Applications of Artific

Y

'-:." YT L T Loy gl - &

. st

Al ¥
. w7
e S e

Analysis an

Neural Networks
L.P.J. Veelenturf

el T e m L
=g

P I -_—r L
A i e
' Lu Ve IFILA "{‘

d . IR a1
A T T gt g ue
e
o

.

"
e
_—

AT ey

3
g

E .,E.h . .
s e BT A
- L N
-'-uih_.:'..‘“"‘ _-.l,._'.\'._‘.?._\-ﬂ"' .

o
AR

L

h.
T Y Y T

/'

- -
S 1=

S e ¢
G AP, tE
T TN
. 1:““*"‘ .
i

Id

w
I

a
[

b

ah Sl

L

o e A < el it A o

LRy

-

Analysis and Applications of
Artificial Neural Networks

To Rutger, Wendy, Irene and Gerrie

] 4 X

1

4 i
I]

L. P. . Veelenturt

Prentice Hall
london New York Toronto Sydney Tokyo Singapore Madrid Mexico City Munich

el

=

i

=

First published 1995 by

Prentice Hall International (UK) Limited
Campus 400, Maylands Avenuc

Hemel Hempstead o
Hertfordshire, HP2 7TEZ R ﬁ
A division of o,
Simon & Schuster International Group

© Prentice Hall International (UK) Ltd. 1995

All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in any form, or by any
means. electronic, mechanical, photocopying, recording or otherwise,
without prior permission, in writing, from the publisher.

For permission within the United States of America

contact Prentice Hall Inc., Englewood Clifls, NJ 07632

Typeset in 10 on 12 pt Times by P& R Typesetters Itd, Salisbury, Wiltshire, UK

Printed and bound in Great Britain by Bookcraft, Midsomer Norton

Library of Congress Cataloging-in-Publication Data

Veelenturf, L. P. J. (Leo P. J))
Analysis and applications of artificial neural networks / by
L. P. J. Veelenturf |
p. cm,

Includes index.
ISBN 0-13-489832-X (cascd)

1. Neural networks (Computcer science) [. Title.
QA76.87.V42 1995
006.3--dc20 94-40215

CIP

British Library Cataloguing in Publication Data

A catalogue record for this book s available from
the British Library

ISBN 0-13-489832-X (hbk)

4 e .

1 2 3 4 5 99 98 97 96 IS

2.10
2.11
2.12

2.13

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8

Contents

Preface

Acknowledgements

Introduction

Machines and brains
The artificial neural network

The binary Perceptron

Introduction

The performance of a single-neuron binary Perceptron

Equivalent linear threshold functions

Learning a single-neuron binary Perceptron with the reinforcement rule
The Perceptron convergence theorem

Performance of a two-layer binary Perceptron

The adaptive recruitment learning rule

Generalizing with a two-layer binary Perceptron

The recruitment and reinforcement learning rule

Application of the adaptive recruitment learning rule to switching circuits
Application of the adaptive recruitment learning rule to hyphenation
Appilication of the recruitment and reinforcement learning rule to
contradictory binary data sets

Exercises

The continuous multi-layer Perceptron

Introduction

The gradient descent adaptation method

Learning with a single-neuron continuous Perceptron

The exact fitting of the data set with a single-neuron Perceptron
The approximate fitting of the data set with a single-neuron Perceptron
Generalizing with a single-neuron continuous Perceptron

The classification of data with a single-neuron Perceptron

Hyperplane boundary classtfication by one-zero labelling

1X

XI1ii

12
21
24
32
35
45
49
S3
S8
61

63
64

66

66
70
76
81
84
90
92
96

oy

vi

3.9

3.10
3.11
3.12
3.13

3.14
3.15
3.16

3.17
3.18

3.19
3.20
3.21
3.22

4.1
4.2

4.3
4.4
4.5
4.6

4.7
4.8
4.9
4.10

4.11
4.12
4.13

4.14
4.15
4.16
4.17

Contents

Hyperplane boundary classification by double threshold labelling
Hyperplane boundary classification by single threshold labelling
Application to the classification of normally distributed classes
Learning rule for a twq-}%yer continuous Perceptron |
Under-fitting and over-ﬁtt,mgﬁofa data set with a two-layer continuous
Perceptron . _— ’

The class of functions realizable with a two-layer Perceptron

The three-layer continuous Perceptron

Application of a two-layer continuous Perceptron to function
identification |

Application of a two-layer Perceptron to the mushroom classification
problem

Application of a two-layer Perceptron to the detection of the frequency
of a sine wave

Application of a multilayer Perceptron to machine condition monitoring
The learning speed of a continuous multi-layer Perceptron
Initialization of weights and scaling the input and output

Exercises

The self-organizing neural network

Introduction N
Anthropomorphic pattern recognition with a self-organizing neural
network i |

The equivalent self-organizing neural net algorithm

Vector quantization with the self-organizing algorithm

Weight vector ordering with the self-organizing algorithm |
Application of the self-organizing neural net algorithm to the travelling
salesman problem | |
Application of the self-organizing neural net algorithm to picture colour
quantization , .
Nearest-neighbour classification with a sclf-organizing ncural nct
algorithm |
The Bayes classification with a self-organizing neural net algonthm
Application of the self-organizing neural net algorithm to the
classification of handwritten digits

Topology preservation with a self-organizing algorithm

Interpolation with the self-organizing algorithm

Master—slave and multi-net decomposition of the self-organizing ncural
net algorithm - o
Application of the self-organizing algorithm to function identification

Application of the sclf-organizing algonthm to robot arm control

Application of the self-organizing algorithm to EEG signal analysts
Application of the self-organizing algonthm to speech recognition

106

112

120 -
122

133
136
145

153

158
162
165
166
168

170

170

170
181
184
193

203

207

210
213

219
222
226

229
230
234
237
240

4.18

4.19

4.20

421

Contents

Selecting and scaling of training vectors

Some practical measures of performance of the self-organizing neural
net algorithm

Application of the self-organizing algorithm to signature 1dentification
Exercises

Bibliography

Index

Vil
245

246

282 ¢ -
255 Mo

256
258

. il e e) A N e A OO P it TGP, - O PPy IO Iy P

Preface

‘Any process that works can be understood; what cannot be understood 1s suspect.’
This is effectively what Marvin Minsky and Seymour Papert stated twenty years ago
during the first wave of interest in artificial neural networks. This critical remark
could be made again in the recent second wave of interest in the topic, because for
many people neural networks still seem something of a black art. Perhaps this attitude
has been engendered by the tremendous amount of recent publications on neural
networks, where it seems that every author invents his or her own type of
neural network, which is frequently only justified by some particular application. For
the reader it must be a chaotic collection of seemingly unrelated questions without
a consistent framework and a unifying perspective. We certainly do not claim that
we can give such a unified framework at this stage of development of this new scientific
field, but we can at least open the black boxes of the main types of neural networks
that can be thoroughly understood and that have turned out to be very useful in a
broad range of applications.

A reason for the excitement about neural networks might be that in the literature
on artificial neural networks one frequently encounters very promising and attractive
statements about the generalization capability of neural networks, hke: ‘Neural
networks are capable of adapting themselves with the aid of a learning rule and a
set of examples to model relationships among the data without any a priori
assumptions about the nature of the relationships.” A similar statement 1s: ‘After
learning neural networks they may be used to predict characteristics of new samples
or to derive empirical models from examples in situations in which no theoretically
based model is known.” Although to a certain extent these types of statements are
true, one must be careful with the substatements that no model or a priori information
about the nature of the relationship between examples ts assumed.

Generalization i1s the process of inductive inference of general relationships from
a finite number of samples. An example is the inference of a new number in a finite
sequence of numbers: one is inclined to say that the next example 1n sequence
1, 4,9, 16,... will be the number 25, because we observe a simple regularity in the
sequence: the kth element in the sequence is k*. However, if no prejudice in favour
of some type of ‘model’ exists, any number may follow the given sequence. For
example, one might as well say that the next number is 27 because one is in favor of
the regularity where the nth number y(n) in the sequence is defined by y(n)="sum

IX

X Preface

of first n uneven primes’. If one asks many people (who know clementary calculus!)
to guess the next number in the sequence siven above, almost all will say that the
next number is 25. This phenomenon reveals the human attitude to sclect always the
most ‘simple’ model to explain agequence of experimental observations. |

A neural network is cupabl‘(:'@‘ll'imodcllmg relationships among data by learning
from the examples but is always using some a priori set of models. ‘Modelling’ can
be defined as the process of formulating a finite set of interrelated rules (or the
construction of a finite set of interconnected mechanisms) by which onc can gencrate
or explain the (potentially infinite) set of obscrved data. The simplicity of the model
is very subjective because it depends on the domain of knowledge of the person (or
of the mechanical process) that is doing the modelling. |

If one is using complex neural networks to ‘model’ the refationships behind a given
set of data. it is hard to demonstrate that one is using (or assuming) d priori information
about the kind of relationship. We will, however, demonstrate in scveral sections of
this book that one needs, or assumes, a priori information about the relationship
between the given data in order to be justified in accepting the outcome of the learning
process of a neural network. The a prior: information one is using 1s determined by
the type of neural network, the configuration of the ncural network and the type of
neural transfer functions. In the application of ncural networks to the solution of
real-life problems it is important to be aware of this phenomenon. For example, if
we want to infer with a two-layer continuous Perceptron from a given data sct an
unknown functional relationship and select the number of first-layer neurons in a
Perceptron too low, then the unknown function will be underfitted (i.c. will not go
through all data points); if we sclect the number of neurons too high, then the unknown
function will be overfitted (the realized function will go through the data points but
will fluctuate wildly in between).

This example, more extensively discussed in Section 3.13, shows that generalization
by learning from examples and counterexamples is in gencral impossible without
utilizing a priori knowledge about the properties of the function to be identified.

If one uses a neural network to find the relation behind the data in a data set, one
is in addition assuming that the data set is representative of the (unknown!) relation.
Nevertheless, it must be said that by using neural networks onc¢ can solve 1n an
optimal way certain problems that are hard to tackle by conventional methods. For
instance. we will show that among the set of all classifiers that divide the n-dimensional
input space by a n— 1 dimensional hyperplane, the single-ncuron Perceptron is an
optimal classifier.

We will concentrate in this book on these kinds of limitations and capabilitics of
the main type of neural networks, rather than giving a review of the multitude of
different neural networks. Our aim is that the reader should profoundly understand
and be able to apply artificial neural networks to the solution of practical problems.

Almost 70 per cent of all publications deal with the type of networks we will analyze
in this book: the binary Perceptron, the continuous Perceptron and the self-organizing
neural network. and when we consider the applications that turn out to be usclul,
this percentage is ecven higher.

Preface Xi

1

" The book is self-contained, which means that we will deliberately avoid the
fashionable vicious circle of proving propositions by quoting the propositions of

other authors. The methods of analyzing neural networks are largely of a mathematical
nature but the level of mathematical rigour in our exposition will nevertheless be
low because we are far more concerned with providing insight and understanding
than establishing a rigorous mathematical foundation. The required mathematical
maturity is that of a typical final-year undergraduate student in electrical engineering
Oor computer science.

Understanding is the ability to transform new phenomena to a coherent simple
structure of already well understood phenomena. For this reason we will give many
illustrative examples and plausible arguments in terms of what 1s supposed to be well

C A
L T

known by the reader. A great number of real-life applications will also contribute to

this understanding and will show at the same time the powerful usefulness of neural '

networks.

For several years we have taught courses at the University of Twente based on
the material in this book. The book can be covered in a one-semester course.

Each chapter concludes with some exercises. The lists of literature are far from
complete because we only want to give the reader a map for the main routes in the
bewildering and chaotic landscape of published material. The exercises are meant as
a means to check one’s own understanding of the presented theory.

While writing this book we benefited from the comments of many colleagues and
from the experiments performed by our students. We would like to thank especially
Philip de Bruin, Mark Bentum, Andre Beltman and Cuun Krugers-Dagneaux—Rikkers
for their suggestions for improving the manuscript.

Leo P. J. Veelenturf

Acknowledgements

While writing the first chapter of this book we benefited from the contribution of
several of our students. We would like to thank Arend Lammertink for his
investigations on hyphenation with a binary Perceptron and especially for his idea
to decompose the neural network into many subnetworks in order to reduce the
computation time; Erik Coelingh for the realization of a software simulation program
for the adaptive recruttment learning rule as well as for the recruitment and
reinforcement learning rule; and Herco Reinders for his experiments on hyphenation
with the recruitment and reinforcement learning rule.

Thanks are due to all the students who performed many experiments with the
continuous multi-layer Perceptron. I want to mention Ronald van der Zee, Sander
Lokerse, Berend Jan van der Zwaag, Peter Degen, Robert de Jong, Jan Wijnholt,
Rolf van der Wal, Hans van’t Spijjker and Henk Martijn for their experiments on
classification and function identification. Ronald Edens and Remco Couwenberg
performed experiments on speech recognition with time delay and recurrent
Perceptrons. A. Renstnk, Manjo Nirolder and Stephan ten Hage did the experiments
with the harmonic signal detector. Peter Spekreijse and Geert Pronk used the
multi-layer Perceptron for machine condition monitoring. Guido Frederiks made a
useful contribution to determining the configuration of a neural net. Marcel Budding
demonstrated that a neural net can be used for principal component analysis. John
Kroeze made a contnbution by analyzing neural networks with a piecewise linear
approximation. Theo Roelands investigated the relation between the size of the data
set and the complexity of the neural network. Special thanks are due to Erik Tromp
for his proof that a two-layer neural network can approximate any continuous
function that is arbitranly close.

