
the speaker, speaking rate, context, and acoustic conditions. The task is to find which of the variations is
relevant to speech recognition (Lee et al., 1993).

There are a great number of factors which cause variability in speech such as the speaker, the context, and
the environment. The speech signal is very dependent on the physical characteristics of the vocal tract,
which in turn depend on age and gender. The country of the speaker and the region in the country the
speaker is from can also affect speech. Different accents of English can mean different acoustic
realizations of the same
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phonemes. If English is the second language of the speaker, there can be an even greater degree of
variability in the speech.

The same speaker can show variability in his or her speech, depending on whether it is a formal or
informal situation. People speak precisely in formal situations and imprecisely in informal situations
because the speaker is more relaxed. The more familiar a speaker is with a computer speech recognition
system, the more informal his or her speech becomes, and the more difficult for the speech recognition
system to recognize the speech. This could pose problems for speech recognition systems if they could
not continually adjust.

Words may be pronounced differently depending on their context. Words are pronounced differently
depending on where they lie in a sentence and the degree of stress placed upon them. In addition, the
speaking rate can cause variability in speech. The speed of speech varies according to such things as the
situation and emotions of the speaker. The duration of sounds in fast speech, however, do not reduce
proportionately to their duration in slow speech.

Case Example: Phonemes Recognition Recognizing phonemes from a spoken language is an important
task because if it is done correctly, then it is possible to further recognize the words, the sentences, and
the context in the spoken language. But it is an extremely difficult task. And this is because of the various
ways people speak. They pronounce vowels and consonants differently depending on the accent, dialect,
and the health status of the person (a person with the flu sounds differently). Figure 1.18 shows the
difference between some vowels in English pronounced by male speakers in R.P. English, Australian
English, and New Zealand English, when the first and the second formants are used as a feature space and
averaged values are used. The significant difference between the same vowels pronounced in different
dialects (except /I/ for the R.P. and Australian English; they coincide on the diagram) can be noted.
Solutions to the problem of phonemes recognition is presented in chapters 5 and 6.

Case Example: Musical Signal Recognition This is a similar problem to that of speech recognition. The
problem is how to recognize individual notes from a sequence of musical signals and how to eventually
print them out. There are some differences also. The frequency band used for speech is usually [0, 10]
kHz, but for music it is usually [0,20] kHz. Musical notes are easier to recognize as they are more similar,
whatever the instru-
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Figure 1.18
The first two formants used to represent the vowels /u/, /1/,/i/
and /3/ pronounced by a male speaker in R.P English, Australian
English, and New Zealand English. (Redrawn and adapted with
permission from Maclagan 1982.)

ment is used to produce them, than phonemes pronounced by different persons. Still there may be
difficulties for a computer system in recognizing a tune produced by one piano when a system is trained

on signals produced by another.

A further problem for computer speech recognition is ambiguity of speech. This ambiguity is resolved by
humans through some higher-level processing. Ambiguity may be caused by:

. Homophones—words with different spellings and meanings but that sound the same (e.g., "to,
"too," and "two" and "hear" and "here™). It is necessary to resort to higher levels of linguistic analysis for

distinction.

. Overlapping classes, as in the example above illustrating overlapping of phonemes pronounced in
different dialects of a language.

. Word boundaries. By identifying speech through a string of phonemes only, ambiguities will arise,
for example, /greiteip/ could be interpreted as "gray tape™or "great ape™; /laithau skip,/ could be either

"lighthouse
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keeper" or "light housekeeper.” Once again it is necessary to resort to high-level linguistic analysis to
distinguish boundaries.

. Syntactic ambiguity. This is the ambiguity of meaning until all the words are grouped into
appropriate syntactic units. For example, the phrase “the boy jumped over the stream with the fish" means
either the boy with the fish jumped over the stream or the boy jumped over the stream with a fish in it.
The correct interpretation requires more contextual information.

The above examples show that the ASR problem is one of the most difficult Al problems. It contains
features of other generic problems, like pattern recognition, classification, data rate reduction, and so
forth. Once we know how to tackle it, we will have the skills and knowledge to tackle other Al problems
of a similar nature.

1.5.4 Factors That Influence the Performance of the ASR Systems

All the speech recognition tasks are constrained in order to be solved. Through placing constraints on the
speech recognition system, the complexity of the speech recognition task can be considerably reduced.
The complexity is basically affected by:

. Vocabulary size (the range of words and phrases the system understands). Many tasks can be
performed with a small vocabulary, although ultimately the most useful systems will have a large
vocabulary. In general, vocabulary size is as follows:

Small, tens of words.

Medium, hundreds of words.

Large, thousands of words.

Very large, tens of thousands of words.

. The speaking format of the system, that is,

Isolated words (phrase) recognition.

Connected word recognition; this uses fluent speech but a highly constrained vocabulary, for
example, digit dialing.

Continuous speech recognition.

. The degree of speaker dependence of the system, that is, whether it is:
Speaker-dependent (trained to the speech patterns of an individual user).
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Figure 1.19
Main blocks in a speech recognition system.

Multiple speakers (trained to the speech patterns of a limited group of people).

Speaker-independent (such a system could work reliably with speakers who have never used the
system).

. The constraints of the task, that is, as the vocabulary size increases, the possible combinations of
words to be recognized grows exponentially. Some form of task constraint, such as formal syntax and
formal semantics, is required to make the task more manageable.

1.5.5 Building ASR Systems

Figure 1.19 shows a simplified diagram of a computer speech recognition system. It comprises five major
blocks:

1. Preprocessing—sampling and digitizing the signal.

2. Signal processing—transforming the signal taken for a small portion of time into an n-dimensional
feature vector, where n is the number of features used (fast Fourier transform, mel-scaled cepstrum
coefficient; see below in this section).

3. Pattern matching—matching the feature vector to already existing ones and finding the best match.

4. Time alignment—a sequence of vectors recognized over a time are aligned to represent a meaningful
linguistic unit (phoneme, word).

5. Language analysis—the recognized language units recognized over time are further combined and
recognized from the point of view of the syntax, the semantics, and the concepts of the language used in
the system.



Page 38

Here a short explanation of the different phases of the process of speech recognition will be given.
Computer speech recognition is performed on digitized signals. Speech, however, is a continuous signal
and therefore has to be sampled in both time and amplitude. To ensure that the continuous signal can be
reconstructed from the digitized signal, the speech signal has to be band-limited and sampled at the so-
called Nyguist sampling frequency or higher. The Nyguist sampling frequency is twice the maximum
frequency in the band-limited speech signal.

Digitized speech is not only discrete in the time domain but also in the amplitude domain. The average
intensity of speech at conversational level is about 60 dB, increasing to about 75 dB for shouting and
decreasing to about 35 to 40 dB for quiet but not whispered speech (silence is taken to be 0 dB). Itis
important that the amplitude quantization allow for an adequate representation of the dynamic range of
speech. Typically, speech is quantized by using 8 or 16 bits.

Speech signals carry a lot of information, most of which is redundant. How to reduce the rate of data to
be processed and not lose important information? This is the task of the signal-processing phase. For
example, to store the information from a sampled speech for 1 second with a 20-kHz sampling rate, using
16 bits, 40,000 bytes of memory are needed. After a signal transformation (spectral analysis), the whole
signal may be represented as a 26-element vector, which occupies only 52 bytes. What transformation
should be used for a compromise among accuracy, speed, and memory space?

When the speech signal is processed, the processing is performed on sequential segments of the speech
signal rather than on the entire signal. The length of the segment is typically between 10 ms and 30 ms;
over this period of time the speech signal can be considered stationary. Taking segments of the speech
signal is usually done by using a window, thus removing the discontinuities at the edges. The
discontinuities, if present, will distort the spectrum of the speech signal.

Different types of spectral analysis are used in speech recognition systems (Picone 1993). One of them is
the Digital Filter Banks model. The filter bank is a crude model of the initial stages of transduction in the
human auditory system. The model is based on so-called critical bands (Picone 1993). Two attempts to
emulate these bands are the Bark and mel scale, with the mel scale being more popular in speech
recognition. According to Lee et al. (1993) "[the] mel frequency scale is a psychologi-
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cally based frequency scale, which is quasi-linear until about 1 kHz and quasi-logarithmic above 1 kHz.
The rational for using it [in speech recognition] is because the human ear perceives frequencies on a non-
uniform scale." Since the typical human auditory system can obviously distinguish speech sounds, it is
desirable to represent spectral features for a speech recognition system on a psychologically based
frequency scale. The following formula is used to calculate a pitch in mels:

p = clog, (1 + f/1000)
where f is the frequency in hertz, p is the pitch in mels, and ¢ = 1000/log,, 2 is a constant.

Another transformation is the Fourier transform (FT). An alternative way of forming a filter bank is
through the Fourier transform. The discrete Fourier transform (DFT) calculates frequency components of
the speech signal from its waveform, a special, less computationally heavy version of it being the fast FT
(FFT). The filter banks are then made up by adding up series of consecutive frequency components which
fall within the bandwidth of each filter. The spacing of the filter banks depends on whether a linear, mel,
or Bark scale was used.

The formula for the FT and some other transformations used on speech signals are given in fig. 1.39 and
explained in section 1.10.

Once a parametric representation of speech has been obtained, the next step is to perform recognition on
it. This step is called pattern matching. There are four major ways to do this: (1) template matching, (2)
hidden Markov models, (3) neural networks, and (4) rule-based systems.

For the time-alignment phase different methods can be applied, for example, the Viterby method,
dynamic programming, and fuzzy rules; see chapters 5 and 6.

1.5.6 Language Analysis: The Turing Test for Al

Natural language understanding is an extremely complex phenomenon. It involves recognition of sounds,
words, and phrases, as well as their combining forms, comprehension, and usage. There are various levels
in the process of language analysis:

. Prosody deals with rhythm and intonation.

. Phonetics deals with the main sound units of speech (phonemes) and their correct combination.
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. Lexicology deals with the lexical content of language.

. Semantics deals with the meaning of words and phrases seen as a function of the meaning of their
constituents.

. Morphology deals with the semantic components of words (morphemes).
. Syntax deals with the rules, which are applied for matching words in order to form sentences.
. Pragmatics deals with the modes of use of language and their impact on the listener.

The importance of language understanding in communication between humans and computers was the
essence of the Turing test for Al. Alan Turing, a British mathematician and computer scientist, introduced
a definition of Al. A machine system is considered to posseses Al if, while communicating with a person
behind a "bar," the person cannot recognize whether it is a machine or a human. To put it more simply, an
Al system is a system that can communicate with humans in their natural language. This test has not been
passed by any computer system so far, and it is unlikely to be passed by any machine in the near future.

Computer systems for language understanding require methods which can represent ambiguity,
commonsense knowledge, and hierarchical structures. Humans, when communicating with one another,
share a lot of commonsense knowledge which is inherited and learned in a natural way. This is a problem
for a computer program. Humans use facial expressions, body language, gestures, and eye movements
when they communicate. So they communicate in a multimodal manner. Computer systems that analyze
speech signals, gestures, and facial expressions when communicating with users are called multimodal
interfaces.

1.5.7 Intelligent Human-Computer Interfaces

One application of speech recognition and language modeling systems is for building intelligent human
computer interfaces (IHCI). A general block diagram of an IHCI is graphically depicted in figure 1.20.
The system allows for retrieving information from a database or for connecting the user to other
communication ports by using both speech and text. It consists of the following major modules:

. Speech recognition and language modeling block. This module is trained on a speech corpus and
uses a linguistic knowledge corpus. It recognizes
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A block diagram of an intelligent human computer interface (IHCI).

spoken words, phrases, and sentences from a defined dictionary. The input speech signals are first
digitized, transformed into feature vectors, and then used in the speech recognition submodule to
match with already known speech patterns and to recognize small speech units, for example,
phonemes. The language modeling submodule takes the recognized speech units and combine them
into meaningful and relevant words and sentences.

. Similarity-based query module. This module does approximate reasoning over user's query and
allows for vague, fuzzy queries to be used. For example, the user can ask for a list of patients who have
"high blood pressure™ when the database contains the blood pressure parameter in a numerical form only.
The module performs two levels of matching a query to a database. The first one is exact matching, when
the query matches exactly the information in the database. The second one is similarity-based matching,
which involves interaction between the user and the system. The module finds language or conceptual
similarities based on previous knowledge represented in terms of fuzzy rules. Fuzzy logic can be used for

implementing the module as fuzzy systems have proved to be good at representing humanlike reasoning
based on similarities.
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. Knowledge acquisition module. The module is used to extract knowledge from different sources of
information, for example, for extracting linguistic rules from linguistic database or extracting trading
rules from a stock exchange database.

. Answer formation module. This module produces the answer to the user and performs a dialogue at
any phase of the information retrieval. It has speech synthesis and text generation submodules.

A small-scale realization of the above general IHCI is presented in chapter 6.

1.6 Prediction
1.6.1 What Is the Problem?

Prediction (forecasting) is the process of generating information for the possible future development of a
process from data about its past and its present development. Three different tasks can be distinguished
under the generic prediction problem:

1. Short-term prediction (which is the restricted and default meaning of the word "prediction™).

2. Modeling, which is finding global underlying structures, models, and formulas, which can explain the
behavior of the process in the long run and can be used for long-term prediction as well as for
understanding the past.

3. Characterization, which is aimed at finding fundamental properties of the process under consideration,
such as degrees of freedom, etc. (Weigend and Gershefeld, 1993).

Prediction is something that is done every day in weather forecasting, agricultural harvest forecasting,
commodity market forecasting, and stock and bond market forecasting. Prediction of earthquakes and
other disasters, prediction of solar flares, prediction of the ozone layer movement, for example, are of
extreme importance. Prediction is a very important generic Al problem. Predicting the future is what
everybody wants to be able to do. But how?

If prediction is based on past data, the methods used might differ depending on the type of data available
(Weigend and Gershefeld, 1993):
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Natural vs. synthetic
Stationary vs. nonstationary
Low-dimensional vs. stochastic
Clean vs. noisy

Short-term vs. long-term
Linear vs. nonlinear

Scalar vs. vector

One trial vs. many trials

Continuous vs. discrete.

Two types of data on which prediction is discussed in this section, are (1) time-series data, for example,
predicting the stock market, predicting water flow coming to a sewage plant on an hourly basis;
predicting gas consumption on a monthly basis; and (2) static, stationary data, for example, predicting
the outcome of a disease, the effect of a new drug.

Before that, the major difficulties in solving the prediction problem should be mentioned, namely:

Establishing whether a process is predictable at all

Establishing the type of data and the process subject to prediction
Defining the right features for presenting the prediction problem
Defining how much past data are required for a good prediction

Defining a methodology to test the accuracy of the prediction

1.6.2 Time-Series Prediction

Prediction of time-series events is called time-series prediction. When a prediction is done on the basis of
only one independent variable it is called a univariate prediction; otherwise it is called a multivariate
prediction. A general form of a heuristic rule for time-series prediction is:

IF (previous time-moment values for the features from the feature space are d;), THEN (next time-
moment values for the predicted variable(s) will be s;)



Many techniques available for multivariate time-series analysis assume simple, often linear relationships
between the variables. But, in reality,
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Figure 1.21
The Gas Consumption case example data; the average monthly minimum
temperatures and the gas consumption per capita are graphed (see appendix B).

temporal variations in data do not exhibit simple regularities and are difficult to analyze.

In general, the predicted value of a variable in a future time is based on k previous values. In this case k is
a lag of the prediction. If we have the values of a variable x for the moments from | to t, that is, x(I), x(2),
.., X(t), we may predict x(t + 1), and also the next time interval values x(t + 2), ..., X(t + m). The
variable subject to prediction can be different from the past data variables (independent variables).

Case Example: The Gas Consumption Prediction Problem The problem is to predict the gas
consumption per capita for next few months in the town of Hamilton, based on the average minimum
temperatures and previous data (Gonzales 1992), as shown graphically in figure 1.21. The whole data set
Is given in appendix B. A simple prediction system is shown in figure
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Different prediction models for predicting average
gas consumption Gt for month t, based on the
average minimum temperature T7, time over a

long period, and the month of prediction.

1.22a. It uses an assumption that the gas consumption G, during the next month (t) can be predicted only
on the basis of the prediction for the average minimum temperature T, during this month. So one input
variable is used only—T,. Figure 1.22b shows another model for solving the same problem, but here two
"lags" for the temperature are used, T, -, and T, -,, in addition to the predicted T,. This scheme assumes
longer-term dependence of the next values on the previous, past data. If long-term trends are anticipated
(e.g., decreasing consumption because of the global warming effect, or some other reason), then the
prediction model should include a long term variable, Time, for example, represented in consecutive
numbers (months) over a long period as in figure 1.22c. The model in figure 1.22d uses another variable,
the calender month of prediction Month,, which gives the system an opportunity to learn a dependence
between gas consumption and season. The different models shown in figure 1.22 use different feature
spaces to deal with the same problem. Which of the prediction models would be better is discussed in
chapter 5 where the models are implemented in a connectionist way.

Case Example: The Water Flow to a Sewage Plant Prediction Problem The problem is as follows:
Given a data set for the water flow (in cubic meters) incoming to a sewage plant and the hour and the day
it is recorded, predict the water flow at the next hour, as well as the flow over the next several hours (see
appendix C). This problem is discussed in chapters 6 and 7.
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Different states of a stock market (Reprinted,
with permission, from Financial Analyst Journal,
November/December 1990. Copyright 1990,
Association for Investment Management and
Research, Charlottesville, V.A. All rights reserved).

Case Example: The Stock Market Prediction Problem A more complex specific prediction problem is
the stock market prediction problem. Is a stock market predictable at all? According to the coherent
market hypothesis (see Vaga 1990), a stock market can behave differently, depending on its state (figure
1.23). Four states are defined on the feature space of two features only: (1) group sentiment, a measure of
whether the level of "group thinking" is above or below a critical transition threshold; and (2)
fundamental bias, a measure of external preference toward bullish or bearish sentiment. Only a market
that is in a random walk state is unpredictable because it fluctuates randomly. A coherent market is easily
predictable and a chaotic market is more or less predictable depending on the degree of chaos. A chaotic
market is defined as a chaotic process, which is nonlinear, deterministic, strictly nonperiodic but nearly
periodic, therefore predictable over a short term (see chapter 7).

Example The SE40 stock exchange index data over a period of several years is given in appendix C.

There are different theories for predicting the market, one of them being the moving averages theory. The
theory says that by computing average values the volatility of the time series is smoothed and the trends
of the market are indicated. A moving average is calculated by using
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The moving averages model of predicting the exchange
rate between the U.S. dollar and the British pound
reprinted with permission from Goonatilake and Campbell 1994).

the formula:

MA, = (Y B_)nfori=1,2. ,n

where n is the number of the days, P, is the opening price of the stock on the day t - i, and MA, is the
moving average on day t. Two heuristic rules which implement the theory are:

R1: IF the short moving average crosses the long moving average from below, THEN the market is likely
to rise (BUY)

R2: IF the short moving average crosses the long moving average from above, THEN the market is likely
to fall (SELL)

Example Figure 1.24 shows an example of using the above decision rules for predicting the US dollar
and British pound exchange rate (Goonatilike and Campbell 1994).

1.6.3 Prediction Based on Static Data

Another type of prediction problem is when data are static or when time is not represented as a parameter.
These tasks are in general easier to
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Figure 1.25

The effect of 15 drugs on 15 experimental tumors and on a tumor
in a patient with breast cancer.

handle because of the missing time variation problem, still subject to having enough representative past
data or expertise on the problem.

Case Example An example of such a problem is predicting the effect of a new chemotherapeutic agent
for breast cancer treatment based on the presumed similarity between the tumor and a set of experimental
tumors. Figure 1.25 contains the known effect of 15 established drugs on 15 experimental tumors and on
a clinical tumor (malignant breast cancer) (Karaivanova et al. 1983). The problem is to find an analogous
mapping between the set of 15 experimental tumors and the clinical tumor based on their known reactions
to the same 15 drugs. In this way it may be possible to predict the effect of a new drug on the clinical
tumor after having tested it on the experimental tumors and knowing the reactions, subject to established
similarities between the new drug and those previously used. A solution to this problem is given in
chapter 5.

1.6.4 About the Methods for Prediction
Prediction can be carried out based on:

. Past data, for example, the Gas Consumption Prediction
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. Heuristic expert rules, for example, rules which suggest whether to buy or sell depending on the
current political situation, economic situation, business growth, exports, and so forth.

. Both past data and heuristic rules

Depending on the information used, the following methods have been applied to solving prediction
problems:

. Statistical methods, based on regression analysis and probability analysis
. Neural networks, which perform pattern matching
. Rule-based systems, including fuzzy rule-based systems, which represent heuristic expert

knowledge; rules might be extracted from past data by using machine-learning techniques
. Hybrid systems, which make use of past data and expert rules in one system

The last three methods are demonstrated in chapters 3, 5, 6, and 7. Several time-series data sets for
experimenting with are given in appendix C.

1.7 Planning, Monitoring, Diagnosis, and Control

Planning, monitoring, diagnosis and control are three generic Al problems which are based on
representing the object (process) under consideration by its state space and transitions between the states.
The state space of the object is usually huge, which demands heuristic rules to search in it and to find the
desired state (goal, set point, dangerous situation, fault).

1.7.1 Planning

Planning is a very important generic Al problem which is about generating a sequence of actions in order
to achieve a given goal when a description of the current situation is available. The main terms used in
planning systems are:

. A set of goals

. A set of actions

. A set of objects (processes)

. A set of conditions for the actions to take place

. Descriptors for representing relations between the objects
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WHILE ng teemination condition 18 reached DO
[
read data (current situation, goals);
evaluate the input data;
generaie a plan
execule the plan

Figure 1.26
A simple algorithm for a planning program.

Planning is usually realized as an interactive task which has four major phases repeated until the
termination condition is reached (figure 1.26). A general heuristic rule for planning is in the form of:

IF (a given situation) and (a defined goal), THEN (a sequence of actions)

Example A good example of a planning problem is the Blocks World Problem. The task is to move
blocks ordered in piles (stacks). A simple blocks world of only two blocks (A and B) is shown in figure
1.27a. When the goal to take block B is given, the system should produce a sequence of actions to achieve
this goal. If there were three or more blocks, then the goal would have to be represented as a set of
subgoals (e.g., to clear the upper and the lower blocks, to move blocks on the floor, etc.).

A planning system can be represented functionally as a graph where the nodes represent situations (states
in the state space of all the possible situations) and the arcs represent actions that cause changes in the
situations. This is illustrated in figure 1.27b for the above example.

Case Example: The Monkey and Bananas Problem This is another typical example of a planning
problem. It is actually a problem of planning the movement of a robot. This problem has been widely
used as a benchmark problem for evaluating different implementations of rule-based production systems.
The problem itself is the following: A monkey is in a room containing a couch, blanket, ladder, and a
bunch of bananas. The objects are assembled on the floor and the bananas hang from the ceiling. Each
object has its coordinates. The aim is to generate the steps the monkey should take to achieve the goal of
grasping the bananas (figure 1.28). Here is an exemplary rule for this problem:
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A
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A State 1

Situation 2

Figure 1.27
A simple Blocks World Problem as a planning problem:
(a) the problem's input-output diagram; (b) a functional
diagram of the system execution.

IF (monkey is at position x on the floor) and (monkey does not hold anything) and (bananas are at
position y on the ceiling) and (ladder is at position z, z being different from x and y),
THEN (monkey walks to position z in order to take the ladder)

1.7.2 Monitoring

Monitoring is a generic task which consists of a continuous recording of the states of a process or object
and emitting messages about some extreme cases. Monitoring is the process of interpretation of
continuous input information, and recommending intervention if appropriate. It could be, for example, a
dangerous situation in a reactor when the alarm signals have to be triggered. Many medical, agricultural,
and military systems are of this type. Monitoring is usually accomplished as a loop. A general form of a
heuristic rule for monitoring looks like:
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Figure 1.28
The Monkey and Bananas Problem: (a) a graphical
representation of the problem; (b) a possible plan shown
as actions changing the states in the states space.

IF (a situation is one of the predefined specific and possibly dangerous situations), THEN (report on the
situation and consequences).

Case example: Monitoring of a Car on the Road A specific simple problem of a monitoring type will be
used to illustrate the generic one. The problem is to develop a monitoring system which monitors a car
and gives a signal to the driver to stop the car when there is dangerous malfunctioning, for example, if the
engine overheats or the brakes react slowly. The temperature sensor (gauge) and brakes sensor measure
the adequacy of those devices. A real car monitoring problem of assessing when the driver should be
alerted to stop the car is complicated and needs a lot of
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[ Rule 1
IF {* condimons *)
{ there is an overneating ) OR
{ the brakes respond slowly when pressed )
THEM {* conclusions *)
{ give o message 1o the driver to stop the car))

[ Bule 2
IF (® conditions ®)
{ the lempermure gauge works properlyy AND
{ the emperature is over 120 )
THEMN (* conclusions™)
(there 1 an overheating) )

Figure 1.29
Two simple rules for the Car Monitoring case example.

checks without any guarantee that there can be a complete solution. Two simple rules of thumb are shown
in figure 1.29.

1.7.3 Diagnosis

Diagnosis is another typical generic Al problem. This is the process of finding faults in a system. A
simple way to represent a diagnostic system is to use a triple (M,D,R), where M is a set of manifestations,
M={mlmz2,...,mk}, D={d1,d2,...,dl}isasetof possible faults,and R = {r1,r2, ... ,rn} is a set of
diagnostic rules which give the relations between the faults and the symptoms, if known. A set of
examples which associate manifestation vectors to faults may also be used.

Considerable research work has been done on automating the fault diagnosis process. Most of the
diagnostic procedures fall into two categories: (1) shallow, or symptom-based diagnostic reasoning; and
(2) deep or model-based diagnostic reasoning.

The advantage of shallow or symptom-based reasoning is its efficiency and ease in representing
knowledge. The symptom-based fault diagnosis systems can be developed by using rule-based expert
systems, by using neural network techniques, or by using fuzzy logic. Two simple diagnostic problems
are used as case examples in this book. One of them, the Smoker and the Risk of Cancer Problem, was
introduced in a previous section. A fuzzy rule and the membership functions that define the fuzzy values
are shown in figure 1.8. In general, a heuristic rule for diagnosis looks like:



Hi:

K3

K4

IF (ml is alwoays and m2 s weak and m3 is no and m4 15 no)
THEN (d|l is very strong)

IF (ml is no and m2 is always and m3 is weak and m4 is no)
THEM {d2 wery strong)

IF{ml is mare or less weak and m2 is no and m3 15 always and m4 is no)
THEM (d? very strong)

IF (ml is weak and m2 is more or kess weak and m3 15 always and m 15 no)
THEN (d4 15 very strong)

Figure 1.30
Diagnostic rules for the Medical Diagnosis case example.

Ve'hile no termination condition is reached DO

{
read the data about the current state of the object;
evalume dma and infer comrol wchions,
send control signals 1o the object

|

Figure 1.31
An outline of a control loop.

IF (symptoms), THEN (diagnosis)
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Case Example: Hypothetical Medical Diagnosis Problem The second diagnostic case example is adopted
from Chen (1988) and modified for the purpose of this book. The example comprises a set M = {m1, m2,
m3, m4} of four manifestations, a set of four faults (diseases) D = {dl, d2, d3, d4}, and a set of four
medical diagnostic rules R = {r1, r2, r3, r4} which represent vague expressions, as given in figure 1.30.
A solution to this problem is given in chapter 3.

1.7.4 Control

Control is the process of acquiring information for the current state of an object and emitting control
signals to it in order to keep the object in its possible and desired states. A control loop is given in figure
1.31. A general rule for the control problem would be:
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|

Figure 1.32
The Inverted Pendulum case example-a physical presentation
of an experimental system.

IF (the object is in a state d;), THEN (emit a control signal s;)
Three groups of methods are mainly used today for solving control problems. These are:

1. Classic nonlinear control, based on mathematical formulas to calculate the values for the control
variables when the values of the input variables and values for other parameters of the system under
control are given

2. Fuzzy systems, based on fuzzy rules

3. Neural networks, based on training with input-output data collected when the object has been operating
properly

Case Example: The Inverted Pendulum Problem This is a classic control problem used in many
experiments, books, and real systems (Yamakawa 1989; Kosko 1992). Figure 1.32 is a graphical
representation of the problem. A pendulum is fixed to a cart with two degrees of movement. The cart can
move in two directions: forward and backward. The problem is to keep the pendulum standing vertical.
To keep the pendulum balanced, a force y should be applied to the cart to move forward or backward
continuously according to the current state of the pendulum, here represented by two parameters-the
current value of the angle © of the pendulum with the vertical line and its angular velocity A®.
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The inverted pendulum problem is solved by using second-order differential equations for calculating the
force to be used for moving the cart, when the current angle, the current angular velocity, and the values
for the length of the pendulum, its mass, and the resistance of the medium (the air) in which the pendulum
IS moving are given. Solving a set of differential equations might be too slow for a fast real-type control
process. Something more, a slight change in the parameters of the object (say the resistance of the
medium increases a little bit) requires a new set of differential equations to be defined. These two major
difficulties of using mathematical formulas are overcome in the fuzzy systems for control.

A fuzzy system for controlling the inverted pendulum is much easier to develop (Yamakawa 1989).
Avrticulating fuzzy rules for controlling the inverted pendulum can be done similar to the way the heuristic
rules for balancing a pencil on a palm were articulated:

Rule 1: IF the pendulum tilts to the right, THEN move the cart backward
Rule 2: IF the pendulum tilts to the left, THEN move the cart forward

Those two rules are far from being the solution to the problem. It must also be decided how far
"backward" and "forward." This depends on the static and dynamic state of the pendulum. The initial
heuristics have to be developed further, taking into account the domain values for the angle © (between -
90 and 90 degrees), the domain values for the angular velocity (the same), and the values for the force
applied to the cart. In order to make the above two heuristic rules more precise, the intervals of all three
parameters are discretized into five subintervals as follows: (1) positive medium (PM); (2) positive small
(PS); (3) zero (ZE); (4) negative small (NS); and (5) negative medium (NM). Having such a quantization,
one can articulate more heuristic rules as a development of the initial two. This problem is discussed
further in chapter 3, when the fuzziness of the intervals is defined. Some heuristic rules, which refine the
rough heuristic rules above, are given in figure 1.33.

Fuzzy systems are robust, that is, changing the parameters of the object under control does not necessarily
require changing the set of fuzzy rules. This was brilliantly demonstrated by Professor Takeshi
Yamakawa. He implemented the above fuzzy rules in hardware and showed that an inverted pendulum
can be controlled in this way. Then he put a glass of wine on top of the pendulum. Without changing the
set of rules, the pendulum
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IF & is PM AND AS is ZR, THEN v is PM,
IF @iz PS AND AS s PS5, THEN v is P5,
IF & is P§ AND AG is NS, THEN y is ZR.,
IF & is NM AND AB is ZE, THEN v is NM,
IF & iz NS AND A iz N5, THEN vy is N5,

IF 3 is M5 AND AG s PS, THEN v iz ZR,

IF & is ZR AND AD is ZR, THEM v is ZR.

Figure 1.33
Seven heuristic rules for balancing the inverted pendulum.
(Adapted with permission from Yamakawa 1989.)

with the glass of wine was balanced. He then replaced the glass of wine with a live mouse which was
trying to escape unsuccessfully from the platform on top of the pendulum. The pendulum stayed
balanced. But, on the other hand, it is difficult to estimate how much the parameters may change without
the need for changing the fuzzy rules. This problem is known as the stability problem (see details in L-X
Wang 1994). For example, it is difficult to calculate the stability of the inverted pendulum if the mouse is
replaced by a small rabbit.

Fuzzy and neural control techniques are used to control the landing of missiles and airplanes, track flying
objects, in automatic control of trucks, and so forth (Kosko 1992). The pendulum toy example is actually
a serious contribution to the human way of controlling the environment and objects in the universe.
Similar problems of keeping objects or processes in balanced states can be found easily in any research
and application area (air conditioning, "balancing” blood pressure, controlling heart beat, balancing the
profits of a company, etc.)

1.8 Optimization, Decision Making, and Games Playing

These three generic Al problems are similar in the sense that the search for a solution needs to set a
strategy.
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1.8.1 Setting Strategies and Evaluating Complexities

A strategy is usually expressed by a set of heuristic rules. The heuristic rules ease the process of searching
for an optimal solution. The process is usually iterative and at one step either the global optimum for the
whole problem (state) space is found and the process stops, or a local optimum for a subspace of the state
space of the problem is found and the problem continues, if it is possible to improve.

Many simple specific problems which fall in the pools of these generic ones use simple strategies or
straightforward heuristics.

The reason for setting a strategy when searching for the solution is to minimize the complexity of the
system. Complexity is measured by the number of typical operations for reaching a solution. It is usually
expressed as a function of the size of the problem, which is represented by a typical parameter of the
problem that is dominant when evaluating the volume of data required to be processed for finding a
solution. For example, for the Traveling Salesman Problem the size is defined by the number of the towns
n to visit. The complexity is represented by a function f(n) defining how many operations (summation,
comparison, etc.) overall are needed to find a solution to the problem.

Complexity can be represented by the asymptotic complexity function, which is the function f(n) when n
grows to infinity. Typical values for estimating asymptotic complexity of algorithms are: log, n, n, nlog,
n, nz, polynomial function of n of k degree, etc. Problems for which the complete solution can be reached
only by applying an algorithm (method) where asymptotic complexity is an exponential function, are
called NP-complete problems (NP stands for nonpolynomial).

So, the difficult Al problems very often are NP-complete because of their huge state space in which
finding a solution requires a lot of operations. And that is why good search strategies to search through
the solution space are needed!

1.8.2 Optimization

Optimization problems are about finding optimal values for parameters of an object or a system which
minimizes an objective (cost) function. There are many methods applicable to optimization problems.
From the point of view of the solution achieved, one can distinguish methods that guaran-
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tee the complete optimal solution, and heuristic methods, which do not guarantee an optimal solution, but
In most cases give a satisfactory solution for much less complexity.

Heuristic methods may aim at local optimization rather than at global optimization, that is, the algorithm
optimizes the solution stepwise, finding the best solution at each small step of the solution process and
"hoping" that the global solution, which comprises the local ones, would be satisfactory. A heuristic rule
for such a strategy is:

WHILE the final solution is not reached DO
{IF (next step decision satisfies a local optimum criterion), THEN (choose it)}

Case Example: The Traveling Salesman Problem A graphical representation of an example of the
problem when n = 5 and for certain traveling costs c; to travel from town i to town j, is given in figure
1.34. In the general case, thereare (n-1)! =(n-1)(n-2)...2.1 possible paths (this is the solution state
space). Choosing the cheapest one is a NP complete optimization problem. A heuristic approach to
solving this problem is possible. A heuristic rule to solve the problem is the following:

Figure 1.34
A graphical representation of a simple version of The
Traveling Salesman Problem (TSP) case example.
The nodes of the graph denote towns and the arcs
denote connections between the towns weighted by the
corresponding traveling costs.



Page 60

WHILE there are more towns to visit DO

{IF (j is a town which has not been visited yet) AND

(the cost from the last visited town to j is the lowest among the nonvisited ones),
THEN (visit town )

The asymptotic complexity of this heuristic solution is n2, while the complete optimal solution achieved
through an exhaustive search by generating and checking the cost of all the possible paths has a
complexity of n! Applying this heuristic to the example given in figure 1.34, a path 1-4-2-3-5-1 with a
cost of 23 is found for about 25 operations (comparison and summation), while applying an exhaustive
search for finding the optimal path requires about 120 operations and in this case the same path as in the
heuristic search is found to be the optimal one.

A brilliant example of a general heuristic optimization method is the genetic algorithms (see section 1.2).
They are applicable to probably any optimization problem and it is up to us to compromise between the
time for getting a solution (we can stop the algorithm at any step having the partial solution to the
problem till that step) and its precision.

Some types of neural networks, for example, the Hopfield network, or more generally, the attractor type
of neural networks, are also applicable to optimization problems. A neural network solution to the TSP is
given in chapter 5.

1.8.3 Decision Making

Decision-making systems are Al systems which choose one among many variants as a solution to a
particular problem. The solution is then recommended to the user. The decision-making systems may
contain different subsystems, like systems for classification, optimization, and diagnosis. A general
heuristic rule for a generic decision-making problem is:

IF (circumstances), THEN (decisions)

Case Example: The Bank Loan Decision Problem A decision-making system which advises on bank loan
applications is considered here as a case example. The purpose of the system is to "decide" whether an
applicant for a loan should be given a loan or not. The applicant is represented by three aggregate
attributes. The first is called "critical score" (CScore, or simply
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Score)—a numerical rating on place of residence, employment, and bank accounts. The second attribute
is "critical ratio” (CRatio, or simply Ratio) —the client's profile on loan repayment, mortgage, rent, and
other expenses. The third attribute is "critical credit" (CCredit, or simply Credit)previous loans, credit
cards, and the client's credit history in general. The problem has been introduced and used by Lim and
Takefuji (1990) for a hardware implementation of a bank loan approval system, FXLoan. This problem is
used throughout the book to show the similarity of fuzzy and connectionist reasoning as well as to
demonstrate learning fuzzy rules through using neural networks (see chapter 5). The initial heuristic rules
for loan approval suggested by the above authors are given here, but the full example is revealed in
chapter 3, where the fuzzy concepts "High," "Low," "Good," and "Bad" are defined:

R1: IF CScore is High, and CRatio is Good, and CCredit is Good,
THEN Decision is Approve

R2: IF CScore is Low, and CRatio is Bad, or CCredit is Bad,
THEN Decision is Disapprove

Decision-making systems can be incorporated in larger decision support systems, where access to a large
database would be available, and different subsystems might be included for processing different
subtasks.

Case Example: Investment adviser Another typical decision-making problem is that of investment
advising. The problem is to advise a client investing amounts of money either in a bank or in the share
market when the following parameters are known: amount of money for investing, risk willing to be
taken, period of investment, and income.

Another case example of decision-making problems considered also in this book is mortgage approval
decision making (see appendix C).

1.8.4 Games Playing

Playing games is an intellectual activity of humans based on the following concepts:
. Rules of the game

. Opponent teams
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. Playing media, for example, board
. Criterion for ending the game and choosing the winner
Typical examples of games are chess, ticktacktoe, Go.

The difficulties in developing an Al system that plays a game are mainly due to the large problem space
of all possible moves and the impossibility of checking or trying all of them in order to choose the
optimal one which leads to a win. For example, at a certain stage of the game, all the possible moves in
chess from a current position could be about 10200. In order to cut off moves that are not prospective,
one has to use some strategic heuristic rules. Some questions which should be answered before we
develop a computer game player are:

1. How should the game's rules and the game's media be represented in the system?
2. What heuristic strategy should we use to choose the next move?
3. Can we possibly create a system that will improve its playing with the number of games played?

Choosing the next move should be done in a realistic way (not counting all possible moves if there are
many), but, if possible, not sacrificing the final outcome. For choosing the next move, heuristic strategies
are used, which evaluate the goodness (fitness) of prospective moves. A simple general heuristic rule is:

IF (move j has highest goodness coefficient), THEN (choose move j)

This general rule is used in genetic algorithms (remember the illustrative example in section 1.2 for
playing the "mastermind” game with the use of a genetic algorithm). Here, two other games are
described, for which systems are developed later on in the book.

Case Example: A Computer System for Playing Ticktacktoe This is an old game given as an example in
many Al books. It is played between two opponents on a flat board marked out with three vertically
aligned rows of three equally sized squares. A simple heuristic for playing ticktacktoe is: we choose the
position which counts more for us than for our opponent. Every move is assigned a coefficient which
estimates the "goodness” or the "fitness™ of the move. The move that has the maximum "fitness" is
chosen. Here, an example of a fitness (gain) function is given:
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Figure 1.35

(a) The board of the tictactoe (TTT) game case example;
(b) an example of implementing a heuristic strategy for choosing
the next best move.

g(n) = W(n) - O(n), for all possible movesn=1, 2...,N.

where W(n) is the number of all possible potential winning positions for "us" if we chose the nth possible
move; O(n) is the same for our opponent. Following the strategy set by using the fitness function above,
one of the moves 1, 4, 5, or 7 must be chosen in the example shown in figure 1.35, as they have the
highest goodness coefficients. But which of them? Of course, the heuristic strategies may be made more
sophisticated with a little cost to pay in time. More specific strategic rules to play ticktacktoe are given in
figure 1.36.

Go-Moku is a similar game. The game board consists of 19 x 19 squares. The winner is the player who
first puts in a row, in a column, or diagonal five successive pieces. The bigger the game board, the bigger
the problem space and the more difficult the task.
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IF cateiphe is made when putting on a position j)
THEN (put on w position j) (priogity 1)

IF {1he opponent can make o riple when patting &t s posinon j)
THEN iput on a position j) i priosty (.9}

[F (putting on a pasition j gives us the mos possible ways 1o make inples after the nexe
muoves and gives our opponent fewer possibilities to make triples)
THEN {chonse j to put onlpriorty (0.5)

Figure 1.36
Several specific heuristic strategies for choosing the next move in the
tictactoe case example.

Computer games can be realized by using different methods, some of them being:

. Symbolic Al rule-based systems, which realize heuristic strategy rules; heuristic rules make
ticktacktoe easily realizable as a symbolic Al rule-based system.

. Fuzzy systems, which realize fuzzy rules for playing the game.

. Neural networks, which are trained with examples of good moves without a need to articulate the
fitness function or possible strategies, etc. Neural networks can learn from examples the strategy to play
successfully. Connectionist realizations are more difficult, but they highlight new methods for modeling
human cognition, especially when the "goodness" function is learned by the system during play with a
skilled player or a skilled computer program.

. Genetic algorithms, which do not require heuristic strategies to be articulated in advance, but
require a simple selection criterion.

1.8.5 Design

The generic design problem can be formulated as creating objects that satisfy particular requirements
following a given set of constraints. This area is still to be developed, as design is one of the most
intellect-demanding and imagination-demanding human creative activities. Heuristics are very often used
in automatic solving of design problems. This is because the constraints and the goals of the design can
often be articulated in a linguistic form. A general heuristic rule for design would be:
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IF (constraints Xi) and (goals Yj),
THEN (choose variant Zk with an estimated "goodness" CFKk)

1.9 A General Approach to Knowledge Engineering

The main goal of the design of an intelligent system is to represent as adequately as possible the existing
problem domain knowledge in order to better approximate the goal function, in most cases not known a
priori. Problem solving was represented in section 1.2 as a process of mapping the domain space into the
solution space of a problem by using problem knowledge—nheuristic rules or data, or both.

Different methods can be used to achieve a solution. Figure 1.37 represents different methods and the
relationship between them when used for problem solving. Different pathways, which map the domain
space to the solution space through the problem knowledge, are shown. If we name a method (shown in a
box) with the philosophical term paradigm, then we can distinguish single-paradigm pathways and
multiparadigm pathways, comprising more than one path used in a chain. Depending on the type of the
problem and the available problem knowledge, different methods could be recommended for use. Some
considerations of when to use each of the methods for knowledge engineering and problem solving are
the following:

. Statistical methods can be used when statistically representable data are available and the
underlying type of goal function is known.

. Symbolic Al rule-based systems can be used when the problem knowledge is in the form of well-
defined, rigid rules; no adaptation is possible, or at least it is difficult to implement.

. Fuzzy systems are applicable when the problem knowledge includes heuristic rules, but they are
vague, ill-defined, approximate, possibly contradictory.

. Neural networks are applicable when problem knowledge includes data without having any
knowledge as to what the type of the goal function might be; they can be used to learn heuristic rules after
training with data; they also can be used to implement existing fuzzy or symbolic rules, providing a
flexible approximate reasoning mechanism.
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Usability of different methods for knowledge
engineering and problem-solving depending on
availability of data and expertise (theories) on
a problem.

. Genetic algorithms require neither data sets nor heuristic rules, but a simple selection criterion to
start with; they are very efficient when only a little is known to start with.

Two generic operations are shown in figure 1.37 which are used by the methods: representation, when
heuristic rules are available, and learning, when data are available. Different methods facilitate these two
operations to a different degree, as shown graphically in figure 1.38. For example, symbolic Al methods
are applicable when the problem knowledge is rich in theory and poor in data. Multiparadigm pathways
involve more than one paradigm for solving a problem. Typical multiparadigm pathways are explained in
chapter 6. Some of them are (see figure 1.37):

A neural network is used to learn fuzzy rules, which are implemented in a fuzzy inference system.

Symbolic Al machine-learning method is used and the rules learned are implemented in a symbolic
Al reasoning machine.

Symbolic Al rules are combined with neural networks in a hybrid system.

Genetic algorithm is used to define values for some learning parameters in a neural network.
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. Fuzzy rules are either implemented in a connectionist architecture or combined with neural
networks in a hybrid system.

1.10 Problems and Exercises
Part A: Case Example Solution

1. Solving speech recognition problems requires adequate transformation techniques to transform the raw
speech signal into a set of features. This transformation reduces the data and makes the recognition easier
through dealing with smaller amounts of data. In addition to the Fourier transform, the following
transformation can be used:

. Cepstral coefficients: The cepstrum is defined as an aggregated coefficient calculated over
logarithm transformation of filtered signals. Some computer speech recognition systems use mel-scaled
cepstrum coefficients (MSCC) (Davis and Mermestein 1980). Cepstral parameters are often preferred for
speech recognition applications in noisy environments because they have been derived from high-
resolution spectral estimators (Picone 1993). One segment of a wave speech signal is represented by a
vector of n MSCC.

. Linear prediction: The linear prediction model of speech states that each speech sample can be
predicted from the sum of weighted past samples of speech. The values of the coefficients are calculated
by minimizing the error between the actual speech and the predicted speech.

Figure 1.39 shows the formulas that can be used to achieve the above transformations.
Part B: Practical Tasks

2. Give a definition of heuristics for problem-solving. What is "goodness™ of a heuristic? What does it
mean for a heuristic to be "informed?" Give examples of ill- and well-informed heuristics.

3. What is the difference between past historical data and heuristic rules? What is the difference between
a rule and a formula? Give three examples of each for a different generic problem and a different
application domain area.

4. Give a general form of a heuristic rule and explain it. Give general forms of heuristic rules for four
generic problems and explain each of them.
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(1) Discrete Fourier Transform (DFT):
SK=Y" sme”™ ™ k=0,1,.N,-1

where S(K) is the kth frequency component, and N, is the size of the analysis frame.

(2) Cepstrum transformation:

r{u}nH—lﬁ:: Iugw|3|:.l:}|e‘mm' Ozmsi -1

r

where c(n) is the cepstrum coefficient and N, is the number of samples in a frame.

(3) Mel-scaled cepstrum coefficients (cm(n)):

WX, Keooslilk-2) =] i<1.2..M
¥

where N is the number of mel-scaled filters, X, k=1,2,. .. N; represents the log-energy output of the kth filter and M is the
number of cepstrum coefficients. Cepstral parameters are often preferred for speech recognition applications in noisy
environments as they have been derived from high resolution spectral estimators (Picone, 1993).

(4) Linear prediction:

sin) =Yoo @ didsln-i)+e(n)

where s(n) is the current speech sample, N, is the number of linear predictor coefficients, a, p(i) are the weights of the past

speech samples, also known as predictor coefficients, and e(n) is the error of the model. The values of the coefficients are
calculated by minimising the error between the actual speech and the predicted speech.

Figure 1.39
Different transformations applicable to speech signals.
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5. Give one more example of a specific problem for every generic problem type.
6. Suggest a minimum set of features which can be used to distinguish the two handwritten digits 3 and 5.
7. What is the meaning of data rate reduction in speech recognition systems? Give an example.
8. Why are speech signal transformations needed?
9. What are the difficulties in building ASR systems?
10. Is the stock market predictable according to figure 1.23? Explain your arguments.
11. What reasons should one use when choosing the feature space for prediction?

12. Give another example of a specific problem of prediction. Explain all the general issues given in
section 1.6.1 for this particular problem.

13. Imagine that two more fuzzy values are defined for the angle and the angular velocity in the Inverted
Pendulum control example, which are named positive large and negative large. Add some more fuzzy
rules to the set given in figure 1.33 to describe the reaction of the control system if these values happen
on the input.

14. Imagine a problem called the Ball and Beam Problem. The beam is made to rotate in a vertical plane
around the center of rotation. The ball is free to roll along the beam. The task is to articulate an initial set
of fuzzy rules for keeping the ball in a balanced position by applying a force to the beam, if the object is
represented by four state variables—the distance between the center of the ball and the center of rotation;
the change in the distance; the angle between the beam and the horizontal axis; and the change in the
angle.

15. An example of an optimization problem is the Resource Scheduling Problem. A project consists of a
set of activities on a time scale. Every activity has been assigned five parameters: the earliest possible
starting day, the earliest possible completion day, the latest possible starting day, the latest possible
completion day, and the number of workers involved. The problem is to find the most "leveled" (even)
distribution of number of workers until completion of the whole project. Give heuristic rules for solving
the problem after introducing reasonable restrictions.
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16. The Resource Assignment Problem consists of assigning n workers to n jobs in the best (most
profitable) way, when given the profit c; of assigning every worker i to every job j. Give heuristic rules
for solving that problem. How can you evaluate the "goodness” of these heuristics?

17. What characteristic of neural networks makes them suitable for solving the specific problems given in
this chapter?

18. Explain the difference between the different pathways in figure 1.37.

19. Looking at the data set of water flow into a sewage plant graphed in appendix C and in figure 7.1, try
to elaborate rules for predicting the flow depending on the time (the hour) of day.

Part C: A Sample Project on Data Analysis
Topic: Speech Data Analysis
TASKS (see Appendixes G and J)

1. Speech data collection: Record three times each the digit words from 0 to 9 spoken by yourself. Save
the recorded raw speech files on a disk. Explain in a few sentences what "sampling frequency" is and how
it should be chosen for particular recordings. Report the values for the following parameters for one
recorded digit from each of the groups: {0, 1, 2, 3}; {4, 5, 6}; {7, 8, 9}:

a. Recording time.

b. Sampling frequency.

c. Number of samples.

d. Size of the raw data (in kilobytes).

Explain the relationship between the recording time, sampling frequency, number of samples, and size of
the raw signal.

2. Speech data display: Explain in a paragraph the principles of at least three ways of displaying speech
data, for example, waveform, spectrum, frequency display. Display the spectra of the digits chosen for
analysis.

3. Speech data grouping—phoneme analysis: Define by observation the boundary between the following
phonemes in the pronounced words: /z/and /e/ in zero; /t/ and /u/ in two; /f/ and /o/ in four; /f/ and /ai/ in
five; /s/ and /e/ in seven; /ei/ and /t/ in eight; /n/ and /ai/ in nine. Separate the areas of the different
phonemes. Explain briefly some general differences
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between the spectra of the fricatives you have in your examples (/z/,/f/, /s/,/@/) and the vowels
(/el,/ul /ol [ail, etc.). Such differences can be, for example, amplitude in the time domain, energy in the
frequency domain, etc.

4. Variations of speech
a. Compare the spectra of one digit in its three pronunciations. Explain the difference.

b. Compare the spectra of different appearances of a phoneme in different words, for example, /f/ appears
in "five" and "four." Explain the difference (the so-called coarticulation effect).

5. Speech data transformations
a. Explain why speech data transformation would be needed.
b. Explain the rationale of the Fourier and the mel-scale transformations.

c. Give an example of two small consecutive segments of a spoken digit where the waveforms look the
same (or very similar), but the spectra are very different. Explain why this is happening.

d. Select a vowel segment from the spectrum of speech data and plot the "frequency vs. energy" for this
segment. Find and report the frequency with the highest energy.

1.11 Conclusion

The main point of this chapter is to try to answer the following questions:
1. What is knowledge engineering about?

2. What is the "Beauty" of the heuristics?

3. What are the major Al generic problems, for example, pattern recognition, speech recognition and
language analysis, prediction, control, decision-making, monitoring, diagnosis, games-playing, design? A
particular emphasis is given on the problem of speech recognition.

4. What are the major difficulties in solving these problems and what are the main reasons for bringing
the methods of fuzzy systems and neural networks to these areas?
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5. How do different methods of knowledge-engineering relate to one another? What major "pathways"
can be followed when solving a particular problem?

| hope that after having read this chapter, you will proceed to the next chapters with a clearer idea of why
you should read about data analysis, the symbolic Al and probabilistic methods (chapter 2), the methods
of fuzzy systems (chapter 3), and the methods of neural networks (chapters 4 and 5); about using hybrids
of all the above techniques (chapter 6), and finally, how to make use of chaos (chapter 7).

1.12 Suggested Reading

For the points discussed in this chapter the following references can be recommended for further reading.
Symbolic Al, expert systems—Giarratano and Riley (1989); Pratt (1994); Dean et al. (1995)

Genetic algorithms—Holland (1992); Goldberg (1989); Davis (1991); Michaliewicz (1992); Fogel (1995)
Pattern recognition—Weiss and Kulikowski (1991); Nigrin (1994); Pao (1989); Bezdek and Pal (1992)

Speech and language processing—Morgan and Scofield (1992); Owens (1993); Kasabov and Watson
(1994)

Time-series prediction—Weigend and Gershenfeld (1993)
Financial and business prediction—Deboeck (1994); Kaufman (1987); Goonatilake and Kheball (1994)

Control—Werbos (1992); Wang (1994); for a mathematical solution of the Ball and Beam Problem, see
Hanser et al. (1992)

Statistical methods—Metcalfe (1994) Generic and specific Al problems: Schwefel and Manner (1990)
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2
Knowledge Engineering and Symbolic Artificial Intelligence

This chapter begins with an explanation of the basic issues in knowledge engineering: representation, inference,
learning, generalization, explanation, interaction, validation and adaptation. The methods of knowledge
representation and methods of inference are discussed. Two main problems of today's expert systems, the problem
of knowledge acquisition and the problem of reasoning in uncertainties (approximate reasoning), are discussed.
Probabilistic methods of representing uncertainty, as well as nonprobabilistic ones are introduced. The chapter
prepares the reader to look at fuzzy systems and neural networks as prospective "candidates™ for solving those
problems. It is demonstrated later in the book that the former are very powerful in representing and reasoning with
vague heuristic knowledge, while the latter are excellent tools for knowledge acquisition and data-based
reasoning.

Production systems are discussed more thoroughly here as they are used as a major Al paradigm implemented as
symbolic Al production systems, as fuzzy production systems, as connectionist production systems, and as hybrid
connectionist production systems elsewhere in the book.

2.1 Data, Information, and Knowledge: Major Issues in Knowledge Engineering
2.1.1 Data, Information, and Knowledge

What are data? What is information? What is knowledge? Well, data are the "raw material,” the "mess of
numbers.” They could be numbers only, without contextual meaning, for example, 3, 78.5, -20. Data can also be
contextually explained, structured, organized in groups and structures. Such data are called information. So,
information is any structured data which have contextual meaning, for example, the temperature is 20°C.
Knowledge is high-level structured information. Information, in its broad meaning, includes both structured data
and knowledge, which is explained below.

Knowledge is "condensed" information. It is a concise presentation of previous experience. It is the "rules of
thumb" which we use when we do things. How many rules of thumb do we use in our everyday life? Are there
many, or are there only a few, very general ones, which are widely applicable to different problems? Is there
anything else we apply in addition to these few rules of thumb, in order to be able to solve millions and millions of
very different, or slightly different problems?



Page 76

2.1.2 Major Issues in Knowledge Engineering

In order to realize the pathways given in figure 1.37, which lead from the domain space D to the solution space S
for a given problem and given problem knowledge, eight major issues have been considered. These are: (1)
representation, (2) inference, (3) learning, (4) generalization, (5) interaction, (6) explanation, (7) validation, and
(8) adaptation. The main characteristics of these issues are discussed briefly in this subsection and thoroughly in
the remainder of the chapter.

1. Representation is the process of transforming existing problem knowledge to some of the known knowledge-
engineering schemes in order to process it by applying knowledge-engineering methods. The result of the
representation process is the problem knowledge base in a computer format. Explicitly represented knowledge is
called structured knowledge.

Some questions to be considered when choosing methods to represent problem knowledge are:

a. What kind of knowledge is it? Structured or unstructured? Exact or inexact? Precise or imprecise? Complete or
incomplete?

b. Which method of representation best suits the way people solve that problem?

c. Are there alternative methods for representing the problem knowledge? Which one is the simplest? Using
alternative methods for knowledge representation is recommended at the design stage of a knowledge-based
system. The one which least "corrupts” the problem knowledge should be chosen.

2. Inference is the process of matching current facts from the domain space to the existing knowledge and
inferring new facts. An inference process is a chain of matchings. The intermediate results obtained during the
inference process are matched against the existing knowledge. The length of the chain is different. It depends on
the knowledge base and on the inference method applied.

