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Chapter 1

Introduction

The main objective of this book is to develop machine
learning (ML) tools that help minimize the (costly) human
supervision required for the analysis of large volumes of data.
To address such an objective, the research work developed in
this book focused on two major fields in ML: unsupervised and
semi-supervised learning. Both ML areas have been widely
used in a large number of applications such as the clustering
and semi-automatic annotation of large datasets of documents
and the dimensionality reduction of microarray matrices for
the analysis and interpretation of genomic data. In these
examples, owing to the complexity and/or size of the large
amounts of data to be processed, a fully supervised analysis
without the help of semi- or unsupervised ML tools would
become prohibitive.

Thus, the first aim of this book focused on the development
of new algorithms in the field of semi-supervised ML.
Semi-supervised learning provides an alternative to fully
supervised classification. In supervised classification, a
so-called training phase is performed using only labeled
data. Typically, the labels for the training observations are

Semi-Supervised and Unsupervised Machine Learning: Novel Strategies               Amparo Albalate  and Wolfgang Minker
© 2011 ISTE Ltd.  Published 2011 by ISTE Ltd.



4 Machine Learning

manually compiled by human annotators. Then, a supervised
algorithm is capable of inferring prediction rules or models
from the available training data and consequently delivering
the most probable label for a new observation, not necessarily
observed in the training data. However, a major limitation
of supervised algorithms is related to the availability of large
corpora labeled in order to achieve accurate predictions. As it
is generally accepted in the ML literature, the performance
of supervised classifiers can drastically drop down if only
training sets of small dimensions are available.

In [CAS 95] it was shown that some advantage could
be, however, gained if a large amount of unlabeled data is
available. In particular, this is possible to the degree to which
class labels fulfill certain assumptions that allow us to identify
the class structure from both labeled and unlabeled data. The
framework of classification algorithms designed to use both
labeled and unlabeled data to generate their prediction models
is known as semi-supervised classification.

Nowadays, the semi-supervised learning field is rapidly
evolving, as evidenced by the large amount of semi-supervised
approaches available in the machine learning literature,
including generative models, co-training, self-training, and
graph-based models etc. Frequently, the learning strategy
followed by many semi-supervised algorithms can be
summarized as follows: (1) select a supervised algorithm with
a certain learning rule for labeled data and (2) modify the
learning rule by including unlabeled data so that a common
objective is attained. A drawback of such a strategy is the
algorithms’ stability/robustness with respect to the existence
of labeling errors. Given the human effort involved in the
manual labeling task, training sets are not exempted from
potential labeling errors. These may occur depending on
the degree of expertise of the human annotators. Even
for expert labelers, the confidence in annotating patterns
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with a certain degree of ambiguity may drop drastically.
Hence, a subjective bias in annotating this kind of pattern
is unavoidable. Depending on the nature of the classification
task and corpora, subjective biases may become a commonly
faced problem, as happens in the recognition of emotional
states.

Given the aforementioned statement, in this book two
different approaches to semi-supervised classification are
described which rely on unsupervised clustering as a prior
step to classification. By clearly separating the clustering and
classification objectives, the proposed algorithms may gain
some robustness under labeling errors with respect to other
existing semi-supervised algorithms. The first algorithm has
been developed for utterance corpora. It exploits the semantic
feature variability by means of prior feature clustering, which
is combined with a “fully unsupervised” algorithm for pattern
disambiguation. The second approach performs the clustering
in the pattern space to extract the underlying class structure
and uses the labeled sets to automatically annotate the
clusters.

The second aim of this book is to identify the underlying
classes in a dataset in a fully unsupervised way, i.e. under
the absence of labels. The field of unsupervised learning has
witnessed an accelerated growth since the mid-1940s (see
Chapter 2 for detail information), resulting in a large pool
of clustering algorithms in the ML literature. However,
the first question that arose with the use of a clustering
algorithm is the optimum number of clusters to be selected.
Most clustering algorithms are parametric approaches, which
may explicitly require the number of clusters k as an input
parameter, or implicitly, other types of parameters that
also require appropriate estimation. A number of cluster
validation techniques have been also proposed for an attempt
to estimate the optimum k, but most of them are reported
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to provide individual performances ad-hoc which depend on
the clustering algorithm and distance functions selected.
A number of authors in the unsupervised literature have
claimed that finding the optimum k still remains an open
research topic.

In this respect, this book also provides some attempts
to solve the problem of the number of clusters. The first
developed algorithm is a non-parametric clustering tool, which
automatically identifies the number of clusters during the
clustering process itself. The second approach is a cluster
validation strategy that attempts to overcome the individual
performances of other existing cluster validation techniques
through an adequate combination of them.

1.1. Organization of the book

The book is divided into three main parts:
– The first part (Chapters 1 and 2) states the main

objectives and motivation of the contributed tools, and
describes the state of the art of unsupervised and semi-
supervised methods.

– The second part (Chapters 3 and 4) describes the
main contributions of the book in the field of unsupervised
learning. Semi-supervised tools take advantage of both
labeled and unlabeled data. In Chapter 3, a semi-
supervised scheme for the categorization of utterances by
using a unique labeled example per category is described.
Unlabeled data is then used to identify clusters of synonym
words from the vocabulary. This way, the initial small
vocabulary available to the classifier is expanded to the
clusters of words. Furthermore, the main contribution
of the book, which provides important improvements in
categorization accuracy, consists of a new unsupervised
scheme for the reallocation of ambiguous utterances based on
the identification of the most informative words.
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Chapter 4 describes a semi-supervised classification
approach based also on prior clustering, but this time applied
to patterns (e.g. utterances) instead of words. Then,
a minimum number of labels were used to automatically
annotate the patterns inside the obtained clusters. An
optimum cluster labeling is achieved by defining a cost matrix
in terms of overlapping labels inside the clusters and applying
the Hungarian algorithm to derive the optimum assignment
of labels to clusters. This way, the initial small training set
is automatically extended to the whole clustered data. This
semi-supervised approach has been evaluated and compared
to a fully supervised approach in which the initial labeled
seeds were directly used to train a supervised classifier.

– The third part of the book (Chapters 5 and 6) describes
the contributions in unsupervised learning, particularly
focused on the automatic detection of the number of clusters.
Chapter 5 focuses on an existing algorithm, the pole-
based overlapping clustering (PoBOC), which is, to the
author’s knowledge, the only fully non-parametric existing
algorithm that is able to detect the number of clusters.
Moreover, a hierarchical alternative, namely, hierarchical
pole-based clustering (HPoBC), is proposed to overcome a
major limitation of PoBOC related to the extraction of clusters
based on a concept of globally defined neighborhood. The new
alternative applies PoBOC recursively to find clusters based
on local neighborhoods. Both approaches have been compared
with other traditional algorithms introduced in Chapter 2.

In Chapter 6, the detection of the optimum number of
clusters (k) is addressed through cluster validation strategies.
In particular, a combination approach is described which
attempts to find the optimum k from the combination of
validation curves obtained through traditional methods.
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1.2. Utterance corpus

The first datasets are two corpora of utterance transcripts
collected from spoken language dialogue systems (SLDSs).
SLDS emerged in the mid-1990s as a new, important form
of human–machine communication. In essence, the typical
architecture of an SLDS can be observed in Figure 1.1.

Synthesis
Text−to−Speech

Analysis

Semantic 

Management

APPLICATION

Dialog

Speech
Analysis and
RecognitionUSER

Database

Language
Natural

Generation

Figure 1.1. Overview of an SLDS

First, input acoustic vectors generated from the speech
signal are processed by an Automatic Speech Recogniser
(ASR), resulting in a raw text transcription 1 of the input
utterance. Subsequently, the transcribed text is interpreted
in a semantic analysis block which extracts the utterance
meaning in form of an appropriate semantic structure.
This semantic representation is processed by the dialog
manager which also communicates directly with an external
application, namely a database interface. The dialog manager
keeps control of the overall interaction progress towards
the task completion. During this process, the user may
be queried for confirmations, disambiguations, necessary
additional information, etc. Finally, the interaction result
is presented to the user in form of speech (text-to-speech
synthesis or prerecorded prompts).

The utterance corpora used in this book have been
obtained from a particular type of SLDS known as automated

1. Most probable sequence of words detected.
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throubleshooting agents. These are SLDS specially designed
to perform customer care issues over the telephone, in a
similar way as human agents do. One essential component
of this type of SLDSs is the semantic analysis block. Typically,
the semantic analysis in throubleshooting agents is carried
out at the utterance level. The users are presented an
open prompt, such as “please briefly described the reason
for your call.” Then, the semantic analysis block maps the
unconstrained, natural language user response into one of
the possible problems from a predefined list. This is done
by means of statistical classifiers. This particular kind of
semantic analysis is generally known as Statistical Spoken
Language Understanding (SSLU).

The machine learning tools developed in this book are
focused on semi-supervised utterance classification for SSLU
and the unsupervised discovery of potential symptoms. Both
utterance corpora presented in the following are referred to
different application domains of commercial troubleshooting
agents and have been made available by SpeechCycle Labs
[ACO 07].

The first corpus is related to the “Internet” domain. Some
examples of transcribed utterances and their corresponding
(manual) annotations “symptom categories” are shown in
Table 1.1

It should be noted that an utterance is defined as “a
complete unit of speech in spoken language.” Although
transcribed utterances may have a similar form as text
sentences, utterances share the characteristics of natural
language, in contrast to sentences in written language. Thus,
it is not rare to observe ill-formed or gramatically incomplete
utterance transcriptions (in particular when they reflect the
users’ responses to the system’s prompts).



10 Machine Learning

Utterance transcript Annotation
Remotes not working Cable
Internet was supposed to be scheduled
at my home today Appointment
Billing Information Billing
I’am having Internet problems Internet
I need to get the hi-def cable box installed Cable
I need to talk to a representative Operator

Table 1.1. Some examples of utterances and their corresponding
manual labels (annotations) in the utterance corpora

The Internet utterance corpus is composed of a total of
34,848 utterances with k = 28 symptom categories. From
these, 3,313 utterances (9.96%) have been used as test
utterances, and 31,535 utterances (90.4% of the corpus) as the
developing set.

The second utterance corpus is refered to video
troubleshooting. Both test and training datasets are composed
of 10,000 utterance transcripts and their corresponding
symptom annotations. In total, k = 79 symptoms can be
distinguished.

1.3. Datasets from the UCI repository

The UCI machine learning repository is one of the most
popular collections of real word and simulated datasets to
be used for machine learning experiments. In this book,
the following datasets have been selected, with different
characteristics (number of features and classes). The
projections of the datasets into the three principal components
can be observed in Figures 1.2 and 1.3.

1.3.1. Wine dataset (wine)

The wine set consists of 178 instances with 13 attributes,
representing three different types of wines.
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Figure 1.2. Projection of the datasets on the three principal
components: (a) breast dataset, (b) diabetes dataset, (c) wine dataset,

and (d) Iris dataset

1.3.2. Wisconsin breast cancer dataset (breast)

This dataset contains 569 instances in 10 dimensions,
denoting 10 different features extracted from digitized images
of breast masses. The two existing classes are referred to the
possible breast cancer diagnosis (malignant, and benign).

1.3.3. Handwritten digits dataset (Pendig)

The third real dataset is for pen-based recognition of
handwritten digits. In this work, the test partition has been
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Figure 1.3. Pendig dataset (projection on the three principal
components)
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Figure 1.4. Mixture of Gaussians datasets: (a) five Gaussians, and
(b) seven Gaussians

used, composed of 3,498 samples with 16 attributes. Ten
classes can be distinguished for the digits 0–9.

1.3.4. Pima Indians diabetes (diabetes)

This dataset comprises 768 instances with eight numeric
attributes. Two classes denote the possible diagnostics (the
patients show or do not show signs of diabetes).
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(a) (b)

(c) (d) (e)

Figure 1.5. Spatial data bases. (a) Dataset with 100 points in 5
spatial clusters (100p5c), (b) mixture of 6 Gaussians, 1500 points

(6Gauss), (c) mixture of three Gaussians (3Gauss), (d) 560 points, 8
clusters (560p8c) and (e) 1000 points, 9 clusters (1000p9c)

1.3.5. Iris dataset (Iris)

The Iris set is one of the most popular datasets from
the UCI repository. It comprises 150 instances iris of
three different classes of iris flowers (Setosa, Versicolor, and
virginica). Two of these classes are linearly separable, the
third one is not whereas linearly separable from the second
one.

1.4. Microarray dataset

The NCI60 dataset [ROS 00] of the University of Standford
has been also used. This dataset is publicly available at
[NCI 06]. It consists of gene expression data for 60 cell lines
derived from different organs and tissues. The data is a
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1,375x60 matrix where each row represents a gene, and each
column a cell line, related to a human tumor. Nine known
tumor types and one unknown can be distinguished. The
cancer types include: leukemia, colon, breast, prostate, lung,
ovarian, renal, central nervous system, and melanoma.

1.5. Simulated datasets

Finally, simulated datasets in two dimensions have also
been used to illustrate the behavior of the proposed algorithms
and their outcomes.

1.5.1. Mixtures of Gaussians

The first datasets are two mixtures of five and seven
Gaussians in two dimensions, where a certain amount of
overlapping patterns can be observed.

1.5.2. Spatial datasets with non-homogeneous inter-
cluster distance

These datasets comprise a number of patterns in two
dimensions which build a hierarchy of groups, or groups non-
homogeneouly distributed in the data space. Essentially, these
datasets have been conceived for the demonstration of the
HPoBC algorithm in Chapter 5.

To synthesize the data, a java applet has been
implemented. The application is available online.



Chapter 2

State of the Art in Clustering and
Semi-Supervised Techniques

2.1. Introduction

This chapter provides a survey of the most popular
techniques for unsupervised machine learning (clustering)
and their applications and introduces the main existing
approaches in the field of semi-supervised classification.

2.2. Unsupervised machine learning (clustering)

Exploring large amounts of data to extract meaningful
information about its group structure by considering
similarities and differences between data entities has been a
relevant subject under investigation since the early 1930s.

Each one of the data groups to be identified by the
exploratory analysis is referred to as “cluster,” and the
framework of related techniques is known under the name
“cluster analysis.”

Semi-Supervised and Unsupervised Machine Learning: Novel Strategies               Amparo Albalate  and Wolfgang Minker
© 2011 ISTE Ltd.  Published 2011 by ISTE Ltd.
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Formally, cluster analysis has been defined as:

“the organisation of a collection of patterns (usually
represented as a vector of measurements, or a point
in a multi-dimensional space) into clusters based on
similarity.” [JAI 99]

2.3. A brief history of cluster analysis

The first studies about cluster analysis were conducted in
the field of analytical psychology. There is some controversy
in the literature about the attribution of the initial clustering
schemes. However, according to D. E. Bailey [TRY 70],
it seems to be Robert C. Tryon who originally conceived
cluster analysis and its first application to psychological data.
Tryon envisaged and formulated algorithms to group a set of
intellectual abilities in humans, and provided a collection of
scorings measured by the Holzinger ability tests [TRY 68].
Tryon referred to this particular practice of cluster analysis
as variable analysis or V-analysis. The main purpose was
to identify composites of abilities that could serve as more
“general” and relevant descriptors than the whole set of scores
for a more accurate analysis of human differences. This
clustering method, called “key-cluster factor analysis,” was
proposed as an alternative to the factor analysis generally
accepted at the time.

According to Bailey, this early form of cluster analysis was
devised by Tryon in 1930. However, it was only three decades
later, in 1965, that the method was implemented as part of a
software package (BCTRY), following the introduction of the
first modern computer at the University of California.

In those days, the field of classical taxonomy was also
starting to be the object of important critiques about its
conventional principles and practices. For Sokal and Michener
[SOK 63], the main concern was the subjectivity of the
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scientists involved in the elaboration of a taxonomy, and
thus the individual biases associated with the systematic
classification of organisms. This problem appeared to be
aggravated by the advances in related sciences such as
serology, chromatology, and spectroscopy, which led to the
discovery of a vast amount of new variables (also called
characters in biology) to describe the organisms. The resulting
number of available characters turned out to make it
infeasible for a taxonomist to estimate the affinities between
taxonomic units (organisms, species, or higher rank taxa).
In consequence, the scientists felt impelled to select a
manageable group of characters from the complete set of
available characters, which added a further subjective bias to
the classical taxonomy procedures.

Having posed the aforementioned “illnesses” of classical
taxonomy, Sneath and Sokal envisaged a series of numerical
methods as the key to solve the weaknesses of classical
taxonomy:

“It is the hope of numerical taxonomy to aim at
judgements of affinity based on multiple and unweighted
characters without the time and controversy which
seems necessary at present for the maturation of
taxonomic judgements.” [SOK 63]

The innovations introduced in the field of “numerical
taxonomy” included the mathematic formulation of similarity
metrics that enabled an objective comparison of specimens
on the basis of their characters, as well as the application of
hierarchical clustering to provide accurate representations of
the new similarity matrices in the form of hierarchical trees
or “dendograms”.

According to [BLA 55], clustering analysis has witnessed an
“exponential growth” since the initial contributions of Tryon
and Sokal. Numerous clustering approaches arose in those
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years for different applications, specially motivated by the
introduction of different mathematical equations to calculate
the distances/similarities between data objects [SOK 63].

One example was the application of clustering in the field of
psychology, for grouping individuals according to their profile
of scores, measured by personality or aptitudes tests, among
others. Tryon, who initially devised a clustering scheme
for grouping variables, also proposed the use of clustering
algorithms for extracting different groups of persons with
similar aptitudes (or composites of them) in the Holzinger
study of abilities. He referred to this type of cluster analysis as
“object analysis” or O-analysis, in contrast to its application to
variable analysis. Later, he performed other studies, applying
both V- and O-analyses to other domains. For example, one
application was to cluster neighborhoods according to census
data, in which the extracted clusters were referred to as social
areas (the social area study [TRY 55]). Another application
was to cluster a number of persons, among them psychiatric
patients with psychological disorders as well as other normal
subjects, into different groups of personalities (the Minnesota
Multiphasic Personality Inventory (MMPI) Study [GRA 05]).
To compute affinities between individuals, Tryon applied the
Euclidean distance function.

Other contributions to cluster analysis were the works by
Cox [COX 61, COX 62] and Fisher [FIS 58], who described
hierarchical grouping schemes based on a single variable or
the Ward’s method, an extension to deal with the multivariate
case. Ward proposed an objective metric based on the sum
of squares error (SSE) to quantify the loss of information by
considering a group (represented by its mean score) rather
than its individual member scores.

Although psychology and biology (taxonomy) were the
major fields of application of the initial clustering schemes,
the exponential evolution of cluster analysis is patent in the
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broad coverage of disciplines where clustering data has been
an essential component (vector quantization [BUZ 80,EQU 89,
GER 91], image segmentation [CLA 95, POR 96, ARI 06],
marketing [SHE 96], etc.). According to [JAI 04], the number
of clustering techniques developed from the early studies to
date is “overwhelming.”

2.4. Cluster algorithms

This section provides an overview of some popular
clustering approaches. In particular, five different types
of clustering algorithm are distinguished: hierarchical,
partitional (specially competitive methods), model-based,
density-based, and graph-based algorithms.

2.4.1. Hierarchical algorithms

In hierarchical clustering, a tree or hierarchy of clusters
is incrementally built [ALD 64,HAS 09,WAR 63]. Assuming
that the data objects are the leaves of the hierarchical tree,
the hierarchical tree is build using two basic approaches:
agglomerative (bottom-up) or divisive (top-down). These
methods are described in the following sections.

2.4.1.1. Agglomerative clustering

Agglomerative methods build the hierarchy tree in a
bottom-up manner, starting at the bottom hierarchy level
(each object composes a singleton cluster) and successively
merging clusters until a unique cluster is found at the top
level.

The agglomerative algorithm is described in the following
steps:

1. Start with each object in its individual cluster. Initially,
the distances between the clusters correspond to the
dissimilarities between data objects.
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Method Distance between clusters
Single d(Ca, Cb) = mini,j d(xi ∈ Ca, xj ∈ Cb)
Complete d(Ca, Cb) = maxi,j d(xi ∈ Ca, xj ∈ Cb)
Average d(Ca, Cb) =

∑
xi∈Ca,xj∈Cb

d(xi, xj)

Centroid d(Ca, Cb) = d(Ca, Cb)

Table 2.1. Cluster distances applied by the different hierarchical
agglomerative algorithms

2. Update the distances between the clusters, according to
one of the criteria in Table 2.1.

3. Merge the pair of clusters with the minimum distance,
calculated in Step 2.

4. Stop if all the data elements are enclosed in a unique
global cluster (the top hierarchy level is reached). Otherwise,
record the pair of clusters previously merged in Step 3 in the
tree structure and repeat from Step 2.

Table 2.1 describes four different types of agglomerative
approaches, depending on the criterion to calculate the
distance between clusters before each cluster merging. The
notation d(Ca) indicates the centroid, or center, of cluster Ca.

The hierarchy tree is typically visualized in the so-called
dendogram plot, which depicts the pair of clusters that are
merged at each iteration and the corresponding dissimilarity
level. Figure 2.1 shows the dendogram plot obtained on a
dataset with 20 different mammal species. From the hierarchy
tree, a cluster partition can be achieved by specifying a
distance level or a desired number of clusters to cut the
dendogram.

2.4.1.1.1. Comparison of agglomerative criteria

In the single linkage, the clusters with the closest members
are merged. Such merging criterion is local, as the global
cluster structure is ignored. As can be observed in the
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Figure 2.1. Dendogram plots obtained by the single, complete,
and average link agglomerative algorithms on a dataset of 20
different animals: (a) single linkage, (b) complete linkage, and

(c) average linkage

dendogram of Figure 2.1(a), the single linkage usually results
in large clusters and may lead to erroneous splits of one cluster
if two or more clusters are close to each other, specially if
the clusters show different pattern densities (in this case,
the pairwise distances in the low-density cluster may be
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Centroid linkage

Inversion

Figure 2.2. Dendogram plot obtained by the centroid agglomerative
algorithm on a dataset of 20 species of animals

larger than the distance between the two clusters). On the
other hand, the complete link criterion merges two clusters
according to the most distant objects. This criterion overcomes
the problem of large clusters obtained by the single linkage.
However, the complete link criterion is sensitive to outliers.
If a cluster is merged to an outlier at a certain iteration,
its inter-cluster distances will become considerably larger
at the next iteration. This is due to the presence of the
outlier pattern. This fact may prevent merging the cluster
to other members of the same cluster in further iterations. A
good compromise seems to be the average linkage criterion.
It merges two clusters according to the average pairwise
distances between their respective members. Finally, in the
centroid linkage criterion the distance between two clusters
is calculated as the distance between the centroid elements.
One important characteristic of the centroid linkage method
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is that the cluster distances do not show increasing monotony
with increasing iterations, in contrast to the single, complete,
and average criteria. As an example, consider three globular,
equally sized clusters, spatially arranged so that their
centroids occupy the vertices of an approximately equilateral
triangle, âbc. The distance of the first two clusters, say Ca

and Cb (edge ab), is only marginally inferior to the length of
the other two edges in the triangle, so that the clusters Ca

and Cb are merged at iteration t. The centroid of the new
cluster will be then placed in the middle point of the edge
ab. The centroid of the third cluster corresponds to the third
vertex. Thus, new distance between the new cluster Cab and
Cc, merged at iteration t + 1, corresponds to the height of the
triangle, h ∼

√
3
2 ab, which is smaller than the distance between

the clusters Ca and Cb merged in the previous iteration.
This non-monotonic distance effect is clearly patent in the
new dendogram plot. It can be observed how mergings at a
certain iteration can occur at a lower dissimilarity level than
a previous iteration. Such effect is also known as dendogram
inversion.

2.4.1.2. Divisive algorithms

Divisive algorithms build the cluster hierarchy in a top-
down approach, starting at the top level, where all the
patterns are enclosed in a unique cluster, and successively
splitting clusters until each pattern is found in a singleton
cluster. A greedy divisive algorithm requires the evaluation
of all 2|C|−1 − 1 possible divisions of the cluster C into two
subclusters (initially, |C| = n). However, Smith et al. proposed
an alternative algorithm, called divisive analysis (DiANA),
which avoids the inspection of all possible cluster partitions.
The algorithm is described as follows:

1. Start with all objects in a unique cluster, Cg.
2. Select the cluster C ′ with the highest diameter (distance

between the most distance objects inside the cluster). Initially,
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start with the cluster Cg containing all patterns in the dataset,
i.e. C ′(t = 0) = Cg.

3. For each object in C ′, calculate its average distance to all
other objects in the cluster.

4. Select the pattern with the highest average distance in
C ′. This pattern originates into a new cluster C ′′ and is thus
removed from C ′.

5. For each one of the remaining objects, xi ∈ C ′, calculate
the average distance to the rest of objects in C ′ and C ′′.
Let this average distances be denoted as davg(xi, C

′) and
davg(xi, C

′′). If davg(xi, C ′) > davg(xi, C
′′), the pattern has more

affinity to the new formed cluster. Select the pattern x̂ whose
affinity to C ′′ is the highest in comparison to C ′.

x̂ = argmax
xi∈C′

(davg(xi, C
′)− davg(xi, C

′′)) [2.1]

Remove x̂ from C ′ and attach to C ′′.
6. Repeat Step 5 until no object in C ′ can be found such that

davg(xi, C
′) > davg(xi, C

′′). At this point, the partition of the
cluster C ′ is finished. Record the resulting clusters C ′ and C ′′

into the corresponding dendogram level.
7. Stop if each data pattern is in its own cluster (the bottom

hierarchy level is reached). Otherwise, repeat from Step 2 to
evaluate the subsequent cluster to be partitioned.

2.4.2. Model-based clustering

In model-based clustering, it is assumed that the data are
drawn from a probabilistic model, λ, with parameters θ. Thus,
the estimation of the model parameters θ is a crucial step
for identifying the underlying clusters. A typical example of
model-based clustering is the expectation maximization (EM)
algorithm.
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2.4.2.1. The expectation maximization (EM) algorithm

As mentioned above, the EM algorithm [DEM 77,NIG 99,
MAC 08] is based on the assumption that the dataset
X = {x1, x2, . . . , xN} is drawn from an underlying probability
distribution, with a probability density function p(X|θ). The
objective of the EM algorithm is to provide an estimation of the
parameter vector θ̂ that maximizes the log-likelihood function

θ̂ = argmax
θ
L(θ) = log(p(X|θ)) = log(

N∏
i=1

(p(xi|θ))) [2.2]

In a simple univariate Gaussian distribution, θ may be a
vector of the mean and variance, θ = [μ, σ2]. An analytical
solution to the maximum log-likelihood problem can be
directly found by taking derivatives of equation [2.2] with
respect to μ and σ. However, for more complex problems, an
analytical expression may not be possible. In such cases, the
EM algorithm performs an iterative search for the numerical
solution of [2.2].

Typically, an additional unobserved variable vector Z is
introduced. The introduction of this variable allows us to
simplify the mathematical analysis to derive the EM updating
equations

p(X|θ) =
∑
z

p(X|z, θ)P (z|θ) [2.3]

where z denotes a particular value of the variable vector Z.
Let θ(t) denote the guess of the parameters θ at iteration t.
The derivation of the EM formulation follows the Jensen’s
inequality

log(
∑

λixi)) ≥
∑

(log(λixi) [2.4]

with constants λi ≤ 1, such that
∑

i λi = 1. At iteration t,
the parameters θ(t) are known. Thus, the constants λi can be
defined as follows:

λi = p(z|X, θ(t)) [2.5]
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with
∑

i p(z|X, θ(t)) = 1. These constants can be introduced in
the log-likelihood formulation (equation [2.2]) as follows:

L(X|θ) =
∑
z

log p(X|z, θ) · p(z|θ) · p(z|X, θ(t))

p(z|X, θ(t))

=
∑
z

log

(
p(z|X, θ(t))

(
p(X|z, θ) · p(z|θ)

p(z|X, θ(t))

))
[2.6]

Thus, by applying Jensen’s inequality, it yields

L(X|θ) =
∑
z

log

(
p(z|X, θ(t))

(
p(X|z, θ) · p(z|θ)

p(z|X, θ(t))

))

≥
∑
z

P (z|X, θ(t)) log

(
P (X|z, θ) · P (z|θ)

P (z|X, θ(t))

)
[2.7]

Moreover, it can be shown that the log-likelihood equals
equation [2.7] for θ = θ(t). Thus, equation [2.7] is a lower
bound of the log-likelihood to be maximized, and equals this
likelihood for θ = θ(t). This observation is key for the
definition of an EM iteration. If a value θ(t+1) is found to
increase the value of equation [2.7], it will necessarily result
in an increment of the log-likelihood value. The maximization
objective can be thus reformulated as

argmax
θ

{∑
z

p(z|X, θ(t)) log

(
p(X |z, θ) · P (z|θ)

p(z|X, θ(t))

)}

= argmax
θ

{∑
z

p(z|X, θ(t)) log
(
p(X |z, θ) · p(z|θ))}

− argmax
θ

{∑
z

p(z|X, θ(t)) log
(
p(z|X, θ(t))

)}
[2.8]
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At iteration t+1, the last term in equation [2.8] is a constant
factor with respect to θ. Thus, this term can be discarded in
the maximization formulation, which can be rewritten as

argmax
θ
{L(X |θ)} = argmax

θ

{∑
z

p(z|X, θ(t)) log
(
p(X |z, θ) · p(z|θ))}

= argmax
θ

{∑
z

p(z|X, θ(t)) log
(
p(X, z|θ))}

= Ez|X,θ(t)

{
log
(
p(X, z|θ))} [2.9]

Thus, the objective of the EM algorithm is the
maximization of the expectation of log p(X, z|θ) over the
current distribution of Z values given X under θ(t). Typically,
a definition of the variable vector Z is used so that each z
realization can be calculated from the current estimate of the
parameters, θ(t). The iteration (t + 1) of the EM algorithm
consists of two alternating steps:

1. E-step: determine the expectation

Ez|X,θ(t)

{
log
(
p(X, z|θ))}. In practice, it requires the

calculation of the probabilities p(z|X, θ(t)) given the data
X and the previous parameter vector estimate θ(t).

2. M-step: find the current estimation θ(t+1) by maximising
the expectation:

θ(t+1) = argmax
θ

EZ|X,θ(k)

{
log p(X, z|θ)

}
[2.10]

An example of the EM algorithm for estimating the
parameters of a mixture of Gaussians is described in the
following.
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2.4.2.1.1. Example: mixtures of Gaussians

For a mixture of Gaussians with M components, G =
{g1, g2, . . . , gM}, the random variable vector Z is composed of
N components, {zi}Ni=1, where zi ∈ [1, . . . ,M ] denotes the
Gaussian component of the corresponding data element xi.
The parameter vector θ is thus composed of the Gaussians
means and variances (μ,Σ), as well as their marginal
probabilities p(g). Thus, θ is composed of M components,
(θ1, . . . , θM ) for the M Gaussians, with θm = (μm,Σm, p(gm)).
The expectation in equation can be formulated as

Ez|x,θ(t)

{
log p(X, z|θ)

}
=
∑
z

{
p(z|x, θ(t)) log p(x, z|θ)

}

=

M∑
z1=1

M∑
z2=1

. . .

M∑
zN=1

(∏
xi

p(zi|xi, θ
(t))
(∑

xi

log p(xi, zi|θ)
))

[2.11]

After some manipulations, a more simple expression can be
derived for equation [2.11] as follows:

Ez|x,θ(t)p(X, z|θ) =
M∑

m=1

N∑
i=1

p(zi = m|xi, θ
(t)) log(p(xi, zi = m|θ)

=

M∑
m=1

N∑
i=1

p(zi = m|xi, θ
(t)) log(p(xi|θm)p(zi = m) [2.12]

where p(zi = m) denotes the probability of the mth Gaussian
component, p(gm).

In the E-step, the first part of the expectation in equation
[2.12], p(zi = m|xi, θ(t)) can be calculated given the previous
estimation of the parameters θ(t):

p(zi = m|xi, θ(t) =
p(xi|θm)p(zi = m)

p(xi, θ)

=
p(xi|θm)p(zi = m)∑M
m=1 p(xi|θm)p(gm)

[2.13]
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After the calculation of the probabilities p(zi = m|xi, θ(t),
the Maximization of the expectation performed the M step, by
taking the partial derivatives of equation [2.12] with respect
to the parameters θ and setting their values to 0.

M∑
m=1

N∑
i=1

p(zi = m|xi, θ(t)) ∂
∂θ

log(p(xi|θm)p(zi = m) [2.14]

By considering the partial derivatives with respect to the
individual components in θ (μ, σ and p(g)), the following
solutions yield for μ(t+1),Σ(t+1) and p(g)(t+1):

p(gj)
(t+1) =

1

N

N∑
i=1

p(xi|θ(k)j )∑M
m=1 p(xi|Θ(t)

m )
[2.15]

μ
(t+1)
j =

∑N
i=1 xip(zi = j|xi, θ(t))∑
i=1N p(zi = l|xi, θg) [2.16]

Σ
(t+1)
j =

∑N
i=1 p(zi = j|xi, θ(t))(xi − μj)(xi − μj)

T∑N
i=1 p(zi = j|xi, θ(t))

[2.17]

The E- and M-steps are iterated until the parameter vector
θ(t+1) remains unaltered with respect to the vector in the
previous iteration, θ(t). In this convergence state, a “soft”
clustering solution is provided by the probabilities p(zi =
j|xi, θ). However, a hard solution can be easily obtained by
selecting the values of zi which maximize these probabilities.
The EM algorithm is considered as a generic modality of
the k-means algorithm. In fact, both E- and M- steps
are closely related to the k-means adaptation steps. The E-
step recalculates the membership probabilities p(zi|xi), given
the previous parameter estimate (means and covariances).
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Figure 2.3. Illustration of the parameter estimation on a mixture of
five bivariate Gaussians through the Expectation Maximization

Algorithm (EM), using two different random initializations. As can
be observed in the plot 2.3(a), two of the five Gaussians are merged in

the convergence state. Thus, the EM algorithm may tend to a local
optimum with an inadequate initialization of the parameters.