I want to express my gratitude to Jan Zandhuizen who made me aware of the
intriguing properties of Kohonen’s self-organizing neural network. In order to obtain
a better understanding of the self-organizing neural network and especially to evaluate
the learning process parameters that are theoretically difficult to establish, a lot of
experiments were performed by our students.

Investigations on anthropomorphic pattern recognitions were done by Gerrit van
Brakel, Ruud Coppoolse, Barthold Lichtenbelt, Walter Jansen, Frank Staijen, and
last but not least by Ronald Muller.

Experiments on classification with the self-organizing neural network were

Xiii

fwh / |

XV Acknowledgements

performed by Ronald van der Zee, Wieant Nielander, Geert Pronk and Sander

Iookerse. Paul Buisman made an analysis of the behaviour of the original neural
network introduced by Kohonen.

The vector quantization pfépe:rties were investigated by Hans Neggers. Marco
Bloemendaal, Ruurd de Vries, Ruud Busschers, Erik Groot, Patrick Wilmerink, Stefan
van Hal and Klaas Scheppink applied the self-organizing algorithm to spike-wave
detection in EEG signals.

Arjan Draaijer investigated the application to adaptive system control. Experiments
on speech recognition were performed by Ronald Edens, Paul dc Haan, Andre
Beltman, Guido de Jong, Herman Woudstra and Stefan ten Hagc.

Sake Buwalda developed an VHDL implementation of the sclf-organizing
algorithm. h

Finally I owe a debt of gratitude to Andre Beltman who was involved in almost
all experiments mentioned above and who developed very practical measures for the
evaluation of ordering and topology preservation with a sclf-orgamizing ncural
algorithm.

S iy AT R T g T W e LT R T e

- g W, Al R e T T T e T T L

INTRODUCTION

1.1 Machines and brains

For several years the author has been involved In research on pattern recognition.
In that period he became aware of the tremendous range of sophisticated methods
used to analyze and to recognize pictures by machines. The pattern recognition
machines were equipped with large numbers of vast and complicated algorithms. The
most advanced machines could, for instance, recognize a certain class of handwritten
digits, but in spite of the sophisticated nature of these machines they were limited to
recognizing those pictures that had been foreseen by the system builders as potential
elements to be recognized in the future. For example, one can build machins to
recognize handwritten capital ‘A’s but the system will fail to recognize a capital ‘A’
as given in Figure 1.1. It is surprising that human beings can recognize the letter 1n
Figure 1.1 as an ‘A’ as it 1s very unlikely that one has ever seen the figure before.

It is very unlikely that human beings compare the handwritten ‘A’ to some reference
picture stored in their brain. Probably they know the characteristic features of an
‘A’ and their perception is not disturbed by artefacts in the picture. The interference
of artefacts in a picture will, however, destroy the correct classification by a
programmed machine, which 1s probably not able to judge the importance of

‘deviations from the preprogrammed standard features.

The way people have acquired the ability to recognize pictures can only be by
experience. By trial and error they have learned to perform certain tasks. Machines
do not learn, they are preprogrammed, and if they can learn they are restricted to
certain classes of preprogrammed methods of learning.

The lesson seems to be that the capability of learning is essential for more advanced
and intelligent artificial machines.

Another striking difference between machines and human beings 1s the
‘computation’ time required for complicated tasks such as pattern recognition.
Computers are extremely fast but 1t 1s hard to design machines that can recognize
three-dimensional objects in real time, whereas humans, whose brains are composed
of neurons switching about a million times slower than electronic components, can
recognize old friends almost instantaneously. We know that computers perform their
computations sequentially, step by step, whereas the human brain is processing the
information in parallel.

2 Introduction

Figure 1.1 A handwritten capital ‘A’

The second lesson for designing more intelligent systems seems to be the usc of
the parallel processing of information.

Man-made machines arc built with a large number of different complicated
functional building blocks; if onc unit fails, the whole system collapses. The brain,
however. is built out of a large number of, at least from a functional point of view,
almost identical building bricks: the ncurons. Many units may be destroyed without
significantly changing the behaviour of the total system.

This comparison between the behaviour and construction of artificial machingcs
and the behaviour and physiological configuration of the human brain might give
new ideas for developing morc intelligent machines. Artificial neural networks are
the results of the first steps in this new direction for intelligent system design.

1.2 The artificial neural network

The building unit of a ncural network is a simplified model of what 1s assumed to
be the functional behaviour of an organic neuron. The human brain contains about
10! neurons. For almost all organic ncurons one can distinguish anatomically roughly
three different parts: a sct of incoming fibers (the dendrites), a cell body (thc soma)
and one outgoing fiber (the axon). IFor a simplified configuration see Figure 1.2. The
axons divide up into diflerent endings, each of which makes contact with other
neurons. A ncuron can receive up to 10000 inputs from other neurons. The bulb-like
structures where fibers contact are called synapses. Electrical pulses can be gencrated
by neurons (so-called ncuron firing) and are transmitted along the axon to the
synapses. When the clectrical activity is transferred by the synapse to another ncuron,
it may contribute to the cxcitation or inhibition of that neuron. The synapses play
an important role because their transmission efficiency for electrical pulses from an
axon to the dendrites (or somas) of other neurons can be changed depending on the
‘profitability’ of that altcration.

The learning ability of human beings is probably incorporated in the facility of
changing the transmission cilicicncy of those synapses. Donald O. Hebb was among
the first who postulated this mechanism in his book Organization of Behavior (1949):

The artificial neural network 3

Dendrites

Synapse

Axon

Soma

Figure 1.2 Simplified configuration of an organic neuron

Figure 1.3 Artificial model of a neuron.

‘When an axon of cell A 1s near enough to excite a cell B and repeatedly or persistently
takes part in firing 1it, some growth process or metabolic change takes place in one
or both cells such that A’s efficiency, as one of the cells firing B, 1s increased.” The
change of the synaptic transmission efficiency acts as a memory for past experiences.

In a simplified artificial model of a neuron (see Figure 1.3), the synaptic transmission
efficiency is translated into a real number w; by which an input x; is multiplied before
entering the neuron cell. The number w;, is called the weight of input x,. The absence
or presence of a train of electrical pulses in a real neural fiber is modelled by a
variable x; which respectively may have the value zero or one. In that case we will say

that we have a binary artificial neuron representing the ‘one-or-zero’ behaviour of a
real neuron.

; .
b {'*Jil tll

4 Introduction

In reality, ncurons may fire' up to about 100 puises in a sccond. We can modcl
this gradual change in pulse train frequency by a variable x; which may have any
value between zero and one. In that case we have a continuous artificial ncuron.

In almost all artificial models Jt:-fineqrons, all inputs x; are weighted by the synaptic
transmission efficiency and are surnmed to one number s=) x;w;. This weighted
input s determines in some way or another the output value y of the artificial neuron.
In a binary neuron the output y will be one (the neuron is firing) if the weighted
input exceeds some threshold T, and will be zero (the neuron is silent) if the
weighted input is below the threshold. In a continuous artificial neuron, the output
y may be some monotone increasing function (the frequency of the pulsc train on
the outgoing axon is gradually changing depending on s) of the weighted input s.

The model of an artificial .neuron outlined above was first introduced by the
neurophysiologist Warren McCulloch and the logician Walter Pitts in 1943. In a
famous paper by the mathematician S. C. Kleene in 1951, it was shown that with
the artificial neurons introduced by McCulloch and Pitts, one can build a system
that behaves in the same way as a computer. Although it is important to know that
artificial neural nets are not inferior in their computation capabilitics to computers,
it is of no practical use to mimic computers. The benefits of an artificial ncural
network are mainly the results of the modifiability of behaviour by changing the
weights w, in a learning process.

The learning behaviour of artificial neural nets was first treated extensively in a
book by Frank Rosenblatt in 1962, Principles of Neurodynamics. He introduced a
learning algorithm by which the weights can be changed such that a desired
computation was performed. The wave of activity on artificial ncural networks In
the mid-1960s was. however, challenged in 1969 by Marvin Minsky and Scymour
Papert, who showed in their book Perceptrons that some simple computations
cannot be done with a one-layer neural net, and doubted that a learning algorithm
could be found for multi-layer neural networks. At that time many scicnuists left the
field of artificial ncural nctworks.

A second upheaval took place in the mid-1980s when several people found a
learning algorithm, called the back-propagation algorithm, that could adjust the weights
in multi-layer neural nets. About that time also new types of ncural net with dynamic
hehaviour were introduced. We mention the ncural net of Hoplicld (1982) (not treated
in this book) and the sclf-organizing ncural net of Kohonen (1982).

Dynamic neural nets are characterized by feedback: the output of a ncuron depends,
after some delay, on its own output because of the fully interconnected structure of
the neural nets. The binary Perceptron we will discuss in Chapter 2 and the continuous
Perceptron of Chapter 3 are not dynamic systems: after learning, the output y(1) of
the ncural net will only depend on the actual input x(r) and not on previous mputs.
However, the input-output behaviour F: y(t)= F{x(1)}, learned by the ncural net in
the training phase, will depend on the sample input-output behaviour of the traming
set.

For a dynamic system the actual output y(t) depends not only on the actual mput
x(1) but also on the actual state g(r): y(r) = Fq(t). x(1)}, whereas the state depends on

The artificial neural network 5

;

inputs in the past. There exist neural networks that can learn dynamic behaviour
from sequences of inputs and corresponding sequences of outputs (Veelenturf, 1981).
We will not discuss these networks because they are a typical example of solving
problems by using a neural network, whereas, except for special cases, there are more
efficient methods of finding the solutions with conventional methods (Veelenturf,
1978). This observation leads to the warning that one must be aware that using neural

networks is not a panacea, it is frequently better to have recourse to more conventional
methods.

' "HI-;- %

2

A
THE BINARY PERCEPTRON

2.1 Introduction

The behaviour of an artificial neuron is inspired by the assumed behaviour of a real
neuron in organic neural networks. A simplified model of a real neuron is composed
of a cell body or soma, a set of fibers entering the cell body, called the dendrites, and
one special fiber leaving the soma, called the axon. The dendrites transmit trains of
electrical pulses towards the soma and the axon conducts trains of pulses away from
the soma. The axon terminates by branching into many filaments. The filaments end
in bulb-like structures called synapses that make contact with dendrites or somas of
other neurons. The transfer of electrical pulses from the final filaments of some axon
to the dendrites or soma of another neuron depends on the synaptic transmission
efficiency, represented by the variable w. If the synaptic transmission efficiency 1s
positive, the synapse is said to be excitatory, if negative, the synapse is called inhibitory.
The positive or negative transmission efficiency may vary between small and large
values. Only when the sum of ‘synaptic weighted’ incoming pulses is greater than
some threshold is a train of pulses generated by the soma and transmitted by the
axon (see Figure 2.1). In organic neural tissue the pulse frequency may vary between
a few pulses per second up to twenty pulses per second. An additional simplification
is to disregard the frequency of the pulse trains and to consider only the presence,
represented by the number 1, or absence represented by the number 0, of a pulse
train. This simplified model of a real neuron 1s called the one-or-zero behaviour of a
neuron.

This simplified model of a neuron can easily be simulated by an artificial neuron
(see Figure 2.2). Dendrites are represented by input lines and a vanable x; represents
the presence [x,(f)= 1] or absence [x,(t)=0] of a pulse train on fiber i at time t. Every
artificial neuron has one output line representing the axon of the neuron and the
presence or absence of a pulse train at an axon is presented by the value | or 0 of
the variable y(t). There will be one special input line with a constant input x, =1, and
a weight wy. This constant input, x, =1, and the weight w, realize a threshold equal
to —w,. When the ‘weighted’ sum of incoming signals is greater than the threshold
T = —w, the output y will become 1 after a delay 7. The input-output behaviour of

6

’
3
3
3

Introduction 7

—-/'"—/-r |
Axon Synapses ‘

Dendrites \

Figure 2.1 Simplified configuration of an organic neuron

X,=1
x1
0.,
w, 0
X, Y
\g‘z\\
W >~y

Figure 2.2 Artificial model of a neuron

an artificial neuron is now specified by:

Wi+1)= =] lfzilwixi(t)?z—wo

= otherwise

The variable w; is called the weight of input line i and represents the synaptic
transmission efficiency of the synapse between the final filament of a neuron and the
dendrite i (or the soma) of a particular neuron. The threshold T = —w,, the weights
w; and the delay t are real valued. If there 1s no feedback in the neural network we
may take t =0, and the time dependency of x; and y can be 1gnored. So the previous

8 The binary Perceptron

-U

S

R ‘;i' T‘;.

US
5 R
| I K‘ Enut
P .

Figure 2.3 Electronic implementation of an artificial neuron

formulation of the input—output behaviour can be replaced by:

y= =1 if) wx;>—w,

=0 otherwise

An artificial neuron can easily be implemented in a simple electronic circuit (sce
Figure 2.3). Those acquainted with electronics will understand that the transistor will
be open 1f:

El EZ _ US

L
RI R2 RT

If the voltage E, represents x,, £, represents x, and — U,/R; represcnts the threshold
—w,, then we obtain with 1/R, =w, and 1/R,=w, that the transistor 1s open 1k

WX, +WyX, > — W

Networks composed of layers of interconnected artificial neurons have been studied
extensively by many authors. The analysis of neuril networks is attractive becausc
all the building units, the neurons, are the same and the transfer function of such a
unit is quite simple. More important, however, 1s that we can alter the behaviour of
a neuron by changing in a learning process the weights w; in the input lines. Changing
weights is the artificial counterpart of the adaptation of the synaptic elliciency n real
organic neural networks. Before examining this learning behaviour of a ncural
network, we consider the ‘zero-or-one behaviour of just one single artificial ‘binary’
neuron. |

With a single neuron, for example, we can realize some restricted class of predicate
logic. Consider the statement: “John is going out for a walk if and only 1If the sun s
shining or if it is cold and the wind is blowing west.’ The predicate ‘John ts going

;
}
;
:
i
#

Introduction 9

Table 2.1
X X2 X3 Y
0 0 0 O
0 0 1 0
0 1 0 0 #
0 | | 1
1 0 0]
| 0] |
1 1 0]
1 I | I
xﬂ=1
X, O -1
+2
 J
X3 +1
I @ S

+1
X/

Figure 2.4 Neuron illustrating Table 2.1

out for a walk’ is only TRUE if the conditions mentioned are TRUE. Now we can
represent the ‘truth value’ TRUE by the number 1 and FALSE by the number O.

