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Foreword

How can agents learn from experience without an omniscient teacher explicitly
telling them what to do? Reinforcement learning is the area within machine
learning that investigates how an agent can learn an optimal behavior by
correlating generic reward signals with its past actions. The discipline draws
upon and connects key ideas from behavioral psychology, economics, control
theory, operations research, and other disparate fields to model the learning
process. In reinforcement learning, the environment is typically modeled as a
Markov decision process that provides immediate reward and state informa-
tion to the agent. However, the agent does not have access to the transition
structure of the environment and needs to learn how to choose appropriate
actions to maximize its overall reward over time.

This book by Prof. Masashi Sugiyama covers the range of reinforcement
learning algorithms from a fresh, modern perspective. With a focus on the
statistical properties of estimating parameters for reinforcement learning, the
book relates a number of different approaches across the gamut of learning sce-
narios. The algorithms are divided into model-free approaches that do not ex-
plicitly model the dynamics of the environment, and model-based approaches
that construct descriptive process models for the environment. Within each
of these categories, there are policy iteration algorithms which estimate value
functions, and policy search algorithms which directly manipulate policy pa-
rameters.

For each of these different reinforcement learning scenarios, the book metic-
ulously lays out the associated optimization problems. A careful analysis is
given for each of these cases, with an emphasis on understanding the statistical
properties of the resulting estimators and learned parameters. Each chapter
contains illustrative examples of applications of these algorithms, with quan-
titative comparisons between the different techniques. These examples are
drawn from a variety of practical problems, including robot motion control
and Asian brush painting.

In summary, the book provides a thought provoking statistical treatment of
reinforcement learning algorithms, reflecting the author’s work and sustained
research in this area. It is a contemporary and welcome addition to the rapidly
growing machine learning literature. Both beginner students and experienced

ix
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researchers will find it to be an important source for understanding the latest
reinforcement learning techniques.

Daniel D. Lee
GRASP Laboratory

School of Engineering and Applied Science
University of Pennsylvania, Philadelphia, PA, USA



Preface

In the coming big data era, statistics and machine learning are becoming
indispensable tools for data mining. Depending on the type of data analysis,
machine learning methods are categorized into three groups:

• Supervised learning: Given input-output paired data, the objective
of supervised learning is to analyze the input-output relation behind the
data. Typical tasks of supervised learning include regression (predict-
ing the real value), classification (predicting the category), and ranking
(predicting the order). Supervised learning is the most common data
analysis and has been extensively studied in the statistics community
for long time. A recent trend of supervised learning research in the ma-
chine learning community is to utilize side information in addition to the
input-output paired data to further improve the prediction accuracy. For
example, semi-supervised learning utilizes additional input-only data,
transfer learning borrows data from other similar learning tasks, and
multi-task learning solves multiple related learning tasks simultaneously.

• Unsupervised learning: Given input-only data, the objective of un-
supervised learning is to find something useful in the data. Due to this
ambiguous definition, unsupervised learning research tends to be more
ad hoc than supervised learning. Nevertheless, unsupervised learning is
regarded as one of the most important tools in data mining because
of its automatic and inexpensive nature. Typical tasks of unsupervised
learning include clustering (grouping the data based on their similarity),
density estimation (estimating the probability distribution behind the
data), anomaly detection (removing outliers from the data), data visual-
ization (reducing the dimensionality of the data to 1–3 dimensions), and
blind source separation (extracting the original source signals from their
mixtures). Also, unsupervised learning methods are sometimes used as
data pre-processing tools in supervised learning.

• Reinforcement learning: Supervised learning is a sound approach,
but collecting input-output paired data is often too expensive. Unsu-
pervised learning is inexpensive to perform, but it tends to be ad hoc.
Reinforcement learning is placed between supervised learning and unsu-
pervised learning — no explicit supervision (output data) is provided,
but we still want to learn the input-output relation behind the data.
Instead of output data, reinforcement learning utilizes rewards, which

xi



xii Preface

evaluate the validity of predicted outputs. Giving implicit supervision
such as rewards is usually much easier and less costly than giving ex-
plicit supervision, and therefore reinforcement learning can be a vital
approach in modern data analysis. Various supervised and unsupervised
learning techniques are also utilized in the framework of reinforcement
learning.

This book is devoted to introducing fundamental concepts and practi-
cal algorithms of statistical reinforcement learning from the modern machine
learning viewpoint. Various illustrative examples, mainly in robotics, are also
provided to help understand the intuition and usefulness of reinforcement
learning techniques. Target readers are graduate-level students in computer
science and applied statistics as well as researchers and engineers in related
fields. Basic knowledge of probability and statistics, linear algebra, and ele-
mentary calculus is assumed.

Machine learning is a rapidly developing area of science, and the author
hopes that this book helps the reader grasp various exciting topics in rein-
forcement learning and stimulate readers’ interest in machine learning. Please
visit our website at: http://www.ms.k.u-tokyo.ac.jp.

Masashi Sugiyama
University of Tokyo, Japan

http://www.ms.k.u-tokyo.ac.jp
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Chapter 1

Introduction to Reinforcement

Learning

Reinforcement learning is aimed at controlling a computer agent so that a
target task is achieved in an unknown environment.

In this chapter, we first give an informal overview of reinforcement learning
in Section 1.1. Then we provide a more formal formulation of reinforcement
learning in Section 1.2. Finally, the book is summarized in Section 1.3.

1.1 Reinforcement Learning

A schematic of reinforcement learning is given in Figure 1.1. In an unknown
environment (e.g., in a maze), a computer agent (e.g., a robot) takes an action
(e.g., to walk) based on its own control policy. Then its state is updated (e.g.,
by moving forward) and evaluation of that action is given as a “reward” (e.g.,
praise, neutral, or scolding). Through such interaction with the environment,
the agent is trained to achieve a certain task (e.g., getting out of the maze)
without explicit guidance. A crucial advantage of reinforcement learning is its
non-greedy nature. That is, the agent is trained not to improve performance in
a short term (e.g., greedily approaching an exit of the maze), but to optimize
the long-term achievement (e.g., successfully getting out of the maze).

A reinforcement learning problem contains various technical components
such as states, actions, transitions, rewards, policies, and values. Before go-
ing into mathematical details (which will be provided in Section 1.2), we
intuitively explain these concepts through illustrative reinforcement learning
problems here.

Let us consider a maze problem (Figure 1.2), where a robot agent is located
in a maze and we want to guide him to the goal without explicit supervision
about which direction to go. States are positions in the maze which the robot
agent can visit. In the example illustrated in Figure 1.3, there are 21 states
in the maze. Actions are possible directions along which the robot agent can
move. In the example illustrated in Figure 1.4, there are 4 actions which corre-
spond to movement toward the north, south, east, and west directions. States

3



4 Statistical Reinforcement Learning

Agent
State

Action

Reward

Environment

FIGURE 1.1: Reinforcement learning.

and actions are fundamental elements that define a reinforcement learning
problem.

Transitions specify how states are connected to each other through actions
(Figure 1.5). Thus, knowing the transitions intuitively means knowing the map
of the maze. Rewards specify the incomes/costs that the robot agent receives
when making a transition from one state to another by a certain action. In the
case of the maze example, the robot agent receives a positive reward when it
reaches the goal. More specifically, a positive reward is provided when making
a transition from state 12 to state 17 by action “east” or from state 18 to
state 17 by action “north” (Figure 1.6). Thus, knowing the rewards intuitively
means knowing the location of the goal state. To emphasize the fact that a
reward is given to the robot agent right after taking an action and making a
transition to the next state, it is also referred to as an immediate reward.

Under the above setup, the goal of reinforcement learning to find the policy
for controlling the robot agent that allows it to receive the maximum amount
of rewards in the long run. Here, a policy specifies an action the robot agent
takes at each state (Figure 1.7). Through a policy, a series of states and ac-
tions that the robot agent takes from a start state to an end state is specified.
Such a series is called a trajectory (see Figure 1.7 again). The sum of im-
mediate rewards along a trajectory is called the return. In practice, rewards
that can be obtained in the distant future are often discounted because re-
ceiving rewards earlier is regarded as more preferable. In the maze task, such
a discounting strategy urges the robot agent to reach the goal as quickly as
possible.

To find the optimal policy efficiently, it is useful to view the return as a
function of the initial state. This is called the (state-)value. The values can
be efficiently obtained via dynamic programming, which is a general method
for solving a complex optimization problem by breaking it down into simpler
subproblems recursively. With the hope that many subproblems are actually
the same, dynamic programming solves such overlapped subproblems only
once and reuses the solutions to reduce the computation costs.

In the maze problem, the value of a state can be computed from the values
of neighboring states. For example, let us compute the value of state 7 (see
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FIGURE 1.2: A maze problem. We want to guide the robot agent to the
goal.
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FIGURE 1.3: States are visitable positions in the maze.
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FIGURE 1.4: Actions are possible movements of the robot agent.
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FIGURE 1.5: Transitions specify connections between states via actions.
Thus, knowing the transitions means knowing the map of the maze.
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FIGURE 1.6: A positive reward is given when the robot agent reaches the
goal. Thus, the reward specifies the goal location.

FIGURE 1.7: A policy specifies an action the robot agent takes at each
state. Thus, a policy also specifies a trajectory, which is a series of states and
actions that the robot agent takes from a start state to an end state.
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FIGURE 1.8: Values of each state when reward +1 is given at the goal state
and the reward is discounted at the rate of 0.9 according to the number of
steps.

Figure 1.5 again). From state 7, the robot agent can reach state 2, state 6,
and state 8 by a single step. If the robot agent knows the values of these
neighboring states, the best action the robot agent should take is to visit the
neighboring state with the largest value, because this allows the robot agent
to earn the largest amount of rewards in the long run. However, the values
of neighboring states are unknown in practice and thus they should also be
computed.

Now, we need to solve 3 subproblems of computing the values of state 2,
state 6, and state 8. Then, in the same way, these subproblems are further
decomposed as follows:

• The problem of computing the value of state 2 is decomposed into 3
subproblems of computing the values of state 1, state 3, and state 7.

• The problem of computing the value of state 6 is decomposed into 2
subproblems of computing the values of state 1 and state 7.

• The problem of computing the value of state 8 is decomposed into 3
subproblems of computing the values of state 3, state 7, and state 9.

Thus, by removing overlaps, the original problem of computing the value of
state 7 has been decomposed into 6 unique subproblems: computing the values
of state 1, state 2, state 3, state 6, state 8, and state 9.

If we further continue this problem decomposition, we encounter the prob-
lem of computing the values of state 17, where the robot agent can receive
reward +1. Then the values of state 12 and state 18 can be explicitly com-
puted. Indeed, if a discounting factor (a multiplicative penalty for delayed
rewards) is 0.9, the values of state 12 and state 18 are (0.9)1 = 0.9. Then we
can further know that the values of state 13 and state 19 are (0.9)2 = 0.81.
By repeating this procedure, we can compute the values of all states (as illus-
trated in Figure 1.8). Based on these values, we can know the optimal action
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the robot agent should take, i.e., an action that leads the robot agent to the
neighboring state with the largest value.

Note that, in real-world reinforcement learning tasks, transitions are often
not deterministic but stochastic, because of some external disturbance; in the
case of the above maze example, the floor may be slippery and thus the robot
agent cannot move as perfectly as it desires. Also, stochastic policies in which
mapping from a state to an action is not deterministic are often employed
in many reinforcement learning formulations. In these cases, the formulation
becomes slightly more complicated, but essentially the same idea can still be
used for solving the problem.

To further highlight the notable advantage of reinforcement learning that
not the immediate rewards but the long-term accumulation of rewards is max-
imized, let us consider a mountain-car problem (Figure 1.9). There are two
mountains and a car is located in a valley between the mountains. The goal is
to guide the car to the top of the right-hand hill. However, the engine of the
car is not powerful enough to directly run up the right-hand hill and reach
the goal. The optimal policy in this problem is to first climb the left-hand hill
and then go down the slope to the right with full acceleration to get to the
goal (Figure 1.10).

Suppose we define the immediate reward such that moving the car to the
right gives a positive reward +1 and moving the car to the left gives a nega-
tive reward −1. Then, a greedy solution that maximizes the immediate reward
moves the car to the right, which does not allow the car to get to the goal
due to lack of engine power. On the other hand, reinforcement learning seeks
a solution that maximizes the return, i.e., the discounted sum of immediate
rewards that the agent can collect over the entire trajectory. This means that
the reinforcement learning solution will first move the car to the left even
though negative rewards are given for a while, to receive more positive re-
wards in the future. Thus, the notion of “prior investment” can be naturally
incorporated in the reinforcement learning framework.

1.2 Mathematical Formulation

In this section, the reinforcement learning problem is mathematically for-
mulated as the problem of controlling a computer agent under a Markov de-
cision process.

We consider the problem of controlling a computer agent under a discrete-
time Markov decision process (MDP). That is, at each discrete time-step t,
the agent observes a state st ∈ S, selects an action at ∈ A, makes a transition
st+1 ∈ S, and receives an immediate reward,

rt = r(st, at, st+1) ∈ R.
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Goal

Car

FIGURE 1.9: A mountain-car problem. We want to guide the car to the
goal. However, the engine of the car is not powerful enough to directly run up
the right-hand hill.

Goal

FIGURE 1.10: The optimal policy to reach the goal is to first climb the
left-hand hill and then head for the right-hand hill with full acceleration.

S and A are called the state space and the action space, respectively. r(s, a, s′)
is called the immediate reward function.

The initial position of the agent, s1, is drawn from the initial probability
distribution. If the state space S is discrete, the initial probability distribution
is specified by the probability mass function P (s) such that

0 ≤ P (s) ≤ 1, ∀s ∈ S,
∑

s∈S

P (s) = 1.

If the state space S is continuous, the initial probability distribution is speci-
fied by the probability density function p(s) such that

p(s) ≥ 0, ∀s ∈ S,
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∫

s∈S

p(s)ds = 1.

Because the probability mass function P (s) can be expressed as a probability
density function p(s) by using the Dirac delta function1 δ(s) as

p(s) =
∑

s′∈S

δ(s′ − s)P (s′),

we focus only on the continuous state space below.
The dynamics of the environment, which represent the transition prob-

ability from state s to state s′ when action a is taken, are characterized
by the transition probability distribution with conditional probability density
p(s′|s, a):

p(s′|s, a) ≥ 0, ∀s, s′ ∈ S, ∀a ∈ A,∫

s′∈S

p(s′|s, a)ds′ = 1, ∀s ∈ S, ∀a ∈ A.

The agent’s decision is determined by a policy π. When we consider a deter-
ministic policy where the action to take at each state is uniquely determined,
we regard the policy as a function of states:

π(s) ∈ A, ∀s ∈ S.
Action a can be either discrete or continuous. On the other hand, when devel-
oping more sophisticated reinforcement learning algorithms, it is often more
convenient to consider a stochastic policy, where an action to take at a state
is probabilistically determined. Mathematically, a stochastic policy is a con-
ditional probability density of taking action a at state s:

π(a|s) ≥ 0, ∀s ∈ S, ∀a ∈ A,∫

a∈A

π(a|s)da = 1, ∀s ∈ S.

By introducing stochasticity in action selection, we can more actively explore
the entire state space. Note that when action a is discrete, the stochastic policy
is expressed using Dirac’s delta function, as in the case of the state densities.

A sequence of states and actions obtained by the procedure described in
Figure 1.11 is called a trajectory.

1The Dirac delta function δ(·) allows us to obtain the value of a function f at a point τ

via the convolution with f :
∫

∞

−∞

f(s)δ(s − τ)ds = f(τ).

Dirac’s delta function δ(·) can be expressed as the Gaussian density with standard deviation
σ → 0:

δ(a) = lim
σ→0

1
√
2πσ2

exp

(

−
a2

2σ2

)

.
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1. The initial state s1 is chosen following the initial probability p(s).

2. For t = 1, . . . , T ,

(a) The action at is chosen following the policy π(at|st).
(b) The next state st+1 is determined according to the transition

probability p(st+1|st, at).

FIGURE 1.11: Generation of a trajectory sample.

When the number of steps, T , is finite or infinite, the situation is called
the finite horizon or infinite horizon, respectively. Below, we focus on the
finite-horizon case because the trajectory length is always finite in practice.
We denote a trajectory by h (which stands for a “history”):

h = [s1, a1, . . . , sT , aT , sT+1].

The discounted sum of immediate rewards along the trajectory h is called
the return:

R(h) =
T∑

t=1

γt−1r(st, at, st+1),

where γ ∈ [0, 1) is called the discount factor for future rewards.
The goal of reinforcement learning is to learn the optimal policy π∗ that

maximizes the expected return:

π∗ = argmax
π

Epπ(h)

[
R(h)

]
,

where Epπ(h) denotes the expectation over trajectory h drawn from pπ(h), and
pπ(h) denotes the probability density of observing trajectory h under policy
π:

pπ(h) = p(s1)

T∏

t=1

p(st+1|st, at)π(at|st).

“argmax” gives the maximizer of a function (Figure 1.12).
For policy learning, various methods have been developed so far. These

methods can be classified into model-based reinforcement learning and model-
free reinforcement learning. The term “model” indicates a model of the tran-
sition probability p(s′|s, a). In the model-based reinforcement learning ap-
proach, the transition probability is learned in advance and the learned tran-
sition model is explicitly used for policy learning. On the other hand, in the
model-free reinforcement learning approach, policies are learned without ex-
plicitly estimating the transition probability. If strong prior knowledge of the
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argmax

max

FIGURE 1.12: “argmax” gives the maximizer of a function, while “max”
gives the maximum value of a function.

transition model is available, the model-based approach would be more favor-
able. On the other hand, learning the transition model without prior knowl-
edge itself is a hard statistical estimation problem. Thus, if good prior knowl-
edge of the transition model is not available, the model-free approach would
be more promising.

1.3 Structure of the Book

In this section, we explain the structure of this book, which covers major
reinforcement learning approaches.

1.3.1 Model-Free Policy Iteration

Policy iteration is a popular and well-studied approach to reinforcement
learning. The key idea of policy iteration is to determine policies based on the
value function.

Let us first introduce the state-action value function Qπ(s, a) ∈ R for
policy π, which is defined as the expected return the agent will receive when
taking action a at state s and following policy π thereafter:

Qπ(s, a) = Epπ(h)

[
R(h)

∣∣∣s1 = s, a1 = a
]
,

where “|s1 = s, a1 = a” means that the initial state s1 and the first action a1
are fixed at s1 = s and a1 = a, respectively. That is, the right-hand side of
the above equation denotes the conditional expectation of R(h) given s1 = s
and a1 = a.

Let Q∗(s, a) be the optimal state-action value at state s for action a defined
as

Q∗(s, a) = max
π

Qπ(s, a).

Based on the optimal state-action value function, the optimal action the agent
should take at state s is deterministically given as the maximizer of Q∗(s, a)
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1. Initialize policy π(a|s).

2. Repeat the following two steps until the policy π(a|s) converges.

(a) Policy evaluation: Compute the state-action value function
Qπ(s, a) for the current policy π(a|s).

(b) Policy improvement: Update the policy as

π(a|s)←− δ
(
a− argmax

a′

Qπ(s, a′)

)
.

FIGURE 1.13: Algorithm of policy iteration.

with respect to a. Thus, the optimal policy π∗(a|s) is given by

π∗(a|s) = δ

(
a− argmax

a′

Q∗(s, a′)

)
,

where δ(·) denotes Dirac’s delta function.
Because the optimal state-action value Q∗ is unknown in practice, the

policy iteration algorithm alternately evaluates the value Qπ for the current
policy π and updates the policy π based on the current value Qπ (Figure 1.13).

The performance of the above policy iteration algorithm depends on the
quality of policy evaluation; i.e., how to learn the state-action value function
from data is the key issue. Value function approximation corresponds to a re-
gression problem in statistics and machine learning. Thus, various statistical
machine learning techniques can be utilized for better value function approx-
imation. Part II of this book addresses this issue, including least-squares es-
timation and model selection (Chapter 2), basis function design (Chapter 3),
efficient sample reuse (Chapter 4), active learning (Chapter 5), and robust
learning (Chapter 6).

1.3.2 Model-Free Policy Search

One of the potential weaknesses of policy iteration is that policies are
learned via value functions. Thus, improving the quality of value function
approximation does not necessarily contribute to improving the quality of
resulting policies. Furthermore, a small change in value functions can cause a
big difference in policies, which is problematic in, e.g., robot control because
such instability can damage the robot’s physical system. Another weakness
of policy iteration is that policy improvement, i.e., finding the maximizer of
Qπ(s, a) with respect to a, is computationally expensive or difficult when the
action space A is continuous.
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Policy search, which directly learns policy functions without estimating
value functions, can overcome the above limitations. The basic idea of policy
search is to find the policy that maximizes the expected return:

π∗ = argmax
π

Epπ(h)

[
R(h)

]
.

In policy search, how to find a good policy function in a vast function space is
the key issue to be addressed. Part III of this book focuses on policy search and
introduces gradient-based methods and the expectation-maximization method
in Chapter 7 and Chapter 8, respectively. However, a potential weakness of
these direct policy search methods is their instability due to the stochasticity
of policies. To overcome the instability problem, an alternative approach called
policy-prior search, which learns the policy-prior distribution for deterministic
policies, is introduced in Chapter 9. Efficient sample reuse in policy-prior
search is also discussed there.

1.3.3 Model-Based Reinforcement Learning

In the above model-free approaches, policies are learned without explicitly
modeling the unknown environment (i.e., the transition probability of the
agent in the environment, p(s′|s, a)). On the other hand, the model-based
approach explicitly learns the environment in advance and uses the learned
environment model for policy learning.

No additional sampling cost is necessary to generate artificial samples from
the learned environment model. Thus, the model-based approach is particu-
larly useful when data collection is expensive (e.g., robot control). However,
accurately estimating the transition model from a limited amount of trajec-
tory data in multi-dimensional continuous state and action spaces is highly
challenging. Part IV of this book focuses on model-based reinforcement learn-
ing. In Chapter 10, a non-parametric transition model estimator that possesses
the optimal convergence rate with high computational efficiency is introduced.
However, even with the optimal convergence rate, estimating the transition
model in high-dimensional state and action spaces is still challenging. In Chap-
ter 11, a dimensionality reduction method that can be efficiently embedded
into the transition model estimation procedure is introduced and its usefulness
is demonstrated through experiments.



Part II

Model-Free Policy

Iteration

In Part II, we introduce a reinforcement learning approach based on value
functions called policy iteration.

The key issue in the policy iteration framework is how to accurately ap-
proximate the value function from a small number of data samples. In Chap-
ter 2, a fundamental framework of value function approximation based on
least squares is explained. In this least-squares formulation, how to design
good basis functions is critical for better value function approximation. A
practical basis design method based on manifold-based smoothing (Chapelle
et al., 2006) is explained in Chapter 3.

In real-world reinforcement learning tasks, gathering data is often costly.
In Chapter 4, we describe a method for efficiently reusing previously cor-
rected samples in the framework of covariate shift adaptation (Sugiyama &
Kawanabe, 2012). In Chapter 5, we apply a statistical active learning tech-
nique (Sugiyama & Kawanabe, 2012) to optimizing data collection strategies
for reducing the sampling cost.

Finally, in Chapter 6, an outlier-robust extension of the least-squares
method based on robust regression (Huber, 1981) is introduced. Such a ro-
bust method is highly useful in handling noisy real-world data.
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Chapter 2

Policy Iteration with Value Function

Approximation

In this chapter, we introduce the framework of least-squares policy iteration.
In Section 2.1, we first explain the framework of policy iteration, which itera-
tively executes the policy evaluation and policy improvement steps for finding
better policies. Then, in Section 2.2, we show how value function approxima-
tion in the policy evaluation step can be formulated as a regression problem
and introduce a least-squares algorithm called least-squares policy iteration
(Lagoudakis & Parr, 2003). Finally, this chapter is concluded in Section 2.3.

2.1 Value Functions

A traditional way to learn the optimal policy is based on value function.
In this section, we introduce two types of value functions, the state value
function and the state-action value function, and explain how they can be
used for finding better policies.

2.1.1 State Value Functions

The state value function V π(s) ∈ R for policy π measures the “value” of
state s, which is defined as the expected return the agent will receive when
following policy π from state s:

V π(s) = Epπ(h)

[
R(h)

∣∣∣s1 = s
]
,

where “|s1 = s” means that the initial state s1 is fixed at s1 = s. That is, the
right-hand side of the above equation denotes the conditional expectation of
return R(h) given s1 = s.

By recursion, V π(s) can be expressed as

V π(s) = Ep(s′|s,a)π(a|s)

[
r(s, a, s′) + γV π(s′)

]
,

where Ep(s′|s,a)π(a|s) denotes the conditional expectation over a and s′ drawn

17
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from p(s′|s, a)π(a|s) given s. This recursive expression is called the Bellman
equation for state values . V π(s) may be obtained by repeating the following
update from some initial estimate:

V π(s)←− Ep(s′|s,a)π(a|s)

[
r(s, a, s′) + γV π(s′)

]
.

The optimal state value at state s, V ∗(s), is defined as the maximizer of
state value V π(s) with respect to policy π:

V ∗(s) = max
π

V π(s).

Based on the optimal state value V ∗(s), the optimal policy π∗, which is de-
terministic, can be obtained as

π∗(a|s) = δ (a− a∗(s)) ,

where δ(·) denotes Dirac’s delta function and

a∗(s) = argmax
a∈A

{
Ep(s′|s,a)

[
r(s, a, s′) + γV ∗(s′)

]}
.

Ep(s′|s,a) denotes the conditional expectation over s′ drawn from p(s′|s, a)
given s and a. This algorithm, first computing the optimal value function
and then obtaining the optimal policy based on the optimal value function, is
called value iteration.

A possible variation is to iteratively perform policy evaluation and im-
provement as

Policy evaluation: V π(s)←− Ep(s′|s,a)π(a|s)

[
r(s, a, s′) + γV π(s′)

]
.

Policy improvement: π∗(a|s)←− δ (a− aπ(s)) ,

where

aπ(s) = argmax
a∈A

{
Ep(s′|s,a)

[
r(s, a, s′) + γV π(s′)

]}
.

These two steps may be iterated either for all states at once or in a state-by-
state manner. This iterative algorithm is called the policy iteration (based on
state value functions).

2.1.2 State-Action Value Functions

In the above policy improvement step, the action to take is optimized based
on the state value function V π(s). A more direct way to handle this action
optimization is to consider the state-action value function Qπ(s, a) for policy
π:

Qπ(s, a) = Epπ(h)

[
R(h)

∣∣∣s1 = s, a1 = a
]
,
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where “|s1 = s, a1 = a” means that the initial state s1 and the first action a1
are fixed at s1 = s and a1 = a, respectively. That is, the right-hand side of
the above equation denotes the conditional expectation of return R(h) given
s1 = s and a1 = a.

Let r(s, a) be the expected immediate reward when action a is taken at
state s:

r(s, a) = Ep(s′|s,a)[r(s, a, s
′)].

Then, in the same way as V π(s), Qπ(s, a) can be expressed by recursion as

Qπ(s, a) = r(s, a) + γEπ(a′|s′)p(s′|s,a)

[
Qπ(s′, a′)

]
, (2.1)

where Eπ(a′|s′)p(s′|s,a) denotes the conditional expectation over s′ and a′ drawn
from π(a′|s′)p(s′|s, a) given s and a. This recursive expression is called the
Bellman equation for state-action values .

Based on the Bellman equation, the optimal policy may be obtained by
iterating the following two steps:

Policy evaluation: Qπ(s, a)←− r(s, a) + γEπ(a′|s′)p(s′|s,a)

[
Qπ(s′, a′)

]
.

Policy improvement: π(a|s)←− δ
(
a− argmax

a′∈A
Qπ(s, a′)

)
.

In practice, it is sometimes preferable to use an explorative policy. For
example, Gibbs policy improvement is given by

π(a|s)←− exp(Qπ(s, a)/τ)∫
A
exp(Qπ(s, a′)/τ)da′

,

where τ > 0 determines the degree of exploration. When the action space A
is discrete, ǫ-greedy policy improvement is also used:

π(a|s)←−
{

1− ǫ+ ǫ/|A| if a = argmax
a′∈A

Qπ(s, a′),

ǫ/|A| otherwise,

where ǫ ∈ (0, 1] determines the randomness of the new policy.
The above policy improvement step based on Qπ(s, a) is essentially the

same as the one based on V π(s) explained in Section 2.1.1. However, the
policy improvement step based on Qπ(s, a) does not contain the expectation
operator and thus policy improvement can be more directly carried out. For
this reason, we focus on the above formulation, called policy iteration based
on state-action value functions.
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2.2 Least-Squares Policy Iteration

As explained in the previous section, the optimal policy function may be
learned via state-action value function Qπ(s, a). However, learning the state-
action value function from data is a challenging task for continuous state s
and action a.

Learning the state-action value function from data can actually be re-
garded as a regression problem in statistics and machine learning. In this sec-
tion, we explain how the least-squares regression technique can be employed
in value function approximation, which is called least-squares policy iteration
(Lagoudakis & Parr, 2003).

2.2.1 Immediate-Reward Regression

Let us approximate the state-action value function Qπ(s, a) by the follow-
ing linear-in-parameter model :

B∑

b=1

θbφb(s, a),

where {φb(s, a)}Bb=1 are basis functions, B denotes the number of basis func-
tions, and {θb}Bb=1 are parameters. Specific designs of basis functions will be
discussed in Chapter 3. Below, we use the following vector representation for
compactly expressing the parameters and basis functions:

θ
⊤
φ(s, a),

where ⊤ denotes the transpose and

θ = (θ1, . . . , θB)
⊤ ∈ R

B,

φ(s, a) =
(
φ1(s, a), . . . , φB(s, a)

)⊤ ∈ R
B.

From the Bellman equation for state-action values (2.1), we can express
the expected immediate reward r(s, a) as

r(s, a) = Qπ(s, a)− γEπ(a′|s′)p(s′|s,a)

[
Qπ(s′, a′)

]
.

By substituting the value function model θ⊤φ(s, a) in the above equation,
the expected immediate reward r(s, a) may be approximated as

r(s, a) ≈ θ⊤φ(s, a)− γEπ(a′|s′)p(s′|s,a)

[
θ⊤φ(s′, a′)

]
.

Now let us define a new basis function vector ψ(s, a):

ψ(s, a) = φ(s, a)− γEπ(a′|s′)p(s′|s,a)

[
φ(s′, a′)

]
.
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r(s1, a1)

r(s2, a2)r(s1, a1, s2)

(s1, a1) (s2, a2) (sT, aT)

r(s2, a2, s3)

r(sT, aT, sT +1)

r(s, a)

(s, a)

θ
T
ψ(s, a)

r(sT, aT)

FIGURE 2.1: Linear approximation of state-action value function Qπ(s, a)
as linear regression of expected immediate reward r(s, a).

Then the expected immediate reward r(s, a) may be approximated as

r(s, a) ≈ θ⊤ψ(s, a).

As explained above, the linear approximation problem of the state-action
value function Qπ(s, a) can be reformulated as the linear regression problem
of the expected immediate reward r(s, a) (see Figure 2.1). The key trick was
to push the recursive nature of the state-action value function Qπ(s, a) into
the composite basis function ψ(s, a).

2.2.2 Algorithm

Now, we explain how the parameters θ are learned in the least-squares
framework. That is, the model θ⊤ψ(s, a) is fitted to the expected immediate
reward r(s, a) under the squared loss:

min
θ

{
Epπ(h)

[
1

T

T∑

t=1

(
θ⊤ψ(st, at)− r(st, at)

)2
]}

,

where h denotes the history sample following the current policy π:

h = [s1, a1, . . . , sT , aT , sT+1].

For history samples H = {h1, . . . , hN}, where

hn = [s1,n, a1,n, . . . , sT,n, aT,n, sT+1,n],

an empirical version of the above least-squares problem is given as

min
θ

{
1

N

N∑

n=1

[
1

T

T∑

t=1

(
θ⊤ψ̂(st,n, at,n;H)− r(st,n, at,n, st+1,n)

)2
]}

.
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1

NT
−θ

θ

rΨ̂

2

FIGURE 2.2: Gradient descent.

Here, ψ̂(s, a;H) is an empirical estimator of ψ(s, a) given by

ψ̂(s, a;H) = φ(s, a)− 1

|H(s,a)|
∑

s′∈H(s,a)

Eπ(a′|s′)

[
γφ(s′, a′)

]
,

where H(s,a) denotes a subset of H that consists of all transition samples from
state s by action a, |H(s,a)| denotes the number of elements in the set H(s,a),
and

∑
s′∈H

s,a)
denotes the summation over all destination states s′ in the set

H(s,a).

Let Ψ̂ be the NT ×B matrix and r be the NT -dimensional vector defined
as

Ψ̂N(t−1)+n,b = ψ̂b(st,n, at,n),

rN(t−1)+n = r(st,n, at,n, st+1,n).

Ψ̂ is sometimes called the design matrix . Then the above least-squares prob-
lem can be compactly expressed as

min
θ

{
1

NT
‖Ψ̂θ − r‖2

}
,

where ‖ · ‖ denotes the ℓ2-norm. Because this is a quadratic function with

respect to θ, its global minimizer θ̂ can be analytically obtained by setting its
derivative to zero as

θ̂ = (Ψ̂
⊤
Ψ̂)−1Ψ̂

⊤
r. (2.2)

If B is too large and computing the inverse of Ψ̂
⊤
Ψ̂ is intractable, we may

use a gradient descent method. That is, starting from some initial estimate θ,
the solution is updated until convergence, as follows (see Figure 2.2):

θ ←− θ − ε(Ψ̂⊤
Ψ̂θ − Ψ̂

⊤
r),
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where Ψ̂
⊤
Ψ̂θ − Ψ̂

⊤
r corresponds to the gradient of the objective function

‖Ψ̂θ − r‖2 and ε is a small positive constant representing the step size of
gradient descent.

A notable variation of the above least-squares method is to compute the
solution by

θ̃ = (Φ⊤Ψ̂)−1Φ⊤r,

where Φ is the NT ×B matrix defined as

ΦN(t−1)+n,b = φ(st,n, at,n).

This variation is called the least-squares fixed-point approximation
(Lagoudakis & Parr, 2003) and is shown to handle the estimation error in-

cluded in the basis function ψ̂ in a sound way (Bradtke & Barto, 1996).
However, for simplicity, we focus on Eq. (2.2) below.

2.2.3 Regularization

Regression techniques in machine learning are generally formulated as min-
imization of a goodness-of-fit term and a regularization term. In the above
least-squares framework, the goodness-of-fit of our model is measured by the
squared loss. In the following chapters, we discuss how other loss functions can
be utilized in the policy iteration framework, e.g., sample reuse in Chapter 4
and outlier-robust learning in Chapter 6. Here we focus on the regularization
term and introduce practically useful regularization techniques.