However, with an appropriate initialization of the parametes, the EM
algorithm is capable to fit the parameters to the five existing

Gaussians

This step can be viewed of as a soft version of the pattern
reallocation in the Voronoi cells of the respective means in
k-means. Finally, the recalculation of the means in k-means
correspond to the update of the θ(t+1) in the M-step.

2.4.3. Partitional competitive models

Competitive models aim at discovering a set of
reference prototypes, P = {p1, p2, . . . , pN} with coordinates
{w1, w2, . . . , wD}, which optimally represent the data
distribution D.

2.4.3.1. K-means

In general terms, assuming that the elements of D are
drawn from a certain probability distribution, P (x), the k-
means [ART 06,BAR 00,HAR 05] objective is to find the values
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of the prototype vectors to minimize the error in

E(D,P) =
∑
pi∈P

∫
Vi

‖ x−wi ‖2 p(x)dx [2.18]

where Vi is the Voronoi cell associated with the reference
vector pi, i.e. the region of points in RD that are closer to
pi than to any other reference vector in P:

Vi = {x ∈ RN | argmin
pj∈P

‖ x− wj ‖} = pi [2.19]

If the probability distribution of the data, P (x), is not
known a priori, but only a discrete set of data points D =
{x1, x2, . . . , xN} is available, the error surface in equation
[2.18] can be reformulated as

E(D,P) =
∑
pi∈P

∑
x∈Vi

‖ x− wi ‖2 [2.20]

In the k-means algorithm, the search for the optimum
weights of the prototypes is performed iteratively through a
stochastic gradient descent on the error surface. At iteration
t, the contribution of the data element x(t) to the update of the
prototype weights is thus given by

Δwi = ε(t) · δii(x(t)) · [x(t)− wi] [2.21]

where x(t) denotes the data point visited at time t, ε(t) is the
step size parameter that controls the adaptation rate, and δii
is the Kronecker delta function defined as follows:

δii(x(t))

{
1, if x(t) ∈ Vi
0, otherwise

[2.22]

Hence, the function δii(x(t)) deactivates any possible
contribution of elements that lie outside the Voronoi region
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of pi. Owing to this “hard decision,” the k-means algorithm is
casted as a hard competitive model, which means that only
points for which pi is found to be the “winning prototype”
account for the update of the prototype weights.

It should also be noted that, after each update of the
prototype weights, the Voronoi region of the prototype pi is re-
calculated. Moreover, the parameter ε(t) is not constant, but
obeys a decaying pattern:

ε(t) =
1

n(t)
[2.23]

where n(t) is the number of visited data elements that have
contributed to the update of the weights of pi up to the current
iteration t.

As it can be demonstrated, the prototypes’ weight locations
converge asymptotically to the mean expected value of their
respective Voronoi cells:

wi(t→∞) =

∫
Vi

x p(x)dx [2.24]

or equivalently, for a discrete dataset D

wi(t→∞) =

∑
xj∈Vi

xj

|Vi| [2.25]

A batch implementation of the k-means clustering
algorithm can be described as follows:

1. Initialize the set of prototypes P with k elements,

P(t=0) = {p1, p2, . . . , pk} [2.26]

whose weights or cooordinates wi are randomly chosen
according to p(x) or selected by the user.
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2. For each iteration t, build a set of clusters around the
respective prototypes:

C(t) = {C1, C2, . . . , Ck} [2.27]

in such a way that each cluster is composed by the data points
belonging to the Voronoi cell of the winning prototype

C
(t)
i = Vi = {xj ∈ D | argmin

pk∈P
‖ xj − wk ‖= pi} [2.28]

3. Re-calculate the prototype weights or coordinates to
coincide with the most central point of the Voronoi cell:

w
(t)
i =

∑
xj∈Vi

xj

|Vi| [2.29]

4. Calculate the error at iteration t, E(t), according to
equation [2.20].

5. Calculate the decrement of the error E at iteration t with
respect to t− 1:

ΔE = E(t) − E(t−1) [2.30]

6. Stop if the error difference ΔE is lower than a specified
value, Δmin

E (a convergence status is reached), or the maximum
number of iterations is reached. Otherwise, continue from
Step 2.

Figure 2.4 shows an example of the clustering solution
obtained by the k-means algorithm on a mixture of five
Gaussians with two different random initialization. As can be
observed, the extracted clusters depend on the choice for the
initial prototypes. An inappropriate initialization may lead to
solutions far from the optimum (Figure 2.4(a)).

2.4.3.1.1. Advantages and drawbacks

One of the advantages of k-means is the fast convergence
and thus the low computational cost of the algorithm
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Figure 2.4. Illustration of k-means with two different random
initializations. The final centroids as well as the corresponding

Voronoi cells can be observed

[HAR 05]. However, the main limitation associated with
the k-means algorithm may converge to a local optimum,
depending on the choice of the initial prototypes. This problem
is commonly addressed through multiple algorithm calls with
different random initializations in a trial-and-error approach.
The solution that provides the minimum sum of squared
errors is selected.

Another limitation is associated with the sum of squared
errors objective function. Patterns with large distances
may considerably attract the cluster centers toward them.
Consequently, the algorithm shows a high sensitivity to
outliers.

A third limitation of k-means is the shape and size of
clusters that can be detected. As the algorithm divides the
dataset into Voronoi regions, the k-means algorithm extracts
convex (globular) clusters. However, it may fail to identify
other cluster shapes or clusters of non-homogeneous sizes,
specially if those clusters lie close to each other.
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Finally, the k-means algorithm requires the number of
clusters k to be a priori determined. The correct identification
of the optimal number of clusters existing in a dataset can
be achieved through the evaluation of the cluster partitions
obtained from multiple runs of the clustering algorithm with
different values of k; see Chapter 6 for other possibilities.

2.4.3.2. Neural gas

As described in the preceding paragraphs, the weight
adaptation of each prototype pi by the k-means algorithm is
only affected by the data points whose winning prototype is
pi. In contrast, in the neural gas approach [COT 00,FRI 95,
FYF 06], each visited data point, xj ∈ D, has a certain impact
on the adaptation of the weights for all prototypes, on a “rank
order” basis (equation [2.31]):

Δwi = ε(t) · hλ(ki(x(t),P)) · (x(t)− wi) [2.31]

As can be noted, the main difference with respect to
the weight adjustment in k-means (equation [2.21]) is the
substitution of the delta function by an exponentially decaying
function (hλ). Basically, this new function determines the
relative (soft) importance of each presented data point at
iteration t, x(t), for the adaptation of the prototype pi:

hλ(ki(x(t),P)) = e(−ki(x(t),P)/λ) [2.32]

where ki indicates the rank order of the prototype pi from
all prototypes in P with respect to the data point x(t) under
consideration. In other words, ki is the number of prototypes
closer to x(t) than pi. For example, the closest prototype is
assigned a rank order k = 0, and thus, hλ(ki(x(t),P)) = 1;
Analogously, the next, second, third, etc., closest prototypes up
to the farthest one are assigned rank values k = 1, 2..., k − 1.
The λ parameter, λ ∈ [0, 1], controls the decay rate of the hλ
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function, and thus, the “softness” of the neural gas model.
For example, if λ → 0, the function hλ is equivalent to the
Kronecker delta δii and thus the resulting model becomes
analogous to the k-means algorithm.

It can be shown that the adaptation rule in equation [2.31]
responds to a gradient descent optimum search on the error
function in equation [2.33]:

ENG(D,P) = 1

2C(λ)

k∑
i=1

∫
hλki(ξ,P) ‖ x− wi ‖2 p(x)dx [2.33]

For a discrete dataset, equation [2.33] is equivalent to
[2.34]:

ENG(D,P) = 1

2C(λ)

k∑
i=1

∑
xkinD

hλki(xk,P) ‖ xk − wi ‖2 [2.34]

The normalization factor C(λ) in both equations [2.33] and
[2.34] is a constant value that only depends on λ:

Cλ =
k−1∑
i=0

hλ(k) [2.35]

2.4.3.2.1. Advantages and drawbacks

The main advantage of the neural gas with respect to
the k-means algorithm is the robustness with respect to the
initialization. The neural gas can be viewed as a generalized
version of Kohonen maps which applies to any topology.
However, the algorithm requires, besides the number of
clusters k, the specification of other parameters, such as the
adaptation rate and the neighbor functions.
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2.4.3.3. Partitioning around Medoids (PAM)

The Partitioning around Medoids (PAM) algorithm,
proposed by Rousseau [LEO 05] is an alternative to the k-
means algorithm based on medoid prototypes. In a similar
way as k-means, the PAM algorithm aims at discovering a
set of k representative objects that are more centrally located
in the clusters. However, PAM differs from the k-means in
several ways:

1. PAM searches for a set of k-medoid prototypes instead of
k-centers. Centers (or centroids) are vectors located in the
exact cluster “center of masses” and do not necessarily coincide
with an object in the dataset. In contrast, medoids correspond
to the objects in a dataset closer to the cluster means.

2. The objective function minimized by the PAM algorithm
is the total sum of distances, instead of the sum of squared
errors in k-means.

3. The PAM algorithm may be used with any arbitrary
distance function. It also accepts the matrix of data
dissimilarities as input instead of the dataset coordinates.

The search for the minimum sum of distances is performed
in two main steps: build and swap.

2.4.3.3.1. Build step

This step performs a sequential search for an appropriate
initial set of medoids P, which are more “centrally located”
[LEO 05] in the dataset:

1. Select the object x̂(0) with the minimum sum of distances
to the rest of elements in the dataset. Initially (at iteration
t = 0), the set of prototypes is composed by the object x(0).

x̂(0) = argmin
xi∈D

(∑
xk

d(xi, xk)

)
[2.36]

P(t=0) = {x̂(0)} [2.37]
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2. Select a candidate object outside the current prototype
set, xi /∈ P. A quality score S(xi) is computed for the selected
object. It measures the distances between all other objects and
xi in relation to their distances to P:

S(xi) =
∑
k

Cik [2.38]

Cik = max(0, dmin(xk,P) − d(xk, xi)) [2.39]

where dmin(xk,P) denotes the distance of xk to the closest
prototype in P.

3. Repeat Step 2 to compute the scores S(xi) for all candidate
objects outside P. At iteration t, select the object x̂(t) with the
maximum score S(xi) and update the set of prototypes with x̂:

x̂(t) = argmax
xi /∈P

S(xi) [2.40]

P = P ∪ {x̂(t)} [2.41]

4. Repeat Steps 2 and 3 while incrementally adding new
prototypes to P until k prototypes are found, i.e. |P| = k.

2.4.3.3.2. Swap phase

In the second phase of the algorithm, all possible
exchanges, or swaps between the prototypes and the rest of
objects, are evaluated to minimize the objective function. If a
swap (xi ∈ P ↔ xj ∈ P) is carried out, the object xi is removed
from the set of prototypes in favor of xj, which is attached to P.

1. For each possible swap in the form (xi ∈ P ↔ xj /∈ P),
the “goodness” of the swap is evaluated by a score T (xi, xj),
calculated as the sum of individual contributions Ci,j,k for all
other objects, xk /∈ P:

T (xi, xj) =
∑
xk

Cijk [2.42]
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Cijk =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if d(xk , xi) > dmin(xk,P − {xi})
and d(xk , xj) > dmin(xk ,P − {xi})

d(xk, xj)− d(xk, xi) if d(xk , xi) = dmin(xk,P)

and d(xk , xj) < dmin(xk ,P − {xi})
d(xk,P − {xi}) − d(xk , xi) if d(xk , xi) = dmin(xk,P)

and d(xk , xj) ≥ dmin(xk ,P − {xi})
d(xk, xj)− dmin(xk,P) if d(xk , xi) > dmin(xk,P − xi)

and d(xk , xj) < dmin(xk ,P)

[2.43]
where dmin(xk,P) denotes the minimum distance of xi to any
of the objects in P.

2. Select the pair with the minimum score T (xi, xj):

(x̂a, x̂b) = argmin
xi∈P,xj /∈P

T (xi, xj) [2.44]

3. Stop if T (x̂a, x̂b) ≤ 0. Otherwise, carry out the swap (x̂a ↔
x̂b) and repeat from Step 1 to evaluate further potential swaps.

2.4.3.3.3. Advantages and drawbacks

In comparison to the k-means algorithm, the PAM
reaches the global optimum regardless of the medoids
initialization. However, this is achieved at the expense of
higher computational cost. Moreover, since the optimum
criterion is to minimize the total sum of distances instead of
squared distances, the PAM algorithm is more robust against
outliers. As in k-means, the PAM extracts Voronoi regions
around the medoid objects and may thus fail to detect non-
convex clusters.

2.4.3.4. Self-organizing maps

The self-organizing map (SOM) is a popular tool for
exploratory data analysis, devised by Teuvo Kohonen
[KOH 01, KOH 90, VES 00]. Kohonen’s model belongs to
the category of algorithmic approaches inspired by biological
processes. The SOM principle shows a direct analogy
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with the logical perception of different input stimuli by the
human brain. Numerous studies in the field of neurobiology
have ascertained how the different sensorial stimuli, in the
form of multi-dimensional signals, are projected in specific
regions of the cerebral cortex. It has been observed that,
within each region, the information is mapped into certain
topological structures, which are typically configured in linear
of planar (bi-dimensional) maps. This peculiar characteristic
of the brain is commonly referred to as the “topology
preserving” property and was exploited by Kohonen in the
SOM model.

The basic SOM model can be observed in Figure 2.5. In
contrast to the previous generative algorithms, the set of
prototypes P is organized in a topology (ordered map) of a
lower dimensionality m than the input dataset. Following
the typical structures in the brain, such maps are usually
one or two dimensional. The SOM prototypes can thus be
considered as the nodes in the ordered map, also referred
to as neurons. In compliance with the topology preserving
condition, the ordering of the nodes in the map (Kohonen
layer) is fixed at all stages of the algorithm. In addition,
each node pi is associated with a weight vector wi ∈ Rn that
corresponds to any point in the input data space. In a learning
phase, the nodes’ weights are iteratively updated, until the
final prototype weights reflect the input data distribution. In
other words, the distribution of the final prototype weights in
the input layer is the most representative for the input data
distribution.

Initially, the prototype weights are assigned random
values. At each iteration t, an input vector from the dataset is
selected x(t). The prototype pk in the Kohonen layer with the
closest weight vector to x(t) is then selected as the winning
prototype. In SOM models, the winning prototype is referred
to as the best matching unit (BMU).
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Input layer

Weight matrix

Kohonen layer of neurons

W

Figure 2.5. Self-organizing maps (SOM). Example of neuron and
input layers. The model’s prototypes or neurons are distributed in an
ordered map, typically linear or planar topologies. Each neuron is

associated with a weight vector, in such a way that each point in the
data space is mapped to a neuron and vice versa. While the values of
neuron weights keep constantly adapting during the algorithm, the
neuron position in the map is always fixed (topology preserving)

The weight vectors of the BMU (wk) and its neighbors are
displaced toward the direction of the input element x(t), using
the weight update rule:

wi(t+ 1) = wi(t) + α(t) hk,i (x(t)− wi(t)) [2.45]

where α(t) denotes the SOM learning rate, which decreases
monotonically with each iteration. hk,i is a spatial
neighborhood function that determines the degree to which
the input vector x(t) “attracts” the BMU’s neighbor neurons
in the Kohonen layer. At an attempt to emulate the biological
lateral interaction between adjacent neurons, a Gaussian
function is frequently selected for the neighborhood function
hk,i:

hk,i = exp

(−||ri − rk||2
σ(t)2

)
[2.46]

where ri and rk denote m-dimensional vectors with the spatial
coordinates of the nodes k (BMU) and i in the map. As with
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the learning rate, the standard deviation σ in equation [2.46]
is also a decreasing function with the number of iterations
t. Thus, during the learning progress, the map becomes
more “specialized” by increasing the spatial resolution of the
neighborhood function.

The steps of the SOM learning algorithm are as follows:
1. Given an input finite dataset D, and a selected topology,

initialize the codebook of prototypes P(t = 0) = {p1, p2, . . . , pk}.
If a random initialization is selected, each jth prototype
variable takes k random values uniformly distributed in the
original range of the corresponding variable in D.

2. Select an input pattern x(t) from the finite dataset
D. Calculate the distance (typically, the Euclidean distance
metric is used) of the input pattern to all prototypes in P. The
winner prototype – BMU – is identified as :

BMU(t) = argmin
pi∈P

{||x(t)− wi||} [2.47]

3. Update the prototype weights of the BMU and its spatial
node neighbors in the map toward the direction of the pattern
x(t), according to the weight update rule (equation [2.45]).

4. Stop if the maximum number of iterations is not exceeded
(t < maxiter). Otherwise repeat from Step 2 with t = t+ 1.

To obtain final prototype weights which are good
representatives of the input data distribution, an adequate
choice for the maximum number of iterations maxiter is a
multiple of the input dataset cardinality maxiter := N · |D|,
so that each data element xi ∈ D is exactly presented N times
to the SOM learning algorithm.

The multiplier factor N is also referred to as the number
of cycles or epochs. Figure 2.6 shows an example of the
prototype weights adaptation (input layer) on the mixture
of five Gaussians over 100,000 iteration. Grey dots depict
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Figure 2.6. Illustration of the SOM learning iterations on a mixture
of five spherical Gaussians in two dimensions. The nodes, which in
this example are projected into the data space, are depicted as filled
circles. The lines connecting the nodes indicate adjacent nodes in the
map (Kohonen layer). The lines and nodes’ colors, from light to dark,

are used to indicate the sequence of iterations, starting from the
random initialization, until the convergence state, after 100,000

iterations

the nodes distribution at different stages of the algorithms,
whereas black dots depict the dinal convergence positions.
Figure 2.7 shows another example using a 10x10 sheet
topology, after the initialization (Figure 2.7(a)) and after
10,000 iterations (Figure 2.7(b)). The corresponding U-
matrices are also depicted (Figures 2.7(c) and 2.7(d)).

2.4.3.4.1. Advantages and drawbacks

The main advantage of Kohonen SOMs relies on their
capability to fit any type of distribution. The SOMs for
clustering have several possibilities. If the number of clusters,
k, is known, a topology (e.g. linear) with k nodes can
be selected. At the convergence state, a cluster can be
considered as the patterns which share the same BMU
unit. Alternatively, a larger topology may be selected in
combination with any k-clustering approach to partition the
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nodes in the Kohonen layer. Finally, if the number of clusters
is unknown, the SOM can be used as a visualization tool.
The task to recognize the number of clusters is left to the
users who analyze the so-called U-matrix (as in Figure 2.7(d)).
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Figure 2.7. Illustration of the SOM learning iterations and
U-matrix on a mixture of five spherical Gaussians in two dimensions.

A 10*10 rectangular sheet topology is selected. Top plots show the
data and map nodes projected in the data space. (a) is referred to the
initialization state, while (b) shows the organized map after 10,000
iterations. Bottom plots show nodes in the Kohonen layer (output

space). The different nodes’ colors in the gray scale indicate
similarities. For example, if two nodes have a high pair-wise

similarity, these nodes have similar colors (close to white), while dark
colors represent distant nodes. In the convergence state,

approximately five regions with light colors can be noticed,
corresponding to the five existing clusters
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However, this task has some limitations. For example,
although the SOM does not require the number of clusters,
the final distribution of nodes – as well as the U-Matrix –
also depends on the topology and the map size, which has to
be determined beforehand. It is also known that, to obtain
accurate results, large maps are usually required, which
increases the algorithm complexity. Finally, the analysis of
the U-matrix to determine the number of clusters has the
limitations of a subjective task. Such decision may vary from
user to user, specially for close clusters or for large ks.

2.4.4. Density-based clustering

In contrast to the classical hierarchical and divisive
approaches, in which clusters arise based on the objects’
distances, density algorithms build the clusters based on a
density concept [EST 96, SAN 98]. This means that clusters
are located in regions with roughly homogeneous densities.

The most popular approach to density clustering is
probably the Density-Based Algorithm for Discovering
Clusters in Large Spatial Databases with Noise (DBSCAN),
proposed in [EST 96]. The density concept in the DBSCAN
algorithm is indicated by the input parameters (minpts and
eps), which denote the minimum number of points to be
enclosed in a neighborhood of radius eps, respectively.

In the DBSCAN algorithm, two types of objects are
distinguished: cluster and noise. To formulate the notion of
cluster in DBSCAN, the concepts of direct density reachability
and density connection were introduced, which are illustrated
in Figure 2.8.

2.4.4.1. Direct density reachability

Figure 2.8(a) shows an hypothetical spatial dataset, as well
as the ε neighborhood of the point p1. Moreover, assuming a
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Figure 2.8. Illustration of the concepts of density reachability and
density used in the DBSCAN algorithm. The concept of direct density

reachability is depicted in (a) for an hypothetical spatial dataset,
with the eps neigborhood of the point p1. (b) shows the concept of

density reachability and density connection

particular value of minpts = 4, the point p1 is said to be a
core point, and all points in its ε neighborhood, such as p2, are
density reachable from p1.

2.4.4.2. Density reachability

Figure 2.8(b) shows the concept of density reachability and
density connection with respect to minpts and ε. For example,
p3 is not directly reachable from p1 since it falls outside the
eps neighborhood of p1. However, it is density reachable from
p1, because it is possible to find one or more points pi directly
reachable from pi−1, starting at p3 and ending at p1. In this
particular case, p3 is density reachable from p1 because it is
directly reachable from p2, which in turn is directly reachable
from p1. Likewise, we can argue that p4 is also density
reachable from p1 through p3 and p2.

2.4.4.3. Density connection

Furthermore, p3 and p1 are also said to be density
connected, because there exists at least one intermediate point
(in this case p2), from which both p1 and p3 are density
reachable. In addition, p4 is density connected to p1 through p3



Clustering and Semi-Supervised Techniques 47

or p2. It should be noted that density connection does always
imply density reachability. For example, in Figure 2.8(b),
although p1 is density connected to p4, it is not reachable from
p4, since p4 is not a core point.

2.4.4.4. Border points

In Figure 2.8(b), p4 is of a different type to p3, p2, and
p1. The latter objects are called core points because we can
always find a number of points greater than minpts in their
neighborhood. In contrast, the point p4 is called a border point
because its neighborhood contains less than minpts = 4.

2.4.4.5. Noise points

It should be noted that the concept of border point implies
that the point is density reachable from at least one point, as
with p4. In contrast, the points p5 and p6, which also contain
less than minpts in their eps neighborhoods, are not density
reachable from any point in the dataset. These are thus
located in a non-dense area and are treated as noise points.

2.4.4.6. DBSCAN algorithm

Each cluster found by the DBSCAN algorithm is thus
composed of a set of density connected points. Assume X
denotes the input dataset, U andN the sets of unclassified and
noise points, respectively, and C the final set of clusters, the
DBSCAN algorithm can be described in the following steps:

1. Initially, the set of unclassified objects is equal to the
input dataset, and the set of noise patterns is the empty set:

U = X , N = ∅ [2.48]

2. Select a non-classified object xi ∈ U around which a new
potential cluster is to be build, Ci:

Ci = xi, U = U − {xi} [2.49]
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3. Calculate the set of data elements S with lower distance
to xi than eps.

4. If |S| < minpts, xi is not a core object. The candidate
cluster Ci is discarded.

Ci = ∅, U = U ∪ {xi} [2.50]

Go to Step 1 to explore for other initial objects.
5. If |S| ≥ minpts, all objects in |S| are direct density

reachable from xi. The new cluster Ci will thus contain at
least the objects in S. Remove the objects from the set of
unclassified patterns and go to Step 5

U = U − {S} [2.51]

6. Select a random object from S, x′, and calculate the set
of points S ′ which are less or equal distance than eps from x′.
Remove x′ from the set S of points to be further visited, adding
x′ to the growing cluster Ci:

Ci = Ci ∪ {x′}, S = S − {x′} [2.52]

7. If |S ′| > minpts, the chain of density reachable points
from x can be extended by exploring the elements of S ′. Thus,
add these elements to the set of points to be visited S and
remove them from the set of unclassified objects:

S = S ∪ S ′, U = U − S ′ [2.53]

8. Repeat Steps 6 and 7 until S = ∅. This means that the
chain of density reachable objects from x has been completed,
and thus, no more points need to be further visited. Add the
new cluster Ci to the set of clusters:

C = C ∪ Ci [2.54]

9. Repeat from Step 1 to search for more possible clusters,
until no further data elements can be found in U with more
than minpts in their eps neighborhoods. In this case, the
remaining unclassified objects in U compose the set of noise
patterns N (N = U ).
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2.4.4.6.1. Advantages and drawbacks

In contrast to the previous algorithms, the DBSCAN
algorithm is based on density parameters instead of distances.
Thereby, DBSCAN is not only able to extract globular clusters
but also can identify cluster of different shapes and/or sizes.
One limitation of the DBSCAN algorithm is, however, related
to the a-priory determination of the minimum cluster density
to be extracted (input parameters minpts and eps).

2.4.5. Graph-based clustering

In a graph-based clustering, the data objects are arranged
as vertices V of a graph G(V, E), with a set of edges E.
Different clustering algorithms exist based on graphs, such as
Metis, Hmetis [KAR 98], or mincut [FEN 09]. In this book,
the pole-based overlapping algorithm has been considered.
This approach extracts the final clusters without any a priori
parameter.

2.4.5.1. Pole-based overlapping clustering

The pole-based overlapping clustering (PoBOC) is an
overlapping, graph-based clustering technique proposed by
Cleizou [CLE 04a,CLE 04b]. The algorithm takes the matrix
of object dissimilarities as single input and builds the output
clusters in four main steps: (i) definition of dissimilarity
graph, (ii) construction of poles, (iii) pole restriction, and
(iv) affectation of objects to poles.

2.4.5.1.1. Definition of a dissimilarity graph

Let X denote the set of objects in the dataset and D the
dissimilarity matrix, computed over X . The mean distance of
an object x to all other objects in X , dmean(x,X ), is formulated
as:

dmean(x;X) =
1

n− 1

∑
xi∈X

Dx,xi [2.55]
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The dissimilarity graph G(X , E ,D) is then specified by (i)
the dissimilarity matrix D and (ii) the data points or vertices,
X , and a set of edges E between all pairs of vertices (xi, xj)
corresponding to mutual neighbor points.

DEFINITION 2.1.– Neighborhood of a point x. The
neighborhood of a point x, denoted by N(x) is composed of all
points of X whose dissimilarity to the point is smaller than
the mean distance of the object x to all other objects in X
(dmean(x;X )):

N(x) = {xj ∈ X |Dxj ,x < dmean(x;X )} [2.56]

DEFINITION 2.2.– Mutual neighborhoods. Two points (xi, xj)
are mutual neighbors, and thus connected by an edge in E , if
each one belongs to the neighborhood of the other:

(xi, xj) ∈ E ↔ xi ∈ N(xj);xj ∈ N(xi) [2.57]

2.4.5.1.2. Pole construction

This procedure builds incrementally a set of poles P =
{P1, P2 . . . , Pk} over X based on the dissimilarity matrix D
and the dissimilarity graph G(X , E ,D). Let O denote the
cumulated set of objects that belong to any of the extracted
poles up to the current state (initially the empty set).

The poles are grown from initial points x̂i, which are the
points with maximum mean distance to the cumulated set of
poles O. Initially, the object x̂0 with maximum distance to X
is selected:

x̂0 = argmax
x∈X

(dmean(x,X )) [2.58]
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Each Pi pole is then grown from the corresponding initial
object

x̂i = argmax
x∈X\O

(dmean(x,O)) [2.59]

in such a way that all the pole members are mutual neighbors
of each other. This is implemented in the build-pole procedure:

Algorithm 2.1 Build-pole (x̂, G(X , E ,D))
Input: initial point x̂, dissimilarity graph G(X , E , D)
Output: pole built around x̂, P
Initialize: P = x̂
Obtain neighborhood of P :
N(P ) = {x ∈ X|∀xi ∈ P, (x, xi) ∈ E}
while N(P ) = ∅ do

attach the object x to P such that:
x ∈ N(P ) and x = argmaxxi∈N(P ) dmean(xi, P )
Update N(P )

end while
Return P

The selection of the initial object x̂i and the construction
of the corresponding pole Pi are iteratively repeated until all
objects in the dataset are contained in any of the poles, O = X ,
or no initial object can be found which is sufficiently distant
from the set of poles.

2.4.5.1.3. Pole restriction

After the pole construction, overlapping objects may be
obtained. These are objects that simultaneously belong to
two or more poles. Overlapping compose the residual set R.
The pole restriction procedure removes the residual objects
from the original poles, resulting in a new set of reduced, non-
overlapping poles P̃ = P −R.
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2.4.6. Affectation stage

The set of residual objectsR obtained at the pole restriction
stage require some post-processing strategy to be re-allocated
into one or more of the restricted poles. This re-allocation of
objects in PoBOC is called affectation. First, the membership
of each object x to each P̃i-restricted pole, u(x, P̃i), is
computed as:

u(x, P̃i) = 1− dmean(x, P̃i)

Dmax
[2.60]

Next, the objects are affected to one or more poles. In
a single-affectation approach, each object x is assigned to
the pole maximizing the membership u(x, P̃j). In a multi-
affectation approach, the object is affected to the poles whose
memberships are greater than some reference values given
by a linear approximation on the set of object memberships,
sorted in decreasing order.

2.4.6.1. Advantages and drawbacks

The main advantage of the PoBOC algorithm is that no-
apriori knowledge is required to obtain the cluster solution.
The algorithm is able to extract the clusters with no input
parameter. However, one limitation of PoBOC is related to
the internal parameter used by the algorithm to build the
dissimilarity graph, namely, the average object distances.
Due to this internal parameter, PoBOC may fail to detect
clusters in hierarchies or with non-homogeneneous inter-
cluster distances. A solution to this limitation is provided in
Chapter 5.

2.5. Applications of cluster analysis

One outstanding characteristic of cluster analysis is the
multi-disciplinary application of the clustering techniques.
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This fact is primarily related to the diverse nature of the
data which can be subjected to exploratory analysis. The only
requisite for the input dataset is the multivariate formulation
of the entities to be clustered, in terms of a set of properties or
measurements (variables or features).

2.5.1. Image segmentation

Image segmentation techniques divide an input image
into a set of non-overlapping regions that are roughly
homogeneous based on features of interest, such as texture,
color, intensity, and sometimes, the pixels’ positions [LO 07,
OUY 09]. Image segmentation is used for multiple
purposes, typically as a pre-processing component that
allows us to recognize small segments to be posteriorly
labeled or classified. Different approaches for image
segmentation can be encountered in the image processing and
computer vision literature, including watershed techniques
using mathematical morphology [YE 09], edge finding
[YAN 09], region growing [MAN 00], artificial neural networks
[MUK 08], thresholding, and clustering [DES 09]. According
to Jain, thresholding is a particular case of clustering in a
binary form (using only two target clusters).

One example application of image segmentation is for
medical images. Clustering – among the rest of techniques –
can be used to analyze different image modalities: magnetic
resonance images (MRI) of the brain, computed tomographies
(CT), chest radiographies or digital mammographies, among
others, to distinguish different types of tissue or localize
suspicious elements – tumors – for posterior classification or
diagnosis.

A second example of segmentation using clustering is
shown in Figure 2.9. The plots show two-digital slide brain
images (a,d), segmented using the k-means (b,e), and EM
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(c,f) algorithms. Among the output clusters, different brain
tissues can be distinguished (white mass, gray mass, and
cerebrospinal fluid).

(a)

(f)(e)(d)

(c)(b)

Figure 2.9. Example of clustering for image segmentation in two
digital slide brain images (a,d), segmented using k-means (b,e) and
EM (c,f). Among the output clusters, different brain tissues can be
distinguished (white mass, gray mass, and cerebrospinal fluid)

Another application of clustering-based image
segmentation is for content-based image retrieval in which
users query a database of images at the level of objects, such
as traffic signs, cars, faces, and buildings. The objective
of segmentation for content-based image retrieval is to
identify such regions in the image that possibly correspond
to objects or parts of them [PAR 07]. Among the different
segmentation modalities for object-based image retrieval,
cluster analysis can be particularly applied to the so-called
‘Blobworld’ representation. The blobs are defined as the
segmented regions, typically extracted via clustering, where
the segmentation features (color, texture, etc.) remain
approximately homogeneous. Each blob is finally represented
in terms of its intrinsic descriptors, such as the dominant
color and mean texture. When the users want to initiate
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the search for a particular object, they are asked to present
an image somehow related to the object of interest. The
segmentation algorithm is then applied to the query image,
and its output is presented back to the user, together with
the set of descriptors associated with the extracted blobs.
The user is now able to specify the blob or a combination
of them to be retrieved from the database or refine the
query by some relevant descriptor values. It should be noted
that, when the query response is obtained, the user has
access to a complete blob information related to the retrieved
segmented images, which also allows for more refined
searches, in comparison with other image retrieval strategies.
The blobword representation was introduced by [CAR 02],
who used the EM algorithm to segment images based on
the aforementioned features (color, texture, and spatial
characteristics). Finally, clustering analysis has also been
recently applied to face recognition, even though clustering
is not a common practice in segmentation for face detection
nor face feature extraction. Nonetheless, in [CHE 09], a
hierarchical agglomerative clustering algorithm was applied
in conjunction with a statistical classifier (support vector
machines (SVMs)) to improve the efficiency and effectiveness
of the recognition task. In particular, the agglomerative
algorithm was used to group similar faces in the training
set, followed by a two-step SVM using Bayesian modeling
of face differences. Thereby, a manageable number of SVM
hyperplanes was attained, despite the large number of faces
(classes) in the database.

2.5.2. Molecular biology

During the past decade, the analysis of deoxyribonucleic
acid (DNA) microarray data, which encodes the expression
levels of a number of genes in cells from different tissues or
organisms, has become a major common field of study in the
areas of molecular biology and computer science.
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2.5.2.1. Biological considerations

Gene expression or DNA microarray data is obtained by
means of DNA microarray assays in which the activity of
thousands of genes is monitored simultaneously [THE 09].