We represent the truth value of the predicate “The sun is shining’ by x,, the truth
value of ‘It is cold’ by x,, the truth value of ‘The wind is blowing west’ by x5, and the
truth value of ‘John is going out for a walk’ by y. With this notation we can enumerate
all possible situations in a simple truth table, as shown in Table 2.1.

If we now consider the values of x,, x, and x5 as the inputs of a single neuron
and vy as the output, we can select the weights wy, wy, w, and w; in such a way that
the output behaviour of that neuron yields the truth value of the predicate ‘John is
going out for a walk’ (Figure 2.4). Methods for finding the appropriate weights
analytically. or by a learning process, will be discussed later.

Pioneers in this field of research, like Rosenblatt (1962) and Minsky and Papert
(1969), investigated neural networks with the aim of using such networks mainly for

10

The binary Perceptron

Figure 2.6 Classification of sixteen patterns by a neural network

pattern recognition problems. For this reason they called those networks Pgrceptro;:s
(from perception). In honour of Rosenblatt, who used the term first, we will call the
networks discussed in Chapters 2 and 3 Perceptrons. | |

As an example we consider a pattern recognition' problem. Some pattern 1s proje'cteld
onto a grid of small squares. A variable x, is assigned to t::ach square. The varﬁlab e
. will have the value 1 if the pattern is covering that particular square, and_ 0 if the
plattern is not covering that square (see Figure 2.5). The values of the variables x,
constitute the inputs of a binary neural network. The output of the neural network
will classify patterns as belonging to some predefined class (y=1) or not (y =0).

For example, if we have a very small grid 0-f four squares and'on*e single neuron
(see Figure 2.6), one may wish to classify the sixteen different artificial patterns (see

Introduction 11

Table 2.2
X1 X3 X3 Xa y X4 X, X4 X4 y
O 0 0 0 0 | 0 0 0 0
0 0 0 1 0 1 0 0 1 0
0 0 1 0 0 1 0 1 0 1
0 0 | 1 1 1 0 1 1 |
0 | 0 0 0 1 1 0 0] ‘
0 l 0 1 1 1 1 0 1 1
0 1 1 0 0 1 | ! 0 1
0 1 | 1 1 1 ! 1 1 1

Table 2.2) as whether patterns of at least two black squares are connected (i.e. the
black squares are adjacent), y=1, or not, y=0.

Although there are many pattern classification problems that can be solved with
a single ncuron, we will demonstrate in the next chapter that there exists no set of
weights w,, w,, w,, wy and w, such that Table 2.2 1s realized by a single neuron
classifier. It turns out that we need a two-layer neural network with at least two
neurons in the first layer. We can see directly that the problem can also be solved
with four neurons in the first layer (one neuron for detecting that x, and x, are both
1, one neuron for detecting that x, and x, are both 1, one neuron for detecting that
x, and x, are both 1, and one neuron to detect that x, and x, are both 1), and one
neuron in a second layer to detect that least one neuron in the first has an output
of 1. One might suspect that a single neuron is not able to solve a classification
problem if there are a great number of input variables. There are, however, problems
with only two input variables that are also not solvable with a single neuron.

Consider, for example, the Boolean ‘exclusive-or’ function: y = x, ® x,, 1.e. the output
of the single neuron must be 1 if and only if x, =1 or x, =1 but not both. We will
see 1n the next chapter that we cannot solve this problem with a single neuron but
we will demonstrate, on the other hand, that any Boolean function can be realized
with a two-layer Perceptron. This example indicates at the same time a third
application area for the use of binary Perceptrons: the realization of Boolean functions.

Because we can realize any Boolean function with a binary Perceptron and because
every neuron can be implemented with an electronic circuit, we have the fourth
application area: switching circuits.

In a subsequent section of this chapter we will study two-layer binary neural

networks composed of interconnected artificial neurons without feedback connections
between neurons.

Different Boolean functions can be realized in parallel, e.g. with the two-layer
neural network given in Figure 2.7. The neural net of Figure 2.7 classifies simple
patterns consisting of three pixel points in three classes as specified by Table 2.3.

If a pattern p={p,p,p5, is a member of the class K, = {<000), (001}, (100>, (111>},

!
."u *' ,I. 'A

12 The binary Perceptron

w=+1

P,
w=+2

Figure 2.7 Neural net for classification with two-dimensional output

then y, =1 and y,=0. If the pattern 1s a member of the class K, ={{010), {011},
then y, =0and y, =1.Ifthe patternisnota member of K, or K,,theny, =0and y, =0.

2.2 The performance of a single-neuron binary Perceptron

In the previous section we saw that a single neuron performs a kind of ‘weighted
voting’ on variables x; the output y of the ncuron will be 1 if and only if
W X, +WyX,+ ' 0 +w,X, is greater than some threshold T.

Example 2.1

Consider the balance of Figure 2.8. At equally spaced points there might
be objects with some weight g, at the balance pole. At the left-hand side there is one
fixed weight g, attached to the balance at a unit distance from the suspension potnt.
We use the variable x, to indicate whether (x, = 1) or not (x, =0} if there is an object
placed at distance k from the point of suspension.

Now ‘The balance will tip to the right’ if and only 1if:

Zkgkxk}go
or with kg, replaced by w,, go=T, and when the predicate ‘The balance will tip to

i
i

The performance of a single-neuron binary Perceptron 13

Figure 2.8 The mechanical equivalent of a threshold function

the right’ is replaced by the binary variable y, we obtain:

=1 if and only if) w,x,>T .

We will now investigate the properties of threshold functions like the one used
above. We define first: a function y= f {x,, X5,..., X,) is called a binary linear threshold

function with respect to the binary-valued variables x, X,..., X, if there exist a number
T and a set of numbers {w,, w,,..., w,} such that y=1if and only if Zw;x;>T. We
usually will drop the adjective ‘binary’ and, although important, we will frequently
drop the phrase ‘with respect to the binary valued varnables x4, x5,..., X, .

With the use of the step function S(z) defined by: S(z)=1 1f z>0 and §(z}=0 if z<0
we can equivalently say that y= f(x,, x5,..., x,) is a linear threshold function 1f

| y — S(Z Wixi - T).

If the weights w, constitute the components of a so-called weight vector w and the
variables x; are the components of the input vector X, we can also write a linear
threshold function as y=S(w'x — T), with w' the transpose of the vector w.

Note that a linear threshold function is not a linear function in the ordinary sense,
because for a linear threshold function we have f(ax)#of(x).

In the introduction to section 2.1 we have demonstrated that a linear threshold
function can be realized by a single-neuron binary Perceptron with the threshold
T = —w, realized by a constant input x,=1 and a corresponding weight w,. If we
introduce a so-called extended weight vector W with W'=[wg, w,, w,,...,w,], and a
so-called extended input vector X with X'=[1, x,, x,,..., x,], then we can compactly
write a linear threshold function realized by a single neuron Perceptron as y = S(w'X).

Now we concentrate on the class of logical functions that can be realized by a
single-neuron binary Perceptron. If y= f(x) is a logical function of two variables x,

and x, we can have sixteen different functions. (NB: there are 2% different arguments

and for each argument the function value can be either 1 or 0.) Of those s1xteen
functions, fourteen can be realized by a single-neuron binary Perceptron. The
two functions that cannot be realized are specified by Table 2.3. The first function
is called the exclusive-or function and the second the identity function.

We will prove now that the first function is not a linear threshold function and

H

H

H

H

H

H
*

14 The binary Perceptron

Table 2.3

X q X7 y X X2 y
o 0,0 0 0 1
0 b o 10
1 0 1 {0 0
T 10 1 l 1

“—.__-_-“-_

thus it cannot be realized by a single-ncuron binary Perceptron. Assuming, however,
that we can realize the exclusive-or function, then there must be weights w,, w, and

w, such that:
For the first argument [0, 0] we must have:

wo+w X, +w,x, <0 thus: wy <0

For the second argument [0, 1] we must have:
wo+w,x, +w,x,>0 thus: wyg+w,; >0

For the third argument [1, 0] we must have:

Wo+ W, X, +Ww,x,>0 thus: wo+w,; >0

For the fourth argument [1, 1] we must have:

Wo+ W X, +w,X, <0 thus: wo+w, +w, <0

One can easily verify that the four inequalities for the weights cannot be satisfied
simultaneously. This completes our proof.

Our conclusion that the exclusive-or function cannot be realized by a singlc-ncuron
Perceptron also becomes clear when we consider the realization of the exclusive-or
function as a classification problem. We have two classes of points in @
two-dimensional input space (see Figure 2.9). For one class of points {(0, 1), (1, 0);
the output of the neuron must be 1, and for the other class {(0,0), (1, 1)} the output
must be 0. Thus for the first class we must have wy+w,x; +w,x,>0, and for the
second class we must have wy+w,x, +w,x,<0. The set of points for which
wo + W X, + Ww,x, =0 represents a separating line in the two-dimenstonal input space.
On one side of this line we will have for cvery point (x,, x,) that wo+w,x, +w,x, >0
and thus the output of the neuron will be cqual to 1. On the other side of the hne
we will have w,+w,x,; +w,x, <0 and the output of the neuron will be 0. Now onc
can easily check that we cannot locate a linc between the two sets of points that
must be separated; thus there exists no solution for our classification problem.

The performance of a single-neuron binary Perceptron 15

(0,0) (1,0)

Figure 2.9 Exclusive-or as a classification problem

Table 2.4

X X5 X4 y
] 0 0 0 0
2 0 0 1 0
3 0 1 0 0
4 0 | 1 1
5 1 0 0 1
6 1 0 | 1
7 1 1 0 1
8] 1 1 |

Fortunately we can show in a later section that the problem can be solved with a
two-layer network.

We will now discuss the more general situation of the realization of logibal (or
binary) functions with n arguments with a single-neuron Perceptron. There are 2%
different functions with n arguments. A large number of these functions are not linear
thr.eshold functions with respect to the variables x,, x,,..., x, and thus cannot be
written as y=5(2 w;x;— T} and thus cannot be realized with a single-neuron binary
Perceptron. We will give an example of how to find the linear threshold function (if
it exists) given the truth table of a logical function with three arguments.

Example 2.2

Let a function be specified by the truth table given in Table 2.4 (see also Figure 2.4). We
want to optain a function of the form y = §(X w;x; — T), or with the threshold T replaced
by the weight —w, we want to find the expression y=S(wy+w, X, +w,X, +W,Xx,).

16 The binary Perceptron

For the successive arguments we must have the following:

wo <0

Wo + w3 <0

wo +w, <0 ; _.' T."T h
Wo+w, + w3 >0 o
wo+w, >0 |

wo +w; +w;3>0

Wo +w, +wy,>0

LW+ w+wy,+wy >0

o0 =1 ON L B b=

From (1) and (4) we conclude w, + wl3 > 0. Take w,=1 and wy =1, then [rom (2) and

(3) we conclude wy < — 1. Take wy = — 1. From (5) we infer w, = 2. Wit'h this sclection
of weights all inequalities are satisfied and we obtain the following linear threshold
function: y=S(—1+2x,+x,+Xx3). n

From this example it becomes clear that there exists, within lht? bounds givcn by
the set of incqualities, a certain amount of freedom 1o sclect the weights. Fof' instance
we could select as well: w,= —2, w, =4, w,=2 and wy=2; anotl}cr' sclccn.on could
be: wo=—1, w, =4, w,=1and wy=1. We will return to this topic in Section 2.3.

As stated before, not all logical functions are linear threshold functions with respect.

to the variables x, x,,..., x,. [t 1s not easy to determine whether a given funcliop 15
2 linear threshold function or not. At present there is only one more or less practical
method by which this can be done, and that 1s by dctcrmir?ing whethcr .or'nol the
set of inequalities associated with the logical function contains a contradiction,

Example 2.3

Consider the logical function y= f(xy, x,, x3) defined by. y=1 if and only 1f l!w
number of 1 in the argument is odd. This function is known as the parity

problem and is specified in Table’ 2.5.

Table 2.5
X, X 5 X, y
1 0 0 0 0
2 0 0 l I
3 0 1 0 l
4 0 1 I 0
S 1 0 0 t
6 1 0 ! (
7 l 1 () ()
8 1 1 | l

Sgmplalnl, Py - oy L, Ayl e

iy - m‘. Lo J#M

L LIV kS ST T T E T bl L TR b T b e s

v BoTERES P _nlT fay

LT L

Al ol - Py Sanb PR P

The performance of a single-neuron binary Perceptron 17

We want to find an expression of the form: y = S(wo +w,x, + w,x, +w;x3). For the

" successive arguments we must have the following:

.f_WU-'gO

Wo+ w3 >0
Wo+ w, >0
Wo+ W, +w,; <0
wo+w; >0
W0+W1+W3£0
Wo+w; +w, <0
Wo+w;+w,+w,y>0

© N AW N

In this case we can see immediately that the panty problem cannot be solved with
a linear threshold function, because from (1) and (2) we conclude that w;>0 and
from (3) and (4) we conclude that w, <0; hence we have a contradiction.

