

Natural Language Processing for Online Applications

Natural Language Processing

Editor

Prof. Ruslan Mitkov
School of Humanities, Languages and Social Sciences
University of Wolverhampton
Stafford St.
Wolverhampton WV1 1SB, United Kingdom

Email: R.Mitkov@wlv.ac.uk

Advisory Board

Christian Boitet (University of Grenoble)
John Carroll (University of Sussex, Brighton)
Eugene Charniak (Brown University, Providence)
Eduard Hovy (Information Sciences Institute, USC)
Richard Kittredge (University of Montreal)
Geoffrey Leech (Lancaster University)
Carlos Martin-Vide (Rovira i Virgili Un., Tarragona)
Andrei Mikheev (University of Edinburgh)
John Nerbonne (University of Groningen)
Nicolas Nicolov (IBM, T. J. Watson Research Center)
Kemal Oflazer (Sabanci University)
Allan Ramsey (UMIST, Manchester)
Monique Rolbert (Université de Marseille)
Richard Sproat (AT&T Labs Research, Florham Park)
Keh-Yih Su (Behaviour Design Corp.)
Isabelle Trancoso (INESC, Lisbon)
Benjamin Tsou (City University of Hong Kong)
Jun-ichi Tsujii (University of Tokyo)
Evelyne Tzoukermann (Bell Laboratories, Murray Hill)
Yorick Wilks (University of Sheffield)

Volume 5

Natural Language Processing for Online Applications: Text Retrieval,
Extraction and Categorization
by Peter Jackson and Isabelle Moulinier

Natural Language Processing
for Online Applications

Text Retrieval,
Extraction and Categorization

Peter Jackson
Isabelle Moulinier
Thomson Legal & Regulatory

John Benjamins Publishing Company
Amsterdam / Philadelphia

The paper used in this publication meets the minimum requirements of American8 TM

National Standard for Information Sciences – Permanence of Paper for Printed
Library Materials, ansi z39.48-1984.

Library of Congress Cataloging-in-Publication Data

Jackson, Peter, 1948-
Natural language processing for online applications : text retrieval, extraction, and

categorization / Peter Jackson, Isabelle Moulinier.
p. cm. (Natural Language Processing, issn 1567–8202 ; v. 5)

Includes bibliographical references and index.
I. Jackson, Peter. II. Moulinier, Isabelle. III. Title. IV. Series.

QA76.9.N38 I33 2002
006.3’5--dc21 2002066539
isbn 90 272 4988�1 (Eur.) / 1 58811 249�7 (US) (Hb; alk. paper)
isbn 90 272 4989�X (Eur.) / 1 58811 250�0 (US) (Pb; alk. paper)

© 2002 – John Benjamins B.V.
No part of this book may be reproduced in any form, by print, photoprint, microfilm, or any
other means, without written permission from the publisher.

John Benjamins Publishing Co. · P.O. Box 36224 · 1020 me Amsterdam · The Netherlands
John Benjamins North America · P.O. Box 27519 · Philadelphia pa 19118-0519 · usa

Table of contents

Preface 

C 1
Natural language processing 

. What is NLP? 

. NLP and linguistics 

.. Syntax and semantics 

.. Pragmatics and context 

.. Two views of NLP 

.. Tasks and supertasks 

. Linguistic tools 

.. Sentence delimiters and tokenizers 

.. Stemmers and taggers 

.. Noun phrase and name recognizers 

.. Parsers and grammars 

. Plan of the book 

C 2
Document retrieval 

. Information retrieval 

. Indexing technology 

. Query processing 

.. Boolean search 

.. Ranked retrieval 

.. Probabilistic retrieval 

.. Language modeling 

. Evaluating search engines 

.. Evaluation studies 

.. Evaluation metrics 

.. Relevance judgments 

.. Total system evaluation 

. Attempts to enhance search performance 

 Table of contents

.. Query expansion and thesauri 

.. Query expansion from relevance information* 

. The future of Web searching 

.. Indexing the Web 

.. Searching the Web 

.. Ranking and reranking documents 

.. The state of online search 

. Summary of information retrieval 

C 3
Information extraction 

. The Message Understanding Conferences 

. Regular expressions 

. Finite automata in FASTUS 

.. Finite State Machines and regular languages 

.. Finite State Machines as parsers 

. Pushdown automata and context-free grammars 

.. Analyzing case reports 

.. Context free grammars 

.. Parsing with a pushdown automaton 

.. Coping with incompleteness and ambiguity 

. Limitations of current technology and future research 

.. Explicit versus implicit statements 

.. Machine learning for information extraction 

.. Statistical language models for information extraction 

. Summary of information extraction 

C 4
Text categorization 

. Overview of categorization tasks and methods 

. Handcrafted rule based methods 

. Inductive learning for text classification 

.. Naïve Bayes classifiers 

.. Linear classifiers* 

.. Decision trees and decision lists 

. Nearest Neighbor algorithms 

. Combining classifiers 

.. Data fusion 

.. Boosting 

Table of contents 

.. Using multiple classifiers 

. Evaluation of text categorization systems 

.. Evaluation studies 

.. Evaluation metrics 

.. Relevance judgments 

.. System evaluation 

C 5
Towards text mining 

. What is text mining? 

. Reference and coreference 

.. Named entity recognition 

.. The coreference task 

. Automatic summarization 

.. Summarization tasks 

.. Constructing summaries from document fragments 

.. Multi-document summarization (MDS) 

. Testing of automatic summarization programs 

.. Evaluation problems in summarization research 

.. Building a corpus for training and testing 

. Prospects for text mining and NLP 

Index 

Preface

There is no single text on the market that covers the emerging technologies of
document retrieval, information extraction, and text categorization in a coher-
ent fashion. This book seeks to satisfy a genuine need on the part of technology
practitioners in the Internet space, who are faced with having to make difficult
decisions as to what research has been done, and what the best practices are.
It is not intended as a vendor guide (such things are quickly out of date), or
as a recipe for building applications (such recipes are very context-dependent).
But it does identify the key technologies, the issues involved, and the strengths
and weaknesses of the various approaches. There is also a strong emphasis on
evaluation in every chapter, both in terms of methodology (how to evaluate)
and what controlled experimentation and industrial experience have to tell us.

I was prompted to write this book after spending seven years running an
R&D group in an Internet publishing and solutions business. During that time,
we were able to put into production a number of systems that either generated
revenue or enabled cost savings for the company, leveraging technologies from
information retrieval, information extraction, and text categorization. This is
not a chronicle of these exploits, but a primer for those who are already inter-
ested in natural language processing for online applications. Nevertheless, my
treatment of the philosophy and practice of language processing is colored by
the context in which I function, namely the arena of commercial exploitation.
Thus, although there is a focus on technical detail and research results, I also
address some of the issues that arise in applying such systems to data collections
of realistic size and complexity.

The book is not intended exclusively as an academic text, although I sus-
pect that it will be of interest to students who wish to use these technologies
in an industrial setting. It is also aimed at software engineers, project man-
agers, and technology executives who want or need to understand the technol-
ogy at some level. I hope that such people find it useful, and that it provokes
ideas, discussion, and action in the field of applied research and development.
Each chapter begins with lighter material and then progresses to heavier stuff,
with some of the later sections and sidebars being marked with an asterisk as

 Preface

optional. Every attempt has been made to cover more ground, and make the
material more accessible, than one would expect from the typical textbook.

Thanks are due to Khalid Al-Kofahi, Chris Dozier, David Lewis, Jane Lund,
Ruslan Mitkov, and two anonymous referees, for providing insightful com-
ments on one or more chapters. I would also like to thank James Allen and
David Israel for helping me get started in information extraction back in 1995,
and Chris Wolff for backing that project at Thomson Legal Publishing. I thank
my colleagues at Thomson Legal & Regulatory for bearing with me while I fin-
ished the book, and for providing a stimulating work environment. Finally, I
thank my wife Sandy for putting up with me while I devoted long hours to
this project.

Peter Jackson
St Paul, MN

C 1

Natural language processing

A conversation with Eliza

Eliza: how are you today?
PJ: not so good
Eliza: why do you say not so good?
PJ: i suffer from allergies
Eliza: that’s interesting
PJ: i come out in spots
Eliza: i’m not sure i know what you’re talking about
PJ: spots on my face
Eliza: your face
PJ: that’s right
Eliza: is it really that right?
PJ: you’re a program, aren’t you?
Eliza: does it please you to believe i am a program, am not i?
PJ: it sure does
Eliza: i see
PJ: yup
Eliza: a while back you talked about your face
PJ: what about your face?
Eliza: what is it you really want to know?
PJ: are you my kind of girl?
Eliza: perhaps in your fantasies i am your kind of girl
PJ: in my fantasies you are blonde
Eliza: what makes you think i am blonde?
PJ: i don’t know
Eliza: don’t you really know?
PJ: no
Eliza: are you saying no just to be negative?
PJ: no
Eliza: you are being a bit negative
PJ: no i’m not
Eliza: how long have you been not?

 Chapter 1

The above dialogue took place recently between one of the authors and a com-
puter program called Eliza,1 downloaded from the World Wide Web. Eliza was
an AI brainchild of the 1960s that employed rather primitive pattern-matching
methods to respond to inputs and sustain a conversation of sorts. She now ex-
ists in many incarnations,2 but it is fair to say that she has never grown up, in
the sense of having learned any new linguistic tricks.
Many apocryphal tales exist of people having been fooled by Eliza into thinking
that they were dealing with a sentient being, but as you can see from the above
conversation, her replies can rather quickly deteriorate into nonsense.3 The er-
rors that she makes often reveal the simplistic strategies that the program uses
to construct its responses, e.g., “How long have you been not?” Clearly there is
a rule in there which matches an input of the form:

“. . . i am blah . . . ”

and constructs the response

“how long have you been blah?”

Nonetheless, one of the interesting things about Eliza is that sometimes her
replies appear to be quite prescient, e.g., the sly “Perhaps in your fantasies I
am your kind of girl.” Just as human beings are prone to see human faces in
the flames of a fire, so we seem to be programmed to extract meaning from
phenomena, even if this task involves the total suspension of disbelief. We are
capable of being emotionally affected by scenes in books and cinema that we
know are not real, and we have a tendency to anthropomorphize animals and
even artifacts, such as automobiles and computer programs, as the Eliza ex-
ample shows. The program appears to be flirting, or perhaps sarcastic, but it
clearly isn’t. How could it be?

This book is not about the psychology or philosophy of human language,
but about how we can program computers to process language for commer-
cial ends. The emphasis will be upon particular tasks that we want comput-
ers to perform and the techniques that are currently available. The applica-
tions will be largely drawn from domains associated with electronic publishing,
particularly on the World Wide Web.

. What is NLP?

The term ‘Natural language processing’ (NLP) is normally used to describe the
function of software or hardware components in a computer system which an-

Natural language processing 

alyze or synthesize spoken or written language. The ‘natural’ epithet is meant
to distinguish human speech and writing from more formal languages, such as
mathematical or logical notations, or computer languages, such as Java, LISP,
and C++. Strictly speaking, ‘Natural Language Understanding’ (NLU) is as-
sociated with the more ambitious goal of having a computer system actually
comprehend natural language as a human being might.

It is obvious that machines can be programmed to ‘comprehend’ Java code,
e.g., in the sense that an interpreter can be written which will cause an applet
to execute correctly in a browser window. It is also possible to program a com-
puter to solve many mathematical and logical puzzles,4 as well as prove theo-
rems,5 and even come up with novel conjectures.6 But the computer analysis
of speech and text remains fraught with problems, albeit interesting ones (see
Sidebar 1.1).

None of these problems would be of the slightest commercial interest, were
it not for the fact that the need for information defines the fastest growing
market on the planet. Business information is increasingly available online in
a relatively free text format, both on the World Wide Web and on corporate
Intranets, instead of being in a database format. The issue is no longer lack of
information, but an embarrassment of riches, and a lack of tools for organiz-
ing information and offering it at the right price and the right time. The vast
majority of this information is still expressed in language, rather than images,
graphs, sound files, movies, or equations. Much of the information residing
in relational databases has been extracted from electronic documents, such as
memos, spreadsheets, and tables, often by hand or with a significant amount
of editorial assistance.

We contend that language processing has an important role to play in both
the production and packaging of online information, and our book is intended
to demonstrate this fact.

Sidebar 1.1 Ambiguity in NLP

Linguistic ambiguity is sometimes a source of humor, but many common words and sen-
tences have multiple interpretations that pass unnoticed. For example, the noun ‘bank’ has
many meanings. It can refer to a financial institution, or a river margin, or to the attitude of
betting or relying upon something. Humans rarely confuse these meanings, because of the
different contexts in which tokens of this word occur, and because of real world knowledge.
Everyone who reads the newspapers knows that ‘the West Bank of Jordan’ does not refer to
a financial institution.

‘Bank’ is an instance of lexical ambiguity. But whole sentences can be ambiguous with
respect to their structure and hence their meaning. Here are some popular examples:

 Chapter 1

‘Visiting aunts can be a nuisance.’

which could mean either ‘It is a nuisance having to visit one’s aunt’ or ‘It is a nuisance having
one’s aunt to visit’ depending upon the syntactic analysis.7

A common manifestation of syntactic ambiguity is prepositional phrase attachment.
Consider the following example:

‘John saw the man in the park with the telescope.’

To whom does the telescope belong? John? The park? The man in the park? Each would sug-
gest a different interpretation, based on a different attachment of the prepositional phrase
‘with the telescope.’

More subtly, sentences that no human would deem ambiguous can cause problems to
computer programs, e.g.,

‘She boarded the airplane with two suitcases.’

which appears superficially similar to

‘She boarded the airplane with two engines.’

It’s obvious to you and I that the suitcases belong to the woman, and the engines belong to
the airplane, but how is a computer supposed to know this? The ability to understand the
two sentences listed above would hardly be deemed evidence of superior intelligence, yet
the desire to deal with this kind of ambiguity automatically fuels a number of Ph.D. theses
every year.

Given this motivation, there are many ways in which one can approach the
study of NLP/NLU. Most texts8 begin with some background in linguistics,
proceed directly to syntax (the analysis of grammatical structures), continue
with a study of semantics (the analysis of meaning), and end with a treatment
of pragmatics (the problem of context or language use). Such an organization
of material is fine for academic study, but will not serve in a book focused upon
applications and their associated techniques.

This chapter provides a brief overview of NLP that filters the legacy of
modern linguistics, pattern recognition and artificial intelligence through a set
of concerns that arise in many commercial applications. Some of these con-
cerns may appear to be mundane, compared with the goals of artificial intelli-
gence or linguistic philosophy, but there are also some fundamental issues that
are unavoidable and need to be addressed. Thus questions like:

– ‘how can a retrieval system satisfy a user’s information need?’ (see Chap-
ter 2), or

– ‘what makes a good summary of a document?’ (see Chapter 5), are of both
theoretical and practical interest.

Natural language processing 

Other issues focus upon rather specialized tasks. For example, a typical com-
mercial problem involves finding names in free text, such as the names of peo-
ple or companies. An online provider of news or business information may
wish to link such names to public records or to a directory of companies.9

The syntax of names (e.g., the internal structure of compounds, such as
first name/last name pairs) is a somewhat different problem from that of de-
termining the structure of a typical English (or French or German) sentence.
Similarly, the problem of determining the referent of a name is in many ways
different from that of unraveling the meaning of a sentence. The role of con-
text in name identification and disambiguation is also quite specialized when
compared with general-purpose techniques for disambiguating sentences such
as those listed in Sidebar 1.1.

These are nonetheless problems that need to be solved, if we wish to pro-
vide consumers of online information with superior search functionality, tar-
geted news clips or banner ads, and customized browsing. The alternative to
using some degree of automation for identifying, marking, and linking such
text features is an editorial effort that few companies can afford. As informa-
tion is increasingly commoditized, managing the cost structure of the infor-
mation supply chain becomes a crucial factor in the success or failure of an
information provider.

. NLP and linguistics

Some brief definitions of traditional linguistic concepts are necessary, if only
to provide an introduction to the literature on NLP. The following sections
will serve to introduce some terminology and concepts that are the common
currency of discussion in this field. Our coverage of these topics is meant to be
superficial, but not simplistic.

.. Syntax and semantics

In a seminal book,10 Noam Chomsky distinguished between sentences that are
syntactically anomalous, such as

‘Furiously sleep ideas green colorless.’

and sentences which are grammatically well-formed but semantically anoma-
lous, such as

‘Colorless green ideas sleep furiously.’

 Chapter 1

The fact that we can break the rules of language in these two quite different
ways has often been adduced as evidence for the decomposability of syntax
and semantics in language. An attendant assumption is that one can analyze
the syntactic structure of a sentence first (without reference to meaning) and
analyze its semantic structure afterwards, although the ‘airplane’ example in
Sidebar 1.1 ought to be enough to refute this hypothesis for natural language
applications.

The separation of form and meaning is typically a design feature of more
formal notations, such as logical calculi and computer languages. In such (un-
natural) languages, the meaning of a statement can be determined entirely
from its form. In other words, the semantics of such a language can be defined
over the valid structures of the language without regard to contextual or ex-
tralinguistic factors.11 We are not in that happy position with regard to natural
languages, where ambiguity and subjectivity make poetry, crossword puzzles,
and international misunderstandings possible.

.. Pragmatics and context

Pragmatics is usually defined as the rules that govern language use. Thus if I
say,

‘You owe me five dollars’

this might be more a request for payment than an assertion of fact, regardless
of how it is actually phrased. Hence the primacy often accorded to intention in
the modern analysis of meaning.

For example, if I type the words

‘natural language processing’

in the query box of a search engine, what am I really looking for? A defini-
tion? References to the literature? Experts in NLP? Courses in NLP? An ‘intelli-
gent’ search engine might be able to figure this out, by looking at my previous
queries. Each of the candidate preceding queries listed below might point the
search engine in a different direction:

‘what is natural language’
‘ai textbook’
‘rochester university.’

Use and context are inextricably intertwined. Some contexts radically affect
the intention behind an utterance. Thus I may quote the words of Adolf Hitler

Natural language processing 

without endorsing the sentiments expressed, or embed a sentence in a linguistic
context that affects its interpretation, e.g., ‘I doubt that the Government will
break up Microsoft.’

Although there have been attempts to construct grand theories of language
use, it has also been argued that patterns of use are so specific to particular do-
mains that a general theory is impossible. Documents as diverse as newspaper
articles, court reports, public records, advertisements, and resumes are bound
to exhibit very different patterns of language use in their different real world
contexts. Having said that, it is possible to distinguish two broad approaches to
NLP, which tackle these problems in different ways.

.. Two views of NLP

One approach to NLP is rooted in the kinds of linguistic analyses outlined
in the previous section. It is sometimes characterized as ‘symbolic’, because
it consists largely of rules for the manipulation of symbols, e.g., grammar rules
that say whether or not a sentence is well formed. Given the heavy reliance of
traditional artificial intelligence upon symbolic computation, it has also been
characterized informally as ‘Good Old-Fashioned AI.’

A second approach, which gained wider currency in the 1990s, is rooted
in the statistical analysis of language. It is sometimes characterized as ‘empir-
ical’, because it involves deriving language data from relatively large text cor-
pora, such as news feeds and Web pages.12 This nicely chosen term has the
added bonus of imputing Rationalism to the opposing view, a designation
that acquired some derogatory connotations in the arena of twentieth-century
scholarship.

One way of looking at this distinction is purely methodological. Symbolic
NLP tends to work top-down by imposing known grammatical patterns and
meaning associations upon texts. Empirical NLP tends to work bottom-up
from the texts themselves, looking for patterns and associations to model, some
of which may not correspond to purely syntactic or semantic relationships.

Another way to think of this distinction is to see how the two schools han-
dle the complexity of language processing, particularly the problem of uncer-
tainty, exemplified by phenomena such as ambiguity. It is clear that a purely
symbolic approach must resolve uncertainty by proposing additional rules, or
contextual factors, which must then be formalized in some fashion. This is a
‘knowledge based’ methodology, because it relies upon human experts to iden-
tify and describe regularities in the domain. The empirical approach is more
quantitative, in that it will tend to associate probabilities with alternate analy-

 Chapter 1

ses of textual data, and decide among them using statistical methods. Various
sophisticated tools are available for mixing and blending mathematical models
in the service of this endeavor.

To misquote Oscar Wilde, NLP is rarely pure and never simple, so one can
expect to find attempts to solve real problems combining these two approaches.
Applications featured in the book will be chosen partly for pedagogical reasons,
such as accessibility and ease of explanation, but they will mostly feature some
innovative use of current NLP technology. There will also be a deliberate bias
towards applications that can or could be scaled to drive applications on the
World Wide Web.

.. Tasks and supertasks

The primary application of language processing on the Web is still document
retrieval:13 the finding of documents that are deemed to be relevant to a user’s
query.14 One can perform document retrieval without doing significant NLP,
and many search engines do, but the trend in the 1990s has been towards in-
creasing sophistication in the indexing, identification and presentation of rele-
vant texts (see Chapter 2). A related, but not identical, task is document routing,
where items in a document feed are automatically forwarded to a user, e.g., one
with a certain profile.15

Document routing is in turn related to the task of document classification
(see Chapter 4). In this task, we are concerned with assigning documents to
classes, usually based upon their content. In the most general case, a document
could be assigned to more than one class, and the classes could be part of some
larger structure, such as a subject hierarchy. It is possible to distinguish this ac-
tivity from document indexing, where we would like a program to automatically
assign selected keywords or phrases to a document, e.g., to build a ‘back of the
book’ style index.

Sometimes the focus is not upon finding the right document, but upon
finding specific information targets in a document or set of documents. For ex-
ample, given a set of news articles about corporate takeovers, you might want
to distil, from each article, who bought whom. This is usually called informa-
tion extraction, and it provides a way of generating valuable metadata16 that
would otherwise remain buried inside a document collection (see Chapter 3).
At least some forms of document summarization can be regarded as a special
kind of information extraction, in which a program attempts to extract the
salient information from a document and present it as a surrogate document.

Natural language processing 

These tasks can be combined in interesting ways to form ‘supertasks’, e.g., a
program could select documents from a feed based on their content, sort them
into categories, and then extract some pertinent pieces of information from
each document of interest. Depending upon the level of accuracy required,
some manual intervention may be necessary, but we shall see concrete exam-
ples which show that programmatic processing of text feeds can be an effective
adjunct to human editorial systems. Such supertasks are now being considered
under the rubric of ‘text mining’ (see Chapter 5) which, by analogy with the
field of ‘data mining’, is meant to represent the myriad ways in which useful
metadata can be derived from large online text repositories.

In the next section, we outline some NLP tools that we shall refer to from
time to time throughout the text. Most of these tools are potentially useful in
all of the tasks listed above, and some of them are essential to at least one task.
Many of them are freely available for research purposes; others are available as
commercial products.17

. Linguistic tools

Linguistic analysis of text typically proceeds in a layered fashion. Documents
are broken up into paragraphs, paragraphs into sentences, and sentences into
individual words. Words in a sentence are then tagged by part of speech and
other features, prior to the sentence being parsed (subjected to grammatical
analysis). Thus parsers typically build upon sentence delimiters, tokenizers,
stemmers, and part of speech (POS) taggers. But not all applications require a
full suite of such tools. For example, all search engines perform a tokenization
step, but not all perform part of speech tagging.

We now treat each of these layers in turn.

.. Sentence delimiters and tokenizers

In order to parse sentences from a document, we need to determine the scope
of these sentences and identify their constituents.

Sentence delimiters
Detecting sentence boundaries accurately is not an easy task, since punctuation
signs that mark the end of a sentence are often ambiguous. For instance, the
period can denote a decimal point,18 an abbreviation, the end of a sentence,
or an abbreviation at the end of a sentence. Similarly, sentences begin with a

 Chapter 1

capital letter, but not all capitalized words start a sentence, even if they follow
a period.

As an example of such an exception, consider:

Periods followed by whitespace and then an upper case letter, but preced-
ing a title are not sentence boundaries.

Sample titles might include ‘Mr.’, ‘Mrs.’, ‘Dr.’, ‘Pres.’, V.P.’, ‘C.T.O.’, ‘H.M.S.’,
‘U.S.S.’, and so on.

To disambiguate punctuation signs, sentence delimiters often rely on reg-
ular expressions19 or exception rules.20 Other sentence segmentation tools rely
on empirical techniques, and are trained on a manually segmented corpus.21

In addition to rules and exceptions, and to training corpora, segmenters may
use additional information such as part-of-speech frequencies.22

Tokenizers
Sentence delimiters sometimes need help from tokenizers to disambiguate
punctuation characters. Tokenizers (also known as lexical analyzers or word
segmenters) segment a stream of characters into meaningful units called to-
kens. At first sight, tokenization appears rather straightforward: a token can be
taken as any sequence of characters separated by white spaces.23

Such a simple approach may be appropriate for some applications, but it
can lead to inaccuracies.

For instance, it does not take into account punctuation signs, such as pe-
riods, commas and hyphens. Is ‘data-base’ composed of one or two tokens?
Clearly, the number ‘1,005.98’ should be one token. What about ‘$1,005.98’?
Should the ‘$’ sign be part of the token, or identified as a token in its own
right?

Until now, we have relied on white spaces to indicate word breaks. This is
not always the case. The white spaces in ‘pomme de terre’ (French for potato)
do not actually indicate a break between tokens. Moreover, some languages, in
fact the major East-Asian languages, do not put white spaces between words.24

Other languages, like German, Finnish or Korean, retain most of white spaces,
but allow the dynamic creation of compound words, for instance ‘Lebensver-
sicherungsgesellschaft’ (German for ‘life insurance company’). These com-
pounds can be considered as a single word, but in a document retrieval task, we
may benefit from limited word segmentation identifying the parts. Tokeniza-
tion tools usually rely on rules,25 finite state machines,26 statistical models (see
Note 21), and lexicons to identify abbreviations or multi-token words.

Natural language processing 

.. Stemmers and taggers

Parsing cannot proceed in the absence of lexical analysis, and so it is necessary
to first identify the root forms of word occurrences and determine their part of
speech.

Stemmers
In linguistic parlance, stemmers are really morphological analyzers that asso-
ciate variants of the same term with a root form. The root can be thought of
as the form that would be normally be found as an entry in a dictionary. For
instance, ‘go’, ‘goes’, ‘going’, ‘gone’ and ‘went’ will be associated with the root
form ‘go’.

There are two types of morphological analyzers: inflectional and deriva-
tional.

– Inflectional morphology expresses syntactic relations between words of the
same part of speech (e.g., ‘inflate’ and ‘inflates’), while derivational mor-
phology expresses lexical relations between words that can be different
parts of speech (e.g., ‘inflate’ and ‘inflation’). More specifically, inflec-
tional morphology studies the variation in word forms needed to express
grammatical features, such as singular/plural or past/present tense.

– Derivational morphology expresses the creation of new words from old
ones, and attempts to relate different words to a root form. Derivation usu-
ally involves a change in the grammatical category of a word, and may also
involve a modification to its meaning. Thus ‘unkind’ is formed from ‘kind’,
but has the opposite meaning. Derivational morphological analyzers are
less widespread than inflectional morphological analyzers.

Morphological analyzers make extensive use of rules and lexicons. The lexicon
typically relates all forms of a word to its root form. These rules and lexicons
can be efficiently encoded using finite state machines27 (see Chapter 3) and
support limited word segmentation for compound terms.

For instance, ‘Lebensversicherungsgesellschaft’ will be stemmed as

‘Leben#Versicherung#Gesellschaft’,

which identifies the parts of the compounds. Because morphological analyzers
do not use the context of a word, they do not resolve ambiguities, and may
output more than one root for a given term. For instance ‘being’ corresponds
to the verb ‘to be’ and the noun ‘being’, as in ‘human being.’

 Chapter 1

Building lexicons to support morphological analyzers is time consuming
and somewhat expensive. Many applications, such as document retrieval, of-
ten do not require morphological analyzers to be linguistically correct. In this
case, we call the analyzer a ‘heuristic’ stemmer, because it uses ‘rules of thumb’
instead of linguistic rules.

A heuristic stemmer attempts to remove certain surface markings from
words directly in order to discover their root form. In theory, this involves dis-
carding both affixes (‘un-’, ‘dis-’, etc.) and suffixes (‘-ing’, ‘ness’, etc.), although
most stemmers used by search engines only remove suffixes. Affix stripping is
a quick way of performing both inflectional and derivation morphology that
does not require access to a lexicon.

For instance, the Porter stemmer28 has inflectional rules to remove the suf-
fixes ‘-ed’ and ‘-ing’, but also derivational rules to remove ‘-ation’ or ‘-ational’.
Such stemming is rather a rough process, since the root form is not required
to be a proper word. Thus the terms ‘abominable’, ‘abominably’ and ‘abomina-
tion’ all share the same root, ‘abomin’, which is not a valid word.

Part of speech taggers
Part of speech taggers build upon tokenizers and sentence delimiters,29 as they
label each word in a sentence with its appropriate tag. We decide whether a
given word is a noun, verb, adjective, etc. Here are two possible tagged sen-
tences associated with the ambiguous sentence about visiting aunts.

‘Visiting/ADJ aunts/N-Pl can/AUX be/V-inf-be a/DET-Indef nuisance/
N-Sg.’

‘Visiting/V-Prog aunts/N-Pl can/AUX be/V-inf-be a/DET-Indef nuisance/
N-Sg.’

In the first sentence, ‘visiting’ is an adjective that modifies the subject ‘aunts’.
In the second sentence, it is a gerund30 that takes ‘aunts’ as an object.

If words were assigned a single POS tag, and there were no words unknown
to the tagger, POS tagging would be a simple task. However, as the example
above illustrates, words may be assigned multiple POS tags, and the role of the
tagger is to choose the correct one. In the ‘aunts’ example, there is not enough
information in the sentence to decide between the two tags. You need some
kind of context, along the lines of:

‘I ought to invite her, but visiting aunts can be a nuisance.’

or

‘I ought to visit her, but visiting aunts can be a nuisance.’

Natural language processing 

Even then, the program would need to draw a few inferences to choose the
right tag.

Following the two views of NLP, there are two main approaches to POS
tagging:31 rule-based and stochastic.

A rule-based tagger tries to apply some linguistic knowledge to rule out
sequences of tags that are syntactically incorrect. This can be in the form of
contextual rules such as:

If an unknown term is preceded by a determiner and followed by a noun,
then label it an adjective.

Some taggers also rely on morphological information to aid the disambigua-
tion process. For instance,

If an ambiguous/unknown word ends in ‘-ing’ and is preceded by a verb,
then label it a verb.

While some rule-based taggers32 are entirely hand-coded, others leverage from
training procedures on tagged corpora.

Stochastic taggers rely on training data, and encompass approaches that
rely on frequency information or probabilities to disambiguate tag assign-
ments. The simplest stochastic taggers disambiguate words based solely on the
probability that a word occurs with a particular tag. This probability is typi-
cally computed from a training set, in which words and tags have already been
matched by hand.

One drawback of this simple approach is that syntactically incorrect se-
quences can be generated, even though each individual tag assignment may be
valid. Thus, in our ‘visiting aunts’ example above, ‘visiting’ might be tagged
as a verb instead of an adjective, simply because it occurs more frequently as
a verb than as an adjective in the training corpus. More complex taggers may
use more advance stochastic models, such as Hidden Markov Models33 (see
Chapter 5) or maximum entropy.34

.. Noun phrase and name recognizers

We often need to go beyond part-of-speech tagging. For instance, let us assume
that we want to build system that extracts interesting business news from a
document feed, and need to identify people and company names and their
relationships. It may be helpful to know that a given word is a proper noun
(say ‘George’), but POS tagging alone does not help us recognize first and last
names in a sentence (say ‘George Bush’).

 Chapter 1

Noun phrase parsers can help us perform such a task. These are typically
partial (or shallow) parsers,35 rather than the complete (or deep) parsers that
we encountered earlier in this section. Partial parsers address a simplified ver-
sion of the parsing task, where the goal is to identify major constituents, such
as noun phrases, or ‘noun groups’, which are partial noun phrases. However,
they often disregard ambiguities,36 such as prepositional phrase attachment,
the treatment of which would be required by a complete parse.

Noun phrases extractors can be symbolic or statistical. Symbolic phrase
finders usually define rules for what constitutes a phrase, and use relatively
simple heuristics.37 For example, many noun phrases start with a determiner
(‘the’, ‘a’, ‘this’, etc.) and end just before a common verb (‘is’, ‘are’, ‘has’,
‘have’, etc.).

Thus ‘visiting aunts’ could be identified as a noun phrase of the form AD-
JECTIVE + NOUN, while ‘a nuisance’ is of the form DET + NOUN. Noun
phrases can be embedded in other noun phrases; thus the phrase ‘two en-
gines’ is embedded in the phrase ‘the airplane with two engines’. Many noun
phrase extractors concentrate on identifying base noun phrases, which consist
of a head noun, i.e., the main noun in the phrase, and its left modifiers, i.e.,
determiners and adjectives occurring just to the left of it.

Name finders, also called ‘named entity’ recognizers, identify proper
names in documents, and may also classify these proper names as to whether
they designate people, places, companies, organizations, and the like. In the
sentence:

‘Italy’s business world was rocked by the announcement last Thursday that
Mr. Verdi would leave his job as vice-president of Music Masters of Milan,
Inc to become operations director of Arthur Andersen.’

‘Italy’ would be identified as a place, ‘last Thursday’ as a date, ‘Verdi’ as a per-
son, ‘Music Masters of Milan, Inc’ and ‘Arthur Andersen’ as companies. Break-
ing out ‘Milan’ as a place, and identifying ‘Arthur Andersen’ as a person would
be an error in this context.

Unlike noun phrase extractors, name finders choose to disregard part of
speech information and work directly with raw tokens and their properties
(e.g., capitalization). As with taggers, some name finders rely on hand crafted
rules, while others learn rules from training data,38 or build statistical models
such as Hidden Markov Models.39 However, most of the name finders currently
available as commercial tools are rule based.

Natural language processing 

.. Parsers and grammars

Parsing is done with respect to a grammar, basically a set of rules that say
which combinations of which parts of speech generate well-formed phrase and
sentence structures. Thus:

‘Colorless green ideas sleep furiously.’

might be judged syntactically well-formed, since

 +  + 

is a valid noun phrase pattern,

 + 

is a valid verb phrase pattern, and

  +  

forms a valid sentence. By contrast,

‘Furiously sleep ideas green colorless.’

would be judged ungrammatical, since none of the grammatical patterns

 +  +  +  + 

 +  +  +  + 

 +  +  +  + 

 +  +  +  + 

is sanctioned by the rules of English.40

Semantic analysis involves identifying different types of words or phrases,
e.g., recognizing a word or phrase as a proper name, and also identifying the
role that they play in the sentence, e.g., whether subject or object. Different
semantic types have different features, e.g., a word or noun phrase may refer
to something animate or inanimate, to a company, an organization, a place, a
date, or a sum of money. Semantic roles may differ from syntactic roles, e.g., in
the two sentences,

‘The Federal Court chastised Microsoft.’

and

‘Microsoft was chastised by the Federal Court.’

 Chapter 1

the grammatical subject is different in each case, but the basic meaning is the
same, and the semantic roles associated with the two participants is also the
same. The Federal Court is the ‘agent’ and Microsoft is the ‘recipient’ in the
event.41

Identifying noun phrases is an important and non-trivial task. Such
phrases may have complicated internal structures, e.g.,

“A small screw holding the cylinder assembly in the frame of the revolver”

or

“The cat that ate the mouse that ate the cheese.”

Many programs settle for identifying simple or ‘base’ noun phrases, such as

“the cat”
“a small screw”.

Linguistic engineering by writing grammar rules is very labor-intensive. Al-
though large general-purpose grammars of English have been written, none
has 100% coverage of all the constructs one might encounter in random texts,
such as news articles. Similarly, although machine-readable lexicons exist for
many languages, none has excellent coverage. Thus, any program that sets
out to analyze unseen text will have to cope with unrecognized words and
unanticipated phrase structures.

But even unknown words can be marshaled into patterns. Thus the legal
term ‘res judicata’ can be recognized as a two-word pattern (called a bigram)
if it occurs often enough in a corpus of documents, such as a collection of
court cases, in spite of the fact that these words may not be in the program’s
lexicon. Many software tools42 neglect parsing altogether in favor of this kind
of analysis, in which occurrences of words and word patterns are counted and
tabulated.

There are also corpus-based resources that the researcher and developer
can draw upon. For example, the Penn Treebank Project at the University
of Pennsylvania annotates documents in extant text collections for linguistic
structure. This project inserts part of speech tags into documents and pro-
duces ‘skeletal parses’ that show the rough syntactic structure of a sentence to
generate a ‘bank’ of linguistic trees.43

Syntactic structure is most often annotated using brackets to produce em-
bedded lists, e.g.,

(S: (NP: Green ideas) (VP: sleep furiously))

Natural language processing 

S: green ideas sleep furiously

NP: green ideas NP: sleep furiously

Figure 1.1 Phrase structure represented as a tree

S: green ideas sleep furiously

NP: green ideas NP: sleep furiously

ADJ: green NOUN: ideas VERB: sleep ADV: furiously

Figure 1.2 More complex phrase structure

denotes the concatenation of a noun phrase and a verb phrase to form a sen-
tence,44 and this structure can also be represented as a parse tree (see Fig-
ure 1.1).

Trees and embedded lists are isomorphic recursive structures, and can
therefore be embedded to arbitrary depth in order to tease out structural
details, e.g.,

(S: (NP: (ADJ: Green) (NOUN: ideas))
(VP: (VERB: sleep) (ADV: furiously)))

shows a more complex bracketing with a corresponding tree (see Figure 1.2).
Thus manually tagged corpora and statistical analysis tools provide a num-

ber of resources that can be brought to bear upon the problem of building a
natural language system for an application.

. Plan of the book

The purpose of this introductory chapter was to show the reader that there
are both theoretical and practical resources available to aid in the construction
of natural language processing systems. In much shorter supply are guidelines
on how to utilize such resources for commercial ends, discussion of the vari-
ous options available to the system builder, and warnings concerning possible
pitfalls, complications, and the like. This book attempts to address some of

 Chapter 1

these issues, in order to facilitate the understanding and deployment of this
technology.

Given our focus on applications, it is different kinds of language processing
task that will give the book its basic structure, rather than theoretical constructs
such as syntax and semantics, or tools such as parsers and taggers. Linguistic
concepts and tools will not be neglected, but we shall examine their import in
the context of specific tasks, rather than attempting a review of the underlying
theory or techniques. Such reviews can be found elsewhere, and a number of
well-respected works are listed in the bibliography at the end of this chapter.

Chapter 2 looks at document retrieval and outlines the basic logic behind
Boolean and ranked retrieval. The simple mathematics behind these systems
is applicable to other application areas, and will therefore receive a thorough
treatment. Techniques for query processing and index construction are ex-
plained in detail. Methods for evaluating retrieval systems are also examined
in depth, since this topic turns out to be more complex than one might think.
We review the Text Retrieval Conferences and some recent research advances
that have found their way into commercial systems.

Chapter 3 addresses the information extraction task, surveying programs
for identifying events described in free text. We review the Message Under-
standing Conferences and look at parsing techniques, such as finite automata
and context-free parsers. The workings of such programs are exemplified by
applications in the domains of general news and legal information, and some
key evaluation studies are summarized.

Chapter 4 turns to document classification algorithms, and attempts to
categorize such tasks in order to understand the space of applications that they
might support. Then we survey the many methods that have been applied to
problems of this kind, including ‘Naïve Bayes’, tf-idf, nearest neighbor, decision
lists and trees, and so forth. Again, there is a strong emphasis on how such
systems should be evaluated, both in the laboratory and in production.

Chapter 5 covers some major research areas that are beginning to generate
commercial applications. We focus particularly upon named entity extraction,
summarization, and topic detection, both within single documents and across
sets of documents. We end with a summary of the state of the art, and some
predictions45 about what the future will hold.

Natural language processing 

Pointers

Eliza-like programs are now called ‘chatbots’, or ‘chatterbots’, but they seem to
be no more advanced.46

For an accessible overview of linguistics, we recommend Finegan.47 If you
are serious about learning the foundations of syntactic theory, then Chomsky48

is one place to start. For semantics, we would suggest Leech.49

For a computational view of language, Allen50 is excellent, although it
is short on applications and leans heavily towards ‘Good Old Fashioned AI,’
as opposed to more modern corpus-based approaches. For the latter, consult
Charniak51 or Manning and Schütze.52

For an overview of the Penn Treebank Project at the University of Pennsyl-
vania, see Marcus et al.53 All data produced by the Treebank is released through
the Linguistic Data Consortium.54

Notes

. Weizenbaum, J. (1966). ELIZA – A computer program for the study of natural language
communication between man and machine. Communications of the ACM, 9, 36–45.

. See e.g., http://www.neuromedia.com, where (as of October 2001) an ELIZA-style pro-
gram poses as a sales representative.

. The human in the dialogue isn’t behaving very intelligently either, but that’s a different
problem.

. See e.g., Korf, R. E. (1997). Finding Optimal Solutions to Rubik’s Cube Using Pattern
Databases. Fourteenth National Conference on Artificial Intelligence (AAAI-97), pp. 700–705.

. Kalman, J. A. (2001). Automated Reasoning with Otter. Princeton, NJ: Rinton Press.

. Lenat, D. B. & Brown, J. S. (1984). Why AM and EURISKO Appear to Work. Artificial
Intelligence, 23, 269–294.

. In fact, they’re both a nuisance.

. E.g., Allen, J. (1995). Natural Language Understanding (2nd edition). Redwood City, CA:
Benjamin/Cummings.

. Or the information provider may wish to categorize news stories with respect to the
industries that they would be of interest to. Such a categorization may need to be done
in close to real time, to retain the currentness of the feed.

. Chomsky, N. (1957). Syntactic Structures. The Hague: Mouton & Co. Reprinted 1978,
Peter Lang Publishing.

. Some attempts have been made to argue that natural languages are really a kind
of (highly complex) formal language, but we will not consider these here. See, e.g.,

 Chapter 1

Montague, R. (1974). English as a formal language. In Thomason, R. (Ed.), Formal Phi-
losophy. New Haven: Yale University Press.

. ‘Empirical’ suggests experience and experimentation, not summary statistics. One might
prefer another term, such as ‘predictive’, since the normal purpose of these data analyses is
to predict linguistic patterns in unseen texts.

. We shall reserve the more general term ‘information retrieval’ for when we wish to in-
clude the retrieval of images, audio, and documents containing notations other than text
(e.g., musical notation, tabular data, equations, and so on).

. It is common to talk about a user’s ‘information need’ in this context, but we shall see
in Chapter 2 that deducing this need from a user’s query is a non-trivial process that begs
many questions.

. This profile is typically nothing more than a standing query.

. We shall use the term ‘metadata’ to mean machine-readable data about data. A simple
inverted file index contains metadata, i.e., data about the original text data.

. We give pointers to a number of these offerings, without endorsing them in any way.
Also, although URLs are a useful mechanism for such pointers, they are obviously not
archival. In the event of a dead link, we suggest using an effective search engine, such as
Google (http://www.google.com), to track down the reference.

. The interpretation of punctuation signs is language dependent. In French, for instance,
it’s the comma that denotes the decimal point, while the period may mark a thousand as in
1.000,00 (equivalent to the American 1,000.00).

. We cover regular expressions, a fundamental pattern matching technique, in Chapter 3.

. See for instance the mtsegsent tool of in the Multext project (http://www.lpl.univ-
aix.fr/projects/multext/MUL7.html), or the inxight::document_analysis class in the Lin-
guistX toolkit commercialized by Inxight (http://www.inxight.com).

. One example is the use of maximum entropy to derive sentence and word segmenters.
Maximum entropy is a powerful technique for building statistical model of natural language.
A sample Java class can be found at http://www.cis.upenn.edu/∼adwait/statnlp.html, or at
http://grok.sourceforge.net/.

. See http://elib.cs.berkeley.edu/src/satz/ for instance.

. The java.util.StringTokenizer class in Java is an example of a simple tokenizer, where
you can define the set of characters that mark the boundaries of tokens. Another Java class,
java.text.BreakIterator, is language dependent and identify word or sentence boundaries, but
does not handle ambiguities.

. Resource for tokenizing Chinese can be found at http://www.chinesecomputing.com/.
ALTJAWS (http://www.kecl.ntt.co.jp/icl/mtg/resources/altjaws.html) and Chasen (http://
chasen.aist-nara.jp.com) include tokenization for Japanese text.

. See the Intex (http://ladl.univ-mlv.fr/INTEX/) tool, for instance.

. Most NLP toolkits include lexical analyzers for English. The Xelda toolkit (http://www.
xrce.xerox.com/ats/xelda/overview.html) includes tokenizers for various languages. Other

Natural language processing 

links can be found at http://registry.dfki.de/sections.php3?f_mainsection=
2&f_section=11.

. The LinguistX platform, the XELDA toolkit or the product line commercialized by
Teragram all rely on similar ‘finite state’ technology.

. Source code for the Porter stemmer can be found on-line at http://www.tartarus.org/
∼martin/PorterStemmer/.

. POS taggers and morphological analyzers may be used in conjunction or independent
of one another.

. A gerund is a noun-like use of a verb, e.g., “Gun control is hitting your target.”

. A list of POS taggers can be found at: http://registry.dfki.de/sections.php3?f_mainsection
=2&f_section=20

. A well-known rule-based tagger has been developed by Brill. There are several, more or
less efficient, implementations available. See http://www.markwatson.com/opensource/
opensource.htm or http://www.inalf.cnrs.fr/cgi-bin/mep.exe?HTML=mep_winbrill.txt?
CRITERE=ENGLISH.

. An example of an HMM-based tagger is the TATOO – ISSCO tagger. Another can be
found at http://www.coli.uni-sb.de/∼thorsten/tnt/.

. See Adwait Ratnaparkhi’s MXPOST tagger.

. The Natural Language Software Registry contains two different entries for partial and
shallow parsing. However all systems classifying under shallow parsing are also classified
under partial parsing.

. The Link Grammar parser attempts to produce the complete analysis of a sentence, but
is able to skip over portions it can not understand.

. The FASTR system includes a noun phrase extractor component. Most NLP vendors,
such as Inxight, Teragram and Xerox, provide noun phrase extractors.

. The Alembic tool allows for both writing hand-coded rules and automatically generating
rules using a tagged corpus as training data. NetOwl extractor is another example of rule-
based named entity recognizer.

. The Identifinder system is based on Hidden Markov Models (see Chapter 5).

. We need to consider four patterns, because ‘sleep’ can be a noun or a verb, and ‘green’
can be a noun or an adjective.

. There isn’t as much standardization of terminology in semantics as there is in syntax,
where the grammatical notions of ‘subject’, ‘verb’, and ‘object’ are well established. So you
may also see ‘actor’ and ‘patient’ as terminology for semantic roles corresponding to the
notions of subject and object in meaning relations. But the basic idea is always the same:
one party is doing something, and the other party is having that something done to them.

. See, e.g., http://nlp.stanford.edu/links/statnlp.html

. The Treebank project is located in the LINC Laboratory (http://www.cis.upenn.edu/
∼linc/home.html) of the Computer and Information Science Department at the University
of Pennsylvania.

 Chapter 1

. We will use some common abbreviations, such as ‘S’ for sentence, ‘NP’ for noun phrase,
etc., explaining as we go.

. Predictions of this kind nearly always turn out to be wrong, but everyone makes them,
so we will too.

. See e.g., http://www.alicebot.org

. Finegan, E. (2001). Language: Its Structure and Use (3rd edition). Fort Worth: Harcourt
Brace.

. Chomsky, N. (1965). Aspects of a Theory of Syntax. Cambridge, MA: MIT Press.

. Leech, G. N. (1974). Semantics. Baltimore: Penguin. 2nd edition published in 1981.

. Allen, J. (1995). Natural Language Understanding (2nd edition). Redwood City, CA:
Benjamin/Cummings.

. Charniak, E. (1993). Statistical Language Learning. Cambridge, Massachusetts: MIT
Press.

. Manning, C. & Schütze, H. (1999). Foundations of Statistical Natural Language Process-
ing. Cambridge, Massachusetts: MIT Press.

. Marcus, M., Santorini, B., & Marcinkiewicz, M. (1993). Building a Large Annotated
Corpus of English: The Penn Treebank. Computational Linguistics, 19 (2), 313–330.

. http://www.ldc.upenn.edu

C 2

Document retrieval

The case of the missing guitar

In 1993, the guitar manufacturer C. F. Martin made a special version of the
legendary Martin D18 guitar played by, among others, Elvis Presley. They
called it the D93, and made very few of them. If you wanted to find one
on the World Wide Web, you might be tempted to go your favorite search
engine and type:

‘martin d93 guitar.’

An optimist might expect to find a Web page describing this guitar, maybe
even offering one for sale. A less optimistic person would at least expect to
bring up the Web page for C. F. Martin & Co. A pessimist might expect to
find only pages about other, less rare, Martin guitars. A real curmudgeon
might expect to find only pages about guitars made by other companies.
All we can say to these people is: “Dream on.”
Here are AltaVista’s top-ranked sites.

Perikles Vänner, funktionärer 95/96
Styrelse samt övriga funktionärer i. Ølföreningen Perikles Vänner 95/96. Ordförande.
Thomas Jonsson V91. Vice ordförande. Lisa Bodén A93. ...
URL: http://www.tlth.lth.se/∼perikles/arkiv9798/styrelse95.htm
Home of d93-alo
Welcome user! If you’re from out of town, you’re probably looking for this:
C64 page. or this: XPilot. This rest is my personal linklist and nothing... URL:
http://www.student.nada.kth.se/∼d93-alo/ • Translate
More pages from www.student.nada.kth.se
E$33) 9(/’D92J2 ‘D93’A ‘D*,’1J)
Enghlish. #*5D (F’ 1H’(7 ‘D,/J/ D/JF’ EF*,’*F’ ‘D9FH’F H’DA1H9 ‘DEB/E) F(0)
#33 E$33) ‘D93’A DD*,’1) H ‘D%3*J1’/ AJ ‘D9’E 1355G@ AJ E/JF) -’&D AJ... URL:
http://www.alassaf.net/Aindex.htm
[COM3-D93] Deutsche Telekom AG (Q6/3): D.atm - Informationflow between
Network
English Español. Copie Imprimable. Bureau du Secrétaire Général. Radio-
communication (ITU-R)Normalisation (ITU-T)Développement (ITU-D)Expositions
et. URL: http://www.itu.int/itudoc/itu-t/com3/dco...v98/093-fr.html • Translate More
pages from www.itu.int

 Chapter 2

D93-00013 MICROSOFT - BACKOFFICE: APPLICATION CENTER 1PROC .

APPLICATION CENTER 1PROC .

URL: http://saleonall.com/cat/software/suites...

oneproduct.html • Translate

More pages from saleonall.com

Index of /∼ d93-msr

Index of /∼d93-msr. Name Last modified Size Description. Parent Directory 06-Apr-

2001 00:14 - 2000/ 15-Dec-1999 16:56 - foton/ 04-Aug-2000 17:14 -...

URL: http://jota.sm.luth.se/∼d93-msr/ • Translate More pages from jota.sm.luth.se

Microsoft D93-00013 D9300013 Application Center 1proc .

Microsoft D93-00013 d9300013 application center 1proc .. 30 day return policy. Free

ground shipping.

URL: http://www.ichq.com/partnum/msoft_d9300013a.html • Translate More pages

from www.ichq.com

See anything about guitars, Martin or otherwise? None of these documents
seems to address either of the query terms ‘martin’ and ‘guitar.’ Well, maybe
Altavista’s having a bad day. Let’s try another search engine, Google. Here
are the top-ranked results.

Echoes Playlist Week of 2.1.99
... Quartet Gongan LAGQ LA Guitar Quartet Fiesta LAGQ Rudiger ... Ancient Key
Richie Buckley Martin, Frances The General & ... The Water Garden $16.98 D93 Del-
gado, Luis El ... www.echoes.org/playlists/wk06-99.html - 20k - Cached - Similar pages
C64 - game music
... PSID files: ... For the greatest SID collection, check out The High ... from the same
game (30k); He slimed me from Ghostbusters (10k); Guitar from Wizball (46k). ...
www.d.kth.se/∼d93-alo/c64/sid/ - 2k - Cached - Similar pages
other
... vg/vg+ 10.00. Ivan Csudai / Martin Burlas 9 Easy Pieces ... vg+ 5.00. Sonny Shar-
rock Guitar (ENEMY EMY102 GB86) LP ... BACK RECORDS MMLP 66006 D93) LP
vg+/vg+ 7.00. ... www.abyss.pwp.blueyonder.co.uk/other.html - 101k - Cached - Similar
pages
Records Added to the Library Catalog : July 30 - August 5 ...
... Music Library Audio CD7585 Guitar paradise of East Africa ... Martin. Pinter : the
playwright / Martin Esslin. Hodges Library ... book QA76.575.D93 2001 DVD Studio ...
www.lib.utk.edu/research/utkcats/about/recentadds/010730.html - 80k - Cached -
Similar pages
Result of searching for “va-”.
... master,wlp 47527 VA-Guitar Album: Historic Town Hall ... Positive Noise, Richard
Strange, Martin Hannett 14680 VA-Capitol ... songs 30696 VA-D93: Basement Tapes II
... vinylrevival.com/cgi-bin/srch?va- - 101k - Cached - Similar pages

Document retrieval 

GuitareTAB: Presidents Of The Usa - Kitty
... questions, comments or whatever!!! - Martin Aaserud – - Bente Moe From ...
DST) Message-ID: <31D2FBA9.D93@aft.sn.no> Date ... Version: 1.0 To: GUI-
TAR@NEVADA.EDU Subject ... www.guitaretab.com/gtab/t/15001 - 14k - Cached -
Similar pages
Guestview
... 02/08/01 - Martin Sinclair - eMail: sinclairmartin@hotmail ... you learn to play guitar
like that!!! Absolutely breath ... Denny Daniels - eMail: Double D93@aol.com. Hi ...
www.kraigkenning.com/guestview.htm - 71k - Cached - Similar pages
[PDF] www.cg26.fr/gb/tourisme/GUIDE_GB.pdf
File Format: PDF/Adobe Acrobat - View as Text
... 04.75.76.01.72 INTERNATIONAL GUITAR FESTIVAL. Theatre, concerts, folklore ...
D122 D132 ST MARTIN-DES ROSIERS BEAUSEMBLANT ... Glass blower - CREST
D93 ETOILE (C8) Old ... Similar pages

At least Google figured out that the query had something to do with guitars,
but Martin’s home page is nowhere to be seen, and not one of these pages is
about guitars made by C. F. Martin. To find out why this search is such an
unmitigated disaster, you will have to read the rest of the chapter!