Fuzzy inference methods assume that all the rules are activated at every cycle and contribute collectively to the
solution. It is a parallel one-shot inference, but the inference process can continue as the new inferred results can
be fed again as inputs.

In the neural inference models no explicit rules are used. Neural structures are obtained as a result of training with
past data. This is not true for
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the connectionist production systems which can interpret explicit production rules in a connectionist way.

A match can be either exact, with the new facts matching exactly the conditions in the heuristic rules, or partial,
when the facts are allowed to partially match the existing knowledge base.

3. Learning is the process of obtaining new knowledge. It results in a better reaction to the same inputs at the next
session of operation. It means improvement. It is a step toward adaptation. Learning is a major characteristic of
intelligent systems. Three major approaches to learning are the following:

a. Learning through examples. Examples of the form of (x;, y;), where X;is a vector from the domain space D and
y, is a vector from the solution space S, i =1, 2,. .., n, are used to train a system about the goal function F: D ®

S. This type of learning is typical for neural networks. Symbolic Al machine-learning methods based on learning
from examples are also very popular.

b. Learning by being told. This is a direct or indirect implementation of a set of heuristic rules into a system. For
example, the heuristic rules to monitor a car can be directly represented as production rules. Or instructions given
to a system in a text form by an instructor (written text, speech, natural language) can be transformed into
internally represented machine rules. This kind of "learning" is typical for symbolic Al systems and for fuzzy
systems.

c. Learning by doing. This way of learning means that the system starts with nil or little knowledge. During its
functioning it accumulates valuable experience and profits from it, so it performs better over time. This method of
learning is typical for genetic algorithms.

Symbolic methods for machine learning are discussed in this chapter; connectionist methods for learning explicit
rules are presented in chapter 5.

4. Generalization is the process of matching new, unknown input data with the problem knowledge in order to
obtain the best possible solution, or one close to it. Generalization means reacting properly to new situations, for
example, recognizing new images, or classifying new objects and situations. Generalization can also be described
as a transition from a particular object description to a general concept description. This is a major characteristic
of all intelligent systems.

Page 78

5. Interaction means communication between a system on the one hand and the environment or the user on the
other hand, in order to solve a given problem. Interaction is important for a system to adapt to a new situation,
improve itself, learn. Interaction between systems is a major characteristic of the distributed decision systems,
where each module of a system takes part in the problem-solving process and communicates with the other
modules. This is the essense of the so-called agent-based approach.

6. Explanation is a desirable property for many Al systems. It means tracing, in a contextually comprehensible
way, the process of inferring the solution, and reporting it. Explanation is easier for the symbolic Al systems when
sequential inference takes place. But it is difficult for parallel methods of inference and especially difficult for the
massive parallel ones.



7. Validation is the process of testing how good the solutions produced by a system are. The results produced by a
system are usually compared with the results obtained either by experts or by other systems. Validation is an
extremely important part of the process of developing every knowledge-based system. Without comparing the
results produced by the system with reality, there is little point in using it.

8. Adaptation is the process of changing a system during its operation in a dynamically changing environment.
Learning and interaction are elements of this process. Without adaptation there is no intelligence. Adaptive
systems are discussed in chapter 7.

2.1.3 Symbolic, Fuzzy, and Neural Systems—Which One Is the Best?

Symbolic Al, fuzzy, and neural systems facilitate differently the realization of the eight major issues of knowledge
engineering discussed above. Table 2.1 gives a rough comparison between them.

While the symbolic Al and fuzzy systems facilitate representing structured knowledge, neural networks facilitate
using predominantly unstructured knowledge. Inference is exact in the Al symbolic systems and approximate in
the other two. Learning is difficult to achieve in the symbolic Al and fuzzy systems, but it is an inherent
characteristic of neural networks. Generalization in the symbolic Al systems is not as good as it is in the fuzzy
systems and neural networks as the latter can deal with inexact, missing, and corrupted data better. Good
explanation is more difficult to achieve in the connectionist systems as knowledge in them, after learning, is
distributed among many connections, while symbolic Al
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Table 2.1

A comparison of symbolic, fuzzy, and neural systems

Issue Symbolic Fuzzy Neural
Representation Structured Structured Unstructured
Inference Exact Approximate Approximate
Learning Modest No Very good
Generalization Weak Very good Very good
Interaction Good Good Good
Explanation Very good Very good Weak
Validation Good Good Modest
Adaptation Modest Modest Good

and fuzzy systems, if well written, could be self explaining. Of course, building a sophisticated explanation of
what is happening in a system while solving a problem requires deep understanding of both the domain problem
and the computer reasoning methods used in the system. Good adaptation is achieved in fuzzy neural networks.
The above issues are discussed in this book.

2.1.4 Separating Knowledge from Data and from Inference in the Knowledge-Based Systems



There are many reasons for separating data from knowledge, and separating both from the control mechanism in a
system. Some of these are the following:

. Data may represent a current situation, for example, the temperature of the cooling system in a car. A
characteristic of data is that they may vary frequently.

. Rules are stable, long-term information. Rules do not depend on slight variations in data describing a
current situation.

. Separating the control, as an inference procedure applicable to a set of rules and data, provides an
opportunity to expand the knowledge when necessary without changing the inference procedure. It also makes the
decision process clearer and the process of designing the whole program much easier.

Separating knowledge from data and from the inference means easier modification of each of these components.
But they all make one system, so they should fit to one another, be coherent.
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In symbolic Al systems explicit knowledge is separated from the representation of the current data and from the
inference mechanism. Separating data from knowledge and from control contrasts with standard programming
techniques. Imperative computer languages, for example, C, PASCAL, MODULA 2, separate data (variables and
constants) from knowledge (procedures), but the control mechanism is still embodied in the procedures. A full
separation is achieved in the so-called declarative computer languages, for example, logic programming languages
(PROLOG), and production languages (e.g., CLIPS). Both languages require the presence of structured problem
knowledge.

In neural networks current data are usually represented by the activation level of neurons and knowledge is
distributed among the connection weights. The principle of local processing in neurons means that every neuron is
a separate processing element, but the results are obtained by the neural system as a whole. It is difficult to
separate data and knowledge in a neural network unless special encoding is used to represent the information.

2.2 Data Analysis, Data Representation, and Data Transformation

We are surrounded by masses of data. Data may be very informative, containing a lot of information about
different aspects of the processes. It is up to us to make use of it. Before developing sophisticated methods for
problem solving, our first task is to scrutinize the data, look at it from different points of view. In order to do that,
it might be necessary to apply certain transformations. This is the topic of this section.

2.2.1 About the Variety of Domain Data
Domain data can be of various types. Some of them are described here:

. Quantitative vs. qualitative data. Quantitative data are a collection of numerical values; qualitative data are
a collection of symbols, for example, red, small, John Smith. Quantitative data can be either numerical continuous
or numerical discrete.



. Static vs. dynamic data. Static data do not change over time; while dynamic data describe the changes in a
process over time.
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. Natural vs. synthetic. Natural data are data collected from a process during its operation; synthetic data are
artificially generated according to some laws or rules describing the process.
. Clean vs. noisy data. Data obtained without any external disturbance or corruption are called clean; noisy

data mean that a small random ingredient is added to the clean data.
2.2.2 Data Representation

It is very important to correctly represent data before they are processed in a computer system. Representation
should satisfy some requirements:

. Adequateness. Data should be adequately represented in a computer system.
. Unambiguity. Different data items should possibly be represented differently before being processed.
. Simplicity. Data should be represented in the simplest possible way before being processed.

A tradeoff is sought between the above requirements.

Different representation schemes are known from the area of database systems. For example, an object can be

described by a relation and represented as a tuple of the type of “object-attribute-value”: <name_of the object
attribute, value, attribute,value, . . . attribute, value,),

Example
(example23 SL =5.7 SW =4.4 PL = 1.5 PW = 0.4), or in a shorter form,
example23 = (5.74.41.50.4)

In a general notation, a data set is characterized by an attribute vector X = (X;,X,, . . .,X), Where X; is the ith
attribute. One data instance is a point (vector) in a k-dimensional attribute space. In the example above, the Iris
instances can be represented as points in a four-dimensional space. Same objects can be represented by data points
in different dimensional spaces. For example, data may contain information about the class, for example,
example23 = (5.7 4.4 1.5 0.4 Setosa), which is the representation of the same instance, but this time in a five-
dimensional space.

How many dimensions should a problem space contain in order to adequately represent objects and to achieve
satisfactory processing? Should
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we include the size of the stem for a better classification of new instances of Iris? If we consider, say, 50 attributes
for the iris classification problem, would it be more difficult to do the classification because of considering too
many unimportant attributes which may simply be noise?

The problem of choosing appropriate dimensionality for solving a given problem is called “the curse of
dimensionality.” Two classes of data can be distinguished in this respect, namely, small-dimensional vs. large-
dimensional data.

Some objects or processes called fractals can be represented in a space that is composed of fractions of
dimensions. A fractal space has noninteger dimensionality, for example, 2.5. A point has a dimensionality of 1, a
straight line a dimensionality of 2, but a figure may occupy a small part of an embedding two-dimensional space,
for example, a curving line around a point, or a spiral with a small radius, etc. One hypothesis about the stock
market, called the fractal market hypothesis, says that a market is a nonlinear dynamical system with noninteger
fractal dimensions (Deboeck, 1994).

Visualizing data may help to chose a good data representation, a proper dimensionality and a proper method for
solving the problem. Different way of visualization can be used:

Bar graphs: Figure 2.1 shows the soil case example average data from table 1.1 as bar graphs. The bar "patterns,"
which represent different classes, seem different, which may be a hint that the chosen eight features should be
enough for a good classification.

Scattered points graphs: Figure 2.2 shows a representation of the Iris data in a two-dimensional space of "petal
length™ and "petal width™ attributes. This representation shows that there is overlapping between the classes
Virginica and Versicolor and using the two attributes only would not be sufficient for building a classification
system. If discretization on the data is required, the graphs from figure 2.2 can help to define in a reasonable way
the discretization intervals. One possible discretization is shown in figure 2.3 and commented on in the next
section (see figure 1.11).

2.2.3 Data Transformations

Data can be used in a system either as raw data or after some transformations. Why should data be transformed? A
data transformation may have the following objectives:
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4 intervals for the frst ateribuce:[4.00, 4.9%), |5.00, 5.99], [6.00, 6.99],
17 and above)

Yamtervals for the second atribute: [2.00, 2.99] [3.00, 3.99], [4.0d, 8.00]

Gointervals for the thind attnbate: |00, 1.99], [2.00, 2,99, [3.00, 3,99],
(400, 4 99] 1500, 5.99], [6.00, 7.00];

Vimtervals for the fourth atceibaee; [0, 0990 [1, 1.99], (2, 3]

Figure 2.3
A set of intervals for Iris data discretization.

. Data rate reduction. Instead of using all the recorded data, some meaningful features are extracted from it
and used further on, for example, Fourier transform on speech data and mel-scale cepstrum coefficients, which
may reduce the data rate by several orders of magnitude.

. Noise suppression. Raw data may be noisy, a problem that is overcome by using transformed data values.

Different data transformations are possible.

. Sampling. This is the process of selecting a subset of the data available. Sampling can be applied to
continuous time-series data, for example, speech data are sampled at a frequency of 22 kHz, or to static data in
which a subset of the data set is taken for processing purposes.

. Discretization. This is the process of representing continuous-value data with the use of subintervals where
the real values lie. In figure 2.3 Iris data are discretized such that the first attribute is discretized in four intervals,
the second attribute in three intervals, the third attribute in six intervals, and the fourth attribute in three intervals.
Having this discretization, the instance (5.3 4.7 1.2 3.0), for example, becomes, after discretization, (2 3 1 3).
Instances in a data set may contain attributes with different types of values—numerical, linguistic, and so on. An
instance (5.3 male 8.4 high ill), for example, after a discretization becomes (6 2 9 1 1), assuming that the first and
the third attributes are discretized into 10 intervals having cardinal numbers as boundaries; the second attribute
has two possible values; the fourth one, three; and all the instances are classified into two classes, "ill" or
"healthy,” where 1 represents "ill" and O repre-
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sents "healthy." Discretization is a kind of approximation. When we discretize we may lose information.

. Normalization. Normalization is moving the scale of the raw data into a predefined scale, for example, [0,
1]. Normalization is usually required by most of the connectionist models. Normalization can be:

Linear; a formula which can be used for linear normalization of data in the interval [0, 1] is the following:
Vi — l.i"' - -xmin}.'r[xmnl: - xmm]'-

where v is a current value of the variable x, X, is the minimum value for this variable, and X.,.,, IS the maximum
value for that variable x in the data set.

Logarithmic,
Exponential, etc.

. Linear transformations. These are transformations F(x) of data vectors x such that F is a linear function of
X, for example, F(x) = 2x + 1.

. Nonlinear transformations. These are transformations F(x) of data vector x where F is a nonlinear function
of x, for example, F(x)= 1/(1 + exc), where c is a constant. Other typical nonlinear transformations are:

Logarithm function, for example, F(x) = log;,x
Gaussian function (used later in the book)

Nonlinear transformations impose a "desirable distortion.” For a comparison between a linear transformation (y =
X) and a nonlinear transformation (gaussian function) on the same two values x, and X, for the independent variable
X, see figure 2.4.

Two special nonlinear transformations are discussed below:

. Fast Fourier transform (FFT) is a special nonlinear transformation applied mainly to speech data to
transform the signal taken for a small portion of time from the time-scale domain into the frequency-scale domain.
The idea is as follows. The signal is assumed to be stationary within a small period of time (say 10 ms) called
window. After having digitized the signal with, say, 20-kHz sampling rate, we take the raw data values of the
energy of the signal falling in a window of 10 ms (in this case 200 points) and calculate the frequency distribution
of this portion of the
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Linearly and nonlinearly transformed data.

signal on the frequency scale (usually up to half the sampling rate, this frequency being called the Kotelnikov-
Nyquist frequency). The discrete Fourier transform and its variant FFT are transformations used to find the
frequency distribution of a signal from its digitized energy values over time for a small window of the signal (see
figure 1.39). FFT can be applied not only on speech data but on any time-series data taken from a process, if
frequency is considered to be an important characteristic of the process.

. Wavelet transformation is another nonlinear transformation. It can represent slight changes of the signal
within the chosen window from the time scale (for the FFT it was assumed that the signal does not change or at
least does not change significantly within a window). Here, within the window, several transformations are taken
from the raw signal by applying wavelet basis functions of the form:

W,(x) = f(ax - b),

where: f is a nonlinear function, a is a scaling parameter, and b is a shifting parameter (varies between 0 and a).
So, instead of one transformation, several transformations are applied by using wavelet basis functions Wa, 0, . . .,
Wa, 1,...Wa, 2, ... Wa, a. An example of such set of functions when f(x) = cos(1x) is given in figure 2.5.
Wavelet transformations preserve time variations of a signal within a certain time interval.

2.2.4 Data Analysis

Very often, when dealing with a complex task like stock market prediction, it is important to analyze the process
by analyzing data available for this process, before any methods for solving the problem are applied.
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Wavelets.

Usually, the results from the analysis suggest the method that will be used later on. Data analysis aims at
answering important questions about the process under investigation:

. What are the statistical parameters of the data available for the process —mean, standard deviation,
distribution (see below)?

. What is the nature of the process—random, chaotic, periodic, stable, etc.?

. How are the available data distributed in the problem space—clustered into groups, sparse, covering only
patches of the problem space and therefore not enough to rely on them fully when solving the problem, uniformly
distributed?

. Are there missing data? How much? Is that a critical obstacle which could make the process of solving the
problem by using data impossible? What other methods can be used, either by addition to, or substitution of,
methods based on data?

. What features can be extracted from data?
Three groups of methods for data analysis are outlined below:

1. Statistical analysis methods discover the repetitiveness in data based on probability estimation. Simple
parameters, like mean, standard deviation,
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Figure 2.6
Clustering data may help to classify new data.

distribution function, as well as more complex analysis like factor analysis, to weight the importance of different
input variables on the values of output variables; regression analysis, to find a formula that approximates data for
a given output variable, and so forth, can be used.

2. Clustering methods find groups in which data are grouped based on measuring the distance between the data
items. Clustering in a two-dimensional space by using two circlelike clusters is illustrated in figure 2.6. The
distances between a new data point and the two centers of clusters ¢, and c, can be either absolute or normalized
values. In the case presented in the figure, the latter is more appropriate for classification purposes.

Let us have a set X of p data items represented in an n-dimensional space. A clustering procedure results in
defining k disjoint subsets (clusters), such that every data item (n-dimensional vector) belongs to only one cluster.
A cluster membership function M,; is defined for each of the clusters C,, C,, . ., Cy:

M;: X —1{0,1},
Mix)= 1, ifxe Ci,
(0, otherwise.

where X is a data instance (vector) from X.

There are various algorithms for clustering, one of them being the k-means clustering algorithm. It aims at finding
k centers {c,,C,,. . . ,C,} in an n-dimensional space, such that the mean of the squares of the distances between each
data point x [J X and the cluster center closest to it is minimized. In chapter 3 a fuzzy clustering algorithm is
given, which uses
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fuzzy borders between the clusters, thus allowing one item to partially belong to more than one cluster.

3. Methods for feature extraction transform data into another space, a space of features. We can use different
transformation techniques to transform raw data space into a feature space knowing how to calculate the features,
for example, FFT points, wavelets, etc. But if there is no formula to calculate features, how are significant features
extracted from data and how is the processing done over them? Extracting features is an ability of the human brain
for abstraction. But how can computer systems do that? Different methods can be applied, depending on the
application area and the generic problem under consideration. For example, in pattern recognition and image
processing, specialized methods for extracting lines, curves, edges, and so forth from images or patterns can be
applied. Neural networks can also be used for feature extraction.

2.3 Information Structures and Knowledge Representation

This section is a brief introduction to structures in which information and knowledge can be represented. Though
the structures are for general use, they are widely used in Al methods and techniques.

2.3.1 What Is an Information Structure?

Information is a collection of structured data. In its broad meaning, it includes knowledge as well as simple
meaningful data. But how to represent these structures in a computer in such a way that no significant information
is lost, further processing of information is facilitated, representation is adequate to the nature of the data links and
relations, and the representation is flexible, allowing expanding of information items, links, and the relations
between them?

Representing data and knowledge in structures may, and usually does, influence the functionality of the system as
a whole. Data should be handled with care and as much information as possible should be kept throughout the
information processing for further use.

An information structure contains information elements and links between them. A structure can represent data
and links between them from the solution space S, or from the domain space D of a problem, or from both of
them, as they may be considered as a general problem state space
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P. Every state in the state space P is a data item, but there can be links between the states representing possible
transitions between states (all or only some of them might be possible). For the ticktacktoe game, for example,
one state makes it possible to go on to other states afterward.

An information structure is a collection of information elements with a defined organization, operations over the
elements, and a defined method of access to every element. Structures can be organized as static or dynamic.
Static structures have a fixed number of elements. Dynamic structures do not have a fixed number of elements as
the elements are created and deleted during the process of handling the information. Some ways of machine
representation and operation over dynamic data structures are more useful than others. They are based on using
elements called pointers. A pointer is a data element whose content is the location of another element. Sets,
stacks, queues, linked lists, trees, and graphs are used as dynamic information structures.



2.3.2 Sets, Stacks, Queues, and Lists

The most common structure in mathematics and computing is the set. The set is a generic concept. It is defined as
a collection of objects with operations defined over it as shown in figure 2.7. Typical set operations are union,
intersection, complement, relative complement, difference, membership, equality, and subsethood.

A stack is a collection of ordered elements and two operations which can be performed only over the element that
is currently at the "top," that is, to "push™ an element on top of the stack, and "pop" an element from the stack. A
stack has only one pointer element to point at the top of the stack. Figure 2.8 shows two realizations of a stack.
The first is a dynamic stack where the elements do not have fixed positions in a memory space; they are "floating"
in this space, their positions being kept in a pointer field of the previous elements of the whole stack. The second
IS a static realization of a stack, where the stack elements occupy consecutive places in a memory space.

Queues are data structures similar to the stack structure, but here two pointers are used—one for the input, and one
for the output element of the structure. In figure 2.9 two realizations of a queue are shown: dynamic and static.

Linked lists are more general structures than stacks or queues. Elements in a list may be linked in different ways
(figure 2.10). Typical operations
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Organization in a queue structure: (a) dynamic realization;
(b) static realization.

over lists are insert an element into a list, delete an element from a list, search for an element in a list. The first
two are illustrated in figure 2.10. The way in which these operations are realized is mainly an efficient use of
pointer fields in each of the elements in a list.

2.3.3 Trees and Graphs

Very useful structures used in knowledge engineering are trees. They are often used for representing decision

charts, classification structures, plans, etc. A tree is a special case of a more general structure called a directed
graph. A directed graph consists of a finite set of elements called nodes or vertexes, and a finite set of directed
arcs that connect pairs of vertexes.



A tree is a directed graph in which one of the nodes, called root, has no incoming arcs, but from which each node
in the tree can be reached by exactly one path. Vertexes that have no outgoing arcs are called leaves. Nodes that
can be reached directly from a given node using one directed arc are called the children of that node, and the node
is said to be the parent. Examples of using trees for representing problem knowledge are shown in figure 2.11A (a
genealogical tree), in (B) (a parsing tree), and in (C) (an algebraic expression tree).

Tree structures are often used for representing the decision process for solving diagnostic, classification, and other
generic problems. Figure 1.10
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Linked lists: a general representation scheme and two operations over elements in
a list"—insert a new element" and "delete an element from a list.”

is a good example of that. Such trees are called decision trees. If we consider every rule in a knowledge base as an
item, then a decision tree links the rules such that if a conclusion in a rule Ri appears as a condition in another rule
Rj, then Ri and Rj are connected in the tree structure.

Graphs are also often used as data structures. A graph is a set of nodes (vertexes) and a set of arcs connecting the
nodes G = (V, C). Figure 2.12(a) shows a simple graph.



If the edges in a graph are directed (arrows), the graph is called a directed graph; otherwise it is nondirected. The
edges may be weighted, that is, a number is bound to every edge. If we traverse a graph by following edges from
one vertex to another, we are following a path in a graph. A path is a sequence of contiguous arcs in a graph.
Different types of paths may be distinguished in a graph:
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Figure 2.11 (a) A genealogical tree. (B) Parsing tree.
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(a) A simple graph; (b) isomorphic graphs.
. A cycle. The path starts from one node and ends at the same node; a graph containing a cycle is said to be a

cyclic graph; a graph with no cycles is acyclic.

. A spanning tree. A subset of edges of a graph that forms a tree (there are no cycles).
. An Euler path is a path in which every edge (arc) is traversed exactly once.

. A Hamiltonian path is a path in which every vertex (node) is traversed exactly once.

A fully connected graph contains a path between every pair of nodes. In a non-fully connected graph there should
be at least one pair of nodes with no path between them.
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Many interesting and difficult problems for graphs have been explored in the literature and different solutions
suggested. Some generic graph problems are listed and explained below:

. The shortest path problem—to find the shortest path between two arbitrary nodes in a graph.

. The Traveling Salesman Problem (TSP)—the problem (introduced in chapter 1) is to find the minimum-cost
cycle path starting from an arbitrary node.

. Check for existence of a path with a given length K between two arbitrary nodes in a graph.

. Finding isomorphic graphs. Structurally identical graphs are called isomorphic. Formally, we define a pair
of graphs G1 and G2 to be isomorphic if there is one-to-one correspondence between the nodes of the graphs,
such that if two nodes of one graph are adjacent, then their corresponding nodes in the other graph are adjacent
too. An example of two isomorphic graphs is shown in figure 2.12b.

. Transitive closure. A graph GT is called a transitive closure of a graph G if for every vertexes Xand Y in G
such that Y is reachable from X, X and Y are adjacent in GT, that is,

IF Reachable(X, Y in G), THEN Adjacent (X, Y in GT)

. Graph-coloring problem. The problem is to "color" the nodes of a graph in such a way that there are no
adjacent nodes with the same color.

2.3.4 Frames, Semantic Networks, and Schemata

Frames are structures which represent structured information for standard situations. Frames consist of slots
(variables) and fillers (values). The slots represent typical characteristics of objects. With such uniform
representation it would be easy to process this information (compare, search, or update). An example of a frame
representation is given in figure. 2.13. Slots may represent not only static information but dynamic information as
well. For example, a slot may represent a procedure to be processed over data from other slots. Frames are
valuable when explicit and exact data and knowledge are available for solving comparatively simple problems.

Semantic networks use directed graphs to represent contextual information. The nodes represent objects and
concepts, and the arcs, relations. Typical relations are: is_a; part_of; implies; etc. Semantic networks are
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Slots Filler

age 21

sex female

name Judith

occupation programmer

hobby swimming
Figure 2.13

Frame representation.

bird glbatros

implas
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Figure 2.14
A semantic network. The nodes denote features, objects
or classes and the arcs the relations between them.

useful for representing either flat, or hierarchical knowledge, but they are static. Updating data by learning and
changing knowledge may be difficult to handle. Figure 2.14 shows an example of a simple semantic network
where the arcs represent relations and the nodes represent objects.

Schemata are more general structures than a semantic network. They are based on representing knowledge as a
stable state of a system consisting of many small elements which interact with one another when the system is
moving from one state to another. The state of a system is composed by the states of all these elements. This way
of representing knowledge is a distributed one: knowledge is represented as a state of a coalition of elements. It is
dynamic as well because a small change in the input values (stimulus) would most probably lead to a new stable
coalition—a new state of the whole system. Schemata are a valuable way of
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representing knowledge currently being explored because of their physiological plausibility.

2.3.5 About the Variety of Problem Knowledge and the Limitations of Current Techniques for Its
Representation

Knowledge, as pointed out in chapter 1 and in section 2.1 of this chapter, is the information which represents long-
term relationships, that is, ways of doing things, commonsense, ideas, methods, skills, and so forth. Knowledge is
"condensed" information, "squashed™ information, an extraction, the "essence" of things. A huge amount of
knowledge has been accumulated worldwide during the conscious existence of humanity. This knowledge is
changing all the time. How to make use of existing knowledge in a computer program? How to represent it in such
a way that we keep the richness and the depth of the knowledge and also make it reasonable to use? To what
extent do we compromise with these controversial requirements? Different categories of problem knowledge can
be distinguished:

. Global vs. local knowledge. Knowledge can be global, for example, the knowledge that human beings have
learned throughout their evolution, or local, for example, a rule on how to react to traffic lights.

. Shallow vs. deep knowledge. Knowledge can be shallow, for example, based on stimulus-reaction
associations, or deep, for example, encapsulating complex models for explanation and analysis.

. Explicit vs. implicit knowledge. Knowledge can be explicit, for example, structured, or implicit, for
example, unstructured, hidden, buried in data.

. Complete vs. incomplete knowledge. Knowledge is complete if it ensures a solution to the problem in all
cases or situations, or incomplete if it has a restricted applicability.

. Exact vs. inexact knowledge. Knowledge is considered to be exact if it can be used and an exact solution to
the problem is produced when exact input data are supplied, or inexact, uncertain, when it produces an
approximate solution when exact or inexact data are supplied.

. Hierarchical vs. flat knowledge. Knowledge is hierarchical when some pieces of knowledge apply over
others, or flat when all the knowledge
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is applicable at the same level. Hierarchical knowledge contains metaknowledge, knowledge applicable over
knowledge, for example, "We know what we do not know."

We have discussed different methods to structurally represent domain information and problem knowledge. But
knowledge engineering requires mathematical models and theories to represent and do reasoning over knowledge
in a consistent way. Such theories are the logic systems. Three of them are presented in the next sections, namely:
(1) propositional logic, (2) predicate logic, and (3) fuzzy logic. Each uses different kinds of rules of the form of:

IF A, THEN B, or shortly: A — B, where A is an antecedent (conditions), and B a consequent (conclusions,
actions), and each uses different methods for reasoning (inference method).



Whatever method for representing problem knowledge is used in a computer system, it is usually a way of
simplifying the problem to make it reasonable to handle. There is no universal method that can handle the variety
of problem knowledge in the way humans do.

One problem should be mentioned when discussing the issue of knowledge representation. This is the so-called
frame problem. What should we keep unchanged in the representation when the situation has changed? What
should we update in the computer? How can the system know what has changed without checking all the data?
For example, imagine that we have a computer system which maintains data about a house and monitors whether
there is a possibility for a dangerous situation to occur (fire, burglary, earthquake, etc.). In order to monitor the
house, the system keeps information about the location and many other properties and parameters of all the
objects in the house. A camera takes pictures and the information in the computer is updated regularly, subject to
an event which may happen. Suddenly, a glass drops on the floor in the kitchen. The global situation in the house
has changed. Which data should be updated? To update all the data in the system may block the computer for days
so that it is unable to react to new changes which might occur after this event and which might be really
dangerous. Obviously, relationships between objects must be introduced in the computer system. But how many?
This example illustrates the so-called frame problem.
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2.4 Methods for Symbol Manipulation and Inference: Inference as Matching; Inference as a Search

Inference is the process of acquiring new facts when interpreting existing knowledge with current data. The whole
process of inferring new facts and their manipulation is called reasoning. Inference in an Al system is what
corresponds to the control process in conventional computer programs and what corresponds to the process of
"thinking" in the human brain (both analogies are extremely slight and vague). An inference process has many
aspects, some of which are discussed in this section. It is differently realized in different logic systems and Al
methods.

2.4.1 Inference as a Process of Matching and Generalization

Suppose the knowledge base contains input-output associations (rules, data pairs) Rj = (Xj, Yj),j=1,2,...,n. The
problem is to find a solution for a new input vector xi . This vector is mapped to the solution space S through a

chain of rules until a solution yi in the solution space S is found. Figure 2.15 illustrates this process. The solution
is found after firing three rules in a chain. The first two infer partial solutions which are used as input data for the
next rules in the chain. In some cases, in the fuzzy rule-based systems, for example, the solution is a single
parallel match of the new facts with all the rules. Partial solutions, obtained by individual rules, are combined in
order to achieve the final solution. The inference process can be considered as a trace of states in the problem
space, every state representing a closer approximation to the solution. The trace can be used for explaining the
solution process later on. The trace itself may



(S) Soluion space g o gaal

i
|
|

R, R,
Rt o l’m—‘r*r a-j

(D) Domain space

Figure 2.15
Inference as a chain of matches.
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represent a solution to the problem. For example, a spoken word can be recognized as a sequence of phonemes on
a phoneme map (the solution space).

The matching process can be either exact, or partial. Exact matching means that the matching facts coincide
exactly with the condition elements in the left-hand side of the rules. For example, if the fact is xi, there has to be
arulex; - y,, such that x; = xi . Exact matching is typical for symbolic Al systems.

A partial match does not require equality between facts and the left-hand side of a rule. In this case an
approximation or closeness is enough. But how approximately and how closely should a fact match a rule in order
to fire that rule? This point has to be determined by the method used for approximate reasoning. Partial match is
typical for fuzzy systems and for neural network models.

A generalization process can be represented as a chain of stepwise generalizations (see figure 2.15). At every step
in the chain of inference, a generalization may be made.

2.4.2 Inference as a Search and Constraint Satisfaction

Generally speaking, inference is a process of searching for the solution in the solution space. The solution space
for real problems is usually huge and contains states which have to be checked through as intermediate solutions
to the problem. A search through the problem state space has to be performed in order to find out which state
should be checked for a possible solution, or which rule should be applied to the new facts.

If the problem state space is not structured, that is, if there is no structure that represents relations between the
states in the space, then a random search may be used and the generate and test strategy applied. A state is
generated randomly, and a criterion for "fitness" (a function, a heuristic, etc.) is applied to evaluate how good the
generated state is as a possible solution. To avoid generating all the possible states in the state space, a heuristic is
required.

A simple strategy for search in the state space is the exhaustive search—trying all the possible states, either
sequentially or in parallel, and then making a conclusion about the best one. This search is not practical because it
requires an unrealistic number of operations, even for a problem of small size.
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An inference can be considered as a process of searching for a state which optimizes a goal function. In this case,
gradient-descent, or hill-climbing methods can be applied. Such methods are often used in neural networks.

When the problem space is structured, for example, in a tree, then the most favored searching strategies are
"breadth first search"—testing first all the states which are at a certain level in the tree and then going to search
among their "children,” and "depth first search"—searching for the leftmost leaf of the tree first and then for the
next one. Figures 2.16A and B illustrates the two search strategies in a tree structure. The numbers assigned to the
nodes of the trees represent the order in which the nodes are checked (visited). Each of the two search techniques
has its extreme case in the exhaustive search when all the nodes (points) of the decision space are checked before
the final decision is found.

If constraints are given which the solution must satisfy, then the search problem can be represented as a constraint
satisfaction problem. It can be formulated as follows. Given a set Y of variables {y,, ,. . . .y} each variable yi
ranging over a domain Si, and a set of constraints C,,. . . ..,C;, each constraint C; representing relations between
variables in a subset of Y, to find tuples (s, S,. . . ,S,) Of values for the variables (y;, Y,.. . . ,Y.,) such that all the
constraints are satisfied. It might happen that this problem does not have a solution. If this is the case, i.e., one
cannot satisfy the entire set of constraints, one has to "weaken" the constraints to find a solution. This process is
called constraint relaxation. It is now an approximate solution that is sought rather than an exact solution. Both
fuzzy systems and neural networks can be successfully used for finding approximate solutions.

2.4.3 Forward and Backward Chaining

An inference process is a chain of matchings. Two mechanisms to organize these matchings are called forward
chaining inference and backward chaining inference. There is another mechanism, which uses both in a
predefined order.

A forward chaining procedure applies all the facts that are available at a given moment to all the rules to infer all
the possible conclusions.

Example An example of a forward chaining inference is given in figure 2.17A where the car monitoring rule base
is represented as a decision tree
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Figure 2.16
Searching in a tree structure: (A) Breadth first search. (b) Depth first search.
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(A) Forward chaining inference over the Car Monitoring decision tree.
(B) Backward chaining inference.
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(see the problem description in chapter 1). Forward chaining inference starts with data. It is data-driven. This
mechanism is implemented in the production languages. Simple neural networks and fuzzy systems can also
realize this type of reasoning because they require data to be supplied to the inputs in order to start reasoning.

In the backward chaining inference, which is a goal-driven inference, the inference process starts after a goal is
identified. Then a search for a rule which has this goal in its antecedent part is performed, and then data (facts)
which satisfy all the conditions for this rule are sought in the database. The process is recursive, that is, a
condition in a rule may be a conclusion in another rule (other rules). The process of searching for facts goes
backward.

Example The same problem is used in figure 2.17B to demonstrate backward chaining reasoning methods.
Backward chaining may imply backtracking, that is, if the goal is not satisfied with the first checked fact, then
other conditions and facts are checked (if more are available). This mechanism is implemented in the Al logic
programming languages.

2.4.4 The Variety of Reasoning Methods and The Role of Variables
Various types of reasoning methods can be used for knowledge engineering. Some of them are listed below:

. Monotonic vs. non-monotonic reasoning. An inference process is monotonic when every new fact
contributes to an increase in present knowledge. It is non-monotonic when knowledge may decrease in "volume"
as new facts are entered into the system. In the latter case, some facts that have been previously inferred based on
the previous set of facts might need to be revised and retracted as being no longer valid.

. Exact vs. approximate reasoning. A reasoning process is exact if it produces exact solutions when current
data are supplied,; it is approximate if it ends up with an approximate solution or a degree of approximation
attached to the inferred solution. An example of an exact solution is classification of an Iris exemplar to the class
Setosa if two possibilities are given—yes or no. But if the classification procedure produces a confidence factor,
say 0.93, to which the new exemplar belongs to Setosa, 0.01 for the class Virginica, and 0.203 for the class
Versicolor, respectively, this is an approximate reasoning procedure.
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. Iteration vs. recursion. In an iterative process of searching for a solution, a rule (set of rules) is applied over
input data many times, each time producing a better approximation to the solution; recursion is represented by a
rule(s) or function that is defined by the same function but for different values of its variables. A recursive
function is, for example, the factorial function:

Factorial(n) = n! = n.Factorial(n-1)=...=n.(n-1)...2.1

The problem of finding a path of a length of K between two arbitrary nodes X and Y in a graph can be represented
as a recursive problem, as shown below:

IF there exists a node Z, such that X and Z are adjacent, AND there is a path (Z, Y, K - 1) between Z and Y with a
length of K - 1, THEN there is a path (X, Y, K) between X and Y with a length of K



Recursion is a way to express a solution to a problem over the whole problem state space as a sequence of
solutions to the same problem on subspaces of the space. The same function, procedure, or rule represents a
general solution to the problem as well as a local one. Recursion operates in two ways: (1) a backward way, which
is the top-down way of consecutive moves from the general space to local subspace until the smallest possible
element from the space is reached and the rule is evaluated; and (2) a consecutive forward propagation of the
results obtained as local solutions to a wider subspace until the global solution is reached. This is illustrated in
figure 2.18 by a procedure for calculating the factorial function.

Fuzzy recursive rules and systems are discussed in chapter 7.

Variables play a significant role in the process of inference. Unfortunately, the mechanism of brain "variables" is
completely unknown. That is probably why variables are such a big problem to implement in connectionist
systems. A variable X is an entity to which any value from its domain (range) can be bound. Variable binding is a
dynamic process. A value is either temporarily or constantly bound to a variable during the operation of a system.
Variables ensure a dynamic way of information updating. Many explicit rules use variables to express validity for
different values which can satisfy the condition elements, for example:

IF [Temperature] » 120, THEN there is overheating
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Main Program Factorial Factonal

& 2 1 1

Bottomi-up retums

Figure 2.18
A recursive solution for the factorial function f(n) = n! The figure
represents a recursive execution of the function for n = 3. The recursive
process, which takes place in time, is here represented in space.

In the above rule [Temperature] is a variable and can be bound to any value for the cooling temperature of the car.
Variable binding is done through searching in the variable domain space—the space of all the possible values for
the variables in the system. There are some solutions to this NP complete problem. For example, a so-called
RETE algorithm is used in the production languages. It makes possible an efficient variable binding without
checking all the possible values of all the variables in the production rules each time a matching process between
the facts and the rules in the system is performed.

Different types of variables are facilitated in the different logic systems and Al models and languages: no
variables at all (propositional logic); local (within a rule or a function) or global (valid for the whole program);
and variables that can be bound to single values, or bound to a whole multivalued fact or list of values, etc.



Symbolic Al systems are very good at representing variables, but not very efficient in variable binding. Variables
can be used in fuzzy systems. Representing variables in the contemporary connectionist models is possible,
though extremely difficult.

One interesting issue to be raised here is the difference between learning through reasoning and learning about
reasoning. Through reasoning, new facts and rules can be obtained by the system. Whether a system can learn to
do reasoning is a completely different question and much more difficult to answer. How do humans learn to
reason? Do we learn how to reason

Page 108

from books and theories, or it is genetically embodied in our brain? How do we know about logic? Is logic a
theory or it is simply "common sense™ which we use in our everyday decision-making? Before we discuss logic
systems, we shall have a look at simple, but universal computational mechanisms.

2.4.5 Turing Machines

The Turing machine, created by Alan Turing (1936), is a simple universal model for symbol manipulation. It is a
device comprising indefinitely extendable tape, each discrete position of which can take one symbol from a
predefined alphabet. Simple operations of reading a symbol from the tape, writing a symbol on the current
position of the tape, moving the tape, are used. This simple model was proved to be universal in that it can be used
for realizing any computation based on a finite and explicit set of rules if a suitable program to control the device
is provided.

2.4.6 Finite State Automatons; Cellular Automatons

Simple symbol manipulation can be performed in a finite state automaton, the latter being a computational model
represented by a set X of input states, set Y of output states, set Q of internal states, and two functions, f, and f,:

Jii X = Q= Qe (x,q(0))—qit + 1),
Jor X o= Q= Y oes(x,q(t)) — yir + 1),

wherex 0 X, qUOQ,y OY,and tand (t + 1) represent two consecutive time moments.

A simple automaton is illustrated in figure 2.19(A) (the tables defining the transfer function f,, and the output
function f,); (B), a graphical representation of the transfer function, and (C), a block diagram of a possible
realization of the automaton. This simple automaton can produce sequences of symbols of the two-element
alphabet when sequences of inputs are fed into it. For example, if the state g, denotes the letter A and the state g,
denotes the letter B, then the sequence ABBA of internal states will be produced by the automaton when an input
sequence of x,X; X, is fed into it and the automaton is in an initial state q,. If the automaton was in an initial state
d,, then for the same conditions as above, the sequence BAAB would be produced.
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Figure 2.19

Simple finite state automaton: (a) the transition and the output functions defined as
tables; (b) directed graph representing the transition function; (c) a structural realization.
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The applicability of the finite state automata theory to processes modeling and to building information-processing
machines has been widely explored, not to mention that it is one of the basic theories of present-day computers. A
finite automaton can be realized as a production system, as a neural network structure built on simple McCulloch-
Pitts neurons, on a recurrent neural network structure.

Except for the deterministic finite automatons illustrated above, probability finite automatons and fuzzy finite
automatons can be used for approximate reasoning rather than for exact symbol manipulation.

A cellular automaton is a set of regularly connected simple finite automatons. The simple automatons
communicate and compute when solving a single global task. Cellular automatons may be able to grow, shrink,
and reproduce, thus providing a flexible environment for computations with arbitrary complexity. This area is of
growing interest because of the possibility of implementing cellular automatons in a neural network environment.

2.5 Propositional Logic
A logic system consists of four parts:
1. An alphabet—a set of basic symbols from which more complex sentences (constructions) are made.

2. Syntax—a set of rules or operators for constructing sentences (expressions) or alternatively more complex
structures from the alphabet elements. These structures are syntactically correct sentences.

3. Semantics—for defining the meaning of the constructions in the logic system.

4. Laws of inference—a set of rules or laws for constructing semantically equivalent but syntactically different
sentences; this set of laws is also called a set of inference rules.

Propositional logic dates back to Aristotle. There are three types of symbols in propositional logic: (1)
Propositional symbols (the alphabet), (2) Connective symbols, and (3) Symbols denoting the meaning of the
sentences.

There are rules in propositional logic to construct syntactically correct sentences (called well-formed formulas)
and rules to evaluate the semantics of the sentences.
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A propositional symbol represents a statement about the world, for example, "The temperature is over 120." The
semantic meaning of a propositional symbol is expressed by two possible semantical symbols—true or false.
Statements or propositions can be either true or untrue (false), nothing in between.

Propositional logic has the following syntactic connective symbols for constructing more complex propositions
from simple ones:

~ AND, conjunction
v OR, disjunction
1 NOT, negation
- implication

= equality

The semantics of the compound structures (sentences, expressions) are defined by the truth table given in figure
2.20. Example Given that the propositions P = "Temperature is high" and Q = "Humidity is high" are true, a
compound proposition "P AND Q" is inferred to be true as well as the proposition "P OR Q."

Propositional logic has rules or laws for defining semantic equivalence of syntactically correct structures. These
rules make the process of inference in the space of propositions possible. These rules give the truth values for
some propositions when the truth values for other propositions are known. All the laws of inference can be proved
for correctness using the truth table method, that is, by obtaining the truth table for the left and right sides of the
equation and then comparing them.

F Q |P.Q|PvQ [P0 |P=0Q]| -P [ -0

T T T T T T F F

T F F T F F F T

F T F T T F T F

F F F F T T T T
Figure 2.20

The truth-table of the basic connectives in
propositional logic.
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Some laws of inference are given below. The most popular laws of inference in propositional logic are called
modus ponens ("mood that affirms™) and modus tollens ("mood that denies"). The rules are expressed as follows:

Modus ponens: P — Q,and P 0Q

Modus tollens: P - Q,and 1Q O P

Modus ponens and modus tollens are widely used in fuzzy logic in the form of generalized modus ponens and
generalized modus tollens.

Two other important inference rules are the laws of De Morgan:

P AQ) P v TIQ
P v @) AP A Q

The following two rules, the "chain rule,” or law of syllogism, and the law of contrapositive, are valid not only for
propositional logic but as we shall see in chapter 3, they are also valid for some of the inference methods in fuzzy
logic:

Law of syllogism: P - Q,and Q - ROP - R

Law of contrapositive: P - Q0 1Q — ~1P (Modus Tollens)

Some simple inference laws, which are obvious to the reader, are also valid in propositional logic:
Double negation: "1("1P) OP

Disjunctive inference: P v Q,and TP 0Q P wQ,and "1Q OP

Propositional logic is a useful way of representing a simple knowledge base consisting of propositions and logical

connectives between them. The major problem is that propositional logic can only deal with complete statements.

That is, it cannot examine the internal structure of the statement. A classic example given in all the Al books is the
following:

Example The following inference is not possible in propositional logic:

All humans are mortal.
Socrates is a human.
Therefore, Socrates is mortal.

Propositional logic cannot even prove the validity of a simple syllogism
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such as that above. With the use of propositional logic we can construct rules like this:
IF (the temperature is above 120), THEN (there is overheating),

where the left-hand and the right-hand sides of the rule contain propositions which can be only true or false.
Variables cannot be used. A proposition is an unbreakable symbol element. Only an exact match is possible, that
IS, two propositions match if they are syntactically equivalent.

Propositional logic has been used in some simple expert systems for representing propositional rules.
Example: The Car Monitoring Problem. In propositional logic, this problem can be represented as follows:
Rule 1: (there is overheating) v (the brakes react slowly) - (stop the car)

Rule 2: (the cooling temperature is over 120) ~
(the gauge works properly) — (there is overheating)

2.6 Predicate Logic: PROLOG
2.6.1 Predicate Logic
The following types of symbols are allowed in predicate logic:

. Constant symbols are symbols, expressions, or entities which do not change during execution. Constant
symbols are the "true" and "false" symbols, for example, used to represent the truth of the expressions.

. Variable symbols are symbols which represent entities that can change during execution.

. Function symbols represent functions which process input values for a predefined list of parameters
associated with the function, and obtain resulting values. The number of parameters in a function is called arity.

Constant symbols, variable symbols, and function symbols are called "terms."

. Predicate symbols represent predicates which are true/false-type relations between objects. Objects are
represented by constant symbols. The number of arguments attached to a predicate define the arity of the
predicate. For example, "father (person, person)" is a predicate of arity 2, and "father (John, William)" is a
constant predicate.
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. Connective symbols are the same as those which are valid for propositional logic, that is, conjunction,
disjunction, negation, implication, equivalence. They are defined by the same truth table as given for propositional
logic.

. Quantifiers are valid for variable symbols—an existential quantifier (CJ), which means "there exists at least
one value for x from its domain," and a universal quantifier ({J), which means "for all x in its domain." For
example, the Socrates syllogism can be expressed in predicate logic by two predicates, a universal quantifier, and
an implication, as follows:

[x, Human(x) — Mortal(x).
Human(Socrates)

Sentences can be created in predicate logic with the use of connectives and the allowed symbols. The truth of the
sentences is calculated on the basis of the truth tables of the connectives. Well-formed expressions, sentences, and
formulas in predicate logic are all the syntactically correct sentences. If a set of sentences in predicate logic is
matched by a domain D, which means that every variable is assigned a value and every predicate is assigned a
truth value, this is called interpretation.

First-order logic allows quantified variables to refer to objects and not to predicates or functions. This is not a
limit for higher-order predicate logic.

In order to apply an inference to a set of predicate expressions, the system should be able to determine when two
expressions match each other. The process of matching is called unification. In order to allow more freedom for
matching and not restricting the variable domains, the existential quantifier has been eliminated by a so-called
skolemization process. A skolem function replaces the existential quantifier 3 by a function which is returning a
single value:

00X, human(X) - L, mother (Y, X), can be skolemized as follows:
X, human(X) — mother (f(X), X), where f is a skolem function
2.6.2 Programming in Logic: PROLOG

In PROLOG, a quantifier-free, so-called Horn-clausal notation is adopted, which can adequately represent a first-
order predicate logic system. The Socrates syllogism is represented in PROLOG as follows:

mortal(X):-human(X)
human(Socrates)
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A rule (A1, A2,...,An) - B in a Horn-clausal form has the following form:
B:-Al, A2, ..., An

which means that the goal B is true if all the subgoals A1, A2, . . ., An are also true, where B, A1, A2, ..., AN are
correct predicate expressions.

A fact is represented as a literal clause with a right side being the constant "true." So the clause representing a fact
is always true:

human (Socrates):-true
or shortly
human (Socrates)

Knowledge is represented in PROLOG as a set of clauses which have one conclusion (left side) and premises
(right side of the clause). The character "," may be used in clauses to denote an "AND" connective, ";" to denote
an "OR" connective, and 71" for a "NOT" connective. A backward chaining inference engine is implicitly built in.
A program in PROLOG consists of clauses and facts. It is of a declarative, rather than of a procedural type. The
engine starts when a goal is given. A goal can only be a predicate used in the program. A block diagram of a
PROLOG program is given in figure 2.21.

An example program, searching for a family relationship, written in Turbo PROLOG, is given in figure 2.22. An
AND-OR tree, which represents the relations between the rules from the example above, is shown in figure 2.23.
The matching operation during the inference process is called "unification.” That is, it matches predicates,
variables, and facts between the clauses in the process of finding facts which prove the goal and the subsequent
subgoals (figure 2.24). This is how variable binding is done in PROLOG. A sample dialogue between user and the
program for searching for family relationship is given below:

Goal?- grandfather(John, Jilly).
yes

Goal?- grandmother(Helen, X).

2 solutions

X=Andy X=Tom

Goal?- grandmother(X, Y), X =Y.
fail
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The program

Figure 2.21
A block diagram of a PROLOG program.

{* A Turbo PROLOG program “Searching for a Family Relationship” *)
(* defining the objects in the domain ... *)
dewmisin

name=symbol
(* defining the relations between the obpects. *)
predicares

Father| name, name)

e he rl pame  mame b

parenL{name, name )

grumd father{ name, name)
grandmother(name, name)

eliwres

(*facts - defining the existing inMial facts...:*)
father{lohn Mary).

father(Jack, Andvy).

father(Jack, Tom).

miotheri Helen Jack)

miother{ Mary Jilly).

grandfather{Bamry Jim).

{* rules - defining the knowledge hase of rules..:*)
grandiather X}, Y ) father( X, Z), parent(Z,).
grandmaothen XY ):- mother(X.Z), parent{Z,Y)
parent( X, Y ) -mother(3,Y).
parent] X, Y ) -father X, Y).

Figure 2.22
A PROLOG program—searching for a relationship problem.
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Grandfather (X, ¥)

Father (X, I} Farent [Z, )

Mather (X, ¥) Father (X, ¥)

Figure 2.23
AND-OR tree of the exemplar PROLOG program.

Grandtather (X, ¥)

Father (X, Z)
John
Farent (X, ¥)

Mather (X, ¥)

Figure 2.24

Unification in PROLOG exemplified on the family relationship example.
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Natural language structures can be easily represented in predicate logic. A parsing tree for simple sentences was
given in figure 2.11 (B). The following expressions in PROLOG define parsing of simple sentences written in

English:
sentence = sentence(noun, verb-phrase) (*a compound object*)
noun = noun(word) (*a noun is a simple word*)

verb-phrase = verb-phrase (verb, noun); verb (word) (*a verb-phrase is either a verb or a verb plus noun*)

verb = verb (word)



word = symbol

One of the limitations of first-order logic, and of PROLOG languages in particular, is that this mechanism can be
used only for exact matching and exact reasoning over symbolic representations. But how many real-life and
engineering problems are similar to those of finding exact family relations? We may know for sure that John is the
father of William but we may not be so sure about the effect of virus V or machine fault F. These limitations are
overcome in the connectionist and fuzzy reasoning systems, and in the hybrid connectionist-logic programming
systems. Overall, logic programming systems are based on a rigid theory and have potential for further
development by implementing higher-order predicate logic and mixing with fuzzy logic and connectionist
systems.

2.7 Production Systems
2.7.1 The Production Systems Paradigm

Productions, from a terminological point of view, are known as transformation rules which are applied for
obtaining one sequence of characters from another, for example:

ACDE - F
the patient has a fever — take an aspirin

A new development in the production systems idea was achieved after the introduction of Markov rules which
define priorities for sequential application of productions in order to obtain desired transformations. Produc-
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tions are also used as a theoretical basis for developing compilers and other transformation systems.

A lot of the old ideas about productions are adopted in today's production systems which are the most common
languages, methods, and formal systems for representing and processing of knowledge in expert systems and in
Al systems in general.

A production rule has two sides: a left-hand side, which expresses the conditions or the premises, and a right-hand
side, which defines what kind of actions are to be performed when the conditions are satisfied.

Example

(production example

: condition elements

(there is an overheating) or

(the brakes respond slowly)

(I ; action

(give a message to the driver to stop the car))

Inference over production rules is based on the modus ponens law. A production system consist of three main
parts:



1. A list of facts, considered a working memory (the facts being called working memory elements); the working
memory represents the short-term memory of the system.

2. A set of productions, considered the production memory; this is the long-term memory of the system.

3. An inference engine, which is usually a forward chaining one; this is the reasoning procedure, the control
mechanism.

Here, the three parts of a production system are explained in more details. The facts are represented within the
framework defined by the user templates, for example:

(“object or relation” <attribute,” attribute,. . . {attribute,*))

The templates for representing facts and their corresponding facts for the Family Relationship and the Car
Monitoring problems are shown below:
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Example |

(is_a <relationship? <namel> <name2)—a template
(is_a father John Mary)—a fact

Example 2

((car_par>» {parameter>* <{value?)—a template

(car_par temperature 135)—a fact

((car_status” ¢system. functioning ¢status.")—a template
(car_status brakes functioning slowly)—a fact
(car_status cooling functioning overheating)—a fact
(car_status gauge functioning OK)—a fact

Productions can have expressions as condition elements in their left-hand sides. If facts from the working memory
match all the expressions in the left-hand side of a production, the production is called "to be satisfied" at the
current matching phase.

Condition elements can be a negation of a fact (means absence of this fact); expressions with variables or wild
cards; a wild card is a variable which can be satisfied by any value; and predicates, for example, temperature >
120.

The right-hand side of a production contains actions which manipulate facts in the working memory (assert,
retract, etc.) or perform interaction with the environment. These commands for CLIPS, a typical production
language, are given in appendix D. CLIPS (C language interpreter of production systems) was developed by
NASA (Giarratano and Riley 1989).

The inference engine of a production system performs a forward inference in the following way:



1. Matches all the facts from the working memory into the left-hand sides of all the productions and defines which
of them are satisfied. Every combination of facts which satisfies a production is called instantiation. All the
production rules which are satisfied by the current match form a conflict set, also called Agenda.

2. Selects one rule from the Agenda using selection strategies. Some of the selection strategies used in production
systems are the following:

a. Recency. The rule matched by the most recent facts is selected.
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b. Specificity. The rules with more condition elements have higher priority; this restricts the matching as those
rules are supposed to be matched by fewer instantiations.

c. Refraction. Once a rule is activated (fired) for a particular instantiation, it will not be fired again for the same
instantiation; the refraction period for some systems can be controlled, that is, productions can be suspended for
firing with the same instantiations for some cycles or "forever."

d. Salience. A priority number can be assigned to every rule and this will be the first criterion for selecting a rule
from the Agenda.

e. Random selection. A rule is selected randomly from the Agenda.

3. Executes the selected rule (or rules, depending on the realization of the production system) performing the
specified actions.

The inference engine works repetitively until there are no productions in the Agenda, or it is compulsorily
stopped. Figure 2.25 represents the three phases of the inference engine and the data structures used in a
production system.
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Figure 2.25
A production system (PS) cycle.
; fact template

doccount <numbers <money> <holders)
{deffacts initiallist
(account 1234 45.67 smith)
{account 3421 0.0 feldman)
{account 3333 0.0 grisman))
{defrule printt

==

{occount Tnum Tmoneyd (= Tmoney (L) Tname)

{printout 1 "clear account " faum " " Tname crlf )}

Figure 2.26
An example of a production rule for searching and processing a
database (fact base).

2.7.2 How to Program in Production Rules

Here some techniques for programming simple tasks in production rules are given.
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. Searching through databases. The match operation of the inference process can be used for searching

through a database.



Example An example of searching through bank records for accounts with 0.0 money in them is given in figure
2.26. The symbols preceded by "?" in the rules represent variables. The rule will fire until there are no facts in the
working memory that satisfy this rule.

. Programming logical inferences. The inference process in a production language is data-driven. It begins
with entering data. Then data match rules, a rule fires and possibly changes the working memory, then again facts
match rules, and so on. It is in contrast to the inference process in PROLOG-like languages which is a goal-driven
backward-chaining inference mechanism with backtracking.