In the general case of n variables we have to investigate 2" inequalities. We can
save ourselves a great deal of effort if we eliminate redundant equations and simplify
expressions by using the following set of properties. |

Properties of inequalities

.a>0and b>0=a+b>0
a<0and b<0=a+5b<0
a>0and a+b<£0=b<0
a<0and a+b>0=b>0
a+b>0and a+c<0=b>c
>a;>0and A>0=% 4a,>0
Ya,<0and A>0=%X 4a;<0

o R N N

From rules (1) and (2) we can derive a property that we can sometimes use to check

whether a logical function can be a linear threshold function or not without writing
down the set of all inequalities. Let a in rule (1) represent the sum of some set of
weights associated with some input vector x; with f(x,)=1. Thus the first inequality
in rule (1) with a=w-X, >0 must hold. Let b in rule (1) be the sum of weights associated
with some vector x, with f(x,)=1. Thus the second inequality in rule (1) with
b=w-X, >0 must hold. According to rule (1) we must have WX, + w'X, > 0. Assume
we have for the zero vector 0: f(0)=0. This implies wy <0 and thus (—wy)+ WX, +
w'X, >0. Let x, and x, be vectors with no 1s in the same position, we write x, nx, =0.
Let z be a vector obtained from the two mnput vectors x, and x, such that z;=1 if
x,;=1or x,;=1 otherwise z;=0, we write z=x,UXx,. Vector z has a corresponding
inequality wez={—w,)+ WX, + W*X,. Because (—w,)+ WX, + WX, >0 we must have
f(z)=1. The same kind of reasoning holds if f(x,)=0, f(x,)=0and f(0)=1. In that
case f(z)=0 must hold. Thus we can write the consistency property of the binary linear
threshold function: If the logical function y= f(x) 1s a binary linear threshold function

f "'I‘H . ;‘ '

BAY ZOLTAN Alkaimsazoty
Kutatim Alapitviny
Logisz tikai es Gyirtistechn_ikai Inté
H"' x-.':] | i

-

il

H

H

H

H

18 The binary Perceptron

Table 2.6

X X2 Y
. 0 0 1
UL 0

1/ 0 0

1 ! 1

with respect to x,, x,,..., X, and f(x;)=u, f(x))=u, f(0)=uq, then f(z)=u must hold,
with z=x;Ux; and x;nx;=0, and u=1 (#=0) or u=0 (u=1).

Example 2.4

For the identity function we have Table 2.6. From Table 2.6 we find:
f(0,0)=1 and thus wy >0
f(0, =0 and thus wy+w, <0
f(1,0)=0 and thus wy+w; <0

For f to be a linear threshold function we must have f(1,1)=0, which implies
wo+w, +w, <0. However, f(1, 1)= 1, and thus f cannot be a linear threshold function
with respect to x, and x,. -

Many logical functions of n arguments cannot be realized by a single-neuron
Perceptron. This also becomes clear when we consider the determination of a logical
function as a classification problem. We have two classes of points in a n-dimensional
input space (see Figure 2.10) for the parity problem as presented in Example 2.3. For
one class of points 4= {(0, 0, 1), (0, 1, 0),(1,0,0), (1, 1, 1)} the number of ts 1s odd and
the output of the neuron must be 1, and for the other class B= {0, 0,0), (0, 1, 1), (1, 1, 0),
(1,0, 1)} the number of 1s is even and the output must be 0. Thus for the first class
we must have wy+w,x, +w,x,+w;x;>0 and for the second class we must have
Wo+ W, X, +W,yX, +w;3x3<0. The set of points (x;, x,, x3) for which wo+w,x, +
w,X,+w,yx; =0 represents a two-dimensional separating plane H in the three-
dimensional input spacc. On onc side of this plane H we must have for cvery
point (x,, X,, X3) that wy+w,x, +w,Xx, +w,x; >0 and thus the output of the ncuron
will become equal to 1. On the other side of the plane H we want to have
Wo+ W, X, +W,X,+ wyx; <0 and the output of the ncuron must be 0. Now one can
easily check that we cannot locate a plane between the two scts of points that must
be separated, thus there exists no solution for our classification problem and thus
the parity function cannot be represented by a linear threshold function. Or
equivalently onc can say: both sets of points are not linearly separable.

In the n-dimensional case we must have a (n— 1)-dimensional separating hyperplane

The performance of a single-neuron binary Perceptron 19

Figure 2.11 One-dimensional separating hyperplane H in a two-dimensional
space

H 1n the n-dimensional input space X if the logical function is a linear threshold
function with respect to x,, x,,..., x,. The separating hyperplane is defined by
WX+ WX, + - +w,X, = —w,. The weight vector w=[w,, w,,..., w,]is orthogonal
to the separating hyperplane. This becomes clear when we take two n-dimensional

Input ~vectors X, and x, located on the hyperplane. Figure 2.11 shows the
two-dimensional case. For these vectors x, and x, we have that wi(x, —x,)=0 and
thus w and the hyperplane are orthogonal.

The separating hyperplane H divides the n-dimensional input space X into two
half-spaces, the region X where Zw;x;> —w, (i.e. y=1) and the region X ~ where

H

H

H

H

20 The binary Perceptron

Iigure 2.12 Dcecomposition of the tnput vector x

2 WiX; € —wq (1.e. y=0). Since a vector x in the region X * will give wix > — Wy, the

wetght vcclor w points into the region X 7. It is said that x is on the positive side of

the hyperplane H if x is in X ¥, and x is on the negative side of H if x is in X ~.
The distance d from the origin to the hyperplane H is cqual to the projection of

a vector x 1n H (i.e. w'x = — w) on the unit vector w/|w| normal to H. Thus d =
.) .
or with w'x = —w, we find for the distance along w from the origin to the hyperplanc:
— W
d = 0
W)

The distance ¢ from the hyperplane H to an input vector x s proportional to
WX + w,. The easiest way to sce this is by decomposing the vector x into a component
in the direction of w and another component x_ orthogonal to w (sce Figure 2.12):

By forming the vector product w'x and noting lhat w'x, =0 we obtain for the length
of the component x along w:

w'x

A=

W

By subtraction of the distance d from the origin to the hyperplane we obtain Im
the distance ¢ from the hyperplanc to x:

w'x + Wi
d=—

]

LS LY

©om ot g L

Equivalent linear threshold functions 21

~ We finally mention that one can prove (see Cover, 1965) that in the n-dimensional
case the number of linear threshold functions 1s equal to:

Cin) = Z (2"— 1)

For partial functions, 2" must be replaced by the number of samples. \

2.3 Equivalent linear threshold functions

This section on equivalent lincar threshold functions can be omitted on a first reading

of this book. For a more profound understanding of the learning capabilitics of a
binary Perceptron, however, one must know that in general a binary Perceptron
yiclds an infinitc number of solutions to the samc problem.

In the next chapter we will give a learning procedure of how to find from a sct of
samples of a logical function, a single-neuron binary Perceptron that will rcalize that
logical function, if the logical function is a linear threshold function with respect to
the variables x,, x,,..., X
function, obtained after learning by the neuron, will depend on the particular sequence
of applied samples. Different threshold functions can, however, realize the same log:lca.l
function, known as equivalent linear threshold functions. ;

In addition. it i1s worth determining which features of linear threshold functions
are essential and which are arbitrary. It frequently occurs that the descriptions of
linear threshold functions are different, i.e. the weights w, are different, whereas the
realized logical function is the same. We will now give four different simple theorems
on equivalent linear threshold functions. The first theorem 1s important, though 1its
proof 1s trivial.

Theorem 2.1

If y=S(X w,x; +w,) is a linear threshold function, then y' = S(X Aw;x; + Aw,)mth 4> ()
is an equivalent linear threshold function.

Example 2.5
Let y=S(x, +x,—x;)and thus w, =1, w,=1 and wy= — |, then with ~ =2 the hnear
threshold function ' = S(2x, +2x, — 2x3) 1s equivalent to y. n

Theorem 2.2a

If y=S(Zw,x,+w,) is a linear threshold function and y' =X wix;+wj 1s a lincar
function with respect to the binary variables x,, x,,...,x, such that if >0

n

It will turn out that the weights of the linear threshold -

. "'I‘H . r‘ ‘

22 The binary Perceptron

Table 2.7

X1 X3z X3 Y y y"
0 D O 0 -1 0
o 0" 1 0o -1 o
0 1 0 1 0 |
0 I l), 0 1
] 0 0] 0 |
1 0 l 0 0 0
i] 0] 1 1
] 1 | | |]

then y=1, and if y=0 then y=1 or y=0, and if y'<0 then y=0, then
V" = S(Z(w; + Aw))x; + wy + Awg) with 120 is equivalent to y=S(Z w;x; + wy).

Proof

Because we add to the value of the argument of the step function in y a
positive or zero value when y=1 and we add to the value of the argument of the
step function in y a ncgative or zero value when y=0, it will be clear that y=y" for

all the values of the argument. QED

Example 2.6

Let y=3S(x,+x,—x,) as specificd in Table 2.7. Let y'=x,4+x,—1 as specified 1n
column 5 of Table 2.7. The conditions on y are satisfied so the lincar
threshold function y”=8(3x, +3x,—x;—2) (with A=2) is equivalent to y.

The trivial complement of the previous theorem is as follows:

Theorem 2.2b

If y=S(XZwx;,+wg) is a lincar threshold function and y'=Xwix;+wy 1s a lincar
function with respect to the binary variables x,, x,,...,x, such that if y <0
then y=1, and if y’=0 then y=1 or y=0,-and if y'>0 then y=0, then
V' =S(E(w, + Aw)x, + w, + Awg) with A <0 is equivalent to y=S(Z w;x; +wg)

For the next theorem we nced some auxiliary concepts and lemmas. We first define
X' as the set of argument values of a logical function for which y=1; in the same
way we have X~ as the set of argument values for which y=0.

Lemma 2.1

. If y=S(Z w,x; + w,) is a lincar threshold function, then y' = S(Z w;x; + w,—A ") with
O0<AT <min(Xw,x,+wy) over X7 is an equivalent linear threshold function. If

Equivalent linear threshold functions 23

V' =8S(Xwx;+wo—A7) with 02A~ Zmax(Z wx;+wy) over X, then y” is also an
equivalent linear threshold function.

Proof

When we subtract from the argument of the step function in y a positiye
constant A less than min(Z w,x;+w,) over X7, then the argument of the
step function will remain positive for all elements of X ™ and the argument of the step
function will be negative or zero for all elements of X~ thus y will remain the same
for all elements. If we add to the argument a positive constant value A smaller than
or equal to —max(X w,x;+wy) over X 7, then y will also remain the same for all

values of the argument. | QED

Example 2.7

The linear threshold function y=3S(x, + x, — x,) 1s equivalent to y' =S(x, + x, — x, —0.5)
because A" =0.5 and 0<0.5<min(Zw;x;+wy)=1 over X* (sce Table 2.7). Note:

A~ =0. |
Lemma 2.2
If y=8(ZXwx;+wy) is a linear threshold function w.rt. x, x,,...,x,, 'fhen

y'=38(Z(w;—0;)x;+wy) 1s an equvalent linear threshold function if 0<d <
(1/n)min; (X w;x;+wg) over X* or if 02 3,2 (1/n)max; (£ w;x,+w,) over X ~.

Proof

If, in the worst case, for all x; we have x;=1, we subtract in the first case from

the argument of the step function in y the constant nd; with 0 <nd; <min, (Z w,x; + w,)

over X*. According to Lemma 2.1, we obtain in that case an equivalent linear
threshold function. The same holds if 029, > (1/n)max; (X w,x; + w,) over X . QED

Example 2.8

The linear threshold function y=_S§(x; +x,—x3) 1s equivalent to y=S[(1—1/6)x, +
(1—-1/6)x, —(1 —1/6)x;] because 0;,=1/6 and 0<1/6<1/3min, (X wx,+w,) over x™.
_

Theorem 2.3

If y=S(2 w;x;+w,) is a linear threshold function, then there exists a linear threshold
function y' =% wix;+ wg such that all weights are integers.

F .
."‘u f.]l 'A

"

24 The binary Perceptron

Proof

If all weights in y are rational numbers, we can form the product D of all’
denominators of the weights and 'multiply all weights by D. All weights will become

an integer and the obtained: tl;'l’,eéhold function y’ is, according to Theorem 2.1
equivalent to y. If a weight w; is a réal number, we can replace werght w;, according
to Lemma 2.2, by a rational weight w} such that w=w,— 9, and rational weights can
be replaced by integer weights. This completes our proof. QED

2.4 Learning a single-neuron binary Perceptron with the
reinforcement rule

Although a single-neuron binary Perceptron is not of great practical use, because
only a few of the logical functions are lincar threshold functions with respect to the
variables x,, x,,..., x,, we can nevertheless gain much understanding of more
complicated networks by investigating the learning behaviour of one bullding unit.

In Section 2.2 we demonstrated how to determine the weights of a simgle-neuron
binary Perceptron from a set of incqualities. Now we investigate how we can adapt
step by step in a learning process the weights of a neuron in order to identify some
logical function. In fact we can use the learning process as an algorithm to solve a
set of inequalities. We assume that the function to be realized by the Pereeptron s
a linear threshold function.

At a given step of the learning process we have some extended welght vector
w=[wqy, wy, ..., w]: the output will be correct for a subsect of all arguments of the
function to be identified, and for the remaining arguments the output will be wrong.
The set of arguments for which the target output is cqual to I, whereas the actual
output 1s equal to 0, will be denoted by T,;, the set of arguments for which the
target output is equal to 0 and the actual output is 1 will be denoted by T, . The
arguments X, x,,..., x, of the function y will be extended with the constant internal
input xo=1 of the neuron. It will turn out that we have to change the weights
proportional to the elements of T, and negative proportional to the clements of T, .