In a microarray experiment [CHU 02], a DNA microarray
(DNA chip) is prepared. Basically, a DNA chip is a substrate
slide, like glass or nylon. It contains an array of spots,
pre-filled with oligonucleotide probes for a series of genes to
be monitored. First, two cell samples are extracted from
different populations to compare. For example, if the goal is
to analyze the expression of responsible genes for a certain
tumor, it is common to select a sample from a tumor cell and
a second one from a normal cell. The mRNA from both cells
is then extracted and marked with two different fluorescent
dyes, typically blue and red. Next, the microarray chip is
flooded with the mixed mRNAs, which hybridize with the spot
nucleotides. By analyzing the microarray outcomes under a
laser microscope with different wavelengths – read and green
lights – two digital images are generated, where the spots
hybridized with each colored mRNA can be detected. Finally,
for each spot, the relative abundance of the gene expression
in the first population (e.g. tumor cells) with respect to the
second (e.g. normal cells) can be measured by,

Is = log

(
I1(red)

I2(green)

)
[2.61]

Typically, microarray data are arranged as a n by m matrix
of expression levels, S, in which rows are related to genes
and columns to different experimental samples (also called
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D1 D2 D3 D4 D5

t1: Algorithm 0 1 0 0 1
t2: Analysis 0 0 1 0 0
t3: Application 1 0 0 0 0
t4: Cluster 0 1 1 1 1
t5: Data 1 1 0 0 0
t6: Document 0 0 0 1 1
t7: Mine 1 0 0 0 0
t8: Text 0 0 0 1 0

Table 2.2. Example of Boolean representation of documents with an
hypothetical set of book titles

conditions) (Table 2.2):

S =

⎛⎜⎜⎜⎜⎜⎜⎝
s11 . . . s1j . . . s1m
...

. . .
...

...
si1 . . . sij . . . sim
...

...
. . .

sn1 . . . snj . . . snm

⎞⎟⎟⎟⎟⎟⎟⎠

The elements sij are real values denoting the relative
abundance of the gene’s mRNA i under condition (sample)
j [BRO 99a].

The fundamental objectives of DNA microarray data
analysis are to identify genes involved in certain biological
processes, such as diseases, and specially, cancers, or to
classify/identify different types and subtypes of cancer tissues
on the basis of the gene activity profiles in tumor cells
[HAS 00,BRO 99b].

The advances in DNA microarray technologies have
made possible to obtain gene expression measurements
for thousands of genes. Last generation sequencing
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techniques have even succeeded in generating complete
genomic sequences. As is commonly accepted, the human
genome is composed of approximately 30,000 genes (cite in
gene selection for microarray data). However, only small
groups of genes are expected to participate in active cellular
processes of interest. For example, around 57 genes have
been found to be responsible for breast cancers and around
158 for pancreatic cancers. Given the huge amounts of gene
expression measurements collected from DNA microarray
experiments, clustering techniques have been broadly applied
to the efficient analysis, organization, and understanding of
microarray tables.

One of the first references for clustering microarray data
was the paper by [EIS 98]. They illustrated the usefulness
of hierarchical clustering schemes in grouping together genes
with similar functions, applied to gene expression profiles
in the budding yeast Saccharomyces cerevisiae. A graphical
representation of the clustered data was also proposed as an
intuitive tool to facilitate the interpretation of the clustering
results. Tavauoie et al. [BAG 06] used partitional k-means
to extract groups of functional genes from the budding yeast.
In this case, the samples were obtained at 15 different time
points corresponding to different phases of the cells’ cycles.
SOMs have been also widely applied to DNA microarray data.
For example, [TAM 99] used spherical SOMs (sSOMs) for
clustering genes in mouse brain tumor cell lines (Figure 2.10).

The aforementioned contributions are examples of gene-
based clustering, where the objective is, exclusively, to
find groups of genes that share similar properties through
different samples. A high number of research works on
DNA microarray data analysis can be circumscribed in this
category, considered as the standard approach for gene
expression data.

As mentioned earlier, a second purpose of microarray data
analysis is to identify groups of samples that share similar
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Figure 2.10. Example of a gene expression matrix and hierarchical
trees obtained by hierarchical average clustering on the rows (genes)

and columns (samples)
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gene expression patterns. This approach, called sample-
based clustering, has gathered notably fewer contributions
in comparison with gene-based clustering, specially due to
the cost of microarray chips used in different experiments
(samples). More recently, new gene clustering approaches
have been implemented, which aim at clustering genes and
samples (rows and columns of the gene expression matrix)
simultaneously. These approaches are commonly referred to
as subspace clustering or bi-clustering [CHE 00,GET 00].

2.5.3. Information retrieval and document clustering

The term information retrieval (IR) refers to the search of
information in unstructured databases (typically collections
of documents) [RIJ 79, MAN 08]. A canonical example is
the search of documents from the World Wide Web (www)
[WUL 97]. The interfaces and search tools to retrieve relevant
documents from the Web upon a user query are called Web
crawlers or Web search engines (Google, Yahoo, Altavista,
etc.). Other classical applications of IR is the search for
books in digital libraries [JON 07, CHU 99]. Essentially, the
users query the document database by typing one or more
keywords that define the topic of interest. Some Web search
engines support more complex queries also with different
logical operators AND, OR, etc. The IR system then tries to
match the documents in the database against the query words
and retrieve the set of documents ranked as more relevant for
the user’s query.

More recently, due to the progress of automatic speech
recognition (ASR) [RAB 93], the vector-based call routing
approach has emerged as a new, speech-based modality of
IR for call routing applications [CHU 99, SAL 71]. The
goal is to redirect the user call to the most relevant module
destination according to the caller utterance. The possible
call destinations are modeled by “virtual documents” (created
during training phases of the system) and the callers’ query
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utterances are transcribed to textual words by the ASR. Thus,
the task is analogous to a classical IR problem and can be
resolved using IR tools and procedures.

One of the main tasks performed by IR systems is the
representation of documents and queries that allows us to
quantify the semantic “similarities” between documents or
between documents and queries. Typically, documents are
represented on the basis of word descriptors. The set of
term descriptors is known as vocabulary or lexicon W. It
is commonly extracted through certain pre-processing steps
applied to a collection of (training) documents. These are
described in the following sections.

2.5.3.1. Document pre-processing

Typically, the pre-processing task is accomplished in three
main steps: feature selection, stop-word filtering, and surface
form reduction (word lemmatizing or stemming).

2.5.3.1.1. Word selection

The aim of feature selection is to reduce the dimensionality
of the document space by identifying and removing
uninformative, non-discriminative words, while retaining
only the informative words. The main characteristic of
uninformative words is their roughly uniform distribution
over different document categories, in comparison with
discriminative words. Word selection is usually addressed by
ranking all words in the documents according to a certain
relevance score and filtering out words that do not exceed a
given relevance threshold. Some word scoring metrics are, for
example, IDF, TFIDF, or mutual information [YAN 97,FOR 03,
GUY 03].

Owing to the “noisy” character of irrelevant words, not
only a dimensionality reduction is attained by means of
word selection, but also the effectiveness of IR systems and
document classification can be substantially increased.
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Another strategy to reduce the dimensionality of the
document space is to feature extraction. A common approach
applied to document collections is known as “latent semantic
analysis (LSA)” [LAN 98, DEE 90]. Basically, LSA performs
a singular vector decomposition (SVD) to the term document
matrix. As a result, the initial word and document spaces
are mapped into two new spaces of eigenvectors of lower
dimensionality (S and D). The new dimension is determined
by the non-zero eigenvalues in the matrix V. Feature
transformation via latent semantic analysis can also help to
remove the “noise” induced by words in the term document
matrix due to certain lexical properties, namely, synonymy
and polysemy. Finally, word feature clustering has been
also applied as a feature extraction method for document
classification [WUL 97].

2.5.3.1.2. Stop word filtering

In contrast to feature selection, stop word filtering is
performed on the basis of manually pre-established lists, such
as the SMART stop list [BLA 07, DRA 09]. Stop words are
reportedly irrelevant for IR purposes as well as document
clustering and classification, as they do not convey any
semantic information to a document or text. Some examples
of stop words are pronouns (He, etc.), prepositions (of, for, the),
and, in natural language texts (such as the texts transcribed
from speech by an ASR), words typical for spontaneous speech
(eh, ehm, uh).

2.5.3.1.3. Word lemmatizing/stemming

This stage aims to reduce the normal, “surface” form
of words into their “canonical” forms: stems or lemmas.
The objective is to eliminate the morphological variability
introduced by inflectional and/or derivative suffixes to retain
the units of semantic meaning [POR 80,SCH 94]. According to
different criteria, either word stemmers or lemmatizers can be
applied to extract word stems or lemmas, respectively. A word
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stemmer removes any kind of inflectional and derivative
suffixes from the surface word form to extract the word stem.
This procedure can end up in a different lexical category
(also referred to as part of speech (PoS)) with respect to the
initial word (for example, workers → work). In contrast, a
word lemmatizer eliminates only infectional suffixes from the
surface form of the word, e.g. plurals of nouns are reduced
to singular forms and conjugated forms of verbs are reduced
to the infinitive form. The PoS tag of the initial word is thus
preserved. Lemmas are also known as the “dictionary form” of
words, since it is the form in which all entries in a dictionary
are presented.

The vocabularyW is finally composed of all distinct lemmas
or stems observed in the pre-processed documents.

2.5.3.2. Boolean model representation

In a Boolean model [KLE 00, LAS 09], each document
in the collection can be viewed as a Boolean vector whose
components denote the presence or absence of the lexicon
terms in the document. For example, imagine a library
application where the search is for books relevant to a topic.
The document dataset might consist of the following book
titles (documents): E.g. D1= Data mining applications;
D2= Algorithms for clustering data; D3 = Clustering analysis;
D4= Clustering text documents; and D5= Algorithms for
document clustering. If a word lemmatizer is applied and
a unigram approach is selected, the resulting lexicon of
terms, in alphabetical order, is {W} = Algorithms, Analysis,
Applications, Cluster, Data, Document, Mine, and Text.
The Boolean representation of the set of documents can be
observed in Table 2.2.

A Boolean query, Q, is then composed of terms and Boolean
operators. The three standard Boolean operators are AND,
OR and NOT. As an example, a possible query related to
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D1 D2 D3 D4 D5

t1: Algorithm 0 1 0 0 1
AND t4: Cluster 0 1 1 1 1
AND NOT t6: Document 0 0 0 1 1

Search result 0 1 0 0 0

Table 2.3. Example of retrieval using the Boolean model

the previous example could be Q = [Clustering AND NOT
Documents AND Algorithms]. The result is obtained by
computing the bitwise logical AND between the terms t4
(Cluster) and t1 (Algorithm) and the Boolean negative of the
term t6 (Document) (see Table 2.3).

As can be noted, the search result to the Boolean query
Q is the document (book title) D2 (Algorithms for Clustering
Data). In Boolean retrieval, all exact matches are typically
returned to the user, although there have been proposals
for improving the presentation of results by ranking the
documents according to the frequency of the query terms in
the documents.

2.5.3.3. Vector space model

In the so-called vector-model representation [SAL 75,
STE 00, PRI 03], used in IR, and the close areas document
clustering or classification, a collection of documents is
typically arranged as a matrix D and a query as a term vector
Q:

D =

⎛⎜⎜⎜⎜⎜⎜⎝
d11 . . . d1j . . . d1m
...

. . .
...

...
di1 . . . dij . . . dim
...

...
. . .

dn1 . . . dnj . . . dnm

⎞⎟⎟⎟⎟⎟⎟⎠
Q = (q1, . . . , qi, . . . , qm) [2.62]
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The matrix D is also commonly referred to as the document
term matrix, in which rows represent documents in the
collection and columns refer to the lexicon terms {W}. These
two dimensions of the matrix (documents and words) are
also referred to as the document space and the word space,
respectively.

In a vector space model, the retrieved documents are
typically ranked on the basis of their relevance to the user’s
query, which can be estimated by measuring the cosine
similarity between their respective vectors (Q,D[i]). It should
be noted that the cosine similarity metric is equivalent to the
dot product similarity (equation [2.63]), if both D[i] and Q
vectors are normalized to have unit lengths:

Sim(Q,D[i]) =
∑
j

qj · dji [2.63]

2.5.3.4. Term weighting

In a similar way as in Boolean retrieval, the entries dij
of the document term matrix can be just set to “0” or “1”,
denoting the presence of absence of the wj word in the ith
document in the collection. This Boolean notation can be also
used for the query elements qi. In such a case, the query is
referred to as Boolean query, although this term should not
be confused with the definition of Boolean queries used in
Boolean retrieval models.

More sophisticated approaches apply term weighting
methods to compute the scores dij and qj, which denote the
relative significance of each lexicon term wj in the query
and/or document vectors [SAL 88]. To estimate the importance
of terms with respect to the document or query, a term
weighting formulation consists typically of three different
components.
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2.5.3.4.1. Term frequency component

The basic idea behind the term frequency [RAM 00]
component is that a term that occurs more often in a document
is more important to describe the contents of the text.
Different notations have been used in the IR literature for the
term frequency component

TF(a)(wj , di) = C(wj , di) [2.64]

TF(b)(wj , di) =
C(wj, di)∑
k C(wj, di)

[2.65]

TF(c)(wj , di) = 0.5 + 0.5
TF(a)

max(TF(a))
[2.66]

where C(wj, di) denotes the counts of occurrences of the wj

word in the document. The first formulation, TF(a), is also
referred to as the raw term frequency, while the second and
third, TF(b) and TF(c), are referred to as the relative term
frequency and augmented term frequency, respectively.

2.5.3.4.2. Collection frequency component

The collection frequency factor captures the
“informativeness” of words with respect to the complete
collection of documents. The main assumption is that words
that tend to occur in many documents are in general less
discriminative for such documents than words occurring in a
small number of documents and vice-versa. Different metrics
have been proposed for the collection frequency component
such as the Inverse document frequency (IDF) and the
residual inverse document frequency (RIDF).

The most popular metric for the collection frequency
component is the IDE [SAL 88], which measures, the inverse
of the ratio of documents in which a word occur, with
respect to the whole number of documents in the collection.
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Two different formulations have been proposed for the IDE:

IDF(a)(wj) = log
N

n
[2.67]

IDF(b)(wj) = log
N − n

n
[2.68]

where the parameter N denotes the total number of
documents in the collection (number of rows in matrix D), and
n refers to the number of documents in which the term wj

occurs. According to [SAL 88], the formulation IDF(a) is the
raw IDF, while IDF(b) is referred to as the probabilistic IDF.

One variant of the IDF, particularly proven effective for
automatic text summarization [MUR 08, MUR 07], is the
RIDF. This metric, proposed in [MUR 08], quantifies the
degree to which the IDF score (equation [2.67]) exceeds the
expected value ÎDF, according to the Poisson model

RIDF = IDF− ÎDF [2.69]

ÎDF = − log(1− e−λw) [2.70]

where λt denotes the parameter of the Poisson distribution,
calculated as the average occurrence of the w term across all
N documents: λw =

∑
j nj/N . The main advantage of a RIDF

metric is that rare terms 1 are not assigned high scores, in
contrast to IDF.

2.5.3.4.3. Length normalization component

The length normalization component [SIN 96b] is intended
to compensate for the natural bias placed by the previous
weighting schemes towards longer documents, with a larger
number of terms’ occurrences. In other words, this component

1. Terms which occur in a small number of documents as a consequence of
their low probability of occurrence in general.
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equalizes the retrieval chances of documents of varying
lengths. Some popular metrics for length normalization are
the cosine normalization, the byte length normalization, and
the Pivoted length normalization.

One of the most popular methods for document length
normalization in vector-based IR is the well-known cosine
normalization. This factor is defined as the Euclidean
norm of the vector of raw term weights, calculated using
any combination of the first and second term weighting
components, described earlier.

Cosine Norm. =
√

(w2
1 + w2

2 + · · ·+ w2
N ) [2.71]

By using the cosine normalization factor to both query
and document vectors, the dot product of their corresponding
vectors equals the cosine similarity between them. The
components wi in equation [2.71] can be equally applied to
both document and query components, dji and qj.

However, a reported limitation of cosine normalization is
related to the use of raw term weights (the term frequency and
document frequency components) as part of the normalization
component. Thus, any inadequate term score produced
by such term weighting components has an impact in the
normalization factor. As an example, [SIN 96a] observed
how the presence of a rare term in the document, with
characteristic high IDF sores, may entail a substantial
increment in the document cosine normalization factor. As
a result, the final weights assigned to the document terms
might be much lower due to the impact of the rare term,
and so would be the chances of retrieval of the document
(using a dot product similarity to the query). To overcome this
limitation, the authors proposed a normalization based on the
number of bytes of the documents, also referred to as byte size
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Figure 2.11. Illustration of the pivoted length normalization.
Smoothed curves of the likelihood of retrieval versus likelihood of

relevance against document length. The cross point between the two
likelihood curves is the pivot

normalization [SIN 96a]

Byte Size Norm. = byte sizeα α < 1 [2.72]

By selecting α = 0.3750, the byte length normalization
scores are comparable to the cosine normalization factor.
In [SIN 96a], the normalization byte size0.3750 was proven
to yield substantial retrieval improvements in degraded
documents, such as the texts scanned through optical
character recognitions (OCR). The process results in a large
number of rare words due to errors.

A second limitation of cosine normalization is that “it
tends to favour documents of short lengths” [SIN 96a]. This
conclusion was stated in [SIN 96a] after some observations
regarding both likelihoods of retrieval and relevance of
documents, with respect to the document average lengths.
The relevance-retrieval likelihood curves found to be non-
proportional, but similar to the curves of Figure 2.11.

As can be observed in Figure 2.11, the probability of
retrieval is lower than the relevance probability for documents
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with length (length<pivot) and greater than the relevance
probability for length>pivot. This fact is attributed to
the cosine normalization factor: for short lengths, cosine
normalization scores produce too high normalized term
weights when compared with the real relevance of the
documents. As a consequence, the probability of retrieval
is superior than the probability of relevance. The opposed
effect is observed for long documents, which can be associated
with normalization scores excessively high for the documents
relevance.

The proposed solution to deal with these observations was
to rotate or “tilt” the cosine normalization line around the
pivot point, in such a way that the new normalization factor is
greater than the cosine normalization for length<pivot, and
lower than the cosine factor for length>pivot. This fact is
illustrated in Figure 2.11(b).

The conversion of the cosine normalization (old factor) to
the new pivoted normalization is given by equation [2.73]:

Pivoted norm = (1− slope) x pivot + slope x old factor
[2.73]

where slope refers to the slope of the new pivoted
normalization line. The slope and pivot parameters are to
be determined from available training data. After some
manipulations, equation [2.73] can be expressed by the
reduced form of equation [2.74]

Pivoted norm = (1− slope) + slope x
old factor

average old factor
[2.74]

which allows us to simplify the training process, since slope is
now the only parameter that needs to be learned from training
data.

The final term weights can be obtained by using any
combination of scores from the term frequency, collection
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Term freq. Collection freq. Normalization
Best fully Document TF(a) IDFa Cosine Norm
weighted system query TF(c) IDFa 1 (None)
Best weighted Document TF(c) 1 1
probabilistic weight query 1 IDFb 1
Binary term Document 1 1 1
independence query 1 IDFb 1
Coordination Document 1 1 1
level query 1 1 1

Table 2.4. Typical combination for term weighting in IR approaches
as described in [SIN 09]

frequency, and normalization factors. Furthermore, the
selected combinations for the document vectors usually differ
from the term weights of the query vector. Note also that the
normalization factor is absent in the query term weights, since
it only scales the similarities between the query and all the
document vectors by a constant term.

Among the classical term weighting schemes, Table 2.4
shows some of the typical combinations described in [SAL 88]
for the query and document vectors.

2.5.3.5. Probabilistic models

While vector space models rely on the similarity between
documents and query vectors to rank and retrieve relevant
documents, in probabilistic IR [MAR 60,FUH 89], documents
are ranked in terms of decreasing probability of relevance to
the query (the so-called probability ranking principle (PRB)).

2.5.3.5.1. Binary independence retrieval model

One of the simplest approaches to probabilistic IR is
the binary independence model (BIR) [ROE 00] in which
documents and queries are viewed as binary vectors – in a
similar way as Boolean vector representation of documents
in vector-based retrieval – only accounting for the absence or
presence of terms in the query and documents.



72 Machine Learning

Instead of computing direct probabilities, the parameters
to be estimated are the odds of the document relevance with
respect to the query:

O(R|d, q) = P (R|d, q)
P (R̄|d, q) =

P (R|d, q)
1− P (R|d, q) [2.75]

where O denotes the odd of relevance of document d given
the query q, and the term P (R̄|d, q) refers to the probability
that the document is not relevant given the query. Using the
Bayes theorem, equation [2.75] can be rewritten into the form
of equation [2.76]:

O(R|d, q) = P (R|d, q)
P (R̄|d, q) =

P (R|q)
P (R̄|q) ·

P (d|R, q)

P (d|R̄, q)
= O(R|q) · P (d|R, q)

P (d|R̄, q)
[2.76]

In the BIR model, it is assumed that the incidence of one
term in a document or query is independent of the occurrence
of any other terms. This term independence assumption
allows us to reformulate equation [2.76], by decomposing
the document probabilities by the product of the terms
probabilities, as follows:

O(R|d, q) = O(R|q) · P (d|R, q)

P (d|R̄, q)
= O(R|q) ·

∏
ti∈W

P (ti|R, q)

P (ti|R̄, q)
[2.77]

The product in [2.77] can be further decomposed by
considering the presence and absence of query terms in the
document separately:

O(R|d, q) = O(R|q) ·
∏
ti∈d

P (ti = 1|R, q)

P (ti = 1|R̄, q)
·
∏
ti∈W

P (ti = 0|R, q)

P (ti = 0|R̄, q)

[2.78]

Let pi = P (ti = 1|R, q) denote the probability that one term
is present in the document (ti = 1) and is relevant to the query;
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qi = P (ti = 1|R̄, q) the probability that one term present in
the document is not relevant to the query. Analogously, 1 −
pi = P (ti = 0|R, q), the probability of absence of the term in
the document, given the term’s relevance to the query, and
1− qi = P (ti = 0|R, q), the probability of absence of the term in
the document, given that the term is not relevant to the query.
Equation [2.78] can be thus be expressed in terms of pi and qi:

O(R|d, q) = O(R|q) ·
∏
ti∈d

pi
qi
·
∏
ti∈W

1− pi
1− qi

[2.79]

Finally, the two product indices in equation [2.79] can be
slightly modified in such a way that the first component
accounts for the terms present in a document, while the second
factor reflects the common odds of all terms in the lexicon:

O(R|d, q) = O(R|q) ·
∏
ti∈d

pi(1− qi)

qi(1− pi)
·
∏
ti∈W

1− pi
1− qi

[2.80]

As can be noted, the second product includes all lexicon
terms and therefore remains a constant value for all
documents, since it only depends on the query search under
consideration. Likewise, the relevance odd O(R|q) is also
common to all documents in the collection for the given query.
Thus, the only factor on which a document’s relevance to the
query depends is the fist product element in equation [2.80].
Hence, this factor is used to calculate the document ranking
with respect to the query, also referred to as the document’s
retrieval status value (RSV):

RSV (d, q) = log
∏
ti∈d

pi(1− qi)

qi(1− pi)
[2.81]

The parameters pi and qi can be estimated, for example,
by asking the user to categorize a initial set of presented
documents into relevant and non-relevant categories. In
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probabilistic IR, this kind of approaches are known as
relevance feedback. For example, if r is the number of relevant
documents from a total number of documents N , ni is the
number of documents where the term ti occurs, and ri is the
total number of relevant documents containing the term, then
pi can be estimated as ti = ri/R and qi is approximated as
qi = (Ni − ri)/N − r. Using these estimates, the RSV can be
reformulated as:

RSV (d, q) =
∑

ti ∈ d log
(ri + 0.5)/(R − ri + 0.5)

(ni − ri + 0.5)/(N − ni −R+ ri + 0.5)
[2.82]

The summands in equation [2.82] are also known as the
Robertson/Spark Jones weights, named after the authors who
first proposed this formulation, and it is often used as the
basis factor in term weighting approaches to probabilistic IR,
such as the Okapi term weighting (see further details below).
The 0.5 terms that have been added in equation [2.82] are
smoothing factors to address the zero probability problem.

2.5.3.5.2. The 2-Poisson model

In contrast to the binary model that only considers the
presence or absence of terms in a document, the 2-Poisson
model was proposed to provide a more refined estimation
of the term probabilities that accounts for the number of
occurrences of terms in the documents [NA 09].

According to a Poisson distribution, the probability that a
document with k occurrences of term tj belongs to a certain
category, Cj (in this case, one of the relevant/non-relevant
categories) is defined as:

P (tfi = k|d ∈ Cj) =
λk
ij

k!
e−λij [2.83]

where the parameter λij denotes the average number of
occurrences of the term ti over documents with category C|,
according to a Poisson distribution.
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2.5.3.5.3. Okapi weighting

The BM25 weighting, also named Okapi weighting after
the system where it was first implemented, is an extension
of the Robertson/Spark Jones weights in equation [2.82].
Besides the binary presence/absence of terms, the BM25
scheme incorporates the term frequency and normalization
factors typically applied in vector-based approaches. The final
term weights (equation [2.84]) were proposed after successive
refinements, contributed by the authors to a series of term
weighting (TREC) conferences [BEA 97, ROB 92, ROB 99,
ROB 00].

RSV =
∑
ti∈Q

wi · (k1 + 1)TF (ti, d)

k1((1 − b) + b(dl/avgl)) + TF (ti, d)

· (k3 + 1)TF (ti, q)

k3 + TF (ti, q)
[2.84]

where wi is the Robertson/Spark Jones weights in equation
[2.84], dl denotes the document length and avgl is the average
length on all documents. Thus, the parameter b ∈ [0, 1]
controls the different emphasis placed on document length
normalization. b = 0 implies no length normalization, while
b = 1 means normalization by the value given by dl/avdl.
Likewise, TF (ti, d) denotes the number of occurrences of the
term ti in the document d, and k1 is a parameter that controls
the amount of term frequency component that contributes
to the final RSV scores. k1 = 0 removes any term frequency
effect, while k1 = 1 implies full normalization by TF(t, d).
(It should be noted that the second factor equals TF(ti, d) for
b = 0 and k1 = 1.) Finally, TF(ti, q) indicates the number of
occurrences of the term ti in the query, a factor which can be
tunned by k3, in a similar way as with the previous factors.
For example, for short queries, it is reasonable to discard the
term frequency in the query, thus k3 should be set to 0.
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2.5.4. Clustering documents in information retrieval

Modern IR systems incorporate different clustering
schemes to assist the retrieval and/or presentation of results
in response to a user query. Clustering methods have been
applied in IR applications with different purposes:

2.5.4.1. Clustering of presented results

The majority of Web search engines return the set of
retrieved documents in response to a query as a ranked
list in decreasing order of relevance. However, if the query
terms are polysemic or can be found in different conceptual
categories (such as jaguar(animal) and jaguar(car)), poor
precision values are to be expected in the presented results.
This drawback of conventional presentation approaches can
be overcome by clustering the retrieved documents and return
the clustered results to the user. An example Web crawler that
provides a cluster-based presentation of the search results is
vivisimo (www.vivisimo.com).

2.5.4.2. Post-retrieval document browsing (Scatter-Gather)

This approach provides a new interface to the user, who
does not need to type a search query. Thus, it is also
known as “search without typing” [HEA 96, CUT 92]. The
total of documents in the collection are clustered and the
user only needs to select the group or groups of documents
of interest. In case more than one cluster is selected,
the clusters’ documents are merged into a document set,
which is in turned re-clustered. The process is iteratively
repeated until the user selects a single cluster. Since this
type of clustering application requires on-line processing,
a number of requirements must be met by the clustering
methods, in particular speed and scalability – clustering must
be performed incrementally as documents are being received
over the web. To comply with the speed requirement,
clustering algorithms with linear complexity are usually
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selected, such as the k-means or the Rocchio algorithm
[ZAM 98]. Fractionation approaches are based on hierarchical
agglomerative schemes but reduce the quadratic or cubic
complexities of hierarchical algorithms to linear time
complexity by restricting the search of the pairs of clusters
to be merged to local regions. Another clustering scheme
proposed for the Scatter-Gather scenario is the suffix tree
clustering (STC). The algorithm meets both scalability and
liner complexity criteria by identifying phrases common to a
group of documents [WAN 08].

2.6. Evaluation methods

Evaluating the partitions obtained through cluster analysis
is a more difficult task than the evaluation of supervised
classifiers. However, some strategies have been proposed in
the cluster literature for assessing the outcome of a clustering
algorithm. If reference labels are available for the clustered
data, external cluster validation can be used to compare
the cluster partition with the set of reference labels. In the
absence of reference labels, internal validation criteria can be
applied to obtain an “estimation” of the clustering quality on
the basis of the result clusters’ distances.

2.7. Internal cluster evaluation

For a comprehensive evaluation of the discussed
algorithms, their cluster solutions have been also compared
with the reference category labels, available for evaluation
purposes, using three typical “external” cluster validation
methods: entropy, purity, and normalized mutual information
(NMI).
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2.7.1. Entropy

The cluster entropy [BOL 99] reflects the degree to which
the clusters are composed of heterogeneous patterns, i.e.
patterns that belong to different categories. According to the
entropy criterion, a good cluster should be mostly aligned to
a single class, which means that a large among of the cluster
objects belong to the same category. This quality condition
corresponds to low entropy values. The entropy of a cluster i
is defined as

Ei = −
L∑

j=1

log2(pij) [2.85]

where L denotes the number of reference categories, and pij
the probability that an element of category j is found in cluster
i. This probability can be formulated as pij =

mj

mi , denoting mj

the number of elements of class j in the cluster i and mi the
total number of elements in the cluster i.

The total entropy of the cluster solution C is obtained by
averaging the cluster entropies according to equation [2.86]
(m denotes the total number of elements in the dataset):

E(C) = −
k∑

i=1

mi

m
Ei [2.86]

As discussed earlier, “good” cluster solutions yield small
entropy values.

2.7.2. Purity

Like entropy, purity [BOL 99,WU 09] is another metric to
measure the extent to which a cluster contains elements of a
single category. The purity of a cluster i is defined in terms of
the maximum class probability, Pi = maxj(pij).
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The overall purity of a cluster solution is calculated by
averaging the cluster purities:

P (C) = −
k∑

i=1

mi

m
Pi [2.87]

Higher purity values indicate a better quality of the
clustering solution, up to a purity value equal to one, which
is attained when the cluster partition is perfectly aligned to
the reference classes.

2.7.3. Normalized mutual information

The NNMI was proposed in [STR 02] as a metric of the
agreement between two partitions of the data, λ(a) and λ(n)

(equation [2.88]).

NMI(λ(a), λ(b)) =

∑k(a)
h=1

∑k(b)
l=1 nh,l log

( n·nh,l

n
(a)
h n

(b)
l

)
√

(
∑k(a)

h=1 n
(a)
h log

(n(a)
h
n

)
)((
∑k(b)

l=1 n
(b)
l log

(n(b)
l
n

)
)

[2.88]

Denoting n, the number of observations in the dataset, k(a)

and k(b), the number of clusters in the partitions λ(a) and λ(b);
n
(a)
h and n

(b)
l , the number of elements in the clusters Ch and

Cl of the partitions λ(a) and λ(b), respectively, and nh,l, the
number of overlapping elements between the clusters Ch and
Cl. The NMI can be used as a external quality metric of a
cluster partition by comparing the cluster solution C with the
reference class labels L, NMI(C,L).
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2.8. External cluster validation

As outlined in section 2.4, the determination of the number
of clusters in a dataset is a principal problem associated with
many clustering algorithms.

In the following, we denote C = {C1, . . . , Ck}, a cluster
partition composed of k clusters, and N , the total number of
objects in a dataset. The cluster validation indexes applied in
our experiments are the following.

2.8.1. Hartigan

This metric was proposed by J. A. Hartigan for detecting
the optimum number of clusters k to be applied in the k-means
clustering algorithm [HAR 75]:

H(k) = γ(k)
W (k) −W (k + 1)

W (k + 1)
, γ(k) = N − k − 1 [2.89]

denoting W (k) the intra-cluster dispersion, defined as the
total sum of square distances of the objects to their cluster
centroids. The parameter γ is introduced to avoid an
increasing monotony with increasing k. In this work, we use
a small modification to the Hartigan metric, by treating the
parameter W (k) as the average intra-cluster distance.

According to Hartigan, the optimum number of clusters is
the smallest k which produces H(k) ≤ η (typically η = 10).
However, to allow a better alignment of the Hartigan index to
other scores in the combination approach, we have introduced
a correction of the index: Hc(k) = H(k − 1) and considered a
modification of the optimum criterion by maximizing Hc(k).
In other words, the new criterion maximizes the relative
improvement at k with respect to k− 1, in terms of decreasing
dispersion. This allows for a direct application of the corrected
index Hc(k) in the combination approach without resorting to
a previous inversion of the scores.
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2.8.2. Davies Bouldin index

The Davies Bouldin index [DAV 79] was proposed to find
compact and well separated clusters. It is formulated as:

DB(k) =
1

k

k∑
i=1

max
j �=i

Δ(Ci) + Δ(Cj)

δ(Ci, Cj)
[2.90]

where Δ(Ci) denotes the intra-cluster distance, calculated as
the average distance of all the cluster objects Ci to the cluster
medoid, whereas δ(Ci, Cj) denotes the distance between the
clusters Ci and Cj (distance between the cluster medoids).
The optimum number of clusters corresponds to the minimum
value of DB(k).