The ℓ2-regularizer is the most standard regularizer in statistics and ma-
chine learning; it is also called the ridge regression (Hoerl & Kennard, 1970):

min
θ

{
1

NT
‖Ψ̂θ − r‖2 + λ‖θ‖2

}
,

where λ ≥ 0 is the regularization parameter. The role of the ℓ2-regularizer
‖θ‖2 is to penalize the growth of the parameter vector θ to avoid overfitting
to noisy samples. A practical advantage of the use of the ℓ2-regularizer is that
the minimizer θ̂ can still be obtained analytically:

θ̂ = (Ψ̂
⊤
Ψ̂+ λIB)

−1Ψ̂
⊤
r,

where IB denotes the B×B identity matrix. Because of the addition of λIB ,
the matrix to be inverted above has a better numerical condition and thus
the solution tends to be more stable than the solution obtained by plain least
squares without regularization.

Note that the same solution as the above ℓ2-penalized least-squares prob-
lem can be obtained by solving the following ℓ2-constrained least-squares prob-
lem:

min
θ

1

NT
‖Ψ̂θ − r‖2
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θ2

θLS

θ1

ˆ

θℓ2 − CLS

ˆ

(a) ℓ2-constraint

θ1

θ2

θLS

ˆ

θℓ1 − CLS

ˆ

(b) ℓ1-constraint

FIGURE 2.3: Feasible regions (i.e., regions where the constraint is satisfied).
The least-squares (LS) solution is the bottom of the elliptical hyperboloid,
whereas the solution of constrained least-squares (CLS) is located at the point
where the hyperboloid touches the feasible region.

subject to ‖θ‖2 ≤ C,

where C is determined from λ. Note that the larger the value of λ is (i.e., the
stronger the effect of regularization is), the smaller the value of C is (i.e., the
smaller the feasible region is). The feasible region (i.e., the region where the
constraint ‖θ‖2 ≤ C is satisfied) is illustrated in Figure 2.3(a).

Another popular choice of regularization in statistics and machine learn-
ing is the ℓ1-regularizer, which is also called the least absolute shrinkage and
selection operator (LASSO) (Tibshirani, 1996):

min
θ

{
1

NT
‖Ψ̂θ − r‖2 + λ‖θ‖1

}
,

where ‖ · ‖1 denotes the ℓ1-norm defined as the absolute sum of elements:

‖θ‖1 =

B∑

b=1

|θb|.

In the same way as the ℓ2-regularization case, the same solution as the above
ℓ1-penalized least-squares problem can be obtained by solving the following
constrained least-squares problem:

min
θ

1

NT
‖Ψ̂θ − r‖2

subject to ‖θ‖1 ≤ C,
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Estimation Validation

1st Subset (K–1)th subset K th subset

· · ·

FIGURE 2.4: Cross validation.

where C is determined from λ. The feasible region is illustrated in Fig-
ure 2.3(b).

A notable property of ℓ1-regularization is that the solution tends to be
sparse, i.e., many of the elements {θb}Bb=1 become exactly zero. The reason why
the solution becomes sparse can be intuitively understood from Figure 2.3(b):
the solution tends to be on one of the corners of the feasible region, where
the solution is sparse. On the other hand, in the ℓ2-constraint case (see Fig-
ure 2.3(a) again), the solution is similar to the ℓ1-constraint case, but it is
not generally on an axis and thus the solution is not sparse. Such a sparse
solution has various computational advantages. For example, the solution for
large-scale problems can be computed efficiently, because all parameters do
not have to be explicitly handled; see, e.g., Tomioka et al., 2011. Furthermore,
the solutions for all different regularization parameters can be computed ef-
ficiently (Efron et al., 2004), and the output of the learned model can be
computed efficiently.

2.2.4 Model Selection

In regression, tuning parameters are often included in the algorithm, such
as basis parameters and the regularization parameter. Such tuning parameters
can be objectively and systematically optimized based on cross-validation
(Wahba, 1990) as follows (see Figure 2.4).

First, the training dataset H is divided into K disjoint subsets of approx-
imately the same size, {Hk}Kk=1. Then the regression solution θ̂k is obtained
using H\Hk (i.e., all samples without Hk), and its squared error for the hold-
out samples Hk is computed. This procedure is repeated for k = 1, . . . , K, and
the model (such as the basis parameter and the regularization parameter) that
minimizes the average error is chosen as the most suitable one.

One may think that the ordinary squared error is directly used for model
selection, instead of its cross-validation estimator. However, the ordinary
squared error is heavily biased (or in other words, over-fitted) since the same
training samples are used twice for learning parameters and estimating the
generalization error (i.e., the out-of-sample prediction error). On the other
hand, the cross-validation estimator of squared error is almost unbiased, where
“almost” comes from the fact that the number of training samples is reduced
due to data splitting in the cross-validation procedure.
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In general, cross-validation is computationally expensive because the
squared error needs to be estimated many times. For example, when perform-
ing 5-fold cross-validation for 10 model candidates, the learning procedure has
to be repeated 5×10 = 50 times. However, this is often acceptable in practice
because sensible model selection gives an accurate solution even with a small
number of samples. Thus, in total, the computation time may not grow that
much. Furthermore, cross-validation is suitable for parallel computing since er-
ror estimation for different models and different folds are independent of each
other. For instance, when performing 5-fold cross-validation for 10 model can-
didates, the use of 50 computing units allows us to compute everything at
once.

2.3 Remarks

Reinforcement learning via regression of state-action value functions is a
highly powerful and flexible approach, because we can utilize various regression
techniques developed in statistics and machine learning such as least-squares,
regularization, and cross-validation.

In the following chapters, we introduce more sophisticated regression tech-
niques such as manifold-based smoothing (Chapelle et al., 2006) in Chapter 3,
covariate shift adaptation (Sugiyama & Kawanabe, 2012) in Chapter 4, active
learning (Sugiyama & Kawanabe, 2012) in Chapter 5, and robust regression
(Huber, 1981) in Chapter 6.



Chapter 3

Basis Design for Value Function

Approximation

Least-squares policy iteration explained in Chapter 2 works well, given appro-
priate basis functions for value function approximation. Because of its smooth-
ness, the Gaussian kernel is a popular and useful choice as a basis function.
However, it does not allow for discontinuity, which is conceivable in many re-
inforcement learning tasks. In this chapter, we introduce an alternative basis
function based on geodesic Gaussian kernels (GGKs), which exploit the non-
linear manifold structure induced by the Markov decision processes (MDPs).
The details of GGK are explained in Section 3.1, and its relation to other
basis function designs is discussed in Section 3.2. Then, experimental perfor-
mance is numerically evaluated in Section 3.3, and this chapter is concluded
in Section 3.4.

3.1 Gaussian Kernels on Graphs

In least-squares policy iteration, the choice of basis functions {φb(s, a)}Bb=1

is an open design issue (see Chapter 2). Traditionally, Gaussian kernels have
been a popular choice (Lagoudakis & Parr, 2003; Engel et al., 2005), but they
cannot approximate discontinuous functions well. To cope with this problem,
more sophisticated methods of constructing suitable basis functions have been
proposed which effectively make use of the graph structure induced by MDPs
(Mahadevan, 2005). In this section, we introduce an alternative way of con-
structing basis functions by incorporating the graph structure of the state
space.

3.1.1 MDP-Induced Graph

Let G be a graph induced by an MDP, where states S are nodes of the
graph and the transitions with non-zero transition probabilities from one node
to another are edges. The edges may have weights determined, e.g., based on
the transition probabilities or the distance between nodes. The graph structure
corresponding to an example grid world shown in Figure 3.1(a) is illustrated

27
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(b) Optimal state value function (in
log-scale).

(c) Graph induced by the MDP and a
random policy.

FIGURE 3.1: An illustrative example of a reinforcement learning task of
guiding an agent to a goal in the grid world.

in Figure 3.1(c). In practice, such graph structure (including the connection
weights) is estimated from samples of a finite length. We assume that the
graph G is connected. Typically, the graph is sparse in reinforcement learning
tasks, i.e.,

ℓ≪ n(n− 1)/2,

where ℓ is the number of edges and n is the number of nodes.
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3.1.2 Ordinary Gaussian Kernels

Ordinary Gaussian kernels (OGKs) on the Euclidean space are defined as

K(s, s′) = exp

(
−ED(s, s′)2

2σ2

)
,

where ED(s, s′) are the Euclidean distance between states s and s′; for ex-
ample,

ED(s, s′) = ‖x− x′‖,

when the Cartesian positions of s and s′ in the state space are given by x and
x′, respectively. σ2 is the variance parameter of the Gaussian kernel.

The above Gaussian function is defined on the state space S, where s′ is
treated as a center of the kernel. In order to employ the Gaussian kernel in
least-squares policy iteration, it needs to be extended over the state-action
space S × A. This is usually carried out by simply “copying” the Gaussian
function over the action space (Lagoudakis & Parr, 2003; Mahadevan, 2005).
More precisely, let the total number k of basis functions be mp, where m is
the number of possible actions and p is the number of Gaussian centers. For
the i-th action a(i) (∈ A) (i = 1, 2, . . . ,m) and for the j-th Gaussian center
c(j) (∈ S) (j = 1, 2, . . . , p), the (i + (j − 1)m)-th basis function is defined as

φi+(j−1)m(s, a) = I(a = a(i))K(s, c(j)), (3.1)

where I(·) is the indicator function:

I(a = a(i)) =

{
1 if a = a(i),

0 otherwise.

3.1.3 Geodesic Gaussian Kernels

On graphs, a natural definition of the distance would be the shortest path.
The Gaussian kernel based on the shortest path is given by

K(s, s′) = exp

(
−SP(s, s′)2

2σ2

)
, (3.2)

where SP(s, s′) denotes the shortest path from state s to state s′. The shortest
path on a graph can be interpreted as a discrete approximation to the geodesic
distance on a non-linear manifold (Chung, 1997). For this reason, we call Eq.
(3.2) a geodesic Gaussian kernel (GGK) (Sugiyama et al., 2008).

Shortest paths on graphs can be efficiently computed using the Dijkstra al-
gorithm (Dijkstra, 1959). With its naive implementation, computational com-
plexity for computing the shortest paths from a single node to all other nodes
is O(n2), where n is the number of nodes. If the Fibonacci heap is employed,
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computational complexity can be reduced to O(n log n+ ℓ) (Fredman & Tar-
jan, 1987), where ℓ is the number of edges. Since the graph in value function
approximation problems is typically sparse (i.e., ℓ≪ n2), using the Fibonacci
heap provides significant computational gains. Furthermore, there exist var-
ious approximation algorithms which are computationally very efficient (see
Goldberg & Harrelson, 2005 and references therein).

Analogously to OGKs, we need to extend GGKs to the state-action space
to use them in least-squares policy iteration. A naive way is to just employ
Eq. (3.1), but this can cause a shift in the Gaussian centers since the state
usually changes when some action is taken. To incorporate this transition,
the basis functions are defined as the expectation of Gaussian functions after
transition:

φi+(j−1)m(s, a) = I(a = a(i))
∑

s′∈S

P(s′|s, a)K(s′, c(j)). (3.3)

This shifting scheme is shown to work very well when the transition is pre-
dominantly deterministic (Sugiyama et al., 2008).

3.1.4 Extension to Continuous State Spaces

So far, we focused on discrete state spaces. However, the concept of GGKs
can be naturally extended to continuous state spaces, which is explained here.
First, the continuous state space is discretized, which gives a graph as a dis-
crete approximation to the non-linear manifold structure of the continuous
state space. Based on the graph, GGKs can be constructed in the same way
as the discrete case. Finally, the discrete GGKs are interpolated, e.g., using a
linear method to give continuous GGKs.

Although this procedure discretizes the continuous state space, it must be
noted that the discretization is only for the purpose of obtaining the graph as
a discrete approximation of the continuous non-linear manifold; the resulting
basis functions themselves are continuously interpolated and hence the state
space is still treated as continuous, as opposed to conventional discretization
procedures.

3.2 Illustration

In this section, the characteristics of GGKs are discussed in comparison to
existing basis functions.
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3.2.1 Setup

Let us consider a toy reinforcement learning task of guiding an agent to
a goal in a deterministic grid world (see Figure 3.1(a)). The agent can take
4 actions: up, down, left, and right. Note that actions which make the agent
collide with the wall are disallowed. A positive immediate reward +1 is given
if the agent reaches a goal state; otherwise it receives no immediate reward.
The discount factor is set at γ = 0.9.

In this task, a state s corresponds to a two-dimensional Cartesian grid
position x of the agent. For illustration purposes, let us display the state
value function,

V π(s) : S → R,

which is the expected long-term discounted sum of rewards the agent receives
when the agent takes actions following policy π from state s. From the defi-
nition, it can be confirmed that V π(s) is expressed in terms of Qπ(s, a) as

V π(s) = Qπ(s, π(s)).

The optimal state value function V ∗(s) (in log-scale) is illustrated in Fig-
ure 3.1(b). An MDP-induced graph structure estimated from 20 series of ran-
dom walk samples1 of length 500 is illustrated in Figure 3.1(c). Here, the edge
weights in the graph are set at 1 (which is equivalent to the Euclidean distance
between two nodes).

3.2.2 Geodesic Gaussian Kernels

An example of GGKs for this graph is depicted in Figure 3.2(a), where the
variance of the kernel is set at a large value (σ2 = 30) for illustration purposes.
The graph shows that GGKs have a nice smooth surface along the maze, but
not across the partition between two rooms. Since GGKs have “centers,” they
are extremely useful for adaptively choosing a subset of bases, e.g., using a
uniform allocation strategy, sample-dependent allocation strategy, or maze-
dependent allocation strategy of the centers. This is a practical advantage
over some non-ordered basis functions. Moreover, since GGKs are local by
nature, the ill effects of local noise are constrained locally, which is another
useful property in practice.

The approximated value functions obtained by 40 GGKs2 are depicted in
Figure 3.3(a), where one GGK center is put at the goal state and the remaining
9 centers are chosen randomly. For GGKs, kernel functions are extended over
the action space using the shifting scheme (see Eq. (3.3)) since the transition is

1More precisely, in each random walk, an initial state is chosen randomly. Then, an
action is chosen randomly and transition is made; this is repeated 500 times. This entire
procedure is independently repeated 20 times to generate the training set.

2Note that the total number k of basis functions is 160 since each GGK is copied over
the action space as per Eq. (3.3).
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(a) Geodesic Gaussian kernels
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(b) Ordinary Gaussian kernels
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FIGURE 3.2: Examples of basis functions.
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FIGURE 3.3: Approximated value functions in log-scale. The errors are com-
puted with respect to the optimal value function illustrated in Figure 3.1(b).

deterministic (see Section 3.1.3). The proposed GGK-based method produces
a nice smooth function along the maze while the discontinuity around the par-
tition between two rooms is sharply maintained (cf. Figure 3.1(b)). As a result,
for this particular case, GGKs give the optimal policy (see Figure 3.4(a)).

As discussed in Section 3.1.3, the sparsity of the state transition matrix al-
lows efficient and fast computations of shortest paths on the graph. Therefore,
least-squares policy iteration with GGK-based bases is still computationally
attractive.

3.2.3 Ordinary Gaussian Kernels

OGKs share some of the preferable properties of GGKs described above.
However, as illustrated in Figure 3.2(b), the tail of OGKs extends beyond the
partition between two rooms. Therefore, OGKs tend to undesirably smooth
out the discontinuity of the value function around the barrier wall (see
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(a) Geodesic Gaussian kernels
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(b) Ordinary Gaussian kernels
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(c) Graph-Laplacian eigenbases
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(d) Diffusion wavelets

FIGURE 3.4: Obtained policies.

Figure 3.3(b)). This causes an error in the policy around the partition (see
x = 10, y = 2, 3, . . . , 9 of Figure 3.4(b)).

3.2.4 Graph-Laplacian Eigenbases

Mahadevan (2005) proposed employing the smoothest vectors on graphs as
bases in value function approximation. According to the spectral graph theory
(Chung, 1997), such smooth bases are given by the minor eigenvectors of the
graph-Laplacian matrix, which are called graph-Laplacian eigenbases (GLEs).
GLEs may be regarded as a natural extension of Fourier bases to graphs.

Examples of GLEs are illustrated in Figure 3.2(c), showing that they have
Fourier-like structure on the graph. It should be noted that GLEs are rather
global in nature, implying that noise in a local region can potentially de-
grade the global quality of approximation. An advantage of GLEs is that they
have a natural ordering of the basis functions according to the smoothness.
This is practically very helpful in choosing a subset of basis functions. Fig-
ure 3.3(c) depicts the approximated value function in log-scale, where the top
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40 smoothest GLEs out of 326 GLEs are used (note that the actual number
of bases is 160 because of the duplication over the action space). It shows
that GLEs globally give a very good approximation, although the small local
fluctuation is significantly emphasized since the graph is in log-scale. Indeed,
the mean squared error (MSE) between the approximated and optimal value
functions described in the captions of Figure 3.3 shows that GLEs give a
much smaller MSE than GGKs and OGKs. However, the obtained value func-
tion contains systematic local fluctuation and this results in an inappropriate
policy (see Figure 3.4(c)).

MDP-induced graphs are typically sparse. In such cases, the resultant
graph-Laplacian matrix is also sparse and GLEs can be obtained just by solv-
ing a sparse eigenvalue problem, which is computationally efficient. However,
finding minor eigenvectors could be numerically unstable.

3.2.5 Diffusion Wavelets

Coifman and Maggioni (2006) proposed diffusion wavelets (DWs), which
are a natural extension of wavelets to the graph. The construction is based
on a symmetrized random walk on a graph. It is diffused on the graph up to
a desired level, resulting in a multi-resolution structure. A detailed algorithm
for constructing DWs and mathematical properties are described in Coifman
and Maggioni (2006).

When constructing DWs, the maximum nest level of wavelets and toler-
ance used in the construction algorithm needs to be specified by users. The
maximum nest level is set at 10 and the tolerance is set at 10−10, which are
suggested by the authors. Examples of DWs are illustrated in Figure 3.2(d),
showing a nice multi-resolution structure on the graph. DWs are over-complete
bases, so one has to appropriately choose a subset of bases for better approx-
imation. Figure 3.3(d) depicts the approximated value function obtained by
DWs, where we chose the most global 40 DWs from 1626 over-complete DWs
(note that the actual number of bases is 160 because of the duplication over
the action space). The choice of the subset bases could possibly be enhanced
using multiple heuristics. However, the current choice is reasonable since Fig-
ure 3.3(d) shows that DWs give a much smaller MSE than Gaussian kernels.
Nevertheless, similar to GLEs, the obtained value function contains a lot of
small fluctuations (see Figure 3.3(d)) and this results in an erroneous policy
(see Figure 3.4(d)).

Thanks to the multi-resolution structure, computation of diffusion wavelets
can be carried out recursively. However, due to the over-completeness, it is still
rather demanding in computation time. Furthermore, appropriately determin-
ing the tuning parameters as well as choosing an appropriate basis subset is
not straightforward in practice.
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3.3 Numerical Examples

As discussed in the previous section, GGKs bring a number of preferable
properties for making value function approximation effective. In this section,
the behavior of GGKs is illustrated numerically.

3.3.1 Robot-Arm Control

Here, a simulator of a two-joint robot arm (moving in a plane), illustrated
in Figure 3.5(a), is employed. The task is to lead the end-effector (“hand”)
of the arm to an object while avoiding the obstacles. Possible actions are to
increase or decrease the angle of each joint (“shoulder” and “elbow”) by 5
degrees in the plane, simulating coarse stepper-motor joints. Thus, the state
space S is the 2-dimensional discrete space consisting of two joint-angles, as
illustrated in Figure 3.5(b). The black area in the middle corresponds to the
obstacle in the joint-angle state space. The action space A involves 4 actions:
increase or decrease one of the joint angles. A positive immediate reward +1
is given when the robot’s end-effector touches the object; otherwise the robot
receives no immediate reward. Note that actions which make the arm collide
with obstacles are disallowed. The discount factor is set at γ = 0.9. In this
environment, the robot can change the joint angle exactly by 5 degrees, and
therefore the environment is deterministic. However, because of the obstacles,
it is difficult to explicitly compute an inverse kinematic model. Furthermore,
the obstacles introduce discontinuity in value functions. Therefore, this robot-
arm control task is an interesting test bed for investigating the behavior of
GGKs.

Training samples from 50 series of 1000 random arm movements are col-
lected, where the start state is chosen randomly in each trial. The graph
induced by the above MDP consists of 1605 nodes and uniform weights are
assigned to the edges. Since there are 16 goal states in this environment (see
Figure 3.5(b)), the first 16 Gaussian centers are put at the goals and the re-
maining centers are chosen randomly in the state space. For GGKs, kernel
functions are extended over the action space using the shifting scheme (see
Eq. (3.3)) since the transition is deterministic in this experiment.

Figure 3.6 illustrates the value functions approximated using GGKs and
OGKs. The graphs show that GGKs give a nice smooth surface with obstacle-
induced discontinuity sharply preserved, while OGKs tend to smooth out
the discontinuity. This makes a significant difference in avoiding the obsta-
cle. From “A” to “B” in Figure 3.5(b), the GGK-based value function results
in a trajectory that avoids the obstacle (see Figure 3.6(a)). On the other hand,
the OGK-based value function yields a trajectory that tries to move the arm
through the obstacle by following the gradient upward (see Figure 3.6(b)),
causing the arm to get stuck behind the obstacle.
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(a) A schematic

A
B

(b) State space

FIGURE 3.5: A two-joint robot arm. In this experiment, GGKs are put at
all the goal states and the remaining kernels are distributed uniformly over
the maze; the shifting scheme is used in GGKs.

Figure 3.7 summarizes the performance of GGKs and OGKs measured
by the percentage of successful trials (i.e., the end-effector reaches the object)
over 30 independent runs. More precisely, in each run, 50, 000 training samples
are collected using a different random seed, a policy is then computed by the
GGK- or OGK-based least-squares policy iteration, and finally the obtained
policy is tested. This graph shows that GGKs remarkably outperform OGKs
since the arm can successfully avoid the obstacle. The performance of OGKs
does not go beyond 0.6 even when the number of kernels is increased. This is
caused by the tail effect of OGKs. As a result, the OGK-based policy cannot
lead the end-effector to the object if it starts from the bottom left half of the
state space.

When the number of kernels is increased, the performance of both GGKs
and OGKs gets worse at around k = 20. This is caused by the kernel alloca-
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FIGURE 3.6: Approximated value functions with 10 kernels (the actual
number of bases is 40 because of the duplication over the action space).
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FIGURE 3.7: Fraction of successful trials.

tion strategy: the first 16 kernels are put at the goal states and the remaining
kernel centers are chosen randomly. When k is less than or equal to 16, the
approximated value function tends to have a unimodal profile since all kernels
are put at the goal states. However, when k is larger than 16, this unimodality
is broken and the surface of the approximated value function has slight fluc-
tuations, causing an error in policies and degrading performance at around
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k = 20. This performance degradation tends to recover as the number of
kernels is further increased.

Motion examples of the robot arm trained with GGK and OGK are illus-
trated in Figure 3.8 and Figure 3.9, respectively.

Overall, the above result shows that when GGKs are combined with the
above-mentioned kernel-center allocation strategy, almost perfect policies can
be obtained with a small number of kernels. Therefore, the GGK method is
computationally highly advantageous.

3.3.2 Robot-Agent Navigation

The above simple robot-arm control simulation shows that GGKs are
promising. Here, GGKs are applied to a more challenging task of mobile-robot
navigation, which involves a high-dimensional and very large state space.

A Khepera robot , illustrated in Figure 3.10(a), is employed for the navi-
gation task. The Khepera robot is equipped with 8 infrared sensors (“s1” to
“s8” in the figure), each of which gives a measure of the distance from the sur-
rounding obstacles. Each sensor produces a scalar value between 0 and 1023:
the sensor obtains the maximum value 1023 if an obstacle is just in front of the
sensor and the value decreases as the obstacle gets farther until it reaches the
minimum value 0. Therefore, the state space S is 8-dimensional. The Khep-
era robot has two wheels and takes the following defined actions: forward,
left rotation, right rotation, and backward (i.e., the action space A contains
actions). The speed of the left and right wheels for each action is described
in Figure 3.10(a) in the bracket (the unit is pulse per 10 milliseconds). Note
that the sensor values and the wheel speed are highly stochastic due to the
cross talk, sensor noise, slip, etc. Furthermore, perceptual aliasing occurs due
to the limited range and resolution of sensors. Therefore, the state transition
is also highly stochastic. The discount factor is set at γ = 0.9.

The goal of the navigation task is to make the Khepera robot explore
the environment as much as possible. To this end, a positive reward +1 is
given when the Khepera robot moves forward and a negative reward −2 is
given when the Khepera robot collides with an obstacle. No reward is given
to the left rotation, right rotation, and backward actions. This reward design
encourages the Khepera robot to go forward without hitting obstacles, through
which extensive exploration in the environment could be achieved.

Training samples are collected from 200 series of 100 random movements in
a fixed environment with several obstacles (see Figure 3.11(a)). Then, a graph
is constructed from the gathered samples by discretizing the continuous state
space using a self-organizing map (SOM) (Kohonen, 1995). A SOM consists
of neurons located on a regular grid. Each neuron corresponds to a cluster
and neurons are connected to adjacent ones by neighborhood relation. The
SOM is similar to the k-means clustering algorithm, but it is different in that
the topological structure of the entire map is taken into account. Thanks to
this, the entire space tends to be covered by the SOM. The number of nodes
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FIGURE 3.8: A motion example of the robot arm trained with GGK (from
left to right and top to bottom).

FIGURE 3.9: A motion example of the robot arm trained with OGK (from
left to right and top to bottom).
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(a) A schematic
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(b) State space projected onto a 2-dimensional subspace for visualization

FIGURE 3.10: Khepera robot. In this experiment, GGKs are distributed
uniformly over the maze without the shifting scheme.

(states) in the graph is set at 696 (equivalent to the SOM map size of 24×29).
This value is computed by the standard rule-of-thumb formula 5

√
n (Vesanto

et al., 2000), where n is the number of samples. The connectivity of the graph
is determined by state transitions occurring in the samples. More specifically,
if there is a state transition from one node to another in the samples, an edge
is established between these two nodes and the edge weight is set according
to the Euclidean distance between them.

Figure 3.10(b) illustrates an example of the obtained graph structure. For
visualization purposes, the 8-dimensional state space is projected onto a 2-
dimensional subspace spanned by

(−1 −1 0 0 1 1 0 0),
(0 0 1 1 0 0 −1 −1).
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(a) Training (b) Test

FIGURE 3.11: Simulation environment.

Note that this projection is performed only for the purpose of visualization.
All the computations are carried out using the entire 8-dimensional data.
The i-th element in the above bases corresponds to the output of the i-th
sensor (see Figure 3.10(a)). The projection onto this subspace roughly means
that the horizontal axis corresponds to the distance to the left and right
obstacles, while the vertical axis corresponds to the distance to the front and
back obstacles. For clear visibility, the edges whose weight is less than 250 are
plotted. Representative local poses of the Khepera robot with respect to the
obstacles are illustrated in Figure 3.10(b). This graph has a notable feature:
the nodes around the region “B” in the figure are directly connected to the
nodes at “A,” but are very sparsely connected to the nodes at “C,” “D,” and
“E.” This implies that the geodesic distance from “B” to “C,” “B” to “D,”
or “B” to “E” is typically larger than the Euclidean distance.

Since the transition from one state to another is highly stochastic in the
current experiment, the GGK function is simply duplicated over the action
space (see Eq. (3.1)). For obtaining continuous GGKs, GGK functions need to
be interpolated (see Section 3.1.4). A simple linear interpolation method may
be employed in general, but the current experiment has unique characteristics:
at least one of the sensor values is always zero since the Khepera robot is never
completely surrounded by obstacles. Therefore, samples are always on the
surface of the 8-dimensional hypercube-shaped state space. On the other hand,
the node centers determined by the SOM are not generally on the surface. This
means that any sample is not included in the convex hull of its nearest nodes
and the function value needs to be extrapolated. Here, the Euclidean distance
between the sample and its nearest node is simply added when computing
kernel values. More precisely, for a state s that is not generally located on a
node center, the GGK-based basis function is defined as

φi+(j−1)m(s, a) = I(a = a(i)) exp

(
− (ED(s, s̃) + SP(s̃, c(j)))2

2σ2

)
,
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where s̃ is the node closest to s in the Euclidean distance.
Figure 3.12 illustrates an example of actions selected at each node by the

GGK-based and OGK-based policies. One hundred kernels are used and the
width is set at 1000. The symbols ↑, ↓, ⊂, and ⊃ in the figure indicate forward,
backward, left rotation, and right rotation actions. This shows that there is a
clear difference in the obtained policies at the state “C.” The backward action
is most likely to be taken by the OGK-based policy, while the left rotation
and right rotation are most likely to be taken by the GGK-based policy. This
causes a significant difference in the performance. To explain this, suppose that
the Khepera robot is at the state “C,” i.e., it faces a wall. The GGK-based
policy guides the Khepera robot from “C” to “A” via “D” or “E” by taking
the left and right rotation actions and it can avoid the obstacle successfully.
On the other hand, the OGK-based policy tries to plan a path from “C” to
“A” via “B” by activating the backward action. As a result, the forward action
is taken at “B.” For this reason, the Khepera robot returns to “C” again and
ends up moving back and forth between “C” and “B.”

For the performance evaluation, a more complicated environment than
the one used for gathering training samples (see Figure 3.11) is used. This
means that how well the obtained policies can be generalized to an unknown
environment is evaluated here. In this test environment, the Khepera robot
runs from a fixed starting position (see Figure 3.11(b)) and takes 150 steps
following the obtained policy, with the sum of rewards (+1 for the forward
action) computed. If the Khepera robot collides with an obstacle before 150
steps, the evaluation is stopped. The mean test performance over 30 indepen-
dent runs is depicted in Figure 3.13 as a function of the number of kernels.
More precisely, in each run, a graph is constructed based on the training
samples taken from the training environment and the specified number of ker-
nels is put randomly on the graph. Then, a policy is learned by the GGK-
or OGK-based least-squares policy iteration using the training samples. Note
that the actual number of bases is four times more because of the exten-
sion of basis functions over the action space. The test performance is mea-
sured 5 times for each policy and the average is output. Figure 3.13 shows
that GGKs significantly outperform OGKs, demonstrating that GGKs are
promising even in the challenging setting with a high-dimensional large state
space.

Figure 3.14 depicts the computation time of each method as a function of
the number of kernels. This shows that the computation time monotonically
increases as the number of kernels increases and the GGK-based and OGK-
based methods have comparable computation time. However, given that the
GGK-based method works much better than the OGK-based method with a
smaller number of kernels (see Figure 3.13), the GGK-based method could be
regarded as a computationally efficient alternative to the standard OGK-based
method.

Finally, the trained Khepera robot is applied to map building. Starting
from an initial position (indicated by a square in Figure 3.15), the Khepera
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(a) Geodesic Gaussian kernels
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(b) Ordinary Gaussian kernels

FIGURE 3.12: Examples of obtained policies. The symbols ↑, ↓, ⊂, and ⊃
indicate forward, backward, left rotation, and right rotation actions.

robot takes an action 2000 times following the learned policy. Eighty kernels
with Gaussian width σ = 1000 are used for value function approximation. The
results of GGKs and OGKs are depicted in Figure 3.15. The graphs show that
the GGK result gives a broader profile of the environment, while the OGK
result only reveals a local area around the initial position.

Motion examples of the Khepera robot trained with GGK and OGK are
illustrated in Figure 3.16 and Figure 3.17, respectively.
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FIGURE 3.14: Computation time.

(a) Geodesic Gaussian kernels (b) Ordinary Gaussian kernels

FIGURE 3.15: Results of map building (cf. Figure 3.11(b)).

3.4 Remarks

The performance of least-squares policy iteration depends heavily on the
choice of basis functions for value function approximation. In this chapter,
the geodesic Gaussian kernel (GGK) was introduced and shown to possess
several preferable properties such as smoothness along the graph and easy
computability. It was also demonstrated that the policies obtained by GGKs
are not as sensitive to the choice of the Gaussian kernel width, which is a
useful property in practice. Also, the heuristics of putting Gaussian centers
on goal states was shown to work well.

However, when the transition is highly stochastic (i.e., the transition prob-
ability has a wide support), the graph constructed based on the transition
samples could be noisy. When an erroneous transition results in a short-cut
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FIGURE 3.16: A motion example of the Khepera robot trained with GGK
(from left to right and top to bottom).

FIGURE 3.17: A motion example of the Khepera robot trained with OGK
(from left to right and top to bottom).

over obstacles, the graph-based approach may not work well since the topology
of the state space changes significantly.



Chapter 4

Sample Reuse in Policy Iteration

Off-policy reinforcement learning is aimed at efficiently using data samples
gathered from a policy that is different from the currently optimized policy. A
common approach is to use importance sampling techniques for compensating
for the bias caused by the difference between the data-sampling policy and the
target policy. In this chapter, we explain how importance sampling can be uti-
lized to efficiently reuse previously collected data samples in policy iteration.
After formulating the problem of off-policy value function approximation in
Section 4.1, representative off-policy value function approximation techniques
including adaptive importance sampling are reviewed in Section 4.2. Then, in
Section 4.3, how the adaptivity of importance sampling can be optimally con-
trolled is explained. In Section 4.4, off-policy value function approximation
techniques are integrated in the framework of least-squares policy iteration
for efficient sample reuse. Experimental results are shown in Section 4.5, and
finally this chapter is concluded in Section 4.6.

4.1 Formulation

As explained in Section 2.2, least-squares policy iteration models the state-
action value function Qπ(s, a) by a linear architecture,

θ⊤φ(s, a),

and learns the parameter θ so that the generalization error G is minimized:

G(θ) = Epπ(h)

[
1

T

T∑

t=1

(
θ⊤ψ(st, at)− r(st, at)

)2
]
. (4.1)

Here, Epπ(h) denotes the expectation over history

h = [s1, a1, . . . , sT , aT , sT+1]

following the target policy π and

ψ(s, a) = φ(s, a)− γEπ(a′|s′)p(s′|s,a)

[
φ(s′, a′)

]
.

47
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When history samples following the target policy π are available, the situ-
ation is called on-policy reinforcement learning. In this case, just replacing the
expectation contained in the generalization error G by sample averages gives
a statistically consistent estimator (i.e., the estimated parameter converges to
the optimal value as the number of samples goes to infinity).

Here, we consider the situation called off-policy reinforcement learning,
where the sampling policy π̃ for collecting data samples is generally different
from the target policy π. Let us denote the history samples following π̃ by

Hπ̃ = {hπ̃1 , . . . , hπ̃N},

where each episodic sample hπ̃n is given as

hπ̃n = [sπ̃1,n, a
π̃
1,n, . . . , s

π̃
T,n, a

π̃
T,n, s

π̃
T+1,n].