Example 2.9

The function y to be realized is specified in Table 2.8. Note that in Table 2.8 the
extended inputs [xg, x;, x,] with x,=1 arc given, whereas yousoa logical
function of x, and x,. The neuron in the initial lcarning state (i.c. at step k =0) has
the weight vector w(0) =[w(0), w,(0), w,(0)]'=[0.5, I, — L]" (sce Figure 2.13). FFor the
output y(0) of the neuron at step k=0 we have (sce Table 2.8) the [ollowing:

$(O0)=S[wo(0) + w,(0)x, + w,(0)x,]=S(0.5+ x, —x,)

L

We sec that for the extended input vectors 1,0, 0] and [1. [, O] the output is
wrong. The only way to improve the output for the vector LE O0.0]"1s by decreasing

Learning a single-neuron binary Perceptron 25
Table 2.8
Xo X1 X2 4 y°
1 0 0 0 I
1 0] 0 0
] 1 0 0 1 \
l 1 ! 1 1
X, =
005
X, 1

<Y

X, -1

Figure 2.13 Single neuron with initial weights

the value of w,. So we can change the weight vector w=[w,, w,, w,]' by an amount
Aw proportional to — 1{ 1, 0, 0], t.e. minus the first extended input vector. To improve
the output for the vector [1, 1,0} we have to decrease the values of w, and w,. So
we can change the weight vector by an amount Aw proportional to —1[1, 1, 0], i.e.
minus the third extended input vector.

We can take the proportionality equal to I and add both increments Aw. Thus we
obtain Aw=[-2, — 1, 0]'. The new weight vector becomes W(1)=[w(1), w,(1), w,(1)]' =

[—1.5,0, —1]'. Because:

y(1)=STwo(1)+ w,(1x, +w,(1)x,]=S(— 1.5 —x,)

we observe that now we obtain the wrong output only for the input vector [1, 1, 17"
To improve for that argument the output of the neuron we have to increase w,, w,
and w,. Thus we can take AW proportional to the corresponding misclassified vector
[1,1,1]". We can proceed in the same way as above and after a finite number of
steps we will obtain a correct response of the single-neuron Perceptron, if the original
function 1s a linear threshold function with respect to x,, x,,..., x.. In Table 2.9 the
results for six learning steps are given. The final linear threshold function is equal to:

y=38—15+x;+x,) H

Let in general X ™ be the set of argument values with target output y=1 and X~
the set of argument values with target output y=0. For a given value of the weight
vector w, a subset T of X ™ and a subset T of X~ are misclassified.

, 1!' . r‘ ‘

26 The binary Perceptron

Table 2.9

Step W, Wy W, T T"

0 W 0.5 ., 5 — 1 — [1,0,0], [1, 1, 0]
Aw -2 ' 0

1 \ —1.5 0/ -1 [, 1,1] —
AW 1 1 l

2 W —0.5 1 0 —- [1, 1, 0]
Aw — 1 — 1 0

3 7 — 1.5 0 0 [1, 1, 1] —
Aw 1 1 1

4 W —0.5 ! 1 — [1,1,0], [1,0, 1]
AW -2 — 1 — 1

5 W —2.5 0 0 [1, 1, 1]
Aw 1 | 1

6 W - 1.5 | 1 — —

We will show that for a convergent learning process we can modify the weight
vector w by adding Z¢X; summed over XeT,*, where ¢>0 is a proportionality
constant, and subtracting from w the value of Z ex; for ijeﬁ.,‘. Because at each step
we use the total set T,," UT, "~ for modifying the weight vector we will call this way
of learning global learning. However, we can also modify at each step the weight
vector with only one element of T,,* UT,, ™. This way of learning will be called local
learning. The learning rule 1s called reinforcement learning for both cases. The
proportionality constant ¢ is called the learning rate.

We see that the output of a single-neuron binary Perceptron at a certain step k
depends on the actual input and on the weight vector w(k) at step k. We can consider
the value of the weight vector at step k as the state of the learning system. This
enables us to describe the single-neuron binary Perceptron within the framework of
the theory of finite sequential machines. A finite sequential machine is described by
a state transition function 0 and an output function A. Given the state w(k) and the
input X, the next state is defined by w(k + 1)=3(W(k), X) and the output at step k is
defined by y(k)= A(W(k), X). The behaviour of a sequential machine can be graphically
represented by a so-called state diagram. In a state diagram, states are represented
by circles and transitions between states by arrows pointing from the actual state to
the next state. Each arrow has a label indicating the supplied input and a label
corresponding to the output.

We can define the output function A of the sequential machine corresponding to a
single-neuron Perceptron as:

AW, X)=S(Wo+w X, +wyx,+ - +w,Xx,)

In case of local learning and with the learning rate ¢ equal to 1, we can define the

Learning a single-neuron binary Perceptron 27

Table 2.10
p Xo X x, oy oy
Po | 0 0 0 I
P, l 0 1 0 1
P, | 1 0 0 1
D, 1 1 1 1 1
state transition function o as:
w if A(w, X)1s correct

Hw, X)={ w+X if:':e.T,,,],,F

w—x IfxeT,

Example 2.10

The function y to be realized 1s spectfied 1n Table 2.10. We use the extended input,
1.e. with the constant x,=1. The function y to be 1dentified 1s a logical function of
x, and x,. The different input values will be denoted by p,, p,, p, and p;. The
neuron 1n the initial learning state (1.e. at step k=0) has the weight vector

w(0) =[wy(0), w,(0), w,(0)]'=11, 1, 1]". The output i1s defined by:
W0)=8(wo(0) +w;(0)x; + wy(0)x,)=S(1+x; + x,)

Only for input p, is the output correct, and so we remain in the same state only for
that input. For input p,eT,, the output is 1 and the next state is w(0)—p,=[0, 1, 1]-.
For input p,eT,, the output is 1 and the next state is w(0)—p, ={0, 1, 0]'. For input
p.cT, the output is I and the next state 1s w(0)—p, =[0, 0, 1] (see Figure 2.14). We
can continue this process in the same way, with the final result as shown in Figure 2.15.

H

In order to find a weight vector for a correct realization of a logical function, we
found intuitively that in the learning phase the weight vector must be increased or
decreased with vectors proportional to the misclassified extended input vectors.

We can see the same 1n a more formal way. In the case of local learning the
adaptation at step k becomes:

wk+ 1)=wk)+ex, if xeT)

I

and
wk+D=wk) —ex, if xeT

In the case x.€T,, we have prior to adaptation that the inner product w(k)-x; <0.
After adaptation we have w(k + 1)X, = w(k)'X; +¢|X,|*. So we add a positive number

28 The binary Perceptron

P,P.P,
x'l , ‘_.: .‘ 'l” ﬁ l:,2 pl:l p3
.' 010, -
F'I"I p1
P
111 L -
P, p,
001 >
P,
P,P,P,

Figure 2.14 The intial state diagram of Example 2.10

P,P.P, P,P,P, PP, PP, PP, PPP,

P,P,P, P,P.P, P,P,P,

Figure 2.15 The complete state diagram of Example 2.10

g|X;|* to the old inner product, and the inner product is changed into the desired
direction.

In the casc x,eT [we have prior (0 adaptation that the inner product wk)-x, > ().
After adaptation we have Wk + 1)k, =w(k)-X; —¢|%,|%. So the inner product is again
changing into the desired direction.

[n cases of global learning the adaptation at step k becomes:

Wk + 1)=wk)+e(X %, —Z %) with xeT,, and xeT,,

We can concerve T X, — X X; as one misclassified correction vector € of 7). We have
prior to adaptation that the inner product wk)-¢ <0. After adaptation we have

Learning a single-neuron binary Perceptron 29

~ W(k+ 1)y¢=w(k)-¢ +¢|¢|*. Thus in the case of global learning the inner product 1s also

changing into the desired direction. We see that at each step the behaviour of
the single-neuron binary Perceptron is improved with respect to the misclassified
input vectors at that step. However, in general after an adaptation step the set of

misclassified vectors is changed, so we have to adapt the weight vector for that new.

set of misclassified vectors. ‘

One may wonder whether we can always be sure that we will finally arrive at a
state where the outputs are correct. It might be supposed, for instance, that we may
never finish updating the weight vector because the process can cnter a loop of states.
Howcver, we will show that when at a certain step a state (1.c. a weight vector) w(k)
is obtained, we will never return to the same state tf there exists a solution. |

Theorem 2.4

During the learning process a single-ncuron binary Perceptron will never enter the
same state more than once if there exists a solution space. |

Proof

F

Let w(k+n) be a state reached from w(k) after n additional adaptations; we
then have a sum or vectors added to w(k):

e(2 X;— X X;) with xeT fwrnand ReT S, with p=(0,1,....n—1)

Let § (a solution vector) be a weight vector for which a correct solution ts obtained.
We consider the inner product of § and w(k + n):

S W(k 4+ 1) = §-W(k) + (T 8%, —Z§%))

summed over REETJ{HP, and ijeT;{Hm with p=(0, 1,..., n—1).

For every X7 4+, We have §:X;>0 and for every x,eT ., we have §X,;<0.
Thus §w(k + 1) #8w(k) and hence w(k + n) # w(k). '

(It may happen that T;“.[kfp, 1s empty for all p and that §-ij-—-0,. thus in that case
Sw(k +n)=8w(k). However, in that case we can take another solution vector s’ from

the solution space such that §'-x;#0.) o QED

Although we will never return in the same state during learning, this does not
guarantee that the learning process will stop because the number of states in the
space containing incorrect states 1s infinite. However, the quotient of the number of
correct states and the number of incorrect states is finite. The subspace S of the
extended weights space W containing all correct weight vectors is called the solution
space. The solution space also contains an infinite number of weight vectors, as
becomes clear from the following arguments.

If W is a solution vector, then the inner product w*x>0 for all XeX * and w8 <0
for all XeX ~. The same holds for fw with >0, thus fw is also a solution vector.
If w; and w, are solution vectors, then one easily verthes that f,w, + 8w, with /5, and

. '!H . rl. ‘

30 The binary Perceptron

N /

(-2,0,2) (-2,1,2) (-2,2,2)

(—2,2,1)

(-2,2,0)

Figure 2.16 The solution space of Example 2.9

p;>0 1s also a solution vector. A space having these properties is called a convex
cone. In Figure 2.16 we have given the solution space of Example 2.9. |

The quotient of the ‘volume’ of the solution space § and the volume of its
complement W —S§ is finite; thus if we could select weight vectors randomly we
would have a finite probability of selecting a correct solution vector. In the learning
process we do better because we never select a weight vector that has been chosen
previously (Theorem 2.4), and moreover after each adaptation we move with the new
welght vector in the direction of the solution space, as should become clear from the
next example. In our previous discussion it should have been noticeable that we did
not build our theory explicitly on binary valued input vectors. It turns out that lincar
threshold functions can also be functions of real-valued input vectors. In the next
example we will use real valued inputs.

Example 2.11

Assume we want to learn a simple threshold function with one-dimensional rcal-valued
input vectors such that the output equals 1 for x, =(1) and for x, =(1.5), whereas the
output must be 0 for the inputs x,=(0.25) and x,=(—0.5).

In Figure 2.17 we have given for the extended input space the solution space
for X*={%,,%}={[1,17,[1, 1.5]"} and X~ ={x,, %,}={[1,0.25],[1, —0.5]".
Because the output for x; must be 1, we must have for the solution weight vector s:
s'X; >0, and thus s must be located to the right of linc /,. For input X, the output
must be 0 and thus s:X; <0 and thus s must be located to the left of the line [, or
on the line [5. We can do the same for the other inputs. The intersection of the

separate solution spaces gives the solution space, indicated by the shaded arca in
Figure 2.17.

Learning a single-neuron binary Perceptron 31

;
2

e

Xy (wn)

Figure 2.17 Construction of the solution space of Example 2.11

M
X,
T — L WI(0)
X,
M
X,
1 Z
—
A

Figure 2.18 The construction of the sequence of weight vectors of
Example 2.11

Let the initial weights be [wq(0), w,(0)] =(2, 1), then the initial separating hyperplane
H(0) is defined by 2x,+x,=0 (see Figure 2.18). With this initial hyperplane
the extended inputs X, and X, give the wrong output. If we use the procedure for
global learning we have to subtract from w(0) the vector (X, +x,). With ¢=1 the
new weight vector becomes w(1)=(2, 1)—(2, —0.25)=(0, 1.25). We see that the weight
vector 1s changed in the direction of the solution space. The corresponding separating

The Perceptron convergence theorem 33

32 The binary Perceptron

hyperplane is now 1dentical with the x,-axis, and only for the input vector x,=(1, 0.25) _y=f(x;)=0 for some input vector X;=(X;1, X;2, -+, x;,), then change w(k) to:

do we obtain a wrong output because wq(1)xy +w,(1)x, =0+ (1.25)(0.25) >0 and hence | w(k + 1) = w(k) — e(k)X,
y=1. Now wc subtract from w(l) the input vector x,=(1,0.25). The necxt welight ,_ -
vector becomes w(2)=(—1, 1) a}t;il}_c border of the solution space. The output for the D
; » - L en . “Iw) I,'; P — . . . - —_— ' | | I
Input vector X, 1s now just wrong; J.i 0. Thus 1n the ncxt*stc:p we dd(.] X | —(l, [) to Global learning
the weight vector and we obtain w(3)=(0, 2). Input vector X 3 1s now misclassified, so . \
we have to subtract from w,; the vector x;=(1,0.25); the next wecight vector A(L . & with v.eT Yk xeT (k) with T (k) the set of extended input
W(d)=(~ 1. 1.75) is in the solution space ; If (k) =Z &, —Z &; with X,eT "(k) and X, T ~(K) (k) th 4

T | © SOTUHON space. n vectors with target value 1 and actual output of the neuron at step k equal to 0, and

. . , . | T (k) the set of extended input vectors with target value 0 and actual output of the
The question anises of whether we will always enter, in a finite number of adaptation neuron at step k equal to 1, then change the weight vector Into:

steps. the solution space. One can prove that for any constant learning rate ¢ (called A
fixed increment learning) this will be the case — even for a time-varying learning rate wik + 1) = w(k) + e(k)c(k)
like e(k)y=1/k (ky=k s¢ statements are ~ A COS v Poreonts . ‘ , Al loarmn:
”; ‘“\)”]ffh ot JU\LI {\'hTh.T?cb btdl.u'm('mj ..m,l conscquences of the Perceptron The Perceptron convergence thcorem states: in the case of local or global lc.arnmg
(¢ @rygenee Oren) f > vOUSSC b b Y& . A : & ' Q¢ ¢
J coram. Wiich witi be discussed in the next scetion. the wmght vector w(k) converges to a solution vector § 1if the samplus arc llncarly

separable and if the following conditions on the learning rate ¢(k) are satisfied:

. «(k)=0
2. lim) gk)=o0

m— o k=1

2.5 The Perceptron convergence theorem

m

This section mainly deals with the formal statement of the Perceptron convergence Y (e(k))?
thcorem and its proof. Because we have already outlined the theorem in the previous 3 lim 2 —0
section in an informal way, this secction can be omitted on a first rcading of the book R .. :
without loss of continuity. (kzl F(k))

The Perceptron convergence theorem concerns the convergence of the learning
procedure to find, from samples of correct behaviour, the lincar threshold function
y=38Wo+w,x;+wyx,+ o0 +w,x,) realized by a single binary Perceptron, if the
function y= f(x,, x,...., x,) to be identified is a lincar threshold function (the symbol
S represents the step function).