Electronic document retrieval used to be a task most commonly associated
with librarians, or specialized business and legal analysts, working with pro-
prietary online information services, such as Dialog, Westlaw and Lexis-Nexis.
The advent of the World Wide Web has transformed everyone into a document
retriever of sorts, and it has also commoditized retrieval technology.1 People of
all ages and walks of life are now becoming familiar with search engines and
their limitations.

In the context of this chapter, we shall concentrate on document retrieval
by full-text search, rather than alternative methods. For example, many library
systems2 and proprietary online systems3 associate a set of keywords with each
document, and retrieval is via those keywords, rather than via any process that
matches a query against the actual text of a document.4 Such keywords are of-
ten chosen from a controlled vocabulary, compiled by subject matter experts or
library scientists, and may be used in conjunction with thesauri. These vocabu-
laries may be quite large, and may or may not be well known to the information
seeker. Keywords, ISBN numbers, and other devices, can be considered as sur-
rogates for the documents themselves.5 Clearly, their effectiveness as retrieval
agents depends upon the appropriateness of the keywords, the convenience of
the numbering scheme, and so forth. The advantages and disadvantages of var-

 Chapter 2

ious indexing schemes and their associated mechanisms are well known and are
discussed elsewhere.6

This chapter begins by explaining the basic indexing and retrieval model
upon which all full-text retrieval is based. It outlines the logic behind tradi-
tional Boolean search engines, and explains the concepts of term frequency
and inverse document frequency, which form the basis of modern ranked re-
trieval in the tf-idf model. We then cover attempts to improve search results by
using a variety of linguistic and statistical techniques, such as thesauri, query
expansion, and relevance feedback. This is followed by a survey of experimental
designs and statistical measures for assessing retrieval performance.

Then we go on to examine Web search engines in some detail, with re-
spect to both their implementation and performance. Large claims have been
made for commercial search engines, but we shall see that coverage, freshness,
and retrieval performance vary greatly from one to another. The chapter ends
with an up-to-date examination of new techniques that promise to improve
Web search.

. Information retrieval

Information Retrieval (IR) can be defined as the application of computer tech-
nology to the acquisition, organization, storage, retrieval, and distribution of
information. The associated research discipline is concerned with both the
theoretical underpinnings and the practical improvement of search engine
technology, including the construction and maintenance of large information
repositories. In recent years, researchers have expanded their concerns from
the bibliographic and full-text search of document repositories to Web search,
with its associated hypertext and multimedia databases.

Information retrieval is an activity, and like most activities it has a pur-
pose. A user of a search engine begins with an information need, which he or
she realizes as a query in order to find relevant documents. This query may not
be the best articulation of that need, or the best bait to use in a particular doc-
ument pool. It may contain misspelled, misused, or poorly selected words. It
may contain too many words or not enough. Nevertheless, it is usually the only
clue that the search engine has concerning the user’s goal.7

We often speak of documents in the result set as being more or less rele-
vant to the query, but, strictly speaking, this is inaccurate. The user will judge
relevance with respect to the information need, not the query. If irrelevant doc-
uments are returned, the user may or may not realize why this is the case, and

Document retrieval 

may or may not find ways to improve the query. The relationship between the
query and the documents is explained entirely by the logic of the search engine.
There is no need to invoke the concept of relevance at this point.

To emphasize this distinction, one can conceive of two different users who
enter identical queries but have different information needs. The query

‘British beef imports’

could be looking for information about the importation of British beef (by
other countries), or the importation of beef (from other countries) by the
British. There is no way of knowing which the user meant without asking him
or her.

Another distinction that needs to be made is that between relevance con-
sidered as topicality and relevance considered as utility. A document can be on
the topic associated with a user’s information need without actually being use-
ful. Utility can only be assessed in the context of a larger task that the user is
trying to perform, such as writing an article or representing a client in court.

The whole concept of relevance is a difficult one that entertained linguists
and philosophers for much of the 20th century, and will no doubt continue to
do so in the 21st and beyond. Our concern here is less with theoretical conun-
drums than with the practical difficulty of obtaining relevance judgments for
the purposes of evaluating and improving search systems. We shall return to
this topic in Section 2.4.

. Indexing technology

It is easy to forget that document retrieval starts not with a query but with the
indexing of documents. Everyone is familiar with a ‘back of the book’ index, in
which selected words and phrases from a text are associated with the numbers
of the pages where the relevant contents appear. It is also well known that such
indexes leave quite a lot to be desired, although any index is better than none
at all.

An index for the full-text search of electronic documents is generally more
exhaustive than the index of any book. One would like to be able to query a
collection of documents by matching terms in the query with terms actually
occurring in the text of those documents. This ability requires that a document
be indexed with all of the words8 that occur in it, instead of being indexed only
by keywords or subject headings provided by an editor or a librarian.

 Chapter 2

INVERTED DICTIONARY

Token DocCnt FreqCnt Head

ABANDON 28 51

ABIL 32 37

ABSENC 135 185 …

ABSTRACT 7 10 …

POSTING

DocNo Freq Word Position

67 2 279 283

424 1 24

1376 7 137 189 481… ..

206 1 170

4819 2 4 26 32 ..

Figure 2.1 Part of an inverted file index, showing the basic structure

An index consisting of a list of all the words occurring in all the docu-
ments in the collection is called an inverted file, or dictionary (see Figure 2.1).
Words are typically stemmed before being stored, as described in Chapter 1,
Section 1.3.2. Thus, we attempt to conflate all the variants of a word, reduc-
ing words like ‘anticipate’, ‘anticipating’, ‘anticipated’, and ‘anticipation’ to a
common root, ‘anticipat’, for indexing purposes.

For each token,9 we store the following information:

– Document Count. How many documents the token occurs in. This allows
us to compute a useful statistic, called ‘inverse document frequency’ (IDF),
for ranking purposes. We discuss the uses of IDF in Section 2.3.2.

– Total Frequency Count. How many times the token occurs across all the
documents. This is a basic ‘popularity’ measure that tells you how common
the token is.

In addition, for each token, we store the following indexing information on a
per document basis:

– Frequency. How often the token occurs in that document. This number is
a very rough indicator of whether or not the document is really ‘about’ the

Document retrieval 

concept encoded in the token, or whether it simply mentions the concept
in passing.

– Position. The offsets10 at which these occurrences are found in the docu-
ment. Offsets can be retained for different reasons. Some search engines
allow users to search for a query term within n words, say 3, of another
term. Other search engines, like Google, use offsets to generate word-in-
context snippets for display, which can be quite effective abstracts for re-
trieved documents, because they are query dependent. Finally, offsets are
sometimes used to highlight query terms in retrieved documents.11

These records are usually linked in a structure similar to the one shown in Fig-
ure 2.1. We now proceed to examine how such indexes are used at retrieval
time.

. Query processing

The first full-text document retrieval systems were ‘Boolean’ or ‘terms and
connectors’ search engines. Such a designation characterizes properties of the
query submitted to the system, rather than the mode of indexing employed.

.. Boolean search

A Boolean search is one in which the user searches a database with a query that
connects words with operators, such as AND, OR, and NOT. Such a search
is often called a ‘terms and connectors’ search, since there is a clear distinc-
tion made in the query between content-bearing terms and content-free op-
erators based on logical connectives. The operators derive their meaning from
the truth tables of Boolean logic (see Sidebar 2.1), hence ‘Boolean search.’

Sidebar 2.1 Boolean logic and truth tables

The truth tables for AND, OR, and NOT are shown in Table 2.1. Thus, the entry ‘true’ in the
cell with column ‘true’ and row ‘true’ in the AND table shows that ‘true’ AND ‘true’ begets
‘true’. Any other combination of truth values ANDed together results in ‘false.’

Table 2.1 Boolean truth tables

and true false
true true false
false false false

or true false
true true true
false true false

not
true false
false true

 Chapter 2

A Boolean engine returns the set of documents in the database that satisfy the logic of
the user’s query. For example, the query ‘computer AND virus’ would return all documents
containing both terms, by intersecting the postings for ‘computer’ and ‘virus’ in the inverted
file, thus

POSTINGcomputer ∩ POSTINGvirus

The query ‘computer OR virus’ would return all documents containing either term, by
forming the union of the postings for ‘computer’ and ‘virus’:

POSTINGcomputer ∪ POSTINGvirus

The NOT operator allows users to exclude terms and conditions from their search result
terms. Thus ‘Jordan NOT Michael’ would return all documents containing the term ‘Jordan’
but not the term ‘Michael’, namely

POSTINGJordan – POSTINGMichael

where ‘–’ denotes set difference.
There is normally a precedence established between operators, in order to avoid ambi-

guity. Thus

‘Jordan NOT Michael AND Nike’

would be interpreted as

(POSTINGJordan – POSTINGMichael) ∩ POSTINGNike

rather than

POSTINGJordan – (POSTINGMichael ∩ POSTINGNike)

where NOT has broader scope.

Most Boolean systems also allow non-Boolean operators, such as those govern-
ing term proximity. Thus the query ‘computer /5 virus’ would return all docu-
ments where the terms ‘computer’ and ‘virus’ occur within five words of each
other – assuming that the inverted file also contains information about word
positions, as shown in Figure 2.1. This can be useful for name searching, e.g.,
‘President /3 Kennedy’ will find documents containing the phrase ‘President
John Kennedy’ and ‘President John F. Kennedy’ as well as ‘President Kennedy’,
but not necessarily retrieve a document that mentions President Johnson and
Robert Kennedy.

There are also stemming operators that allow a user to enter the root form
of a word to retrieve documents containing its morphological variants. This is
useful for older Boolean systems in which words were not stemmed at index
compilation time. Thus the term ‘assassin!’, where ‘!’ is the stem operator, will

Document retrieval 

find occurrences of ‘assassin’, ‘assassinated’, ‘assassination’, etc. There are vari-
ous ways of supporting such an operator, e.g., by identifying roots at indexing
time, allowing partial matching against index entries, or expanding queries by
adding morphological variants as disjoined terms.

Some query languages also allow grammatical connectors that permit the
user to search for terms that occur within the same paragraph or sentence.
Clearly sentence and paragraph boundaries must have been determined at
index time. This is not very common, because identifying sentence, or even
paragraph, boundaries is not trivial.

However, documents are often broken into fields by mark up, and then
users are allowed to search within a field. The contents of such fields receive
additional indexing, to enable searches across just those fields of a document.
For example, in the legal online information service Westlaw, one can search
for ‘eminent domain’ in just the synopses of a collection of court reports by
entering a query in the following syntax:

SY(eminent domain).

Even more common is phrase searching. Phrases in queries can be specified
by including multiple terms within quotation marks. This stipulates that the
user is looking for the enclosed terms occurring adjacent to each other and in
a certain order.

Such features are now familiar to all from online search engines. Thus Al-
tavista allows AND, OR and NOT in its ‘advanced search’ facility, as well as
the connective NEAR, which means ‘within 10 words.’ Despite the introduc-
tion of other search methods, particularly on the Web, Boolean search remains
popular in many commercial and library applications.12

Its power can be enhanced by the use of thesauri in query processing, and
by special purpose indexing techniques. Thesauri are used to add synonyms13

to a query in order to gain coverage. This kind of ‘query expansion’ is discussed
below in Section 2.5.

In spite of such enhancements, the problems with Boolean search are well
known.14

Large result set. The result set contains all documents that satisfy the query.
This may be an extremely large set. Boolean search tends to be highly itera-
tive, involving more than one round of query refinement. The user adds terms
and connectives until a result of manageable size is returned. There is no way
to know ahead of time how many documents a query will find, so this is
something of a trial and error process.15

 Chapter 2

Complex query logic. Effective Boolean queries can therefore be quite compli-
cated. The simple queries that untrained searchers devise often bring back too
few or too many documents. For example, a query that does not contain dis-
joined synonyms may fail to find documents about automobiles because it only
uses the term ‘car.’

Unordered result set. The result set is not ordered by relevance. Typically, docu-
ments are ordered by some other criterion, such as recency of publication. This
may work well for some tasks, such as obtaining news updates, but less well for
others, such as finding out when a certain story broke.

Dichotomous retrieval. The result set does not admit degrees of relevance. A
Boolean query effectively partitions the collection into two subsets: documents
that satisfy the query and documents that do not. There is no notion of partial
satisfaction, which would be useful in those cases where an overly restrictive
search returns nothing at all.

Equal term weights. All query terms are accorded equal importance by the
basic Boolean model. Yet, in many contexts, some terms are more probable
than others. For example, a document about the assassination of President
John F. Kennedy ought to contain the term ‘Kennedy’, and may contain the
term ‘Dallas’, but may or may not contain more obscure terms like ‘Dealey’ or
‘Zapruder.’16

These problems are properties of the logic underlying Boolean search, and
are therefore hard to fix without changing the whole formalism. Professional
searchers are capable of adapting to this logic and can become extremely skilled
in formulating productive queries. Some prefer Boolean search to other meth-
ods because of the degree of control the experienced user can exercise over the
documents that are returned. The crisp logic of Boolean queries also helps the
user decide when to stop searching; this is particularly important in applica-
tions where completeness is at a premium, e.g., in legal research. But occa-
sional searchers, or seasoned searchers inexperienced in searching a particular
domain, may get disappointing results.

.. Ranked retrieval

As noted above, a Boolean search typically returns sets of documents that are
either unordered, or ordered by criteria unrelated to relevance, such as recency.
Most Web search engines are based on a different technology that ranks search
results based upon the frequency distribution of query terms in the document

Document retrieval 

collection. Roughly speaking, if a document contains many occurrences of a
query term (e.g., ‘aardvark’) which is rather rare in the collection as a whole
(e.g., all Web documents), this suggests that the document might be highly
relevant to a query like

‘where do aardvarks live’.

By contrast, many more documents will contain the word ‘live’, so this query
term should not contribute as much to the ranking.

As the example suggests, ranked retrieval is usually employed in search
interfaces where users are allowed to enter unrestricted ‘natural language’
queries, without Boolean or other operators. Such a query is then processed
by removing stop words,17 like ‘where’ and ‘do’, and performing various ma-
nipulations on the remaining words, the most common being stemming.18 In
modern search engines, words are stemmed at index time, and stemming algo-
rithms attempt to identify the root forms of query terms automatically, so that
the user does not have to resort to wild cards.

The question then arises as to how a query without operators could be
processed so as to return good results most of the time. The naïve approach of
translating natural language queries into Boolean ones is unlikely to work well.
Disjoining the content words in such a query will typically produce too many
hits, while conjoining them may produce too few.

The Boolean interpretation of the retrieval task was found to be simply
inadequate for the processing of natural language queries, and so an alter-
native model had to be developed. Instead of regarding documents as sets of
terms, and queries as operations on sets of documents, researchers began to
think of documents as being arranged in a multi-dimensional vector space de-
fined by the terms themselves.19 If each term defines a dimension, and the fre-
quency of that term defines a linear scale along that dimension, then queries
and documents can be represented by vectors in the resulting space.20

For example, a (not very realistic) document, such as,

‘A dog is an animal. A dog is a man’s best friend. A man is an owner of a
dog.’

might be represented as in Table 2.2.

Table 2.2 A simple vector representation of a document

a an animal best dog friend is of man owner
5 2 1 1 3 1 3 1 2 1

 Chapter 2

Given that we can establish an implicit, e.g., alphabetical, ordering on
terms, we can simply represent this document as a vector in a 10-dimensional
space:

(5, 2, 1, 1, 3, 1, 3, 1, 2, 1).

Similarity between a query and a document (or between two documents) is
now defined in terms of distance, rather than set inclusion or exclusion.21 Given
two vectors, e.g.,

(3, 2, 1, 1, 3, 1, 3, 1, 2, 1)

and

(2, 2, 0, 1, 2, 1, 5, 0, 2, 2),

there are various ways in which we can decide how close they are to each other
in the 10-dimensional space. The idea of representing documents by vectors
of term weights has turned out to be very fruitful for indexing, retrieval, and
classification tasks.

It is convenient to assume that the terms are uncorrelated, in which case the
dimensions are orthogonal. This simplifies the task of computing the similarity
between two vectors to that of measuring the angle between them, based on the
cosine22 (see Sidebar 2.2). Of course, most content-bearing terms occurring in
a collection will be highly correlated with other terms, but the assumption of
linear independence among variables is a commonplace in many real-world
applications of statistics.

A major technical issue is what function to use in computing term weights.
As we stated earlier, a query term is a good discriminator for ranking purposes
to the extent that it tends to occur in relevant documents but tends not to occur
in nonrelevant ones. Unlike the Boolean paradigm, ranked retrieval does not
limit itself to noting the presence or absence of features, but rather considers
their frequency and distribution, both within individual documents and across
the collection as a whole.

These intuitions suggest that any such function should have two compo-
nents. One, the term frequency (tf) component, should depend upon the fre-
quency with which a query term occurs in a given document that we are trying
to rank. The other, the document frequency component, should depend upon
how frequently the term occurs in all documents. In fact, we are really inter-
ested in inverse document frequency (idf), which measures the relative rarity of
a term. It is usually given by

idft = log

(
N

nt

)
,

Document retrieval 

where N is the number of documents in the collection, and nt is the number
of documents in which term t appears. We take the logarithm to compress the
range.

Notice that the idf term is inversely proportional to the document fre-
quency. For instance, a term appearing in all documents in the collection would
have an idf value of zero. This makes sense, because such a term does not
contain any information for retrieval purposes.

The weight of a term, t, in a document vector, d, is then given by

wt,d = tft,d × idft,d

where tft,d is a simple count of how many times t occurs in the document.
Document retrieval is now accomplished by computing the similarity be-

tween a query vector, q, and a document vector, d, using the formula23

sim(q, d) =

∑
t

wt,d · wt,q√∑
t

w2
t,d ·

√∑
t

w2
t,q

and then ranking the found documents in decreasing order with respect to this
measure.24

Sidebar 2.2 A simple vector space model

Let us consider a simple three-dimensional case with a collection of three documents. The
dimensions are: ‘yes’, ‘no’, and ‘maybe,’ and the documents are

D1: ‘yes yes yes’
D2: ‘no no no’
D3: ‘yes maybe yes’.

The dimensions of the space can be viewed as features that distinguish documents from
each other. The components of the document vectors can be viewed as weights that code the
importance of the corresponding feature for that document.

We can represent each document in our collection with a three-dimensional vector.
Assuming that the components of the vector are raw frequencies associated with the dimen-
sions and appearing in the order ‘yes’, ‘maybe’, ‘no’, then the following vectors:

d1 = (3, 0, 0)
d2 = (0, 0, 3)
d3 = (2, 1, 0)

can be used to represent the documents D1, D2, and D3 respectively.
It can be seen by inspection that d1 is closer to d3 than d2 in the vector space defined by

the terms. Vectors d1 and d2 are at right angles in the vector space, whereas d1 and d3 meet

 Chapter 2

at an acute angle. This is in accordance with our intuition that the document D1 is more
similar to the document D3 than it is to D2.

Similarity between documents can be measured by the inner product of their cor-
responding vectors. Recall that the cosine measure is the inner product of the vectors,
normalized by their length. Here, we omit the normalization. Thus

Sim(D1, D2) = d1 · d2 = (3, 0, 0) · (0, 0, 3) = 0

while

Sim(D1, D3) = d1 · d3 = (3, 0, 0) · (2, 1, 0) = 6

The documents D1 and D2 have no words in common, and are therefore totally dissimilar.
This is reflected by the geometric fact that their vectors are orthogonal, and the algebraic fact
that their inner product is zero. D1 and D3 share the first dimension (‘yes’) so their vectors
are correlated and their inner product is non-zero.

More generally, given any two documents D1 and D2, with vectors

d1 = (d1,1, . . . , d1,t)

and

d2 = (d2,1, . . . , d2,t)

the similarity between the two documents can be computed by

sim(D1, D2) =
i=t∑
i=1

d1,i · d2,i

A more realistic example would have higher dimensionality, normalize by the length of each
vector and compute a more sophisticated weight function than raw term frequency, but the
essentials are the same.25

.. Probabilistic retrieval*26

Probabilistic retrieval technology derives from work done at Cambridge Uni-
versity in the late 1970s.27 This school of thought takes the usual term and doc-
ument frequency statistics and feeds them as parameters to a Bayesian model
that estimates how relevant a document is to a given query. The approach gave
rise to the Muscat28 and Autonomy29 search engines in the UK, as well as IN-
QUERY and WIN in the US, which both have their roots in the University of
Massachusetts’ Center for Intelligence Information Retrieval.30 The primary
research engine is Okapi,31 which has gone through many incarnations as a
testbed, primarily in a research context.

Document retrieval 

Probabilistic ranking
Probabilistic IR is an attempt to formalize the ideas behind ranked retrieval in
terms of probability theory. Although basic ranked retrieval algorithms employ
frequency counts, the underlying mathematics is fairly ad hoc, and the scores
assigned to documents in a result set are not probabilities, but ‘weights’ that
attempt to estimate how much evidence there is in favor of a document. Con-
sequently they are not subject to the axioms of probability theory, nor can they
be combined using the standard formulas.

Probabilistic IR is based on a theory that incorporates a number of under-
lying assumptions. The most common form of the theory frames the docu-
ment retrieval problem as one of computing the probability that a document is
relevant to a query, given that it possesses certain attributes or features.32 These
features are typically words or phrases occurring in the document, as in the
ranked retrieval model.

Some key assumptions behind the probabilistic model of retrieval are the
binary nature of relevance judgments and the belief that documents can be
rated for relevance independently of each other. In other words, we assume:

– that each document is either relevant or irrelevant to a given query, and
– that judging one document to be relevant or irrelevant tells us nothing

about the relevance of another document.

Thus the theory does not admit degrees of relevance, nor does it allow for the
fact that finding one document may then render another irrelevant. These two
points show how far this theoretical notion of relevance is from any practical
notion of utility, which would attempt to quantify how useful a document is
to a searcher. Clearly utility admits of degrees, and finding one document may
render another document redundant to a user’s information need.

The probabilities of relevance associated with documents do have a practi-
cal aspect, however. They are used to determine the order in which hits are pre-
sented to the user. The Probability Ranking Principle33 states that ranking doc-
uments by decreasing probability of relevance to a query will yield ‘optimal per-
formance,’ i.e., the best ordering, based on the available data. Transformations
of the probabilities are allowed, as long as they are order-preserving.

Probability of relevance
We can express the probability of relevance of a document D given a query
Q as

P(RQ = X|D).

 Chapter 2

We assume that X ∈ {0, 1}, in accordance with the binary nature of relevance.
Our ‘similarity measure’, or matching score, between the query and the docu-
ment will be the odds in favor of relevance. This can be expressed as the ratio
between the probability of relevance and the probability of nonrelevance:

P(RQ = 1|D)

P(RQ = 0|D)
.

By “odds likelihood” form of Bayes’ rule, we can compute this ratio as follows,

P(RQ = 1|D)

P(RQ = 0|D)
=

P(RQ = 1)P(D|RQ = 1)

P(RQ = 0)P(D|RQ = 0)

so long as we can estimate the quantities on the right-hand side of the equation.
P(RQ = 1) is the probability that a document chosen at random from the

collection is relevant to the query, i.e., the document is chosen without knowl-
edge of its contents. Since this quantity is the same for all documents, we can ig-
nore it without affecting the final ranking of results. A similar argument applies
to P(RQ = 0).

Thus we are left with the equation

P(RQ = 1|D)

P(RQ = 0|D)
∝ P(D|RQ = 1)

P(D|RQ = 0)
,

with just the likelihood ratio on the right hand side. It is also common to see
this formula expressed as log-odds:

log
P(RQ = 1|D)

P(RQ = 0|D)
∝ log

P(D|RQ = 1)

P(D|RQ = 0)
.

P(D|RQ = 1) is the probability of selecting the document from the relevant
set, and is not so easily dismissed. Neither is P(D|RQ = 0), the probability of
selecting the document from the non-relevant set. One way to estimate these
quantities is to look at the query terms in

Q = {t1, . . . , tm}
and see how they are distributed, both within the document and within the
collection as a whole. Moreover, independence assumptions (and the use of
logarithms) lead to the decomposition of the ratio into additive components
such as individual terms weights, rather as we did in the vector space model.

As before, we would like to be able to compute a weight, wt,d, for each term
t in the context of a given vector d, representing the document D.

Document retrieval 

Term weights
Let N be the size of the collection and nt be the number of documents contain-
ing a given query term, t. (We will subsequently omit subscripts where there is
no ambiguity.) One component of the weight is usually given by

IDFt = log
(

N – nt + 0.5

nt + 0.5

)
.

This is recognizable as a smoothed version of inverse document frequency34

(IDF35). Smoothing prevents division by zero in the case where a term does
not occur in the document collection at all.

If within-document frequency counts were not available, a simple match-
ing score that respects the Probability Ranking Principle could be derived by
summing these components, by computing∑

t
log

(
N – nt + 0.5

nt + 0.5

)
,

where the summation is over all the terms in the query.
However, there is usually another component of the term weight, one that

is a function of the frequency, f , with which t occurs in a document. We say
a function of f , rather than f itself, because we may need to take document
length into account. Long documents will tend to have multiple occurrences of
terms. They deserve some credit for this in the final ranking. A Web page that
contains the single sentence:

‘Gravity sucks.’

should not be deemed as relevant to a query containing ‘gravity’ as a longer
article that contains 50 occurrences of the word ‘gravity’. On the other hand, we
should not assume that the longer page is 50 times more relevant. The longer
page may simply be a wordier statement of the contents of the shorter page.

Many engines attempt to control for document length by normalizing,
so that the average length of a document in the collection is set to unity. A
common term frequency (TF) expression is then:

TF =
f (K + 1)

f + KL
,

where L is the normalized length of document D. If the document is of average
length, then L = 1.0. K is a constant, usually set between 1.0 and 2.0.

The TF component is designed to increase in value quite modestly as f
increases. If f, K and L are 1, then TF = 1.0. If f were 9, then TF = 1.8. L
modulates this effect, giving more credit to shorter documents.36

 Chapter 2

The term weight would then be given by:

wt,d =
f (K + 1)

f + KL
log

(
N – n + 0.5

n + 0.5

)
.

Clearly, if the term does not occur in the document, its weight will be zero.
Another variation, used by the INQUERY search engine mentioned earlier, is
given by:

wt,d = α + (1 – α)
f

f + 0.5 + KL

(
log N+0.5

n

log N + 1

)
.

α is a constant which states that, even if the term does not occur in the docu-
ment, its probability of occurrence isn’t zero, while (1 – α) weights the contri-
bution of TF.IDF.
α = 0.4 is chosen to fix a minimum value for wt,d. This value was derived

from experiments in which the range for P(RQ = 1|D) was varied systematically
by manipulating α. There was judged to be a performance improvement in the
rankings as α increased to 0.3, with a ‘sweet spot’ in the region of [0.3, 0.4],
beyond which performance dropped again, mostly due to ties.

K is typically set to 1.5. Other variants of TF.IDF use even more constants,
and choosing their values is something of a black art.37 The IDF term is based
on the ratio between the IDF of the term t (the numerator) and an estimate of
the IDF of the term that occurs in the most documents (the denominator).

The WIN38 search engine employs a somewhat modified formula that dif-
fers mostly in the TF term.

wt,d = 0.4 + 0.6

(
0.5× log f

log f *
+ 0.5

)(
log N

n

log N

)
.

Instead of normalizing TF with respect to document length directly, by stan-
dardizing actual document lengths, the denominator of TF ratio features a
quantity, f*, which is the frequency of the most frequent term in the docu-
ment. This will clearly tend to increase with document length, but it is a much
cheaper statistic to compute.39

For a multi-term ‘natural language’ query, the probability of a document
being relevant is often computed by summing40 the query term weights in the
context of that document

P(D|RQ = 1) =
∑
t∈Q

wt,d,

Document retrieval 

thereby giving us the numerator of our ratio, while the denominator can be
computed by

P(D|RQ = 0) = 1 – P(D|RQ = 1),

giving us the measure we need to rank the document. This weighting scheme
can also be applied to Boolean queries (see Sidebar 2.3).

We have seen that the basic formulation of probabilistic IR relies heavily
upon Bayes’ Rule in order to compute the probability of that a given document
is relevant to a query. The rule enables us to perform two essential tasks.

– We can compute the probability that a document is relevant from an es-
timate of the probability of that document being selected, given that it is
relevant.

– We can combine the evidence of relevance provided by occurrences of
individual query terms into a relevance estimate based on all the query
terms.

The question then arises as to how to implement these tasks efficiently. Both
INQUERY and WIN use inference networks to represent both documents and
queries. Inference networks are directed acyclic graphs that enable the imple-
mentation of a direct and intuitive method for both the first estimation task
and the second task of evidence combination.41 They are based on Bayesian
networks of the kind formalized by Pearl.42 These structures offer a convenient
mechanism for updating the probability, or degree of belief, in a hypothesis.

Sidebar 2.3 Term weights for boolean queries

Given a query containing Boolean operators, the weight of query term ‘NOT t’ with respect
to document vector d is simply

1 – wt,d

the weight of ‘s AND t’ is computed by the product

ws,d · wt,d

and the weight of a disjunctive term ‘s OR t’ is given by

1 – [(1 – ws,d) · (1 – wt,d)]

since ‘s OR t’ is equivalent to ‘NOT (NOT s AND NOT t)’.

 Chapter 2

Summary of probabilistic IR
The Probability Ranking Principle suggests ranking a document according to
its odds of being in the class of relevant documents, rather than the class of
non-relevant documents.

The formulation of probabilistic IR given in this section is called the Binary
Independence Retrieval (BIR) model.43 Its usage of term frequency and inverse
document frequency is not very different in practice from that of vector space
models, and performance is typically no better. However, the approach lays
claim to a more theoretically-motivated basis, in that it ranks documents with
respect to probability of relevance to a user’s need, rather than similarity to a
query.44

The BIR model makes a number of assumptions. Its name implies that in-
dividual terms are distributed independently from each other throughout the
documents in a collection. Thus we allow ourselves to combine term weights
by multiplication (or summing logarithms). But it turns out that the key as-
sumption is weaker than this. Given

P(RQ = 1|D)

P(RQ = 0|D)
≈
∏
t∈Q

P(t|RQ = 1)

P(t|RQ = 0)
,

we are really assuming an equality among probability ratios, i.e., that such
dependencies as exist between terms are the same across both relevant and
non-relevant documents.45

Another assumption is that documents can be judged for relevance inde-
pendently of each other, as noted earlier. In practice, finding one document can
obviously make another document less useful, e.g., if one document subsumes
another with respect to its information content.

.. Language modeling*

Probabilistic modeling of relevance is not the only application of probability
theory to information retrieval. Since 1998, a new approach, called ‘language
modeling’, has sparked some interest, deriving from work done at the Univer-
sity of Massachusetts.46 Language modeling is a framework that, until recently,
had been more commonly associated with speech recognition and generation.

The primary difference between what is now being called ‘classical’ prob-
abilistic IR and language modeling is that the latter seeks to model the query
generation process, rather than the pool of relevant documents. Query gen-
eration is viewed as a process of sampling randomly from a document, or
rather from a document model consisting of terms and their frequencies of

Document retrieval 

occurrence in the document. In other words, we consider the probability that
a given document model could have produced the query, and rank the corre-
sponding document accordingly. Documents with a relatively high probability
of generating the query are ranked high in the results list.

This is rather different from the classic approach, where we seek to con-
struct a model of the relevant documents, and then estimate the probability
that a word occurs in such documents. Language modeling models each doc-
ument individually, rather than assuming that documents are members of a
predefined class. A language model is in fact a probability distribution that
captures the statistical regularities that govern query generation viewed as a
random process.

More formally, given a query, Q, and a document model, Md, for document
d, we would like to estimate

P(Q|Md).

The maximum likelihood estimate (MLE) of this quantity for a query consist-
ing of a single term, t, is

PMLE(t, d) =
tft,d

dlen

where tft,d is the frequency of the term t in document d, as usual, and dlen is the
sum of the frequencies of all the tokens in d.

If we then seek to estimate the probability of a multi-term query, we might
assume independence among query terms, and compute

P(Q|Md) =
∏
t∈Q

PMLE(t, d).

However, there are two main problems with this estimator. Firstly, it needs to
be smoothed, else

PMLE(t, d) = 0

for any query term, t, will lead to

P(Q|Md) = 0.

Thus a term, t, not occurring in d is assigned a non-zero MLE, according to its
probability of occurrence in the collection as a whole.

Secondly, even if t occurs in d, a document-sized sample may be too small
for our estimate, so we fortify the probability of observing t in d with the
probability of observing t in those documents where it in fact occurs.47

 Chapter 2

Then the probability of the query given the document can be estimated by:

P(Q|Md) =
∏
t∈Q

P(t|Md)×
∏
t /∈Q

1 – P(t|Md).

Ponte and Croft found that ranking documents by this method produced better
results than the usual TF.IDF weighting. Subsequent work48 has investigated
more sophisticated forms of smoothing, such as ‘semantic smoothing’, which
takes synonyms and word senses into account. Finally, language models have
recently used to estimate relevance models of the kind computed by ‘classic’
probabilistic IR.49

. Evaluating search engines

Prior to any discussion of evaluation methods and metrics, it makes sense to
ask what an evaluation of a search engine is really setting out to achieve.

.. Evaluation studies

During the course of its working life, a full-text search engine will typically be
used to retrieve documents that were not indexed or even written at the time
it was created by means of queries that the designers and programmers could
not be expected to anticipate. Consequently, there is no sense in which a search
engine can be tested on a representative sample from a target population of
queries or documents. A search engine that works well on today’s Web may not
work well on tomorrow’s, just because there is no guarantee that the content
and structure of today’s Web pages or queries are a representative sample of to-
morrow’s. Consider the growth in commercial uses of the Web that took place
between 1995 and 2000, which radically changed the content mix of material
available through the Internet.

Ideally, search engine evaluations ought to be concerned with estimating
an interval that predicts, at a certain level of confidence, how well a particular
engine will perform on the next several randomly selected queries over a grow-
ing document collection. Thus we are not sampling a population, but rather a
process extending into the future, only part of which is in existence and avail-
able for sampling.50 In addition to identifying a target population (e.g., general
Web queries), and a sampled population (e.g., all AltaVista queries submit-
ted on January 1st, 2001), we need to consider the differences between the

Document retrieval 

two and what the consequences of those differences are in predicting future
performance.

Such evaluations are hard to perform, but significant progress has been
made in the area of evaluation methodology, thanks largely to an initiative
started by the US Government in 1992.

The purpose of the Text REtrieval Conference51 (TREC) was to support
research within the information retrieval community by providing the infras-
tructure necessary for large-scale evaluation of text retrieval methodologies. It
consists of a series of workshops with the following goals:52

– To encourage IR research based on large test collections.
– To increase communication among industry, academia, and government.
– To speed the transfer of technology from research laboratories into com-

mercial products.
– To increase the availability of appropriate evaluation techniques for use by

industry and academia.

TREC is probably the greatest single source of information about IR evaluation
methods and metrics. It has certainly made an effort to encourage experimen-
tation with test collections of realistic size. Another shift that has taken place
within the IR community in recent years is an increased focus upon the quality
of the user’s experience, and his or her level of satisfaction.

.. Evaluation metrics

Two performance metrics gained currency in the 1960s, when researchers be-
gan performing comparative studies of different indexing systems.53 These are
recall and precision, and they can be defined as follows.

Let us assume a collection of N documents. Suppose that in this collection
there are n < N documents that are relevant to the specific information need
represented by a query. The search on the query retrieves m items, a of which
are actually relevant. Then the recall, R, of the search engine on that query is
given by

R = a/n

and the precision, P, is given by

P = a/m.

 Chapter 2

Table 2.3 A contingency table analysis of precision and recall

Relevant Non-relevant

Retrieved a b a + b = m
Not retrieved c d c + d = N – m

a + c = n b + d = N – n a + b + c + d = N

Thus recall can be thought of as the ‘hit ratio’, the proportion of target docu-
ments returned. Precision can be thought of as the ‘signal to noise’ ratio, the
proportion of returned documents that are actually targets.

One way of looking at recall and precision is in terms of a 2×2 contingency
table (see Table 2.3).

Recall and precision are usually expressed as percentages based on the
following ratios:

R = 100a/(a + c)

P = 100a/(a + b).

Clearly, there is a trade-off between recall and precision, and so it is custom-
ary to present precision results at different levels of recall in an easy to read
graph. Researchers sometimes report ‘average precision’, derived by averaging
precision scores over some number of evenly spaced recall points, such as 10%,
20%, . . . , 100%.

The above measures are all well and good, but they do not take relevance
ranking into account. In addition to finding relevant documents, we would like
a ranked retrieval engine to also assign relevant documents higher ranks than
irrelevant documents. Two common and easy to compute measures that fit the
bill are rank recall and log precision.54

Suppose that the ith relevant document has a rank ri associated with it,
where ranks are assigned in decreasing order of relevance to the query. (Thus
the most relevant document gets a rank of one.) Then the measures can be
defined as follows.

Ranked Recall =

n∑
i=1

i

n∑
i=1

ri

Document retrieval 

and

Log Precision =

n∑
i=1

log i

n∑
i=1

log ri

.

Measuring effectiveness based on a pair of numbers, which co-vary in a loosely
specified way, has been sometimes seen as dissatisfactory.55 This has led var-
ious composite measures, which make use of the entries in the contingency
table, but combine them into a single measure. One of these measures is the Eα
measure defined as follow:

Eα = 1 –
1

α
1

P
+ (1 – α)

1

R

.

α is a weight for calibrating the relative importance of recall versus precision.
Thus if α is set to 1, Eα = 1 – P, while if α is set to 0, Eα = 1 – R. Intermediate
values of α introduce a deliberate bias for one over the other.

In Chapters 3 and 4, we will see how variants of a related measure, the
F–measure, where

Fα = 1 – Eα,

are used to evaluate both information extraction and text classification systems.

.. Relevance judgments

Over 30 years later, precision and recall are still the most widely used metrics in
IR. However, before they can be computed, it is necessary to obtain relevance
judgments. In a perfect world, one would know, for each query, which docu-
ments in the collection are relevant to the corresponding information need,
and which are not. For example, the experiments done at the Royal Air Force
College of Aeronautics in Cranfield, England in the 1960s relied upon the abil-
ity to rate the relevance of retrieved bibliographic references on a scale of 1
to 4.

For modern document collections of commercial value, obtaining com-
plete relevance judgments on all queries of interest is clearly impossible. Thus
the normal problems involved in performing an analytic, predictive study of IR
systems are compounded by the inherent difficulty of obtaining the necessary
ground data. TREC has certainly made a contribution by providing relevance
judgments for selected queries56 with respect to nontrivial test collections.57

 Chapter 2

TREC adopted the following working definition of relevance:

‘If you were writing a report on the subject of the topic and would use the
information contained in the document in the report, then the document
is relevant.’58

A document is judged to be either relevant or irrelevant, so there are no degrees
of relevance in TREC. A document is deemed to be relevant if any piece of it is
relevant.

TREC adopted the following method, called pooling, for identifying docu-
ments in a collection that are relevant to a given information need or topic.59

A sample of possibly relevant documents is created by running each of the par-
ticipating search system and taking the top 100 documents returned by each
system for a given topic. These documents are then merged into a pool for
review by judges, who determine whether or not each document really is rel-
evant. For the sake of consistency, a single judge assessed the documents for
each topic; tests had suggested that inter-judge agreement was only about 80%
on such a task.

TREC was fortunate in having access to multiple search engines. The
STAIRS project at IBM60 generated another method, involving only a single
search engine. Given a conjunctive query of the form:

Q1&Q2& . . . &Qn

generate the set of queries

Q1&Q2& . . . &Qn

Q1&Q2& . . . &Qn

. . .
Q1&Q2& . . . &Qn

formed by leaving out each of the query terms in turn, and then form the union
of the documents. The set difference between this union and those documents
returned by the original query form a useful pool in which to look for relevant
documents not returned by the original query.

.. Total system evaluation

Precision and recall do not, in themselves, tell us whether a particular search
engine is pleasant to use, or provides a cost-effective service.

We shall not concern ourselves with user interface issues in this book, but
screen design and general ergonomics are obviously important factors in user

Document retrieval 

acceptance. Also important is the recall-precision trade-off inherent in pro-
viding editorial features that help focus search. Having editors (or programs)
create metadata that organizes documents into a taxonomy can significantly
enhance the user experience.

For instance, industry evaluations of portals like Open Directory and Ya-
hoo!61 stress the convenience that comes with having hundreds of thousands
of sites categorized into thousands of categories. This allows the merging of
search and browsing behaviors, and guarantees a high level of precision. But,
if recall is a user’s main concern, he or she is more likely to subscribe to an
archival online service, such as Dialog or Lexis-Nexis, or use a high coverage
search engine, such as Google (see Section 2.6).

Cost-effectiveness is another large issue, and one that any commercial
provider must address. The issue is not merely ‘What can I charge for this ser-
vice?’ Cost also enters into any consideration of whether or not to improve the
speed or accuracy of an existing system. Many things can be done to improve
system performance,62 but will users notice, and will they pay the premium?

Studies suggest that user satisfaction with search experiences is more a
function of expectations than expertise,63 and that users have ‘erroneous men-
tal models’ of search engine operation.64 If this research is accurate, then com-
mercial providers of search facilities should be as least as concerned with expec-
tation management and transparency as they are with performance. Many suc-
cessful Web sites65 provide only rudimentary search capabilities, but provide
tools for browsing documents and do a good job of managing their customers’
perceptions.

We return to the topic of evaluation when we focus upon Web search
engines in Section 2.6 below.

. Attempts to enhance search performance

As mentioned earlier, various devices have been employed in an attempt to im-
prove the basic performance of search engines, whether based on the Boolean
or the ranked retrieval model. This section reviews the better-understood
methods, such as query expansion, relevance feedback, and local content anal-
ysis, which have been both well researched and adequately documented in the
literature.

 Chapter 2

.. Query expansion and thesauri

The most obvious problem with free text searching is that there is often a
mismatch between the terms used in a query and the terms that appear in a
relevant document. Thus the query

who sells complete email solutions for cell phones

will fail to find a document containing only the following relevant fragment

Gizmotron is a leading vendor of electronic messaging services for cellular
devices.

An equally obvious solution is to try and ‘expand’ the query by adding terms
that stand in some useful meaning relation to original query terms. A the-
saurus is a traditional source of relations among words and phrases, and so
it is natural to think of looking up terms in an online database that encodes
such information.

Does this help? Not always, and not as much as you might think. Here are
some reasons why.

– Synonymy is not the only relationship we are interested in. Thus a phone
is a device, but ‘device’ is a hyponym66 of ‘phone,’ not a synonym. Not all
thesauri will enable you to make this kind of connection. Neither is the
relationship between ‘sells’ and ‘vendor’ one that can easily be looked up
in a thesaurus. Grammatical and morphological issues intervene.

– Polysemy67 gets in the way. Thus the term ‘cell’ can refer to a locked room
in a prison or a unit in some structure, depending upon the context. A
thesaurus won’t help much unless it encodes all and only the meaning re-
lations that are relevant to the domain of interest. Query expansion us-
ing a general thesaurus will typically add noise that degrades retrieval
performance.

– Regional variants can also cause problems, as noted earlier. Thus American
English prefers ‘automobile’ to describe personal vehicles, while British En-
glish prefers ‘car’. Slang or abbreviated terms, such as ‘mobiles’ for ‘mobile
phones’, are often highly regional in usage.

Electronic thesauri such as Wordnet68 can be fairly sophisticated. Wordnet is a
hand-built thesaurus that organizes words into synonym sets (called ‘synsets’),
each of which represent a single sense of a word. These sense are organized
into taxonomies by meaning inclusion, e.g., the synset for containing ‘vehicle’
is superior to the synset containing ‘car’ in the hierarchy. Such an organization

Document retrieval 

captures hyponymic relations and also attempts to distinguish the different
senses of polysemous words. Nevertheless, early attempts to harness Wordnet
to improve retrieval were disappointing.69

Hand crafting isn’t the only way to build a thesaurus. Another approach
is to associate words on statistical grounds, e.g., because they tend to occur to-
gether in some corpus of documents, or because they occur in similar sentential
contexts. The criteria for association will obviously determine what such word
groups look like. For example, if co-occurrence is the criterion, then one can
imagine a grouping such as

{bird, nest, feather, egg, swallow, robin},

where the meaning relations among group members are something of a mixed
bag. If occurrence in similar contexts is the criterion, then

{swallows, warblers, finches, USAir, New Yorkers}

might be grouped because they all fly down to Florida in the winter. Swallows
and New Yorkers don’t share many other characteristics,70 but if the focus of
interest is Florida, then such a grouping might still make sense.

Co-occurrence thesauri have sometimes been shown to improve retrieval
performance on small collections.71 However, there is a convincing argument72

that queries so expanded will tend to contain high frequency terms that are
not good discriminators. More linguistically motivated thesauri based on con-
textual cues, such as head-modifier73 relations, have found modest, albeit un-
even, improvements that depend upon the methods and collections used.74

Such lukewarm results have led many people to conclude that natural language
processing has not achieved much in the service of document retrieval.

Yet a recent prototype by Woods75 employs natural language processing
and knowledge representation techniques to achieve more impressive improve-
ments on a typical retrieval task than previous literature would lead one to
expect. His approach, called ‘conceptual indexing’ integrates morphological
variation and semantic relationships into a single taxonomy to support query
expansion and passage retrieval. The idea is to exploit both linguistic and real-
world knowledge to get better results while pinpointing relevant passages in
found documents. This ability is termed ‘Precision Content Retrieval.’

The query expansion capability is provided by a lexicon that contains
subsumption information for about 15,000 words, i.e., it delineates speci-
ficity/generality relationships such as

a car is a kind of vehicle,
walking is a kind of moving.

 Chapter 2

The lexicon also records morphological information, so that the query proces-
sor can recognize different word roots without resorting to ad hoc stemming
rules. When you combine these two knowledge sources, you are able to rec-
ognize that the phrase turns red is a more specific instance of the phrase color
change, since red is a kind of color, and turns is an inflected form of the root
form turn, which is a kind of change.

Woods found that using these knowledge sources added 20% to the success
rate76 of a state-of-the-art search engine, albeit over a small document collec-
tion of 1800 files. The contribution of passage retrieval is harder to evaluate,
but anecdotal evidence suggests that the identification of relevant passages in
found documents greatly enhances the productivity of knowledge workers as
they sift through search results.

In summary, it seems that straightforward approaches to query expansion
based on general-purpose thesauri are very unlikely to enhance search engine
performance. Methods based on statistically generated thesauri also tend to
be ineffectual, because they only succeed in adding common terms, which
are poor discriminators. Methods involving linguistic engineering still hold
promise, but require a serious hand crafting and knowledge engineering effort,
and have yet to prove themselves on large collections.

.. Query expansion from relevance information*

An alternative to thesauri for query expansion relies upon having some kind
of relevance information. One can use information about whether some doc-
uments in the collection are relevant or not in a number of different ways. For
example, one can

– add significant terms from known relevant documents to the query, or
– modify the weights of terms in the query to optimize performance, or both.

Relevance information for a given query is typically obtained through feed-
back from the user, who can be asked to mark the top ranked documents in
a result set as relevant or not. However, the user can implicitly provide such
feedback by clicking on a “More Like This” button next to a document. Alter-
natively, the system can simply assume that the top ranked documents are rel-
evant, and expand the query automatically by selecting significant terms from
those documents.

Query expansion using relevance feedback was originally designed in the
context of the vector space model,77 while the probabilistic model included the
idea of re-evaluating term weights using relevance information.78

Document retrieval 

Vector space models of query expansion
In the vector space model, queries and documents are represented as vectors
of term weights. Query expansion using relevance feedback can then be seen
as adjusting weights in the query vector. Adding a new term to the query cor-
responds to giving that term a non-zero weight. Emphasizing or reducing the
importance of a query term corresponds to increasing or decreasing its weight.

Similarity between a document vector, D, and a query vector, Q, is com-
puted as the inner product between these vectors, a specialization of the earlier
formula, where weights in the query vector, wt,q, were set to 1:

sim(Q, D) =
∑
t∈Q

wt,d · wt,q.

Given a query represented by the vector

Q = (w1,q, w2,q, · · · , wt,q),

the relevance feedback process generates a new vector

Q′ = (w′1,q, w′2,q, · · · , w′t,q, w′t+1,q, · · · , w′t+k,q),

where old weights, w, have been updated and replaced by new weights, w′, and
k new terms have been added.

Rocchio79 has shown that, given all relevance information about a query,
the query formulation leading to the retrieval of many relevant documents
from a collection is of the form:

Qopt =
1

n

∑
relevant

documents

Di

|Di| –
1

N – n

∑
non–relevant

documents

Di

|Di| ,

where Di represent document vectors, and |Di| is the Euclidean vector length. N
is assumed to be the collection size, and n is the number of relevant documents
in the collection.

This information cannot be used in practice to formulate the query, since
finding which documents are relevant is the purpose of search, and not a given.
However, the formula can help in generating a feedback query from relevance
assessments for documents retrieved from an initial search. If we substitute “all
relevant” by “known relevant” documents, and “all non-relevant” documents
by “known non-relevant” documents, the original query can be expanded in
the following manner:

Q1 = Q0 +
1

n1

∑
known

relevant

Di

|Di| –
1

n2

∑
known

non–relevant

Di

|Di| ,

 Chapter 2

where Q0 is the initial query and Q1 the reformulated query after the first round
of relevance feedback. n1 is the number of known relevant documents, and n2

is the number of known non-relevant documents.
More generally, query reformulation via relevance feedback can be ex-

pressed as an iterative process,

Qi+1 = αQi + β
∑

known
relevant

Dj∣∣Dj

∣∣ – γ
∑

known
non–relevant

Dj∣∣Dj

∣∣ ,
where α, β, and γ are set experimentally, and term weights are normalized
and their range restricted from 0 to 1. Usually, parameters α, β, and γ are set
arbitrarily,80 and have no relations with the number of known relevant and
non-relevant documents in the original formulation.

Probabilistic models of query expansion
Probabilistic retrieval models also integrate to various degrees the use of rel-
evant information for query expansion. In the vector space model, selecting
terms for expansion and computing the weights for the new query are done
at the same time. In a probabilistic framework, selecting terms and computing
relevance weights are treated as two different problems.

Computing relevance weights seeks to answer the question: “How much
evidence does the presence of this term provide for the relevance of this doc-
ument?” Probability estimates can be rendered more accurate when more in-
formation (e.g., from relevance feedback) is available. Selecting new terms to
add to a query should answer a different question, namely: “How much will
adding this term to the request benefit the overall performance of the search
formulation?”81

In the probabilistic model developed by Robertson and Sparck-Jones, rel-
evance information is used to compute more accurate weight estimates. Con-
sider the term incidence contingency table in Table 2.4, where R is the number
of relevant documents for this query, and r is the number of these documents
containing the term. The term weight from the equation

wt,d =
f (K + 1)

f + KL
log

(
N – n + 0.5

n + 0.5

)
,

which we encountered earlier, would then be re-expressed as

w′t,d =
f (K + 1)

f + KL
log

(r + 0.5)(N – n – R + r + 0.5)

(R – r + 0.5)(n – r + 0.5)

to take account of the relevance information.

Document retrieval 

Table 2.4 Term incidence contingency table

Relevant Non-relevant Total

Containing the term r n – r n
Not containing the term R – r (N – n) – (R – r) N – n
Total R N – R N

Let us now address how terms are selected for query expansion. For each
expansion candidate, the model discussed by Robertson82 considers the distri-
bution of scores for relevant and non-relevant documents, with the candidate
term present or absent. The model leads to an ‘offer weight’, which is used to
rank candidate terms (the larger the offer weight, the better the candidate):

OWt = rt log
(rt + 0.5)(N – nt – R + rt + 0.5)

(R – rt + 0.5)(nt – rt + 0.5)
.

The model proposed by Robertson tightly integrates query expansion using
relevance information and probabilistic retrieval.

By contrast, relevance feedback using the inference network model (see
Section 2.3.3) is more akin to relevance feedback in the vector space model.83

In the inference network framework, relevance information is not used to re-
estimate individual term contributions as above. Rather, adding new terms to
the query causes the re-estimation of the probability that a document satisfies
the information need, by changing the structure of the network.