Under the off-policy setup, naive learning by minimizing the sample-
approximated generalization error ĜNIW leads to an inconsistent estimator:

ĜNIW(θ) =
1

NT

N∑

n=1

T∑

t=1

(
θ⊤ψ̂(sπ̃t,n, a

π̃
t,n;Hπ̃)− r(sπ̃t,n, aπ̃t,n, sπ̃t+1,n)

)2
,

where

ψ̂(s, a;H) = φ(s, a)− 1

|H(s,a)|
∑

s′∈H(s,a)

Eπ̃(a′|s′)

[
γφ(s′, a′)

]
.

H(s,a) denotes a subset of H that consists of all transition samples from state
s by action a, |H(s,a)| denotes the number of elements in the set H(s,a), and∑

s′∈H
s,a)

denotes the summation over all destination states s′ in the set

H(s,a). NIW stands for “No Importance Weight,” which will be explained
later.

This inconsistency problem can be avoided by gathering new samples fol-
lowing the target policy π, i.e., when the current policy is updated, new sam-
ples are gathered following the updated policy and the new samples are used
for policy evaluation. However, when the data sampling cost is high, this is
too expensive. It would be more cost efficient if previously gathered samples
could be reused effectively.

4.2 Off-Policy Value Function Approximation

Importance sampling is a general technique for dealing with the off-policy
situation. Suppose we have i.i.d. (independent and identically distributed) sam-
ples {xn}Nn=1 from a strictly positive probability density function p̃(x). Using
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these samples, we would like to compute the expectation of a function g(x)
over another probability density function p(x). A consistent approximation of
the expectation is given by the importance-weighted average as

1

N

N∑

n=1

g(xn)
p(xn)

p̃(xn)

N→∞−→ Ep̃(x)

[
g(x)

p(x)

p̃(x)

]

=

∫
g(x)

p(x)

p̃(x)
p̃(x)dx =

∫
g(x)p(x)dx = Ep(x) [g(x)] .

However, applying the importance sampling technique in off-policy rein-
forcement learning is not straightforward since our training samples of state
s and action a are not i.i.d. due to the sequential nature of Markov deci-
sion processes (MDPs). In this section, representative importance-weighting
techniques for MDPs are reviewed.

4.2.1 Episodic Importance Weighting

Based on the independence between episodes,

p(h, h′) = p(h)p(h′) = p(s1, a1, . . . , sT , aT , sT+1)p(s
′
1, a

′
1, . . . , s

′
T , a

′
T , s

′
T+1),

the generalization error G can be rewritten as

G(θ) = Epπ̃(h)

[
1

T

T∑

t=1

(
θ⊤ψ(st, at)− r(st, at)

)2
wT

]
,

where wT is the episodic importance weight (EIW):

wT =
pπ(h)

pπ̃(h)
.

pπ(h) and pπ̃(h) are the probability densities of observing episodic data h
under policy π and π̃:

pπ(h) = p(s1)
T∏

t=1

π(at|st)p(st+1|st, at),

pπ̃(h) = p(s1)

T∏

t=1

π̃(at|st)p(st+1|st, at).

Note that the importance weights can be computed without explicitly knowing
p(s1) and p(st+1|st, at), since they are canceled out:

wT =

∏T
t=1 π(at|st)∏T
t=1 π̃(at|st)

.
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Using the training data Hπ̃, we can construct a consistent estimator of G
as

ĜEIW(θ) =
1

NT

N∑

n=1

T∑

t=1

(
θ⊤ψ̂(sπ̃t,n, a

π̃
t,n;Hπ̃)− r(sπ̃t,n, aπ̃t,n, sπ̃t+1,n)

)2
ŵT,n,

(4.2)
where

ŵT,n =

∏T
t=1 π(a

π̃
t,n|sπ̃t,n)∏T

t=1 π̃(a
π̃
t,n|sπ̃t,n)

.

4.2.2 Per-Decision Importance Weighting

A crucial observation in EIW is that the error at the t-th step does not
depend on the samples after the t-th step (Precup et al., 2000). Thus, the
generalization error G can be rewritten as

G(θ) = Epπ̃(h)

[
1

T

T∑

t=1

(
θ⊤ψ(st, at)− r(st, at)

)2
wt

]
,

where wt is the per-decision importance weight (PIW):

wt =
p(s1)

∏t
t′=1 π(at′ |st′)p(st′+1|st′ , at′)

p(s1)
∏t

t′=1 π̃(at′ |st′)p(st′+1|st′ , at′)
=

∏t
t′=1 π(at′ |st′)∏t
t′=1 π̃(at′ |st′)

.

Using the training data Hπ̃, we can construct a consistent estimator as
follows (cf. Eq. (4.2)):

ĜPIW(θ) =
1

NT

N∑

n=1

T∑

t=1

(
θ⊤ψ̂(sπ̃t,n, a

π̃
t,n;Hπ̃)− r(sπ̃t,n, aπ̃t,n, sπ̃t+1,n)

)2
ŵt,n,

where

ŵt,n =

∏t
t′=1 π(a

π̃
t′,n|sπ̃t′,n)∏t

t′=1 π̃(a
π̃
t′,n|sπ̃t′,n)

.

ŵt,n only contains the relevant terms up to the t-th step, while ŵT,n includes
all the terms until the end of the episode.

4.2.3 Adaptive Per-Decision Importance Weighting

The PIW estimator is guaranteed to be consistent. However, both are not
efficient in the statistical sense (Shimodaira, 2000), i.e., they do not have the
smallest admissible variance. For this reason, the PIW estimator can have
large variance in finite sample cases and therefore learning with PIW tends to
be unstable in practice.

To improve the stability, it is important to control the trade-off between
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consistency and efficiency (or similarly bias and variance) based on training
data. Here, the flattening parameter ν (∈ [0, 1]) is introduced to control the
trade-off by slightly “flattening” the importance weights (Shimodaira, 2000;
Sugiyama et al., 2007):

ĜAIW(θ) =
1

NT

N∑

n=1

T∑

t=1

(
θ⊤ψ̂(sπ̃t,n, a

π̃
t,n;Hπ̃)

− r(sπ̃t,n, aπ̃t,n, sπ̃t+1,n)
)2

(ŵt,n)
ν ,

where AIW stands for the adaptive per-decision importance weight . When
ν = 0, AIW is reduced to NIW and therefore it has large bias but has relatively
small variance. On the other hand, when ν = 1, AIW is reduced to PIW. Thus,
it has small bias but has relatively large variance. In practice, an intermediate
value of ν will yield the best performance.

Let Ψ̂ be the NT ×B matrix, Ŵ be the NT ×NT diagonal matrix, and
r be the NT -dimensional vector defined as

Ψ̂N(t−1)+n,b = ψ̂b(st,n, at,n),

ŴN(t−1)+n,N(t−1)+n = ŵt,n,

rN(t−1)+n = r(st,n, at,n, st+1,n).

Then, ĜAIW can be compactly expressed as

ĜAIW(θ) =
1

NT
(Ψ̂θ − r)⊤Ŵ ν

(Ψ̂θ − r).

Because this is a convex quadratic function with respect to θ, its global min-
imizer θ̂AIW can be analytically obtained by setting its derivative to zero as

θ̂AIW = (Ψ̂
⊤
Ŵ

ν
Ψ̂)−1Ψ̂

⊤
Ŵ

ν
r.

This means that the cost for computing θ̂AIW is essentially the same as θ̂NIW,
which is given as follows (see Section 2.2.2):

θ̂NIW = (Ψ̂
⊤
Ψ̂)−1Ψ̂

⊤
r.

4.2.4 Illustration

Here, the influence of the flattening parameter ν on the estimator θ̂AIW is
illustrated using the chain-walk MDP illustrated in Figure 4.1.

The MDP consists of 10 states

S = {s(1), . . . , s(10)}
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FIGURE 4.1: Ten-state chain-walk MDP.

and two actions
A = {a(1), a(2)} = {“L,”“R”}.

The reward +1 is given when visiting s(1) and s(10). The transition probability
p is indicated by the numbers attached to the arrows in the figure. For example,

p(s(2)|s(1), a = “R”) = 0.9 and p(s(1)|s(1), a = “R”) = 0.1

mean that the agent can successfully move to the right node with probability
0.9 (indicated by solid arrows in the figure) and the action fails with prob-
ability 0.1 (indicated by dashed arrows in the figure). Six Gaussian kernels
with standard deviation σ = 10 are used as basis functions, and kernel cen-
ters are located at s(1), s(5), and s(10). More specifically, the basis functions,
φ(s, a) = (φ1(s, a), . . . , φ6(s, a)) are defined as

φ3(i−1)+j(s, a) = I(a = a(i)) exp

(
− (s− cj)2

2σ2

)
,

for i = 1, 2 and j = 1, 2, 3, where

c1 = 1, c2 = 5, c3 = 10,

and

I(x) =

{
1 if x is true,
0 if x is not true.

The experiments are repeated 50 times, where the sampling policy π̃(a|s)
and the current policy π(a|s) are chosen randomly in each trial such that

π̃ 6= π. The discount factor is set at γ = 0.9. The model parameter θ̂AIW is
learned from the training samples Hπ̃ and its generalization error is computed
from the test samples Hπ.

The left column of Figure 4.2 depicts the true generalization error G av-
eraged over 50 trials as a function of the flattening parameter ν for N = 10,
30, and 50. Figure 4.2(a) shows that when the number of episodes is large
(N = 50), the generalization error tends to decrease as the flattening param-

eter increases. This would be a natural result due to the consistency of θ̂AIW
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FIGURE 4.2: Left: True generalization error G averaged over 50 trials as
a function of the flattening parameter ν in the 10-state chain-walk problem.
The number of steps is fixed at T = 10. The trend of G differs depending on
the number N of episodic samples. Right: Generalization error estimated by
5-fold importance weighted cross validation (IWCV) (ĜIWCV) averaged over
50 trials as a function of the flattening parameter ν in the 10-state chain-walk
problem. The number of steps is fixed at T = 10. IWCV nicely captures the
trend of the true generalization error G.
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when ν = 1. On the other hand, Figure 4.2(b) shows that when the number of
episodes is not large (N = 30), ν = 1 performs rather poorly. This implies that
the consistent estimator tends to be unstable when the number of episodes
is not large enough; ν = 0.7 works the best in this case. Figure 4.2(c) shows
the results when the number of episodes is further reduced (N = 10). This
illustrates that the consistent estimator with ν = 1 is even worse than the
ordinary estimator (ν = 0) because the bias is dominated by large variance.
In this case, the best ν is even smaller and is achieved at ν = 0.4.

The above results show that AIW can outperform PIW, particularly when
only a small number of training samples are available, provided that the flat-
tening parameter ν is chosen appropriately.

4.3 Automatic Selection of Flattening Parameter

In this section, the problem of selecting the flattening parameter in AIW
is addressed.

4.3.1 Importance-Weighted Cross-Validation

Generally, the best ν tends to be large (small) when the number of training
samples is large (small). However, this general trend is not sufficient to fine-
tune the flattening parameter since the best value of ν depends on training
samples, policies, the model of value functions, etc. In this section, we discuss
how model selection is performed to choose the best flattening parameter ν
automatically from the training data and policies.

Ideally, the value of ν should be set so that the generalization error G
is minimized, but the true G is not accessible in practice. To cope with this
problem, we can use cross-validation (see Section 2.2.4) for estimating the
generalization error G. However, in the off-policy scenario where the sampling
policy π̃ and the target policy π are different, ordinary cross-validation gives
a biased estimate of G. In the off-policy scenario, importance-weighted cross-
validation (IWCV) (Sugiyama et al., 2007) is more useful, where the cross-
validation estimate of the generalization error is obtained with importance
weighting.

More specifically, let us divide a training datasetHπ̃ containing N episodes
into K subsets {Hπ̃

k}Kk=1 of approximately the same size. For simplicity, we as-

sume that N is divisible by K. Let θ̂
k

AIW be the parameter learned fromH\Hk

(i.e., all samples without Hk). Then, the generalization error is estimated with
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FIGURE 4.3: True generalization error G averaged over 50 trials obtained
by NIW (ν = 0), PIW (ν = 1), AIW+IWCV (ν is chosen by IWCV) in the
10-state chain-walk MDP.

importance weighting as

ĜIWCV =
1

K

K∑

k=1

Ĝk
IWCV,

where

Ĝk
IWCV =

K

NT

∑

h∈Hπ̃
k

T∑

t=1

(
θ̂
k

AIW
⊤ψ̂(st, at;Hπ̃

k )− r(st, at, st+1)
)2
ŵt.

The generalization error estimate ĜIWCV is computed for all candidate
models (in the current setting, a candidate model corresponds to a different
value of the flattening parameter ν) and the one that minimizes the estimated
generalization error is chosen:

ν̂IWCV = argmin
ν

ĜIWCV.

4.3.2 Illustration

To illustrate how IWCV works, let us use the same numerical examples
as Section 4.2.4. The right column of Figure 4.2 depicts the generalization
error estimated by 5-fold IWCV averaged over 50 trials as a function of the
flattening parameter ν. The graphs show that IWCV nicely captures the trend
of the true generalization error for all three cases.

Figure 4.3 describes, as a function of the number N of episodes, the av-
erage true generalization error obtained by NIW (AIW with ν = 0), PIW
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(AIW with ν = 1), and AIW+IWCV (ν ∈ {0.0, 0.1, . . . , 0.9, 1.0} is selected in
each trial using 5-fold IWCV). This result shows that the improvement of the
performance by NIW saturates when N ≥ 30, implying that the bias caused
by NIW is not negligible. The performance of PIW is worse than NIW when
N ≤ 20, which is caused by the large variance of PIW. On the other hand,
AIW+IWCV consistently gives good performance for all N , illustrating the
strong adaptation ability of AIW+IWCV.

4.4 Sample-Reuse Policy Iteration

In this section, AIW+IWCV is extended from single-step policy evaluation
to full policy iteration. This method is called sample-reuse policy iteration
(SRPI).

4.4.1 Algorithm

Let us denote the policy at the L-th iteration by πL. In on-policy policy
iteration, new data samples HπL are collected following the new policy πL
during the policy evaluation step. Thus, previously collected data samples
{Hπ1 , . . . ,HπL−1} are not used:

π1
E:{Hπ1}→ Q̂π1

I→ π2
E:{Hπ2}−→ Q̂π2

I→ π3
E:{Hπ3}−→ · · · I−→ πL,

where “E : {H}” indicates the policy evaluation step using the data sample H
and “I” indicates the policy improvement step. It would be more cost efficient
if all previously collected data samples were reused in policy evaluation:

π1
E:{Hπ1}−→ Q̂π1

I→ π2
E:{Hπ1 ,Hπ2}−→ Q̂π2

I→ π3
E:{Hπ1 ,Hπ2 ,Hπ3}−→ · · · I−→ πL.

Since the previous policies and the current policy are different in general,
an off-policy scenario needs to be explicitly considered to reuse previously
collected data samples. Here, we explain how AIW+IWCV can be used in
this situation. For this purpose, the definition of ĜAIW is extended so that
multiple sampling policies π1, . . . , πL are taken into account:

ĜL
AIW =

1

LNT

L∑

l=1

N∑

n=1

T∑

t=1

(
θ⊤ψ̂(sπl

t,n, a
πl

t,n; {Hπl}Ll=1)

− r(sπl

t,n, a
πl

t,n, s
πl

t+1,n)
)2
(∏t

t′=1 πL(a
πl

t′,n|sπl

t′,n)∏t
t′=1 πl(a

πl

t′,n|sπl

t′,n)

)νL

, (4.3)

where ĜL
AIW is the generalization error estimated at the L-th policy evaluation

using AIW. The flattening parameter νL is chosen based on IWCV before
performing policy evaluation.
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FIGURE 4.4: The performance of policies learned in three scenarios: ν = 0,
ν = 1, and SRPI (ν is chosen by IWCV) in the 10-state chain-walk problem.
The performance is measured by the average return computed from test sam-
ples over 30 trials. The agent collects training sample HπL (N = 5 or 10 with
T = 10) at every iteration and performs policy evaluation using all collected
samples Hπ1 , . . . ,HπL . The total number of episodes means the number of
training episodes (N × L) collected by the agent in policy iteration.

4.4.2 Illustration

Here, the behavior of SRPI is illustrated under the same experimental
setup as Section 4.3.2. Let us consider three scenarios: ν is fixed at 0, ν is fixed
at 1, and ν is chosen by IWCV (i.e., SRPI). The agent collects samples HπL in

each policy iteration following the current policy πL and computes θ̂
L

AIW from
all collected samples Hπ1 , . . . ,HπL using Eq. (4.3). Three Gaussian kernels
are used as basis functions, where kernel centers are randomly selected from
the state space S in each trial. The initial policy π1 is chosen randomly and
Gibbs policy improvement ,

π(a|s)←− exp(Qπ(s, a)/τ)∑
a′∈A exp(Qπ(s, a′)/τ)

, (4.4)

is performed with τ = 2L.
Figure 4.4 depicts the average return over 30 trials when N = 5 and 10

with a fixed number of steps (T = 10). The graphs show that SRPI provides
stable and fast learning of policies, while the performance improvement of
policies learned with ν = 0 saturates in early iterations. The method with
ν = 1 can improve policies well, but its progress tends to be behind SRPI.

Figure 4.5 depicts the average value of the flattening parameter used in
SRPI as a function of the total number of episodic samples. The graphs show
that the value of the flattening parameter chosen by IWCV tends to rise in the
beginning and go down later. At first sight, this does not agree with the general
trend of preferring a low-variance estimator in early stages and preferring a
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FIGURE 4.5: Flattening parameter values used by SRPI averaged over 30
trials as a function of the total number of episodic samples in the 10-state
chain-walk problem.

low-bias estimator later. However, this result is still consistent with the general
trend: when the return increases rapidly (the total number of episodic samples
is up to 15 when N = 5 and 30 when N = 10 in Figure 4.5), the value of the
flattening parameter increases (see Figure 4.4). After that, the return does
not increase any more (see Figure 4.4) since the policy iteration has already
been converged. Then, it is natural to prefer a small flattening parameter
(Figure 4.5) since the sample selection bias becomes mild after convergence.

These results show that SRPI can effectively reuse previously collected
samples by appropriately tuning the flattening parameter according to the
condition of data samples, policies, etc.

4.5 Numerical Examples

In this section, the performance of SRPI is numerically investigated in
more complex tasks.

4.5.1 Inverted Pendulum

First, we consider the task of the swing-up inverted pendulum illustrated
in Figure 4.6, which consists of a pole hinged at the top of a cart. The goal of
the task is to swing the pole up by moving the cart. There are three actions:
applying positive force +50 (kg ·m/s2) to the cart to move right, negative
force −50 to move left, and zero force to just coast. That is, the action space
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FIGURE 4.6: Illustration of the inverted pendulum task.

A is discrete and described by

A = {50,−50, 0} kg ·m/s2.

Note that the force itself is not strong enough to swing the pole up. Thus the
cart needs to be moved back and forth several times to swing the pole up.
The state space S is continuous and consists of the angle ϕ [rad] (∈ [0, 2π])
and the angular velocity ϕ̇ [rad/s] (∈ [−π, π]). Thus, a state s is described by
two-dimensional vector s = (ϕ, ϕ̇)⊤. The angle ϕ and angular velocity ϕ̇ are
updated as follows:

ϕt+1 =ϕt + ϕ̇t+1∆t,

ϕ̇t+1 =ϕ̇t +
9.8 sin(ϕt)− αwd(ϕ̇t)

2 sin(2ϕt)/2 + α cos(ϕt)at
4l/3− αwd cos2(ϕt)

∆t,

where α = 1/(W +w) and at (∈ A) is the action chosen at time t. The reward
function r(s, a, s′) is defined as

r(s, a, s′) = cos(ϕs′),

where ϕs′ denotes the angle ϕ of state s′. The problem parameters are set as
follows: the mass of the cart W is 8 [kg], the mass of the pole w is 2 [kg], the
length of the pole d is 0.5 [m], and the simulation time step ∆t is 0.1[s].

Forty-eight Gaussian kernels with standard deviation σ = π are used as
basis functions, and kernel centers are located over the following grid points:

{0, 2/3π, 4/3π, 2π}× {−3π,−π, π, 3π}.

That is, the basis functions φ(s, a) = {φ1(s, a), . . . , φ16(s, a)} are set as

φ16(i−1)+j(s, a) = I(a = a(i))exp

(
−‖s− cj‖

2

2σ2

)
,

for i = 1, 2, 3 and j = 1, . . . , 16, where

c1 = (0,−3π)⊤, c2 = (0,−π)⊤, . . . , c12 = (2π, 3π)⊤.
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FIGURE 4.7: Results of SRPI in the inverted pendulum task. The agent col-
lects training sample HπL (N = 10 and T = 100) in each iteration and policy
evaluation is performed using all collected samples {Hπ1, . . . ,HπL}. (a) The
performance of policies learned with ν = 0, ν = 1, and SRPI. The performance
is measured by the average return computed from test samples over 20 trials.
The total number of episodes means the number of training episodes (N ×L)
collected by the agent in policy iteration. (b) Average flattening parameter
values chosen by IWCV in SRPI over 20 trials.

The initial policy π1(a|s) is chosen randomly, and the initial-state proba-
bility density p(s) is set to be uniform. The agent collects data samples HπL

(N = 10 and T = 100) at each policy iteration following the current policy
πL. The discounted factor is set at γ = 0.95 and the policy is updated by
Gibbs policy improvement (4.4) with τ = L.

Figure 4.7(a) describes the performance of learned policies. The graph
shows that SRPI nicely improves the performance throughout the entire policy
iteration. On the other hand, the performance when the flattening parameter
is fixed at ν = 0 or ν = 1 is not properly improved after the middle of
iterations. The average flattening parameter values depicted in Figure 4.7(b)
show that the flattening parameter tends to increase quickly in the beginning
and then is kept at medium values. Motion examples of the inverted pendulum
by SRPI with ν chosen by IWCV and ν = 1 are illustrated in Figure 4.8 and
Figure 4.9, respectively.

These results indicate that the flattening parameter is well adjusted to
reuse the previously collected samples effectively for policy evaluation, and
thus SRPI can outperform the other methods.

4.5.2 Mountain Car

Next, we consider the mountain car task illustrated in Figure 4.10. The
task consists of a car and two hills whose landscape is described by sin(3x).
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FIGURE 4.8: Motion examples of the inverted pendulum by SRPI with ν
chosen by IWCV (from left to right and top to bottom).

FIGURE 4.9: Motion examples of the inverted pendulum by SRPI with
ν = 1 (from left to right and top to bottom).
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Goal

FIGURE 4.10: Illustration of the mountain car task.

The top of the right hill is the goal to which we want to guide the car. There
are three actions,

{+0.2,−0.2, 0},
which are the values of the force applied to the car. Note that the force of the
car is not strong enough to climb up the slope to reach the goal. The state
space S is described by the horizontal position x [m] (∈ [−1.2, 0.5]) and the
velocity ẋ [m/s] (∈ [−1.5, 1.5]):

s = (x, ẋ)⊤.

The position x and velocity ẋ are updated by

xt+1 =xt + ẋt+1∆t,

ẋt+1 =ẋt +
(
− 9.8w cos(3xt) +

at
w
− kẋt

)
∆t,

where at (∈ A) is the action chosen at the time t. The reward function
R(s, a, s′) is defined as

R(s, a, s′) =

{
1 if xs′ ≥ 0.5,

−0.01 otherwise,

where xs′ denotes the horizontal position x of state s′. The problem parame-
ters are set as follows: the mass of the car w is 0.2 [kg], the friction coefficient
k is 0.3, and the simulation time step ∆t is 0.1 [s].

The same experimental setup as the swing-up inverted pendulum task in
Section 4.5.1 is used, except that the number of Gaussian kernels is 36, the
kernel standard deviation is set at σ = 1, and the kernel centers are allocated
over the following grid points:

{−1.2, 0.35, 0.5}× {−1.5,−0.5, 0.5, 1.5}.

Figure 4.11(a) shows the performance of learned policies measured by the
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FIGURE 4.11: Results of sample-reuse policy iteration in the mountain-car
task. The agent collects training sample HπL (N = 10 and T = 100) at ev-
ery iteration and policy evaluation is performed using all collected samples
Hπ1 , . . . ,HπL . (a) The performance is measured by the average return com-
puted from test samples over 20 trials. The total number of episodes means the
number of training episodes (N×L) collected by the agent in policy iteration.
(b) Average flattening parameter values used by SRPI over 20 trials.

average return computed from the test samples. The graph shows similar ten-
dencies to the swing-up inverted pendulum task for SRPI and ν = 1, while
the method with ν = 0 performs relatively well this time. This implies that
the bias in the previously collected samples does not affect the estimation of
the value functions that strongly, because the function approximator is better
suited to represent the value function for this problem. The average flattening
parameter values (cf. Figure 4.11(b)) show that the flattening parameter de-
creases soon after the increase in the beginning, and then the smaller values
tend to be chosen. This indicates that SRPI tends to use low-variance esti-
mators in this task. Motion examples by SRPI with ν chosen by IWCV are
illustrated in Figure 4.12.

These results show that SRPI can perform stable and fast learning by
effectively reusing previously collected data.

4.6 Remarks

Instability has been one of the critical limitations of importance-sampling
techniques, which often makes off-policy methods impractical. To overcome
this weakness, an adaptive importance-sampling technique was introduced for
controlling the trade-off between consistency and stability in value function
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FIGURE 4.12: Motion examples of the mountain car by SRPI with ν chosen
by IWCV (from left to right and top to bottom).

approximation. Furthermore, importance-weighted cross-validation was intro-
duced for automatically choosing the trade-off parameter.

The range of application of importance sampling is not limited to policy
iteration. We will explain how importance sampling can be utilized for sample
reuse in the policy search frameworks in Chapter 8 and Chapter 9.



Chapter 5

Active Learning in Policy Iteration

In Chapter 4, we considered the off-policy situation where a data-collecting
policy and the target policy are different. In the framework of sample-reuse
policy iteration, new samples are always chosen following the target policy.
However, a clever choice of sampling policies can actually further improve the
performance. The topic of choosing sampling policies is called active learning
in statistics and machine learning. In this chapter, we address the problem
of choosing sampling policies in sample-reuse policy iteration. In Section 5.1,
we explain how a statistical active learning method can be employed for op-
timizing the sampling policy in value function approximation. In Section 5.2,
we introduce active policy iteration, which incorporates the active learning
idea into the framework of sample-reuse policy iteration. The effectiveness of
active policy iteration is numerically investigated in Section 5.3, and finally
this chapter is concluded in Section 5.4.

5.1 Efficient Exploration with Active Learning

The accuracy of estimated value functions depends on training samples
collected following sampling policy π̃(a|s). In this section, we explain how a
statistical active learning method (Sugiyama, 2006) can be employed for value
function approximation.

5.1.1 Problem Setup

Let us consider a situation where collecting state-action trajectory sam-
ples is easy and cheap, but gathering immediate reward samples is hard and
expensive. For example, consider a robot-arm control task of hitting a ball
with a bat and driving the ball as far away as possible (see Figure 5.6). Let
us adopt the carry of the ball as the immediate reward. In this setting, ob-
taining state-action trajectory samples of the robot arm is easy and relatively
cheap since we just need to control the robot arm and record its state-action
trajectories over time. However, explicitly computing the carry of the ball
from the state-action samples is hard due to friction and elasticity of links,

65
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air resistance, air currents, and so on. For this reason, in practice, we may
have to put the robot in open space, let the robot really hit the ball, and
measure the carry of the ball manually. Thus, gathering immediate reward
samples is much more expensive than the state-action trajectory samples. In
such a situation, immediate reward samples are too expensive to be used for
designing the sampling policy. Only state-action trajectory samples may be
used for designing sampling policies.

The goal of active learning in the current setup is to determine the sampling
policy so that the expected generalization error is minimized. However, since
the generalization error is not accessible in practice, it needs to be estimated
from samples for performing active learning. A difficulty of estimating the
generalization error in the context of active learning is that its estimation
needs to be carried out only from state-action trajectory samples without using
immediate reward samples. This means that standard generalization error
estimation techniques such as cross-validation cannot be employed. Below,
we explain how the generalization error can be estimated without the reward
samples.

5.1.2 Decomposition of Generalization Error

The information we are allowed to use for estimating the generalization
error is a set of roll-out samples without immediate rewards:

Hπ̃ = {hπ̃1 , . . . , hπ̃N},

where each episodic sample hπ̃n is given as

hπ̃n = [sπ̃1,n, a
π̃
1,n, . . . , s

π̃
T,n, a

π̃
T,n, s

π̃
T+1,n].

Let us define the deviation of an observed immediate reward rπ̃t,n from its

expectation r(sπ̃t,n, a
π̃
t,n) as

ǫπ̃t,n = rπ̃t,n − r(sπ̃t,n, aπ̃t,n).

Note that ǫπ̃t,n could be regarded as additive noise in the context of least-

squares function fitting. By definition, ǫπ̃t,n has mean zero and its variance

generally depends on sπ̃t,n and aπ̃t,n, i.e., heteroscedastic noise (Bishop, 2006).

However, since estimating the variance of ǫπ̃t,n without using reward samples

is not generally possible, we ignore the dependence of the variance on sπ̃t,n and

aπ̃t,n. Let us denote the input-independent common variance by σ2.
We would like to estimate the generalization error,

G(θ̂) = Epπ̃(h)

[
1

T

T∑

t=1

(
θ̂
⊤
ψ̂(st, at;Hπ̃)− r(st, at)

)2
]
,
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from Hπ̃. Its expectation over “noise” can be decomposed as follows
(Sugiyama, 2006):

Eǫπ̃

[
G(θ̂)

]
= Bias + Variance +ModelError,

where Eǫπ̃ denotes the expectation over “noise” {ǫπ̃t,n}T,N
t=1,n=1. “Bias,”

“Variance,” and “ModelError” are the bias term, the variance term, and the
model error term defined by

Bias = Epπ̃(h)

[
1

T

T∑

t=1

{
(Eǫπ̃

[
θ̂
]
− θ∗)⊤ψ̂(st, at;Hπ̃)

}2
]
,

Variance = Epπ̃(h)

[
1

T

T∑

t=1

{
(θ̂ − Eǫπ̃

[
θ̂
]
)⊤ψ̂(st, at;Hπ̃)

}2
]
,

ModelError = Epπ̃(h)

[
1

T

T∑

t=1

(θ∗⊤ψ̂(st, at;Hπ̃)− r(st, at))2
]
.

θ∗ denotes the optimal parameter in the model:

θ∗ = argmin
θ

Epπ̃(h)

[
1

T

T∑

t=1

(θ⊤ψ(st, at)− r(st, at))2
]
.

Note that, for a linear estimator θ̂ such that

θ̂ = L̂r,

where L̂ is some matrix and r is the NT -dimensional vector defined as

rN(t−1)+n = r(st,n, at,n, st+1,n),

the variance term can be expressed in a compact form as

Variance = σ2tr(UL̂L̂
⊤
),

where the matrix U is defined as

U = Epπ̃(h)

[
1

T

T∑

t=1

ψ̂(st, at;Hπ̃)ψ̂(st, at;Hπ̃)⊤

]
. (5.1)

5.1.3 Estimation of Generalization Error

Since we are interested in finding a minimizer of the generalization error
with respect to π̃, the model error, which is constant, can be safely ignored in
generalization error estimation. On the other hand, the bias term includes the
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unknown optimal parameter θ∗. Thus, it may not be possible to estimate the
bias term without using reward samples. Similarly, it may not be possible to
estimate the “noise” variance σ2 included in the variance term without using
reward samples.

It is known that the bias term is small enough to be neglected when the
model is approximately correct (Sugiyama, 2006), i.e., θ∗⊤ψ̂(s, a) approxi-
mately agrees with the true function r(s, a). Then we have

Eǫπ̃

[
G(θ̂)

]
−ModelError− Bias ∝ tr(UL̂L̂

⊤
), (5.2)

which does not require immediate reward samples for its computation. Since
Epπ̃(h) included in U is not accessible (see Eq. (5.1)), U is replaced by its

consistent estimator Û :

Û =
1

NT

N∑

n=1

T∑

t=1

ψ̂(sπ̃t,n, a
π̃
t,n;Hπ̃)ψ̂(sπ̃t,n, a

π̃
t,n;Hπ̃)⊤ŵt,n.

Consequently, the following generalization error estimator is obtained:

J = tr(ÛL̂L̂
⊤
),

which can be computed only from Hπ̃ and thus can be employed in the active
learning scenarios. If it is possible to gather Hπ̃ multiple times, the above J
may be computed multiple times and their average is used as a generalization
error estimator.

Note that the values of the generalization error estimator J and the true
generalization error G are not directly comparable since irrelevant additive
and multiplicative constants are ignored (see Eq. (5.2)). However, this is no
problem as long as the estimator J has a similar profile to the true error G as
a function of sampling policy π̃ since the purpose of deriving a generalization
error estimator in active learning is not to approximate the true generalization
error itself, but to approximate the minimizer of the true generalization error
with respect to sampling policy π̃.

5.1.4 Designing Sampling Policies

Based on the generalization error estimator derived above, a sampling
policy is designed as follows:

1. Prepare K candidates of sampling policy: {π̃k}Kk=1.

2. Collect episodic samples without immediate rewards for each sampling-
policy candidate: {Hπ̃k}Kk=1.

3. Estimate U using all samples {Hπ̃k}Kk=1:

Û =
1

KNT

K∑

k=1

N∑

n=1

T∑

t=1

ψ̂(sπ̃k

t,n, a
π̃k

t,n; {Hπ̃k}Kk=1)ψ̂(s
π̃k

t,n, a
π̃k

t,n; {Hπ̃k}Kk=1)
⊤ŵπ̃k

t,n,
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where ŵπ̃k

t,n denotes the importance weight for the k-th sampling policy
π̃k:

ŵπ̃k

t,n =

∏t
t′=1 π(a

π̃k

t′,n|sπ̃k

t′,n)∏t
t′=1 π̃k(a

π̃k

t′,n|sπ̃k

t′,n)
.

4. Estimate the generalization error for each k:

Jk = tr(ÛL̂
π̃k

L̂
π̃k⊤),

where L̂
π̃k

is defined as

L̂
π̃k

= (Ψ̂
π̃k⊤Ŵ

π̃k

Ψ̂
π̃k

)−1Ψ̂
π̃k⊤Ŵ

π̃k

.

Ψ̂
π̃k

is the NT ×B matrix and Ŵ
π̃k

is the NT ×NT diagonal matrix
defined as

Ψ̂π̃k

N(t−1)+n,b = ψ̂b(s
π̃k

t,n, a
π̃k

t,n),

Ŵ π̃k

N(t−1)+n,N(t−1)+n = ŵπ̃k

t,n.