In the previous scction the variables y and x; were binary valued; the Perceptron
convergence theorem is, however, also applicable if the variables x; are real valued.

The reinforcement learning rule 1s given by:

Let w(0)=(w,(0), w(0),..., w(0)) be any initial weight vector.

Let w(k)=(wq(k), wi(k),..., w,(k)) be the weight veetor at step 4.

Let (k) be a vartable learning rate.

The conditions imply that convergence occurs for any positive constant learning
rate ¢ or if g(k)=1/k, or even if it increases like a(k}=k. If the set of samples 1s ngt
linear separable, then the ‘separating’ hyperplane defined by 27_, “"a-"fi_=0 will
‘oscillate” between several positions if the learning rate is constant or increasing. The
<ame occurs when the data set contains contradicting samples, so we can formulate

the following practical statement:

Practical statement 2.1

A decreasing value of the learning rate ¢(k) is particularly advisable if the set of samples
mav not be linear separable or contains contradictions, because in that case the effect

of ‘disruptive’ samples will be reduced.

Local learning

(Note: For a formal proof of the theorem it is required that during learning for correct

If at step ki wo(K)+w (K)x,, +w,.(Kv. 4 - +w (kx. <0 and it is given that Hh S
, ! N ; = classification the inner product w-x> 9 for xeT,” and wx<J for xeT,,~ with 0 a

y=f(x;}=1 for some input vector X;=(x,,, X;5...., ¥;,), then change wik) into:
. . _ certain small positive constant.) o
Wik + 1y = wk) + ok, We will not give a general proof of the theorem and restrict it to the case where

[at step ko owolk)+w (kv +wolkix,, + o +w(k)x, >0 and it is given that e(k)=1/]c(k)| for global learning.

34 The binary Perceptron

Proof

If the learning process converges, then there exists a solution vector § such
that after some finite time m: w(m)—s If §1s a solution vector, then the unit vector

=§/|§| 1s also a solution vcctor”f’hus w(m)= Al for some A>0. If w(im)= 214, then
1% w(m)/lw()j=1. At every step & wé have for the value of the cosine of the anglc
between it and w(k): a-w(k)/|w(k)] < 1. We will show that at each step d-w(k)/|W(k)| will

increase with a positive amount and thus after a finite number of steps must become

equal to 1.

Consider t-w(k + l) u-{w(k)+ e(k)é(k)}. Because we take g(k)= l/lc k)| we obtain
aw(k + 1)=i-w(k)+a-¢(k)/|¢(k)|. Because ¢(k)=X X. — 2 x; with x.eT, (k) and xe’f “(k)
we have u-¢(k)= (k)>0 Let o' =min, é(k)/|c(k)l. So at each step the inner product
u-w(k) 1s increased with at least the value &', thus G-w(k)> kd’". (Note that il we take
e(k)> 1/|c(k)|, then the increments at each step will be larger.)

Now consider [W(k+ 1)]* =|w(k)+ e(k)e(k)|* = |W(k)|? + 2w(k)-¢(k)/|&(k)| + 1. Because
w(k)-€(k) <O we have |W(k + 1)|* <|w(k)|* + 1. This implies |W(k)|*> <|W(0)}{2 + k and thus
| ()l <(W(0)1* + k)"/?. The expression @-w(k)/|W(k)] can thus be approximated by:

u-Ww(k)|/W(k)| > 6'k/(|w(0)|* + k)'/* and thus after a finitc number of steps k the valuc of

u-w(k)/Iw(k)] must become equal to 1 and thus a solution vector must be reached.

QED

We have found that after a finite number of steps the reinforcement learning rule
will provide a correct solution if certain conditions are satisfied. There are, however,
other learning rules that will give correct solutions under certain conditions. These
rules are also based on the gradient descent procedures for minimizing certain criterion
functions, like cost functions (for misclassification), sometimes called error functions
or energy functions.

The criterion function E(w) 1s a positive scalar function which is zcro if w is equal
to a solution vector. With the gradient descent procedure we move through a sequence
of weight vectors wy, W, W,,... such that E(Wwy)> E(Ww,)> E(W,)> --- and finally cnd
up with E(w)=0. The procedure starts with some arbitrary weight vector w,, then
computes the gradient vector VE(w,). The next weight vector is obtained by moving
in the direction of the steepest descent, i.e. along the negative of the gradient vector
VE(w,).

An obvious choice for E(W) would be the number of misclassificd input vectors for
the weight vector w. But in that case E(w) would be piecewise constant and the
gradient of E(w) 1s zero or undefined, so this would be a poor candidate for the
criterion function.

The reinforcecment learning rule used before is obtained if we minimize the
Perceptron criterion function, 1.€.

EW)= Y —w=xwith T,=T}u{-T;"
xeT,

Because w'x is negative for cach xeT,, the criterion function E(W) is always positive

Performance of a two-layer Perceptron 35

if there are misclassified input vectors, and it will only be zero for a solution vector

s. Because AE(W)=V{E(W)}Aw we have the situation that E(w) will reduce if Aw is .
proportional to the negative value of the gradient vector V{E(W);}. The ith component
of the gradient vector JE(W)/dw;, is equal to x;, thus we obtain for Aw:

Aw =g z X
xeT,

as we used in the reinforcement learning rule.

Another criterion function could be, for example:

EW)= 5% (Wx)? with T,=T, u{—T}
xeT.,
Although this criterion function can be used, it turns out that the corresponding
learning rule is inferior to the reinforcement learning rule.

2.6 Performance of a two-layer binary Perceptron

In the previous sections we found that a single-neuron binary Perceptron can realize
linear threshold functions with respect to the binary variables x, x,,..., x,. However,
most logical functions f: {0, 1}"—{0, 1} are not linear threshold functions with respect
to X, X,,..., X,. In this section, we will show that any logical function can be realized
with a two-layer binary Perceptron with one neuron in the second layer.

First we define some concepts, using a terminology related to pattern recognition.

The argument values of logical functions will be called patterns, so we have a
pattern set: P=1{0, 1}"; a pattern p; is an element of P, 1e. p;={p,, Dis---» Pi) With

p; €10, 1}.

The intersection r, of a pattern p,e{0, 1}” and a pattern q,€{0, 1" is defined by
PiNg; =T, with r, =11f p, =1 and ¢g; =1 and with r, =0 otherw1se

The union r, of a pattern p;{0, 1}" and a pattern q;€ {0 1}" is defined by ptqu—rk
Withr, =11l p, =1 or qjm—l or both and with r,_=0 otherwise.

The order of a pattern p; is defined as the number of Is occurring in p;, and 1s
denoted by |p,l.

In the previous section we treated x; as a binary variable; however, it is helptul to

consider x; as a function: x;; P—{0, 1} defined by:
xXAp:)=p;

Because x (p;) depends on one component, Or one pixel, from the pattern p; we will

call x; a pixel function.
We introduce a special logical function which acts as a mask by which we observe

a pattern. Let qeP, then x: P—{0, 1} is a so-called mask function defined by:

Xq(p) =1 1f gnp;=q and x4(p,)=0 otherwise

/
AL, A 'A

36 The binary Perceptron
Performance of a two-layer Perceptron 37
Example 2.12 | _
3 Table 2.11
xlloﬂ(lll-O):f.l and X, ,40(1001)=0 n | | X4 X2 y
A mask function can be written ' as aﬁproduct of pixel functions. Let qeP, then 0 0 0 "o
Xq(Ph) = ‘fql(Ph)‘f (pw) (Ph) : (l) (1) i
with | 1 0
o f=x(py) ifg=1 e
XolPn) = . |
P {= ! if ¢, =0
normal form:
We will call q in x,(p,) the mask of the mask function x,,. Z {0, 1)
| W X
Xq,

Example 2.13

with w, an integer such that for each pattern p,eFP:

4,

Forn=3 X,y =X,X; . .
Z Wy p;) with A the substratum of p;

We define the substratum S, of a pattern p; as the set of patterns: S, = 1q,/x (p) = 1}.

Examplc 2.14 Before proving the theorem we will give an example of the theorem.

Syu1, = 10000, 0010, 0001, 001 1] . Example 2.16

ve- i fine Table 2.11 can be written as:
We define the cover C, of a pattcrn p; as the set of patterns: C, = {qk\xp(qk)= The exclusive-or function defined by Ta © ¢
Y=Wg0Xg0+WioX10+T Wo1Xp1 +Wi11X1,

Example 2.15 It turns out that wyo=0, w,o=1, wo, =1 and w,; = —2. Thus:

Cooty=10011,0111, 1011, 1111) = =X, +Xy—2X,X, -

. .) o . . , . L - Proof of Theorem 2.5
If a logical function y: {0, 1}"—>1{0, 1} ts written as an arithmetical incar combination /o

of the mask function: . . .
We have to prove that for any logical function y: {0, 1}"—{0, 1} we can find a unique
vp)=Z wx,(p;) with weR set of coefficients w, such that:
ien we will call such a form an arithmetical conjunctiﬁe normal form |
. C . * ’ -x_(p.) = v(p, ach peP=1{0,1}"
In the casc where the logical function 1s written as; Z Wq,Xq(P:) = ¥(py) lor € Pi& 0, 13
¥(p;))=S(Zwx,(p,) with weR and § the step function Because x,(p) =1 if q;€S, and 0 otherwise, we have for every p;:
then we call this form an indirect arithinetical conjunctive normal form.
Now we can state the following theorem: Z Wq, Xq(Pi) = Z Wq, Xq(P)
Theorem 2.5 ' For q,€5, we have xq}(pf)= 1, thus:
Any logical function y: {0, 11"— 0, 1] can be written i an arithmetical conjunctive)3 Wq, Xq (Pi) =) Wa,
| 95 q,€Sp,

38 The binary Perceptron
Thus if:

3 w,,= y(p;) for each p;eP
q_,ESN:_' _*'tH H

we obtain:)

Y. wq,Xe(P)=y(p)
qeP

Moreover we have for a total function 2" patterns and thus 2" independent lincar
equations of the form:

Z wqj=y(pi)
q £S5y,
Because the number of coefhicients wy 1s 27, the solution is unique. QED

Example 2.17

Given the function y: {0, 1}"—{0, 1} specificd by Table 2.12, with the conditions for
2 w, given in the last column. The solution for the set equations is: |

Wogo = 1 Wio0 =0
Woo1 = Wior = —1
Woro= — 1 Wio=0
Wor1 =0 Wigp =2

Thus the function y can be written as a linear combination of mask functions:

y=1-x;—Xx;x3+2x,x,x4 N

In Section 2.2 we defined a linear threshold function with respect to the binary

Table 2.12

X1 X2 X3 y
Po 0 0 0 1 =Wg00
Py 0 0 1 1 = Wooo T Wooi
P2 0 1 0 0 = Wooo0 T Woio
P 0 1 1 0 =Wgoo T Woo1 +Wo10t+Wor
Pas 1 0 0 L =Waoo 1t Wio0
Ps 1 0 1 0 = Wgoo*+ Woo1 T Wioo+ Wioi
Ps l 1 0 0 =Wooo 1t Wi00 T Woiot W0
P- 1 1] |

=WDGO T 11’00] "+'W.D]ﬂ+w[}| | +"1"'][H]+WIHI +wl |“+W| I

Performance of a two-layer Perceptron 39

variables x,, x,,..., x,, as a function that can be written as y=S(X w;x;— T}, with §
the step function.
From Theorem 2.5 the next theorem follows immediately.

Theorem 2.6

Any logical function y: {0, 1}"—{0, 1} is a linear threshold function with respect to
the set of binary mask functions, i.c.

Y= WX,
q;

or

yzg(S W "Xq, — T) with threshold T= —wgyq ¢

q;#‘iﬂ

Example 2.18

The exclusive-or function of Example 2.16 is a linear threshold function with respect
to the binary mask functions: xg0=1, X=X, Xo; =X, and X, ; =X X,:

y=3S8(x,+x,—2x,x,—T) with T=wy,=0 B

A central theorem 1s as follows:

Theorem 2.7

Any logical function f: {0, 1}"—{0, 1} can be realized by a simple two-layer bmary
Perceptron.