2.8.3. Krzanowski and Lai index

This metric belongs to the so-called “elbow models”
[KRZ 85]. These approaches plot a certain quality function
over all possible values for k and detect the optimum as the
point where the plotted curves reach an elbow, i.e. the value
from which the curve considerably decreases or increases. The
Krzanowski and Lai index is defined as:

KL(k) =

∣∣∣∣ Diffk
Diffk+1

∣∣∣∣ [2.91]

Diffk = (k − 1)
2
mWk−1 − k

2
mWk [2.92]

The parameter m represents the feature dimensionality of
the input objects (number of attributes), and Wk is calculated
as the within-group dispersion matrix of the clustered data:

Wk =
k∑

i=1

∑
xj∈Ci

(xj − ci)(xj − ci)
T [2.93]
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In this case, xj represents an object assigned to the jth
cluster, and ci denotes the centroid or medoid of the ith cluster.
The optimum k corresponds to the maximum of KL(k).

2.8.4. Silhouette

This method is based on the silhouette width, an indicator
for the quality of each object i [ROU 87]. The silhouette width
is defined as:

sil(xi) =
b(i)− a(i)

max(a(i), b(i))
[2.94]

where a(i) denotes the average distance of the object i to all
objects of the same cluster and b(i) is the average distance of
the object i to the objects of the closest cluster.

Based on the object silhouettes, we can extend the
silhouette scores to validate each individual cluster using the
average of the cluster object silhouettes:

sil(Cj) =
1

|Cj |
∑
xi∈Cj

sil(xi) [2.95]

Finally, the silhouette score that validates the whole
partition of the data is obtained by averaging the cluster
silhouette widths:

sil(k) =
1

k

k∑
r=1

sil(Cr) [2.96]

The optimum k maximizes sil(k).

2.8.5. Gap statistic

The idea behind the Gap statistic is to compare the
validation results of the given dataset with an appropriate
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reference dataset drawn from an a priori distribution
[ROB 01]. Thereby, this formulation avoids the increasing
or decreasing monotony of other validation scores with
increasing number of clusters.

First, the intra-cluster distance is averaged over the k
clusters:

Wk =

k∑
r=1

1

2nr

∑
i,j∈Cr

D(i, j) [2.97]

where nr denotes the number of elements of the cluster r. The
Gap statistic is defined as:

Gap(k) = E(log(Wk))− log(Wk) [2.98]

where E(log(Wk)) is the expected logarithm of the average
intra-cluster distance. In practice, this expectation is
computed through a Monte-Carlo simulation on a number of
sample realizations of a uniform distribution B. 2

Gap(k) =
1

B

∑
b

(log(Wkb))− log(Wk) [2.99]

where Wkb denotes the average intra-cluster distance of the
bth realization of the reference distribution using k clusters.
The optimum number of clusters is the smallest value k such
that Gap(k) ≥ Gap(k + 1) − sk+1, where sk is a factor that
takes into account the standard deviation of the Monte-Carlo
replicates Wkb.

Current research is focused on unsupervised term
weighting scoring schemes, to be also applied in metrics
based on words affinities. Furthermore, hierarchy and

2. It should be noted that the reference data drawn from this uniform
distribution consist of a number N of objects identical to the dataset, with
identical number of features m. The values of each feature in each object
are assigned randomly in the original feature range.
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classifications with dynamic features are also being analyzed,
where features (e.g. words) of increasing relevance are
sequentially incorporated as we descend to lower hierarchy
levels of the hierarchy for refined matches or clusters
divisions.

2.9. Semi-supervised learning

Semi-supervised classification is a framework of algorithms
proposed to improve the performance of supervised algorithms
through the use of both labeled and unlabeled data
[DES 00]. One reported limitation of supervised techniques
is their requisite of available training corpora of considerable
dimensions to achieve accurate predictions on the test data.
Furthermore, the high effort and cost associated with labeling
large amount of training samples by hand—a typical example
is the manual compilation of labeled text documents—is a
second limiting factor. It led to the development of semi-
supervised techniques. Many studies have shown how the
knowledge learned from unlabeled data can significantly
reduce the size of labeled data required to achieve appropriate
classification performances [NIG 99,CAS 95].

Different approaches to semi-supervised classification have
been proposed in the literature, including, among others,
co-training [MAE 04], self-training [YAR 95], or generative
models [NIG 00, NIG 99]. Two extensive surveys on semi-
supervised learning are provided in [ZHU 06] and [SEE 01].
Unsupervised learning algorithms can be divided in several
groups: self-training, co-training and, generative models.

2.9.1. Self training

In self-training, a single classifier is iteratively trained
with a growing set of labeled data, stating from a small
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initial seed of labeled samples. Commonly, an iteration of
the algorithm entails the following steps: 1) training on the
labeled data available from previous iterations, 2) applying
the model learned from labeled data to predict the unlabeled
data, and 3) sorting the predicted samples according to their
confidence scores and adding the top most confident ones
with their predicted labels to the labeled set, which implies
removing them from the unlabeled dataset.

One example of self-training is the work by Yarowski
[YAR 95]. A self-training approach was applied to word sense
disambiguation. The basic problem was to classify a word and
its context into the possible word senses in a polysemic corpus.
The algorithm was supported by two important constraints
for the augmentation of the labeled senses: (1) the collocation
constraint, according to which a word’s sense is unaltered if
the word co-occurs with the same words in the same position
(collocation) and (2) the one sense per discourse, according
to which a word sense is unaltered in the discourse where
the word appears, e.g. within a document. The algorithm
was started by a tagged seed for each possible sense of the
word, including important seed collocates for each sense. The
sense labels were then iteratively augmented according to self-
training approaches. In this case, the one sense per discourse
criterion was also applied to achieve more augmentation with
samples within the documents.

2.9.2. Co-training

In a similar way as self training, co-training approaches
are based on an incremental augmentation of the labeled sets
by iteratively classifying the unlabeled sets and attaching the
most confident predicted samples to the labeled set. However,
in contrast to self-training, two complementary classifiers are
simultaneously applied, fed with two different “views” of the
feature set. The prediction of the first classifier is used to
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augment the labeled set available to the second classifier and
vice-versa. To obtain a maximum benefit from this “synergy”
of classifiers, two important assumptions should be fulfilled:

– Compatibility of classifiers: The classification models
should mostly “agree” in their predictions, i.e. if a sample is
classified to class yj by the first classifier, it should be probably
classified to the same class by the second classifier.

– Conditional independency of feature subsets: No
conditional dependency should be observed between the
two feature subsets applied to the classifiers.

In [MAE 04], a co-training strategy was applied to predict
the emotional/non-emotional character of a corpus of student
utterances collected within the ITSPOKE project (Intelligent
Tutoring Spoken dialog system). As the conditional
independency between the different feature sets could not
be proved, the authors selected two high-precision classifiers.
The first one was trained to recognize the emotional status
of an utterance (e.g. “1” emotional vs “0” for non-emotional),
whereas the second one predicted its non-emotional status
(“1” non-emotional vs “0” emotional). The labeled set was
iteratively increased by attaching the top most confident
predicted samples to the labeled set from previous iterations.
Furthermore, the feature subsets applied to each classifier
were optimized according to two evaluation criteria, using a
greedy search algorithm.

2.9.3. Generative models

Denoting X , the set of data points, in RD, and Y the set of
class labels corresponding to the dataset, a generative model
assumes an underlying model of mixtures p(x|y), which should
be identifiable by using certain tools such as the EM algorithm
or clustering methods.
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In [NIG 99], the EM algorithm was used for the semi-
supervised classification of texts. The model parameters, θ,
to be inferred by the algorithm, were defined as the set the
word/class probabilities and the class prior probabilities.

Other strategies attempt to derive the mixture model
by means of clustering. These approaches are commonly
referred to as cluster-and-label. For example, in [DEM 99] a
genetic k-means clustering was implemented using a genetic
algorithm (GA) (see section for more details about GAs). The
goal of the algorithm was to find a set of k cluster centers
that simultaneously optimised an internal quality objective
(e.g. minimum cluster dispersion) and an external criterion
based on the available labels (e.g. minimum cluster entropy).
Thus, a real value chromosome representation was selected,
with a chromosome length CL = Dxk, where D is the number
of features in the dataset. Within each iteration (generation)
of the GA, the clusters where built by connecting each point
to the closest center (k-means). The labels where expanded
to all patterns by labeling each cluster using a majority
voting strategy. This way, the total cluster entropy could be
calculated. As aforementioned, the simultaneous optimization
of both internal and external criteria was attained through the
formulation of a new objective as a linear combination of both

minimize O : {α ∗Dispersion + β ∗ Entropy} [2.100]

In [DAR 02], a SOM was applied to cluster unlabeled data.
The SOM was first trained using the labeled data seed. If
all the labeled samples that shared an identical winning node
also had an identical label, say, li, that node was labeled
as li. Otherwise the node was considered as “non-labeling.”
In a subsequent clustering phase, the unlabeled data where
“clustered” to their closest units in the map (winning nodes).
During the clustering process, all unlabeled data clustered
to a particular node were also implicitely labeled with the
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node’s label, in case the node had been assigned a label in the
training phase.

2.10. Summary

In this chapter, some popular algorithms in the areas
of unsupervised and semi-supervised machine learning
have been discussed. In the first part, an overview
of the different clustering strategies has been presented
(hierarchical algorithms, competititive models, model-based
algorithms, density-based clustering, and graph clustering).
The clustering techniques that require the number of clusters
k as an input argument include the hierarchical clustering, k-
means, neural gas, the SOM (in such cases when the algorithm
is to be used directly for clustering and the PAM algorithms).
The techniques which do not require k as an input argument
are the DBSCAN algorithm, the SOM for visualization, and
the PoBOC algorithm. However, DBSCAN requires input
density parameters. The SOM requires human inspection of
the U-Matrix to decide k and its solution depends on other
variables, such as the neighborhood function and the number
of nodes in the kohonen layer. Thus, the PobOC clustering
algorithm is the unique strategy which requires neither k
nor other corresponding a priori information from the user.
This first part of the chapter has been concluded with an
overview of the clustering application areas and examples,
and some cluster internal evaluation techniques. These latter
metrics can also be used to detect the number of clusters k,
in combination with clustering approaches which accept k as
input (see above). In this case, the metrics are also referred to
as cluster validation.

In the following chapters, some of the aforementioned
clustering approaches have been selected for different
purposes. For example, in the second part of the book
(Chapters 3 and 4), which is devoted to semi-supervised
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classification, clustering is used as an essential part of the
proposed semi-supervised algorithms. As the number of
clusters k is asumed to be known (equal to the number of
classes), algorithms which require k are selected. Due to
the disadvantages of k−means (in particular, the sensitivity
to the initialization) and neural gas (more robust w.r.t the
initialization than k-means but also sensitive to the choice
of other parameters), hierarchical approaches (Chapter 3)
and the PAM algorithm (Chapter 4) have been preferred for
semi-supervised classification. As aforementioned, the PoBOC
algorithm is the only strategy, to the author’s knowledge,
which is able to infer the number of clusters. This algorithm
has been used in the third part of the book (Chapter 5),
as the baseline of a new hierarchical version (HPoBOC),
which addresses a limitation of PoBOC to detect clusters in
hierarchies. Finally, the cluster validation techniques are also
addressed in Chapter 6, in which a combination approach is
proposed to solve the “individual” performances of these kinds
of approach.

In the second part of this chapter, different semi-supervised
approaches have been described (self-training, co-training,
and generative models). These approaches differ in their
definitions of the objective functions. However, as described
above, the objective is formulated in all cases as a global
function which takes into consideration labeled and unlabeled
data simultaneously. In contrast, the semi-supervised
approaches developed in the book (Chapters 3 and 4) separate
this global objective into two different optimization functions:
a first one optimizing a clustering (first step) and a second one
optimizing the cluster labeling given to the labeled data. In
defining these separate objectives, the new approaches may
reduce the influence of potential labeling errors in the cluster
solutions.



PART 2

Approaches to Semi-Supervised
Classification



Chapter 3

Semi-Supervised Classification
Using Prior Word Clustering

3.1. Introduction

In the first part of this book, two semi-supervised
approaches have been developed, which exploit the
availability of unlabeled data by means of unsupervised
clustering.

As stated in Chapter 1, cluster and label approaches in the
machine learning literature often merge the cluster and label
steps as a global optimization problem in which both tasks
are simultaneously solved. The approaches developed in this
book are intended to avoid the influence of the labeled seeds
on the cluster solution, which can induce wrong clustering if
potential labeling errors are present in the labeled sets.

In particular, the algorithm described in this chapter
is based on the synonymy assumption: under minimal
class labels, the underlying classes can be approximately
recovered by extracting semantic similarities from the data.
The synonymy assumption has been applied to the feature

Semi-Supervised and Unsupervised Machine Learning: Novel Strategies               Amparo Albalate  and Wolfgang Minker
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space in which a clustering algorithm is used to extract
groups of synonym words. In previous research [LI 98],
word clustering has been typically investigated as a feature
clustering strategy for supervised text classification. By
applying word clustering for supervised classification, a
degradation in the classification accuracy was reported.
However, in the experiments described in this chapter, it is
shown that a classification algorithm using minimum labeled
seeds can benefit from word clustering on unlabeled data
(semi-supervised classification).

Furthermore, besides the use of unlabeled data for word
clustering, unlabeled data has also been used for unsupervised
disambiguation of ambiguous utterances.

3.2. Dataset

The approaches described in the following have been
applied to a collection of utterance transcripts. In particular,
the utterance dataset from the video troubleshooting domain
has been selected (see section 1.1 in Chapter 1).

3.3. Utterance classification scheme

The supervised utterance classification scheme is depicted
in Figure 3.1. First, each utterance is pre-processed into an
utterance vector. The classification algorithm then maps this
vector into one of the categories from the list of symptoms. The
pre-processing step and classification algorithm are described
in detail in sections 3.3.1 and 3.3.2.

3.3.1. Pre-processing

As mentioned earlier, the pre-processing step transforms
each input utterance transcript ui into an utterance vector
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Utterance
Pre-processing

1–nearest
neighbor

Codebook

Symptom

Vocabulary

Bag-of-words

Figure 3.1. Supervised utterance categorization scheme using the
NN algorithm

xi, which is the utterance form used by the classification
algorithm. The first pre-processing step extracts the surface
form of the utterance words. As introduced in Chapter 1, a
possible surface form of a word is the word’s stem. However,
after word stemming, the lexical category of the original word
is not preserved. For example, the following utterances

“need a worker to install Internet” [Appointment]
“have installed Internet but it does not work” [Internet]

would lead, after stop-word removal, to very similar bag-of-
words vectors if the word worker were reduced to its stem
form work. However, the utterances have been annotated
with different categories ([appointment] and [Internet],
respectively). For this reason, a lemmatizer [TOU 00] has
been selected instead (note that the lemma form of worker
remains worker).

Following the lemmatizing step, stop-word filtering has
been applied. It discards ubiquitous terms deemed irrelevant
for the classification task as they do not contribute any
semantic content to the utterances. Examples are the lemmas
a, the, be, and for. In this book, the SMART stop list has
been used [SAL 71] with small modifications. In particular,
confirmation terms (yes, no) have been deleted from the stop-
word list, whereas words typical for the spontaneous speech
(eh, ehm, uh, ...) have been introduced as stop words.

As an example of the transformation of utterances and
words through the pre-processing steps, the input utterance
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My remote control is not turning on the television is
transformed as follows:

Utterance (ui): “My remote control is not turning on
the television”
+ Lemmatizing (u(l)i ): “My remote control be not turn
on the television”
+ Stop-word filtering (u(l+s)

i ): Remote control not turn
television

where the notations ui, u
(l)
i , and u

(l+s)
i refer to the initial

utterance transcript, the utterance after lemmatizing (l), and
the utterance after lemmatizing and stop-word filtering (l+s).

3.3.1.1. Utterance vector representation

The salient vocabulary or lexicon is obtained after pre-
processing all utterances in the training corpus, XT . The
lexicon W = {w1, w2, . . . , wD} is then defined as the set of
different lemmas found in the pre-processing training set.
In the following, the lexicon elements are also referred to
as terms. The number of terms extracted from the Internet
corpus is D = 1,614. Finally, a binary vector model (“bag-
of-words”) has been selected to represent the pre-processed
utterances,

xi = [xi1 , xi2 , . . . , xiD ] [3.1]

where xi denotes an utterance vector. As already explained
for texts, each binary element x

(j)
i indicates the presence

or absence of the term wi in the pre-processed utterance
transcript, u(l+s)

i :

x
(j)
i =

{
1, if wj ∈ u

(l+s)
i

0, if wj /∈ u
(l+s)
i

3.3.2. Utterance classification

A simple yet robust categorization approach is the nearest
neighbor (NN) algorithm (j-NN). Let {X(l)

T , Y
(l)
T } denote the
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labeled seed of prototype vectors and K the set of k possible
class labels. The j-NN algorithm compares each input
utterance vector xi to its closest j prototype vectors (nearest
neighbors) and decides the most frequent category in the
NNs according to a majority voting criterion. In this work,
the labeled seed is composed of one prototype per category
(n = 1). Thus, the j-NN algorithm derives into a simple 1-
NN rule. The NN classification rule, θNN, decides for each
input utterance vector in a test set, xi ∈ X (test), the symptom
category of the closest prototype vector:

θNN(xi)
.
= ŷi = yk ∈ Y(l)

T , xk = argmax
(xj∈X (l)

T )

(
d(xj , xi)

)
[3.2]

In this work, the overlap distance has been applied to
compute the dissimilarities between utterance vectors. First,
the overlap similarity between two utterance vectors is the
number of words that overlap in the pre-processed utterances.
This metric of similarity is equivalent to the dot product
between utterance vectors:

soverlap(xi, xj) =< xi, xj > [3.3]

The overlap distance can be calculated as the inverse of the
overlap dissimilarity:

doverlap(xi, xj) = N − soverlap(xi, xj) [3.4]

Note that the prototype vectors applied to the NN
algorithm have been manually selected. In this work, the
basic criterion for the selection of the prototype set {X (l)

T ,Y(l)
T }

is the minimum possible term overlap between different
prototypes in the codebook.
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3.4. Semi-supervised approach based on term
clustering

In this section, a semi-supervised version of the utterance
classification scheme in Figure 1.1 is introduced. By applying
a unique labeled utterance per category, a poor classification
performance is to be expected, in comparison with other
classifiers with large labeled prototype seeds. One reason
for this poor performance can be explained by the prevalence
of certain language effects such as synonymy and polysemy,
which are not sufficiently covered in the minimum labeled
seed. Synonymy refers to the capability of language to
describe a single semantic concept with different words
(synonym). Polysemy, however, is the use of a unique word
form with multiple meanings.

The synonymy effect is patent in the effective vocabulary
available to the classifier, which is reduced to less than 5% of
the total vocabulary dimension in W. This results in a large
amount of utterances mapped to a [nomatch] class, given the
existence of out-of-vocabulary terms in the test utterances.

As an example, one of the symptom categories, [NoSound],
represents the problems related to sound. A prototypical caller
utterance reporting this problem is “No sound.” However,
the user may speak other alternatives, such as “problem
with volume” or “lost audio,” which are not matched against
the mentioned prototype (no sound) due to the orthogonality
between their vectors. In other words, there are no
overlapping terms between the input utterances and the
prototype utterance. This problem can be partially solved
using the observation that sound has a similar meaning as
that of audio or volume.

Given these statements, a feature extraction technique
that identifies groups of terms on the basis of the semantic
affinities among them has been developed in this work.
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Synonym terms are identified from a training set composed
of both labeled and unlabeled data:

XT = X (l)
T ∪ X (u)

T [3.5]

where X (l)
T refers to the labeled seed (prototypes) and X (u)

T

indicates the unlabeled portion of XT . Thus, the new
algorithm may be considered as a semi-supervised version
of the basic classification scheme as shown in Figure 3.1.
A similar approach was made in the literature [DEP 00],
in which a list of manually selected keywords and their
synonyms was used to trigger an unsupervised classification of
texts. In this work, a method to automatically extract classes
of semantically related words from the corpus of utterance
transcripts has been developed.

Although a number of manually compiled word thesauri are
available nowadays, such as Wordnet [WOR 98], the automatic
identification of related words provides certain advantages
over manually constructed thesauri. The most important
one is that automatic methods can be better adapted to a
specific domain, as they are statistically “trained” on specific
data. As an example, the words confirm and schedule are not
apparently synonym terms. However, on the Internet corpus,
both terms are strongly related to the category [Appointment].
Typical user utterances for this category are, for example,
“I want to confirm an appointment” and “I want to schedule
an appointment.” Furthermore, both terms have barely any
occurrences outside the [Appointment] category.

The block diagram of the new semi-supervised algorithm
with term clustering can be seen in Figure 3.4.

3.4.1. Term clustering

The automatic identification of semantic term classes is
performed in two main steps:
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Figure 3.2. Utterance categorization using the NN algorithm and a
term clustering scheme as feature extraction. To address the
synonymy problem, a hard clustering scheme can be used. It

performs a unique mapping of each term in the vocabulary into a
single semantic class. Another possibility is to use fuzzy algorithms

to provide a fuzzy or soft association of each term pattern to the
output semantic classes through a membership matrix. The

association of hard clustering is represented in the figure as bold
traces, whereas a fuzzy association is denoted as thin lines

– the definition of distance metrics that allow us to capture
semantic dissimilarities between the terms; and

– the application of a clustering scheme to the matrix of
dissimilarities obtained from Step 1.

Both tasks are described in detail in sections 3.4.2 and
3.4.4.

3.4.2. Semantic term dissimilarity

As mentioned earlier, the first task related to the extraction
of synonym terms through clustering approaches is the
calculation of dissimilarity matrices that reflect the semantic
differences between the terms.
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For that purpose, in a similar way as utterances have been
represented in the bag-of-words vectors, an encoding of terms
in vector structures has been applied. This allows for the
comparison of terms in a vector space.

3.4.2.1. Term vector of lexical co-occurrences

As an attempt to explain the main characteristics of
semantically related terms two basic criteria have been
proposed in the literature:

– First-order co-occurrence: two words are semantically
similar to the degree that they show patterns of co-occurrence
and co-absence in the same texts [WUL 97].

– Second-order co-occurrence: two words are semantically
similar to the degree that they occur in the neighborhoods of
similar words [PIC 99].

The first-order co-occurrence criterion is adequate for text
documents, as synonym words are expected to co-occur in
the same document. In contrast, semantically related words
are not expected to co-occur inside an utterance transcript
or sentence, as the semantic variability of a sentence is
substantially reduced in comparison to text documents. This
fact is also shown in the Internet corpus of utterances. For
example, in the category [Operator], the synonym terms speak
and talk are typically “exclusive” inside utterances, such as
“I want to talk to an operator” or “I want to speak to an
operator.” However, the second-order co-occurrence criterion
is adequate for capturing their semantic connection, as the
terms usually occur with similar contexts 1 (e.g. the terms
operator, representative, and agent).

1. In this book, the context of a word wi is defined at the utterance level,
i.e. the words that co-occur with wi in the same utterance.
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Consequently, each term in the vocabulary, wi ∈ W, has
been defined as a D-dimensional vector:

wi = [w
(1)
i , w

(2)
i , . . . , w

(D)
i ] [3.6]

whose components indicate the relative frequency of
occurrence of the term wi in the same utterances with
the other D–1 terms in the vocabulary:

w
(j)
i =

N(wi, wj)∑
k �=iN(wi, wk)

[3.7]

where N(wi, wj) denotes the total number of times that wi and
wj co-occur.

As an example, the co-occurrence vector for the word
operator (for occurrence frequencies larger than 0) is the
following:

C[operator](%): need(15%), talk(11.2%), speak(10.3%),
please(9.9%), want(5.1%), give(3.8%), get(2.5%),
date(1.7%), help(1.7%), agent(1.7%), Internet(1.7%),
human(1.2%), real(1.2%), let(1.2%), service(1.2%),
not(1.2%), id(0.8%), technical(0.8%), line(0.8%).

3.4.2.2. Metric of dissimilarity

Given the term vector representation, one of the
popular distance functions which can be used to compute
the dissimilarities between term vectors is the Euclidean
distance:

deuc(wi, wj) = ||wi − wj|| =
√√√√ D∑

k=1

(
w

(k)
i − w

(k)
j

)2 [3.8]

However, one important observation using the Euclidean
distance is that relevant terms, occurring in the same contexts
of the terms that are to be compared, contribute more
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significantly to the distance between the terms. This fact can
be illustrated with the utterance vectors for the terms talk and
speak (Table 3.1).

Agent Cable Give Red . . .
wi: talk 0.2 0.08 0.005 0.003 . . .
wj : speak 0.18 0.07 0.006 0.001 . . .

Table 3.1. Comparison of the terms wi (talk) and wj (speak) - table
rows. The term that occurs more often in their neighborhoods is

agent (first column). However, by applying the Euclidean distance,
this term contributes a significant increment to the total distance

between talk and speak in comparison with other terms in the
table columns

As can be observed, the word with the highest co-occurrence
patterns with the terms talk and speak is agent. However, the
contribution of this term to the total distance deuc(talk, speak)
is ((0.2 − 0.18)2 = 0.0004). This value is substantially larger
than the contributions of other terms with occasional co-
occurrences in the contexts of talk and speak. For example, the
contribution due to the term give is (0.003−0.001)2 = 0.000004.

Therefore, a normalization of the Euclidean distance has
been defined, according to the following equation:

deuc(wi, wj) =

√√√√ D∑
k=1

(
w

(k)
i − w

(k)
j

1 + min(w
(k)
i , w

(k)
j )

)2

[3.9]

The larger the value of the minimum min(w
(k)
i , w

(k)
j ), the

more important is the term wk to explain the similarities
between wi and wj. Thus, a higher normalization score in this
case decreases the distance between the terms wi and wj.
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3.4.3. Term vector truncation

An extension of the term vector definition in equation [3.6]
was motivated by the different patterns of co-occurrences and
their subsequent effects on the semantic term dissimilarities.
As suggested in section 3.4.2, while a few terms “explain” the
semantic behavior and affinity of two terms wi and wj being
compared, many other terms show occasional occurrences
with these terms. This observation in the term (co-occurrence)
vectors can be interpreted as an underlying noise pattern with
a certain impact in the calculation of distances.

In consequence, a new term co-occurrence vector has been
defined,

w′
i = [w

′(1)
i , w

′(2)
i , . . . , w

′(D)
i ] [3.10]

by setting a minimum co-occurrence threshold Nth = 1%.
Such words, wk, whose co-occurrence value in the word vector
wi do not exceed this minimum co-occurrence threshold have
been considered as “noise words” and were discarded from the
original term vector.

w
′(j)
i =

{
w

(j)
i , if w(j)

i > 0.01
0, otherwise

Then, the new co-occurrence values have been then
recalculated so that the co-occurrence values w′

i build another
random variable, i.e.

∑
k �=iw

′(k)
i = 1. The new vector can be

formulated as follows:

w
′(j)
i =

w
′(j)
i∑D

k=1w
′(k)
i

[3.11]

As can be observed, the important co-occurrences in wi

are placed with higher emphasis with respect to the original
vector. As an example, the co-occurrence vector for the term
Operator is modified as follows:
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C[operator](%): need(15%), talk(11.2%), speak(10.3%),
please(9.9%), want(5.1%), give(3.8%), get(2.5%), date
(1.7%), help(1.7%), agent(1.7%), Internet(1.7%),
human(1.2%), real(1.2%), let(1.2%), service(1.2%),
not(1.2%), id(0.8%), technical(0.8%), line(0.8%), . . .

after term vector truncation:

C[operator](%): need(21.24%), talk(15.86%), speak
(14.59%), please(14.02%), want(7.22%), give(5.38%),
get(3.54%), date(2.41%), help(2.41%), agent(2.41%),
Internet(2.41%), human(1.69%), real(1.69%), let(1.69%),
service(1.69%), not(1.69%).

3.4.4. Term clustering

Finally, a clustering algorithm has been applied to the
matrix of term dissimilarities (equation [3.9]) to extract
clusters of similar terms. By denoting S = {Si}D′

i=1, the set
of synonym term clusters, a “hard” clustering algorithm is
equivalent to an implicit mapping function Fc that uniquely
maps each lexicon term to one of the clusters in S:

Fc :W = {wi}Di=1 → S = {Si}D′
i=1, D′ < D [3.12]

In this work, the clustering algorithm that extracts
semantic clusters is based on the complete link criterion for
merging a pair of candidate clusters. As described in Chapter
1, the complete link clustering algorithm requires all elements
in a cluster to be less distant from each other than the
threshold distance specified by the user. The reason for the
selection of the complete link merging criterion is that all
(synonym) words inside a cluster should be strictly related to
each other. However, the implemented clustering algorithm
differs from the complete linkage clustering in the selection
for the next pair of clusters to be merged at the next step. This
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is based on a single link criterion (the clusters with the closest
patterns are selected instead). The algorithm is described in
the following steps:

1. Input: Matrix of dissimilarities between the terms.
2. Output: Set of word clusters of semantically related

words, S = {S1, S2, . . . , Sk}.
3. Initialization: Place each term wi in its own cluster:

Si = {wi}.
4. Find the terms wi and wj with minimum distance, dmin in

the similarity matrix.
4.1. Merging step: If the terms wi and wj , which are

found in Step 4, belong to different clusters, c(i)a and c
(j)
b , and

the distance of the farthest elements in ca and cb is lower
than the specified threshold distance, dth (dmax(ca, cb) ≤ Dth)
merge clusters ca and cb.

4.2. Update dissimilarity matrix, so that dij = dji =∞.
5. Repeat from Step 4 until all terms remain assigned to

a single cluster or no pair of terms, wi and wj , can be found
whose clusters are less distant than Dth.

As shown in Figure 3.2, the clustering solution can be
represented as a binary membership matrix, M[DxD′].

M [i, j] =

{
1, if wi ∈ Sj

0, otherwise

where each binary element M [i, j] denotes the “hard”
membership of the input lexicon term wi in the output
semantic cluster Sj.

Tables 3.2 and 3.3 show two examples of the semantic
clusters (with more than one member) obtained by the
term clustering algorithm with dth = 0.3 and 0.5. An
observation from these tables explains the relationships of the
terms inside each extracted cluster. The major objective of
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Semantic classes (example with threshold distance 0.3)
talk speak
agent customer representative support tech
operator human person
someone somebody
security suite
user name
email mail outlook
website site
virus protection
cancel schedule date
ping quality
picture sound
software c-d
parental control
i-p d-n-s
box converter
error message
cancel schedule date
connect run
modem router trouble network system p-c figure
speed company installation pipeline
d-s-l kit
cable t-v line
receive check
computer information
channel homepage
turn see
service phone
hook put
say keep
signal response

Table 3.2. Example of classes of semantically related terms extracted
with a clustering threshold distance dth = 0.3

term clustering was to identify semantically related terms,
which co-occur with similar contexts due to their semantic
equivalence. Thus, they can replace each other in an utterance
with no semantic change. Good examples of synonyms
successfully identified by the algorithm are the pairs (speak,
talk), (somebody, someone), (mail, Email), and (website, site).
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Semantic classes (example with threshold distance 0.5)
talk speak
operator human
agent customer representative support person tech
website site
email mail outlook signal
parental control
security suite virus protection
page webpage
error message
program software c-d antivirus
someone technical somebody
installation assistance pipeline
channel homepage
cancel schedule date make confirm
help setup
buy purchase
question user name
i-p ip d-n-s
receive send check
box converter Microsoft
d-s-l kit
router laptop Ethernet
go tell
install call
say keep use
put hookup
set add
connect hook run start
firewall domain
screen light
know reconnect
mailbox configuration
service phone day
turn see
download scan
come disconnect leave
something card yahoo
game m-s-n
house room
net code
disk communication
web a-o-l

Table 3.3. Example of classes of semantically related terms extracted
with a clustering threshold distance dth = 0.5
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However, not only synonym terms have been identified by
the algorithm. Other meaningful components that have
been also extracted as a “side product” are frequent term
bi-grams. In contrast to uni-grams, bi-grams are pairs of
consecutive words (w1, w2) whose high co-occurrence pattern
evidences significant conditional statistical dependencies, i.e.
P (w2|w1) ≥ P (w2). Some examples are the pairs (technical,
support), (antivirus, security), (parental, control), (error,
message), and (user, name). This observation is related to the
definition of words in term vectors of term co-occurrences. In
fact, a bi-gram pair of terms that co-occur frequently in the
training corpus should have close co-occurrence vectors. This
happens because the words that occur in the contexts of both
bi-gram terms are also similar.

3.4.5. Feature extraction and utterance feature vector

By applying clustering of semantic classes, the utterance
vector needs to be redefined with the new extracted features
(semantic classes). Given S, the set of semantic clusters
extracted through the term clustering scheme, and M , the
cluster membership matrix that encodes the term clustering
output, the feature extraction that transforms the input
utterance vector xi into a vector of semantic features xsi is
defined as follows:

xsi = [xs1i , xs2i , . . . , x
s′D
i ] = xi ·M [3.13]

In other words, each binary component of the utterance
feature vector x

(s)
ij

denotes the presence/absence of at least
one member of the semantic cluster Sj in the pre-processed
utterance u

(l+p)
i .
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3.4.6. Evaluation

The symptom categorization of user utterances has been
evaluated on an accuracy basis. The accuracy achieved by
the classification algorithm is calculated by comparing the
automatic symptoms (labels) assigned by the algorithms to the
input test utterances with the corresponding manual labels,
which are available for test purposes. The accuracy is then
defined as the ratio of correctly classified utterances over the
total number of utterances in the test set:

Accuracy =
#correctly classified utterances

#utterances in test set
[3.14]

Although typical evaluation criteria used for the
categorization of texts are the microaverage F metrics,
but in this work, the accuracy has been preferred to the
microaverage metric. In fact, accuracy scores have been
considered as a better indicator of the percentage of correctly
routed calls due to the symptom categorization module of the
Spoken Language Dialogue Systems (SLDS).