5. (If possible) repeat 2 to 4 several times and calculate the average for
each k.

6. Determine the sampling policy as

π̃AL = argmin
k=1,...,K

Jk.

7. Collect training samples with immediate rewards following π̃AL.

8. Learn the value function by least-squares policy iteration using the col-
lected samples.

5.1.5 Illustration

Here, the behavior of the active learning method is illustrated on a toy
10-state chain-walk environment shown in Figure 5.1. The MDP consists of
10 states,

S = {s(i)}10i=1 = {1, 2, . . . , 10},
and 2 actions,

A = {a(i)}2i=1 = {“L,”“R”}.
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102 31 9· · ·

0.8

0.2 0.2

0.8

8

FIGURE 5.1: Ten-state chain walk. Filled and unfilled arrows indicate the
transitions when taking action “R” and “L,” and solid and dashed lines indi-
cate the successful and failed transitions.

The immediate reward function is defined as

r(s, a, s′) = f(s′),

where the profile of the function f(s′) is illustrated in Figure 5.2.
The transition probability p(s′|s, a) is indicated by the numbers attached

to the arrows in Figure 5.1. For example, p(s(2)|s(1), a = “R”) = 0.8 and
p(s(1)|s(1), a = “R”) = 0.2. Thus, the agent can successfully move to the
intended direction with probability 0.8 (indicated by solid-filled arrows in the
figure) and the action fails with probability 0.2 (indicated by dashed-filled
arrows in the figure). The discount factor γ is set at 0.9. The following 12
Gaussian basis functions φ(s, a) are used:

φ2(i−1)+j(s, a) =





I(a = a(j))exp

(
− (s− ci)2

2τ2

)

for i = 1, . . . , 5 and j = 1, 2

I(a = a(j)) for i = 6 and j = 1, 2,

where c1 = 1, c2 = 3, c3 = 5, c4 = 7, c5 = 9, and τ = 1.5. I(a = a′) denotes
the indicator function:

I(a = a′) =

{
1 if a = a′,
0 if a 6= a′.

Sampling policies and evaluation policies are constructed as follows. First,

1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

3

s’

f(
s
’)

FIGURE 5.2: Profile of the function f(s′).
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a deterministic “base” policy π is prepared. For example, “LLLLLRRRRR,”
where the i-th letter denotes the action taken at s(i). Let πǫ be the “ǫ-greedy”
version of the base policy π, i.e., the intended action can be successfully chosen
with probability 1 − ǫ/2 and the other action is chosen with probability ǫ/2.
Experiments are performed for three different evaluation policies:

π1 : “RRRRRRRRRR,”

π2 : “RRLLLLLRRR,”

π3 : “LLLLLRRRRR,”

with ǫ = 0.1. For each evaluation policy π0.1
i (i = 1, 2, 3), 10 candidates of the

sampling policy {π̃(k)
i }10k=1 are prepared, where π̃

(k)
i = π

k/10
i . Note that π̃

(1)
i is

equivalent to the evaluation policy π0.1
i .

For each sampling policy, the active learning criterion J is computed 5
times and their average is taken. The numbers of episodes and steps are set
at N = 10 and T = 10, respectively. The initial-state probability p(s) is
set to be uniform. When the matrix inverse is computed, 10−3 is added to
diagonal elements to avoid degeneracy. This experiment is repeated 100 times
with different random seeds and the mean and standard deviation of the true
generalization error and its estimate are evaluated.

The results are depicted in Figure 5.3 as functions of the index k of the
sampling policies. The graphs show that the generalization error estimator
overall captures the trend of the true generalization error well for all three
cases.

Next, the values of the obtained generalization error G is evaluated when
k is chosen so that J is minimized (active learning, AL), the evaluation policy
(k = 1) is used for sampling (passive learning, PL), and k is chosen optimally
so that the true generalization error is minimized (optimal, OPT). Figure 5.4
shows that the active learning method compares favorably with passive learn-
ing and performs well for reducing the generalization error.

5.2 Active Policy Iteration

In Section 5.1, the unknown generalization error was shown to be accu-
rately estimated without using immediate reward samples in one-step policy
evaluation. In this section, this one-step active learning idea is extended to the
framework of sample-reuse policy iteration introduced in Chapter 4, which is
called active policy iteration. Let us denote the evaluation policy at the L-th
iteration by πL.
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FIGURE 5.3: The mean and standard deviation of the true generalization
error G (left) and the estimated generalization error J (right) over 100 trials.

5.2.1 Sample-Reuse Policy Iteration with Active Learning

In the original sample-reuse policy iteration, new data samples Hπl are
collected following the new target policy πl for the next policy evaluation
step:

π1
E:{Hπ1}→ Q̂π1 I→ π2

E:{Hπ1 ,Hπ2}→ Q̂π2 I→ π3
E:{Hπ1 ,Hπ2 ,Hπ3}→ · · · I→ πL+1,
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FIGURE 5.4: The box-plots of the values of the obtained generalization error
G over 100 trials when k is chosen so that J is minimized (active learning, AL),
the evaluation policy (k = 1) is used for sampling (passive learning, PL), and k
is chosen optimally so that the true generalization error is minimized (optimal,
OPT). The box-plot notation indicates the 5% quantile, 25% quantile, 50%
quantile (i.e., median), 75% quantile, and 95% quantile from bottom to top.

where “E : {H}” indicates policy evaluation using the data sample H and “I”
denotes policy improvement. On the other hand, in active policy iteration, the
optimized sampling policy π̃l is used at each iteration:

π1
E:{Hπ̃1}→ Q̂π1 I→ π2

E:{Hπ̃1 ,Hπ̃2}→ Q̂π2 I→ π3
E:{Hπ̃1 ,Hπ̃2 ,Hπ̃3}→ · · · I→ πL+1.

Note that, in active policy iteration, the previously collected samples are used
not only for value function approximation, but also for active learning. Thus,
active policy iteration makes full use of the samples.

5.2.2 Illustration

Here, the behavior of active policy iteration is illustrated using the same
10-state chain-walk problem as Section 5.1.5 (see Figure 5.1).
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The initial evaluation policy π1 is set as

π1(a|s) = 0.15pu(a) + 0.85I(a = argmax
a′

Q̂0(s, a
′)),

where pu(a) denotes the probability mass function of the uniform distribution
and

Q̂0(s, a) =

12∑

b=1

φb(s, a).

Policies are updated in the l-th iteration using the ǫ-greedy rule with ǫ =
0.15/l. In the sampling-policy selection step of the l-th iteration, the following
four sampling-policy candidates are prepared:

{π̃(1)
l , π̃

(2)
l , π̃

(3)
l , π̃

(4)
l } = {π

0.15/l
l , π

0.15/l+0.15
l , π

0.15/l+0.5
l , π

0.15/l+0.85
l },

where πl denotes the policy obtained by greedy update using Q̂πl−1.
The number of iterations to learn the policy is set at 7, the number of

steps is set at T = 10, and the number N of episodes is different in each itera-
tion and defined as {N1, . . . , N7}, where Nl (l = 1, . . . , 7) denotes the number
of episodes collected in the l-th iteration. In this experiment, two types of
scheduling are compared: {5, 5, 3, 3, 3, 1, 1} and {3, 3, 3, 3, 3, 3, 3}, which are
referred to as the “decreasing N” strategy and the “fixed N” strategy, respec-
tively. The J-value calculation is repeated 5 times for active learning. The
performance of the finally obtained policy π8 is measured by the return for
test samples {rπ8

t,n}T,N
t,n=1 (50 episodes with 50 steps collected following π8):

Performance =
1

N

N∑

n=1

T∑

t=1

γt−1rπ8
t,n,

where the discount factor γ is set at 0.9.
The performance of passive learning (PL; the current policy is used as the

sampling policy in each iteration) and active learning (AL; the best sampling
policy is chosen from the policy candidates prepared in each iteration) is
compared. The experiments are repeated 1000 times with different random
seeds and the average performance of PL and AL is evaluated. The results
are depicted in Figure 5.5, showing that AL works better than PL in both
types of episode scheduling with statistical significance by the t-test at the
significance level 1% (Henkel, 1976) for the error values obtained after the 7th
iteration. Furthermore, the “decreasing N” strategy outperforms the “fixed
N” strategy for both PL and AL, showing the usefulness of the “decreasing
N” strategy.
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FIGURE 5.5: The mean performance over 1000 trials in the 10-state chain-
walk experiment. The dotted lines denote the performance of passive learning
(PL) and the solid lines denote the performance of the proposed active learning
(AL) method. The error bars are omitted for clear visibility. For both the
“decreasing N” and “fixed N” strategies, the performance of AL after the 7th
iteration is significantly better than that of PL according to the t-test at the
significance level 1% applied to the error values at the 7th iteration.

5.3 Numerical Examples

In this section, the performance of active policy iteration is evaluated using
a ball-batting robot illustrated in Figure 5.6, which consists of two links and
two joints. The goal of the ball-batting task is to control the robot arm so
that it drives the ball as far away as possible. The state space S is continuous
and consists of angles ϕ1[rad] (∈ [0, π/4]) and ϕ2[rad] (∈ [−π/4, π/4]) and
angular velocities ϕ̇1[rad/s] and ϕ̇2[rad/s]. Thus, a state s (∈ S) is described
by a 4-dimensional vector s = (ϕ1, ϕ̇1, ϕ2, ϕ̇2)

⊤. The action space A is discrete
and contains two elements:

A = {a(i)}2i=1 = {(50,−35)⊤, (−50, 10)⊤},

where the i-th element (i = 1, 2) of each vector corresponds to the torque
[N ·m] added to joint i.

The open dynamics engine (http://ode.org/) is used for physical calcu-
lations including the update of the angles and angular velocities, and collision
detection between the robot arm, ball, and pin. The simulation time step is
set at 7.5 [ms] and the next state is observed after 10 time steps. The action
chosen in the current state is taken for 10 time steps. To make the experi-
ments realistic, noise is added to actions: if action (f1, f2)

⊤ is taken, the actual

http://ode.org/
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FIGURE 5.6: A ball-batting robot.

torques applied to the joints are f1+ε1 and f2+ε2, where ε1 and ε2 are drawn
independently from the Gaussian distribution with mean 0 and variance 3.

The immediate reward is defined as the carry of the ball. This reward is
given only when the robot arm collides with the ball for the first time at state
s′ after taking action a at current state s. For value function approximation,
the following 110 basis functions are used:

φ2(i−1)+j =





I(a = a(j))exp

(
−‖ s− ci ‖

2

2τ2

)

for i = 1, . . . , 54 and j = 1, 2,

I(a = a(j)) for i = 55 and j = 1, 2,

where τ is set at 3π/2 and the Gaussian centers ci (i = 1, . . . , 54) are located
on the regular grid: {0, π/4} × {−π, 0, π} × {−π/4, 0, π/4}× {−π, 0, π}.

For L = 7 and T = 10, the “decreasing N” strategy and the “fixed
N” strategy are compared. The “decreasing N” strategy is defined by
{10, 10, 7, 7, 7, 4, 4} and the “fixed N” strategy is defined by {7, 7, 7, 7, 7, 7, 7}.
The initial state is always set at s = (π/4, 0, 0, 0)⊤, and J-calculations are
repeated 5 times in the active learning method. The initial evaluation policy
π1 is set at the ǫ-greedy policy defined as

π1(a|s) = 0.15pu(a) + 0.85I

(
a = argmax

a′

Q̂0(s, a
′)

)
,

Q̂0(s, a) =

110∑

b=1

φb(s, a).

Policies are updated in the l-th iteration using the ǫ-greedy rule with ǫ =
0.15/l. Sampling-policy candidates are prepared in the same way as the chain-
walk experiment in Section 5.2.2.

The discount factor γ is set at 1 and the performance of learned policy π8
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FIGURE 5.7: The mean performance over 500 trials in the ball-batting
experiment. The dotted lines denote the performance of passive learning (PL)
and the solid lines denote the performance of the proposed active learning (AL)
method. The error bars are omitted for clear visibility. For the “decreasingN”
strategy, the performance of AL after the 7th iteration is significantly better
than that of PL according to the t-test at the significance level 1% for the
error values at the 7th iteration.

is measured by the return for test samples {rπ8
t,n}10,20t,n=1 (20 episodes with 10

steps collected following π8):
∑N

n=1

∑T
t=1 r

π8
t,n.

The experiment is repeated 500 times with different random seeds and
the average performance of each learning method is evaluated. The results,
depicted in Figure 5.7, show that active learning outperforms passive learning.
For the “decreasing N” strategy, the performance difference is statistically
significant by the t-test at the significance level 1% for the error values after
the 7th iteration.

Motion examples of the ball-batting robot trained with active learning and
passive learning are illustrated in Figure 5.8 and Figure 5.9, respectively.

5.4 Remarks

When we cannot afford to collect many training samples due to high sam-
pling costs, it is crucial to choose the most informative samples for efficiently
learning the value function. In this chapter, an active learning method for op-
timizing data sampling strategies was introduced in the framework of sample-
reuse policy iteration, and the resulting active policy iteration was demon-
strated to be promising.
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FIGURE 5.8: A motion example of the ball-batting robot trained with active
learning (from left to right and top to bottom).

FIGURE 5.9: A motion example of the ball-batting robot trained with pas-
sive learning (from left to right and top to bottom).



Chapter 6

Robust Policy Iteration

The framework of least-squares policy iteration (LSPI) introduced in Chap-
ter 2 is useful, thanks to its computational efficiency and analytical tractabil-
ity. However, due to the squared loss, it tends to be sensitive to outliers in
observed rewards. In this chapter, we introduce an alternative policy iter-
ation method that employs the absolute loss for enhancing robustness and
reliability. In Section 6.1, robustness and reliability brought by the use of the
absolute loss is discussed. In Section 6.2, the policy iteration framework with
the absolute loss called least-absolute policy iteration (LAPI) is introduced.
In Section 6.3, the usefulness of LAPI is illustrated through experiments.
Variations of LAPI are considered in Section 6.4, and finally this chapter is
concluded in Section 6.5.

6.1 Robustness and Reliability in Policy Iteration

The basic idea of LSPI is to fit a linear model to immediate rewards un-
der the squared loss, while the absolute loss is used in this chapter (see Fig-
ure 6.1). This is just replacement of loss functions, but this modification highly
enhances robustness and reliability.

6.1.1 Robustness

In many robotics applications, immediate rewards are obtained through
measurement such as distance sensors or computer vision. Due to intrinsic
measurement noise or recognition error, the obtained rewards often deviate
from the true value. In particular, the rewards occasionally contain outliers ,
which are significantly different from regular values.

Residual minimization under the squared loss amounts to obtaining the
mean of samples {xi}mi=1:

argmin
c

[
m∑

i=1

(xi − c)2
]
= mean({xi}mi=1) =

1

m

m∑

i=1

xi.

If one of the values is an outlier having a very large or small value, the mean
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FIGURE 6.1: The absolute and squared loss functions for reducing the
temporal-difference error.

would be strongly affected by this outlier. This means that all the values
{xi}mi=1 are responsible for the mean, and therefore even a single outlier ob-
servation can significantly damage the learned result.

On the other hand, residual minimization under the absolute loss amounts
to obtaining the median:

argmin
c

[
2n+1∑

i=1

|xi − c|
]
= median({xi}2n+1

i=1 ) = xn+1,

where x1 ≤ x2 ≤ · · · ≤ x2n+1. The median is influenced not by the magnitude
of the values {xi}2n+1

i=1 but only by their order. Thus, as long as the order is
kept unchanged, the median is not affected by outliers. In fact, the median is
known to be the most robust estimator in light of breakdown-point analysis
(Huber, 1981; Rousseeuw & Leroy, 1987).

Therefore, the use of the absolute loss would remedy the problem of ro-
bustness in policy iteration.

6.1.2 Reliability

In practical robot-control tasks, we often want to attain a stable perfor-
mance, rather than to achieve a “dream” performance with little chance of
success. For example, in the acquisition of a humanoid gait, we may want the
robot to walk forward in a stable manner with high probability of success,
rather than to rush very fast in a chance level.

On the other hand, we do not want to be too conservative when training
robots. If we are overly concerned with unrealistic failure, no practically useful
control policy can be obtained. For example, any robots can be broken in
principle if they are activated for a long time. However, if we fear this fact
too much, we may end up in praising a control policy that does not move the
robots at all, which is obviously nonsense.

Since the squared-loss solution is not robust against outliers, it is sensitive
to rare events with either positive or negative very large immediate rewards.
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Consequently, the squared loss prefers an extraordinarily successful motion
even if the success probability is very low. Similarly, it dislikes an unrealistic
trouble even if such a terrible event may not happen in reality. On the other
hand, the absolute loss solution is not easily affected by such rare events due to
its robustness. Therefore, the use of the absolute loss would produce a reliable
control policy even in the presence of such extreme events.

6.2 Least Absolute Policy Iteration

In this section, a policy iteration method with the absolute loss is intro-
duced.

6.2.1 Algorithm

Instead of the squared loss, a linear model is fitted to immediate rewards
under the absolute loss as

min
θ

[
T∑

t=1

∣∣∣θ⊤ψ̂(st, at)− rt
∣∣∣
]
.

This minimization problem looks cumbersome due to the absolute value oper-
ator which is non-differentiable, but this minimization problem can be reduced
to the following linear program (Boyd & Vandenberghe, 2004):





min
θ,{bt}T

t=1

T∑

t=1

bt

subject to −bt ≤ θ⊤ψ̂(st, at)− rt ≤ bt, t = 1, . . . , T.

The number of constraints is T in the above linear program. When T is large,
we may employ sophisticated optimization techniques such as column gen-
eration (Demiriz et al., 2002) for efficiently solving the linear programming
problem. Alternatively, an approximate solution can be obtained by gradient
descent or the (quasi)-Newton methods if the absolute loss is approximated
by a smooth loss (see, e.g., Section 6.4.1).

The policy iteration method based on the absolute loss is called least ab-
solute policy iteration (LAPI).

6.2.2 Illustration

For illustration purposes, let us consider the 4-state MDP problem de-
scribed in Figure 6.2. The agent is initially located at state s(0) and the actions
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FIGURE 6.2: Illustrative MDP problem.

the agent is allowed to take are moving to the left or right state. If the left
movement action is chosen, the agent always receives small positive reward
+0.1 at s(L). On the other hand, if the right movement action is chosen, the
agent receives negative reward −1 with probability 0.9999 at s(R1) or it re-
ceives very large positive reward +20, 000 with probability 0.0001 at s(R2). The
mean and median rewards for left movement are both +0.1, while the mean
and median rewards for right movement are +1.0001 and −1, respectively.

If Q(s(0), “Left”) and Q(s(0), “Right”) are approximated by the least-
squares method, it returns the mean rewards, i.e., +0.1 and +1.0001, re-
spectively. Thus, the least-squares method prefers right movement, which is a
“gambling” policy that negative reward −1 is almost always obtained at s(R1),
but it is possible to obtain very high reward +20, 000 with a very small prob-
ability at s(R2). On the other hand, if Q(s(0), “Left”) and Q(s(0), “Right”) are
approximated by the least absolute method, it returns the median rewards,
i.e., +0.1 and −1, respectively. Thus, the least absolute method prefers left
movement, which is a stable policy that the agent can always receive small
positive reward +0.1 at s(L).

If all the rewards in Figure 6.2 are negated, the value functions are also
negated and a different interpretation can be obtained: the least-squares
method is afraid of the risk of receiving very large negative reward −20, 000
at s(R2) with a very low probability, and consequently it ends up in a very
conservative policy that the agent always receives negative reward −0.1 at
s(L). On the other hand, the least absolute method tries to receive positive
reward +1 at s(R1) without being afraid of visiting s(R2) too much.

As illustrated above, the least absolute method tends to provide qualita-
tively different solutions from the least-squares method.
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6.2.3 Properties

Here, properties of the least absolute method are investigated when the
model Q̂(s, a) is correctly specified, i.e., there exists a parameter θ∗ such that

Q̂(s, a) = Q(s, a) for all s and a.

Under the correct model assumption, when the number of samples T tends
to infinity, the least absolute solution θ̂ would satisfy the following equa-
tion (Koenker, 2005):

θ̂
⊤
ψ(s, a) = Mp(s′|s,a) [r(s, a, s

′)] for all s and a, (6.1)

where Mp(s′|s,a) denotes the conditional median of s′ over p(s′|s, a) given s
and a. ψ(s, a) is defined by

ψ(s, a) = φ(s, a)− γEp(s′|s,a)Eπ(a′|s′) [φ(s
′, a′)] ,

where Ep(s′|s,a) denotes the conditional expectation of s′ over p(s′|s, a) given
s and a, and Eπ(a′|s′) denotes the conditional expectation of a′ over π(a′|s′)
given s′.

From Eq. (6.1), we can obtain the following Bellman-like recursive expres-
sion:

Q̂(s, a) = Mp(s′|s,a) [r(s, a, s
′)] + γEp(s′|s,a)Eπ(a′|s′)

[
Q̂(s′, a′)

]
. (6.2)

Note that in the case of the least-squares method where

θ̂
⊤
ψ(s, a) = Ep(s′|s,a) [r(s, a, s

′)]

is satisfied in the limit under the correct model assumption, we have

Q̂(s, a) = Ep(s′|s,a) [r(s, a, s
′)] + γEp(s′|s,a)Eπ(a′|s′)

[
Q̂(s′, a′)

]
. (6.3)

This is the ordinary Bellman equation, and thus Eq. (6.2) could be regarded
as an extension of the Bellman equation to the absolute loss.

From the ordinary Bellman equation (6.3), we can recover the original
definition of the state-value function Q(s, a):

Qπ(s, a) = Epπ(h)

[
T∑

t=1

γt−1r(st, at, st+1),
∣∣∣s1 = s, a1 = a

]
,

where Epπ(h) denotes the expectation over trajectory h = [s1, a1, . . . ,
sT , aT , sT+1] and “|s1 = s, a1 = a” means that the initial state s1 and the
first action a1 are fixed at s1 = s and a1 = a, respectively. In contrast, from
the absolute-loss Bellman equation (6.2), we have

Q′(s, a) = Epπ(h)

[
T∑

t=1

γt−1
Mp(st+1|st,at) [r(st, at, st+1)]

∣∣∣∣∣ s1 = s, a1 = a

]
.
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FIGURE 6.3: Illustration of the acrobot. The goal is to swing up the end
effector by only controlling the second joint.

This is the value function that the least absolute method is trying to ap-
proximate, which is different from the ordinary value function. Since the dis-
counted sum of median rewards — not the expected rewards — is maximized,
the least absolute method is expected to be less sensitive to outliers than the
least-squares method.

6.3 Numerical Examples

In this section, the behavior of LAPI is illustrated through experiments
using the acrobot shown in Figure 6.3. The acrobot is an under-actuated
system and consists of two links, two joints, and an end effector. The length of
each link is 0.3 [m], and the diameter of each joint is 0.15 [m]. The diameter of
the end effector is 0.10 [m], and the height of the horizontal bar is 1.2 [m]. The
first joint connects the first link to the horizontal bar and is not controllable.
The second joint connects the first link to the second link and is controllable.
The end effector is attached to the tip of the second link. The control command
(action) we can choose is to apply positive torque +50 [N · m], no torque 0
[N · m], or negative torque −50 [N · m] to the second joint. Note that the
acrobot moves only within a plane orthogonal to the horizontal bar.

The goal is to acquire a control policy such that the end effector is swung up
as high as possible. The state space consists of the angle θi [rad] and angular
velocity θ̇i [rad/s] of the first and second joints (i = 1, 2). The immediate
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reward is given according to the height y of the center of the end effector as

r(s, a, s′) =





10 if y > 1.75,

exp
(
− (y−1.85)2

2(0.2)2

)
if 1.5 < y ≤ 1.75,

0.001 otherwise.

Note that 0.55 ≤ y ≤ 1.85 in the current setting.
Here, suppose that the length of the links is unknown. Thus, the height

y cannot be directly computed from state information. The height of the end
effector is supposed to be estimated from an image taken by a camera —
the end effector is detected in the image and then its vertical coordinate is
computed. Due to recognition error, the estimated height is highly noisy and
could contain outliers.

In each policy iteration step, 20 episodic training samples of length 150
are gathered. The performance of the obtained policy is evaluated using 50
episodic test samples of length 300. Note that the test samples are not used
for learning policies. They are used only for evaluating learned policies. The
policies are updated in a soft-max manner:

π(a|s)←− exp(Q(s, a)/η)∑
a′∈A exp(Q(s, a′)/η)

,

where η = 10 − l + 1 with l being the iteration number. The discounted
factor is set at γ = 1, i.e., no discount. As basis functions for value function
approximation, the Gaussian kernel with standard deviation π is used, where
Gaussian centers are located at

(θ1, θ2, θ̇1, θ̇2) ∈ {−π,−π
2 , 0,

π
2 , π} × {−π, 0, π} × {−π, 0, π} × {−π, 0, π}.

The above 135 (= 5× 3× 3× 3) Gaussian kernels are defined for each of the
three actions. Thus, 405 (= 135× 3) kernels are used in total.

Let us consider two noise environments: one is the case where no noise is
added to the rewards and the other case is where Laplacian noise with mean
zero and standard deviation 2 is added to the rewards with probability 0.1.
Note that the tail of the Laplacian density is heavier than that of the Gaussian
density (see Figure 6.4), implying that a small number of outliers tend to be
included in the Laplacian noise environment. An example of the noisy training
samples is shown in Figure 6.5. For each noise environment, the experiment is
repeated 50 times with different random seeds and the averages of the sum of
rewards obtained by LAPI and LSPI are summarized in Figure 6.6. The best
method in terms of the mean value and comparable methods according to the
t-test (Henkel, 1976) at the significance level 5% is specified by “◦.”

In the noiseless case (see Figure 6.6(a)), both LAPI and LSPI improve the
performance over iterations in a comparable way. On the other hand, in the
noisy case (see Figure 6.6(b)), the performance of LSPI is not improved much
due to outliers, while LAPI still produces a good control policy.
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FIGURE 6.4: Probability density
functions of Gaussian and Lapla-
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samples with Laplacian noise. The
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the noiseless immediate reward and
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FIGURE 6.6: Average and standard deviation of the sum of rewards over 50
runs for the acrobot swinging-up simulation. The best method in terms of the
mean value and comparable methods according to the t-test at the significance
level 5% specified by “◦.”

Figure 6.7 and Figure 6.8 depict motion examples of the acrobot learned
by LAPI and LSPI in the Laplacian-noise environment. When LSPI is used
(Figure 6.7), the second joint is swung hard in order to lift the end effector.
However, the end effector tends to stay below the horizontal bar, and therefore
only a small amount of reward can be obtained by LSPI. This would be due to
the existence of outliers. On the other hand, when LAPI is used (Figure 6.8),
the end effector goes beyond the bar, and therefore a large amount of reward
can be obtained even in the presence of outliers.
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FIGURE 6.7: A motion example of the acrobot learned by LSPI in the
Laplacian-noise environment (from left to right and top to bottom).

FIGURE 6.8: A motion example of the acrobot learned by LAPI in the
Laplacian-noise environment (from left to right and top to bottom).
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6.4 Possible Extensions

In this section, possible variations of LAPI are considered.

6.4.1 Huber Loss

Use of the Huber loss corresponds to making a compromise between the
squared and absolute loss functions (Huber, 1981):

argmin
θ

[
T∑

t=1

ρHB
κ

(
θ⊤ψ̂(st, at)− rt

)]
,

where κ (≥ 0) is a threshold parameter and ρHB
κ is the Huber loss defined as

follows (see Figure 6.9):

ρHB
κ (x) =





1
2x

2 if |x| ≤ κ,

κ|x| − 1
2κ

2 if |x| > κ.

The Huber loss converges to the absolute loss as κ tends to zero, and it
converges to the squared loss as κ tends to infinity.

The Huber loss function is rather intricate, but the solution can be ob-
tained by solving the following convex quadratic program (Mangasarian &
Musicant, 2000):





min
θ,{bt,ct}T

t=1

1

2

T∑

t=1

b2t + κ
T∑

t=1

ct

subject to −ct ≤ θ⊤ψ̂(st, at)− rt − bt ≤ ct, t = 1, . . . , T.

Another way to obtain the solution is to use a gradient descent method,
where the parameter θ is updated as follows until convergence:

θ ← θ − ε
T∑

t=1

∆ρHB
κ (θ⊤ψ̂(st, at)− rt)ψ̂(st, at).

ε (> 0) is the learning rate and ∆ρHB
κ is the derivative of ρHB

κ given by

∆ρHB
κ (x) =





x if |x| ≤ κ,
κ if x > κ,

−κ if x < −κ.

In practice, the following stochastic gradient method (Amari, 1967) would be
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FIGURE 6.9: The Huber loss function (with κ = 1), the pinball loss function
(with τ = 0.3), and the deadzone-linear loss function (with ǫ = 1).

more convenient. For a randomly chosen index t ∈ {1, . . . , T} in each iteration,
repeat the following update until convergence:

θ ← θ − ε∆ρHB
κ (θ⊤ψ̂(st, at)− rt)ψ̂(st, at).

The plain/stochastic gradient methods also come in handy when approx-
imating the least absolute solution, since the Huber loss function with small
κ can be regarded as a smooth approximation to the absolute loss.

6.4.2 Pinball Loss

The absolute loss induces the median, which corresponds to the 50-
percentile point. A similar discussion is also possible for an arbitrary percentile
100τ (0 ≤ τ ≤ 1) based on the pinball loss (Koenker, 2005):

min
θ

[
T∑

t=1

ρPB
τ (θ⊤ψ̂(st, at)− rt)

]
,

where ρPB
τ (x) is the pinball loss defined by

ρPB
τ (x) =

{
2τx if x ≥ 0,

2(τ − 1)x if x < 0.

The profile of the pinball loss is depicted in Figure 6.9. When τ = 0.5, the
pinball loss is reduced to the absolute loss.

The solution can be obtained by solving the following linear program:




min
θ,{bt}T

t=1

T∑

t=1

bt

subject to
bt

2(τ − 1)
≤ θ⊤ψ̂(st, at)− rt ≤

bt
2τ
, t = 1, . . . , T.
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6.4.3 Deadzone-Linear Loss

Another variant of the absolute loss is the deadzone-linear loss (see Fig-
ure 6.9):

min
θ

[
T∑

t=1

ρDL
ǫ (θ⊤ψ̂(st, at)− rt)

]
,

where ρDL
ǫ (x) is the deadzone-linear loss defined by

ρDL
ǫ (x) =

{
0 if |x| ≤ ǫ,
|x| − ǫ if |x| > ǫ.

That is, if the magnitude of the error is less than ǫ, no error is assessed. This
loss is also called the ǫ-insensitive loss and used in support vector regression
(Vapnik, 1998).

When ǫ = 0, the deadzone-linear loss is reduced to the absolute loss.
Thus, the deadzone-linear loss and the absolute loss are related to each other.
However, the effect of the deadzone-linear loss is completely opposite to the
absolute loss when ǫ > 0. The influence of “good” samples (with small error)
is deemphasized in the deadzone-linear loss, while the absolute loss tends to
suppress the influence of “bad” samples (with large error) compared with the
squared loss.

The solution can be obtained by solving the following linear program (Boyd
& Vandenberghe, 2004):





min
θ,{bt}T

t=1

T∑

t=1

bt

subject to −bt − ǫ ≤ θ⊤ψ̂(st, at)− rt ≤ bt + ǫ,

bt ≥ 0, t = 1, . . . , T.

6.4.4 Chebyshev Approximation

The Chebyshev approximation minimizes the error for the “worst” sample:

min
θ

[
max

t=1,...,T
|θ⊤ψ̂(st, at)− rt|

]
.

This is also called the minimax approximation.
The solution can be obtained by solving the following linear program (Boyd

& Vandenberghe, 2004):





min
θ,b

b

subject to −b ≤ θ⊤ψ̂(st, at)− rt ≤ b, t = 1, . . . , T.
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FIGURE 6.10: The conditional value-at-risk (CVaR).

6.4.5 Conditional Value-At-Risk

In the area of finance, the conditional value-at-risk (CVaR) is a popular
risk measure (Rockafellar & Uryasev, 2002). The CVaR corresponds to the
mean of the error for a set of “bad” samples (see Figure 6.10).

More specifically, let us consider the distribution of the absolute error over
all training samples {(st, at, rt)}Tt=1:

Φ(α|θ) = P{(st, at, rt) : |θ⊤ψ̂(st, at)− rt| ≤ α}.

For β ∈ [0, 1), let αβ(θ) be the 100β percentile of the absolute error distribu-
tion:

αβ(θ) = min{α | Φ(α|θ) ≥ β}.

Thus, only the fraction (1−β) of the absolute error |θ⊤ψ̂(st, at)− rt| exceeds
the threshold αβ(θ). αβ(θ) is also referred to as the value-at-risk (VaR).

Let us consider the β-tail distribution of the absolute error:

Φβ(α|θ) =





0 if α < αβ(θ),

Φ(α|θ)− β
1− β if α ≥ αβ(θ).

Let φβ(θ) be the mean of the β-tail distribution of the absolute temporal
difference (TD) error:

φβ(θ) = EΦβ

[
|θ⊤ψ̂(st, at)− rt|

]
,

where EΦβ
denotes the expectation over the distribution Φβ . φβ(θ) is called

the CVaR. By definition, the CVaR of the absolute error is reduced to the
mean absolute error if β = 0 and it converges to the worst absolute error
as β tends to 1. Thus, the CVaR smoothly bridges the least absolute and
Chebyshev approximation methods. CVaR is also referred to as the expected
shortfall.
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The CVaR minimization problem in the current context is formulated as

min
θ

[
EΦβ

[
|θ⊤ψ̂(st, at)− rt|

]]
.

This optimization problem looks complicated, but the solution θ̂CV can be ob-
tained by solving the following linear program (Rockafellar & Uryasev, 2002):





min
θ,{bt}T

t=1,{ct}
T
t=1,α

T (1− β)α+

T∑

t=1

ct

subject to −bt ≤ θ⊤ψ̂(st, at)− rt ≤ bt,
ct ≥ bt − α, ct ≥ 0, t = 1, . . . , T.

Note that if the definition of the absolute error is slightly changed, the
CVaR minimization method amounts to minimizing the deadzone-linear loss
(Takeda, 2007).

6.5 Remarks

LSPI can be regarded as regression of immediate rewards under the
squared loss. In this chapter, the absolute loss was used for regression, which
contributes to enhancing robustness and reliability. The least absolute method
is formulated as a linear program and it can be solved efficiently by standard
optimization software.