Relevance feedback from the user is not always available. Not all users are
willing to participate in such an exercise, which may be viewed as an imposition
or a distraction. Nevertheless, it is still possible to perform query expansion, in
the following way.

In recent years, systems participating in TREC (see Section 2.4) have in-
cluded query expansion using blind relevance feedback. In this approach, also
called pseudo relevance feedback, the search engine retrieves a ranked list of doc-
uments with the original query formulation. The top n (typically between 5
and 30) documents retrieved by the system are labeled (blindly) as ‘known to
be relevant.’ The methods introduced earlier in the section can then be applied
to using those top ranked documents in place of documents judged by a user.
(In this case, there are no known non-relevant documents.)

Experiments at TREC have shown that pseudo relevance feedback can sig-
nificantly improve performance. However, experiments have also shown that
the technique may not be very robust. Indeed, it can harm performance when
there are few relevant documents in the top ranked documents retrieved, since

 Chapter 2

the words added to the query will be selected from non-relevant documents.
Moreover, this is still a relatively expensive process.

First, we need to run a search using the original query in order to get rele-
vance information (either by interacting with the user, or by selecting the top
n documents) Next, we need to select terms and modify their weights. To do
so, we need to access the terms of a given document. In a typical system that
relies on inverted index files, this information (which terms appear in a given
document) is not stored and needs to be computed on the fly.

In summary, query expansion using relevance information looks more
promising than query expansion based on thesauri. In past years, there has
been experimental evidence that such a process may be effective but not always
reliable. By the same token, users of Web search engines know from experience
that devices purporting to deliver ‘similar documents’ are sometimes wide of
the mark.

Sidebar 2.4 Improving relevance feedback

A couple of new approaches have been proposed to improve the robustness of pseudo rel-
evance feedback: local context analysis and query expansion using summaries. The latter is
a very recent technique84 where summaries are used in place of full text documents to per-
form blind relevance feedback. The results look very promising compared to blind relevance
feedback based on full documents.

Local context analysis (LCA) is a blind relevance feedback technique based on co-
occurrence analysis between candidate expansion features and query terms. The underly-
ing hypothesis is that a good expansion term tends to co-occur with all query terms in the
top-ranked set. This hypothesis leads to a novel selection function for candidate expansion
terms.

Experiments using local context analysis typically use nouns and noun phrases as ex-
pansion features. They also rely on top-ranked paragraphs rather than top-ranked docu-
ments, mostly for efficiency purposes. In those experiments, local context analysis has been
shown more effective than earlier approaches to blind relevance feedback, and it also appears
to be more robust.85

. The future of Web searching

Traditional search engines were never intended to deal with a vast, distributed,
heterogeneous collection of documents such as the WWW. The almost com-
plete absence of editorial control over Web documents poses special problems,
such as coverage, currentness, spamming, dead links, and the manipulation
of rankings for commercial advantage. In this section, we examine new tech-

Document retrieval 

niques that seek to address such problems and explore a number of avenues for
improving Web search.

.. Indexing the Web

The Web is indexed by ‘crawling’ it. A Web crawler is a program that visits
remote sites over the Internet and automatically downloads their pages for in-
dexing. Today this is typically done in a distributed fashion, using more than
one program.

In the 1990s, many commercial search engines claimed to index the en-
tire Web, and to be able to find ‘anything on the Internet.’86 However, system-
atic studies showed that there was significant room for improvement in search
engines’ ability to produce comprehensive, up-to-date indices.87 For example,
Lawrence and Giles88 of NEC Research Institute estimated the coverage of a
number of popular search engines in 1997, and also counted the number of
invalid links returned. The results are shown in Table 2.5.

At the time of the study, the authors estimated a lower bound on the pub-
licly indexable Web to be 320 million pages. This estimate was derived by ex-
amining the overlap between the result sets of pairs of search engines. Their
method used one engine as a yardstick to estimate the coverage of the other,
based on the assumption that the two engines sample the Web independently.

The fraction of the Web covered by engine a, written Wa, was approxi-
mated by

Wa = Nab/Nb,

where Nab is the number of documents returned by both engine a and engine
b, and Nb is the number of documents returned by engine b.

The authors used the two largest engines studied in order to derive this
approximation. The estimate was deemed to be a lower bound, because the
independence assumption may not be entirely valid, given that search engines
tend to index more ‘popular’ pages. Using this method, it was estimated that no

Table 2.5 Estimated coverage of popular Web search engines and percentage of invalid
links returned. Data collected in December 1997. Results based on 575 typical queries
submitted by scientists

Search Engine Hotbot AltaVista Northern Light Excite Infoseek Lycos

Coverage wrt est. size of Web 34% 28% 20% 14% 10% 3%
Dead links returned 5.3% 2.5% 5.0% 2.0% 2.6% 1.6%

 Chapter 2

search engine indexed much more than one-third of the Web, and that search
engine coverage could vary by an order of magnitude.

Search engine indexes have grown significantly since 1997. By the end of
2001, Google was indexing an estimated 1.5 billion pages,89 with runners-up
Fast, Altavista, and Inktomi indexing half a billion or more.90 Indexing the
Web is a non-trivial business. A crawler may connect to half a million servers
and download millions of pages. Downloaded documents need to be com-
pressed and stored, parsed to extract index terms, and then sorted to generate
an inverted index of the kind described in Section 2.2.

The crawler serving Google also parses out the links on each page, and
stores this information in an ‘anchors’ file. A program called the URLresolver
converts relative URLs into absolute URLs,91 and puts the anchor text into the
index associated with the document that the anchor points to. Every page has
a unique name associated with it, called a ‘docID’, and a database of links is
generated, consisting of docID pairs. This information is later used to rank
retrieved documents, according to the principle that pages that are well-linked
deserve higher rankings than pages that are not. The PageRank algorithm, and
the thinking behind it, is described in Section 2.6.3.

Sidebar 2.5 Finding highly relevant documents

In 1999, the Text Retrieval Conference (TREC) set out to evaluate web searching for the first
time, and initiated a ‘web track.’ Its first task was to assemble several web-based collection
of documents, based on a spidering of the Web called the Internet Archive.92 Queries were
taken from query log of the Excite search engine and massaged to fit the TREC notion of a
‘topic.’93 Search engine evaluation was conducted by having assessors rate retrieved docu-
ments as ‘non-relevant’, ‘relevant’, or ‘highly relevant’, instead of the usual binary judgments.
Assessors were also asked to indicate the ‘best document’ for each topic.

The results, reported at the 2001 SIGIR Conference,94 showed that:

– Correlations between system rankings were lower than anticipated, indicating that dis-
tinguishing highly relevant documents does produce somewhat different results than
evaluation by the usual ‘relevant’ versus ‘non-relevant’ split.

– Using only highly relevant documents resulted in unstable measures,95 and it was nec-
essary to tune the balance between the contributions of the highly relevant and the
merely relevant to overcome this.

– The ‘best document’ standard turned out to be useless for judging systems, since asses-
sors disagreed over which were the best documents, and when they selected the same
document did so for different reasons.

Another interested finding was that finding highly relevant documents did not correlate
strongly with ‘high early precision’, i.e., having a system which trades off recall in order to
get many relevant documents in the early ranks.

Document retrieval 

Thus there would appear to be some justice to the contention by search engine ven-
dors that the task of finding highly relevant documents on the Web is somewhat different
from the traditional TREC task of finding relevant documents in other collections. The very
heterogeneity, redundancy, and lack of quality control on the Web emphasizes the impor-
tance of not just finding documents about a topic, but finding highly relevant, authoritative
documents. New techniques for satisfying this need form the subject matter of the next
section.

.. Searching the Web

The Web has been well described by Kleinberg96 as a form of ‘populist hy-
permedia’ in which millions of parties act independently to create hundreds of
millions of pages. As we stated earlier, this creates obvious problems for search-
ing, since there is no overall scheme that organizes this content, beyond the
addresses provided by URLs. A global structure is nonetheless formed by the
hundreds of millions of uncoordinated local actions that individuals take in
linking pages together.

It is a commonplace to observe that searchers often have difficulty in lo-
cating the information they desire on the Web, even when it is present. But
different information needs result in different queries that pose different prob-
lems. For example, the problems faced by very specific queries are not the same
as those faced by very general queries. Very precise queries (such as “is there
a parrot indigenous to North America”) face the problem of scarcity, in that
there are not many pages that address this issue, and the query must be worded
just right to find them.97 Very general queries (such as “Bill Clinton”) face the
problem of overabundance, in that there are very many pages that contain the
search terms, but many of them are probably irrelevant to the user’s need.

Very precise queries typically require multiple searches, involving many
different wordings, to find relevant documents. Query expansion techniques
may help, but the user may ultimately have to resort to finding pages that are
‘close’ and then following links in the hope of tracking down the desired in-
formation. Very general queries can also be improved by adding terms, but the
user may once again be forced to resort to browsing (i.e., following links) in
order to find pages relevant to their interests.

Some pages are much more useful than others in facilitating browsing,
namely pages that provide a well-organized set of outgoing links to other pages
on a particular topic. Kleinberg calls such pages ‘hubs’. Conversely, pages that
have incoming links from many other pages are called ‘authorities’, since link-
ing to a page is a way of conferring authority or credibility upon that page.
Thus, even if your initial Web query does not turn up a highly relevant page,

 Chapter 2

i.e., an authority on the topic of interest, it may nonetheless find a hub that will
take you to such a page.

What can we say about this process of mixing search and browsing? To
better understand the prospects and problems of this behavior, we must first
gain some insights into the structure of the Web. Fortunately, there is a branch
of mathematics (graph theory), which is specifically designed for describing
and reasoning about linked structures.

The pattern of hyperlinks among WWW pages can be represented as a
directed graph,

G = (V , E),

in which vertices, v ∈ V , represent pages and directed edges, (v1, v2) ∈ E, rep-
resent links. One way of looking for pages on a broad topic is to find a subgraph
of the Web likely to contain authorities, and then analyze the structure of this
subgraph to identify which pages are rich in incoming links. Kleinberg and his
coworkers explored this idea in the context of a search engine called CLEVER.98

Their basic approach is as follows.
Collect the highest-ranked 200 or so pages that satisfy a query using a text-

based search engine, such as AltaVista. This collection of pages, called the ‘root
set,’ is small enough to perform non-trivial computations upon and is a good
source of relevant pages. Now all that is required is to identify the authorities
that such pages point to. These pages may or may not be in the root set. In fact,
the pages in the root set are not guaranteed to point to each other at all.

The algorithm for homing in on the authorities is formally described in
Sidebar 2.6. But the basic idea is to build a ‘base set’ of possible authorities on
top of the root set R by adding both pages that are pointed to by pages in R and
pages that point to pages in R. There is one restriction: we only allow so many
pages that point to a page in R to be included. Some Web pages are pointed
to by thousands of pages, but we want to keep the base set small and easy to
search. The algorithm typically builds a base set of 1,000–5,000 pages.

Sidebar 2.6 Authority finding algorithm

Let B be the ‘base set’ of authorities we seek for a given query, and let R be the ‘root set’
derived by taking the top-ranked pages for that query on some search engine. Let d be a
constant (typically 50).

1. set B to be R.
2. for each page p in R,

2.1. let O(p) denote the set of all pages p points to via outgoing links,
2.2. let I(p) denote the set of all pages that point to p via incoming links,

Document retrieval 

2.3. add all pages in O(p) to B,
2.4. if |I(p)| ≤ d, then add all pages in I(p) to B

else add an arbitrary subset of d pages from I(p) to B
end if

3. end for
4. return B.

Clearly, the result of the base set algorithm is a (not necessarily connected)
subgraph of the Web that contains many relevant pages and very likely some
good authorities. It now remains to identify the hubs and authorities for the
user to browse.

There are many ways in which one could go about this, but some obvious
approaches do not appear to work very well. Considering nodes in the sub-
graph with high in-degree to be authorities can result in low precision, espe-
cially on short queries, due to the ambiguity of single words. For example, Java
is an island as well as a programming language, and it is also as term associated
with coffee.

What we really want is a set of pages on a consistent theme that addresses
the users information need. One way of achieving this focus, without analyzing
the text of the pages, is to require that there be some overlap among the sets of
pages that point to potential authorities. Pages on different topics will tend to
have disjoint sets of pages pointing to them, e.g., pages on culture or tourism
versus pages on computers or programming in the Java example given above.

As we noted earlier, pages that cite many other pages are called ‘hubs’. Good
hubs point to many good authorities, while good authorities are pointed to by
many hubs. This circular definition suggests an iterative means of identifying
hubs and authorities.

For each page, p ∈ B, derived by the algorithm above, we compute an
authority weight, pA, and a hub weight, pH . We can think of these page weights
as being awarded increments in an iterative process. Hubs should be rewarded
for pointing to pages with high A-values, while authorities should be rewarded
for pointing to by pages with high H-values.

Authority weights are updated by the following operation:

pA ←
∑

q:(q,p)∈E′
qH

while hub weights are updated by a similar process:

pH ←
∑

q:(p,q)∈E′
qA

 Chapter 2

where E′ is the set of edges in the directed subgraph structure representing
hypertext links among pages.

We constrain these weights so that their squares sum to one, i.e.,∑
p∈B

(pA)2 =
∑
p∈B

(pH)2 = 1.

To find final values for these weights, we apply these operations alternately,
normalizing after each pair of operations, and look for a fixed point.

The authors report that convergence is typically quite rapid (about 20 iter-
ations), and that reporting the most highly weighted pages with respect to pA

and pH yields authorities and hubs, respectively. They recommend collecting
the 5–10 best-scoring pages of each kind.

.. Ranking and reranking documents

In Section 2.3.2, we studied ranked retrieval and walked through a simple ex-
ample of how an engine might rank the documents returned by a query. How-
ever, modern search engines for the World Wide Web employ a number of
variations upon the basic term frequency approach. ‘Hit lists’ of documents
that match a given query are typically computed and manipulated in ways that
extent the traditional model.

For example, Google’s ranking algorithm for search results relies on the fact
that their crawlers capture a fair amount of information about Web pages in
addition to the usual inverted term index. Font and capitalization information
are recorded along with position, and a distinction is drawn between ‘plain’
and ‘fancy’ hits.

– Fancy hits involve a match between a query term and part of a URL, page
title, anchor text, or meta tag.

– Plain hits involve all other matches against the text of a document.

Google tries to address the question of how important a Web page is. Impor-
tance is estimated by analyzing the number of links between a given page and
the rest of the Web. To this end, they introduce the notion of a page rank, who
is computed as follows.

Suppose that p is a Web page. As in Section 2.6.2, let O(p) denote the set
of all pages that p points to through outgoing links, so that |O(p)| denotes the
number of such pages, and let I(p) = {i1, i2, . . . , in} denote the set of all pages

Document retrieval 

that point to p through incoming links. The PageRank of any page p, π(p), is
then given by

π(p) = (1 – d) + d(π(i1)/|O(i1)| + · · · + d(π(in)/|O(in)|)
where d is a damping factor between 0 and 1, usually set to 0.85 or 0.90. In other
words, we calculate the importance of a page as a function of the importance
of the pages that point to it. As with the page weights used by CLEVER, this
can be accomplished through a straightforward iterative algorithm. PageRanks
form a probability distribution over the set of all Web pages, and so the sum
of all these ranks over the entire Web will be unity. The PageRanks for 26 mil-
lion Web pages can apparently be computed in a few hours on a medium size
workstation.99

So why does Google perform badly on the Martin guitar example we en-
countered at the start of the chapter? And why does it nonetheless perform
better than Altavista? The answer is that PageRank helps to some extent with
the reranking of pages that are well-ranked, but it is not going to fix a poorly
ranked result set derived mostly from plain hits ranked by tf-idf.100 Also, Google
may have been deceived by fancy hits, such as

D93@aft.sn.no,
GUITAR@NEVADA.EDU,
D93@aol.com,

on the query terms ‘d93’ and ‘guitar’.
On the other hand, a recent study101 showed that link-based ranking, such

as that used by Google’s fancy hits, can be very effective at finding the main
entry points to Web sites. A fair number of Web queries appear to be looking
for specific sites, rather than documents about a particular topic, e.g.,

“Where is the CNN home page?”

For such inquiries, link-based methods have been shown to perform about
twice as well as more conventional, content-based methods.

.. The state of online search

Commercial search engines were once custom-built, often proprietary, pieces
of software that served specific data collections for some business or public
purpose. Professional users were expected to undergo some kind of training
in their use, e.g., to master the niceties of Boolean syntax, proximity opera-
tors, and field searching. The advent of the Internet made searching everyone’s

 Chapter 2

business, and created a demand for search engines as entry points to the vast,
undisciplined document store that is the World Wide Web. Ranked retrieval
‘natural language’ engines filled this gap, often with Boolean features added in
an ‘advanced search’ mode. At the time of writing, it seems that such engines
have reached a plateau, both as a viable business proposition and as a useful
tool for finding information on the Web.

Many of the features that have been added to search engines in the last
few years, such as relevance feedback and query expansion, are based on re-
search that is over a decade old. There do not appear to be many fundamental
advances in the pipeline to provide new features for tomorrow.102

One exception is the work described in Section 2.6 on viewing the Web as
a directed graph and capitalizing on its structure as an aid to determining the
relevance and quality of pages. This appears to be a fruitful avenue that will
bear further investigation. The analysis of link structure is also being used as a
starting point for number of efforts to gain a better understanding of the Web
and its contents, e.g.,

– Compilation of authoritative sites to populate a Yahoo!-like taxonomy of
resources. This is often combined with selective crawling103 of such sites,
e.g., on a daily basis, to identify collections of high quality pages that are
focused on particular topics.

– Identifying virtual communities on the Web with special business, scien-
tific, or recreational interests.104 This can be done by starting with a seed
page and then using link analysis to find related pages.

Thus, as well as posing new problems for IR, the Web has also provided a freely
available data set, rich in connections which suggest new approaches to ranked
retrieval.

. Summary of information retrieval

In its simplest terms, we can characterize information retrieval from a collec-
tion by the following ‘equation’:

 =  + .

Indexing is a tabulation of the contents of documents in the collection, while
search consists of matching a query against these tables. Search can be thought
of as follows:

Document retrieval 

 =   +  (+ ),

where scoring only takes place in the case of ranked retrieval. In the probabilis-
tic version of ranked retrieval, the score assigned to a given document purports
to be the probability that the document is relevant to the query.

Additional machinery can be added to the basic Boolean and ranked re-
trieval models, in the hope of improving search performance, but the addition
of synonyms and other linguistic devices often do not help as much as one
might suppose. The onus is still upon users to (i) formulate queries that cap-
ture their information needs, (ii) learn by trial and error how to exploit the
features of the search engine, and (iii) mix search behavior with the browsing
of result sets for possible links to other interesting documents.

The WWW has provided researchers with a new laboratory for conducting
large-scale experiments in information retrieval. However, the Web does not
obviate the need for relevance judgments in system tuning and testing. Neither
has it provided us so far with any radical new means or measures for evaluating
search engine performance.

Pointers

The ACM Special Interest Group on Information Retrieval105 (SIGIR) de-
fines its interests as lying at ‘the interface between humans and unstructured
or semi-structured information stored in computers.’ They hold an interna-
tional conference every year. This is a more academic meeting than the an-
nual ‘Search Engines’ conference,106 which tends to be dominated by vendors.
The International World Wide Web Conference107 provides as excellent mix of
the two.

To explain some of the thinking behind probabilistic IR, we drew on an
unpublished report,108 which contains a fuller account than can be found in
most published papers.

Various journals carry papers on information retrieval, some with a com-
puter science bent, and some with more of a library science view of the
world:

– Journal of the American Society for Information Science and Technology.
New York, NY: Wiley, 1950-.

– Journal of Documentation. London: Aslib, 1955-.
– Information Processing & Management. Oxford: Elsevier, 1963-.

 Chapter 2

– Journal of Information Science. East Grinstead, England: Bowker-Saur,
1975-.

– Information Retrieval. Boston, MA: Kluwer, 1999-.

For a recent text on Web searching, we recommend Belew.109

Notes

. It was estimated that the US Informational Retrieval market was worth about $30 billion
in revenues at the beginning of 2000, and is likely to double about every 5 years.

. See the Library of Congress, http://lcweb.loc.gov/rr/tools.html

. E.g., the original DIALOG service, which was among the first commercial online infor-
mation systems. The Dialog Corporation’s databases have been estimated at about 9 ter-
abytes, or 6 billion pages. This is still somewhat larger than the World Wide Web, which is
currently (January 2001) estimated to be about 4 billion pages, and growing at 7 million
pages a day.

. Of course, for non-text materials, such as videos, audio recordings, etc., keyword search-
ing is still the main location device.

. Titles, abstracts and other summary material can also be used as document surrogates,
and these can be full-text searched, with or without assistance in the form of keywords or
thesauri.

. Witten, I. H., Moffat, A., & Bell, T. C. (1999). Managing Gigabytes. San Francisco, CA:
Morgan Kauffman.

. In interfaces that combine browse and search capabilities, the domain of documents may
already have been restricted by browsing. For example, when a user searches the auction site
eBay (http://www.ebay.com) from a particular point in its classification hierarchy, the search
engine knows to look only at certain categories of goods.

. It is not always deemed necessary to index all the words. Some indexes omit so-called
‘stop words.’ These are typically what linguists would call function words, consisting mostly
of a relatively small class of articles (‘the’, ‘a’, ‘an’, ‘this’, ‘that’ etc.), prepositions (‘at’, ‘by’, ‘for’,
‘from’, ‘of ’, etc.), pronouns (‘he’, ‘she’, ‘it’, ‘them’, etc.), and verb particles (‘am’, ‘is’, ‘be’, ‘was’,
etc.).
But many large online collections simply index every word. Otherwise you have to make
awkward decisions, e.g., is this occurrence of ‘will’ a verb particle, or does it refer to a legal
document? Similarly, short function words may coincide with acronyms, e.g., ‘it’ for ‘infor-
mation technology’. Many indexes do not store information about upper and lower case,
and are therefore not able to distinguish acronyms from other words.

. ‘Token’ is a more neutral term than ‘word’, since the indexed item may not be a word.
It could be a stemmed word, like ‘anticipat’, or a number like ‘256’, or even a symbol, such
as ‘$’.

Document retrieval 

. ‘Offsets’ are simply distances into the document, e.g., at offset of 95 might indicate that
the word starts 95 characters into the document. Characters typically include whitespace,
punctuation, and so forth.

. Web search engines typically do not use word positions for highlighting purposes. High-
lighting query terms in the snippets is performed using regular expressions.

. For example, Boolean searching is still more popular than natural language searching
on Westlaw (http://www.westlaw.com), while Gale Group (http://www.galegroup.com) still
provides Boolean searching for periodicals on CD-ROM, which are sold into libraries.

. Two words are synonyms if they have the same meaning. Not many terms are truly iden-
tical in meaning, but many pairs are sufficiently close to be treated as such for practical pur-
poses, e.g., ‘astronaut’ and ‘cosmonaut’, ‘student’ and ‘pupil’, ‘test’ and ‘exam’, etc. Regional
variations, such as British versus American English, are also sources of lexical variation, e.g.,
‘car’ versus ‘automobile.’

. See e.g., Sparck Jones, K., & Willet, P. (Eds.). (1997). Readings in Information Retrieval.
San Francisco, CA: Morgan Kaufmann, p. 258, for a brief summary.

. Swanson, D. R. (1977). Information retrieval as a trial and error process. Library Quar-
terly, 47 (2), 128–148.

. Dealey Plaza is the part of Dallas in which the shooting occurred, and Zapruder was the
bystander who shot the film of the motorcade that was later analyzed by the FBI.

. Thanks to stop word removal, some search engines (e.g., Altavista) used to return no
documents on a query such as ‘to be or not to be.’

. See Chapter 1, Section 1.3.2 for a discussion of stemming.

. Consider tuples of the general form, v = (x1, . . . , xn), with quantities xi lying in a field
F. Each such n-tuple is called a vector with n components or coordinates. The totality of all
such vectors, Vn(F), is called the n-dimensional vector space over F. In IR, F is the field of
term frequencies, or some function thereof.

. There are a number of variations on this theme, such as projecting the vectors onto a
sphere surrounding the origin, with each document being a point on this envelope.

. It is possible to define distance over sets, using symmetric set differences, but this is a
rather weak metric.

. The cosine measure is the simple sum of products of the corresponding terms weights
normalized by the length of each vector. However, the cosine is not the only similarity
measure available, simply the most common. See van Rijsbergen, K. (1979). Information
Retrieval, Butterworths. London (also at http://www.dcs.gla.ac.uk/Keith/Preface.html) for
alternatives.

. In this formula, sums range over all unique terms in the collection. In practice, however,
when a simple tf-idf weight is used, sums only range over the terms appearing in query q
and document vector d.

. You now know enough to solve ‘The case of the missing guitar.’ Give it some thought,
but don’t fret. We’ll string you along a little longer, but if you don’t pick up on it, we’ll divulge
the solution shortly.

 Chapter 2

. If we restrict ourselves to encoding presence or absence of terms with binary vectors,
the computation still serves to define a degree of overlap in the range [0, t] where t is the
number of dimensions. But this may result in too many ties for ranking purposes.

. Starred sections may be skipped on a first reading, as they represent more advanced
material.

. See Robertson, S. E., & Sparck Jones, K. (1976). Relevance weighting of search terms.
Journal of the American Society for Information Science, 27, 129–146. The basic approach was
first presented in Maron, M. E., & Kuhns, J. L. (1960). On relevance, probabilistic indexing
and information retrieval. Journal of the Association for Computing Machinery, 7, 216–244.

. http://www.muscat.com.

. http://www.autonomy.com.

. http://ciir.cs.umass.edu.

. See Okapi (1997). Papers on Okapi. Special Issue of the Journal of Documentation, 33,
3–87.

. Robertson, S. E., Maron, M. E., & Cooper, W. S. (1982). Probability of relevance: A uni-
fication of two competing models for document retrieval. Information Technology: Research
and Development, 1, 1–21.

. Robertson, S. E. (1977). The probability ranking principle in IR. Journal of Documenta-
tion, 33, 126–148.

. Croft and Harper demonstrated how probabilistic retrieval without relevance informa-
tion yields probability estimates that are very similar to the term weights, such as idf, used
in ranked retrieval. See Croft, W., & Harper, D. (1979). Using propabilistic models without
relevance information. Journal of Documentation, 35, 285–295. Also reprinted in K. Sparck
Jones, & P. Willett (Eds.), Readings in Information Retrieval.

. We will use capitals to distinguish ‘TF’ and ‘IDF’, as used in probabilistic retrieval, from
the vector space notions ‘tf ’ and ‘idf ’ introduced earlier.

. Normalizing document length may not be worthwhile, if documents are close to a stan-
dard length. Where documents differ greatly in length, one can expect some improvement in
the final ranking as a result of the normalization. It turns out that any reasonable method of
computing length, e.g., counting words or characters, gives sensible results. See Robertson,
S. E., & Walker, S. (1994). Some simple effective approximations to the 2-Poisson Model.
In Proceedings of the 17th Annual International ACM-SIGIR Conference on Research and
Development in Information Retrieval (pp. 232–241).

. Although logistic regression can help optimize them.

. See Turtle, H. R. (1991). Inference Networks for Document Retrieval. Ph.D thesis,
University of Massachusetts, Department of Computer and Information Science, p. 125 et
seq.

. WIN employs a number of patented optimizations that enable it to search large data
collections in a reasonable time.

Document retrieval 

. Summing is performed instead of multiplication, since we are dealing with logarithms
of probabilities. Application of the multiplication rule is only permitted because of the
independence assumptions we noted earlier.

. See Turtle, H., & Croft, W. B. (1990). Inference networks for document retrieval. In
Proceedings of the 13th International Conference on Research and Development in Information
Retrieval (pp. 1–24).

. Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Infer-
ence. San Mateo, CA: Morgan Kaufmann.

. There is a more complex formulation called the ‘2-Poisson Model’, which models term
frequencies in documents as a mixture of two Poisson distributions. See Robertson, S., &
Walker, S. (1994). Some simple effective approximations to the 2-Poisson Model. In Proceed-
ings of the 17th Annual International ACM-SIGIR Conference on Research and Development
in Information Retrieval (pp. 232–241).

. Crestani, F., Lalmas, M., Van Rijsbergen, C. C., & Campbell, I. (1998). “Is this doc-
ument relevant? . . . Probably”: A survey of probabilistic models in information retrieval.
ACM Computing Surveys, 30 (4).

. See Cooper, W. S. (1995). Some inconsistencies and misidentified modeling assump-
tions in probabilistic information retrieval. ACM Transactions on Information Systems, 13
(1), 100–111.

. Ponte, J. M. (1998). A Language Modeling Approach to Information Retrieval. Ph.D.
Thesis, Department of Computer Science, University of Massachusetts, Amherst.

. For the details of how this is done, we refer the interested reader to Ponte, J. M., & Croft,
W. B. (1998). A Language Modeling Approach to Information Retrieval. In Proceedings of
SIGIR-98 (pp. 275–281).

. Berger, A., & Lafferty, J. (1999). Information retrieval as statistical translation. In Pro-
ceedings of SIGIR-99 (pp. 222–229).

. Lavrenko, V., & Croft, W. B. (2001). Relevance-based language models. In Proceedings
of SIGIR-2001 (pp. 120–127). ACM Press.

. Such studies have been called ‘analytic.’ See Deming, W. E. (1975). On probability as a
basis for action. The American Statistician, 29, 146–152. By contrast, sampling an existing,
well-defined population is called an ‘enumerative’ study.

. TREC is co-sponsored by the National Institute of Standards and Technology (NIST)
and the Defense Advanced Research Projects Agency (DARPA).

. Adapted from http://trec.nist.gov.

. See Cleverdon, C. W. (1967). The Cranfield tests on index language devices. ASLIB
Proceedings, 19, 173–192. Also in Sparck Jones & Willet, Eds.

. See Salton, G., & Lesk, M. E. (1968). Computer evaluation of indexing and text process-
ing. JACM, 15, 8–36. Also in Sparck Jones & Willet, Eds.

. Van Rijsbergen, K. (1979). Information Retrieval (2nd edition, Chapter 7). An electronic
version of this book can be found on line at http://www.dcs.gla.ac.uk/Keith/Preface.html.

 Chapter 2

. For each TREC, NIST provides a test set of documents and questions. Participants run
their own retrieval systems on the data, and return to NIST a list of the top-ranked retrieved
documents. NIST pools the individual results, judges the retrieved documents for correct-
ness, and evaluates the results. The cycle then ends with a workshop that is a forum for
participants to share their experiences.

. Typical test collections include: the Los Angeles Times (1989, 1990), the Congressional
Record of the 103rd Congress (1993), and U.S. Patents (1983–1991).

. See http://trec.nist.gov/data/reljudge_eng.html

. As described in Harman, D. K. (1995). The TREC conferences. In Kuhlen & Rittberger
(Eds.) (see the ‘Pointers’ section at the end of this chapter).

. Blair, D. C., & Maron, M. E. (1985). An evaluation of retrieval effectiveness for a full-
text document retrieval system. CACM, 20, 1238–1242. See also Blair, D. C. (1996). STAIRS
Redux: Thoughts on the STAIRS evaluation, ten years after. JASIS, 47 (1), 4–22.

. See e.g., Lidsky, D., & Sirapyan, N. (1998). Find it on the Web. PC Magazine, December
1st issue.

. For example, speed can be improved dramatically by having enough RAM to hold in-
dexes, while precision can be improved by various reranking techniques (see Section 2.6.3
below).

. See e.g., Bruce, H. (1998). User satisfaction with information seeking on the Internet.
JASIS, 49 (6), 541–556. This study showed that the satisfaction of a sample of Australian
academics with Internet searches was predicted by their expectations, but was not enhanced
by Internet training.

. Muramatsu, J., & Pratt, W. (2001). Transparent queries: Investigating users’ mental
models of search engines. In Proceedings of SIGIR-2001 (pp. 217–224). ACM Press.

. eBay (http://www.ebay.com) is a good example of this.

. A word v is a hyponym of another word w if v is a more general or more abstract
term than w. Thus the term ‘vehicle’ is more general than the term ‘car’, and may be said
to subsume it. Looked at another way, the concept of  contains the concept of
, since a car is a vehicle, but not vice versa.

. Polysemy occurs when a word has two or more meanings, e.g., ‘bank’ as a financial
institution versus ‘bank’ as the margin of a river. Such words are said to be polysemous.

. Miller, G. A. (1990). Wordnet: An on-line lexical database. Special Issue of the Interna-
tional Journal of Lexicography, 3 (4).

. Voorhees, E. M. (1994). Query expansion using lexical-semantic relations. In Proceed-
ings of SIGIR-94 (pp. 61–69).

. Although they both move pretty fast.

. Qui, Y., & Frei, H.-P. (1993). Concept based query expansion. In Proceedings of SIGIR-93
(pp. 160–169). Measuring average precision over three recall points (0.25, 0.50, and 0.75),
the authors found improvements of between 18 and 30% on three document collections
(MED, CACM, and NPL). The largest collection contained about 11,500 documents.

Document retrieval 

. Peat, H. J., & Willett, P. (1991). The limitations of term co-occurrence data for query
expansion in document retrieval systems. JASIS, 42 (5), 378–383.

. Head-modifier is essentially the relation between a noun as subject and its associated
modifiers, some of which may be adjectival uses of other parts of speech, e.g., ‘ground attack
plane’, ‘aircraft communication device’, etc.

. Grefenstette, G. (1992). Use of syntactic context to produce term association lists for
text retrieval. In Proceedings of SIGIR-92 (pp. 89–97).

. Woods, W. A., Bookman, L. A., Houston, A., Kuhn, R. J., Martin, P., & Green, G. (2000).
Linguistic knowledge can improve information retrieval. 6th ANLP, 262–267.

. Success rate was defined in terms of the system’s ability to return a relevant document
among the top ten hits.

. Rocchio, J. J. Jr. (1971). Relevance feedback in information retrieval. In The SMART
system – Experiments in Automatic Document Processing (pp. 313–323). Englewood Cliffs,
NJ: Prentice Hall.

. Robertson, S., & Spark-Jones, K. (1976). Relevance weighting for search terms. Journal
of the American Society for Information Science, 27, 129–146.

. Rocchio, J. J. Jr. (1966). Document retrieval systems – Optimization and evaluation.
Doctoral Dissertation, Harvard University, Cambridge, MA.

. E.g., the SMART system at TREC8 set all three parameters to the same value, i.e. the
original query, a relevant document, and a non-relevant document contribute the same
amount of information to select terms and update their weights. This assumes that the
number of relevant and non-relevant documents are comparable.

. The quotes are taken from page 30 of Sparck-Jones, K., Walker, S., & Robertson, S. E.
(1998). A probabilistic model of information retrieval: Development and status. University
of Cambridge Computer Laboratory Technical Report no. 446.

. Robertson, S. E. (1990). On term selection for query expansion. Journal of Documenta-
tion, 46, 359–365.

. Haines, D., & Croft, W. B. (1993). Relevance feedback and inference networks. In Pro-
ceedings of SIGIR-93 (pp. 2–11). Pittsburgh, PA: ACM Press. See also Allan, J. (1996). In-
cremental relevance feedback for information filtering. In Proceedings of SIGIR-96 (pp.
270–278). Zürich, Switzerland: ACM Press.

. See Lam-Adesina, A., & Jones, G. (2001). Applying Summarization Techniques for Term
Selection in Relevance Feedback. In Proceedings of SIGIR 2001 (pp. 1–9), and also Sakai, T.,
& Sparck Jones, K. (2001). Generic Summaries for Indexing in Information Retrieval. In
Proceedings of SIGIR 2001 (pp. 190–198).

. See Xu, J., & Croft, W. B. (2000). Improving the Effectiveness of Information Retrieval
with Local Context Analysis. ACM Transactions on Information Systems, 18 (1), 79–112.

. See e.g., Seltzer, R., Ray, E., & Ray, D. (1997). The Altavista Search Revolution: How to
Find Anything on the Internet. New York: McGraw-Hill.

. Some search engine vendors have often retorted that the traditional recall and precision
measures are less than fair, given the enormity and heterogeneous nature of the Web. Web

 Chapter 2

engines often seem to be tuned to find highly relevant documents and rank them highly,
rather than going for overall recall and precision by finding all relevant documents. A recent
study seems to bear out the intuition that different techniques are required for these two
tasks (see Sidebar 2.5).

. Lawrence, S., & Giles, C. L. (1999). Searching the Web: General and Scientific Informa-
tion Access. IEEE Communications, 37 (1), 116–122.

. As we shall see, Google uses link data to index, and can therefore return listings for pages
that its crawler has not visited, bringing its coverage up to an estimated 2 billion pages.

. See Danny Sullivan’s Search Engine Report of December 18, 2001, on-line at
http://www.searchenginewatch.com.

. A URL is a Uniform Resource Locator, an address specifies the location of a resource re-
siding on the Internet. A complete URL consists of a scheme (such as ftp, http, etc.), followed
by a server name, and the full path of a resource (such as a document, graphic, or other file).

. http://www.archive.org.

. TREC calls a natural language statement of an information need a ‘topic’ to distinguish
it from a ‘query’, which is the data structure actually presented to the retrieval system. (This
definition is taken verbatim from http://trec.nist.gov/data/testq_eng.html).

. Voorhees, E. M. (2001). Evaluation by highly relevant documents. In Proceedings of
SIGIR-2001 (pp. 74–82). New Orleans, LA: ACM Press.

. Such instability is mostly due to the small number of highly relevant documents, which
allows small changes in document ranking to cause large differences in a system’s evaluation
score.

. Kleinberg, J. (1998). Authoritative Sources in a Hyperlinked Environment. Proceedings
of the ACM-SIAM Symposium on Discrete Algorithms (pp. 668–677).

. There is no such parrot. There was one, but it was hunted to extinction. ‘Negative’
queries such as this can be especially problematical.

. Chakrabati, S., Dom, B., Kumar, S. R., Raghavan, P., Rajagopalan, S., Tomkins, A.,
Gibson, D., & Kleinberg, J. (1999). Mining the Web’s Link Structure. Computer, 32 (8),
60–67.

. Brin, S., & Page, L. (1998). The Anatomy of a Large-Scale Hypertextual Web Search
Engine. Computer Networks (Proceedings of WWW7), 30, 107–117.

. Both search engines perform poorly on the Martin guitar example thanks to their re-
liance on inverse document frequency (IDF). Given the query ‘martin d93 guitar’, the high
weight derived from the IDF of the rare term ‘d93’ swamps the effect of the other two, much
more common, terms. Thus we tend to get high-scoring documents that contain ‘d93’, re-
gardless of whether or not they are about guitars, or have any association with the name
Martin. If you omit the term ‘d93’ from the query, both search engines place C. F. Martin’s
home page at the top of the result set.

. Craswell, N., Hawking, D., & Robertson, S. (2001). Effective site finding using link
anchor information. In Proceedings of SIGIR-2001 (pp. 250–257). ACM Press.

Document retrieval 

. Although the increasing combination of document retrieval with information extrac-
tion and text categorization techniques represents an interesting new departure, see e.g.,
tools by ClearForest (http://www.clearforest.com/) and Vivissimo (http: //www.vivissimo.com/).
Question answering is another refinement of the document retrieval paradigm, see e.g.,
offerings by AskJeeves (http://www.askjeeves.com) and Primus (http://www.primus.com).

. See Chakrabarti, S., M. Van den Berg, & B. Dom (1999). Focused crawling: A new
approach to topic specific resource discovery. Computer Networks (Proceedings of WWW8),
31, 1623–1640.

. See e.g., Gibson, D., J. Kleinberg, & P. Raghavan (1998). Inferring Web Communities
from Link Topologies. Proceedings of the Ninth ACM Conference on Hypertext and Hyperme-
dia. Also S. R. Kumar, P. Raghavan, S. Rajagopalan, & A. Tomkins (1999). Trawling the Web
for emerging cyber-communities. Eighth World Wide Web Conference. Toronto, Canada.

. http://www.acm.org/sigir

. http://www.infonortics.com/searchengines/index.html

. http://www.iw3c2.org

. Sparck Jones, K., Walker, S., & Robertson, S. E. (1998). A probabilistic model of in-
formation retrieval: Development and status. TR-446, Cambridge University Computer
Laboratory, September 1998.

. Belew, R. K. (2000). Finding out about: Search engine technology from a cognitive per-
spective. Cambridge, England: Cambridge University Press.

C 3

Information extraction

The plethora of material on the WWW is one of the factors that has sustained
interest in automatic methods for extracting information from text. Informa-
tion extraction differs from information retrieval, in that the focus is not upon
finding documents but upon finding useful information inside documents.
Typically, texts in an electronic document feed are examined to see if they
contain certain target terms, and therefore merit further analysis.

Intelligence agencies have been using computers to screen electronic news
feeds and communications traffic since the 1970s. In the past, programs would
look for key terms, such as ‘terrorist’ and ‘bomb,’ and analysts would read the
documents found. But modern extraction programs go further in attempting
to identify, extract and present interesting content to speed the process.

Unlike more ambitious forms of NLP, information extraction programs
analyze only a small subset of any given text, e.g., those parts that contain
certain ‘trigger’ words, and then attempt to fill out a fairly simple form that
represents the objects or events of interest. Thus, if our focus were corporate
takeovers, we might be interested in who acquired whom, and for what price.
Similarly, if we cared about personnel changes among senior executives in large
corporations, we might want to know who vacated what position and who was
hired to replace them.

Thus information extraction can be regarded as a subfield of NLP that fo-
cuses upon finding rather specific facts in relatively unstructured documents.
No practitioner of this art would claim that his or her program ‘understands’
the text, or is artificially intelligent in the traditional sense. For the most part,
such a program is simply recognizing linguistic patterns and collating them. It
has been argued that shallow parsing followed by template filling is adequate
for most of these tasks, and that nothing approaching natural language under-
standing is really needed. We present and examine this view, evaluating it in
the light of recent applications.

This chapter summarizes relevant research and applications since 1990,
and explains the basic techniques. For expository and evaluation purposes, we
focus upon two problems: identifying incidents in news articles and finding the

 Chapter 3

mandate1 in an appellate court opinion. We chose these tasks because they have
been studied in some depth and the results have been reported in the literature.

There are many other potential applications for such technology, e.g., gen-
erating meta data for Internet publishing, clustering search results with respect
to key concepts occurring in found documents, and summarizing multiple
documents with respect to a single theme. At the time of writing, these tasks
have not been studied in depth, but preliminary research indicates that they
pose interesting problems for future research. We defer discussion of such ap-
plications and their associated techniques until Chapter 5, where we discuss the
topic of ‘text mining.’

. The Message Understanding Conferences

In the 1990s, the Defense Advanced Research Projects Agency (DARPA) ini-
tiated a series of seven annual workshops called the Message Understanding
Conferences (MUCs, for short). The idea behind these meetings was to as-
semble teams of researchers that would focus upon the problem extracting in-
formation from free (i.e., unstructured) text. To participate, the team had to
design and implement a system that would perform the chosen task and be
capable of having its performance evaluated with respect to its competitors.

This initiative was extremely fruitful for a number of reasons.

– The emphasis on having a practical running system avoided the normal
tendency of researchers to focus their eyes on the far horizon.

– The provision of a uniform set of training and testing materials encouraged
rigorous evaluation using an agreed set of metrics (which we shall discuss
below).

– The introduction of a competitive element involving direct feedback made
the exercise more interesting than the normal technical conference.

Participants included both industrial sites (such as General Electric and Bolt
Beranek & Newman), and universities (such as Edinburgh and Kyoto Univer-
sities and the University of Massachusetts). See Sidebar 3.1 for a brief overview
of the main tasks addressed at these conferences.

Sidebar 3.1 A brief history of the Message Understanding Conferences

The first two conferences were held in 1987 and 1989, and analyzed naval operations mes-
sages.2 MUC-3 (1991) and MUC-4 (1992) concentrated on event extraction, in particular

Information extraction 

finding details of terrorist attacks in newswires. MUC-5 (1993) introduced more business-
oriented tasks, such as finding announcements of joint ventures.

In 1995, MUC-6 introduced Named Entity extraction as a component task, i.e., the
finding of proper names of people, companies, places, etc. in free text, but also contin-
ued event extraction of management changes in the news. In 1996, the Multilingual Entity
Task was initiated in a related conference (MET-1) to evaluate information extraction on
non-English language texts. The first round focused on general extraction from Spanish,
Chinese, and Japanese, while the following year MET-2 addressed Named Entity extraction
from Chinese and Japanese.

In 1998, MUC-7 showed that Named Entity extraction from English language newswire
articles was more or less a solved problem. The best MUC-7 programs scored about F =
93%, compared to an estimated human performance of about F = 97%. The F-measure is a
combination3 of precision and recall as defined in Chapter 2, Section 4.

The TIPSTER program of which MUC was a part was wound up after MUC-7.

For illustrative purposes, we focus on the MUC-3 event extraction task, in
which a program had to extract information on terrorist incidents from plain
text news articles.4 A corpus of such materials was taken from an electronic
database via a keyword query, with 1300 texts being specified as training data
and a further 100 texts being held out for a blind test using a semi-automated
scoring procedure. The details of the task and corpus construction are de-
scribed elsewhere;5 we shall only summarize them here along with the scoring
mechanisms and performance measures used.

A typical text from this corpus begins as follows:

Last night’s terrorist target was the Antioquia Liqueur Plant. Four powerful
rockets were going to explode very close to the tanks where 300,000 gallons of
the so-called Castille crude, used to operate the boilers, is stored.6

The task facing each program was to extract and record specific features of
the incident. Typical features included such things as date, location, target, in-
strument (e.g., bomb, rocket), and overall type (e.g., murder, arson). Blank
‘answer’ templates were provided to hold this information. Programs were ex-
pected to ‘merge’ filled templates providing full or partial descriptions of the
same event. In other words, they were supposed to delivery a single template for
each event, not multiple templates representing different descriptions found in
the text.

A simplified template is shown in Table 3.1. About half the fields are omit-
ted for brevity. An empty filler for a field means that the story did not specify
the requisite information.

 Chapter 3

Table 3.1 MUC answer template for the ‘terrorism’ task (simplified)

Field Filler

MESSAGE ID TST-MUC3-0001
DATE OF INCIDENT 04 FEB 90
TYPE OF INCIDENT ARSON
PERPETRATOR “GUERRILAS”
PHYSICAL TARGET “TANK TRUCK”
HUMAN TARGET
INSTRUMENT
LOCATION OF INCIDENT GUATEMALA: PETEN: FLORES

Leaving the intricacies of scoring such templates to one side (based on par-
tial credits for partial matches), we focus here upon results using the familiar
metrics of precision and recall (see Chapter 2, Section 4).

The best MUC-3 systems reported results in the ballpark of 50% recall and
60% precision for event extraction. Roughly speaking, the programs could find
about half of what they were looking for, with a false positive rate of less than
50%. By MUC-6, the best systems were scoring as high as 75% recall and 75%
precision, where performance seems to have reached a plateau.

These are encouraging results for many applications. If you are an intelli-
gence worker sifting the news for stories about terrorism, you might be quite
satisfied to turn up 75% of all news reports on this topic, and have the key
information extracted from them by automatic means, even if you had to dis-
card 25% of the proposals as irrelevant or erroneous. On the other hand, if you
were a lawyer looking for rulings that were on point to your current case, such
a success rate might be less satisfactory.

We now move on to a description of the main NLP techniques used at
the MUC conferences and beyond. These include pattern matching, finite state
automata, context-free parsing, and statistical modeling. We treat them in the
order listed above, since this will take us from the simplest to the most complex.

. Regular expressions

Regular expressions (regexs) provide a means for specifying or defining reg-
ular languages. Many software engineers are familiar with these expressions
from pattern-matching utilities such as UNIX ‘grep’, programming languages
such as Perl, and lexical analysis tools for programming language compilers,
such as ‘lex’.7 However, regexs are a general-purpose formalism for describ-

Information extraction 

ing and matching patterns; this formalism is not specific to any particular
programming language or tool.

In its simplest terms, a regex represents a regular set of strings in terms of
three simple operations: adjacency, repetition, and alternation. A regex there-
fore provides a finite characterization of an infinite set.

A regex like

a(b|c)*a

represents the infinite language (set of strings)

L = {aa, aba, aca, abba, abca, acba, acca, . . .}
since (b|c) signifies ‘choose b or c’, ‘*’ (the Kleene star) means ‘zero or more
times,’ and adjacency of two symbols has its usual meaning.

As an example of a nonregular language, try representing the infinite set

{ab, aabb, aaabbb, aaaabbbb, . . .}
using only the three allowable operations.8 (See Sidebar 3.2 for a more for-
mal specification of these operations and a formal definition of regular expres-
sions.)

Sidebar 3.2 Regular languages

Regular expressions can be defined formally as sequences over any finite alphabet A =
{a1, a2, . . . , an} as follows.

1. If ai ∈ A, for 1 ≤ i ≤ n, then ai is a regex.
2. If R and S are regexs, then so is (RS), where (RS) represents any sequence from the

regular set R concatenated with any sequence from the regular set S.
3. If R, S, . . . , T are regexs, then so is (R|S| . . . |T), where (R|S| . . . |T) represents the union

of the regular sets R, S, . . . , T.
4. If R is a regex, then so is R*, where R* represents any stringing together of sequences

represented by R.
5. Only expressions formed from applications of rules 1–4 are regexs.

For convenience, the empty string is defined as a regex, and denoted by Λ.

Thus a regular expression specifying a class of proper names might look like:

{Mr.|Mrs.|Ms.|Dr.} {A|B|C| . . . | Z}. LASTNAME

where LASTNAME stands for any selection from a list of last names, such as all
last names occurring in an online Yellow Pages, or some other directory that a
program can draw upon. All the other elements of the regular expression are
literals, i.e., ‘Mr.’ and ‘A’ and ‘.’ stand for themselves.

 Chapter 3

Tokenizer POS Tagger Regex
Matcher

Template
Filler

Template
Merger

Figure 3.1 Typical cascade of modules in an information extraction system

A common approach to parsing free text using regular expressions is to
separate different levels of linguistic processing into modules that are then
pipelined together, as in Figure 3.1.

Earlier stages of processing recognize more local linguistic entities, such
as words and sentence boundaries, and work in a more or less domain-
independent fashion.

For example, a tokenizer9 for breaking a sentence into words and punc-
tuation can use purely linguistic knowledge to recognize word boundaries, re-
quiring little or no modification as the system is moved to a new domain.10

Part of speech tagging is a little more domain-dependent, being sensitive to
different corpuses, particularly with respect to proper names. Later stages rec-
ognize more domain-specific patterns, necessitating knowledge of objects and
events that will differ between applications. Thus the patterns to be recognized
will differ across domains, as will the templates that need to be filled. Simi-
larly, the knowledge required to merge filled templates successfully will be very
domain-dependent.

Many Regex matchers have been written in the Perl programming lan-
guage.11 Perl stands for ‘Practical Extraction and Report Language’, which is a
pretty good summary of what programs in the language are meant to achieve.
Perl’s economical syntax and powerful text-handling functions make it useful
tool for shallow text analysis.

For example, it is relatively easy to write a stemmer in Perl, or a program
that will guess a word’s syntactic class based on morphological features, such
as affixes and suffixes. Any non-capitalized English word ending in ‘-ful’ can be
recognized as an adjective, while one can stem a word like ‘powerful’ to ‘power’
in a single line of code. For example, the Perl match operator ‘=∼’ can be used
to compare a string variable with a pattern of the form /. . . / and return true or
false, depending upon whether the match succeeds. Thus

$word =∼/ful$/

looks to see if the value of the string variable ‘$word’ ends in ‘ful’. (‘$’ indicates
‘end of word.’) However, even short Perl patterns to perform simple tasks can
look quite daunting, and be difficult to maintain. For example,

Information extraction 

/\([ˆ(\)]*(19|20)\d\d\)/

matches citations such as

(Jackson & Moulinier 2002)

by finding a left parenthesis, followed by any number of chars that don’t con-
tain a left or a right parenthesis, followed by a year (within the last hundred
years) and a closing right parenthesis.

In the next section, we look at a particular implementation of regular ex-
pression matching in a system that participated in MUC throughout the life of
the conferences.

. Finite automata in FASTUS

The FASTUS system12 was in some ways a typical MUC entry. ‘FASTUS’ is
a failed acronym13 for ‘Finite State Automata-Based Text Understanding Sys-
tem’, and is so called because its basic parsing mechanism is a cascade of finite
automata, sometimes called finite state machines (FSMs). It scored well in the
MUC-4 tests on news about Latin American terrorism, with 44% recall and
55% precision on a blind test of 100 texts. On the MUC-6 template filling task,
it scored 74% recall and 76% precision. It also performed well on the named
entity recognition14 task, with 92% recall and 96% precision.

.. Finite State Machines and regular languages

FSMs are idealized machines that move instantaneously from one internal state
to another in a series of discrete ‘steps’. Thus, they are nothing like real physical
machines, which may move continuously with respect to time, be subject to
friction, and so on. We assume that an FSM’s current state can be completely
described, and that it changes only as a function of its history of previous states
and inputs from its environment. These inputs are characterized as symbols,
fed to the machine on a tape. Such machines are called ‘finite’ because they
have a finite number of internal states with which to remember their histories.

FSMs can be seen as both generators and recognizers of certain kinds of
formal language.15 But they cannot process all formal languages, as we shall
see. It turns out that they can only recognize or generate regular languages,
i.e., languages containing regular expressions of the kind we described in the
last section. Regular languages are languages in which a symbol’s position in

 Chapter 3

a a

b, c

s1 s2 s3

Figure 3.2 A Finite State Machine diagram for a(b|c)*a

a string can depend only upon a bounded number of previous positions. This
linguistic restriction corresponds to the restriction concerning the finiteness of
FSMs, noted earlier.