Note that the microaverage F1 corresponds to the accuracy
of uniformly distributed classes. However, for skewed
distributions, a classifier may produce high accuracy values
but low F1 scores. This occurs when a high ratio of the correct
classifier predictions are concentrated in the most frequent
classes. In this work, since a frequent class indicates a
frequent reason for calls, high accuracy values are still good
indicators for the average performance of the SLDS. First,
the performance of the supervised classification algorithm
(Figure 3.1) has been compared with the semi-supervised
classification using term clustering. Some examples of the
accuracy results obtained with six different labeled seeds
initializations are shown in Figures 3.3–3.5. The vertical
axes refer to the accuracy scores, whereas the horizontal
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Figure 3.3. Comparison of accuracy scores of the supervised
classifier versus the semi-supervised approach with term clustering,

using two different initializations

axes indicate different distance thresholds applied to the term
clustering algorithm for the semi-supervised approach.

Each pair of plots 3.3(a,b), 3.3(c,d), 3.4(a,b), 3.4(c,d),
3.5(a,b), and 3.5(c,d) are referred to identical labeled seeds.
The difference in the left plots with respect to the right plots is
the term vector representation applied to the term clustering
in the semi-supervised approach. The left plots are referred
to the basic term vector definition in equation [3.11], whereas
the right plots are referred to the term vector definition after
truncation (equation [3.10]).
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Figure 3.4. Comparison of accuracy scores of the supervised
classifier versus the semi-supervised approach with term clustering,

using two different initializations

Figure 3.6 shows the mean accuracy values of the
supervised and semi-supervised classification schemes over
20 different prototype labeled seeds initializations. Standard
deviations are indicated as shadowed areas around their
respective mean curves. Figure 3.6a shows the classification
accuracy of the supervised scheme and the semi-supervised
approach using the term vector definition of equation [3.11].
Figure 3.6b refers to the term vector definition in equation
[3.10]. Although the performance of the semi-supervised
classifier depends on the threshold distance dth applied to
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Figure 3.5. Comparison of accuracy scores of the supervised
classifier vs. the semi-supervised approach with term clustering,

using two different initializations

term clustering, some improvements can be observed for
different values dth, up two 2%, using the definition of a term
co-occurrence vector in equation [3.11] and 5.5% if word vector
truncation is applied.

3.5. Disambiguation

If applied to utterance bag-of-words or feature vectors, the
NN classifier rejects a considerable number of ambiguous
utterances for which several candidate prototypes are found.
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Figure 3.6. Mean accuracy values over 20 labeled seeds
initializations achieved by the supervised NN classifier vs. the

semi-supervised approach with term clustering. Standard deviations
are indicated as shadowed areas around their respective mean
curves. (a): Supervised NN based on bag of words features vs.

semi-supervised using semantic class features. (b): Supervised vs.
semi-supervised by incorporating word vector truncation

Candidate prototypes are labeled utterance vectors in X (l)
T ,

which share maximum proximity to the input utterance. This
happens especially when the similarity metric between the
vectors results in integer values, as the overlap distance in
equation [3.4]. A disambiguation module (Figure 3.7) has
therefore been devised to resolve the mentioned ambiguities
and to map an ambiguous utterance to one of the output
categories.

First, the terms that cause the ambiguity are identified
and stored in a list of competing terms. As an example,
consider the utterance I want to get the virus off my
computer. After pre-processing and hard term clustering, this
utterance results in the feature set computer get off virus.
The feature vector has minimum distance to the prototypes
computer freeze [CrashFrozenComputer] and install protection
virus [Security]. The competing terms that produce the
ambiguity are in this case the words computer and virus.
Therefore, in this study, the disambiguation among prototypes
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"Computer is frozen"

Candidate terms

Utterance features

Utterance

Term informativeness

Candidate centroids
(computer freeze)

Selected term/class 

(Get security off computer)

Argmax(I)
t

(install security)

"Computer"

I(t)

"security"
(Security)

"I want to get virus off my computer"

"I want to install virus protection" 

"Security"

Figure 3.7. Disambiguation scheme used for utterance
categorization

(or categories) is equivalent to a disambiguation among
competing terms. For this reason, as a further means of
disambiguation, the informativeness of a term wi has been
estimated as shown in equation [3.15]:

I(wi) = −

⎛⎜⎜⎝log(Pr(wi)) + α · log

⎛⎜⎜⎝ ∑
j

Lj=N

N(wi, wj)Pr(wj)

⎞⎟⎟⎠
⎞⎟⎟⎠

[3.15]
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where Pr(wi) denotes the maximum-likelihood estimation for
the probability of the term wi in the training corpus, and Lj

refers to the part of speech (POS) tag of wj , where N refers
to nouns. POS tags have been extracted by means of the
Standford POS tagger [TOU 00].

As can be inferred from equation [3.15], two main factors
are taken into account to estimate the relevance of a word for
the disambiguation:

– the word probability and
– the term co-occurrence with frequent nouns in the corpus.

The underlying assumption that justifies this second factor is
that words representative of problem categories are mostly
nouns and appear in the corpus with moderate frequencies.
The parameter α is intended to control the trade-off between
the two factors. Reasonable values are in the range of (α ∈
[1, 2]) placing some emphasis on the second factor; a value
of α = 1.6 has been selected in the experiments, although
other values in the mentioned range may yield a similar
performance.

Finally, the term with the highest informativeness is
selected among the competitors, and the ambiguous utterance
vector is matched to the corresponding prototype or category.

3.5.1. Evaluation

The disambiguation scheme has been also individually
evaluated. For this purpose, two cases of ambiguous
utterances need to be distinguished:
(a) resolvable ambiguities: ambiguous utterances that can

be resolved using the disambiguation scheme because one of
their “candidate prototypes” corresponds to the true (manual)
category of the input utterance and
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(b) unresolvable ambiguities: ambiguous utterances
that cannot be resolved, because no candidate prototype
corresponds to the category of the utterance; thus, no
disambiguation strategy can be applied in this case.

To assess the disambiguation performance of the
disambiguation scheme, only resolvable ambiguities have
been considered. A resolvable ambiguity is said to be
“correctly resolved,” if the winning prototype is the one with
the same category as the manual category of the utterance.
The disambiguation accuracy is then formulated as follows:

Disambiguation accuracy

=
#Resolvable ambiguities correctly resolved

#resolvable ambiguities
[3.16]

Figure 3.8 shows the mean disambiguation accuracy of
ambiguous utterance vectors over 20 different prototype
initializations, with respect to the variable dth used in the
term clustering algorithm. Figure 3.8a refers to the basic term
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Figure 3.8. Disambiguation accuracies obtained by the
disambiguation scheme. (a): using term Clustering, (b): term

clustering and term vector truncation
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clustering strategy without vector truncation. Figure 3.8b
corresponds to term clustering and term vector truncation.

As can be observed, the disambiguation performance varies
with the values of dth used in the term clustering algorithm.
It reaches a minimum accuracy score at dth = 0.3, both with
and without vector truncation. From this point, it shows an
increasing trend with the dth variable, which is more abrupt if
vector truncation is applied before term clustering. This trend
in the disambiguation performance is strongly associated with
the clustering scheme (see Figure 3.9).

Ideally, each extracted cluster should be composed of terms
that are mostly relevant for a topic category. However, as
illustrated in Figure 3.9c (case 2), certain values of dth produce
clusters of terms descriptive for different categories. For
example, terms t1−t4 in the figure are assumed to be relevant
for a certain topic category, C1. Likewise, terms t5 and t6
are assumed to be representative for a second category, C2.
The order in which clusters are extracted by the algorithm
is denoted by the labels (1–4). Terms t1, t2, t3, t5 and t6
are allocated in clusters 3 and 4 in all three cases. These
allocations correspond to their relevant categories, C1 and C2.
In contrast, different cluster allocations can be found for the
term t4, depending on dth. If the value of dth is too small (case
1), the complete link criterion is not fulfilled for any of the
two existing clusters and t4 composes an individual cluster. A
small increase in dth such that t4 only satisfies the merging
criterion for cluster 1 causes the term t4 to be attached to such
cluster (case 2). This situation can lead to an increment in
ambiguous utterances due to a possible overlapping of terms
in some of the labeled prototypes. A further increment in dth,
such that d4,1 ≤ dth (the merging condition for both clusters
1 and 3 is fulfilled) allows the attachment of t4 to cluster 1.
t4 is not assigned to cluster 1 because the single link search
criterion of this cluster algorithm gives the priority to cluster
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d4,3 d4,5

d4,6d4,1

t4 t5t3t2 t6t1

d_th d_th

3 2 4 1

C1 C2

(a) Case 1: dth < d4,1 and dth <
d4,6. Term t4 cannot be assigned
to any of the two existing clusters.
Thus, it composes an individual
cluster

C1 C2

d4,3 d4,5

d4,6d4,1

t4 t5t3t2 t6t1

d_th d_th
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(b) Case 2: dth < d4,1 but dth >
d4,6. Term t4 cannot be merged
with cluster 3 but it is attached
to cluster 1

C1 C1
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d4,6d4,1

t4 t5t3t2 t6t1

d_th d_th

3 2 14

(c) Case 3: dth > d4,1 and dth >
d4,6. Because d4,3 < d4,5, term
t4 is attached to cluster 3, which
contains t3

Figure 3.9. Illustration of term clustering with different values of
the threshold distance with an hypothetical uni-dimensional

example



120 Machine Learning

3 (as d4,3 < d4,5). In this situation, the cluster configuration
is consistent with the (real) sets of descriptive terms for the
categories C1 and C2.

The previous explanation can also be associated with
the true semantic clusters extracted by the term clustering
algorithm. Case 2 in Figure 3.9 is equivalent to the
cluster output for dth = 0.3 (Table 3.2). The terms router
and modem are allocated into the same cluster by the
term clustering algorithm. However, these terms commonly
occur with different topic categories, [Homenetwork] and
[Modem], respectively. Typical utterances for the mentioned
categories are “wireless router” and “modem.” They are
often applied as the labeled prototypes for these categories.
Since modem is the most frequent term in the cluster, it
is selected as the cluster’s representative term. Thus, the
prototypes after term clustering are (wireless modem) and
(modem). Any input utterance whose bag-of-words vector
only overlaps modem or router with the prototypes results
in an ambiguous vector, as both terms derive into a single
cluster representative (modem). Since the categories [modem]

0.2 0.3 0.4 0.5 0.6
300

350

400

450

500

550

600

650

700

750

800

850

Clustering threshold distance

N
o.

 A
m

bi
gu

iti
es

 / 
co

rr
ec

tly
 r

es
ol

ve
d 

am
bi

gu
iti

es

 

 

Correctly resolved ambiguities
Ambiguous patterns

(a)

0.2 0.3 0.4 0.5 0.6
250

300

350

400

450

500

550

600

650

700

750

Clustering theshold distance

 N
o.

 a
m

bi
gu

iti
es

 / 
co

rr
ec

tly
 r

es
ol

ve
d 

am
bi

gu
iti

es

 

 
Correctly resolved ambiguities
Ambiguous patterns

(b)

Figure 3.10. Number of ambiguous patterns found by the utterance
classification scheme. (a): with term clustering, (b): with term

clustering and term vector truncation
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and [homenetworks] occur with relatively high frequencies,
this “error” in term clustering yields a significant amount of
ambiguities, as shown in Figure 3.10. Furthermore, although
such an ambiguous utterance may be a resolvable ambiguity
as defined earlier, it cannot be resolved by the disambiguation
scheme since the conflictive terms are “identical” (modem).
In other words, the term’s informativeness criterion is not
sufficient to discriminate among prototypes. In these cases,
the decision for the winning category is randomly performed.
As can be observed in Figure 3.10, while the number of
ambiguities considerably increases for dth = 0.3, only a small
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Figure 3.11. Comparison of accuracy scores of the supervised
classifier vs. the semi-supervised approach before and after

disambiguation using two different prototype initializations
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increment is attained on the number of ambiguities correctly
resolved.

Final accuracy scores of the semi-supervised classification
before and after disambiguation versus the supervised
classification can be observed in Figures 3.11–3.13. As in
section 3.4.6, the semi-supervised evaluation in these figures
is referred to six different labeled seed initializations. The
left plots in these figures are referred to the basic term
vector definition in equation [3.11], whereas the right plots
are referred to the term vector definition after truncation
(equation [3.10]).
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Figure 3.12. Comparison of accuracy scores of the supervised
classifier vs. the semi-supervised approach before and after

disambiguation using two different prototype initializations
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Figure 3.13. Comparison of accuracy scores of the supervised
classifier vs. the semi-supervised approach before and after

disambiguation using two different prototype initializations

Figure 3.14 shows the mean accuracy scores obtained
by the supervised algorithm versus the semi-supervised
approach (before and after disambiguation) over 20 different
initializations.

Standard deviations are indicated as shadowed areas
around their respective mean curves. Figure 3.14a shows
the classification accuracy of the supervised scheme and the
semi-supervised approach with disambiguation, using the
term vector definition of equation [3.11]. Figure 3.14b refers
to the term vector definition in equation [3.10]. As can
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Figure 3.14. Mean accuracy values achieved by the supervised
classifier vs. the semi-supervised approach before and after

disambiguation. Standard deviations are indicated as shadowed
areas around their respective mean curves. (a): Supervised NN based

on bag of words features vs. semi-supervised using semantic class
features. (b): Supervised vs. semi-supervised by incorporating word

vector truncation

be observed, by incorporating the disambiguation scheme,
the semi-supervised approach achieves notable improvements
with respect to the supervised classifier, up to 65% accuracy.

3.6. Summary

In this chapter, a semi-supervised classification scheme
has been described. It takes advantage of the availability of
unlabeled data by means of unsupervised clustering applied
to the feature space of words. This approach is based on
the hypothesis that synonymy is one important source of
variability in the utterances for a single symptom. Thus,
by identifying clusters of semantically related terms, the
vocabulary available to the classifier can be “augmented.”
One of the main contributions in this work is the novel
definition of a word in a vector space model so that any
distance metric applied to word vectors can capture the degree
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of semantic dissimilarity between the words. When using a
term vector model with term truncation (so that only the most
important words in the context of another word wi account
for the definition of the ith word vector), the semi-supervised
approach has shown average accuracy improvements up to 5%
with respect to the basic supervised classifier.

This has been motivated by the observation that a
significant amount of ambiguities resulted from the proposed
classification schemes. Ambiguities are basically due to the co-
occurrences of words representative for different categories.



Chapter 4

Semi-Supervised Classification
Using Pattern Clustering

4.1. Introduction

In the previous chapter, a semi-supervised approach has
been described, which gained advantage of unlabeled data by
means of clustering. A minimum labeled seed was fed to a
supervised classifier. Then, the lexicon features in these initial
labeled seeds were automatically expanded through a set of
synonym groups found by the clustering algorithm.

In this chapter, a new alternative to semi-supervised
algorithm is introduced. In a similar way as the approach
described in the previous chapter, clustering is also used to
“augment” the small labeled seeds. However, in contrast to
the previous approach, the cluster assumption is now applied
to obtain groups of data instances instead of features. This
cluster principal assumption – underlying class labels should
naturally fall into clusters – has been frequently applied to
other works in the semi-supervised machine learning (ML)
literature [BLU 01].

Semi-Supervised and Unsupervised Machine Learning: Novel Strategies               Amparo Albalate  and Wolfgang Minker
© 2011 ISTE Ltd.  Published 2011 by ISTE Ltd.
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Following the clustering step, the labeled seeds have been
used to tag the clusters in such a way that the initial labels are
augmented to the complete clustered data. In the previous
chapter, an explicit labeling step was absent. However, by
assuming no overlap of the terms from different categories
inside each extracted group, an implicit labeling of semantic
clusters was performed. The clusters that overlapped at least
one term with one of the labeled prototypes remained labeled
with the class label of the prototype. In this chapter, the
labeling task has been comprehensively defined and solved as
a separated optimization problem.

Finally, because clustering is performed on a data space
rather than on a feature space, the algorithm can be
generalized to any type of feature. For this reason, besides
a dataset of utterances, the strategy has been tested on a
number of real and simulated datasets, most of them from the
University of California Irvine (UCI) dataset repository.

4.2. New semi-supervised algorithm using the cluster
and label strategy

In essence, the semi-supervised classification described
in this chapter differs from previous works in which the
clustering and labeling tasks are clearly distinguished as
two independent optimization problems. First, a clustering
algorithm extracts the cluster partition that maximizes an
internal – data driven – quality objective. Then, an
optimum cluster labeling, given the labeled seed and the
cluster partition of the data, is formulated as an optimum
assignment problem, which has been solved using the
Hungarian algorithm.

4.2.1. Block diagram

The block diagram of the semi-supervised approach is
illustrated in Figure 4.1. It consists of two main parts: cluster
and label and supervised classification.



Semi-Supervised Classification Using Pattern Clustering 129

Model B
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Classification
(predict)
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Test set
{Xtest,Ytest}
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Augmented
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Training set
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Labeled set

{XT
(l), YT

(l)}

{XT
(l), YT

(l)}

{XT , YT}

Figure 4.1. Block diagram of the semi-supervised algorithm

4.2.1.1. Dataset

First, the data are divided into a test set (∼ 10%) and a
training set ( ∼ 90%). Let

XT = {xi}l+u
i=1 , ∀xi ∈ RN

denote the training data, where l refers to the labeled seed size
and u the size of the unlabeled seed. The total training size
considering both labeled and unlabeled portions is thus l + u.
This training set can be divided into two disjoint subsets:

XT = X (l)
T ∪ X (u)

T , X (l)
T = {xi}li=1, X (u)

T = {xi}l+u
i=l+1

where X (u)
T denotes the subset of unlabeled patterns in XT and

X (l)
T the labeled portion of XT for which the corresponding set

of labels Y(l)
T is (assumed to be) known. Hence, the initial

labeled set can be expressed as the set of pairs:

{X (l)
T ,Y l

T } = {(x1, y1), (x2, y2), . . . , (xl, yl)}

with the set of (manual) labels, Y(l)
T = {yi}li=1. The block

diagram of the algorithm is shown in Figure 4.1. The two
main parts in the semi-supervised strategy are the cluster
and label block, and the supervised classification in which a
supervised model is trained with the augmented dataset from
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the cluster and label block. The test set is denoted as the pairs
{Xtest,Ytest} of test instances and labels. A fully supervised
version is also depicted in the upper branch of the supervised
classification block. In this case, the supervised classifier is
trained with the initial labeled seed: {X (l)

T ,Y l
T }.

4.2.1.2. Clustering

The first step in the semi-supervised approach is to find
a cluster partition C of the training data XT into a set of k
disjoint clusters C = {C1, C2, . . . , Ck}, where k is the number
of classes. In this work, the partitioning around medoids
(PAM) algorithm has been applied. As explained in Chapter
2, the PAM algorithm provides the optimum cluster partition
with the minimum sum of distances to the cluster medoids.
The clustering task can be expressed as an implicit mapping
function, FC , that assigns each training instance into one of
the clusters in C:

4.2.1.3. Optimum cluster labeling

The labeling block performs a crucial task in the semi-
supervised algorithm. Given the set of clusters C in which the
training data are divided, the objective of this block is to find
an optimum objective mapping of labels to clusters,

L : C → K, K = {1, 2, 3, · · · , k}

so that an optimum criterion is fulfilled. Each cluster has
been assigned exactly one class label in K. Assuming a
fixed ordering of the clusters extracted by the PAM algorithm,
{C1, C2, . . . , Ck}, the objective of the cluster labeling block is
to find a permutation of the class labels corresponding to the
ordered set of clusters. By labeling each cluster with one
of the class labels in K, all data instances in the training
set XT remain implicitly labeled with the class label of their
respective clusters. In mathematical terms, the optimum
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cluster labeling provides an estimation ŷi of the optimum class
label for each observation xi in the training set:

ŷi = L(xi) = L(FC(xi)), ∀xi ∈ XT

As a result of cluster labeling, the initial labeled seed
{X (l)

T ,Y(l)
T } is extended to the complete training data. This

augmented labeled set can be expressed as

{XT ,YT } = {xi, yi}li=1 ∪ {xi, ŷi}ui=l+1

where YT denotes the set of augmented labels corresponding
to the observations inXT . For training instances in the labeled
seed, the available manual labels are selected. For unlabeled
patterns, xi ∈ X u

T , the augmented label is the class label
estimation ŷi obtained by the optimum cluster labeling.

The optimum cluster labeling block is explained in more
detail in section 4.3.

4.2.1.4. Classification

Finally, a supervised classifier is trained with the
augmented labeled set (XT ,YT ) obtained after cluster labeling.
The learned model is then applied to predict the labels for the
test set.

Simultaneously, a fully supervised classification scheme
has been compared with the semi-supervised algorithm. In
this case, the classifier is directly trained with the initial
labeled seed (X (l), Y(l)). The (supervised) model (denoted as
model A in Figure 4.1) is again applied to predict the labels of
the test data.

Both semi-supervised and supervised strategies have been
evaluated in terms of accuracy, by comparing the predicted
labels of the test patterns with their respective manual labels.
The evaluation results are discussed in section 4.6.
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4.3. Optimum cluster labeling

This section describes the objective criterion applied to the
optimum cluster labeling and the algorithms used to achieve
this optimum.

4.3.1. Problem definition

Given the training data, XT = X (l)
T ∪ X (u)

T , the set Y(l)
T

of labels associated with the portion X (l)
T of the training set,

the set K of labels for the k existing classes, 1 and a cluster
partition C of XT into disjoint clusters, the optimum cluster
labeling problem is to find an objective mapping function, L:

L : C → K, K = {1, 2, 3, · · · , k}
which assigns each cluster in C to a class label in K, while
minimizing the total labeling cost. This cost is defined in
terms of the labeled seed (X (l)

T ,Y(l)
T ) and the set of clusters C.

Consider the following matrix of overlapping products O:

O =

⎛⎜⎜⎜⎝
ni1 ni2 · · · nik

n21 n22 · · · n2k
...

...
. . .

...
nk1 nk2 · · · nkk

⎞⎟⎟⎟⎠ [4.1]

with constituents nij, denoting the number of labeled patterns
from X (l)

T with class label y = i that fall into cluster Cj. The
labeling objective is to minimize the global cost of the cluster
labeling denoted by L:

Total cost(L) =
∑
Ci∈C

wi · cost
(
L(Ci)

)
[4.2]

1. Although class labels can take any arbitrary value, either numeric or
nominal, for simplicity in the formulation and implementation of the cluster
labeling problem the k class labels are transformed into integer values
([1, . . . , k]).
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where W = (w1, · · · , wk) is a vector of weights for the different
clusters. These weights may be used if significant differences
in the cluster sizes are observed. In this book, the weights are
assumed to be equal for all clusters, so that wi = 1,∀i ∈ 1 · · · k.

The individual of labeling a cluster Ci with class j is defined
as the number of samples from class j (in the labeled seed)
which fall outside the cluster Ci, i.e.,

Cost
(
L(Ci) = j

)
=
∑

Ck �=Ci

nj,k [4.3]

by applying equation [4.3] into the total cost definition of
equation [4.2], yields

Total cost(L) =
∑
Ci∈C

∑
Ck �=Ci

nL(Ci),k [4.4]

Using a greedy search algorithm, the cost minimization
of equation [4.2] requires k! operations (where k denotes
the number of clusters/classes). Such a complexity becomes
computationally intractable for k ≥ 10. However, larger
number of classes are often involved in real classification
problems. In this book, two popular optimization algorithms
have been applied to achieve the optimum cluster labeling
with substantially lower complexities:

– The Hungarian algorithm by Huhn and Monkres and
– the genetic algorithms (GAs).

Both algorithms require the definition of a cost matrix
C[kxk], whose rows denote the clusters and the columns are
referred to class labels in K. The elements Cij denote the
individual costs of assigning the cluster Ci to class label j, i.e.
Cij = cost(L(Ci) = j).

More details about the Hungarian algorithm and GA
applied to solve the optimum cluster labeling problem are
described in sections 4.3.2 and 4.3.3.
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4.3.2. The Hungarian algorithm

The Hungarian method is a linear programing approach
which solves the assignment problem in O(N)3 operations
[KUH 55, GOL 03]. The algorithm was devised by Huhn in
1955. Its name, “Hungarian,” was given after two Hungarian
scientists who had previously established a large part of the
algorithm’s mathematical background.

Although the algorithm’s complexity was originally O(N4),
a more recent version with complexity O(N3) was developed
by Huhn and Monkres, thus referred to as the Huhn–Monkres
algorithm.

The algorithm states the assignment problem in terms of
bipartite graphs. In the following paragraphs, some important
notions from graph theory are introduced .

4.3.2.1. Weighted complete bipartite graph

DEFINITION 4.1.– Bipartite graph: a bipartite graph is a
graph, G(V, E), with set of vertices V and set of edges E , in
which two disjoint subsets of V can be found, X and Y, with no
internal edges connecting two vertices within a subset. Thus,
the set of edges E only connects any vertex in X with any of the
vertices of Y. In the following, a bipartite graph is also denoted
G(X ,Y, E).

DEFINITION 4.2.– (Complete weighted bipartite graph): a
complete bipartite graph is a bipartite graph in which, for
all pairs (x, y) of vertices from X and Y, there exists an edge,
exy ∈ E , that connects x with y.

DEFINITION 4.3.– (weighted complete bipartite graph): a
weighted complete bipartite graph is a complete bipartite
graph in which each edge, ex,y, is assigned to a certain weight
w(x, y). Note that a value of w(x, y) = 0 is also possible, and
the weighted bipartite graph is still complete.
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Figure 4.2 shows three examples of the bipartite graph, the
complete bipartite graph, and the weighted complete bipartite
graph, respectively.

x1 y1

x3

x2 y2X Y

y3

(a)

x1

x3

x2

y1

y2

y3

(b)

x1

x3

x2

y1

y2

y3

w31

w23

w33

w11

w23

w21
w22

w12

w32

(c)

Figure 4.2. Example of bipartite graphs: (a) bipartite graph with
two disjoint subsets, (b) complete bipartite graph, and (c) completed

weighted bipartite graph

4.3.2.2. Matching, perfect matching and maximum weight
matching

DEFINITION 4.4.– (Matching): a matching M , defined on a
graph G(X ,Y, E), is any subset of edges, M ∈ E , such that
no common vertex is shared between different edges in M
(Figure 4.3(a)).

DEFINITION 4.5.– (Perfect matching): a perfect matching is a
matching M in which each vertex x is connected to a vertex y
by an edge in M (Figure 4.3(b)).

DEFINITION 4.6.– (Maximum weight matching): denotingM,
the set of all possible perfect matchings in G(X;Y ;E), the
maximum weight matching is the perfect matching M ′ ∈ M
in which the sum of edge weights is maximum:

M ′ = argmax
Mi∈M

(
∑

exy∈Mi

wxy) [4.5]
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M
x1 y1

x3 y3

x2 y2

(a)

x1

x3

x2

y1

y3

y2

M

(b)

Figure 4.3. Example of matching in bipartite graphs. (a) Arbitrary
matching, M and (b) Complete bipartite graph

4.3.2.3. Objective of Hungarian method

Given the above introductory definitions regarding
bipartite graphs, the objective of the Hungarian algorithm
is to find the maximum weight matching M ′ in a complete
bipartite graph, G(X,Y,E).

Two fundamental notions that allow us to significantly
reduce the search space of perfect matchings M to find the
maximum weight matching are the concepts of vertex labeling
and equality graphs.

DEFINITION 4.7.– (Feasible vertex labeling): a feasible vertex
labeling upon a weighted bipartite graph G(X,Y,E) is a
function that assigns a label, l ∈ Z to each vertex in V , such
that the sum of labels of any pair of vertices connected by an
edge ex,y is greater than equal to the edge weight wxy,

l : V → Z | l(x) + l(y) ≥ wxy, ∀x ∈ X, y ∈ X

DEFINITION 4.8.– (Equality (subgraph):) given a feasible
vertex labeling, l, the equality subgraph of a complete bipartite
graph is the graph Gl(X,Y,El) defined by the vertices in X and
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Y and a subset of edges El ∈ E, whose weights wxy are strictly
equal to the sum of vertex labels l(x) + l(y):

El = {(x, y)} | l(x) + l(y) = wxy

Given the vertex labeling and equality subgraph
definitions, the basis of the Hungarian algorithm is the
Huhn – Monkres theorem.

Theorem 4.1. (Huhn – Monkres theorem): if a perfect
matching is found in an equality subgraph of G(X,Y,E), this
matching is the maximum weight matching.

Proof 1. From the definition of feasible labeling, any edge
(x, y) ∈ E satisfies that

w(x, y) ≤ l(x) + l(y) [4.6]

For a perfect matching M , each vertex is only adjacent to one
edge, thus,∑
ex,y∈M

w(x, y) ≤ [ ∑
(ex,y)∈M

l(x)+ l(y) =
∑
x∈X

l(x) +
∑
y∈Y

l(y)
]

[4.7]

Now, any edge ex,y in an equality graph satisfies

w(x, y) = l(x) + l(y) [4.8]

Hence, for any perfect matching over the equality graph, Ml, it
yields ∑

(x,y∈M ′)

w(x, y) =
∑
x∈X

l(x) +
∑
y∈Y

l(y) [4.9]

Finally, by merging equations [4.7] and [4.10]∑
(x,y∈M ′)

w(x, y) =
∑
x∈X

l(x) +
∑
y∈Y

l(y) ≥
∑

(x,y∈M),M∈M
w(x, y)

[4.10]
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Thus, the problem of finding a maximum weighted
matching is transformed into the one finding a feasible vertex
labeling with a perfect matching in the associated equality
subgraph. This is essentially achieved by selecting an initial
vertex labeling as well as a matching M , of size |M |, in the
equality graph, and iteratively growing M until it becomes a
perfect matching (|M | = k). In each iteration, the size of M is
increased by one edge after an augmented path is found.

DEFINITION 4.9.– (Path): a path over a graph G(V,E) is
defined as a sequence of vertices {v1, v2, v3, v4, . . . , vp}, such that
there exists an edge connecting each pair of vertices (vi, vi+1).
Note that the superscripts 1, 2, . . . , p are not referred to the
indices of the vertices in the graph, but to their order in the
path sequence.

DEFINITION 4.10.– (Augmented path): given a matching M
in the equality graph, an augmented path is a path (1) whose
edges alternate between M and M̄ (alternating path), and (2)
whose start and end vertices, v1 and vp, are unmatched, i.e.,
{(v1, v2) ∈ M̄ , (v2, v3) ∈M, (v3, v4) ∈ M̄, . . . , (vi, vi+1) ∈ M̄}.

Obviously, if an augmented path is found, the size of M
can be increased by one edge by inverting the edges in the
path from M̄ → M and M → M̄ so that the new path
can be expressed as (Figure 4.4(a)) {(v1, v2) ∈ M , (v2, v3) ∈
M̄, . . . , (vi, vi+1) ∈M} (Figure 4.4(b)).

As mentioned earlier, the Hungarian algorithm starts by an
arbitrary vertex labeling. Typically, the labels for the vertices
in Y are set to 0, while each vertex xi ∈ X is labeled with the
maximum of its incident edges,

l(yi) = 0 [4.11]

l(xi) = max
yi∈Y

(w(xi, yi)) [4.12]
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Figure 4.4. Illustration of augmented paths. (a) Bipartite graph
with two disjoint subsets and an arbitrary matching M ; (b)

Alternating path with start at y1 and end at x3. The vertex order is
indicated by the arrows. (c) The alternating path allows us to

increase the matching M , resulting in a perfect matching

Then, a matching in the equality graph, El, associated with
the vertex labeling is selected. If |M | = k, this matching is
already perfect and the optimum is found. If the matching is
not perfect, the size of M needs to be gradually incremented
in a number of iterations. By definition 4.10, |M | can be
increased by one edge if an augmenting path is found. Thus,
each iteration step is directed toward the search for an
augmented path.

As M is not yet perfect, there must be some unmatched
vertex x ∈ X connected to a matched vertex y. This seems
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to be obvious, since otherwise the vertex xi would be already
matched in M . Let Nl(x) denote the subset of vertices in Y
which are connected to x (the neighbors of x). Also, let X ′

denote the subset of vertices X ′ ∈ X − {x} matched to any
vertex in Nl(x). Thus, x is “competing” with X ′ for an edge in
M . The path {x, y, x′ ∈ X ′} can be thought of as a section of
an augmented path. Now, if an unmatched vertex y′ is found,
connected to any vertex in S = {X ′ ∪ xi} in a (new) equality
graph, two situations may occur:

1. y′ is connected to x. Then, M can be increased by adding
a new edge (x, y′). The new matching can be expressed as
M ′ = M ∪ (x, y′),

2. y′ is connected to a vertex in X ′. Let this vertex be
denoted as x2, and y2, the vertex in Y matched to x2. Then,
an augmented path can be found in the form x, y2, x2, y

′, and
M can be incremented by inverting the path edges from M to
M̄ and vice versa.

Now, assuming that a maximum size matching M has been
previously selected, the required unmatched vertex y′ does
not yet exist in El. Otherwise, this vertex would already be
included in M . Therefore, the equality graph El must be
expanded to find new potential vertices in Y to augment M .
Obviously, the expansion of El requires a vertex (re)labeling l′.
It is formulated as

δl = min
x∈S,y∈Nl(S)

(l(x) + l(y)− w(x, y)) [4.13]

l′(v) =

⎧⎨⎩
l(v)− δl, v ∈ S
l(v) + δl, v ∈ Nl(S)
l(v), otherwise

[4.14]

The relabeling function l′ ensures that a new equality
graph is found, E′

l , such that E′
l ∈ El and some new edge

(xi ∈ S, y /∈ Nl(S)) exists. In other words, the new set of S
neighbors in E′

l is N ′
l (S) = Nl(S) ∪ {y}.
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Consider the new edges (x ∈ S, y /∈ Nl(S)) in E′
l . With

reference to the vertex y, two possible cases are to be
considered:

– �xi : (xi, y) ∈ M (y is not matched). Thus, an augmented
path can be found and |M ′| = |M |+ 1.