LSPI maximizes the state-action value function Q(s, a), which is the ex-
pectation of returns. Another way to address the robustness and reliability
is to maximize other quantities such as the median or a quantile of returns.
Although Bellman-like simple recursive expressions are not available for quan-
tiles of rewards, a Bellman-like recursive equation holds for the distribution
of the discounted sum of rewards (Morimura et al., 2010a; Morimura et al.,
2010b). Developing robust reinforcement learning algorithms along this line
of research would be a promising future direction.



Part III

Model-Free Policy Search

In the policy iteration approach explained in Part II, the value function is
first estimated and then the policy is determined based on the learned value
function. Policy iteration was demonstrated to work well in many real-world
applications, especially in problems with discrete states and actions (Tesauro,
1994; Williams & Young, 2007; Abe et al., 2010). Although policy iteration
can also handle continuous states by function approximation (Lagoudakis &
Parr, 2003), continuous actions are hard to deal with due to the difficulty of
finding a maximizer of the value function with respect to actions. Moreover,
since policies are indirectly determined via value function approximation, mis-
specification of value function models can lead to an inappropriate policy even
in very simple problems (Weaver & Baxter, 1999; Baxter et al., 2001). Another
limitation of policy iteration especially in physical control tasks is that control
policies can vary drastically in each iteration. This causes severe instability in
the physical system and thus is not favorable in practice.

Policy search is an alternative approach to reinforcement learning that can
overcome the limitations of policy iteration (Williams, 1992; Dayan & Hin-
ton, 1997; Kakade, 2002). In the policy search approach, policies are directly
learned so that the return (i.e., the discounted sum of future rewards),

T∑

t=1

γt−1r(st, at, st+1),

is maximized.
In Part III, we focus on the framework of policy search. First, direct policy

search methods are introduced, which try to find the policy that achieves the
maximum return via gradient ascent (Chapter 7) or expectation-maximization
(Chapter 8). A potential weakness of the direct policy search approach is its
instability due to the randomness of stochastic policies. To overcome the insta-
bility problem, an alternative approach called policy-prior search is introduced
in Chapter 9.
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Chapter 7

Direct Policy Search by Gradient

Ascent

The direct policy search approach tries to find the policy that maximizes
the expected return. In this chapter, we introduce gradient-based algorithms
for direct policy search. After the problem formulation in Section 7.1, the
gradient ascent algorithm is introduced in Section 7.2. Then, in Section 7.3,
its extention using natural gradients is described. In Section 7.4, application to
computer graphics is shown. Finally, this chapter is concluded in Section 7.5.

7.1 Formulation

In this section, the problem of direct policy search is mathematically for-
mulated.

Let us consider a Markov decision process specified by

(S,A, p(s′|s, a), p(s), r, γ),
where S is a set of continuous states, A is a set of continuous actions, p(s′|s, a)
is the transition probability density from current state s to next state s′ when
action a is taken, p(s) is the probability density of initial states, r(s, a, s′)
is an immediate reward for transition from s to s′ by taking action a, and
0 < γ ≤ 1 is the discounted factor for future rewards.

Let π(a|s, θ) be a stochastic policy parameterized by θ, which represents
the conditional probability density of taking action a in state s. Let h be a
trajectory of length T :

h = [s1, a1, . . . , sT , aT , sT+1].

The return (i.e., the discounted sum of future rewards) along h is defined as

R(h) =

T∑

t=1

γt−1r(st, at, st+1),

and the expected return for policy parameter θ is defined as

J(θ) = Ep(h|θ)[R(h)] =

∫
p(h|θ)R(h)dh,

95
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FIGURE 7.1: Gradient ascent for direct policy search.

where Ep(h|θ) is the expectation over trajectory h drawn from p(h|θ), and
p(h|θ) denotes the probability density of observing trajectory h under policy
parameter θ:

p(h|θ) = p(s1)
T∏

t=1

p(st+1|st, at)π(at|st, θ).

The goal of direct policy search is to find the optimal policy parameter θ∗

that maximizes the expected return J(θ):

θ
∗ = argmax

θ

J(θ).

However, directly maximizing J(θ) is hard since J(θ) usually involves high
non-linearity with respect to θ. Below, a gradient-based algorithm is intro-
duced to find a local maximizer of J(θ). An alternative approach based on
the expectation-maximization algorithm is provided in Chapter 8.

7.2 Gradient Approach

In this section, a gradient ascent method for direct policy search is intro-
duced (Figure 7.1).

7.2.1 Gradient Ascent

The simplest approach to finding a local maximizer of the expected return
is gradient ascent (Williams, 1992):

θ ←− θ + ε∇θJ(θ),
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where ε is a small positive constant and ∇θJ(θ) denotes the gradient of ex-
pected return J(θ) with respect to policy parameter θ. The gradient ∇θJ(θ)
is given by

∇θJ(θ) =

∫
∇θp(h|θ)R(h)dh

=

∫
p(h|θ)∇θ log p(h|θ)R(h)dh

=

∫
p(h|θ)

T∑

t=1

∇θ log π(at|st, θ)R(h)dh,

where the so-called “log trick” is used:

∇θp(h|θ) = p(h|θ)∇θ log p(h|θ).

This expression means that the gradient∇θJ(θ) is given as the expectation
over p(h|θ):

∇θJ(θ) = Ep(h|θ)

[
T∑

t=1

∇θ log π(at|st, θ)R(h)
]
.

Since p(h|θ) is unknown, the expectation is approximated by the empirical
average as

∇θĴ(θ) =
1

N

N∑

n=1

T∑

t=1

∇θ log π(at,n|st,n, θ)R(hn),

where
hn = [s1,n, a1,n, . . . , sT,n, aT,n, sT+1,n]

is an independent sample from p(h|θ). This algorithm is called REINFORCE
(Williams, 1992), which is an acronym for “REward Increment = Nonnegative
Factor × Offset Reinforcement × Characteristic Eligibility.”

A popular choice for policy model π(a|s, θ) is the Gaussian policy model,
where policy parameter θ consists of mean vector µ and standard deviation
σ:

π(a|s,µ, σ) = 1

σ
√
2π

exp

(
− (a− µ⊤φ(s))2

2σ2

)
. (7.1)

Here, φ(s) denotes the basis function. For this Gaussian policy model, the
policy gradients are explicitly computed as

∇µ log π(a|s,µ, σ) = a− µ⊤φ(s)

σ2
φ(s),

∇σ log π(a|s,µ, σ) =
(a− µ⊤φ(s))2 − σ2

σ3
.
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As shown above, the gradient ascent algorithm for direct policy search is
very simple to implement. Furthermore, the property that policy parameters
are gradually updated in the gradient ascent algorithm is preferable when
reinforcement learning is applied to the control of a vulnerable physical system
such as a humanoid robot, because sudden policy change can damage the
system. However, the variance of policy gradients tends to be large in practice
(Peters & Schaal, 2006; Sehnke et al., 2010), which can result in slow and
unstable convergence.

7.2.2 Baseline Subtraction for Variance Reduction

Baseline subtraction is a useful technique to reduce the variance of gradient
estimators. Technically, baseline subtraction can be viewed as the method of
control variates (Fishman, 1996), which is an effective approach to reducing
the variance of Monte Carlo integral estimators.

The basic idea of baseline subtraction is that an unbiased estimator η̂ is
still unbiased if a zero-mean random variable m multiplied by a constant ξ is
subtracted:

η̂ξ = η̂ − ξm.
The constant ξ, which is called a baseline, may be chosen so that the variance
of η̂ξ is minimized. By baseline subtraction, a more stable estimator than the
original η̂ can be obtained.

A policy gradient estimator with baseline ξ subtracted is given by

∇θĴ
ξ(θ) = ∇θĴ(θ)− ξ

T∑

t=1

∇θ log π(at,n|st,n, θ)

=
1

N

N∑

n=1

(R(hn)− ξ)
T∑

t=1

∇θ log π(at,n|st,n, θ),

where the expectation of ∇θ log π(a|s, θ) is zero:

E[∇θ log π(a|s, θ)] =
∫
π(a|s, θ)∇θ log π(a|s, θ)da

=

∫
∇θπ(a|s, θ)da

= ∇θ

∫
π(a|s, θ)da = ∇θ1 = 0.

The optimal baseline is defined as the minimizer of the variance of the gradient
estimator with respect to the baseline (Greensmith et al., 2004; Weaver & Tao,
2001):

ξ∗ = argmin
ξ

Varp(h|θ)[∇θĴ
ξ(θ)],



Direct Policy Search by Gradient Ascent 99

where Varp(h|θ) denotes the trace of the covariance matrix:

Varp(h|θ)[ζ] = tr
(
Ep(h|θ)

[
(ζ − Ep(h|θ)[ζ])(ζ − Ep(h|θ)[ζ])

⊤
])

= Ep(h|θ)

[
‖ζ − Ep(h|θ)[ζ]‖2

]
.

It was shown in Peters and Schaal (2006) that the optimal baseline ξ∗ is given
as

ξ∗ =
Ep(h|θ)[R(h)‖

∑T
t=1∇θ log π(at|st, θ)‖2]

Ep(h|θ)[‖
∑T

t=1∇θ log π(at|st, θ)‖2]
.

In practice, the expectations are approximated by sample averages.

7.2.3 Variance Analysis of Gradient Estimators

Here, the variance of gradient estimators is theoretically investigated for
the Gaussian policy model (7.1) with φ(s) = s. See Zhao et al. (2012) for
technical details.

In the theoretical analysis, subsets of the following assumptions are con-
sidered:

Assumption (A): r(s, a, s′) ∈ [−β, β] for β > 0.

Assumption (B): r(s, a, s′) ∈ [α, β] for 0 < α < β.

Assumption (C): For δ > 0, there exist two series {ct}Tt=1 and {dt}Tt=1 such
that ‖st‖ ≥ ct and ‖st‖ ≤ dt hold with probability at least 1 − δ

2N ,
respectively, over the choice of sample paths.

Note that Assumption (B) is stronger than Assumption (A). Let

ζ(T ) = CTα
2 −DTβ

2/(2π),

where

CT =

T∑

t=1

c2t and DT =

T∑

t=1

d2t .

First, the variance of gradient estimators is analyzed.

Theorem 7.1 Under Assumptions (A) and (C), the following upper bound
holds with probability at least 1− δ/2:

Varp(h|θ)

[
∇µĴ(µ, σ)

]
≤ DTβ

2(1− γT )2
Nσ2(1− γ)2 .

Under Assumption (A), it holds that

Varp(h|θ)

[
∇σĴ(µ, σ)

]
≤ 2Tβ2(1 − γT )2

Nσ2(1 − γ)2 .
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The above upper bounds are monotone increasing with respect to trajec-
tory length T .

For the variance of ∇µĴ(µ, σ), the following lower bound holds (its upper
bound has not been derived yet):

Theorem 7.2 Under Assumptions (B) and (C), the following lower bound
holds with probability at least 1− δ:

Varp(h|θ)

[
∇µĴ(µ, σ)

]
≥ (1− γT )2
Nσ2(1− γ)2 ζ(T ).

This lower bound is non-trivial if ζ(T ) > 0, which can be fulfilled, e.g., if
α and β satisfy

2πCTα
2 > DTβ

2.

Next, the contribution of the optimal baseline is investigated. It was shown
(Greensmith et al., 2004; Weaver & Tao, 2001) that the excess variance for an
arbitrary baseline ξ is given by

Varp(h|θ)[∇θĴ
ξ(θ)]−Varp(h|θ)[∇θĴ

ξ∗(θ)]

=
(ξ − ξ∗)2

N
Ep(h|θ)



∥∥∥∥∥

T∑

t=1

∇θ log π(at|st, θ)
∥∥∥∥∥

2

 .

Based on this expression, the following theorem can be obtained.

Theorem 7.3 Under Assumptions (B) and (C), the following bounds hold
with probability at least 1− δ:

CTα
2(1− γT )2

Nσ2(1− γ)2 ≤ Varp(h|θ)[∇µĴ(µ, σ)]−Varp(h|θ)[∇µĴ
ξ∗(µ, σ)]

≤ β2(1− γT )2DT

Nσ2(1− γ)2 .

This theorem shows that the lower bound of the excess variance is positive
and monotone increasing with respect to the trajectory length T . This means
that the variance is always reduced by optimal baseline subtraction and the
amount of variance reduction is monotone increasing with respect to the tra-
jectory length T . Note that the upper bound is also monotone increasing with
respect to the trajectory length T .

Finally, the variance of gradient estimators with the optimal baseline is
investigated:

Theorem 7.4 Under Assumptions (B) and (C), it holds that

Varp(h|θ)[∇µĴ
ξ∗(µ, σ)] ≤ (1− γT )2

Nσ2(1− γ)2 (β
2DT − α2CT ),

where the inequality holds with probability at least 1− δ.
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(a) Ordinary gradients (b) Natural gradients

FIGURE 7.2: Ordinary and natural gradients. Ordinary gradients treat all
dimensions equally, while natural gradients take the Riemannian structure
into account.

This theorem shows that the upper bound of the variance of the gradient
estimators with the optimal baseline is still monotone increasing with respect
to the trajectory length T . Thus, when the trajectory length T is large, the
variance of the gradient estimators can still be large even with the optimal
baseline.

In Chapter 9, another gradient approach will be introduced for overcoming
this large-variance problem.

7.3 Natural Gradient Approach

The gradient-based policy parameter update used in the REINFORCE
algorithm is performed under the Euclidean metric. In this section, we show
another useful choice of the metric for gradient-based policy search.

7.3.1 Natural Gradient Ascent

Use of the Euclidean metric implies that all dimensions of the policy pa-
rameter vector θ are treated equally (Figure 7.2(a)). However, since a policy
parameter θ specifies a conditional probability density π(a|s, θ), use of the
Euclidean metric in the parameter space does not necessarily mean all di-
mensions are treated equally in the space of conditional probability densities.
Thus, a small change in the policy parameter θ can cause a big change in the
conditional probability density π(a|s, θ) (Kakade, 2002).

Figure 7.3 describes the Gaussian densities with mean µ = −5, 0, 5 and
standard deviation σ = 1, 2. This shows that if the standard deviation is
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FIGURE 7.3: Gaussian densities with different means and standard devi-
ations. If the standard deviation is doubled (from the solid lines to dashed
lines), the difference in mean should also be doubled to maintain the same
overlapping level.

doubled, the difference in mean should also be doubled to maintain the same
overlapping level. Thus, it is “natural” to compute the distance between two
Gaussian densities parameterized with (µ, σ) and (µ+∆µ, σ) not by ∆µ, but
by ∆µ/σ.

Gradients that treat all dimensions equally in the space of probability
densities are called natural gradients (Amari, 1998; Amari & Nagaoka, 2000).
The ordinary gradient is defined as the steepest ascent direction under the
Euclidean metric (Figure 7.2(a)):

∇θJ(θ) = argmax
∆θ

J(θ +∆θ) subject to ∆θ⊤∆θ ≤ ǫ,

where ǫ is a small positive number. On the other hand, the natural gradi-
ent is defined as the steepest ascent direction under the Riemannian metric
(Figure 7.2(b)):

∇̃θJ(θ) = argmax
∆θ

J(θ +∆θ) subject to ∆θ⊤Rθ∆θ ≤ ǫ,

where Rθ is the Riemannian metric, which is a positive definite matrix. The
solution of the above optimization problem is given by

∇̃θJ(θ) = R
−1
θ ∇θJ(θ).

Thus, the ordinary gradient ∇θJ(θ) is modified by the inverse Riemannian
metric R−1

θ in the natural gradient.
A standard distance metric in the space of probability densities is the

Kullback–Leibler (KL) divergence (Kullback & Leibler, 1951). The KL diver-
gence from density p to density q is defined as

KL(p‖q) =
∫
p(θ) log

p(θ)

q(θ)
dθ.
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KL(p‖q) is always non-negative and zero if and only if p = q. Thus, smaller
KL(p‖q) means that p and q are “closer.” However, note that the KL diver-
gence is not symmetric, i.e., KL(p‖q) 6= KL(q‖p) in general.

For small ∆θ, the KL divergence from p(h|θ) to p(h|θ + ∆θ) can be ap-
proximated by

∆θ⊤F θ∆θ,

where F θ is the Fisher information matrix :

F θ = Ep(h|θ)[∇θ log p(h|θ)∇θ log p(h|θ)⊤].

Thus, F θ is the Riemannian metric induced by the KL divergence.
Then the update rule of the policy parameter θ based on the natural

gradient is given by

θ ←− θ + εF̂
−1

θ ∇θJ(θ),

where ε is a small positive constant and F̂ θ is a sample approximation of F θ:

F̂ θ =
1

N

N∑

n=1

∇θ log p(hn|θ)∇θ log p(hn|θ)⊤.

Under mild regularity conditions, the Fisher information matrix F θ can
be expressed as

F θ = −Ep(h|θ)[∇2
θ log p(h|θ)],

where ∇2
θ log p(h|θ) denotes the Hessian matrix of log p(h|θ). That is, the

(b, b′)-th element of ∇2
θ log p(h|θ) is given by ∂2

∂θb∂θb′
log p(h|θ). This means

that the natural gradient takes the curvature into account, by which the con-
vergence behavior at flat plateaus and steep ridges tends to be improved. On
the other hand, a potential weakness of natural gradients is that computation
of the inverse Riemannian metric tends to be numerically unstable (Deisenroth
et al., 2013).

7.3.2 Illustration

Let us illustrate the difference between ordinary and natural gradients
numerically.

Consider one-dimensional real-valued state space S = R and one-
dimensional real-valued action space A = R. The transition dynamics is lin-
ear and deterministic as s′ = s + a, and the reward function is quadratic as
r = 0.5s2− 0.05a. The discount factor is set at γ = 0.95. The Gaussian policy
model,

π(a|s, µ, σ) = 1

σ
√
2π

exp

(
− (a− µs)2

2σ2

)
,

is employed, which contains the mean parameter µ and the standard devia-
tion parameter σ. The optimal policy parameters in this setup are given by
(µ∗, σ∗) ≈ (−0.912, 0).
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(a) Ordinary gradients
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(b) Natural gradients

FIGURE 7.4: Numerical illustrations of ordinary and natural gradients.

Figure 7.4 shows numerical comparison of ordinary and natural gradients
for the Gaussian policy. The contour lines and the arrows indicate the ex-
pected return surface and the gradient directions, respectively. The graphs
show that the ordinary gradients tend to strongly reduce the standard devia-
tion parameter σ without really updating the mean parameter µ. This means
that the stochasticity of the policy is lost quickly and thus the agent becomes
less exploratory. Consequently, once σ gets closer to zero, the solution is at
a flat plateau along the direction of µ and thus policy updates in µ are very
slow. On the other hand, the natural gradients reduce both the mean param-
eter µ and the standard deviation parameter σ in a balanced way. As a result,
convergence gets much faster than the ordinary gradient method.

7.4 Application in Computer Graphics: Artist Agent

Oriental ink painting, which is also called sumie, is one of the most dis-
tinctive painting styles and has attracted artists around the world. Major
challenges in sumie simulation are to abstract complex scene information and
reproduce smooth and natural brush strokes. Reinforcement learning is useful
to automatically generate such smooth and natural strokes (Xie et al., 2013).
In this section, the REINFORCE algorithm explained in Section 7.2 is applied
to sumie agent training.
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7.4.1 Sumie Painting

Among various techniques of non-photorealistic rendering (Gooch &
Gooch, 2001), stroke-based painterly rendering synthesizes an image from a
source image in a desired painting style by placing discrete strokes (Hertz-
mann, 2003). Such an algorithm simulates the common practice of human
painters who create paintings with brush strokes.

Western painting styles such as water-color, pastel, and oil painting overlay
strokes onto multiple layers, while oriental ink painting uses a few expressive
strokes produced by soft brush tufts to convey significant information about a
target scene. The appearance of the stroke in oriental ink painting is therefore
determined by the shape of the object to paint, the path and posture of the
brush, and the distribution of pigments in the brush.

Drawing smooth and natural strokes in arbitrary shapes is challenging
since an optimal brush trajectory and the posture of a brush footprint are
different for each shape. Existing methods can efficiently map brush texture
by deformation onto a user-given trajectory line or the shape of a target stroke
(Hertzmann, 1998; Guo & Kunii, 2003). However, the geometrical process of
morphing the entire texture of a brush stroke into the target shape leads
to undesirable effects such as unnatural foldings and creased appearances at
corners or curves.

Here, a soft-tuft brush is treated as a reinforcement learning agent, and the
REINFORCE algorithm is used to automatically draw artistic strokes. More
specifically, given any closed contour that represents the shape of a desired
single stroke without overlap, the agent moves the brush on the canvas to fill
the given shape from a start point to an end point with stable poses along a
smooth continuous movement trajectory (see Figure 7.5).

In oriental ink painting, there are several different brush styles that charac-
terize the paintings. Below, two representative styles called the upright brush
style and the oblique brush style are considered (see Figure 7.6). In the upright
brush style, the tip of the brush should be located on the medial axis of the
expected stroke shape, and the bottom of the brush should be tangent to both
sides of the boundary. On the other hand, in the oblique brush style, the tip
of the brush should touch one side of the boundary and the bottom of the
brush should be tangent to the other side of the boundary. The choice of the
upright brush style and the oblique brush style is exclusive and a user is asked
to choose one of the styles in advance.

7.4.2 Design of States, Actions, and Immediate Rewards

Here, specific design of states, actions, and immediate rewards tailored to
the sumie agent is described.
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(a) Brush model

(c) Basic stroke styles

(b) Footprints

FIGURE 7.5: Illustration of the brush agent and its path. (a) A stroke is gen-
erated by moving the brush with the following 3 actions: Action 1 is regulating
the direction of the brush movement, Action 2 is pushing down/lifting up the
brush, and Action 3 is rotating the brush handle. Only Action 1 is determined
by reinforcement learning, and Action 2 and Action 3 are determined based
on Action 1. (b) The top symbol illustrates the brush agent, which consists of
a tip Q and a circle with center C and radius r. Others illustrate footprints of
a real brush with different ink quantities. (c) There are 6 basic stroke styles:
full ink, dry ink, first-half hollow, hollow, middle hollow, and both-end hollow.
Small footprints on the top of each stroke show the interpolation order.

7.4.2.1 States

The global measurement (i.e., the pose configuration of a footprint under
the global Cartesian coordinate) and the local measurement (i.e., the pose
and the locomotion information of the brush agent relative to the surrounding
environment) are used as states. Here, only the local measurement is used to
calculate a reward and a policy, by which the agent can learn the drawing
policy that is generalizable to new shapes. Below, the local measurement is
regarded as state s and the global measurement is dealt with only implicitly.
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FIGURE 7.6: Upright brush style (left) and oblique brush style (right).

The local state-space design consists of two components: a current sur-
rounding shape and an upcoming shape. More specifically, state vector s con-
sists of the following six features:

s = (ω, φ, d, κ1, κ2, l)
⊤.

Each feature is defined as follows (see Figures 7.7):

• ω ∈ (−π, π]: The angle of the velocity vector of the brush agent relative
to the medial axis.

• φ ∈ (−π, π]: The heading direction of the brush agent relative to the
medial axis.

• d ∈ [−2, 2]: The ratio of offset distance δ from the center C of the brush
agent to the nearest point P on the medial axisM over the radius r of
the brush agent (|d| = δ/r). d takes a positive/negative value when the
center of the brush agent is on the left-/right-hand side of the medial
axis:

– d takes the value 0 when the center of the brush agent is on the
medial axis.

– d takes a value in [−1, 1] when the brush agent is inside the bound-
aries.

– The value of d is in [−2,−1) or in (1, 2] when the brush agent goes
over the boundary of one side.
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FIGURE 7.7: Illustration of the design of states. Left: The brush agent
consists of a tip Q and a circle with center C and radius r. Right: The ratio d
of the offset distance δ over the radius r. Footprint ft−1 is inside the drawing
area, and the circle with center Ct−1 and the tip Qt−1 touch the boundary on
each side. In this case, δt−1 ≤ rt−1 and dt−1 ∈ [0, 1]. On the other hand, ft
goes over the boundary, and then δt > rt and dt > 1. Note that d is restricted
to be in [−2, 2], and P is the nearest point on medial axisM to C.

Note that the center of the agent is restricted within the shape. There-
fore, the extreme values of d are ±2 when the center of the agent is on
the boundary.

• κ1, κ2 ∈ (−1, 1): κ1 provides the current surrounding information on the
point Pt, whereas κ2 provides the upcoming shape information on point
Pt+1:

κi =
2

π
arctan

(
0.05/

√
r′i

)
,

where r′i is the radius of the curve. More specifically, the value takes
0/negative/positive when the shape is straight/left-curved/right-curved,
and the larger its absolute value is, the tighter the curve is.

• l ∈ {0, 1}: A binary label that indicates whether the agent moves to a
region covered by the previous footprints or not. l = 0 means that the
agent moves to a region covered by the previous footprint. Otherwise,
l = 1 means that it moves to an uncovered region.

7.4.2.2 Actions

To generate elegant brush strokes, the brush agent should move inside
given boundaries properly. Here, the following actions are considered to control
the brush (see Figure 7.5(a)):

• Action 1: Movement of the brush on the canvas paper.

• Action 2: Scaling up/down of the footprint.
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• Action 3: Rotation of the heading direction of the brush.

Since properly covering the whole desired region is the most important in
terms of the visual quality, the movement of the brush (Action 1) is regarded
as the primary action. More specifically, Action 1 takes a value in (−π,−π]
that indicates the offset turning angle of the motion direction relative to the
medial axis of an expected stroke shape. In practical applications, the agent
should be able to deal with arbitrary strokes in various scales. To achieve
stable performance in different scales, the velocity is adaptively changed as
r/3, where r is the radius of the current footprint.

Action 1 is determined by the Gaussian policy function trained by the
REINFORCE algorithm, and Action 2 and Action 3 are determined as follows.

• Oblique brush stroke style: The tip of the agent is set to touch one side
of the boundary, and the bottom of the agent is set to be tangent to the
other side of the boundary.

• Upright brush stroke style: The tip of the agent is chosen to travel along
the medial axis of the shape.

If it is not possible to satisfy the above constraints by adjusting Action 2 and
Action 3, the new footprint will simply be the same posture as the previous
one.

7.4.2.3 Immediate Rewards

The immediate reward function measures the quality of the brush agent’s
movement after taking an action at each time step. The reward is designed to
reflect the following two aspects:

• The distance between the center of the brush agent and the nearest point
on the medial axis of the shape at the current time step: This detects
whether the agent moves out of the region or travels backward from the
correct direction.

• Change of the local configuration of the brush agent after executing an
action: This detects whether the agent moves smoothly.

These two aspects are formalized by defining the reward function as fol-
lows:

r(st, at, st+1) =





0 if ft = ft+1 or lt+1 = 0,

2 + |κ1(t)|+ |κ2(t)|
E

(t)
location + E

(t)
posture

otherwise,

where ft and ft+1 are the footprints at time steps t and t+1, respectively. This
reward design implies that the immediate reward is zero when the brush is
blocked by a boundary as ft = ft+1 or the brush is going backward to a region
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that has already been covered by previous footprints. κ1(t) and κ2(t) are the
values of κ1 and κ2 at time step t. |κ1(t)| + |κ2(t)| adaptively increases the
immediate reward depending on the curvatures κ1(t) and κ2(t) of the medial
axis.

E
(t)
location measures the quality of the location of the brush agent with re-

spect to the medial axis, defined by

E
(t)
location =

{
τ1 |ωt|+ τ2(|dt|+ 5) dt ∈ [−2,−1) ∪ (1, 2],

τ1 |ωt|+ τ2 |dt| dt ∈ [−1, 1],

where dt is the value of d at time step t. τ1 and τ2 are weight parameters,
which are chosen depending on the brush style: τ1 = τ2 = 0.5 for the upright
brush style and τ1 = 0.1 and τ2 = 0.9 for the oblique brush style. Since dt
contains information about whether the agent goes over the boundary or not,
as illustrated in Figure 7.7, the penalty +5 is added to Elocation when the
agent goes over the boundary of the shape.

E
(t)
posture measures the quality of the posture of the brush agent based on

neighboring footprints, defined by

E
(t)
posture = ∆ωt/3 + ∆φt/3 + ∆dt/3,

where ∆ωt, ∆φt, and ∆dt are changes in angle ω of the velocity vector, heading
direction φ, and ratio d of the offset distance, respectively. The notation ∆xt
denotes the normalized squared change between xt−1 and xt defined by

∆xt =




1 if xt = xt−1 = 0,
(xt − xt−1)

2

(|xt|+ |xt−1|)2
otherwise.

7.4.2.4 Training and Test Sessions

A naive way to train an agent is to use an entire stroke shape as a training
sample. However, this has several drawbacks, e.g., collecting many training
samples is costly and generalization to new shapes is hard. To overcome these
limitations, the agent is trained based on partial shapes, not the entire shapes
(Figure 7.8(a)). This allows us to generate various partial shapes from a single
entire shape, which significantly increases the number and variation of train-
ing samples. Another merit is that the generalization ability to new shapes
can be enhanced, because even when the entire profile of a new shape is quite
different from that of training data, the new shape may contain similar partial
shapes. Figure 7.8(c) illustrates 8 examples of 80 digitized real single brush
strokes that are commonly used in oriental ink painting. Boundaries are ex-
tracted as the shape information and are arranged in a queue for training (see
Figure 7.8(b)).

In the training session, the initial position of the first episode is chosen to
be the start point of the medial axis, and the direction to move is chosen to be
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(a) Combination of shapes (b) Setup of policy training

(c) Training shapes

FIGURE 7.8: Policy training scheme. (a) Each entire shape is composed
of one of the upper regions Ui, the common region Ω, and one of the lower
regions Lj . (b) Boundaries are extracted as the shape information and are
arranged in a queue for training. (c) Eight examples of 80 digitized real single
brush strokes that are commonly used in oriental ink painting are illustrated.

the goal point, as illustrated in Figure 7.8(b). In the first episode, the initial
footprint is set at the start point of the shape. Then, in the following episodes,
the initial footprint is set at either the last footprint in the previous episode
or the start point of the shape, depending on whether the agent moved well
or was blocked by the boundary in the previous episode.

After learning a drawing policy, the brush agent applies the learned policy
to covering given boundaries with smooth strokes. The location of the agent is



112 Statistical Reinforcement Learning

10 20 30 40
0

5

10

15

20

25

30

Iteration

R
e

tu
rn

 

 

Upper bound

RL

(a) Upright brush style

10 20 30 40

5

10

15

20

25

30

Iteration

R
e

tu
rn

 

 

Upper bound

RL

(b) Oblique brush style

FIGURE 7.9: Average and standard deviation of returns obtained by the
reinforcement learning (RL) method over 10 trials and the upper limit of the
return value.

initialized at the start point of a new shape. The agent then sequentially selects
actions based on the learned policy and makes transitions until it reaches the
goal point.

7.4.3 Experimental Results

First, the performance of the reinforcement learning (RL) method is in-
vestigated. Policies are separately trained by the REINFORCE algorithm for
the upright brush style and the oblique brush style using 80 single strokes as
training data (see Figure 7.8(c)). The parameters of the initial policy are set
at

θ = (µ⊤, σ)⊤ = (0, 0, 0, 0, 0, 0, 2)⊤,

where the first six elements correspond to the Gaussian mean and the last
element is the Gaussian standard deviation. The agent collects N = 300
episodic samples with trajectory length T = 32. The discounted factor is
set at γ = 0.99.

The average and standard deviations of the return for 300 training episodic
samples over 10 trials are plotted in Figure 7.9. The graphs show that the
average returns sharply increase in an early stage and approach the optimal
values (i.e., receiving the maximum immediate reward, +1, for all steps).

Next, the performance of the RL method is compared with that of the
dynamic programming (DP) method (Xie et al., 2011), which involves dis-
cretization of continuous state space. In Figure 7.10, the experimental results
obtained by DP with different numbers of footprint candidates in each step
of the DP search are plotted together with the result obtained by RL. This
shows that the execution time of the DP method increases significantly as the
number of footprint candidates increases. In the DP method, the best return
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FIGURE 7.10: Average return and computation time for reinforcement
learning (RL) and dynamic programming (DP).

value 26.27 is achieved when the number of footprint candidates is set at 180.
Although this maximum value is comparable to the return obtained by the
RL method (26.44), RL is about 50 times faster than the DP method. Fig-
ure 7.11 shows some exemplary strokes generated by RL (the top two rows)
and DP (the bottom two rows). This shows that the agent trained by RL is
able to draw nice strokes with stable poses after the 30th policy update iter-
ation (see also Figure 7.9). On the other hand, as illustrated in Figure 7.11,
the DP results for 5, 60, and 100 footprint candidates are unacceptably poor.
Given that the DP method requires manual tuning of the number of footprint
candidates at each step for each input shape, the RL method is demonstrated
to be promising.

The RL method is further applied to more realistic shapes, illustrated in
Figure 7.12. Although the shapes are not included in the training samples,
the RL method can produce smooth and natural brush strokes for various
unlearned shapes. More results are illustrated in Figure 7.13, showing that
the RL method is promising in photo conversion into the sumie style.

7.5 Remarks

In this chapter, gradient-based algorithms for direct policy search are intro-
duced. These gradient-based methods are suitable for controlling vulnerable
physical systems such as humanoid robots, thanks to the nature of gradient
methods that parameters are updated gradually. Furthermore, direct policy
search can handle continuous actions in a straightforward way, which is an
advantage over policy iteration, explained in Part II.
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1st iteration 10th iteration 20th iteration 30th iteration 40th iteration

(a) RL method

5 candidates 60 candidates 100 candidates 140 candidates 180 candidates

(b) DP method

FIGURE 7.11: Examples of strokes generated by RL and DP. The top two
rows show the RL results over policy update iterations, while the bottom two
rows show the DP results for different numbers of footprint candidates. The
line segment connects the center and the tip of a footprint, and the circle
denotes the bottom circle of the footprint.

The gradient-based method was successfully applied to automatic sumie
painting generation. Considering local measurements in state design was
shown to be useful, which allowed a brush agent to learn a general drawing
policy that is independent of a specific entire shape. Another important factor
was to train the brush agent on partial shapes, not the entire shapes. This
contributed highly to enhancing the generalization ability to new shapes, be-
cause even when a new shape is quite different from training data as a whole,
it often contains similar partial shapes. In this kind of real-world applica-
tions manually designing immediate reward functions is often time consuming
and difficult. The use of inverse reinforcement learning (Abbeel & Ng, 2004)
would be a promising approach for this purpose. In particular, in the con-
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(a) Real photo (b) User input boundaries

(c) Trajectories estimated by RL (d) Rendering results

FIGURE 7.12: Results on new shapes.

text of sumie drawing, such data-driven design of reward functions will allow
automatic learning of the style of a particular artist from his/her drawings.