To illustrate this, let us return to our regex,

a(b|c)*a.

An FSM for recognizing a finite string as a member of this set would have
the states and transitions as represented in Figure 3.2. The nodes of the graph
represent states of the machine. s1 is the start state and s3 is the end state.

The arcs or arrows connecting states represent transitions. Note that sym-
bols annotate transitions, not states. States are an FSM’s (limited) memory of
where it is in the computation. For example, the machine in Figure 3.2 does
not keep track of how many times it has been round the loop emanating from
state s2. Consequently, it can only distinguish between a finite number of its
infinitely many possible histories.

As we noted earlier, FSMs can be used to both recognize and generate
strings.

– In recognition mode, the machine, in its start state, begins scanning the
string provided, one character at a time (from a tape, say, using a read
head). A single character of the string is consumed when the machine
makes the corresponding transition to the next state. In our example of
Figure 3.2, the machine consumes a when it moves to s2. Reading the next
character takes the machine to the next state, and so on, until the whole
string is consumed. If this process of reading a character and finding a cor-
responding transition fails at any point, the machine halts, and the string
is unrecognized. Similarly, if the string ends before the machine reaches an
end state. Otherwise, the string is deemed to be recognized when the last
character is consumed with a transition to an end state.

Information extraction 

– In generation mode, the machine simply takes a random or guided walk
through its states, following transitions until it chooses to halt in its end
state. At each transition, it can select (randomly or in a guided manner)
a symbol from the one or more annotating that arc. If we provide the
FSM with a second tape (and a write head), we can make it emit each such
symbol as it encounters it, in order of visitation.

An FSM with this kind of write capability is called a finite state transducer
(FST). Note that the FST can’t read the tape it is writing to, or move back
and forth along the tape it is reading. Its input and output modes are strictly
segregated and sequential, in that sense.

Sidebar 3.3 Finite State Machine tables

As well as drawing a machine diagram, we can represent an FSM by a table (see Table 3.2).
Rows represent states of the machine and columns represent symbols. Thus s3 in Row a,
column s2 means ‘Move to s3 if you read an a in state s2.’

Table 3.2 A Finite State Machine table for a(b|c)*a

a b c

s1 s2

s2 s3 s2 s2

s3

.. Finite State Machines as parsers

The mathematical logician Kleene16 showed that FSMs can recognize all and
only regular sets of symbol sequences defined over a finite alphabet. As we
noted in the previous section, ‘recognition’ means that the machine can read
successive symbols in a sequence and tell you whether or not that sequence is
‘regular.’ It is therefore possible to specify an FSM that will function as a parser
for a given regular language, by analyzing strings of words or symbols to see if
they conform to the rules of the language.

The linguist Chomsky17 showed that natural languages are not regular
languages, since they contain embedded and crossed structures18 that cannot
be recognized by FSMs. More recently, Church19 argued that FSMs might be
nonetheless useful in modeling language, since the well-documented short-
term memory limitations of humans make the full generality of more complex
parsing schemes implausible as psychological models of language processing.

 Chapter 3

FSMs have been found to be a useful tool for extraction purposes in many
applications where complex grammatical structures can sometimes be ignored.
For example, if you are interested only in finding company names in news text,
you might ignore the complexities of subordinate clauses and prepositional
phrases and still meet with some success. Even event extraction can be accom-
plished from news in this fashion, if you are prepared to tolerate recall and
precision in or around the 70% range, as the FASTUS experience shows.

The FASTUS approach to parsing follows the general sequence of opera-
tions shown earlier in Figure 3.1. This arrangement is sometimes called a ‘cas-
cade’, so the FASTUS architecture is often described as one of ‘cascaded finite
automata.’

In the Regular Expression Matching phase, FSMs target specific noun and
verb groups, and then match them up heuristically.20 The Template Filling
phase takes the patterns found in the previous two steps and puts them into
some canonical form, storing them in a data structure. Thus the different
sentences,

‘Terrorists attacked the mayor’s home in Bogota.’
‘The mayor’s Bogota home was attacked by terrorists.’
‘The home of the mayor of Bogota suffered a terrorist attack.’

should, in theory, all result in the same information being extracted, and the
same structure being generated, along the lines of Table 3.3.

Finally, similar structures deemed to represent the same event need to be
merged, to avoid redundancy in the extracted data. Thus, given sentences like

‘The mayor’s home was attacked by terrorists.’
‘Terrorists attacked the mayor’s home in Bogota.’
‘The home of the mayor of Bogota suffered a grenade attack.’

Table 3.3 FASTUS extraction template for the terrorist domain

Field Filler

MESSAGE ID TST-MUC3-0002
DATE OF INCIDENT 04 FEB 90
TYPE OF INCIDENT ATTACK
PERPETRATOR TERRORISTS
PHYSICAL TARGET HOME
HUMAN TARGET MAYOR
INSTRUMENT
LOCATION OF INCIDENT BOGOTA

Information extraction 

Table 3.4 Merged extraction template for the terrorist domain

Field Filler

MESSAGE ID TST-MUC3-0003
DATE OF INCIDENT 04 FEB 90
TYPE OF INCIDENT ATTACK
PERPETRATOR TERRORISTS
PHYSICAL TARGET HOME
HUMAN TARGET MAYOR
INSTRUMENT GRENADE
LOCATION OF INCIDENT BOGOTA

the final Template Merging stage should merge the corresponding consistent
but non-identical data structures to generate the structure in Table 3.4.

To promote generality in the specification of rules, a lexicon is required, so
that patterns for breaking up sentences can be defined over parts of speech and
other grammatical classes, instead of just over individual words.

For example, a noun group, NG, might be defined along the lines of:

NG = DET MOD NOUN
DET = the
MOD = local
NOUN = mayor

where bold uppercase items stand for categories of words or phrases, and lower
case items denote actual words, kept in a dictionary or lexicon. Thus DET
stands for the word class of determiners, such as ‘the’, ‘a’, and ‘an’, MOD stands
for modifiers, mostly adjectives and adjectival uses of nouns, e.g., the use of
‘house’ in ‘house call’, and NOUN is the class of nouns.

Then a sentence such as

‘The local mayor, who was kidnapped yesterday, was found dead today.’

could be matched against a regular expression containing pattern variables,21

such as

NG RELPRO VG*

in FASTUS, where NG (Noun Group) and VG (Verb Group) match against
phrases with the right constituents, and the pattern element RELPRO only
matches against relative pronouns, such as ‘who’ and ‘which’.

However, FASTUS also uses more specific patterns for extracting the details
of an event. Thus the pattern

 Chapter 3

PERP attacked HUMANTARGET’s PHYSICALTARGET in LOCATION
on DATE with DEVICE

mixes pattern variables (shown in bold caps) with actual words (shown in plain
text). PERP is less general than NOUN, since it will only match a restricted class
of nouns identified in the lexicon as possible matches. Similarly other pattern
variables, such as LOCATION and DEVICE.

This rule will match a sentence such as

‘Terrorists attacked the Mayor’s home in Bogota on Tuesday with grenades.’

but not the similar

‘Bush charged the Democrats in the House on Tuesday with obstruction.’

thanks to the use of specific words and restricted pattern variables.
Nevertheless, many such patterns have to be written to catch all the differ-

ent ways that things can be said, e.g.,

‘The Mayor’s home in Bogota was attacked on Tuesday by terrorists using
grenades.’

‘On Tuesday, the Bogota home of the Mayor was attacked by terrorists
armed with grenades.’

and so on.22 Although one is unlikely to catch all such wordings, a good num-
ber of them can be accounted for in this way.23 Also problematical are un-
known words that would fit the pattern variables if they had been anticipated,
but which are not in the system’s lexicon, e.g., Colombian towns that occur in
the news but which are not recognized as place names by the program.

To make this clearer, let us look at a later version of FASTUS24 that com-
peted in MUC-5, where the task was to extract information about joint ven-
tures from business news. Items to be extracted from this data included the
partners in the joint venture, the name of the resulting company, its ownership
and capitalization, and the intended activity, such as the goods or service to be
provided. A typical text was the following:

‘Bridgestone Sports Co. said Friday it has set up a joint venture in Taiwan
with a local concern and a Japanese trading house to produce golf clubs to
be shipped to Japan.’

‘The joint venture, Bridgestone Sports Taiwan Co., capitalized at 20 mil-
lion new Taiwan dollars, will start production in January 1990 with pro-
duction of 20,000 iron and “metal wood” clubs a month.’

Information extraction 

Table 3.5 Templates for the joint venture document set

Field Filler

Name TIE-UP-1
Relationship TIE-UP
Entities “Bridgestone Sports Co.”

“a local concern”
“a Japanese trading house”

Joint Venture Company “Bridgestone Sports Taiwan Co.”
Activity ACTIVITY-1
Amount NT$20000000
Name ACTIVITY-1
Activity PRODUCTION
Company “Bridgestone Sports Taiwan Co.”
Product “iron and “metal wood” clubs”
Start Date DURING: January 1990

The information to be extracted from this short text is shown in the templates
of Table 3.5.

Note that the first template, TIE-UP-1, contains a link to the second tem-
plate ACTIVITY-1. Thus templates can be embedded in each other to allow
fairly complex attributes and relationships to be expressed. Such templates are
usually represented as data objects linked by pointers.

The MUC-5 version of FASTUS employed the following levels of process-
ing to address this task.

Complex words
This stage includes the chunking together of ‘multiwords’, such as ‘set up’ and
‘break down’, which often consist of a verb and a particle. Locations, dates,
times, and other basic entities are also identified at this level. Some proper
names of people and companies in the lexicon may also be recognized here,
although unknown names may require an analysis of context at a subsequent
level, e.g., by inferring that capitalized words followed by ‘Co.’ are probably
company names.

Basic phrases
Sentences are segmented into noun groups, verb groups, and particles. Noun
groups consist of the head noun of a noun phrase, together with its determiners
and left modifiers. Right modifiers, such as prepositional phrase attachments,25

are ignored. Thus, in a noun phrase like

 Chapter 3

“The profitable West Coast manufacturer of gadgets for the food indus-
try”

only the core noun phrase “The profitable West Coast manufacturer” would be
recognized.

Verb groups consist of the main verb, together with its auxiliaries and
any intervening adverbs. This stage also identifies other word classes, includ-
ing prepositions (‘at’, ‘in’, etc.), conjunctions (‘and’, ‘but’, etc.), and relative
pronouns (‘who’, ‘which’, etc.).

For example, the first sentence in the joint venture text is segmented by this
stage into the following phrases:

Company Name: Bridgestone Sports Co.
Verb Group: said
Noun Group: Friday
Noun Group: it
Verb Group: had set up
Noun Group: a joint venture
Preposition: in
Location: Taiwan
Preposition: with
Noun Group: a local concern
Conjunction: and
Noun Group: a Japanese trading house
Verb Group: to produce
Noun Group: golf clubs
Verb Group: to be shipped
Preposition: to
Location: Japan

Noun groups are recognized by a finite-state machine, which analyzes num-
ber, numerical modifiers such as ‘approximately’, other quantifiers (‘all’, ‘some’,
‘many’, ‘most’, etc.) and determiners (‘the’, ‘a’, ‘this’, etc.), participles in adjecti-
val position, and adjectives of various kinds. It also recognizes orderings and
conjunctions of prenominal nouns and noun-like adjectives, e.g., “the home
insurance industry.”

Verb groups are recognized by a finite-state grammar that tags them as Ac-
tive, Passive, Gerund,26 and Infinitive. Verbs can be locally ambiguous between
active and passive senses, as the verb ‘kidnapped’ in the two sentences,

‘Several men kidnapped the mayor today.’

Information extraction 

‘Several men kidnapped yesterday were released today.’

These are tagged as both Active and Passive, and a later stage attempts to resolve
the ambiguity.

As mentioned earlier, unknown or otherwise unanalyzed words will be ig-
nored in subsequent processing, unless they occur in a context that indicates
they could be names, such as a name prefix, like ‘Mr.’ or ‘Dr.’, or a company
suffix, such as ‘Co.’ or ‘Inc.’

Complex phrases
Complex noun groups and complex verb groups are identified on the basis of
domain-independent, syntactic information. This includes the attachment of
appositives27 to their head noun group, e.g.,

‘The joint venture, Bridgestone Sports Taiwan Co., . . . ’

the construction of measure phrases,

‘20,000 iron and “metal wood” clubs a month’

and the attachment of ‘of ’ and ‘for’ prepositional phrases to their head noun
groups, as in

‘production of 20,000 iron and “metal wood” clubs a month’.

Noun group conjunction, as in

‘a local concern and a Japanese trading house’

is also performed at this level.

Domain events
Having recognized basic and complex phrases, we can identify entities and
events, and build structures for them. Thus entity structures would be built
for the companies referred to by the phrases ‘Bridgestone Sports Co.’, ‘a local
concern’, ‘a Japanese trading house’, and ‘Bridgestone Sports Taiwan Co.’ in the
‘joint venture’ text shown above.

Similarly, complex verb groups, such as the following,

‘GM signed an agreement forming a joint venture with Toyota.’

indicate events of interest, for which event structures need to be formed.
Patterns for interesting events are encoded as finite-state machines, where

state transitions are driven by the head words28 in the phrases identified earlier.
Thus relevant head words and phrase types, such as ‘company-NounGroup’,

 Chapter 3

and ‘setup-ActiveVerbGroup’, are paired and associated with a set of state tran-
sitions. So a domain-specific event pattern, such as

COMPANY SET-UP JOINT-VENTURE with COMPANY

could be instantiated with “Bridgestone Sports Co.” matching the first COM-
PANY variable, “set up” matching SET-UP, “a joint venture” matching JOINT-
VENTURE, and “a Japanese trading house” matching the final COMPANY
variable. Extraneous material, such as “said Friday” in the original sentence,
must either be discarded or anticipated in the patterns.

Merging structures
The previous levels of processing all operate within the bounds of single sen-
tences, but this level operates over the whole text. Its task is to see that all the
information collected about a single entity or relationship is collated into a uni-
fied whole. Thus structures arising from different parts of the text are merged,
as long as they provide information about the same entity or event.

Three criteria can be taken into account in determining whether two struc-
tures can be merged:

– the internal structure of the noun groups
– nearness along some metric, and
– the compatibility of the two structures.

The rules for determining whether or not two noun groups refer to the same
entity, and should therefore have their structures merged, are typically domain-
dependent. For example, in the business world, a name, like ‘General Motors’
can be compatible with a description, like ‘the company’, provided the prop-
erties of the description are consistent with the properties associated with the
name. Event structures, on the other hand, are typically merged only if there
is a match among the names participating in the event in the corresponding
subject and object roles.

Sidebar 3.4 Nondeterminism in FASTUS*

The finite-state mechanism used by FASTUS is nondeterministic. A nondeterministic FSM
allows there to be more than one next state for any given pairing of state and input symbol.

Figure 3.4 shows an example that recognizes noun phrases that begin with a determiner
(such as ‘the’), and allow any number of modifiers, which can be nouns or adjectives, before
ending in a noun. This FSM would accept or generate phrases such as:

Information extraction 

‘the red fire engine’
‘a solid body electric guitar’
‘the car window control button,’

as well as some anomalous phrases,29 such as:

‘the fire red engine.’

DET NOUN

NOUN

ADJ

s1 s2 s3

Figure 3.4 Machine diagram for a nondeterministic finite automaton

s1 is the start state and s3 is the end state. Thus state s2 has two arcs labeled ‘NOUN’ exiting
from it, one which terminates the phrase, and one which loops, allowing the phrase to be
extended indefinitely. Nondeterminism arises because, at any given point when the FSM
encounters a noun, it has a choice as to which transition to take.

In FASTUS, nondeterminism means that more than one extraction per sentence can be
considered. With a few exceptions,30 all of the events that are discovered are retained. Thus,
the full content can be extracted from the sentence

‘The mayor, who was kidnapped yesterday, was found dead today.’

As one branch discovers the incident encoded in the relative clause, while another branch
marks time through the relative clause and then discovers the incident in the main clause.
These incidents are then merged.

A similar device is used for conjoined verb phrases. Thus, in the sentence,

‘Salvadoran President-elect Alfredo Cristiani condemned the terrorist killing of At-
torney General Roberto Garcia Alvarado and accused the Farabundo Marti National
Liberation Front (FMLN) of the crime.’

patterns such as

SUBJ Verb NG
SUBJ {VG | Other}* CONJ VG

 Chapter 3

allow the machine to find the information in the first conjunct, and then skip over the verb
group and any intervening material in the first conjunct to associate the subject with the
verb in the second conjunct.

In general, this kind of branching behavior permits the program to follow more than
one thread, or interpretation, of a phrase.31 In some instances, different branches will iden-
tify separate but complementary threads in a sentence, as in the last two examples. However,
multiple branches can sometimes afford mutually exclusive interpretations of a sentence, in
which case the sentence can be said to be ambiguous, e.g.,

‘The terrorists attacked the soldiers with grenades.’

Do the grenades belong to the terrorists or the soldiers? Sometimes the preferred meaning
is obvious, and will be found because only one regular expression exists, e.g.,

PERP attacked HUMANTARGET with DEVICE,

with the implicit interpretation (at template filling time) that the DEVICE belongs to the
PERP. But, as a system’s patterns become more numerous and complex, there may be oc-
casions where more than one pattern will fit the same part of the data, allowing more than
one interpretation of it.

Apparently, more recent versions of FASTUS use a lattice approach to represent ambi-
guities in the phrase recognition phase, enabling the program to defer ambiguity resolution
to a later stage of processing.32

We can see from these examples that FASTUS has been applied to more than
one domain.33 As we noted above, the early stages of processing can be rela-
tively domain-free, and the basic architecture of cascading FSMs is reusable.
However, later stages of processing are more likely to be more domain-
dependent, e.g., the lexicon of key nouns and verbs, and the semantic rela-
tionships that hold between them. Other domain-specific data includes the list
of interesting proper names (and their variants) that one would like to be able
to recognize, as well as cues for recognizing unknown words.34 Thus there is an
unavoidable amount of engineering involved in crafting domain rules that will
govern how entities and events are identified and merged.35

In summary, FSMs have shown themselves to be extremely useful in many
extraction tasks. Regular expressions as recognition rules have a familiar syntax
and are relatively easy to specify. As we have seen, an FSM can also be used as a
transducer, i.e., it can be programmed to output its analysis as it goes, emitting
symbols as well as reading them. FSMs can be organized into layers, so that
the output of one layer can be cascaded into the input of the next layer. This
provides a nice architecture for managing complexity.36

FSMs are also relatively easy to implement. The most efficient method is
to write a program that will simply compile a set of regexs into an FSM. The

Information extraction 

corresponding automaton can be coded as a table that says, for each pairing of
internal state and input symbol, what its output and state change should be, as
shown earlier in Figure 3.2.

. Pushdown automata and context-free grammars

Despite the proven utility of FSMs as a means of extracting events from
news, many texts contain complicating factors that may require additional or
stronger methods. Using a stronger parser does not solve all the problems that
we identified in the last section, such as the anticipation of all the different
ways of saying things. However, it does provide more powerful tools for ana-
lyzing complex phrases and weighing alternative interpretations of ambiguous
sentences.

.. Analyzing case reports

For concreteness, let us consider a particular kind of document, namely a U.S.
court report, or case opinion. A case consists of a title, e.g., John Smith v. Anne
Jones, some court information, such as a court name and a docket number,
and the opinion of the court, which is the main body of the text.37 The opinion
usually culminates in one or more rulings, such as

“We reverse the decision of the trial court, and remand the case for a new
trial.”

Such a text typically contains many different contexts that can serve as pitfalls
for the unwary information extractor, whether human or mechanical.

1. Facts associated with the background to the case, concerning who did what
to whom according to the plaintiff(s), may be intermingled with the pro-
cedural history of the case, concerning what previous courts have ruled
on this matter, and how the case came to be before the current court.
These two perspectives on the case, telling their rather different stories,
are frequently mixed in the same sentence, e.g.,

‘Passengers brought action against airline to recover for intentional mis-
representation.’

 Chapter 3

2. The reporting of precedents (previous rulings) differs little from the way in
which the ruling of the instant court is reported, and so tense is important,
as is the correct attribution of subject, verb and object roles, e.g.,

‘The federal district court refused to allow any discovery or an evidentiary
hearing and granted summary judgment denying the writ.’

3. Opinions frequently contain quotations from other proceedings, some-
times of an extensive nature, which could be confused with the ruling of
the current court, if taken out of context, e.g.,

‘See Dobson v. Kung, . . . “As plaintiff has failed to establish fraudulent in-
tent, there is no genuine issue of material fact concerning common law
and statutory fraud.” ’

4. The opinion may contain extended discussion of a hypothetical or counter-
factual nature, or statements modified by qualifying phrases, e.g.,

‘We are not sure a new post-trial review and action will make appellant
whole.’

5. An opinion usually addresses and pronounces upon many different points
of law.

‘On December 1 1995, the defendants filed a motion to strike the plain-
tiffs’ claims for bystander emotional distress in counts three, four, ten,
and eleven, the claims for loss of consortium in counts five, six, twelve,
and thirteen, the claim for relief seeking attorney’s fees, the claim for re-
lief seeking double or treble damages pursuant to General Statutes 14-295
in counts ten through fourteen, and the claim for relief seeking punitive
damages.’

When faced with these difficulties, a deeper syntactic analysis may help a pro-
gram identify matters of import, such as the judges’ ruling in a case, or the
name of the prior court whose previous judgment they are ruling upon. An al-
ternative to a shallow parsing technique such as an FSM is to use a ‘deeper’
parser but still be prepared to cope with the challenges that will inevitably
result.

Attempts to parse a sentence often fail simply because the lexicon and
grammar that the parser is using are incomplete. Nonetheless, useful infor-
mation can still be extracted from the parsed parts of a document. The phrase

Information extraction 

‘partial parsing’ refers to a strategy in which a program attempts to perform a
full parse of a sentence, but will settle for an incomplete syntactic analysis. It
then does what it can to extract meaning from the structures it has identified.
The ‘partial’ strategy can be applied to any parsing algorithm, e.g., it has been
applied to cascaded finite automata.38 However, using a more powerful parser
may help an extraction program avoid certain errors to which FSM-based so-
lutions are prone. For example, a deeper syntactic analysis will typically avoid
some false assignments to subject and object roles, while an examination of
broader sentential features will detect some opaque contexts.39

A good example of such an approach is provided by a program called
History Assistant,40 which integrates information extraction with information
retrieval. The system extracts judicial language from electronically imported
court opinions, and then uses this information to retrieve related cases from a
database of citations, called a citator. The point of a citator is to link new deci-
sions to earlier ones that they impact, so that a lawyer can tell whether or not a
given case is still ‘good law’ and can be used as a precedent. The architecture has
two principal components, a set of natural language modules and a prior case
retrieval module, which perform the extraction and retrieval tasks respectively.
We shall concentrate on the former here.

US appellate courts hand down approximately 500 new cases per day, so
automated assistance to citator staff has the potential to reduce a significant
workload, so long as results are reliable. This translates into a requirement for
high recall (90% plus) and moderate precision (50% plus), so that human re-
view of program output is not too onerous. The role of the information ex-
traction program is to help an editor identify the relevant meta data to enter
into the database, since links between cases are annotated by the nature of the
decision, e.g., whether or not the old decision was affirmed, reversed, etc.

.. Context free grammars

We noted before that MUC-style information extraction programs typically
use rather simple parsers, such as finite automata, to perform a very rudimen-
tary syntactic analysis of the text. The CYK algorithm41 is a somewhat stronger
parsing method that has the computational power of a push-down automaton
(PDA). A PDA is really an FSM with an additional tape that it can use as a
stack.42

The stack functions as an external memory, which we can regard as being
infinite.43 The machine can both read from and write to the top of the stack.
The basic ‘push’ operation adds another symbol to the top of the stack, while

 Chapter 3

the basic ‘pop’ operation removes the top symbol. This arrangement means
that such a device can use context-free grammars (CFGs) to recognize or gen-
erate deeply embedded and recursive structures, involving subordinate clauses
and arbitrarily complex phrases. The stack can be used to save the context of
the outer expression while the parser dives into the inner expression, and then
reinstate the outer context when the inner analysis is done.

Thus, while parsing a sentence like:

‘I reverse the ruling of the Federal District Court for the Northern District
of New York and remand for a new trial.’

a PDA can save the parse of ‘I reverse’ on its stack while it analyzes the complex
noun phrase ‘the ruling of the Federal District Court for the Northern District
of New York’, and then recover its place to complete the parse of the whole con-
junctive sentence. An FSM cannot do this reliably unless the regular language
it recognizes can anticipate exactly how embedded the complex noun phrase is
going to be.

CFGs are grammars consisting entirely of rewrite rules with a single sym-
bol on the left-hand side.44 In what follows, we use some notational conven-
tions similar to those introduced in the last section. Upper case items in rules
denote grammatical categories, while lower case items denote actual words
from the English lexicon.

Context free grammar rules differ from regular expressions in that they
contain recursion as well as repetition, so that

NG = DET + NOUN
NG = DET + MOD + NOUN
NG = NG + PREP + NG

allows us to define a noun group, NG, in terms of itself. Recursion is a conve-
nient way of specifying complex noun groups, such as

‘The rejection of the appeal from the ruling of the district court.’

CFGs allow nondeterminism as a matter of course, so that a noun group can
be defined in multiple ways, as shown above.

The rules of such a grammar are sometimes called ‘rewrite rules’, because
parsing proceeds by substituting one side of the rule for the other. Thus a
pattern such as

DET MOD NOUN

in a larger pattern

Information extraction 

DET MOD NOUN VERB ADVERB

can be recognized as an NG, and ‘rewritten’ as such to generate

NG VERB ADVERB.

Application of another rewrite rule,

VG = VERB + ADVERB,

might then result in the pattern

NG VG

which can be recognized as a sentence by the rule

S = NG + VG.

Such grammars are called ‘context free’ because they do not take the context of
the left-hand symbol into account when specifying or applying a rule. When
using the rule

NG = DET + MOD + NOUN

in the above example, we didn’t care that the noun group was followed by a
verb. We simply recognized the DET MOD NOUN pattern and applied the
rule.45

.. Parsing with a pushdown automaton

The CYK algorithm is a parser for CFGs that uses a well-formed substring table
(wfsst) to cache the results of constructing all alternative parses of a sentence.
The use of the table avoids the duplication of effort commonly found in less
sophisticated algorithms and aids efficiency. CYK is actually a kind of dynamic
programming algorithm, in that it solves the overall problem by solving sub-
problems, and then reusing those subsolutions appropriately while engaged in
the search for an overall solution.

Figure 3.5 gives the algorithm, as described in a Pascal-like notation, taken
from a well-known text on automata theory.46

Let S be a string of words, and V an (initially empty) substring table of size
n. The table is accessed by subscripts in the range [1, n], and Vi,j denotes the
cell in the ith column and the jth row of the table.

 Chapter 3

begin
for i := 1 to n do

Vi,1 := {A|A = a is a rule and the ith word of S is a};
for j := 2 to n do

for i := 1 to n – j + 1 do
begin

Vi,j := {};
for k := 1 to j – 1 do

Vi,j := Vi,j + {A|A = B + C is a rule and B is in Vi,k and C is in Vi+k,j–k };
end

end

Figure 3.5 The CYK algorithm

The first loop essentially fills in the lexical categories associated with words in
the string. A = a is a rule that associates words with lexical categories, e.g.,

TVERB = denies

where ‘TVERB’ denotes ‘transitive verb,’ i.e., a verb that takes an object.
The second, triple-nested loop fills in the non-lexical categories, by com-

bining lower level categories in the table. This step uses rules such as

NG = DET + NOUN.

Consider the example in Table 3.6. The wfsst corresponds to all but the top
line of the table shown above. The Row 1 of the table consists of the lexical
items in the sentence to be parsed – in this case “The court denies the motion.”
(We will omit row and column numbers from subsequent figures.)

The next row of the table contains the grammatical categories of these lex-
emes, which forms the first row of the wfsst. The subsequent rows then corre-
spond to higher level syntactic structures constructed bottom-up from the lex-

Table 3.6 A well-formed substring table for a complete parse

the court denies the motion

1 2 3 4 5
1 DET NOUN TVERB DET NOUN
2 NG NG
3 VG
4
5 S

Information extraction 

ical categories. The ultimate category of the whole string resides in the bottom
left-hand corner of the table.

Thus the entry VG in row 3, column 3 of the table – i.e., wfsst[3, 3] –
indicates that “denies the motion” has been identified as a verb group, formed
by combining a transitive verb, “denies,” with a noun phrase “the motion.” This
formation is allowed by a grammar rule, such as

VG = TVERB + NG,

which says that a verb group consists of a transitive verb followed by a noun
group.

The entry S in wfsst[5, 1] indicates that the whole string has been identi-
fied as a sentence. The sentence has been formed by combining a noun group,
“the court,” with the verb group “denies the motion” found earlier. The corre-
sponding grammar rule would be

S = NG + VG.

The CYK algorithm tolerates both lexical and structural ambiguity.

– Lexical ambiguity means that a word may belong to more than one lexical
category, in which case cells in the first row of the table may contain more
than one entry.

– Structural ambiguity is where a group of words can be parsed in more than
one way, resulting in overlapping, competitive substructures.

Structural hypotheses incorporating a substructure can use that substructure
in any way sanctioned by the entry and the rules. In other words, a sup-
posed phrase that has been discovered in the sentence can be combined with
other material according to the rules, even if that hypothesis is false. However,
such hypotheses will often fall by the wayside, because they will not fit into a
structure that accounts for all the words in the sentence.

An example will make this clear. Consider the sentence

‘The court that denied the motion is overruled.’

Most parsers would entertain the hypothesis that ‘the motion is overruled’ is
a subsentence of the whole sentence, assuming a rule for forming passive verb
groups, such as

VG = BVERB3 + TVERB,

where BVERB3 stands for the third person singular of the verb ‘to be’, e.g., ‘is’
or ‘was.’

 Chapter 3

Table 3.7 A wfsst with competing substructure hypotheses

the court that denied the motion is overruled

1 2 3 4 5 6 7 8
1 DET NOUN RELPRO TVERB DET NOUN BVERB3 TVERB
2 NG NG VG
3 VG
4 RCLAUSE S
5 NG
6
7 S

But this hypothesis is doomed to failure, if we want to parse the whole
sentence. The correct bracketing47 of the sentence is

(S: (NG: The court that denied the motion) (VG: is overruled))

and not

(?: The court that denied) (S: the motion is overruled).

‘Denied’ is a transitive verb, and must therefore take an object. So there is no
grammar rule that will allow us to form a structural hypothesis for

‘The court that denied’.

The power of the pushdown automaton is that we can recognize this situation
and avoid the error, whereas an FSM would be more likely to take the sub-
sentence hypothesis at face value. A thorough parsing of the sentence using a
CFG detects the presence of a relative clause, thereby uncovering embedded
structure (see Table 3.7). Although

‘the motion is overruled.’

would still be parsed as a sentence, the structural hypothesis it represents
crosses a clause boundary of the larger sentence in which it is embedded.

The parser’s final output would ignore this embedded sentence hypothesis,
since there is a better hypothesis that spans more of the data. The final parse is
therefore

(S:
(NG:

(NG: (DET: the) (NOUN: court))
(RELPRO: that)
(VG: (TVERB: denied) (NG: (DET: the) (NOUN: motion))))

Information extraction 

(VG: (BVERB3: is) (TVERB: overruled))
)

Structural ambiguity might seem like a rare occurrence, but it really isn’t. Even
noun groups can exhibit ambiguity. Look at our previous example:

‘The reversal of the ruling by the Federal District Court for the Northern
District of New York.’

The correct parse of this phrase is

(NG: (NG: The reversal of the ruling) (PREP: by) (NG: (NG: the Federal
District Court) (PREP: for) (NG: the Northern District of New York)))

which indicates that the Federal District Court serves the Northern District of
New York, and not, for instance

(NG: (NG: The reversal of the ruling) (PREP: by) (NG: the Federal Dis-
trict Court) (PREP: for) (NG: the Northern District of New York))

which suggests that the reversal was enacted expressly for the Northern Dis-
trict of New York by some Federal District Court (not necessarily serving New
York).

The CYK algorithm is ‘complete,’ in the sense that it is guaranteed to find
all parses sanctioned by the rules. Thus it will enumerate every structural hy-
pothesis that the rules support, both for the sentence as a whole and for parts
of it. It does not tell you how to decide between competing hypotheses, al-
though certain heuristics can be devised to help make these decisions (see next
section). We have already seen that it makes sense to prefer a ‘spanning’ hy-
pothesis that explains the whole sentence to a competing subhypothesis that
only explains part of it. In the absence of a spanning hypothesis, one might
also prefer incomplete hypotheses that account for more of the data, i.e., which
use more of the words.

The price you pay for completeness is polynomial complexity.48 CYK’s
triple-nested loop dictates that the time taken to parse a sentence be a cu-
bic function of its length.49 But this is usually acceptable for an information
extraction application, where you are not parsing every sentence.

.. Coping with incompleteness and ambiguity

For a parser to be usable for information extraction, it needs to be very robust.
In other words, it must be tolerant of sentences that contain words that it does

 Chapter 3

Table 3.8 A well-formed substring table for an incomplete parse

the court of appeals denies the motion

DET NOUN GEN ? TVERB DET NOUN
NG NG

VG

?

not have in its lexicon, and also syntactic structures that are not found in its
grammar. Its main task is to identify and return key phrases from a sentence,
while avoiding the problems caused by embedded contexts and ambiguity.

For example, suppose the lexicon does not contain an entry for “appeals”.
We would still expect the parser to be able to recognize some key phrases in a
sentence such as:

“The court of appeals denies the motion.”

This is because we could still form the wfsst in Table 3.8.
We cannot afford to extract nothing from a sentence that is incompletely

parsed. So we proceed to make some assumptions about the structure of the
half-analyzed sentence. We assume that, if there are no contrary indications,
the noun and verb phrases that we have identified belong together. A little
search will then allow us to use the rule,

S = NG + VG,

to form a sentence from the fragments, “the court” and “denies the motion.”
So we can discard “of appeals”, and form a new wfsst from the joined substruc-
tures, which are already parsed. Then we reapply the CYK algorithm to fill out
the superstructure of the new table.

In the context of the History Assistant program, this operation was called
“splicing”, and the program that performed splicing was invoked once the ini-
tial parse was complete. The Splicer also performed various checks, such as de-
termining if the noun and the verb were semantically compatible. Confidence
scores were also provided for retrieved fragments, based on how risky the splice
appeared to be, e.g., in terms of how much material had been discarded (see
Sidebar 3.5).

Information extraction 

Sidebar 3.5 Heuristics for coping with ambiguity

Jackson et al. decided that they needed a measure of confidence that a string, S*, extracted
from a larger sentence, S, is a genuine phrase or subsentence of S, and not a random
selection or splicing together of words from S.

Terminology & Notation
Let a subsequence, S*, of S be any sequence of consecutive words in S. An embedding of S
is obtained by extracting a subsequence of S that qualifies as a sentence according to the
grammar rules. We assume that the embedding is shorter than S, i.e., it is not S itself. A
splice of S is obtained by concatenating two non-adjacent subsequences of S that form a
sentence according to the grammar rules. These must be concatenated in the order in which
they appear in the sentence. For any string, S, let its length be s.

Desiderata

1. The measure, Q, should be a function only of the properties of S* and S. Reason: We
want the computation to involve only information local to the parse.

2. 0 ≤ Q ≤ 1. Reason: The measures should behave like probabilities, e.g., with respect to
the multiplication rule for evidence combination.

3. Q should monotonically increase as a function of s * /s. Reason: The larger S* is, the less
chance that other significant material in S was missed.

4. Q should monotonically decrease with more ‘dangerous’ use of splicing, i.e., when we
splice proportionally smaller and smaller units of S together. Reason: Smaller elements
are informed by less of S’s grammatical structure and may therefore combine things
that do not belong together.

5. Q should monotonically decrease with the distance between spliced elements. Reason:
The larger the ‘gap’, the more likely that interpolated material may be the true ‘mate’ of
one of the elements.

6. The presence of other history phrases in S should increase our confidence in S* as an
embedded sentence. Reason: We are more likely to believe that “vacated” is a history
phrase in the sentence “Vacated, summary judgment granted, case remanded to the
district court” than in a sentence without other indications of history, e.g., “The tenant
vacated the apartment.”

7. The presence of other history words or phrases in S should not increase our confi-
dence in S* as a spliced sentence. Reason: The presence of other material introduces the
possibility that we may have spliced the wrong pieces together.

The Measures

1. We define a simple base measure, Q′(S*, S), which we shall use to induce the full confi-
dence measure, Q(S*, S).

Q′(S*, S) = s * /s.

Clearly, the more of S that is used by S*, the more confident we are. Q′ can be computed as
soon as the string S* is extracted.

 Chapter 3

2. For embedded sentences only. Let S1, ..., Sk be the totality of embeddings extracted from
S. Then we allow the presence of the other embeddings to increase our confidence in a
subsentence S* as follows.

Q(S*, S) =
Q′(S*, S) · s

s –
(∑

si – s*
) for 1 ≤ i ≤ k, where Si �= S*.

The score of a fragment increases monotonically as a function of both its length and the
amount of other embedded material. Thus, the longer the fragment and the more of the
full sentence that is used up by other embeddings, the more weight we accord to a given
fragment. This reasoning does not apply to splices, and we do not use splices to increase our
confidence in S*, since these are more speculative than embeddings.

3. For spliced sentences only. Let S* be a spliced sentence consisting of two halves, S1 and S2,
separated by a gap of n unparsed words. Then

Q(S*, S) =
Q′(S*, S)√

n · 2m

where m is 0, 1 or 2, depending on whether none, one or both of the halves are one-word
strings. The idea is that we penalize moderately for the gap, since it is already counted as
part of Q′, but penalize more heavily for one-word fragments, since these are more likely to
create spurious connections than multi-word fragments.

This parsing and splicing method has a number of advantages over more haphazard
approaches to phrase extraction.

– In the interests of completeness, the parser examines all competing parses and splices.
This gives History Assistant the option of returning more than one interpretation of
a sentence to favor recall, or simply choosing the best scoring hypothesis, to favor
precision.

– To aid correctness, History Assistant employs a number of other heuristics that forbid
certain splices and embedded extractions. These checks are easy to incorporate into the
splice algorithm as special cases, e.g., forbidding the discarding of negation.

– The scoring algorithm, though ad hoc, handles uncertainty by capturing the degree of
danger associated with an extraction, a feature that allows History Assistant to present
phrases to the user with an associated level of confidence.

In addition, History Assistant applied a few other filtering heuristics before passing the re-
sults of a parse on to the semantic level for interpretation. Thus extractions were discarded
if their score was too low, e.g., one-word extractions whose score has not been boosted by
the presence of other history language in a lengthy sentence. This threshold was arrived at
by sensitivity analysis.

As in the FASTUS program, the output of the parser must be analyzed and
used to fill event templates. The template format is meant to abstract away
from the language actually used in order to represent the meaning of a phrase
or sentence. Thus, variations on the same theme, such as

Information extraction 

‘The defendant’s motion to strike is denied.’
‘We deny the motion of the defendant to strike.’
‘The court denies the motion to strike by the defendant.’

should all map to the same data object, along the lines of Table 3.9.

Table 3.9 Filled template for a ‘Procedure’ event

Procedure

Type petition
Purpose strike
Party defendant
Outcome denied

These data objects are built by searching the well-formed substring table
after the parse is complete, and mapping the structures identified by the parser
into the fields of the record.

In the course of processing a document, the program may extract addi-
tional (possibly redundant) information about events that it has already en-
countered, and so such templates may need to be updated or merged. Thus,
given two sentences describing a petition, such as:

‘The defendant filed a petition for post-conviction relief.’

with a template as in Table 3.10, and

‘The petition for postconviction relief is denied.’

with a template as in Table 3.11, the program needs to perform a limited kind
of inference, in which it decides that the defendant’s petition is the one that is
denied.

Table 3.10 Incomplete template for a ‘Procedure’ event

Procedure

Type petition
Purpose pcr
Party defendant
Outcome

Merging the two data objects collates these two sources of information to
give a new template, as in Table 3.12.

 Chapter 3

Table 3.11 Template for a denied ‘Procedure’ event

Procedure

Type petition
Purpose pcr
Party
Outcome denied

Table 3.12 Merged template for a ‘Procedure’ event

Procedure

Type petition
Purpose pcr
Party defendant
Outcome denied

History Assistant draws such inferences incrementally as sentences are
read. First, it checks that there are no conflicts among the fields of two can-
didates to be merged, and then it looks to see if the new record is capable of
merging with more than one extant object. For example, if there are two peti-
tions, P and Q, each of which could merge with a new petition, R, but could
not merge amongst themselves, then neither is merged with R, since the iden-
tity of the new petition is ambiguous. Despite these precautions, data objects
are sometimes merged in error.

In the next section, we discuss some of the shortcomings of FASTUS, His-
tory Assistant and extraction programs generally, as well as examining how
such systems are usually evaluated.

. Limitations of current technology and future research

Extraction programs are evaluated using the standard measures of recall and
precision.50 When calculating recall, programs are usually accorded partial
credit for templates that have been filled out with some but not all of the de-
sired information. Redundant extractions, such as failed merges of identical
content, result in depressed precision, while incorrect merges depress recall.

Any knowledge that can be brought to bear concerning the domain of ap-
plication, or the documents themselves, is likely to help performance, regard-
less of the parsing approach used. For example, in some court reports, the prior
court that is being appealed from is listed soon after the title, before the opin-

Information extraction 

ion begins. In other reports, this information has to be extracted from the first
paragraph of the opinion. However, many courts may be mentioned in the text.
An early version of History Assistant used a data structure that encoded infor-
mation about which courts can stand in an appellate relation to which other
courts.51

Nevertheless, as we noted in the first section, extraction programs under-
stand little or nothing about the events they are looking for. The rules, be they
regular expressions or context-free, are purely syntactic, and have little or no
semantic content (although see Sidebar 3.6). This fact can manifest itself in
various ways, to the detriment of the system’s performance.

Sidebar 3.6 Semantic grammar

A primitive semantics can be injected into grammar rules by organizing the lexicon into
domain-specific categories, and then using these categories in the rules, instead of the
content-free NOUN, NG, etc. Both FASTUS and History Assistant availed themselves of
this technique.

For example, given that ‘motion’ is designated as a PROCEDURE_NOUN, and ‘denied’
as a PROCEDURE_VERB, you can write a rule like:

PROCEDURE_SENTENCE = PROCEDURE_NOUN + PROCEDURE_VERB

that will recognize such meaningful sentences as

‘Motion denied.’

but not anomalous sentences, such as ‘Court denied.’ or ‘Ruling denied.’, because ‘court’ and
‘ruling’ are not PROCEDURE_NOUNs.

Such rule sets are called semantic grammars, because they enforce semantic constraints
by making certain combinations of words ungrammatical.52 Returning to our famous ex-
ample from Chapter 1,

‘Colorless green ideas sleep furiously’

one could insist that the modifier ‘green’ only be applied to nouns describing concrete
objects, and not to abstract entities such as ideas.

However, semantic grammars do not solve all the problems of semantics, e.g., they can-
not easily be used to detect the contradiction between ‘colorless’ and ‘green’ when applied
to the same object.

.. Explicit versus implicit statements

For current extraction technology to work, the information sought must be
explicitly stated in the text. It cannot be merely implied by the text. This lack

 Chapter 3

of inferential capability can pose significant problems when extracting from
documents that expect the reader to draw simple conclusions.

For example, bankruptcy cases posed special problems for History Assis-
tant. The strategy of looking for dispositive language, such as “conversion de-
nied” did not work reliably. In a typical scenario, a debtor might move to con-
vert from Chapter 7 to Chapter 13. A creditor files a complaint to oppose this.
The judge decides the case by “finding for the plaintiff.”

The program would have to perform a number of steps of reasoning to
identify the outcome correctly as “conversion denied”. It would have to realize
that:

1. the plaintiff is the creditor,
2. the creditor is asking for a denial of what the defendant (debtor) is asking

for, namely a conversion, and
3. the Judge grants the denial.

This kind of reasoning is beyond the capabilities of History Assistant, and all
other information extraction programs of which we are aware.

Even if the information is explicitly stated, there may be purely linguistic
problems that need to be solved in order to extract it. The phenomenon of
coreference is a common stumbling block to extraction programs. Coreference
is where two or more linguistic expressions refer to the same entity, e.g., “IBM”
and “the company”, or “Bill Gates” and “he.” Phrases like “the company” and
“he” are called anaphors, and they typically corefer with a preceding expression,
called the antecedent.53

In cases where the crucial sentence to be extracted contains anaphors, ex-
traction must resolve reference if it is to be successful. The version of FASTUS
used in the MUC-6 conference54 had a coreference module that used special-
ized algorithms55 to resolve pronouns (‘she’), reflexives (‘herself ’), and definite
descriptions (‘the company’). The system achieved recall of 59% and precision
of 72% on the MUC-6 coreference task.

A later version of History Assistant56 developed an algorithm called TIARA
for resolving references to court decisions associated with case citations. Al-
though limited in scope, the program handles forward and backward refer-
ences, intra- and inter-sentential references, as well as making a distinction
between explicit and implicit coreference. Explicit coreference involves refer-
ence terms and expressions, as in ‘it’, ‘that decision’, ‘the legislature’, ‘the dis-
trict court’, etc. Implicit coreference, on the other hand, lacks such terms and
expressions but the language nonetheless implies the existence of ‘co-specifiers.’

For example, a sentence such as

Information extraction 

‘There is a conflict in the circuit.’

implies the existence of at least two decisions that are in disagreement with
each other. Subsequent sentences, such as

‘The court in Jones held that . . . ’

and

‘On the other hand, the district court held that . . . ’

provide the co-specifiers later.
We examine the whole problem of name recognition and coreference in

Chapter 5, under the rubric of ‘text mining.’

.. Machine learning for information extraction

In addition to systems that use hand-written patterns and rules, there are an
increasing number of research vehicles which attempt to learn extraction pat-
terns.57 These machine learning approaches require a text corpus such as that
provided for MUC in which the significant fragments are delineated with de-
tailed annotations. Such markup needs to identify the roles played by different
text features in providing the relevant information, e.g.,

‘The parliament was bombed by Carlos.’

might be tagged as:

‘The <TARGET>parliament</TARGET> was
<ACTION>bombed</ACTION> by <PERP>Carlos</PERP>.’

A program then needs to learn that a pattern like

NOUN was PASSIVE-VERB by NOUNGROUP

will cover examples of this type, if certain constraints are met, e.g., the passive
verb needs to express the concept of attack.

The problem, of course, is that there may be many syntactic variations
on this simple theme, and we want the learning program to generate rules
that have reasonably broad coverage, rather than building a different rule for
each variant. Managing the space of possible rules creates both conceptual and
computational problems.

At the moment, rule-based learning programs are typically being applied
to somewhat simpler domains than that of terrorist incidents and court re-
ports. For example, there are programs that extract information from adver-

 Chapter 3

tisements for jobs and real estate58 and others that find company names in
news stories.59 But it seems likely that such programs may eventually reduce
the amount of effort that is required to build an industrial strength information
extraction application.

We examine machine learning approaches to text categorization in the next
chapter.

.. Statistical language models for information extraction

An alternate approach to machine learning for information extraction is to
train a statistical language model60 on annotated data. Thus the sentence anal-
ysis system fielded by BBN Technologies at MUC-7, called SIFT,61 employed
a statistical process to map strings of words into more meaningful structures.
The details of how this was done are somewhat beyond the scope of this text,
but we can give the reader the flavor of this approach, and how it worked on a
pair of extraction tasks.

The tasks SIFT was asked to perform were called ‘Template Element’ and
‘Template Relationship.’

– The Template Element task required that information pertaining to orga-
nizations, persons, and artifacts mentioned in a text be captured in the
form of templates consisting of a predefined set of attributes, as in previous
MUCs.

– The Template Relationship task was new in MUC-7, and required that re-
lationships among template elements, such as time and place, be captured
in the form of relations between template elements.

SIFT was trained on both general knowledge of English sentence structure, us-
ing the Penn Treebank corpus62 mentioned in Chapter 1, and specific knowl-
edge of how domain entities and relationships are typically expressed, using
half a million words of New York Times news stories on air disasters and
space technology. The NYT text was annotated semantically with significant
properties and relationships, rather than with a detailed parse of the sentence
structure. Figure 3.6 gives an example of semantic annotation.

These two knowledge sources are combined in the following way.

– A sentence-level model is derived from the Penn Treebank, and then used
to parse sentences from the NYT document collection. However, the parses
are constrained to be consistent with the semantic annotation.

Information extraction 

Nance , who is also a paid consultant to ABC News , said …

person descriptor

person organization

employee relationcoreference

Figure 3.6 A semantically annotated sentence

– The resulting parse tree is then augmented with the semantic informa-
tion, and the sentence-level model is then retrained on this combination
of syntactic and semantic information.

Once SIFT has been trained, it can be given unseen sentences to analyze. The
program works by computing the most likely syntactic and semantic interpre-
tation, which reduces to finding the most likely augmented parse tree for the
sentence. This search is conducted using the CYK algorithm we encountered
earlier, with the addition that there are now probabilities associated with parse
tree elements, which can be combined to compute the probability of the whole
tree.

SIFT performed well at MUC-7 on both the Template Element and the
Template Relationship tasks, as shown in Table 3.13.

Table 3.13 SIFT’s performance at MUC-7

Task % Recall % Precision % F-Measure

Named Entity 89 92 90.44
Template Element 83 84 83.49
Template Relationship 64 81 71.23

The ‘Named Entity’ extraction task involved recognizing names of organi-
zations, people, and locations, along with expression for dates, times, monetary
amounts and percentages. We shall encounter the SIFT name recognizer, called
IdentiFinder, in Chapter 5.

. Summary of information extraction

It can be seen that event extraction is a fairly complex process, and that no
program is going to perform at 100% precision and recall by identifying all
and only the items of interest. However, such systems are typically meant to be

 Chapter 3

used as an adjunct to a manual editing or intelligence-gathering system. In this
scenario, system parameters need to be tuned to meet the needs of the task.

For example, in the History Assistant application, recall was much more
important than precision, so editors would be prepared to tolerate a certain
number of false positives in order to ensure high recall. In other applications,
such as scanning the news for events of interest, precision might be more im-
portant than recall. Given the redundancy among stories in many news collec-
tions or feeds, one might assume that really important events will receive high
coverage, and therefore have a good chance of being found in one story or an-
other. By the same token, the high volume of most news feeds means that high
precision is important if intelligence-gathering staff are not to be swamped by
irrelevant information.

Writing event extraction rules is a fairly laborious activity, and such rule
sets will need to be maintained over time. As we noted earlier, it is hard to
write rules that anticipate all the possible ways that events or objects of interest
can be described, and rule sets will often need to be extended to accommodate
new patterns observed in text data. Although modifying declarative represen-
tations, such as patterns or grammar rules, will be easier than making changes
to program code, it is nevertheless an ongoing task that requires skilled per-
sonnel. Systems that learn extraction rules from examples can theoretically be
retrained from time to time on new data, but there have been few studies done
on the effectiveness of this kind of automatic maintenance.

In spite of these caveats, the MUC systems show that it is possible to obtain
recall and precision results that would be acceptable for many applications.
Whether one employs FSMs or a chart parser such as CYK, these algorithms
are efficient enough to process large document feeds, so long as one is only
analyzing selected sentences in a document, e.g., sentences that contain certain
target words. Information extraction programs now power a number of online
applications in the business information arena,63 so this technology can be said
to have come of age.

Pointers

The proceedings of MUC-3 through MUC-6 were published by Morgan Kauf-
mann Publishers, although some of these may now be out of print. The
proceedings of MUC-7 are published on the National Institute of Standards
(NIST) website.64

Information extraction 

An information extraction tutorial65 and useful pointers to other resources
are currently available at the Stanford Research Institute’s web site.

For a summary of early work in information extraction and related areas,
see Lehnert;66 for early work on automating the creation of extraction rules,
see Lehnert et al.67

For a thorough treatment of regular expressions, see Friedl.68 For more
about finite state approaches to language processing, see Roche and Schabes,69

and also Kornai.70

Notes

. The mandate is simply the ruling of the judge, or the panel of judges.

. The initial MUC evaluations were carried out by Beth Sundheim of the Naval Ocean
Systems Center (NOSC) and continued with DARPA funding under the TIPSTER Program
by Nancy Chinchor of Science Applications International Corporation (SAIC).

. Giving equal weight to recall and precision, we have

F1 =
2PR

P + R
where P stands for precision and R for recall.

. We chose MUC-3’s event extraction task as an exemplar, rather than taking a task from a
later MUC, because it is a ‘classic’ application of information extraction from English texts
that raises most of the technical issues we wish to discuss. We deal with some of the more
specialized tasks from later MUCs (such as named entity extraction) in Chapter 5.

. Sundheim, B. M. (1991). Overview of the Third Message Understanding Conference.
Proceedings of the 3rd Message Understanding Conference, 3–16.

. Actual texts were all upper case, as a result of the download process used.

. See Levine, J. R., Mason, T. & Brown, D. (1992). lex and yacc. Sebastopol, California:
O’Reilly & Associates.