– ∃xi : (xi, y) ∈ M (y is matched). The new edge can
be expressed as (xi ∈ S, y /∈ Nl(S) ∈ M). Since y is not
an unmatched vertex, the path cannot be augmented. In
this case, the vertex x′ matched to y is attached to S so
that y belongs to N ′

l (S). Then, a new vertex relabeling is
required, forcing new edges in E′

l connecting vertices from S
to Y −N ′

l (S). Such vertex labeling is iterated, adding vertices
to S and Nl(S) until an unmatched vertex in Y is found.

Each time |M | is incremented, the previous steps are
repeated, starting with another free vertex in X. This process
is iterated until all free vertices in X are explored, in which
case |M | = k and a perfect matching (the maximum weight
matching) is achieved.

4.3.2.4. Complexity considerations

In each phase of the Hungarian method, the size of the
matching |M | is incremented by one edge. Thus, the perfect
matching is attained in a maximum of k phases. As explained
earlier, within each phase, a vertex relabeling is required to
find a free vertex y /∈ Nl(S). If the size of the matching at
phase i is |M i|, a maximum number of relabeling steps |M i|−1
is required in the worst case. Thus, each phase requires at
most |M i| − 1 iterations. Typically, the upper bound for such
complexity is stated as O(k). Finally, each relabeling requires,
in principle, a total number of k2 operations. However, with
an adequate implementation this complexity can be reduced
to O(k). Thus, the total complexity of the Hungarian method
is O(k) phases ·O(k) relabelings ·O(k) = O(k3).
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4.3.3. Genetic algorithms

In the early 1970s, John Holland invented an algorithmic
paradigm which attempted to solve engineering problems
by closely observing nature. Such algorithms showed an
extraordinary potential to solve a variety of complex problems,
outperforming traditional approaches.

Inspired by Darwin’s discoveries – the laws of natural
selection, inheritance, genetics and evolution – this kind of
algorithm was named GA [DAV 91,GOL 89].

From evolution theory, natural selection is governed by
the “survival of the fittest” law. According to this principle,
those living structures that perform well under certain
environmental conditions tend to survive, unlike those that
fail to adapt to the environment.

This evolutionary principle forms the basis for GAs.
The environment is modeled by the optimization criterion
(objective function), while the individuals are represented
by their chromosomes. Natural selection ensures that only
the genetic material of the best individuals is preserved
in the next generations. In terms of GAs, the former
is achieved by an appropriate parent selection strategy.
Also, the evolution from one generation to the next one is
present in the form of reproductory operators. In each new
generation, the chromosomes are generally better “adapted” to
the environment (quality criterion), which implies that the GA
is evolving toward an optimum of the objective function. By
representing the solution space in a chromosomal form, each
particular value of a chromosome encodes a possible solution
to the objective function (environment). The optimum solution
is thus given by the value of the fittest chromosome in a
convergence status.
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In general terms, a GA can be described by the following
steps:

1. Initialize a random population of chromosomes.
2. Evaluate chromosomes on the basis of their fitness values.
3. Using a suitable parent selection strategy, pick a

number of chromosomes into the “mating pool” of parent.
chromosomes

4. Perform reproduction operators (crossover and mutation)
on the mating pool members to form child chromosomes.
The next generation is formed using a suitable population
formation strategy.

5. If the termination criterion is fulfilled, the fittest
chromosome in the current population can be regarded as the
“winning” chromosome – optimum solution. Otherwise, go to
step 2.

In the following sections, an brief overview of reproduction
operators is presented.

4.3.3.1. Reproduction operators

Two types of reproduction can be functionally
distinguished. Reproduction operators used in GA are
inspired by the biological concepts of sexual/asexual
reproduction. By means of sexual operators (crossover),
the genetic material of two parent individuals is combined to
form children chromosomes. In contrast, asexual operators
(mutation) produce random changes in single genes, gene
positions, or gene substrings in a chromosome. Crossover and
mutation operators are explained in detail in the following
paragraphs.

4.3.3.1.1. Crossover

As explained earlier, crossover operators require the
participation of two parent chromosomes to form the children
chromosomes. Different types of crossover operators may
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be applied within a GA. However, one essential factor to
take into consideration for choosing crossover types is the
“context sensitivity.” As certain crossover types may suit a
certain chromosome representation, they may produce invalid
chromosomes for other representation. If the crossover type
produces invalid chromosomes, the GA must be aware of these
situations and reject any possible invalid solution.

– One point crossover: in this type of crossover, a point
within the chromosome’s length is randomly selected. The
genetic material of the two parents beyond this point is
swapped to form the children.

– k- point crossover: this operator is a generalization of the
one-point crossover. k points along the chromosome length
are selected, swapping the genetic material of the parents
between each pair of consecutive points.

– Uniform-based crossover: while the previous operators
are only suitable for binary chromosome representation,
the uniform-order-based crossover was proposed by Davis
[DAV 91] for the permutation representation of chromosomes.
First, a binary mask of the same length as that of a
chromosome is randomly selected. This mask determines
which child inherits each gene and from which parent, in
particular. As an example, if bit i is active (‘1’), child 1 inherits
gene at position i from parent 1. If the bit is inactive (‘0’), child
2 inherits the gene from parent 2. The missing gene values
– corresponding to the positions of the mask inactive bits in
child 1 and active bits for child 2 – are filled in the remaining
gene positions of children 1 and 2, preserving their order of
appearance in parents 2 and 1, respectively.

– Partially mapped crossover: also devised for the
chromosome permutation representation, this operator is
similar to the uniform-order-based crossover. The gene
positions to be copied from parents 1 and 2 in children 1
and 2 are specified by a random binary mask, as explained
earlier for the uniform-order-based crossover. Then, the child
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chromosomes 1 and 2 are completed with the missing gene
values, preserving the order and position as they appear in
parents 2 and 1, respectively, to the highest possible extent.

4.3.3.1.2. Mutation

A variety of mutation types have been proposed in the
GA literature for asexual reproduction. In the following, five
popular mutation operators are described.

– Simple bit mutation: This operator, defined for
binary chromosome representation is the simplest mutation
operators. An intrinsic parameter of the bit mutation
strategy is the bit mutation rate, m ∈ [0, 1]. It indicates
a maximum threshold for mutant genes. Mutant genes is
identified as follows: First, each gene in a chromosome is
assigned a random value, p ∈ [0, 1] from a uniform probability
distribution. Mutant genes are those with p ≤ m. If a gene is
identified as mutant, it means that its value can be reversed
(0→ 1, 1→ 0) with probability 0.5.

– Flip bit mutation: this operator is very similar to the
simple bit mutation, but differs in that the value of a mutant
gene is always reversed (with probability 1.0). Thus, the
effective mutation rate is doubled with respect to the simple
bit mutation.

– Swapping mutation: this operator performs a simple
mutation, which is applicable to many types of the
chromosome representation. It simply selects two random
positions along a chromosome, and exchanges the genes at
these positions.

– Sliding mutation: as with swapping mutation, this
operator can be used with many different types of chromosome
representation. Again, two points within a chromosome’s
length are selected, i, j, with i < j−1. The segment of genes at
indexes i+1 to j slided by one position to the left, pushing the
gene at position i to position j. In vectorial form, the sliding
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mutation operator can be expressed as follows:

chromosome[i..j] = chromosome[i+ 1..j], chromosome[i]
[4.15]

– Scramble bit mutation: this operator was proposed
by Davis [DAV 91] for the permutation representation of
chromosomes. It selects a substring of genes and combines
them randomly, leaving the rest of the genes unchanged.

4.3.3.2. Forming the next generation

An overview is now provided of the strategies to form the
next generation from the current population of chromosomes.
In particular, three approaches are described: generational
replacement, elitism and generational replacement, and
steady-state representation.

4.3.3.2.1. Generational replacement

Using this strategy, the parent generation is entirely
replaced by a new population of children chromosomes
obtained by crossover and mutation. One limitation
of generational replacement is associated with these
reproductory operators. As previously explained, according
to the survival of the fittest principle, fittest individuals
are selected into the mating pool of parent chromosomes.
Crossover and mutation operators may, nevertheless, destroy
good schemata present in parent chromosomes, by combining
or mutating the genes within a schema.

4.3.3.2.2. Elitism with generational replacement

This method attempts to overcome the aforementioned
limitation of simple generational replacement through the
introduction of elitism or “elite selection.” In the frame scope
of GAs, the term “elite” refers to the top fittest chromosomes in
a population. Denoting P , the population size and e, the elite
selection rate, the top |e ·P | fittest chromosomes are identified
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as elite chromosomes or super-individuals. An exact copy of
each elite chromosome is then passed to the next generation.
The remaining P − eP children are then produced by simple
generational replacement. According to Davis, a small value
of the elite selection rate e may be beneficial for the GA
performance, since it ensures that fit chromosomes with good
schemata are preserved in the next generations. In contrast,
large values of this parameter can lead to degradations in the
GA performance, or slow down the convergence, due to the
subsequent reduction in the “active” search space (in terms of
population chromosomes).

4.3.3.2.3. Steady state representation

This method replaces only the m chromosomes with the
poorest fitness values in a population, keeping exact copies of
the P − m remaining chromosomes. Obviously, the steady-
state reproduction is equivalent to elitism for m = P and
corresponds to elitism with generational replacement with an
elite parameter e = P −m.

4.3.3.3. GAs applied to optimum cluster labeling

In this book, GAs have been applied to solve the
cluster labeling problem. As explained in Section 4.3, the
cluster labeling objective is equivalent to find an optimum
permutation of class labels, by considering a fixed ordering
of the clusters (C1toCk). For this reason, a permutation
representation style has been used as chromosome encoding:

Π = {π1, π2, · · · , πk}

In the chromosome, cluster labels are encoded by the gene
positions, whereas class labels are indicated by the gene
values, i.e. πk = L(Ck). For example, if the gene at position
i has a value πi = j, the ith cluster is assigned to class label
L(Ci) = j.



148 Machine Learning

The evaluation of a chromosome is defined as the total
cost definition (equation [4.4]) of wrong cluster–class label
assignments associated with the class label permutation. In
terms of the chromosome gene values, the labeling cost can be
expressed as

Chromosome evaluation = total cost (Π) =
k∑

i=1

⎛⎝∑
j �=i

nπi,j

⎞⎠
[4.16]

Thus, the fitness function that allows us to identify the top
chromosomes in a population can be defined as the inverse of
equation [4.16]:

Fitness (Π) = n− total cost (Π) =
k∑

i=1

nπi,i [4.17]

Note that the inverse of the labeling cost, or fitness,
corresponds in this case to the total overlap of class labels due
to the following conditions:

– The weight factors in the labeling cost formulation in
equation [4.2] are not taken into account (all weights are set
to 1).

– The number of labeled examples in the labeled seed is
considered constant for all categories.

Owing to the first condition, the cost formula can be
expressed as

Total cost (Π) =
k∑

i=1

⎛⎝∑
j �=i

nπi,j

⎞⎠ =

k∑
i=1

ni − nπi,i [4.18]

where ni denotes the number of labeled examples in the initial
seed for the class label indicated by the gene πi. As this value
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is constant for all class labels, i.e., n1 = n2 = . . . ,= nk = n, the
cost in equation [4.18] can be also formulated as

Total cost (Π) =
k∑

i=1

ni − nπi,i = n−
k∑

i=1

nπi,i [4.19]

Hence, the chromosome fitness can be identified as the sum
of overlapping products in the second term of equation [4.19].

As for parent selection, a simple tournament selection
strategy has been selected. This approach divides the
population in equally sized blocks, each with M chromosomes.
Then, it selects the N fittest chromosomes from each block into
the mating pool. In this book, different values of M have been
applied, namely, M = 5, M = 10, and M = 11. In all cases, two
fittest parents are selected from each block (N = 2).

Generational replacement with elitism is the method
selected to form the next generation, using different types
of crossover and mutation to obtain the genetic material of
the children from their parent’s chromosomes. Now, the new
generation is formed in blocks of M chromosomes. For the first
block, the first two parents in the mating pool are selected.
The block is filled with M children, obtained from crossovers
and mutations from their corresponding two parents. The
same is applied for the rest of blocks, using the second, third,
etc., pairs of parents in the mating pool. Let cr and (mr) denote
the crossover and effective mutation rates applied to the GAs,
respectively. Different crossover and effective mutation rates
have been compared, depending on the block size M . For
M = 5, two children are generated with crossover (cr = 2/5)
and three children with mutations (mr = 3/5). For M = 10,
the crossover and mutation rates have been set to cr = 6/10
and mr = 4/10. Likewise, for M = 11, cr = 10/11 and
mr = 1/11.
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4.3.3.4. Comparison of methods

In the following, the performances of the Hungarian
algorithm and GAs for the optimum assignment problem are
compared by means of a controlled experiment. As both
strategies have been devised for the cluster labeling problem,
artificial confusion matrices have been synthesized. They are
possible real situations with clusters/class labels. A confusion
matrix represents the number of class labels (rows) that fall
into the different clusters (columns), with the particularity
that the elements in the diagonal correspond to the best
cluster–class matchings. The matrix overlapping products
O in equation [4.1] can be transformed into a confusion
matrix, O′, by re-arranging the row elements according to
the optimum class label permutation. In this case, the sum
of values in the diagonal of O′ gives the maximum overlap
(minimum of equation [4.2]).

Ideally, the cluster partition of a dataset should perfectly
match the underlying class distribution. The resulting
confusion matrix is thus a diagonal matrix. However, in most
real problems, clusters may deviate from the true classes to
a certain extent. This may be due to the inadequate choice
of a cluster algorithm that does not fit into the true data
distribution, the existence of ambiguities in the dataset, or
even the presence of errors in the manual labels. To analyze
the cluster labeling performance of the Hungarian algorithm
and GAs under these circumstances, the artificial matrices
used in this work are intended to reproduce and quantify their
potential effects on the confusion matrix O′.

First, it is assumed that each class can be optimally
represented by one of the clusters. It is, namely, the cluster
that provides the best coverage of the elements in the class.
In a non-ideal situation, a certain amount of labeled patterns
may fall outside their “representative” cluster, as a sort of
interference to the receiver clusters. Two variables have been
used to model these situations:
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– Variable ratio of “escaping” labels (E): given a number of
labels per category, n, and summing each class to be optimally
represented by a certain cluster C(opt), this variable indicates
the ratio of class labels that “escape” outside cluster C(opt) to
other neighbor clusters (also referred to as receiving clusters).
For example, if L = 20 and E = 0.5, 10 labels of the given class
escape cluster C(opt). This variable ratio of escaping patterns
is a uniformly distributed variable in the range E ∈ [0−Emax],
where Emax < 1 is a parameter of choice. In this book, different
values of Emax have been applied to “control” the complexity of
the cluster labeling problem.

– Variable number of receiving clusters Rx: this variable
indicates a number of (undesired) clusters that are recipient
of the escaping patterns. Again, this is a uniform random
variable in the range Rx ∈ [0, Rxmax], where Rxmax < k is
a parameter specified by the user. Note that the escaping
patterns are not homogeneously distributed through the
recipient clusters. Instead, it is assumed that some clusters
are somewhat closer to the desired cluster C(opt) than others
and should therefore receive a larger number of labels than
more distant clusters. Hence, a number of labels that fall
into the clusters is generated according to a triangular filter
centered in the diagonal element, whose weights add to 1. Rx
values are obtained, which are randomly rearranged to occupy
the row positions adjacent to the diagonal elements.

Four of the artificial confusion matrices used in the
experiments are shown in Figure 4.5, which represent
potential clusterings with k = 20 clusters/classes. These
matrices are referred to four different combinations of values
for (Emax, Rxmax): (0.2,12), (0.2,5), (0.9,12), and (0.9,5)
(Figure 4.5(a–d), respectively).

Figure 4.6 shows the labeling performance of the
Hungarian algorithm and the three implementations of GAs,
with effective mutation rates of mr = 3/5, 4/10, and 1/11.
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(a) (b)

(c) (d)

Figure 4.5. Artificial confusion matrices used to represent the
cluster labeling problem, with different values of the parameters, E

and Rx. (a) E = 0.2, Rx = 15; (b) E = 0.2, Rx = 5; (c)
E = 0.9, Rx = 15; (d) E = 0.9, Rx = 5

.

In the plots, these three implementations of the GA are
referred to as GA1, GA2, and GA3, respectively. The labeling
performance is depicted in terms of GA generations required
to achieve the optimum labeling (minimum labeling error).
Thus, the performance of the Hungarian algorithm is plotted
as a constant value.

As can be observed, the most effective GA implementation
is the one with the highest effective mutation rate (GA3).
It achieves the optimum in around 40 generations, with
minimum variations regardless of the different confusion
matrices. As the mutation rate decreases, the GA convergence
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Figure 4.6. Cluster labeling error produced by the GA and
Hungarian algorithm on the confusion matrices in Figure 4.5. (a)
E = 0.2, Rx = 15; (b) E = 0.2, Rx = 5; (c) E = 0.9, Rx = 15; (d)

E = 0.9, Rx = 5

slows down significantly. As an example, The GA1
implementation (mr = 3/5) requires a double number of
generations for convergence with respect to the other two
implementations for Emax = 0.2 and almost a triple number
of iterations for Emax = 0.9.

Given the previous explanations, the GA3 implementation
of the GA has been the one selected in this work to solve the
cluster labeling problem in real clustering tasks.
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4.4. Supervised classification block

The final stage of the semi-supervised approach developed
in this book is the supervised classification block. The
basic difference of the semi-supervised strategy versus a fully
supervised approach relies on the labeled set which is fed to
this block. In the semi-supervised approach, the supervised
classification is fed with the augmented labeled seed from the
cluster labeling step. The supervised counterpart is attained
when the initial labeled seeds are directly used to train this
classification block instead. According to the block diagram
in Figure 4.1, the supervised classification block is defined in
generic terms. In practice, any supervised classifier available
in the ML literature can be applied by just adapting the
necessary software interface (a function call in R). In this
work, two popular classification models have been applied to
the supervised classification block: support vector machines
(SVMs) and, for a dataset of utterances (see section 4.5.3),
the naive Bayes rule. These algorithms are described in more
depth in the following paragraphs.

4.4.1. Support vector machines

SVMs are among the most popular classification and
regression algorithms because of their robustness and good
performance in comparison with other classifiers [BUR 98,
JOA 97, LIN 06]. In its basic form, SVM were defined for
binary classification of linearly separable data. Let X denote
a set of training patterns X = {x1, x2, · · · xL} in RD. For
binary classes, the possible class labels corresponding to the
training data elements (Y = {y1, · · · , yL}) are yi ∈ {1,−1}
(Figure 4.7).

Assuming that the classes (+1,−1) are linearly separable,
the SVM goal is to orientate a hyperplane H that maximizes
the margin between the closest members of the two classes
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H2

H1

H

w

Figure 4.7. SVM example of binary classification through
hyperplane separation (in this two-dimensional case the hyperplane

becomes a line)

(also called support vectors). The searched hyperplane is given
by equation [4.20],

H := {x ∈ RD | wx+ b = 0} [4.20]

denoting w the normal vector of the hyperplane. In addition,
the parallel hyperplanes H1 and H2 at the support vectors of
classes y = 1 and y = −1 are defined as

H1 := {x ∈ RD | wx+ b = 1}, (y = 1)

H2 := {x ∈ RD | wx+ b = −1}, (y = −1) [4.21]

It can be demonstrated that the margin between the
hyperplanes H1 and H2 is 1

||w|| . In addition, the training points
at the left/right sides of the hyperplanes H1 and H2 need to
satisfy

yi(wxi + b)− 1 ≥ 0 ∀i [4.22]

Thus, the maximum margin hyperplane is obtained by
solving the following objective:

minimie ‖ w ‖ such that yi(wx+ b)− 1 ≥ 0 [4.23]

By applying Lagrange multipliers, the objective in equation
[4.23] can be solved using constrained quadratic optimization.
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After some manipulations, it can be shown that the initial
objective is equivalent to

maximize
L∑
i=1

⎛⎝αi − 1

2

∑
j

αiαjyiyjxixj

⎞⎠
subject to αi ≥ 0 ∀i, and

L∑
i=1

αiyi = 0 [4.24]

The solution of this quadratic optimization problem is a set
of coefficients α = {α1, · · · , αL}, which are finally applied to
calculate the hyperplane variables w and b:

w =
∑

αiyixi

b =
1

Ns

∑
s∈S

ys −
∑
m∈S

αmymxmxs [4.25]

where S denotes the set of support vectors of size Ns.

Although the solution in equation [4.25] is found for the
basic problem of binary, linearly separable classes, SVMs have
been extended for both multi-class and nonlinear problems.

4.4.1.1. The kernel trick for nonlinearly separable classes

The application of SVMs to nonlinearly separable classes
is achieved by substituting the dot product xixj in equation
[4.23] by an appropriate function, the so-called kernel k(xi, xj).
The purpose of this “kernel trick” is that a nonlinear kernel
can be used to transform the feature space into a new space
of higher dimension. In this high-dimensional space it is
possible to find a hyperplane to separate classes that may not
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be originally separable in the initial space. In other words,
the kernel function is equivalent to the dot product:

k(xi, xj) =< φ(xi)φ(xj) > [4.26]

where φ denotes a mapping of a pattern into the higher
dimensional space. The main advantage is that the kernel
computes these dot products without the need to specify the
mapping function φ.

4.4.1.2. Multi-class classification

The extension for the multi-class problem is achieved
through a combination of multiple SVM classifiers. Two
different schemes have been proposed to solve this problem:
in a one-against-all approach, k hyperplanes are obtained to
separate each class from the rest of classes. In a one-against-
one approach, (k2) binary classifiers are trained to find all
possible hyperplanes to separate each pair of classes.

4.4.2. Example

An example of the models learned by the supervised and
semi-supervised approaches in a mixture of two Gaussians
is provided in Figure 4.8. In this example, two random
examples per category (labeled as “A” and “B”) comprise the
initial labeled seed (Figure 4.8(a)). In a supervised approach,
this seed is used to train SVM model with a radial kernel.
The learned hyperplane or the decision curve is depicted in
Figure 4.8(b). The areas at both sides of the hyperplane
are the decision regions for Gaussians A (in gray color) and
B (green color). Figure 4.8(c) indicates the cluster partition
of the complete data, and the corresponding cluster labeling
performed by the semi-supervised approach. The so-called
labeled Gaussians are used to train an SVM model. As can
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Figure 4.8. Example of SVM model learned on a mixture of two
Gaussians by the supervised and semi-supervised algorithms.

(a) Dataset with an initial seed, whose objects are indicated by the
labels “A” and “B”. (b) Model learned by SVM on the initial labeled

seed. (c) Clusters and augmented labels obtained by the
semi-supervised algorithm. (d) Model learned by the SVM on the

augmented labeled set

be observed in Figure 4.8(d), following the semi-supervised
approach a more accurate hyperplane is learned, which
achieves a lower number of errors on the training set in
comparison to the supervised model.
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4.5. Datasets

This section describes the datasets used in the experiments.
As the algorithms presented in the previous sections have a
general character and can be applied to any kind of features,
they have been tested on several datasets from the UCI ML
repository and on a corpus of utterances.

4.5.1. Mixtures of Gaussians

This dataset comprises two mixtures of five and seven
Gaussians in two dimensions, where a certain amount of
overlapping patterns can be observed.

4.5.2. Datasets from the UCI repository

4.5.2.1. Iris dataset (Iris)

The Iris set is one of the most popular datasets from
the UCI repository. It comprises 150 instances iris of 3
different classes of Iris flowers (Iris setosa, I. versicolor, and
I. virginica). Two of these classes are linearly separable while
the third one is not linearly separable from the second one
(Figure 4.9).
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Figure 4.9. Iris dataset (projection on the three principal
components)
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4.5.2.2. Wine dataset (wine)

The wine set consists of 178 instances with 13 attributes,
representing 3 different types of wines.

4.5.2.3. Wisconsin breast cancer dataset (breast)

This dataset contains 569 instances in 10 dimensions,
denoting 10 different features extracted from digitized images
of breast masses. The two existing classes are referred to the
possible breast cancer diagnosis (malignant and benign).

4.5.2.4. Handwritten digits dataset (Pendig)

The third real dataset is for pen-based recognition of
handwritten digits. In this work, the test partition has been
used, composed of 3498 samples with 16 attributes. Ten
classes can be distinguished for the digits 0–9.

4.5.2.5. Pima Indians diabetes (diabetes)

This dataset comprises 768 instances with 8 numeric
attributes. Two classes denote the possible diagnostics (the
patients show or do not show signs of diabetes).

4.5.3. Utterance dataset

The utterance dataset is a collection of transcribed
utterances collected from user calls to commercial
troubleshooting agents. The application domain of this
corpus is video troubleshooting. Reference topic categories or
symptoms are also available.

This utterance corpus has been pre-processed using
morphological analysis and stop-word removal. First, a
morphological analyzer [MIN 01] has been applied to reduce
the surface form of utterance words into their word lemmas.
Then, the lemmatized words have been filtered using the
SMART stop-word list with small modifications. In particular,
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Figure 4.10. Projection of the datasets on the three principal
components. (a) Breast dataset; (b) diabetes dataset; (c) wine; (d)

Pendig

confirmation words (yes, no) have been deleted from the stop
word list, while some terms typical for spontaneous speech
(eh, ehm, uh, . . . ) have been included as stop words. Finally,
we have retained the lemmas with two or more occurrences in
the pre-processed corpus, resulting in a vocabulary dimension
of 554 word lemmas. Afterwards, the pre-processed utterances
have been represented in vectors of index terms using Boolean
indexing – each binary component in an utterance vector
indicates the presence or absence of the corresponding index
term in the utterance. The final dataset is composed of 2,940
unique utterance vectors.
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An independent test set comprising a total number of
10,000 transcribed utterances has also been pre-processed as
described earlier, resulting in 2,940 unique utterance vectors.
From this set, a number of utterances (∼ 20% of the training
set size) have been randomly selected as the test applied to
the classifiers. To avoid possible biases of a single test set, 20
different test partitions have been generated. From the the
training set, 20 different random seeds of labeled prototypes
(n labels/category) have also been randomly selected.

4.6. An analysis of the bounds for the cluster and label
approaches

As mentioned in section 4.1, the main assumption for the
current cluster and label approaches is that the input data
should “naturally fall into clusters.” If the data are not
intrinsically organized in clusters — or the chosen clustering
algorithm does not fit into the input data distribution —
a cluster and label approach may yield a considerable
degradation in the classification performance.

For this reason, the controlled experiment described in this
section was intended to analyze the performance of the cluster
and label approaches with respect to the quality of the cluster
solution.

In these experiments, the Iris dataset from the UCI ML
repository has been used. First, a perfect clustering has been
considered equal to the set of real labels. Then, different levels
of noise have been manually induced to this perfect clustering.
This has been done by randomly selecting a ratio p of data
patterns from each category and modifying their cluster
membership from their actual cluster label yi = j to a different
cluster label Y−j. Thus, p is also referred to as the percentage
of misclassification errors. Different values of p have been
applied, p = [0.1, 0.2, · · · , 0.5]. For each p value, 20 different
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simulated clusterings with a ratio p of induced random noise
have been generated. The equivalent normalized mutual
information (NMI) between these clusterings and the real
labels has also been computed. Also, for each cluster partition,
20 different labeled seeds have been randomly selected. These
have been used to train both a supervised classifier and the
semi-supervised algorithm with the corresponding simulated
clusterings. The study has been carried out for n = 1 and n = 2
labeled samples per category.

The relationship between the percentage of error and
the classification performance is depicted in the scatterplots
of Figure 4.11(a) and 4.11(b). Likewise, the relationships
in terms of NMI values are shown in Figure 4.11(c) and
4.11(d). In both the cases, horizontal axes denote the cluster
qualities (misclassification error or NMI values). Vertical
axes indicate the difference in accuracy when using the
semi-supervised approach with respect to the supervised
SVMs (accuracy semi-supervised – accuracy supervised).
Thus, any positive value in the vertical axis indicates an
improvement in classification performance through the semi-
supervised algorithm. Equivalently, negative values imply a
degradation of the semi-supervised approach with respect to
the supervised approach.

As can be observed, the accuracy of the semi-supervised
classifier with respect to the supervised algorithm
increases notably by decreasing the noise ratio induced
to the clusterings. If the quality of the cluster partition is
not sufficient to capture the underlying class structure —
NMI ≤ 0.5 — the supervised approach may outperform
the semi-supervised cluster and label algorithm even
for n = 1. For larger NMI values, the semi-supervised
algorithm achieves increasing accuracy gains with respect
to the supervised approach, in consistency with the cluster
assumption.
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Figure 4.11. Difference in accuracy scores achieved by the
semi-supervised and supervised algorithms with respect to the

induced noise p and equivalent NMI parameters. (a) Accuracies of
the Iris dataset, n = 1 labeled pattern per category, as a function of
the induced noise ratio p. (b) Accuracies of the Iris dataset, n = 2

labeled pattern per category, as a function of the induced noise ratio
p. (c) Accuracies of the Iris dataset, n = 1 labeled pattern per
category, as a function of the equivalent normalized mutual

information NMI. (d) Accuracies of the Iris dataset, n = 4 labeled
pattern per category, as a function of the equivalent normalized

mutual information NMI

4.7. Extension through cluster pruning

In this book, an optimization to the cluster and label
strategy has also been developed. Even though the underlying
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class structure may be appropriately captured by a cluster
algorithm, the augmented dataset derived by the optimum
cluster labeling may contain a number of “misclassification” 2

errors with respect to the real class labels. This happens
especially if two or more of the underlying classes show a
certain overlapping of patterns. In this case, the errors may
be accumulated in the regions close to the cluster boundaries
of adjacent clusters.

The general idea behind the proposed optimization
method is to improve the (external) cluster quality by
identifying and removing such regions with high probability
of misclassification errors from the clusters. To this aim, the
concept of pattern silhouettes has been applied to prune the
clusters in C.

The silhouette width of an observation xi is an internal
measure of quality, typically used as the first step for the
computation of the average silhouette width of a cluster
partition [ROU 87]. It is formulated in equation [4.27],

s(xi) =
b(xi)− a(xi)

max(a(xi), b(xi))
[4.27]

where a is the average distance between xi and the elements
in its own cluster, while b is the smallest average distance
between xi and other clusters in the partition. Intuitively,
the silhouette of an object s(xi) can be thought of as the
“confidence” to which the pattern xi has been assigned
to the cluster C(xi) by the clustering algorithm. Higher
silhouette scores can be observed for patterns clustered with
a higher “confidence,” while low values indicate patterns that

2. The term missclasification is not used here to indicate the predicted
errors of the end classifiers but the errors after the cluster labeling block.
Note that, after cluster labeling, each clustered data pattern has been
assigned a class label (the label of its cluster), which can be compared with
the real label if the complete labeled set is available.
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lie between clusters or are probably allocated in the wrong
cluster.

The cluster pruning approach can be described as follows:

– Given a cluster partition C and the matrix of
dissimilarities between the patterns in the dataset, D,
calculate the silhouette of each object in the dataset.

– Sort the elements in each cluster according to their
silhouette scores, in an increasing order.

– In each cluster, the elements with high silhouettes may
be considered as objects with high “clustering confidence.”
In contrast, such elements with low silhouette values are
clustered with lower confidence. This latter kind of objects
may thus belong to a class-overlapping region with higher
probability. Using the histograms of silhouette scores within
the clusters, select a minimum silhouette threshold for each
cluster. Further details about the selection of silhouette
thresholds by the cluster pruning algorithm are provided in
Section 4.7.1.

– Prune each cluster Ci in C by removing patterns that do
not exceed the minimum silhouette threshold for the cluster,
chosen in the previous step.

4.7.1. Determination of silhouette thresholds

In the proposed cluster pruning method, different
silhouette thresholds are applied according to the distribution
of silhouette values within each cluster, estimated through
histograms. If a significant distortion of the original clusters
is introduced through cluster pruning, the learned models
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may also deviate from the expected models up to a certain
extent. The objective is to remove potential clustering errors
while preserving the shape and size of the original clusters
to the highest possible extent. In practice, pruning an
amount of patterns up to one-third of the cluster size has
been considered appropriate for the current purpose. In
addition, the selected thresholds also depend on the pattern
silhouette values: patterns with a silhouette score larger than
sil = 0.5 are deemed to be clustered with a sufficiently high
“confidence.” Thus, the maximum silhouette threshold applied
in the cluster pruning algorithm is silth = 0.5. Consequently,
if the minimum observed silhouette score in a cluster is larger
than silmax

th = 0.5, the cluster remains unaltered in the pruned
partitions.
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Figure 4.12. Histograms of silhouette values in the breast (two
clusters) and iris (three clusters) datasets, which were used for the
determination of the clusters’ silhouette thresholds in the cluster

pruning approach
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The specific criteria to select the silhouette thresholds can
be illustrated by considering the clusters extracted from the
iris and breast datasets (Figure 4.12). The distribution of
silhouette scores has been estimated by using the histogram
function in the R software, which also provides the vectors of
silhouette values found as the histogram bin limits and the
counts of occurrences in each bin. 3 The silhouette thresholds
have been selected to coincide with the histogram bin limits.
In the breast dataset (two classes/clusters), the vector of
silhouette thresholds for the first and second clusters is [0.5,
0.2]. The value silth = 0.5 for the first cluster corresponds
to the upper bound silmax

th = 0.5 as explained in the previous
paragraph. This results in the removal of 5.2% of the cluster
patterns. For the second cluster, the threshold silth = 0.2 is
selected. The rejected section associated with silth corresponds
to the first five histogram bins, comprising 25% of the patterns
in the cluster. By including the sixth histogram bin in the
pruned section, the next possible silhouette threshold level
is silth = 0.3. However, such threshold level would lead to
the removal of a considerable amount (46.28%) of the cluster
patterns, which is considered unacceptable for preserving the
cluster size/shape.