- Proof

Any logical function y: {0, 1}"—{0, 1} is a linear threshold function with respect to
the binary valued mask functions:

y=S()3 W Xq — T) with threshold T = —wy, ¢

q; # 4o

Given the binary valued mask functions x4, one single binary output neuron can
realize the linear threshold function with respect to the mask functions x,. The
threshold of the second-layer neuron 1s equal to —wg, o of the hnear threshold
function y.

Any mask function xg=x;x;""-x, 18 a linear threshold function with respect to
Xis Xjy...s Xi, DECAUSE Xq=3(x;+Xx;+ - +x,—T) with T equal to the number of
variables in the product x,= x;x; " x, minus 1, and thus it can be realized by a single

f ;
SR f Yl'

f

40 The binary Perceptron Performance of a two-layer Perceptron 41

binary neuron in the first layer. Such a first-layer neuron has an input x; for every
x; occurring in the product x, with a corresponding weight w;=1. The output of
such a first-layer ncuron equals 1 1f x4(p;)=1, and 0 otherwise.

All ncurons realizing mdsk functiong constitute the first layer of the Perceptron.
The output of a first-layer ncuron 'rcalsz:mg a mask function x, 1s multiplied by the
synaptic weight wgy of the connection to 'the outpul neuron.

Thus the output of the second-layer ncuron equals 1 if and only 1if:

Z We'Xq~ —Woo...0 QLD

q

Figure 2.19 gives the two-layer binary Perceptron which realizes the logical function |
described in Example 2.17. Figurce 2.20 gives an alternative rcalization of the same
function. |

In Theorem 2.5 we found that any logical function can be written in an arithmetical
conjunctive normal form. The proof of the theorem also revealed a method of how
to find that arithmetical conjunctive normal form. There 1s, however, another
method to find the arithmetical conjunctive normal form. If we have written a logical

L - * . . T x
function as a Boolcan function then we can convert it 1n a systematic way into an : 1 1
equivalent arithmetical function using the following rules: >
| 1

1. If x; is Boolcan function (a single variable), then x; is an equivalent arithmctical X, O- 7=2

function. | 1
(U

X

3

Figure 2.20 Alternative configuration of the binary Perceptron of
Figure 2.19

2. If X, is Boolean function (the inverse of x;), then 1 —Xx; is an equivalent arithmetical
functlon

3. If the Boolean function f, is equivalent with the arithmetical functlon /4 and
the Boolean function f, is equivalent with the arithmetical function f7, then the
Boolean function f; A f, is equivalent with the arithmetical function f 7.

4. If the Boolean function f, is equivalent to the arithmetical function f} and the
Boolean function f, is equivalent to the arithmetical function 5, then the Boolean

| function f; v f, (also written as f; + f3) is equivalent to the arithmetical function

S(f + f5), with S the step function.

5. If the Boolean function f; is equivalent to the arithmetical function [and the
Boolean function f, is equivalent to the arithmetical function f5 and the Boolean

functions f, and f, are not true for the same arguments, then the Boolean function
Figure 2.19 Two-layer binary Perceptron illustrating Table 2,11 f, v f, is equivalent to the arithmetical function [+ f5.

42 The binary Perceptron Performance of a two-layer Perceptron 43

Table 2.13 . X;=X; (the negation of x;) 1f p; =0. (For example for n=3 and pattern p;=<101):
ff,=x1f2x3-)

L 3 ’ ‘The Boolean function x; is equivalent to the arithmetical pixel function x;. The
0 . 8 0 i Boolean function X, is equivalent to the arithmetical function (1 —Xx;), thus 1f we
0 0, | ! replace the Boolean variables in the Boolean product by the corresponding.
0 ! 0 0 arithmetical functions we obtain an equivalent arithmetical product. The elimination
0 1 1 0 of the brackets in this product (and some thinking) gives the desired result. QED
1 0 0 1

1 0 10 Example 2.20

1 | 0 0

! 1 1 i

Example 2.19

Consider the logical function specificd by Table 2.13. This function can be specified
by the Boolean function: y=x,X,Xy+ X,X,x5+ Xx,X,X3+ X;X,X3. Because onc and
only one argument of y can be truc we can use rule (5) above and obtain the equivalent
arithmetical conjunctive normal form:

y=(1—x)T =x)(1 =x3)+ (I —x N1 —x)x3+x (1 —x)(1 —x3)+x XX
Or

y=1—x,—x,Xx3+2x,x,x5 as found before in Example 2.17 N

A logical function can also be considered as a characteristic function of some set Q S P.
A characteristic function of a set Q< P is a logical function f, such that f(p)=11f
p.eQ and f,(p;)=0 otherwise. As a conscquence of the conversion rules stated above,
we have the next theorem. In Thecorem 2.8 we will use the complement of p; denoted

by p, (e.g. if p,=<010) then p,=101)).
Theorem 2.8

A characteristic function f,: P—1{0, 1} for the singleton K = {p,} can always be writtcn
in the arithmetical conjunctive normal form:

f;:*-z Z (_l)lqmﬁﬁ.-ixq

q.6C p,

with C; the cover of pattern p; and |q,,~p,| the order of q,np; (1.c. the number of
ones occurring in q,,Np;)-

Proof

Consider x; as a Boolcan function, then any characteristic function f, of the singleton

i

1 r . Yt — . ‘H o a . P -
\pij can be written as a Boolean product fi=X,%, X, with X;=x; il p, =1 and

Let f lﬁ = X,X,X,Xx, be the Boolean form of the characteristic function of the singleton
{p;} ={0011}. The complement of p; is: p; = 1100. The cover of p, is: C, ={0011, 1011,
0111, 111}. Thus we can replace the Boolean function by the equivalent arithmetical

function:

or simply:

fpi=X3x4—x1.X3x4“"x2x3x4 +x1x2x‘3x¢ (IlOte‘ flf2x3x4=(l "'"xl)(l —xz)x3x4)
H

Theorem 2.8 can be extended to sets of patterns as follows:

Theorem 2.9

A characteristic function fy: P—{0, 1} for a class of patterns K< P can always be
written in the arithmetical conjunctive normal form:

fK: Z fPi
pek
with:
f;, _ Z (_ 1)Iqmﬁ¢lxqm
q,.€Cy,
Proof

If f; is the characteristic function of a set of patterns S (e.g. a singleton {p;}) and o,
the characteristic function of the singleton {p,}, then one easily verifies that fg+ fe,
is the characteristic function of the set Su{p;}. QED

Example 2.21

For n=2 let K ={00, 10}. The characteristic function of {00; is 1 —x; —x;+Xx;X;

44 The binary Perceptron

and the characteristic function of {10} is x, —x,x,. The characteristic function of
= {00, 10} becomes 1 —x,. |
A mask function x41s the churupt‘d[,isﬁic function of a set of patterns K defined by:

Kq : {p:hq(pl)r:* 1 }

Because this definition of K is identical with the definition of the cover Cy of pattern
g, we have the following lemma:

Lemma 2.3
The mask function x, is the characteristic function of the cover Cy of pattern q.

This lemma gives us a convenient sct-theoretical interpretation of the artthmetical
conjunctive normal form of a logical function y, and a way to determine the arguments
for which y=1. In a subscquent section we will see how it can also give us the means
to show that a two-layer binary Perceptron is able to generalize from samples of
desired behaviour.

Example 2.22

The arithmetical conjunctive normal form of the exclusive-or function is as follows:
V=X, + Xy —2X,X,
Thus y=1 for the clements of the set specified by:
Cio+Coy—2C,, ={10, 11} +101, 11} =2-{11} = {10, 01}

In this example we used the operations of addition, subtraction and multiplication
of sets. These operators must be defined 1in a formal way. We will come back to 1t
in Section 2.8. »

Because of Theorem 2.8 a characteristic function f, of a pattern p; can be written in
an arithmetical conjunctive normal form;

—_ Z ([— %qmﬁpl

and thus the class containing only pattern p, can also be written as an arithmetical
sum of the covers C, (the sct of paticrns covering pattern q,,) represented by llu,
mask functions in the arithimetical conjunctive normal form:

=) (-

tl ! { .|.h

The adaptive recruitment learning rule 45

Example 2.23

For n=4 and pattern p,=0011 the characteristic function 1s as follows:
Jo = X3X4— X1 X3X4— X3X3X 4+ X X5X3X,
Thus
P} =Co011—Cio11 —Coi11 +Ci111

Hence

{p,,—{oon = {1111,0111, 1011,0011} — {1111, 1011} —{1111,0111} + {1111}

2.7 The adaptive recruitment learning rule

In the previous section we found that any logical function y: {0, 1}"— {0, 1} can always
be written in the arithmetical conjunctive normal form, and that every arithmetical
conjunctive normal form can be realized by a two-layer binary Perceptron.

A two-layer neural network that realizes such a logical function by some linear
threshold function with respect to the mask functions xg:

y(p) = (Zw *Xq(P:) —)

must have for each qe{0, 1}" for which w, #0, an input neuron realizing X4, moreover
the weight of the connections from the output of a first-layer neuron realizing x,
to the input of the output neuron must be equal to wy.

Assuming we do not have an explicit description of the threshold function but only
a finite set D, the training set, of examples consisting of pairs {p,, y(p;)>, then we
investigate whether we can develop a learning rule leading to the recruitment of the
required first-layer neurons and correct values of the weights wq such that at the end
of the learning process the two-layer binary Perceptron will at least give the correct
response to all patterns of D. o

A logical function y: P—{0, 1} with P={0, 1}" can be considered as a pattern
classification function, i.e. y(p;)=1 if p; belongs to some subset K of P and y(p,)=01f

p; belongs to the complement K=P-K.

The subset of patterns in the given data set D that are elements of K will be calied
the set of examples E, and the subset of patterns of D that are elements of K will be
called the set of counterexamples.

The learning rule we will present will give the correct response to the training set
D after a finite learning time and will generalize in some sense on the basis of the
training set to other inputs not present in the training set. In contradistinction with
learning rules for other artificial neural nets, we have to present every element of the
training set D just once. This implies that the learning time is proportional to the

46 The binary Perceptron

number of elements in D. As far as we know the learning rule presented here is new
and has not been published before.

Assume we want to learn a logical function y: {0, 1}"—{0, 1} and we have a finite
set of examples (set E) and coun:t;er_t:xi,'lmplcs (set F).

;
The adaptive recruitment learning rule

1. Given initially an arbitrary two-layer binary Perceptron with 1n the first layer an
arbitrary number (it might be zero) of neurons realizing mask functions x, with
ge{0, 1}". The outputs z, of input ncurons are multiplied by arbitrary weights w,
and connected to one single output ncuron with arbitrary valued threshold T.

2. Present all examples and countcrexamples in the order of the number of ‘ones’
occurring 1n the set D=EUF.

3. If an example or counterexample is correctly classified, go to the next element of
the ordered set D.

4. If a pattern p is presented and incorrectly classified and there exists no first-layer
neuron that realizes the mask function x,, introduce such a neuron. Change the
weight w, to wo+ A with A such that the output of the output neuron becomes
correct. (A 1s positive if p belongs to I. and the output was O; A ts negative if p
belongs to F and the output was 1.)

5. Go to the next element of the training set D.

Before proving that after learning the sct, D is correctly classified, we will give a
simple example.

Example 2.24

Assume we want to identify the logical function such that y=1 for the elements of
K ={0100, 1001, 0101, 0110, 1101, 1011,0111, 1111} and thus y=0 for the clemcnts
of K={0000, 0001, 0010, 0011, 1000, 1010, 1100, 1110}

Assume we do not know K but only the sct of examples: E= {0100, 1001} and onc
counterexample F={1100}.

Assume we start the learning process with a neural net without any first-layer
neurons and only an output neuron with threshold T =0.

We start the learning process with the example 0100. The output 1s incorrect so
we have to introduce a first-layer ncuron that realizes the mask function x,00. For
the weight we will obtain wg,00 =1 (sc¢ Iigure 2.21).

In the next learning step we takc the counterexample: 1100. We observe that lor
the neural net obtained after the first step the output for input 1100 1s wrong: y=1.
We have to introduce a second first-layer neuron that realizes the mask function
X100 With a weight w,,50= —1 (scc Ingurc 2.22).

In the third step we take example 1001, I'or the neural net of Figure 2.22 we obtain
for the input 1001 the output y=0. Thus we have to add an additional first-layer

The adaptive recruitment learning rule 47

=O y

>
Q=

CD
O -

1 1
X, O =0
.
()
X1 1
C =0 4
(U
-1
<,
(L
1
X

Figure 2.22 The neural net after the second learning step

neuron that realizes the mask function X g0, With a weight wj g, = 1 (see
Figure 2.23). Because we have presented all examples and counterexamples, we are
at the end of the learning process. One easily verifies that now the output y of _the final
neural net is equal to 1 for all elements of K and y=0 for all elements of K.

At a first glance one might be surprised that in the previous example we could
identify the logical function y just with two examples and one counterexample. But
the example was not fair because the unknown function could as well have been

‘defined as y=1 for the set:

K'=EU(K—F)
_ {0100, 1001}L{0000, 0001, 0010, 0011, 1000, 1010, 1100, 1110} — {1100}

and y=0 for the set:
K'=Fu(K —E)
= {1100}w{0100, 1001, 0101, 0110, 1101, 1011, 0111, 1111} — {0100, 1001}

Learning with the same sets of examples E, and counterexamples F, would result
in the same neural net but with a wrong response for all inputs except for the elements

of E and F. |

Although in an ideal learning situation one wishes to generalize from a restricted
set of examples and counterexamples, the previous example eives ground to the

48 The binary Perceptron

ot 1 @
A 1
r4
3
(O
1
X

FFigure 2.23 The ncural net after the third learning step

following general hypothesis:

Generalization by learning from exampics and counterexamples is in general impossible
without utilizing a priori knowledge about the properties of the function to be identified.