. It can’t be done, because wherever you set your bound, β, we can provide you with a string
that is so long that you have to remember more than β positions to predict the next symbol.
This means that your ‘regular expression’ for characterizing the string can’t be finite. Hence,
the machine for recognizing it can’t have a finite number of states. Furthermore, there is
nothing in the regular expression notation that will allow you to make the number of b’s
depend on the number of a’s. a*b* simply generates any number of a’s followed by any
number of b’s.

. See Chapter 1, Section 3.2.

. So long as the actual language remains the same. Different languages, such as French
and English, have different tokenization rules.

. The Perl language was released as freeware by Larry Wall at the end of 1987. It is currently
in its sixth incarnation. See http://www.perl.org and http://www.perl.com.

 Chapter 3

. Appelt, D. E., Hobbs, J. E., Bear, J., Israel, D., & Tyson, M. (1993). FASTUS: A Finite-
State Processor for Information Extraction from Real-World Text. In Proceedings of the
International Joint Conference on Artificial Intelligence (pp. 1172–1178).

. The acronym is flawed in more ways than one. The term ‘finite state automaton’ is re-
dundant, given that an automaton was originally defined as a finite or infinite machine that
moves from state to state in discrete steps. However, the term and its acronym (FSA) are
now common usage in the literature, so it’s a bit late to worry about that now.

. Named entity recognition is simply the identification of proper names representing peo-
ple, companies, organizations, places, and so forth. The relevant technologies are examined
in detail in Chapter 5.

. A formal language is a (usually infinite) set of strings defined over a finite alphabet of
symbols by a finite set of concatenation rules. In other words, the language consists of all the
strings that can be built out of a given character set according to the rules.

. Kleene, S. C. (1956). Representation of events in nerve nets and finite automata. In Au-
tomata Studies, C. E. Shannon, & J. McCarthy (Eds.), Annals of Mathematics Studies, 34.
Princeton, NJ: Princeton University Press.

. Chomsky, N. (1959). On certain formal properties of grammars. Information and Con-
trol, 2, 137–167.

. No finite automaton can accept a language containing arbitrarily nested, balanced
parentheses, such as algebraic expressions like (x + (yz)) – (wz). This applies to other re-
cursive structures, such as deeply embedded clauses in a language, e.g., sentences like ‘The
cat that ate the bird that ate the worm is black.’ As an example of crossed constraints, con-
sider a sentence such as ‘John and Mary are six and seven years old respectively,’ in which
the usual nesting and adjacency conventions are violated.

. Church, K. W. (1980). On Memory Limitations in Natural Language Processing. MIT
Laboratory of Computer Science Technical Report MIT/LCS/TR-245.

. ‘Heuristically’ means ‘using rules of thumb.’ A heuristic is simply a rule that you try,
hoping it will work. It isn’t based on a law or a theorem, so it isn’t guaranteed to work.

. Now that we are no longer dealing with single letters as pattern variables, we will render
patterns with spaces between variables, e.g., writing ‘a b c’ in place of ‘abc.’

. As an exercise, you might like to try writing rules to catch these variants.

. These variations account for much of the lost recall in MUC systems. The problem is
that, after the first 50% recall has been achieved, a law of diminishing returns sets in. A re-
peat of the initial investment of effort in the pattern writing process normally yields much
less improvement in terms of recall points. In our experience, doubling, tripling and qua-
drupling the original investment typically results in taking recall from 50% to 75%, to 83%,
and (if you are lucky) to 90% respectively. This additional effort is not usually cost effective,
and it is not guaranteed to produce these ‘best case’ results.

. Hobbs, J. E., Appelt, D. E., Bear, J., Israel, D., Kameyama, M., Stickel, M. & Tyson, M.
(1996). FASTUS: A Cascaded Finite-State Transducer for Extracting Information from
Natural-Language Text. In Roche and Schabes (Eds.), Finite State Devices for Natural Lan-

Information extraction 

guage Processing. Cambridge MA: MIT Press. The current section draws heavily upon exam-
ples from this paper.

. As we saw in Chapter 1, prepositional phrase attachments can be highly ambiguous.

. A gerund is a noun-like use of a verb participle, e.g., “The CEO proposed acquiring the
Acme Company,” or “Acquiring a company is easier than running it profitably.”

. Appositives are simply modifying phrases that occur adjacent to a noun phrase, e.g.,
“Bill Gates, CEO of Microsoft” or “Secretary of State, Colin Powell.”

. The head word in a noun phrase is the single noun that other words are typically modi-
fying, while the head verb in a verb phrase is the main verb, as opposed to one of the auxiliary
verbs.

. When using FSMs for recognition, designers tend not to worry about such anomalies,
working on the assumption that they will never occur in text. In other words, having patterns
that would over-generate, if so employed, is deemed less of a problem than having patterns
that will under-recognize.

. The exceptions involve clauses that are subsumed by other larger clauses, and therefore
discarded as being redundant.

. However, it can be shown that nondeterministic finite automata are actually no more
powerful than deterministic ones. Any language accepted by the former can be accepted by
the latter, even though the more expressive formalism may ease the programming process.

. The details of how this is done have not been published, as far as we are aware.

. Some aspects of FASTUS have apparently been incorporated into a Message Han-
dler System that is being used for analyzing military messages in field operations. See
http://www.ai.sri.com/∼appelt/arpatu.html.

. Unknown words are simply words that are not in the lexicon the FSM is using. In addi-
tion to contextual cues, such as ‘Mr.’ and ‘Co.’, we also hinted earlier (see Section 3.2) that
morphology can help a program guess a word’s class. Thus any uncapitalized English word
ending in ‘-ness’ is almost certainly a noun, while a word ending in ‘-ed’ or ‘-ing’ is probably
a verb, although there are obvious known exceptions.

. Interestingly, this technology has also been ported to another natural language. In
MUC-5, FASTUS was entered into the Japanese task as well as the English one. The system
read and extracted information from both romanji and kanji input, and contained rules for
recognizing joint ventures in both English and Japanese business news with similar recall
and precision results.

. Although allowing nondeterminism complicates the design to some extent.

. The main opinion may be followed by a dissenting opinion, authored by a minority of
judges.

. See e.g., Abney, S. (1997). Partial Parsing via Finite-State Cascades. Journal of Natural
Language Engineering, 2 (4), 337–344.

. An ‘opaque context’ is a context where the declarative force of a statement is qualified or
nullified by adjacent expressions, e.g., ‘If I grant the motion, this will create a bad precedent,’
or ‘The defendant contends that the ruling should be reversed.’

 Chapter 3

. Jackson, P., Al-Kofahi, K., Kreilick, C. & Grom, B. (1998). Information extraction from
case law and retrieval of prior cases by partial parsing and query generation. CIKM-98, 60–
67. New York: ACM Press.

. This is also called the CKY algorithm. The letters stand for the names of the inventors:
Cocke, Young, and Kasami. The twist is that each of them developed it quite independently
of the others in the 1960s.

. A ‘stack’ is a data structure to which items can only be added (and from which items
can only be taken) at the ‘top’ or ‘front.’ It therefore differs from a queue, in which items are
added at one end and taken from the other. Adding to a stack is called ‘pushing’ and taking
from a stack is called ‘popping.’

. Of course, no stack medium is infinite. But we just assume that whenever our machine
gets short of memory, a friendly neighborhood systems engineer instantly adds more. If only
life were like that.

. Regular grammars are also context free, with the further restriction that the right-hand
side of the rule contain at most one nonterminal, always situated to the right. Thus a(b|c)*
could be written as

S = a + T
T = b + T
T = c + T
T = b
T = c

. But suppose we wanted to express the constraint that noun groups with a modifier
(MOD) only occur in certain contexts, say where the NG is the grammatical subject of the
sentence. Then we might insist that the NG be followed by a verb, along the lines of:

NG VERB = DET + MOD + NOUN

where VERB supplies the right context of NG, but is not part of the rewrite. Grammars
which permit the specification of left and right contexts of this kind are called ‘context sen-
sitive’ grammars (CSGs). Their properties are beyond the scope of this book, and they are
not typically used in information extraction.

. Hopcroft, J. E. & Ullman, J. D. (1969). Formal Languages and their Relation to Automata.
Reading, MA: Addison-Wesley.

. See Chapter 1.

. ‘Polynomial complexity’ means that the time taken by the algorithm is a polynomial
function of the size of the problem, i.e., it is given by a function of the form anm + bn + c,
where n is the key size variable.

. This is a worst case analysis that is not always encountered in practice, especially when
attempting to parse long sentences using a relatively small lexicon of targeted words. If we are
processing row i of the table, and j is the last row where we assigned a non-lexical category,
then it is only worth proceeding if i > 2j, where i is even, and i > 2j + 1 otherwise.

. See Chapter 2, Section 2.4.2.

Information extraction 

. Later versions of History Assistant switched to using a statistical model, based on many
years of accumulated data, to estimate the probability that a case from court C will go to
court D on appeal.

. See Allen, J. (1995). Natural Language Understanding (2nd edition). Redwood City, CA:
Benjamin/Cummings, Chapter 11 for more about semantic grammars.

. See Chapter 5, Section 5.2.2, for more precise definitions and further examples.

. Appelt, D. E., Hobbs, J. R., Bear, J., Israel, D., Kameyama, M., Kehler, A., Martin, D.,
Myers, K., & Tyson, M. (1995). SRI International FASTUS system MUC-6 test results and
analysis. In Proceedings of the Sixth Message Understanding Conference (MUC-6). Columbia,
MD.

. Kameyama, M. (1997). Recognizing referential links: An information extraction per-
spective. In Proceedings of the ACL’97/EACL’97 workshop on Operational factors in practical,
robust anaphora resolution (pp. 46–53). Madrid, Spain.

. Al-Kofahi, K., Grom, B. & Jackson, P. (1999). Anaphora resolution in the extraction
of treatment history language from court opinions by partial parsing. In Proceedings of the
Seventh International Conference on Artificial Intelligence and Law (pp. 138–146).

. Muslea, I. (1999). Extraction patterns for information extraction tasks: A survey. In Pa-
pers from the AAAI Workshop on Machine Learning for Information Extraction, Tech. Report
WS-99-11 (pp. 1–6). Menlo Park, CA: AAAI Press.

. Soderland, S. (1999). Learning information extraction rules for semi-structured and free
text. Machine Learning, pp. 34, 233–272.

. Freitag, D. (1998). Information extraction from html: Application of a general learning
approach. Proceedings of the 15th National Conference on Artificial Intelligence (pp. 517–523).

. Of the kind we encountered in Chapter 2, Section 2.3.4.

. Scott Miller, Michael Crystal, Heidi Fox, Lance Ramshaw, Richard Schwartz, Rebecca
Stone, Ralph Weischedel, and the Annotation Group. (1998). Algorithms that learn to ex-
tract information – BBN: Description of the SIFT system as used for MUC-7. In Proceedings
of the Seventh Message Understanding Conference.

. This corpus consists of about a million words of Wall Street Journal text that has
been heavily annotated with part of speech information and parse trees indicating sentence
structure.

. For example, EDGAR Online People (http://www.edgar-online.com/people/) is indexed
by NetOwlTM Extractor (www.netowl.com), which also processes real-time news feeds sup-
plied by NewsEdge (www.newsedge.com). Extraction technology from WhizBang! Labs
(www.whizbang.com) assembles job descriptions from corporate Web sites for online re-
cruiters FlipDog.com.

. http://www.itl.nist.gov/iad/894.02/related_projects/muc/proceedings/muc_7_toc.html

. http://www.ai.sri.com/∼ appelt/ie-tutorial/

. Lehnert, W. (1991). A Performance Evaluation of Text Analysis Technologies. AI Maga-
zine, pp. 81–94, Fall issue.

 Chapter 3

. Lehnert, W., Cardie, C., Fisher, D., Riloff, E., & Williams, R. (1991). Description of
the CIRCUS System as Used in MUC-3. In Proceedings of the 3rd Message Understanding
Conference (pp. 223–233).

. Friedl, J. E. F. (1997). Mastering Regular Expressions. Sebastopol, California: O’Reilly &
Associates.

. Roche, E. & Schabes, Y. (Eds.). (1997). Finite-State Language Processing. Cambridge,
Massachusetts: MIT Press.

. Kornai, A. (1999). Extended Finite State Models of Language. Cambridge, England: Cam-
bridge University Press.

C 4

Text categorization

With the Internet and e-mail becoming part of many people’s daily routine,
who is not familiar with the Yahoo! directory, or with Microsoft Outlook’s
highlighting of junk messages? These are but two applications of text classi-
fication. Web pages in the Yahoo directory have been assigned one or more
categories by human editors, so we say that the classification was performed
‘manually’. On the other hand, users of Outlook can write simple rules to sort
incoming e-mails into folders, or use predefined rules to delete junk e-mails.
This is an example of automated text classification, albeit a rather trivial one.

First, let us dispose of a few terminological issues. Some researchers1 make
a distinction between text classification and text categorization. ‘Text catego-
rization’ is sometimes taken to mean sorting documents by content, while ‘text
classification’ is used as a broader term to include any kind of assignment of
documents to classes, not necessarily based on content, e.g., sorting by author,
by publisher, or by language (English, French, German, etc.). However, these
terms will be used interchangeably in the present context, as will the terms
‘class’ and ‘category’, with the assumption that we are always talking about the
assignment of labels or index terms to documents based on their content.

The term ‘classifier’ will be used rather loosely to denote any process (hu-
man or mechanical, or a mixture of the two) which sorts documents with re-
spect to categories or subject matter labels, or assigns one or more index terms
or keywords to them. As a notational device, individual classes of documents,
such as  , will appear in small capital letters.

While text retrieval may be considered as a text classification task (the task
of sorting documents into the relevant and the irrelevant), it is worth main-
taining a distinction between the two activities. Text retrieval is typically con-
cerned with specific, momentary information needs, while text categorization
is more concerned with classifications of long-term interest.2 Unlike queries,
categorization schemes often have archival significance, e.g., the Dewey Deci-
mal Classification system and the West Key Number system.

There is no question concerning the commercial value of being able to clas-
sify documents automatically by content. There are myriad potential applica-

 Chapter 4

tions of such a capability for corporate Intranets, government departments,
and Internet publishers. Integration of search and categorization technology is
coming to be seen as essential, if corporations are to leverage their information
assets.3

Such uncertainty as surrounds this topic relates to the relative immatu-
rity of the field, as well as a lack of clarity concerning the task itself. People
frequently speak of categorization when they are really interested in the index-
ing, abstracting, or extracting of information. In this chapter, we both review
the technology and try to identify the different kinds of categorization task to
which current methods can be applied.

. Overview of categorization tasks and methods

A number of distinguishable activities fall under the general heading of classi-
fication, but here is a list of the main types, with sample applications attached
for illustrative purposes. The aim here is not to say how such problems should
be solved, but to identify the main issues.

– Routing. An online information provider sends one or more articles from
an incoming news feed to a subscriber. This is typically done by having
the user write a standing query that is stored run against the feed at regular
intervals, e.g., once a day. This can be viewed as a categorization task, to the
extent that documents are being classified into those relevant to the query
and those which are not relevant. But a more interesting router would be
one that split a news feed into multiple topics for further dissemination.

– Indexing. A digital library associates one or more index terms from a con-
trolled vocabulary with each electronic document in its collection. Wholly
manual methods of classification are too onerous for most online collec-
tions, and information providers are faced with a large number of diffi-
cult decisions to make regarding how to deploy technology to help. Even
if an extant library classification scheme is adopted, such as MARC4 or
the Library of Congress Online Catalog, there remains the issue of how to
provide human classifiers with automatic assistance.

– Sorting. A knowledge management system clusters an undifferentiated col-
lection of memos or email messages into a set of mutually exclusive cat-
egories. Since these materials are not going to be indexed or published, a
certain level of error can be tolerated. It is obvious that some of these doc-
uments will be easier to cluster than others. For example, some may be

Text categorization 

extremely short, yielding few clues to their content; some may be on one
topic, while others cover multiple topics. In any event, there will be out-
liers, which will need to be dealt with by manual cleanup, if a high degree
of classification accuracy is really necessary.

– Supplementation. A scientific publisher associates incoming journal articles
with one or more sections of a digest publication where new results should
be cited. Even if authors have been asked to supply keywords, matching
those keywords to the digest classification may be nontrivial. However,
there may be many clues to where an article goes, over and above the ac-
tual scientific content of the paper. For example, the authors may each have
previously published work that has already been classified. Also, their paper
may cite works that have already been classified. Leveraging this metadata
will be key to any degree of automation applied to this process.

– Annotation. A legal publisher identifies the points of law in a new court
opinion, writes a summary for each point, and classifies the summaries
according to a preexisting scheme. Given the volume of case law, these tasks
are most likely performed by teams of people. The written summaries will
not be very long, and so any automatic means of classification will not have
much text to work with. However, each summary comes from a larger text,
which may yield clues as to how the summaries should be classified. It is
possible that simply having a program route new summaries to the right
classification expert would improve the workflow.

Such tasks can be analyzed along a number of non-orthogonal dimensions,
which are mostly about the data. Understanding the data is one of the keys to
successful categorization, yet this is an area in which most categorization tool
vendors are extremely weak. Many of the ‘one size fits all’ tools on the market
have not been tested on a wide range of content types.

Moreover, some of the currently available off-the-shelf tools work only
with the text of a document. But documents often have useful data or meta-
data associated with them, such as the source of the document, its title, any
keywords associated with it by the author, and so forth. Such tools are often
difficult to customize in order to take advantage of this valuable information.

The points below attempt to cover some of the gross features of documents
and category spaces, and to examine some of their implications for classifica-
tion, whether by person or machine. The degree of complexity associated with
the documents and the target categories under consideration is an important
indicator of both how much human expertise is needed to perform reliable
classification, and how sophisticated a classification program has to be in order

 Chapter 4

to be effective. It is easy to underestimate the difficulty of classification tasks
from both points of view.

The human factor is also important when attempting to evaluate text cate-
gorization software. If humans find the classification task difficult, then agree-
ment among editorial staff may be low with respect to an irreducible number
of categorization decisions. Evaluating program output will be extremely diffi-
cult, if limitations of human performance set an upper bound on the perceived
accuracy of the program’s decisions.

Here are some important issues with respect to the data.

– Granularity. How many categories are we assigning to, and how finely do
they divide the document space? Routing to subscribers is typically coarse-
grain, in the sense that recipients are working with a small number of cate-
gories. Even in the case of a narrowly-specified information need, the cat-
egorization task is typically a binary decision, namely does this document
meet the need or not?

– Dimensionality. How many features are we using for classification pur-
poses? In the case where every content word in the document collection is
a feature, we are trying to perform classification in a high-dimensionality
space that is sparsely populated with documents. If, on the other hand, we
are classifying over a controlled vocabulary of keywords, or other linguistic
metadata, the dimensionality will be greatly reduced.

– Exclusivity. Do documents belong to only one category, or a relatively
small number of categories, or a much larger number? The indexing task
typically involves assigning a relatively large number of terms to a docu-
ment, and this can be a somewhat harder task than simply sorting docu-
ments into disjoint classes. In between, there are hierarchical classification
schemes where it may be useful to have documents appear under more
than one node in the tree.

– Topicality. Are documents typically about one thing, or can they contain
multiple topics? Multiple topics require multiple document classifications
and can complicate the task considerably. In particular, it may first be nec-
essary to segment the document by topic, a task that is just as hard as
classification itself.

It helps with the task analysis to think of approaches to text categorization as ly-
ing on a continuum. At one end are totally manual procedures in which various
end-users, editors, or information science professionals assign documents to
some classification scheme. At the other end are fully automatic procedures, in

Text categorization 

which computer programs cluster documents, name the clusters, and arrange
those clusters in some way to create a tailor-made system of categories.

These extremes are rarely met with in practice. For example, very few edito-
rial processes now have no computer involvement, especially where electronic
documents are concerned. At the same time, generating sensible categories and
error-free categorizations in a wholly automatic manner is somewhere beyond
the current state of the art.

In between these two poles, there are various gradations of human versus
computer involvement. A good person-machine system is one that encourages
people to do what they are good at (usually creating frameworks, exercising
judgment and critiquing solutions) and allows machines to do what they are
good at (usually enumerating alternatives, performing iterations, and generat-
ing solutions). Getting the right balance is critical to both system performance
and system cost, as we shall see in Section 4.6.

There are a number of other practical considerations to do with the context
in which classification tasks are performed.

– Document management. Classification is only one activity typically associ-
ated with a document feed. Other activities might include data conversion
(e.g., XML tagging), duplicate document detection (particularly in syndi-
cated news feeds), and the application of domain knowledge to add further
value (e.g., by writing summaries). The question then arises as to where in
the process classification belongs.

– Concept management. In a real-time news feed, it may be necessary to de-
tect new topics, as well as classifying documents to existing topics. In ad-
dition, existing topics may exhibit ‘drift’, e.g., as a minor scandal becomes
a major public issue, or a major issue loses its importance. Both problems
currently necessitate an editorial effort of some kind.

– Taxonomy management. Consumers of information are often interested in
having materials organized in a tree-like structure for reference through
searching and browsing. Creating and maintaining these topics and their
organization can be a major part of the publishing process. Classification
tools that also support these ancillary tasks can add significant value.

Document management vendors have typically not done a very good job of
integrating text categorization software or taxonomy management tools into
their offerings. It seems that it is up to the next generation of enterprise portal
vendors to address this problem. Such an effort would be greatly helped by the
further development and publication of industry standard taxonomies for dif-

 Chapter 4

ferent vertical market segments, such as insurance, human resources, medicine,
and the like.

Meanwhile, text categorization research has tended to focus on news mate-
rials, rather than scientific, business or legal text.5 A favorite data set is a pub-
licly available Reuters collection of over 22,000 news wires, each of which has
been classified by hand to one or more of 135 categories, such as  and
.6 But attempts have also been made to classify emails7 and cluster Web
pages.8

Researchers in text retrieval and information extraction have concentrated
on a relatively small number of well-understood methods, albeit with several
variations on any given theme. Text categorization, by contrast, has been at-
tacked by a bewildering variety of techniques that are both individually com-
plex and hard to compare. It has been pointed out that there is little consensus
in the literature concerning either the absolute or relative efficacy of some of
these methods. 9

There are a number of factors that need to be considered when evaluating
a text categorization system. Some of these factors concern the underlying al-
gorithm employed, while others relate more to the process as a whole. Here are
the issues that we shall raise as we proceed to examine some proposed solutions
to the text categorization problem.

– Data requirements. Many algorithms need to be trained on data that has
already been classified, as we shall see in Section 4.3. Availability of such
data can be a limiting factor in attempts to automate text categorization.
Both the quality and the quantity of such data can be important.

– Scale. Many algorithms that perform well on up to 100 categories do not
scale well to larger problems, involving 1,000 or more categories. Some-
times the problem is simply performance, in terms of the computational
cost involved. Other times, it is a question of accuracy, as having more
categories to choose from confuses the system.

– Mode of operation. Many algorithms run in batch mode, i.e., training
and/or test examples must be presented all together, in a single session.
Other algorithms can be run incrementally, with documents being encoun-
tered one at a time, without affecting either training or test performance.

It should be stressed that it would be presumptuous of us to assume that we
have all the answers with respect to how existing text categorization algorithms
and systems rate with respect to these factors. In many cases, neither the re-
search literature nor trade publications provide enough data for the drawing of

Text categorization 

definitive conclusions. However, we share such information as we have gleaned
from a variety of sources, including personal experience.

Classification problems and methods overlap to some extent with those
of retrieval and extraction, as we shall see. As we noted earlier, information
retrieval can be regarded as solving a binary classification problem, by distin-
guishing between documents that are relevant to the query and those that are
not. Some methods, such as Bayesian statistics (see Chapter 2, Section 2.3.3
and Section 4.3 below) have been applied to both tasks. However, informa-
tion retrieval has been researched for about 40 years, while text categorization
has only received intense academic attention over the last 10 years.10 These
disciplines have developed along sufficiently different lines to merit separate
treatment in a text of this kind.

. Handcrafted rule based methods

One obvious approach to text categorization is to perform automatic full-text
indexing of incoming documents and then manually write a query for each
category of interest. The documents retrieved by a given query, via a search
engine, are then classified to that category. With skillful query construction,
this approach can work quite well for a relatively small number of disjoint
categories.

Many document routing tasks, such as news clipping, are performed in
just this way. Editors (or end users) construct standing queries, which are run
against a document collection or feed to produce results. The precision and
recall of such a process will depend upon how skillfully the queries were con-
structed and on which side of the trade-off an editor (or end user) wishes
to err.

Experience tells us that professional query construction by editors takes up
to two days per query, if we include significant testing. A query, once derived,
must be run against a representative document feed, the results must be ex-
amined, and the query must be tuned in the light of these results. This is an
iterative process, and the work must be done by a domain expert.

A more sophisticated approach is to construct an expert system that re-
lies upon a body of hand-written pattern-matching rules11 to recognize key
concepts in documents and assign appropriate categories or index terms to
them. One such rule-based system, called Construe-TIS, assigns zero or more
labels to stories for a Reuters news database.12 It was developed by the Carnegie

 Chapter 4

Group and went into production in 1989, applying 674 distinct categories13 to
a newswire feed, as well as recognizing over 17,000 company names.

The Construe pattern language can be thought of as an embellished query
language. The core of the program is a set of concept rules crafted to identify key
concepts in text and trigger the assignment of category labels. Thus, a pattern
element, such as

(gold (&n (reserve ! medal ! jewelry))

is meant to detect the word ‘gold’, but pass on the phrases ‘gold reserve’, ‘gold
medal’, and ‘gold jewelry’. The exact syntax of the pattern language is not re-
ally important. What is important is the principle of using arbitrary query-
like patterns14 to identify not documents but concepts that will then drive
categorization rules.

The categorization rules trigger not on individual words but on concepts
derived from the actual text. Thus, the rule for the category  -

, looks something like this:

(if
test:

(or [australian-dollar-concept]
and [dollar-concept]

[australia-concept]
(not [us-dollar-concept])
(not [singapore-dollar-concept])))

action: (assign australian-dollar-category))

Without fretting too much about parentheses and other syntax, this rule states
the following principle.

If the concept rules have already detected either

1. a clear reference to the Australian dollar, or
2. references to Australia and the dollar (with no confounding references

to the US dollar or the Singapore dollar),
then it’s safe to assign the   category.

Other refinements are possible, such as searching for concepts having occurred
in particular fields of the document. We might wish to impose the rule that an
article is about gold either if it exhibits the gold-concept in the headline and
once in the body, or if it contains four references to the gold-concept in the
body. The following Construe-type rule achieves this:

Text categorization 

(if
test:

(or (and [gold-concept :scope headline 1]
[gold-concept :scope body 1])

[gold-concept :scope body 4])
action: (assign gold-category))

Construe was tested on a set of 723 unseen news stories, with the task of assign-
ing them to any of 674 categories. The system accomplished this with a recall
of 94% and a precision of 84%. We shall see that this level of performance is
somewhat better than the best of the current machine learning programs. This
is not surprising, considering that the rules were handcrafted for this particular
application.15

However, it can readily be appreciated that the handcrafting of such rule
sets is a non-trivial undertaking for any significant number of categories. The
Construe project ran for about 2 years, with 2.5 person-years going into rule
development for the 674 categories. (Note that this figure is consistent with the
“two days per query” rule of thumb we mentioned earlier.) The total effort on
the project prior to delivery to Reuters was about 6.5 person-years.

Thus there is a powerful incentive to investigate automatic methods for
text categorization. These run the gamut from fully automatic statistical meth-
ods that function as “black boxes” and require no human intervention, to pro-
grams that generate legible rules automatically, for subsequent editorial review.
The remainder of this chapter provides an overview of these methods, and also
attempts to evaluate their utility.

. Inductive learning for text classification

The main alternative to handcrafting a rule base is to use machine learning
techniques to generate classifiers. The most common approach is to employ an
inductive learning program, i.e., a program that is not itself a classifier, but is
capable of learning classification rules given a set of examples encoded with re-
spect to a feature space.16 Such techniques are called supervised learning meth-
ods, since the person supplying the examples is in effect teaching the program
to make the right distinctions. Supervised learning can be contrasted with mere
rote learning, where the classification rules are simply given to the program. It
is also distinct from unsupervised learning, where a program somehow learns
without human feedback, e.g., by clustering similar documents together.

 Chapter 4

For supervised machine learning to be applicable to a classification task,
the following requirements should be met:

– The classes to which data will be assigned must be specified ahead of time
– In the simplest case, these classes should be disjoint.
– When classes are not disjoint, we can transform the problem of classify-

ing documents to n categories into n corresponding sub-problems. Each
subproblem classifies documents to one of two classes, those that belong
to the corresponding category and those which do not. These binary de-
cisions are now independent of each other, since categories are no longer
‘competing’ for documents.

Machine learning techniques are not restricted to building text classifiers, but
can also be applied to a wider range of NLP tasks for online applications.
For instance, some of the approaches introduced below have been applied to
spelling correction, part-of-speech tagging, and parsing. In this section, how-
ever, we will focus on only those machine learning approaches which have been
successfully used for building text classifiers.

Learning programs do not work with the texts themselves, but with some
surrogate, e.g., a vector whose components are features, such as words or
phrases, occurring in the text. In this and other respects, the representations
used for text classification are similar to those used in document retrieval.
Thus a text can be represented by a document vector of the kind we discussed
in Chapter 2, with binary or numeric features recording occurrences of single
words or phrases.

It can readily be appreciated that such vector spaces have extremely high
dimensionality, since every term defines a dimension of the space. Depend-
ing upon the nature of the texts, even single word features can generate spaces
with 105 dimensions. Such a feature space will be extremely sparse with re-
spect to the distribution of documents, making it difficult to construct sets of
documents for training and testing classifiers. Furthermore, words are noisy
features (as we have seen), since they may have more than one meaning, while
documents can obviously contain asides that are not germane to the principal
subject matter.

Nevertheless, there are relatively simple methods available that are quite
robust, if one is willing to tolerate a certain degree of error.

Text categorization 

.. Naïve Bayes classifiers

Suppose that you have a feed of incoming documents. You have been manu-
ally assigning each such document to a single category for some time. Thus,
for each category, you have a reasonable number17 of past documents already
assigned.

Bayes’ Rule
One approach to automating (or semi-automating) this process is to build sta-
tistical models of the categories you are assigning to, leveraging the assignments
that you have already made. This approach assumes that you can compute, or
estimate, the distribution of terms (words, bigrams, phrases, etc.) within the
documents assigned to these categories. The idea is to use this term distribu-
tion to predict the class of unseen documents, but this only works under certain
conditions, which we shall present, in a somewhat simplified form.

Firstly, you need to be able to transform the probability of a term occur-
rence given a category (which you can estimate directly from your data) into
the probability of a category given a term occurrence. Secondly, you need a
method to combine the evidence derived from each of the terms associated
with a document or category. In other words, you know

P(t|Ci),

for each term t and category Ci, but you are really interested in

P(Ci|t),

or better yet

P(Ci|TD),

where TD is the set of terms occurring in document D.18 In the following, we
make no more distinction between document D and its representation as a set
of terms, TD.

As we saw in Chapter 2, the term ‘Naïve Bayes’ refers to a statistical ap-
proach to language modeling that uses Bayes’ Rule but assumes conditional
independence between features (term occurrences).

We thus compute the probability that document D belongs to a given class
Ci by:

P(Ci|D) =
P(D|Ci)P(Ci)

P(D)
.

 Chapter 4

In the most common form of Naïve Bayes, we assume that the probability that
a document belongs to a given class is a function of the observed frequency
with which terms occurring in that document also occur in other documents
known to be members of that class.

In other words, ‘old’ documents known to be in the class suggest both:

1. terms to look for, and
2. the term frequencies one would expect to see in ‘new’ documents.

The ‘old’ documents function as training or conditioning data, providing prob-
ability estimates upon which a statistical argument for classification of unseen
data can be built.

Ignoring conditional dependencies between terms, we can use the multi-
plication rule to combine such probabilities. More formally, given a document,
D, represented by a term vector consisting of n components or terms,

D = (t1, . . . , tn),

and a class, Ci, from the range of target classes, the formula

P(D|Ci) =
j=n∏
j=1

P(tj|Ci)

captures the assumption19 that the probability of a term vector being generated
by a document of a given class can be decomposed into a simple combination
of the distribution of the terms within that class.

Before we can apply Bayes’ Rule, we also need to estimate the prior proba-
bility of a particular class being any document’s destination.

Suppose we had no information regarding the terms in a document, and
had to make a blind guess as to where it should be classified. Clearly, we would
maximize our chances of success if we assigned it to the most popular class,
according to our training data. The most direct way to estimate the prior for a
given category is simply to count the number of training documents occurring
in that category and divide by the total number of categories.

Given a value for P(Ci|D), how do we decide whether the document be-
longs in the class or not? Given M classes, one approach is to compute

P(Ci|D)

for all i such that 1 ≤ i ≤ M, and then assign the document to the class that
scores best. We can express this tersely by the formula

C* = argmaxCi
[P(Ci|D)]

Text categorization 

where C* is the favored class, and argmaxy[f (y)] selects the value of subscript
argument, y, that maximizes the function of y that follows in brackets. Thus we
look for a category, Ci, that maximizes the value of P(Ci|D). By Bayes’ Rule,

argmaxCi
[P(Ci|D)] = argmaxCi

[P(D|Ci) · P(Ci)],

enabling us to plug in the probability estimates discussed above. We can omit
P(D) from the right hand side of this equation, since it is an invariant across
classes, and will therefore have no effect upon which category is selected.

There are at least two variations on Naïve Bayes to be found in the clas-
sification literature.20 These variations, called the Multinomial Model and the
Multivariate Model, differ on how the probabilities of terms given a class are
computed. One counts frequencies of term occurrences, while the other simply
records the presence or absence of terms.

The Multinomial Model
We start with the Multinomial Model, which represents documents by their
word occurrences, sometimes called a ‘bag of words.’ By ‘bag’ we mean that
the order of the words is discounted, but that the number of occurrences is
recorded.21

Given enough training data, we can tabulate the frequencies with which
terms occurring in new, unclassified documents occur in the documents as-
sociated with the various classes. From these counts, we can estimate simple
probabilities, such as the probability that a document in the class  will
contain the term ‘merger.’ We write this as

P(‘merger’|) =
frequency of ‘merger’ in known  documents

frequency of ‘merger’ in all classified documents

In practice, this simple estimate of P(‘merger’ | N) is further refined (or
smoothed) to avoid zero probabilities (see Sidebar 4.1).

Sidebar 4.1 Zero probabilities and smoothing

Even if we allow ourselves to assume that term occurrences in a document, D, are indepen-
dent of each other, computing the probability of a term occurring in a class as a product will
not work without some further tinkering. If we have

P(tj|Ci) = 0

for the jth term, then

P(D|Ci) = 0

 Chapter 4

and so, by Bayes’ Rule,

P(Ci|D) = P(Ci)× P(D|Ci)

P(D)
= 0

which is not what we want.
Hence the common practice of Laplace smoothing, in which one or more pseudo-counts

are added to all frequencies, so that they do not zero out. The new counts are normalized
by the size of the total number of counts (including pseudo-counts). Consequently, in very
sparse data settings, this may result in too much probability mass being taken from observed
events and assigned to unobserved events. Another method is to set a small epsilon value to
be used in place of zero counts.

Sidebar 4.2 Assigning to more than one category

There remains the problem of what to do when we wish to assign documents to more than
one class. One method is to set a threshold, θ, and then assign document D to all classes Ci

where P(Ci|D) ≥ θ.
A related approach is to transform a multiple label assignment problem into multiple

problems of assigning a single label. Indeed, if you wanted to decide whether to assign the
categories   and   to a document, you could first decide to assign
 , and then decide to assign  , independently of the knowledge
that you have already assigned  . This approach is often referred to as ‘bina-
rization’ of text classification as, for each class, we need to make a binary decision: assign the
label to documents, or not.

A final method that has been used is proportional assignment. Roughly speaking, we
aim to route to each class the same proportion of test documents that it was assigned by the
training phase. So if class Ci holds 20% of the training documents, it receives (k × 20)%
of its best scoring test documents, where k is a ‘proportionality constant’ that we tweak to
balance false positives against false negatives.

However, this method assumes that you have a large set of test documents, and that
this set is drawn from the same distribution as the training data. These conditions may
not be met in many common situations. A real application may encounter unseen docu-
ments one at a time, or in small batches, and there may be no guarantee that such a batch is
representative of the total document feed.

The Multivariate Model
An alternative way of modeling documents is the Multivariate Model, which
uses a vector of binary components that encode, for each word in the vocabu-
lary, whether or not it occurs in the document. We do not record the frequency
with which terms occur in new documents, only their presence or absence.
The probability of a given document is then obtained by multiplying together

Text categorization 

the probabilities of all the components, including the probability of an absent
component not occurring.

The probability of a document vector D given a class Ci is then computed
along the lines of

P(D|Ci) =
j=n∏
j=1

(BjP(tj|Ci) + (1 – Bj)(1 – P(tj|Ci)))

where Bj is either zero or unity, depending upon whether the jth term is present
or absent in the document.22

Assuming again that we have a training set of m documents, {D1, . . . , Dm},
we can derive the following estimate for the probability of a term, t, being
associated with class, Ci:

P(t|Ci) =

1 +
k=m∑
k=1

BkP(Ci|Dk)

2 +
k=m∑
k=1

P(Ci|Dk)

where Bk is either zero or unity, depending upon whether term t occurs in
the kth document or not, and P(Ci|Dk) will be either zero or unity, depending
upon whether Dk is in Ci or not. The class priors, P(Ci), are estimated as before.
Similarly, the decision to assign a class follows the same rule as before.

Experimental results23 suggest that the multinomial method usually out-
performs the multivariate at large vocabulary sizes, or when vocabulary size is
manipulated so that it is optimal for each method. The multivariate method
sometimes does better on small vocabularies.

One problem with the Naïve Bayes approach is that it needs a batch of pre-
classified data in order to work well. Thus, if you have a backfile of manually
categorized documents, you can leverage this to automate or semi-automate
the process. But lacking a store of such documents, you must first invest a
significant manual effort (although see Sidebar 4.3).

Given training data, classification using Naïve Bayes is an attractive ap-
proach, because it is easy to implement. Constructing classifiers is just a matter
of keeping track of term counts. Classifying a new document only relies on
retrieving probabilities (or counts) from the stored model.

 Chapter 4

Sidebar 4.3 Dealing with lack of training data or sparse training data

One solution to a lack of training data is to perform a rough and ready automatic labeling
on some subset of the documents in your possession, e.g., using keywords, and then attempt
to improve the model by other automatic means, such as Expectation-Maximization. This
EM ‘bootstrapping’ approach iterates between two steps:

1. The E-step. Calculating training class labels P(Ci|D) that are now continuous weights,
instead of being unity or zero.

2. The M-step. Plugging these weights into the formulas to estimate new parameters for
the classifier.

The E- and M-steps are repeated until the classifier converges. There is some evidence24

that this technique results in a significant improvement in classification accuracy where la-
beled data is in limited supply, but there is a lot of unlabeled data to work with. However, it
assumes that the unlabeled documents really do belong to one or other of the categories.

Another solution is to take advantage of additional information in order to smooth the
data. When documents are organized into a large number of classes, these classes are often
organized in a hierarchy, which presents us with an opportunity for smoothing. We saw
earlier that we can use Laplace smoothing to avoid zero probabilities when there is no class
data for a given feature. Shrinkage is another statistical technique for smoothing that takes
advantage of a hierarchy of classes. In this instance, we are trying to compensate for the fact
that a given class is sparsely populated with data, in the sense of having very few training
examples.

If Ci is a sparse class, the probability Pr(tj|Ci) for each term tj can be smoothed with the
probability of tj in the ancestor25 classes of Ci:

Pr(tj|Ci) = λ1
i Pr(tj|Ci) + λ2

i Pr(tj|P2
i) + · · · + λk

i Pr(tj|Pk
i),

where Pk
i is the kth ancestor of class Ci, and λk

i is the weight given to the kth ancestor. These
weights can be estimated using a variant of the EM algorithm.26 It has been shown that
shrinkage using a hierarchy of classes noticeably improves the performance of Naïve Bayes
when there is little data at the leaves of the hierarchy.

From a practical point of view, it remains an open question as to whether such meth-
ods are better than simply having someone label more training data, assuming that this is
feasible.

.. Linear classifiers*

The Naïve Bayes methods described above attempt to model the distribution
of textual features within a collection of classified documents, and then use
that model to classify unseen documents. The conditional probability that a
document belongs to a class, given its feature vector, is calculated from two
other probabilities. One is the probability of observing vectors of feature values

Text categorization 

for documents of each class. The other is the prior probability that a document
will be assigned to a given class.

A second approach is the use of linear classifiers, in which categorizers are
modeled as separators in a metric space. It assumes that documents can be
sorted into two mutually exclusive classes, so that a document either belongs
to a category like  , or it does not. The classifier corresponds
to a hyperplane (or a line) separating the positive examples from the negative
examples. If the document falls on one side of the line, it is deemed to belong to
 ; if it falls on the other side of the line, it does not. Classification
error occurs when a document ends up on the wrong side of the line.

These two approaches mirror the dichotomy between Bayesian informa-
tion retrieval techniques and vector space techniques that we saw in Chapter 2.
As in Chapter 2, these differences may be more apparent than real, in that lin-
ear separation can be cast in terms of probability theory. But it is fair to say that
the Bayesian and vector space techniques provide rather different ways of look-
ing at the same problem, namely how to derive decision rules for classification
based only upon feature values.

Linear separation in the document space
A linear separator can be represented by a vector of weights in the same feature
space as the documents. The weights in the vector are learned using training
data. The general idea is to move the vector of weights towards the positive
examples, and away from the negative examples.

As described in Chapter 2, documents are represented as feature vectors.
Just like Naïve Bayes, features are typically words from the collection of doc-
uments. Some methods have used phrasal structures, or sequence of words as
features, although this is less common. The components of a document vector
can be 0 or 1, to indicate presence or absence, or they can be a numeric value
reflecting both the frequency of the feature in the document and its frequency
in the collection. The familiar tf-idf weight from Chapter 2 is often used.

When we classify a new document, we look to see how close this document
is to the weight vector. If the document is ‘close enough’, it is classified to the
category. The score of this new document is evaluated by computing the dot
product between the vector of weights and the document.

More formally, if a document, D, is represented as the document vector

�d = (d1, d2, . . . , dn),

 Chapter 4

and the vector of weights

�C = (w1, w2, . . . , wn)

represents the classifier for class C, then the score of document D for class C is
computed by:

fC(D) = �d · �C =
n∑

i=1

wi · di.

The computed score is a numeric value, rather than being a binary ‘yes/no’
indicator of membership. How do we decide whether document D belongs to
class C given that score? The most commonly used method is to set a threshold,
θ.27 Then if

fC(D) ≥ θ,
we decide that the document is ‘close enough’ and assign it to the class.

How do we compute these weights in the category vector? Just as we used
training data to estimate probabilities in the Naïve Bayes framework, here too,
we can use a set of labeled documents to compute the weights in the cate-
gory vector. This training algorithm for linear classifiers is an adaptation28,29

of Rocchio’s formulation of relevance feedback for the vector space model (see
Chapter 2, Section 2.5.2).

Sidebar 4.4 Linear functions in information retrieval

Linear functions have often been used in information retrieval. In the probabilistic model
introduced in Chapter 2 documents were ranked using a linear function:

P(D|RQ = 1) =
∑
t∈Q

wt,d =
∑
t∈Q

1 · wt,d.

RQ = 1 denotes that the document D is relevant to the query, Q, considered as a set of terms.
In the above formula, we explicitly introduced the weights associated with query terms as
either 1, when the term is present in the query, or 0, when it is absent. Weights wt,d are the
probabilistic estimates introduced in Chapter 2, Section 2.3.3.

Similarly, the classical vector space model30 can be recast into a linear framework. It
is not surprising that these models are intimately related, or that they can be couched in
probabilistic terms. As noted earlier, they are all working from the same feature data.

Rocchio’s algorithm
Rocchio’s approach models each category using all the documents known to be
in the category. The algorithm consists of applying the formula shown below

Text categorization 

to the current weight vector, W ′, to produces a new weight vector, W . Typ-
ically, the first weight vector will have all zero components, unless you have
prior knowledge of the class, e.g., in terms of keywords that have already been
assigned.

The jth component of the new weight vector, wj, is:

wj = αw′j + β

∑
D∈C

dj

nc
– γ

∑
D /∈C

dj

n – nc
,

where n is the number of training examples, C is the set of positive exam-
ples (e.g., all training documents assigned to the class  ) and nc

is the number of examples in C. dj is the weight of the jth feature in docu-
ment D. α, β and γ control the relative impact of the original weight vector, the
positive examples, and the negative examples respectively.

Rocchio’s algorithm is often used as a baseline in categorization experi-
ments.31,32 One of its drawbacks is that it is not robust when the number of
negative instances grows large. In its original context, relevance feedback, Roc-
chio’s formula was used when there were only a few positive and a few negative
documents.

In a classification context, there are typically more documents that do not
belong to a given class than documents that do belong to that class. Many ap-
proaches have handled this problem by setting parameters β and γ to arbitrary
values. For instance, negative examples can be entirely discarded by setting γ
to 0.

However, experiments have shown that a refined version of Rocchio can
be as effective as more complex learning techniques.33 This approach distin-
guishes between negative instances that are similar to positive examples (these
instances are called near-positives) and those that are not. Other approaches34

take advantage of a hierarchy of classes and choose the near-positives from the
set of positive instances in sibling categories.

To summarize, Rocchio’s algorithm is both easy to implement and effi-
cient. Its naïve implementation is often used as a baseline. It has shown good
performance when only a few positive examples are available. Furthermore, its
performance can be improved by reducing the number of negative examples,
and other enhancements.

On-line learning of linear classifiers
Rocchio, as described above, is a batch learning method, in that the entire set
of labeled documents is available to the algorithm all at once, and weights can

 Chapter 4

be computed directly from the set. On-line learning algorithms, on the other
hand, encounter examples singly and adapt weights incrementally, computing
small changes every time a labeled document is presented. On-line learning is
particularly attractive in dynamic categorization tasks like filtering and routing,
so most linear classifiers are trained with on-line algorithms.35

In general terms, on-line algorithms run through the training examples
one at a time, updating a weight vector at each step. The weight vector after
processing the ith example is denoted by

�wi = (wi,1, wi,2, . . . , wi,n).

At each step, the new vector, �wi+1, is computed from the old weight vector, �wi,
using training example �xi with label yi. For all methods, the updating rule aims
at promoting good features and demoting bad ones.

Once the linear classifier has been trained, we can classify new documents
using �wn+1, the final weight vector.36 Alternatively, if we keep all weight vectors,
we can use the average of these weight vectors, which was reported to be a better
choice:37

�w =
1

n + 1

n+1∑
i=1

�wi.

When we want to train classifiers on-line, we need to choose how and when
weights are updated.

It is common to use rather simple rules for updating weights. A rule can
either be additive, i.e., we add some small value to the current weight vector, or
multiplicative, i.e., we multiply each weight in the vector by a small value. In
each case, that small value controls how quickly the weight vector is allowed to
change, and how much effect each training example has on the weight vector.
Examples of approaches that use an additive rule are the perceptron38,39 and
Widrow-Hoff,40 while examples of training algorithms using an multiplicative
update rule are Winnow39 and Exponential Gradient (EG).40

The number of active features, or terms, that occur in a document is far
smaller than the number of terms in the whole training corpus. Updating
rules typically apply to only those weights that correspond to active features
in training document �xi.

After each training document, we can choose to update weights or not.
Some approaches (Winnow and perceptron) are mistake-driven, that is to say
they update weights only when example �xi is misclassified by weight vector
�wi. Others (Widrow-Hoff and EG) update weights after each training example,
whether it has been correctly classified or not.

Text categorization 

We discuss only Widrow-Hoff and Winnow here, for illustrative purposes.

Widrow-Hoff
The Widrow-Hoff algorithm, also called Least Mean Squared, updates weights
by making a small move in the direction of the gradient of the square loss,

(�wi · �xi – yi)
2.

It typically starts with all weights initialized to 0, although other settings are
possible. It then uses the following updating rule:

wi+1,j = wi,j – 2η(�wi · �xi – yi)xi,j.

This rule is obtained by taking the derivative of the loss function introduced
above. η is the learning rate, which controls how quickly the weight vector
is allowed to change, and how much effect each training example has on the
weight vector.

The weight-updating rule is applied to all features, and to every example,
whether the example is misclassified by the current linear classifier or not.

Winnow
There are several instantiations of Winnow. Positive Winnow41 is a multiplica-
tive weight-updating counterpart of the perceptron algorithm. Initially, the
weight vector is set to assign equal positive numbers to all features. Then, if
example �xi is incorrectly classified, weights of the active features are updated
using the following rule:

If the example �xi is a positive example, then

wi+1,j = wi,j · α.
If the example �xiis a negative example, then

wi+1,j = wi,j · β.
The promotion rate is α > 1 and the demotion parameter is 0 < β < 1. These
parameters have a role similar to the learning rate. The above rule is a simplified
version of Winnow, which assumes that features reflect the presence or absence
of terms. Positive Winnow furthermore constrains weights wi,j to be positive.

Balanced Winnow is a variant of Winnow that allows negative weights. This
version of the algorithm keeps two weights for each feature, w+

i,j and w–
i,j. The

overall weight of a feature is the difference between these two weights w+
i,j – w–

i,j.

 Chapter 4

Just like in Positive Winnow, weights are initialized to some small positive
value.

The algorithm updates the weights of active features only when a mistake
is made, as follows:

– If the example �xi is a positive example, the positive weight is promoted and
the negative one is demoted:

w+
i+1,j

= w+
i,j · α and w–

i+1,j = w–
i,j · β.

– If the example �xi is a negative example, the positive weight is demoted and
the negative one promoted:

w+
i+1,j = w+

i,j · β and w–
i+1,j = w–

i,j · α.
The overall effect of the update rule is to increase w+

i,j – w–
i,j after a promotion

and decrease it after a demotion.

Effectiveness of linear classifiers
The effectiveness of these on-line algorithms has been proved in a number
of experimental studies.35–37 Some studies have compared additive and multi-
plicative update rules, e.g., Winnow versus perceptron, while others have com-
pared these methods with earlier methods, such as Rocchio. Overall, effective-
ness seems to depend upon the following parameters.

– Document representation. Experimental results have shown that the per-
ceptron and Balanced Winnow performed better that Positive Winnow us-
ing a simple document representation (e.g. presence/absence of terms). On
the other hand, a more complex document representation using term fre-
quency, document length normalization and feature discarding improved
the performance of all three methods, and especially Positive Winnow,
which compared favorably to the Perceptron.

– Target values. Target values have been shown to impact performance. Tar-
get values are the values, yi, representing the class membership of examples,
�xi. These values are typically set to 0 when �xi does not belong to the class,
and to 1 when �xi is a member of the class. Experiments42 have shown that
this is not always the best setting.

– Learning rate. The learning rate is usually set by trial and error.

To summarize, on-line learning of linear classifiers produces adaptive classi-
fiers, i.e., classifiers that can learn on the fly. These classifiers are very sim-

Text categorization 

ple, but effective and easy to train. Update rules are also simple and efficient,
although a complex document representation may use a lot of space.

.. Decision trees and decision lists

Naïve Bayes and linear classifiers model documents using a relatively large,
fixed set of features, typically represented as vectors. Naïve Bayes looks at
the distribution of terms, either with respect to their frequency or with re-
spect to their presence or absence. Linear classifiers assume the existence of a
multidimensional feature space, and membership in a class is determined by
determining document’s position in that space, based on feature weights.

Decision trees
A quite different approach is to construct a tree that incorporates just those
feature tests needed to discriminate between objects of different classes. The
unique root can be thought of as representing the universe of all objects to be
categorized. A non-terminal node of the tree is a decision point that tests a
feature and chooses a branch that corresponds to the value of the result.

A classification decision is then a sequence of such tests terminating in the
assignment of a category corresponding to a leaf node of the tree. Leaf nodes
represent the categories non-uniquely, i.e., there may be more than one leaf
node with the same category label, with the path from the root to that leaf rep-
resenting a distinct sequence of tests. It turns out that such trees can be formed
by an inductive learning technique, based on a training set of preclassified
documents and their features.

A simple example will help illustrate the general structure of decision trees,
and their use in document categorization.

In Figure 4.1, we have a decision tree on the topic of whether or not a
case law document is about bankruptcy, given the presence of a few words or
phrases. The leaf nodes ‘P’ and ‘N’ stand for positive and negative judgments
about this. The features and their possible values are given in Table 4.1. Note
that feature values are intended to be both discrete43 and mutually exclusive.

The decision tree in Figure 4.1 says that the document should contain the
term ‘bankruptcy’, but also adds some further conditions. If ‘bankruptcy’ oc-
curs only once, we insist that the term ‘conversion’ be present more than once.
If ‘bankruptcy’ occurs more than once, we only require that the term ‘assets’ be
present.

A decision tree therefore encodes an algorithm that states, for any con-
junction of test outcomes along a valid path from the root, what the outcome

 Chapter 4

bankruptcy

assets conversion

present > 1absent =< 1

> 1 0 1

N

P PN N

Figure 4.1 A decision tree for the ‘bankruptcy’ example

should be. Paths through the tree exhaust the space of alternatives, so that all
objects find their way to a leaf node, and are so classified. As we shall see, it is
also possible to decode such a tree into an ordered set of rules that encodes an
equivalent decision procedure.