A similar criterion has been followed for the clusters
extracted in the iris dataset. The vector of cluster silhouette
thresholds in this case is [0.5, 0.3, 0.4]. The first cluster
is left unchanged by the pruning approach, as all observed
silhouette scores exceed the upper bound silmax

th = 0.5. For
the second cluster, a silhouette threshold silth = 0.3 has been
selected, with an equivalent ratio of 27.42% of pruned patterns
in the cluster. Note that, by including the next histogram
bin (silth = 0.4), an inappropriate amount of patterns would
be discarded (46% of the cluster size). Finally, the silhouette

3. The bin sizes provided by the R software histogram function are
estimated according to the Sturges formula [FRE 81].
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threshold for the third cluster is silth = 0.4 (26.31% of removed
patterns), as the next possible silhouette level (0.5) would
result in the removal of 55.26% of cluster patterns.

To summarize, the number of histogram bins corresponding
to rejected patterns is determined according to one of these
two conditions:

– the upper limit of the last rejected bin should not exceed
silmax

th = 0.5, and
– the amount of rejected patterns (total number of

occurrences in the rejected bins) should not exceed one-third
of the total number of patterns in the cluster.

Another example of the pruned clusters on the mixtures
of five and seven Gaussians is shown in Figure 4.13. The
clusters obtained by the PAM algorithm have been tagged
as C1 – C5 (five Gaussians) and C1 – C7 (seven Gaussians).
Patterns rejected by the cluster pruning algorithm have been
also indicated in red colors. The corresponding histograms of
silhouette values are depicted in Figures 4.14 and 4.15. As
can be observed, the mixture components in the five Gaussian
datasets are well separated and thus easily identified by
the clustering algorithm, which also provides well separated
clusters. This can also be observed in the silhouette
histograms in Figure 4.14. The minimum silhouette value
observed in a majority of the clusters exceeds the upper bound
for the silhouette threshold, silmax

th = 0.5. This means that all
patterns in the clusters are preserved after cluster pruning.
Only clusters C2 and C4 have both one pattern with silhouette
scores lower than silmax

th . Such patterns can be observed in red
color in Figure 4.13(a). It can be observed that these patterns
are outliers in their respective Gaussian components.
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Figure 4.13. Example of patterns rejected by the cluster pruning
approach in two mixtures of five and seven gaussians. The rejected
patterns are indicated in red colors. (a) Five Gaussians; (b) seven

Gaussians
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Figure 4.14. Histograms of silhouette values in the five Gaussians
datasets, which were used for the determination of the clusters’

silhouette thresholds in the cluster pruning approach
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Figure 4.15. Histograms of silhouette values in the seven Gaussian
datasets, which were used for the determination of the clusters’
silhouette thresholds in the cluster pruning approach. Shadow

histogram bars correspond to the silhouette values of the rejected
patterns

4.7.2. Evaluation of the cluster pruning approach

In this section, the efficiency of the cluster pruning method
for rejecting misclassification errors from the clustered data
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is evaluated through an analysis of the algorithm outcomes
on the iris, wine, breast cancer, diabetes, Pendig, and seven
Gaussian datasets. 4

For the purpose of evaluating the cluster pruning
algorithm, the cluster labeling task has been performed using
the complete set of labels for each dataset. The resulting
misclassification error rates as well as the NMI results
observed in Table 4.1 confirm the adequate behavior of the
cluster pruning algorithm for removing such sections from the
clusters with a high probability of resulting misclassification
errors after cluster labeling. For instance, while the pruned
sections comprise around 10–20% of the patterns in the
datasets, the percentage of remaining misclassification errors

Silhouette % Removed Error 1 Error 2
Data set thresholds patterns (%) (%) NMI 1 NMI 2

Iris [0.5 0.3 0.4] 17.33% 10.66 % 4.03% 0.758 0.888
Wine [0.2 0.14 0.24] 22.40 % 8.98 % 0.72% 0.783 0.967
Breast [0.5 0.2] 11.56 % 4.09 % 0.99% 0.741 0.910
Diabetes [0.5 0.1] 16.35 % 40.10% 38.16% 0.012 0.022

[0.2 0.3 0.2 0.2
Pendig 0.25 0.2 0.15 0.15 20.10 % 31.93% 21.22% 0.701 0.796

0.25 0.2]
Seven [0.4 0.5 0.4 0.4
Gaussians 0.4 0.4 0.4] 11.77 % 0.27% % 0.02% 0.944 0.993
Utterances A [0 0.1] 31.94% 20.48% 6.63 % 0.269 0.64
Utterances B [0.1 0.05] 32.29% 36.11 % 21.02 % 0.100 0.297
Utterances C [0.02 -0.02 0 0] 17.39 % 36.20% 29.36% 0.355 0.4652
Utterances D [0 0.1 0.1 0.15] 38.30 % 28.53 % 30.4% 0.333 0.434

Table 4.1. Some details about the cluster pruning approach in the
Iris, Wine, Breast cancer, Diabetes, Pendig, Seven Gaussians and

Utterances data sets

4. Note that the cluster partitions obtained in there experiments comprise
all instances of the datasets (without prior partitions into test/training).
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has been substantially reduced. As an example, the error
rate has dropped from 10.66 to 4.03% after pruning on the iris
data (62.2% error reduction), while error rate reductions of 75.8
and 92% have been attained on the breast and wine datasets,
respectively. An exception to the previous observations is the
diabetes dataset, in which the error rate after cluster pruning
(38.16%) remains very similar to the original misclassification
rate (40.10%). Note that, for two clusters, as in the case
of the diabetes data, the worst possible error rate that can
be observed is of 50%. Any error rate larger than 50%
is not observed as it would just produces an inversion of
the cluster labels. In other words, the original error in
the diabetes dataset implies a roughly uniform distribution
of patterns from any of the two underlying classes in the
extracted clusters. This fact is also evidenced by the NMI score
NMI=0.012. In consequence, the error rate is roughly the same
after cluster pruning, and the removal of patterns by means of
cluster pruning algorithm is just as efficient as removing the
same amount of patterns at random.

4.8. Simulations and results

In the experimental setting, SVMs have been used as the
baseline classifier. First, each dataset has been divided into
two training (∼ 90%) and test (∼ 10%) sets. In order to
avoid possible biases of a single test set, such partition of the
dataset has been randomly repeated to generate 20 different
partitions. Also, for each one of these partitions, 20 different
random seeds of labeled prototypes (n labels/category) have
been selected. In total, 400 different prototype seeds (20 × 20)
have been obtained. In the experiments, only prototype labels
are assumed to be known a priori. No other class label
knowledge has been applied to any of the algorithm stages.
Each prototype seed has been used as the available training
set for the supervised SVM. In the semi-supervised approach,
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these labeled prototype seeds have been used to trigger the
automatic cluster labeling.

Both supervised and semi-supervised SVM classifiers have
been evaluated on an accuracy basis, considering different
number of labeled prototypes (samples) per category, from n =
1 to nmax = 30. The accuracy results obtained on the different
datasets are shown in Figures 4.16–4.21. In particular, left
plots are referred to the supervised and the semi-supervised
approach without cluster pruning, while right plots are
referred to the semi-supervised approaches by incorporating
the cluster pruning approach. In all the cases, horizontal axes
are referred to the sizes of the initial prototype seeds, whereas
vertical axes indicate the mean accuracy scores, averaged over
the 400 prototype initializations.
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Figure 4.16. Comparison of the accuracy scores achieved by the
supervised SVM and semi-supervised approach on the five Gaussian

datasets. (a) Before cluster pruning; (b) after cluster pruning

As can be observed in these Figures 4.17 and 4.21, the mean
accuracy curves of the semi-supervised algorithm are roughly
constant with the labeled set size. Only certain random
variations can be observed, since the experiment outcomes for
different seed sizes are referred to different random prototype
seeds. However, it should be noted that, for each labeled set
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Figure 4.17. Comparison of the accuracy scores achieved by the
supervised SVM and semi-supervised approach on the seven

Gaussian and Pendig datasets. (a and c) Before cluster pruning; (b
and d) after cluster pruning

size, both supervised and semi-supervised outcomes have been
simultaneously obtained with identical sets of prototypes,
so that their respective accuracy curves can be compared.
In contrast, the accuracy curves of the supervised approach
show an increasing trend with the labeled set sizes. In
the seven Gaussian, iris, Pendig, wine, and breast cancer
datasets, the mean accuracy curves for the supervised and
semi-supervised algorithms intersect at certain labeled set
sizes, n′. For smaller labeled seed sizes (n < n′), the training
“information” available in the augmented labeled sets (after
cluster labeling) seems to be clearly superior than the the
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Figure 4.18. Comparison of accuracy scores achieved by the
supervised SVM and semi-supervised approach on the iris and
breast datasets. (a and c) Before cluster pruning; (b and d) after

cluster pruning

small labeled seeds. Therefore, although the augmented labels
are not exempted from misclassifications due to clustering
errors, higher prediction accuracies are achieved by the semi-
supervised approach with respect to the supervised classifier.
For (n ≥ n′), the information in the increasing labeled
seeds compensates for the misclassification errors present
in the augmented sets and thus the supervised classifier
outperforms the semi-supervised approach. As shown in
the previous section, these errors present in the augmented
datasets can be notably reduced by means of cluster pruning.
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Figure 4.19. Comparison of accuracy scores achieved by the
supervised SVM and semi-supervised approach on the wine and

Diabetes datasets. (a and c) Before cluster pruning; (b and d) after
cluster pruning

Consequently, an improvement in the prediction accuracies
achieved by the semi-supervised algorithm is generally
observed by incorporating the cluster pruning algorithm
(Figures 4.16b; 4.17b; 4.17 and 4.18b; 4.18 and 4.19b; and
4.19).

Unlike the accuracy results observed in the seven
Gaussian, iris, Pendig, Wine, and breast cancer datasets, a
degradation in the semi-supervised classification performance
with respect to the supervised classifier is observed in the
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Figure 4.20. Comparison of accuracy scores achieved by the
supervised and semi-supervised approaches in a data set of

utterances (2 classes). (a) and (c): before cluster pruning (b) and (d):
after cluster pruning

diabetes dataset, regardless of the initial labeled seed sizes.
This observation is strictly associated with the NMI scores
of the extracted clusters presented in the previous section
(NMI=0.012), which corresponds to a misclassification rate of
40.10%. This means that almost no information concerning
class labels is present in the augmented datasets used to train
the SVM models. The semi-supervised performance on the
diabetes dataset is thus comparable to the trivial classifier.
In other words, the main condition for cluster and label
approaches – the patterns in a dataset should naturally fall
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Figure 4.21. Comparison of accuracy scores achieved by the
supervised and semi-supervised approaches in a data set of

utterances (4 classes). (a) and (c): before cluster pruning (b) and (d):
after cluster pruning

into clusters – is not fulfilled in the diabetes dataset (using
the PAM clustering algorithm).

4.9. Summary

In this chapter, a semi-supervised approach has been
presented based on the cluster and label paradigm.
In contrast to previous research in semi-supervised
classification, in which labels are commonly integrated
in the clustering process, the cluster and labeling processes
are independent from each other in this work. First, a
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conventional unsupervised clustering algorithm, the PAM,
is used to obtain a cluster partition. Then, the output
cluster partition as well as a small set of labeled prototypes
(also refered to as labeled seeds) is used to decide the
optimum cluster labeling related to the labeled seed. The
cluster labeling problem has been formulated as a typical
assignment optimization problem, whose solution may
be obtained by means of the Hungarian algorithm or GA.
Experimental results have shown significant improvements in
the classification accuracy for minimum labeled sets, in such
datasets where the underlying classes can be appropriately
captured by means of unsupervised clustering.

In addition, an optimization of the semi-supervised
algorithm has been also developed by discarding the patterns
clustered with small silhouette scores. Thereby, it has
been shown that the quality of the pruned clusters can be
improved, as significant reductions in the misclassification
errors present in the clustered data are achieved through
the removal of relatively small amounts of patterns from the
clusters.

Future work is to analyze further alternatives for the
definition of the cost matrix used by the Hungarian algorithm.
Currently, the cost matrix is based on a number of (labeled)
patterns from each class that are observed in the clusters.
Hence, the Hungarian algorithm provides the solution with
the maximum overlapping of clusters and class labels.
However, if an inappropriate labeled seed contains a large
amount of patterns from class overlapping regions, the
optimum solution based on such labeled seed may result in
cluster labeling errors (i.e., two or more clusters may be
assigned to a different class label to the one which is generally
represented by the patterns in the cluster). Obviously, in
these situations, the amount of misclassification errors in
the augmented datasets leads to incorrect learned models
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and false predictions concerning the erroneous class labels.
This problem may be palliated, for example, through a new
probabilistic definition of the cost matrix, by estimating, for
each class, the conditional probabilities of the clusters given
the class’ labels in the initial seeds.



PART 3

Contributions to Unsupervised
Classification – Algorithms to Detect

the Optimal Number of Clusters



Chapter 5

Detection of the Number of Clusters
through Non-Parametric Clustering

Algorithms

5.1. Introduction

As described in Chapter 1, the identification of the optimum
number of clusters in a dataset is one of the fundamental
open problems in unsupervised learning. One solution to this
problem is (implicitly) provided by the pole-based clustering
(PoBOC) algorithm proposed by Guillaume Cleizou [CLE 04a].
Among the different clustering approaches described in
Chapter 1, the PoBOC algorithm is the only method that does
not require the specification of any kind of a priori information
from the user. The algorithm is an overlapping, graph-based
approach that iteratively identifies a set of initial cluster
prototypes and builds the clusters around these objects based
on their neighborhoods.

However, one limitation of the PoBOC algorithm is related
to the global formulation of neighborhood applied to extract
the final clusters. The neighborhood of one object is defined

Semi-Supervised and Unsupervised Machine Learning: Novel Strategies               Amparo Albalate  and Wolfgang Minker
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in terms of its average distance to all other objects in the
dataset (see section 2.1). This global parameter may be
suitable for discovering uniformly spread clusters on the
data space. However, the algorithm may fail to identify
all existing clusters if the input data are organized in
a hierarchy of classes, in such a way that two or more
subclasses are closer to each other than the average class
distance.

To overcome this limitation, a new hierarchical strategy
based on PoBOC has been developed called “hierarchical pole-
based clustering” (HPoBC). The hierarchy of clusters and
subclusters is detected using a recursive approach. First,
the PoBOC algorithm is used to identify the clusters in
the dataset, also referred to as “poles.” Next, under the
hypothesis that more subclusters may exist inside any pole,
PoBOC is again locally applied to each initial pole. A
cluster validity based on silhouette widths is then used
to validate or reject the subcluster hypothesis. If the
subcluster hypothesis is rejected by the silhouette score, the
candidate subclusters are discarded and the initial pole is
directly attached to the final set of clusters. Otherwise,
the hypothesis is validated and the new identified poles
(subclusters) are stored, and a similar analysis is performed
inside each one of these poles. This procedure is applied
recursively until the silhouette rejects any further hypothesis.
The HPoBC method is explained in more detail in the
following sections and is compared with other traditional
algorithms (hierarchical single, complete, average, and
centroid linkages as well as the partitioning around medoids
algorithms).

5.2. New hierarchical pole-based clustering algorithm

The new clustering method is a combination of the PoBOC
algorithm and hierarchical divisive clustering strategies.
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In a divisive manner, the proposed hierarchical approach is
initialized with the set of poles identified by PoBOC (see
Chapter 1) and is recursively applied to each obtained pole,
searching for possible subclusters.

5.2.1. Pole-based clustering basis module

To detect the set of poles in the hierarchical method
HPoBC, the graph construction, pole construction, and pole
restriction stages of POBOC have been preserved. However,
the affectation step has been replaced by a new procedure
called pole regrowth:

Algorithm 5.1 Pole-regrowth (P̃ ,R,D)
Input: sets of poles and residual from the pole-reduction
step: P̃ ,R; dissimilarity matrix D
Output: set of regrown poles P̂
Initialise: P̂ = P̃
while R �= ∅ do

Find the pair (xi ∈ R, P̂j ∈ P̂) with minimum distance:
(xi, P̂j) = argminx∈R,P̂∈P̂ Dmin(x, P̂ ),

with Dmin(xi, P̂j) = minxk∈P̂j
Dik

Attach the point xi to its closest pole and remove it from
the residual set:

P̂j = P̂j ∪ xi
R = R− xi

end while
Return P̂

The pole-regrowth procedure is an alternative to the
PoBOC single affectation for re-allocating overlapping objects
into one of the restricted poles. As it can be observed in
Figure 5.1(a), not only a pole but also an overlapping region
may contain potential subclusters. If each overlapping object
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(a) (b)

Figure 5.1. Example of the pole growth. (a) Two restricted poles (red
and green circles) and their overlapping objects (black circles) – from
the database 1000p9c, see Figure 5.2(q). (b) New poles obtained after

the re-allocation of the overlapping objects by the pole regrowth
method

xi is individually assigned to the pole maximizing membership
u(xi, P̃ ), the objects inside a single cluster might be assigned
to different poles. 1 The pole-regrowth procedure is intended
to avoid any undesired partitioning of clusters existing in
overlapping areas while re-allocating residual objects.

An example of the pole-regrowth method is shown in
Figure 6.3. Figure 5.1(a) shows two restricted poles in red and
green colors, respectively. All points between these restricted
poles are overlapping points. It can be observed that many
of these points build another two clusters, which PoBOC fails
to detect. The re-allocation of overlapping points by the pole-
regrowth procedure is illustrated in Figure 5.1(b). A single
affectation would have split each overlapping cluster into two
halves (upper and bottom). Using the pole-regrowth method,
all objects inside each overlapping cluster have been jointly
assigned to a single pole. This fact allows us to detect the
overlapping clusters in further recursive steps.

1. Note that the hierarchical approach is independently applied to the
grown poles.
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We refer to the modified PoBOC algorithm as pole-based
clustering module, which is the basis for the hierarchical
approach described in the following paragraphs.

Algorithm 5.2 Pole-based clustering module (X )
Input: set of data points to be clustered X
Output: set of regrown poles P̂
Compute dissimilarity matrix of X : D
Compute dissimilarity graph over X , G(X , V,D)
P ← Pole Construction (X , D,G(X , V,D))
P̃,R ← Pole Restriction (P)
P̂ ← Pole Regrow (P̃,R, D)
Return P̂ .

5.2.2. Hierarchical pole-based clustering

The new hierarchical version of PoBOC is called HPoBC.

First, the pole-based clustering module is applied to the
entire dataset to obtain an initial set of poles. Then,
a recursive function, the pole-based subcluster analysis, is
triggered on each pole with more than one object. If an
individual pole is found, the corresponding object is attached
to the set of final clusters as an individual cluster. This
recursive function is continuously called with the objects
of each obtained pole, internally denoted ˆP top, because it
refers to an upper level in the hierarchy. Analogously, the
new set of poles found on ˆP top is denoted ˆP sub, indicating
a lower hierarchy level. These poles represent candidate
subclusters. To decide whether ˆP sub compounds are “true”
subclusters or not, a criterion typically used for cluster
validity is applied, namely, the average silhouette width,
described in Chapter 1 [ROU 87]. The average silhouette
width of a cluster partition returns a quality score in the
range [−1,1], where 1 corresponds to a perfect clustering.
According to [TRE 05], a silhouette score smaller or equal to
sil = 0.25 is an indicator for wrong cluster solutions. However,
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from our experiments, a more rigorous threshold sil > 0.5 has
proven adequate for validating the candidate subclusters. 2

The problem of deciding whether a dataset contains a cluster
structure or not is commonly referred to as cluster tendency
in the cluster literature [JOL 89]. If the quality criterion is
not fulfilled (sil < 0.5) the subcluster hypothesis is rejected,
and the top cluster ˆP top is attached to the final clusters.
Otherwise, we continue exploring each subcluster to search
for more possible sublevels.

Algorithm5.3Hierarchical pole-basedclustering–HPoBC(X )
Input: Set of data points to be clustered X
Output: A cluster partition of X : Clusters
Initialise: Clusters = {∅}
Obtain set of grown poles on all X objects:
P̂ ← Pole-Based Clustering Module (X )
for all P̂i ∈ P̂ do

if |P̂i| > 1 then
Trigger recursive search for subclusters:
Pole-Based Subcluster Analysis (P̂i, Clusters)

else
Add P̂i to Clusters

end if
end for
Return Clusters

5.3. Evaluation

The PoBOC algorithm as well as the HPoBC algorithm
has been compared with other hierarchical approaches:

2. The relationship of the average silhouette width threshold applied in this
chapter with the pattern silhouette scores described in Chapter 3 for cluster
pruning has to be noted. Although a pattern silhouette is only the first
metric involved in the calculation of the clustering average silhouette width,
in Chapter 3, it was also shown that a pattern silhouette equal to sil = 0.5
indicates well-clustered patterns.
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Algorithm 5.4 Pole-based subcluster analysis (P̂ top, Clusters)
ˆPsub ← Pole-Based Clustering Module (P̂ top)

stop← (silhouette-width ( ˆPsub) ≤ 0.5)
if stop=true then

Add P̂ top to Clusters
Return

else
for all P̂ sub

i ∈ ˆPsub do
if |P̂i

sub| > 1 then
Pole-Based Subcluster Analysis (P̂ sub

i , Clusters)
else

Add P̂ sub
i to Clusters

Return
end if

end for
end if

the single, complete, centroid, and average linkage and
the divisive analysis (DiANA) algorithm. These classical
algorithms are examples of clustering approaches that
require the target number of clusters (k) to find the cluster
solutions. To enable a comparison of PoBOC and HPoBC
to the hierarchical agglomerative and divisive approaches,
these algorithms have been called with different values of the
k-parameter. Thus, the average silhouette width has been
applied to validate each solution and predict the optimum
number of clusters, kopt. It should be noted that, in the HPoBC
algorithm, the average silhouette width has also been applied
with a different purpose. Instead of using the silhouette
width as a (global) validation index, it has been applied in a
recursive and local manner to evaluate the cluster tendency
inside each obtained pole.

5.3.1. Cluster evaluation metrics

For a comprehensive evaluation of the discussed algorithms,
their cluster solutions have also been compared with the
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reference category labels, available for evaluation purposes,
using three typical external cluster validation methods:
entropy, purity, and normalized mutual information (NMI) (see
Chapter 2).

5.4. Datasets

The described approaches have been applied to the
synthetic datasets of Figure 5.2. The first dataset (100p5c)
comprises 100 objects in 5 spatial clusters (Figure 5.2(a)), the
second dataset (6 Gauss) is a mixture of six Gaussians (1500
points) in two dimensions (Figure 5.2(e)). The third dataset
(3 Gauss) is a mixture of three Gaussians (800 points) in
which the distance of the biggest class to the other two is
larger than the distance among the two smaller Gaussians
(Figure 5.2(i)). This dataset illustrates a typical example in
which using cluster validity based on Silhouettes may fail to
predict the number of classes due to the different interclass
distances. The fourth and fifth data (560p8c and 1000p9c)
contain 560 and 1000 points in two dimensions, with 8 and
9 spatial clusters, respectively (Figure 5.2(m) and (q)).

The cluster solutions provided by the PoBOC, the HPoBC,
and an example hierarchical agglomerative approach (average
linkage) are shown in the plots of Figure 5.2 (different colors
are used to indicate different clusters).

5.4.1. Results

As can be seen in Tables 5.1–5.5, the performance of
the HPoBC algorithm is consistently superior to the original
PoBOC algorithm on all datasets and metrics. The classical
(divisive and agglomerative) approaches with the help of
silhouettes to determine the optimum k are also able to
detect the class structure in three datasets (100p5c, 1000p9c,
and 6 Gauss). The performance of classical approaches is
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Figure 5.2. Spatial databases and the extracted clusters using
PoBOC, HPoBC, and the average linkage clustering algorithms.

(a) Dataset with 100 points in 5 spatial clusters (100p5c), (e) mixture
of six Gaussians, 1500 points (6 Gauss), (i) mixture of three

Gaussians (3 Gauss), (m) 560 points, 8 clusters (560p8c), and (q)
1000 points, 9 clusters (1000p9c). (b), (f), (j), (n), and (r) Poles

detected by PoBOC in the datasets. (c), (g), (k), (o), and (t) Clusters
detected by the new HPoBC algorithm (black circles indicate patterns

detected as outliers by the algorithms). (d), (h), (l), (p), and (s)
Clusters detected by the average linkage algorithm



194 Machine Learning

Clustering algorithm # Clusters NMI Purity Entropy

PAM 5 0.850 0.660 0.840
DiANA 5 0.850 0.660 0.840
Single linkage 5 0.850 0.660 0.840
Complete linkage 5 0.850 0.660 0.840
Average linkage 5 0.850 0.660 0.840
Centroid linkage 5 0.850 0.660 0.840

PoBOC 4 0.801 0.548 1.048
HPoBC 7 0.944 0.867 0.287

Table 5.1. 560p8c Data

thus comparable to the HPoBC algorithm on the explained
datasets. Note that, in some cases, the NMI score achieved
by the HPoBC is marginally lower (≤ 1.8%) than other
hierarchical approaches, due to the false discovery by the
HPoBC of tiny clusters in the boundaries of a larger
cluster. In contrast to the previous datasets, the DiANA
and agglomerative hierarchical approaches fail to capture
accurately the existing classes on the datasets 560p8c and 3
Gauss. The problem lies in the silhouette scores, which fail to
place the maximum (kopt) at the correct number of clusters.
This happens because the intraclass separation differs
significantly among the clusters. However, this problem
is not observed in the HPoBC algorithm, since silhouette
scores are used to evaluate the local cluster tendency. This
implies a more “relaxed” condition in comparison to the use of
silhouettes for validating global clustering solutions. Thus,
in these cases, the HPoBC algorithm is advantageous with
respect to the classical hierarchical approaches, as evidenced
by absolute NMI improvements around 10%.
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Clustering algorithm # Clusters NMI Purity Entropy

PAM 5 1 1 0
DiANA 5 1 1 0
Single linkage 5 1 1 0
Complete linkage 5 1 1 0
Average linkage 5 1 1 0
Centroid linkage 5 1 1 0

PoBOC 3 0.801 0.693 0.817
HPoBC 5 1 1 0

Table 5.2. 100p5c Data

Clustering algorithm # Clusters NMI Purity Entropy

PAM 6 1 1 0
DiANA 6 0.980 0.992 0.049
Single linkage 6 1 1 0
Complete linkage 6 1 1 0
Average linkage 6 1 1 0
Centroid linkage 6 1 1 0

PoBOC 3 0.606 0.693 0.817
HPoBC 7 0.982 1 0

Table 5.3. Mixture of six Gaussians

5.4.2. Complexity considerations for large databases

Denoting n as the total number of objects in the dataset,
the complexity of the PoBOC algorithm is estimated in the
order of O(n2), similar to the classical hierarchical schemes.
The complexity of the HPoBC algorithm depends on factors
such as the number and size of poles retrieved at each step
and the maximum number of recursive steps necessary to
obtain the final cluster solution. The worst case in terms
of the algorithm efficiency would occur if a pole with n − 1
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Clustering algorithm # Clusters NMI Purity Entropy

PAM 6 1 1 0
DiANA 9 1 1 0
Single linkage 9 1 1 0
Complete linkage 9 1 1 0
Average linkage 9 1 1 0
Centroid linkage 9 1 1 0

PoBOC 5 0.837 0.634 0.637
HPoBC 11 0.993 1 0

Table 5.4. 1000p9c

Clustering algorithm # Clusters NMI Purity Entropy

PAM 2 0.847 0.812 0.375
DiANA 2 0.847 0.812 0.375
Single linkage 2 0.847 0.812 0.375
Complete linkage 2 0.847 0.812 0.375
Average linkage 2 0.847 0.812 0.375
Centroid linkage 2 0.847 0.812 0.375

PoBOC 2 0.847 0.812 0.375
HPoBC 4 0.990 1 0

Table 5.5. Mixture of 3 Gaussians

elements was continuously found until all elements composed
individual clusters. In this case, the algorithm would reach
a cubic complexity O(n(n + 1)(2n + 1)). In general terms,
if k is the number of recursive steps (levels descended in
the hierarchy) necessary to reach the solution, the maximum
complexity of the algorithm can be approximated as O(k · n2).
As for the analyzed datasets, the algorithm needed three
recursive steps at most to achieve the presented results.
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It leads to a quadratic complexity, comparable to the PoBOC
algorithm and the rest of hierarchical approaches.

5.5. Summary

In this chapter, clustering algorithms that are capable
to detect the optimum number of clusters have been
investigated. In particular, the focus is placed on the PoBOC,
which only needs the objects in a dataset as input, in contrast
to the rest of clustering algorithms discussed in Chapter 1,
which require the number of clusters or other equivalent input
parameters. One limitation of PoBOC is, however, related to
the use of global object distances. The algorithm may fail to
recognize the optimum clusters if the data are organized in
a hierarchy of clusters or if the clusters show very dissimilar
intercluster distances. To overcome this limitation of PoBOC,
a hierarchical version has been introduced, called HPoBC,
which applies recursively inside each identified cluster to
adapt the object distances to local regions and accurately
retrieve clusters as well as subclusters. Results obtained on
the five spatial databases have proven the better performance
of the new hierarchical approach with respect to the baseline
PoBOC, also comparable or superior with respect to other
traditional hierarchical and partitional (PAM) approaches.
Other algorithms such as the self-organizing map, neural
gas, or density-based approaches have not been considered
for comparison due to their difficulty in analysis, since they
depend on other (or more) parameters such as the number
of clusters. Thus, the comparison by means of silhouettes is
difficult to control.



Chapter 6

Detecting the Number of Clusters
through Cluster Validation

6.1. Introduction

The general approach to the identification of the number
of clusters by means of cluster validation is to evaluate the
quality of each k-cluster solution provided by the clustering
algorithm and to select the value of k that originates the
optimum partition according to the quality criterion [HAL 00].
Over the past decades, many approaches to cluster validation
have been proposed in parallel to the advances in clustering
techniques. Some of the most popular approaches have been
introduced in Chapter 1, namely, the Dunn index [DUN 74,
BEL 98, HAV 08], the Krzanowski and Lai test [KRZ 85],
the Davies Bouldin score [DAV 79, HAL 02b], the Hubert’s
γ [HAL 02a], the silhouette width [ROU 87], or, more recently,
the gap statistic [ROB 01] (see chapter 1 for further details).
Many of these strategies attempt to minimize/maximize the
intra/intercluster dispersion.

Unfortunately, the performance of validation techniques
usually depends on the dataset or the cluster algorithm used
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for partitioning the data. In addition, the distance metrics
applied before clustering has proven a relevant factor for the
final cluster solution. It may also influence the cluster validity
success in determining the optimum number of clusters. In
a few cases, prior assumptions about the dataset can be
made. This enables the choice of the best fitting clustering
technique and distance model. However, unsupervised
models are often applied to more complex, multi-dimensional
datasets for which little or no prior assumptions can be
made, as it occurs with user utterances in troubleshooting
agents.

In this chapter, a validity combination strategy is
introduced to predict the number of clusters in a dataset
even though no prior assumptions can be made about the
clustering technique or distance measure. Our approach to
cluster validation is to perform multiple simulations on a
dataset varying the distance and clustering technique as well
as the number of clusters k. Then, the different partitions
obtained from these simulations are evaluated in parallel
by several cluster validation criteria, thereby, a validation
diversity is achieved, which can be exploited to measure the
agreement/consistency of the different scores at each value k.
This combination strategy is based on the calculation of
quantile statistics of the validation curves, as explained in the
following sections.

The individual validation indexes as well as the
combination strategy have been first evaluated in four
datasets: two synthetic sets (mixtures of five and seven
Gaussians), the NCI60 microarray dataset, and the Iris
dataset. Finally, the combination approach has been also
applied for detecting the number of classes in a corpus
of speech utterances from the framework of automated
troubleshooting agents.
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6.2. Cluster validation methods

In the following, let C = {C1, . . . , Ck} denote a cluster
partition composed of k clusters and N the total number of
objects in a dataset. Some existing techniques for validating
the cluster partition are the following.

6.2.1. Dunn index

The Dunn index aims to identify the optimal solution that
consists of compact and well-separated clusters [DUN 74,
BEL 98]. According to this criterion, the index minimizes
the intracluster distances while maximizing the intercluster
distances. The Dunn index is defined as follows:

Dunn(k) =
min
1≤i≤k

(
min
1≤i≤k

(Dinter(Ci, Cj))
)

max
1≤l≤k

(
Dintra(Cl)

) [6.1]

where the notations Dintra and Dinter stand for the intra- and
intercluster distances, respectively. According to the Dunn
objective, the optimum number of clusters corresponds to
value k that maximizes Dunn(C).

6.2.2. Hartigan

This validation metric was proposed by Hartigan, the
inventor of the k-means clustering [BAR 00] for detecting
the optimum number of clusters k to apply in the k-means
algorithm [HAR 75]:

H(k) = γ(k)
W (k) −W (k + 1)

W (k + 1)
, γ(k) = N − k − 1 [6.2]

where W (k) denotes the intracluster dispersion. The
dispersion defined as the total sum of square distances of the
objects to their cluster centroids. The γ parameter avoids
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an increasing monotony with increasing k. In this work, a
small modification to the Hartigan metric has been introduced
by treating the W (k) parameter as the average intracluster
distance.

According to Hartigan, the optimum number of clusters
is the smallest k that produces H(k) ≤ η (typically η = 10).
However, to allow a better alignment of the Hartigan index
to other scores in the combination approach, a correction of
the index has been applied in the form Hc(k) = H(k − 1).
Thus, a modification of the optimum criterion has been
accordingly applied by maximizing Hc(k). In other words,
the new criterion maximizes the relative improvement at k
with respect to k − 1, in terms of decreasing dispersion. This
allows for a direct application of the corrected index Hc(k)
in the combination approach without resorting to a previous
inversion of the scores.

6.2.3. Davies Bouldin index

The Davies Bouldin index [DAV 79] was proposed to find
compact and well-separated clusters. It is formulated as

DB(k) =
1

k

k∑
i=1

max
j �=i

(
Δ(Ci) + Δ(Cj)

δ(Ci, Cj)

)
[6.3]

where Δ(Ci) denotes the intracluster distance, calculated
as the average distance of all the Ci cluster objects to the
cluster medoid, whereas the intercluster distance between
two clusters δ(Ci, Cj) is the distance between the medoids
of clusters Ci and Cj. The optimum number of clusters
corresponds to the minimum value of DB(k).