Example In order to compare both languages, a program written in a production language for the Family
Relationship Problem is given in figure 2.27. It can be easily compared with the program written in PROLOG (see
section 2.6) and similarities and differences between both paradigms and languages picked up.
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2 CLIPS program Searching For Relationships
2as the following template for representing facts is used:
;a1 (is_n =relationship> <name:> <name>)

deffacts initial _facts
{i5_a father John Mary)
{15_a father Jack Andy)
{15_a father Jack Tom)
{is_a mother Helen Jack)
(is_a mother Mary Jilly)
(is_a grand father Bamy Jim))

v the Tollowing rules define how a relationship con be inferred
i Trom facts

idefrule grandfather
(i5_a father Mname | "namel)
{15_a paremt Tnamed Tnamed)
=
[assert (15_a grandfather "name | *named) )

(defrule grandmother II
{is_a mother "narme | Tname2)
{is_a parent Tnume? Ynamed)
==
(assent (is_a prandmother Tname ] Tname3)})

(defrule parent
{or {i5_a mother Tnamel Tname )
(is_ao father "name ] Tnamel))
==
{ossert (15_a parent Toame | Mname i)

Figure 2.27
A program written in a production language for the family relationship problem.



. Expressing the concept of "doesn't matter.” Wild cards represent variables which can be bound to any value
from the fact memory, that is, the value in that field "doesn't matter." The rule in the example below will cause
printing out all the names of the persons from the fact base who are grandfathers without taking into account who
the grandchildren are.

(defrule grandfather-print
(is_a grandfather ?name ?)
O (printout t ?name))

. Maintaining dynamic information structures. Retracting facts from the working memory, when they will no
longer be used in the program
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execution, is necessary not only for saving memory space but sometimes for the correct functioning of a
production system. A rule which retracts all the processed facts is given as an example:

(defrule print-all-facts
?f — (is_a ?relation ?namel ?name2)
O (printout t ?namel "is a" ?relation ?name2) (retract ?f))

Thus the working memory in a production system is a dynamic memory structure, that is, elements are asserted
when necessary and retracted after use.

. Using two types of variables. Two types of variables can be used in production systems. The first is a
variable for representing attribute values. The second is a variable for representing a whole fact from the working
memory. In the example above two types of variables were used, "?relation," which takes values from the facts,
and "?f," which takes as a value a whole fact. These two types of variables are an interesting property of
production languages.

. Using logic expressions as condition elements in production rules. For the condition elements in the left-
hand sides of the productions, the propositional logic connectives are allowed, that is, AND(&), OR(|) and
NOT—(~).

Examples

(person ?name ? brown black);
(person ?namel ?eyes&blue|green ?hair& ~ black);
(and (or (person ?name has_a fever)
(person ?name has-a cough));
(not (person ?name has-a high-temperature)))

. Functions and expressions are allowed in production languages but they are represented in different ways.
For example CLIPS language allows representing functions only in a prefix form, for example, (+ 2 3).

2.7.3 Exact Matching and Generalization in Production Systems: Production Systems for Problem-Solving



Production languages have been widely used for problem-solving and knowledge-engineering. There are reasons
for this, two of them being the following:
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1. Production systems are a universal computational mechanism, that is, every algorithm or set of heuristic rules
can be represented as a production system.

2. Production systems are universal function approximators, that is, any function can be approximated to any
degree of accuracy by a set of rules if the number of the rules is unlimited. In figure 1.3, one rule is shown, that is,
IF x is in the interval [x,, x,], THEN y is in the interval [y, y,], which covers part of the goal function. To cover
the whole function more rules are needed. These rules are interval rules. In the extreme case the number of rules
can be as many as the points describing the goal function, which for continuous functions is unlimited. The rules
then have the form of: IF x is x;, THEN y isy;, for j=1, 2, ... Using an unlimited number of rules is not possible,
and using a small number of rules may cause too big an error of approximation.

Here examples of solving some of the generic problems introduced in chapter 1 are given. These solutions are
compared with possible solutions using fuzzy models and neural network models later in the book.

Symbolic Al production systems are very efficient when used for symbolic representation, for example, attribute
color: values red, green, yellow; attribute sex: values male, female. Matching between facts and rules is exact. But
numerical attributes can also be used. In this case intervals for the numerical values are defined in order to achieve
generalization.

Some examples of using production systems for problem solving are given below, but the full solutions are
explained in section 2.12.

Example A production system which recognizes musical signals based on the energy of the signal in 10 different
frequency bands, for example, 0-1000 Hz, 1000-2000 Hz, . . . has rules which define intervals for those values:

IF (average energy in the first frequency band is between 40 and 44 dB) and (average energy in the third
frequency band is between 0 and 5), THEN (the musical signal is EaboveMidC)

Example After discretizing the average values for the ion concentration for the class Egmont_Ybl (0.39 2.79 0.44
0.82 0.37 1.03 1.72 0.31) where the attribute values correspond to the attributes described for this problem in
chapter (table 1.1), the class template will look like (327 48 310 17 3). A
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classification rule for classifying soil in class Egmont_Ybl could be written as: IF (327 48 3 10 17 3), THEN
(Soil class is Egmont_Ybl). An important task here is to properly choose the discretization intervals.

Production systems can be used for solving pattern recognition, classification, monitoring, planning, and decision-
making problems. Note that the use of intervals facilitates partial match, but at the same time introducing intervals
may cause imprecision in the solution process. For example, what will happen if the average power of a musical
signal for the first frequency band is not 40, but 39.999, and the average power of the third interval is 3? Will this
signal be classified into EaboveMidC? According to the above rule, no. This simple example illustrates the
imprecision of the interval approach and the lack of a smooth grayness at the border of the intervals. The
drawback of crisp borders between intervals is overcome in fuzzy systems and neural networks. The examples
below illustrate this.

Recognition and classification problems are implemented easily in production languages when heuristic rules are
available in the problem knowledge. The rules are of the form "IF (a set of features), THEN (class).” The
templates and only two rules for classification of animals (a well-explored Al example) are given in figure 2.28.

Games modeling is usually done in Al production languages by using heuristic rules. This can be illustrated by a
program given in (Giarratano and Riley, 1989). In the program, production rules are used to generate a move
according to the current situation. First, the situation is recognized; second, a move is performed. The heuristics
used for the game could be well-informed or ill-informed, could cover the whole problem state space, or could
cover only a small part, etc. The success of the production program depends on how good the heuristics are (see
chapter 1).

More examples of solving problems by using production languages are given in section 2.12. Each example takes
a different approach to solving the problem, and the problems are the case examples introduced in chapter 1.

2.7.4 Advantages and Limitations of Production Systems

The advantages of using productions for representing structured knowledge (in the form of rules) are the
following:

. Production systems are universal computational mechanisms and universal function approximators.
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; fact templates

S{ommal is_o =class=)
lanimal has < attribute valees)
; tanimil does cactions)

(defmle mammal
{or {animal has hair)
{animal does gives_milk))
=
{assen (animal is_a mamimal )y

[defrule ungulate
(o (animal 15_a mammal)
(animal does chews_the_cud))
==
{assert (animal is_a wngulate)))

Figure 2.28
The fact templates and two rules from a program for classification of
animals according to their features.

. They are very often close to how humans articulate their knowledge; this might be an explanation of why
production systems have been used widely for cognitive modeling.

. Readability. It is easy to understand what a production rule represents as knowledge.

. Explanation power. When a production has been executed, it leaves a clear trace and an explanation can be
easily provided.

. Expressiveness. Sometimes only one production is enough to express the solution of a whole problem (see
the Soil Classification Program in section 2.12).

. Modularity. Every production is a separate piece or module of knowledge; knowledge can be easily added
or deleted; it may contain local variables; the production rules do communicate with one another, but only through
the facts in the working memory, and not directly.

The principal limitations of the production systems from the knowledge-engineering point of view are the same as
the limitations of first-order logic. They are not efficient for approximate reasoning and they are sequential.
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Simple production systems have been implemented as neural networks (see chapters 5 and 6). The approximate
reasoning and partial match achieved there are principally different from those achieved by interval match after
data discretization in the symbolic production systems.

2.8 Expert Systems
After the introduction to expert systems in chapter 1, here are more details on the subject.
2.8.1 An Expert System's Architecture

Expert systems are knowledge-based systems that provide expertise, similar to that of experts in a restricted
application area. An expert system consists of the following main blocks: knowledge base, database, inference
engine, explanation module, user interface, and knowledge acquisition module (see figure 2.29), as explained
below:

i

Knowledge Base Data Base

Infergnce Engina

Y

LY L
Knowledge Acquisition User Interface N Explanation

I

Lizer

Figure 2.29
An expert system architecture.
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. The knowledge base module is where the problem knowledge resides. It may be a production memory in
production languages; it may be a neural network that has been trained with past data in the connectionist expert
systems; it may be a set of fuzzy rules in a fuzzy system.

. The database module contains current facts or past data. It is the working memory in the production
languages. In some architectures this module, containing past data, can be used as a source of knowledge in
addition to the knowledge base.

. The inference engine is a program that controls the functioning of the whole system. It contains an
inference mechanism, either forward chaining, or backward chaining, or a combination of them.

. An explanation module is a module that traces the execution of the expert system and accumulates
information about the course of the reasoning process; it then transfers this information to the user. An expert
system should be able to explain its behavior, for example, WHY it is checking a condition element in a rule, or
HOW it has inferred some conclusion. Usually, the WHY explanation is done by showing to the user what is
expected to be proved or disproved after having received information about a particular condition. The HOW
explanation aims at showing all the facts and inferred conclusions during the whole inference process that support
the final decision.

Example A possible HOW and WHY explanation for the Car Monitoring case example is shown graphically in
figure 2.30.

. The user interface module's role is to communicate with the environment, to interact with the user in a
friendly, yet sophisticated way. Natural language and speech processing may be used for communication with
users.

. The knowledge acquisition module is designed to accumulate knowledge to build up the knowledge base.
2.8.2 Expert Systems Design

An expert systems design is very much a heuristic process although some global phases have been shared among
expert systems designers. At each stage of the design process, some points should be discussed and made clear.
Some possible questions, which need to be answered at different stages of an expert systems design, are given
below as examples of the variety of problems.
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Slop tha car

there is overhealing

the brakes respond slowly

Why?

the gauge works propefly i temperature is over 120

Concrete facts
for the momaent: yes, lemperature = 1289

Figure 2.30

HOW and WHY explanation for the Car Monitoring
production system.

1. Stage I—identification of the problem

What class of problems will the expert system be expected to solve?
. How can these problems be defined?

2. Stage 2—conceptualization

What is given and what should be inferred?

What types of data and knowledge are available? Is there a need for knowledge acquisition?
3. Stage 3—formalization. Here all the eight major issues from section 2.1.2 should be discussed, for example:

. Are data and knowledge sparse and insufficient, or plentiful and redundant? Is there a need to deal with
uncertainty?

. Are data and knowledge reliable, accurate and precise, or unreliable, inaccurate, and imprecise? Are they
consistent and complete?

. What kind of explanation is needed?
4. Stage 4—realization

. What methods and tools are appropriate for representing data and knowledge—data based systems,
symbolic Al methods, fuzzy systems, neural networks, etc.? Is there a need for a hybrid system?

. Extendability, friendliness, reliability, robustness of the realization.
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5. Experiments and validation of the results
. How to evaluate the system and its error?

. How to validate the results—compare experimental results with the results obtained by experts; compare
results with the results obtained by other methods, etc?

In order to speed up the design process, expert system shells have been developed. They have the architecture of
an expert system, but are "empty" of knowledge. The problem knowledge is supposed to be entered in the empty
knowledge-based modules of the shell.

2.8.3 The Knowledge Acquisition Problem

The most difficult part of creating an expert system is knowledge acquisition. Knowledge may be elicited from an
expert or experts, data and examples, literature, etc. Knowledge can be either stored or learned. Learning can be
performed in either of two ways: (1) in advance (past data are used; this is the case in learning by example or from
experience); (2) during the functioning of the expert system (adaptive learning, learning by doing).

There are many reasons why knowledge acquisition should be difficult to implement in a computer program;
some of them are discussed in section 2.11. Neural networks have proved to be one of the most promising
paradigms for learning knowledge from examples. A section in chapter 5 is entirely devoted to learning explicit
knowledge from raw data.

2.8.4 Difficulties with Symbolic Al Languages for Expert Systems
Knowledge-engineering, when using symbolic Al systems, has some difficulties in:
. Representing both exact and inexact knowledge.

. Knowledge formalization. What is the connective between the condition elements in a rule? Is it AND or
OR or something else?

. Representing both explicit and implicit knowledge.
. Dealing with exact and inexact data (facts).
. Partial matching.

. Adaptive behaviour.

. Parallelism.
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These principal limitations of symbolic Al languages can be overcome by using fuzzy systems and neural
networks, as well as by using hybrid systems, which incorporate both symbolic Al and connectionist methods for
knowledge representation and processing.

Before we discuss them, we will have a look at the sources of uncertainty in domain data and problem knowledge,
and at some of the existing methods for handling these uncertainties.

2.9 Uncertainties in Knowledge-Based Systems: Probabilistic Methods

There are many ways to represent and process uncertain knowledge and inexact data. One of them—fuzzy sets
and fuzzy logic—is presented in chapter 3. But the most used so far is the classic probabilistic way discussed
briefly here.

2.9.1 Uncertainties in Data and Knowledge

Representing existing uncertainties in data and knowledge is a major problem in knowledge engineering. How to
infer a decision in the presence of inexact, incomplete, corrupted data and uncertain knowledge? Ambiguity is
something that should not be underestimated when creating a knowledge-based system. The opposite is true.
Ambiguity should be analyzed and treated properly in order to increase the validity of the inferred results. Sources
of uncertainties and errors may be grouped into the categories objective uncertainty and subjective uncertainty.

The objective uncertainties are mainly due to incomplete data and uncertain evidence. The subjective ones are due
to not well-known domain or unknown relations, functions, dependencies, etc. Uncertainty can be a characteristic
of data or of the problem knowledge, or of both. Error in data can be due to acquisition of incorrect data, lack of
precision and accuracy, or noise. Noise may be present in the environment, and instead of having a value of
1.2345 for a given attribute, we acquire a value of 1.2346, for example. Uncertain data can be represented by
using fuzzy terms or intervals. For example the cost between town A and town B in the TSP could be "about
fifteen,” or "between ten and twenty." The approximateness can be represented by fuzzy quantifiers, for example,
"very much,” "more or less," etc., or fuzzy qualifiers, which express
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the belief in the statement, for example, "very probable,” "less probable,"” etc.

Uncertainty in data may also mean uncertainty relating to the presence of an event, or uncertainty of the
appearance of the event. The former is treated by the fuzzy theory which "says" that an event or a concept is
present to some degree, say 0.7. Other types of uncertainties are treated by the probability theory, which "says"
that an event will happen with some probability of, say, 0.8.

Some main questions about uncertainty in data we should be clear about are:
. Is a fact uncertain because of some "noise?"
. Is a fact uncertain because it has not happened yet?

. Is a fact uncertain because it is present but only partially present?



Representing uncertainty in problem knowledge by using knowledge-engineering schemes is a more complex
problem than representing uncertainties in data. There are different types of errors resulting from incomplete and
uncertain knowledge: semantic, casual, systematic, logical. Semantic errors are due to the possibility of
interpreting incomplete and uncertain knowledge in variable ways. Casual errors are due to variations in the cases
which have to be treated by the same rules. Systematic or logical error is due to the inappropriateness of the
scheme used for representing problem knowledge. An error may be derived either from individual rules or from
rules interaction. The task of the knowledge engineer is to remove or minimize this error, if possible. The errors
that emerge as a result of the interaction of rules can be caused by the incompatibility of some rules.

Most symbolic Al systems require a coherent knowledge base. That is, knowledge free of missing or superfluous
rules, or rules that contradict one another to the point of total incompatibility. This is not a problem for fuzzy
systems and neural networks, as they can accommodate ambiguous and contradictory data and rules. Some typical
cases of uncertainty represented in rules are the following:

. Uncertain condition part C inarule IF C, THEN A.

. Uncertain condition element Ci in the condition part of a rule IF C1, C2, . . ., Ck, THEN A.
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. Uncertain action (consequent) part in a rule; even if we assume that C is 100% matched by the existing
facts, the conclusion A is a priorinot 100% sure but 75%; this type of uncertainty is represented mainly by the so-
called confidence factors (CF) and the rule has the form of

IF C, THEN A (0.75).

. Different degrees of importance for the antecedent elements; C2, for example, may be twice as important as
C3, and C1 and C3 may be of equal importance. The rule will be:
IF C1(1) and C2(2) and C3(1), THEN A (CF).

. A noise tolerance of the rule, that is, a rule IF C, THEN A may react to small changes in the fact space, or it
may be resistant to small changes and react only if substantial evidence of facts is present; a rule can be
represented in the form of IF C (noise tolerance = 0.6), THEN A.

. A sensitivity of a rule to relevant facts, that is, a rule IF C, THEN A may be more sensitive to a higher
degree of the presence of the relevant condition C facts, or the rule can be equally sensitive whatever the presence
of a fact is—100% or 50%, etc.

Uncertainties in knowledge may be captured only approximately, but that could be sufficient. It is sometimes even
preferable not to represent everything exactly, in order to make a good generalization.

Ambiguity in a rule base exists when there are at least two rules which infer different conclusions but have
identical condition parts:

R1:IF C, THEN A

R2:IF C, THEN B



Different ways to deal with ambiguities are:

. To assign coefficients of uncertainty to the condition elements, which will make a difference during the
matching process if the present fact C' is not certain

. To assign confidence factors to the action part of the rules

. To use fuzzy rules when more than one rule can be activated simultaneously and every one will contribute
to the final solution, even in a case when the rules are contradictory. In this case a trade-off will be found, e.g., a
trade-off between A and B is appropriate.
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2.9.2 Defining Probabilities

Generally speaking, there are two major approaches to processing uncertain knowledge: (1) probabilistic and (2)
nonprobabilistic. The formal theory of probability relies on the following three axioms:

axioml O < plE) <1

The axiom defines the probability p(E) of an event E as a real number in the closed interval [0, 1]. A probability
p(E) = 1 indicates a certain event, and p(E) = 0 indicates an impossible event.

axioM 2 Ep(E) = LE,wE,u...wE = U U
—problem space (universum)

The axiom reads that the sum of the probabilities of all mutually exclusive (disjoint) events fully covering the
problem space U is 1. The following is a corollary:

plE) + p(T1E) =1

where 71 E is the complement of the event E. The corollary shows that the sum of the probability of an event
occurring and the probability that it will not occur is 1. This is the probability version of the excluded middle law
known from Aristotelian logic and pointed out in section 2.5. An object or an event either exists or does not exist,
either happens or does not happen, there is nothing in between. This law is broken in the nonprobabilistic theories
and in the fuzzy theory in particular.

axiom 3 plE; v E;) = p(E;) + plE;),
where E1 and E2 are mutually exclusive events.

This axiom indicates that if the events E1 and E2 cannot occur simultaneously, the probability of one or the other
happening (disjunction) is the sum of their probabilities.

There are three main approaches to defining probabilities represented by the three schools in probability theory:
1. Classic probability:

p(E) = w/n,



where w is the number of occurrences of the event E for a total of n possible appearances. Laplace defines the
probability as a ratio between
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the number of equally possible cases when an event has occurred to the number of all the possible cases. The
classic approach to probabilities uses the principle of indifference, that is, if we do not have reasons to assume the
opposite, we should judge the alternatives equally probable. The classic definition of probability assumes that
probability exists objectively. It led some scientists to the deterministic theory which claims that the future is as
predictable as the past.

2. Posterior, experimental, frequency probability:
p(E) = lim f(E)/n, when n - oo,

where f(E) is the frequency of appearance of event E among a sequence of repetitive experiments. It is a
characteristic of recurrent, experiment-based events. It is valid, if we have sufficient reason to believe, that the
probability will tend to a fixed number when the number of experiments tend to infinity. Two main issues are to
be discussed. How can we be 100% sure about the tendency of the events? And how many experiments will be
enough to adequately approximate the probability?

3. Subjective probability. In contrast to the classic and experimental probabilities, subjective probability deals with
events which are not recurrent and cannot be estimated through previous experiments. It is rather a belief, view,
and estimation of experts, in the form of probability. For example observing dice we can articulate a subjective
probability of 1/6 about the event that any of the numbers between 1 and 6 happens. Subjective probabilities are
beliefs that meet the three probability axioms. There is rationalism, pragmatism, heuristics in their statements. The
subjective probability theory does not deny the existence of objective probabilities. The subjectivist only claims
that the estimation of objective probability has to be considered, but a pragmatic evaluation is the way the
probability theory has to be applied to real problem-solving.

Probability characteristics can be learned from data sets by using standard statistical methods. Some of these
characteristics are revised here:

. For a random scalar variable x, defined in a domain Ux, a probability density function is a function such as
P(x): Ux- [0, 1]. Typical distribution functions used in practice are uniform distribution, gaussian distribution
(bell-like), an exponential distribution, trapezoidal, and triangular (figure 2.31). As we shall see, they look very
much like membership functions of fuzzy sets, but they have a completely different meaning.
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A

pil) = e

o

pix) =

Uniform Gaussian Poisson
(a) (b) ()
Figure 2.31
Different probability distribution functions: (a) Uniform: N represents
all discrete units in the domain of the random variable x; (b) gaussian:
M is the mean and o is the standard deviation; (c) Poisson: A is a rate
parameter, t is time.

. For a discrete random variable x, which takes values u,, u,, . . ., U, the mean is calculated as
M(x) = Zuy- plw,)

. The mathematical expectation E(x) of a random continuous variable x is measured by the formula:

E(x) = Ju-p{u}. for all values u from Ux

. A variance V(x), or a standard deviation s, of a random scalar variable is measured by
Flx) = El(x — M(x))

. For two uncorrelated random variables x and y the following is valid:

E(x, y) = E{x)- E(y)

. When considering two random variables x and y, a correlation and a covariance can be calculated as
follows:

Corrix, y) = E(x, y)
Covix,y) = E[(x — M(x)).(y — M(y))] = E(x, y} — M(x)} M{(y)

. For a random vector x = (X, X,,. . . .,X,) the probability distribution function is a surface in a k-dimensional
space. The correlation Corr(x, y) and the covariance Cov(x, y) of two random vectors x and y are calculated as
inner products:
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Corr(x,y) = E(x-y"), where y is the transposed vector of y
Covix,y) = E{{x — M(x).y — M(y)))

. If two random vector variables x and y are independent, their joint density function P(X, y) is represented
as:

P(x,y) = P(x) P(y)

2.9.3 The Probabilistic Approach to Representing and Processing of Uncertainty: Bayesian Probabilities,
Probability Automatons, Markov Models

Inarule IF C, THEN A, the "appearance” of A is conditional, depending on the condition element C. Here
conditional probabilities can be used to represent uncertainty denoted as p(A/C). The probability p(A/C) defines
the probability of the event A to occur, given that the event C has occurred. It is given by the formula:

plA/C) = plA » C)p(C)
where p(A ~ C) denotes the probability of both events to happen (conjuction).

For example, in medical diagnosis, the most probable causes of a disease must be detected from a set of
symptoms. The conditional probability of nonrecurring events is interpreted as a degree of certainty (the expert's
belief) that hypothesis A is true when condition C is given. The following formula, which represents the
conditional probability between two events C and A, is known as the Bayes's theorem:

plA/C) = piC/A) p(A)/piC)

If instead of one event C there is a set of events C1, C2, . . ., Ck, which form the condition part in a rule IF C1,
C2,..., Ck, THEN A, a probability p(C1, C2,. . ., Ck) has to be evaluated instead of p(C) in the above formula.

Using the Bayes's theorem involves difficulties, mainly concerning the evaluation of the prior probabilities p(A),
p(C), p(C/A). In practice (e.g., in statistical pattern recognition), the latter is assumed to be of a gaussian type.
Bayes's theorem is applicable if the condition C consists of condition elements C1, C2, . . ., Ck, that are
independent (which may not be the case). Bayes's theorem does not consider the connectives between the
condition elements. Are these elements connected by "AND" or by "OR"
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or by any other connective? Some ad hoc methods are applied to calculate the cumulative probability of the whole
condition element. For "AND" connectives a MIN operation is used, and for "OR" connective, a MAX operation
(Giarratano and Riley 1989). In practice, we may have many rules which infer different conclusions if a certain
condition is true, that is, IF C, THEN Ai (i = 1,2,.. ., n). In this case Bayes's theorem fails, as it assumes than the
conclusions are mutually exclusive in principle. For example, if a patient has a high temperature, the most

probable diagnosis may be flu, but meningitis is also possible.

In brief, probabilistic methods imply estimation of a posterior probability for a certain conclusion in a rule to be
accepted as correct, given the probabilities for the condition elements in the rule.

Probability (or stochastic) automatons are finite automatons, the transitions of which are defined as probabilities.
The same example of a finite automaton as given in fig. 2.19, but this time as a probability automaton, is

represented graphically in figure 2.32.
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Figure 2.32
Directed graph representing
the transition function of a
simple probability automaton.
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Figure 2.33
A simple Markov model for recognizing the word "cat." The conditional
probabilities attached to the arcs represent the chances for the transitions
to happen.

Markov models and their variant hidden Markov models are stochastic finite automatons with some restrictions
imposed on them (Rabiner 1989). They are called "hidden™ because stochastically defined transitions are not
possible to observe in advance. Figure 2.33 shows a hidden Markov model of the pronunciation of the word "cat"
as a sequence of the phonemes /k/, /&/,/t/ and probabilities attached to the transition from one phoneme to another.
This is a "left-to-right” model. The flow of information and activation goes in one direction without feedbacks.

2.10 Nonprobabilistic Methods for Dealing with Uncertainties

Probabilities have some limitations. One is that they cannot represent ignorance. An event has to be either
"present"” or "not present" at every moment. If we don't know anything about the event we will have difficulty
using probabilities. Some theories have extended the probability theory to overcome this limitation. Such theories
are, for example, the Dempster-Shafer theory, certainty factors, and possibility theory. Some of them do not
provide operational definitions for the new probability terms, that is, the definition does not necessarily state the
way to find out the values for the parameters of uncertainty. But some axioms are given with formulas for
calculating how to operate with a set of data or rules with parameters of uncertainty assigned to them.
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2.10.1 The Dempster-Shafer Theory: Credibility and Plausibility

Dempster (1967) and Shafer (1976) introduced a measure called mass m(E), or a basic probability assignment
(bpa), associated with every event E or set of events, {E2, E3} for example, which is a subset of the domain space
U of all the possible events. The idea is that a probability of an event E can be either concentrated in one element
(as it is in probability theory), or it can be a distributed mass among some items—subsets of U where E appears as
a member. We can have a solution of a problem, for example, in the following form:

m({E2}) = 0.7, m{{E2, E3})} = 0.1

The main idea is to represent the uncertainties of an event E not as a single probability p(E), but as an interval of
lower probability and a higher probability. The following axioms are held for the Dempster-Shafer theory:

Al. 0 < miE) < 1, and E is called a focal point in U if m{(E) > 0
A2, Em(E) = 1, for each subset E of U

Defining the term mass allows us to determine the credibility Cr(E) (the lower possible probability) and the
plausibility PI(E) (the higher possible probability). A probability of any set E of events, subset of U, is represented
as a probability interval [Cr(E), PI(E)]. When dealing with single element sets E, the intervals are reduced to the
probability p(E) = Cr(E) = PI(E). So this theory is an extension of the probability theory. The measure of
credibility Cr(E) is based on the mass m:

Al CriE) = Zm(C), C entails E, that s, C = E

A measure of plausibility PI(E) is introduced as:

Ad. PIE)= 1 — Cr(1E) = Zm(C), C does not entail TE.
It has been proved as a corollary that

YE= U, Cr(E)+ CriT1E) < 1; PIE) + PI(TE) = |

The mass m(U) of the whole domain gives the level of the total ignorance about the whole domain knowledge. In
case of complete ignorance about a focal point E, we will have Cr(E) = Cr("1E) = 0, and PI(E) = PI("TE) = 1. Itis
also true that: JE OO U, Cr(E) < PI(E).
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Using uncertainty parameters for inference over rules means propagation of uncertainties along the inference
chain. It also means combining uncertainties when two rules contribute to the certainty of the same fact. The
combination rule suggested by Dempster and Shafer is simple. If the intersection of two focal points A1 and A2 is
a nonempty set A3, then

m(A3) = m(Al) m(A2)

Let us consider two rules of the form of:
Rule 1: IF C, THEN Al (CF1)

Rule 2: IF P, THEN A2 (CF2),

where A, A2 [J U. CF 1 and CF2 mean certainty of the conclusions A1 and A2 respectively. It can be either a prior

probability or a subjective certainty. For A3 = Al nA2, we have m(A3) = m(Al) m(A2) = Cr(C)- CF1 Cr(P)-CF2. If
A3 takes part in other rules as a condition, then Cr(A3) can be calculated based on axiom 3 above. An interval
[Cr(A3), PI(A3)] can be defined as well.

Example The credibility Cr and the plausibility Pl of a set E = {C2, C3} are calculated as given below when the
mass probabilities of the other focal points in U = {C1, C2, C3} are known: m(C1) = 0.2; m(C2) = 0.5; m(C3) =
0.1; m(C1,C2,C3) =0.1; m(C2,C3) =0.1

Cr(E)=05+0.1+0.1=0.7;

PI(E)=1- Cr(TE)=1 - Cr(C1)

=1-02=0.8

2.10.2 Measure of Belief and Measure of Disbelief: Certainty Factors

Another approach, introduced in the early expert systems, for example, MYCIN (see Giarratano and Riley, 1989)
to overcome the limitation of the probability theory concerning the excluded middle, is called certainty factors. A
measure of belief MB(A, C) that if the event C happens the event A will happen too, and a measure of disbelief
MD(A, C) = MB("1A, C), have been introduced. A certainty factor then is calculated as:

CF(A, C) = MB(A, C) - MD(A, C), or

CF(A, C) = (MB - MD)/(1 - min{MB, MD})



Page 143
The following formulas have been suggested and used in MYCIN to calculate the measures of belief and disbelief:
MB(A,C)=1,ifp(A) =1, or
MB(A, C) = (MAX{p(A|C),p(A)} - p(A)/(1 - p(A)), otherwise
MD(A, C) =1, ifp(A) =0, or
MD(A, C) = (MIN{p(A|C),p(A)} - p(A))/p(A), otherwise

Certainty factors are numbers between -1 and 1. A certainty factor CF(A, C) = + 1 means a proven true hypothesis
A, while CF(A, C) = -1 means a proven untrue hypothesis A, when C is present. CF(A, C) = 0 denotes lack of a
proof for the hypothesis A. It is true for the certainty factors, that CF(A, C)+ CF("1A, C) =0, but MB(A, C)+
MD(A, C) is not necessarily equal to 1.

There are ways to combine certainty factors from many condition elements in the condition part of a rule. Support
for an inferred fact may be obtained from different rules and an integrated certainty of the fact has to be estimated.
Let us discuss this having the two rules below as an example:

RI: IF C, THEN A (CFrl)
R2: IF P, THEN A (CFr2)

An event C', which is supposed to match to some extent the condition C in the first rule, may happen with a
certainty of CF(C"). The conditional certainty factor of the antecedent C will be CF(C, C) = CF(C"). The certainty
factors inferred by the two rules for the action part A will be:

CF 1 =CF(A, C) = CF(C, C') CFrl; CF2 = CF(A, P) = CF(P, P') CFr2

Aggregating two certainty factors CF1 and CF2 inferred for one and the same fact A into one certainty factor
CF(A) can be done by using different aggregating formulas:

MAX formula, that is, CF(A) = max{CF1, CF2},

The formula suggested by Shortliffe:

CF(A) = CF1 + CF2(1 - CF1), if CF1 and CF2 > 0;

CF(A) = (CF1 + CF2)/(1 - MIN{|CF1|,|CF2|}), if CF1 or CF2 < 0;

CF(A) = (CF1 + CF2)/(1 + CF1), if CFland CF2 <0
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Example
CF(C,C)=0.5; CFr1 =0.6; CF(P, P)=0.4; CFr2 =0.8;
CF(A)=0.3+0.32(1-0.3) =0.524.

The combined CF(A) is greater than any of those inferred by the individual rules. This is logical as we have two
sources (R1 and R2) that infer A.

When the condition part consists of more than one condition element, e.g., C = C1 AND C2 AND . .. AND Ck,
the combined condition part certainty factor is usually calculated as a minimum of the certainty factors of all the
condition elements:

CF(C, C") = min{CF(C1, C1"),. . ., CF(Ck, Ck")}

When the OR connective is used in the antecedent part of a rule, the maximum certainty factor of a condition
element is taken. The formula above is heuristic. It does not follow from the main axioms for the certainty factors.
Another limitation to applying certainty factors for approximate reasoning is that the precision of the certainties
propagated through a chain of rules decreases rapidly with the length of the chain.

2.10.3 Possibility and Necessity

As a general concept to represent a measure of uncertainty of a event (or a set) E, Zadeh, Sugeno, Dubois and
Prade, and others (see Dubois and Prade, 1988) developed a so-called confidence parameter—g(E): 0 < g(E) < 1,
E O U, where E is an event from a domain U of all possible events. When an event is sure, it implies g(E) = 1. The
implication in the other way is not necessarily true, for example, if g(E) = 1 it does not mean that E is a sure event.
If an event is impossible, it implies g(E) = 0, but not the other way around.

Possibility is the degree to which an expert considers a hypothesis H to be feasible or simply possible. A
possibility of an event A and the possibility of its complement event “1A are weakly connected, in contrast to their
probabilities. Possibility is nonstatistical, while probability is statistical. Possibility is capacity or capability. It
refers to allowed values, rather than to frequencies.

Example The possibility that soccer team A will win against team B is 0.8, but the possibility that it won't win is
0.4.
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Example The possibility of getting 2 after having thrown a die could be 1, but the probability ideally is 1/6.
The following axioms are valid for the confidence parameter g:
Al. g is monotonic with respect to inclusion, that is,
E10E2 0 g(E1) < g(E2),
A2. [TA, B O U, g(A O B) = max(g(a),g(b))
A3.0A, BOD, g(A n B) <min(g(A), g(B))

There is a measure for the confidence parameters of A and B that makes the axiom 2 an equality, and this measure
is called possibility:

DA, B O U, M(A O B) = max(MN(A), M(B))

A function I takes values in [0, 1] and is defined as follows:

M(A)=1,ifAn E#0 and the event E [J U is considered to be sure; N(A) = 0 otherwise.
An event A and its complement “1A are weakly connected:

MAX{MN(A), M(TA)} =1

There is also a measure N that makes axiom 3 an equality, which is called necessity:

DA, B O U, N(A n B) = min(N(A), N(B))

The function U - [0, 1], such that E — T1(E), is called a possibility distribution function. The following formulas
are true for the above-defined terms (see also Neapolitan, 1989):

A4.TI(A) = 1-N(TA)
A5. min(N(A),N(T A))=0
A6. OA O U, M(A) = N(A)
A7.N(A)>00 M(A) =1
A8.TI(A) <1 0ON(A) =0
A9. M(A)+ M(TA)> 1

A10. N(A)+ N(TA)< 1
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It can be shown that credibility Cr is equivalent to necessity N and plausibility Pl to possibility I if and only if the
focal elements, defined in the Dempster-Shafer theory, form a nested sequence of sets (Dubois and Prade 1988).
And something more, if the focal elements are elementary, then A, Cr(A) = PI(A) = p(A). A possibility
distribution function can be induced from fuzzy membership function. From a given fuzzy set A, a possibility
function can be obtained provided the fuzzy set is normalized, that is, Cu [J U, g,(u) = 1, where W, is the
membership function of A.

2.11 Machine-Learning Methods for Knowledge Engineering
2.11.1 Issues in Machine Learning

Machine-learning methods are computer methods for accumulating, changing, and updating knowledge in an Al
computer system. Some major issues which concern the process of learning knowledge in general are:

. What can a system learn objectively from a set of data? The point is that if data do not contain enough
information a system cannot "learn” much from it.

. What should a system learn? In order to solve a particular problem, a system has to learn specific features,
dependencies, and so forth, relevant to the solution, but not learn everything, or even in the worst scenario,
irrelevant features only.

. How to test how well the system has learned appropriate knowledge? Testing the learning process is usually
done through measuring the learning error. The main approaches are:

Partitioning of data. A part of the data, say 70%, is used for training and the other part for testing; more
sophisticated methods for partitioning are discussed in chapter 5.

The leaving-one-out method means that we train n times the system with (n - 1) examples and check the system's
reaction to the left-out example. After doing this n times we can calculate the correct answer of the system as the
ratio between the number of correctly processed examples and the number n of all the examples.

Methods of learning exact and fuzzy rules through neural networks is a new area and a very promising one (see
chapter 5).
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2.11.2 Inductive Learning: Learning from Examples

These methods assume that a set of examples or instances is known. The instances are either of the form of (x;, y,),
where x; O D is a state of the domain space D and y; [1 S is a state of the solution space S, or in the form of (x;), i =
1,2,...,n,where no output vectors are specified. The task is to create a system which can learn the input-output
associations {(x, y)} or to learn inherent characteristics of the data {x}. The first case will be referred to as
supervised learning, where the solution y; (a class label) for every input vector x; is provided. The examples will
be called "labeled" examples. The second case will be referred to as unsupervised learning, that is, the system will
learn some characteristics, features, clusters, concepts, etc. from unlabeled examples.

Example A classic example of an inductive learning task adopted from psychology is given in figure 2.34A (also
used in (Pratt, 1994)). The task is to observe the five examples classified into two classes A and B and learn
common rules for placing examples into one of these groups. Figure 2.34B gives a truth table type of
representation of this problem and figure 2.35 gives a boolean map for the same example. The following boolean
rules can be articulated from this map: class A = 7t; class B = t. These boolean rules can be used to classify
unknown examples. Other techniques may also be used for learning the common rules and for generalization.
Some of them allow using non-boolean variables, for example, continuous values variables.

Inductive decision trees and the 1D3 algorithm How to discriminate the classes, what formula, or rule, or
structure should be used for generalizing new examples? A technique called inductive decision tree “observes" the
examples and builds a binary tree which can discriminate all the classes. The process of building the tree is based
on recursive choosing of a node, an attribute, or any of its value, which divides the whole set of examples into two
groups.

Example Figure 2.36 shows a decision tree for classifying the objects from figure 2.34(A) into the two classes A
and B. The paths in the tree can be represented as rules (also shown on fig. 2.36).

An inductive decision tree for classifying the Iris data examples is given in Barndorff-Nielsen et al. (1993). This
tree can classify all the 50 examples of Setosa correctly, 49 of the examples of Virginica, and 47 of the examples
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Class B Class A

Class B
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i _JAN

€ 5 t Class ? - g;:;‘: :EI
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Figure 2.34

Psychology example for inductive learning (adapted from Pratt 1994): (A) the
objects and their classes are given. (B) the task represented as a truth-table.

C

I ——
0 - false (class A)
5 0 X 1- rue (class B)
® = Mol kKnown
X X '
1 1
i} a
Figure 2.35

Inductive learning from boolean examples by using
boolean table of Carno—the example from fig. 2.34(B).
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Wh / lack
h11|: Bluck

Nlack ./ White

Class A Class B Class A Class B Class A

If £\ is White THEN Class A
If £\ is Black THEN Class B

Figure 2.36
Decision-classification tree for the psychology example.
The decision tree is also represented as a set of rules.

of Versicolor. In order to improve the classification, a further refinement of the values at the leaves must be done.

The question is how to choose the attributes and their values when splitting the data? One possibility is to evaluate
each "split candidate test" a in respect of a desired property C and choose the one with a highest information gain
or minimal lack of information. Measuring the information gain and the lack of information can be done in
different ways. One of them is by using the formulas (see also (Pratt, 1994)):

inf(C, a) = -p-log,p - (1 - p) log,(l - p), p—proportion of examples which pass test a (experimental probability).
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inf(C, 1a) = -g:log,q - (1 - )-log,(1 - q), g-proportion of examples which fail to pass a
INF(C, a) = p inf(C, a) + (1 - p) inf(C, "Ta)—Ilack of information.

At any step of deciding which test to allocate to a node, starting from the root of the decision tree, the test a with a
minimal lack of information is chosen.

A well-known symbolic Al method for inductive learning of a decision tree from a set of symbolic examples is
ID3 (Quinlan 1986). This method induces an "optimal™ decision tree for classification problems from a set of
labeled examples. Optimal here means that if a new example is to be classified, the system follows the decision
tree and checks the fewest features of the example in order to classify it into one of the known classes (predefined
labels given in the examples).

The decision trees learned can be translated into a form of IF-THEN rules or formulas. It is a compromise
between the precisely learned examples and the generalization ability of a tree. A decision tree can be pruned to
some depth which may accelerate the decision process but may lead to an increase in the error. Learning from
examples can be:

. Incremental. Every new example contributes to the knowledge learned by the system from the previous
examples. The system does not count all the previous examples again.

. "One-shot" learning. The system observes all the examples only once and extracts some features from the
set.

Neural networks are very powerful techniques for learning from examples. They can be used for learning
unstructured knowledge. Knowledge is captured in a neural network but it cannot be articulated explicitly.
Learning structured knowledge can also be done in neural networks, but the rules in that case have to be
formulated after analysis of a trained neural network. The rules can be fuzzy or exact. Different types of
inexactness and uncertainty can also be extracted.

Learning in a system cannot be discussed separately from its generalization ability. For example, can the rules
learned from figure 2.36 be used to place the case given in figure 2.37 into the most appropriate class from the two
given in figure 2.34(A)? Here it is necessary to apply reasoning by analogy. This is natural for humans, but
difficult to implement in a computer program.



Page 151

AO/\

Figure 2.37
A different case from that
given in figure 2.34(A) to
be classified in the most
appropriate class there.

2.11.3 Other Methods of Machine Learning

. Learning by doing, learning by observation and discovery. The system starts without knowledge or with
very little knowledge: for example, a "goodness" criterion. The goodness criterion may not be introduced to the
system a priori. It can be learned from the reaction of the user or the environment. Gradually, the system
accumulates correct solutions and learns how to react properly. A simple case is rote learning, that is, memorizing
previous solutions and using one of them for new data. Genetic algorithms are another example. These methods
can be implemented either as symbolic Al systems, where exact knowledge can be learned, or as neural networks,
where approximate knowledge can be learned without any previous knowledge being provided. The latter include
unsupervised learning in some neural network types.

. Learning by being told, learning from advice. This is simply the process whereby a system obtains
knowledge in some form and transforms it to its internal form in order to use it effectively. Little learning is
involved in these methods. It is more a kind of interpreting and a molding of given knowledge into well-known
schemes. The method is a typical symbolic Al method.

. Learning by analogy. This is the case whereby a system learns how to solve a problem on the basis of
previous solutions of analogous problems, or on the basis of previous solutions of the same problem but in a
different domain. Learning by analogy has been explored through symbolic Al methods, but because it involves
measuring similarities and approximate reasoning, this approach has not gone far. There is plenty of potential for
using neural networks and fuzzy systems.

. Case-based learning is based on using a set of exemplars. The system stores only a selected set of examples
(exemplars) and uses them for finding the best match between a new example and the exemplars in order to
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generalize, that is, to classify the new example. Here exemplars (not rules) are learned and stored in a system.
Classification of a new instance in exemplar-based learning approaches is based on nearest-neighbor matching
against those instances or exemplars already stored in the memory. Different criteria are used to measure the
distance between the stored representations and a new instance. An exemplar-based method of learning, called
template-based method, is given in the next subsection as an example of Al-symbolic methods and also as a basis
for comparing different approaches to learning the same problem, in this case the problem of classifying Iris
plants when the Iris data set is given as a set of examples.

2.11.4 A Template Case-Based Method for Learning and Classification (Optional)

A method for exemplar-based learning and classification is presented here. The learning method assumes a set of
examples. The following main steps are performed:

1. Discretization of the data. Discretizing intervals chosen on the basis of statistical characteristics can be used.
For the Iris data set the discretization interval scheme given in section 2.2.2 is used here. After discretizing an
instance from the raw data set, it becomes a case, or a template.

2. A set of representative templates (SRT) with an associated probability coefficient (PC) indicating the number of
instances associated with the same representative template (RT) is learned from the discretized data. A
representative template RT for a class C is a template which represents some of the instances which belong to
class C. An example of a representative template is (5 2 9 1 1 23) where the first four numbers are attribute-
interval values, the fifth is the class number, and the sixth is called the probability coefficient, the number of all
the instances from class 1, represented by this RT.

3. A global probability vector (GPV) for the whole data set is calculated. The GPV consists of the global
probabilities of all the different attribute-interval values over the entire data set.

The result of learning is a set of representative templates and the GPV. This approach is implemented as
"supervised" and "unsupervised" learning, as they are called here. The first assumes labels attached to the
instances; the second one does not assume or does not take into account
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Instances Discretised Instances Representative Templates ( RT)

Al A2 A3 Ad Class | Al A2 A3 A4 Class | Al A2 A3 A4 Class |PC

5.1 3.5 1.4 0.2 Set. 2 2 1 1 1 2 2 1 1 1 2

4.7 3.2 1.3 0.2 Set. 1 2 1 1 1 1 2 1 1 1 1

5.0 3.6 1.4 0.2. |Set 2 2 1 1 1

6.5 2.8 4.6 15 Vers. |3 1 4 2 2 3 1 4 2 2 2

6.3 3.3 4.7 1.6 Vers. |3 2 4 2 2 3 2 4 2 2 1

6.6 2.9 4.6 1.3 Vers. |3 1 4 2 2




7.1 3.0 5.9 2.1 Virg. 4 2 5 3 3 4 2 5 3 3 1

6.5 3.0 59 2.2 Virg. 3 2 5 3 3 3 2 5 3 3 3

6.5 3.2 51 2.0 Virg. 3 2 5 3 3

68 |30 |55 |21 |virg. |3 2 5 3 3

Figure 2.38

A small subset of 10 instances from the Iris data set, their discretized interval representation according to

the intervals given in figure 2.3, and a set of representative templates (RT) obtained through a supervised template-
based learning algorithm.

class labels. After learning representative templates, a generalization procedure which classifies a new example
into one of the classes known or extracted from unlabeled data is applied.

Example A small subset of 10 instances taken from the Iris data set is used to illustrate the above algorithm. The
same data are used with the "unsupervised" learning algorithm yet to be given. Figure 2.38 shows the raw data, the
discretized data, and the SRT obtained by the supervised learning algorithm.

The classification algorithm classifies a new instance (denoted here as NEW) into one of the possible classes. The
classification procedure developed here is based on a nearest-neighbor match of the new instance template (Tnew)
and the SRT.

In the classification process, if there is an exact match between Tnew and RT, the probability coefficients PCi of
each of the matched RTs belonging to the same class are summed and normalized. The class that has the highest
sum is the winner if a single classification result is required.
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Otherwise a classification set with certainty degrees is created based on the normalized sums for all the classes. If
Tnew does not match exactly any of the RTs, then the most typical attribute for the entire data set is turned into a
wild card ("?") and the matching procedure continues with the rest of the attributes. The logic is that the most
typical attribute value is assumed to appear in the majority of instances regardless of their class; therefore it
cannot help in distinguishing between classes when classifying a new instance. So the most typical attribute for
the whole data set is sacrificed in order to achieve a partial matching. To sacrifice a whole attribute may not be a
good idea in many cases and it has been avoided in fuzzy and neural systems.



Using the SRT obtained in the example above, we can demonstrate how we would attempt to classify a new
instance of the Iris data into one of the classes—Setosa, Versicolor, or Virginica. If the new instance is (4.4 2.9
1.4 0.2), then its template (Tnew) after discretization is (1 1 1 1 ?). The corresponding probabilities for each
attribute, stored in the GPV, are (.1.2.3.3). The first step fails to find an exact match. The next step replaces the
most typical attribute value by a wild card ("?") which yields the template (1 1 ? ?). However there are still no
matching templates. The next step is to turn the next most typical attribute (in this case the third attribute) into a
wild card, but again there are no matching templates. As the general probabilities of PL = 1 and PW =1 are the
same (0.3), the first template was chosen arbitrarily over the second. But as we shall see later, this choice may turn
to be important and ambiguity in such cases can be met by applying a classification with certainty degrees. Only
on the third partial-matching cycle, when the second attribute is turned into a "'?," a matching RT is found. The
matching RT is (12 11 1 1), which belongs to classl. The classification for this example would be (classl/1,
class2/0, class3/0).

In the case of Tnew = (3 2 4 3), the template (3 2 4 ?) matches class2's RT with a PC = 1 and the template (3 2 ?
3) matches class3's RT with a PC = 3. The resulting classification set is (class 1/0, class2/0.25, class3/0.75).

Here "unsupervised" learning is performed on a data set when the instances do not contain any information on the
classes (labels) to which they belong. In some cases the target number of classes (Ncl) may be given explicitly. If
Ncl is not known, all the different representative templates are given a different class number and the
corresponding PCs are created. If a
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given number (Ncl) of classes is required, then the procedure described below can be applied.

Using the same data set as above, but without class information in the examples, the data set is discretized and a
set of representative templates SRT1 is created. The RTs are associated with (numerical) class labels based on the
order in which they are derived. When the number of required classes is not known, SRT1 becomes SRT and is
used for classification. If the number of classes required is provided (e.g., Ncl = 3), then the procedure is as
follows:

1. Derive the Ncl class centers, a class center being an RT with the highest probability coefficient, PC, that is,
representing most of the examples. In this case three centers, C1=(2211),C2=(3142),and C3=(3253), are
chosen from the RTs in SRT1. Their corresponding probability vectors are (.2 .8.3.3), (.6 .2 .3 .3) and (.6 .8
4.4).

2. Match C1, C2, and C3 against SRT1. All RTs are matched using the wild-carding of attributes, based on
typicality, and associated with one of the classes. Figure 2.39 illustrates an implementation of the unsupervised
learning algorithm to the data set above when the number of classes is given (Ncl = 3).

The extracted RTs during the so-called supervised and unsupervised learning can be represented by interval
production rules, which written in the CLIPS syntax look like the rules shown in figure 2.40. The representative
templates can also be used for articulating fuzzy rules, as shown in chapter 3. The confidence factors attached to
the rules are calculated on the basis of the probabilities of an instance from a defined class to be represented by the
rule.

2.12 Problems and Exercises



Part A: Case Example Solutions

1. The Soil Classification Example. The soil class templates are represented as facts (figure 2.41). The same
problem, that is, the lack of a smooth match between facts and conditions in the rules, as pointed out in section

2.7.3 for the Musical Recognition Problem, will appear here because of the principle of exact match "(fact-

template) — (class template)™ used.
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Discretized Instance SRT1 SRT

Al A2 A3 A4 Al A2 A3 A4 Class PC Al A2 A3 A4 Class PC
2 2 1 1 2 2 1 1 1 2 2 2 1 1 1 2
1 2 1 1 1 1 1 2 1 1 1 1 1 1
2 2 1 1 3 1 4 2 3 2 3 1 4 2 2 2
3 1 4 2 3 2 4 2 4 1 3 2 4 2 2 1
3 2 4 2 3 2 5 3 5 1 4 2 5 3 3 1
3 1 4 2 4 2 5 3 6 3 3 2 5 3 3 3
4 2 5 3

3 2 5 3

3 2 3 3

3 2 3 3

Figure 2.39

An illustration of the "unsupervised" template based learning algorithm applied to the small subset of 10 discretized
Iris instances from figure 2.37. The set SRT1 contains all the six different (class) templates. If the number of classes is

a priori given, for example, Ncl = 3, then these six representative templates are labeledwith three labels only, thus
producing a set SRT and probability coefficients for each of the representative templates.

2. Production systems are very useful for solving monitoring and diagnostic problems. Figure 2.42 shows a
production system for solving the Car Monitoring Problem. In order to have a real monitoring system, the working
memory should be fed with new facts from the car sensors every few seconds, for example.

3. Musical signals recognition production system (or converting sounds-into-notes program). Figure 2.43A shows
graphically a musical signal represented as a fact and figure 2.43B shows two production rules for recognition of
two notes. Intervals are used for representing typical values for the energy of the signal in the 10 frequency bands
between 0 and 10,000 Hz. A real application would require either more bands or at least a higher value for the
highest frequency to be considered. The borders of the intervals are either communicated by experts or articulated

after analyzing samples of known signals. In both of the two cases, the interval values are
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{delmle Setosal
(5L 1s_im 2 SWis_in 2 PL is_in | PW is_in 1}
=
{assert (closs setosa 0.66)))

(defrule Setosal
(5L is_in | SWis_in 2 PL is_in | PW is_in [}
—
{assert (class setosa 0.33)))

{defrule Versicolor|
(SLas_in 3 W is_in | PL is_in 4 PW is_in 2)
==
(assermiclass versicolor 0.66)))

(delrule Versicolor?
(5L is_in 3 5Wis_in 2 PL is_in 4 PW is_in 2)
==
{assent (class versicolor 0.33)))

{defrule Virginical
{PL is_in 4 PW is_in 2 SL is_im 5 SW as_in 3)
=T
{assert (class virginica 0.257))

(defrule Virginica2
(SL is_in 3 SW is_in 2 PL is_in 5 PW is_in 3)
=
(asser {class virgimca 0.751))

Figure 2.40
Rules extracted from the representative templates in figure 2.38 for the
Iris classification.

not precise. On the other hand, they impose crisp borderlines between classes. This contradiction may result in a
not very good generalization.

4. An example of a decision-making problem (briefly discussed in chapter 1) was the Investment Advisor
Problem. The same approach, as used in the program above, is used here, that is, an attribute-value interval
quantization in the condition elements of the rules. Figure 2.44 shows two rules for investment advising. Again,
the same problem, that is, "lack of plausible partial match," may be experienced.

5. Planning systems are usually goal-driven. Using the built-in selection strategies appropriately, one can develop
a goal-driven system within the data-driven inference mechanism of a production language. A typical



{deffacts KNOWN_SOILS
(SOIL EGMONT_YBL 327483101713
(SOIL STRATFORD _YBL 11156 1462)
(SOIL TAUPO_YBP 3645184 1)
(SOIL TOKOMARU_YGE 1 10572582)
(SOIL MATAPIRO_YGE 02431293
(SO0 WAIKARE YBEI1B5111372)

{defrule identify_soil_type
{ahd Taba) (nod Tood)  (sod Tsod)  (cad Tead) (mgl Tmgl) (ki TRi)  (pal Tnai)
(ch Tl
{SOIL ?sname Tnh&:(= Tnh Tnhi) o0& (= Tno Tnoi) Tsodi(= Mo Tsoi)
Teade (= Tea Tond) Mmgd(= Tmg "mgl) Mdo(= "k Tki) *nad (= "na Tnal)
Teldeo(= el Teliy )
=>
{printout 1 "The type of soil indicated by these element amounts is =)
{printout 1 Tsname crif))

Figure 2.41
A simple production system for solving the Soil Classification case
problem.

;A program to monilor & car

; Templates for representing the facts

» {car_param parameter_name valuc)

. {car_status system functioning status)

. Imitial facts

{(deffacts initial_facts
{car_param temperature 130)
{car_status brakes functioning OK)
{car_status gauge functioning OK))

; Rules
{defrule stop_the _car
[ or [car_status coohng functioning overhealing)
{car_status brakes functioning slowly))
="
{printout t " Stop the car " crlff ))

{defrule overheating
{car_stamus gauge functioning OK)
{car_poram temperature Memp &: { > Temp 120 )
—
(printout t * There is an overheating” orlf )
(assert (car_status cooling functioning overheating)))

Figure 2.42
A production system for solving the Car Monitoring case problem.
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a.
FACT Template
4000 - 5000
Dn \ 5000 - 6000 9000 - 10000
{NDTE IS 39 20 7 4 o 1
- 1D|]ﬂ T G000 - 7000 000 - 5000
100D - 2000 = 4000 T000 - 8000
2000 - EDEHJ
Fraguency Bands
b.