Note that the decision tree method characterizes a data object, such as
a document, in terms of a logical combination of features, which is simply
a statement about that object’s attributes, and does not involve any numeric
computation. In text categorization applications, these features are most likely
to be stemmed words. This is quite different from representing a document as
a vector of weighted features, and then performing a numeric computation to
see if some combination of feature weights meets a threshold. Consequently,
decision tree classifiers do not have to learn such thresholds, or other param-
eter values. What they learn is essentially a set of rules defined over a space of
keywords.

A typical training algorithm for constructing decision trees (let’s call it
CDT) can be sketched as the following recursive function.

Table 4.1 Features and their values

Feature Possible values

Bankruptcy number of occurrences
Conversion number of occurrences
Assets present, absent

Text categorization 

CDT(Node, Cases)
if Node contains no Cases, then halt,
else if the Cases at Node are all of the same class, then the decision tree for
Node is a leaf identifying that class,

else if Node contains Cases belonging to a mixture of classes,
then choose a test and partition Cases into subsets based on the out-

come, creating as many Subnodes below Node as there are subsets,
and call CDT on each Subnode and its subset of Cases,

else halt.

The main issue in the implementation of such an algorithm is how the pro-
gram chooses the feature test that partitions the cases. Different systems have
used different criteria, e.g., the ID3 decision tree program uses a measure of
information gain, selecting the most ‘informative’ test.44 The test that gains
the most information is simply the test that most reduces the classification un-
certainty associated with the current set of cases. Uncertainty is maximal when
classes are evenly represented across the current set of cases, and minimal when
the cases are all of the same class. We discuss this notion of ‘information gain’
in more detail in the next section.

We mentioned earlier that a decision tree can be considered as a set of rules,
since each path between the root and a leaf node specifies a set of conjoined
conditions upon the outcome at the leaf. Going down the left hand side of the
tree in Figure 4.1, we find the positive outcome at the left-most leaf depends
upon the term ‘bankruptcy’ occurring more than once, and the term ‘assets’
being present. We can write this rule as follows.

if bankruptcy > 1 & assets = present
then positive

Alternatively, we can consider all the different ways in which we can reach a
positive leaf, and render these test conditions in disjunctive normal form (DNF)
as a disjunction of conjunctions. There are two disjuncts in our Figure 4.1
example, because there are just two conditions under which a document is
classified as being about bankruptcy.

if bankruptcy > 1 & assets = present
∨
bankruptcy = 1 & conversion > 1

then positive

else negative.

 Chapter 4

A complex rule like this can also be expressed as two simpler rules, each with
a single conjoined condition. These rules are implicitly ordered, with the first
rule whose conditions are satisfied making the decision. If no positive rule has
its conditions satisfied, then the outcome is negative. Such rules are sometimes
called decision rules.45

if bankruptcy > 1 & assets = present
then positive

if bankruptcy = 1 & conversion > 1
then positive

else negative.

One of the most popular decision tree programs, C4.5, allows the user to
compile the tree into a set of rules in this way.46

For an approach based on decision trees, or decision rules, to be applicable
to a classification problem, the following requirements should be met.

– Decision-tree methods work best with large data sets. Training sets that are
too small will lead to overfitting.47

– The data must be in a regular attribute-value format. Thus each datum
must be capable of being characterized in terms of a fixed set of attributes
and their values, whether symbolic, ordinal or continuous. Continuous
values can be tested by thresholding.

Assuming that they are applicable, decision tree methods can have a number
of advantages over more conventional statistical methods.

– They make no assumptions about the distribution of the attribute values
(e.g., that they are normally distributed).

– They do not assume the conditional independence of attributes (as would
be required by Naïve Bayes classifiers).

Studies48 have shown that tree-based classifiers can perform on a par with most
other text categorization methods for feature sets of moderate size. However,
decision trees do not have to use all the available features, since not all features
will make a contribution to the training phase. Nevertheless, it is worth remov-
ing stop words from the feature set, to prevent accidental distributions of such
words attaining significance.

Text categorization 

Decision lists
Decision lists are like the decision rules we encountered in the last subsection,
except that they are strictly ordered and contain only Boolean conditions. Thus
we can test for the presence or absence of word features, but not for features
that have more than two values, unless they can be cascaded, or otherwise
reduced, to a Boolean form. Various interesting results have been proved for
bounded decision lists, including polynomial complexity.49

The best known application of decision lists to text categorization is a tool
called ,50 which classifies documents based solely on the presence or ab-
sence of words in the text. A decision list for a document, D, with respect to a
category, C, is essentially a list of rules of the form,

if w1 ∈ D & . . . & wn ∈ D then D ∈ C,

e.g.,

if ‘bankruptcy’ ∈ Document & ‘conversion’ ∈ Document & ‘assets’ ∈
Document
then Document ∈ .

where  denotes the category of documents about bankruptcy.
Since the role of the document can be understood, we shall write such a rule as:

if ‘bankruptcy’ & ‘conversion’ & ‘assets’ then .

 is a ‘non-linear’ classifier, because the rules that it constructs test for
combinations of terms, instead of weighing the contribution of individual
terms without regard to their context of occurrence.51

Learning a category in  consists of first building a rule set (training
phase) and then optimizing it (pruning phase). Given a set of positive and neg-
ative examples for the category, we use two-thirds of the data to build the rule
set, and set aside the remaining one-third for the optimization process.

The training phase proceeds roughly as follows. Starting with a rule with
no conditions, such as

if Ø then ,

we grow the rule in stages, by adding conditions which identify positive in-
stances of the concept. Thus

if ‘bankruptcy’ then ,

 Chapter 4

might identify some positive instances of the category, but also identify some
negative instances, i.e., documents which are not primarily about bankruptcy,
even though they contain the word.

Adding ‘assets’ to the rule might rule out some of those negative instances,
yielding

if ‘bankruptcy’ & ‘assets’ then .

Two questions about this process may already have occurred to the reader:

– how does  decide which conditions to add, and
– how does it know when to stop?

At each stage,  seeks to maximize the information gain, given by

p′ ·
(

– log2

p

p + n
+ log2

p′

p′ + n′

)
,

where p is the number of positive examples in the training set covered by the
existing rule, and n is the number of negative examples so covered. p′ (respec-
tively n′) represents the number of positive (respectively negative) examples
covered by the new rule, formed by adding a condition.

The ratios represent the precision of each rule, and estimate its probability
of success on unseen data. The log ratios represent the concept of informa-
tion,52 defined in terms of probabilities, so summing the logs is equivalent to
multiplying the probabilities. The logarithms are base 2, because information
is typically measured in terms of binary decisions, or bits.

Adding conditions to a rule continues until either

– no negative examples are covered by the rule, or
– no condition can be found which would result in information gain.

As soon as a rule has stopped growing, it is pruned. Thus the rule growing and
rule pruning steps alternate as the rule set is built. Pruning involves deleting
conditions from a rule to make it more general and avoid overfitting.

During pruning, the rule is considered in the context of the pruning set,
not the training set. In choosing conditions to delete, we seek to maximize the
expression

p′′ – n′′

p′′ + n′′
,

where p′′ is the number of positive examples in the pruning set covered by the
rule, and n′′ is the number of negative examples so covered.

Text categorization 

After pruning, all the positive examples covered by a rule are removed from
the training set. Thus  requires that information gain be non-zero, and
therefore stops adding rules when there are no positive examples left to clas-
sify.53 The net result is a ‘covering’ or partitioning of the documents in the
training set into mutually exclusive categories.

Another feature of  is that it allows the user to specify a ‘loss ratio’,
which balances the cost of a false positive error against a false negative error.54

In many applications, the cost of assigning a text to the wrong category might
be greater than the cost of not assigning it to the correct category. For exam-
ple, blatantly misclassified documents in a news feed might undermine a con-
sumer’s confidence in the feed. Numerical classifiers like Naïve Bayes or linear
classifiers can make this trade-off by choosing similarity thresholds, i.e., high
thresholds bias the system towards false negatives, while low thresholds bias
the system towards false positives.  implements the loss ratio concept by
manipulating the weights assigned to these different kinds of error during the
pruning and optimization stages of the learning algorithm.

 has been shown to be an efficient learning program and an effective
text classifier. Its performance scales almost linearly with the number of train-
ing examples, and its error rates compare favorably with other rule induction
programs, such as C4.5,55,56 and show modest improvements over approaches
based on Rocchio’s classifier.57 Thus Thompson55 found that  outper-
formed both C4.5 and a k-nearest-neighbor algorithm in assigning legal cases
to 40 broad topical categories, such as  and .

However,  is not available as a commercial system, and has not been
used much outside of the research community. Although it scales well to large
numbers of examples, one doubts that it would scale to a large number of cat-
egories. Most of the results in the research literature are derived from experi-
ments in which documents are assigned across a few hundred categories. There
are very few systems that have been applied to problems of a thousand or more
categories, and those that have58 rely upon editorial post-processing to tidy up
the assignments.

Although decision trees and rules may not scale to a large number of
categories, they remain attractive for some applications because they express
classification rules explicitly, for instance:

If ‘bankruptcy’ and ‘assets’ then .

With a limited number of categories, it is possible to learn classification rules
automatically, but then refine these rules manually to better fit a given task.

 Chapter 4

Refining these rules, however, requires some understanding of how they are
applied.

. Nearest Neighbor algorithms

Naïve Bayes or linear classifiers learn through induction: they build an explicit
model of the class by examining training data. The same can be said of decision
tree and decision list classifiers, such as C4.5 and RIPPER. However, there is
another kind of classifier that does not learn in this way.

‘Nearest Neighbor’ classifiers rely on rote learning. At training time, a
Nearest Neighbor classifier ‘memorizes’ all the documents in the training set
and their associated features. Later, when classifying a new document, D, the
classifier first selects the k documents in the training set that are closest to
D, then picks one or more categories to assign to D, based on the categories
assigned to the selected k documents.

To define a k-NN (k-Nearest Neighbors) classifier, we first need to define
the distance metric used to measure how close two documents are to each
other. We could use the Euclidean distance between documents in the vec-
tor space, or we can use one of the measures defined in Chapter 2. Recall
that search engines measure how relevant a document is to a given query by
measuring how similar the query and the document are. Not surprisingly, we
can use the same similarity metrics to measure the distance between pairs of
documents, for instance the INQUERY59 and the cosine similarity measures. 60

Next, we need to define how to assign categories to a document, given the
categories assigned to its k nearest neighbors. A simple approach to assigning
a single class per document is to take the majority class among the k nearest
neighbors. Multiple class assignment could be achieved by taking the top two
or three best represented classes among the neighbors, but this may be overly
simplistic.

A more sophisticated approach to both single and multiple class assign-
ment is to use a distance-weighted version of k-NN, so that the further a neigh-
bor is from the document D, the less it contributes in the decision to assign that
neighbor’s category, Cj. This preference can be expressed by computing scores
for each potential class along the following lines of:

Sc(Cj, D) =
∑

Di∈Trk(D)

sim(D, Di) · ai,j.

Text categorization 

Sc(Cj, D) is the score of class Cj for document D, Trk(d) is the set of the k
nearest neighbors of document D, sim(D, Di) is the similarity measure be-
tween documents, while ai,j = 1 if document Dj is assigned to class Cj, and
0 otherwise.61

Applying this to binary classification, the best scoring class might differ
from the majority class. In the multiple assignment case, we simply adopt a
cut-off strategy62 for assigning categories based on their scores, just as we did
for assigning multiple classes with Naïve Bayes.

The last choice, the selection of k, remains mostly empirical.59,60 It is usu-
ally computed on a validation set, i.e., a set of documents distinct from both
training and test sets. In general, the value of k depends upon two things.

– How close the classes are in the feature space. The closer the classes, the
smaller k should be.

– How typical the training documents are in a given class. If they are very
heterogeneous, then a larger k is appropriate to ensure a representative
sample.

Experimentally, k-NN classifiers have been shown to be very effective classi-
fiers. Training k-NN classifiers is fast, because all one needs to do is store the
documents represented as vectors of features. On the other hand, classifica-
tion is not so fast, because a fair amount of computation is required to match
documents against each other.

But they can still be reasonably efficient, and may be worth considering if
the number of categories is large, since k-NN classifiers are document-centric,
rather than category-centric. That is to say, a document is presented once, and
multiple categories can be assigned, based solely on its neighbors. In this con-
text, classifying a document requires N similarity computations, where N is
the size of the training set. By contrast, Naïve Bayes and linear classifiers are
category-centric, in that documents are matched against to each category. This
requires M similarity computations, where M is the number of categories to
assign.

Thus the attractiveness of k-NN depends upon the relative efficiency with
which one can compare document vectors to category vectors, versus the cost
of finding similar documents. If the documents to be categorized are quite
short, e.g., abstracts or summaries, it may even be worthwhile to run them as
queries against a collection of previously classified documents, using a ranked
retrieval engine. The top k documents in the result list can then suggest classi-
fications for the new document.

 Chapter 4

. Combining classifiers

Individual text categorization programs often perform very unevenly across the
target categories. Some categories will exhibit high recall, while others will have
much lower recall scores, and similarly with precision. Some category pairs will
be highly confusable, while others will be well separated in the space.

Consequently, it makes sense to try and combine different algorithms, in
the hope that together they will provide better performance. Approaches that
combine the judgments of multiple experts (classifiers, retrieval systems, etc.)
have received a lot of attention in Artificial Intelligence,63 Machine Learning64

and Information Retrieval65 over the last ten years.

.. Data fusion

The combination of classifiers in text categorization derives in part from con-
cepts in Information Retrieval. The term ‘data fusion’ refers to the combin-
ing of search results retrieved from the same corpus by different mechanisms.
These mechanisms may be known only through the list of documents they re-
trieve (i.e., they are typically used as “black boxes”). For instance, meta-search
engines on the Web, such as MetaCrawler,66 are faced with the data fusion
problem of integrating search results from multiple search engines.

Experimental studies of data fusion have combined various representation
schemes (terms and phrases for instance), various weighting instantiations of
the same retrieval model (weighting schemes in the Vector Space Model), var-
ious (manual) formulations of the same information need,67 and the outputs
of different search engines.68 A main issue is to decide how to combine mul-
tiple result sets. This requires choosing a combination model, and setting the
parameters required by that model. In general, the model is selected manually,
i.e., the systems designer decides to rely on simple averaging, or on a linear
combination.

However, it is possible to set these model parameters (e.g., the weights in
a linear combination) automatically using training data. For instance, Bartell
et al.69 rely on a linear combination, and derive the parameters using numeri-
cal optimization. They optimized the parameters using the squared error, and
a measure derived from rank statistics and correlated to the retrieval perfor-
mance measure used (average precision). This study emphasizes that the model
parameters should be optimized using a function related to the performance
measure used to evaluate the retrieval system.

Text categorization 

Finally, recent studies have focused upon predicting when combined re-
trieval systems will work better than the individual systems. For instance, lin-
early combining two retrieval systems can improve overall performance, if the
overlap of relevant documents is maximized, while the overlap of non-relevant
documents is minimized.70 Similar approaches have been taken to combine
classifiers for binary text classification and text filtering tasks.71

In assigning medical codes to inpatient discharge summaries, one ap-
proach investigated linearly combining k-Nearest Neighbor, Naïve Bayes and
Rocchio classifiers72 using two different scoring methods. The first method
relied on the (inverse) rank of a given category (categories were assumed to
be ranked by the various classifiers). The other method normalized scores be-
tween 0 and 1. The score assigned by k-nearest neighbor was divided by k,
while the score assigned by the Naïve Bayes classifier was divided by the maxi-
mal score for that category. The combination weights were tuned using a small
validation set.

The conclusions drawn from this study were that using the normalized
scores was superior to using the ranks, and that the combination of any two
classifiers using normalized scores was always superior to the individual clas-
sifiers. Additionally, experimental results showed that a less effective classifier
helped improve the effectiveness of the combination when its behavior (e.g.,
good precision at low recall) complemented the behavior of the other classifier
(e.g., good precision at high recall).

.. Boosting

Boosting is a method that generates many simple “rules of thumb”,73 and
then attempts to combine them into a single, more accurate rule for binary
classification problems. A rule of thumb may be, for instance:

If the word ‘money’ appears in the document, then predict that the doc-
ument is relevant to the  class, otherwise predict that the
document is not relevant.

A novel feature of boosting is that it associates weights with training docu-
ments. (The previous methods that we have examined treated each training
document in the same way.) The training process is incremental, and proceeds
as follows.

The boosting algorithm is an iterative one of R rounds, where a rule of
thumb is derived from the training data at each round, using a weak learner.
The method maintains a set of weights over training instances and labels so

 Chapter 4

that, as boosting progresses, training examples and corresponding labels that
are hard to predict get higher weights, while examples and their labels that
are easy to predict get lower weights. New rules of thumb are generated as the
weak learner takes into account that it is more important to classify documents
with a higher weight. As a consequence, at any given round, the weak learner
concentrates on hard documents, i.e., documents that were misclassified by the
previously derived rules of thumb.

A rule of thumb is derived as follows. All words and bigrams (sequences of
two words) are considered as potential terms. For each term, the weak learner
computes the error generated by predicting that a document is relevant (should
be assigned to the class) if and only if it contains that term. The term that
minimizes the classification error is selected for that round, and the rule of
thumb tests for the presence of that term.

The final combined rule classifies a new document by computing the value
of each rule of thumb on this document and taking a weighted vote of these
predictions of the form

hfinal(Di) = sign

(
R∑

r=1

αrhr(Di)

)
,

where hfinal is the combined hypothesis, hs the rule-of-thumb at round r, and
αs its associated weight, while Di is the new document.

Various suggestions have been made as to how rules of thumb, updating
factors, and initial weights should be computed74 in order to minimize classi-
fication error. For example, experimental studies have followed two different
approaches to decide the number of rounds, R. The first simply fixes the num-
ber of rounds a priori, while the second relies on classification error on the
training set to decide when to stop.

In a machine learning context, boosting has been successfully applied to
more complex learners, such as decision trees. Using some dimensionality re-
duction techniques (described in Sidebar 4.5), boosting decision trees has been
shown more effective than using stand-alone decision trees.75 However, boost-
ing even weak classifiers, like simple predictors based on the presence of a
term or a sequence of terms, has been proven an effective technique for text
classification and filtering.76

Boosting as we have presented it so far applies to binary classification tasks.
The Boostexter system77 has extended the approach to handle multi-class and
multi-label problems. Multi-class refers to choosing a class among a set of
classes, while multi-label refers to the assignment of multiple classes to the

Text categorization 

same document. The Boostexter system also expanded boosting to support
ranking, i.e. labels are assigned in ranked order to documents. Boostexter has
shown very good performance in a variety of text classification tasks, while
boosting has also been applied successfully to the routing task.78

Sidebar 4.5 Dimensionality reduction

In any large collection of documents, there are tens of thousands of unique terms, and the
number of phrases is even larger. However, not all terms are useful to distinguish between
two classes. For instance, words like ‘the’ or ‘and’ will occur in every document. The word
‘sport’ may not help separating documents about  or . However, the term
‘sport’ is a pretty good indicator of the  category, compared with other categories, such
as  or . We can see that some words are more useful for a given classification
task than others. Feature selection79 focuses on finding these very words.

When feature selection is global, all classes are described using the same features. In that
case, terms like ‘the’ and ‘and’ will be eliminated, but the term ‘sport’ may be kept. An alter-
native is local feature selection, which retains words that characterize a given category from
the other categories in the classification task. As a result, the term ‘sport’ may be eliminated
from the feature set used to describe  or , but kept to describe 

. Terms are selected based on a numerical criterion that measures the association
between categories and terms, usually statistical or information-theoretic measures.80

One very simple measure is document frequency. Only the most frequent terms are
selected. Of course, before applying the criterion, we need to remove stopwords. Document
frequency has mostly been used as a global selection criterion.

Another measure is the information gain, the same measure used to select a test when
constructing decision trees or decision rules. Information gain is usually used as a local
selection criterion, but can be adapted to be global.

Finally, χ2 has been used as a local selection criterion. χ2 is a common statistic that
measures the lack of independence between variables. When we select features, the variables
are terms and categories.

.. Using multiple classifiers

Boosting combines simple rules of thumb, but it is also possible to combine
the results of multiple classifiers, by a more direct analogy with data fusion.
A recent approach exploited distinct sets of features to address a hard catego-
rization problem and successfully implemented a complex combination strat-
egy.81 The task was to assign headnotes (summaries of points of law) to sections
of an analytical law publication. The multi-volume publication contains over
13,500 sections, each of which addresses a particular factual situation and is
considered to be a category.

 Chapter 4

The program leveraged two different kinds of data associated to legal cases:
the text of the headnotes themselves and key numbers82 associated with these
headnotes.

A headnote on the topic of     is
shown below, together with its associated key number and hierarchical topic
labels:

In an action brought under Administrative Procedure Act (APA), inquiry is
twofold: court first examines the organic statute to determine whether Congress
intended that an aggrieved party follow a particular administrative route before
judicial relief would become available; if that generative statute is silent, court
then asks whether an agency’s regulations require recourse to a superior agency
authority.
Key number: 15AK229 – ADMINISTRATIVE LAW AND PROCEDURE –
SEPARATION OF ADMINISTRATIVE AND OTHER POWERS – JUDICIAL
POWERS

The topical hierarchy is about seven layers deep and slanted towards legal con-
cepts, such as negligence, whereas the publication to be supplemented con-
sists of relatively flat sections that address specific fact patterns, such as leakage
from underground storage tanks. Thus the match between the two is inexact,
with respect to both structure and content. Furthermore, the section headings
are rather fine-grained, representing quite narrow points of law that are easily
confused, e.g.,

       

 - .

       

  .

       

  .

       

    .

The headnotes to be classified were represented by word features, as one might
expect, but not just by individual words. One set of features consisted of all
nouns, noun-noun, noun-verb and noun-adjective pairs present in headnotes.
The second set consisted of key numbers associated with the headnotes.

Sections were modeled by similar features extracted from headnotes al-
ready assigned to them. This was found to be more effective than modeling the
text of the sections themselves. These features were each used separately by two

Text categorization 

different classifiers, a Naïve Bayes classifier and a vector space classifier based
on tf-idf, generating a total of four classifiers for each category.

For each section of the publication, the final score of a document was es-
timated by a linear combination of the scores of the individual classifiers. A
headnote was then assigned to the section as a supplement, if that score ex-
ceeded a learned threshold. The weights and the threshold were parameters of
the combination model, different for each classifier-class combination. Thus,
for a problem involving m classes, the system would have 4m weights and m
thresholds.

The combination of four classifiers on the headnote routing task outper-
formed each individual classifier, since both the different features and the dif-
ferent classification methods had different coverages of the data. The result-
ing program, called CARP for ‘Classification And Routing Program’, is now
in production, performing regular semi-automatic supplementation of a legal
encyclopedia. We discuss the evaluation of this system further in Section 4.6.4,
where we attempt to decide how the utility of such programs should be assessed
in practice.

. Evaluation of text categorization systems

The methodology for evaluating a text classifier depends upon the task that the
program is trying to perform, according to the analysis of tasks we provided
in Section 4.1. Routing, filtering and categorization may each require different
evaluation metrics that better reflect the task. For example, some routing tasks
might place a premium on recall, if every document has to be sent somewhere.
By contrast, a filtering task might want to emphasize precision, if the purpose
of the filter is to alert a user to some event, or to prevent a user from seeing
certain kinds of document.

.. Evaluation studies

When the Text REtrieval Conference83 (TREC) started in 1992, its purpose
was to provide the infrastructure necessary for large-scale evaluation of re-
trieval methodologies. However, there was an interest in evaluating a kind of
categorization task, from the very beginning.

In the first year, TREC included two main tasks: “ad hoc” and routing.

 Chapter 4

– In the ad hoc task, unseen queries are being run against a static set of seen
documents. This task is similar to how a researcher might use a search
engine to find information.

– In the routing task, seen queries representing category profiles are run, but
against a collection of unseen documents. This is more similar to the task
performed by news clipping services.

While ad hoc and routing are distinct tasks, TREC followed the same eval-
uation protocol. For both tasks, relevance judgments were gathered using a
pooling method,84 and evaluation metrics included recall and precision.

Later on, the 4th TREC introduced filtering as a separate track. Routing was
designed to be similar to ad hoc search, inasmuch as it was presented as a batch
process, run on an entire collection of new documents, with routing results
ordered by rank. Filtering, on the other hand, is more like an alert service,
which selects incoming documents and forwards them to a user.

Filtering was therefore designed as a binary classification task for each
topic, which required documents to be classified as they appeared. These re-
quirements led to the introduction of new evaluation strategies that simulate
immediate distribution of the filtered documents.85 Given a topic, an incoming
stream of documents, and possibly a small historical collection of relevant and
non-relevant documents, systems were asked to construct a query profile and a
filtering function that would make the binary decision to either accept or reject
each new document as it is read from a feed.

Two years later, the 6th TREC introduced a sub-track, called adaptive fil-
tering, which became the main filtering track in the subsequent conferences.86

Adaptive filtering differs from filtering in that there is no historical collection of
relevant and non-relevant documents for a given topic. However, a binary rele-
vance judgment is provided for some of the filtered documents. This relevance
information can be used adaptively to update both the filtering profile and the
filtering function. So learning now occurs incrementally, as classifications are
performed.

Other classification tasks from Section 4.1, e.g., indexing and sorting, have
not been evaluated in such controlled evaluation studies. At first, classification
approaches were mostly evaluated on proprietary data using common evalua-
tion techniques, as they were centered on a given task.87 Over the years, how-
ever, several collections of documents have become available to everyone, and
classifiers can now be evaluated on the same set of documents and classes.

Among these collections, the most widely used is the Reuters collection,88 a
collection of news wire stories classifiers under categories related to economics.

Text categorization 

Other frequently used collections include the OHSUMED collection,89 the As-
sociated Press (AP) news collection,90 and the 20 Newsgroups collection.91 The
OHSUMED collection is composed of titles and abstracts of medical jour-
nal articles, where categories are posted terms of the MESH thesaurus. The
AP collection consists of about 40 million words of newswires from 1989 and
1990, and was originally restricted to TREC92 participants. The 20 Newsgroups
collection was extracted from Usenet news groups; documents are messages
posted to Usenet groups, and categories the news groups themselves.

For many academic studies, evaluations are equated to the comparison of
a newly proposed method with previously published results, or more rarely,
to the controlled comparison of several methods.93 To conduct such evalua-
tion studies, a common collection is necessary. However, a common collection
does not ensure that results will be comparable. Indeed, previously published
results may not use the same performance metrics, nor the same variant of the
collection.

For instance, early results using the Reuters collection were reported using
one metric, while later ones used another. More importantly, the set of doc-
uments and categories were not always kept constant across experiments. In-
deed, there are at least 6 different variants of the Reuters collection. A compar-
ative study by Yang94 argues that results using Reuters-22173 ModLewis cannot
be directly compared to any other results, but that results achieved using any
of the other Reuters collections can be compared.95

.. Evaluation metrics

The performance metrics typically used in IR were the first metrics to be ap-
plied to the evaluation of text classifiers. Let us first address the problem of
evaluating whether a given class is correctly assigned, i.e., the evaluation of a
binary classifier.

Evaluating the performance of a binary classifier
The performance of classification systems is frequently evaluated in terms of
effectiveness. Effectiveness metrics for a binary classifier rely on a 2×2 contin-
gency table, similar to the one introduced in Chapter 2, Section 2.5.2, Table
2.4. TPi denotes ‘true positives’, FPi denotes ‘false positives’, FNi denotes ‘false
negatives’, and TNi denotes ‘true negatives.’

 Chapter 4

Table 4.2 Contingency table reflected the assignments performed by a binary classifier

Category ci Expert assigns YES Expert assigns NO Total

Classifier assigns YES TPi FPi mi

Classifier assigns NO FNi TNi N – mi

Total ni N – ni N

Recall and precision have been adapted to text classification. Precision is
the proportion of documents for which the classifier correctly assigned cate-
gory ci and is given by

Pi =
TPi

mi
.

Recall is the proportion of target document correctly classified and is given by:

Ri =
TPi

ni
.

Recall and precision are complements of one another, as we saw in Chapter 2.
In fact, there is a trade-off between both measures: 100% recall can be achieved
by always assigning every category to every document, in which case precision
can be very low. As a result, it seems more appropriate to evaluate a classifier
in terms of a combined measure that depends on both precision and recall.

Three main measures have been proposed: 11-point average precision,
break-even point and the Fβ measure.

– The 11-point average precision metric is an IR metric and relies on ranking.
Its value is the average of precision points taken at the fixed recall values:

0.0, 0.1, 0.2, . . . , 0.9, 1.0

This measure has typically been used for the routing task. The use of the
11-point average precision is limited to systems that rank documents for a
given category, or to systems that rank categories for a given document. In
the latter case, classifiers may not be binary, i.e., the categories must not be
mutually exclusive.

– The break-even point is the value at which recall equals precision. The
break-even point is often interpolated from the closest recall and preci-
sion values. The break-even point was one of the first combined metric
introduced. It has later been argued that the break-even point metric re-
flects more the properties of the recall-precision curve, rather than the
performance of a given classifier.

Text categorization 

– The Fβ measure96 is given by:

Fβ =
(β2 + 1) · Pi · Ri

β2 · Pi + Ri

,

where 0 ≤ β ≤ ∞ may be interpreted as the relative importance given to
recall and precision. While a typical value for β is 1, other values may be
used to bias the evaluation towards conservative or liberal assignments.

The TREC-9 filtering track has introduced a precision-oriented metric to eval-
uate adaptive filtering. This metric, called T9P, sets a target number of docu-
ments to be retrieved over the period of the simulation. This situation corre-
sponds roughly with the cases where a user indicates what sort of volume he or
she is prepared to see.

T9Pi =
TPi

max(T, mi)
,

where T is the target number, TPi denotes ‘true positives’, as in Table 4.2.
Because text classifiers can be constructed using machine learning tech-

niques, machine learning criteria such as the accuracy of the classifier, or the
number of errors performed by the classifier, have sometimes been used to
measure effectiveness. Accuracy is given by:

Acci =
TPi + TNi

N
,

where TNi denotes ‘true negatives’, as in Table 4.2.
However, such an accuracy measure has some limitations for the evalua-

tion of text classifiers. A classifier that never makes a positive assignment to
a class can have a higher accuracy than other non-trivial classifiers. As an al-
ternative to accuracy, the number of errors (FPi + FNi) has sometimes been
used.

Some evaluation measures are not strictly measuring effectiveness, but
rather the utility of a classifier, by capturing the notion of gain and loss for
a correct decision. Such measures have sometimes been put forward as an al-
ternative to recall and precision in IR. A major change of emphasis came with
the evaluation protocol for the TREC filtering track85, in which utility measures
were the evaluation measures of choice. Utility associates a gain (or a loss) to
the cells in the contingency tables in Table 4.2.

 Chapter 4

Linear utility measures have been frequently used, and can be defined as
follows:

Ui = λTP · TPi + λFP · FPi + λTN · TNi + λFN · FNi.

Examples of utility measures used for the TREC filtering track are

U1 = TPi – 3 · FPi,

and

U3 = 3 · TPi – FPi.

One can imagine a scenario where a user is willing to pay $1 for each rele-
vant document, but loses $3 for each non-relevant document he reads. This
corresponds to the utility U1, which encourages high precision. In contrast
U3 encourages recall. While these two measures take into account only the
documents accepted by the system, it is possible to take into account rejected
documents. For instance, the following measure was used during TREC-6:

F2 = 3 · TPi – FPi – FNi.

Utility measures may not be the best measures to evaluate the performance
of filtering systems. First, utility measures are not normalized. It is therefore
difficult to compare scores across topics (or categories). Second, all documents
are considered equal, no matter how many documents have been seen by the
system before, or how many documents are relevant to the topic. One way to
address this second point is to use non-linear utility measures.

For instance, the following utility measure was used at TREC-8:

NF1 = 6 · TP0.5
i – FPi.

An interesting fact about linear utility functions is that they can translate into
a threshold on the estimated probability of relevance.97 If our text classifier
computes accurate estimates of probability of relevance, we can derive the op-
timal thresholds for a given utility measure (for instance, U1 corresponds to
a conservative threshold of 0.75, while U3 corresponds to liberal threshold
of 0.25).

Evaluating the performance of a classification system
Until now, effectiveness and utility were measured for a single category. A clas-
sification system may handle hundreds of categories. How do we report the
overall performance of such a system?

Two averaging methods have been adopted: micro- and macro-averaging.98

Micro-averaging sums up all the individual decisions into a global contingency

Text categorization 

table (similar to Table 4.2) and computes recall and precision on the “global”
contingency table:

Pµ =

c∑
i=1

TPi

c∑
i=1

mi

, and Rµ =

c∑
i=1

TPi

c∑
i=1

ni

,

where c is the number of categories in the system.
Macro-averaging computes the recall and precision figures for each cate-

gory, and averages these values globally:

PM =

c∑
i=1

Pi

c
, and RM =

c∑
i=1

Ri

c
,

where c is the number of categories in the system.
Micro- and macro-averages can be computed for all of the effectiveness

measures discussed above. These two methods may produce very different re-
sults, especially when some categories are more populated than others. Because
micro-averaging adds individual cells into a global contingency table, it gives
more importance to densely populated classes. Macro-averaging, on the other
hand, does not favor any class.

No agreement has been reached in the literature on whether one should
prefer micro- or macro-averages in reporting results. Macro-averaging may be
preferred if a classification system is required to perform consistently across
all classes regardless of how densely populated these are. One the other hand,
micro-averaging may be preferred if the density of a class reflects its importance
in the end-user system.

Simple averaging of utility measures gives an equal weight to every doc-
ument. This means that average scores will be dominated by topics with large
retrieved sets (as in micro-averaging). The filtering track at TREC has proposed
two alternatives to averaging raw utility scores.

1. Rank statistics. Rank statistics expects several systems to be compared. For
each topic, systems are ranked according to their utility score. Ranks are
then averaged for each system over all topics. As a result, rank statistics
provides a relative notion of the overall utility of a filtering system.

2. Scaling. For each topic, raw utility is scaled between 0 and 1. Systems can
then be compared using the macro-average of the scaled utility scores.

 Chapter 4

To summarize, a large number of measures have been proposed and used to
evaluate binary classifiers. We presented here only the most frequently used.
We paid more attention to utility measures as they seem better suited to real
filtering systems. However, the choice of utility function is an open question,
i.e., there are no compelling theoretical reasons to prefer one function over an-
other for a given task. Finally, we discussed alternative averaging approaches for
reporting the overall performance of a classification system. Again, the choice
of one method over another remains to some extent an open issue.

.. Relevance judgments

Our presentation of evaluation measures in the last section assumed that rele-
vance judgments were available, i.e., we assumed that we knew the document
labels. This is the case with collections such as Reuters and OHSUMED, where
human experts have assigned classes to documents. We typically use most of
the data to train the classification system, and the rest to test its performance on
unseen data. Many collections of commercial value, like MEDLINE, have ac-
quired retrospective classifications than can be used to evaluate system perfor-
mance. Such evaluations, while they are informative of the quality of a system,
are not predictive studies.

Performing predictive studies of classification systems indeed faces the
same obstacles as introduced for IR systems in Chapter 2, Section 2.4. Recall
how TREC adopted a pooling method for identifying documents in a collec-
tion that were relevant to a given query. Pooling selected the top 100 documents
for each submitted run, and then experts judged the pool of these documents
for relevance. Pooling based on the top 100 documents can not be used for the
evaluation of filtering, because retrieved sets in that task are not ranked. Thus
the pool of documents is created by taking random samples of some prede-
termined size, n, from the retrieved set of each system. If the retrieved set is
smaller than n, all documents are selected.

This approach is less than ideal. For instance, documents in the pool will
be of lesser quality using random sampling than pooled documents based on
ranking. Moreover, topics with a large number of relevant documents will suf-
fer the most from this approach. Fortunately, we know from sampling theory
that the proportion of relevant documents in a simple random sample is an
unbiased estimate of the proportion of relevant documents in the population,
given a sufficiently large sample.

Relevance judgments or estimates can also help formulate utility measures.
Because a utility function can be expressed using the proportion of relevant

Text categorization 

documents, we can convert an estimate of the proportion of relevant docu-
ments into the estimate of the utility score. Thus utility measure U1 can be
estimated by:

Û1 =

(
4 · TPi

mi
– 3

)
·mi,

where TPi is the number of relevant documents and mi the total number of
documents submitted.

.. System evaluation

Imagine a classification system built to support a manual classification process.
Evaluating the performance of the automatic classification system, while infor-
mative, does not reflect the end goal of the manual process. Was consistency
between human classifiers improved? Were costs cut, or was processing time
reduced? Such questions go beyond mere classification effectiveness.

As an example, let us consider the CARP program outlined in Section
4.5 above. Evaluation of such a person-machine system consists primarily in
comparing its performance with that of the previous, more manual, process.
The process CARP replaced employed external contractors instead of in-house
staff, and used a much less accurate pre-sorting program based on key numbers
alone to suggest category assignments for vetting.

The old process used to result in about 700 new citations being posted
from a typical weekly feed of 12,000 headnotes. In contrast, CARP makes
about 1,600 suggestions per week, of which about 900 suggestions are ac-
cepted, 170 are rejected, and the remaining 530 are not used.99 This is a net
gain of 200 new suggestions per week, or a gain of 28%, at a precision rate of
(900 + 530)/1600 = 89%. In addition, supplementation now takes days instead
of months, because CARP generates far fewer suggestions than the old pre-
sorting program.100 So the new system makes quality control easier, as well as
making the online product more current.

The net gain is that contractor dollars are saved, the in-house editors re-
gain control of the process, and overall performance is improved, measured
in terms of both accuracy and timeliness. These are the real-world parameters
of evaluation, as opposed to simple precision and recall statistics. Nevertheless,
precision and recall are important, because a system that has poor coverage and
is error-prone will never be accepted by the people part of the person-machine
system.

 Chapter 4

As in any reengineering exercise, the final proof is an improved process.
Automatic categorization has a role to play in many such back office applica-
tions, where attempts to streamline text and data processing work flows can
leverage pre-existing stores of manually classified data. In many instances, the
focus is not upon replacing human judgment, but facilitating human control
and intervention in a system that is already automated to some extent. Allocat-
ing various data foraging and document ranking functions to a program can
free up human experts to spend more time exercising their judgment and ex-
pertise. Such an approach can improve employee effectiveness, job satisfaction,
and product quality all at the same time.

Pointers

Statistical classification algorithms, such as Naïve Bayes and maximum en-
tropy, have been used in commercial applications by Whizbang!101 Whizbang!102

specializes in extracting targeted information from Web pages, such as job
postings or company profiles. After crawling the Web to retrieve Web pages,
the software determines and classifies whether or not these Web pages con-
tain the target information, for instance whether the page contains a job post-
ing or not.103 Information extraction techniques are then applied to all pages
classified as containing the targeted information.

Despite covering a lot of ground in this chapter, there are still some classi-
fication approaches that we did not describe. Some of them are complex, and
require more mathematics than we wished to use in this text. For example,
support vector machines have lately received a fair amount of attention, and ex-
perimental results suggest that they are effective for text classification.104,105,106

Some of this work has been done at Microsoft Research, resulting in a Cate-
gory Assistant tool for their SharePoint Portal Server.107 Neural networks have
also been applied to text classification.108 For instance, RuleSpace uses neural
networks109 to create content filters for Web pages, and AOL uses RuleSpace
products to support parental controls.110

The past few years have seen a growing interest in classification tools, and
the number of vendors111 has increased accordingly. At this point, it is hard to
say whether or not a given product is able to provide a solution to a specific text
classification task. The best one can do is to apply the task analysis provided in
Section 4.1, and try to match the features of the tool with the task.

Text categorization 

Notes

. E.g., David Lewis has defined text categorization as ‘the automated assignment of natural
language texts to predefined categories based on their content’, while using the term ‘classi-
fication’ to denote more general assignments of documents to classes defined in almost any
fashion.

. See Lewis, D. D. (1992). An evaluation of phrasal and clustered representations on a text
categorization task. In 15th Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval (pp. 37–50).

. See Moore, C. (2001). Seeking far and wide for the right data. InfoWorld, August
27th/September 3rd.

. MARC stands for MAchine-Readable Cataloging. There are five MARC formats avail-
able, covering Bibliographic Data, Authority Data, Holdings Data, Classification Data, and
Community Information. See http://lcweb.loc.gov/marc/.

. Although there has also been some work on medical document collections, see Section
4.4.1.

. There are in fact two versions of this collection: Reuters-22173 and Reuters-21578. The
latter is a tidied up version of the former.

. See, e.g., Cohen, W. W. (1996). Learning rules that classify e-mail. In Papers from the
AAAI Spring Symposium on Machine Learning in Information Access (pp. 18–25).

. See, e.g., Pitkow, J. & Pirolli, P. (1997). Life, death, and lawfulness on the electronic fron-
tier. In Conference on Human Factors in Computing Systems, CHI-97 (pp. 383–390). Atlanta,
GA: Association for Computing Machinery.

. See Yang, Y. & Lui, X. (1999). A re-examination of text categorization methods. SIGIR-99,
42–49, for both a critique and some interesting results.

. See Maron, M. E. (1961). Automatic indexing: an experimental inquiry. Journal of the
ACM, 8, 404–417, for an example of earlier work in text categorization for keyword indexing.

. See Jackson, P. (1999). Introduction to Expert Systems (3rd edn.). Harlow, England:
Addison-Wesley Longman, for a detailed discussion of rule-based systems, especially Chap-
ter 5.

. Hayes, P. J., & Weinstein, S. P. (1990). CONSTRUE/TIS: A system for content-based
indexing of a database of news stories. In 2nd Annual Conference on Innovative Applications
of Artificial Intelligence (pp. 1–5).

. Of these categories, 539 represent proper names (people, countries, organizations, etc.),
while the rest are economic categories (mergers and acquisitions, commodities, etc.).

. Such patterns can be distinguished from those formalized by regular expressions (see
Chapter 3), since they are not limited to recognizing sequences of words or characters.

. An expert system ‘shell’ called TCS was derived from Construe, but does not appear to
have been widely used.

. The learning of rules from examples is sometimes called ‘inductive learning.’

. Say 40, or more.

 Chapter 4

. The fact that a term does not occur in the document may also be significant, as we shall
see.

. This is an independence assumption. Effectively, we are saying that the occurrence of the
term ‘company’ in a document is rendered no more (or less) likely if we know that the term
‘merger’ also occurs in the document. This assumption is patently false, but the alternative
is to specify a joint probability distribution for all 2n –n–1 combinations of 2 or more terms,
which is infeasible.

. See McCallum, A. & Nigam, K. (1998). A comparison of event models for Naïve Bayes
classification. In Proceedings of AAAI-98 Workshop on Learning for Text Categorization (pp.
41–48).

. A bag is like a set in that elements are not ordered but, unlike a set, the same element
can appear more than once.

. As before, P(tj|Ci) may be zero, resulting in a zero value for the product P(D|Ci), unless
smoothing is employed.

. See McCallum, A. & Nigam, K. (op cit).

. Nigam, K., McCallum, A. K., Thrun, S., & Mitchell, T. (2000). Text classification from
labeled and unlabeled documents using EM. Machine Learning Journal, 39 (2–3), 103–134,
May–June 2000.

. The ‘ancestor’ classes of a given class are simply the classes higher up in the hierarchy
that the given class belongs to. They can be systematically enumerated by traversing the
hierarchy from the root node down to the given class, or traversing upward from the given
class to the root node. In a strict hierarchy, each node has only one immediate ancestor, so
this is a straightforward operation.

. McCallum, A. K., Rosenfeld, R., Mitchell, T. M., & Ng, A. Y. (1998). Improving text clas-
sification by shrinkage of a hierarchy of classes. In Proceedings of ICML-98, 15th International
Conference on Machine Learning (pp. 359–367). Madison, USA.

. This is often done through trial and error, based on the training data.

. Hull, D. (1994). Improving text retrieval for the routing problem using latent semantics
indexing. In Proceedings of SIGIR’94, 17th ACM International Conference on Research and
Development in Information Retrieval (pp. 282–291). Dublin, Ireland.

. Ittner, D., Lewis, D., & Ahn, D. (1995) Text categorization of low quality images. In
Proceedings of SDAIR-95 (pp. 301–315). Las Vegas, NV.

. See Chapter 2, Section 2.3.2.

. Dumais, S., Platt, J., Heckerman, D., & Sahami, M. (1998). Inductive learning algo-
rithms and representations for text categorization. In Proceedings of CIKM’98 (pp. 148–155).
Washington.

. Lewis, D., Schapire, R., Callan, J., & Papka, R. (1996). Training algorithms for linear text
classifiers. In Proceeding of SIGIR’96 (pp. 298–306). Zürich.

. Schapire, R., Singer, Y., & Singhal, A. (1998). Boosting and Rocchio applied to text
filtering. In Proceedings of SIGIR’98 (pp. 215–223).

Text categorization 

. See Ruiz, M., & Srinivasan, P. (1999). Hierarchical neural networks for text categoriza-
tion. In Proceedings of SIGIR-99 (pp. 281–282); and Ng, H., Goh, W., & Low, K. (1997).
Feature selection, perceptron learning, and a usability case study for text categorization. In
Proceedings of SIGIR-97 (pp. 67–73).

. In fact, Rocchio can be recast as an on-line algorithm.

. For adaptive categorization tasks, time is a parameter and the final weight vector is
a function of time. As the categorization system receives new information over time, the
weight vector will be updated. However, documents that have already been classified at time
t will usually not be reclassified at time t + 1.

. Lewis, D., Schapire, R., Callan, J., & Papka, R. (1996). Training algorithms for linear text
classifiers. In Proceeding of SIGIR’96 (pp. 298–306). Zürich.

. Ng, H., Goh, W., & Low, K. (1997). Feature selection, perceptron learning, and a Usabil-
ity Case study for text categorization. In Proceedings of SIGIR’97 (pp. 67–73).

. Dagan, I., Karov, Y., & Roth, D. (1997). Mistake-driven learning in text categorization.
In Proceeding of the 2nd Conference on Empirical Methods for Natural Language Processing
(pp. 55–63).

. Lewis, D., Schapire, R., Callan, J., & Papka, R. (1996). (op cit).

. Dagan, I., Karov, Y., & Roth, D. (1997). Mistake-driven learning in text categorization.
In Proceeding of the 2nd Conference on Empirical Methods for Natural Language Processing
(pp. 55–63).

. Callan, J. (1998). Learning while filtering documents. In Proceedings of SIGIR’98 (pp.
224–231).

. Continuous valued features can be split into ranges.

. Quinlan, J. R. (1986). Induction of decision trees. Machine Learning, 1, 81–106.

. Such decision rules should not be confused with decision lists, which we consider in the
next subsection. Decision lists only perform Boolean (two-valued) tests in their conditions.

. Quinlan, J. R. (1993). C4.5: Programs for Machine Learning. San Mateo, CA: Morgan
Kaufmann.

. In other words, the classification will be vulnerable to peculiarities among individual
data items in the sample. The classifier will then perform badly on unseen data.

. See e.g., Han, E. S., Karypis, G. & Kumar, V. (1999). Text categorization using weight
adjusted k-nearest neighbor classification. Computer Science Technical Report TR99-019,
Department of Computer Science, University of Minnesota, Minneapolis, Minnesota.

. Rivest, R. L. (1987). Learning decision lists. Machine Learning, 2, 229–246.

. Cohen, W. (1995). Fast effective rule induction. In Proceedings of the 12th Interna-
tional Conference on Machine Learning (ML-95) (pp. 115–123). San Mateo, CA: Morgan
Kaufmann.

. Unlike the ‘naïve Bayes’ classifiers we saw earlier, which assume that terms occur inde-
pendently of each other.

 Chapter 4

. The amount of information contained in a ‘message’, x, is defined in information the-
ory as

I(x) = –log2P(x).

In other words, the amount of information in a message is inversely proportional to its
probability. The concept of what constitutes a message can be interpreted fairly broadly, as
in the example above.

. In fact, Ripper uses an additional heuristic involving ‘minimum description length’
(MDL) to curtail rule generation in the face of noisy data sets, but that is beyond the scope
of this text. See Quinlan, J. R. (1995). MDL and categorical theories (continued). In Machine
Learning: Proceedings of the Twelfth International Conference (pp. 464–470). Lake Tahoe, CA;
and also Cohen, W. W. & Singer, Y. (1996). Context-sensitive learning methods for text cate-
gorization. In Proceedings of the 19th Annual International ACM Conference on Research and
Development in Information Retrieval (pp. 307–315). ACM Press.

. For more about loss ratios, see Lewis, D. D., & Catlett, J. (1994). Heterogeneous un-
certainty sampling for supervised learning. In Cohen, W. W. and Hirsh, H. (Eds.), Ma-
chine Learning: Proceedings of the Eleventh International Conference on Machine Learning,
San Francisco, CA, 1994 (pp. 148–156). San Mateo, CA: Morgan Kaufmann.

. Thompson, P. (2001). Automatic categorization of case law. In Proceedings of the 8th
International Conference on Artificial Intelligence & Law (pp. 70–77).

. Cohen, W. W. (1995). Fast effective rule induction. In Machine Learning: Proceedings of
the Twelfth International Conference (pp. 115–123). Lake Tahoe, CA.

. Cohen, W. W. (1996). Learning rules that classify e-mail. In Papers from the AAAI Spring
Symposium on Machine Learning in Information Access (pp. 18–25).

. See e.g., Al-Kofahi, K., Tyrrell, A., Vachher, A., Travers, T. & Jackson, P. (2001). Combin-
ing Multiple Classifiers for Text Categorization. Proceedings of the Tenth International Con-
ference on Information and Knowledge Management (CIKM-2001) (pp. 97–104). New York:
ACM Press.

. Larkey, L., & Croft, W.B. (1996). Combining Classifiers in Text Categorization. In Pro-
ceedings of SIGIR’96 (pp. 289–297). Zürich, Switzerland.

. Yang, Y. (1994). Expert network: Effective and efficient learning from human deci-
sions in text categorization and retrieval. In Proceedings of SIGIR’94 (pp. 13–22). Dublin,
Ireland; and Yang, Y. (1999). An evaluation of statistical approaches to text categorization.
Information Retrieval, 1 (1.2), 69–90.

. Other aggregate scores have sometimes been proposed. See Cohen, W., & Hirsch, H.
(1998). Joins that generalize: Text classification using WHIRL. In Proceedings of KDD-98
(pp. 169–173). New York.

. Only categories assigned to the k nearest neighbors are non-zero. Cut-off strategies nor-
mally apply to the score itself (e.g., assigning a category only if it scores over a threshold), or
to the rank of the score (e.g., suggesting only the top 3 categories in the ranking).

. Jordan, M., & Jacobs, R. (1994). Hierarchical mixtures of experts and the EM algorithm.
Neural Computation, 6, 181–214.

Text categorization 

. Breiman, L. (1994). Bagging predictors. Technical Report 421. Department of Statictics,
University of California at Berkeley.

. Belkin, N., Kantor, P., Fox, E., & Shaw, J. (1995). Combination of evidence of multiple
query representations for information retrieval. Information Processing and Management, 31
(3), 431–448.

. Selberg, E., & Etzioni, O. (1996). Multi-service search and comparison using the
MetaCrawler. In Proceedings of the 4th WWW Conference.

. Belkin, N., Cool, C., Croft, W. B., & Callan, J. (1993). Effect of multiple query repre-
sentations on information retrieval system performance. In Proceedings of SIGIR-93 (pp.
339–346).

. Shaw, J., & Fox, E. (1995). Combination of multiple searches. In Proceedings of the
TREC-3 conference.

. Bartell, B., Cottrell, G., & Belew, R. (1994). Automatic combination of multiple ranked
retrieval systems. In Proceedings of SIGIR-94 (pp. 173–181). Dublin, Ireland.

. Vogt, C., & Cottrell, G. (1998). Predicting the performance of linearly combined IR
systems. In Proceedings of SIGIR-98 (pp. 190–196); and Lee, J. H. (1997). Analyses of multiple
evidence combination. In Proceedings of SIGIR-97 (pp. 267–276).

. Hull, D., Pedersen, J., & Schütze, H. (1996). Method combination for document filtering.
In Proceedings of SIGIR-96 (pp. 279–287).

. Larkey, L., & Croft, W. B. (1996). Combining Classifiers in Text Categorization. In
Proceedings of SIGIR-96 (pp. 289–297).

. In machine learning terminology, these are sometimes called ‘weak classification rules,’
or ‘weak learners’, since we do not expect them to work very well on their own.

. See Schapire, R., & Singer, Y. (2000). Boostexter: a boosting-based system for text cate-
gorization. In Machine Learning, Vol. 39, No 2/3 (pp. 135–168).

. Apte, C., Damerau, F., & Weiss, S. (1998). Text mining with decision trees and decision
rules. In Conference on Automated Learning and Discovery. Carnegie-Mellon University, June
1998.

. Schapire, R., Singer, Y., & Singhal, A. (1998). Boosting and Rocchio applied to text
filtering. In Proceedings of SIGIR’98 (pp. 215–223).

. Schapire, R., & Singer, Y. (2000). (op cit).

. Iyers, R., Lewis, D., Schapire, R., & Singer, Y. (2000). Boosting for document routing. In
Proceedings of CIKM-2000 (pp. 70–77).

. See e.g., Lewis, D. (1992). Feature selection and feature extraction for text categoriza-
tion. In Proceedings of Speech and Natural Language Workshop (pp. 212–217). San Mateo,
CA: Morgan Kaufmann.