We will come back to this subject later. We will first present a proof of correctness
of the adaptive recruitment learning rule.

Proof of correctness of the adaptive recruitment learning rule

We have to prove that after learning, the set EOF of examples E and counterexamples
F is correctly classificd. This implies that if E=K and F=K we can identify any
logical function cxactly. *

Let R(k) be a subsct of D which is correctly classified after step k. Assume we
present at step k+ 1 an clement pek. After step k+ 1 the hinear threshold function
realized by the neural net will have the form:

yk+1)=\ (E WXy + W, X, T) for some sct @

{J ”
/P,

Duc to the ordered presentation of examples and counterexamples during the fearning
process, we have for every p,eR(A) that the number of Is occurring in p; 1s smaller
than the number of 1s occurring p,. or if that number is the same, then p;£p; and

1
!

Generalizing with a two-layer binary Perceptron 49

thus x,(p;)=0 for all peR(k). Thus y(k+1)=y(k) tor all peR(k) and hence
R{k)= R(k—1). Atfter step k+ 1 the weight w, will be such that p; is correctly classified
and thus R(k +1)=R(k)u{p;}. The same reasoning holds if we present at step k+ 1
a counterexample. So we finally will end up with the situation that D 1s correctly

classified. QED.

L3 - - . = * L] = - ‘
If the initial net contains no neurons in the first layer, and all mitial weights are

zero, and the initial threshold of the output ncuron is zero, and if we take for A 1n
rule 4 the smallest integer satisfying the condition mentioned, then we will call thc
applied learning rule the proper adaptive recruitment learning rule.

[t may be worthwhile noting that the linear threshold function realized by the
adaptive recruitment rule may contain less terms than the arithmetical conjunctive
normal form obtained by the procedure mentioned in the proof of Theorem 2.5.

Example 2.25

For the binary ‘or’ function we will find with Theorem 2.5 the following conjunctive
normal form:

Y:.'fl +3C2-*)C1.’C2

The linear threshold function realized by the proper adaptive recruitment learning
rule will be:

y=38(x;+x5,) B

2.8 Generalizing with a two-layer binary Perceptron

An ideal learning performance in pattern classification would be when correct
classification of the patterns of a class K occurs after a learning phase in which the
patterns of a finite proper subset of K and patterns of a finite proper subset of the
complement of K (the counterexamples) are presented to the learning system. This
will frequently occur with the two-layer binary Perceptron, as in Example 2.24, but
in general we cannot guarantee that the obtained classification for the set K 1s correct
unless E=K and F=K

When, however, some a priori knowledge about the relation between the set of
examples E, the set of counterexamples F, and the class K of patterns to be identified
can be taken into account, then correct classification can in general be learned from
a proper subset of K and a proper subset of K.

We investigate the properties of the class L for which the output y of the binary
Perceptron will be 1 after the learning phase. In order to formulate a theorem relating
to the properties of class L we have to introduce some new concepts.

In regular set theory a set A is defined as a collection of distinguishable objects

50 The binary Perceptron

a;, each object occurring once in the set. In the subsequent discussion we need sets
In which an object g; can occur g +a; times, with a, and «,eR. For this purpose we
define an extensive set A of a regular set A: A={ay, a,a,,a,4a,,...,0,a,} with the
following properties: | |

If A={a,, x,a,,a5a,,..., a,’,::;',:} nd yeR, then yA = {ya,, ya,a,, ya,a,,..., ya,a,}.

If A={ag, a,a,,a,0a,,...,2,a,} ‘and B={B,, B,b,, B,b,,..., B.b,}, then A+ B=
{%o + Bo, @ a,, aza,,..., 0,4, B,b,, B5b,,..., B.b,}. Note that if a;=b;=z, then
(a;+ f;)zeA + B.

We can convert an extensive set into a regular set with the set step function S
defined as:

iy

S(A)=S{uag, a,a,, 2,a5,...,2,a,} = {a;lay + a;> 0}

We can now give a theorem concerning the set of patterns accepted by the binary
Perceptron after learning.

Theorem 2.10

If E 1s the set of examples and F the sct of counterexamples and we use the adaptive
recruitment learning rule, then after learning, the output of the Perceptron will be
equal to I for elements of some set L and will be zero for the set P— L, with L:

L=S(Z L":'.Cl'(:.‘lfm-‘ Z a.fc'h)
qefF’

gel’

with S the set step function, C, the cover of example q; and C,, the cover of
counterexample q;, with o;>0 and a;>0 and E' a subset of E and F’ a subset of F.

Before presenting the proof of Theorem 2.10 we will illustrate this theorem with
two examples.

Example 2.26

Let E={010} and F={110}, then after learning the Perceptron will realize the
following linear threshold function:

y=358(x;—x,x,)
According to the theorem we obtain for the set L:

L=S(Cyy0—C,10)=S({010,011, 110, 111} — {110, 111})={010, 011) -

Example 2.27

Let for n=3 the set of patterns be: K={<010), <01 1>}. Assumc we start learning
with an initial neural network containing in the first layer a neuron that realizes the

maskfunction x4,, and that it is connected to the output ncuron with a welght

For the class L we obtain:

Generalizing with a two-layer binary Perceptron 51

woio=2. Let the set of examples be E={<011)} and the set of counterexamples:

F={{110), {111)}. After learning we obtain a neural net realizing the linear threshold
function: |

y=8{2x,—2x;x;+X;X; — X X3X3}.

L=S(2Cq10—2C 10+ Co11—Ci11)
=$(2{010, 011, 110, 111} —2{110, 111} + {011, 111} — {111})
=$(2{010}, 3{011})
={010, 011} n

Proof of Theorem 2.10

By inspection of the adaptive recruitment learning rule we see that for each example
q.<E, a first-layer neuron that realizes the mask function x, with a corresponding
weight w, >0 will be introduced if the example does not already give the cqrrect
response. If the example has already been accepted, no first-layer neuron will be
introduced and w, =0. The same holds for a counterexample q;, but now with w, <0
or w, =0. The output neuron realizes a step function with some threshold T Thus
after learning the Perceptron will realize a linear threshold function:

y(p)=S(> WeXo(P)+ D We Xq(P)— T) with E'cE and F'©F

qekb’ qef

A mask function x, will have the value 1 for all elements of the cover C,,. Thus for
a pattern p accepted (y=1) by the Perceptron we have:

For a pattern p rejected (y=0) by the Perceptron we have:

S(S wg+ Z'wqj—T)=0

qef’ qef
peCy, Py

Thus if pattern p is accepted and is a member of some cover C, (respectively C),
then we can equivalently count that pattern w, (respectively —w,) times and add
these numbers w, (respectively —w,) to one total number § and subtract from f§
the threshold T Now we can say that pattern p is f— T times a member of the
extended set L. In the case that p is accepted we must have that f—T >0 because
S(f—T)>0 and thus peS(L). In case that pattern p is not accepted we obtain

-

i
Yo A "’

52 The binary Perceptron

similarly f— T <0. Thus with a;=w, and a;= —w, we obtain:

(ZaC-—ZaC-——T) QED’L

gt q,€

"l
rd

If the set L 1s rdt,nlu,al with the sqt K that has to be identified we say that K is
coverable by the set of examples and counterexamples.

We conclude that with the adaptive recruitment learning rule the Perceptron can
be gencralizing correctly from scts of examples and counterexamples. However, in
general it might be hard to determine beforchand whether the (unknown) class K to
be identified will be coverable by the given sets of examples E and countcrcmmplus F.

Theorem 2.10 implics that any logical function can be written as:

y=S(Z Wo Xq -+ Z Wy, Xq) with y(p)=1 ifl peK
. g F

q¢k

with w, 201l pattern qeE<S K
and w, <0 il pattern qeF <K

This statement can also be proven without relying on the adaptive recruitiment
lcarning rule, so we have the following theorem:

Theorem 2.11

For every class K of patterns there exists a linear threshold function:

(Z Wy Xq + Z W, Xq) with y(p)=1 iff peK

q,¢

with w2 01f pattern qeF €K

and w, <0 if pattern qeF <K

Proof

Let

be some lincar threshold function realizing the classification of class K. Assume w;, <0,

whercas pattern q,eK. There exists, however, a characteristic function for pattern g,
of the form (Thecorem 2.8):

'h - Z. (— Eqmﬁqr

t|l{

Now w, X, 1s a term occurring in the cxp:msion of f, with w, =1, The characteristic

. Er e R e N TR R 7 e AL by

|
5
?f

The recruitment and reinforcement learning rule 53

function f, of g; can be added to f’ without changing the classification performec{
by f/’ (Theorem 2.3). The same holds for o-f, with 020.

We can always select & such that the new synaptic weight of x in f', wg =wg +0
becomes zero or positive. If w, becomes zero, then the mask x, can be ellmmated
from f’ and hence q,eK does not occur in E,

Similarly, if wy >0 1n f* whereas pattern q.cK, we can change the synaptic welght
to a negative or zero value w, =w, +9 with 0 <0 without changing the classification
function. If w, becomes zero, then the mask X, can be eliminated from /" and hence
q.cK docs not occur in F.

If we change the weights in such an order that wy is altered before w, g <y,
then we avoid the alteration of weights changed before. QED

Example 2.28

Let for n= 3 the class ofpdtterns be K={<010), (011>}. A threshold functlon realizing
the classification of class K 1s as follows:

y=3S(2x,—2X,X; —X3X; + X {X,5X3)

Notc that the weight of x,x5=Xg,, 1s negative, whereas {011)€K.

The characteristic function for the pattern 011 is f =x,x;—x;x,x;. We can add
this function to the argument of the step function in y without changing the
classification function y. We obtain:

y'=58(2x;—2x,x,) _

2.9 The recruitment and reinforcement learning rule

‘The adaptive recruitment learning rule discussed in Section 2.7 1s very fast because

we have to present all elements of the set of examples E and all elements of the set

F of counterexamples just once, and we certainly obtain, after learning, the correct

response for elements of E and F. A disadvantage of the adaptive recruitment learning

rule is that we have to order the learning set D= EUF according to the increasing
number of 1s occurring in the binary vectors.

We can, however, also train a two-layer binary Perceptron with the reinforcement
learning rule introduced in Section 2.4. In that case we do not have to present the
samples in some fixed order, but on the other hand we must apply the whole set
of samples many times during learning. The fact that we can use the reinforcement
rule for training a two-layer binary Perceptron will become clear 1f we realize that
any logical function y: {0, 1}"—{0, 1} is a linear threshold function with respect to
the set of all mask functions xg (see Theorem 2.6). However, if we want to train a
two-layer binary Perceptron wnh the reinforcement learning rule we must have in
the first layer a neuron for every mask function x, with qe{0, 1{". For any realistic

54 The binary Perceptron

application n will be large and will thus require a tremendous number of first-layer
ncurons (for n=10 the number of first-layer neurons will be 1024).

After learning with the reinforcement learning rule with a first-layer neuron for
each mask function xg, it turns out that a great number of first-layer ncurons can
be removed because the corrcspu‘hding weight w, will be zero.

We can do better by not introducing first-layer neurons if that is not necessary.
This principle is used in the next fearning rule. The outputs of the first-layer ncurons
will be represented by the variables z,, z,, etc.

The recruitment and reinforcement learning rule

Step O There 1s no first-layer ncuron and there i1s onc output ncuron with threshold
zero. (The output necuron has a constant threshold input z,=1 connected
to some inttial weight wy,.)

Step £ Take randomly an clement q of the training set EUF. If the output y(k)
of the output neuron is incorrect and there exists no input ncuron that realizes

- the mask function x, then introduce such a ncuron first. If there exists an
input ncuron that realizes the mask function x, and the output p(k) is
incorrect, then change the extended weight vector w(k), composed of the
ordered set of all weights w including the threshold weight wy, to:

w(k + 1)=w(k)+e(k)z(k) 1if y(k)=0 whereas qeFE
w(k + 1)=w(k)—c(k)z(k) 1if y(k)=1 whereas qeF

with «(k) the learning rate (see Section 2.4) and z(k) the extended vector
composcd of z, and the ordered set of all outputs of the first layer ncurons
introduced so far.

As stated before we do not have to order the learning sct D when we use the recruitment
and reinforcement learning rule, but we now have to present the whole sct D many
times 1n order to obtain the situation such that the set D i1s correctly classified.

We can usc local and global learning, and the learning rate e(k) may be fixed or
time varying, as discussed in Scction 2.4. The correctness of the recruitment and
reinforcement rule 1s based on the correctness of the reinforcement rule discussed in
Sections 2.4 and 2.5, The difference is the recruttment during learning of first-fayer
neurons that rcalize mask functions. Livery time we introduce a new first-layer ncuron
we can conceive that conliguration as a new initial situation for learning a lincar
threshold function with the ranforcement learning rule. The Perceptron convergence
thecorem (sce Scction 2.5) doces not, however, depend on the initial situation; we only
have to guarantee that dunng learning at least all mask functions required for
identification of the lincar threshold function are realized by ncurons in the first layer.
If any of the required mask tunctions are not realized by the ncurons in the first
layer, then the output y cannot be correct, but in that case we introduce the nussing

- ALk 2 s TR R

The recruitment and reinforcement learning rule 55

Figure 2.24 Initial configuration of Example 2.29

1
X O =0 - y

Figure 2.25 The neural net after the first learning step

neuron in the first layer with the recruitment and reinforcement rule. I