; Template for representing the facts
» (Mote_[s <param | > <param» <paramiz . ..., <param10z=)

; Rules

(defimnle CaboveMidC
(Mote_Is Tparam & (== Tparam| 45)& ?param | &: (<= Yparaml 50} $7)
=
{printout t crlf "The note is C above Middle C!" crlf))

{defrule BaboveMidC
(Mote_Is Tparam | &:(== Tparam| 30)& Mparam & (<= Tparam] 34} 7
Tparam3& (= Tparam3 0)& Tparam3& (<= Tparam3 10) $7)
==

{printout t erll "The note is B above Middle C1 crlf))

Figure 2.43
(A) A template of a musical signal. (B) A single production rule for
recognizing a note.
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;. Template for holding infermation about clients.
o (client <fnames> <lname> <amounts <risk> <perigd=> <income)

{defrule SmAv/Low/Shlg

(chient Mname Yname Tamount& (> Tamount )
& amountd (< Tamount |00

Trisk&lowlLOW Tperiod Tincome)

==

{printout ¢ “?nome " As you are looking for a retum with the minimum
amount of risk on your money it would be best 1o put your money in s
fixed term deposit with a bank. This will provide you with a secure
investment and also allow for a retum on your imoney.” )

{defrule MedLngLow

{client Tfname ?lname Tamount&:(> *amount U
& Tamountde:(< Tamount 10NN

Trisk&mediumIMEDIUM Tpenodd: (= Tperiod 24)
Tincome& (<= Tincome 350000)

==

{printout t " Mname ~ Invest around 3% of your money in shares. It
would be wise to invest the remainder with a bank as on your income
you really cannot afford to open yoursell up 1o o0 much risk ™))

Figure 2.44
Two production rules as part of a solution to the Investment Adviser
case example problem.

characteristic of planning systems is that they are sequential because a plan is a sequence of actions. Production
systems are also sequential, that is, a single production is executed at every cycle. Therefore production systems
may be good Al mechanisms for solving planning problems. The fact templates, an initial state, and some rules of
a production system for the Monkey and Bananas Problem, are given in figure 2.45.

Part B: Practical Tasks and Questions

6. Explain how you recognize a cup. Can you formulate the rules? Give examples of three cups described in a set
of features you think are important for the process of recognition.

7. Explain the eight main issues in knowledge engineering. Compare symbolic Al systems, fuzzy systems, and
neural networks for knowledge engineering (see table 1.1).

8. What is discretization and what is normalization? Give examples.



A template for representing facts that comain information about the monkey.

imonkey <locations
<onlopofs
<holding=)

vA template for representing facts that contain information about the ohjects,
{ohject <names
<lgcation:
<Obopf
<weiphts=)

vA template Tor representing monkey's goals,
(goalisio <petions
L ArEUMERIS=2)

sImanial stare

(deffacts mibalstate
(monkey 157 foor blank)
fobject ladder 164 floor light)
(object bananas 149 ceiling light)
{poalisto hold bananas))

(defrule grabobject
1 <(goalisto hold obij)
2 =iobject Yoby Tplace Yon light)
3 =imonkey Yplace Ton blank)
= .
(primtout § “Monkey grabs the ™ Tobj crif)
[retracy 1 M2 )
{asser (object Yplace held light))
{asser imonkey "place Mon Tobjll)

(e frule holdobjecromove
(goalisin move Tohj Tplace)
[object Tobj ~?place 7 light)
[momkey T 7 = Tobij)
{not {goalisto hald Tobj))
=
{assert {goalisto holds Tobji))

Figure 2.45

Part of a program for the Monkey and Bananas Problem written in CLIPS.
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9. What is the principle difference between FFT and wavelet transformation?
10. Why may data analysis be important?
11. Describe five symbolic Al methods for knowledge representation. Give examples.

12. What are modus ponens, modus tollens, forward chaining and backward chaining? What is the relationship
between them? Do they relate to partial matching, or not?

13. What are the main types of symbol expressions used in predicate logic? Give examples of every one. Write a
clause for recognizing a handwritten character 3.

14. Explain the main phases of the inference engine in a production system. Write down a production for
recognizing a handwritten character 3.

15. What is a variable as a general term? How many types of variables are allowed in the production language
CLIPS? Give examples. What kind of variables are allowed in PROLOG? How do they get bound to values?

16. Explain the matching process in CLIPS and in PROLOG. Give one example and explain how this example is
executed in the both systems.

17. Explain how production languages can be used for solving the following generic Al problems introduced in
chapter 1: classification; planning; decision making.

18. Give at least three points for discussion at each steps in developing an expert system.
19. Explain the ways data (facts) are represented in CLIPS and in PROLOG.

20. What is the difference between probability, credibility, plausibility, belief, disbelief, certainty factor, fuzzy
membership function, possibility, necessity with respect to representing a set A and its complementary set "1A?

21. Give the main axioms for defining each of the following: probability p(A), mass parameter m(A), certainty
factor CF(A, C), fuzzy set A, confidence measure g(A).

22. Outline three main methods for machine-learning.

23. Write a set of production rules for the game ticktacktoe. Be sure that the rules "cover" the whole domain
space; otherwise the program may fail to make a move if some situations are present on the board.
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24. Write in CLIPS a heuristic rule for the Traveling Salesman Problem.

25. Create fact templates and a set of production rules for solving the assignment problem (explained in chapter
1).

26. Create fact templates and write a set of production rules for the Resource Scheduling Problem explained in
chapter 1.

27. Compare the partial interval match used in 2.11.4 and the exact interval match in the Soil Classification
Problem example given in 2.12, part A. What is the difference?

28. How can a partial match be realized in PROLOG?
Part C: Project Specification
Topic: Developing a Small Rule-Based Production System

1. Choose a problem to solve as a production rule-based system. Explain the problem. You may use one of the
problem domains listed below.

2. Develop a set of rules for solving the problem using the "matching facts against rules™ principle. Represent facts
as templates.

3. Develop a production system. Write the program (normally between 10 and 30 productions).

4. Make experiments with your production system for different data inputs. Validate the results. What extension
of the program can be done in the future?

Note. A list of problems from different application domains:
1. Printed characters recognition
2. Handwritten digits or character recognition

3. Objects recognition and classification: plants, earth samples, weather patterns, blood samples under a
microscope

4. Speech recognition—a small subset of phonemes recognition
5. Musical notes recognition

6. Planning robot navigation

7. Device (plant) monitoring

8. Medical diagnosis

9. Technical diagnosis

10. Prediction of possible failure of a device
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11. Prediction of disasters (storms, earthquakes, floods, etc.)
12. Stock market prediction (see appendix C)
13. Control of manufacturing processes
14. Resource scheduling
15. Game simulation—playing ticktacktoe
16. Game simulation—playing Go-Moku (see chapter 1).
17. Decision-making—investment adviser

18. Mortgage approval (see appendix C)

2.13 Conclusion

This chapter was a brief presentation of symbolic Al methods for knowledge-engineering. But it also made the
bridge to the fuzzy and neural network models. The main issues in knowledge-engineering, which are data and
knowledge representation and inference, are also the main issues in using fuzzy systems and neural networks. The
short presentation of propositional and predicate logic is used later to refer to and make comparisons between the
fuzzy, connectionist, and the symbolic Al inference methods. The detailed presentation of production systems and
its realization aim at deeper understanding of the principles in order to use them for practical applications as well
as to implement them (or their modifications) in fuzzy and connectionist environments.

2.14 Suggested Reading

The following texts are recommended for further reading on general or specific topics:

Statistical methods for data analysis—Weiss and Kulikowski (1991); Barndoff-Nielsen et al. (1993)
Clustering algorithms—Hartigan (1975); Stolcke (1992)

Introduction to Al and expert systems—~Pratt (1994); Robinson (1988); Ralston (1988); Schalkoff (1990); Dean et
al. (1995); Luger and Stubblefield (1989)

Al logic systems—Doyle (1979)
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Principles of expert systems—Giarratano and Riley (1989); Feigenbaum (1989)

Introduction to Al, expert systems, and CLIPS language—Giarratano and Riley (1989)

CLIPS user's guide—Giarratano (1989)

Probability methods for approximate reasoning—Neapolitan (1989); Kanal and Lemmer (1986)

Nonprobability methods for approximate reasoning—Dempster (1967); Shafer (1976); Dubois and Prade (1980,
1988); Whalen and Schott (1985); Yager and Zadeh (1992)

Machine-learning methods—Bratko and Lavrac (1987); Quinlan (1986); Clark (1989); Thornton (1992); Tsypkin
(1973); Elliot and Scott (1991); Fisher (1936); Aha et al. (1991)

Methods for knowledge acquisition for expert systems—Hart (1992) Template-based method for learning
representative templates (section 2.11 )—Kasabov and Clarke (1995)

Early expert systems—Waterman and Hayes-Roth (1978); Feigenbaum (1989)
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3
From Fuzzy Sets to Fuzzy Systems

In chapter 1 a short introduction to fuzzy sets was given. This chapter continues to present some basic
notions about fuzzy sets, but it also introduces the process of designing real fuzzy systems for solving
generic and specific problems. Different methods of fuzzy reasoning are discussed and illustrated. The
process of a fuzzy system design is described as a process of articulating commonsense knowledge by
using linguistically plausible terms, creating fuzzy rules and numerically defined membership functions
for them, and applying a fuzzy inference method.

3.1 Fuzzy Sets and Fuzzy Operations
3.1.1 Fuzzy Sets

The notion of a fuzzy set was introduced first by Lotfi Zadeh in 1965, who later developed many of the
methods of fuzzy logic based on this simple notion. It took a couple of decades for the rationale of fuzzy
sets to be understood and applied by other scientists.

The traditional way of representing elements u of a set A is through the characteristic function:
HA(u) =1, if u is an element of the set A, and

HMA(u) = 0, if u is not an element of the set A,

that is, an object either belongs or does not belong to a given set.

In fuzzy sets an object can belong to a set partially. The degree of membership is defined through a
generalized characteristic function called membership function:

Ha(u): U - [0,1]
where U is called the universe, and A is a fuzzy subset of U.

The values of the membership function are real numbers in the interval [0, 1], where 0 means that the
object is not a member of the set and 1 means that it belongs entirely. Each value of the function is
called a membership degree. One way of defining a membership function is through an analog function.
Figure 3.1 shows three membership functions representing three fuzzy sets labeled as "short,"”
"medium," and "tall," all of them being fuzzy values of a variable "height." As we can see, the value 170
cm belongs to the fuzzy set "medium™ to a degree of 0.2 and at the same time to the set "tall" to a degree
of 0.7.
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& Short Medium Tall

i
30 170 250
Height {cm)

Figure 3.1
Membership functions representing three fuzzy
sets for the variable "height.”

If the universe is discrete, a membership function can be defined by a finite set in the following way:
A =pu(u)lu, + p(u)lu, + ...+ p(uy)/ug,
or simply

A=Y wlu,

where the symbol / separates the membership degrees p(u;) from the elements of the universe u; (I U,

and + stands for union. In a simpler form, a fuzzy set is represented as a sequence of membership
degree/value pairs: (0/150, 0.3/160, 0.68/170, 0.9/180, 1/190, 1/250).

Venn diagrams, which were used in chapter 2 for graphical representation of ordinary sets, are not
appropriate for representing fuzzy sets. The principle difference between an ordinary, crisp set and a
fuzzy set is illustrated by the graphical representation shown in figure 3.2. Crisp sets use "clear cut" on
the boundaries. Fuzzy sets use grades. The membership degree to which two values, for example, 14.999
and 15.001, belong to the fuzzy set "medium™ are very close to each other, which represents their
closeness in the universe, but because of the crisp border between the crisp sets "cool” and "medium,"
the two values are associated with different crisp sets.

Some basic notions of fuzzy sets are defined below:

. A support of a fuzzy set A is the subset of the universe U, each element of which has a
membership degree to A different from zero (figure 3.3):

supp(A) = {uju T U, pa(u) > 0}



W' Crisp set  Crisp set
& "Cool *Medium"®

1 / \
D4 b--acaaoa] Fuzzy sat

AN

i 10 15 25 30
Tampearature (*C)

Figure 3.2
Representing crisp and fuzzy sets as
subsets of a domain (universe) U.

.

e u'

supplA)

Figure 3.3
Support of a fuzzy set A.
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For example, the support of the fuzzy set "medium temperature" is the interval (10,30) on the Celsius
scale. A fuzzy set A can be formulated entirely by its support, that is:

A = {Ha(u)/ulu O supp(A)}

. Cardinality of an ordinary, crisp set is defined as the number of the elements in the set, but
cardinality of a fuzzy set M(A) is defined as follows:

MiA) =% pylu), uelU

. Power set of A is called the set of all fuzzy subsets of A.



A fuzzy set A is called a normal fuzzy set if its membership function has a grade of 1 at least for
one value from the universe U.
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Figure 3.4
I-cut of a fuzzy set.
. Every fuzzy set A can be represented by its x-cut, which can be defined as weak or strong (figure

3.4). The x-cut of a fuzzy set A is a subset A, of the universe U which consists of values that belong to
the fuzzy set A with a membership degree greater (weak cut), or greater or equal (strong cut) than a
given value x I [0, 1].

. An interesting property of fuzzy sets, introduced by Kosko (1992), was called subsethood. It
measures not the degree to which a fuzzy set belongs to the universe, but the other way round, the
degree to which the whole universe U belongs to any of its fuzzy subsets. Thus, everything is subjective
and depends on the viewpoint.

Fuzzy set theory can be considered as an extension of ordinary set theory. Operations similar to the well-
known ordinary set operations have been introduced for fuzzy sets, as shown in the next section.

3.1.2 Operations with Fuzzy Sets

Ordinary (crisp) sets are a special case of fuzzy sets, when two membership degrees only, 0 and 1, are
used, and crisp borders between the sets are defined. All definitions, proofs, and theorems that apply to
fuzzy sets must also be valid in the case when the fuzziness becomes zero, that is, when the fuzzy set
turns into an ordinary one.

We shall now look at some fuzzy operators. An analog-function representation of membership functions
Is used in figure 3.5 to represent some operations with fuzzy sets. The following operations over two
fuzzy sets A and B defined over the same universe U are the most common in fuzzy theory:
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Concantration

Figure 3.5
Five operations with two fuzzy sets A and B approximately represented
in a graphical form.

. Union, A [J B:
Magg(U) = Ha(u) O pg(u), forall u from U, where L means MAX
. Intersection, A n B:

Ha-g(U) = Ha(u) U pg(u), for all u from U, where Omeans MIN; the De Morgan's laws are valid for
intersection and union.

. Equality, A = B:

Ma(u) = pg(u), forall u from U

. Set complement, notA, 71A:

Mnota(U) = 1 - pa(u), forall u from U

. Concentration, CON(A):

Heoney(U) = (Ha(u))2, for all u from U; this operation is used as a linguistic modifier "very"
. Dilation, DIL(A):

Mo (U) = (Ma(u))es, for all u from U; this operation is used as a linguistic modifier *more or less."
. Subset, A [ B:

Ma(U) < hg(u), forall u from U

. Algebraic product, ALIB:

Has(H) = Ha(u) - Hg(u), forall u from U



. Bounded sum:

max{1,u(u) + pg(u)}, for all u from U

. Bounded difference, A | -| B:

Hape(U) = min{O,p,(u) - p(u)}, forallu from U
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. Bounded product:

max{0, Ha(u) + yg(u) - 1}, for all u from U

. Normalization NORM(A):

Hormay(U) = Ha(U)/MAX {Ha(u)}, for all u from U

. Algebraic sum:

Hars(U) = Ha(u) + Yg(u), for all u from U; the De Morgan laws are valid for the algebraic sum and
difference.

The operations over fuzzy sets have some properties, for example, they are associative, commutative,
and distributive, that is,

Associative: (a*b)*c=a* (b *c)

Commutative: a * b = b * a (not valid for the bounded difference)
Distributive:a* (bec)=(a=b) * (a=c)

where * and = denote any operations from those listed above.

An interesting and most distinguishing property for fuzzy sets, when compared with ordinary sets, is that
fuzzy sets break the law of the excluded middle and the law of contradiction, so the following may be
true:

Al TAzU

AnAz[



So the union of a fuzzy set A and its complement A should not necessarily give the whole universe U.
And the intersection between the two is not necessarily equal to the empty set.

Measuring the ambiguity (the fuzziness) of a fuzzy set is an interesting issue. Kosko (1986) suggested
that the fuzziness of a fuzzy set is measured by its entropy:

E(A) = M(A n TA)YMA O TA)

where M denotes the cardinality. The greater the entropy, the greater the fuzziness. Crisp sets have an
entropy of 0. This simple definition opens the doors for applying fuzzy sets to real problems as it is well
known that an entropy of O is rather too idealistic a case. Another formula for measuring the entropy of a
fuzzy set A is:
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A Simil arity A Distance

(a) (o)

Figure 3.6
Showing graphically one way of measuring similarity and distance
between fuzzy sets (a) and (b). The black area represents
quantitatively the measure.

A ; NOT A




Figure 3.7
A graphical representation of calculating
the similarity S between two fuzzy sets B
and A based on possibility P and necessity
N measures (see the formulas in the text).

E(d)= —k E: L) log pglu) + poylu) - log p-,(uw)}, forallue U.
where: k > 0 is a constant.

Different metric parameters have been introduced to measure similarity and distance between fuzzy sets.
One graphical approach is shown in figure 3.6. Similarity S between two fuzzy sets A and B (which is
also a measure of how much B matches A) can be measured by calculating possibilities P and necessities
N as shown below and illustrated in figure 3.7 (see chapter 2 for the definitions of possibility and
necessity):

S=P(A/B), if N(A/B)>0.5

S = (N(A/B)) + 0.5) * P(A/B), otherwise
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where P(A/B) = max{min{,(u),us(u)}}, for all u O U; N(A/B) = 1 - P("1A/B) (see chapter 2). The above
formula seems complicated, but it is really simple to implement, as illustrated in figure 3.7. For the
example there N(A/B) = 0.2, and S= (0.2 + 0.5) - 0.8 = 0.56. The above method is widely used in fuzzy
expert systems for calculating the degree to which an observation (B) matches a condition element (A) in
a fuzzy rule.

3.1.3 Geometrical Representation of Fuzzy Sets

A geometrical interpretation of fuzzy sets as middle points in a hypercube is introduced by Kosko in his
monograph Neural Networks and Fuzzy Systems (1992). The fuzzy power set of the universe U =
{u,u,,. . ., u.} is an n-dimensional hypercube in this representation. This idea is illustrated in figure 3.8,
where the concept of "heavy smoker," being defined as (0/0, 0.8/6, 1/10), is shown for the case example
of the Smoker and the Risk
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Figure 3.8

A geometrical representation of the concept of "heavy

smoker" from the Smoker and the Risk of Cancer case

example as a point in a (three-dimensional) cube and as
a (two-dimensional) membership function.
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of Cancer. A small discrete universe U = {0, 6, 10} of the number of cigarettes a person may smoke a
day on average has been used. Any crisp subset of U is represented by a vertex on a coordinate axis. A
fuzzy subset of U is represented by a point in three-dimensional space. The more fuzzy a fuzzy set is,
the deeper inside the cube is its corresponding point. The fuzziest subset, the set with the highest
entropy, is the center point. This is the set defined as (0.5/0, 0.5/6, 0.5/10).

3.2 Fuzziness and Probability; Conceptualizing in Fuzzy Terms; The Extension Principle

Let us suppose that a particular problem is not well defined, the existing knowledge is vague, and so
forth. How to represent the problem in fuzzy terms? Should we use probability representation or a fuzzy
representation? But first, what is the difference between them?

3.2.1 Fuzziness and Probability



In probability theory an event u [ U either happens or not and its probability p(u) represents the chance
for the event to happen, that is, the chances that a random variable x takes a value u. A probability p(u)
can be represented by the ratio between the number of experiments of a series when u happens and the
total number of experiments (see chapter 2). For example, the probability that it will rain on August 22
Is 0.73, because 73 out of 100 days on this date were recorded for the last 100 years as rainy days. The
probability density function P(x) gives the probability of each of the possible values of a random
variable x (events u O U). But August 22 comes and it is not quite clear whether it is "rainy" or not. The
notion of rainy can be represented as a fuzzy set A on the universe of the rainfall and represented by its
membership function W,. In general, a membership coefficient p,(u) measures the grade to which an
event u, which has already happened, is a member of the concept labeled as A. The membership function
represents the degree to which the total set U (every element from U) is contained in the subset A. For
example, August 22 was a rainy day to a degree of 0.6. So the probability density function P(x) is a
completely different concept from the membership function of a fuzzy set A. Another example, given
below, is a classic example—throwing a dice. Figure 3.9 shows in tabular and graphical form the
probability density
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Figure 3.9
Probability density function for throwing dice and the membership
functions of the concepts "Small,” "Medium," "Big."

function of the random number achieved after each throw, and the membership function that the number
is "small."”



In the above example two events can be distinguished—a crisp event, achieving a number of 2, and a
fuzzy event, achieving a "small" number. One can calculate the probability for a crisp event, p(x = 2) =
1/6, but it is also possible to calculate the probability p(A) of a fuzzy event, the probability that a small
number will be achieved, p(x = "small").

In general, a probability of a fuzzy event is calculated as:

plA) =3 palu)/n,

for uniformly distributed variable x having n discrete values, and

plA) = ¥ palu) plx = u),
for the general case.
Example For the membership functions shown in figure 3.9, we calculate:

p(x ="small") = 1.5/6; p(x ="medium™) =2/6; p(x ="big") =2.5/6
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Probabilities of fuzzy events have same properties as probabilities of crisp events. For example, if A and
B are two fuzzy events, then the following is held:

(1) if A OB, p(A) < p(B)
(2) p("TA) = - p(A)

(3) p(A T B) =p(A) +p(B) - p(A n B)

Is it true that probabilities are only "about future events" and "fuzziness" is only "about something that
has happened?" Definitely not. A conditional probability for a crisp event may represent the probability
of an event happening at moment t based on the probabilities of events which have happened at
moments (t - 1) and (t - 2) and the events that will (or have) happen(ed) at the next moments, (t + 1) and
(t + 2), for example. This is the philosophy behind the time-delay networks and the so-called delayed
decision making approach. The idea is to wait until future events happen and decide what has happened
at a previous moment in time. For example, the probability that a phoneme is pronounced at the moment
t depends on the probability of some other phonemes being pronounced at the moments (t - 1), (t - 2)
and also pronounced next at moments (t + 1) and (t + 2). The reason is that when a person talks he or
she has in mind the whole word or a whole sentence before starting to articulate the sounds.



The conditional probability of fuzzy events is defined in the same way as the conditional probability of
crisp events. For example, p(A/B) denotes the conditional probability for the fuzzy event A to happen if
the fuzzy event B has happened. So fuzziness can also be used to represent future events either by
calculating the probability for the fuzzy events or by applying existing knowledge, for example,
"tomorrow's value for the stock index will be high, if today's value is moderate, and yesterday's value
was low."

By analogy to calculating the entropy of fuzzy sets, we can calculate the probabilistic entropy of a fuzzy
set:

EP(A) = =} (py(u) plu)-log pu)),
and also the entropy for the occurrence of the fuzzy event A:

E(A) = -p(A) - log p(A) - p("TA) - log p("1A)
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Probabilities can be attached to fuzzy terms. And fuzzy terms can be attached to probabilities too. In fact
every probability p can be considered as "about p" as in reality future events never happen exactly as
defined by their probability to happen. For example, the probability of having a rainy day tomorrow
might have been calculated very precisely to be 0.70135. But a fuzzy number "about 0.7" may better
represent the chances of having a rainy day tomorrow. Fuzzy probability theory is discussed in D.
Ralescu (1995).

The life-and-death phenomenon might be an example is worth investigating from the point of view of
probability, fuzziness, probability for fuzzy events, and entropy of occurrence. For example, there is a
probability that every single person will die at a certain time, but when this moment comes, there is a

state of the brain which is between the two states.

3.2.2 Conceptualizing in Fuzzy Terms

One of the most important steps toward using fuzzy logic and fuzzy systems for problem-solving is
representing the problem in fuzzy terms. This process is called conceptualization in fuzzy terms. We
often use linguistic terms in the process of identification and specification of a problem, or in the process
of articulating heuristic rules. If we look at the case examples in chapter 1 and at the heuristic rules
there, we will note the use of the following linguistic terms: higher, lower, very strong, slowly, much
dependent and less dependent, high, low, good, bad, and many others. All of these are fuzzy concepts
representable as fuzzy sets.



We shall use the term linguistic variable to denote a variable which takes fuzzy values and has a
linguistic meaning. A linguistic variable is "velocity" if it takes as values: "low," "moderate," or "high,"
for example. A linguistic variable is the variable "Score" if it takes the values "high™ and "low."
Linguistic values, also called fuzzy labels, fuzzy predicates or fuzzy concepts, have semantic meaning
and can be expressed numerically by their membership functions. For example a fuzzy variable "Score
may have as a universe all the numbers between 150 and 200. Linguistic variables can be Quantitative,
for example, "temperature"” (low, high); time (early, late); spatial location (around the corner); or
Qualitative, for example, "truth,” "certainty,” "belief." The process of representing a linguistic variable
into a set of linguistic values is called fuzzy quantization.
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Figure 3.10
Standard types of membership functions:
Z function; ttfunction; S function;
trapezoidal function; triangle function;
singleton.

In many cases a linguistic variable can be quantized into some linguistic labels that can be represented
by standard functional representations. Standard types of fuzzy membership functions are given
graphically in figure 3.10. The following are the most favored in fuzzy expert systems design:

. Single-valued, or singleton, for example, u = b, where b is a scalar value.

. Triangular: p(u) = 1 - |u - b)/|b - a]; if triangular membership functions u;,, 1 =1, 2, .. .,I, which
represent a fuzzy variable, are uniformly distributed over the universe U, then this representation has the
following interesting property:

Eti] pilu) =1 foranyue U



and for each value u from the universe U at most two membership degrees to which u belongs to all
membership functions ;, i=1, 2, . . ., |, are not equal to zero. Examples of such representation are given
in figures 3.11(A) and (B) where the Iris attributes and class variables are fuzzy-quantized by using | = 3
fuzzy labels and | = 5 fuzzy labels respectively.

. Trapezoidal
. S-function (sigmoid function):
S(u=0, u<a,

S(uy=2((u-a)l(c-a))?, a<ushbh,
S(uy=1-2((u-a)/(c-a))? b<uc<c,

S(u=1, u>c.
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« Z function:

Zlu)=1— Slu)

» || function (bell function):

[T(u) = Stw), w<h (hereb is used instead of ¢ used above)
[Tw) = Zin), u=>b,

Two parameters must be defined for the quantization procedure: (1) the number of fuzzy labels, and (2)
the form of the membership functions for each of the fuzzy labels.

Choosing the number and the form of all the fuzzy labels that represent a fuzzy variable is a crucial
point for a fuzzy system. Are "Low" and "High" fuzzy labels sufficient to represent the fuzzy variable
"Score," or do we need a third one, say "Medium," or are even more fuzzy labels needed? How do we
place the standard labels on the universe U if this information is not provided by an expert? To answer
the latter, Kosko (1992) uses a heuristic rule to choose how much the neighboring labels should overlap,
which is about 25%. But this is very much a subjective choice.

If we have defined the fuzzy-quantizing labels, for example,"small," "medium," or "large," we can
represent any particular data item as a set of membership degrees to the fuzzy labels. Do we lose
information when representing raw data through fuzzy labels? Fuzzy discretization does not lead to loss
of information if the fuzzy labels are correctly chosen (this is not the case with interval discretization).
This can be experimented on figure 3.11 with the Iris case example. An attribute-value is uniquely
represented by the membership coefficients obtained from the membership functions for the fuzzy
labels. This process is called fuzzification, or fuzzifying.



Fuzzy values defined by standard membership functions have some useful properties when used in fuzzy
rules, for example, the rules approximate the goal function as explained further on. Choosing a standard
type of membership function, when not given or known a priori, resembles choosing the gaussian
probability distribution for the conditional probability in the Bayes's theorem.

A good example of fuzzy-quantizing of a quantitative variable is the representation of natural or real
number variables as fuzzy numbers. A fuzzy number represents the approximateness of a natural (real)
number, for example, "about 600," represented graphically in figure 3.12. Fuzzy
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Figure 3.11
Fuzzy predicates (labels) defined as triangular, uniformly distributed
membership functions for the Iris data attributes and classes. (A) Three
labels used. (B) Five labels used.

=

1
M
0 500 600 700 >

Figure 3.12
One representation for the fuzzy
number "about 600."

unfrsa™  “may be irue” "trua”

e e L.

- Truth
0 1

Figure 3.13
Representing truthfulness (certainty)
of events as fuzzy sets over the [0, 1]

domain.
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numbers can be manipulated in fuzzy theory as they are represented by fuzzy sets. Operations over fuzzy
numbers, such as addition, subtraction, etc., are also possible. Some of them are similar to the operations
with exact numbers. For example, if A and B are fuzzy numbers defined by their membership functions

M, and [ respectively, then their sum is simply defined by:

U'C = UA+ UB’

where + is an algebraic summation.



Fuzzy quantization is possible not only on numerical variables but also on qualitative variables like
"truthfulness of events." Fuzzy qualifiers give a fuzzy evaluation of the truthfulness of an event. Typical
fuzzy qualifiers are "very true,” "more or less true," and "not true," Fuzzy qualifiers can be represented
on the scale of truthfulness by fuzzy membership functions, as shown in figure 3.13.
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f ("about 2°)

A e T

Figure 3.14
An illustration of the extension principle in
fuzzy theory: an example of transforming
a fuzzy set "x is about 2" into a fuzzy set
"f(x is about 2)" for f(x) = (x - 1)2x I [1,4].

The classic certainty factors used in MYCIN and in many other expert systems may be represented as
single-value membership functions over the universe of all possible certainties between 0 and 1.

3.2.3 The Extension Principle

A useful principle, called the extension principle, defines how any single real value, or function, or set,
can be represented by a corresponding fuzzy membership function, that is, how it can be fuzzified. If we
have a function f: X — Y between two crisp sets X and Y, and we know the membership function p, of a

subset A [J X, we can obtain the fuzzy representation of f(A) in Y through the following formula:

Hia)(F(X)) = pa(X)



Example Given f(x) = (x - 1)2 and the fuzzy set A = "about 2" = (0.5/1, 1/2, 0.5/3, 0/4) as shown in
figure 3.14, the membership function of the fuzzy set f ("about 2") can be calculated as shown in the
same figure for x [J [1,4].

The extension principle allows for fuzzy quantization and makes possible many fuzzy logic applications.
For example, if we have a set of patients
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X checked for risk of cancer and classified into risk groups which form a set Y, we have a function f: X
- Y. Applying the extension principle we can obtain the membership function for the risk of cancer of
different fuzzy subsets A [ X, for example, "hard smokers," "overweight people," etc.

3.3 Fuzzy Relations and Fuzzy Implications; Fuzzy Propositions and Fuzzy Logic

Fuzzy logic is an excellent tool for implementing commonsense knowledge, vague knowledge in a
computer program, and performing reasoning over them. Fuzzy logic is based on fuzzy relations and
fuzzy propositions, the latter being defined on the basis of fuzzy sets.

3.3.1 Fuzzy Relations, Fuzzy Implications, Fuzzy Composition

Fuzzy relations make it possible to represent ambiguous relationships like "the grades of the third- and
second-year classes are similar," or "team A performed slightly better than team B," or "the more fat you
eat, the higher the risk of heart attack.” Fuzzy relations link two fuzzy sets in a predefined manner.

If A is a fuzzy set defined over a universe U, and B is a fuzzy set defined over a universe V, then a fuzzy
relation R(A, B) is any fuzzy set defined on the cross-product universe U x V = {(u, v)/u O U,v OV} A
fuzzy relation is characterized by its membership function

H e, v UxV— [ﬂ', I:l
Example A direct product of A and B may be defined as: Hag = Ma(U) O pg(V).

A very important fuzzy relation is the fuzzy implication, denoted as A — B. In fuzzy logic there are
different ways to define an implication, which is in contrast to propositional logic where the implication
is defined by a single truth-table. There are 15 different implications studied by Mizumoto and
Zimmermann (1982). Some of them are shown in figure 3.15. The first two implications from figure
3.15 were introduced by Zadeh (1971), the third one, Rc, was introduced by Mamdani (1977). The rest
of the implications were experimented on by Mizumoto and Zimmermann. The different implications
can be used for building different inference methods, as is shown in the next section.
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Figure 3.15

Several useful fuzzy implications. The following short denotations are
used: u instead of p,(u); v instead of pg(v); "' is minimum; "

is maximum; "+" is algebraic summation; "-" is algebraic substraction.
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A fuzzy relation can be represented by a matrix or a fuzzy graph. The Rc implication relation "heavy

smoker" — "high risk of cancer" is represented in a matrix form in figure 3.16.

A composition relation or simply composition of fuzzy relations R1(A, B) and R2(B, C) is a relation R(A,

C) obtained after applying relations R1 and R2 one after another.

A typical composition is the MAX-MIN composition (Zadeh 1965):

R(A, C) pgyaey = v {tgi(a,b) A pgs(b,c)},

where [Jdenotes MAX and Jdenotes MIN,aOA, b 0B, cC.

Figure 3.17 shows the MAX-MIN composition applied over the membership function of "moderate
smoker" and the implication Rc "heavy smoker — high risk." The inferred fuzzy set is the membership
function representing the risk of cancer for the class of "moderate smokers." Two other composition
operators have been successfully applied to fuzzy reasoning, the three composition operators being
shown in figure 3.18. A composition and an implication make possible fuzzy inference, as they are the

"ingredients" of the so-called compositional inference law: given
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(a) Membership functions for fuzzy sets for the Smoker and the Risk
of Cancer case example. (b) The Rc implication relation: "heavy
smoker — high risk of cancer” in a matrix form.
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an implication R: A — B, and a composition o0, a fuzzy value B' can be inferred when a fuzzy value A' is

known:
B'=A'aR

3.3.2 Properties of Fuzzy Relations

Fuzzy relations have different properties. Let R represent a relation on the cross-product universe U x V.
Then the following properties may be held for R (Terano et al. 1992):

(1) Reflexiveness: pp(u, u) =1

(2) Irreflexiveness: pg(u, u) =0
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min{"Mod_Sm" (Heavy_Sm" —> "High_Risk")}
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Figure 3.17
MAX-MIN composition applied over the fuzzy set
"moderate smoker" and the Rc implication "heavy
smoker ® high risk of cancer"” from figure 3.16 for
the Smoker and the Risk of Cancer case example.

(3) Symmetry: pg(u,v) = pg(v,u)

(4) Transitivity: C{px(u,v) Opg(v,p)} < Ug(u,p), for each v OV

Based on the above properties, some other relations are defined in (Terano et al. 1992):
. Similarity relation, for which reflexiveness, symmetry, and transitivity are held

. Resemblance relation, for which reflexiveness and symmetry are held Different combinations of
an implication and a composition can be compared based on different inference properties, for example,
whether they satisfy or not two of the inference rules of propositional logic, syllogism and
contrapositive:

A-Band B- COA - C (syllogism)
A - BO 1B - TA (contrapositive)

The following implications satisfy these two laws, when a MAX-MIN composition is used (Mitzumoto
and Zimmerman 1982): Syllogism—Rc, Rs, Rg, Rgs, Rgg, Rsg, Rss; Contrapositive—Ra, Rb, Rs, Rss.
This gives some hint to how different implications can be used for inference. In
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Fuzzy compositions; here (a - b) denotes membership degrees of the
values from the cross-product U x V; [Jdenotes minimum, and [J denotes
maximum; b', a' are membership degrees of corresponding values
from U and V; + is algebraic summation; - is algebraic subtraction.

order to achieve a fuzzy inference that satisfies predefined laws, we have to choose not only which
implication to use but also which composition. If, for example, the laws of syllogism and contrapositive
have to be satisfied for a given application and they are not satisfied for a preliminary chosen
implication and a composition, then another composition may be tried.

3.3.3 Fuzzy Graphs

Fuzzy graphs are graphs which have membership degrees attached to their edges. A fuzzy graph may be
used to represent a fuzzy relation. This is another application of the information structure graph (see
chapter 2).

3.3.4 Fuzzy Propositions and Fuzzy Logic

The biggest restriction in classic propositional and predicate logic is the fact that the propositions can
have their truth-values as either True or False. This restriction has its assets as well as its drawbacks.
The main asset is that the decision obtained is exact and precise. The main drawback, however, is that it
cannot reflect the enormous diversity of the real world, which is analog and not digital. The truth value
of a proposition in classic logic cannot be unknown, for example.

In order to overcome this limitation of classic logic, multivalued logic has been developed. The truth of
a proposition is represented by a set T of n possible truth-values, when n-valued logic is considered. For
the three-valued logic, T = {0,0.5,1}. There are a huge number of theories, formulated on the basis of the
multivalued nature of truth. Fuzzy logic can be considered an extension of the multivalued logic
developed by Lukasiewicz
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AND: py g = Mo~ He

OR: Pawm =Ha ™ My
NOT: u, =1-u,

Figure 3.19
Fuzzy logic connectives
AND, OR, NOT illustrated
over two fuzzy propositions
A and B. "[T" denotes min;
"[I" denotes max; and
"-" denotes algebraic
substraction.

in 1930. The main operators in Lukasiewicz multivalued logic for calculating the truth-value of complex
propositions having the truth-values for elementary ones are as follows:

1A =-A; AOB=min{AB}; A 0B =max{AB},
A - B=min{1,1+A-B}
Fuzzy logic operates with fuzzy propositions, fuzzy connectives, and fuzzy rules (or laws) of inference.

Fuzzy propositions are propositions which contain fuzzy variables with their fuzzy values. The truth
value of a fuzzy proposition "X is A" is given by the membership function p1,.

Examples A person is a "heavy smoker." The temperature is "high." The speed is "moderate."

Fuzzy propositions are no more true or false only, but they have grayness of truth defined by the fuzzy
values in them. In propositional logic every proposition is either true or false, nothing in between. The
fuzzy connectives are the same as in propositional logic, but here applied differently (figure 3.19). The
truth-values of the complex propositions are defined by the fuzzy membership function calculated by
using MIN and MAX operations and complement. Operations over membership functions were
discussed when fuzzy sets were introduced. So fuzzy logic operations are based on operations over
fuzzy sets.

Fuzzy propositions may include modifiers, also called hedges. The general form of a fuzzy proposition
with a modifier is X is mA. The negation "not" can be viewed as a modifier. Other modifiers are very A,
denoted as A2 (concentration); more or less A, denoted as A* (dilation). Their corresponding membership
functions are shown in figure 3.5.

The most used laws of inference in fuzzy logic are given for two fuzzy propositions A and B:
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. Generalized modus ponens:
A - B and A'0 B', where B'=A's(A - B)
. Generalized modus tolens (law of the contrapositive):
A - Band B'OA", whereA'=(A - B)« B’
. Transitive law (law of syllogism):
A-BadB-COA-C
. DeMorgan's laws:

(A DOB)=TADTB
(ADB)="TADOTB

Other laws for fuzzy inference are given in Yager and Zadeh (1992).

A combination of an implication operator and a composition operator is the key to realizing a proper
fuzzy inference mechanism. For example, it can be easily shown that if we use Ra and MAX-MIN
composition, the exact modus ponens law (when A' = A, then B' = B) is not satisfied, that is, the inferred
value (membership function) is not g, but for example, (1 + Hg)/2. When any of the other composition
operators are applied, the modus ponens law is satisfied. In order to realise a humanlike fuzzy reasoning,
we may want that the system not only satisfies the exact modus ponens law, but should infer "Very B" if
"Very A" is the input, "More or less B," if the input is "More or less A," etc. A thorough investigation of
the properties of different implication relations has been done by Mizumoto and Zimmermann (1982).
Figure 3.20 shows for which of the implications the following laws of inference are held: A — B, modus
ponens, very A — very B; very A - B; more or less A - more or less B; more or lessA - B; notA -
unknown; not A - not B; not B - not A (modus tolens); not very B — not very A; not more or less B —
not more or less A; B — unknown; B - A.

Why are the above properties so important? Suppose we had a rule "IF an apple is red, THEN the apple
is ripe." Depending on the chosen implication and its properties, different conclusions can be inferred
for one and the same input, for example, "the apple is very red," “the apple is more or less red," etc. As
we could see, some of the implications do not obey the strict modus ponens law, so even if we had an
input "the apple is red" there will be another value inferred for the ripeness and not the value "ripe,"
whatever the fuzzy definition of this concept is.
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Figure 3.20

Implications which satisfy ( + ) or do not satisfy (-) the laws of
inference in fuzzy logic. (From Mizumoto and Zimmermann 1982.)
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Fuzzy logic is the theoretical basis for the fuzzy rule-based systems and fuzzy reasoning methods
described in the next section.

3.4 Fuzzy Rules, Fuzzy Inference Methods, Fuzzification and Defuzzification

A fuzzy system consists of three parts: (1) fuzzy input and output variables and their fuzzy values; (2)
fuzzy rules; (3) fuzzy inference methods, which may include fuzzification and defuzzification. The first
part was discussed in the previous section. The last two are discussed here.

3.4.1 Fuzzy Rules

Several types of fuzzy rules have been used for fuzzy knowledge engineering so far:
Zadeh-Mamdani's fuzzy rules:

IFxis A, THEN Y is B,

where (x is A) and (y is B) are two fuzzy propositions; x and y are fuzzy variables defined over universes
of discourse U and V respectively; and A and B are fuzzy sets defined by their fuzzy membership
functions p,,: U - [0, 1] and pg: V - [0, 1]. A generalized form of the fuzzy rule is the following:

IF x, isA AND x, is A2 AND . .. AND x, is Ak, THEN y is B,

where X, X,, . . ., X,, y are fuzzy variables (attributes) over different universes of discourse Ux;,
Ux,, .. ,Ux, Uy and Al, A2,. . ., Ak, B are their possible fuzzy values over the same universes. A set of
fuzzy rules has the following form:

Rule 1: IF x,is Al, 1 AND x,is A2, 1 AND . .. AND xk is Ak, 1, THEN y is B1, ELSE

Rule 2: IF x,1s A1,2 AND x,is A2,2 AND . .. AND xk is Ak, 2, THEN y is B2, ELSE

Rule n: IF x,is Al, n AND x,is A2, n AND . .. AND x, is Ak, n, THEN y is Bn
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Example: The Bank Loan Case Decision Problem This is represented here as a set of two fuzzy rules:

Rule 1: IF (CScore is high) and (CRatio is good_cr) and (CCredit is goodcc), then (Decision is approve)
else

Rule 2: IF (CScore is low) and (CRatio is bad_cr) or (CCredit is bad_cc), then (Decision is disapprove)

The universes of all four fuzzy variables as well as the fuzzy values "high score," "low score,"
"good_cc," "bad_cc," "good_cr," "bad_cr," "approve,"” and "disapprove" are shown in figure 3.21. This
example is used as an experimental case study on which different inference methods are illustrated
further on. The example consists of two fuzzy rules. Two fuzzy values (fuzzy sets) defined by their
membership functions for each of the three fuzzy input variables take part in the rules. During the fuzzy

Croore P00 [ 155 | 160 | 165 | 170 | 175 | 0180 | [ES | 190 | 195 | 200
high { 0 i 0 i} i 2 ¥ | I 1
low i 1 3 5 ) 0 ] j] { §] ]
Ceredit il i 2 3 4 5 & 7 ] o 1n
good_ce || [ I 7] 3 Ll 0 i 0 0 0

l bad_c¢ i (] il 0 i [f] 3 ¥ | I |
Cratic | 3 A4 ALl 42 43) 44] 45] 5 Vi 1
good_cr | | T ] ] 1] ] ] i ] i}
bad_cr 0 0 0 0 i) ] .| .3 N 1 |
Decision 0 l 2 3 a 5 & 7 8 9 10
approve i ] ] i (] i 3 T | | |
disapprove I | | 1 7 3 ] i} il ] (] il

Figure 3.21

Fuzzy sets definitions for the the Bank Loan Decision Problem.
Adapted from Lim and Takefuji, 1990 (Copyright © IEEE 90).
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system design, more precise fuzzy quantization of the fuzzy variables and more rules may be required
for a better inference.

In general, every rule that has two condition elements in its antecedent part connected by an OR
connective can be represented by two rules, for example, the rule IF x,is Al or x,is A2, THEN y is B is
logically equivalent to the following two rules: IF x,is A1, THEN y is B and IF x,is A2, THEN y is B.
This property is used in some fuzzy system realizations, which do not facilitate OR connectives.

. Fuzzy rules with confidence degrees: Apart from the simple form of Zadeh-Mamdani's fuzzy rules
described above, fuzzy rules having coefficients of uncertainty have often been used in practice. A fuzzy
rule that contains a confidence factor of the validity of the conclusion has the form of: if x is A, then y is
B (with a CF).

Example

IF (current economic situation is good) and
(current political situation is good) and
(the predicted value for tomorrow is up),
THEN (action—buy) (CF = 0.9)

Fuzzy facts may have certainty factors attached to them, which show how certain is the fact. For
example, a fuzzy set for the variable "current economic situation™ can be assigned a certainty factor CF
= 0.8. Fuzzy sets and certainty factors are processed differently, as shown in the next section.

. Takagi-Sugeno's fuzzy rules: Another type of fuzzy rule was introduced by Takagi and Sugeno
(1985). A function is used in the consequent part:

Rule i: IF x is Ai and y is Bi, THEN z is fi(x, y)
If the function is linear, the rule takes the following form:
Rulei: IF x, is Al, iand x,is A2, iand. . . X, iSAm, i, THEN z=Cy; + C,;- X, + - + C,; - X,

Example IF xisAandyis B, THEN z =5x -2y + 3. These kind of fuzzy rules are very useful especially
for function approximation.

. Gradual fuzzy rules: These are rules of the Zadeh-Mamdani type, but instead of using fuzzy
values for the fuzzy variables in the rule, they use
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fuzzy representation of gradual properties, for example, "the more a tomato is red, the more it is ripe."
By using gradual rules, one can reduce significantly the overall number of rules still covering the whole
input space. These kind of rules are very useful for modeling social, political, and economic systems.

Example The higher the FF (federal funds), the higher the U.S. short-term interest rate.

. Generalized production rules with degrees of importance, noise tolerance, and sensitivity factors.
Very often the condition elements (the fuzzy propositions) in the antecedent part of the rule are not
equally important for the rule to infer an output value. For example, one symptom might be five times
more important than another, but the latter still has to be considered for tuning the diagnosis decision.
Relative coefficients of importance Dli of the condition elements in the antecedents, noise tolerance
(NT) coefficients and sensitivity factor (SF) coefficient, have been introduced in the generalized
production rules in addition to the confidence factors (CF) already discussed (Kasabov and Shishkov
1993, Kasabov 1994).

IF C1(DI1) and C2(DI2) and. . . Cn(DIn), THEN A1, A2, . .., Ak (NT, SF, CF)

where the condition elements Ci are either fuzzy or exact propositions of the form (x is A) and the
actions Aj are either insert or delete fuzzy or exact facts.

Example IF M1 is High (2) and M2 is Medium (5) and M3 is High (1), THEN D1 is High and D2 is No
(0.7, 1, 0.9), where M1, M2 and M3 are manifestations, and D1 and D2 are diagnoses.

. Generalized production rules with variables (Kasabov 1994). This is an option in the generalized
production rules described above, where a fuzzy proposition can have a variable in the place of the fuzzy
value.

Example The following rule shows that whatever the index values for today and yesterday are, the
former being twice as important as the latter, the same value will keep tomorrow with a certainty of 0.8.
The variable is represented by the letter V and its possible values (not shown here) could be "low,"
"medium,” "high." For example, IF (the index yesterday is V) (DI = 1) and (the index today is V) (DI =
2), THEN (the index tomorrow will be V) (CF =0.8).
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More about the last two types of fuzzy rules is given in chapter 6.
. Recurrent fuzzy rules (see chapter 7).
3.4.2 Fuzzy Inference Methods

In chapter 2 the inference process was described as a process of matching. This is matching in a wider
sense, that is, matching a domain space with a solution space. It is a matching in a narrower sense too,
that is, matching a new fact, for example X', with a set of rules Ri (i = 1,2, . . .,n) and inferring a solution
Y', the whole inference process being a chain of such matches. We saw that matching in the symbolic Al
systems (e.g., production systems) is an exact matching. In the case of the modus ponens law, for
instance, if we have X - Y, and X is present, exactly Y will be inferred. But in fuzzy representation we
may not have exact values for the input variables. Some fuzzy input value X' is supplied instead. What,
then, will the inferred result for Y' be? If X' and X are similar, will Y and Y' be similar as well, and how
much similar? In a special case, if X' = X, will Y' = Y? These questions relate to fuzzy inference and are
discussed here.

We refer here to fuzzy inference as an inference method that uses fuzzy implication relations, fuzzy
composition operators, and an operator to link the fuzzy rules. The inference process results in inferring
new facts based on the fuzzy rules and the input information supplied.

Different reasoning strategies over fuzzy rules are possible. Most of them use either the generalized
modus ponens rule or the generalized modus tolens inference rule (see above). The generalized modus
ponens inference law applied over a simple fuzzy rule can be expressed as follows: (IF x is A, THEN y is
B) and (x is A"), then (y is B") should be inferred. The compositional rule of inference, discussed in
section 3.2, is one way to implement the generalized modus ponens law:

B'=A"a (A - B)=A"oRab,

where o is a compositional operator, and Rab is a fuzzy relational matrix representing the implication
relation between the fuzzy concepts A and B.

A fuzzy inference method combines the results Bi' for the output fuzzy variable y inferred by all the
fuzzy rules for a given set of input facts. In a fuzzy production system, which performs cycles of
inference, all the fuzzy



Page 197

rules are fired at every cycle and they all contribute to the final result. Some of the main else-links
between fuzzy rules are:

. OR-link: The results obtained by the different rules are "OR-ed" in a monotonic fashion, so the
more that is inferred by any of the rules, the higher the resulting degree of the membership function for
B'. MAX operation is applied to achieve this operation.

. AND-link: The final result is obtained after a MIN operation over the corresponding values of the
inferred by all the rules or fuzzy membership functions.

. Truth qualification-link: A coefficient Ti' is calculated for the inferred fuzzy set Bi' by every rule
Ri. The result obtained by a rule Rj with the maximum coefficient is taken as a final result:

Tj = MAX{Ti}, i=12..,n
Ti=Y ug(ehy uglol,  forallveV

. Additive link: The fuzzy results Bi' inferred by the rules Ri are added after being multiplied to
weighting coefficients:

FE'EEFBI"-WE'I- fl:ll'l-FLl--.,ﬂ'
The selection of the "else-link" depends on the context in which the rules are written.

We have described so far a fuzzy inference method as a triple Fi = (I, C, L), where | is an implication
relation, C is one of the possible composition operators, and L is one of the possible "else-links." The
general inference method discussed above is applicable not only when the number of condition elements
in the antecedent part of the fuzzy rules is one (as in the examples above), but in the general case too:

Rule i: IF x, is Ali and X, is A2i . . . and X, is AKki,
THENYyisBi(i=1,...,n)

In this case the decompositional inference (also called the decompositional rule of inference) can be
applied. It is based on the assumption that a rule of k condition elements is decomposed into k
implications Aji — Bi (for j =1,2,... k). Each implication is used separately to infer a value for Bi' by
applying the compositional rule Bi' = Aji' o (Aji - BI), (forj=1,2,.... k). The values Bi" are
aggregated by one of the aggregation operators
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Figure 3.22
The inference tree for the decompositional inference strategy over two
fuzzy rules. Adapted from Lim and Takefuji, 1990. (Copyright © IEEE 90).

(usually AND, OR). The decompositional fuzzy inference method is illustrated in figure 3.22 on the set
of the following two rules:

Rule 1: IF x; is Al,1 and x,is A1,2 THEN y is B1
Rule 2: IF x; is A2,1 and x,is A2,2 THEN y is B2

Before applying the fuzzy rules for an inference procedure, input values for the input variables must be
entered. The input values entered and the output values produced can be of two types: (1) fuzzy values,
and (2) real values. The latter case is explained in the next section. The former is illustrated here.

Example: The Bank Loan Case The two rules for solving the problem and the membership functions of
fuzzy values were given above. A bank loan applicant can be represented either by three membership
functions for the three fuzzy input variables Cscore, Cratio, and Ccredit, or by three real numbers,
Cscore, Cratio, and Ccredit, which are exact and nonfuzzy



i .Fur..'jr'l..n-g-ilt ||1|.Er|:.l'|tt Eﬂ.;!“'IE.
File Meibod |nierence opllons Elll gil."q'

File - ebybridiz zyvcopeiionn.rul Dnta file - |
INPUTS INFEFEMNY
High
.0 Lo ig
o . .
150,00 CScore - 11 points 200,00 000 Decision |
10 Geod CH Bad CA
Rs
b Bx-min
0.0 AND
b.1000 CHatio = 11 poinis 1.0000
Fuzzy
. nﬁnu cC Bsd CC i'“““"
0.0
b.oooo CCredit= 11 poinis 10,000
Figure 3.23

The inferred fuzzy value for "Decision" for a particular application
for the Bank Loan Decision system. Decompositional inference
rule is used with Rs implication, MAX-MIN composition, and

AND-link between the rules.

input values. The latter case is shown in the next section. The inferred fuzzy value for the output
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variable Decision when Rs implication, MAX-MIN composition, and AND-link between the rules are
used for a set of input fuzzy values describing an applicant for a loan (or a group of applicants) is

graphically shown in figure 3.23 as produced in a fuzzy inference system.

Having in mind the variety of different possible combinations between implications, compositions, and
link operators, the difficulties in choosing the appropriate inference strategy for a given task, especially
in a changing environment, are unavoidable. Of course, some of the combinations are not applicable

according to the context of the fuzzy rules. It has been
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Figure 3.24
Three fuzzy input cases for testing the Bank Loan Decision fuzzy system.

Decision vector-Gasa_1 Decision vector-Case_2 Dedsion vector-Casa_3
Rc 00000000000 |O0D0O00QO0ODO0O00 | 00000000000
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Figure 3.25
The inferred decision membership functions for the three input
cases from figure 3.24 when different implication operators are applied.

suggested by several authors that the AND else-link be used for fuzzy production systems. Lim and
Takefuji (1990) considered Rc, Rsg, Rgg, Rgs, and Rss as reasonably suitable implication operators for
fuzzy production systems. They use Rsg, MAX-MIN composition, and AND-link in their hardware
implementation, while in Togai and Watanabe's hardware implementation of a fuzzy inference engine
(Togai and Watanabe 1986) Rc was assumed. It has been suggested in some research papers that the
MAX-MIN composition operator is quite satisfactory for fuzzy production systems. The use of different
implications with the MAX-MIN composition operator and the AND-link is illustrated over a set of
input data for three cases shown in figure 3.24. The resulting decision fuzzy sets (decision vectors)
obtained by using different implication operators are shown in figure 3.25. Analysis of the results shows
that Rc does not infer appropriate results for case 1 and case 2; Rs and Rg do not work properly
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for case 3; the remaining four implication operators, Rgs, Rgg, Rsg, and Rss, perform reasonally well,
but preference may be given to Rss or Rgs which infer most accurately what is supposed to be inferred
according to the fuzzy rules. This is not surprising because they satisfy the most important properties for
a fuzzy production system inference (laws), as shown in figure 3.20.

3.4.3 Fuzzification, Rule Evaluation, Defuzzification

When the input data are crisp and the output values are expected to be crisp too, then the "fuzzification,
rule evaluation, defuzzification" inference method is applied over fuzzy rules of the type of IF x, is Al
and x,is A2, THEN y is B.

Fuzzification is the process of finding the membership degrees p,,(x';) and pa,(X',) to which input data
X', and X', belong to the fuzzy sets A1 and A2 in the antecedent part of a fuzzy rule. Singleton
fuzzification is used in the example shown in figure 3.27. Through fuzzification the degrees to which
input data match the condition elements in a rule are calculated. When fuzzy input data are used, such a
degree can be represented by the similarity between the input membership function and the condition
element as discussed in section 3.1.2. A similarity measure is a single number.

Rule evaluation takes place after the fuzzification procedure. It deals with single values of membership
degrees p,,(X';) and pa,(X',) and produces output membership function B'. There are two major methods
which can be applied to the rule above:

. Min inference:

B' = B-min{ i (x}), pyzix3)}

. Product inference:

B = B (x]) jy:(xs)
where - denotes algebraic multiplication.

In general aggregation operators must be used within a fuzzy rule with more than one condition
elements to aggregate the matching results of new facts across the condition elements. Two general
extensions of the operators AND and OR, called T-norms and T-conorms, were introduced by Dubois
and Prade (1985).

A T-norm is a binary mapping T: [0, 1] x [0, 1] - [0, 1], which has the following properties:
commutativity, associativity, monotonicity. A
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boundary condition is held: T(a,1) = a. The following T-norm operators have been used in practice: T(a,
b) = min{a, b}; T(a, b) =a* b (product); T(a, b) = max{0,a + b - 1}.

A T-conorm S(a, b) differs from a T-norm in that it has the property of S(a, 0) = 0 instead of the
boundary property of the T-norms. Widely used T-conorms are S(a, b) = max{a, b}; S(a, b) =a + b - ab;
S(a, b) = min{l,a + b}.