6.2.4. Krzanowski and Lai index

This metric belongs to the so-called “elbow models”
[KRZ 85]. These approaches plot a certain quality function



Detecting the Number of Clusters through Cluster Validation 203

over all possible values for k and detect the optimum as the
point where the plotted curves reach an elbow, i.e. the value
from which the curve considerably decreases or increases. The
Krzanowski and Lai index is defined as

KL(k) =
∣∣ Diffk
Diffk+1

∣∣ [6.4]

Diffk = (k − 1)
2
mWk−1 − k

2
mWk [6.5]

The parameter m represents the feature dimensionality of
the input objects (number of attributes), and Wk is calculated
as the within-group dispersion matrix of the clustered data

Wk =
k∑

i=1

∑
j∈Ci

(xij − ci)(xij − ci)
T [6.6]

In this case, xij represents an object assigned to the ith
cluster and ci denotes the centroid or medoid of the ith cluster.
The optimum k corresponds to the maximum of KL(k).

6.2.5. Silhouette

This method is based on the silhouette width, an indicator
for the quality of each object i [ROU 87]. The silhouette width
is defined as

sil(xi) =
b(i)− a(i)

max(a(i), b(i))
[6.7]

where a(i) denotes the average distance of the object i to all
objects of the same cluster, and b(i) is the average distance of
the object i to the objects of the closest cluster.

Based on object silhouettes, we may extend the silhouette
scores to validate each individual cluster using the average of
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the cluster object silhouettes

sil(Cj) =
1

|Cj |
∑
xi∈Cj

sil(xi) [6.8]

Finally, the silhouette score that validates the whole
partition of the data is obtained by averaging the cluster
silhouette widths

sil(k) =
1

k

k∑
r=1

sil(Cr) [6.9]

The optimum k is detected by maximizing sil(k).

6.2.6. Hubert’s γ

The Hubert’s γ statistic [HAL 02a,CHE 06] calculates the
correlation of the distance matrix, D, to an a priori matrix, Y ,

Y (i, j) =

{
0, objects i and j of the same cluster
1, otherwise

[6.10]

The γ statistic is formulated as

γ(k) =
N∑
i=1

N−1∑
j=i+1

D(i, j)X(i, j) [6.11]

where N denotes the total number of objects in the dataset.
The optimum number of clusters produces a maximum of the
γ statistic.
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6.2.7. Gap statistic

The idea behind the gap statistic is to compare the
validation results of the given dataset to an appropriate
reference dataset drawn from an a priori distribution, thereby,
this formulation tries to avoid the increasing or decreasing
monotony of other validation scores with increasing number
of clusters.

First, the intracluster distance is averaged over the k
clusters

Wk =

k∑
r=1

1

2nr

∑
i,j∈Cr

D(i, j) [6.12]

where nr denotes the number of elements of the cluster r. The
gap statistic is defined as

Gap(k) = E(log(Wk))− log(Wk) [6.13]

where E(log(Wk)) is the expected logarithm of the average
intracluster distance. In practice, this expectation is computed
through a Monte-Carlo simulation on a number of sample
realizations of a uniform distribution B 1

Gap(k) = (1/B)
∑
b

E(log(Wkb))− log(Wk) [6.14]

where Wkb denotes the average intracluster distance of the bth
realization of the reference distribution using k clusters. The
optimum number of clusters is the smallest value k such that
Gap(k) ≥ Gap(k + 1) − sk+1, where sk =

√
1 + 1/Bsdk is a

factor that takes into account the standard deviation of the
Monte-Carlo replicates (Wkb).

1. Note that the reference data drawn from this uniform distribution
consists of a number, N , of objects identical to the dataset, with identical
number of features m. The values of each feature in each object are assigned
randomly in the original feature range.
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6.3. Combination approach based on quantiles

As already introduced in section 6.1, a limitation of the
validation indices is that their individual performances may
vary significantly, depending on the dataset and/or clustering
algorithm used for partitioning the data. According to
[ROB 01] many validation indices are, to some extent, ad
hoc approaches that were defined for specific problems, by
assuming certain characteristics of a dataset or for their
joint application with a given clustering algorithm. An
example is the Hartigan index and the k-means clustering.
Moreover, the clustering solution provided by the clustering
algorithms may also depend on a particular distance function
used to compute object dissimilarities. Therefore, the distance
function is an additional factor that may influence the
validation performance.

In this work, a combination approach has been
implemented to achieve a robust solution. It does not
require prior knowledge about the dataset nor the selection of
a validation index, clustering method, or distance technique.
The combination scheme aggregates multiple validation
results obtained with the different validation indices, varying
the clustering algorithm and distance functions. Any attempt
to combine existing methods to increase the robustness of
the solutions is in general known as the “knowledge reuse
framework” [STR 02].

– Clustering techniques: In this work, four clustering
algorithms have been used (from the R statistics package
cluster) – the partitioning around medoids (PAM) algorithm
[LEO 05] and the hierarchical complete, centroid, and average
linkage methods [ALD 64,HAS 09,WAR 63].

– Distance functions: The aforementioned algorithms have
been applied to two different distance matrices representing
the dissimilarities between the dataset objects. To compute
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the distance matrices, two popular dissimilarity metrics have
been selected – the Euclidean and cosine distances.

– Validity indices: Finally, some validity indices have been
selected – the Hartigan, the Davies Bouldin, the Krzanowski
and Lai test, the silhouete, and the gap statistic, which showed
less strong monotony effects than the Dunn and Hubert´s γ
indices in the analyzed datasets.

The different clusterings of the data obtained with the
different clustering techniques and distance functions have
been evaluated in parallel with the aforementioned validity
indices 2. This results in a diversity of validity outcomes,
also referred to “validity curves.” In the following, let
{V} denote the set of validity curves obtained from the
previous validation experiments. Hence, each validity curve
Vi indicates the validation scores obtained with each triple
t (clustering algorithm, distance, and validity index), as a
function of the number of clusters k. Note that Davies Bouldin
scores have been inverted before applying the combination
approach, so that the optimum can be generalized to the
maximum scores and that the gap has been presented to the
combination algorithm as

Gap′(k) = Gap(k)−Gap(k + 1) + sk+1 [6.15]

The proposed method has been motivated by the
observation that, although individual validation curves may
fail to determine of the optimum k, kopt, this value is located
among the top scores in many cases. This fact suggested the
combination of validation scores by means of p quantiles.

2. Note: While Hartigan, Krzanowski and Lai, Davies, and silhouette
have been used in combination with the four clustering algorithms, the
gap statistic has been only applied with the PAM and average linkage
algorithms.
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The p quantile of a random variable X is defined as value
x which is only exceeded by a proportion 1 − p of the variable
samples [SER 80,FRO 00]. In mathematical terms, if denoting
the probability density function of the random variable X as
pdf(X), the p quantile is defined as

Q(X, p) = x :

∫ x

−∞
pdf(X) = p [6.16]

Figure 6.1 illustrates this concept for an hypothetic random
variable with a normal distribution of mean= 500.

For the application of quantiles to the detection of the
number of clusters, the different validation curves are treated
as random variables. The quantile function is then applied
to each single curve, Vi. The p quantile Q(Vi, p) equals the
validation score Vip only when exceeded by the 1−p proportion
of k values in the considered range. This is exemplified in
Figure 6.2 for the validation curve obtained by applying the
Hubert’s γ metric to a mixture of five Gaussians using the pair
PAM-cosine.

0 100 200 300 400 500 600 700 800 900 1000

pdf(x)

x

Q(0.5)=500

Q(0.9)=750

Figure 6.1. Illustrative example of a p quantile: 0.5 and 0.9
quantiles of variable samples with normal distribution of mean = 500
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Figure 6.2. Application of quantiles to a validity curve (Hubert’s γ
index, PAM clustering, and cosine distance on a mixture of five

Gaussians). “Top scores” can be identified as such scores that exceed
the p quantile level. In this example, p = 0.90

A basic approach to measuring the consensus of validity
scores could be achieved by directly applying p quantiles to
the set of validation curves and counting the number of times
that each k value outperforms the score Q(Vi, p). This method
has been called quantile validation (Qvalid(V,p)).

However, the Qvalid results show a certain dependency
with the quantile probability parameter p. For example,
using low p values often leads to maximum scores at the
optimum kopt. However, maximum scores are also observed at
undesired k, since there is a high proportion of samples that
usually trespass the levels Q(Vi, p) for low p. In contrast, if
a high p value is selected, a maximum peak can be clearly
discerned. However, this maximum might be misplaced at k �=
kopt. This happens, in particular, if an increasing/decreasing
monotony with k is observed in some validity outcomes. These
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Algorithm 6.1 Quantile validation: Qvalid(V, p)
1: Input:
V: set of validation curves
p: quantile parameter

2: for k=2 to kmax do
3: Qval[k] = 0
4: for all Vi do
5: if Vi[k] ≥ quantile(p, Vi) then
6: Qval[k]←Qval[k] + 1
7: end if
8: end for
9: end for

Output: Qval

monotony effects may be captured in the Qvalid result in the
form of maximum peaks misplaced at low/high k. 3

For these reasons a “supra-consensus” function has been
proposed, called quantile detection, which aims to combine
a set of quantile validation results obtained with different p
values. Two alternatives have been analyzed to this aim: the
first algorithm, QdetectA, is performed in two steps: first,
the Qvalid algorithm (Qvalid(V, p)) is called with different
p values: p = [0.1, 0.2, . . . , 0.9]. Then, the nine different
Qvalid outputs are aggregated by counting the total number of

3. Note that p quantiles for very high p values (e.g. p = 0.9) pose a
strong condition to the validity curves: the captured k values for this high
quantile often correspond to the global maximum peaks or k values in a
close neighborhood. However, an important proportion of the validation
curves may not be capable to place the (global) maximum peak at kopt,
as motivated by the present work. Hence, the “agreement” measured by
the Qvalid function for high p is considerably lower than the agreements
achieved for low p. Owing to this low scores, if monotony effects are observed
in some validation curves, it is possible that a “false agreement” is produced
with a Qvalue, which can even exceed the Qvalid score at kopt.
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(global or local) maxima placed at each k across these Qvalid
outcomes.

The second alternative, QdetectB, is similar to the first
algorithm except for a modification based on the scores given
by Qvalid(V, p = 0.9). These scores are now placed with
special emphasis with to reject potential spurious peaks in
Qvalid scores for low p, which may yield false maxima in the
aggregate solutions. In other words, the optimum number
of clusters kopt should both lead to numerous maxima peaks
of the Qvalid outcomes for any value p while still reaching a
considerable Qvalid level for high p (p = 0.9).

Algorithm 6.2 Quantile detection(A): QdetectA(V)
1: Input:
V: set of validation curves

2: for p=0.1 to 0.9 do
3: Qd[p, 2 : kmax] = Qvalid(V, p)
4: Qd[p, 1] = 0
5: Qd[p, kmax + 1] = 0
6: end for

7: for k=2 to kmax do
8: QdetectA[k] = 0
9: for all p do

10: if Qd[p, k] = max
k′

(Qd[p, k
′]) or

Qd[p, k − 1] < Qd[p, k] > Qd[p, k + 1] then
11: QdetectA[k]←QdetectA[k] + 1
12: end if
13: end for
14: end for

Output: QdetectA
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Algorithm 6.3 Quantile detection(B): QdetectB(V)
1: Input:
V: set of validation curves

2: for p=0.1 to 0.9 do
3: Qd[p, 2 : kmax] = Qvalid(V, p)
4: Qd[p, 1] = 0
5: Qd[p, kmax + 1] = 0
6: end for

{Note: code lines 7 to 11 differ from QdetectA
(restricted results by using p = 0.9 quantiles).}

7: for all k, p do
8: if Qd[p = 0.9, k] < 0.5 ·max

k′
(Qd[p = 0.9, k′]) then

9: QDp[k] = 0
10: end if
11: end for

12: for k=2 to kmax do
13: QdetectB[k] = 0
14: for all p do
15: if Qd[p, k] = max

k′
(Qd[p, k

′]) or

Qd[p, k − 1] < Qd[p, k] > Qd[p, k + 1] then
16: QdetectB[k]←QdetectB[k] + 1
17: end if
18: end for
19: end for

Output: QdetectB

6.4. Datasets

6.4.1. Mixtures of Gaussians

These synthetic datasets are mixture of five and seven
Gaussians in two dimensions. The five Gaussian data
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Figure 6.3. Mixture of Gaussian datasets. (a) Five Gaussians; and
(b) seven Gaussians

comprise five well separable clusters without overlapping
objects (Figure 6.3a). In turn, the seven Gaussian dataset
contains a hierarchy of Gaussians with three well-
differentiated groups and seven groups in which a high
overlapping of objects can be observed. This second dataset
was intended to evaluate how validation metrics behave on
corpora with an underlying hierarchy of classes.

6.4.2. Cancer DNA-microarray dataset

The NCI60 dataset [ROS 00] of the University of Standford
has been also used (publicly available at [NCI 06]). It consists
of gene expression data for 60 cell lines derived from different
organs and tissues. The data are a 1, 375 × 60 matrix where
each row represents a gene and each column a cell line related
to a human tumor. A dendogram of the 60 clustered cell lines
by using a complete-link hierarchical clustering algorithm can
be observed in Figure 6.4. Nine known tumor types and one
unknown can be distinguished. The cancer types associated
with the labels of the dendogram leaves are as follows: LE,
leukemia; CO, colon; BR, breast; PR, prostate; LC, lung;
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Figure 6.4. Example dendogram of DNA microarray data obtained
by applying hierarchical complete-link clustering to the columns of

the data matrix. Nine tumor types plus one unknown can be
distinguished. The tumor types associated with the labels of the

dendogram leaves are as follows: LE:leukemia; CO:colon; BR:breast;
PR:prostate; LC:lung; OV:ovarian; RE:renal; CNS:cns;

ME:melanoma; and UN:unknown

OV, ovarian; RE, renal; CNS, cns; ME, melanoma; and UN,
unknown.

6.4.3. Iris dataset

The last dataset used in our validation experiments is the
Iris dataset from the UCI machine learning repository. The
dataset comprises 150 instances with four attributes related
to three classes of Iris plants (Iris setosa, I. versicolor, and I.
virginica). Two of the classes are linearly separable while one
of them is not linearly separable from the other two.

6.5. Results

This section presents the validation scores obtained
with the validity indices described in section 6.2 and our
combination approach. Results obtained with the mixtures
of Gaussians, NCI60, and Iris datasets are shown in
Tables 6.1–6.4, respectively. The first rows show validation
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outcomes obtained with the validation indices (Hartigan,
Dunn, Krzanowski and Lai, Hubert’s γ, Davies Bouldin,
silhouette, and gap statistic) applied in combination with the
PAM and average linkage clustering algorithms, 4 using the
cosine and Euclidean distances.

Finally, the second last row and the last row show
validation scores obtained by the quantile detection
approaches (QdetectA and QdetectB). It should be noted
that, although the maximum k value used in our combination
approach was k = 40, only an excerpt of the validation results
for relevant k values close to the optimum is shown in Tables
6.1–6.4. Results outside this range have been omitted due
to the limited space. Instead, significant results have been
marked with asterisk symbols: (***) for first maxima (minima
in the case of Davies Bouldin scores) versus (**) and (*) for
second and third maxima, respectively. 5 Also, the columns
corresponding to the correct number of clusters in each table
have been highlighted in gray.

6.5.1. Validation results of the five Gaussian dataset

Results obtained with the mixture of five Gaussians can be
observed in Table 6.1.

Most validation curves are able to identify the correct
number of clusters (k = 5). In addition, the dependency of the

4. Note that the resulting validation curves V have been obtained as
a combination of the Pam and hierarchical average, single and centroid
linkage methods. However, concerning individual validation curves, only
results with the Pam and hierarchical linkage methods are shown in the
tables for simplicity purposes.
5. A local maxima is considered at k if the score is higher than the values of
k+1 and k−1. For edge values (k = 2, k = 40), a local maxima is considered
if these scores are greater than their adjacent in-range neighbors’ scores.
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Validation Clustering, k

index distance 2 3 4 5 6

Hc(k) PAM, cos 1282.815 1980.240** 382.633 7962.503*** 247.503
PAM, Euc −1059.244 414.798** 410.202 1327.809*** 19.267
havg cos 1239.751 2036.104** 879.937 6811.177*** 16.123
havg, Euc −1053 419.758 407.699 1324.030 2.938

KL(k) PAM, cos 1.852 2.655 0.452 18.701** 0.767
PAM, Euc 3.763 0.335 0.549 19.369* 1.031
havg, cos 1.780 2.266 0.521 11.185*** 1.272
havg, Euc 3.379 0.368 0.572 14.906* 1.002

Dunn(k) PAM, cos 5.9e-06 8.6e-02*** 5.6e-02 2.7e-05 2.7e-05
PAM, Euc 0.314** 0.009 0.011 0.469*** 0.044
havg, cos 8.2e-02 8.6e-02*** 2.6e-02 4.3e-02** 3.1e-02
havg, Euc 0.314 0.292 0.296 0.469*** 0.327

γ(k) PAM, cos 0.720 0.838*** 0.735 0.676 0.669
PAM, Euc 0.767 0.749 0.745 0.758*** 0.746
havg, cos 0.716 0.838*** 0.764 0.677 0.677
havg, Euc 0.767*** 0.756 0.752 0.758** 0.758

DB(k) PAM, cos 0.892 0.855 0.721 0.496*** 1.402
PAM, Euc 0.758 0.693 0.540 0.323*** 0.551
havg, cos 0.913 0.855 0.488 0.398*** 0.411
havg, Euc 0.758 0.613 0.498 0.323*** 0.333

sil(k) PAM, cos 0.671 0.828 0.872 0.947*** 0.912
PAM, Euc 0.583 0.578 0.668 0.796*** 0.702
havg, cos 0.674 0.828 0.894 0.960*** 0.929
havg, Euc 0.583 0.590 0.681 0.796*** 0.745

Gap’(k) PAM cos 1.136 −0.474 0.289** −1.610 0.178
PAM euc 0.794 −0.052 −0.178 −0.581 0.129***
PAM euc 0.794 −0.052 −0.178 −0.581 0.129***
ha euc 0.844 −0.116 −0.118 −0.553 0.137***

QdetectA 0 8** 0 9*** 0

QdetectB 0 0 0 9*** 0

Table 6.1. Validation results of the mixture of five Gaussian dataset.
The first 28 rows show some of the validation results obtained with
the Hartigan, Krzanowski and Lai, Davies Bouldin, Dunn, Hubert’s

γ, silhouette, and gap statistic indices. Next nine rows show the
results of the Qvalid function for p = 0.1, 0.2, . . . , 0.9. Finally, the

second last and last rows show the combined results obtained with
the QdetectA and QdetectB algorithms
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Validation Clustering, k

index distance 3 4 5 6 7

Hc(k) PAM,cos 197.4 4441.9*** 1085.3 567.1 556.9
PAM,euc 1010.5 185.6 406.6 265.7 53.1
havg, cos 3222.8*** 581.0 1376.6* 33.8 976.9
havg, Euc 1897.2*** 184.1 388.6* 346.3 526.9**

KL(k) PAM, cos 0.703 4.510 0.861 1.092 0.535
PAM, Euc 13.773** 0.694 0.748 3.175 0.207
havg, cos 4.396* 0.534 0.496 5.781** 0.460
havg, Euc 52.829*** 0.336 0.842 0.770 2.667

DB(k) PAM, cos 0.908 0.708*** 1.671 2.028 1.508
PAM, Euc 0.484*** 0.809 0.855 0.667** 0.859
havg, cos 0.445*** 0.654 0.784 0.810 0.791**
havg, Euc 0.484*** 0.669 0.768 0.684 0.602

Dunn(k) PAM, cos 1.06e-03 9.78e-05*** 9.10e-06 1.70e-05 2.91e-05
PAM, Euc 0.037 0.473*** 0.014 0.018** 0.016
havg, Euc 0.316 0.473*** 0.034 0.034 0.034
havg, cos 6.29e-02 7.68e-02*** 4.70e-04 4.70e-04 9.92e-05

γ(k) PAM, cos 0.757 0.762*** 0.745 0.661 0.623
PAM, Euc 0.709 0.815*** 0.724 0.699 0.677
havg, Euc 0.709 0.815*** 0.731 0.730 0.730
havg, cos 0.757 0.763*** 0.682 0.681 0.634

Sil(k) PAM, cos 0.590 0.769*** 0.707 0.717 0.737
PAM, euc 0.684*** 0.546 0.487 0.550* 0.538
havg, cos 0.872*** 0.793 0.742 0.668 0.706*
havg, Euc 0.684*** 0.584 0.519 0.570 0.610**

Gap’(k) PAM, cos −0.713 −0.059 0.204** 0.193 −0.258
PAM, euc 0.057** −0.015 −0.010 0.106*** −0.195
havg, cos 0.257* 0.074 0.478*** −0.036 0.336**
havg, Euc 0.148*** −0.056 −0.075 −0.151 0.083**

QdetectA 8*** 1 0 0 7**

QdetectB 8** 1 0 2 9***

Table 6.2. Validation results of the mixture of seven Gaussians
The first 28 rows show some of the validation results obtained with the

Hartigan, Krzanowski and Lai, Davies Bouldin, Dunn, Hubert’s γ,
silhouette, and gap statistic indices. For the Hartigan, KL, silhouette
width, and gap statitics, the positions of global/local maxima in the
range k = [2, 39] are indicated with asterisks. For the Davies Bouldin
scores, asterisk symbols denote the position on global or local minima.

Finally, the second last and last rows show the combined results
obtained with the QdetectA and QdetectB algorithms



218 Machine Learning

Validation Clustering, k

index distance 6 7 8 9 10

Hc(k) PAM, cos 2.28** 1.22 2.18 2.15 0.32
PAM, Euc 0.79 −0.21 0.75 0.92* 0.13
havg, cos 6.58** 1.84 1.81 0.67 0.09
havg, Euc 0.04 0.15 0.01 2.99*** 0.06

Sil(k) PAM, cos 0.195* 0.191 0.205 0.215 0.216
PAM, Euc 0.102 0.091 0.093 0.104 0.110
havg, cos 0.145 0.134 0.158 0.173 0.172
havg, Euc 0.090 0.092 0.092 0.135** 0.134

Gap’(k) PAM cos −1.7e-02 −3.5e-02 −3.5e-02 −6.4e-04 −2.8e-02
PAM euc 0.007*** −0.010 −0.014 0.001 0.0007
havg, cos −0.028 −0.027 −0.004 0.006** −0.113
havg, Euc 0.001 0.004** −0.051 0.002 −0.005

γ(k) PAM, cos 0.650 0.581 0.525 0.501 0.458
PAM, Euc 0.645 0.640 0.596 0.570 0.546
havg, cos 0.692 0.619 0.617 0.532 0.531
havg, Euc 0.645 0.602 0.602 0.601 0.600

dunn(k) PAM, cos 3.93e-06 4.51e-06** 1.68e-06 3.14e-06 3.14e-06
PAM, Euc 0.010 0.012 0.019 0.009 0.010
havg, cos 3.67e-05 5.86e-05 5.86e-05 2.85e-05 2.85e-05
havg, Euc 0.022 0.036 0.036 0.036 0.036

QdetectA 3 0 0 9*** 0

QdetectB 3 0 0 9*** 0

Table 6.3. Validation results of the NCI60 dataset

validation scores with respect to the clustering conditions can
be also observed. Some validation indices (Dunn, Krzanowski
and Lai, Hubert, and gap statistic) are in some situations
unable to detect the true number of clusters as a global
maximum. These errors may be associated with the use of the
cosine distance function, which, therefore, proves unsuitable
for this dataset. However, the Krzanowski and Lai test and
the gap statistic indices are still able to identify the optimum
even with cosine distances.
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Validation clustering, k

index distance 2 3 4 5 6

Hc(k) PAM, cos 184.397*** 143.755 65.769 9.514 18.967
PAM, Euc −53.932 39.640*** 13.550 12.844 1.497
havg, cos 175.052*** 143.247 4.289 74.159** 30.881
havg, Euc −53.932 6.979 1.017 27.146** 3.909

Dunn(k) PAM, cos 0.289 0.363 0.435** 0.401 0.161
PAM, Euc 0.479 0.468 0.515 0.525 0.525
havg, cos 0.430 0.430 0.430 0.430 0.426
havg, Euc 0.565 0.553 0.486 0.486 0.486

γ(k) PAM, cos 0.384 0.464 0.517** 0.481 0.473
PAM, Euc 0.298 0.319 0.381 0.430* 0.401
havg, cos 0.417 0.472 0.474 0.483 0.558
havg, Euc 0.482 0.488 0.555 0.566 0.568

KL(k) PAM, cos 67.827*** 0.067 5.409 1.322 0.137
PAM, Euc 5.030 4.090 0.714 5.853* 0.263
havg, cos 4.863* 2.952 13.340*** 0.026 2.896
havg, Euc 11.051 0.691 0.513 14.283 0.085

DB(k) PAM, cos 0.621 0.878 1.230 1.189 1.210
PAM, Euc 0.672 0.973 1.133 1.104 1.204
havg, cos 0.617*** 0.902 0.911 1.080 1.268
havg, Euc 0.672 0.625 0.547*** 0.680 0.677**

Sil(k) PAM, cos 0.737*** 0.669 0.646 0.559 0.553
PAM, Euc 0.581*** 0.447 0.386 0.335 0.321
havg, cos 0.729 0.721 0.662 0.641 0.625
havg, Euc 0.581*** 0.480 0.406 0.374 0.324

Gap’(k) PAM, cos −0.420 −0.149 0.097** 0.025 −0.112
PAM, Euc −0.121 −0.004 0.003 0.059*** −0.024
havg, cos −0.430 0.101** −0.1643 0.0008 0.176***
havg, Euc 0.047 0.109*** −0.093 0.063 −0.102

QdetectA 2 7** 1 6 0

QdetectB 3 8*** 1 0 0

Table 6.4. Validation results of the Iris dataset

The QdetectA algorithm produces a global maximum at
the true number of clusters. However, it should be noted
that another global maximum peak is wrongly placed at k =
38. Finally, the second variant (QdetectB) places a unique
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maximum at k = 5 and is therefore able to discriminate the
optimum number of clusters, kopt = 5.

6.5.2. Validation results of the mixture of seven
Gaussians

The seven Gaussians mixture can be also observed as
a hierarchy of three well separable groups and seven less
separable clusters.

The high overlapping among classes in this dataset
misleads the validity indices, as can be observed in Table 6.2.
Some of the validity curves place the global maxima at
k = 3, thus identifying the three bigger groups (upper
hierarchy level). However, none of the analyzed curves has
been able to place a global maximum at the true number of
Gaussians (kopt = 7). Furthermore, only 5 validation curves of
the 28 curves shown in Table 6.2 have achieved second local
maxima at kopt.

Regarding the combination approach, the first proposed
algorithm (QdetectA) also fails to detect the number of
Gaussians as a global optimum. However, it is able to place
a second local maximum at kopt, coinciding with the best
validation curves. Finally, in contrast to the previous results,
the QdetectB approach has correctly detected kopt as a global
maximum.

6.5.3. Validation results of the NCI60 dataset

Table 6.3 shows some results obtained with the NCI cancer
dataset. Note that validation curves obtained with the Davies
Bouldin and Krzanowski and Lai metrics have not been
included. This is due to the existence of missing values in the
dataset, which yields missing values in the Davies Bouldin
and Krzanowski and Lai functions used.
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In this dataset, only the (corrected) Hartigan index is
able to detect the number of classes in one of the validation
curves. This occurs when hierarchical average clustering is
used in combination with the Euclidean distance. Other three
validation curves place local maxima at kopt = 9. Second
local maxima are achieved at kopt by the silhouette and gap
metrics with hierarchical average clustering, and a third local
maximum is placed by the Hartigan in combination with the
PAM algorithm and Euclidean distance.

Regarding our combination approach, both algorithms,
QdetectA and QdetectB, have discovered the correct number
of classes at kopt.

6.5.4. Validation results of the Iris dataset

Table 6.4 shows the validation results with the Iris dataset.
This dataset is composed of two linearly separable Iris types
and one third Iris class nonlinearly separable from the other
two. Therefore, most validation curves fail to detect the
number of clusters. Validation maxima are often misplaced
at k = 2. Only the Hartigan and gap indices, in combination
with the Euclidean distances and the PAM and hierarchical
average algorithms, respectively, are able to identify the
correct number of classes. Also, the gap statistic with the
hierarchical average clustering and the cosine distance places
a second maxima at k = 3.

These validation outcomes have been slightly improved by
the QdetectB algorithm. Using this method, a second local
maximum is placed at kopt = 3. The global maximum is found
at k = 24, and other local maxima are located at k = 26 and 32.
Finally, as with the previous datasets, the QdetectB variant is
able to identify the true number of clusters in the Iris dataset.
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6.5.5. Discussion

The mixture of seven Gaussians can be divided in a
hierarchy of three well separable clusters and seven, less
separable clusters (optimum). In this situation, the evaluated
validation indices generate numerous errors: the three top
clusters are frequently identified instead of the seven existing
Gaussians. Only the Hartigan, silhouette, and gap statistic
find some local maxima at the optimum. However, despite
the numerous errors, the combination approach is still able to
identify the seven Gaussians if using the QdetectB algorithm.
The first alternative (Qdetect) places a second local maximum
at kopt, coinciding with the best validation curves.

Validation errors can again be observed in individual
validation curves on the NCI60 and Iris datasets, for which
global and local maxima are barely placed at kopt = 9
and kopt = 3. In these datasets, combined results clearly
outperform individual validation results. On the NCI60
dataset, both algorithms (QdetectA and QdetectB) place the
global maxima at kopt = 9. On the Iris dataset, QdetectB
achieves a global maximum at kopt = 3 versus a second local
maximum obtained by QdetectA.

Furthermore, the observed results allow a comparative
evaluation of validation indices. In general, the Hartigan,
silhouette, and gap statistic indices have provided better
performances than the Dunn, Hubert’s γ and KL indices,
although their performances clearly depend on the clustering
settings (clustering algorithm and distances).

To summarize, it can be concluded that the QdetectA
algorithm performs equal or better than the best of the
validity curves, in terms of the maximum peaks achieved
at kopt, while the second variant, QdetectB, has been able
to detect the optimum number of cluster on all analyzed
datasets. In the next section, the performances of both
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validity combination approaches on a corpus of SLDS speech
utterances are analyzed.

6.6. Application of speech utterances

The validation approaches to detect the number of clusters
have been also applied to a corpus of speech utterances in the
framework of automated troubleshooting agents.

As outlined in Chapter 1, a set of problem categories in
a troubleshooting domain is currently defined by the dialog
interaction designers. However, it is desirable to develop
tools that aim to automatically redefine the set of problem
categories with minimum human supervision. Such tools can
enable a rapid adaptation of the systems and their portability
to different domain data.

Therefore, two combination approaches (QdetectA and
QdetectB) have also been applied for detecting the number of
potential problems in a given troubleshooting domain, which
provided a corpus of transcribed utterances related to this
domain. In particular, the utterance corpus used in this work
is related to the video troubleshooting domain and has been
collected from user calls to commercial video troubleshooting
agents. The corpus comprises 10,000 transcribed training
utterances. Reference topic categories (symptoms), defined
by the agent interaction designers, are also available. The
number of reference topic categories is k = 79. Some examples
of utterances and their associated reference categories are

– “Remote’s not working” (CABLE)
– “Internet was supposed to be scheduled at my home today”

(APPOINTMENT)
– “I´m having Internet problems” (INTERNET)
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6.7. Summary

In this chapter, different approaches for the discovery of the
true number of clusters in a dataset have been analyzed. First,
seven existent approaches in the literature to the optimum
detection have been introduced: the Hartigan, Dunn, Hubert’s
γ statistic, Davies Bouldin, gap, and silhouette width indices.
The weakness of individual validity indices is related to
the fact that the methods have been proposed for solving
somewhat ad hoc problems or datasets and, therefore, their
performance depends on the clustering algorithm, distance
metric, or even on the dataset on which the validation indices
are applied. This dependency has been evidenced through
an analysis of the scores obtained by the different indices
in synthetic and real datasets using four different clustering
algorithms and two classical distance metrics (Euclidean and
cosine).

Two approaches to the discovery of the number of clusters
have been proposed to reduce the “ad hoc” performances of
individual metrics. The main assumption was that, although
the optimum could not be clearly visible in all individual
metrics, the multiplicity of existing methods can be exploited
to detect underlying “agreements” between the scores. In
other words, the optimum (kopt) is hidden among the top
scores in the validation curves and can be uncovered by
adequately measuring the consensus between the different
validation outcomes. The proposed approach is to measure
this agreement by calculating p quantiles (points among
the 1 − p “top scores”). The quantile approach has proven
highly adequate for discovering the hidden optimum in most
datasets.

However, the optimum detection on the video
troubleshooting agent has proven a task of high complexity,
possibly due to the broad range of k values analyzed for the
optimum search. The optimum (k = 79) could not be identified
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either by the validation curves or by the quantile approach
due to a rapid variation of the obtained scores with k, as well
as the strong monotony of the curves with k. The QdetectA
produced six maxima at k = {6, 18, 72, 89, 102, 126}, while the
QdetectB algorithm failed to detect the optimum due to an
aggressive exclusion of k values using p = 0.9 quantiles.

In parallel to the number of clusters detected, our future
steps are toward the identification of the best fitting clustering
algorithm and distance model, given a fixed number of
clusters. A similar approach to the one developed in this
work based on p quantiles can be used for this aim, applied
to the set of validation curves obtained with each pair
(clustering technique and distance function) with the set of
validity indices and comparing these scores with the “global”
scores obtained for detecting the optimum number of clusters.
Another alternative is the application of cluster ensembles
to reach a good compromise solution between the different
clustering algorithms [STR 02].
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