A practical weakness of the gradient-based approach is that the step size
of gradient ascent is often difficult to choose. In Chapter 8, a step-size-free
method of direct policy search based on the expectation-maximization algo-
rithm will be introduced. Another critical problem of direct policy search is
that policy update is rather unstable due to the stochasticity of policies. Al-
though variance reduction by baseline subtraction can mitigate this problem
to some extent, the instability problem is still critical in practice. The natural
gradient method could be an alternative, but computing the inverse Rieman-
nian metric tends to be unstable. In Chapter 9, another gradient approach
that can address the instability problem will be introduced.
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FIGURE 7.13: Photo conversion into the sumie style.



Chapter 8

Direct Policy Search by

Expectation-Maximization

Gradient-based direct policy search methods introduced in Chapter 7 are
useful particularly in controlling continuous systems. However, appropriately
choosing the step size of gradient ascent is often difficult in practice. In
this chapter, we introduce another direct policy search method based on the
expectation-maximization (EM) algorithm that does not contain the step size
parameter. In Section 8.1, the main idea of the EM-based method is described,
which is expected to converge faster because policies are more aggressively up-
dated than the gradient-based approach. In practice, however, direct policy
search often requires a large number of samples to obtain a stable policy
update estimator. To improve the stability when the sample size is small,
reusing previously collected samples is a promising approach. In Section 8.2,
the sample-reuse technique that has been successfully used to improve the
performance of policy iteration (see Chapter 4) is applied to the EM-based
method. Then its experimental performance is evaluated in Section 8.3 and
this chapter is concluded in Section 8.4.

8.1 Expectation-Maximization Approach

The gradient-based optimization algorithms introduced in Section 7.2
gradually update policy parameters over iterations. Although this is advan-
tageous when controlling a physical system, it requires many iterations until
convergence. In this section, the expectation-maximization (EM) algorithm
(Dempster et al., 1977) is used to cope with this problem.

The basic idea of EM-based policy search is to iteratively update the policy
parameter θ by maximizing a lower bound of the expected return J(θ):

J(θ) =

∫
p(h|θ)R(h)dh.

To derive a lower bound of J(θ), Jensen’s inequality (Bishop, 2006) is utilized:
∫
q(h)f(g(h))dh ≥ f

(∫
q(h)g(h)dh

)
,

117
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where q is a probability density, f is a convex function, and g is a non-negative
function. For f(t) = − log t, Jensen’s inequality yields

∫
q(h) log g(h)dh ≤ log

∫
q(h)g(h)dh. (8.1)

Assume that the return R(h) is nonnegative. Let θ̃ be the current policy
parameter during the optimization procedure, and q and g in Eq. (8.1) are set
as

q(h) =
p(h|θ̃)R(h)

J(θ̃)
and g(h) =

p(h|θ)
p(h|θ̃)

.

Then the following lower bound holds for all θ:

log
J(θ)

J(θ̃)
= log

∫
p(h|θ)R(h)

J(θ̃)
dh

= log

∫
p(h|θ̃)R(h)

J(θ̃)

p(h|θ)
p(h|θ̃)

dh

≥
∫
p(h|θ̃)R(h)

J(θ̃)
log

p(h|θ)
p(h|θ̃)

dh.

This yields
log J(θ) ≥ log J̃(θ),

where

log J̃(θ) =

∫
R(h)p(h|θ̃)

J(θ̃)
log

p(h|θ)
p(h|θ̃)

dh+ log J(θ̃).

In the EM approach, the parameter θ is iteratively updated by maximizing
the lower bound J̃(θ):

θ̂ = argmax
θ

J̃(θ).

Since log J̃(θ̃) = log J(θ̃), the lower bound J̃ touches the target function J at

the current solution θ̃:
J̃(θ̃) = J(θ̃).

Thus, monotone non-decrease of the expected return is guaranteed:

J(θ̂) ≥ J(θ̃).

This update is iterated until convergence (see Figure 8.1).
Let us employ the Gaussian policy model defined as

π(a|s, θ) = π(a|s,µ, σ)
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FIGURE 8.1: Policy parameter update in the EM-based policy search. The
policy parameter θ is updated iteratively by maximizing the lower bound
J̃(θ), which touches the true expected return J(θ) at the current solution θ̃.

=
1

σ
√
2π

exp

(
− (a− µ⊤φ(s))2

2σ2

)
,

where θ = (µ⊤, σ)⊤ and φ(s) denotes the basis function.

The maximizer θ̂ = (µ̂⊤, σ̂)⊤ of the lower bound J̃(θ) can be analytically
obtained as

µ̂ =

(∫
p(h|θ̃)R(h)

T∑

t=1

φ(st)φ(st)
⊤dh

)−1(∫
p(h|θ̃)R(h)

T∑

t=1

atφ(st)dh

)

≈
(

N∑

n=1

R(hn)
T∑

t=1

φ(st,n)φ(st,n)
⊤

)−1( N∑

n=1

R(hn)
T∑

t=1

at,nφ(st,n)

)
,

σ̂2 =

(∫
p(h|θ̃)R(h)dh

)−1
(∫

p(h|θ̃)R(h) 1
T

T∑

t=1

(at − µ̂⊤
φ(st))

2dh

)

≈
(

N∑

n=1

R(hn)

)−1( N∑

n=1

R(hn)
1

T

T∑

t=1

(at,n − µ̂⊤
φ(st,n))

2

)
,

where the expectation over h is approximated by the average over roll-out
samples H = {hn}Nn=1 from the current policy θ̃:

hn = [s1,n, a1,n, . . . , sT,n, aT,n].

Note that EM-based policy search for Gaussian models is called reward-
weighted regression (RWR) (Peters & Schaal, 2007).
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8.2 Sample Reuse

In practice, a large number of samples is needed to obtain a stable policy
update estimator in the EM-based policy search. In this section, the sample-
reuse technique is applied to the EM method to cope with the instability
problem.

8.2.1 Episodic Importance Weighting

The original RWR method is an on-policy algorithm that uses data drawn
from the current policy. On the other hand, the situation called off-policy rein-
forcement learning is considered here, where the sampling policy for collecting
data samples is different from the target policy. More specifically, N trajec-
tory samples are gathered following the policy πℓ in the ℓ-th policy update
iteration:

Hπℓ = {hπℓ

1 , . . . , h
πℓ

N },
where each trajectory sample hπℓ

n is given as

hπℓ
n = [sπℓ

1,n, a
πℓ

1,n, . . . , s
πℓ

T,n, a
πℓ

T,n, s
πℓ

T+1,n].

We want to utilize all these samples to improve the current policy.
Suppose that we are currently at the L-th policy update iteration. If the

policies {πℓ}Lℓ=1 remain unchanged over the RWR updates, just using the

plain update rules provided in Section 8.1 gives a consistent estimator θ̂
NIW

L+1 =

(µ̂NIW
L+1

⊤, σ̂NIW
L+1 )

⊤, where

µ̂
NIW
L+1 =

(
L∑

ℓ=1

N∑

n=1

R(hπℓ
n )

T∑

t=1

φ(sπℓ

t,n)φ(s
πℓ

t,n)
⊤

)−1

×
(

L∑

ℓ=1

N∑

n=1

R(hπℓ
n )

T∑

t=1

aπℓ

t,nφ(s
πℓ

t,n)

)
,

(σ̂NIW
L+1 )

2 =

(
L∑

ℓ=1

N∑

n=1

R(hπℓ
n )

)−1

×
(

L∑

ℓ=1

N∑

n=1

R(hπℓ
n )

1

T

T∑

t=1

(
aπℓ

t,n − µ̂NIW
L+1

⊤φ(sπℓ

t,n)
)2
)
.

The superscript “NIW” stands for “no importance weight.” However, since
policies are updated in each RWR iteration, data samples {Hπℓ}Lℓ=1 collected
over iterations generally follow different probability distributions induced by
different policies. Therefore, naive use of the above update rules will result in
an inconsistent estimator.
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In the same way as the discussion in Chapter 4, importance sampling can
be used to cope with this problem. The basic idea of importance sampling
is to weight the samples drawn from a different distribution to match the
target distribution. More specifically, from i.i.d. (independent and identically
distributed) samples {hπℓ

n }Nn=1 following p(h|θℓ), the expectation of a function
g(h) over another probability density function p(h|θL) can be estimated in a
consistent manner by the importance-weighted average:

1

N

N∑

n=1

g(hπℓ
n )

p(hπℓ
n |θL)

p(hπℓ
n |θℓ)

N→∞−→ Ep(h|θℓ)

[
g(h)

p(h|θL)
p(h|θℓ)

]

=

∫
g(h)

p(h|θL)
p(h|θℓ)

p(h|θℓ)dh =

∫
g(h)p(h|θL)dh

= Ep(h|θL) [g(h)] .

The ratio of two densities p(h|θL)/p(h|θℓ) is called the importance weight for
trajectory h.

This importance sampling technique can be employed in RWR to obtain

a consistent estimator θ̂
EIW

L+1 = (µ̂EIW
L+1

⊤, σ̂EIW
L+1 )

⊤, where

µ̂
EIW
L+1 =

(
L∑

ℓ=1

N∑

n=1

R(hπℓ
n )w(L,ℓ)(h)

T∑

t=1

φ(sπℓ

t,n)φ(s
πℓ

t,n)
⊤

)−1

×
(

L∑

ℓ=1

N∑

n=1

R(hπℓ
n )w(L,ℓ)(h)

T∑

t=1

aπℓ

t,nφ(s
πℓ

t,n)

)
,

(σ̂EIW
L+1 )

2 =

(
L∑

ℓ=1

N∑

n=1

R(hπℓ
n )w(L,ℓ)(hπℓ

n )

)−1

×
(

L∑

ℓ=1

N∑

n=1

R(hπℓ
n )w(L,ℓ)(hπℓ

n )
1

T

T∑

t=1

(
aπℓ

t,n − µ̂EIW
L+1

⊤φ(sπℓ

t,n)
)2
)
.

Here, w(L,ℓ)(h) denotes the importance weight defined by

w(L,ℓ)(h) =
p(h|θL)
p(h|θℓ)

.

The superscript “EIW” stands for “episodic importance weight.”
p(h|θL) and p(h|θℓ) denote the probability density of observing trajectory

h = [s1, a1, . . . , sT , aT , sT+1]

under policy parameters θL and θℓ, which can be explicitly written as

p(h|θL) = p(s1)
T∏

t=1

p(st+1|st, at)π(at|st, θL),
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p(h|θℓ) = p(s1)

T∏

t=1

p(st+1|st, at)π(at|st, θℓ).

The two probability densities p(h|θL) and p(h|θℓ) both contain unknown prob-
ability densities p(s1) and {p(st+1|st, at)}Tt=1. However, since they cancel out
in the importance weight, it can be computed without the knowledge of p(s)
and p(s′|s, a) as

w(L,ℓ)(h) =

∏T
t=1 π(at|st, θL)∏T
t=1 π(at|st, θℓ)

.

Although the importance-weighted estimator θ̂
EIW

L+1 is guaranteed to be
consistent, it tends to have large variance (Shimodaira, 2000; Sugiyama &
Kawanabe, 2012). Therefore, the importance-weighted estimator tends to be
unstable when the number of episodes N is rather small.

8.2.2 Per-Decision Importance Weight

Since the reward at the t-th step does not depend on future state-action
transitions after the t-th step, an episodic importance weight can be decom-
posed into stepwise importance weights (Precup et al., 2000). For instance,
the expected return J(θL) can be expressed as

J(θL) =

∫
R(h)p(h|θL)dh

=

∫ ( T∑

t=1

γt−1r(st, at, st+1)
)
w(L,ℓ)(h)p(h|θℓ)dh

=

∫ ( T∑

t=1

γt−1r(st, at, st+1)w
(L,ℓ)
t (h)

)
p(h|θℓ)dh,

where w
(L,ℓ)
t (h) is the t-step importance weight, called the per-decision im-

portance weight (PIW), defined as

w
(L,ℓ)
t (h) =

∏t
t′=1 π(at′ |st′ , θL)∏t
t′=1 π(at′ |st′ , θℓ)

.

Here, the PIW idea is applied to RWR and a more stable algorithm is
developed. A slight complication is that the policy update formula given in
Section 8.2.1 contains double sums over T steps, e.g.,

R(h)
T∑

t′=1

φ(st′)φ(st′) =
T∑

t,t′=1

γt−1r(st, at, st+1)φ(st′)φ(st′).

In this case, the summand

γt−1r(st, at, st+1)φ(st′)φ(st′)
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does not depend on future state-action pairs after the max(t, t′)-th step. Thus,
the episodic importance weight for

γt−1r(st, at, st+1)φ(st′)φ(st′)

can be simplified to the per-decision importance weight w
(L,ℓ)
max(t,t′). Conse-

quently, the PIW-based policy update rules are given as

µ̂
PIW
L+1 =




L∑

ℓ=1

N∑

n=1

T∑

t,t′=1

γt−1rt,nφ(s
πℓ

t′,n)φ(s
πℓ

t′,n)
⊤w

(L,ℓ)
max(t,t′)(h

πℓ
n )




−1

×




L∑

ℓ=1

N∑

n=1

T∑

t,t′=1

γt−1rt,na
πℓ

t′,nφ(s
πℓ

t′,n)w
(L,ℓ)
max(t,t′)(h

πℓ
n )


 ,

(σ̂PIW
L+1 )

2 =

(
L∑

ℓ=1

N∑

n=1

T∑

t=1

γt−1rt,nw
(L,ℓ)
t (hπℓ

n )

)−1

×
(

1

T

L∑

ℓ=1

N∑

n=1

T∑

t,t′=1

γt−1rt,n

(
aπℓ

t′,n − µ̂PIW
L+1

⊤φ(sπℓ

t′,n)
)2
w

(L,ℓ)
max(t,t′)(h

πℓ
n )

)
,

where
rt,n = r(st,n, at,n, st+1,n).

This PIW estimator θ̂
PIW

L+1 = (µ̂PIW
L+1

⊤, σ̂PIW
L+1 )

⊤ is consistent and potentially

more stable than the plain EIW estimator θ̂
EIW

L+1 .

8.2.3 Adaptive Per-Decision Importance Weighting

To more actively control the stability of the PIW estimator, the adaptive
per-decision importance weight (AIW) is employed. More specifically, an im-

portance weight w
(L,ℓ)
max(t,t′)(h) is “flattened” by flattening parameter ν ∈ [0, 1]

as
(
w

(L,ℓ)
max(t,t′)(h)

)ν
, i.e., the ν-th power of the per-decision importance weight.

Then we have θ̂
AIW

L+1 = (µ̂AIW
L+1

⊤, σ̂AIW
L+1 )

⊤, where

µ̂
AIW
L+1 =




L∑

ℓ=1

N∑

n=1

T∑

t,t′=1

γt−1rt,nφ(s
πℓ

t′,n)φ(s
πℓ

t′,n)
⊤
(
w

(L,ℓ)
max(t,t′)(h

πℓ
n )
)ν



−1

×




L∑

ℓ=1

N∑

n=1

T∑

t,t′=1

γt−1rt,na
πℓ

t′,nφ(s
πℓ

t′,n)
(
w

(L,ℓ)
max(t,t′)(h

πℓ
n )
)ν

 ,

(σ̂AIW
L+1 )

2 =

(
L∑

ℓ=1

N∑

n=1

T∑

t=1

γt−1rt,n

(
w

(L,ℓ)
t (hπℓ

n )
)ν
)−1
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×
(

1

T

L∑

ℓ=1

N∑

n=1

T∑

t,t′=1

γt−1rt,n

(
aπℓ

t′,n − µ̂
AIW
L+1

⊤φ(sπℓ

t′,n)
)2 (

w
(L,ℓ)
max(t,t′)(h

πℓ
n )
)ν
)
.

When ν = 0, AIW is reduced to NIW. Therefore, it is relatively stable, but
not consistent. On the other hand, when ν = 1, AIW is reduced to PIW.
Therefore, it is consistent, but rather unstable. In practice, an intermediate
ν often produces a better estimator. Note that the value of the flattening
parameter can be different in each iteration, i.e., ν may be replaced by νℓ.
However, for simplicity, a single common value ν is considered here.

8.2.4 Automatic Selection of Flattening Parameter

The flattening parameter allows us to control the trade-off between consis-
tency and stability. Here, we show how the value of the flattening parameter
can be optimally chosen using data samples.

The goal of policy search is to find the optimal policy that maximizes the
expected return J(θ). Therefore, the optimal flattening parameter value ν∗L
at the L-th iteration is given by

ν∗L = argmax
ν

J(θ̂
AIW

L+1 (ν)).

Directly obtaining ν∗L requires the computation of the expected return

J(θ̂
AIW

L+1 (ν)) for each candidate of ν. To this end, data samples following

π(a|s; θ̂AIW

L+1 (ν)) are needed for each ν, which is prohibitively expensive. To
reuse samples generated by previous policies, a variation of cross-validation
called importance-weighted cross-validation (IWCV) (Sugiyama et al., 2007)
is employed.

The basic idea of IWCV is to split the training dataset Hπ1:L = {Hπℓ}Lℓ=1

into an “estimation part” and a “validation part.” Then the policy param-

eter θ̂
AIW

L+1 (ν) is learned from the estimation part and its expected return

J(θ̂
AIW

(ν)) is approximated using the importance-weighted loss for the val-
idation part. As pointed out in Section 8.2.1, importance weighting tends to
be unstable when the number N of episodes is small. For this reason, per-
decision importance weighting is used for cross-validation. Below, how IWCV
is applied to the selection of the flattening parameter ν in the current context
is explained in more detail.

Let us divide the training datasetHπ1:L = {Hπℓ}Lℓ=1 intoK disjoint subsets
{Hπ1:L

k }Kk=1 of the same size, where eachHπ1:L

k contains N/K episodic samples
from every Hπℓ . For simplicity, we assume that N is divisible by K, i.e., N/K
is an integer. K = 5 will be used in the experiments later.

Let θ̂
AIW

L+1,k(ν) be the policy parameter learned from {Hπ1:L

k′ }k′ 6=k (i.e., all

data without Hπ1:L

k ) by AIW estimation. The expected return of θ̂
AIW

L+1,k(ν) is
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estimated using the PIW estimator from Hπ1:L

k as

Ĵk
IWCV(θ̂

AIW

L+1,k(ν)) =
1

η

∑

h∈H
π1:L
k

T∑

t=1

γt−1r(st, at, st+1)w
(L,ℓ)
t (h),

where η is a normalization constant. An ordinary choice is η = LN/K, but a
more stable variant given by

η =
∑

h∈H
π1:L
k

w
(L,ℓ)
t (h)

is often preferred in practice (Precup et al., 2000).
The above procedure is repeated for all k = 1, . . . , K, and the average

score,

ĴIWCV(θ̂
AIW

L+1 (ν)) =
1

K

K∑

k=1

Ĵk
IWCV(θ̂

AIW

L+1,k(ν)),

is computed. This is the K-fold IWCV estimator of J(θ̂
AIW

L+1 (ν)), which was
shown to be almost unbiased (Sugiyama et al., 2007).

This K-fold IWCV score is computed for each candidate value of the flat-
tening parameter ν and the one that maximizes the IWCV score is chosen:

ν̂IWCV = argmax
ν

ĴIWCV(θ̂
AIW

L+1 (ν)).

This IWCV scheme can also be used for choosing the basis functions φ(s) in
the Gaussian policy model.

Note that when the importance weights w
(L,ℓ)
max(t,t′) are all one (i.e., no im-

portance weighting), the above IWCV procedure is reduced to the ordinary
CV procedure. The use of IWCV is essential here since the target policy

π(a|s, θ̂AIW

L+1 (ν)) is usually different from the previous policies used for collect-
ing the data samples Hπ1:L . Therefore, the expected return estimated using

ordinary CV, ĴCV(θ̂
AIW

L+1 (ν)), would be heavily biased.

8.2.5 Reward-Weighted Regression with Sample Reuse

So far, we have introduced AIW to control the stability of the policy-
parameter update and IWCV to automatically choose the flattening parameter
based on the estimated expected return. The policy search algorithm that
combines these two methods is called reward-weighted regression with sample
reuse (RRR).

In each iteration (L = 1, 2, . . .) of RRR, episodic data samples HπL are
collected following the current policy π(a|s, θAIW

L ), the flattening parameter

ν is chosen so as to maximize the expected return ĴIWCV(ν) estimated by
IWCV using {Hπℓ}Lℓ=1, and then the policy parameter is updated to θAIW

L+1

using {Hπℓ}Lℓ=1.
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elbow
wrist

FIGURE 8.2: Ball balancing using a robot arm simulator. Two joints of the
robots are controlled to keep the ball in the middle of the tray.

8.3 Numerical Examples

The performance of RRR is experimentally evaluated on a ball-balancing
task using a robot arm simulator (Schaal, 2009).

As illustrated in Figure 8.2, a 7-degree-of-freedom arm is mounted on the
ceiling upside down, which is equipped with a circular tray of radius 0.24 [m]
at the end effector. The goal is to control the joints of the robot so that the
ball is brought to the middle of the tray. However, the difficulty is that the
angle of the tray cannot be controlled directly, which is a typical restriction
in real-world joint-motion planning based on feedback from the environment
(e.g., the state of the ball).

To simplify the problem, only two joints are controlled here: the wrist angle
αroll and the elbow angle αpitch. All the remaining joints are fixed. Control
of the wrist and elbow angles would roughly correspond to changing the roll
and pitch angles of the tray, but not directly.

Two separate control subsystems are designed here, each of which is in
charge of controlling the roll and pitch angles. Each subsystem has its own
policy parameter θ, state space S, and action space A. The state space S is
continuous and consists of (x, ẋ), where x [m] is the position of the ball on the
tray along each axis and ẋ [m/s] is the velocity of the ball. The action space
A is continuous and corresponds to the target angle a [rad] of the joint. The
reward function is defined as

r(s, a, s′) = exp

(
−5(x′)2 + (ẋ′)2 + a2

2(0.24/2)2

)
,

where the number 0.24 in the denominator comes from the radius of the tray.
Below, how the control system is designed is explained in more detail.
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FIGURE 8.3: The block diagram of the robot-arm control system for ball
balancing. The control system has two feedback loops, i.e., joint-trajectory
planning by RRR and trajectory tracking by a high-gain proportional-
derivative (PD) controller.

As illustrated in Figure 8.3, the control system has two feedback loops for
trajectory planning using an RRR controller and trajectory tracking using a
high-gain proportional-derivative (PD) controller (Siciliano & Khatib, 2008).
The RRR controller outputs the target joint angle obtained by the current
policy at every 0.2 [s]. Nine Gaussian kernels are used as basis functions φ(s)
with the kernel centers {cb}9b=1 located over the state space at

(x, ẋ) ∈ {(−0.2,−0.4), (−0.2, 0), (−0.1, 0.4),
(0,−0.4), (0, 0), (0, 0.4),
(0.1,−0.4), (0.2, 0), (0.2, 0.4)}.

The Gaussian width is set at σbasis = 0.1. Based on the discrete-time target
angles obtained by RRR, the desired joint trajectory in the continuous time
domain is linearly interpolated as

at,u = at + uȧt,

where u is the time from the last output at of RRR at the t-th step. ȧt is the
angular velocity computed by

ȧt =
at − at−1

0.2
,

where a0 is the initial angle of a joint. The angular velocity is assumed to be
constant during the 0.2 [s] cycle of trajectory planning.

On the other hand, the PD controller converts desired joint trajectories to
motor torques as

τ t,u = µp ∗ (at,u −αt,u) + µd ∗ (ȧt − α̇t,u),

where τ is the 2-dimensional vector consisting of the torque applied to the
wrist and elbow joints. a = (apitch, aroll)

⊤ and ȧ = (ȧpitch, ȧroll)
⊤ are the

2-dimensional vectors consisting of the desired angles and velocities. α =
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(αpitch, αroll)
⊤ and α̇ = (α̇pitch, α̇roll)

⊤ are the 2-dimensional vectors consist-
ing of the current joint angles and velocities. µp and µd are the 2-dimensional
vectors consisting of the proportional and derivative gains. “∗” denotes the
element-wise product. Since the control cycle of the robot arm is 0.002 [s],
the PD controller is applied 100 times (i.e., t = 0.002, 0.004, . . . , 0.198, 0.2) in
each RRR cycle.

Figure 8.4 depicts a desired trajectory of the wrist joint generated by
a random policy and an actual trajectory obtained using the high-gain PD
controller described above. The graphs show that the desired trajectory is
followed by the robot arm reasonably well.

The policy parameter θL is learned through the RRR iterations. The initial
policy parameters θ1 = (µ⊤

1 , σ1)
⊤ are set manually as

µ1 = (−0.5,−0.5, 0,−0.5, 0, 0, 0, 0, 0)⊤ and σ1 = 0.1,

so that a wide range of states and actions can be safely explored in the first iter-
ation. The initial position of the ball is randomly selected as x ∈ [−0.05, 0.05].
The dataset collected in each iteration consists of 10 episodes with 20 steps.
The duration of an episode is 4 [s] and the sampling cycle by RRR is 0.2 [s].

Three scenarios are considered here:

• NIW: Sample reuse with ν = 0.

• PIW: Sample reuse with ν = 1.

• RRR: Sample reuse with ν chosen by IWCV from {0, 0.25, 0.5, 0.75, 1}
in each iteration.

The discount factor is set at γ = 0.99. Figure 8.5 depicts the averaged expected
return over 10 trials as a function of the number of policy update iterations.
The expected return in each trial is computed from 20 test episodic samples
that have not been used for training. The graph shows that RRR nicely im-
proves the performance over iterations. On the other hand, the performance
for ν = 0 is saturated after the 3rd iteration, and the performance for ν = 1
is improved in the beginning but suddenly goes down at the 5th iteration.
The result for ν = 1 indicates that a large change in policies causes severe
instability in sample reuse.

Figure 8.6 and Figure 8.7 depict examples of trajectories of the wrist angle
αroll, the elbow angle αpitch, resulting ball movement x, and reward r for
policies obtained by NIW (ν = 0) and RRR (ν is chosen by IWCV) after
the 10th iteration. By the policy obtained by NIW, the ball goes through the
middle of the tray, i.e., (xroll, xpitch) = (0, 0), and does not stop. On the other
hand, the policy obtained by RRR successfully guides the ball to the middle
of the tray along the roll axis, although the movement along the pitch axis
looks similar to that by NIW. Motion examples by RRR with ν chosen by
IWCV are illustrated in Figure 8.8.
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FIGURE 8.4: An example of desired and actual trajectories of the wrist
joint in the realistic ball-balancing task. The target joint angle is determined
by a random policy at every 0.2 [s], and then a linearly interpolated angle and
constant velocity are tracked using the proportional-derivative (PD) controller
in the cycle of 0.002 [s].
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FIGURE 8.5: The performance of learned policies when ν = 0 (NIW), ν = 1
(PIW), and ν is chosen by IWCV (RRR) in ball balancing using a simulated
robot-arm system. The performance is measured by the return averaged over
10 trials. The symbol “◦” indicates that the method is the best or comparable
to the best one in terms of the expected return by the t-test at the signifi-
cance level 5%, performed at each iteration. The error bars indicate 1/10 of a
standard deviation.
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FIGURE 8.6: Typical examples of trajectories of wrist angle αroll, elbow
angle αpitch, resulting ball movement x, and reward r for policies obtained by
NIW (ν = 0) at the 10th iteration in the ball-balancing task.
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FIGURE 8.7: Typical examples of trajectories of wrist angle αroll, elbow
angle αpitch, resulting ball movement x, and reward r for policies obtained by
RRR (ν is chosen by IWCV) at the 10th iteration in the ball-balancing task.
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FIGURE 8.8: Motion examples of ball balancing by RRR (from left to right
and top to bottom).
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8.4 Remarks

A direct policy search algorithm based on expectation-maximization (EM)
iteratively maximizes the lower-bound of the expected return. The EM-based
approach does not include the step size parameter, which is an advantage over
the gradient-based approach introduced in Chapter 7. A sample-reuse variant
of the EM-based method was also provided, which contributes to improving
the stability of the algorithm in small-sample scenarios.

In practice, however, the EM-based approach is still rather instable even if
it is combined with the sample-reuse technique. In Chapter 9, another policy
search approach will be introduced to further improve the stability of policy
updates.



Chapter 9

Policy-Prior Search

The direct policy search methods explained in Chapter 7 and Chapter 8 are
useful in solving problems with continuous actions such as robot control. How-
ever, they tend to suffer from instability of policy update. In this chapter, we
introduce an alternative policy search method called policy-prior search, which
is adopted in the PGPE (policy gradients with parameter-based exploration)
method (Sehnke et al., 2010). The basic idea is to use deterministic policies to
remove excessive randomness and introduce useful stochasticity by considering
a prior distribution for policy parameters.

After formulating the problem of policy-prior search in Section 9.1, a
gradient-based algorithm is introduced in Section 9.2, including its improve-
ment using baseline subtraction, theoretical analysis, and experimental eval-
uation. Then, in Section 9.3, a sample-reuse variant is described and its per-
formance is theoretically analyzed and experimentally investigated using a
humanoid robot. Finally, this chapter is concluded in Section 9.4.

9.1 Formulation

In this section, the policy search problem is formulated based on policy
priors .

The basic idea is to use a deterministic policy and introduce stochasticity
by drawing policy parameters from a prior distribution. More specifically, pol-
icy parameters are randomly determined following the prior distribution at the
beginning of each trajectory, and thereafter action selection is deterministic
(Figure 9.1). Note that transitions are generally stochastic, and thus trajecto-
ries are also stochastic even though the policy is deterministic. Thanks to this
per-trajectory formulation, the variance of gradient estimators in policy-prior
search does not increase with respect to the trajectory length, which allows
us to overcome the critical drawback of direct policy search.

Policy-prior search uses a deterministic policy with typically a linear ar-
chitecture:

π(a|s, θ) = δ(a = θ⊤φ(s)),

where δ(·) is the Dirac delta function and φ(s) is the basis function. The policy

133
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FIGURE 9.1: Illustration of the stochastic policy and the deterministic pol-
icy with a prior under deterministic transition. The number of possible tra-
jectories is exponential with respect to the trajectory length when stochastic
policies are used, while it does not grow when deterministic policies drawn
from a prior distribution are used.

parameter θ is drawn from a prior distribution p(θ|ρ) with hyper-parameter
ρ.

The expected return in policy-prior search is defined in terms of the ex-
pectations over both trajectory h and policy parameter θ as a function of
hyper-parameter ρ:

J(ρ) = Ep(h|θ)p(θ|ρ)[R(h)] =

∫∫
p(h|θ)p(θ|ρ)R(h)dhdθ,

where Ep(h|θ)p(θ|ρ) denotes the expectation over trajectory h and policy
parameter θ drawn from p(h|θ)p(θ|ρ). In policy-prior search, the hyper-
parameter ρ is optimized so that the expected return J(ρ) is maximized.
Thus, the optimal hyper-parameter ρ∗ is given by

ρ∗ = argmax
ρ

J(ρ).

9.2 Policy Gradients with Parameter-Based Exploration

In this section, a gradient-based algorithm for policy-prior search is given.
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9.2.1 Policy-Prior Gradient Ascent

Here, a gradient method is used to find a local maximizer of the expected
return J with respect to hyper-parameter ρ:

ρ←− ρ+ ε∇ρJ(ρ),

where ε is a small positive constant and ∇ρJ(ρ) is the derivative of J with
respect to ρ:

∇ρJ(ρ) =

∫∫
p(h|θ)∇ρp(θ|ρ)R(h)dhdθ

=

∫∫
p(h|θ)p(θ|ρ)∇ρ log p(θ|ρ)R(h)dhdθ

= Ep(h|θ)p(θ|ρ)[∇ρ log p(θ|ρ)R(h)],
where the logarithmic derivative,

∇ρ log p(θ|ρ) =
∇ρp(θ|ρ)
p(θ|ρ) ,

was used in the derivation. The expectations over h and θ are approximated
by the empirical averages:

∇ρĴ(ρ) =
1

N

N∑

n=1

∇ρ log p(θn|ρ)R(hn), (9.1)

where each trajectory sample hn is drawn independently from p(h|θn) and
parameter θn is drawn from p(θ|ρ). Thus, in policy-prior search, samples are
pairs of θ and h:

H = {(θ1, h1), . . . , (θN , hN )}.
As the prior distribution for policy parameter θ = (θ1, . . . , θB)

⊤, where
B is the dimensionality of the basis vector φ(s), the independent Gaussian
distribution is a standard choice. For this Gaussian prior, the hyper-parameter
ρ consists of prior means η = (η1, . . . , ηB)

⊤ and prior standard deviations
τ = (τ1, . . . , τB)

⊤:

p(θ|η, τ ) =
B∏

b=1

1

τb
√
2π

exp

(
− (θb − ηb)2

2τ2b

)
. (9.2)

Then the derivatives of log-prior log p(θ|η, τ ) with respect to ηb and τb are
given as

∇ηb
log p(θ|η, τ ) =θb − ηb

τ2b
,

∇τb log p(θ|η, τ ) =
(θb − ηb)2 − τ2b

τ3b
.

By substituting these derivatives into Eq. (9.1), the policy-prior gradients with
respect to η and τ can be approximated.
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9.2.2 Baseline Subtraction for Variance Reduction

As explained in Section 7.2.2, subtraction of a baseline can reduce the vari-
ance of gradient estimators. Here, a baseline subtraction method for policy-
prior search is described.

For a baseline ξ, a modified gradient estimator is given by

∇ρĴ
ξ(ρ) =

1

N

N∑

n=1

(R(hn)− ξ)∇ρ log p(θn|ρ).

Let ξ∗ be the optimal baseline that minimizes the variance of the gradient:

ξ∗ = argmin
ξ

Varp(h|θ)p(θ|ρ)[∇ρĴ
ξ(ρ)],

where Varp(h|θ)p(θ|ρ) denotes the trace of the covariance matrix:

Varp(h|θ)p(θ|ρ)[ζ]

= tr
(
Ep(h|θ)p(θ|ρ)

[
(ζ − Ep(h|θ)p(θ|ρ)[ζ])(ζ − Ep(h|θ)p(θ|ρ)[ζ])

⊤
])

= Ep(h|θ)p(θ|ρ)

[
‖ζ − Ep(h|θ)p(θ|ρ)[ζ]‖2

]
.

It was shown in Zhao et al. (2012) that the optimal baseline for policy-prior
search is given by

ξ∗ =
Ep(h|θ)p(θ|ρ)[R(h)‖∇ρ log p(θ|ρ)‖2]

Ep(θ|ρ)[‖∇ρ log p(θ|ρ)‖2]
,

where Ep(θ|ρ) denotes the expectation over policy parameter θ drawn from
p(θ|ρ). In practice, the expectations are approximated by the sample averages.

9.2.3 Variance Analysis of Gradient Estimators

Here the variance of gradient estimators is theoretically investigated for
the independent Gaussian prior (9.2) with φ(s) = s. See Zhao et al. (2012)
for technical details.