If more fuzzy rules are activated simultaneously, for example:
Rule 1: IF xis Al, 1 and x,is Al1,2, THEN y is B1, and
Rule 2: IF x is A2, 1 and x,is A2,2, THEN y is B2,

the inferred fuzzy sets B1' and B2' can be added algebraically after being multiplied to a weighting
factor (additive system), or MAX-values of the corresponding membership degrees B1'(v) and B2'(v),
for v OV are taken.

Defuzzification is the process of calculating a single-output numerical value for a fuzzy output variable
on the basis of the inferred resulting membership function for this variable. Two methods for
defuzzification are widely used:

1. The center-of-gravity method (COG). This method finds the geometrical centre y' in the universe V of
an output variable y, which center "balances” the inferred membership function B' as a fuzzy value fory.
The following formula is used:

V=3 uglv) v/ pglv)

2. The mean-of-maxima method (MOM). This method finds the value y' for the output variable y which
has maximum membership degree according to the fuzzy membership function B'; if there is more than
one value which has maximum degree, then the mean of them is taken as shown in figure 3.26.

Example: The Bank Loan Case Inference with crisp input and crisp output data is shown in figure 3.27
as produced in the same fuzzy inference software system as in fig. 3.23 COG defuzzification is used.

3.4.4 Inference over Fuzzy Rules with Confidence Factors

When the fuzzy rules and the fuzzy facts have confidence factors attached to them, then in addition to
the fuzzy inference done by using one of the methods described above, confidence factors for the
resulting fuzzy facts are calculated.
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Methods of defuzzification: the center-of-
gravity method (COG), and the mean-of
-maxima method (MOM) applied over the
same membership function for a fuzzy output
variable y. They calculate different crisp
output values.

Example Given a fuzzy rule:

IF (current economic situation is good) and
(current political situation is good) and
(the predicted value for tomorrow is up),
THEN (action is buy) (CFrule = 0.9),

which has a fuzzy output "buy" defined by a membership function and the following fuzzy input facts:

(current economic situation is A1) (CF =0.9) (current political situation is A2") (CF = 0.8) (the
predicted value for tomorrow is A3") (CF =0.7),

then the fuzzy value for the output variable "action™ will be inferred and a certainty factor CFres for it
will be calculated as follows:

CFres = CFrule min{CF,,,, CF,,, CF,;} =0.9 [D.7 = 0.63.

If the consequent part of the rule did not have a fuzzy, but a crisp output variable (buy-yes/no), then the
certainty factor for it will be calculated without a fuzzy inference to be performed, but the similarity
between the corresponding input facts A 1', A2', and A 3' and the antecedent condition



Page 204

Fuzzy Logic iMerence Engine
le Methad [nference oplions  [Data  Yiew

i - eihyhiidife Byeapelloan.ial Oaia file - eibnbiriditz rycopeicrisp].in

INPUTS INFEREMNCE

\f:

150,00 Cheare [160.00) 200.00 o.oo Decigion | 1.6

e R ST KE"I"

—— Memberghip sels
= Ligp input

----- Membership
=wwms |nlerence et
10000 = [niered oulput

0L Dm0 CCredit [ 9.00] 10,000

Figure 3.27
An illustration of "crisp input data, rules evaluation, deffuzification™
inference for a particular crisp input data for the Bank Loan Decision
system. A segment from the window of a fuzzy logic inference tool that
was used for this problem is shown.

elements Al, A2, A3 evaluated, say S1, S2, S3 (based on the similarity measure described earlier). Then a
certainty factor for the crisp fact "buy" is calculated if the value "yes" for it is inferred:

CFres = CFrule-min{CF,, - S1, CF,, -S2,CF,; - S$3}
3.4.5 Other Methods for Fuzzy Inference: General Comments
Different inference methods may produce different results on the same rule base.

There are other methods for fuzzy inference than those discussed above. Some of them are specifically
applied to fuzzy control systems, even though being more general (Tereno et al. 1992). There are
methods for
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reasoning over fuzzy rules which are implemented in connectionist architectures (Kasabov, 1994).
Fuzzy inference methods are sometimes called methods for approximate reasoning, which represents
their inherent property for approximate reasoning and for dealing with uncertainties. Generally speaking
fuzzy inference is based on the following: (1) evaluating the degrees to which input data match all
condition elements in a rule; (2) aggregating these degrees over all condition elements in the antecedent
part of the rule; (3) evaluating the rules and producing output fuzzy values; (4) aggregating all the
produced for one output variable output values; and (5) producing final output values across all the
rules.

Fuzzy finite automatons provide another paradigm for fuzzy inference. These are finite automatons
which can simultaneously be in several states to a certain degree.

Which fuzzy inference method to choose for a particular application is a question to be decided by the
knowledge engineer but usually only a few well-explored and established methods are used.

3.5 Fuzzy Systems as Universal Approximators: Interpolation of Fuzzy Rules

In chapter 1 a problem-solving process was represented as mapping the domain space into the solution
space through existing problem knowledge. The mapping aims at achieving a goal function, which
represents the desired solution for given input data. The desired solutions can be defined either as a set
of "input-output” data pairs (X;, y;), or by expert knowledge. The former task relates to the task of
interpolation. Interpolation aims at finding a function y = f(x), such that it approximates to a certain
level of accuracy all the data (x;, y;). The function f is then used to calculate the output value y' for a new
input X' possibly not in the data set. Finding a function f is a task for the regression analysis. But can we
use a fuzzy system to approximate the data?

Can fuzzy systems be used to achieve arbitrary complex mapping, that is, can fuzzy systems
approximate any goal function? If they can, how can it be done? These two questions are discussed in
this section.

3.5.1 Fuzzy Systems are Universal Approximators

We describe a family of systems as universal function approximators if for any function there exists a
system from this family that approximates it to any degree of accuracy.
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A fuzzy rule IF xi, THEN yi covers a segment
of the goal function y(x) bounded in a
"quadrangular patch™ of the problem space.
The figure illustrates the statement that by
using triangular-, trapezoidal, or Teshaped
membership functions for the fuzzy
quantization labels, any goal functions
y(x) can be approximated to any
degree of accuracy through their
segmentwise approximation.

A fuzzy rule IF x is "about x;", THEN y is "about y;", covers a "patch" in the problem space. After
fuzzification and defuzzification, the fuzzy rule approximates a segment of a function y(x). Two
examples, one for bell-shape membership functions and one for trapezoidal and triangular membership
functions, are shown in figure 3.28. We discussed crisp and interval rules in chapter 2 and their
characteristic of being universal approximators when the number of rules is unlimited. By analogy to the
example given in Yamakawa (1993), it is shown in figure 3.29 that a set of crisp rules can cover a set of
discrete points from a given function y(x) = (x - 1)2, and interval rules can cover the function in a
stepwise manner. If the number of the intervals is small, the approximation is very rough. We can also
see from the figure that if the number of the rules increases infinitely, a system of exact rules can
approximate this and any other function. Unfortunately, a large number of rules are required to achieve a
good generalization, which makes this approach impractical. But a small set of fuzzy rules, with
carefully chosen membership functions of the fuzzy terms, can approximate the function. As we shall
see, fuzzy systems are universal approximators.

THEOREM (Kosko 1992) An additive fuzzy system uniformly approximates a function f: x - v, if the
domain of x is compact (closed and bounded) and f is continuous. The proof of the theorem is given in
the reference above.
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Exact rules; IFx=1THENy=1Q
IFx=2THENy=1
IFx=3THENy =4
IFx=4THENy =5

Interval rules; IFxs1THEN y=0
IF1z=x=2THENy=1
F22x<3THEN y =4
F3<x<4THENy=9

Fuzzy rules: IF x is "about 1° THEN y is "about 0°
IF x is "about 2 THEM y is "about 1*
IF x is “about 3" THEN vy is "about 4°
IF % i5 "about 4" THEM v is "about 9°

Figure 3.29
Approximating a function y = f(x) = (x - 1)2,
x [0 [1,4], by a set of crisp rules, a set

of interval rules, and a set of fuzzy rules.
The four exact rules cover only four points.
The interval rules approximate the function

very roughly as a step function. The four fuzzy
rules approximate the function precisely.

THEOREM (Wang, 1994) For any given real continuous function f on a compact set U 0 B* and
arbitrary &, there exists a fuzzy logic system F with a COG deffuzifier, with a product inference,

singleton fuzzifier, and gaussian membership functions (O functions) such that
|Fix) — filx)] <&,

The above result can be extended to discrete functions as well.



Similar theorems can be proved for other types of fuzzy inference and other membership functions
(triangular, trapezoidal). The above theorems justify the application of fuzzy logic systems to almost any
nonlinear modeling problems. They are existence theorems, that is, they proof that there exists a system,
but they do not say how to find the system.
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3.5.2 Fuzzy Rules Interpolation: Inference with Gradual Rules

In figure 3.28 two fuzzy rules are graphically shown. They are obviously not sufficient to cover the
whole goal function. Suppose there are no more rules. Such a set of rules is called a sparse rule base. A
procedure, called rule interpolation, should be applied if we want to obtain an output value of y for any
of the input values for x.

Example The two rules:

IF a tomato is red, THEN the tomato is ripe, and
IF a tomato is green, THEN the tomato is unripe

are not enough to infer a conclusion if the observation does not overlap with any of the antecedent
condition elements, for example, "a tomato is yellow."

The other extreme task is that we have a large number of rules, a so called dense rule base, which covers
the goal function with redundant overlapping. How to find the minimal set of rules that is still sufficient
for an approximate reconstruction of the dense rule base?

Different techniques can be applied to ensure that the inference process will cover the whole problem
space. One of them is using gradual rules, introduced by Dubois and Prade (see Yager and Zadeh 1992).
Gradual rules, described briefly in a previous section, refer to gradual properties, for example, "the
more X is A, the more y is B," or "the more x is similar to A, the more y is similar to B." In order to use
gradual fuzzy rules, the fuzzy variables have to be of a gradual type (a natural full ordering exists), for
example, spatial position, speed, velocity, acceleration.

The results of an inference with a gradual rule "the more x is A, the more y is B" for an input value x' is
not fuzzy, but imprecise; it is an interval y' = B, (which is the x-cut of B), where x = ,(x") (figure 3.30).

3.6 Fuzzy Information Retrieval and Fuzzy Databases

Databases have been well developed and established so far. The current database systems are very
efficient when storing and retrieving exact information. But when information for one attribute is fuzzy,
vague or missing, the whole data item (record) is usually not stored and information is lost. So there is
an obvious need for methods and tools which facilitate (1)
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Figure 3.30
Inference with a gradual rule "the more x is A, the more y is B"
for a particular crisp value x' for the input variable x. The result
is imprecise; this is the x-cut interval B,.

fuzzy data to be stored and retrieved, and (2) better use of existing information through fuzzy interface
for retrieving it. These two requirements can be achieved by using fuzzy information retrieval methods
and fuzzy databases, the latter method currently in its infancy.

3.6.1 Fuzzy Information Retrieval

Information retrieval is considered here as a process of retrieving relevant information from an
information storage, for example, retrieving relevant documents by specifying keywords when all the
documents are stored and for each document a list of keywords is known.

The standard approach is to compare literally keywords, and if a document contains, say, 50% of the
keywords specified in the query, it is retrieved. The problem with this approach is that if the keywords
are spelled differently or substituted by similar ones, it does not work, as it does not have information
about the conceptual similarity, or conceptual distance, between different keywords as has the librarian,
who has read these documents. For example, if x is a specified keyword, and a and b are two keywords,
then using conceptual distances d(x, a) and d(x, b) makes possible a comparison between them, for
example, d(x, a) > d(x, b). The conceptual distance is also called conceptual affinity.

By using conceptual distance the keyword space can be structured in a priori knowledge space where a

search will be performed. One way to measure the affinity is based on the simultaneous appearance, or

frequency f(a, b), of two keywords a and b appearing in one document. Any query, based on a specified
keyword X, can be represented as a fuzzy set A
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Defining a query by a keyword x as a
fuzzy set A over the domain of a structured
and quantized one-dimensional keyword space.
The difference between A and a crisp subset
defined for all the keywords between i and
J is represented by the shaded area. The
degree to which keywords b and a
belong to the concept A are also shown.

over this space as a universe. An example is given in figure 3.31. The universe is quantized into a one-
dimensional, structured keyword space. The difference and similarity between all the documents which
have all the keywords between i and j in them and the query fuzzy set can be measured as a measure of
similarity and distance between two fuzzy sets. The search can be done in an interactive mode, when the
system asks questions whether the keyword j, for example, should be included or not, thus giving the
user a chance to refine the membership function of the fuzzy set for the query. The above-described
approach is based on representing ambiguity of documents by a structured feature space of keywords.
After having searched in this space and having resolved ambiguities of the query, then the actual search
in the document space is performed for retrieving the relevant documents.

3.6.2 Fuzzy Interfaces to Standard Databases

We consider here standard relational databases. The information in a relational database is structured in
relations. A relation is a named tuple of n attributes (x;,x,, . . . ,X,), each of them xi having its own
domain Di (i = 1,2, .. .,n). The queries to such databases, facilitated by standard database systems,
include giving a particular value for an attribute, giving an interval, or ignoring an attribute. But if the
query values do not match exactly what is in the data base, the answer will be an empty set.
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A fuzzy query interface allows giving fuzzy terms as values for the attributes, which values are not
stored in the standard database.

Example A fuzzy query: Find the towns in the country which have "high" average temperature in
August and have "big" or "medium”-sized hotels. In general, a query can be formulated in fuzzy terms
and for any of the attributes a fuzzy proposition formed: x; is A;. Fuzzy queries are possible to ordinary
databases if the fuzzy predicates used in the queries are represented in advance by their membership
functions. The search through a standard database is also modified according to the requirements of
fuzzy logic theory. An example is given below.

Example Here is a segment of an ordinary database, "Employees™:

Name Age Salary Experience (yrs)
Brown 56 80,000 10

Long 44 56,000 20

Smith 28 40,000 2

Patrick 37 50,000 19

Let us assume that the following concepts (predicates) of the attributes "age," "experience," and "salary"
are defined by membership functions, as shown in figure 3.32(A): age—"young," "middle-aged,"
"mature"; experience—"little," "moderate," "good"; salary—"low," "about average," "high." Let us now
assume the following query: "Give me the names of the employees who are 'middle-aged' AND have
‘good experience' AND have 'average salary' ". In order to answer such a query, all the attribute-values
for age, experience, and salary are fuzzified with the use of the defined membership functions. MIN
operation is applied over the membership degrees of a particular data item. The results for Long is MIN
{0.9, 0.95, 0.8} = 0.8, and for Patrick is MIN {0.85,0.89,0.87} = 0.85. Figure 3.32B shows an exampler
distribution of the degrees to which all elements from a database match a fuzzy query.

A fuzzy query to a standard database resembles matching a fuzzy rule against crisp data, which is
opposite to the fuzzy inference methods in fuzzy systems. Finding the data items which best match the
"rule of query" might be computationally expensive; therefore special methods should be applied to
speed up this process (see Bosc and Kacprzyk 1995).
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Figure 3.32
Defining fuzzy concepts for performing fuzzy queries to an ordinary database
"Employees” given in the text; (B) Distribution diagram of the degrees to
which all the elements from a standard database match a fuzzy query.
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Name Age Salary Experience
Brown 56 80,000 10
Long (55,56) average good
Smith young (30,000- 70,000)p (2,3)p
Patrick (middle, young)p (high, average)p unknown
Figure 3.33

A small fuzzy database which illustrates the use of possibility distribution
functions as values in a database on the example of the database
"Employees” given in the text.

3.6.3 Fuzzy Databases

Another approach to realizing fuzzy information retrieval is to build fuzzy databases, that is, databases
which contain fuzzy information. There are different approaches toward creating fuzzy databases:

. The fuzzy database is an extension to a relational database. The membership degrees to which
the data elements belong to the fuzzy concepts defined for every attribute are added to the database.

Example An extended relation with fuzzy terms for the database used in the previous example will
look like: ("name"; "age"—young, middle-aged, mature; "experience"—Iittle, moderate, good,
"salary—"low, about_average, high).

Such fuzzy databases can be searched through quickly and efficiently, but they are appropriate when the
fuzzy concepts used do not change frequently, as this requires change of the whole database.

. Possibility-distribution relational databases—facilitate entering fuzzy information when creating
the database and processing it, and when searching through the database. The domains Di for the
attributes x; include fuzzy information represented by membership functions, as well as exact
information. A membership function is used to represent a possibility-distribution function, for example:
age = (55,56)poss, that is, for the attribute age two values are equally possible; or age =
(0.9/55,0.7/56)poss, but the first is more likely.



Example In figure 3.33, a simple fuzzy database is given, similar to the relational database from the
previous example. The values in some slots are not exact values, but possibility distributions instead.

Page 214

A—>B A—>B A—2>3B
A A’ G

B B’ D

[a) propositional reasoning (b) fuzzy reasoning (¢} Analogy-based reasoning
Figure 3.34
Propositional-, fuzzy-, and analogy-based reasoning are represented
by different inference laws.
. Modular fuzzy databases (Zemankova and Kandel 1984) consist of three parts: (1) the value

database, which is the same as the possibility-distribution relational databases presented above; (2) the
explanation database, which contains the definition of the fuzzy terms, and is subject to update
depending on the particular applications; and (3) conversion rules for processing modifiers and
qualifiers.

. Fuzzy object-oriented databases, in which fuzzy properties are allowed to be defined for objects
in the database.

3.6.4 Conceptual Information Retrieval Through Natural Language Interfaces

Such interfaces facilitate communication between users and systems in a natural language allowing for
fuzziness and imprecision. The natural language query is transferred into a semantic representation and
reasoning is performed based on similarity between concepts. A non-fuzzy logic reasoning, fuzzy
reasoning, as well as some other types of reasoning, for example, analogy-based fuzzy reasoning, can be
applied. The difference between the last and the first two is depicted in figure 3.34. In analogy-based
reasoning an analogy between the concept C given for a query and the concept A in the antecedent of the
rule is found, and a new concept, D, is inferred as a result.

Example (Ozawa and Yamada 1994) Suppose a database contains information about available
apartments for rent, having an attribute "floor size." An exact query to such a database will look like: "an
apartment in which floor size is between 50 and 100 square meters." A fuzzy query will look like: "an
apartment in which floor size is big." Conceptual query will look like: "an apartment for a big family."

In 1978, Zadeh developed a language called PRUF (possibility relational universal fuzzy) to evaluate
possibilities related to natural language semantics (Zadeh 1978b). The aim of the theory is to estimate a
fuzzy quantifier Q', if a proposition "QA is F" is known and the query is formed as "Q'A is mF."
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Example Known fact: "Most foreigners are tall.”" Conceptual query: "How many foreigners are very
tall?," where Q = most, A = foreigners, F = tall, m = very, and Q' is sought (e.g., could be "few").

The research on fuzzy information retrieval, natural language interfaces with fuzziness, and fuzzy
databases is still finding its way. A large contribution is expected from this area to the development of
intelligent human-computer interfaces.

3.7 Fuzzy Expert Systems
Fuzzy expert systems emerged as a result of applying fuzzy theory to building expert systems.
3.7.1 General Characteristics of Fuzzy Expert Systems

A fuzzy expert system is defined in the same way as an ordinary expert system, but here methods of
fuzzy logic are applied. Fuzzy expert systems use fuzzy data, fuzzy rules, and fuzzy inference, in
addition to the standard ones implemented in the ordinary expert systems. A block diagram of a fuzzy
expert system is shown in figure 3.35.

The fuzzy rules and the membership functions make up the system knowledge base. In general, different
types of fuzzy rules can be used in a fuzzy expert system. Some systems use production rules extended
with fuzzy variables and confidence factors. In addition to exact productions, fuzzy productions can be
handled as well, so different types of production rules can be processed depending on the type of the
antecedent and the consequent part in the rule: crisp — crisp (CF); crisp — fuzzy (CF); fuzzy — crisp
(CF); fuzzy — fuzzy (CF). These types of production rules are facilitated in FuzzyCLIPS (NRC Canada
1994).

Data can be exact or fuzzy. The database which the fuzzy inference machine refers to can contain exact
data or fuzzy data with certainty factors attached to them, for example, (economic_situation good CF =
0.95).

A fuzzy inference machine is built on the theoretical basis of fuzzy inference methods. A fuzzy inference
machine, which activates all the satisfied rules at every cycle, is different from the sequential inference
in symbolic systems, but the control and search mechanisms implemented in the latter can be used
successfully during the fuzzy reasoning process. A
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Figure 3.35
A block diagram of a fuzzy expert system.

significant characteristic of fuzzy expert systems is the realization of partial match between exact or
fuzzy facts (observations, input data) and fuzzy condition elements in the antecedents of the rules. A
measure of the degree of matching is calculated for every case, that is, (fuzzy fact-fuzzy condition);
(crisp fact-fuzzy condition); (fuzzy fact—exact condition); (crisp fact—exact condition). A rule is fired
only if the matching degree of the left-hand side of the rule is greater than a predefined threshold.

Fuzzification and defuzzification may be used in a fuzzy expert system depending on the type of
inference machine implemented in the system.

The interface unit of the fuzzy expert system communicates with the user or the environment, or both,
for collecting input data and reporting output results. Fuzzy queries might be possible when the user
inputs information in fuzzy terms, for example, high temperature, severe headaches, devastating
hurricane, etc.

An explanation module explains the way the expert system is functioning during the inference process,
or explains how the final solution has been
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reached. HOW and WHY explanations are appropriate to use. The system may use fuzzy terms for
explanation as well as exact terms and values.

A module for learning fuzzy rules is usually optional. Learning fuzzy rules can take place either before
the inference machine starts the reasoning process, or during the fuzzy inference process. In the former
case the learning module can be built on the basis of Al machine-learning methods (see further in this
section) or neural networks (see chapter 5). Fuzzy neural networks can be used to implement the latter,
(see chapters 6 and 7).

3.7.2 Fuzzy Systems Design
The following are the main phases of a fuzzy system design:

1. Identifying the problem and choosing the type of fuzzy system which best suits the problem
requirements. A modular system can be designed consisting of several fuzzy modules linked together. A
modular approach, if applicable, may greatly simplify the design of the whole system, dramatically
reduce its complexity, and make it more comprehensible.

2. Defining the input and output variables, their fuzzy values, and their membership functions.
3. Articulating the set of heuristic fuzzy rules.

4. Choosing the fuzzy inference method, fuzzification, and defuzzification methods if necessary; some
experiments may be necessary until a proper inference method is chosen.

5. Experimenting with the fuzzy system prototype; drawing the goal function between input and output
fuzzy variables; changing membership functions and fuzzy rules if necessary; tuning the fuzzy system;
validation of the results.

The main problem in building fuzzy expert systems is that of articulating the heuristic fuzzy rules and
membership functions for the fuzzy terms. Here are some methods for obtaining fuzzy rules:

. The first is to interview an expert. Sometimes, communication between expert and interviewer
can be difficult owing to a lack of common understanding. The shape of membership functions, the
number of labels, and so forth should be defined by the expert. However, sometimes the human expert is
unfamiliar with fuzzy sets or fuzzy logic and the knowledge engineer is unfamiliar with the domain area.
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. The second approach, as formulated by Yamakawa (1993), is to imagine (in the designer's own
mind) physical behaviour of the real system and think about the physical meaning in natural and
technical languages. The system designer has to be particularly experienced with the system in order to
Imagine its behaviour. There is no need to explain the behaviour with mathematical equations, typically
differential equations. In some cases, the designer has to assign by imagination and intuition, the
consequences of the fuzzy rules which usually appear on the grid of the rule map.

. The third approach is to use the methods of machine-learning, neural networks, and genetic
algorithms to learn fuzzy rules from data and to learn membership functions if they are not given in
advance. Connectionist methods for learning fuzzy rules from data are introduced in chapter 5.

Another problem may arise when designing a fuzzy expert system that has its fuzzy rules already
articulated, namely, the choice of inference method. For any particular fuzzy production system, several
possible inference methods have to be considered before implementing one of them. In order to facilitate
the choice of an appropriate inference method from among a set of possible ones, fuzzy expert system
shells have been developed and put into practice. Choosing the inference method depends also on the
type of fuzzy rules used.

3.7.3 Clustering-Based Methods for Learning Fuzzy Rules from Data

Here, two nonconnectionist methods for generating fuzzy rules from numerical data are explained. The
methods are illustrated on the Iris data set.

Many methods for extracting fuzzy rules from data are based on clustering of data into groups (clusters).
Algorithms for fuzzy clustering are discussed in the next section. These groups can later be assigned
labels. Fuzzy labels and membership functions can be defined for different sub-domains of the problem
space. The two methods presented below use different approaches. The first method uses fuzzy
quantization (or fuzzification) only for the purpose of inference over already extracted rules. This means
that the rules may not change after having changed the membership functions. The second method uses
fuzzification during the rules extraction and the extracted rules are dependent on the chosen membership
functions.
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Method 1

In section 2.11 a case-based method for learning representative templates from numerical data was
presented and illustrated with the Iris data set. Here, the method is extended to a simple method for
extracting fuzzy rules. The following steps are taken:

Step I The attributes are discretized into intervals, for example, the four Iris attributes, that is, petal
length, petal width, sepal length, and sepal width, are discretized in the example given there into 4, 3, 6,
and 3 intervals respectively. The whole data set is then represented by a set of representative templates,
which is a sort of clustering. For example, a representative template given in figure 2.38 is (SL = 2 SW
=2PL=1PW =1 Class =1 Frequency_coefficient = 2).

Step 2 The discretization intervals are represented as fuzzy intervals and membership functions are
attached to them, as illustrated in figure 3.11. The intervals are labeled, for example, SM (or S), MED
(or CE), LRG (or B). For the discretization used in the example of figure 2.38, these labels will read as
follows: sepal length—S2, S1, CE, B; sepal width-—S, CE, B; petal length—S3, S2, S1, CE, B1, B2;
petal width—S, CE, B. The fuzzy membership functions are defined as follows: triangular functions are
used for intermediate intervals and trapezoidal membership functions are used for the end intervals; the
center of a triangular membership function is placed at the center of the interval and the other two
vertexes at the middle points of the neighboring intervals.

Step 3 A representative template is directly expressible as a fuzzy rule if the intervals are substituted by
their fuzzy labels and the probability strength is used as a relative class rule strength (confidence factor),
for example:

IF (SL is S1) AND (SWis CE) AND (PL is S3) AND (PW is S),
THEN (Class is Setosa) (rule_strength is 2/3).

A set of numerical data can be represented in a supervised mode (class labels are provided), or in an
unsupervised mode (no class labels are attached to data) as a set of representative templates, therefore as
a set of fuzzy rules.

Step 4 Inference over the set of fuzzy rules with fuzzification and defuzzification is performed. The
accuracy of approximation depends on the
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discretization process. Using more intervals results in better approximation in general, but using too
many of them slows down the learning and inference processes.

Method 2

A similar method for learning fuzzy rules from numerical data is presented in L.-X. Wang (1994). It
differs from the above mainly in the following steps:

Step I Data are first fuzzy-quantized and the membership functions are defined.

Step 2 All the data examples are fuzzified, for example, the instance (SL = 5.1, SW = 3.5, PL = 1.4, PW
= 0.2, Class = Setosa) is fuzzified as follows: SL = 5.1 belongs to S2 to a degree of 0.3 and to S1to a
degree of 0.7; SW = 3.5 belongs to CE to a degree of 0.6 and to B to a degree of 0.4; PL = 1.4 belongs to
SE3 to a degree of 0.55 and to S2 to a degree of 0.45; PW = 0.2 belongs to S with a degree of 1.0. The
classes can also be fuzzy-quantized by using certainty degrees if such information is available.

Step 3 Each instance is represented by one fuzzy rule, where the fuzzy label to which an attribute-value
belongs to the highest degree is taken. A degree for each of the rules is calculated by multiplying the
membership degrees of the condition elements by one another, by the membership degrees of the
antecedent, and also by a confidence factor for the validity of the data in that instance. We shall assume
a membership degree to which the instances belong to classes to be 1.0, and the confidence factor for
each of the examples to be equal to 0.95, that is, the data are sufficiently reliable. The above example
generates the following rule:

Rule: IF (SL is S1) AND (SW is CE) AND (PL is SE3) AND (PW is S),
THEN (Class is Setosa) with a degree of confidence 0.22, calculated as:
0.7x0.6x0.55x1x1x0.95=0.22,

Step 4 The obtained fuzzy rules are aggregated and ambiguity in rules is sorted out by using the
principle of the greater confidence factor, that is, if two rules have the same antecedents but a different
consequent, the one with the higher confidence factor is left.

Step 5 A product fuzzy inference is used for the set of extracted fuzzy rules that is based on a
multiplication operator between the degrees of
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membership to which a new instance belongs to the antecedent membership functions and the centroid
defuzzification method (see section 3.4.3).

The method described above and illustrated with the Iris data set is generally applicable to any
numerical data. It is especially effective when applied to learning fuzzy rules from chaotic time-series
data and for approximating these data.

The methods based on clustering bear the curse of dimensionality burden, that is, the number of rules
increases exponentially with the number of variables and number of fuzzy labels used. To resolve this
problem, scatter (and not uniform) partitioning may be used when the whole problem space is not
necessarily uniformly covered. Dynamic partitioning may also be used when the partitioning is not fixed
in advance, but it changes iteratively with the change of the extracted rules until a satisfactory set of
rules is found.

3.7.4 Learning Fuzzy Rules Through Genetic Algorithms

Genetic algorithms can be used for learning fuzzy rules from data as they can optimize the number of
fuzzy labels to be used, the number of condition elements in a rule, and the total number of fuzzy rules
subject to some constraints set in advance. The goodness criterion can be either a numerical assessment
of testing the set of rules over a part of the data set (Lim et al. 1995) or an analytical goal function
(Furuhashi et al. 1994).

A chromosome is defined as a set of rules, the genes being defined differently (condition elements,
membership functions, action elements, certainty factors).

3.7.5 Fuzzy Expert System Shells

A fuzzy expert system shell is a tool which facilitates building and experimenting with fuzzy expert
systems. It facilitates building the main modules in a fuzzy expert system. Examples of such shells are
TIL Shell (1993), FuzzyCLIPS (1994), FLIE (fuzzy logic inference engine) which is part of a hybrid
system FuzzyCOPE (Kasabov 1995b). Some of the built-in functions for dealing with fuzzy rules and
fuzzy inference in FuzzyCLIPS are shown in appendix E. Functions of FLIE are given in appendix H.

Fuzzy system shells facilitate experimenting with different inference methods, different types of rules,
and different membership functions, until the best fuzzy system is designed. Figure 3.36 shows the code
of a fuzzy
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MEMBERSHIPS INPUT
CScore:{ 150,155,160, 165,170,175, 180,185,190, 195,200}
> High: [0,0,0,0,0,0,02,07,1,1,1)

> Low: (1.0, 08, 05 02,00, 00,000

INPUT CRamo: {0.1,0.3,0.4,0.41,0.42,0.43,0044,0.450.5,0.7,1.0}
= Good CR: {00, G07.0003, 00,0, 0, 0, 0, 0 0

= Bad_CH: [, 00,0, 00, 03,07, 1,1}
IMPUT CCredit: {0.1.2.3.4.5.6.7.8.9,10]

= Good_OC: (1.0 1,07, 03,0, 000,00, 0}
= Bad_CC O, O o0 0, % 07, 0.1, 1}

OUTPUT Decision: 10.1,2.3,4.56,7.89,10)
= Approve;  (0,0,0,0,0,0,03,07,1, 1.1}
> Reject: (1,0, 1,07 03,000,000}

RULES

if =CBcore is Highe and <CREatio is Good_CE> and <CCredit 15 Good_CC>
then <[ecision is Approve=

else

if =C8core is Lows and <CRatio is Bod_CR> or <CCredit is Bad_CC=
then  <Decision is Rejpect>

by = —mrn.

Figure 3.36
The code of a fuzzy system for the Bank Loan Decision Problem
prepared in the syntax of a fuzzy logic shell.

system for the Bank Loan case example written in the syntax of the shell FLIE and figure 3.37 shows a
view of the shell. After having designed the fuzzy system, it can be compiled and linked with other
programs. The fuzzy rule base is in a simple text format, thus portable and able to run on different
platforms. A fuzzy inference can be activated as an external program from another program as shown

below.

Example A function call: (dcmfuzzy "loan.rul™ $?x 1 2 1), will activate a function for a
decompositional inference over fuzzy rules, in the file "loan.rul,” when an implication operator
numbered as 1 in a list of possible operators for use, composition operator numbered by 2, and else-link

operator numbered by 1, will be used.

Example A section of a program for predicting the stock market index written in FuzzyCLIPS is given
in figure 3.46 and explained in 3.12.
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Figure 3.37
A view of the menu of a fuzzy logic shell, FLIE (see appendix H).
Different inference methods can be selected in order to tune the
fuzzy inference to the domain problem.

3.8 Pattern Recognition and Classification, Fuzzy Clustering, Image and Speech Processing
3.8.1 Pattern Recognition and Classification

Pattern recognition tasks ideally suit fuzzy theory, as patterns are very often inexact, ambiguous, or
corrupted. In the Handwritten Characters Recognition case example, described in chapter 1, the patterns
to be recognized are not well defined and are ambiguous in many cases. Fuzzy rules for handwritten
character recognition are given in Yamakawa (1990). The recognition of the handwritten digit 3 is based
on the fuzzy rule given in chapter 1, but in addition to that, membership functions are defined and a
fuzzy inference is applied.

Pattern recognition and classification are usually considered as very similar tasks as discussed in chapter
1. Classes can be described by fuzzy classification rules, for example, the example above, or a set of
examples
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(data points in the problem space) from which fuzzy classification rules are extracted.

Fuzzy rules can be used for classification purposes when the objects to be classified are noisy, corrupted,
blurry, etc. Fuzzy rules can cope with those ambiguities. This is the case with the Blood Cells
Classification Problem, the solution to which is shown in section 3.12. Fuzzy classification of Iris plants
by using rules extracted from data is discussed in chapter 5.

Fuzzy systems, as we have already discussed, are robust. Contradictory fuzzy rules can be
accommodated in one system, the tradeoff being achieved through the inference mechanism. This
characteristic of fuzzy systems is very important for their applications in solving classification problems.

Classification problems, when data examples labeled with class labels are available, have been
successfully solved by classic statistical methods, especially when the data set is unambiguous and
dense. If the data set is sparse in the problem state space, the problem is rather difficult. A simple
example of 19 data instances, which belong to two classes, is shown in figure 3.38. The instances are
represented by two attributes Al and A2 discretized with three fuzzy labels—"Small,” "Medium," and
"Large." The following fuzzy rules can be articulated after an analysis of the data distribution. The
confidence factors represent the percentage of instances of a given class which fall in a particular
"patch™ of the problem space:

Rule 1: IF AlisMand A2 is S, THEN Classl (CF = 1)
Rule 2: IF AlisLand A2 is S, THEN Classl (CF = 0.45)
Rule 3: IFAlisLand A2 is S, THEN Class2 (CF = 0.55)
Rule 4: IF Al is L and A2 is M, THEN Class2 (CF = 0.75)
Rule 5: IF Alis L and A2 is M, THEN Classl1 (CF = 0.25)

The above set of rules is ambiguous and contradictory. Rules 2 and 3 have the same antecedents, but
different consequences, which is also true for rules 4 and 5. This situation is impossible for a symbolic
production system to cope with. A fuzzy production system can infer a proper classification, as for every
input data vector all rules may fire to some degree and all of them contribute to the final solution to
different degrees. The
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Figure 3.38
A two-dimensional feature space representation of a data set
of 19 points which belong to two classes.

points at the border between the two classes should be correctly classified by the fuzzy rules as they take
support not only from one of the contradictory rules but from a rule that has lateral fuzzy labels with it.

When the data examples are not labeled with the class or pattern labels, that is, when the classes they
belong to are not known, then different clustering techniques can be applied to find the groups, the
clusters, in which data examples are grouped. The clusters show the typical patterns, the similarity, and
the ambiguity in the data set. In addition to the exact clustering (see chapter 1), fuzzy clustering can be
applied too.

3.8.2 Fuzzy Clustering

Fuzzy clustering is a procedure of clustering data into possibly overlapping clusters, such that each of
the data examples may belong to each of the clusters to a certain degree. The procedure aims at finding
the cluster centers Vi (i =1, 2, . . .,c) and the cluster membership functions
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which define to what degree each of the n examples belong to the ith cluster. The number of clusters c is
either defined a priori (supervised type of clustering) or chosen by the clustering procedure
(unsupervised type of clustering). The result of a clustering procedure can be represented as a fuzzy
relation L, such that:

(1) E. T
foreachk =1, 2, .. .,n; (the total membership of an instance k to all the clusters equals 1)

(2] J:El piy =0,
foreachi=1, 2,...,c (there are no empty clusters)

A widely used algorithm for fuzzy clustering is the C-means algorithm suggested by J. Bezdek (see
1992 and 1987). Its simplified version is given in figure 3.39. A validity criterion for measuring how
well a set of fuzzy clusters represents a data set can be applied. One criterion is that a function S(c)
reaches local minimum:

S{c) = (el [l — Vi) — (Vi — Mx)?]

i (k)

I. Initialise ¢ fuzzy cluster centers ¥, W,,.... ¥, arbitrarily and calculate the
membership  degrees p,, i=1,2,...¢, k=1.2,.._n such that the general conditions are
=

2. Calculate theppext values fgr cluster centres:
V= 'EE.I[II.,}J-I.] fiﬂiuu]'}. for i=1.2..._ &

3. Update ihe fuz::.rjd:,gm: of membership:
M= Jord, =0, %ik

where: d,,= (x,- V). d,= (x,- ¥ (Euclidean distance)

4. If the curmmently calculated values ¥ for the cluster centers are not  different from
the values calculated at the previoys siep (subject to a small error ), then stop.

Figure 3.39
An outline of the C-means fuzzy clustering algorithm.
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where MXx is the average of x. If the number of clusters is not defined, then the clustering procedure
should be applied until a local minimum of S(c) is found, which means that c is the optimal number of
clusters. One of the advantages of the C-mean fuzzy clustering algorithm is that it always converges to a
strict local minimum. A possible deficiency is that the shape of the clusters is ellipsoid, which may not
be the most suitable form for a particular data set.

Fuzzy clustering is an important data analysis technique. It helps to understand better the ambiguity in
data. It can be used to direct the way other techniques for information processing are used afterward. For
example, the structure of a neural network to be used for learning from a data set can be defined to a
great extent after knowing the optimal number of fuzzy clusters.

3.8.3 Image Recognition

Image recognition is an area where fuzzy representation and fuzzy reasoning can be successfully
applied, mainly for two reasons: (1) ambiguity in the images to be recognized; and (2) the need for fast
processing, that is, complicated formulas may not be applicable for a real-time recognition; in this case a
fuzzy system may be more convenient.

Different approaches are possible depending on the image recognition tasks, two of them being (1)
objects recognition, that is, recognizing shape, distance, and location of objects; and (2) texture analysis,
for example, an image X of size m x n pixels can be represented as a set of fuzzy sets and membership
degrees to which pixels belong to the fuzzy concepts, such as "brightness," "darkness," "edginess,"
"smoothness."

Fuzzy methods can be used at two levels of image recognition and image processing: (1) low-level
Image processing, tasks to be performed at this level being image segmentation, boundary detection,
image enhancement, and clustering; and (2) high-level image understanding, which process ends up
with a symbolic description of the image.

Example The problem is to identify the expression of a face from a photograph. First, linguistic fuzzy
features like "big eyes," "small nose," "round mouth™ are extracted from a photograph of a face. In order
to extract features, some facial characteristic points are detected. According to these features another
categorization can be made which defines the
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expression of the face, for example, "happy," "surprised,"” “normal,"” based on fuzzy rules. An
experimental system was published in Ralescu and Hartani (1995).

3.8.4 Speech and Music Signals Recognition

The main difficulties in speech recognition were discussed in chapter 1. The extreme complexity of this
task due to different levels and sources of ambiguities were pointed out.

Fuzzy systems can be applied at different levels of the speech recognition process, that is, at a low or
pattern-matching level, at a higher or language analysis level, and at the highest level, concept
understanding, subject to the rules available. Articulating rules for speech and language processing is a
difficult task, even though there is a huge amount of literature on the subject. How to bring this
knowledge to the computers through the methods of fuzzy logic is a challenging task.

Fuzzy rules can be automatically extracted from data mapped into a feature space. Figure 1.18, for
example, shows a mapping of spoken phoneme signals into the two-dimensional space of the first
formant frequency F1 and the second formant frequency F2. The intervals of these frequencies can be
represented by fuzzy labels in a similar manner, as shown in figure 3.38 for a classification problem. If
five labels are used to label consecutive intervals—VS, S, M, L, VL—then fuzzy rules can be articulated,
such as:

IFFlisSand F2is L, THEN itis very likely that the pronounced phoneme is either /I/ in the R.P.
English or /I/ in the general Australian English

IF F1is Mand F2is M, THEN it is very likely that the pronounced phoneme is /I/ in New Zealand
English

In spite of the existing ambiguity between different phonemes in the different English languages, a
system of fuzzy rules can deal with the problem. Such fuzzy rules can be extracted from samples of
spoken phonemes by using neural networks.

The problem of musical signals recognition is by nature similar to the problem of speech recognition.
One solution to a simple problem is given in section 3.12.
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3.9 Fuzzy Systems for Prediction

Complex prediction tasks, such as the Stock Market Prediction Problem, are characterized by time
variability and ambiguous information, as was discussed in chapter 1. They can be solved by using
different techniques, or a combination of them, as, for example, fuzzy rules, neural network, and genetic
algorithms. The use of fuzzy systems is discussed here. More examples are given in chapters 5, 6 and 7.

3.9.1 Fuzzy Rules for Solving Complex Prediction Tasks

In complex prediction tasks the next values (events) to be predicted depend on many variables, usually
of different types. These tasks are usually solved in two stages: (1) state recognition, and (2) scenario
evaluation.

For the state recognition stage, time-series data may be used, while the scenario evaluation stage
requires expert knowledge. If we take the Stock Market Prediction example, during the first stage
parameters such as volatility and trends can be evaluated. At the next stage, fuzzy rules can be applied
for suggesting an investment decision (very short term, medium short, medium long, long, etc.).

Time-series prediction fuzzy rules can be learned from data. Suppose a time series of index prices, taken
for a certain period of days, is mapped into a two-dimensional space: today's price, yesterday's price.
The data can be visualized in a similar way, as the data in fig 3.38. Fuzzy rules, such as:

IF (today's price was medium) AND (yesterday's price was low),
THEN (tomorrow's price will be up) (0.8)

can be extracted by using different techniques. Extracting fuzzy rules for chaotic time-series prediction
iIs illustrated in chapter 7. Higher-level rules, such as:

IF (current economic situation is good) and
(current political situation is good) and
(the predicted value for tomorrow is up),
THEN (action—buy) (CF =0.9)

can be applied afterward.
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Low Normal High
LIS short term inferast

Figure 3.40
Inferencing over a gradual rule "the higher the FF, the higher the
U.S. short-term interest” with the use of two implications Ra and Rs;
the membership functions in the rule are drawn as a solid line;
the current value for the FF denoted as FF' is drawn as a dotted line;
the inferred function for the "US short-term interest” by applying
Ra is drawn as a dashed line and for Rs as a dotted-dashed line.
The Rs implication is more suitable than Ra. (Adapted with
permission from Katoh et al, 1992).

3.9.2 Using Gradual Rules

Very often economic, social, or psychological behavior can be represented by gradual fuzzy rules
because of the gradual properties of the processes under consideration.

Example (Katoh et al. 1992) The gradual fuzzy rule is: "the higher the FF rate, the higher the U.S.-short-
term interest rate". When the membership function for the state of the FF rate is known, a membership
function for the output variable can be inferred. In a previous section one way of inferencing over
gradual rules was shown. Here, two different implications Ra and Rs are applied to inferring the fuzzy
output membership function for the "U.S. short-term interest rate” when the membership function FF:
for the current value of the input variable "federal funds" (FF) is known (see figure 3.40). The Rs
implication gives better results according to the experts' expectations.

3.10 Control, Monitoring, Diagnosis, and Planning

3.10.1 Fuzzy Control

Fuzzy control systems were one of the first industrial fuzzy systems. The first system was designed and
implemented by Mamdany for cement kiln
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A block diagram of a fuzzy control system.

control in the United Kingdom in the early 1970s. Since then many fuzzy control systems have been

developed, for example, subway control, washing machines, camera focusing, automatic transmission
control, rice cookers, dishwashers, and many other engineering applications. Intelligent robotics is an
area where fuzzy control systems will be used in the future.

By fuzzy control, an application of fuzzy logic to control problems is meant. Fuzzy control is different
from standard control, mainly in three respects: (1) the use of linguistically described concepts, rather
than formulas; (2) the use of commonsense knowledge, rather than mathematical knowledge; and (3) the
use of methods of fuzzy logic.

Ordinary controllers usually represent a system's uncertainty by a probability distribution. Probability
models describe the system's behavior with the use of first-order and second-order statistics—means and
covariances. Mathematical models of control systems facilitate a mean-square-error (MSE) analysis of
the system'’s behavior. In case of many variables, it is extremely difficult to accurately articulate such
mathematical models. They also require a lot of computations, which might be difficult to perform in
real time. Fuzzy control systems consist of fuzzy rules and an inference machine which includes
fuzzification and defuzzification. The system works in a cycle, as shown graphically in figure 3.41. The
case example of the Inverted Pendulum Problem is discussed below. The problem was described in
chapter 1, where heuristic rules for its possible solution were articulated and shown in figure 1.33. After
fuzzy quantization of the two input parameters angle € and angular velocity
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A set of fuzzy rules and membership functions
for the Inverted Pendulum case problem.
(Adapted with permission from Yamakawa 1989.)

AO, and the output parameter, the force applied to the cart, by using seven fuzzy labels (PL and NL are
added to the fuzzy terms used in chapter 1), seven rules were set experimentally by Professor
Yamakawa (1989). They are shown in the form of a rule map in figure 3.42 along with the membership

functions of the fuzzy labels.

By using the same approach, much more complex tasks can be solved. For complex control tasks, a
modular system, which comprises two or more simple control systems, can be designed as demonstrated

in an example solved in section 3.12.

In the fuzzy control systems the control algorithm is described by fuzzy words and not analytically.
Therefore it is difficult to evaluate the stability
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of the model, that is, how stable the system will be if some parameters of the objects change, for
example, the length of the pendulum, the weight of the mouse put on top of a pendulum, and so forth.
This problem has been thoroughly investigated by Li-Xin Wang (1994).

In adaptive fuzzy control systems the set of fuzzy rules dynamically change according to the changes in
the process or object under control (see Brown and Harris 1994, Wang 1994).

3.10.2 Monitoring

Fuzzy theory is useful for creating monitoring systems when the parameters and the conditions to be
monitored can be expressed in fuzzy linguistic terms. The simple problem of monitoring a car, described
in chapter 1 and realized as an exact production system in chapter 2, is presented in section 3.12 as a
fuzzy rule-based system.

Using fuzzy rules makes the system more sensitive to the borderline values for the parameters.
Monitoring of a process that is described by a large number of parameters can be handled in a similar
way.

3.10.3 Diagnosis

Diagnosis is a generic problem suitable for solving by the methods of fuzzy logic. This is because of
ambiguity in the diagnostic process. The latter may have many causes; for example, the earlier we try to
diagnose an abnormality, the more ambiguous the indicators are; the difference between the normal and
abnormal state might be slight.

Fuzzy diagnostic systems can contain fuzzy rules of two different forms:

1. IF disorders (x), THEN symptoms (y); in this case x is sought from the set of equations: y = X « R,
where R is the set of relations between the disorders and the symptoms and "«" denotes a composition
operator; this is the inverse problem of the fuzzy inference composition rule and more difficult to solve.

2. IF symptoms (x), THEN disorders (y); in this case y is sought from the fuzzy compositional equation
y=XoR.

More sophisticated fuzzy diagnostic systems use fuzzy concepts for representing not only static
symptoms but their dynamic properties too, for example, "tendency"—"increasing," "decreasing," "not
changing," etc.
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In some fuzzy medical diagnostic systems patients are allowed to answer in fuzzy terms, for example,
the question "Do you feel fatigue?" could be answered by using the fuzzy concepts "seldom,"
"sometimes," "always." There answers can be processed further as fuzzy input values.

3.10.4 Planning

Planning in uncertain and ambiguous conditions is also a problem, too difficult to be tackled by the
traditional symbolic Al methods. Take the Monkey and Bananas case example. When the exact
positioning of all the objects and exact goals are known, there is no problem. But suppose we do not
have the exact positioning of the monkey and instead of the exact position, for example (5,8), we know
that the monkey is "near" the couch, the ladder is "at about the most distant corner from the monkey,"
and bananas are on the ceiling "somewhere in the middle." The goal can be "monkey to grasp bananas."
A plan in this case can be generated by using a set of fuzzy rules and a fuzzy inference machine to
perform the reasoning process.

Complex planning problems can be solved in stages, for example, first stage, recognition of the
situation; second stage, generation of a plan; third stage, execution of the plan. For each of the stages
fuzzy rules may be used and combined with other techniques used for other stages.

3.11 Optimization and Decision Making

These two generic problems are about finding an optimal option among a set of options. This process is
difficult to model when the decision is required to be "humanlike," especially in a group decision-
making process.

3.11.1 Optimization

Optimization problems sometimes do not have well-defined parameters and values. Finding an optimal
solution in this case is extremely difficult. For example, the cost from one town to another for the TSP
case example might not be a single value, but an interval or a fuzzy number, say, about 600. A fuzzy
solution to this problem when inexact costs are provided instead of exact values is presented in Dubois
and Prade (1988).
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3.11.2 Decision Making

Fuzzy logic, when applied to decision-making problems, provides formal methodology for problem
solving, and human consistency. These are important general characteristics of fuzzy decision making
systems. Such systems should have the following functionality:

. Explain the solution to the user

. Keep a rigorous and "fair" way of reasoning;

. Accommodate subjective knowledge

. Account for "grayness” in the solution process, when, for example, it is impossible to draw a rigid

border between "bad" and "good."

Fuzzy logic can either be used instead of, or in addition to, probability theory. For example, suppose we
have the probability distribution for the monthly sales of item x over a certain period of time. The
distribution can be used to estimate the probability p(x;) that a certain amount of this item will be sold
next month. But to make a decision on what should be produced next month, it is necessary to know
whether the predicted through probability p(x;) sell of x is "good" or "bad," or "OK," from the point of
view of the profit of the company. So we have to define the fuzzy concepts of “good" and "bad" for this
particular company.

Solving decision-making problems by using fuzzy systems was illustrated in previous sections of this
chapter with the Bank Loan case example. Similar decision-making tasks are investment advising,
mortgage approval, insurance risk evaluation, house pricing, selecting the best candidate for a job,
assessing complex projects, assessing student papers, assessing the risk of failure of a company, and
many others.

3.11.3 Group Decision Making

Fuzzy reasoning particularly suits modeling a group decision-making process. The following terms
relate to this task:

. A group of individuals (experts): X; X,, . . ..X,
. A set of options: s, S, . . .,S,
. Parameters describing the experts' opinions and preferences

And the task is to find the option s; on which there is a consensus among the experts. Two approaches to
using fuzzy logic for this problem are:



Page 236

1. Using linguistic quantified propositions of the form of QBx are F. For example, Q denotes "most"”; B
denotes "important™; x denotes "expert"; F denotes "convinced." Each of the fuzzy terms can be
represented by a membership function on the universe X representing the degree to which each expert x
[J X "belongs" to the fuzzy set. A value p(X;) denotes how much convinced expert xi is with regard to
the option under discussion for consensus. The final truth-value of the proposition “most important
experts are convinced" is calculated as:

t = z (aglx)) A el AT pgle))

2. Using fuzzy preference relations. In this case a fuzzy relation Rk:SxS — [0, 1] represents the

& : : -
preference * i of the expert x, between each of the pairs (s,_s;) of options for decision. One way to
process these fuzzy preference relations to achieve the final preference relation R over all the experts
before finding the optimal solution from it is given below:

RUi.j) = (X gif)ip.
where g} =1, ifrl}>05

0, i_,lr.l"l‘*j' =15

Fuzzy methods for modeling group decision-making is an area of growing interest.

3.12 Problems and Exercises
Part A: Case Example Solutions

1. Blood Cell Classification case example. Experts are very good at classifying blood cells by looking at
a blood sample through a microscope. But when they try to explain how they do the classification, they
usually come up with a set of ill-defined, incomplete rules. A set of such rules is given as an illustration
in figure 3.43. The rules, though, are not difficult to implement as a fuzzy system. The five
features—nucleus exists, segmented or granular cell, darkness of the nucleus, size of the nucleus, and
size of granules—are used as input variables in the realization described here. Fuzzy values are defined
for the input fuzzy variables, for example: "yes,"” "maybe,” "no." The output variables are the blood cell
classes. Their fuzzy values are defined as certainty degrees for the object to be classified in the
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class "yes," "likely," "possibly," "maybe," and "not." Membership functions of singleton type for
representing those fuzzy values are shown on the screenshot in figure 3.44. The three membership
functions for representing the fuzzy variable nucleus-exists and the fuzzification result for a particular
input data, as well as the classification result, are graphically and numerically presented there.

2. Recognition of musical notes. A partial solution to the problem with the use of exact production rules
was shown in chapter 2. Instead of the intervals used there for representing variations of the energy of
the signal in different frequency bands, fuzzy quantization can be applied and fuzzy rules can be
articulated based on the exact interval rules (figure 3.45).

3. Decision-making on stock market trading. Figure 3.46 shows a part of a program written in
FuzzyCLIPS for decision-making on future investments. Three fuzzy input variables are used (economic
situation, political situation, trend of the predicted value) for which fuzzy values are defined by using
standard membership functions. The FuzzyCLIPS functions are explained in appendix E. Extended
program is given in appendix I.

4. Control of a two-stage inverted pendulum (figure 3.47). Fuzzy Controller 1 (which is similar to the
one described in a previous section) takes data from the upper stage of the two-stage pendulum. It has
two inputs—angle A2 and angular velocity V2. The output of it called "Stage 1" is used as an input
variable to Fuzzy Controller 2, which takes two more parameters—angle Al and angular velocity V1
from the lower stage—and actually controls the current to the motor by producing an output value for
the control variable "Motor." For each output value of the variable "Stage 1," a separate rule map is used
to represent the rules for Fuzzy Controller 2. The rule map for Stage 1 = ZR is given in figure 3.48 with
the rule map of the rules for Fuzzy Controller 1. In case of stage 1 = ZR the two maps are identical, but
not in the other cases.

5. Fuzzy system for the Car Monitoring Problem. Figure 3.49 shows a fuzzy quantization of the
parameters of the task. The parameter "brakes' response" is represented here on the universe of time with
three linguistic labels—"quick," "normal," and "slow." The state of the cooling system is represented by
three linguistic fuzzy values—"underheating,” "normal," and "overheating." The status of the
temperature gauge is represented by two labels—"OK" and "damaged"—on the universe of grades of
sensitivity of the gauge. The variable "temperature" is represented by the labels



RLULE 1.
IF Nucleus might exist and cell might be segmented and granular and Mucheus is dark,
THEMN the cell is unlikely o be an Erythrocyte and the cell 1 possibly a
Lymphocyie,
RULE 2:
IF Nucleus might exist and cell might be segmented and granular and Nucleus 15 hight
THEN the cell 15 unlikely to be an Erythrocyte and the cell 15 unlikely 10 be a
Lymphocyie,
FELLE 3
IF Nucleus might exist and cell is nol segmented and granular and Mocleus 15 light,
THEMN the cell maybe an Erythrocyte and the cell is unlikely to be a Lymphocyie
and the cell is likely to be a Monocyte,

RULE 4:
IF Mucleus might exist and cell is not segmented and granulor and Mwecleos is dark,
THEM the cell is unlikely 1o be an Erythrocyte and the cell s unlikely 1o be a
Monocyte and the cell 15 likely to be a Lymphocyie.

RULE 5:
IF Nucleus exists and the cell might be segmented and granular and the nucleus is
light
THEN the cell is likely 1o be a Monocyle.

RLULE &:
IF Mucleus exists and the cell might be segmented and granular and the Mucleus is dark
THEM the cell is likely to be a Lymphocyte.

RLULE T:
IF Mucleus exists and the cell is not segmented and granular and the Mucleus is dark
THEMN the cell is a Lymphooyte,

RLULE &:
IF Muclews exists and the cell is not segmenied and granular and the Mucleus is light
THEMN the cell is a Monocyte.

RULE9:
IF Nuclews 15 large and granules are Lurge and Nucleus is mediom dark
THEN the cell is likely 1o be o Basophil,

RULE 1
[F Nucleus is [urge and granules ore [orge and Mucleus is light
THEHN ihe cell is Basophil.