. Yang, Y., & Pedersen, J. (1997). A comparative study on feature selection for text cate-
gorization. In Proceedings of ICML’97 (pp. 412–420).

. Al-Kofahi, K., Tyrrell, A., Vachher, A., Travers, T., & Jackson, P. (2001). Combining
multiple classifiers for text categorization. In Proceedings of CIKM-2001 (pp. 97–104).

 Chapter 4

. Key numbers are manually assigned topics from a conceptual hierarchy of nearly
100,000 legal concepts.

. See Chapter 2.

. As described in Chapter 2, Section 2.4.3

. Lewis, D. (1996). The TREC-4 filtering track. In Proceedings of the Fourth Text Retrieval
Conference; and Lewis, D. (1997). The TREC-5 filtering track. In Proceedings of the Fifth Text
Retrieval Conference.

. Hull, D. (1999). The TREC-7 Filtering track: Description and Analysis. In Proceedings
of the Seventh Text Retrieval Conference.

. Fuhr, N., Hartmann, S. Knorz, G., Lustig, G., Schwantner, M., & Tzeras, K. (1991).
AIR/X – a rule-based multistage indexing system for large subject fields. In Proceedings of
RIAO-91 (pp. 606–623).

. The Reuters-21578 collection may be freely downloaded for experimentation purposes
at http://www.research.att.com/∼lewis/reuters21578.html

. The OHSUMED collection may be freely downloaded for experimentation purposes at
ftp://medir.ohsu.edu/pub/ohsumed

. The AP newswire collections are now available for sale through the Linguistics Data
Consortium at http://www.ldc.upenn.edu/ as part of its “Tipster” Volumes 1 and 2.

. The 20 Newsgroups collection may be freely downloaded for experimentation purposes
at http://www.cs.cmu.edu/

. See Chapter 2, Section 2.4.1.

. See Schütze, H., Hull, D., & Pedersen, J. (1995). A comparison of classifiers and docu-
ment representations for the routing problem. In Proceedings of SIGIR-95 (pp. 229–237),
or see Yang, Y., & Liu, X. (1999). A re-examination of text categorization methods. In
Proceedings of SIGIR-99 (pp. 42–49).

. Yang, Y. (1999). An evaluation of statistical approaches to text categorization. In Infor-
mation Retrieval, Vol. 1, No 1/2 (pp. 69–90). Kluwer Academic Publishers.

. Even this is debatable.

. This measure (actually Eβ = 1 – Fβ) was introduced by van Rijsbergen, K. (1979). Infor-

mation Retrieval (2nd edition). London: Butterworths, pp. 168–176. We have seen different
versions of it before in Chapters 2 and 3.

. Lewis, D. (1995). Evaluating and optimizing autonomous text classification systems. In
Proceedings of SIGIR-95 (pp. 246–254).

. These averaging methods were introduced in IR by Tague, J. (1981). The pragmatics of
information retrieval experimentation. In Information Retrieval Experiment (pp. 59–102).
Butterworths, London.

. The ‘unused’ suggestions are correct classifications, but they are rejected for editorial
reasons, such as being redundant, too general, too numerous, etc.

. The older program sometimes generated as many as 100,000 suggestions for a weekly
feed.

Text categorization 

. See Aquino, S. (2001). Search engines ready to learn. Technology Review, April 24,
Massachusetts Institute of Technology.

. See http://www.whizbang.com/

. See http://www.whizbang.com/solutions/wbwhite3.html

. Joachims, T. (1998). Text categorization with support vector machines: Learning with
many relevant features. In Proceedings of ECML-98 (pp. 137–142). Chemnitz, Germany.

. Dumais, S., Platt, J., Heckerman, D., & Sahami, Mehran. (1998). Inductive learning
algorithms and representations for text categorization. In Proceedings of CIKM-98 (pp. 148–
155). Washington, USA.

. Yang, Y., & Liu, X. (1999). A re-examination of text categorization methods. In Pro-
ceedings of SIGIR-99 (pp. 42–49). Berkeley, USA.

. See http://microsoft.com/sharepoint/techinfo/planning/SPSOverview.doc

. See Schütze, H., Hull, D., & Pedersen, J. (1995). A comparison of classifiers and doc-
ument representations for the document routing problem. In Proceedings of SIGIR’95 (pp.
229–237); and Wiener, E., Pedersen, J., & Weigend, A. (1995). A neural network approach
to topic spotting. In Proceedings of SDAIR’95 (pp. 317–332).

. See http://www.rulespace.com/contexion/technology

. See http://www.rulespace.com/alliances/customers.html

. http://www.searchtools.com/info/classifiers-tools.html gives a list of commercial ven-
dors that offer classification tools.

C 5

Towards text mining

In Chapters 2, 3 and 4, we looked individually at technologies for retrieving,
extracting and classifying information from individual documents. As we have
seen, these seemingly diverse text processing mechanisms share many com-
mon goals, are based on similar methodologies, and employ related statisti-
cal and linguistic techniques. It is therefore not a great leap to consider com-
bining them into some grander vision, in which documents, and even whole
collections, are ‘mined’ for information.

In this chapter, we look at the emerging area of text mining, envisioning
what such applications might look like, and what the technical challenges will
be. In particular, we emphasize applications to online publishing, digital li-
braries, and the World Wide Web. The focus will be upon processes that do
more than simply finding or classifying documents, either by abstracting from
documents and collections, or by building relationships between documents
and collections based on the entities that they describe.

The link between text mining and natural language processing is that min-
ing information out of text necessarily involves delineating at least some lin-
guistic structures within the text. These structures could be as local as the oc-
currence of proper names and references to other documents, or as global as
the division of a document into topical themes and segments. Having discov-
ered such structures as part of the mining process, it often makes sense to mark
them in the original document, e.g., with hypertext links or other tags, for sub-
sequent use. These structures can then be related to records in other informa-
tion sources at load or presentation time. Such sources could be directories of
people and companies, encyclopedia and dictionary entries, or taxonomies and
the like.

We shall concentrate here upon applications in two broad areas. One cov-
ers the automatic generation of metadata from documents in a collection, the
most common forms of which are lists of proper names and document sum-
maries. The other involves processing across single document boundaries, such
as document clustering, cross-document summarization, and the detection of
new topics.

But first let us look at the notion of text mining more closely.

 Chapter 5

. What is text mining?

Talk of ‘text mining’ or ‘text data mining’ is in part inspired by the scarcely
older field of data mining. ‘Data mining’ has been defined as the process of dis-
covering patterns in data, sometimes distinguished from ‘knowledge discov-
ery’, which can be seen as the higher order activity of judging which patterns
are novel, valid or useful.1 Thus the transformation from data to knowledge
requires a critical evaluative step, which is distinct from the algorithms and
procedures used to generate data patterns for consideration.2

Text mining is not information retrieval, or even information extraction,
since these activities do not, strictly speaking, involve discovery.3 Similarly, text
categorization is not text mining, because categorizing a document does not
generate new information. Presumably the author of the document knew what
the document was about at the time of writing. However, the detection of novel
topics, e.g., in a news feed, is deemed to be text mining, since it tells us some-
thing about the world, e.g., that a new incident or issue has arisen in the pub-
lic consciousness. Mere categorization of a news feed to an existing hierarchy
of concepts cannot detect such patterns, and would therefore run the risk of
missing, or misclassifying, such stories.

Summarization is something of a borderline case. Sometimes, a document
summary can succinctly capture the essence of a document in a way that adds
something to the contents of the document itself. To the extent that a sum-
mary includes critical review, or links to related documents not referenced
in the original text, we can consider it to add novel information. Many on-
line publishers use document summaries as a convenient peg upon which to
hang other metadata relating to their taxonomies, or point the reader at related
documents.

Mostly, a summary is simply a cut-down version of the original document,
composed largely of pieces of text extracted from it, as we shall see in Section
5.3.1. We shall nonetheless deal with cross-document summarization under the
text mining rubric, since it involves the synthesis of information not present in
any single document (see Section 5.3.3).

In summary, most authorities agree that text mining should involve some-
thing more than the mere analysis of a text. Programs that analyze document
and sentence structure, assign keywords and index terms to documents, or
route documents to various destinations are not doing text mining, according
to this view. Ideally, text mining should uncover something interesting about
the relationship between text and the world, e.g., what persons or companies

Towards text mining 

Hyper link

Caselaw
Documents

Biography
Documents

Insert
Links 3

Extract
Templates 1

Load
Documents 4

Templates Match
Templates 2

Relational
Database

Figure 5.1 Overview of PeopleCite tagging system

an article is discussing, what trend or train of events a news story belongs to,
and so forth.

Consequently, the concept of reference is crucial to the emerging notion
of text mining. Proper names (“Bill Gates”) and definite descriptions (“the
Chairman of Microsoft”) occurring in documents refer to real entities in the
world, which have physical properties, such as age and location, abstract prop-
erties, such as being rich or powerful, and which are referred to by other docu-
ments. Current text mining efforts focus on elucidating such within- and cross-
document relationships, typically building metadata repositories, such as di-
rectories of persons,4 companies,5 news threads,6 and historical relationships
between court decisions.7

Thus Dozier and Haschart describe an application that creates hypertext
links from attorneys (and judges) featured in cases published on Westlaw to
personal biographies of those persons in West Legal Directory. Their system,
called PeopleCite, creates such links by extracting MUC-style templates8 from
text and linking them to biographical information in a relational database (see
Figure 5.1). Their matching technique is based on a naïve Bayesian9 inference
network, and since its deployment in June 2000 the implementation has auto-
matically created millions of reliable hypertext links in millions of documents.
Their experiments show that this combination of information extraction and
record linkage enables them to link attorney and judge names in caselaw to
biographies with an accuracy rivaling that of a human expert.

The central problem addressed by the program is determining whether or
not two names refer to the same person, given the rendition of the names, and
any contextual information. For example, is the current biography of attorney

 Chapter 5

Figure 5.2 PeopleCite enhanced screen shot of a case law document on Westlaw

James Jackson of Palm Springs, California really the biography of a James P.
Jackson practicing law in Sacramento, California in 1990? Probably. How Peo-
pleCite goes about this computation is shown in Sidebar 5.1. Experiments have
shown that PeopleCite can perform this task at 99% precision and 92% recall,
which is as good as a human expert.

Figure 5.2 shows an actual screenshot from Westlaw with attorney names
marked up by PeopleCite. Once an attorney has been matched against West
Legal Directory, a number of other browsing options become possible. In ad-
dition to jumping from an attorney’s name in a case to that person’s biography,
one can also bring up all the cases that a particular attorney has litigated, or all
the law journal articles an attorney has written. This is obviously not possible
unless a real connection has been established between a name string in the text
and an actual person in the world.10

Given the central importance of reference, we shall begin our exploration
of text mining by examining methods for extracting named entities from text
and determining patterns of coreference among names and descriptions that
refer to the same entity. We shall then proceed to survey techniques for docu-

Towards text mining 

ment summarization, some of which use named entity extraction and corefer-
ence as enabling technologies.

Sidebar 5.1 The matching module of PeopleCite

The job of the matching module is to find the biography record that most probably matches
each template record created by the extraction module. The process of matching one fielded
record (such as the template) to another fielded record (such as a biography record) is often
referred to as record linkage. The processing steps of the match module for attorneys are the
following.

1. For each template record, read the set of all biography records whose last names match
or are compatible with the last name in the template. Call this set of biography records
the ‘candidate records’.

2. For each candidate record, determine how well the first name, middle name, last name,
name suffix, firm, and city-state match the template fields.

3. Using the degree to which each piece of evidence matches, compute a match probability
score for the linkage.

4. The candidate record with the highest match probability is the record used to build the
hypertext link.11

Belief in the correctness of a match is computed using the following form of Bayes’ rule:

P(M|E) =

P(M)
∏

i

P(Ei|M)

P(M)
∏

i

P(Ei|M) + P(¬M)
∏

i

P(Ei|¬M)
.

P(M|E) is the probability that a template matches a candidate record given a certain set of
evidence. P(M) is the prior probability that a template and biography record refer to the
same person. P(¬M) is the prior probability that a template and biographical record do not
match. For attorneys, P(M) is 0.000001 and P(¬M) is 0.999999, since there are approxi-
mately 1,000,000 attorney records in the biography database. For judges, P(M) is 0.00005
and P(¬M) is 0.99995 since there are approximately 20,000 judge records in the biography
database.

P(Ei|M) is the conditional probability that Ei takes on a particular value given that a
template matches a biography record. P(Ei|¬M) is the conditional probability that Ei takes
on a particular value given that a template does not match a biography record. Conditional
probabilities for attorneys and judges were estimated using a manually tagged training set
of 7,186 attorney names and 5,323 judge names.

 Chapter 5

. Reference and coreference

The concept of reference is one that exercised and entertained philosophers
for a large part of the twentieth century, and will no doubt continue to do so.
The fact that linguistic expressions (not to mention pictures and even musical
phrases) can be understood to refer to real and imaginary entities is either to-
tally transparent or completely mysterious, depending upon how sophisticated
you want your analysis to be. In the present context, we are only concerned
with inducing a mapping between occurrences of words and phrases in text and
some external authority, such as the Yellow Pages, or a directory of companies
and organizations.

The principal problem lies in determining whether the expression “Bill
Gates”, found in some random text, refers to the Chairman of Microsoft, or
the relatively unknown schoolboy and dog owner, William Gates, of Milwau-
kee. Many contextual factors can help in making this decision, some external
to the text (such as the source of the publication) and some internal (such as
the occurrence of other expressions, like “Microsoft”). If the text is an article
from Computer Weekly, it is more likely to be about Microsoft than if the text
is from a school magazine.

However, even within the confines of a single article, a person or organi-
zation may be referred to in different ways, e.g., “Bill Gates”, “Gates”, “Chair-
man of Microsoft”, “the Chairman”, “he”, etc. Suppose that we are interested
in deciding whether an article is really about Bill Gates, or whether it merely
mentions him in passing. Even if the former is in fact the case, the phrase “Bill
Gates” may only occur once in the article, with other references to him using
different words. How are we going to make this decision? Our best chance is to
figure out that the various expressions listed above all refer to the same person,
which brings us to the problem of coreference.

Coreference is the linguistic phenomenon whereby two or more linguistic
expressions may represent or indicate the same entity. This is simple enough to
state but, like many other linguistic phenomena, coreference admits of ambi-
guity. For example, in the sentence,

When he turned round, John saw the man with his jacket on.

it is likely, but by no means certain, that ‘he’ corefers with ‘John’, while ‘the
man’ and ‘his’ corefer to another person distinct from John. But it could be
the other man that turned round, and the other man could be wearing John’s
jacket. More perplexingly,

Towards text mining 

John saw the man with his glasses on when he turned round.

admits of several interpretations, e.g., those in which John turns round and
those in which the man turns round, cross-multiplied with those in which one
or the other man is wearing the glasses.

Often context makes the meaning clear. But, the contextual rules that we
use to make such judgments are not easy to articulate, and therefore not easy
to represent in a computer program.

Coreference can be distinguished from the related phenomenon of anaphora,
which is the linguistic act of pointing back to a previously mentioned item in
speech or text.12 It turns out that anaphors do not always corefer, as in

The man who gave his paycheck to his wife was wiser than the man who
gave it to his mistress.

Here ‘it’ points back to ‘paycheck’, but not the same paycheck, presumably.13

In the parlance of linguistics, the first phrase is called the antecedent, and the
second is called the anaphor. Sometimes the ‘anaphor’ points forward, in which
instance it is, strictly speaking, a cataphor, as in:

Sensing that he was being followed, John turned around.

Anaphora is not confined within sentences, e.g.,

John turned around. He saw the man with his glasses on.

Inter-sentence cataphora is less common, and is most often used as a literary
device that delays identifying a character, e.g., to create a suspenseful effect.

Linguists, both computational and otherwise, have worked hard to formu-
late the rules governing the assignment of coreference. Much of the early work
focused upon the intrasentential case,14 although later work has addressed in-
tersentential and cross-document coreferences.15 Although we still lack a gen-
eral solution to all of these problems, some interesting progress has been made,
and special purpose algorithms have also been devised for particular domains,
such as legal citations.16

The conundrum of coreference would be of only passing interest here, if it
were not for the fact that it is pervasive in documents of all kinds, and that
even partial solutions can benefit online applications. Simply knowing that
‘IBM’ corefers with ‘International Business Machines’ in the same document
will benefit indexing and retrieval, as well as knowing that the names ‘James
Prufrock’, ‘Jim Prufrock’, and ‘Alfred J. Prufrock’ all refer to the same person in
a collection of documents, such as public records. The ability to link proper

 Chapter 5

names occurring in text to personal or company profiles depends crucially
upon resolving cross-document coreferences of this kind.

Before examining coreference in more detail, it is worth understanding the
technology behind named entity recognition, since this is a crucial preparatory
step for resolving coreferences accurately.

.. Named entity recognition

The task of named entity recognition (NER) requires a program to process a
text and identify expressions that refer to people, places, companies, organiza-
tions, products, and so forth. Thus the program should not merely identify the
boundaries of a naming expression, but also classify the expression, e.g., so that
one knows that “Los Angeles” refers to a city and not a person. This is not as
easy as one might think.

Problems with NER
Many referring expressions are proper names and may therefore exhibit initial
capital letters in English, e.g., “John Smith”, “Thomson Corporation”, and “Los
Angeles.” However, the mere presence of an initial capital does not guarantee
that one is dealing with part of a name, since initial capitalization is also used
at the start of sentences.17 It might be supposed that this task could be simpli-
fied by using lists of people, places and companies, but this simply isn’t so. New
companies, products, etc. come into being on a daily basis, and using a direc-
tory or gazetteer doesn’t necessarily help you decide whether “Philip Morris”
refers to a person or a company.

Authority files of this kind might help with proper names, but not other
referring expressions. Some are definite descriptions, e.g., “the famous inven-
tor”, while others are pronouns, such as “he”, “she”, or “it.” Still other enti-
ties of interest might be dates, sums of money, percentages, temperatures, etc.,
depending upon the domain.

Most commercially available software packages18 for NER concentrate
upon identifying proper names that refer to people, places and companies.
They may also try and find relationships between entities, e.g., “Bill Gates, Pres-
ident of Microsoft Corporation” will yield the person Bill Gates standing in a
President relationship to the company Microsoft. A variety of methods are used
to achieve such extractions, which we shall now summarize.

Towards text mining 

Heuristic approaches to NER
In Chapter 3, we encountered the Message Understanding Conferences (MUCs),
which provided a stimulus for research and development in information ex-
traction during the 1990s. In the seventh such conference, there was a track
devoted to named entity recognition, with data collections and test conditions
being set up along the lines of earlier conferences. The best MUC-7 system
came from Edinburgh University,19 and employed a variety of methods, com-
bining lists, rules, and probabilistic techniques, applied in a particular order.

– First, the program applies a number of high-confidence heuristic rules to
the text. These rules rely heavily upon syntactic cues in the surrounding
context. For example, in John Smith, director, we know that John Smith
refers to a person, because a string of capitalized words followed by a title
or profession indicates the name of a person with high reliability. Similar
rules can be written to recognize names of companies or organizations in
expressions such as president of Microsoft Corporation.

– The system also uses lists of names, locations, etc., but at this stage it only
checks to see if the context of a possible entity supports suggestions from
the list. For example, a place name like Washington can just as easily be a
surname or the name of an organization. Only in a suggestive context, like
in the Washington area, would it be classified as a location.

– Next, all named entities already identified in the document are collected
and partial orders of the composing words are created. Suppose the expres-
sion Lockheed Martin Production has already been tagged as an organiza-
tion, because it occurred in the list of organization names and occurred in
a context suggestive of organizations. At this stage, all instances of Lockheed
Martin Production, Lockheed Martin, Lockheed Production, Martin Produc-
tion, Lockheed and Martin will be marked as possible organizations. The
annotated stream is then fed to a trained statistical model that tries to
resolve some of the suggestions.

– Once this has been done, the system again applies its rules, but with much
more relaxed contextual constraints. Organizations and locations from the
lists available to the system are marked in the text, without checking the
context in which they occur. If a string like ‘Philip Morris’ has not been
tagged in the earlier stages as an organization, then at this stage the name
grammar will tag it as a person without further checking of the context.

– The system then performs another partial match to label short forms of
personal names, such as ‘White’ when ‘James White’ has already been rec-

 Chapter 5

ognized as a person, and to label company names, such as ‘Hughes’ when
‘Hughes Communications’ has already been identified as an organization.

– Because titles of documents such as news wires are in capital letters, they
provide little guidance for the recognition of names. In the final stage of
processing, entities in the title are marked up, by matching or partially
matching the entities found in the text, and checking against a statistical
model trained on document titles. For example, in the headline 

   -, ‘Murdoch’ will be tagged as a person
because it partially matches ‘Rupert Murdoch’ elsewhere in the text.

Let’s look at this approach in a little more detail. As we mentioned earlier,
disambiguating the first word of a sentence is typically problematical, be-
cause common words have initial capitalization in this context, but proper
names also occur frequently in this position, e.g., as subject of the sentence.
Other problematical positions occur after opening quotation marks, colons,
and numbers of list entries.

Focusing specifically on this problem, Mikheev20 studied a 64,000-word
New York Times corpus, containing about 2,700 capitalized words in ambigu-
ous positions, and found that about 2,000 of them were common words, listed
in an English lexicon. About 170 of these were actually used as proper names,
while 10 common words were not in the lexicon. Thus, using a lexicon as the
sole guide for recognizing common words as non-names led to a decrease in
accuracy of around 6.5%.

The question is how to improve on this level of performance. Using a part
of speech tagger eliminated about 2% of the error, but various problems re-
mained. In general, proper names that were also common nouns still tended to
get assigned as non-names.

Real improvement came from the exploitation of coreference, namely in
recognizing that ambiguous names are often introduced unambiguously earlier
in the text. Thus the ‘Bush’ in

‘Bush went to Los Angeles.’

is likely to have already been mentioned as ‘Mr. Bush,’ or ‘George Bush,’ thereby
increasing the likelihood that the ambiguous occurrence of ‘Bush’ corefers with
the earlier expression.

This insight led to an approach called the Sequence Strategy, in which the
program looks for strings of two or more capitalized words in unambiguous
positions before looking for similar or lesser strings in ambiguous positions.
Thus, if the program finds the phrase ‘Rocket Systems Development Co.’ in

Towards text mining 

the middle of a sentence on a first pass through a document, it can reliably
identify this phrase as a proper name at the start of a sentence in a subsequent
pass. Moreover, it can do the same for subphrases occurring elsewhere in the
document, such as ‘Rocket Systems’, ‘Rocket Co.’, etc.

Proper names that are phrases can also contain lower case words, e.g., ‘The
Phantom of the Opera’. The heuristic rule is that the strategy allows proper
name phrases to contain lower case words of length three or less. Subphrases
must begin and end with a capitalized word, e.g., we allow ‘The Phantom’, but
not ‘Phantom of the’.

The Sequence Strategy has proved to be a high precision tool for finding
names of companies and organizations. It is clear that the approach is not
monolithic, but combines a number of different techniques and uses a vari-
ety of information sources. In the next subsection, we look at a more uniform
approach based on statistical modeling.

Statistical approaches to NER
An alternate approach to NER is to write a program that learns how to recog-
nize names. In this section, we explore the use of a powerful technology called
Hidden Markov Models for extracting proper names from text. Some key work
in this area derives from BBN, and resulted in the Nymble21 system, which par-
ticipated in MUC-6 and MUC-7, and has since morphed into the more highly
developed Identifinder22 system.

One way to think about NER is to suppose that the text once had all the
names within it marked for our convenience, but then the text was passed
through a noisy channel, and this information was somehow deleted. Our
task is therefore to construct a program that models the original process that
marked the names. In practical terms, this means learning how to decide, for
each word in the text, whether or not it is part of a name. Typically, we are also
interested in what kind of name we have found, so the word classification task
reduces to deciding which name class a word belongs to. For convenience, we
include -- as a name class.

As with the heuristic approach, it is necessary to identify features of words
that provide clues as to what kinds of words they are. The Nymble system used
the features shown in Table 5.1. These mutually exclusive features sort all words
and punctuation found in a text into one of fourteen categories.

These word features are not informative enough, in themselves, to identify
names, or parts of names, reliably on a word-by-word basis. However, they
can be leveraged, in conjunction with information about word position and
adjacency, to provide better estimates of name class.

 Chapter 5

Table 5.1 Nymble’s word feature set, based on Table 3.1 from Bikel et al.14

Word feature Example Explanation
text

twoDigitNum 90 Two-digit year
fourDigitNum 1990 Four-digit year
containsDigitAndAlpha A8-67 Product code
containsDigitAndDash 09-96 Date
containsDigitAndSlash 11/9/98 Date
containsDigitAndComma 1,000 Amount
containsDigitAndPeriod 1.00 Amount
otherNum 12345 Any other number
allCaps BBN Organization
capPeriod P. Personal name initial
firstWord The Capitalized word that is the first word in a sentence
initCap Sally Capitalized word in midsentence
lowercase tree Uncapitalized word
other .net Punctuation, or any other word not covered above

One important source of information is the name class assigned to the
previous word in the sentence. (We assume that sentence boundaries have al-
ready been determined.) Another is the preceding word itself. Thus one com-
ponent of assigning a name class, NC0, to the current word, w0, is given by the
following probability:

P(NC0|NC–1, w–1),

where NC–1 is the name class of the previous word, w–1.
Another component looks at the probability of generating the current

word and its associated feature, given the name class assigned to it and the
name class of the previous word, i.e.,

P(〈w0, f0〉|NC0, NC–1),

where 〈w0, f0〉 stands for the current word-feature pairing.
Nymble and Identifinder combine these probabilities into the following

model for generating just the first word of a name class:

P(NC0|NC–1, w–1) · P(〈w0, f0〉|NC0, NC–1).

The model for generating all but the first word of a name class uses the word-
feature pair of the previous word, and current name class:

P(〈w0, f0〉|〈w–1, f–1〉, NC0).

Towards text mining 

This approach is based on the commonly used bigram language model, in
which a word’s probability of occurrence is based on the previous word. The
probability of a sequence of words 〈w1, . . . , wn〉 is then computed by the prod-
uct

n∏
i=1

P(wi|wi–1)

with a bogus -- word being used to compute the probability
of w1. (See Sidebar 5.2 for a detailed breakdown of how this product is used in
Nymble.)

Sidebar 5.2 Combining probabilities in the bigram model

For example, consider the sentence ‘Mr. Smith sleeps’, in which Smith is in the  name
class, and the other words are not names. To compute the probability of this sequence of
words, we need to include the following probabilities.

P(“Mr.” | --, --)

is the probability of “Mr.” starting the sentence, given that it is not a name.

P( | --, “Mr.”),
P(“Smith” | , --)

model with the occurrence of “Smith” as a person, given that it is preceded by a non-
name, “Mr.”

P(-- | , “Smith”),
P(“sleeps” | --, )

deal with the occurrence of “sleeps” as a non-name, given that it is preceded by a person
name, “Smith”.

The bigram model as used by Nymble requires other probabilities to represent the like-
lihood that any current word is the last word in its name class. E.g., given “Mr. John Smith
sleeps”, there is some value in explicitly representing the probability that “Smith” is the end
of the person name. This is done by introducing a bogus ++ word of the ‘other’ feature
category after the current word, and computing its probability thus:

P(++, other) | 〈w0, f0〉, NC0).

This usage introduces the following probabilities into our model for “Mr. Smith sleeps.”

P(++ | “Mr.”, --),
P(++ | “Smith”, ),
P(++ | “sleeps”, --).

Finally, we add other probabilities to cope with the start and end of the sentence, including
the period at the end of the sentence:

 Chapter 5

P(-- | --, ++),
P(“.” | “sleeps”, --),
P(++ | “.”, --),
P(-- | --, “.”).

Multiplying all these probabilities together computes the probability of the sentence “Mr.
Smith sleeps” being generated by the bigram model.

The needed probabilities are estimated from corpus counts, as usual. For ex-
ample, we estimate

P(NC0|NC–1, w–1)

by counting the number of times that a word of name class NC0 follows word
w–1 of name class NC–1, and dividing by the total number of occurrences of
word w–1 with name class NC–1. Sparse and missing data are handled by back-
off models and smoothing.23

Hidden Markov modeling generates a lattice of alternative labelings of the
words in a sentence. Building this lattice is called ‘encoding.’ Thus, the subject
of a sentence like

‘Banks filed bankruptcy papers.’

could refer to an impecunious person called Banks, or to banking enterprises
in a failing financial empire. A decision process is therefore required to find the
most likely sequence of labels, i.e., to directly compare the probability of the
assignment

<, --, --, -->

with that of

<--, --, --, -->.

Happily, there is an efficient algorithm24 for performing this ‘decoding’ opera-
tion that is linear in the length of the sentence.

.. The coreference task

The 7th Message Understanding Conference defined a ‘coreference layer’ for
the information extraction task, which links together multiple expressions that
refer to a given entity.25 In the context of information extraction, the role of
coreference annotation is to ensure that information associated with multi-
ple mentions of an entity can be collected together in a single data structure

Towards text mining 

or template. MUC-7 confined itself to coreference in an identity relationship
among nouns, noun phrases and pronouns – thereby leaving out verbs and
clauses, as well as coreference relations such as part-whole.

The annotation used in MUC-7 was SGML,26 so that

... <COREF ID=“100”>International Business Machines
</COREF>. <COREF ID=“101” TYPE=“IDENT” REF = “100”>IBM
</COREF> ...

would indicate the phrase “International Business Machines” ending the first
sentence corefers with the acronym “IBM” starting the second sentence in an
identity relation.

Identity is the only coreference relation considered by MUC-7, although
one can conceive of others, such as part-whole:

“The house was empty. He knocked on the door.”

which could be rendered as:

<COREF ID=“100”>The house</COREF> was empty. He
knocked on <COREF ID=“101” TYPE=“PART” REF = “100”>the
door</COREF>.

indicating that the door (with identifier ‘101’) is part of the previously encoun-
tered house (with identifier ‘100’).

Coreference relationships can therefore have different logical properties.
Identity is a reflexive, symmetric, and transitive relation that divides enti-
ties into equivalence classes. The part-whole relation is anti-reflexive, anti-
symmetric and transitive, and is therefore an ordering relation.

There are a number of common sentential contexts in which coreference
occurs in English.

1. Predicate nominals, e.g., “Bill Clinton is the President of the United States.”
2. Apposition. “Bill Clinton, President of the United States, said . . .”
3. Bound anaphors. “The President asked his advisor.”

All three can occur across sentence boundaries, while (1) and (2) can also occur
across document boundaries.

Existing products, such as NetOwl,27 already use hand-written pattern
matching rules, both to recognize and categorize names, and to recognize ap-
positive and predicative relationships between them in contexts like (1) and (2)
above. Meanwhile, university research has concentrated more upon the prob-
lem of anaphora resolution posed by (3). Early work by Hobbs28 proposed the

 Chapter 5

Naïve Algorithm, which searches the sentence29 in left-to-right order and con-
centrates upon finding antecedents that are close to a given pronoun, while pre-
ferring antecedents that occur in the subject position. Hobbs always acknowl-
edged that this algorithm would never do as a stand-alone solution to the prob-
lem, but it is still used to gather candidate antecedents for more sophisticated
approaches.

Heuristic approaches to coreference
Modern systems, such as CogNIAC, offer 90% or better precision on com-
mon pronoun usages that do not require either specialist knowledge or gen-
eral knowledge for their resolution. CogNIAC works by performing a linguistic
analysis and then applying a set of decision rules to the analyzed text.

The linguistic resources30 that CogNIAC requires are well within the cur-
rent state of the art as described in Chapter 1:

– Part of speech tagging.
– Simple noun phrase recognition.
– Basic semantic information31 for nouns and noun phrases, such as gender

and number.

Generating possible antecedents for a pronoun is not the hard part of this task.
We have already seen that there exist efficient algorithms for identifying refer-
ring expressions, such as names. The hard part is picking the right antecedent
when there is more than one candidate.

CogNIAC uses an ordered set of core rules to make such decisions. We
reproduce them here, with an indication of their performance on a set of 198
pronouns taken from narrative text.32 The rules assume that the candidates
have already been identified, and have already been screened for restrictions
like gender and number agreement.

1. Unique in discourse. If there is a single candidate in the text read in so far,
then make it the antecedent. (8 correct, 0 incorrect.)

2. Reflexive. If pronoun is reflexive,33 then pick the nearest candidate in the
text read so far. (16 correct, 1 incorrect.)

3. Unique in current + prior. If there is a single candidate in the prior sen-
tence and the read-in portion of the current sentence, then make it the
antecedent. (114 correct, 2 incorrect.)

4. Possessive pro. If the anaphor contains a possessive pronoun,34 and there is
an exact string match of the anaphor in the prior sentence, then make the
matching candidate the antecedent. (4 correct, 1 incorrect.)

Towards text mining 

5. Unique in current sentence. If there is a single candidate in the read-in por-
tion of the current sentence, then make it the antecedent. (21 correct, 1
incorrect.)

6. Unique subject/subject pronoun. If the subject of the prior sentence contains
a single candidate, and the anaphor is the subject of its sentence, then make
the subject of the prior sentence the antecedent. (11 correct, 0 incorrect.)

Pronouns are considered in the order in which they occur in the text. For each
pronoun, the rules are tried in the order in which they are listed above. If a rule
succeeds, by having its conditions met, then its action is taken, and no further
rules are considered for that pronoun. If a rule fails, because its conditions are
not satisfied, then the next rule is tried. If no rules apply, then the pronoun is
left unresolved.

The data show that these are high precision rules, when considered indi-
vidually, and their recall when combined is 60%. As an example of a sentence
where CogNIAC would fail to resolve a pronoun, Baldwin cites the following
well-known example:35

The city council refused to give the women a permit because they
feared/advocated violence.

This example consists of two sentences: one in which violence is feared and
one in which it is advocated. The preferred interpretation of ‘they’ is strongly
influenced by the choice of verb. Resolving the coreferent of ‘they’ would re-
quire a fairly sophisticated analysis of verb meanings, as well as some real world
knowledge to the effect that a city council is more like to be anti-violence than
pro-violence.

Statistical approaches to coreference
An alternate approach to hand-written heuristic rules is to have a program
learn preferences among antecedents from sample data. Researchers at Brown
University36 used a corpus of Wall Street Journal articles marked with corefer-
ence information to build a probabilistic model for this problem. This model
then informs an algorithm for finding antecedents for pronouns in unseen
documents.

The model considers the following factors when assigning probabilities to
pronoun-antecedent pairings.

1. Distance between the pronoun and the proposed antecedent, with greater
distance lowering the probability.
Hobbs’ Naïve Algorithm is used to gather candidate antecedents, which are

 Chapter 5

then rank ordered by distance. The probability that the correct antecedent
lies at distance rank d from the pronoun is then computed from corpus
statistics as

the number of correct antecedents at distance d

medium the total number of correct antecedents
.

2. Mention count. Noun phrases that are mentioned repeatedly are preferred
as antecedents.
As well as counting mentions of referents, the authors make an adjust-
ment for position of the pronoun in the document. The later in the docu-
ment a pronoun occurs, the more likely it is that its referent will have been
mentioned multiple times.

3. Syntactic analysis of the context surrounding the pronoun, especially where
reflexive pronouns are concerned.
Preferences for antecedents in the subject position and special treatment of
reflexive pronouns are supplied by the Hobbs algorithm.

4. Semantic distinctions, such as number, gender, and animate/inanimate,
which make certain pairings unlikely or impossible.
Given a training corpus of correct antecedents, counts can be obtained for
such semantic features.

The probability that a pronoun corefers with a given antecedent is then com-
puted as a function of these four factors, and the winning pair is the one that
maximizes the probability of assignment.

The authors performed an experiment to test the accuracy of the model
on the singular pronouns (‘he’, ‘she’, and ‘it’), and their various possessive
and reflexive forms (‘his’, ‘hers’, ‘its’, ‘himself ’, ‘herself ’, ‘itself ’). They imple-
mented their model in an incremental fashion, enabling the contribution of
the various factors to be analyzed. The results were quite interesting, and can
be summarized as follows.

Ignoring Hobbs’ algorithm, and simply choosing the closest noun phrase
as the referent, had a success rate of only 43%. Using the syntactic analysis
afforded by the Naïve Algorithm increased accuracy to 65%. Adding semantic
information, such as gender, raised the success rate to 76%. Adding additional
information, such as mention counts, obtained a final increment to 83%.

In restricting themselves to singular pronouns with concrete referents,37

the authors set out to solve a simpler problem than that addressed by Cog-
NIAC, but the results are still impressive. These are very common usages, and
there is considerable utility for text mining in being able to analyze them accu-

Towards text mining 

rately. In many documents, long chains of coreferences form a thread of mean-
ing in which a single person or thing is mentioned, described and discussed.
Such threads can form the basis of a document summary with respect to that
entity, and such summaries could be provided in response to a query that con-
tains a recognizable reference to the entity. Before exploring this topic further,
we survey the general field of document summarization.

. Automatic summarization

In Chapter 2, we echoed the common complaint that it is often hard to find
documents relevant to our information needs, but actually the situation is
much worse than that. Having found some relevant documents, the typical
knowledge worker then has to find the time to read them, summarize them,
and probably write some kind of survey or report that will serve as a basis
for recommendations. The subsequent processing of retrieved documents is at
least as arduous and time consuming as finding them in the first place.

High-quality browsing tools for scanning single large documents, or sets of
documents, would be a boon to many people whose business is information. In
Section 5.1, we saw how the named entities identified by PeopleCite can be used
as a jumping off point for the browsing of documents. Similarly, document
summaries are a useful adjunct in the sifting process, as well as providing report
writers with material for their own abstracts.

Text summarization can be defined as a process that takes a document as
input and outputs a shorter, surrogate document, which contains its most im-
portant content. ‘Importance’ can be determined with respect to a number of
different reference points. The most common reflect user requirements, such
as being relevant to a given topic, or helping the user perform a certain task.
For example, intelligence agencies might wish to monitor message traffic for
certain topics, or have long documents that feature associated key words or
phrases summarized, but only with respect to the chosen topics.

One can think of a summary as being an extract or an abstract, with rather
different implications. An extract is a summary that is constructed mostly by
choosing the most relevant pieces of text, perhaps with some minor edits. An
abstract is a gloss that describes the contents of a document without necessarily
featuring any of that content.

In both cases, one can think of summarization as compressing or con-
densing a document. An extract performs compression by discarding less rel-
evant material, whereas an abstract performs compression in more sophisti-

 Chapter 5

cated ways, e.g., by suppressing detail and replacing specific facts with gener-
alities. Obviously, one could mix these two modes of compression in a longer
summary, although doing this effectively raises many design issues.

Another distinction that one finds in the literature is between generic and
query-relevant summaries. Generic summaries give an overall sense of a docu-
ment’s content, while query-relevant summaries confine themselves to content
that is relevant to a background query.38 The latter type of summary might be
extremely useful when dealing with documents that are either large, such as a
manual or textbook, or contain diverse subject matter, such as court opinions.

In this chapter, we begin with an examination of summarization tasks
and the results of some experiments before reviewing actual approaches to
automatic summarization. The chapter ends with an assessment of current
methodologies for both training and evaluating summarization programs.

.. Summarization tasks

Systematic attempts to build and evaluate automatic summarization software
received a boost in 1996 from a research programme called TIPSTER-III. This
was a DARPA39 program involving government security agencies40 intended to
support R&D in natural language processing.41 It was sponsored by the MUC
and TREC organizations, under the auspices of the National Institute of Stan-
dards and Technology, which should be familiar to readers from the earlier
chapters of this book.42

The SUMMAC Summarization Conference43 of TIPSTER-III performed
a large-scale evaluation of automatic text summarization technologies for rel-
evance assessment tasks. We shall see that summaries produced at relatively
low compression rates44 allowed for the assessment of news articles almost as
accurate as that achieved using the full-text of documents. Since relevance as-
sessment is a primary use case for summarization of online documents, these
findings have significance beyond the intelligence community.

SUMMAC defined a number of summarization tasks, all of which were
based on activities carried out by information analysts in the U.S. Government.

– The ad hoc task focused on generic summaries that were tailored to a
particular topic.

– The categorization task investigated whether a generic summary could con-
tain enough information to allow an analyst to quickly and correctly cate-
gorize a document with respect to a given set of topics.

Towards text mining 

– The question-answering task evaluated an ‘informative’ topic-related sum-
mary in terms of the degree to which it contained answers to a set of
topic-related questions that could be found in the original document.

The ad hoc topics are shown in Table 5.2. The reader can see that these are
fairly diverse, although certain pairs of topics might be confusable as a result of
shared vocabulary, e.g., ‘Nuclear power plants’ and ‘Solar power.’ The 20 topics
were chosen from a larger set of over 200 topics used by TREC.

For each topic, a 50-document test set was created from the top 200 most
relevant documents retrieved by a standard search engine. Each document in
each set came with relevance judgments for that topic provided by TREC. The
20 sets of documents were disjoint, and most of them were news stories from
Associated Press and Wall Street Journal.

Two measures of performance were used to assess the usefulness of the
summaries for relevance assessment tasks.

– Time. This is simply the time taken for a human subject to assess the
relevance of a document by reading the summary.

– Accuracy. This was assessed using a contingency table, as in Table 5.3,
where TP denotes ‘true positive’, FP denotes ‘false positive’, FN denotes

Table 5.2 20 TREC topics chosen for the ad hoc summarization task

Nuclear power plants Cigarette consumption
Quebec independence Computer security
Medical waste dumping Professional scuba diving
DWI regulations Cost of national defense
Infant mortality rates Solar power
Japanese auto imports Volcanic activity levels
Capital punishment Electric automobiles
Lotteries Violent juvenile crimes
Procedures for heart ailments For-profit hospitals
Environmental protection Right to die

Table 5.3 Contingency table for ad hoc summarization task

Ground truth Subjects’ judgment

Relevant Irrelevant
Relevant is true TP FN
Irrelevant is true FP TN

 Chapter 5

‘false negative’ and TN denotes ‘true negative.’ Recall and precision metrics
can be computed from this table in the usual way (see Chapter 2).

The design for the ad hoc experiment compared the performance of 21
professional information analysts on the relevance assessment task using full-
text, fixed-length summaries,45 variable-length summaries and baseline sum-
maries.46 See Sidebar 5.3 for a sample document and sample summaries.

Statistical analysis of the results showed that:

– Performance on variable-length summaries was not significantly different
from that on full-text. Time taken to read the summaries was approxi-
mately half that of reading the full text (roughly, half a minute versus a
minute).

– Performance on fixed-length summaries was not significantly faster than
on baseline summaries, but produced significantly better accuracy.

– These performance gains are due to increased recall, not increased preci-
sion.

– The main weakness of the various kinds of summary versus full-text is false
negatives, not false positives, i.e., summaries sometimes miss relevant in-
formation from the source. This is particularly true at high compression
rates.

Concerning the effect of compression rate upon performance, the data showed
that time increased more or less linearly with summary length, while accuracy
increased only logarithmically.

These are encouraging results, since they demonstrate that automatic sum-
marization can deliver real performance gains on a common class of informa-
tion processing tasks, namely those involving the judgment of a document’s
relevance to a set of topics.

We now move on to the technology itself.

Sidebar 5.3 Sample document and sample summaries

Here is a sample full-text document from the ‘Cigarette consumption’ topic.

Cancer Map Shows Regional Contrasts
Striking regional variations are revealed by the first atlas of cancer incidence in
England and Wales, published yesterday, Clive Cookson writes. The atlas, com-
missioned by the Cancer Research Campaign, shows that lung cancer, the most
common form of the disease in men, is much more prevalent in the north than
in the south. The reverse is true for breast cancer, the most common cancer in
women.

Towards text mining 

Dr Isabel Silva and Dr Anthony Swerdlow of the London School of Hygiene and
Tropical Medicine analysed information about 3m new cancer patients between
1968 and 1985 to give a county-by-county variation in cancer risks. They com-
pared these with the geographical distributions of risk factors such as smoking
and occupation. The figures in the map above are an index of the number of new
cases in each county over the period.

In some cancers there is an obvious link with risk factors. The north-south gra-
dient in lung cancer is caused mainly by the greater prevalence of smoking in the
north. The authors say that greater industrial exposures to smoke, dust and toxic
fumes in the north are not sufficient to account for the regional differences.

Malignant melanoma, the most virulent skin cancer, has a strong south/north gra-
dient – someone living on the south coast is three times more likely to suffer than
someone in northern England. There is a clear correlation with hours of sunshine.

The reason why breast and ovarian cancers are more common in the south is not
obvious. The fact that southern women have fewer children on average may be a
partial explanation, Drs Silver and Swerdlow say, because they have higher levels
of the hormones related to these cancers.

(Atlas of Cancer Incidence in England & Wales. Oxford University Press)

Here is an automatically generated variable-length summary.

Striking regional variations are revealed by the first atlas of cancer incidence in
England and Wales, published yesterday, Clive Cookson writes.

They compared these with the geographical distributions of risk factors such as
smoking and occupation.

The north-south gradient in lung cancer is caused mainly by the greater prevalence
of smoking in the north.

The fact that southern women have fewer children on average may be a partial
explanation, Drs Silver and Swerdlow say, because they have higher levels of the
hormones related to these cancers.

Here is an automatically generated fixed-length summary.

In some cancers there is an obvious link with risk factors. The north-south gradi-
ent in lung cancer is caused mainly by the greater prevalence of smoking . . .

Here is baseline summary, consisting of the first 10% of the document.

Striking regional variations are revealed by the first atlas of cancer incidence in
England and Wales, published yesterday, Clive Cookson writes. The atlas, com-
missioned by the Cancer Research . . .

.. Constructing summaries from document fragments

The most popular way to construct a summary for a single document is to have
a program select fragments from the document and then combine them into an
extract.47 Many different approaches along these lines have been tried and re-
ported in the literature. However, it is not possible to compare these approaches

 Chapter 5

systematically, since most of the studies were done on different corpora and un-
der different experimental conditions. We can do little more than outline the
most salient research and report the results here. But we shall see that a fairly
consistent pattern of findings emerges with respect to the effectiveness of more
sophisticated summarization techniques over simpler methods.

Summarization by sentence selection
A common way to tackle a hard research problem is to translate it into a sim-
pler task that gets most of the job done. Selecting sentences for inclusion in the
summary reduces summarization generation from a complex cognitive task
to an exercise in sentence ranking. More precisely, one is interested in esti-
mating, for each sentence, how likely it is that the sentence would or should
appear in a summary. Having a ranking allows one to include or exclude sen-
tences depending upon the desired summary length. This reduction leaves to
one side the question of how the selected fragments should be combined to
form a coherent whole.

The sentence is frequently (but not always) selected as the unit from which
summaries are constructed, although there are obviously advantages (and dis-
advantages) to the use of larger units (such as paragraphs) and smaller units
(such as phrases). Paragraph selection has its advantages if the required sum-
mary is relatively large, or if the material is such that the gist of a document is
likely to be contained in a single paragraph. Most news articles are well sum-
marized by their first paragraph, while most scientific papers contain a small
number of paragraphs that motivate, report and interpret results. The prob-
lem with phrases is how to flesh them out into coherent sentences, possibly by
combining them with other phrases. This can be done manually, of course, but
the effort is greater than with the editing and arrangement of sentence units.

Rating sentences with respect to their suitability to appear in a summary
is not a trivial task, but various heuristics have been put forward in the litera-
ture. These are based upon statistical studies of summary versus non-summary
sentences for corpora containing documents that already have summaries. In
the interests of brevity, we shall refer to sentences rated highly to appear in
summaries as ‘summary sentences’ (SSs).

– Summary sentences should contain ‘new’ information. SSs are more likely to
contain proper names and are more likely to begin with the indefinite ar-
ticle ‘A’ than non-SSs. Clearly proper names, especially the full names of
people, companies, etc., are often used to introduce new objects of inter-
est that the document might be about. By the same token, the presence of

Towards text mining 

pronouns is a good source of negative evidence, since these refer to previ-
ously mentioned entities. Similarly, indefinite descriptions, such as ‘a ma-
jor earth tremor,’ often signal the introduction of a topic of interest, as op-
posed to a definite reference, such as ‘the tremor.’ The same is true of long
noun phrases ‘the most recent earth tremor’ versus shorter references, such
as ‘the tremor.’

– Summary and non-summary sentences have distinctive word features. SSs
and non-SSs appear to be differentiated by a ragbag of other features at
the phrase and word level. SSs often begin with words or phrases that sug-
gest a conclusion being drawn, e.g., ‘finally’, ‘in conclusion’, etc. They also
tend to contain words that have a high density of related words occurring
in the text, such as synonyms, hyponyms, and antonyms. Non-SSs tend to
contain miscellaneous indicators, such as negations (‘no, ‘never’, etc.), inte-
gers (‘1’, ‘2’, ‘one’, ‘two’, etc.), and informal or imprecise terms (‘got’, ‘really’,
etc.). These results are in accordance with intuition, since SSs are usually
positive, general, formal statements.

Most summarization systems employ a mixture of linguistic knowledge, such
as the above, and more generic statistical methods, such as Bayes’ Rule or the
cosine distance metric, which we met in Chapter 2.

An example of such a hybrid approach is that of Kupiec’s Trainable Docu-
ment Summarizer,48 which uses the following set of discrete features for select-
ing sentences:

– Sentence length feature. Summaries rarely contain really short sentences, so
we expect SSs to be longer than a threshold, such as 5 words.

– Fixed phrase feature. Certain phrases suggest summary material, e.g., ‘in
conclusion.’

– Paragraph feature. The first and last several paragraphs of a document are
most likely to contain summary material.

– Thematic word feature. The most frequent words in a document can be
regarded as thematic, and summary sentences are likely to contain one or
more of them.

– Uppercase word feature. Proper names and acronyms (especially with
parenthesized explanations) are often important for summaries.

Given k such features, F1, . . . , Fk, every sentence in a document can be scored
according to its probability of being in the summary using Bayes’ Rule,

P(s ∈ S|F1, ..., Fk) =
P(F1, ..., Fk|s ∈ S)P(s ∈ S)

P(F1, ..., Fk)

 Chapter 5

which can be written as

P(s ∈ S|F1, . . . , Fk) =

j=k∏
j=1

P(Fj|s ∈ S)P(s ∈ S)

j=k∏
j=1

P(Fj)

if we assume independence among the features. The prior P(s ∈ S) can be
approximated by a constant factor, such as the reciprocal of the number of
sentences in the document, and therefore ignored. P(Fj|s ∈ S) and P(Fj) can be
estimated from counts over training data.

In order to derive such counts, it is necessary to create a training corpus by
taking a document collection and matching sentences from known summaries
with sentences in the corresponding original documents. As we shall see, there
are many ways in which one might do this, but Kupiec et al. used the fairly
simple approach of (1) looking for very close sentence matches, and (2) looking
for summary sentences (‘joins’) composed of two or more sentence fragments
from the original. ‘Incomplete’ single sentences and incomplete joins contain
some fragments from the original, but also some material that appears to be
wholly new. Other summary material is deemed to be unmatchable.

In their corpus (of engineering documents), 83% of summary sentences
were either exact matches or joins, and therefore deemed to be correct in a
manual process. The trained summarizer chose 35% of these summary sen-
tences. When the summary sentences being searched included the ‘incom-
pletes’, recognition rose to 42%, i.e., 42% of the summary sentences derived
from the original documents by full or partial matching were identified.

Looking at the performance of individual features, it appeared that the
‘paragraph’ and ‘fixed phrase’ features were especially useful in picking out
summary material from the original text, with ‘sentence length’ also perform-
ing well. Single word features, such as ‘uppercase word’ and ‘thematic word’,
performed less well.

Summarization by paragraph selection
One problem with sentence selection as a strategy is that the resulting sum-
maries are often disjointed and do not read well. Using larger building blocks
can help with coherence. Thus an alternate approach to summarization is to as-
sume that a text contains a small number of ‘best’ paragraphs, which can stand
for the text as a whole. This is particularly effective for certain kinds of mate-
rial, such as news stories and encyclopedia entries, where an early paragraph,

Towards text mining 

typically the first, provides a coherent outline of what follows. Many news sto-
ries start with a succinct statement of who did what to whom, together with
where and when. (The ‘how’ and ‘why’ usually comes later.)

Paragraph selection has been well studied, although it has not been as pop-
ular with researchers as sentence selection. One approach49 is to begin by at-
tempting an analysis of text structure, e.g., by linking similar paragraphs to-
gether. Similarity is estimated using the vector space techniques described in
Chapter 2. Once the text has been segmented in this way, it is possible to
identify the most heavily linked paragraphs. These have many links because
they share terminology with many other paragraphs, and are therefore likely to
contain overview or summary material.

Merely reproducing these paragraphs in the order that they occur in the
text may cover the salient points of a document but fail to read well as a sum-
mary. Consequently, other strategies have been tried, such as starting with the
most heavily linked paragraph and then visiting the next most similar para-
graph, and so on. The chain of such paragraphs may improve on the previous
approach, depending upon the material to be summarized.

Another approach by Strzalkowski et al.50 also identifies paragraph struc-
ture, but then uses anaphors and other backward references to group passages
together. Once passages have been connected in this way, they cannot be sepa-
rated; either they all appear in the final summary, or none of them do. In addi-
tion to the document itself, the summarizer (called ) takes a desired
summary length and a topic description as inputs. Query terms extracted from
the topic description are used to score combinations of passages. The passages
with the best score appear in the final summary, the number of passages being
determined by the length constraint.