Below, subsets of the following assumptions are considered (which are the
same as the ones used in Section 7.2.3):

Assumption (A): r(s, a, s′) ∈ [−β, β] for β > 0.

Assumption (B): r(s, a, s′) ∈ [α, β] for 0 < α < β.

Assumption (C): For δ > 0, there exist two series {ct}Tt=1 and {dt}Tt=1 such
that

‖st‖ ≥ ct and t‖ ≤ dt
hold with probability at least 1 − δ

2N , respectively, over the choice of
sample paths.
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Note that Assumption (B) is stronger than Assumption (A).
Let

G =

B∑

b=1

τ−2
b .

First, the variance of gradient estimators in policy-prior search is analyzed:

Theorem 9.1 Under Assumption (A), the following upper bounds hold:

Varp(h|θ)p(θ|ρ)

[
∇ηĴ(η, τ )

]
≤ β2(1 − γT )2G

N(1− γ)2 ≤ β2G

N(1− γ)2 ,

Varp(h|θ)p(θ|ρ)

[
∇τ Ĵ(η, τ )

]
≤ 2β2(1− γT )2G

N(1− γ)2 ≤ 2β2G

N(1− γ)2 .

The second upper bounds are independent of the trajectory length T , while
the upper bounds for direct policy search (Theorem 7.1 in Section 7.2.3) are
monotone increasing with respect to the trajectory length T . Thus, gradient
estimation in policy-prior search is expected to be more reliable than that in
direct policy search when the trajectory length T is large.

The following theorem more explicitly compares the variance of gradient
estimators in direct policy search and policy-prior search:

Theorem 9.2 In addition to Assumptions (B) and (C), assume that

ζ(T ) = CTα
2 −DTβ

2/(2π)

is positive and monotone increasing with respect to T , where

CT =

T∑

t=1

c2t and DT =

T∑

t=1

d2t .

If there exists T0 such that

ζ(T0) ≥ β2Gσ2,

then it holds that

Varp(h|θ)p(θ|ρ)[∇µĴ(θ)] > Varp(h|θ)p(θ|ρ)[∇ηĴ(η, τ )]

for all T > T0, with probability at least 1− δ.
The above theorem means that policy-prior search is more favorable than

direct policy search in terms of the variance of gradient estimators of the
mean, if trajectory length T is large.

Next, the contribution of the optimal baseline to the variance of the gradi-
ent estimator with respect to mean parameter η is investigated. It was shown
in Zhao et al. (2012) that the excess variance for a baseline ξ is given by

Varp(h|θ)p(θ|ρ)[∇ρĴ
ξ(ρ)]−Varp(h|θ)p(θ|ρ)[∇ρĴ

ξ∗(ρ)]
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=
(ξ − ξ∗)2

N
Ep(h|θ)p(θ|ρ)

[
‖∇ρ log p(θ|ρ)‖2

]
.

Based on this expression, the following theorem holds.

Theorem 9.3 If r(s, a, s′) ≥ α > 0, the following lower bound holds:

Varp(h|θ)p(θ|ρ)[∇η Ĵ(η, τ )]−Varp(h|θ)p(θ|ρ)[∇ηĴ
ξ∗(η, τ )] ≥ α2(1− γT )2G

N(1− γ)2 .

Under Assumption (A), the following upper bound holds:

Varp(h|θ)p(θ|ρ)[∇η Ĵ(η, τ )]−Varp(h|θ)p(θ|ρ)[∇ηĴ
ξ∗(η, τ )] ≤ β2(1− γT )2G

N(1− γ)2 .

The above theorem shows that the lower bound of the excess variance
is positive and monotone increasing with respect to the trajectory length T .
This means that the variance is always reduced by subtracting the optimal
baseline and the amount of variance reduction is monotone increasing with
respect to the trajectory length T . Note that the upper bound is also monotone
increasing with respect to the trajectory length T .

Finally, the variance of the gradient estimator with the optimal baseline
is investigated:

Theorem 9.4 Under Assumptions (B) and (C), the following upper bound
holds with probability at least 1− δ:

Varp(h|θ)p(θ|ρ)[∇η Ĵ
ξ∗(η, τ )] ≤ (1− γT )2

N(1− γ)2 (β
2 − α2)G ≤ (β2 − α2)G

N(1− γ)2 .

The second upper bound is independent of the trajectory length T , while
Theorem 7.4 in Section 7.2.3 showed that the upper bound of the variance
of gradient estimators with the optimal baseline in direct policy search is
monotone increasing with respect to trajectory length T . Thus, when trajec-
tory length T is large, policy-prior search is more favorable than direct policy
search in terms of the variance of the gradient estimator with respect to the
mean even when optimal baseline subtraction is applied.

9.2.4 Numerical Examples

Here, the performance of the direct policy search and policy-prior search
algorithms are experimentally compared.

9.2.4.1 Setup

Let the state space S be one-dimensional and continuous, and the initial
state is randomly chosen following the standard normal distribution. The ac-
tion space A is also set to be one-dimensional and continuous. The transition
dynamics of the environment is set at

st+1 = st + at + ε,
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TABLE 9.1: Variance and bias of estimated parameters.
(a) Trajectory length T = 10

Method Variance Bias
µ, η σ, τ µ, η σ, τ

REINFORCE 13.257 26.917 -0.310 -1.510
REINFORCE-OB 0.091 0.120 0.067 0.129

PGPE 0.971 1.686 -0.069 0.132
PGPE-OB 0.037 0.069 -0.016 0.051

(b) Trajectory length T = 50

Method Variance Bias
µ, η σ, τ µ, η σ, τ

REINFORCE 188.386 278.310 -1.813 -5.175
REINFORCE-OB 0.545 0.900 -0.299 -0.201

PGPE 1.657 3.372 -0.105 -0.329
PGPE-OB 0.085 0.182 0.048 -0.078

where ε ∼ N (0, 0.52) is stochastic noise and N (µ, σ2) denotes the normal
distribution with mean µ and variance σ2. The immediate reward is defined
as

r = exp
(
−s2/2− a2/2

)
+ 1,

which is bounded as 1 < r ≤ 2. The length of the trajectory is set at T = 10
or 50, the discount factor is set at γ = 0.9, and the number of episodic samples
is set at N = 100.

9.2.4.2 Variance and Bias

First, the variance and the bias of gradient estimators of the following
methods are investigated:

• REINFORCE: REINFORCE (gradient-based direct policy search)
without a baseline (Williams, 1992).

• REINFORCE-OB: REINFORCE with optimal baseline subtraction
(Peters & Schaal, 2006).

• PGPE: PGPE (gradient-based policy-prior search) without a baseline
(Sehnke et al., 2010).

• PGPE-OB: PGPE with optimal baseline subtraction (Zhao et al.,
2012).

Table 9.1 summarizes the variance of gradient estimators over 100 runs,
showing that the variance of REINFORCE is overall larger than PGPE. A
notable difference between REINFORCE and PGPE is that the variance of
REINFORCE significantly grows as the trajectory length T increases, whereas
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that of PGPE is not influenced that much by T . This agrees well with the
theoretical analyses given in Section 7.2.3 and Section 9.2.3. Optimal baseline
subtraction (REINFORCE-OB and PGPE-OB) is shown to contribute highly
to reducing the variance, especially when trajectory length T is large, which
also agrees well with the theoretical analysis.

The bias of the gradient estimator of each method is also investigated.
Here, gradients estimated with N = 1000 are regarded as true gradients, and
the bias of gradient estimators is computed. The results are also included in
Table 9.1, showing that introduction of baselines does not increase the bias;
rather, it tends to reduce the bias.

9.2.4.3 Variance and Policy Hyper-Parameter Change through En-
tire Policy-Update Process

Next, the variance of gradient estimators is investigated when policy hyper-
parameters are updated over iterations. If the deviation parameter σ takes a
negative value during the policy-update process, it is set at 0.05. In this ex-
periment, the variance is computed from 50 runs for T = 20 and N = 10, and
policies are updated over 50 iterations. In order to evaluate the variance in
a stable manner, the above experiments are repeated 20 times with random
choice of initial mean parameter µ from [−3.0,−0.1], and the average variance
of gradient estimators is investigated with respect to mean parameter µ over
20 trials. The results are plotted in Figure 9.2. Figure 9.2(a) compares the
variance of REINFORCE with/without baselines, whereas Figure 9.2(b) com-
pares the variance of PGPE with/without baselines. These graphs show that
introduction of baselines contributes highly to the reduction of the variance
over iterations.

Let us illustrate how parameters are updated by PGPE-OB over 50 itera-
tions for N = 10 and T = 10. The initial mean parameter is set at η = −1.6,
−0.8, or −0.1, and the initial deviation parameter is set at τ = 1. Figure 9.3
depicts the contour of the expected return and illustrates trajectories of pa-
rameter updates over iterations by PGPE-OB. In the graph, the maximum of
the return surface is located at the middle bottom, and PGPE-OB leads the
solutions to a maximum point rapidly.

9.2.4.4 Performance of Learned Policies

Finally, the return obtained by each method is evaluated. The trajectory
length is fixed at T = 20, and the maximum number of policy-update itera-
tions is set at 50. Average returns over 20 runs are investigated as functions
of the number of episodic samples N . Figure 9.4(a) shows the results when
initial mean parameter µ is chosen randomly from [−1.6,−0.1], which tends
to perform well. The graph shows that PGPE-OB performs the best, espe-
cially when N < 5; then REINFORCE-OB follows with a small margin. The
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FIGURE 9.2: Mean and standard error of the variance of gradient estimators
with respect to the mean parameter through policy-update iterations.
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FIGURE 9.4: Average and standard error of returns over 20 runs as functions
of the number of episodic samples N .

plain PGPE also works reasonably well, although it is slightly unstable due to
larger variance. The plain REINFORCE is highly unstable, which is caused by
the huge variance of gradient estimators (see Figure 9.2 again). Figure 9.4(b)
describes the results when initial mean parameter µ is chosen randomly from
[−3.0,−0.1], which tends to result in poorer performance. In this setup, the
difference among the compared methods is more significant than the case with
good initial policies, meaning that REINFORCE is sensitive to the choice of
initial policies. Overall, the PGPE methods tend to outperform the REIN-
FORCE methods, and among the PGPE methods, PGPE-OB works very
well and converges quickly.
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9.3 Sample Reuse in Policy-Prior Search

Although PGPE was shown to outperform REINFORCE, its behavior is
still rather unstable if the number of data samples used for estimating the gra-
dient is small. In this section, the sample-reuse idea is applied to PGPE. Tech-
nically, the original PGPE is categorized as an on-policy algorithm where data
drawn from the current target policy is used to estimate policy-prior gradients.
On the other hand, off-policy algorithms are more flexible in the sense that
a data-collecting policy and the current target policy can be different. Here,
PGPE is extended to the off-policy scenario using the importance-weighting
technique.

9.3.1 Importance Weighting

Let us consider an off-policy scenario where a data-collecting policy and
the current target policy are different in general. In the context of PGPE,
two hyper-parameters are considered: ρ as the target policy to learn and ρ′

as a policy for data collection. Let us denote the data samples collected with
hyper-parameter ρ′ by H′:

H′ = {
(
θ′n, h

′
n

)
}N ′

n=1
i.i.d.∼ p(h|θ)p(θ|ρ′).

If data H′ is naively used to estimate policy-prior gradients by Eq. (9.1), we
suffer an inconsistency problem:

1

N ′

N ′∑

n=1

∇ρ log p(θ
′
n|ρ)R(h′n)

N ′−→∞
9 ∇ρJ(ρ),

where

∇ρJ(ρ) =

∫∫
p(h|θ)p(θ|ρ)∇ρ log p(θ|ρ)R(h)dhdθ

is the gradient of the expected return,

J(ρ) =

∫∫
p(h|θ)p(θ|ρ)R(h)dhdθ,

with respect to the policy hyper-parameter ρ. Below, this naive method is
referred to as non-importance-weighted PGPE (NIW-PGPE).

This inconsistency problem can be systematically resolved by importance
weighting:

∇ρĴIW(ρ) =
1

N ′

N ′∑

n=1

w(θ′n)∇ρ log p(θ
′
n|ρ)R(h′n)

N ′→∞−→ ∇ρJ(ρ),
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where w(θ) = p(θ|ρ)/p(θ|ρ′) is the importance weight. This extended method
is called importance-weighted PGPE (IW-PGPE).

Below, the variance of gradient estimators in IW-PGPE is theoretically
analyzed. See Zhao et al. (2013) for technical details. As described in Sec-
tion 9.2.1, the deterministic linear policy model is used here:

π(a|s, θ) = δ(a = θ⊤φ(s)), (9.3)

where δ(·) is the Dirac delta function and φ(s) is the B-dimensional basis
function. Policy parameter θ = (θ1, . . . , θB)

⊤ is drawn from the independent
Gaussian prior, where policy hyper-parameter ρ consists of prior means η =
(η1, . . . , ηB)

⊤ and prior standard deviations τ = (τ1, . . . , τB)
⊤:

p(θ|η, τ ) =
B∏

b=1

1

τb
√
2π

exp

(
− (θb − ηb)2

2τ2b

)
. (9.4)

Let

G =
B∑

b=1

τ−2
b ,

and let Varp(h′|θ′)p(θ′|ρ′) denote the trace of the covariance matrix:

Varp(h′|θ′)p(θ′|ρ′)[ζ]

= tr
(
Ep(h′|θ′)p(θ′|ρ′)

[
(ζ − Ep(h′|θ′)p(θ′|ρ′)[ζ])(ζ − Ep(h′|θ′)p(θ′|ρ′)[ζ])

⊤
])

= Ep(h′|θ′)p(θ′|ρ′)

[
‖ζ − Ep(h′|θ′)p(θ′|ρ′)[ζ]‖2

]
,

where Ep(h′|θ′)p(θ′|ρ′) denotes the expectation over trajectory h′ and policy
parameter θ′ drawn from p(h′|θ′)p(θ′|ρ′). Then the following theorem holds:

Theorem 9.5 Assume that for all s, a, and s′, there exists β > 0 such that
r(s, a, s′) ∈ [−β, β], and, for all θ, there exists 0 < wmax < ∞ such that
0 < w(θ) ≤ wmax. Then, the following upper bounds hold:

Varp(h′|θ′)p(θ′|ρ′)

[
∇ηĴIW(η, τ )

]
≤ β2(1− γT )2G

N ′(1− γ)2 wmax,

Varp(h′|θ′)p(θ′|ρ′)

[
∇τ ĴIW(η, τ )

]
≤ 2β2(1− γT )2G

N ′(1 − γ)2 wmax.

It is interesting to note that the upper bounds are the same as the ones
for the plain PGPE (Theorem 9.1 in Section 9.2.3) except for factor wmax.
When wmax = 1, the bounds are reduced to those of the plain PGPE method.
However, if the sampling distribution is significantly different from the target
distribution, wmax can take a large value and thus IW-PGPE can produce a
gradient estimator with large variance. Therefore, IW-PGPE may not be a
reliable approach as it is.

Below, a variance reduction technique for IW-PGPE is introduced which
leads to a practically useful algorithm.
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9.3.2 Variance Reduction by Baseline Subtraction

Here, a baseline is introduced for IW-PGPE to reduce the variance of
gradient estimators, in the same way as the plain PGPE explained in Sec-
tion 9.2.2.

A policy-prior gradient estimator with a baseline ξ ∈ R is defined as

∇ρĴ
ξ
IW(ρ) =

1

N ′

N ′∑

n=1

(R(h′n)− ξ)w(θ′n)∇ρ log p(θ
′
n|ρ).

Here, the baseline ξ is determined so that the variance is minimized. Let ξ∗

be the optimal baseline for IW-PGPE that minimizes the variance:

ξ∗ = argmin
ξ

Varp(h′|θ′)p(θ′|ρ′)[∇ρĴ
ξ
IW(ρ)].

Then the optimal baseline for IW-PGPE is given as follows (Zhao et al., 2013):

ξ∗ =
Ep(h′|θ′)p(θ′|ρ′)[R(h

′)w2(θ′)‖∇ρ log p(θ
′|ρ)‖2]

Ep(θ′|ρ′)[w2(θ′)‖∇ρ log p(θ
′|ρ)‖2] ,

where Ep(θ′|ρ′) denotes the expectation over policy parameter θ′ drawn from
p(θ′|ρ′). In practice, the expectations are approximated by the sample aver-
ages. The excess variance for a baseline ξ is given as

Varp(h′|θ′)p(θ′|ρ′)[∇ρĴ
ξ
IW(ρ)]−Varp(h′|θ′)p(θ′|ρ′)[∇ρĴ

ξ∗

IW(ρ)]

=
(ξ − ξ∗)2

N ′
Ep(θ′|ρ′)[w

2(θ′)‖∇ρ log p(θ
′|ρ)‖2].

Next, contributions of the optimal baseline to variance reduction in IW-
PGPE are analyzed for the deterministic linear policy model (9.3) and the
independent Gaussian prior (9.4). See Zhao et al. (2013) for technical details.

Theorem 9.6 Assume that for all s, a, and s′, there exists α > 0 such that
r(s, a, s′) ≥ α, and, for all θ, there exists wmin > 0 such that w(θ) ≥ wmin.
Then, the following lower bounds hold:

Varp(h′|θ′)p(θ′|ρ′)

[
∇ηĴIW(η, τ )

]
−Varp(h′|θ′)p(θ′|ρ′)

[
∇ηĴ

ξ∗

IW(η, τ )
]

≥ α2(1− γT )2G
N ′(1− γ)2 wmin,

Varp(h′|θ′)p(θ′|ρ′)

[
∇τ ĴIW(η, τ )

]
−Varp(h′|θ′)p(θ′|ρ′)

[
∇τ Ĵ

ξ∗

IW(η, τ )
]

≥ 2α2(1− γT )2G
N ′(1 − γ)2 wmin.

Assume that for all s, a, and s′, there exists β > 0 such that r(s, a, s′) ∈



146 Statistical Reinforcement Learning

[−β, β], and, for all θ, there exists 0 < wmax <∞ such that 0 < w(θ) ≤ wmax.
Then, the following upper bounds hold:

Varp(h′|θ′)p(θ′|ρ′)

[
∇ηĴIW(η, τ )

]
−Varp(h′|θ′)p(θ′|ρ′)

[
∇ηĴ

ξ∗

IW(η, τ )
]

≤ β2(1− γT )2G
N ′(1− γ)2 wmax,

Varp(h′|θ′)p(θ′|ρ′)

[
∇τ ĴIW(η, τ )

]
−Varp(h′|θ′)p(θ′|ρ′)

[
∇τ Ĵ

ξ∗

IW(η, τ )
]

≤ 2β2(1− γT )2G
N ′(1 − γ)2 wmax.

This theorem shows that the bounds of the variance reduction in IW-PGPE
brought by the optimal baseline depend on the bounds of the importance
weight, wmin and wmax — the larger the upper bound wmax is, the more
optimal baseline subtraction can reduce the variance.

From Theorem 9.5 and Theorem 9.6, the following corollary can be imme-
diately obtained:

Corollary 9.7 Assume that for all s, a, and s′, there exists 0 < α < β such
that r(s, a, s′) ∈ [α, β], and, for all θ, there exists 0 < wmin < wmax <∞ such
that wmin ≤ w(θ) ≤ wmax. Then, the following upper bounds hold:

Varp(h′|θ′)p(θ′|ρ′)

[
∇ηĴ

ξ∗

IW(η, τ )
]
≤ (1− γT )2G
N ′(1− γ)2 (β

2wmax − α2wmin),

Varp(h′|θ′)p(θ′|ρ′)

[
∇τ Ĵ

ξ∗

IW(η, τ )
]
≤ 2(1− γT )2G

N ′(1− γ)2 (β2wmax − α2wmin).

From Theorem 9.5 and this corollary, we can confirm that the upper
bounds for the baseline-subtracted IW-PGPE are smaller than those for the
plain IW-PGPE without baseline subtraction, because α2wmin > 0. In partic-
ular, if wmin is large, the upper bounds for the baseline-subtracted IW-PGPE
can be much smaller than those for the plain IW-PGPE without baseline
subtraction.

9.3.3 Numerical Examples

Here, we consider the controlling task of the humanoid robot CB-i (Cheng
et al., 2007) shown in Figure 9.5(a). The goal is to lead the end effector of
the right arm (right hand) to a target object. First, its simulated upper-body
model, illustrated in Figure 9.5(b), is used to investigate the performance of
the IW-PGPE-OB method. Then the IW-PGPE-OB method is applied to the
real robot.

9.3.3.1 Setup

The performance of the following 4 methods is compared:
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(a) CB-i (b) Simulated upper-body model

FIGURE 9.5: Humanoid robot CB-i and its upper-body model. The hu-
manoid robot CB-i was developed by the JST-ICORP Computational Brain
Project and ATR Computational Neuroscience Labs (Cheng et al., 2007).

• IW-REINFORCE-OB: Importance-weighted REINFORCE with the
optimal baseline.

• NIW-PGPE-OB: Data-reuse PGPE-OB without importance weight-
ing.

• PGPE-OB: Plain PGPE-OB without data reuse.

• IW-PGPE-OB: Importance-weighted PGPE with the optimal base-
line.

The upper body of CB-i has 9 degrees of freedom: the shoulder pitch,
shoulder roll, elbow pitch of the right arm; shoulder pitch, shoulder roll, elbow
pitch of the left arm; waist yaw; torso roll; and torso pitch (Figure 9.5(b)). At
each time step, the controller receives states from the system and sends out
actions. The state space is 18-dimensional, which corresponds to the current
angle and angular velocity of each joint. The action space is 9-dimensional,
which corresponds to the target angle of each joint. Both states and actions
are continuous.

Given the state and action in each time step, the physical control system
calculates the torques at each joint by using a proportional-derivative (PD)
controller as

τi = Kpi
(ai − si)−Kdi

ṡi,
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where si, ṡi, and ai denote the current angle, the current angular velocity,
and the target angle of the i-th joint, respectively. Kpi

and Kdi
denote the

position and velocity gains for the i-th joint, respectively. These parameters
are set at

Kpi
= 200 and Kdi

= 10

for the elbow pitch joints, and

Kpi
= 2000 and Kdi

= 100

for other joints.
The initial position of the robot is fixed at the standing-up-straight pose

with the arms down. The immediate reward rt at the time step t is defined as

rt = exp(−10dt)− 0.0005min(ct, 10, 000),

where dt is the distance between the right hand of the robot and the target
object, and ct is the sum of control costs for each joint. The linear deterministic
policy is used for the PGPE methods, and the Gaussian policy is used for IW-
REINFORCE-OB. In both cases, the linear basis function φ(s) = s is used.
For PGPE, the initial prior mean η is randomly chosen from the standard
normal distribution, and the initial prior standard deviation τ is set at 1.

To evaluate the usefulness of data reuse methods with a small number
of samples, the agent collects only N = 3 on-policy samples with trajectory
length T = 100 at each iteration. All previous data samples are reused to
estimate the gradients in the data reuse methods, while only on-policy sam-
ples are used to estimate the gradients in the plain PGPE-OB method. The
discount factor is set at γ = 0.9.

9.3.3.2 Simulation with 2 Degrees of Freedom

First, the performance on the reaching task with only 2 degrees of freedom
is investigated. The body of the robot is fixed and only the right shoulder pitch
and right elbow pitch are used. Figure 9.6 depicts the averaged expected return
over 10 trials as a function of the number of iterations. The expected return
at each trial is computed from 50 newly drawn test episodic data that are not
used for policy learning. The graph shows that IW-PGPE-OB nicely improves
the performance over iterations with only a small number of on-policy samples.
The plain PGPE-OB method can also improve the performance over itera-
tions, but slowly. NIW-PGPE-OB is not as good as IW-PGPE-OB, especially
at the later iterations, because of the inconsistency of the NIW estimator.

The distance from the right hand to the object and the control costs along
the trajectory are also investigated for three policies: the initial policy, the pol-
icy obtained at the 20th iteration by IW-PGPE-OB, and the policy obtained
at the 50th iteration by IW-PGPE-OB. Figure 9.7(a) plots the distance to
the target object as a function of the time step. This shows that the policy
obtained at the 50th iteration decreases the distance rapidly compared with
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FIGURE 9.6: Average and standard error of returns over 10 runs as functions
of the number of iterations for the reaching task with 2 degrees of freedom
(right shoulder pitch and right elbow pitch).
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FIGURE 9.7: Distance and control costs of arm reaching with 2 degrees of
freedom using the policy learned by IW-PGPE-OB.
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FIGURE 9.8: Typical example of arm reaching with 2 degrees of freedom
using the policy obtained by IW-PGPE-OB at the 50th iteration (from left to
right and top to bottom).

the initial policy and the policy obtained at the 20th iteration, which means
that the robot can reach the object quickly by using the learned policy.

Figure 9.7(b) plots the control cost as a function of the time step. This
shows that the policy obtained at the 50th iteration decreases the control
cost steadily until the reaching task is completed. This is because the robot
mainly adjusts the shoulder pitch in the beginning, which consumes a larger
amount of energy than the energy required for controlling the elbow pitch.
Then, once the right hand gets closer to the target object, the robot starts
adjusting the elbow pitch to reach the target object. The policy obtained at
the 20th iteration actually consumes less control costs, but it cannot lead the
arm to the target object.

Figure 9.8 illustrates a typical solution of the reaching task with 2 degrees
of freedom by the policy obtained by IW-PGPE-OB at the 50th iteration. The
images show that the right hand is successfully led to the target object within
only 10 time steps.

9.3.3.3 Simulation with All 9 Degrees of Freedom

Finally, the same experiment is carried out using all 9 degrees of freedom.
The position of the target object is more distant from the robot so that it
cannot be reached by only using the right arm.
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FIGURE 9.9: Average and standard error of returns over 10 runs as functions
of the number of iterations for the reaching task with all 9 degrees of freedom.

Because all 9 joints are used, the dimensionality of the state space is much
increased and this grows the values of importance weights exponentially. In
order to mitigate the large values of importance weights, we decided not to
reuse all previously collected samples, but only samples collected in the last
5 iterations. This allows us to keep the difference between the sampling dis-
tribution and the target distribution reasonably small, and thus the values of
importance weights can be suppressed to some extent. Furthermore, follow-
ing Wawrzynski (2009), we consider a version of IW-PGPE-OB, denoted as
“truncated IW-PGPE-OB” below, where the importance weight is truncated
as w = min(w, 2).

The results plotted in Figure 9.9 show that the performance of the trun-
cated IW-PGPE-OB is the best. This implies that the truncation of impor-
tance weights is helpful when applying IW-PGPE-OB to high-dimensional
problems.

Figure 9.10 illustrates a typical solution of the reaching task with all 9
degrees of freedom by the policy obtained by the truncated IW-PGPE-OB
at the 400th iteration. The images show that the policy learned by our pro-
posed method successfully leads the right hand to the target object, and the
irrelevant parts are kept at the initial position for reducing the control costs.

9.3.3.4 Real Robot Control

Finally, the IW-PGPE-OB method is applied to the real CB-i robot shown
in Figure 9.11 (Sugimoto et al., 2014).

The experimental setting is essentially the same as the above simulation
studies with 9 joints, but policies are updated only every 5 trials and samples
taken from the last 10 trials are reused for stabilization purposes. Figure 9.12
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FIGURE 9.10: Typical example of arm reaching with all 9 degrees of free-
dom using the policy obtained by the truncated IW-PGPE-OB at the 400th
iteration (from left to right and top to bottom).

FIGURE 9.11: Reaching task by the real CB-i robot (Sugimoto et al., 2014).

plots the obtained rewards cumulated over policy update iterations, showing
that rewards are steadily increased over iteration. Figure 9.13 exhibits the
acquired reaching motion based on the policy obtained at the 120th iteration,
showing that the end effector of the robot can successfully reach the target
object.
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9.4 Remarks

When the trajectory length is large, direct policy search tends to produce
gradient estimators with large variance, due to the randomness of stochas-
tic policies. Policy-prior search can avoid this problem by using determinis-
tic policies and introducing stochasticity by considering a prior distribution
over policy parameters. Both theoretically and experimentally, advantages of
policy-prior search over direct policy search were shown.

A sample reuse framework for policy-prior search was also introduced
which is highly useful in real-world reinforcement learning problems with high
sampling costs. Following the same line as the sample reuse methods for policy
iteration described in Chapter 4 and direct policy search introduced in Chap-
ter 8, importance weighting plays an essential role in sample-reuse policy-prior
search. When the dimensionality of the state-action space is high, however,
importance weights tend to take extremely large values, which causes instabil-
ity of the importance weighting methods. To mitigate this problem, truncation
of the importance weights is useful in practice.
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FIGURE 9.13: Typical example of arm reaching using the policy obtained
by the IW-PGPE-OB method (from left to right and top to bottom).



Part IV

Model-Based

Reinforcement Learning

The reinforcement learning methods explained in Part II and Part III are
categorized into the model-free approach, meaning that policies are learned
without explicitly modeling the unknown environment (i.e., the transition
probability of the agent). On the other hand, in Part IV, we introduce an
alternative approach called the model-based approach, which explicitly models
the environment in advance and uses the learned environment model for policy
learning.

In the model-based approach, no additional sampling cost is necessary to
generate artificial samples from the learned environment model. Thus, the
model-based approach is useful when data collection is expensive (e.g., robot
control). However, accurately estimating the transition model from a limited
amount of trajectory data in multi-dimensional continuous state and action
spaces is highly challenging.

In Chapter 10, we introduce a non-parametric model estimator that pos-
sesses the optimal convergence rate with high computational efficiency, and
demonstrate its usefulness through experiments. Then, in Chapter 11, we
combine dimensionality reduction with model estimation to cope with high
dimensionality of state and action spaces.
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Chapter 10

Transition Model Estimation

In this chapter, we introduce transition probability estimation methods for
model-based reinforcement learning (Wang & Dietterich, 2003; Deisenroth &
Rasmussen, 2011). Among the methods described in Section 10.1, a non-
parametric transition model estimator called least-squares conditional density
estimation (LSCDE) (Sugiyama et al., 2010) is shown to be the most promis-
ing approach (Tangkaratt et al., 2014a). Then in Section 10.2, we describe
how the transition model estimator can be utilized in model-based reinforce-
ment learning. In Section 10.3, experimental performance of a model-based
policy-prior search method is evaluated. Finally, in Section 10.4, this chapter
is concluded.

10.1 Conditional Density Estimation

In this section, the problem of approximating the transition probabil-
ity p(s′|s, a) from independent transition samples {(sm, am, s′m)}Mm=1 is ad-
dressed.

10.1.1 Regression-Based Approach

In the regression-based approach, the problem of transition probability
estimation is formulated as a function approximation problem of predicting
output s′ given input s and a under Gaussian noise:

s′ = f(s, a) + ǫ,

where f is an unknown regression function to be learned, ǫ is an indepen-
dent Gaussian noise vector with mean zero and covariance matrix σ2I, and I
denotes the identity matrix.

Let us approximate f by the following linear-in-parameter model:

f(s, a,Γ) = Γ⊤φ(s, a),

where Γ is the B×dim(s) parameter matrix and φ(s, a) is the B-dimensional

157
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basis vector. A typical choice of the basis vector is the Gaussian kernel , which
is defined for B =M as

φb(s, a) = exp

(
−‖s− sb‖

2 + (a− ab)2
2κ2

)
,

and κ > 0 denotes the Gaussian kernel width. If B is too large, the number of
basis functions may be reduced by only using a subset of samples as Gaussian
centers. Different Gaussian widths for s and a may be used if necessary.

The parameter matrix Γ is learned so that the regularized squared error
is minimized:

Γ̂ = argmin
Γ

[
M∑

m=1

(
f(sm, am,Γ)− f(sm, am)

)2
+ tr

(
Γ⊤RΓ

)]
,

where R is the B × B positive semi-definite matrix called the regularization
matrix. The solution Γ̂ is given analytically as

Γ̂ = (Φ⊤Φ+R)−1Φ⊤(s′1, . . . , s
′
M )⊤,

where Φ is the M ×B design matrix defined as

Φm,b = φb(sm, am).

We can confirm that predicted output vector ŝ′ = f(s, a, Γ̂) actually follows
the Gaussian distribution with mean

(s′1, . . . , s
′
M )Φ(Φ⊤Φ+R)−1φ(s, a)

and covariance matrix δ̂2I, where

δ̂2 = σ2tr
(
(Φ⊤Φ+R)−2Φ⊤Φ

)
.

The tuning parameters such as the Gaussian kernel width κ and the regu-
larization matrix R can be determined either by cross-validation or evidence
maximization if the above method is regarded as Gaussian process regression
in the Bayesian framework (Rasmussen & Williams, 2006).

This is the regression-based estimator of the transition probability density
p(s′|s, a) for an arbitrary test input s and a. Thus, by the use of kernel
regression models, the regression function f (which is the conditional mean of
outputs) is approximated in a non-parametric way. However, the conditional
distribution of outputs itself is restricted to be Gaussian, which is highly
restrictive in real-world reinforcement learning.

10.1.2 ǫ-Neighbor Kernel Density Estimation

When the conditioning variables (s, a) are discrete, the conditional density
p(s′|s, a) can be easily estimated by standard density estimators such as kernel
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density estimation (KDE) by only using samples {s′i}i such that (si, ai) agrees
with the target values (s, a). ǫ-neighbor KDE (ǫKDE) extends this idea to the
continuous case such that (si, ai) are close to the target values (s, a).

More specifically, ǫKDE with the Gaussian kernel is given by

p̂(s′|s, a) = 1

|I(s,a),ǫ|
∑

i∈I(s,a),ǫ

N (s′; s′i, σ
2I),

where I(s,a),ǫ is the set of sample indices such that ‖(s, a) − (si, ai)‖ ≤ ǫ
and N (s′; s′i, σ

2I) denotes the Gaussian density with mean s′i and covariance
matrix σ2I. The Gaussian width σ and the distance threshold ǫ may be chosen
by cross-validation.

ǫKDE is a useful non-parametric density estimator that is easy to im-
plement. However, it is unreliable in high-dimensional problems due to the
distance-based construction.

10.1.3 Least-Squares Conditional Density Estimation

A non-parametric conditional density estimator called least-squares condi-
tional density estimation (LSCDE) (Sugiyama et al., 2010) possesses various
useful properties:

• It can directly handle multi-dimensional multi-modal inputs and out-
puts.

• It was proved to achieve the optimal convergence rate (Kanamori et al.,
2012).

• It has high numerical stability (Kanamori et al., 2013).

• It is robust against outliers (Sugiyama et al., 2010).

• Its solution can be analytically and efficiently computed just by solving
a system of linear equations (Kanamori et al., 2009).

• Generating samples from the learned transition model is straightforward.