RULE I1:
[F Nucleus 15 lurge and granules are medium and Nucleus i3 light
THEN the cell is likely to be a Basophil

Figure 3.43
A set of expert fuzzy rules for the Blood Cell Classification Problem.
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RULE 12:
IF Mucleus is large and granules are medium and Muclews is mediom dark

THEM the cell is possibly a Basophil.

RLULE 13:
I Mucleus s medium and granules are large and necleus is medivm dark
THEN the cell is possibly a Basophil and the cell is possibly a2 Eosinophil.

RULE 14:
IF Mucleus is medium and granules are large and Nucleus is lighi
THEN the cell is a Basophil,

RLULE 15:
IF Mucleus is medium and granules are large and Nuclews is light
THEN the cell is likely 1o be a Basophil

RULE 1
IF Mucleus is medium and granules are medium and Nuclews is dark
THEN the cell is likely to be an Eosinophil.

RULE I7:
IF Mucleus is mediom and granules are large and Nucleus 1s medium dark
THEM ihe cell is likely to be a Basophil and the cell s likely 1o be an Eosinophil.

RULE 18:
IF Mucleus is medium and granules are mediom and Nuclews is dark
THEM the cell is possibly an Eosinophil and the cell is maybe a Newtrophil.

RULE I
IF Mucleus is small and granules are large and Mucleus is dark
THEHM the cell is an Eosinophil.

RULE 20:
IF Mucleus is small and granules are [arge and Muclews is medium darkness
THEM ihe cell is likely io be an Eosinophil.

RULE 21:
IF Mucleus is small and granules are medivm and MNucleus is medium dork
THEM the cell is likely 1o be an Eosinophil and the cell is likely to be a Neutrophil

RULE 22:
IF Nucleus is small and granules are medium and Nuclews is medium dark
THEN the cell is possibly an Eosinophil and the cell is may be a Newirophil

Figure 3.43
(continued)
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Figure 3.44

Membership functions of one input fuzzy variable (Nucleus_Exists) and of one
output variable (Lymphocyte) and a graphical representation of an inference for
a particular input data for the Blood Cells Classification problem. The input and
output values are on a grade of 0 to 10. The particular sample has been classified to
class Lymphocyte to a degree of 7. The second numbers on the figure are internal
representation (from 0 to 255).
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Figure 3.45
(a) Membership functions for the
Musical Recognition Problem;
(b) some fuzzy rules for
classification of a musical signal.
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viv A part of a FuzzyCLIPS program for stock markel prediclion

o single rale for decision making - a fuzey value s inferred by i
[ defrule hybnd_system_step3
ideclare (CF 0.9))
Tstepd «<- (stepd)
(political _climate good)
(economic_climate good)
(predicted _value up)
==
(assert {shares buy) CF 0.9
(assert (end_run))
(retract Yseep3i)

i a single rule for defuzafication and final decision making:
{defrute final

(end_run)

M- (shares 7
=

(printout t crlf * THE DECISION OBTAINED BY THE SYSTEM I5: " crf (get-fs
) erlf " with a degree of cemainty of:” (get-cf 1} erlf "On the scale of 0 - 9 levels,
where 0 means definitely “sell”, 5 means - “hold®, and 9 means definitely "buy”, the
suggested action 15 " (moment-defuzzify 7))

Figure 3.46
A part of a program written in FuzzyCLIPS for decision-making
on future investment in the stock market.
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Figure 3.47
A sketch of the two-stages Inverted Pendulum Problem.
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Figure 3.48

Two maps of fuzzy rules for the two-stages Inverted Pendulum
Problem. The map for controller one and one map only of fuzzy
rules for the controller two are shown.

"low," "normal," and "high." The conclusion "stop the car," can be represented as a single-valued
membership function representing the certainty of the advice. A chain fuzzy inference is performed in
this case. When the system is realized by the use of the centroid defuzzification inference method, even
slight matching of the conditions in the fuzzy rules by the current status of the car will cause a message
to be communicated to the driver. The fuzzy rules are:



Rule 1: IF Brakes' _response is Slow, THEN Message is Stop_the car
Rule 2: IF Cooling_status is Overheating, THEN Message is Stop_the car
Rule 3: IF Temperature is High and Gauge_status is OK, THEN Cooling_status is Overheating

6. A fuzzy diagnostic system for the Medical Diagnosis case example described in chapter 1 is
explained here. The rules vaguely articulated there are now presented in a more precise form as fuzzy
rules, shown in figure 3.50. M1, M2, M3, and M4 are manifestations (symptoms), defined with their
linguistic values, and D1, D2, D3, and D4 are disorders, defined with linguistically represented
confidence factors CF1, CF2, CF3, and CF4. In the same figure, another representation of the same
rules after substituting the fuzzy quantifiers with its corresponding typical numerical values, as given in
Chen (1988), is shown. A table of corresponding fuzzy linguistic
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Figure 3.49

Membership functions of linguistic values for the Car Monitoring Problem.



labels, numerical intervals, and typical single values for the frequency of appearance and strength of
symptoms is given in figure 3.51.

7. The Investment Adviser Problem. Here, a solution to this problem is presented. It can be compared
with its solution as a production system (see chapter 2). A set of fuzzy rules for solving the problem are
shown in figure 3.52. Standard triangular membership functions are specified for the fuzzy values. The
system is written in the syntax of FLIE (see appendix H).

Part B: Practical Tasks and Questions
8. Why do fuzzy sets break the law of the excluded middle?
9. What is the main difference between propositional and fuzzy logic?

10. What major fuzzy inference methods can you outline?
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Fuzzy rules:
Fule 1:IFMI is Always AND M2 15 Weak AND M3 is No AMD M4 is Mo)
THEMN [ is D1 {CF is very strong),

Rule Z:IF (M1 is Mo AND M2 is Always AND M3 is Weak AND M4 is No)
THEHN D is D2 (CF is very strongl,

Rule 3:0F(MI s More_or_less_weak AND M2 is No AND M3 is Always AND M4 is No)
THEN D is DA (CF is very strong),

Rule 4 IF(M 1 is Weak AND M2 is More_or_less_weak AND M3 15 Always
AN M4 iz No)
THEMN [ is [ (CF 15 very strongh;

Use of typical values instend of fuzzy values:
Rule 1 TR {M1=1.0, M2=0.2, M3=0.0, Md=0.0) THEN D/ (CF=0.99);
Rule 2: TF (M 1=0.0, M2=1.0, M3=0.2, M4=0.0) THEN D2 (CF=0.99);

RBule 3 1F (MI1=0.3, M2=0.0, M3=1.0, M4=0.0) THEM D3 (CF=199);
Rube 4: FF{MI =02, M2=03, M3i=1.0, Md=00 ) THEN M (CF=0949);

e .

Figure 3.50
Two sets of similar rules for the Medical Diagnosis Problem.



Fuzzy label MNumerical interval Typical value
Always LU0, | (0] [ .
Wery strong [095, 0,99 .54
Strong [OURD, (.94 0.9
More or less strong (65, (.79 0nd
Medium [D.45, (64] 0.5
More or less weak [0.30, 0.44) i3
Weak [0.10, 029 2
Wery weak (0.0, 009 005
No (0,00, 0,00 0.0
Figure 3.51

Corresponding linguistic values, numerical intervals, and typical exact
values for representing frequency of appearance and strength of symptoms.
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MEMBERSHIPS

INPUT amount:{0, 10, 25, 40, 55, 70, 100}
= wery_small:-[ 1, 1,0, 0, 0, 0, )
> small: | 0,0, 1,0, 000
= average:, [ 0.0, 00 1, 0,0, 0]
= large: [ 0.0,0,0, 1,0, 0)
= very_large: [ 0, 0,0, 0,0, 1, 1)

INPUT risk: {0, 0.1, 25, 40, 55, 70, 100)
= [ g0, 000 00 0]
= wery_low: [ 1, 1,0,0,0,0,0)
= low: [0, 0 1, 0,0, 0,0)
> medim: | 000 01, 00, 0)
> high: f 000, 0,0, 0,0, 0]
= wery_high:[ O, 0,0, 0,0, 1, 1}

INPUT period: { 0, 5, 12, 24, 36, 48, 60]
= short: | 1. 1, 06, 0, 0, 0, 0)
> mediom; [0, 0,0, 1, 1, 0,0)
= long: (00, 0,00, 1,1}

INPFUT income: | O, 10, 15, 25, 36, 40, 46, 64, 67, 100]
> oo (L1 08 00,0,0,0,0 0,0)
> good: [0,0,0,0,0,1,1,0.0,0]
= excellent: [ €, 00,0, 0,0, 02, 09 1,1}

OQUTPUT investment: { O, 20, 40, &0, 80, 100 |

nonE: {0 0,0, 0,0 )

very_small: {0, 0,0, 0,0, 0]
smmall: {00 1,000}

average: (0,0, 0,1, 0,0}
large: {00, 0,0,1,0}

all: (0,000,010 )

0,
0,

LU A

EULES
if <oamount is average> and <nsk 15 high> and <penod 15 shon> and <income is
E oo
then <investment is very_small>
else
if <amount is small> and  <risk is no> and <penod s shorts and <income 15 poors
then <investment is all>
else
if =amount is small> and <nsk is high> and <period is medium> and <income is
good>
then <investment is very_small>
else
if <amount is averages and <nisk is high> and <penod is long> and <income is good >
then =investment 15 nones
else
if <amount is very_large> and <risk 15 no> and <period is medivims and <income is
excellent>
then <investment is all>
clse
if <amount is average= and <nsk 15 high> and <period is short> and <income is poors
then <investment is small>



Figure 3.52
A fuzzy system for solving the Investment Adviser Problem written
in the syntax of FLIE (see chapter 6 and appendix H). The
membership functions are chosen as triangular, defined by their
centers and uniformly distributed over the whole universe. The
output variable represents how much should be invested in bank.
The rest is meant to be invested in shares.
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11. From figure 1.18, write fuzzy rules for recognizing the vowels /u/, /i/ and /3/ in the R.P., New
Zealand, and Australian English languages, similar to the rules given in section 3.8.4.

12. By using the fuzzy rule from chapter 1 for recognizing the handwritten digit 3 as an example,
develop a set of fuzzy rules for recognizing and classifying all the digits in a handwritten form. How
many fuzzy input variables will be needed?

13. Develop a set of fuzzy rules for a hypothetical air-conditioning control, where input variables are
"temperature™ and "humidity" and output variables are "openness of the cooling valve" and "openness of
the heating valve."

14. Articulate gradual fuzzy rules for solving the air-conditioning problem and show an example of how
the system works.

15. Define membership functions and articulate fuzzy rules for solving the Monkey and Bananas
Problem, as explained in section 3.10.

16. Develop a set of fuzzy rules for solving the TSP case problem when inexact values for traveling
costs are given, as explained in section 3.11.

17. What is the stability problem in fuzzy control systems?

18. Develop a fuzzy system and make experiments for the Ball and the Beam Problem explained in
chapter 1 (section 1.12).

Part C: Project Specification
Topic: A fuzzy System Development

Choose one of the problems listed below or a problem of your own. Develop a fuzzy system to solve the
chosen problem following the requirements below:

1. Specify and identify the problem. Why is the problem suitable for using a fuzzy system?



2. Define the input and output variables for the fuzzy system. Define the membership functions of the
fuzzy values for every input and every output variable. Explain the physical meaning of the membership
functions.

3. Develop a set of rules for solving the problem. Explain the meaning of the rules.

4. Make experiments of fuzzy inference over different input data and validate the results. If necessary,
change the rules or membership functions, or both.
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5. Draw a function between an input variable and an output variable when the rest of the input variables
have fixed values. Explain the meaning of the function.

A list of suggested problems for the fuzzy system project

1. Automatic truck control [see Kosko (1992) for the specification of the problem]
2. Target-tracking system [see Kosko (1992) for the specification of the problem]
3. Pattern recognition: handwritten characters recognition

4. Pattern recognition-musical signals recognition

5. Recognition of three English vowels

6. Control: washing machine control, when two input variables, for example, "degree of dirtiness" and
"type of dirt," and one output variable, for example, "washing time," are used (see Aptronix 1993)

7. Control, air-conditioning control (see Aptronix Inc. 1993)

8. Control, camera-focusing control (see Aptronix Inc. 1993)

9. Control, airplane landing control (Terano et al. 1992; Yamakawa 1992)
10. Decision-making, bank loan approval case example

11. Decision-making, investment adviser

12. Diagnosis, medical diagnosis case example

13. Diagnosis, the Smoker and the Risk of Cancer case example

14. Monitoring, The Car Monitoring case example



15. Optimization, the TSP, when inexact constraints are given, for example, the cost from town A to
town B is "about 50"

16. Planning, the Monkey and Bananas Problem, if parameters are not exactly specified, for example,
monkey is "near" the ladder which is to the "left" of the bananas

3.13 Conclusions

Some of the main characteristics of the fuzzy systems are:

. Fuzzy concepts have to have linguistic meaning; they need to be articulated.
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. Membership functions are numerical representations of the linguistic concepts; they can be built
either through learning from data, or through experts' opinion, or through both.
. Fuzzy rules can represent vague, ambiguous or contradictory knowledge.
. Fuzzy systems are robust; even if some rules are removed from the rule map, the system could

still work properly; fuzzy systems are also robust toward changing conditions in the environment.
. Fuzzy systems are simple to build, easy to realize, easy to explain.

These characteristics of fuzzy systems make them suitable for solving practically all the generic
problems in knowledge-engineering.

3.14 Suggested Readings
Further reading recommended on specific topics are:

Theory of fuzzy sets and fuzzy logic—Zadeh (1984); Terano et al. (1992); Dubois and Prade (1988);
Sugeno (1974); Kosko (1992, 1987); Mizumoto and Zimmermann (1982)

General fuzzy system applications—Yamakawa (1990, 1992, 1994); Terano et al. (1992); Yager and
Zadeh (1992); Aptronix (1993)

Fuzzy systems for pattern recognition—Bezdek and Pal (1992)

Fuzzy systems for control—Sugeno (1985); Yamakawa (1989); Wang (1994); Aptronix Inc. (1994);
Brown and Harris (1994)

Fuzzy systems for financial prediction and decision-making—Deboeck (1994); Zimmermann (1987)



Fuzzy information retrieval and fuzzy databases—Terano et al. (1992); Gupta and Sanches (1982);
Ozawa and Yamada (1994); Zemankova-Leech and Kandel (1984); Bosc and Kacprzyk (1995)

Fuzzy systems for image analysis—Ralescu and Hartani (1995); Hirota (1984); Zahzah et al. (1992)

Hardware implementation of fuzzy systems; fuzzy chips—Yamakawa (1987, 1988, 1993); Lim and
Takefuji (1990); Hirota (1995)

Fuzzy expert systems: Kandel (1991); TIL Shell (1993)
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4
Neural Networks: Theoretical and Computational Models

Acrtificial neural networks realize the subsymbolic paradigm of representing and processing of
information. The area of science that deals with methods and systems for information processing using
neural networks is called neurocomputation. In this chapter, the basic principles of artificial neural
networks are explained and illustrated. The chapter gives a background for going from neurons to
models and systems, some of which are presented here from an engineering point of view. The material
Is meant to be sufficient for developing connectionist models and systems for problem-solving and
knowledge-engineering, which is the topic of chapters 5, 6, and 7.

4.1 Real and Artificial Neurons

An artificial neural network (or simply a neural network) is a biologically inspired computational model
which consists of processing elements (called neurons) and connections between them with coefficients
(weights) bound to the connections, which constitute the neuronal structure, and training and recall
algorithms attached to the structure. Neural networks are called connectionist models because of the
main role of the connections in them. The connection weights are the "memory" of the system.

Even though neural networks have similarities to the human brain, they are not meant to model it. They
are meant to be useful models for problem-solving and knowledge-engineering in a "humanlike" way.
The human brain is much more complex and unfortunately, many of its cognitive functions are still not
well known. But the more we learn about the human brain, the better computational models are
developed and put to practical use. Therefore, it pays to have a look at the main characteristics of the
human brain from the information-processing point of view and understand to what extent they have
been realized in artificial neural networks.

This section emphasizes the main characteristics of real and artificial neural networks, namely:
. Learning and adaptation
. Generalization
. Massive parallelism

. Robustness
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. Associative storage of information
. Spatiotemporal information processing

The next subsection is far from being a detailed and precise presentation of the organization and
functions of the human brain. It is only a brief introduction to its main characteristics which
nonbiologists might find useful for understanding artificial neural networks and some of the trends in
their development. But the question, how much should an artificial computational model be biologically
plausible in order to be useful for engineering, is beyond the scope of this chapter.

4.1.1 Biological Neurons

At least three levels can be distinguished in the human brain from the point of view of the information
processing performed in it: (1) the structural level: neurons, regions of neurons, and the connections
between them; (2) the physiological level: the way the brain processes information as chemical and
physical reactions and transmission of substances; and (3) the cognitive level: the way humans think.

Three points are briefly discussed here: (1) the brain's structure and organization, (2) the brain as a
communication system which is massively parallel and robust, and (3) the major information-processing
functions and characteristics of the brain: learning, recall and generalization, associative storage, chaotic
behavior.

Let us look at brain organization first. The human brain contains about 1011 neurons participating in
perhaps 1015 interconnections over transmission paths. Each of these paths could be a meter long or
more. Neurons share many characteristics with the other cells in the body, but they have unique
capabilities for receiving, processing, and transmitting electrochemical signals over the neural pathways
that make up the brain's communication system. Figure 4.1 shows the structure of a typical biological
neuron. The neurons are composed of a cellular body, also called the soma, and its one or several
branches. According to the traditional definition, the branches conducting information into a cell
(stimulus) are called dendrites, and the branch that conducts information out of the cell (reaction) is
called an axon. An activation of a neuron, called an action potential, is transmitted to other neurons
through its axon at the first instance. A signal (spike) emitted from a neuron is characterized by
frequency, duration, and amplitude.
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1o ather neufons

Figure 4.1
A structure of a typical biological neuron. It has many
inputs (in) and one output (out). The connections between
neurons are realized in the synapses.

The interaction between neurons takes place at strictly determined points of contact called synapses. In
the region of the synapses, the neurons almost "touch” each other; however, there always remains a tiny
cleft between them. In a synapse, two parts can be distinguished: (1) a presynaptic membrane, belonging
to the transmitting neuron, and (2) a postsynaptic membrane, which belongs to the receiving neuron. An
impulse emitted from a transmitting neuron and fed to a presynaptic part of a synapse induces a release
of a transmitter. The transmitter carries a substance known as a mediator. As the transmitter passes
across the cleft, it takes the mediator to the postsynaptic part. There, under its influence, the permeability
of the membrane of the receiving neuron changes proportionally to the algebraic sum of the potentials
received in all postsynaptic parts of this neuron. If the result surpasses a threshold value established
beforehand, the neuron in its turn takes on the function of transmitting an action potential. The electric
potential on the two sides of the membrane is called the membrane potential. The membrane potential is
formed by the diffusion of electrically charged particles. All cells contain a solution rich in potassium
salts. At rest, the cellular membrane is 50 to 100 times more
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permeable to K+ ions than to Na+ ions. Chloride ions (C1-) are also of great importance in the process of
information processing in the brain. The structure of the membrane is such that its permeability to ions
changes under the influence of the mediators. When the postsynaptic part of the synapse receives
mediators, the membrane potential shifts toward a positive end, because now the membrane is more
permeable to Na+ than to K+, and there is more of it outside rather than inside the neuron. In other words,
the action potential represents a change of the membrane potential in a positive direction. In general, an
activation of a neuron is proportional to the difference between its current potential and the resting
potential.

The brain consists of different types of neurons. They differ in shape (pyramidal, granular, basket, etc.)
and in their specialized functions. There is a correlation between the function of a cell and its shape; for
example, pyramidal cells are excitatory and basket cells are inhibitory. In terms of variety, over 50 kinds
of functionally different neurons are found in the cerebellum (one of the major parts of the brain). This
fact may influence the creation of heterogeneous neuronal computational models which consist of
different types of specialized artificial neurons.

The human brain is a complicated communication system. This system transmits messages as electric
Impulses, which seem always the same, recurring in monotonous succession. A single nerve impulse
carries very little information; therefore, processing of complex information is only possible by the
interaction of groups of many neurons and nerve fibers, which are enormous in number and size. The
total length of all neural branchings inside the human body comes to about 1014 m. The presence of such
a high number of links determines a high level of massive parallelism, which is specific to the brain
mechanisms. Indeed, while each neuron reacts to outside stimuli relatively slowly (the reaction of a
neuron takes about 200 ms), the human brain as a whole is capable of solving complex problems in a
comparatively short time—parts of a second or several seconds.

The brain's ability to analyze complex problems and to react adequately to unfamiliar situations is due to
its heuristic faculty of taking decisions on the basis of previously stored knowledge and its ability to
adapt to new situations. The human brain has the ability to learn and to generalize. The information we
accumulate as a result of our learning is stored in the synapses in the form of concentrated chemical
substances.
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The brain receives information through its receptors which are connected by dendrites to neurons of the
respective part of the cortex (the part of the brain which receives signals from the human sensors). So
two of the major processes which occur in the brain from the information-processing point of view are
learning and recall (generalization).

Learning is achieved in the brain through the process of chemical change in synaptic connections. There
Is a hypothesis which says that the synaptic connections are set genetically in natal life and subsequent
development (learning) is due to interactions between the external environment and the genetic program
during postnatal life. Synapses either stabilize or degenerate. The learning process in the brain is a
complex mixture of innate constraints and acquired experience. But learning is not only a process of
"filtering" sensory inputs. "Brains actively seek sensory stimuli as raw material from which to create
perceptual patterns and replace stimulus-induced activity" (Freeman and Skarda 1985). Brains are goal
seekers. A brain activity pattern is a drive toward a goal (Freeman 1991). The activity patterns are
spatial and temporal and large patterns of activity are self-organized.

The recall process activates a collection of neurons in time. Some experimental results on the
hippocampus (a major part of the brain) of rats show that the mean activity of all 330,000 neurons upon
a given stimulus is 0.001, that is, only 330 neurons on average are activated at one time. The distribution
of the activated neurons over the time scale is not random. Neurons activate one another locally as the
neurons are mainly connected on a neighboring basis (the probability of two neurons being connected
decreases exponentially with the distance between them). The connectivity for the CA3 region of the
hippocampus in the human brain is about 4% (Rolls and Treves 1993) and every neuron produces from
zero to 50 spikes per second depending on its state of activity.

The recall process in the brain is characterized by generalization, that is, similar stimuli recall similar
patterns of activity. The brain can react to an unseen stimulus in the "best" possible way according to
previously learned patterns. The "distance" between a learned pattern and a newly recalled pattern
defines the level of generalization.

The human brain stores patterns of information in an associative mode, that is, as an associative
memory. Associative memory is characterized in general by its ability to store patterns, to recall these
patterns when only parts of them are given as inputs, for example, part of a face we have seen
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before, or the tail of a rat. The patterns can be corrupted, for example, an airplane in foggy weather. It
has been proved experimentally (Rolls and Treves 1993) that part of a region of the human brain called
CA3 works as an associative storage and another part (which consists of "mossy" fiber connections) is
nonassociative. The number of patterns which can be associatively stored can be calculated by the use of
the formula

Pmax = cl[k/(alln(1/a)),

where a is the coefficient representing the sparseness of the connections between the neurons, c is the
number of connections which connect one neuron to another, and k is a constant whose typical value is
0.2 t0 0.3. It has been estimated that at any given moment about 36,000 patterns can be stored in the
CAS3 region, but not all of them are "lifetime" patterns. Patterns evolve for a certain period of time and
have a certain spatial structure, that is, the memorized patterns are spatiotemporal patterns.

The question of how information is stored in the brain relates to the dilemma of local vs. distributed
representation. There is biological evidence that the brain contains parts, areas, and even single neurons
that react to specific stimuli or are responsible for particular functions. A neuron, or group of neurons,
which represent a certain concept in the brain, is referred to as a grandmother cell. At the same time,
there is evidence that the activity of the brain is a collective activity of many neurons working together
toward particular patterns, features, functions, tasks, and goals.

Study of the olfactory lobe gives evidence that the chaotic behavior of the brain is a global property
(Freeman 1987). A chaotic process is, in general, not strictly repetitive. It does not repeat exactly the
same patterns of behavior, but still certain similarities of patterns can be found over periods of time, not
necessarily having the same duration. A chaotic process may be an oscillation between several states,
called attractors, which oscillation is not strictly regular. A common oscillation in cortical potential over
an entire array of neurons has been recorded (Rolls and Treves 1993). Elements of chaotic behavior in
local neurons have also been seen. Chaos theory and its application to neural computing is discussed in
chapter 7.

It is beyond the current level of existing knowledge and technology to simulate a human brain in a
computer. Such a goal will be difficult to realize for many years to come, if ever, but useful
computational models and systems can be developed based on the principles and characteristics
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Figure 4.2
A model of an artificial neuron.

observed in the human brain. The collective efforts of neuroscientists, biologists, and physiologists,
computer and information scientists, mathematicians, physicists, chemists, and others have led to new
explanations of brain processes and new neuronal computational models that modify the existing ones.
Some simple artificial neuronal models are discussed later in this chapter.

4.1.2 Artificial Neurons

The first mathematical model of a neuron was proposed by McCulloch and Pitts in 1943. It was a binary
device using binary inputs, binary output, and a fixed activation threshold. In general, a model of an
artificial neuron is based on the following parameters which describe a neuron (see figure 4.2):

. Input connections (or inputs): X, X,,. . . ,X, There are weights bound to the input connections: w;,
W,, . .. ,W,; one input to the neuron, called a bias, has a constant value of 1 and is usually represented as
a separate input, say x,, but for simplicity it is treated here just as an input, clamped to a constant value.

. Input function f, calculates the aggregated net input signal to the neuron u = f(x, w), where x and
w are the input and weight vectors correspondingly; f is usually the summation function: u =

Ii—l.n-rf-wi'
. An activation (signal) function s calculates the activation level of the neuron a = s(u).

. An output function calculates the output signal value emitted through the output (the axon) of the
neuron: o = g(a); the output signal is usually assumed to be equal to the activation level of the neuron,
that is, 0 = a.

According to the type of values which each of the above parameters can take, different types of neurons
have been used so far. The input and
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Figure 4.3
The most used activation functions: (a) hard-limited threshold; (b) linear
threshold: if the input is above a certain threshold, the output becomes
saturated (to a value of 1); there are different variants of this function
depending on the range of the neuronal output values shown in (b-1) and
(b-2); (c) sigmoid function: logistic function (c-1); bipolar logistic function
(c-2); (c-3) gaussian (bell shape) function.

output values of a neuron can be binary, {0, 1} ; bivalent, {- 1, 1}; continuous, [0, 1]; or discrete
numbers in a defined interval.

The most used activation functions are shown in figure 4.3. They are:

1. The hard-limited threshold function. If net input value u to the neuron is above a certain threshold, the
neuron becomes active (activation value of 1); otherwise it stays inactive (activation value of 0) (figure
4.3[a]).

2. The linear threshold function. The activation value increases linearly with the increase of the net input
signal u, but after a certain threshold, the
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output becomes saturated (to a value of 1, say); there are different variants of this function depending on
the range of neuronal output values (figure 4.3[b-1] and [b-2]).

3. The sigmoid function. This is any S-shaped nonlinear transformation function g(u) that is
characterized by the following:

a. Bounded, that is, its values are restricted between two boundaries, for example, [0, 1], [- 1, 1].
b. Monotonically increasing, that is, the value g(u) never decreases when u increases.

c. Continuous and smooth, therefore differentiable everywhere in its domain. Different types of sigmoid
functions have been used in practice. Most of them are The logistic function: a = 1/(1 + e), where e is a
constant, the base of natural logarithm (e, sometimes written as exp, is actually the limit of the n-square
of (1 + I/n) when n approaches infinity) (figure 4.3[c-1]). In a more general form, the logistic function
can be written as:

a=1/(1 + e<v), where c is a constant.

The reason why the logistic function has been used as a neuronal activation function is that many
algorithms for performing learning in neural networks use the derivative of the activation function, and
the logistic function has a simple derivative, ég/fu = a(1 - a). Alternatives to the logistic function as S-
functions are the bipolar logistic: h(u) = (1 - ev)/(1 + ev) = 2 g(u) - 1; this function has a range of [- 1, 1]
(figure 4.3 [c-2]) and hyperbolic tangent: tanh(u) = (ev - e-v)/(ev + e-).

4. Gaussian (bell shape) function (figure 4.3 [c-3]).

An output signal from a neuron can be represented by a single static potential, or by a pulse, which
either occurs (coded as 1) or does not occur (coded as 0) (see figure 4.4).

In addition to the types of the neurons described above, many other types have been developed and used:
the RAM-based neuron, fuzzy neuron, oscillatory neuron, chaotic neuron, and wavelet neuron. They are
presented later in this book. Which one is the most biologically plausible is difficult to say, but all of
them have proved to be very useful for building artificial neural networks for engineering applications.
We shall use the types of neurons described above later in the book, except when another type is
explicitly defined.
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Figure 4.4
Pulse and potential encoding of an output signal of a neuron.

4.1.3 From Neurons to Systems; What Is Learning and What Is Generalization in Artificial Neural
Networks?

Although a single neuron can perform certain simple information-processing functions, the power of
neural computation comes from connecting neurons in networks. Developments in this area have been
exciting, with periods of success and failure, promises and expectations, and periods of rapid
development.

One way to understand the ideas behind the process of developing more and more complex artificial
neural networks as computational models that comprise small processing elements (neurons) is to look
at the history of this process.

Donald Hebb, in his psychological study published in 1949, pointed out the importance of the
connections between synapses to the process of learning. Rosenblatt (1958) described the first
operational model of a neural network, putting together the ideas of Hebb, McCulloch, and Pitts. His
perceptron was inspired by studies of the visual system. In 1969 Minsky and Papert demonstrated the
theoretical limits of the perceptron. Many researchers then abandoned neural networks and started to
develop symbolic Al methods and systems. New connectionist models, among them the associative
memories (Amari 1977; Hopfield 1982), the multilayer perceptron and backpropagation learning
algorithm (Rumelhart et al. 1986b; see also Werbos, 1990; and Amari 1967), the adaptive resonance
theory (ART) (Carpenter and Grossberg 1987a,b), self-organizing networks (Kohonen 1982), and
others, were developed later, which brought
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Figure 4.5
A simple neural network with four input nodes, two intermediate
nodes, and one output node. The connection weights are shown,
presumably a result of training. The activation value of node n5
is shown too.

researchers back to the subsymbolic paradigm. Now, many more types of neural networks have been
designed and used. The bidirectional associative memory (Kosko 1988), radial basis functions (Moody
and Parken 1989), probabilistic RAM neural networks (Taylor and Mannion 1989; Aleksander, 1989),
fuzzy neurons and fuzzy neural networks (Yamakawa 1990; Furuhashi et al. 1993), and oscillatory
neurons and oscillatory neural networks (Freeman 1991; Kaneko 1990; Borisyuk, 1991), are only a
small number of the neural network models developed, not to mention their enormous areas of
application.

An artificial neural network (or simply neural network) is a computational model defined by four
parameters:

1. Type of neurons (also called nodes, as a neural network resembles a graph)

2. Connectionist architecture—the organization of the connections between neurons
3. Learning algorithm

4. Recall algorithm

A simple neural network is shown in figure 4.5. It contains four input nodes, two intermediate, and one
output node. The weights bound to the connections are achieved as a result of a training procedure with
the use
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of a learning (training) algorithm. A new example, for example, (1 0 1 0), will drive the network to an
output signal 1 when a threshold activation function is used with a threshold value of 0.

The functioning of a neural network, when an input vector x is supplied, can be viewed as a mapping
function F: X - Y, where X is the input state space (domain) and Y is the output state space (range) of
the network. The network simply maps input vectors x [I X into output vectors y (1Y through the "filter"
of the weights, that is, y = F(x) = s(W, x), where W is the connection weight matrix. The functioning of a
network is usually based on vector-matrix real-number calculations. The weight matrix represents the
"knowledge", the long-term memory, of the system, while the activation of the neurons represents the
current state, the short-term memory.

Types of artificial neurons were discussed in the previous subsection, but the type of connections
between neurons in a neural network defines its topology. Neurons in a neural network can be fully
connected, that is, every neuron is connected to every other one, or partially connected, for example,
only connections between neurons in different layers are allowed, or in general not all the possible
connections between all the neurons of the neural network are present.

Two major connectionist architectures can be distinguished according to the number of input and output
sets of neurons and the layers of neurons used (see figure 4.6): (1) autoassociative, that is, input neurons
are

Oulputs Culpuls

Inputs
Inputs

Autoassociativa Helercassocialive
{a) ()

Figure 4.6
Autoassociative and heteroassociative types of neural networks.
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the output neurons too; the Hopfield network is an autoassociative type of network; and (2)
heteroassociative, that is, there are separate sets of input neurons and output neurons; examples are the
perceptron and the multilayer perceptron (MLP), the Kohonen network, etc.

According to the absence or presence of feedback connections in a network, two types of architectures
are distinguished:

1. Feedforward architecture. There are no connections back from the output to the input neurons; the
network does not keep a memory of its previous output values and the activation states of its neurons;
the perceptron-like networks are feedforward types.

2. Feedback architecture. There are connections from output to input neurons; such a network keeps a
memory of its previous states, and the next state depends not only on the input signals but on the
previous states of the network; the Hopfield network is of this type.

The most attractive characteristic of neural networks is their ability to learn. Learning makes possible
modification of behavior in response to the environment. A neural network is trained so that application
of a set X of input vectors produces the desired (or at least a consistent) set of output vectors Y, or the
network learns about internal characteristics and structures of data from a set X. The set X used for
training a network is called a training set. The elements x of this set X are called training examples. The
training process is reflected in changing the connection weights of the network. During training, the
network weights should gradually converge to values such that each input vector x from the set training
data causes a desired output vector y produced by the network. Learning occurs if after supplying a
training example, a change in at least one synaptic weight takes place.

The learning ability of a neural network is achieved through applying a learning (training) algorithm.
Training algorithms are mainly classified into three groups:

1. Supervised. The training examples comprise input vectors x and the desired output vectors y. Training
Is performed until the neural network "learns" to associate each input vector x to its corresponding and
desired output vector y; for example, a neural network can learn to approximate a function y = f(x)
represented by a set of training examples (X, y). It encodes the examples in its internal structure.
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2. Unsupervised. Only input vectors x are supplied; the neural network learns some internal features of
the whole set of all the input vectors presented to it.

3. Reinforcement learning, sometimes called reward-penalty learning, is a combination of the above two
paradigms; it is based on presenting input vector x to a neural network and looking at the output vector
calculated by the network. If it is considered "good," then a "reward" is given to the network in the sense
that the existing connection weights are increased; otherwise the network is "punished," the connection
weights, being considered as "not appropriately set," decrease. Thus reinforcement learning is learning
with a critic, as opposed to learning with a teacher.

Learning is not an individual ability of a single neuron. It is a collective process of the whole neural
network and a result of a training procedure. The connection weight matrix W has its meaning as a
global pattern. It represents "knowledge" in its entirety. We do not know exactly how learning is
achieved in the human brain. But learning (supervised or unsupervised) can be achieved in an artificial
neural network. And there are some genetic laws of learning which have been discovered and
implemented.

The most favored learning law in contemporary connectionist models is the Hebbian learning law. The
idea of this generic learning principle is that a synapse connecting two neurons i and j increases its
strength w;; if the two neurons i and j are repeatedly simultaneously activated by input stimuli. The
synaptic weight change Aw;; is then calculated as a function of the product of the two activation values a;
and g, of the neurons i and j:

Aw; =c - ai - aj

Other laws of learning are discussed in the following sections. Some learning methods include
forgetting. This is the case when, for example, calculating the aggregation input signal ui to a neuron i
coming from neurons j (j = 1,2, . .. ,n), connected to the neuron i, is done by using the so-called additive
model:

it + 1) = —d,-u,lr) + E oty wy + Lt + 1),

where u; is the aggregated (net) input signal to the ith neuron; o, is the output signal of the jth neuron
connected to the ith; t and (t + 1) are discrete time intervals; I, is an external input signal to the ith
neuron; and d; is a decay coefficient. The decay coefficient represents the process of forgetting.
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When a forgetting ingredient is included in the Hebbian learning law, it becomes the following:

Other learning-with-forgetting formulas for calculating weight changes during learning have been
developed, for example:

Aw'(t) = Aw(t) - a- sgn {w; (1)},

where a is a small "forgetting" coefficient, and sgn{wij(t)} is the sign of the weight. Learning with
forgetting causes the unnecessary connections to fade away and a skeleton network to emerge after
learning, which may result in better generalization (Ishikawa 1995).

The general process of learning in a neural network is described by a characteristic called convergence.
The network reacts better and better to the same training example x, the more it is introduced to it
through training, eventually ending up with the desired output y. After the network has stopped learning
the training examples, the synaptic weights do not change any more, that is, Awij = 0, for every
connection (i, j) in the network when training examples from the training set are further presented. The
network can stop learning for two reasons: (1) the network has learned the training examples, and (2) the
network has become saturated. Grossbergs saturation theorem states that large input signals saturate a
neuron when it is sensitive to small input signals, but if it is sensitive to large input signals, small signals
are ignored as noise.

Small random values introduced as noise during a learning process tend to increase the robustness of the
performance of the neural network. In this case the Hebbian learning law will take the form of:

where n is a noise signal.

When noise is presented during learning, the neural network reaches a convergence when weights
change within the magnitude of the noise (stochastic equilibrium):

Aw:. <n

ij =

The state of convergence may also be reached in a so-called oscillatory mode, that is, the synaptic
weights oscillate between two or more states.
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Figure 4.7
The generalization principle illustrated as a mapping of
the domain to the solution space for a new input x'.
The figure below illustrates the case for one-dimensional
domain space and one-dimensional solution space.

The other general characteristic of artificial neural networks, similar to the ability of the human brain, is
generalization. This happens when, after having trained a neural network, a new input vector x' is
presented to the network and a recall procedure is activated. The network would produce an output y'
which is similar to the output y; from the training examples, if X' is similar to the input vector x;. The
general principle is that similar stimuli cause similar reactions. Figure 4.7 shows graphically how a
neural network generalizes to a new input. Generalization may take several iterations of calculating
consecutive states of the network, which is the case for the recurrent networks. Eventually, the network
goes into a state of equilibrium, when the network does not change its state during the next iterations,
that is, it "freezes" into this state. This phenomenon is seen in the Hopfield network. It is analogous to
the process of trying to associate a face with one seen in the past, in order to remember where we have
seen the person who said "hello” to us at a party.
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4.2 Supervised Learning in Neural Networks: Perceptrons and Multilayer Perceptrons

Learning is a major functional characteristic of artificial neural networks. We shall start discussing
different ways of implementing learning in neural networks by introducing the most popular and simple
learning method—supervised learning—when the data set for training contains information for the
desired results (outputs, class labels, reaction) in the same way we have been given explicit answers by
our teachers.

4.2.1 Supervised Learning in Neural Networks

Supervised learning is a process of approximating a set of "labeled™ data, that is, each datum (which is a
data point in the input-output problem space) contains values for attributes (features, independent
variables) labeled by the desired value(s) for the dependant variables, for example, the set of Iris
examples, each labeled by the class label.

Supervised learning can be viewed as approximating a mapping between a domain and a solution space
of a problem: X - Y, when samples (examples) of (input vector, output vector) pairs (X, y) are known, x
OX,yOY,x=(X, X+« X)), Y= Var - - - Yin). HOW to achieve an approximation F' of labeled data by
using a neural network such that it can generalize on new inputs X is the problem supervised learning is
concerned with. Supervised learning in neural networks is usually performed in the following sequence:

1. Set an appropriate structure of a neural network, having, for example, (n + 1) input neurons (n for the
input variables and 1 for the bias, x,) and m output neurons and set initial values of the connection
weights of the network.

2. Supply an input vector x from the set of the training examples X to the network.
3. Calculate the output vector o as produced by the neural network.

4. Compare the desired output vector y (answer, from the training data) and the output vector o produced
by the network; if possible, evaluate the error.

5. Correct the connection weights in such a way that the next time x is presented to the network, the
produced output o becomes closer to the desired output y.
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6. If necessary, repeat steps 2 to 5 until the network reaches a convergence state.

Evaluating an error of approximation can be done in many ways, the most used being instantaneous
error:

Err=(0-y),orErr=10-y];

mean-square error (MSE):

Err = (0- y)2/2;

a total MSE sums the error over all individual examples and all the output neurons in the network:

'

Foom |
Err = (E Y (ol — J-'I!l']z)," pem
k = a -I

=| j=1

U]

where: Y is the output value of the jth output of the network when the kth training example is

presented,; ¥"is the desired result (the desired output) for the jth output (jth independent variable) for the
kth training example; p is the number of training examples in the training data; and m is the dimension
of the output space (the number of independent variables equal to the number of the output neurons in
the neural network); and root-mean-square error (RMS), the root of the MSE.

Depending on how an error is calculated, two types of error can be evaluated for a neural network. The
first, called apparent error, estimates how well a trained network approximates the training examples.
The second, called test error, estimates how good a trained network can generalize, that is, react to new
input vectors. For evaluating a test error we obviously have to know the desired results for the test
examples.

Supervised learning is a very useful learning paradigm for solving problems like classification, or for
learning a certain prescribed behavior, when the classes, labels, or desired behavior patterns are known.
Supervised learning can be used for learning "microrules” of stimulus-reaction type, element-class type,
source-destination type, etc.

The above general algorithm for supervised learning in a neural network has different implementations,
mainly distinguished by the way the connection weights are changed through training. Some of the
algorithms are discussed in this section—perceptron learning (Rosenblatt 1958); ADALINE (Widrow
and Hoff 1960); the backpropagation algorithm
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(Rumelhart et al. 1986Db; and others); and (learning vector quantization) LVQ1,2,3 algorithms (Kohonen
1990).

Supervised learning uses as much of the information and knowledge as given in the data, but it is
considered by many authors not to be plausible at a low, synaptic level. It is obviously plausible at a
psychological level because people do learn by being supervised in one way or another, as well as
through their own experience (which sometimes can be painful).

4.2.2 The Perceptron

One of the first models which made use of the McCulloch and Pitts (1943) model of a neuron was a
neural network called the perceptron (Rosenblatt 1958). The aim of the experiment was to model visual
perception phenomena. The neurons used in the perceptron have a simple summation input function and
a hard-limited threshold activation function or linear threshold activation function. The input values are
in general real numbers and the outputs are binary.

The connection structure of the perceptron is feedforward and three-layered. The first layer is a buffer,
where sensory data are stored. The elements of the first layer are connected either fully or arbitrarily to
elements of a second layer, called the "feature layer." Each neuron from this layer combines information
coming from different sensory elements and represents a possible feature. The neurons from this layer
are connected fully to output neurons from an output layer called the "perceptron layer." The weights
between the buffer and the feature layer are fixed; that is why usually only the two layers are presented
graphically. This is also the reason why perceptrons are sometimes called "single-layer networks."
Figure 4.8 is an illustration of a simple perceptron with two elements in the feature layer and one
perceptron element in the output layer. The bias (X,) is also shown.

A learning (training) algorithm for a perceptron is given in figure 4.9. A perceptron learns only when it
misclassifies an input vector from the training examples. Then it changes the weights in such a way that
if the desired output value is 1 and the value produced by the network is 0, the weights of this output

neuron increase and vice versa. If the produced output value o}t equals the desired output value " fora
training example (x, y)®, then the weights w; (for i =0, 1, . . ., n) do not change.
Widrow and Hoff (1960) proposed another formula for calculating the output error during training:

Erry = y; — X WiXie This learning rule was used in a neural machine called ADALINE (adaptive linear
neuron).
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A simple two-input, one-output perceptron
and a bias.
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The learning algorithm for a perceptron neural network. The perceptron
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Figure 4.10
Linearly separable classes A and B
represented by two points each in a
two-dimensional space (X;, X,).
Such classes can be learned by a
perceptron network.

The recall procedure of the perceptron simply calculates the outputs for a given input vector using the
summation thresholding formulas given in figure 4.9.

An example of using a perceptron for recognizing points on the two-dimensional plane (x,, x,) where
two possible areas (classes) A and B are distinguished is given in figure 4.10. If there are sufficient
examples the perceptron can learn to approximate the training examples and converge after a number of
training cycles (epochs). It will correctly recognize a new input vector whether it lies in the class B or
class A area.

Minsky and Papert (1969) discovered a very severe limitation of perceptrons, that is, they can be trained
to recognize only linearly separable classes. Examples of classes which are linearly separable lie on one
side only of a hyperplane that separates the classes. If the input space is two-dimensional, the hyperplane
degenerates into a line. Considering a two-input, one-output perceptron, the line that separates the two
classes is analytically represented by the following equation:

Xl 'W1+X2,W2+WO:O,

where w, is the weight that connects the bias to the output neuron. If the examples are not linearly
separable, the perceptron fails to converge. A classic example of a classification problem with
nonlinearly separable



Page 272

classes is the exclusive OR problem (also known as the XOR problem) presented in the following table:
(Point) x1 X2 y (Class)

pl 0 0 0 A
p2 1 0 1 B
p3 0 1 1 B
p4 1 1 0 A

A more general example, which the perceptron cannot solve, is the parity function given in the following
table, where n = 3:

Xl X2 X3

—

B P P P O O O O
H B P O +r r O O
P O O O B O B O
©O B P O Fr O O .

Perceptrons are still used for solving problems because of their very simple architecture and the
unconditional convergence when linearly separable classes are considered. They are excellent linear
discriminators.

A perceptron with a nonlinear logistic activation function can learn a logistic linear regression function

from data, that is, / = 92 Wi + ¥o) This function does not account for interactions between the
independent variables x;, but is useful for statistical analysis of data. Interaction between the input
variables can be learned in multilayer perceptrons (MLP), thus showing what the degree of interaction is
between the variables and how important it is for approximating the goal function.

4.23 Multilayer Perceptrons and the Backpropagation Algorithm

To overcome the linear separability limitation of the perceptrons, MLPs were introduced. An MLP
consists of an input layer, at least one interme-
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Figure 4.11
An MLP for solving the XOR problem.
It has one intermediate layer.

diate or "hidden" layer, and one output layer, the neurons from each layer being fully connected (in
some particular applications, partially connected) to the neurons from the next layer. An example of a
multilayered network for solving the XOR problem is given in figure 4.11.

The MLPs were put into practice only when learning algorithms were developed for them, one of them
being the so-called backpropagation algorithm (Werbos 1990; Rumelhart et al. 1986b; among others).
The full name of the algorithm is the error backpropagation algorithm.

The neurons in the MLP have continuous value inputs and outputs, summation input function, and
nonlinear activation function. A gradient descent rule may be used for finding optimal connection
weights w;; which minimize a global error E. A change of a weight Aw; at a cycle (t + 1) is in the
direction of the negative gradient of the error E:

ﬂiwﬁ}“ + 1) = ~lrate {65;’ﬂh'1;{f}]~

where lrate is learning rate. The gradient rule ensures that after a number of cycles, the error E will
reach a minimum value, or the lowest "plateau,” if the error E is represented as a surface in the weights
vector space. A global error for all the training examples can be calculated as follows:

E=Y%% Erm",
el L
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where the error for an example (p) Errj; can be calculated, for example, as an MSE:
Errjip) = (y{" = of")*/2.

Amari, in 1967, suggested that a gradient descent algorithm can be used for training MLP, but
propagating the error backward and adjusting the connection weights was suggested later.

The gradient descent rule for changing a connection weight between neuron i and neuron j can be
expressed by the delta rule:

Awylt + 1) = Iy, Erry oy,
or alternatively by the generalized delta rule:
Awglt + 1} = Irme-Err,--gr'[uj]l-f.ri,

where Errj is the error between the desired output value y; and the value o; produced by the neuron j
which can be simply expressed as Errj = |y, - o;|. The value g'(u;) is the derivative ¢g/cu of the activation
function g to the net input u, for a particular value of u;; and o;is the output value for the neuron i. When
the activation function g is the logistic function, the derivative g'(u;) is expressed as 0; (1- 0;). The
formula above is simplified as follows:

Aw(t + 1) = lrate- Err;-0;-(1 — o;)- 0y,

At every learning cycle (a cycle, also called iteration or epoch, can be defined as the process of
propagating through the network one or several of the training examples and calculating the error E for
them) the training algorithm consists of two passes: (1) a forward pass, when inputs are supplied and
propagated through the intermediate layers to the output layer; and (2) a backward pass, when an error is
calculated at the outputs and propagated backward for calculating the weights' changes. This is the
major feature of this algorithm illustrated in figure 4.12. During the backward pass, an error Err;for an
intermediate node i is calculated by multiplying the errors Err; of all the neurons j to which the neuron i
is connected by the corresponding weights w;;. This error is then used backward to adjust the weights of
the neurons k from a previous layer, connected to the neuron i. The training procedure is repeated for
many epochs with the same training examples until the global error E is sufficiently small.

Calculating the error and changing the connection weights can be done either in a batch mode (an
aggregating or average error is calculated for all or some training examples), or in an individual mode
(the error is calculated and weights are changed after every training example).
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Figure 4.12
A schematic representation of learning in an MLP. The signal is
propagated forward and the error backward.

Each connection weight might have its individual learning rate (delta-bar-delta rule) (Jacobs 1988). If
the weight changes alternate in sign the learning rate should be decreased. If the weight change is stable,
the learning rate should increase. Several problems are encountered when using the backpropagation
algorithm:

. If the learning rate (also denoted in many references by h) is chosen too high (e.g., 0.9) the
weights oscillate with a large amplitude; a small learning rate causes a very slow convergence. It has
been found that the optimal learning rate is inversely proportional to the number of hidden nodes. In
Eaton and Oliver (1992) the following formula for calculating the learning rate has been suggested:

n = L5/(sgre(} pi,

where p; is the number of all the instances which belong to an output class i. One way to accelerate

learning when h is chosen small and to prevent oscillation of weights when h is big is to introduce a
parameter called momentum (also denoted in the literature by a). This parameter brings inertia to the
next change Aw; (t + 1) of the weight w;; depending on the direction of its previous change Aw;(t). A

modified backpropagation algorithm which uses momentum a is given in figure 4.13. The formula used
for calculating weight changes is:

Awylt + 1) = lrate- Errj o, (1 — o) 0, + - Awylr)
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Figure 4.13
A modified backpropagation algorithm, where momentum is used.

. As discussed above, the backpropagation algorithm is a gradient descent algorithm. The problem
with backpropagation, as with many other gradient descent algorithms, is that it can stop learning at a
local minimum instead at the global minimum. This problem is called the local minima problem. In
order to overcome this problem, some practical recommendations are suggested: randomize the initial
weights with small numbers in an interval [- 1/n, 1/n], where n is the number of the neuronal inputs; use
another formula for calculating the output error; introduce "noise."

Learning with the presence of noise may help overcome the local minima problem. Noise can be
introduced in the training patterns, synaptic weights, and output values. In this case the error is
calculated as:

Err._l = '[_1"-|I _— {ﬂr + f":]}l1 ar Eﬂ'} —] [}IJ _ D_j}l _I_ 'ﬂf..
where s, is the variance of the external noise I...

. The backpropagation algorithm is very time-consuming. Various modifications to it try to
Improve its performance.
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. Training with a backpropagation algorithm may result in a phenomenon called overfitting, or
overtraining, as explained in 4.2.4.

. There are problems in choosing the optimal number of hidden layers and hidden nodes (see
section 4.2.5).

The backpropagation algorithm has many modifications and improvements, which are difficult to follow
and present here. They differ in the following points: error calculation, activation function, the weights
updating formula, number of epochs for updating the weights, and other parameters.

4.2.4 MLPs as Universal Approximators

Regardless of the training algorithm used for an MLP, there are some common features of MLP
architectures. Some of them are:

. MLPs are universal approximators.

THEOREM (Hornik et al. 1989; Cybenko 1989; Funahashi 1989; others). An MLP with one hidden
layer can approximate any continuous function to any desired accuracy, subject to a sufficient number of
hidden nodes.

The proof of this fundamental theorem is based on the Kolmogorov theorem (1957), which states that
any real-valued continuous function f defined on an n-dimensional cube can be represented as a sum of
functions which have their arguments as sums of single-variable continuous functions. In a more precise
form, it is as follows:

fx Xge000x,) = E Ei't( E ’Tt.i{x.':')
k=1,3n+1

i=1l.m
where: g, and h,; are continuous functions.

Thus, for any continuous function, there exists an MLP which can approximate it to a desired degree of
accuracy if the continuous increasing functions are chosen to be, for example, the sigmoid functions.
Unfortunately, this statement does not suggest how to construct the MLP, what number of layers and
neurons in the layers can be used. The theorem supports the prove of the existence of such an MLP. As a
corollary, any boolean function of n boolean variables can be approximated by an MLP.
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An easy proof can be shown by using 2" hidden nodes, but the optimal number of these nodes is difficult
to obtain.

Example A 1-6-1 MLP can learn to approximate the sine function after being trained with enough data.

. MLP are multivariate nonlinear regression models. A three-layer MLP, for example, with n
inputs, h intermediate nodes, and one output, approximates a set of training data according to the
formula:

&

f= ""( E, 0wy + ""'f'u]r
il

&

where s is a sigmoid function; % = S(2 k=10 %% Wai + Woi) js the output value of the ith intermediate
node; w; and w,; are the connection weights from the second and the first connection layers
correspondingly; and w,: are bias weights. This formula represents interactions between variables in
contrast to the single-layer perceptron, which can be viewed as a linear regression model.

. MLPs can learn conditional probabilities. We shall consider here MLPs without feedback
connections, or the so-called memoryless MLPs. Such MLPs can learn the conditional probability
density function p(y|x) between the output vectors y when input vectors x are presented (see section
5.5.2).

4.2.5 Problems and Features of the MLPs

MLPs are probably the most used neural network models so far. However there are several problems
when using them. Some of these problems, with their possible solutions, are presented below.

The question of how to choose the number of neurons in the intermediate layer and the more
general question, how to chose the structure of the MLP, are difficult. If the training data set is clustered
in groups with similar features, the number of these groups can be used to chose the number of hidden
neurons. In the other extreme case, when the training data are sparse and do not contain any common
features, then the number of connections might need to be close to the number of training examples in
order for the network to reach a convergence. There are many suggestions about how to choose the
number h of the hidden neurons in an MLP. For example, the minimum number should be h > (p - 1)/(n
+2),
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where p is the number of training examples and n is the number of inputs of the network. The more
hidden nodes in a network, the more characteristics of the training data it will capture, but the more time-
consuming the learning procedure will be.

Another heuristic for choosing the number of hidden nodes is that the number of hidden nodes is equal
to the optimal number of fuzzy clusters (see chapter 3). This statement has been proved experimentally.
Choosing the number of hidden layers is also a difficult task. Many problems require more than one
hidden layer for a better solution.

In order to find the best neural network model, Ishikawa and Moriyama (1995) use structural learning
with forgetting, so during training pruning of the connections with small weights is performed. After
training, only the connections that contribute to the task are left, thus defining a skeleton of the neural
network model.

. Neurons from an intermediate level in an MLP capture relations between the input data vectors.
When solving the parity problem, for example, the activation of the intermediate neurons reflect the
number of 1's in the input vector. The hidden neurons specialize during training to react to certain
features in the training data, which features might not be known in advance. The intermediate layer
learns and captures structures, clusters, "patches,” and rules in the training data.

. Catastrophic forgetting is a phenomenon which represents the ability of a network to forget what
it has learned from previous examples when they are no longer presented to it, but other examples are
presented instead. This is due to a change in the weights according to the newly presented examples, if
the past examples are no longer presented for training (or refreshing, retraining). In order to avoid this
phenomenon, alternative training might be performed, that is, alternative training with new data and
with old data. This is illustrated with an example of alternative training of a network with two sets of
examples A and B (figure 4.14). When the network was started to be trained for a second time with the
first set A, after being trained with A and then with set B, the initial error was higher than it was at the
end of the first training cycle with A. There are methods for training with new data. For example, after
several new examples are presented to the network, several old ones, chosen possibly randomly from the
past examples, are presented too (rehearsal procedure). The
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Figure 4.14
An example of alternative training of a
network with two sets of examples A
and B. When the network was started to
be trained for a second time with the first
set A, after being trained with A and
then with set B, the initial error was
higher than it was at the end of
the first training cycle with A.

problem arises when the old examples are no longer available. Then pseudoexamples may be used
to keep the weights as close to the previous ones as possible. Such pseudoexamples can be
generated during training rather than kept in a table. Adaptive training is discussed in chapter 7.