Discourse based summarization
Moens51 takes a quite different approach in which the first step is to model the
structure of documents to be summarized. Thus, when attempting to abstract
Belgian criminal cases, she began with an analysis of the ‘typical form of dis-
course’ of such materials. The result was a text grammar, in which prototypical
segments of text are arranged in a network of nodes and links.

Different kinds of case have variations on this structure, and so a case can
be categorized initially by recognizing the presence or absence of key segments.
A given text is then tagged for further analysis by running a ‘partial parser’52

over it to identify commonly occurring word patterns that signal the start of a
new segment. A knowledge engineering effort was required to construct these
patterns by hand.

 Chapter 5

The system, called , could then abstract selected parts of the case,
such as the title, the parties, and the verdict, to provide a summary of the case.
Clearly, such a system is predicated upon a particular type of document, being
used in a particular context, such as legal research. Some general techniques
were used to cluster paragraphs into segments (as in the preceding section
on paragraph based summarization), but the resulting summaries were also
informed by the overall structure of the case.

Marcu’s approach53 is both more general and more formal, in that it re-
lies upon a methodology for text analysis called Rhetorical Structure Theory54

(RST). A detailed discussion of RST is well beyond the scope of this book, but
the basic idea is that texts can be decomposed into two kinds of elementary
units: nuclei and satellites. These are non-overlapping spans of text that stand
in various relations to each other. A nucleus expresses something essential to
a writer’s purpose, whereas a satellite expresses something less essential, e.g.,
it may provide the setting of a nucleus, or elaborate upon it. Nuclei may also
stand in relationships to one another, such as contrast, in constructions such
as ‘on the one hand . . . on the other hand.’

Applying RST to summarization, Marcu reduces the generation of a sum-
mary to a small number of (admittedly large) steps. First, take a text and decide
what percentage of its length, p%, you want the summary to be. Then, proceed
as follows.

1. Identify the discourse structure of the text, using his ‘rhetorical parsing
algorithm.’

2. Determine a partial ordering on the units of the discourse structure.
3. Select the first p% of the units in this ordering.

The rhetorical parsing algorithm is cue-based, i.e., it identifies cue phrases and
punctuation which mark important boundaries and transitions in the text, in-
formed by corpus analysis. These ‘discourse markers’ suggest rhetorical rela-
tions between clauses, sentences and whole paragraphs, which are then ren-
dered as tree structures. Where ambiguity exists, a weight function is used to
prefer hypothetical text structures that are skewed towards introducing nuclei
first and satellites later, since this is the most common way of expounding a
topic.

Coreference based summarization
The two previous methods have been studied primarily in the context of
‘generic’ summaries, as defined earlier in this section. Coreference based meth-
ods are more focused upon the task of summarizing a document so that the

Towards text mining 

user of a retrieval system can determine whether or not a document is rele-
vant to a query, and therefore worth reading. As we saw in Section 5.2, the
basic concept behind coreference is that two linguistic expressions, such as ‘Bill
Gates’ and ‘the Chairman of Microsoft’, corefer when they both refer to the
same entity.55

If a query contains the name of an entity, such as a person or company, a
reasonable summary of a document with respect to that query may be obtained
by extracting sentences that contain references to that entity. This is simple to
state, but hard to do, when references to Bill Gates might include such words
and phrases as ‘Gates’, ‘he’, ‘Microsoft Chairman’, ‘the billionaire,’ and so forth.
Then think of the even more oblique relationships that hold between phrases
such as ‘the President’, ‘the White House’, ‘Washington’, and ‘the US’, when used
to refer to the government of the United States taking some action, e.g.,

‘The President is expected to ratify the missile treaty.’
‘The White House is expected to ratify the missile treaty.’
‘Washington is expected to ratify the missile treaty.’
‘The US is expected to ratify the missile treaty.’

More general meaning relationships also enter into coreference, especially
among descriptions of events. Thus, a program may need to realize that

‘the assassination of the President’

and

‘the shooting of the President’

refer to the same incident.
Coreference determination for summarization is currently handled via a

combination of string matching, acronym expansion, and dictionary lookup.
At document retrieval time, names occurring in queries must be compared
with referring expressions in documents. Such associations can be used to
rank and then select sentences from the document for incorporation into a
summary.

Using such methods, Baldwin and Morton56 were able to generate sum-
maries that were almost as effective as the full text in helping a user determine
relevance.

 Chapter 5

.. Multi-document summarization (MDS)

If the summarization of single documents is difficult, summarization across
multiple documents poses even more problems. Yet success in this endeavor
would offer real utility to many researchers and ‘knowledge workers’, by en-
abling them to process whole document collections with far less effort than
today. And, unlike single-document summarization, the multi-document case
is more like real text mining, in that such summaries may well make it possible
for users to make novel connections and undercover implicit relationships that
cannot be gleaned from any single text.

Stein et al.57 point out that single-document summarization is only one of
the critical subtasks that need to be performed for successful MDS, e.g., the
program must also

– identify important themes in the document collection;
– select representative single-document summaries for each of these themes;

and
– organize these representative summaries for the final multi-document

summary.

They use the paragraph-based, single-document summarizer , de-
scribed in Section 5.3.2, to generate a summary for each document in the col-
lection, then they group the summaries into clusters using Dice’s coefficient
(see Sidebar 5.4) as the similarity metric. Representative passages are selected
from the clusters rather in the same manner as  selects representa-
tive passages from a single document. The cross-document summarizer, -

, then presents selected passages with similar passages being grouped to-
gether. There is no other organizing principle used in constructing the final
summary.

Sidebar 5.4 Another similarity measure

Dice’s coefficient scales the overlap of sets of features A and B in terms of the size of these
sets. Thus

DICE(A, B) =
2NAB

NA + NB

where NA is the size of set A, NB is the size of set B, and NAB is the size of the overlap between
them. Note that

0 ≤ DICE(A, B) ≤ 1

Towards text mining 

and

DICE(A, A) = 1.

Basing cross-document summarization on clustered paragraphs avoids some
of the problems inherent in trying to bootstrap the sentence extraction model
to the multi-document case. Simply extracting important sentences from single
documents and pooling them for presentation to the user is bound to result in
long, repetitive summaries.

Picking paragraphs from clusters helps reduce redundancy, but does noth-
ing to integrate information from different documents at the paragraph level.
Researchers at Columbia University58 have taken a somewhat different ap-
proach to MDS, called ‘reformulation.’ As well as clustering similar paragraphs
by theme, they also identify key phrases within paragraphs, reducing phrases
to a logical form called ‘predicate-argument structure’ in order to effect the
comparison (see Sidebar 5.5).

Phrases are matched using a machine learning algorithm, called RIPPER,
described in Chapter 4. Important sentences and key phrases are then ‘inter-
sected’ to form new, more informative sentences for inclusion in the summary.
For example, the sentence,

“McVeigh was formally charged on Friday with the Oklahoma bombing.”

might be merged with the phrase,

“Timothy James McVeigh, 27”

to produce the more informative sentence:

“Timothy James McVeigh, 27, was formally charged on Friday with the
Oklahoma bombing.”

This merge process is performed upon the logical form of the sentences and
phrases, instead of trying to work with the raw text. Finally, summary sentences
are generated from the underlying logical forms, so that the system can produce
novel sentences that did not occur in any of the texts. This is done using a
language generation program called FUF/SURGE.59

Sidebar 5.5 Predicate-argument structure

Predicate-argument analysis reduces a sentence to a logical form, using notation borrowed
from the predicate calculus. Thus, “The Federal Court rebuked Microsoft” and “Microsoft
is rebuked by the Federal Court” would both reduce to an expression like “rebuke(Federal

 Chapter 5

Court, Microsoft)”. This mapping eliminates some of the syntactic variation of English and
therefore allows sentences with similar meaning to be recognized in a pairwise comparison.
A simple word match without regard to order would not be able to distinguish between “The
Federal Court rebuked Microsoft” and “Microsoft rebuked the Federal Court”.

More complex sentences can be represented by a more sophisticated notation, such
as dependency grammar. This kind of analysis allows verbs to be annotated with tense and
voice, nouns to be annotated with number and other features, and accommodated complex
syntactic structures, such as prepositional phrases. For example, “The court rebuked the
defendants” could be represented along the lines of:

<rebuke, past>(<court, definite, singular>, <defendant, definite, plural>).

More sophisticated still are analyses that attempt to account for synonymy, e.g., recognizing
that verbs such as ‘rebuke’, ‘criticize’, ‘reprimand’, etc., have a common semantic core. This
leads to further complexity, in which words are represented by bundles of features, which
can then be matched.

The purpose of all such analyses is to uncover similarities in the ‘deep structure’ of
words and sentences that are obscured by different ‘surface structures’ of the language, such
as word order and lexical choice.

The multi-document summarization problem has received more attention in
recent years, due to the Topic Detection and Tracking60 (TDT) initiative. In
1996, a DARPA-sponsored initiative began investigating the problem of au-
tomatically finding and following new events in a media stream of broad-
cast news stories. This task requires that a system be able to accomplish the
following subtasks.

1. Segment the stream of speech data into distinct stories.
2. Identify stories that describe new events61 in the news stream.
3. Identify stories that follow on from these new stories.

Here we shall neglect (1) in favor of (2) and (3), since speech recognition and
the segmentation of audio data are out of scope for this book. We shall assume
that news stories are already rendered as text, and that their boundaries are
therefore known. (2) really boils down to detecting stories that are not sim-
ilar to previous stories, while (3) looks for stories that are similar to stories
identified as new.

Events can be detected ‘retrospectively’ in an accumulated collection, or
‘on-line’ in documents arriving in real time. These are somewhat different
tasks. The input to a retrospective system is an entire corpus of documents, and
the output will be sets of documents clustered by the events that they describe.
The input to an on-line system is a stream of stories, read in chronological or-

Towards text mining 

der, and the output is a YES/NO decision, indicating whether or not a given
story describes a new event.

Given that new events are, by definition, events about which we have no
knowledge, it is clear that we cannot identify them by running queries against
either a document collection or a stream of documents. One is essentially min-
ing the text for new patterns, which can be seen as a query-free form of doc-
ument retrieval. There is also a text classification component to this problem,
since we are interested in grouping documents into ad hoc categories.62

The Carnegie Mellon (CMU) group used a conventional vector space
model63 for their clustering system, based on the SMART retrieval system de-
veloped at Cornell University.64 As usual, documents are preprocessed as fol-
lows: stop words are removed, the remaining words are stemmed, and term
weights are calculated.65 The weight of a term t in story d is defined as

w(t, d) =
1 + log2 TFt,d × IDFt√∑

�d=〈di〉
d2

i

where TF and IDF are term frequency and inverse document frequency, as
defined in Chapter 2, and the denominator is the 2-norm66 of the document
vector. The similarity between two stories is then defined as the cosine metric
between their two vectors, as explained in Chapter 2.

A cluster of documents is represented by a centroid vector, which is just the
normalized sum of the story vectors in that cluster. Similarity between clusters
is likewise determined by the cosine measure, as is similarity between a story
and a cluster. Thus, new stories can be added to a cluster if the cosine measure
between them scores above a predetermined threshold, in which case the cen-
troid is updated. If the story is insufficiently similar to any existing cluster, then
it describes a new event, and a new cluster is created for it. This cluster will then
attract follow-up stories to the new story, if they are sufficiently similar to it.

At the heart of CMU’s method is an ‘agglomerative algorithm’ that it col-
lects data into clusters. Called Group Average Clustering, it maximizes the aver-
age pairwise similarity between stories in a cluster. The algorithm67 works in a
bottom-up fashion as follows.

– Individual stories are leaf nodes in a binary tree of clusters, and are treated
as singleton clusters.

– Any intermediate node is the centroid of its two children, which are more
similar to each other than any other cluster.

– The root of the tree contains all clusters and therefore contains all stories.

 Chapter 5

The University of Massachusetts (UMass) group tried two methods for the ret-
rospective task. One was an agglomerative algorithm similar to CMU’s. Using
the INQUERY68 search engine, two documents are compared by running each
against the other as if one were a query and the other a document to be re-
trieved. The similarity between the two documents is then computed as the
average of the two belief scores. Documents are only clustered if the average
so derived is more than two standard deviations above the mean comparison
score. The mean comparison score is simply the average of all the two-way
pairwise similarity scores for all the documents in the training collection.

The other method tried by UMass placed more emphasis on timing. Novel
phrases occurring in the documents to be rated are examined to see if their
occurrences are concentrated at a particular point in time, or reasonably nar-
row range thereof. If so, the term is allowed to trigger an event, and the doc-
uments containing the term are handed to a relevance feedback69 algorithm,
which generates a query for finding subsequent stories about that event.

Participants in the 1996 study touched upon the following open issues with
respect to TDT in their 1998 report:

1. How do we give analysts monitoring news stories an overview of the whole
information space, so they can navigate (i.e., search and browse) through
it?

2. How do we choose the right level of granularity for clusters, so that users
don’t find them too big to browse or too small to consider?

3. How to summarize the clusters, the stories in them, and the themes in the
stories?

As we have seen, researchers have begun to address (3), using ‘ready to hand’
techniques present in the literature. Thus vector space models, cosine similar-
ity measures, and centroid clustering have all been pressed into the service of
TDT. (2), on the other hand, requires a better understanding of how to param-
eterize clustering systems (see Sidebar 5.6). (1) is somewhat beyond the scope
of this text, in that it assumes the availability of dynamic visualization software
for graphically representing clusters of documents and relationships between
them.

Columbia University was not involved in the TDT Pilot Study, but entered
a system (called CIDR) for the subsequent TDT-2 evaluation. The system was
put together in a short period of time as a testbed for exploring ideas about
clustering and summarization. Like CMU and UMass, they used a form of the
tried and true tf-idf weight function to generate clusters of documents. Their
approach to multi-document summarization is called CBS, for ‘Centroid Based

Towards text mining 

Summarization.’ Centroids can be thought of as pseudo-documents that repre-
sent a whole cluster, and contain word lists, together with their corresponding
counts and inverse document frequencies, or IDFs. To satisfy the ‘on-line’ task,
they estimated IDFs from another collection of articles, rather than from the
news feed they were incrementally reading.

Their actual summarization system, called MEAD, takes as input centroids
from the clusters generated by CIDR (plus a compression rate). It then pro-
duces as output sentences that are topical for the documents in the clusters,
constructing summaries in the form of sentence extracts. This work is, in some
ways, less ambitious than the work on summarization by reformulation, de-
scribed above, in which the logical contents of topical sentences are merged
prior to language generation. However, it does contain the notion of subsump-
tion between sentences, namely the idea that one sentence can contain the
meaning of another, while sentences that have essentially the same meaning
are arranged in equivalence classes. Subsumption is computed by word over-
lap, using the Dice coefficient (see Sidebar 5.4), rather than any kind of gram-
matical analysis. During summary construction, more informative sentences
will be preferred over less informative ones, and more than one sentence will
not be used from the same equivalence class.

Sidebar 5.6 Clustering parameters

Various system parameters were instituted in the interests of efficiency and then methodi-
cally varied to assess their effects upon CIDR’s performance.

–  . Processing ignores all but the first 50–200 words in a document to
speed up the construction of tf-idf vectors. This works fine for news articles, since their
salient points are usually contained in the first paragraph or two.

–  . Processing ignores any words with high document frequency, which
reduces the size of the vectors.

–  . This parameter controls when a new cluster is created, and helps tune
precision and recall when clustering.

–  . A centroid is typically represented by only the 10–20 highest scoring
words on tf-idf.

Experiments have shown that a relatively small number of words is sufficient to capture the
topic of a cluster, and that properties of these terms, such as inverse document frequency,
remain reasonably stable as new documents are added to a cluster. Best clustering results,
in terms of misses versus false alarms, were obtained with   = 100 and
  = 10.

 Chapter 5

. Testing of automatic summarization programs

Machine-generated summaries are notoriously hard to evaluate. What makes a
good summary? Intuitively, a summary should capture the important points in
a document and be easy to read. Sentence selection algorithms can be good at
gathering the main points, but a summary consisting of strung-together sen-
tences plucked out of the text may not read well. Such methods may nonethe-
less be effective for discursive materials, such as legal opinions and magazine
articles. Selected paragraphs will read well (to the extent that the original was
well written), but may miss important points if material is distributed through-
out the text. Such methods may work better on news articles than on magazine
articles or legal cases.

.. Evaluation problems in summarization research

Researchers have typically used two methods in trying to quantify the perfor-
mance of summarization programs. One is to compare the machine’s output
with an ‘ideal’ hand-written summary, produced by an editor or a domain ex-
pert. This has been called ‘intrinsic’ evaluation,70 and it is the more widely
used of the two. The other, ‘extrinsic’, approach is to evaluate the usefulness of
a summary in helping someone perform an information processing task. Both
methods are known to be very sensitive to basic parameters of the experimental
context, such as summary length.71

First, let us consider intrinsic evaluations. When human subjects are asked
to generate 10% summaries of news articles by sentence extraction, inter-
subject agreement can be as high as 95%, but declines somewhat when the
compression ratio increases to 20%. When other materials, such as scientific
articles, are used, agreement declines significantly to 70% or less. Not sur-
prisingly, the perceived accuracy of automatically generated summaries also
declines as length increases.

Other experiments have shown that a given pair of hand-written sum-
maries may only exhibit about 40–50% overlap in terms of their content. As
Mitra, Singhal and Buckley72 point out:

‘If humans are unable to agree on which paragraphs best represent an
article, it is unreasonable to expect an automatic procedure to identify the
best extract, whatever that might be.’

Interestingly, the authors found that their paragraph extraction program was
able to generate summaries that had a similar 40–50% overlap profile with a

Towards text mining 

given human-generated summary, indicating that the agreement between the
program and a human was typically no worse that the agreement between two
humans. They also found that extracting the initial paragraphs of an article
formed summaries that were deemed as good as more sophisticated paragraph
selection algorithms. (Another consistent finding is that taking the first 10 or 20
percent of a text, and treating that as a summary, can be as effective as sentence
selection73 on many kinds of material.)

Extrinsic evaluations typically treat a summarization system as a post-
process to an information retrieval engine. The summary generated is meant to
be tailored to the user’s query, rather than reflecting the document as a whole.
Human subjects then use the summaries to decide whether or not the doc-
ument is relevant to the query. Their performance on this task is measured
with respect to time taken, the accuracy of their decisions, and sometimes the
degree of confidence they are prepared to place in their decisions. The assump-
tion is that, given good summaries, users will be faster to judge the relevance
of search results than if they had to delve into the documents themselves, and
that accuracy and confidence will not suffer too much.74

For extrinsic evaluations, there appears to be no consistent relationship be-
tween summary length and system performance. Rather the data suggest that
systems perform best when allowed to set their own summary lengths. Forc-
ing task-based summaries to conform to a particular compression ratio ne-
glects the user’s information need, the genre of the document, and the specific
content and structure of the documents themselves.

These results illustrate both the imperfect state of automatic summariza-
tion and the imperfect state of our evaluation methods. The evaluation of sum-
marization technology may ultimately remain a subjective matter, since there
is no unique right answer to the question ‘What is a good summary?’ for a
given document or set of documents. Nevertheless, researchers are increasing
our understanding of what makes for a good evaluation, and this is probably
the best we can hope for.

.. Building a corpus for training and testing

Building a working summarizer based on Bayes, or some other statistical
method, depends upon having a large amount of training data, i.e., a corpus
of documents and their associated hand-written summaries. However, even
if the number of examples to hand is small, there are automatic methods for
mapping extant summary fragments to portions of original text that may help

 Chapter 5

generate more training data over unseen texts and also help train a program to
generate summaries for further unseen texts.

The rationale behind such a bootstrapping approach is that human sum-
marizers frequently employ a cut-and-paste method for constructing sum-
maries. Programs can therefore examine a given summary sentence and see
(1) if it was derived from the text by cut-and-paste, and if so (2) what parts
of it were taken from the text, and (3) where in the original text the used frag-
ments come from. Researchers have used problem simplification to formulate a
tractable answer these questions. Locating summary fragments in the original
text can be posed as a mapping problem (see Sidebar 5.7), where the solution
is to assign each word in a summary sentence to its most likely source in the
text.75 This is a more granular approach than that employed by Kupiec, and
requires much less manual intervention.

In addition to building a corpus for summarization research, the ability to
map summary fragments back onto the text can be used in an online environ-
ment to link from a summary sentence to that part of the text which deals with
the topic of the sentence. This could be a valuable aid for browsing long doc-
uments. The mapping might also be useful for segmenting a document into
subtopics, e.g., to support fielded search, as defined in Chapter 2.

Sidebar 5.7 Locating summary fragments in text

More precisely, given as input a sequence of words from the summary, 〈I1, . . . , IN〉, we want
to determine, for each word, its most likely source within the document. We can represent
positions within a document by ordered pairs, 〈S, W〉, where S is the sentence number and
W is a word position within that sentence. Thus, 〈2, 3〉 would represent the third word in
the second sentence.

Any given word can therefore be represented by a set of such positions, namely those
positions in where it occurs in the document. Finding the most likely source for a summary
fragment can then be posed as the problem of finding the most likely position sequence
that its words occupy in the original text. We will obviously prefer close and consecutive
positions to positions that are widely dispersed and jumble the order of the words in the
summary sequence.

Here we make another simplifying assumption: namely that the probability that a sum-
mary word derives from a particular position in the original text depends only upon the
word that precedes it in the summary sequence. This assumption leads to a bigram model
of the summarization process, in which the probability that a given word from the input
sequence is derived from a particular position in the text is conditioned upon the position
of the preceding word.

Thus, if Ii, and Ii+1 are adjacent words from the input sequence, we write

P(Ii+1 = 〈S2, W2〉|Ii = 〈S1, W1〉)

Towards text mining 

to denote the probability that Ii+1 was derived from word W2 of sentence S2, given that Ii

was derived from word W1 of sentence S1. We can abbreviate this as

P(Ii+1|Ii).

To find the most likely sequence of assignments of positions to a sequence of N input words,
we then need to maximize the joint probability, P(I1, . . . , IN), which can be approximated as
follows, using the bigram model:

P(I1, . . . , IN) =
i=N–1∏

i=0

P(Ii+1|Ii).

This can be done efficiently using the Viterbi algorithm24 that we encountered in Sec-
tion 5.2.1.

. Prospects for text mining and NLP

Natural language processing, by its very nature, is difficult to automate. This
is not primarily because grammar is complicated (although it is), or because
word and sentence meanings are hard to analyze (although they are). It is
largely because of the complexities of language usage, e.g., our habitual refer-
ence to previous linguistic or non-linguistic context, and our tendency to rely
upon a reader or listener’s common sense or shared experience. Computers are
not becoming more like humans, and we should not rely upon software being
able to bridge this gap any time soon.

While some progress has already been made on text mining, it is clear
that we have a long way to go. Fully automatic methods for identifying proper
names are both available commercially and being used in production at elec-
tronic publishing houses, but summarization software still leaves a lot to be
desired, and is best used as an adjunct to a manual process. Indeed, many ‘back
office’ applications can benefit from a semi-automatic approach in which hu-
man editors review the suggestions of programs, e.g., when constructing in-
dexes, classifying documents, and choosing citations. We have seen a number
of examples of successful applications along these lines in earlier chapters.

We have also seen that core technologies, such as information retrieval, in-
formation extraction and text categorization, are available in various forms,
and can function as useful tools, so long as their limitations are understood.
Exaggerated claims for these technologies, which suggest that computer pro-
grams can somehow ‘understand’ the meanings of words, or the intentions of
users, are counterproductive in this regard. Even claims by software vendors

 Chapter 5

that their programs can perform search or classification based on ‘concepts’
should be viewed with suspicion. Philosophers have yet to agree on what con-
cepts are, but we can safely say that they are not words or word sequences that
happen to occur frequently in documents.

Progress in text processing for online applications will benefit greatly
from efforts to make information on the Web and elsewhere more machine-
comprehensible. These efforts will involve data interchange standards such as
XML,76 and formats that are being defined over XML, such as RDF.77 The ‘Se-
mantic Web’78 initiative by the World Wide Web Consortium (W3C) can be
seen as an attempt to annotate the Web with metadata to enable more complex
transactions between software. Although such standards may be a few years
away, researchers are already thinking about how they would exploited.79

One can view such endeavors as the other side of the NLP coin. NLP seeks
to move machines into the arena of human language, while XML and related
technologies seek to move human language into the realm of the machine.
These approaches have the potential to be complementary, although at the
time of writing they are largely being pursued by separate groups of technolo-
gists. W3C is one of the very few organizations attempting to promote synergy
between the two areas.

These two different ways of approaching the problem of language process-
ing have implications for systems design. We have seen that finding the right
allocation of function between person and machine is often the key to a suc-
cessful application. Programs can be good at tirelessly enumerating alternatives
or generating possibilities, while humans can be good at critiquing and quali-
fying suggestions. In many instances, fully automatic solutions may be less de-
sirable than semi-automatic ones, in which editors and end users retain control
of the process.

The most promising way forward is typically to design a person-machine
system in which sophisticated language processing serves as an adjunct to hu-
man intelligence. Such systems provide a domain expert with a ‘smart clerk’
capable of sifting through vast amounts of information and making sugges-
tions concerning interesting documents or parts of documents that should be
brought to the experts attention. The clerk may even be empowered to per-
form whole tasks on its own, in applications that are not mission-critical, or
where ‘good enough’ performance is acceptable.80 But a degree of editorial
oversight will normally be required for ‘top drawer’ products and services that
are a company’s primary offerings.

Furthermore, we have seen that successful applications of natural language
processing to online applications need not be intelligent in the traditional AI

Towards text mining 

or science fiction sense. Knowledge workers in the 21st century need tools for
finding relevant documents, extracting relevant information from them, and
assimilating them into existing document classification systems. They also need
aids (or aides) for navigating the World Wide Web, corporate Intranets, and
digital libraries. But they do not need to conduct a conversation with an Eliza-
like program of the kind we encountered in Chapter 1, or to be told what is
significant or insignificant by a machine.

Future aides will pose as intelligent agents, and software vendors will no
doubt give them names, faces, voice capabilities, and even personalities, using
sophisticated 3-d modeling and animation coupled with state of the art speech
synthesis. But our prediction is that these devices will be powered mostly by
hand-written scripts, or statistical techniques that do not have a significant
semantic component. They will perform important roles, such as reminding,
suggesting, enumerating, and bookkeeping, but will not exercise judgment or
make decisions. Most creative and analytical functions, such as the weighing
of evidence and the crafting of recommendations, will remain firmly in the
purview of human judgment, which is probably as it should be.

Pointers

The Named Entity Task Definition for MUC7 can be found at the National
Institute of Standards and Technology (NIST) Web site.81

Another NIST site82 contains further information about the TIPSTER
Text Summarization Evaluation Conference (SUMMAC). The Association for
Computational Linguistics,83 ACL, held specialist workshops on anaphora
(1999) called “Coreference and Its Applications”, and “Intelligent Scaleable Text
Summarization” (1997). The ACL journal, Computational Linguistics, is one
of the main venues for publishing research on natural language processing.

For more about XML and RDF, see the World Wide Web Consortium84

home page.

Notes

. See Frawley, W. J., Piatetsky-Shapiro, G., & Matheus, C. J. (1991). Knowledge discovery
in databases: An overview. In G. Piatetsky-Shapiro & B. Frawley (Eds.), Knowledge Discovery
in Databases (pp. 1–27). Cambridge, MA: AAAI/MIT Press.

. Much of this data is relational in nature, but not exclusively so.

 Chapter 5

. See Hearst, M. A. (1999). Untangling text data mining. In Proceedings of the 37th Annual
Meeting of the Association for Computational Linguistics (pp. 3–10). See also http://mappa.
mundi.net/trip-m/hearst/

. Dozier, C. & Haschart, R. (2000). Automatic extraction and linking of personal names
in legal text. In Proceedings of RIAO-2000 (Recherche d’Informations Assistée par Ordinateur)
(pp. 1305–1321).

. Wasson, M. (2000). Large-scale controlled vocabulary indexing for named entities. Pro-
ceedings of the Language Technology Joint Conference: ANLP-NAACL 2000.

. Dalamagas, T. (1998). NHS: A tool for the automatic construction of news hypertext. In
Proceedings of the 20th BCS Colloquium on Information Retrieval. Grenoble, France.

. Al-Kofahi, K., Tyrrell, A., Vachher, A., & Jackson, P. (2001). A machine learning approach
to prior case retrieval. In Proceedings of 8th International Conference on Artificial Intelligence
and Law (pp. 88–93). New York: ACM Press.

. See Chapter 3.

. See Chapter 2.

. PeopleCite’s statistical analysis uncovered a few anomalies in the West Legal Directory,
such as an entry for an attorney named Luke Skywalker, probably submitted by a law student
with a passion for Star Wars and a sense of humor.

. Besides having the highest match probability, a candidate record must meet three ad-
ditional criteria before we link it to the template. First, the date on the candidate record
must be earlier than the template record date. Second, the highest scoring record must have
a probability that exceeds a minimum threshold. Third, there must be only one candidate
record with the highest probability. If two or more records share the highest score, no linkage
is made.

. The word ‘anaphora’ derives from Ancient Greek: ‘ανα’ meaning ‘back’ or ‘upstream’,
and ‘φoρα’ meaning ‘the act of carrying.’

. This example is taken from Mitkov, R., Evans, R., Orasan, C., Barbu, C., Jones, L., &
Sotirova, V. (2000). Coreference and anaphora: Developing annotating tools, annotated re-
sources and annotation strategies. In Proceedings of the Discourse, Anaphora and Reference
Resolution Conference (DAARRC-2000). Lancaster University, 16–18 November, 2000.

. E.g., Hobbs, J. E. (1986). Resolving Pronoun References. In Grosz, B. J., Jones, K. S., &
Webber, B. L. (Eds.), Readings in Natural Language Processing (pp. 339–352). San Francisco:
Morgan Kaufmann.

. See Baldwin, B. (1997). CogNIAC: High precision coreference with limited knowl-
edge and linguistic resources. ACL-97/EACL-97, Workshop on Anaphora Resolution. Madrid,
Spain.

. Al-Kofahi, K., Grom, B. & Jackson, P. (1999). Anaphora Resolution in the Extraction of
Treatment History Language from Court Opinions by Partial Parsing. In Proceedings of the
Seventh International Conference on Artificial Intelligence and Law (pp. 138–146).

Towards text mining 

. Thanks to the tendency to slap a lowercase “e” on the front of any word to do with the
Web, absence of an initial capital letter is less reliable than before as a negative indicator of
namehood. Thus eBay is a company name, despite the lack of initial capitalization.

. For example, NetOwlTM Extractor (http://www.netowl.com) classifies names into the
following categories: PERSON, ENTITY (including ORGANIZATION, COMPANY, GOV-
ERNMENT, etc.), PLACE (including COUNTRY, COUNTY, CITY, etc.), ADDRESS, TIME,
and various NUMERIC expressions.

. See Mikheev, A., Grover, C., & Moens, M. (1998). Description of the LTG system used for
MUC-7. In Proceedings of 7th Message Understanding Conference (MUC-7). The Language
Technology Group (LTG) system scored 93.39 on the F-measure, with precision and recall
weighted equally. The runners-up were IsoQuest, scoring F = 91.60, and BBN, scoring F =
90.44. Interestingly, two human annotators scored 96.95 and 97.60 on the same task under
test conditions. So LTG’s system scored close to the performance of an individual human
editor. It’s good to bear in mind when rating computer programs on various extraction and
categorization tasks that human performance is never 100%.

. Mikheev, A. (1999). A Knowledge-free Method for Capitalized Word Disambiguation.
In Proceedings of the 37th Conference of the Association for Computational Linguistics (ACL-
99) (pp. 159–168).

. Bikel, D. M., Miller, S., Schwartz, R., and Weischedel, R. (1997). Nymble: A high-
performance learning name-finder. In Proceedings of the 5th Conference on Applied Natural
Language Processing (ANLP-97) (pp. 194–201).

. Bikel, D. M., Schwartz, R., & Weischedel, R. (1999). An algorithm that learns what’s in
a name. Machine Learning, 34, 211–231.

. See either of the Bikel et al. papers for details.

. Viterbi, A. J. (1967). Error Bounds for Convolutional Codes and an Asymptotically
Optimum Decoding Algorithm. IEEE Transactions on Information Theory, 13 (2), 278–282.

. There were only four participants in the Coreference Task and they were all academic
institutions, namely Durham, Manitoba, Pennsylvania, and Sheffield Universities.

. SGML is the document markup standard (ISO 8879) that inspired HTML, the markup
language of the Web, and is now being superseded by XML, the World Wide Web Con-
sortium’s eXtensible Markup Language. See Goldfarb, C. F. (1990). The SGML Handbook.
Oxford University Press.

. See the footnote in Section 5.2.1.

. Hobbs, J. R. (1977). Resolving Pronoun References. Lingua, 44, 311–338. See also Grosz,
B. J., Jones, K. S., & Webber, B. L. (Eds.), Readings in Natural Language Processing (pp. 339–
352). San Francisco: Morgan Kaufmann.

. Actually, the algorithm searches the parse tree of the sentence in a breadth-first fashion.

. One version of the system also uses full parse trees, i.e., a complete grammatical analysis
of each sentence.

. One can think of other, non-basic, semantic information that could help with this task.
For example, the ability to categorize proper names with respect to their referents could help

 Chapter 5

determine whether or not a pronoun should refer back to a person, place, or organization.
But then one is going beyond mere linguistic analysis into real world knowledge.

. Rules and data are taken from: Baldwin, B. (1995). CogNIAC: A high precision pronoun
resolution engine. University of Pennsylvania Department of Computer and Information
Sciences Ph.D. Thesis.

. E.g., myself, yourself, himself, herself, itself, ourselves, yourselves, themselves.

. E.g., my, your, his, her, its, our, their.

. The example is from: Winograd, T. (1972). Understanding Natural Language. New York:
Academic Press.

. Ge, N., Hale, J., & Charniak, E. (1998). A statistical approach to anaphora resolution. In
Proceedings of the Sixth Workshop on Very Large Corpora.

. The authors did not address the special problems posed by plural pronouns, such as
they, which are often used to refer to singular referents which have a ‘collective’ quality, as
in the sentence: ‘Now that Acme is losing money, they may lay off more employees.’ They
also do not address the vacuous use of ‘it’ in sentences such as ‘It is raining’ and ‘It was not
worthwhile to purchase the shares.’

. See e.g. Goldstein, J., Kantrowitz, M., Mittal, V. & Carbonell, J. (1999). Summarizing
text documents: Sentence selection and evaluation metrics. In SIGIR-99 (pp. 121–128).

. The Defense Advanced Research Projects Agency.

. The Central Intelligence Agency and the National Security Agency partnered with
DARPA in TIPSTER.

. TIPSTER-I (1992–1994) focused on information retrieval and extraction, while TIPSTER-II
(1994–1996) focused on natural language processing applications and prototypes.

. See Chapters 2 and 3.

. See http://www.itl.nist.gov/iaui/894.02/related_projects/tipster_summac/final_rpt.html

. The degree to which a summary is smaller than the original document is often called the
level of compression. Thus a ‘lower’ compression rate is taken to mean a smaller summary.

. Fixed-length summaries were limited to 10% of the character length of the source.

. Baseline summaries were produced by extracting the first 10% of the source document.

. An alternative route to the same place is to delete unwanted material from the document
and combine what is left into an extract. This approach has been used to identify places in
the text from which existing summary sentences that have been derived, but it is less popular
as a method of deriving new summaries.

. Kupiec J., Pedersen, J. & Chen, F. (1995). A Trainable Document Summarizer. In Pro-
ceedings of the Eighteenth Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval (SIGIR-95) (pp. 68–73).

. Mitra, M., Singhal, A., & Buckley, C. (1997). Automatic text summarization by para-
graph extraction. In Mani & Maybury (Eds.), Advances in Automatic Text Summarization
(pp. 31–36). MIT Press.

Towards text mining 

. Strzalkowski, T., Stein, G. C., Wang, J. & Wise, G. B. (1999). A robust practical text sum-
marizer. In Mani I., & Maybury, M. T. (Eds.), Advances in Automated Text Summarization.
MIT Press

. Moens, M.-F. (2000). Automatic Indexing and Abstracting of Document Texts, Chapter 7.
Norwell, MA: Kluwer Academic.

. See Chapter 3, Section 3.4.3.

. Marcu, D. (2000). The Theory and Practice of Discourse Parsing and Summarization.
Cambridge, MA: MIT Press.

. Mann, W. C. & Thompson, S. A. (1988). Rhetorical Structure Theory: Toward a Func-
tional Theory of Text Organization. Text, 8 (3), 243–281.

. Coreference is an aspect of language usage, and therefore dependent on contextual fac-
tors, such as time, since there may come a day when ‘Bill Gates’ and ‘the Chairman of
Microsoft’ no longer corefer.

. Baldwin, B., & Morton, T. (1998). Coreference-Based Summarization. In T. Firmin
Hand & B. Sundheim (Eds.), TIPSTER-SUMMAC Summarization Evaluation. Proceedings
of the TIPSTER Text Phase III Workshop. Washington, D.C.

. Stein, G. C., Bagga, A. & Wise, G. B. (2000). Multi-document summarization: Method-
ologies and evaluations. In Proceedings of TALN-2000, 16–18 October, 2000.

. McKeown, K. R., Klavans, J. L., Hatzivassiloglou, V., Barzilay, R. & Eskin, E. (1999).
Towards multidocument summarization by reformulation: Progress and prospects. In Pro-
ceedings of the National Conference on Artificial Intelligence (AAAI-99). Orlando, Florida.

. See Elhadad, M. (1993). Using argumentation to control lexical choice: A functional
unification based approach. Ph.D. thesis, Columbia University.

. See Allan, J., Carbonell, J., Doddington, G., Yamron, J. & Yang, Y. (1998). Topic de-
tection and tracking pilot study: Final report. In Proceedings of the DARPA Broadcast News
Transcription and Understanding Workshop, February 1998.

. The notion of an event is somewhat more restricted than that of a topic. Events are
specific, and occur at a particular time and place, whereas topics are more general, and may
encompass whole classes of events. Thus a plane crash is an event, whereas airline safety is a
topic.

. Yang, Y., Ault, T., Pierce, T., & Lattimer, C. W. (2000). Improving text categorization
methods for event tracking. In Proceedings of the 23rd ACM SIGIR Conference on Research
and Development in Information Retrieval (SIGIR-2000) (pp. 65–72).

. See Chapter 2.

. Salton, G. (1989). Automatic Text Processing: The Transformation, Analysis, and Retrieval
of Information by Computer. Reading, MA: Addison-Wesley.

. Terms can be words or phrases, as before.

. To compute the 2-norm of a vector, square each element, sum the squares, and take the
square root of the summation, as shown in the equation.

. The GAC algorithm has quadratic complexity, i.e., computing time is of the order n2,
where n is the number of stories to be processed.

 Chapter 5

. See Chapter 2, Section 2.3.3.

. See Chapter 2, Section 2.5.2.

. Sparck Jones, K. & Galliers, J. R. (1996). Evaluating natural language processing systems:
An analysis and review. New York: Springer.

. Jing, H., Barzilay, R., McKeown, K., & Elhadad, M. (1998). Summarization evalua-
tion methods experiments and analysis. In AAAI Intelligent Text Summarization Workshop
(Stanford, CA, Mar. 1998) (pp. 60–68).

. Mitra, M., Singhal, A., & Buckley, C. (1997). Automatic text summarization by para-
graph extraction. In Mani and Maybury (Eds.), Advances in Automatic Text Summarization
(pp. 31–36). MIT Press.

. Brandow, R., Mitze, K., & Rau, L. (1995). Automatic condensation of electronic publi-
cations by sentence selection. Information Processing and Management, 31, 675–685.

. Performance on this task is typically averaged over different users, queries and docu-
ments, to minimize bias.

. Hongyan, J. & McKeown, K. (1999). The decomposition of human-written summary
sentences. In SIGIR-99 (pp. 129–136).

. eXtensible Markup Language. XML is a language for defining document structures.

. Resource Description Framework. RDF is a language for describing information re-
sources.

. See Berners-Lee, T., Hendler, J. & Lassila, O. (2001). The Semantic Web. Scientific Amer-
ican [May issue].

. See e.g., Grosof, B. N., Labrou, Y. & Chan, H. Y. (1999). A Declarative Approach to
Business Rules in Contracts: Courteous Logic Programs in XML. In Wellman, M. P. (Ed.),
Proceedings of the 1st ACM Conference on Electronic Commerce (EC-99). New York, NY: ACM
Press.

. Fully automatic processing may also be useful for processing the ‘back file’ of a text
archive when new editorial features are introduced prospectively.

. http://www.itl.nist.gov/iaui/894.02/related_projects/muc/proceedings/ne_task.html.

. http://www-nlpir.nist.gov/related_projects/tipster_summac/results_eval.html.

. http://www.cs.columbia.edu/∼ acl/home.html.

. http://www.w3c.org.

Index

A
Agglomerative Algorithm 205
Altavista 23, 57, 58
ambiguity, lexical 3, 99

morphological 11–12
of coreference 178–179
of queries 27
syntactic 4, 99, 101

anaphor 108, 214
antecedent of 108, 188
definition of 214 (fnote 12)

anaphora 108, 179, 187
anaphora resolution 187–191
anchors 58
annotation 121
anomaly 5
antecedent 108, 188
appositive 89
Associated Press collection 157
authority 59
authority finding algorithm 60
authority weight 61
automata 81–84

cascaded 84
finite 81
theory of 97

Autonomy 36
average precision 158

B
bag of words 131, 166 (fnote 21)
bankruptcy cases 108
base noun phrase 14
base set 60
batch learning 137
Bayes’ rule 38, 129
bigram 16, 185

binary classification 149, 156
binary independence 42
Boolean logic 29
Boolean search 29

popularity of 32
problems with 31

Boostexter 152
boosting 151

of decision trees 152
bracketing 16–17, 100
break-even point 158
browsing 60

C
C4.5 144, 147
capitalization 180, 182
CARP 155, 163
cataphor 179
CBS 206
centroid vector 205, 207
chatbots 19
CIDR 206
citator 95
classifiers 119

combination of 150
definition of 119
non-linear 145

CLEVER 60
clustering 205
clustering parameters 207
CogNiac 188
combination of classifiers 150
company names 181, 183
company suffix 89
compound words 10
compression rate 191, 194
concept drift 123

 Index

conceptual indexing 51
conditional independence 129
Construe system 125
context sensitive grammar 116

(fnote 45)
context-free grammar 96–97
contingency table 157, 159, 193
coreference 108, 178–180, 182, 186

cross-document 179
explicit 108
implicit 108

cosine measure 36, 67 (fnote 22),
148, 205

co-specifier 108
counterfactuals 94
court report 93
crossed structures 83
CYK algorithm 95, 98, 101, 111

D
data fusion 150
data mining 174
decision list 145–148
decision procedure 142
decision rule 144
decision tree 141–144

boosting of 152
deep structure 204
definite descriptions 180
dependency grammar 204
determiner 14
Dice coefficient 202, 207
dimensionality reduction 152, 153
discourse markers 200
disjunctive normal form 143
document clustering 205
document frequency 34, 153
document indexing 8, 27
document management 123
document retrieval 8, 23–44
document routing 8, 120
document summarization 8, 174,

191–201
document vector 33–36, 128
dynamic programming 97

E
Eliza 2
embedded structures 83
E-measure 47
empirical NLP 7

end state 82
epsilon value 132
evaluation 44, 77, 163, 208

extrinsic 208–209
intrinsic 208–209
of search engines 44
of summaries 208

event extraction 76–78, 111–112
expert system 125
Exponential Gradient 138
extraction patterns 109

F
false negative 147, 157
false positive 147, 157
fancy hits 62
FASTUS 81
feature selection 153
fielded search 31

filtering 156, 161
finite automaton 81
finite state machine (FSM) 81–84

cascaded 84
finiteness of 82
histories of 82

finite state transducer 83, 92
F-measure 47, 113 (fnote 3), 159
formal language 81, 114 (fnote 15)
full-text search 25–27

G
generation mode 81, 83
gerund 12, 88
Google 24, 58, 62–63
grammar 15–16
grammar rule 96
grammatical connector 31

Index 

graph theory 60
grep 78
group average clustering 205

H
head noun 14
heuristic rules 181
heuristic stemmer 12
heuristic, definition of 114

(fnote 20)
hidden Markov models 13, 183–186
high dimensionality 122, 128
History Assistant 95, 108, 112
hub 59
hub weight 61
hyperlinks 60, 175, 177
hyponymy 50, 70 (fnote 66)
hypotheticals 94

I
ID3 143
Identifinder 183–186
identity 187
independence assumption 166

(fnote 19)
indexing 27–29, 57–59

conceptual 51
of collections 27
of documents 120
of Web 57–58

inductive learning 127, 141
inference 108
inference network 41, 55
infinite language 79
information extraction 8, 75–78

by finite automata 81–93
by partial parsing 97–106
machine learning for 109–110
statistical methods for 110–111

information gain 143, 146, 153
information need 26
information retrieval 26

Boolean 29–32

probabilistic 36–44
ranked 32–36

Web-based 58–64
information theory 168 (fnote 52)
inner product 53
INQUERY 36, 40, 148, 206
invalid links 56, 57

inverse document frequency 34, 72
(fnote 100), 207

inverted file 28

K
keyword matching 121
Kleene star 79
k-nearest neighbor 148, 151

L
language modeling 42, 110

language use 6
Laplace smoothing 132, 134
leaf node 141
learning rate 139, 140
learning 109–110, 127–128

inductive 127, 141
supervised 127
unsupervised 127

left modifier 14, 87
length normalization 39, 68

(fnote 36)
lex 78
lexicon 16
linear classifier 134–137, 140

linear functions 136
linear separator 135
linguistic tools 9–17
links 60, 175, 177

invalid 56, 57

local content analysis 56
log precision 47
logical connector 29
log-odds 38
loss ratio 147

 Index

M
machine diagram 82, 91
machine learning 109, 128
machine table 83
macro-averaging 161
maximum entropy 13, 20 (fnote

21), 164
maximum likelihood 43
MEAD 207
MESH thesaurus 157
message understanding 76, 181
MET 77
metadata 20 (fnote 16), 212
meta-search engines 150
micro-averaging 160–161
morphology 11–12
MUC 76, 181

proceedings of 112
Multilingual Entity Task 77
multinomial model 131, 133
multiple assignment 122, 132, 149
multiplication rule 130
multivariate model 131, 132, 133
Muscat 36

N
Naïve Algorithm 188, 189
Naïve Bayes 129, 155, 164
name class 183
name prefix 89
named entity 14, 213
named entity recognition 180–186
natural language processing 2–9, 75,

83, 212
natural language query 33
natural language understanding 3
nearest neighbor 148, 151
NetOwl 187, 215 (fnote 18)
neural networks 164
New York Times 110
Newsgroups collection 157
noisy channel 183
nondeterminism 90–92, 96
non-linear classifier 145
non-regular language 79

noun group 14, 87, 88, 96
noun phrase 14, 96
nucleus 200
Nymble 183–186

O
odds likelihood 38
offer weight 55
offset 29, 67 (fnote 10)
OHSUMED collection 157, 162, 170

(fnote 89)
Okapi 36
on-line learning 137–138, 140
opaque context 95, 115 (fnote 39)
overfitting 144

P
Page Rank 58, 63
paragraph selection 199
parse tree 17, 111
parsers 14
part of speech tagger 12–13, 80, 182
partial parsing 14, 95, 199
part-whole 187
pattern matching 85–86, 187
PDA 95
Penn Treebank 16, 110
PeopleCite 175–177
perceptron 138
Perl 80
person-machine system 123, 163,

212
phrase searching 31
phrase structure 17
plain hits 62
points of law 94
polynomial complexity 101, 116

(fnote 48), 145
polysemy 50, 70 (fnote 67)
pooling 48, 162
pop 96
portal 49
Porter stemmer 12
pragmatics 4, 6–7, 200

Index 

precision 45–46, 112, 158
predicate-argument structure 203
prepositional phrase attachment 4,

14, 87
prior probability 130, 177
probabilistic retrieval 36–42
probability of relevance 37–38
probability ranking principle 37
pronouns 188–189
proper names 180
proportional assignment 132
proximity operator 30
pruning 145, 146, 147
pseudo-counts 132
punctuation 10
push 95
push-down automaton 95, 100

Q
query 26, 59
query construction 125
query expansion 50–56
question answering 193
quotations 94

R
rank statistics 161
ranked recall 46
ranked retrieval 32
ranking algorithm 62
RDF 212, 213
recall 45–46, 112, 158
recognition mode 81, 82
record linkage 177
recursion 96
reference 175, 178
reformulation 203
regex 78
regular expression 78, 113
regular expression matching 84
regular grammar 116 (fnote 44)
regular language 79, 81
regular set 79
relative clause 100

relevance 27, 37–38, 47–48

relevance assessment 193

relevance feedback 52–56, 137, 206

blind 55

pseudo 55

relevance judgments 47, 52, 162, 193

relevance weights 54

reranking 62

Reuters collection 124, 156, 157,
162, 170 (fnote 88)

rewrite rule 96–97

Rhetorical Structure Theory 200

RIPPER 145–147, 203

Rocchio’s algorithm 53, 136, 137

root set 60

routing 8, 120

rules of thumb 151, 152

S
SALOMON 200

sampling 162

satellite 200

search 23–26, 59–64

Boolean 29–32

engines 23–25, 36, 57, 63–64

fielded 31

full-text 25

of Web 25–26, 56, 59–64

operators 30–31

selective crawling 64

semantic annotation 110–111

semantic grammar 107

semantic interpretation 111

semantic roles 15

semantics 4, 110, 190

sentence delimiters 9–10

sentence selection 196–197

sequence strategy 182–183

SGML 215 (fnote 26)

shallow parser 14

shrinkage 134

SIFT 110–111

 Index

SIGIR 65
similarity 34, 148, 205

between document and query
35, 53
measures of 34, 202

skeletal parse 16
SMART 205
smoothing 131

Laplace 132, 134
sorting of documents 120
spanning hypothesis 101
sparse class 134
sparse data 132
splicing 102–104
stack 116 (fnote 42)
start state 82
stemming 11–12

algorithms 33
operators 30

stop word 33, 66 (fnote 8)
structural hypothesis 99, 100, 101
substring table 97
subsumption 207
SUMMAC 192, 213
summarization 8, 191–201

by paragraph selection 198–199
by sentence selection 196–198
coreference based 200–201
evaluation of 208
multi-document 202

summary 191–194
as abstract 191
as extract 191
baseline 194
fixed-length 194
generic 192
length of 208
query-relevant 192
variable-length 194

summary sentences 196–197
supervised learning 127
supplementation 121
support vector machines 164
surface structure 204
surrogate document 25, 191

symbolic NLP 7
synonymy 50, 67 (fnote 13)

synset 50
syntactic roles 15
syntax 4–6, 96–97

of names 5, 79, 184–186
predicate-argument 203

T
tagged corpora 17
tagger 12–13, 80, 182

rule-based 13

stochastic 13
taxonomy management 123
TDT 204, 206
template 77
template element 110

template relationship 110
template filling 77, 80, 105
template merging 77, 85, 90, 106
term frequency 34, 39

term weight 34, 39–40
for Boolean queries 41
INQUERY 40
WIN 40

terms and connectors 29

text categorization 119
by boosting 151–153
probabilistic 129–134
rule-based 125–127
using decision trees 141–144

using linear classifiers 134–141
using multiple classifiers
153–155

text classification 119

text grammar 199
text mining 173, 174, 211
Text Retrieval Conference 45, 58–59,

155–157, 160–162
tf-idf 35, 135, 155
thesaurus 50
TIARA algorithm 108
TIPSTER 77, 192, 213

Index 

token 66 (fnote 9)
tokenizers 10, 80
topic detection 204
training data 130, 133, 134, 209
training phase 145
transducer 83, 92
transition 82
transitive verb 98
true negatives 157, 159
true positives 157, 159

U
unknown words 16, 86
unsupervised learning 127
user satisfaction 49
utility 159–160, 162–163

V
vector space 33, 205
verb group 88, 99
virtual community 64
Viterbi algorithm 186, 211, 215

(fnote 24)

W
weak learner 152, 169 (fnote 73)
Web coverage 56–57
Web crawler 57
Web indexing 57–59
Web searching 23–26, 56, 59–64
Web structure 60
Web track 58–59
well-formed substring table (wfsst)

97
Widrow-Hoff 138–139
WIN 36, 40
Winnow 138–140
word features 183
Wordnet 50
World Wide Web 25, 56–59, 63–64,

212

X
XML 212, 213

Z
zero probabilities 131

In the series NATURAL LANGUAGE PROCESSING (NLP) the following titles have
been published thus far, or are scheduled for publication:

1. BUNT, Harry and William BLACK (eds.): Abduction, Belief and Context in Dialogue.
Studies in computational pragmatics. 2000.

2. BOURIGAULT, Didier, Christian JACQUEMIN and Marie-Claude L'HOMME (eds.):
Recent Advances in Computational Terminology. 2001.

3. MANI, Inderjeet: Automatic Summarization. 2001.
4. MERLO, Paola and Suzanne STEVENSON (eds.): The Lexical Basis of Sentence

Processing: Formal, computational and experimental issues. N.Y.P.
5. JACKSON, Peter and Isabelle MOULINIER: Natural Language Processing for Online

Applications. 2002.
6. ANDROUTSOPOULOS, Ioannis: Exploring Time, Tense and Aspect in Natural Lan-

guage Database Interfaces. N.Y.P.