Let us model the transition probability p(s′|s, a) by the following linear-
in-parameter model:

α⊤φ(s, a, s′), (10.1)

where α is the B-dimensional parameter vector and φ(s, a, s′) is the B-
dimensional basis function vector. A typical choice of the basis function is
the Gaussian kernel, which is defined for B =M as

φb(s, a, s
′) = exp

(
−‖s− sb‖

2 + (a− ab)2 + ‖s′ − s′b‖2
2κ2

)
.
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κ > 0 denotes the Gaussian kernel width. If B is too large, the number of
basis functions may be reduced by only using a subset of samples as Gaussian
centers. Different Gaussian widths for s, a, and s′ may be used if necessary.

The parameter α is learned so that the following squared error is mini-
mized:

J0(α) =
1

2

∫∫∫ (
α⊤φ(s, a, s′)− p(s′|s, a)

)2
p(s, a)dsdads′

=
1

2

∫∫∫ (
α⊤φ(s, a, s′)

)2
p(s, a)dsdads′

−
∫∫∫

α⊤φ(s, a, s′)p(s, a, s′)dsdads′ + C,

where the identity p(s′|s, a) = p(s, a, s′)/p(s, a) is used in the second term
and

C =
1

2

∫∫∫
p(s′|s, a)p(s, a, s′)dsdads′.

Because C is constant independent of α, only the first two terms will be
considered from here on:

J(α) = J0(α)− C =
1

2
α⊤Uα−α⊤v,

where U is the B ×B and v is the B-dimensional vector defined as

U =

∫∫
Φ(s, a)p(s, a)dsda,

v =

∫∫∫
φ(s, a, s′)p(s, a, s′)dsdads′,

Φ(s, a) =

∫
φ(s, a, s′)φ(s, a, s′)⊤ds′.

Note that, for the Gaussian model (10.1), the (b, b′)-th element of matrix
Φ(s, a) can be computed analytically as

Φb,b′(s, a) = (
√
πκ)dim(s′) exp

(
−‖s

′
b − s′b′‖2
4κ2

)

× exp

(
−‖s− sb‖

2 + ‖s− sb′‖2 + (a− ab)2 + (a− ab′)2
2κ2

)
.

Because U and v included in J(α) contain the expectations over unknown
densities p(s, a) and p(s, a, s′), they are approximated by sample averages.
Then we have

Ĵ(α) =
1

2
α⊤Ûα− v̂⊤α,
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where

Û =
1

M

M∑

m=1

Φ(sm, am) and v̂ =
1

M

M∑

m=1

φ(sm, am, s
′
m).

By adding an ℓ2-regularizer to Ĵ(α) to avoid overfitting, the LSCDE op-
timization criterion is given as

α̃ = argmin
α∈RM

[
Ĵ(α) +

λ

2
‖α‖2

]
,

where λ ≥ 0 is the regularization parameter. The solution α̃ is given analyti-
cally as

α̃ = (Û + λI)−1v̂,

where I denotes the identity matrix. Because conditional probability densities
are non-negative by definition, the solution α̃ is modified as

α̂b = max(0, α̃b).

Finally, the solution is normalized in the test phase. More specifically, given
a test input point (s, a), the final LSCDE solution is given as

p̂(s′|s, a) = α̂
⊤
φ(s, a, s′)∫

α̂
⊤
φ(s, a, s′′)ds′′

,

where, for the Gaussian model (10.1), the denominator can be analytically
computed as

∫
α̂

⊤
φ(s, a, s′′)ds′′ = (

√
2πκ)dim(s′)

B∑

b=1

αb exp

(
−‖s− sb‖

2 + (a− ab)2
2κ2

)
.

Model selection of the Gaussian width κ and the regularization parameter λ
is possible by cross-validation (Sugiyama et al., 2010).

10.2 Model-Based Reinforcement Learning

Model-based reinforcement learning is simply carried out as follows.

1. Collect transition samples {(sm, am, s′m)}Mm=1.

2. Obtain a transition model estimate p̂(s′|s, a) from {(sm, am, s′m)}Mm=1.
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3. Run a model-free reinforcement learning method using trajectory sam-

ples {h̃t}T̃t=1 artificially generated from estimated transition model
p̂(s′|s, a) and current policy π(a|s, θ).

Model-based reinforcement learning is particularly advantageous when the
sampling cost is limited. More specifically, in model-free methods, we need to
fix the sampling schedule in advance — for example, whether many samples
are gathered in the beginning or only a small batch of samples is collected for
a longer period. However, optimizing the sampling schedule in advance is not
possible without strong prior knowledge. Thus, we need to just blindly design
the sampling schedule in practice, which can cause significant performance
degradation. On the other hand, model-based methods do not suffer from this
problem, because we can draw as many trajectory samples as we want from
the learned transition model without additional sampling costs.

10.3 Numerical Examples

In this section, the experimental performance of the model-free and model-
based versions of PGPE (policy gradients with parameter-based exploration)
are evaluated:

M-PGPE(LSCDE): The model-based PGPEmethod with transition model
estimated by LSCDE.

M-PGPE(GP): The model-based PGPE method with transition model es-
timated by Gaussian process (GP) regression.

IW-PGPE: The model-free PGPE method with sample reuse by importance
weighting (the method introduced in Chapter 9).

10.3.1 Continuous Chain Walk

Let us first consider a simple continuous chain walk task, described in
Figure 10.1.

10.3.1.1 Setup

Let

s ∈ S = [0, 10], a ∈ A = [−5, 5], and r(s, a, s′) =

{
1 (4 < s′ < 6),

0 (otherwise).

That is, the agent receives positive reward +1 at the center of the state space.
The trajectory length is set at T = 10 and the discount factor is set at
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0 4 6 10

FIGURE 10.1: Illustration of continuous chain walk.

γ = 0.99. The following linear-in-parameter policy model is used in both
the M-PGPE and IW-PGPE methods:

a =

6∑

i=1

θi exp

(
− (s− ci)2

2

)
,

where (c1, . . . , c6) = (0, 2, 4, 6, 8, 10). If an action determined by the above
policy is out of the action space, it is pulled back to be confined in the domain.

As transition dynamics, the following two scenarios are considered:

Gaussian: The true transition dynamics is given by

st+1 = st + at + εt,

where εt is the Gaussian noise with mean 0 and standard deviation 0.3.

Bimodal: The true transition dynamics is given by

st+1 = st ± at + εt,

where εt is the Gaussian noise with mean 0 and standard deviation 0.3,
and the sign of at is randomly chosen with probability 1/2.

If the next state is out of the state space, it is projected back to the
domain. Below, the budget for data collection is assumed to be limited to
N = 20 trajectory samples.

10.3.1.2 Comparison of Model Estimators

When the transition model is learned in the M-PGPE methods, all N = 20
trajectory samples are gathered randomly in the beginning at once. More
specifically, the initial state s1 and the action a1 are chosen from the uniform
distributions over S and A, respectively. Then the next state s2 and the im-
mediate reward r1 are obtained. After that, the action a2 is chosen from the
uniform distribution over A, and the next state s3 and the immediate reward
r2 are obtained. This process is repeated until rT is obtained, by which a tra-
jectory sample is obtained. This data generation process is repeated N times
to obtain N trajectory samples.

Figure 10.2 and Figure 10.3 illustrate the true transition dynamics and
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FIGURE 10.2: Gaussian transition dynamics and its estimates by LSCDE
and GP.

their estimates obtained by LSCDE and GP in the Gaussian and bimodal
cases, respectively. Figure 10.2 shows that both LSCDE and GP can learn the
entire profile of the true transition dynamics well in the Gaussian case. On the
other hand, Figure 10.3 shows that LSCDE can still successfully capture the
entire profile of the true transition dynamics well even in the bimodal case,
but GP fails to capture the bimodal structure.

Based on the estimated transition models, policies are learned by the M-
PGPE method. More specifically, from the learned transition model, 1000
artificial trajectory samples are generated for gradient estimation and an-
other 1000 artificial trajectory samples are used for baseline estimation. Then
policies are updated based on these artificial trajectory samples. This policy
update step is repeated 100 times. For evaluating the return of a learned pol-
icy, 100 additional test trajectory samples are used which are not employed for
policy learning. Figure 10.4 and Figure 10.5 depict the averages and standard
errors of returns over 100 runs for the Gaussian and bimodal cases, respec-
tively. The results show that, in the Gaussian case, the GP-based method
performs very well and LSCDE also exhibits reasonable performance. In the
bimodal case, on the other hand, GP performs poorly and LSCDE gives much
better results than GP. This illustrates the high flexibility of LSCDE.
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FIGURE 10.3: Bimodal transition dynamics and its estimates by LSCDE
and GP.
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k = 5 trajectory samples 4 times).

10.3.1.3 Comparison of Model-Based and Model-Free Methods

Next, the performance of the model-based and model-free PGPE methods
are compared.

Under the fixed budget scenario, the schedule of collecting 20 trajectory
samples needs to be determined for the IW-PGPE method. First, the influence
of the choice of sampling schedules is illustrated. Figure 10.6 and Figure 10.7
show expected returns averaged over 100 runs under the sampling schedule
that a batch of k trajectory samples are gathered 20/k times for different val-
ues of k. Here, policy update is performed 100 times after observing each batch
of k trajectory samples, because this performed better than the usual scheme
of updating the policy only once. Figure 10.6 shows that the performance of
IW-PGPE depends heavily on the sampling schedule, and gathering k = 20
trajectory samples at once is shown to be the best choice in the Gaussian case.
Figure 10.7 shows that gathering k = 20 trajectory samples at once is also the
best choice in the bimodal case.

Although the best sampling schedule is not accessible in practice, the op-
timal sampling schedule is used for evaluating the performance of IW-PGPE.
Figure 10.4 and Figure 10.5 show the averages and standard errors of returns
obtained by IW-PGPE over 100 runs as functions of the sampling steps. These
graphs show that IW-PGPE can improve the policies only in the beginning,
because all trajectory samples are gathered at once in the beginning. The
performance of IW-PGPE may be further improved if it is possible to gather
more trajectory samples. However, this is prohibited under the fixed budget
scenario. On the other hand, returns of M-PGPE keep increasing over iter-
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ations, because artificial trajectory samples can be kept generated without
additional sampling costs. This illustrates a potential advantage of model-
based reinforcement learning (RL) methods.

10.3.2 Humanoid Robot Control

Finally, the performance of M-PGPE is evaluated on a practical control
problem of a simulated upper-body model of the humanoid robot CB-i (Cheng
et al., 2007), which was also used in Section 9.3.3; see Figure 9.5 for the
illustrations of CB-i and its simulator.

10.3.2.1 Setup

The simulator is based on the upper body of the CB-i humanoid robot,
which has 9 joints for shoulder pitch, shoulder roll, elbow pitch of the right
arm, and shoulder pitch, shoulder roll, elbow pitch of the left arm, waist yaw,
torso roll, and torso pitch. The state vector is 18-dimensional and real-valued,
which corresponds to the current angle in degree and the current angular
velocity for each joint. The action vector is 9-dimensional and real-valued,
which corresponds to the target angle of each joint in degree. The goal of the
control problem is to lead the end effector of the right arm (right hand) to the
target object. A noisy control system is simulated by perturbing action vectors
with independent bimodal Gaussian noise. More specifically, for each element
of the action vector, Gaussian noise with mean 0 and standard deviation 3 is
added with probability 0.6, and Gaussian noise with mean −5 and standard
deviation 3 is added with probability 0.4.

The initial posture of the robot is fixed to be standing up straight with
arms down. The target object is located in front of and above the right hand,
which is reachable by using the controllable joints. The reward function at
each time step is defined as

rt = exp(−10dt)− 0.000005min{ct, 1, 000, 000},

where dt is the distance between the right hand and target object at time step
t, and ct is the sum of control costs for each joint. The deterministic policy
model used in M-PGPE and IW-PGPE is defined as a = θ⊤φ(s) with the
basis function φ(s) = s. The trajectory length is set at T = 100 and the
discount factor is set at γ = 0.9.

10.3.2.2 Experiment with 2 Joints

First, we consider using only 2 joints among the 9 joints, i.e., only the right
shoulder pitch and right elbow pitch are allowed to be controlled, while the
other joints remain still at each time step (no control signal is sent to these
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joints). Therefore, the dimensionalities of state vector s and action vector a
are 4 and 2, respectively.

We suppose that the budget for data collection is limited to N = 50 trajec-
tory samples. For the M-PGPE methods, all trajectory samples are collected
at first using the uniformly random initial states and policy. More specifically,
the initial state is chosen from the uniform distribution over S. At each time
step, the action ai of the i-th joint is first drawn from the uniform distribu-
tion on [si − 5, si + 5], where si denotes the state for the i-th joint. In total,
5000 transition samples are collected for model estimation. Then, from the
learned transition model, 1000 artificial trajectory samples are generated for
gradient estimation and another 1000 artificial trajectory samples are gener-
ated for baseline estimation in each iteration. The sampling schedule of the
IW-PGPE method is chosen to collect k = 5 trajectory samples 50/k times,
which performs well, as shown in Figure 10.8. The average and standard error
of the return obtained by each method over 10 runs are plotted in Figure 10.9,
showing that M-PGPE(LSCDE) tends to outperform both M-PGPE(GP) and
IW-PGPE.

Figure 10.10 illustrates an example of the reaching motion with 2 joints
obtained by M-PGPE(LSCDE) at the 60th iteration. This shows that the
learned policy successfully leads the right hand to the target object within
only 13 steps in this noisy control system.

10.3.2.3 Experiment with 9 Joints

Finally, the performance of M-PGPE(LSCDE) and IW-PGPE is evaluated
on the reaching task with all 9 joints.

The experimental setup is essentially the same as the 2-joint case, but the
budget for gathering N = 1000 trajectory samples is given to this complex
and high-dimensional task. The position of the target object is moved to
far left, which is not reachable by using only 2 joints. Thus, the robot is
required to move other joints to reach the object with the right hand. Five
thousand randomly chosen transition samples are used as Gaussian centers for
M-PGPE(LSCDE). The sampling schedule for IW-PGPE is set at gathering
1000 trajectory samples at once, which is the best sampling schedule according
to Figure 10.11. The averages and standard errors of returns obtained by
M-PGPE(LSCDE) and IW-PGPE over 30 runs are plotted in Figure 10.12,
showing that M-PGPE(LSCDE) tends to outperform IW-PGPE.

Figure 10.13 exhibits a typical reaching motion with 9 joints obtained by
M-PGPE(LSCDE) at the 1000th iteration. This shows that the right hand is
led to the distant object successfully within 14 steps.
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FIGURE 10.8: Averages and standard errors of returns obtained by IW-
PGPE over 10 runs for the 2-joint humanoid robot simulator for different
sampling schedules (e.g., 5× 10 means gathering k = 5 trajectory samples 10
times).
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FIGURE 10.9: Averages and standard errors of obtained returns over 10
runs for the 2-joint humanoid robot simulator. All methods use 50 trajectory
samples for policy learning. In M-PGPE(LSCDE) and M-PGPE(GP), all 50
trajectory samples are gathered in the beginning and the environment model
is learned; then 2000 artificial trajectory samples are generated in each up-
date iteration. In IW-PGPE, a batch of 5 trajectory samples is gathered for
10 iterations, which was shown to be the best sampling scheduling (see Fig-
ure 10.8). Note that policy update is performed 100 times after observing each
batch of trajectory samples, which we confirmed to perform well. The bottom
horizontal axis is for the M-PGPE methods, while the top horizontal axis is
for the IW-PGPE method.
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FIGURE 10.10: Example of arm reaching with 2 joints using a policy ob-
tained by M-PGPE(LSCDE) at the 60th iteration (from left to right and top
to bottom).
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FIGURE 10.11: Averages and standard errors of returns obtained by IW-
PGPE over 30 runs for the 9-joint humanoid robot simulator for different
sampling schedules (e.g., 100×10 means gathering k = 100 trajectory samples
10 times).
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FIGURE 10.12: Averages and standard errors of obtained returns over 30
runs for the humanoid robot simulator with 9 joints. Both methods use 1000
trajectory samples for policy learning. In M-PGPE(LSCDE), all 1000 tra-
jectory samples are gathered in the beginning and the environment model
is learned; then 2000 artificial trajectory samples are generated in each up-
date iteration. In IW-PGPE, a batch of 1000 trajectory samples is gathered at
once, which was shown to be the best scheduling (see Figure 10.11). Note that
policy update is performed 100 times after observing each batch of trajectory
samples. The bottom horizontal axis is for the M-PGPE method, while the
top horizontal axis is for the IW-PGPE method.

FIGURE 10.13: Example of arm reaching with 9 joints using a policy ob-
tained by M-PGPE(LSCDE) at the 1000th iteration (from left to right and
top to bottom).
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10.4 Remarks

Model-based reinforcement learning is a promising approach, given that
the transition model can be estimated accurately. However, estimating the
high-dimensional conditional density is challenging. In this chapter, a non-
parametric conditional density estimator called least-squares conditional den-
sity estimation (LSCDE) was introduced, and model-based PGPE with
LSCDE was shown to work excellently in experiments.

Under the fixed sampling budget, the model-free approach requires us to
design the sampling schedule appropriately in advance. However, this is prac-
tically very hard unless strong prior knowledge is available. On the other hand,
model-based methods do not suffer from this problem, which is an excellent
practical advantage over the model-free approach.

In robotics, the model-free approach seems to be preferred because ac-
curately learning the transition dynamics of complex robots is challenging
(Deisenroth et al., 2013). Furthermore, model-free methods can utilize the
prior knowledge in the form of policy demonstration (Kober & Peters, 2011).
On the other hand, the model-based approach is advantageous in that no in-
teraction with the real robot is required once the transition model has been
learned and the learned transition model can be utilized for further simulation.

Actually, the choice of model-free or model-based methods is not only an
ongoing research topic in machine learning, but also a big debatable issue in
neuroscience. Therefore, further discussion would be necessary to more deeply
understand the pros and cons of the model-based and model-free approaches.
Combining or switching the model-free and model-based approaches would
also be an interesting direction to be further investigated.



Chapter 11

Dimensionality Reduction for

Transition Model Estimation

Least-squares conditional density estimation (LSCDE), introduced in Chap-
ter 10, is a practical transition model estimator. However, transition model
estimation is still challenging when the dimensionality of state and action
spaces is high. In this chapter, a dimensionality reduction method is intro-
duced to LSCDE which finds a low-dimensional expression of the original
state and action vector that is relevant to predicting the next state. After
mathematically formulating the problem of dimensionality reduction in Sec-
tion 11.1, a detailed description of the dimensionality reduction algorithm
based on squared-loss conditional entropy is provided in Section 11.2. Then
numerical examples are given in Section 11.3, and this chapter is concluded
in Section 11.4.

11.1 Sufficient Dimensionality Reduction

Sufficient dimensionality reduction (Li, 1991; Cook & Ni, 2005) is a frame-
work of dimensionality reduction in a supervised learning setting of analyzing
an input-output relation — in our case, input is the state-action pair (s, a)
and output is the next state s′. Sufficient dimensionality reduction is aimed at
finding a low-dimensional expression z of input (s, a) that contains “sufficient”
information about output s′.

Let z be a linear projection of input (s, a). More specifically, using matrix
W such that WW⊤ = I where I denotes the identity matrix, z is given by

z =W

(
s

a

)
.

The goal of sufficient dimensionality reduction is, from independent transition
samples {(sm, am, s′m)}Mm=1, to findW such that s′ and (s, a) are conditionally
independent given z. This conditional independence means that z contains all
information about s′ and is equivalently expressed as

p(s′|s, a) = p(s′|z). (11.1)

173



174 Statistical Reinforcement Learning

11.2 Squared-Loss Conditional Entropy

In this section, the dimensionality reduction method based on the squared-
loss conditional entropy (SCE) is introduced.

11.2.1 Conditional Independence

SCE is defined and expressed as

SCE(s′|z) = −1

2

∫∫
p(s′|z)p(s′, z)dzds′

= −1

2

∫∫ (
p(s′|z)− 1

)2
p(z)dzds′ − 1 +

1

2

∫
ds′.

It was shown in Tangkaratt et al. (2015) that

SCE(s′|z) ≥ SCE(s′|s, a),

and the equality holds if and only if Eq. (11.1) holds. Thus, sufficient dimen-
sionality reduction can be performed by minimizing SCE(s′|z) with respect
to W :

W ∗ = argmin
W∈G

SCE(s′|z).

Here, G denotes the Grassmann manifold , which is the set of matrices W
such that WW⊤ = I without redundancy in terms of the span.

Since SCE contains unknown densities p(s′|z) and p(s′, z), it cannot be
directly computed. Here, let us employ the LSCDE method introduced in
Chapter 10 to obtain an estimator p̂(s′|z) of conditional density p(s′|z). Then,
by replacing the expectation over p(s′, z) with the sample average, SCE can
be approximated as

ŜCE(s′|z) = − 1

2M

M∑

m=1

p̂(s′m|zm) = −1

2
α̃

⊤
v̂,

where

zm =W

(
sm
am

)
and v̂ =

1

M

M∑

m=1

φ(zm, s
′
m).

φ(z, s′) is the basis function vector used in LSCDE given by

φb(z, s
′) = exp

(
−‖z − zb‖

2 + ‖s′ − s′b‖2
2κ2

)
,
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where κ > 0 denotes the Gaussian kernel width. α̃ is the LSCDE solution
given by

α̃ = (Û + λI)−1v̂,

where λ ≥ 0 is the regularization parameter and

Ûb,b′ =
(
√
πκ)dim(s′)

M
exp

(
−‖s

′
b − s′b′‖2
4κ2

)

×
M∑

m=1

exp

(
−‖zm − zb‖

2 + ‖zm − zb′‖2
2κ2

)
.

11.2.2 Dimensionality Reduction with SCE

With the above SCE estimator, a practical formulation for sufficient di-
mensionality reduction is given by

Ŵ = argmax
W∈G

S(W ), where S(W ) = α̃⊤
v̂.

The gradient of S(W ) with respect to Wℓ,ℓ′ is given by

∂S

∂Wℓ,ℓ′
= −α̃⊤ ∂Û

∂Wℓ,ℓ′
α̃+ 2

∂v̂⊤

∂Wℓ,ℓ′
α̃.

In the Euclidean space, the above gradient gives the steepest direction (see
also Section 7.3.1). However, on the Grassmann manifold, the natural gradi-
ent (Amari, 1998) gives the steepest direction. The natural gradient at W
is the projection of the ordinary gradient to the tangent space of the Grass-
mann manifold. If the tangent space is equipped with the canonical metric〈
W ,W ′

〉
= 1

2 tr(W
⊤W ′), the natural gradient atW is given as follows (Edel-

man et al., 1998):

∂S

∂W
W⊤

⊥W⊥,

where W⊥ is the matrix such that
[
W⊤,W⊤

⊥

]
is an orthogonal matrix.

The geodesic from W to the direction of the natural gradient over the
Grassmann manifold can be expressed using t ∈ R as

W t =
[
I O

]
exp

(
−t
[

O ∂S
∂WW⊤

⊥

−W⊥
∂S
∂W

⊤
O

])[
W

W⊥

]
,

where “exp” for a matrix denotes the matrix exponential and O denotes the
zero matrix. Then line search along the geodesic in the natural gradient di-
rection is performed by finding the maximizer from {W t | t ≥ 0} (Edelman
et al., 1998).
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Once W is updated by the natural gradient method, SCE is re-estimated
for new W and natural gradient ascent is performed again. This entire pro-
cedure is repeated until W converges, and the final solution is given by

p̂(s′|z) = α̂
⊤
φ(z, s′)∫

α̂
⊤
φ(z, s′′)ds′′

,

where α̂b = max(0, α̃b), and the denominator can be analytically computed as

∫
α̂

⊤
φ(z, s′′)ds′′ = (

√
2πκ)dim(s′)

B∑

b=1

αb exp

(
−‖z − zb‖

2

2κ2

)
.

When SCE is re-estimated, performing cross-validation for LSCDE in every
step is computationally expensive. In practice, cross-validation may be per-
formed only once every several gradient updates. Furthermore, to find a better
local optimal solution, this gradient ascent procedure may be executed mul-
tiple times with randomly chosen initial solutions, and the one achieving the
largest objective value is chosen.

11.2.3 Relation to Squared-Loss Mutual Information

The above dimensionality reduction method minimizes SCE:

SCE(s′|z) = −1

2

∫∫
p(z, s′)2

p(z)
dzds′.

On the other hand, the dimensionality reduction method proposed in Suzuki
and Sugiyama (2013) maximizes squared-loss mutual information (SMI):

SMI(z, s′) =
1

2

∫∫
p(z, s′)2

p(z)p(s′)
dzds′.

Note that SMI can be approximated almost in the same way as SCE by
the least-squares method (Suzuki & Sugiyama, 2013). The above equations
show that the essential difference between SCE and SMI is whether p(s′)
is included in the denominator of the density ratio, and SCE is reduced to
the negative SMI if p(s′) is uniform. However, if p(s′) is not uniform, the

density ratio function p(z,s′)
p(z)p(s′) included in SMI may be more fluctuated than

p(z,s′)
p(z) included in SCE. Since a smoother function can be more accurately

estimated from a small number of samples in general (Vapnik, 1998), SCE-
based dimensionality reduction is expected to work better than SMI-based
dimensionality reduction.
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11.3 Numerical Examples

In this section, experimental behavior of the SCE-based dimensionality
reduction method is illustrated.

11.3.1 Artificial and Benchmark Datasets

The following dimensionality reduction schemes are compared:

• None: No dimensionality reduction is performed.

• SCE (Section 11.2): Dimensionality reduction is performed by mini-
mizing the least-squares SCE approximator using natural gradients over
the Grassmann manifold (Tangkaratt et al., 2015).

• SMI (Section 11.2.3): Dimensionality reduction is performed by max-
imizing the least-squares SMI approximator using natural gradients over
the Grassmann manifold (Suzuki & Sugiyama, 2013).

• True: The “true” subspace is used (only for artificial datasets).

After dimensionality reduction, the following conditional density estimators
are run:

• LSCDE (Section 10.1.3): Least-squares conditional density estima-
tion (Sugiyama et al., 2010).

• ǫKDE (Section 10.1.2): ǫ-neighbor kernel density estimation, where
ǫ is chosen by least-squares cross-validation.

First, the behavior of SCE-LSCDE is compared with the plain LSCDE
with no dimensionality reduction. The datasets have 5-dimensional input x =
(x(1), . . . , x(5))⊤ and 1-dimensional output y. Among the 5 dimensions of x,
only the first dimension x(1) is relevant to predicting the output y and the
other 4 dimensions x(2), . . . , x(5) are just standard Gaussian noise. Figure 11.1
plots the first dimension of input and output of the samples in the datasets
and conditional density estimation results. The graphs show that the plain
LSCDE does not perform well due to the irrelevant noise dimensions in input,
while SCE-LSCDE gives much better estimates.

Next, artificial datasets with 5-dimensional input x = (x(1), . . . , x(5))⊤

and 1-dimensional output y are used. Each element of x follows the standard
Gaussian distribution and y is given by

(a) y = x(1) + (x(1))2 + (x(1))3 + ε,

(b) y = (x(1))2 + (x(2))2 + ε,
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FIGURE 11.1: Examples of conditional density estimation by plain LSCDE
and SCE-LSCDE.

where ε is the Gaussian noise with mean zero and standard deviation 1/4.
The top row of Figure 11.2 shows the dimensionality reduction error be-

tween true W ∗ and its estimate Ŵ for different sample size n, measured
by

ErrorDR = ‖Ŵ⊤
Ŵ −W ∗⊤W ∗‖Frobenius,

where ‖·‖Frobenius denotes the Frobenius norm. The SMI-based and SCE-based
dimensionality reduction methods both perform similarly for the dataset (a),
while the SCE-based method clearly outperforms the SMI-based method for
the dataset (b). The histograms of {y}400i=1 plotted in the 2nd row of Figure 11.2
show that the profile of the histogram (which is a sample approximation of
p(y)) in the dataset (b) is much sharper than that in the dataset (a). As
explained in Section 11.2.3, the density ratio function used in SMI contains
p(y) in the denominator. Therefore, it would be highly non-smooth and thus
is hard to approximate. On the other hand, the density ratio function used
in SCE does not contain p(y). Therefore, it would be smoother than the one
used in SMI and thus is easier to approximate.

The 3rd and 4th rows of Figure 11.2 plot the conditional density estimation
error between true p(y|x) and its estimate p̂(y|x), evaluated by the squared
loss (without a constant):

ErrorCDE =
1

2n′

n′∑

i=1

∫
p̂(y|x̃i)

2dy − 1

n′

n′∑

i=1

p̂(ỹi|x̃i),

where {(x̃i, ỹi)}n
′

i=1 is a set of test samples that have not been used for
conditional density estimation. We set n′ = 1000. The graphs show that
LSCDE overall outperforms ǫKDE for both datasets. For the dataset (a),
SMI-LSCDE and SCE-LSCDE perform equally well, and are much better than
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FIGURE 11.2: Top row: The mean and standard error of the dimensionality
reduction error over 20 runs on the artificial datasets. 2nd row: Histograms
of output {yi}400i=1. 3rd and 4th rows: The mean and standard error of the
conditional density estimation error over 20 runs.



180 Statistical Reinforcement Learning

plain LSCDE with no dimensionality reduction (LSCDE) and comparable to
LSCDE with the true subspace (LSCDE*). For the dataset (b), SCE-LSCDE
outperforms SMI-LSCDE and LSCDE and is comparable to LSCDE*.

Next, the UCI benchmark datasets (Bache & Lichman, 2013) are used for
performance evaluation. n samples are selected randomly from each dataset for
conditional density estimation, and the rest of the samples are used to measure
the conditional density estimation error. Since the dimensionality of z is un-
known for the benchmark datasets, it was determined by cross-validation. The
results are summarized in Table 11.1, showing that SCE-LSCDE works well
overall. Table 11.2 describes the dimensionalities selected by cross-validation,
showing that both the SCE-based and SMI-based methods reduce the dimen-
sionality significantly.

11.3.2 Humanoid Robot

Finally, SCE-LSCDE is applied to transition estimation of a humanoid
robot. We use a simulator of the upper-body part of the humanoid robot
CB-i (Cheng et al., 2007) (see Figure 9.5).

The robot has 9 controllable joints: shoulder pitch, shoulder roll, elbow
pitch of the right arm, and shoulder pitch, shoulder roll, elbow pitch of the
left arm, waist yaw, torso roll, and torso pitch joints. Posture of the robot is
described by 18-dimensional real-valued state vector s, which corresponds to
the angle and angular velocity of each joint in radian and radian-per-second,
respectively. The robot is controlled by sending an action command a to the
system. The action command a is a 9-dimensional real-valued vector, which
corresponds to the target angle of each joint. When the robot is currently at
state s and receives action a, the physical control system of the simulator
calculates the amount of torque to be applied to each joint (see Section 9.3.3
for details).

In the experiment, the action vector a is randomly chosen and a noisy
control system is simulated by adding a bimodal Gaussian noise vector. More
specifically, the action ai of the i-th joint is first drawn from the uniform dis-
tribution on [si − 0.087, si + 0.087], where si denotes the state for the i-th
joint. The drawn action is then contaminated by Gaussian noise with mean
0 and standard deviation 0.034 with probability 0.6 and Gaussian noise with
mean −0.087 and standard deviation 0.034 with probability 0.4. By repeat-
edly controlling the robot M times, transition samples {(sm,am, s

′
m)}Mm=1

are obtained. Our goal is to learn the system dynamics as a state transition
probability p(s′|s,a) from these samples.

The following three scenarios are considered: using only 2 joints (right
shoulder pitch and right elbow pitch), only 4 joints (in addition, right shoulder
roll and waist yaw), and all 9 joints. These setups correspond to 6-dimensional
input and 4-dimensional output in the 2-joint case, 12-dimensional input and
8-dimensional output in the 4-joint case, and 27-dimensional input and 18-
dimensional output in the 9-joint case. Five hundred, 1000, and 1500 transition
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TABLE 11.2: Mean and standard error of the chosen subspace dimensional-
ity over 10 runs for benchmark and robot transition datasets.

Dataset (dx, dy)
SCE-based SMI-based

LSCDE ǫKDE LSCDE ǫKDE
Housing (13, 1) 3.9(0.74) 2.0(0.79) 2.0(0.39) 1.3(0.15)

Auto MPG (7, 1) 3.2(0.66) 1.3(0.15) 2.1(0.67) 1.1(0.10)
Servo (4, 1) 1.9(0.35) 2.4(0.40) 2.2(0.33) 1.6(0.31)
Yacht (6, 1) 1.0(0.00) 1.0(0.00) 1.0(0.00) 1.0(0.00)

Physicochem (9, 1) 6.5(0.58) 1.9(0.28) 6.6(0.58) 2.6(0.86)
White Wine (11, 1) 1.2(0.13) 1.0(0.00) 1.4(0.31) 1.0(0.00)
Red Wine (11, 1) 1.0(0.00) 1.3(0.15) 1.2(0.20) 1.0(0.00)
Forest Fires (12, 1) 1.2(0.20) 4.9(0.99) 1.4(0.22) 6.8(1.23)
Concrete (8, 1) 1.0(0.00) 1.0(0.00) 1.2(0.13) 1.0(0.00)
Energy (8, 2) 5.9(0.10) 3.9(0.80) 2.1(0.10) 2.0(0.30)
Stock (7, 2) 3.2(0.83) 2.1(0.59) 2.1(0.60) 2.7(0.67)

2 Joints (6, 4) 2.9(0.31) 2.7(0.21) 2.5(0.31) 2.0(0.00)
4 Joints (12, 8) 5.2(0.68) 6.2(0.63) 5.4(0.67) 4.6(0.43)
9 Joints (27, 18) 13.8(1.28) 15.3(0.94) 11.4(0.75) 13.2(1.02)

samples are generated for the 2-joint, 4-joint, and 9-joint cases, respectively.
Then randomly chosen n = 100, 200, and 500 samples are used for conditional
density estimation, and the rest is used for evaluating the test error. The
results are summarized in Table 11.1, showing that SCE-LSCDE performs
well for the all three cases. Table 11.2 describes the dimensionalities selected
by cross-validation. This shows that the dimensionalities are much reduced,
implying that transition of the humanoid robot is highly redundant.

11.4 Remarks

Coping with high dimensionality of the state and action spaces is one of
the most important challenges in model-based reinforcement learning. In this
chapter, a dimensionality reduction method for conditional density estimation
was introduced. The key idea was to use the squared-loss conditional entropy
(SCE) for dimensionality reduction, which can be estimated by least-squares
conditional density estimation. This allowed us to perform dimensionality re-
duction and conditional density estimation simultaneously in an integrated
manner. In contrast, dimensionality reduction based on squared-loss mutual
information (SMI) yields a two-step procedure of first reducing the dimension-
ality and then the conditional density is estimated. SCE-based dimensionality
reduction was shown to outperform the SMI-based method, particularly when
output follows a skewed distribution.
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