. Learning hints in an MLP: In addition to the data set used for training, we can train the network
with some existing hints about the unknown function. Prior knowledge (hints) can be introduced as a
new set of examples, which the network learns alternatively to the training data set until the error for
both training data sets (or more, if more than one hint is available) is sufficiently small. Except by
generating new data, which represent a hint (a soft way for accommodating the hint), we can use an
explicit, hard way for introducing the hint to the network by setting an extra connection between the
nodes. For example, if we know that the attribute "character of the applicant" is the most important
attribute for deciding on his or her loan application, we introduce an extra connection between the node
which represents the attribute "character" and the output node "decision” (figure 4.15). We can also add
some more data examples to the training data set, all of them having "character" = 1 (good) and
"decision" = 1 (approve). The values of the other input attributes have to be consistent too. Hints can be
presented in the form of rules. Rules map patches from the domain space into patches of the solution
space. Here, in order to train a network to learn rules, there has to be a fair amount of data points taken
from these patches and added to the training data set.
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Figure 4.15
A "hard" way of introducing "hints" to a neural network. The attribute
"character” of the applicants is known to be the most important attribute
for deciding on their loan application. An extra connection between
the node which represents the attribute "character”" and the output
node "decision™ is introduced.

. Overfitting is a phenomenon which indicates that the neural network has too closely
approximated, learned, the data examples, which may contain noise. In such a case the network can not
generalize well on new examples (figure 4.16). There are some ways to overcome this problem: early
stopping of the training process: while the training error is calculated, the test error over test data is
calculated also; the process of training stops when the test error is minimal; Using less hidden nodes;
more hidden nodes lead to too good an approximation;

How to choose the number of training examples to present to a chosen network architecture if we
want the network to approximate a known function? The same problem can be formulated as follows:
Given any probability distribution function and a fixed neural network architecture, how many randomly
chosen training examples are necessary for its correct approximation? The answer involves the use of
the VC dimension (Vapnic-Chervonenkis dimension), a quantitative measure of the set of functions that
a neural network can compute. More precisely, the VC dimension of a class {F} of {0,1} valued
functions is the size of the largest set of points that functions in {F} can classify arbitrarily, that is, for
all possible desired classifications of the points, there is a function F [0 {F}
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Figure 4.16
The "overtraining" phenomenon. After a certain
number of training cycles, the test error E

begins to increase, while the training error E,;,
is continuing to decrease. The process of training
should stop at that point.
that classifies each point in the appropriate way. The following formula holds for a neural network:
VC dimension < 2|W| log, e.N,
where |W| is the number of connection weights, and N is the number of neurons in the network.

|[W] log N training examples provide enough information for correct learning of a probability distribution
function.

For a three-layered feedforward network with n,, n,, nnumber of neurons in the corresponding layers,
the following holds:

VC dim = n; n,+ ny(n;- 1)/2 + 1= x|W|,
where X is a constant.

The above formula represents in a precise form something which may not be obvious to a newcomer to
the field of neural networks. Roughly speaking, the learning and generalization ability of a network in
respect to the size of the training data set is defined by the size of the connection weight space.

In order to overcome some of the problems with MLPs, other neural network models have been
developed. Some of them are discussed in the following sections.

4.3 Radial Basis Functions, Time-Delay Neural Networks, Recurrent Networks

The MLP networks with training algorithms, were a giant step forward. They influenced very much the
development of new models of neural



Page 283

hypoihetical waighled
connections connechons

Figure 4.17
A radial basis functions network (RBFN).

networks, which borrowed some ideas from them, but which also generated new ideas. Three of these
models are presented in this section.

4.3.1 Radial Basis Function Networks

Radial basis function networks (RBFNSs) have been proposed and used by some authors (Moody and
Darken 1989; Renals and Rohwer 1989; others). A general architecture of the RBFN is given in figure
4.17. An RBFN consists of three layers. The first layer consists of n inputs.They are fully connected to
the neurons in the second layer. A hidden node has a radial basis function (RBF) as an activation
function. The RBF is a radially symmetric function (e.g., gaussian, bell-like, [ function):

f(x) = exp[-(x - M)2/2s 2],

where M and s are two parameters meaning the mean and the standard deviation of the input variable x.
For a particular intermediate node i, its RBFi is centered at a cluster center c; in the n-dimensional input
space. The cluster center c; is represented by the vector (wy;. . . ,w,;) of connection weights between the n
input nodes and the hidden node i. The standard deviation for this cluster defines the range for the RBFi.
The RBF is nonmonotonic, in contrast to the sigmoid function. The second layer is connected to the
output layer. The output nodes perform a simple
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summation function with a linear threshold activation function. Training of an RBFN consists of two
phases: (1) adjusting the RBF of the hidden neurons by applying a statistical clustering method; this
represents an unsupervised learning phase; (2) applying gradient descent (e.g., the backpropagation
algorithm) or a linear regression algorithm for adjusting the second layer of connections; this is a
supervised learning phase. During training, the following parameters of the RBFN are adjusted:

. The n-dimensional position of the centers c; of the RBFi. This can be achieved by using the k-
means clustering algorithm (see chapter 2); the algorithm finds k (number of hidden nodes) cluster
centers which minimize the average distance between the training examples and the nearest centers.

. The deviation scaling parameter si for every RBFi; it is defined by using average distance to the
nearest m-cluster centers:

%12
g, = (( Y absic; — f,-p])lu'lm) 3
p=1.m f

where c;, is the center of the pth cluster near to the cluster i.

. The weights of the second layer connections.

The recall procedure finds through the functions RBFi how close an input vector X' is to the centers c;
and then propagates these values to the output layer.

The following advantages of the RBFN over the MLP with the backpropagation algorithm have been
experimentally and theoretically proved:

. Training in RBFNs is an order of magnitude faster than training of a comparably sized
feedforward network with the backpropagation algorithm.

. A better generalization is achieved in RBFNSs.

. RBFNs have very fast convergence properties compared with the conventional multilayer
networks with sigmoid transfer functions, since any function can be approximated by a linear
combination of locally tuned factorizable basis functions.

. There is no local minima problem.

. The RBF model can be interpreted as a fuzzy connectionist model, as the RBFs can be considered
as membership functions.
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. The hidden layer has a much clearer interpretation than the MLP with the backpropagation
algorithm. It is easier to explain what an RBF network has learned than its counterpart MLP with the
backpropagation algorithm

There are also disadvantages to using the RBFN, one of them being finding the appropriate number of
hidden nodes. Unsupervised learning might be necessary to apply first and find out the number of
clusters. The number of hidden nodes is then set to be equal to this number. Too many, or too few,
hidden nodes will prevent RBFN from properly approximating the data.

4.3.2 Time-Delay Neural Networks

Time-delay neural networks (TDNNSs) are modifications of the MLP which use delay elements to feed
input data through (figure 4.18a). The input layer is a shift register with delay elements. The shift
register is used to keep several old values in a buffer. Then all values, old and new, are fed as input
values for further processing in the network.

TDNNSs have been developed to facilitate learning time sequences, where the next value of the sequence
is correlated with its previous values. Standard MLP training algorithms (e.g., the backpropagation
algorithm) can be applied.

The output layer can represent different concepts:

. Next values of the time sequence; this mode is called sequence reproduction
. The type (class) of the fed sequence; this task is called sequence recognition
. New patterns, belonging to another time sequence; this task is called temporal association

TDNNSs transform time patterns into spatial patterns. In this transformation several problems arise:

. Does synchronization of the data shift in the input layer correspond to the real-time occurrence of
events?
. The number of delay elements is set in advance, which may not represent the existing time

correlation in the sequence. A dynamical adjustment may be needed.

TDNNSs have been used intensively for speech recognition, as discussed in chapter 5, and for other time
sequence-related tasks.
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(a) Time-delay neural network (TDNN). (b-d) Recurrent neural network architectures:
(b) with feedback connections from hidden nodes; (c) with feedback connections
from output nodes; (d) buffered feedback connections.

4.3.3 Recurrent Neural Networks

Recurrent networks have feedback connections from neurons in one layer to neurons in a previous layer.
Different modifications of such networks have been developed and explored. A typical recurrent
network has concepts bound to the nodes whose output values feed back as inputs to the network. So the
next state of a network depends not only on the connection weights and the currently presented input
signals but also on the previous states of the network. The network leaves a trace of its behavior; the
network keeps a memory of its previous states.
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Depending on the architecture of the feedback connections, there are two general models of recurrent
networks: (1) partially recurrent, and (2) fully recurrent. The neural networks of the first type have
carefully selected specific feedback connections which are meaningful. They represent (possibly time-)
dependence between concepts represented in the network. Feedback connections to the input layer can
be established from hidden nodes (Elman 1990); figure 4.18b); and output nodes (Jordan 1986; figure
4.18c).

The weights assigned to the feedback connections may not be adjustable (e.g., may be they set to a value
of 1). In this case a standard MLP training algorithm (e.g., the backpropagation algorithm) can be used
to adjust the feedforward connection weights. In addition to the feedback connections, which make
possible use of a previous-time moment output value for calculating the next one, a buffer of output
values for more than one step back in time can be used as an additional input buffer. Such recurrent
networks are called buffered networks (Elman 1990; see figure 4.18d).

It was shown that a recurrent network which keeps a track of its k-previous states can be represented as
unfolded MLP with k layers of connections. Such networks were called backpropagation through time
(Rumelhart et al. 1986b, Werbos 1990). The idea is to duplicate the nodes in space in order to achieve
time-dependence.

In fully recurrent networks any node may be connected to any other. This is the case with the Hopfield
network, presented in a later section.

Recurrent neural networks can model a finite state automaton (see chapter 2).
Difficult questions to deal with, when using recurrent networks, are:

. Synchronization is required in order to achieve proper timing when propagating the signals
through the network.

. It is difficult to express in a linguistic form or in a formula the time-dependence learned in a
recurrent network after training, that is, the balance which the network has achieved between forgetting
previous states and remembering new ones. How much "back in time" can a recurrent network keep
track of?

. Recurrent networks may manifest chaotic behavior, and therefore learning might be difficult.
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Recurrent networks suit time-series prediction problems, speech recognition problems, and many others,
where in order to recognize a current state previous states have to be considered. For example, in
language understanding and speech processing the semantic meaning of a word is recognized after
taking into account the previously recognized words and possibly some of the following words.

Example Two different meanings of the word "bank™ are illustrated in the following sentences: "My
bank account was empty" and "We went to the river bank." In order to recognize the meaning of "bank,"
we need to take into account the meaning of adjoining words which can be eventually done in a
recurrent network.

4.4 Neural Network Models for Unsupervised Learning: Adaptive Resonance Theory

Unsupervised learning is considered to be more psychologically plausible, possibly because humans
tend to learn more about nature and life through their own experience, rather than by listening to a
teacher. For example, imagine that there is nobody to tell us which instance to classify into which class,
that is, what we should derive. The patterns in this case are not labeled with class-labels.

There is evidence that unsupervised learning is plausible from a biological point of view too, that is, the
way neurons change their connection weights, but we shall look at this paradigm here from an
engineering point of view.

4.4.1 Unsupervised Learning in Neural Networks

Two principle learning rules are implemented in the contemporary unsupervised learning algorithms for
neural networks: (1) noncompetitive learning, that is, many neurons may be activated at a time; and (2)
competitive learning, that is, the neurons compete and after that, only one is activated at one time, e.g.
only one wins after the competition. This principle is also called "winner takes all."”

Most of today's training algorithms are influenced by the concept introduced by Donald O. Hebb (1949)
(see 4.13). Hebb proposed a model for unsupervised learning in which the synaptic strength (weight) is
increased if both the source and destination neurons are simultaneously activated. It is expressed as:
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where w;(t) is the weight of the connection between the ith and jth neuron at the moment t, and o; and o
are the output signals of neurons i and j at the same moment t. The weight w;;(t + 1) is the adjusted
weight at the next moment (t + 1). This principle was used in supervised learning, but then we knew the
desired outputs. Here, the outputs are as they are produced by the network only. Different modifications
of this rule have been suggested, for example: the differential Hebbian learning law (Kosko 1988(A)):

wylt + 1) = wylt) + c- 0, 0; + Aoy~ Ao;
The differential Hebbian law introduces the first derivatives of the activation signals to the Hebbian law.
. Grossberg's competitive law (Grossberg 1982), expressed as:
Awy; = c-0; (0, wy),
The differential competitive learning law (Kosko 1990):
Awy = ¢ Aojlo, — wy)

The differential competitive learning law introduces the first derivative of neuronal output values to the
competitive learning law.

. Adaptive vector quantization (Kohonen 1982, 1990); the learning law in a vector form is:
wilt + 1) = w,r) + ¢ (x(t) — wi1))

where c is a learning rate, x(t) is the input vector at moment t, and w; is the vector of the weights from
the input neurons to the neuron j.

Unsupervised learning is also applicable when noise is present. For example, the random signal Hebbian
law looks like:

wilt + 1) = wy; + o0, + ny,
where n; is a noise introduced to the connection i-j.

In the major competitive learning models, the neural networks are organized in layers. There are
excitatory connections between neurons from different layers, and inhibitory connections between
neurons in one layer. The neurons in the output layer compete, each one inhibiting the others with its
current activation level. The winner takes all in the end, that is, the neuron that gets the highest
activation level is activated. Then a
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"reward" follows; this neuron strengthens its weights according to the input pattern and possibly
suppresses the other neurons' weights.

Unsupervised learning is applicable for conceptualization, that is, discovering and creating new concepts
and categories from data examples. Unsupervised learning in neural networks can be used to learn
structures, similarities, and relations.

Another major application for unsupervised learning networks is vector quantization. N-dimensional
data vectors are represented as k-dimensional, when k < n. This is important for signal compression
(images, speech, etc.), clustering, reducing dimensionality, etc.

In the following subsections we discuss the competitive learning algorithm based on adaptive resonance
theory (ART), developed by Carpenter and Grossberg (1987a,b) and the self-organizing maps (SOMs),
developed by Teuvo Kohonen (1982, 1984, 1990).

4.4.2 Adaptive Resonance Theory

Adaptive resonance theory makes use of two terms used in the study of brain behavior: (1) stability and
(2) plasticity. The stability/plasticity dilemma is the ability of a system to preserve the balance between
retaining previously learned patterns and learning new patterns. Two layers of neurons are used to
realize the idea: (1) a "top" layer, an output, concept layer, and (2) a "bottom™ layer, an input, feature
layer. Two sets of weights between the neurons in the two layers are used. The top-down weights
represent learned patterns, expectations. The bottom-up weights represent a scheme for new inputs to be
accommodated in the network.

Patterns, associated to an output node j, are collectively represented by the weight vector of this node t;
(top-down weight vector). The reaction of the node j to a particular new input vector is defined by
another weight vector b; (bottom-up weight). The key element in Grossberg's realization of the
stability/plasticity dilemma is the control of the partial match between new feature vectors and ones
already learned, which is achieved by using a parameter called vigilance or the vigilance factor.
Vigilance controls the degree of mismatch between the new patterns and the learned (stored) patterns
that the system can tolerate.

Figure 4.19a shows a diagram of a simple ART1 (binary inputs only are allowed) architecture. It
consists of two sets of neurons: n input (feature) neurons (first layer) and m output neurons (second
layer). The bottom-up connections b; from each input i to every output j and the top-down
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Figure 4.19
(A) A schematic diagram of a three-input, two-output ART network.
(B) A realization of an ART1 algorithm.
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connections t; from the outputs back to the inputs are shown in the figure. Each of the output neurons

has a strong excitatory connection to itself and a strong inhibitory connection to each of the other output
neurons.

The ART1 learning algorithm is given in figure 4.19b. It consists of two major phases. The first presents
the input pattern and calculates the activation values of the output neurons. The winning neuron is
defined. The second phase calculates the mismatch between the input pattern and the pattern currently
associated with the winning neuron. If the mismatch is below a threshold (vigilance parameter), this
pattern is updated to accommodate the new one. But if the mismatch is above the threshold, the
procedure continues for finding either another output neuron or a new one, as the input pattern has to be
associated with a new-concept, new-output neuron.

An example of applying the algorithm, where a network learns to categorize sequentially fed patterns, is
presented in figure 4.20. The network associates the first pattern with the first output neuron, the second
pattern with the first output neuron again, and the third input pattern with the

Input Pattem Top=-town lampiate
Cutput 1 Crutput 2

AR EE
EEf iR

Figure 4.20
Associating groups (concepts, classes) to input
patterns in ART1. The three presented patterns
are grouped in two groups. An ART1 network
with 20 input nodes and 10 output nodes is used.
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second output neuron. Every time the network associates a new input pattern with an old one, it changes
the old one accordingly. For binary inputs, the simple operation of binary intersection is used.

The ART neural networks are ideal for conceptualization, clustering, and discovering existing types and
number of classes in a database. Categorization between different unknown, but existing categories in a
set of examples can be successfully achieved. A crucial parameter in the algorithm is the vigilance
factor. If it is high, for example, 0.95, only small differences between patterns that will be categorized in
one category and assigned to one output neuron will be tolerated. In its extreme value of 1, each of the
output neurons will learn to represent a different input pattern, whatever the difference between patterns.
If the vigilance factor is small, then slightly different patterns will be grouped in one output group and
bound to one output neuron. The top-down weights, which represent the patterns bound to an output
neuron, may change dramatically after associating a new pattern with an already existing category.

ART1 was further developed into ART2 (continuous values for the inputs) and ART3 (Carpenter and
Grossberg, 1990). The ART3 model is closer to the synaptic processes in real neurons. Algorithms for
supervised learning in ART3 architecture have also been developed

Fuzzy ARTMAP is an extension of ART1 when input nodes represent not "yes/no" features but degrees
of membership, to which the input data belong to features, for example, a set of features (sweet, fruity,
smooth, sharp, sourish) used to categorize wines based on their taste. A particular sample of wine can be
represented as an input vector consisting of membership degrees, for example, (0.7, 0.3, 0.9, 0.2, 0.5).
The fuzzy ARTMAP allows for continuous values in the interval of [0, 1] for the inputs and the top-
down weights. It uses fuzzy operators MIN and MAX to calculate intersection and union between the
fuzzy input patterns x and the continuous-value weight vectors t.

4.5 Kohonen Self-Organizing Topological Maps

One of the most used neural network models, used mainly for vector quantization and data analysis but
also applicable to almost all the tasks where neural networks have been tried successfully, is the self-
organizing map introduced and developed by Teuvo Kohonen (1982, 1990, 1993).
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Figure 4.21
A part of a Kohonen SOM with
two inputs xl and x2 and a two-
dimensional output map.

Some theoretical background of this type of network is given in this section, and more applications are
presented in chapter 5. Practical applications of the SOM neural networks occur in the following
problem areas: speech recognition, industrial automatic design of digital systems, and optimization,
among others (Kohonen 1990).

4.5.1 The Philosophy of the Kohonen Network

Self-organizing topological or feature maps became popular because they tend to be very powerful at
solving problems based on vector quantization. A SOM consists of two layers, an input layer and an
output layer, called a feature map, which represent the output vectors of the output space (figure 4.21).
The weights of the connections of an output neuron j to all the n input neurons, form a vector w; in an n-
dimensional space. The input values may be continuous or discrete, but the output values are binary
only. The main ideas of SOM are as follows:

. Output neurons specialize during the training or recall procedure (both may not be distinguished
here) to react to input vectors of some groups (clusters) and to represent typical features shared by the
input vectors. This characteristic of the SOM tends to be biologically plausible as there is evidence to
show that the brain is organized into regions that correspond to different sensory stimuli. There is also
evidence for linguistic units being locatable within the human brain. A SOM is able to extract abstract
information from multidimensional primary signals and to represent it as a location, in one-, two-, three-
, etc. dimensional space (Kohonen 1990).
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. The neurons in the output layer are competitive. Lateral interaction between neighboring neurons
Is introduced in such a way that a neuron has a strong excitatory connection to itself and fewer
excitatory connections to its neighboring neurons within a certain radius; beyond this area, a neuron
either inhibits the activation of the other neurons by inhibitory connections, or does not influence it. One
possible rule is the so-called Mexican hat rule. In general, this is "the winner-takes-all" scheme, where
only one neuron is the winner after an input vector has been fed in and a competition between the output
neurons has taken place. The winning neuron represents the class, the label, and the feature to which the
input vector belongs.

. The SOM transforms or preserves the similarity between input vectors from the input space into
topological closeness of neurons in the output space represented as a topological map. Similar input
vectors are represented by near points (neurons) in the output space. The distance between the neurons
in the output layer matters, as this is a significant property of the network.

There are two possibilities for using the SOM. The first is to use it for the unsupervised mode only,
where the labels and classes that the input vectors belong to are unknown. A second option is when
SOM is used for unsupervised training followed by a supervised training. LVQ (learning vector
quantization) algorithms (Kohonen 1990) have been developed for this purpose. In the LVQ algorithms,
after an initial unsupervised learning is performed in a SOM, the output neurons are calibrated, labelled
for the known classes, and a supervised learning is performed which refines the map according to what
Is known about the output classes, regions, groups, and labels. The two possibilities are presented and
discussed in the next subsections.

4.5.2 Unsupervised Self-Organizing Feature Maps

The unsupervised algorithm for training a SOM, proposed by Teuvo Kohonen, is outlined in figure 4.22.
After each input pattern is presented, the winner is found and the connection weights in its
neighbourhood area Nt increase, while the connection weights outside the area are kept as they are. a is
a learning parameter. It is recommended that the training time moments t (cycles) are more than 500
times the output neurons. If the training set contains fewer instances than this number, then the whole
training set is fed again and again into the network.
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Figure 4.22
A realization of the Kohonen SOM training algorithm.
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SOM s learn statistical features. The synaptic weight vectors tend to approximate the density function of
the input vectors in an orderly fashion (Kohonen 1990). Synaptic vectors w; converge exponentially to

centers of groups of patterns and the whole map represents to a certain degree the probability

distribution of the input data. This property of the SOM is illustrated by a simple example of a two-
input, 20 x 20-output SOM. The input vectors are generated randomly with a uniform probability
distribution function as points in a two-dimensional plane, having values in the interval [0,1]. Figure
4.23 represents graphically the change in weights after some learning cycles. The first box is a two-

dimensional representation of the data. The other boxes represent SOM weights also in a two-

dimensional space. The lines connect neighboring neurons, and the position of a neuron in the two-
dimensional graph represents the value of its weight vector. Gradually the output neurons become self-
organized and represent a uniform distribution of input vectors in the input space. The time (in cycles) is
given in each box as well. If the input data have a well-defined probability density function, then the

weight vectors of the output neurons try to imitate it, regardless of how complex it is. The
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Figure 4.23
Uniformly randomly distributed two-dimensional
vectors are learned by a two-dimensional SOM
after 5000 iterations. The first image represents
the raw data and the next represent the weight
vectors of the SOM for each of eight consecutive
steps (following the experiments presented in
Kohonen (1990)).

weight vectors are also called reference vectors or reference codebook vectors, and the whole weight
vector space is called a reference codebook. Figure 4.24 shows the adaptation of the same network to the
generated input vectors in l2 when the latter are not uniformly distributed but have a gaussian

distribution of a star type. Figure 4.25 shows the adaptation of a SOM to a distribution in K2 achieved
with the use of fractal data.

The SOM s very similar to an elastic net which covers the input vector's space.
4.5.3 Learning Vector Quantization Algorithms for Supervised Learning
The problem of distinguishing input vectors that "fall" in the bordering area between two output neurons

and the necessity for using known labels of the neurons for better topological mapping of the input
vectors into the
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Figure 4.24
Learning gaussian distributed random vectors by
a two-dimensional SOM.

output space have led to the development of learning vector quantization (LVQ) algorithms LVQ1,
LVQ2, and LVQ3 (Kohonen 1990).

LVQ1 Algorithm In LVQL1 several codebook vectors are assigned to each class, and each is labeled
with the corresponding class symbol (label). Initial values of the codebook vectors are learned by the
SOM algorithm. The output neurons are then labeled according to the classes. Then a correction of the
weights with the use of the known labels is performed by applying the following formulas to update the
weights vectors:

w;(t + 1) = wy(t) + a(t)(x(t) - wy(t)), if x is classified by the network correctly in class c; represented by
the jth neuron
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Figure 4.25
Learning fractal data in a two-dimensional SOM.

w;(t + 1) = w;(t) - a(t)(x(t) - wy(t)), if x has been wrongly associated by the network with class-neuron |
w;(t + 1) = w;(t), for all i different form |
a(t) is a scalar gain factor which decreases monotonically in time.

LVQ2 Algorithm In the LVVQ2 algorithm, a further tuning of the weights of the immediate neighbors to
the winning neuron, after a presentation of an input vector, is done. If, for example, ¢; is the class of the
winning neuron, but x belongs to the class c; of its neighbor j, the following formulas are applied to
calculate the new weight vectors for neurons i and j (figure 4.26):
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Figure 4.26
The LVQ algorithms use "windows" between nodes
C; and C; (their weight vectors in the weight space).

If the input vector x "falls™ in the window between
the two classes (nodes), the weights are adjusted
depending on the known information about the
desired label of that vector.

wi(t + 1) = wi(t) - a(f)(x(t) - wi(t)), or
w;(t + 1) = w;(t) + at)(x(t)- w(t)), or
w,(t + 1) = w,(t), for the rest of the neurons k

LVQ3 Algorithm In the LVQ3 algorithm a window between the lateral output neurons i and j is
considered. When the input vector x falls out of the window, it is the LVQ2 algorithm which determines
one of the i or j neurons to be a winner and updates the new codebook vectors. But if the input vector x
falls in the window, then other formulas are applied:

w;i(t + 1) = wi(t) - a(t)(x(t) - w;(t)), if x falls in the "window" and x belongs to class cj
w;i(t + 1) = w;(t) + a(t)(x(t) - w(t)), for k O {i, j}, if x falls in the "window" and x belongs to class cj

W (t+ 1) = w,(t) + a(t)(x(t) - w(t)), for k O {i, j}, if x falls in the window and i and j represent the same
class

4.6 Neural Networks as Associative Memories
4.6.1 Learning Pattern Associations

Pattern association is the process of memorizing input-output patterns in a heteroassociative network
architecture, or input patterns only in an



Page 301

e

{For training) (Mew)

Figure 4.27
The pattern association task, illustrated with three class patterns and
a new one, corrupted, which has to be associated to one from the
class patterns that is most similar.

autoassociative network, in order to recall the patterns when a new input pattern is presented. It is not
required that the new input pattern be exactly the same as one that is memorized. It can be different, but
similar to it. Three exemplar patterns are shown in figure 4.27. After memorizing them in a system, a
new pattern is presented, a corrupted variant of the pattern 3. An associative memory system should
associate this pattern with one of the memorized patterns. This is a task for an autoassociative network
architecture.

Autoassociative neuronal architectures can be realized either by feedforward, or feedback networks.
Hopfield networks and Boltzman machines are two examples of autoassociative networks. Other types
of pattern associators are the heteroassociative network architectures. One of them is the bidirectional
associative memory (BAM) (Kosko 1988). All the above-mentioned neural networks are discussed
below.

4.6.2 The Hopfield Network

Hopfield networks, named after their inventor John Hopfield (1982), are fully connected feedback
networks (figure 4.28). The neurons in Hopfield networks are characterized by the following: binary or
bivalent input signals, binary or bivalent output signals, simple summation function, and hard-limited
threshold activation function. There are alternative variants of realizations of a Hopfield network. Every
neuron j,j =1, 2,...,nin the network is connected back to every other one, except itself. Input patterns
x] are supplied to the external inputs Ij and cause activation of the external outputs. The response of such
a network, when an input vector is supplied during the recall procedure, is dynamic, that is, after
supplying the new input pattern, the network calculates the outputs and then feeds them



Page 302

1 2
avi N/ N
LA/ /
Wi
D Extemal inputs
®1 b ¥ LA
Figure 4.28

Hopfield autoassociative neural network.

back to the neurons; new output values are then calculated, and so on, until an equilibrium is reached.
An equilibrium is considered to be the state of the system when the output signals do not change for two
consecutive cycles, or change within a small constant. The weights in a Hopfield network are
symmetrical for reasons of stability in reaching equilibrium, that is, w; = w;. The network is of an
additive type, that is,

[ih

where o; = 1 if u; > ©; (threshold for the jth neuron); o, = 0 if u; < ©;; and o; is unchanged if u; = G,

The training procedure for a Hopfield network is reduced to a simple calculation of the weights w;; on
the basis of the training examples with the use of the formula:

Wy _( Y2 — 1)@ xfP - 1})

p=i.,m

where the summation is held for all the training patterns x®,X, js the ith binary value of the input

pattern p; and the expressions in parentheses can be only 1 or 0 according to the value of the input
pattern.

An interesting characteristic of the weights wij is that they measure the correlation between the
frequencies of firing of neurons i and j over the full
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Figure 4.29
Recall procedure for the Hopfield network.

set of examples. It is a variant of the Hebbian learning law, that is, the connection weights increase if
two adjacent nodes fire simultaneously.

The recall process is executed as shown in figure 4.29. It can be organized in the following modes:

. Asynchronous updating: Each neuron may change its state at a random moment with respect to
the others.

. Synchronous updating: All neurons change their states simultaneously at a given moment.

. Sequential updating: Only one neuron changes its state at any moment; thus all neurons change

their states, but sequentially.

A few more words about the network's equilibrium: Borrowing from thermodynamics, Hopfield defined
a parameter E called the energy of the network, which is a dynamical parameter and which can be
calculated at any moment t as:

E(ry==1/2 3 ¥ (wylt) o) o),

i=l.n j=1.m

(i not equal to j)
The change in E based on a change in a single output value Ao;, can be expressed as

AE = —1/2- Aoy E (wy - o),

L=i,n

(i not equal to j)

This is a steadily decreasing function as the network evolves. During the recall procedure, the network
continues to calculate output values until it
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Figure 4.30
When a new input pattern X' is
presented the network relaxes in
an equilibrium state, a "basin
of attraction" where the energy
E is minimum, thus associating
the new pattern with a class
pattern Ps.

reaches a minimum of the energy function E, which is an equilibrium state. The energy E can be
represented as a surface in n-dimensional space. The equilibrium in a trained Hopfield network can be
explained by the attractor principle. During training, the network "sets" some basins of attraction which
are stable states for the network corresponding to the training patterns (figure 4.30). When a new vector
X" is supplied for a recall, the network will eventually rest after some cycles in an attractor, thus
associating the new vector with one of the known patterns (attractors). In the extreme case, the number
of basins of attraction is equal to the number m of training patterns. During the recall procedure, when a
new input pattern is applied, the network tries to relax into the nearest basin of attraction, thus finding
the right pattern to associate the new one with. The recall process is a process of relaxation.

There are some limitations to using the Hopfield network:

. Memory capacity. The number m of training patterns should be about the number of neurons n, or
less (according to Hopfield, it should be less than 0.15 n; according to some new results, m < 0.5n/log
n). This means that the memorizing capacity of a Hopfield network is severely limited. Catastrophic
"forgetting™ may occur if we try to memorize more patterns than the network is supposed to handle. In
this case the network may forget all the patterns that it has previously learned; an increase in capacity
can be achieved by introducing a bias to the neurons during training and recall, and by introducing noise
in the patterns (Burkitt 1993):
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Figure 4.31
A network may relax into a "spurious”
state, which phenomenon is called the
local minima problem.

Wy = E (x™ — a)(x;™ — a),
p=1.m

whereaisabiasand0<a < 1.

One solution to this problem, when the patterns are sparse in the input space, is suggested by Amari
(1989). The memory capacity achieved there is approximately nz/log nz if the density d, of the domain

data tends to O, that is, limd, - Oforn — .
Another solution to the problem has been achieved by using couple oscillatory neurons (see chapter 7).

. Discrepancy limitation. The new pattern to be recognized as one of the training patterns should
not differ from any training pattern by more than about 25%.

. Orthogonality between patterns. The more orthogonal (dissimilar) the training patterns, the better
the recognition.

. Spurious states of attraction. Sometimes the network learns some patterns (creates basins of
attraction) called spurious states, which are not presented in the set of training patterns. An example of
such a state is shown in figure 4.31. In order to overcome this limitation, Hopfield et al. (1983)
introduced a "little bit of unlearning” for every learning pattern:

Awy = —ax{™- x/" for the pth pattern x'"

Spurious states may be useful, if the Hopfield network is used for partial matching and approximate
reasoning (see NPS chapter 6). The input values are between 0 and 1 and represent the certainty of the
facts or fuzzy membership degrees.
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. Weight symmetry. The weight matrix has to be symmetrical in order for the network to reach an
equilibrium. The symmetrical synaptic weights are not at all biologically plausible, but they are a useful
limitation here.

. Local minima problem. A major disadvantage of the Hopfield network is that it can rest in a local
minimum state instead of a global minimum energy state, thus associating a new input pattern with a
spurious state (see figure 4.31).

Hopfield networks are useful for many applications, including pattern recognition, finite state automaton
realization, and implementation of Al-reasoning machines.

4.6.3 Boltzmann Machines

In order to overcome the local minima problem, a model based on using a variable called temperature
was developed. The activation value of a neuron is calculated as a statistical probability:

o; = |, with a probability p; = 1/{l + ¢™T)
o, = 0, with a probability (1 — p,),

where ui is the net input to the ith neuron, calculated as in the Hopfield network. This model is called a
Boltzmann machine after its resemblance to processes in thermodynamics. During the recall process the
temperature T decreases, which is similar to the process of annealing in metallurgy. The physical
meaning is that by changing the temperature T we "shake" the neural network "box" and if it has
happened that it has rested at a wrong local minimum attractor, it will "jump out" and continue to
"move" until its eventual relaxation at a global minimum attractor (which represents a correct pattern).

4.6.4 Kosko's Bidirectional Associative Memories

A bidirectional associative memory (Kosko 1988B) is a heteroassociative memory. It can memorize
pattern associations of the type (a®, b®) where a® is an n-dimensional vector (pattern) and b®is its
corresponding m-dimensional pattern (figure 4.32).

The neurons are of the same type as in the Hopfield network-either bivalent or binary inputs and outputs.
A threshold activation function is
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Figure 4.32
Kosko's bidirectional associative memory associates pattern
A with pattern B in both directions.

used. The training process of a BAM is simply calculating the weights with the use of the formula

w=wi= T T T @)

k=1,pi=1l.m j=1.,m
A recall in both directions is possible, that is, either a® or b®) or both, complete or corrupted, can be
used to recall corresponding associated patterns. An example of two patterns A and B associated through
a BAM network and some recall exercises are shown in figure 4.33.

A severe limitation of BAM is its small capacity, which is less than the minimum number between n and
m. In order to overcome this limitation, BAM systems consisting of many BAM modules, BAM,,
BAM,, . . .,.BAMK, have been developed (Simpson 1990). Every association (a,b) is tried to be
memorized in a BAM module. If it is not possible to memorize it in the BAM]j module for example, then
it is tried in the next one-the BAMj+i module, and so on, until all the pattern associations are memorized
successfully. BAM networks have been applied to pattern recognition.

4.7 On the Variety of Neural Network Models

There is a tremendous variety of neural network models. Some are variants or improvements of the
types already presented-MLP, ART, SOM, associative memories. Other connectionist models emerge
and evolve with the development of knowledge about the way real neurons work. Neural network
models may differ in the following points:
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An example of associating two patterns A and B in a 6-4 BAM
and different recall experiments.

. The type of neurons used, and type of calculations.

. The mathematical model used for representing and processing of information in the network
(algebraic, statistical, fuzzy, etc.). This includes methods of training and recall, convergence and
equilibrium properties, etc.

. The class of problems they are designed to solve (classification, optimization, pattern association,
etc.).

A neural network model may be a hybrid between two connectionist models, for example, a model
Implementing competitive learning and a model for supervised learning.

It is difficult to present all the existing models here. It is also outside the scope of this book. But some
derivatives of the above models and some new theoretical models will be presented.

4.7.1 Hamming Networks

The Hamming network performs the task of pattern association, or classification, based on measuring the
Hamming distance. The network is a
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A Hamming associative neural network.

pattern associator of n-dimensional binary vectors labeled with m-class labels (m-class patterns). A new
vector X' is associated with class pattern x; with the minimum Hamming distance, a Hamming distance
being the number of different bits in the two patterns. The Hamming network is similar to the Hopfield
network, but it has two layers of connections (figure 4.34). The first layer contains connections between
all the n inputs, and all the m outputs. The second layer is a fully connected recurrent network with m
neurons (similar to the Hopfield network). All nodes use linear threshold activation functions. The first
layer of connections is finding the difference between the number n and the Hamming distance between
the input pattern x' and each of the m-class patterns used to calculate the connection weights in advance.
The second layer of connections is calculating the maximum of these values for finding the best-
matched-class pattern x;. Using a Hamming network has several advantages: it requires fewer
connections than the Hopfield network, and it implements the "optimum minimum error classifier when
bit errors are random and independent™ (Lippman 1987), that is, the network always converges and finds
the output node with the maximum value.
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4.7.2 Brain-State-in-a-Box

The brain-state-in-a-Box network (BSB) was developed by James Anderson. It is an autoassociative
network, similar to the Hopfield network. The architecture of the BSB is characterized by the following:

. It is a recurrent, but not fully connected network.
. A connection from a neuron's output to its input is allowed.
. The interconnection weights are generally nonsymmetrical.

In a BSB each class pattern can be viewed as a corner of an n-dimensional hypercube, thus the network
is forced to converge at the nearest corner during the recall procedure. The states of the network are
restricted so as not to go beyond the n-dimensional hyperbox, where the name of the network came
from. When a next state x(t + 1) is calculated based on the stimulus x(0) (the new input pattern) and the
previous state x(t), the following formula is used, which limits the new state to be inside of the box:

X(t 4 )= LIMIT -(a W-x(1) + b x(1) + ¢ x{0)),

where LIMIT is a parameter which limits the activation values to be in a range, typically [-1.5,1.5]; a, b,
and c are constants; and W is the weight matrix.

The recall procedure of the BSB has several advantages, one being that it always converges, avoiding
the local minima problem, as the BSB does not have spurious states.

4.7.3 Counterpropagation Networks

Counterpropagation networks, developed by Hecht-Nielsen (1987, 1988) are a hybrid between two well-
known connectionist models—competitive learning (performed by a first layer of connections) and
supervised learning (performed by a following layer of connections) (figure 4.35). In this respect they
are similar to the RBF networks. The idea behind this architecture is that competitive learning, which is
fast, will cluster the input space, assigning one intermediate node to each group. After that, supervised
learning is performed, but only on a single layer. The intermediate layer is of the "winner-takes-all"

type. The major advantages of such a network are that (1) training is much faster than training a three-
layer MLP with the backpropagation algorithm, and (2) the hidden nodes have meanings associated with
them.
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Counterpropagation neural network.

Applications of such networks have been developed for data compression, pattern classification, and
statistical analysis.

4.7.4 RAM-Based Neurons and Networks, Weightless Networks

The strong development of digital electronic circuits and boolean algebra were influential in the
development of connectionist models based on the idea of random-access memory (RAM). RAM is a
device in which binary information can be stored and retrieved, each of the information elements (called
words) having its own directly addressable space. The addresses are binary vectors. If n address lines are
used, 2" addressable elements can be stored and retrieved, each consisting of m bits. Figure 4.36 shows a
RAM-based structure and its representation as a neural network, where n-inputs, one-output RAM
elements are used.

Using such a simple structure, different models have been developed and put into practice. They differ
in their training algorithms, and application-oriented characteristics.

Using the above idea, so-called weightless neural networks were developed by Igor Aleksander (1989).
The connections between neurons do not have real weights; they are binary, {0,1}, that is, a connection
either exists or does not exist.
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(a) A structure of RAM elements can realize any
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neural network, that is, there are connections but there
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Probabilistic RAM (pRAM) models, developed by John Taylor and his group, use a probability
parameter for an output of a RAM-neuron to become 1. These probabilities are learned during training
and used during recall. For example, if an input vector 1100011 is supplied at the input of a pPRAM, an
output of 1 is generated with a probability of 0.7, learned during the training phase. A random number
generator is used to generate signals (I's) with a given probability. Different reinforcement learning
algorithms have been developed for the pPRAM models (Glarkson et al. 1992).

4.7.5 Information Geometry of Neural Networks

Studying the geometry of a family of networks means to geometrically represent mutual relations
between individual neural networks. A family of networks forms a geometrical manifold which can be
studied when trying to find the best neural network model for a particular task (Amari, 1977, 1985,
1990, 1993). Information geometry is applicable to manifolds (families) of different types of neural
networks such as MLP, Hopfield and Boltzmann machines, and mixtures of models.

4.7.6 Neural Networks and Statistical Methods

Neural networks learn from data. But what kind of statistics can they learn? We summarize here some
already-discussed properties of neural networks to learn statistical properties. We also introduce a new
property of neural networks, which is that they can learn principal components similar to the way it is

done through principal component analysis techniques. The following is a short list of some statistical
properties of neural networks:

. A perceptron and an MLP with a hard-limited threshold activation function can be used as a
discriminating technique.

. An MLP with a nonlinear activation function can be used for function approximation similar to
statistical regression; but the neural networks are model-free, that is, they do not require that the type of
the regression be defined in advance.

. MLP neural networks can learn posterior probabilities that do not strictly follow the probability
axioms (see chapter 5);

. SOM s can learn the probability distribution function of the input space.

. MLPs can learn principal components. This feature is explained below.
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Principal component analysis is a technigue to economically encode a distribution of input patterns. It
finds a fixed number of principal components (eigenvectors) with the highest eigenvalues of the
correlation matrix of the data that describe the distribution of the patterns. If we represent each of the m

training patterns as an n-element vector x; in the input space, and create the covariance matrix A xix|T of
all the patterns, then finding eigenvectors means representing the data in a compact form. Eigenvectors
X" are defined as k-dimensional vectors which multiplied by A do not change their direction in the space,
the result being equivalent to multiplying them with scalars, that is, A - X' = A - x'. The scalars A are
called eigenvalues. Eigenvalues measure how much variance of the data set the eigenvectors account
for. The larger the eigenvalues, the better the eigenvectors represent the data set. The principal
components are the vectors that minimize the mean square error between the actual points in the data set
and the points described by a smaller number of components.

There is a similarity between the covariance matrix and the matrix of connection weights in an
autoassociative neural network. It was shown by several authors that a hidden node in a three-layer MLP
learns one principal component if the MLP is trained in the autoassociative mode, that is, if the input
patterns are used as output patterns too. In this case the activation values of the hidden nodes represent
in a condensed form the input vectors. That was the idea behind using neural networks for compression
of data (speech, images).

4.8 Fuzzy Neurons and Fuzzy Neural Networks

The neural network models presented so far use variants of McCulloch and Pitt's neuron to build a
network. New types of neurons have been introduced which use fuzzy membership functions as
activation functions or as functions attached to their connections. One of them is the so-called fuzzy
neuron (Yamakawa 1990). Fuzzy neural networks, neural networks built on fuzzy neurons or on
standard neurons but dealing with fuzzy data, have also been introduced and applied successfully. In
fuzzy neural networks, connectionist and fuzzy paradigms are mixed at a low level, both paradigms are
strongly blended, and there is a mutual penetration. Fuzzy neurons and fuzzy neural networks are
explained in the following subsections.
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4.8.1 Fuzzy Neurons

A fuzzy neuron has the following features, which distinguish it from the ordinary McCulloch and Pitt's
types of neurons:

. The inputs to the neuron x,, X, . . .,X, represent fuzzy labels of the fuzzy input variables.

. The weights wi are replaced by functions |, which are the membership functions of the fuzzy
labels x;(i=1, 2,...,n).

. Excitatory connections are represented by MIN operation, and inhibitory connections by fuzzy
logic complements followed by MIN operation.

. A threshold level is not assigned.

In the fuzzy neuron there is no learning. The membership functions attached to the synaptic connections
do not change. The fuzzy neuron has been successfully used for handwritten character recognition.

The Neo-fuzzy neuron (Yamakawa et al. 1992(A)) is a further development of the fuzzy neuron. A block
diagram of a neo-fuzzy neuron with a detailed diagram of its nodes and the membership functions
attached to the connections is given in figure 4.37. The features of the neo-fuzzy neuron are:

. The inputs x,, X,, . . ., X, represent fuzzy variables.

. Each fuzzy segment x;; attached to each of the fuzzy variables x;, i = 1, m; j = 1, n are represented
as connections between the input i and the output.

. In addition to the membership function p;, which is bound to the input segment x;;, weights w;; are
also assigned, subject to a training procedure.

. The segments x;;, X, - . .,X; have standard triangular membership functions; thus an input activates
only two membership functions simultaneously; the sum of the degree to which an input value Xx'i
belongs to any two neighboring membership functions p,(x';) and W,...(x") is always equal to 1. Thus
the COG defuzzification does not use a division and the output of the neuron can be represented by the
following simple equation:

filxi) = palxi)-wy + Hi e (X0) Wy ey

Such a neuron can realize inference over a fuzzy rule.
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Yamakawa's neo-fuzzy neuron. Each of the m functions f;
(1=1,2,...,m)bound to each of the m inputs x; are
represented by n = 9 fuzzy membership functions T;,

standard triangular ones uniformly distributed over the

universe Ux;, as well as by corresponding weights w;;
which are subject to change during training. (Adapted
with permission from (Yamakawa et al. 1992a.))
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There are some training algorithms applicable to the neo-fuzzy neuron. One of them is called
incremental updating (stepwise training). If the neo-fuzzy neuron is to learn to associate an input pattern

x® = (x1, X3,--.. Xm) with an output value y®, then the change of weights should be calculated as
follows:

Awy = —aly* — d")uylx}), fori=1,2,... ,nandj=12..,1,

where a is a learning factor; yx is the actual output from the neuron, and dk is the desired output for the
input pattern xk, All weights are initially assigned to zero. It has been proved that the neo-fuzzy neuron
guarantees global minimum in the error-weight space. In addition to this property, experiments show
that learning is faster by about 105 times and the accuracy achieved is better than in a three-layer
feedforward network with the backpropagation algorithm.

Fuzzy neurons have been applied to prediction and classification problems.
4.8.2 Fuzzy Neural Networks

Similar to the way the fuzzy neuron and the neo-fuzzy neuron were created, different types of fuzzy
neural networks have been developed and applied to different tasks. A fuzzy neural network (FNN) is a
connectionist model for fuzzy rules implementation and inference. There is a great variety of
architectures and functionalities of FNN. The FNNs developed so far differ mainly in the following
parameters:

. Type of fuzzy rules implemented; this affects the connectionist structure used.

. Type of inference method implemented,; this affects the selection of different neural network
parameters and neuronal functions, such as summation, activation, and output function. It also
influences the way the connection weights are initialized before training, and interpreted after training.

. Mode of operation: we consider here three major modes of operation by:

1. Fixed mode, "fixed membership functions-fixed set of rules,"” that is, a fixed set of rules is inserted in
a network, the network performs inference, but does not change its weights. It cannot learn and adapt. A
representative of this type of system is NPS (see chapter 6).
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2. Learning mode, that is, a neural network is structurally defined to capture knowledge in a certain
format, for example, some type of fuzzy rules. The network architecture is randomly initialized and
trained with a set of data. Rules are then extracted from the structured network. The rules can be
interpreted either in the same network structure or by using other inference methods.

3. Adaptation mode. A neural network is structurally set according to a set of existing rules, "hints,"
heuristics. The network is then trained with new data and updated rules are extracted from its structure.
Two cases can be distinguished here: (1) fixed membership functions—adaptable rules and (2)
adaptable membership functions—adaptable rules. The catastrophic forgetting phenomenon must be
Investigated in these cases, that is, how much the network forgets about previous data after having
learned from completely new data without rehearsing the old ones.

To summarize the above, FNNs have two major aspects:

1. Structural. A set of rules is used to define the initial structure of a neural network; two types of neural
networks have been mainly used so far: (a) multilayer perceptrons (MLPs), and (b) radial-basis
functions networks.

2. Functional, parametric. After having defined the structure of a neural network and possibly having
trained it with data, some parameters can be observed that would explain the inference which the
network performs. Those parameters can be used to derive a (fuzzy) rule-based system represented in
linguistic terms.

FUNN is an model of an FNN. It facilitates learning from data, fuzzy rules extraction, and approximate
reasoning. FUNN uses an MLP network and a backpropagation training algorithm. It is an adaptable
FNN as the membership functions of the fuzzy predicates, as well as the fuzzy rules inserted before
training (adaptation), may adapt and change according to the training data. The general architecture of
FUNN consists of five following layers (figure 4.38). In the input layer—a node represents an input
variable. In the condition elements layer—each node represents a fuzzy predicate of an input variable.
The activation values of the nodes represent the membership degrees of the input variables. Different
summation function sc, activation function ac, and output function oc can be used for the neurons of this
layer.
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Figure 4.38
General architecture of FUNN (fuzzy neural network).

In the Rule layer each node represents either an existing rule, or a rule anticipated after training. When
FUNN is used to implement an initial set of fuzzy rules, the connections between the condition elements
layer and the rule layers are set according to normalized degrees of importance attached to the
antecedent elements in the corresponding rules. If degrees of importance are not attached to the
condition elements of a rule Ri, then the connection weights wij to a rule node Ri are uniformly
calculated for each connection as

w; = Net;/n,

where n is the number of condition elements in the rule R;, and Net; is a constant defining what the net
input to neuron R;should be in order to fire the rule. The stronger the rule is as a piece of domain
knowledge, the higher Net; should be, which means a higher contribution of this rule to the output value.
For a weak rule R;, Net; might take a value of 1, and for a strong rule Net; might need to be 5, provided a
logistic activation
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function is used. The other connection weights are initialized to zero. The following characteristics of
this layer define the inference method performed by the FUNN: summation function s, activation
function ag, neuronal output function o; Additional rule nodes may be preset with zero connection
weights. This may give the structure more flexibility to adjust initial rules and antecedent elements in
them and to possibly capture new rules. The way the connection weights are interpreted here is used in a
rules extraction algorithm REFUNN.

In the Action elements layer each node represents one fuzzy predicate (label) in the "action"
(consequent) elements of the rules. The connections between the rule nodes and the action nodes are set
as normalized confidence factors (CFs) of the rules. The rest of the connections are set to zero. Again,
three functions are defined for these nodes, (a) summation function s,,(b) activation function a,, and (c)
output function o,. Additional nodes may be used to capture additional action (conclusion) predicates
during training (adaptation).

The output variable layer represents the output variables of the system. It is defined by the three
functions: summation so, activation a,, and output o,. Figure 4.38 depicts a FUNN for the following two
rules:

R.: IF X, is A,(Dl,,) and x,is B,(Dl,,), THEN y is C,(CF,)
R,: IF x;is Ay(Dl,,) and X, is B,(Dl,,), THEN y is C,(CF,)

An algorithm REFuUNN for rules extraction from a trained FUNN is presented in chapter 5. The
algorithm uses three layers from the FUNN architecture shown in figure 4.38 (FUNN-1), as the fuzzy
predicates and membership functions are predefined. Fuzzification and defuzzification are supposed to
be done outside the structure.

Figure 4.39 shows a simpler version of FUNN consisting of four layers. The output membership
functions C1 and C2 are singletons attached to the connection weigths of the last layer.

4.9 Hierarchical and Modular Connectionist Systems

The flexibility of intelligence comes from the enormous number of different information-processing
rules, modules, and the levels of operation of such modules. Hierarchical models are biologically and
psychologically
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A simplified version of a FUNN fuzzy neural network.

plausible. Some possibilities for a connectionist realization of such models is discussed in this section.

Modular systems are systems consisting of several modules linked together for solving a given problem.
Representing a system for solving a problem as a modular system may be justified for the following
reasons:

. The whole task may be represented as a collection of simpler subtasks, each being solved in one
submodel of the whole system, so each module solves a different part of the whole problem, for
example, one module is used for feature extraction, and another for pattern classification (which is
usually the case in speech recognition systems).

. Different modules may provide alternative solutions, the final one being the best of them or a
combination of them; different modules may imitate different experts on the same problem, the final
solution being a weighted compromise between the outputs from the modules.

Different modules in a multimodular system may specialize during training to give a good
approximation of the solution for a subspace of the whole problem space. They become local experts.
Another network (a gating network) aggregates the solutions produced by the different modules into a
final solution (Jordan and Jacobs 1994). For example, a
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network that learns the function f = abs(x) can consist of two modules, one to produce the result f = x if x
> 0, and another to learn the function f = x if x < 0. A hierarchy of simple local experts and gating
networks can be built, such that a multimodular network can be used as a local expert at a higher level of
the decision structure.

If each of the modules in a modular system is realized in a connectionist way, the system is called a
connectionist modular system. A connectionist modular system can be flat, if all the modules have the
same priority for information processing; or hierarchical, if some modules have higher priority than
other modules in the system. According to the types of neural networks used in a modular neural
network, the latter can be classified as homogeneous, that is, all the neural networks are of the same
type; or heterogenous, that is, different types of neural networks are used in one system; this is the case
in the example below.

According to the type of connectivity between neural networks in modular neural network systems, the
latter can be classified as fully connected, where every neural network is connected to every other one by
at least one link, or partially connected, where only selected neural networks are linked together.

According to the way the neural networks in a modular system are used for solving a task, there are
three types of operating modes in a system:

1. Sequential mode. Neural networks are used sequentially when different subtasks of the global task are
performed, different neural networks are trained either separately or in conjunction with one another.

2. Parallel mode. All neural networks work in parallel, either on alternative solutions of one subtask,
after which a final solution is worked out based on a given criterion, or on different subtasks if the
problem allows a parallel solution.

3. Mixed mode. Both of the above modes are implemented in one modular system.

Modular and hierarchical multinetwork systems have been used for:

Robot control;

Time-series forecasting (Kohers, 1992);

Classification of remotely sensed satellite images;

. Geometrical transformation and theorem-proving (Ishikawa, 1992);
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. General classification and pattern recognition (Fogelman et al., 1993);
. Planning and predicting of movement of temporospatial objects (Kasabov and Trifonov, 1993)

Sometimes it is possible to solve a problem either by using a single neural network or by using several
smaller neural networks. Which way to go? The answer to this question depends very much on the type
of task. Modular networks should be used when the task can be adequately represented in a modular or
hierarchical way, and when using a single network is unacceptably time- and space-consuming. For
more details see the next section.

4.10 Problems
Part A: Case Example Solutions

1. Using MLP and the Kohonen network for the Bank Loan approval case example. A two-level
hierarchical, modular neural network for solving the Bank Loan case example is shown in figure 4.40.
The lower-level network is an MLP using the backpropagation type of training. When

A - Approve
0 - isgpprove
C, - Client,

wout [ L L

Grocore Cratio Coredil

Figure 4.40
Two-layer multimodular network architecture for
the Bank Loan Decision Problem. The first layer
is an MLP network which produces the output
fuzzy vector for the fuzzy variable "Decision."”
The second layer is an SOM which performs a
two-dimensional vector quantization of the decision
vectors. The three cases discussed in chapter 3
are presented on the map as points C,, C,, C5. The

two parts are trained separately with training data.
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recalled with new input data, this network produces the membership function for the decision output
variable. The output vector is then fed into a Kohonen SOM network which has quantized the decision
space into two topologically distinguished spaces—"approved" and "disapproved.” This is an effective
way of representing a solution, as it also explains graphically WHY new applications should be
approved or disapproved or why the decision is undefined (this is the area between the two clear areas
on the SOM). The two parts are trained separately with existing (or generated) data.

2. Multimodular MLP network for object movement prediction. A single MLP and a three-modular MLP
were trained and tested on the same training data. A comparison between using a single 20-30-40 MLP
network and using three smaller MLP networks (figure 4.41A) for

10 10
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| NN 2
2 i > e 2"
10 10
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—— NN 3 ' w1
e 1.2
10

b
y Initial positioning  moved objects

X, o g N T

Figure 4.41
(A) A hierarchical neural network architecture consisting of
three neural networks, 20 inputs, and 40 outputs. (B) A
graphical representation of a task of learning a movement of
two objects (denoted as 1 and 2; object I has two
sub-objects 1.1 and 1.2) from one position (1' and 2) to
another (1" and 2"), for which task the modular neural
network from (A) is used. Each object or subject is represented
by 5 geometrical points in the plain, therefore, by 10 variables.
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training with a set of training examples for movement of spatial objects (figure 4.41B) is given in figure
4.42, where the number of neurons (Nneurons), number of connection weights (Nweights), number of
training operations (Tlearn), and number of recall operations (Twork) are shown for the single neural
network (NNs) and for the hierarchical, modular network (NNmod). The latter consists of three modules:
NNmI, NNm2, and NNm3. The figures show that multimodular neural network architecture may have
more neurons in total, but a fewer number of connections, thus takes less time for training and less time
for recall.

Part B: Practical Tasks and Questions

3. What are the main physical and functional similarities between real and artificial neurons, between
real and artificial neural networks?

4. What is the main difference between supervised and unsupervised learning? What does competitive
learning mean?

5. What is the essence of the Hebbian learning law?

6. Explain the meaning of the following concepts:
a. Autoassociative and heteroassociative networks
b. Autoassociative and heteroassociative memory
c. Universal function approximator

d. The winner-takes-all rule

e. Lateral inhibition;

Architecture Mepochs Emor  Mweights Mnewrons Tleam  Twork

MNMs 20 30:40 39 00001 1800 T B7T7130 1870

MMml 101010 517 00001 200 20 217140 220

B2 2001500 433 0001 4350 25 227325 475

NMm3 10:15:20 444 00001 450 35 235400 485

MNmod (overall) 00001 1100 &1 679965 118D
Figure 4.42

Comparison between time and space parameters of a single network
NNs and the multimodular network NNmod from figure 4.41 for
solving the same problem with 20 input variables and 40 output variables.
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f. Feedforward and feedback connections, recurrent networks
g. Self-organization

h. Vector quantization

I. Vigilance factor in ART

J. Learning rate in the backpropagation algorithm

k. Gain factor in SOM

I. Overfitting (overlearning)

m. Linear separability

n. Sigmoid function

0. Radial-basis function

p. Logistic function

g. Mean-square error (MSE) and root-mean-square (RMS)
r. Euclidean distance

s. Generalization

t. Massive parallelism in the functioning of the real and artificial neural networks
u. Gradient-descent optimization algorithm

v. Momentum in a gradient-descent optimization algorithm
w. Convergence

X. Equilibrium

y. Local minima problem

z. Capacity of a neural network used as associative memory

7. Explain the meaning of the following concepts:

a. Castrophic forgetting

b. Rehearsal in a neural network as a measure against catastrophic forgetting

c. Deviation scaling parameter in RBF networks

d. Shift register in a time-delay neural networks

e. Finite state automatons and their relation to recurrent networks

f. Hebbian learning law, in case of unsupevised learning

g. Stability and plasticity in ART neural networks h. Codebook vectors in SOM
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I. Attractor point in Hopfield networks
J. Temperature parameter and annealing in Boltzman pattern associator neural networks
k. Learning with forgetting

o

. What is the difference between ART and BAM networks?

. What are the main drawbacks of the following neural networks?
. Perceptron

. MLP with a backpropagation algorithm

. Kohonen SOM

. Kohonen LVQ

. Hopfield network

BAM g. ART

= D O O T D ©

10. Why have LVQ1, LVQ2, and LVVQ3 been developed and why have they become widely used? How
do they differ from SOM?

11. Give an example of bidirectional pattern association with a possible use of BAM.

12. Change the vigilance factor of ART1 to 0.0 and try the examples given in figure 4.20. What will
happen then? What will happen if the vigilance factor is 1.0?

13. Run a backpropagation simulator and train an MLP neural network with two randomly selected
training subsets A and B from the Iris data set (see appendix A). Observe the change in the training error
after each 500 training epochs of alternative training with A and B of the same network. How does the
training error decrease?

Part C: Project Specification
Exploratory Analysis of Different Connectionist Models
1. Choose your exploratory data set that contains data and labels of the class elements (see appendixes).

2. Train an MLP neural network with the backpropagation algorithm, using 75% of the data examples
for training and the remaining 25% for testing.
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a. Explore the correlation between the learning rate and momentum and the speed of training when a
training error of 0.001 is chosen to stop the training process. For example, use different values such
as:

I. Learning rate 0.1, momentum 0.5

Il. Learning rate 0.5, momentum 0.5

lii. Learning rate 0.5, momentum 0.9

Iv. Learning rate 0.5, momentum 0.1

Which values for the learning rate and momentum do you think are the best for your neural
network?

b. Explore the influence of the number of hidden nodes and number of layers on the training and test
error and on the time for training

3. Train a Kohonen two-dimensional SOM and label it. Use 75% of the data for training and the same
data for labeling. Test the SOM with the remaining 25% of the data. a. Explore the dependence between
the classification error and the size of the map; use, for example, 5 x 5, 10 x 10, 20 x 20 SOMs. b.
Explore the influence of the gain factor and the number of training epochs on the time for training. c.
Would the classification error improve if the LVQ algorithm were used?

4. Train an MLP of type FUNN-1 (figure 4.38) after applying fuzzy quantization over the input and
output variables. Test the network on the same data as in (2) and (3). Use the backpropagation
algorithm.

5. Compare the results obtained by using different connectionist models on the same data set. Which
model is the best one for your task?

4.11 Conclusion

Different connectionist models are introduced in this chapter. They are characterized by the types of
neurons used, the organization of their connectionist structure, and methods for learning and recall. For
this reason, they have different properties which can be used for solving different problems. But all of
them are characterized by some common characteristics: learning, generalization, robustness, and
massive parallelism.
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One of the structural characteristics of the connectionist models makes them very attractive for
hardware realization, namely, their massive parallelism. A hardware realization of an artificial neural
network makes possible building machines that will be faster than the human brain at solving difficult
problems.

Some of the numerous applications of the different connectionist models presented in this chapter are
discussed in chapter 5. They make these models extremely useful for solving problems and for
knowledge-engineering regardless of how much they contribute to our understanding of how the real
brain works.

4.12 Suggested Reading
The following references are given for further reading on specified subjects:

Computational models of the brain—Arbib (1987, 1995); Churchland and Sejnowski (1992); Amit
(1989); Anderson (1983a,b); Stillings et al. (1995); McShane (1991)

Brief overall presentation on the major neural network models—Arbib (1995); Rumelhart and
McClelland (1986); Lippman (1987)

Detailed presentation on the major connectionist models and their applications—Hertz et al. (1991);
Zurada (1992)

Algorithms and programs for implementing the major connectionis models—Freeman and Skapura
(1992)

Easy-to-read introduction to some basic principles of neural networks—Smith (1993); Davalo and Naim
(1991); Anderson (1995)

Fuzzy neurons and fuzzy neural networks: Yamakawa et al. (1992a); Yamakawa (1994), Gupta (1992);
Furuhashi et al. (1993); Kasabov (1995c, 1996); Khan (1993); Hashiyama et al. (1993)
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5
Neural Networks for Knowledge Engineering and Problem Solving

This chapter has two major objectives, namely, to present (1) approaches to using neural networks for
problem solving and knowledge engineering, and (2) applications of neural networks for solving generic
problems.

The main idea behind using neural networks for problem solving is their ability to learn from "past” data
and to generalize when responding to new input data. But there are other approaches to using neural
networks, such as analyzing neural networks and extracting rules, and explicit knowledge, and inserting
rules into connectionist architectures for the purpose of approximate reasoning.

This chapter also presents applications of connectionist systems for solving typical problems such as
pattern recognition and classification, speech and language processing, time-series and analogy-based
prediction, diagnosis, decision making, control, optimization, and game playing.

5.1 Neural Networks as a Problem-Solving Paradigm

Any of the generic problems discussed in chapter 1 can be solved with the use of neural networks, but
how? What is it that makes neural networks such a powerful problem-solving tool?

5.1.1 The Paradigm

The generic characteristics of neural networks, discussed in chapter 4, make possible their use for:

. Function approximation, when a set of data is presented
. Pattern association
. Data clustering, categorization, and conceptualization
. Learning statistical parameters
. Accumulating knowledge through training
. "Extracting™ knowledge through analysis of the connection weights

Inserting knowledge in a neural network structure for the purpose of approximate reasoning



Neural network models provide massive parallelism, robustness, and approximate reasoning, which are
Important for dealing with uncertain, inexact, and ambiguous data, with ill-defined problems and sparse
data sets. All the above-mentioned points are discussed here. The problem-solving process, when using
neural networks, comprises two phases (figure
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Neural networks as a problem-solving paradigm.

5.1): (1) the training phase, when training examples are used for training a neural network, or rules are
inserted in its structure; and (2) the recall phase, when new data are fed into the already trained network
and a recall algorithm is used to calculate the results.

Following the representation of the problem-solving process as mapping the domain space into the
solution space through problem knowledge, given in chapter 1, this process can be viewed here as
mapping the problem domain space into an input state space of a neural network; mapping the solution
space into an output space of the neural network; and mapping the problem knowledge (past data and
rules) into the synaptic space of all the connection weights of a neural network (or collection of
networks); the synaptic connection weights accommodate the problem knowledge (figure 5.2).

There are some general steps to follow when using neural networks as a problem-solving paradigm:
1. Problem identification. What is the generic problem and what kind of knowledge is available?
2. Choosing an appropriate neural network model for solving the problem.

3. Preparing data for training the network, which process may include statistical analysis, discretization,
and normalization.

4. Training a neural network, if data for training are available. This step may include creating a learning
environment in which neural networks are "pupils.”

5. Testing the generalization ability of the trained neural network and validating the results. Different
approaches can be used, as discussed below.
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Figure 5.2
Solving problems with neural networks as mapping.

6. Optimizing the architecture, if necessary, which may require a repetition of some of the above steps
until satisfactory validation results are obtained. Special strategies to improve the neural network
performance may be needed.

The following subsections discuss the implementation of these steps.
5.1.2 Problem Identification and Choosing the Neural Network Model

Before starting to develop a solution to a given problem, questions must be answered. What is the point
of using a neural network for solving that specific problem? Why should a neural network be used?
What are the benefits of using a network? The generic properties of different neural network types, and
connectionist models in general, must be known to answer this question. What properties are going to be
useful for solving the problem?
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Problem identification also includes analysis of the existing problem knowledge. The problem
knowledge may contain data and rules. If data are available, the independent variables (the input
variables) should be clearly distinguished from the dependent variables (the output variables) in order
to choose a proper neural network architecture and a learning method. These variables can be discrete,
continuous, linguistic, boolean, etc. In some cases, only input variables are present. In this case,
unsupervised learning algorithms and appropriate neural networks can be used to cluster, to
conceptualize, and to recognize patterns in the domain data.

If rules are available in the problem knowledge, they can be implemented in an appropriate neural
network structure. Especially suitable for connectionist implementation are fuzzy rules. If both rules and
data are available, then hybrid systems, which incorporate both neural networks and symbolic Al
techniques, can be used, or a neural network can be trained by using both data and rules, the latter being
treated as hints or input-output associations.

Choosing the neural network model depends on the type of problem knowledge and on the context of
the problem to be solved.

5.1.3 Encoding the Information

Neural networks consist of inputs, outputs, neurons, connections, and so forth. How should existing
knowledge and information about the problem be encoded to solve the problem with a neural network?
Two possible ways of representing knowledge in neural networks are (1) local representation, where
every neuron represents one concept or one variable, etc., and (2) distributed representation, where a
concept or a value for a variable is represented by the collective activation of a group of neurons.

Each way has alternatives. For example, we can represent an output variable that has the context of
"percentage™ as one neuron (activation values from 0 to 1, a value of 0.01 corresponding to 1%, etc.).
Another possible neuronal encoding may use 10 neurons for a "thermometer" encoding (the first neuron
represents percentage from 0% to 10%, the second, from 10% to 20%, etc., 100% being represented by
the activation of all the output neurons).

When MLP with logistic activation function is used, the output (target) values o are usually chosen in
the interval [0.1,0.9] rather then in [0.0, 1.0] as the derivative of the logistic function which is o(1-0) has
a value of 0.0 foro=0.0and 0 = 1.0.
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Output activation values can be interpreted differently, depending on the context of the problem, either
as a kind of probability for an event to happen, or as a kind of certainty, confidence, or degree of an
event that has happened but only in part, or simply as a value of an output variable.

Encoding the input information is sometimes difficult. This can be caused by problems such as missing
values for some of the variables, and unknown dependencies between the problem variables and
difficulties in choosing the appropriate set of features. This is the problem with the feature space. Should
it be large, or can a better solution be achieved if a smaller number of input variables are used, thereby
achieving a smaller problem space?

There are some approaches to solving the first problem. For example, the data instances (training
examples) with missing information can be omitted if there are enough other examples. But a better
solution may be obtained if the missing values are substituted by the mean value for the corresponding
variable over the whole data set.

The second problem seems to be more difficult. Too many variables require much space and time (for
training) and may be the cause of a degraded solution due to the introduction of noise through redundant
variables and their (possibly) numerous values. Too small a number of variables may not carry sufficient
information for solving the problem.

One possible solution to this problem is to analyze the sensitivity (S;) of the neural network to individual
variables, say x;. In this case all the values for xi in the training data set are substituted with the mean
value Mx; for x;, and for each individual example j =1, 2, . . ., p, the error E(M(xi)) is compared to the
error E(x;) when xi is used with its real value Xx;:

5 = ¥ (Eix;) — E(IM{x,))/p

Variables with small sensitivity are deleted from the data set, which will increase the speed of training
and reduce the size of the network.

Some techniques are often used when preparing data for training a neural network, one of them being
normalization. The neuronal input signals may be normalized into the same scope, usually in the interval
of [0, 1], or [-1, 1]. This makes all the neuronal inputs of equal importance. Normalization can be:

. Linear, with the use of the formula:

Xif, norm = ':-ti,' B Il.mln]"'{xl.rnu - xi.rmn}"
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where X; is a real value, X; .. IS @ normalized value, and X; ,;, and X; .., are, respectively, the
minimum and the maximum values for the variable xi.

. Logarithmic normalization, where logarithms of the values for the variable xi are used instead of
using the real values from the data. This is necessary if the domain of a variable is very broad, for
example, winning cash from a lotto competition can be between $1 and $1 million; a person's income or
a company's weekly profit can be any value between $0 and, say, $10,000. There is also evidence (see
Cornsweet 1970) that logarithmic scaling is used in biological systems. This also affects the information
processing in neural networks, e.g.: log x,; + logx, = log(X; - X,).

Transforming the output-values of the neural network back to real attribute-values, requires the
application of an inverse formula, which for the case of linear normalization is:

."':'j = F; TS I1] + {J"u'.m,u - .|"i. m..u.l[':;'J - ”l.n.i:‘.}.":l:.':'l.mﬂ - ':rl.m.lu ]l

where oi is the value of the output from a neuron that represents the output variable yi, and 0; ,, and 0; .,
are the minimum and maximum output values for the neuron.

Actually, input data to a neural network represent values of a set of features. What features to use
depends on the task and the goals. One possibility is to use fuzzy representation (transformation) or real
data as input features of neural networks. Using fuzzified data for training neural networks has the
following advantages:

Faster training and better generalization.
Easier rules extraction and network interpretation.
Fuzzy labels are extra information (knowledge), which may lead to a better solution.

It is easy to adjust fuzzy labels according to new situations, thus making the whole system
adaptable to new circumstances. For example, 30 years ago, a weakly wage of $400 was considered to
be "good", now it is "low." So, using "old" data is still possible but appropriately labelled.

5.1.4 Training Neural Networks and Validating the Results

Training a neural network requires answering the following two groups of questions, which have
specific answers depending on the task and the type
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of the network used. The first group of questions relates to the design of a learning environment where
neural networks are "artificial pupils" that are expected to learn something. The following questions
should be discussed here:

. What features should neural networks learn?

. What learning strategies to apply, for example: learning simple features first; dividing the whole
task into smaller sub-tasks and training the system on each of the sub-tasks individually, etc.?

. Preparing data for training according to the set strategies; Use of real and synthetic data, etc.

The answers of the above questions may require bringing to this field knowledge from educational
psychology, design and engineering, mathematics, and cognitive science.

The second group of questions relates to technical issues, such as:

. What are the neural network architecture and the training algorithm which best suit the task?
. How to initialize the network before starting the training procedure?
. How long to train the network (how many epochs, cycles, iterations, should the training take)?

When to stop training?
. How to calculate the training error?

. What training error can assure a good generalization? How to evaluate the generalization ability
of the network and its validation?

. How to recognize the convergence?

. How to choose the training parameters, for example, the learning rate, momentum, etc.,
depending not only on the training algorithm used but also on the training data?

The problem of choosing the best neural network type and architecture and a corresponding training
algorithm is discussed briefly later in this section, but it is a heuristic process based on analysis on the
available neural network techniques and the requirements of the problem.

Initialization of a neural network means setting the connection weights to some initial values before
starting the training algorithm. The initial set of weighs brings the initial error E, of the network over the
training data to a certain point in the error surface in the weight space. This starting
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point is important because sometimes, depending on the algorithm, the network goes to the nearest local
minimum to this point instead of going to the desired global minimum. Small random numbers set as
initial weights usually improve the training results. But there are other algorithms for initialization,
which make use of available information, fuzzy rules, which are extracted from the data set can be used
to set the initial weight matrix W, to a point in a region possibly near to where the global minimum is
expected to be (Kasabov 1996).

Two types of error can be calculated in general: (1) when training and (2) when using a network. The
error calculated on the basis of the reaction of the neural network to the data used for its training is
called apparent error or training error. It is usually calculated as a mean-square error (see chapter 4). It
Is important to achieve a small (e.g., 0.001) apparent error, but the network may overlearn data, that is, it
may be bound too strongly to the training data and therefore perform an inaccurate generalization.

The test (validation) error is calculated when, after having a network trained with a set of training data,
another set (test, validation, cross-validation), for which the results are also known, is applied for a recall
procedure. The test error (E,.) can be calculated differently, two formulas being

Elnl = {ﬂ' = ¥ :.'I.I"'I.I:tﬂ"
;—;m p= l% Lest " -!.'“1}
where 0;, is the jth output value for the pth testing example, y;, is the desired output for the pth testing
example, and N, is the number of test examples, and
'E1H1 =N / ""II

¥oprrect! ¥ Tieste

where Ngyecr, 1S the number of correctly processed test examples and N, is the total number of test
examples.

Some schemes to conduct validation are as follows:

. Divide the whole data set into two disjoint sets, training and test, the first being, for example,
75%, and the second being 25%. This approach is applicable when there are enough data examples. The
problem of which data to use for training and which for validation can be solved by random selection, or
by applying some specific selection criteria imposed by the nature of the problem. If there are not
enough data, this method is not very appropriate. It is always tempting to use the whole data set of N
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examples for training, but the problem then arises of how to then validate the results.

. Use the leave-one-out method: One example x® is left for validation, and the remaining (N - 1)
examples are used for training. This is repeated N times, when N different neural networks are trained
and then tested with the one left out example. The average of all the validation errors is then calculated:

Eg= Y E(x")/N
p=L.N

This method may be very time-consuming for a big training set.

. Fold cross-validation: Here, all the N data examples from a data set D, are used for training and
the trained network is then used as an initial set W, of weights for validation. The validation is done by
dividing the whole data set randomly into several disjoint subsets, D; (j = 1,2, . . ., k), where k is a small
number, usually k =5, k = 10. Then the network Wo is trained k times with each of the data sets D/D;
and validated with D, the error being E.(D;) The total validation error is calculated as an average value
of all the errors Etest(D)), forj=1, 2, .. ., k (Geisser 1975).

5.1.5 The Problem of Choosing the *'Best™ Neural Network Model

Neural networks are universal function approximators. They are "model-free estimators” (Kosko 1992)
in the sense that the type of function is not required to be known in order for the function to be
approximated. One difficulty, though, is how to chose the best neural network architecture, that is, the
neural network model with the smallest approximation error. When a multilayer perceptrons (MLPs) are
used, this is the problem (already discussed in chapter 4) of finding the optimal number of hidden nodes.
In addition to the heuristics given there, some other techniques are applicable, such as:

. Growing neural networks. Training starts with a small number of hidden nodes and, subject to the
error calculated, the number of the hidden nodes may increase during the training procedure.

. Pruning. This technique is based on gradually removing from the network the weak connections
(which have weights around 0) and the neurons connected by them during the training procedure. After
removing redundant connections and nodes, the whole network continues to be trained and the rest of
the connections "take the functions which the
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pruned ones might have been doing.” Pruning may be implemented through learning-with-forgetting
methods, when the weak connections gradually fade away and eventually get pruned (Ishikawa 1995).

Growing and pruning are also applicable to input neurons, thus making the whole neural network
dynamically changing according to the existing information in the data set.

5.2 Connectionist Expert Systems

In chapters 2 and 3 we presented block diagrams of a symbolic A5 expert system and a fuzzy expert
system. Here we introduce connectionist expert systems. These are expert systems as previously defined,
which have their knowledge base represented in a connectionist structure. The neural network properties
of learning and generalization, adaptability, robustness, associative storage of information, massive
parallelism, and other characteristics make them a very powerful paradigm for building knowledge-
based expert systems.

5.2.1 Architectures and Approaches to Building Connectionist Expert Systems

A general architecture of a connectionist expert system (CES) is given in figure 5.3. It is distinguished
from the symbolic Al and fuzzy expert systems in the way problem knowledge is used. Here problem
knowledge need not only be a set of heuristic rules but can also be given as a set of past experience
examples, for example, case studies of how a physician has previously treated patients. A CES may
contain the following modules:

. A connectionist knowledge-based module, represented (either partially or fully) as a connectionist
architecture. Four different approaches to its building are:

1. Past, historical data are used to train a network. After training, the network contains the system's
knowledge.

2. Existing problem knowledge, for example, rules, is implemented in a neural network. One way to do
this is to represent the rules in the form of a set of training examples and train a neural network with
these examples using standard training algorithms, as presented in chapter 4. The rules are considered as
Input-output associations to be learned by a neural network.
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Figure 5.3
Connectionist expert system.

3. Existing problem knowledge, for example, rules, is used to prewire (to calculate the connection
weights) a network structure instead of training it. This is the case of inserting explicit knowledge in a
neural network structure. Such systems, one of them being the class of connectionist production
systems, are discussed later in this chapter.

4. All of the above methods are used for building the system. For example, the neural network is
prewired according to an existing (initial) set of rules and then trained with data—either past data or
current data accumulated when the system is running.

Apart from the above approaches it is possible to combine knowledge represented in a symbolic or fuzzy
form with knowledge represented in a connectionist form. Such systems are called hybrid systems and
are discussed in chapter 6.

. A connectionist inference control module, which controls the information flow between all the
modules and initiates inference over the connectionist knowledge base. A connectionist inference is
characterized by some desirable features, one of them being approximate reasoning, that is, if the new
input data do not match exactly the previous examples or the conditions in the problem knowledge rules,
a solution close to an optimal one is found. Approximate reasoning in connectionist systems is possible
because of their faculty for generalization. Different methods for approximate reasoning in connectionist
systems have been developed, depending
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on the task and on the neural network architecture used. Some of them are discussed below.
Connectionist systems can realize different reasoning strategies and methods, including fuzzy
reasoning methods, finite automata reasoning, and exact symbolic Al reasoning.

. Rules extraction module, which analyzes the connectionist knowledge base and produces the
underlying rules that are inherent, or "buried," in the data. Methods for rules extraction are presented
later.

. Explanation module, to explain to the user the behavior of the system when reasoning over
particular input data.

. User interface module, which "communicates™ with the user or with the environment. As a user
interface, a spoken or natural language interface can be used, developed on the basis of using neural
networks or other techniques.

Different techniques for building connectionist systems for problem-solving and connectionist expert
systems in particular, and their applications for solving generic and specific Al problems, are given in
the remainder of this chapter. The first two approaches to building a connectionist knowledge-based
module are explained in the next two subsections.

5.2.2 Building Connectionist Knowledge Bases from Past Data

When problem knowledge is represented by a set of past data, a neural network can be used and trained
with the data. The network should then be treated as a connectionist knowledge base. The data used can
be exact or fuzzy or a combination of both.

Example To illustrate training a neural network with exact data and with fuzzy data, we use data for
bank loan applicants. Instead of having fuzzy rules, as was the case in chapter 3, we have a set of
examples of loan applications and their degree of approval, each of the examples consisting of three
input variables (CScore, CCredit, CRatio) and one output variable—the decision level (DL).

a. Using exact training data an MLP neural network, with 3 input neurons, 11 intermediate nodes, and 1
output neuron, to be trained with the use of the backpropagation algorithm, is shown in figure 5.4. The
number of hidden nodes is assigned to be equal to the number of supposed
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Figure 5.4
A neural network for training with the exact data for the
Bank Loan Decision problem.

different groups of applicants. Such a relatively large number of hidden nodes would facilitate effective
training on a very large data set. Testing the validity of the neural network after training can be done
with an use of a test set.

b. Using fuzzy input data: The three exact input variables above are fuzzy-quantized into six fuzzy
values using the fuzzy membership functions given in chapter 3; the output value is represented by two
fuzzy numbers, corresponding to the two membership functions of the fuzzy output labels "approve" and
"disapprove" (figure 5.5). Figure 5.6 shows the results for three test data examples. The results for the
first and for the second application cases are as expected. The network does not infer any particular
decision for the third application case, which is also correct. The neural network's "answer" is "don't
know." The neural network "cannot suggest" anything about this application.

Some advantages to using this approach to building connectionist knowledge bases are easy and fast
knowledge base development, no need for interviewing experts, etc.; easy accommodation of new case
examples
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Figure 5.5
A neural network for training a connectionist system for the Bank Loan
Decision problem with fuzzified data.
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Figure 5.6
Testing the neural network from figure 5.5 with three test cases. Here, SH,
SL, RE, RB, CE, CB denote the membership degrees to which the input
data belong to the input fuzzy values, and DA and DD are the inferred
degrees for Decision Approve and Decision Disapprove, DL is the level
of approval after defuzzification.
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as they come through further experience; and good approximate reasoning facilities; new cases are
judged on the basis of the closest past cases.

There are also disadvantages to this approach, namely, it is difficult to understand and explain the
solution; therefore there is a need for neural network analysis and explicit knowledge extraction for
justification and explanation.

5.2.3 Neural Networks Can Memorize and Approximate Fuzzy Rules

When problem knowledge includes explicit (fuzzy) rules, a connectionist system can be trained with
them, as with input-output associations where the input patterns are the antecedent parts of the rules and
the output patterns are the consequent parts. A fuzzy association A — B where A and B are fuzzy values,
defined, for example, by their membership functions, can be memorized in an n-input, m-output neural
network, where n is the cardinality of the universe Ux, m is the cardinality of the universe Uy, and x and
y are fuzzy variables with corresponding fuzzy values A and B (Kosko 1992).

This is the basis for using connectionist architectures for reasoning over fuzzy rules of the type IF x is A,
THEN y is B. An MLP neural network can be trained with a set of fuzzy rules. The rules are treated as
input-output training examples. When a new fuzzy set A" is supplied as a fuzzy input, the network will
produce an output vector that is the desired fuzzy output B'. The generalized modus ponens law can be
realized in a connectionist way. The following inference laws can also be satisfied by the same neural
network, subject to a small error: A — B (modus ponens); Very A - Very B; More-or-less A — More-or-
less B.

A method for implementing multiantecedent fuzzy rules on a single neural network is introduced in
Kosko (1992) and Kasabov (1993a). The dimension of the input vector is the sum of the used discrete
representation for the cardinality of the universes of all the fuzzy input variables. The dimension of the
output vector is the sum of the corresponding discrete cardinality of all universes of the output fuzzy
variables in the fuzzy rules. The fuzzy rules are assumed to have the same input and output variables but
different combinations of their fuzzy values. If OR connectives are used in a rule, it may require that
more training examples are generated based on combinations between antecedent parts of the rules. This
approach is illustrated in figure 5.7 on the set of the two fuzzy rules



Membarship
functions of
the Dacision

Cscona
Mambership functions of the input fuzzy varables

Cratio Coredit

Figure 5.7
33-11-11 neural network for the Bank Loan
Decision Problem.

Page 346

Outputs

Inputs

Case  Fuzzy decision

1 dooooo2elll
2 111373000000
1 656000001444

Figure 5.8

Fuzzy decision for three test cases for loan approval, obtained by using

an MLP neural network.

for the Bank Loan Decision problem. The MLP consists of 33 input nodes, 11 intermediate nodes, and
11 output nodes. The inferred bank loan fuzzy decision values for the same three bank loan applicants as
used in the example above, but here represented as fuzzy input values, are given as fuzzy membership
functions in figure 5.8. The experiments show that the decisions inferred by the neural network for the
three representative cases defined as fuzzy sets are correct. The ambiguity in the third solution vector

clearly suggests 'not known decision' case.

A chain of neural networks can be designed if the fuzzy rules base consists of chains of fuzzy rules, for

example:
Rule1l: IFXisAandYisB, THEN Zis C

Rule2:IFZisC, THEN P is D
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Using a chain of neural networks is a multimodular realization of the law of inference called
"syllogism™. A chain of neural networks is the simplest possible multineural network architecture that
can realize simple time and space hierarchies in the solution process.

Some advantages when using the discussed here approach to building connectionist knowledge bases
are: a possible mixture of rules and data examples, if available, in one system, and fast realization on
specialized hardware.

Possible disadvantages of the approach may be poor generalization, if the number of the rules is small
and the problem space large, because one rule is treated as one example, and inference results then may
be difficult to explain.

5.3 Connectionist Models for Knowledge Acquisition: One Rule Is Worth a Thousand Data
Examples

Indeed, a rule, being a "patch™ in the problem state space, may cover thousands of data examples. But
the number of the examples covered by a rule is not the most important point here.

We have already shown that neural networks can learn from data. But can we use what has been learned
by them to improve our understanding of the problems? Can we learn from what a network has? One
way to do this is to try to extract explicit knowledge, (e.g., rules) from a trained network. A module for
analyzing a connectionist knowledge base and extracting explicit knowledge may be crucial for putting a
connectionist expert system in practice, as many decision-making systems are not acceptable if they
cannot explain their behavior and "reveal the knowledge and the reasoning used in solving problems.
The rationale of the problem of knowledge acquisition is presented first.

5.3.1 Why Acquisition of Knowledge from Data Is Important

The traditional approach to building knowledge-based systems is to use rules articulated by experts and
to build an expert system. If only this approach is used, some problems arise:

. Experts develop their own internal representation of reality, which is only one aspect of the whole
process; a data set may contain much more than that.
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. Rules valid in one framework may not be valid in another, so it is desirable to be able to extract,
to learn rules regularly and easily from fresh, new data.

. Experts may not be aware of the underlying rules in existing data.

. It takes time for experts to learn rules from experience, which rules may reside peacefully in data
and may have been deeply buried there.

. It is extremely difficult to articulate, maintain, update, and implement a huge number of rules.
. The path from the expert to the machine is very noisy, that is, information can be easily lost or
corrupted.

One alternative to the standard approach is to build automatic learning machines which learn explicit
rules from data, if enough data are available. Rules extracted from data can be subsequently used for the
purpose of reasoning, explanation, understanding problems, and trying alternative techniques for solving
problems, for example, fuzzy inference machines and Al rule-based techniques.

Neural networks are appropriate candidates for the task of knowledge acquisition from data because of
the following:

. Neural networks can learn from past data and generalize over new data.

. Neural networks can learn to approximate a function from a table of input-output data.

. Neural networks can learn features from data.

. Neural networks can learn to distinguish groups, categories in which elements are grouped, either

in a supervised or unsupervised mode.
. Neural networks can learn probabilities and statistical distribution from data.

. Rules are associations between groups (“clusters™ and "patches") from the domain space and
"patches" from the solution space. Neural networks trained with data learn these associations.

The problem is how to extract the knowledge that a neural network has accumulated during training, that
Is, how to open the "black box" and see the rules there.
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There are different methods that can be applied for rules extraction from neural network architectures.
They can be classified in two major groups: (1) destructive learning, that is, learning by pruning the
neural network architecture during training; (2) nondestructive learning of rules.

Learned (or articulated) initial set of rules can be used to "prewire" a neural network before consecutive
training with real data for the purpose of better generalization. Two ways of achieving this task are (1)
setting only selected connections in a fuzzy neural network, and (2) weights initialization of a fully
connected neural network before training. The above groups of methods are presented in the following
subsections.

Extracting rules from data may subsequently mean loss of information. The way knowledge is extracted
restricts aspects of that knowledge and directs and biases the knowledge acquisition process. A data set
may contain much more than is extracted from it, for example, many more interdependencies between
attributes, many more relations, many more inference paths. Neural networks are only one technique.
Other techniques may be used alternatively or additionally, for example, genetic algorithms.

5.3.2 Destructive Learning of Rules in Neural Networks: Learning Through Forgetting and Pruning

Destructive learning is a technique that destroys the initial neural network architecture for the purpose
of better learning. One method in this class is structural learning with forgetting (Ishikawa 1995;
Ishikawa and Moriyama 1995), described below. The method is based on the following assumptions:

. Training of a neural network starts with all the connections present.

. A standard algorithm for training is used, but the weights "forget™ a little bit when they change
(see the "learning-with-forgetting™ rule in chapter 4).

. After a certain number of cycles, the connections, which have small weights (around 0), are
deleted from the structure (pruned).

. Training continues until convergence.

. The trained network consists of connections only, which represent underlining rules in data
between the input variables and the output variables.
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Forgetting can be selective, that is, only certain connections with small weights forget.

Some advantages of using this approach are that better generalization can be achieved when compared
with that of a fully connected trained neural network, and training is faster because unnecessary
connections are deleted.

A definite drawback of the method is that the neural network structure is destroyed after training; it may
not be possible to accommodate new data, significantly different from the data already used.

5.3.3 Using Competitive Learning Neural Networks for Rules Extraction

Clusters in the input-output problem space represent "patches" of data, which can be represented as
rules. Neurons in competitive learning neural networks learn to represent centers of clusters. A weight
vector w; may be viewed as a geometrical center of a cluster of data.

The above characteristic of competitive learning neural networks can be used for the purpose of rules
extraction, and finding fuzzy rules in particular (Kosko 1992). Figure 5.9 shows a two-dimensional input-
output space for learning rules of the form of IF X is A, THEN Y is B, where A and B can be defined
either as intervals for extracting interval rules or as fuzzy

¥
Smalli  Medium Large
Small -
X IF X is Small THEN Y is Larga
Madim IF ¥ is Larga THEN ¥ is Medium
Larga h .

Figure 5.9
A two-dimensional input-output space for learning rules. A
fuzzy rule represents a quadruple "patch” from the space
with which points of data have been associated.
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labels for extracting fuzzy rules. This clustering can be achieved in a competitive learning neural
network. The main requirement of learning rules through clustering in competitive learning algorithms is
that the training data set should include a significant number of samples. There are some characteristics
of this type of learning rules:

. The set of extracted rules may only partially cover the whole input-output space.

. If fuzzy quantization of the input and the output variables is used, then the set of fuzzy rules may
overlap, that is, one input data vector may be covered by several fuzzy rules.

. The number of rules can be controlled by a threshold of significance, being proportional to the
number of data elements in a cluster, so only significant rules may be extracted.

Figure 5.10 shows a three-dimensional space for learning rules for the Inverted Pendulum case example.

Example Fuzzy rules extracted from Water Flow to a Sewage Plant data (see appendix C) are given in
figure 5.11A. The rules have two input variables: the day, a holiday or workday and time of the day, and
one output variable: the water flow. The number of rules extracted can be controlled by a threshold
which defines how many data points at minimum have to be associated with a "patch™ so that this
"patch” is represented as a rule. The rules extracted may be approximate and further

,./"'/,‘ An output space for a competitive

| lparning. The dimensional axes are

Current - luzzy discratised.
O
AR fi (Fuzzy values)
e A8 Current
Figure 5.10

A three-dimensional space for learning rules for the Inverted
Pendulum case example.
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a.

RULE TGRulel:

IF {xay [5 Holy AMD (Time [5 Very_early_moming) THEN Flow = Medium
RULE TGRulel;

IF (Day I5 Hol) AMD (Time 15 Earldy_morning) THEM Flow = Quite_big_actually
RULE TGRule2:

IF (Day 15 Hol) AND (Tune 15 Late_moming) THEN Flow = Quite_big_actually
RULE TGRule3:

IF (Day 15 Hol) AND (Time IS Afternoon) THEN Flow = HIGH
RULE TGRuled:

IF (Duy IS Hol) AND (Time 15 Evening) THEN Flow = HIGH
RULE TGRubeS5:

IF (Day I5 Hel) AND (Time 15 Night}) THEN Flow = Quite_big_actually
RLULE TGRulet

IF (Day 15 Weekday) AND (Time 15 Very_early_moming)
THEM Flow= Quite_big_actually
RULE TGRuleT:

IF (Day 15 Weekday) AND (Time 15 Early_morning)
THENM Flow = Quite_big_sciually
RULE TGRule8:

IF ([Day 15 Weekday) AND (Time 15 Lae_morning) THEN Flow = HIGH
RULE TGRuleS:

IF Day IS Weekday) AND (Time 15 Afternoon) THEN Flow = Medium
RULE TGRulel:

IF {Day 15 Weekday) AND (Time 15 Evening) THEN Flow = Medium
RULE TGRulel 1:

IF (Dray 15 Weekday) AND (Time 15 Night) THEN Flow = Mediom

b.
180 ¢

ly | = Pradoed

—_— e = = o = = p— p— p—

Figure 5.11
(a) Fuzzy rules extracted through differential competitive learning
implemented in a tool (TIL Shell, 1993) for the water flow prediction
(see appendix C). (B) The rules are applied for predicting new values
through max-min compositional inference.
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refinement may be needed. This is illustrated in figure 5.11 B, where the extracted rules have been
applied through a MAX-MIN compositional fuzzy inference method for predicting the next-hour water
flow for a set of test data for 199 hours ahead. The prediction is too rough, even though the tendency and
the peaks in the next-hour water flow have been predicted. Because there are no rules for the "Low"
value of the water flow, the flow predicted by using the rules is much higher than the actual. After a
rough set of fuzzy rules is extracted, further refinement of these rules may be achieved by.

. Using more fuzzy labels to quantize the input and output variables
. Using another inference method one more suitable for the actual application task
. Using a more precise form of rules by adding coefficients of importance and other parameters for

representing the uncertainty in the data set

. Inserting the initial rules into a connectionist structure, with further training and consecutive
(refined) rules extraction (Okada et al. 1992; Kasabov 1996).

The approach presented here uses real data for training a competitive learning neural network. Fuzzy
rules were then extracted based on fuzzy quantization. But a neural network can also be trained with
fuzzified data, which is the case in the method presented in the next subsection.

5.3.4 Neural Networks for Learning Fuzzy Rules with Degrees of Importance and Certainty Factors:
The REFuUNN Algorithm

An algorithm called REFUNN (rules extraction from a fuzzy neural network) is presented here. The
REFuUNN algorithm, first published in Kasabov (1993b) and further refined in Kasabov (1995c), is a
simple connectionist method for extracting weighted fuzzy rules and simple fuzzy rules in the form of:

Rulei: IF x;is A;; (DI1;) and x, is A,i(Dly) and . . . and x, is A,(DI,), THEN y is B; (CFi)

where A;, Bi(i=1,2,...n;j=1, 2,...K) are fuzzy values (labels) defined by their membership

]
functions, DI are relative degrees of importance attached to the condition elements in the rules, and CFi

IS a confidence factor attached to the rule.
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The method is based on training an MLP architecture with fuzzified data. The REFUNN algorithm,
outlined below, is based on the following principles:

1. Simple operations are used and a low computational cost is achieved.
2. Hidden nodes in an MLP can learn features, rules, and groups in the training data.

3. Fuzzy quantization of the input and the output variables is done in advance; the granularity of the
fuzzy representation (the number of fuzzy labels used) defines in the end the "fineness"” and quality of
the extracted rules. Standard, uniformly distributed triangular membership functions can be used for
both fuzzy input and fuzzy output labels.

4. Automatically extracted rules may need additional manipulation depending on the reasoning method
applied afterward.

The REFUNN Algorithm

Step 1. Initialization of an FUNN A fully connected MLP neural network is constructed as shown in
figure 5.12 where an exemplary structure for the Bank Loan case example is also shown. This FUNN is a
part of the fuzzy neural network architecture shown in figure 4.38 (see the explanation in chapter 4). The
functional parameters of the rule layer and the output fuzzy predicates layer can be set as follows:
summation input function; sigmoid activation function; direct output function.

X1is A1

Figure 5.12
A general architecture of a network for learning fuzzy rules and a
particular architecture for the Bank Loan Decision Problem. Each of
the fuzzy input variables is discretized, the last one, xk, being discretized
into m labels. The output variable has | fuzzy labels.
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Step 2. Training the FUNN A supervised training algorithm is performed for training the network with
fuzzified data until convergence. A backpropagation training algorithm can be used. A part of the
trained FUNN with data generated for the Bank Loan case example is shown in figure 5.13. Stepwise
training and zeroing can also be applied.

Step 3. Extracting an initial set of weighted rules A set of rules {r;} is extracted from the trained
network as follows. All the connections to an output neuron B that contribute significantly to its
possible activation (their values, after adding the bias connection weight if such is used, are over a
defined threshold Th,) are picked up and their corresponding hidden nodes R;, which represent a
combination of fuzzy input labels, are analyzed further on. Only condition element nodes that support
activating the chosen hidden node R; will be used in the antecedent part of a rule R, (the connection
weights are above a threshold Th,). The weights of the connections between the condition-element
neurons and the rule nodes are taken as initial relative degrees of importance of the antecedent fuzzy
propositions. The weights of the connections between a rule node R; and an output node B; define the
initial value for the certainty degree CF;. The threshold Th, can be calculated by using the formula:

Th, = Net,,,/k,

218 59 189
. o
SH / 5L RG RE cc |\ ce
| n \ \
0.57 0.05 0.42 03 1.44 A3
0.6 0 057 -0.32 1.37 77
Figure 5.13

A part of the trained network for learning fuzzy rules from
data about the Bank Loan Decision Problem.
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rl: [SHID.6) & RGIO.ST) & CG(1.37T)]) (2.73) -> DA;
r2: [SHIDST)& RGIO42) & CG{144)] (2.19) -» DA

rd: [SLO1.47) RB(1.54) CR(2.60)] (3.28) -> DD:

4

rds [SLOL39Y RBOLOSYCBOLT0] (225 = DD
r5 ISLI0.18) RBI0D.9) CBI1.9) ) (1.89) .= DD,
rh: [SLI095) RB(O.RS) CB(1.45)] (1.54) -> DD;

r7: [SL{0.65) RBI0.63) CB(1.17)] (1.29) -> DD.

—

Figure 5.14
Initial set of fuzzy rules extracted from an MLP trained with fuzzified data
for the Bank Loan Decision Problem.

where Net,, IS the desired value for the net input to a rule neuron to fire the corresponding rule, and k is

the number of the input variables. Figure 5.14 shows a set of initial set of weighted rules extracted for
the Bank Loan example.

Step 4. Extracting simple fuzzy rules from the set of weighted rules The threshold Th,. used in step 3
was defined such that all the condition elements in a rule should collectively trigger the activation of this
rule. This is analogous to an AND connective. The number of fuzzy predicates allowed to be represented
in the antecedent part of a rule is not more than the number of input variables (one fuzzy predicate per
variable at most). The initial set of weighted rules can be converted into a set of simple fuzzy rules by
simply removing the weights from the condition elements. Some antecedent elements, however, can
trigger the rules without support from the test of the condition elements, that is, their degrees of
importance DI; = w; (connection weights) are higher than a chosen threshold, for example, Thys =
Net,.,.. Such condition elements form separate rules, which transformation is analogous to a
decomposition of a rule with OR connectives into rules with AND connectives only.

Example If there is an initial weighted rule

IF x,1s A (8.3) and x,is B (1.2), THEN y is C,
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and a threshold of Thog = 5.0 is chosen, then two separate simple fuzzy rules will be formed:

IFx,isAand x,isB THEN yis C
IF x,isA, THEN y is C.

The AND and OR connectives used here are vague, weak, and loosely defined. An AND connective
should rather be expressed as a "mutual support™ between variables or as synergism.

Step 5. Aggregating the initial weighted rules All the initial weighted rules {r;, r;,. . .} that have the
same condition elements and the same consequent elements, subject only to different degrees of
importance, are aggregated into one rule. The relative degrees of importance DI, are calculated for every
condition element A; of a rule R; as a normalized sum of the initial degrees of importance of the
corresponding antecedent elements in the initial rules r;. The following two rules R1 and R2 were
obtained by aggregating the initial rules from figure 5.14:

R1: SH(1.2) AND RG(1) AND CG(2.5) — DA

R2: SL(1.1) AND RB(1) AND CB(1.8) DD

An additional option in REFUNN is learning NOT connectives in the rules. In this case negative weights
whose absolute values are above the set thresholds Th, and Th, are considered and the input labels
corresponding to the connected nodes are included in the formed simple fuzzy rules with a NOT
connective in front. This algorithm is illustrated on the Iris data set in section 5.11 of this chapter.

Other algorithms for fuzzy rules extraction from a trained fuzzy neural network can be found in d'Alche-
Buc et al. (1992); Yi and Oh (1992); Mukaidono and Yamaoka (1992); and Hayashi (1991).

5.3.4 Tuning Fuzzy Rules and Membership Functions in Fuzzy Neural Networks

One of the main problems in building fuzzy systems is the problem of defining fuzzy membership
functions for the fuzzy-quantizing concepts (fuzzy sets) in addition to the problem of defining fuzzy
rules. Fuzzy neural networks (FNNSs) can be used for this purpose. An FNN is set according to an initial
set of fuzzy rules and initially defined membership functions, as explained in chapter 4. After training
with data, more precise fuzzy rules
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can be extracted from the FNN and more precise membership functions, both of which reflect the
information contained in the training data used. The FNN tunes the membership functions in the
antecedents of the rules and identifies the fuzzy rules by adjusting the connection weights. Figure 5.15A
and B shows an FNN and the 10 rules about bond rating implemented in the structure of the FNN
(Okada et al. 1992). After training, the membership functions change (see figure 5.15C) and so do the
weighting coefficients for the fuzzy rules. As well as being useful for tuning and extracting fuzzy rules
and membership functions, the FNN provides better results. The FNN is in this case faster than an MLP
when training, and more accurate when tested. A bell-shape membership function for the label
"Medium" is realized in figure 5.15A by adding two sigmoids multiplied to 1 and -1 correspondingly.

The connection weights between the input layer and the second layer, which are subject to change
during training, represent the sigmoid parameters. The connection weights between the rule neurons and
the consequent fuzzy labels nodes represent the weighting (confidence) of the rules. The sixth, seventh,
and eighth layers realize COG defuzzification. That could be done in a simpler connectionist structure
(see Neo-Fuzzy Neuron, chapter 4) if uniformly distributed triangular membership functions were
assumed for the output variable.

5.3.5 Using an Initial Set of Rules for Initialization of Connection Weights Before Training

A set of existing or initial fuzzy rules extracted from a data set can be used for achieving better
generalization in an MLP neural network, still keeping all the connections in it for possible further use.
Initial rules can be used for defining the number of hidden nodes and for calculating the initial values for
the connection weights. If n rules of the form of the ones used in the REFUNN algorithm (see above) are

known, then a three-layer MLP can be initialized as follows: "ii = DI/ 3 Dijs, if the fuzzy label A;
takes part in the rule R;, or w;; = 0 otherwise, for the connections between the input nodes i (i = 1,
2,...,k)and hidden nodes j (j =1, 2,...,n),and w, = CD;, (j = 1,2,. .. ,n) for the connections between
hidden nodes j (j = 1,2,. .. ,n) and output nodes I. Initialization by using fuzzy rules brings the starting
weight vector W, of the network into a region where the convergence state is anticipated, thus resulting
in faster convergence and better generalization (Kasabov 1996). It is not required here that the
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neural network be set with a few connections only, as is the case with the FNN (Okada et al. 1992).
Here, all the connections are kept during the initialization, but some of them, which represent initial
rules, have values different from zero. Training and zeroing techniques may be applied.

We have discussed so far fuzzy rules insertion and implementation into connectionist structures, fuzzy
neural networks. But what about symbolic rules, i.e. propositional rules, production rules, predicate
clauses, etc.? These are discussed in the next section and in chapter 6.

5.4 Symbolic Rules Insertion in Neural Networks: Connectionist Production Systems

Building a connectionist rule base is possible not only by training a neural network with a set of data
examples but by inserting existing rules into a neural network structure (see 5.2). Using connectionist
representation of problem knowledge has all the advantages of the connectionist systems. It therefore
deserves attention. This problem was discussed for fuzzy rules and fuzzy neural networks. Here it is
discussed for rigid, symbolic rules.

5.4.1 Representing Symbolic Knowledge as Neural Networks—Why and How?

The standard neural network models have been developed for solving problems based on learning from
examples. They have been inspired by the physiology of the human brain and what is known of its
structure and organization.

On the other hand, there are many methods for representing and processing explicit knowledge that are
claimed to be psychologically plausible. The gap between the physiological processes in the brain and
the cognitive processes is still not understood. But from an engineering point of view, it is possible to
design artificial neurons and neural networks that are dedicated to representing and processing existing
structured knowledge. This approach brings the advantages of connectionism, that is, learning,
generalization, robustness, massive parallelism, etc., to the elegant and beautiful methods for symbolic
processing, logical inferences, and goal-driven reasoning.

How can both paradigms be blended at a low, neuronal level? How can structured knowledge be built up
in a neuron and in a neural network, and a connectionist rule-based system realized?
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Figure 5.15
Implementing 10 rules for bond rating as a fuzzy neural network
(FNN). (Adapted with permission from Okada et al. 1992.)
(A) The structure of the FNN defined and initialized according
to the initial set of fuzzy rules. (B) The initial set of fuzzy rules
for bond rating. (C) The initial and modified membership
functions after training.
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Figure 5.15
(continued)

Representing symbolic knowledge, for example, production rules, predicates and clauses, frames, etc., in
a neural network structure requires appropriate structuring of the neural network and special methods.

A neural network that has been built to represent structured knowledge may have connections that are
fixed, that is, the network cannot learn and "improve" its knowledge; and adaptable, that is, the network
can learn in addition to its previously inserted structured knowledge; it can adjust, improve, and modify
it in a similar way to the FNN (see figure 5.15).

Once rules are represented in a neural network, the type of inference has to be defined. A great
advantage to using neural networks for
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Figure 5.16
A simple binary neuron which realizes AND and OR
propositional rules in different ways.

implementing rule-based systems is their capacity for approximate reasoning. It is true only if the
neurons used in the network allow for grades. If, for example, they are binary, only exact reasoning
would be possible.

5.4.2 Neurons and Neural Networks that Represent Simple Symbolic Rules
A boolean propositional rule of the form of
IF x,and x,and . . . x,, THEN y,

where x; (i=1,2,...,n) and y are boolean propositions, can be represented in a binary input-binary
output neuron which has a simple summation input function and an activation thresholding function (a
threshold of q) (figure 5.16a and c). Similarly, the boolean propositional rule:

IF x;or x,or...orx, THENYy

will be realized in a similar binary neuron but with different connection weights and thresholds [figure
5.16(b) and (d)]. The neurons cannot learn. These two simple neurons can be used for building neural
networks that represent a whole set of rules, but which are not adaptable. A network that represents a set
of simple propositions is shown in figure 5.17 (Botha et al. 1988).

Propositional rules that are constructed of more terms in their antecedent parts can also be realized in a
similar way. A general scheme of a connectionist system that realizes more complex rules is given in
figure 5.18.
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Figure 5.17
A network that realizes a set of simple propositions. A feedback may be
used for a chain inference. For each connection a weight of 1 is assumed
(Botha et al. 1988.)

layer 5 conclusion {new facis)
layer 4 rules

layer 3 conditions

layer 2 terms

layer 1 input facts

Figure 5.18
A general scheme of a connectionist system for realizing a
set of production rules. Each layer realizes one stage of the
inference process over production rules.

Symbolic rules that contain different types of uncertainties can also be realized in a connectionist
structure. These include rules where uncertainty is expressed by probabilities; in this case a neural
network is set in such a way that it calculates conditional probabilities; and rules with confidence
factors, that is,

IF x, isA;and x,is A,and . . . x, is A,, THEN B (CF)

can be realized either by: (1) inserting the rule into the connections of n-input, one output neuron, or (2)
applying a training procedure to a neuron with training examples, whose input and output values
represent
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certainties for the existing facts to match the condition elements and confidence for the inferred
conclusion.

Example By applying the second approach from above the rule "IF (high temperature) and (headache),
THEN (flu) (CF =0.7)" can be realized by a single two-input, one-output, continuous-value neuron
trained with the training example: 1,1, 0.7. The neuron will make a correct inference and calculate the
certainty of the flu transpiring if the two input parameters had different certainties from 1 for a new case,
say (high temperature = 0.7) and (headache = 0.9).

Realizing more than one rule in a single neuron of the perceptron type may not be appropriate, having in
mind the restrictions of perceptrons pointed out by Minski and Papert (1969). The system described in
Fu (1989) represents MY CIN-like symbolic rules. Their certainty factors are bound to the connections in
the neural network as initial weights. The weights may be adjusted further by using the backpropagation
algorithm.

5.4.3 Connectionist Production Systems: Representing Variables

Production systems that consist of productions of the form IF C, THEN A, where C is a set of conditions
and A a set of actions, are good as models of cognition as well as practical tools for knowledge
engineering, as we have already discussed. A connectionist realization of production systems is an
Important issue because it can bring all the benefits of the connectionist approach to Al systems and
symbolic computation. In connectionist production systems, the following features are achievable:

. Massive parallelism

. Partial match

. Reasoning with inexact, missing, or corrupted data
. Graceful degradation of the system

. Fault tolerance

. Learning and adaptation.

These characteristics would help in overcoming the two major concerns of present-day expert systems:
(1) approximate reasoning and (2) knowledge acquisition.

A few connectionist production models and systems have been developed so far. They concentrate on
solving some of the basic problems of
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realizing classic production systems: representing rules and data, chain reasoning, and variable binding.

One of the main problems in the connectionist realization of production systems is the problem of
representing variables and variable binding. The variables used in an antecedent part of a production rule
should be bound to allowed values. The following example is an illustration of a production with
variables:

(deffrule "a rule_from_the _monkey and_bananas_example"
(object ladder at ?x on ?)

(object banana at ?x on ceiling)

?monkey — (monkey on ladder holds nil)

[

(retract ?monkey)

(assert (monkey on ladder holds bananas)))

This production is satisfied when the variable ?x in the first two condition elements is bound. A
distributed representation for solving the variable binding problem has been used in a model of a
connectionist production system called DCPS, developed by Touretzky and Hinton (1988). It assumes a
fixed number of two condition elements in each production rule and one variable at most, for example:

|C0383-01.qif |

The two possible actions in the right-hand side of a production are insert a fact (+) and delete a fact (-).
DCPS uses distributed representation to realize the variable binding and store facts in its working
memory. Two gates open at different times, to enable the two phases of the execution cycle: "recognize
and "act."

The system TPPS (Dolan and Smolensky, 1989) has the same limitations as DCPS, but it utilizes a
tensor product representation which makes the process of computing the weights easier. In chapter 6
another connectionist architecture, called NPS, is presented in more detail.

5.5 Connectionist Systems for Pattern Recognition and Classification; Image Processing

Having introduced some general approaches to using neural networks for problem solving and
knowledge engineering, we can go on to discuss
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applications of neural networks to solving generic Al problems. This section discusses using
connectionist models for pattern recognition. Along with specific techniques for applying standard
connectionist models, new models are introduced as well. These are the leaky integrator, a type of
neuron for representing time patterns, and the cognitron and neocognitron, for vision.

5.5.1 Representing Spatial and Temporal Patterns in Neural Networks

Representing space and time is an important issue in knowledge engineering. How can these concepts be
represented in a connectionist system? Space can be represented in a neural network by:

. Using neurons that take spatial coordinates as input or output values. Fuzzy terms for representing
location, such as "above,"” "near," and "in the middle" can also be used. An example of representing
spatial objects in a neural network was shown in chapter 4.

. Using topological neural networks, which have distance defined between the neurons and can
represent spatial patterns by their activations. Such a neural network is the SOM,; it is a vector quantizer,
which preserves the topology of the input patterns by representing one pattern as one neuron in the
topological output map.

Representing time in a neural network can be achieved by:

. Transforming time patterns into spatial patterns.
. Using a "hidden™ concept, an inner concept, in the training examples.
. Using an explicit concept, a separate neuron or group of neurons in the neural network, takes time-

moments as values.

Different connectionist models for representing "time" and the way they encode time are explained
below (figure 5.19):

1. Feedforward networks may encode consecutive moments of time as input-output pairs.
2. Multilag prediction networks encode time in the input vector as well as in the case of (1).

3. Recurrent networks, in addition to (1) and (2), also encode time in the feedback connection.
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Different models for representing "time" in a neural network:
(a) feedforward networks encode consecutive moments of time
in the input-output pairs; (b) multilag prediction networks encode
time in the input vector as well as in the case of (a);

(c) recurrent networks, in addition to (a) and (b) methods,
also encode time in the feedback connection; (d) time-delay
networks encode time in a similar way as (b) but some
lags of input values from the past as well as from the future
are used to calculate the outp