

Optimization for Machine Learning

Neural Information Processing Series

Michael I. Jordan and Thomas Dietterich, editors

Advances in Large Margin Classifiers, Alexander J. Smola, Peter L. Bartlett,

Bernhard Schölkopf, and Dale Schuurmans, eds., 2000

Advanced Mean Field Methods: Theory and Practice, Manfred Opper and

David Saad, eds., 2001

Probabilistic Models of the Brain: Perception and Neural Function, Rajesh

P. N. Rao, Bruno A. Olshausen, and Michael S. Lewicki, eds., 2002

Exploratory Analysis and Data Modeling in Functional Neuroimaging,

Friedrich T. Sommer and Andrzej Wichert, eds., 2003

Advances in Minimum Description Length: Theory and Applications, Peter

D. Grünwald, In Jae Myung, and Mark A. Pitt, eds., 2005

Nearest-Neighbor Methods in Learning and Vision: Theory and Practice,

Gregory Shakhnarovich, Piotr Indyk, and Trevor Darrell, eds., 2006

New Directions in Statistical Signal Processing: From Systems to Brains, Si-

mon Haykin, José C. Pŕıncipe, Terrence J. Sejnowski, and John McWhirter,

eds., 2007

Predicting Structured Data, Gökhan BakIr, Thomas Hofmann, Bernhard

Schölkopf, Alexander J. Smola, Ben Taskar, and S. V. N. Vishwanathan,

eds., 2007

Toward Brain-Computer Interfacing, Guido Dornhege, José del R. Millán,

Thilo Hinterberger, Dennis J. McFarland, and Klaus-Robert Müller, eds.,

2007

Large-Scale Kernel Machines, Léon Bottou, Olivier Chapelle, Denis De-

Coste, and Jason Weston, eds., 2007

Learning Machine Translation, Cyril Goutte, Nicola Cancedda, Marc

Dymetman, and George Foster, eds., 2009

Dataset Shift in Machine Learning, Joaquin Quiñonero-Candela, Masashi

Sugiyama, Anton Schwaighofer, and Neil D. Lawrence, eds., 2009

Optimization for Machine Learning, Suvrit Sra, Sebastian Nowozin, and

Stephen J. Wright, eds., 2012

Optimization for Machine Learning

Edited by Suvrit Sra, Sebastian Nowozin, and Stephen J. Wright

The MIT Press

Cambridge, Massachusetts

London, England

© 2012 Massachusetts Institute of Technology

All rights reserved. No part of this book may be reproduced in any form by any

electronic or mechanical means (including photocopying, recording, or

information storage and retrieval) without permission in writing from the

publisher.

For information about special quantity discounts, please email

special_sales@mitpress.mit.edu

This book was set in LaTeX by the authors and editors. Printed and bound in the

United States of America.

Library of Congress Cataloging-in-Publication Data

Optimization for machine learning / edited by Suvrit Sra, Sebastian Nowozin, and
Stephen J. Wright.
 p. cm. — (Neural information processing series)
Includes bibliographical references.
ISBN 978-0-262-01646-9 (hardcover : alk. paper) 1. Machine learning—
Mathematical models. 2. Mathematical optimization. I. Sra, Suvrit, 1976– II.
Nowozin, Sebastian, 1980– III. Wright, Stephen J., 1960–
Q325.5.O65 2012
006.3'1—c22

2011002059

10 9 8 7 6 5 4 3 2 1

Contents

Series Foreword xi

Preface xiii

1 Introduction: Optimization and Machine Learning

S. Sra, S. Nowozin, and S. J. Wright 1

1.1 Support Vector Machines . 2

1.2 Regularized Optimization . 7

1.3 Summary of the Chapters . 11

1.4 References . 15

2 Convex Optimization with Sparsity-Inducing Norms

F. Bach, R. Jenatton, J. Mairal, and G. Obozinski 19

2.1 Introduction . 19

2.2 Generic Methods . 26

2.3 Proximal Methods . 27

2.4 (Block) Coordinate Descent Algorithms 32

2.5 Reweighted-�2 Algorithms . 34

2.6 Working-Set Methods . 36

2.7 Quantitative Evaluation . 40

2.8 Extensions . 47

2.9 Conclusion . 48

2.10 References . 49

3 Interior-Point Methods for Large-Scale Cone Programming

M. Andersen, J. Dahl, Z. Liu, and L. Vandenberghe 55

3.1 Introduction . 56

3.2 Primal-Dual Interior-Point Methods 60

3.3 Linear and Quadratic Programming 64

3.4 Second-Order Cone Programming 71

3.5 Semidefinite Programming . 74

3.6 Conclusion . 79

vi

3.7 References . 79

4 Incremental Gradient, Subgradient, and Proximal Methods

for Convex Optimization: A Survey

D. P. Bertsekas 85

4.1 Introduction . 86

4.2 Incremental Subgradient-Proximal Methods 98

4.3 Convergence for Methods with Cyclic Order 102

4.4 Convergence for Methods with Randomized Order 108

4.5 Some Applications . 111

4.6 Conclusions . 114

4.7 References . 115

5 First-Order Methods for Nonsmooth Convex Large-Scale

Optimization, I: General Purpose Methods

A. Juditsky and A. Nemirovski 121

5.1 Introduction . 121

5.2 Mirror Descent Algorithm: Minimizing over a Simple Set . . . 126

5.3 Problems with Functional Constraints 130

5.4 Minimizing Strongly Convex Functions 131

5.5 Mirror Descent Stochastic Approximation 134

5.6 Mirror Descent for Convex-Concave Saddle-Point Problems . 135

5.7 Setting up a Mirror Descent Method 139

5.8 Notes and Remarks . 145

5.9 References . 146

6 First-Order Methods for Nonsmooth Convex Large-Scale

Optimization, II: Utilizing Problem’s Structure

A. Juditsky and A. Nemirovski 149

6.1 Introduction . 149

6.2 Saddle-Point Reformulations of Convex Minimization Problems151

6.3 Mirror-Prox Algorithm . 154

6.4 Accelerating the Mirror-Prox Algorithm 160

6.5 Accelerating First-Order Methods by Randomization 171

6.6 Notes and Remarks . 179

6.7 References . 181

7 Cutting-Plane Methods in Machine Learning

V. Franc, S. Sonnenburg, and T. Werner 185

7.1 Introduction to Cutting-plane Methods 187

7.2 Regularized Risk Minimization 191

7.3 Multiple Kernel Learning . 197

vii

7.4 MAP Inference in Graphical Models 203

7.5 References . 214

8 Introduction to Dual Decomposition for Inference

D. Sontag, A. Globerson, and T. Jaakkola 219

8.1 Introduction . 220

8.2 Motivating Applications . 222

8.3 Dual Decomposition and Lagrangian Relaxation 224

8.4 Subgradient Algorithms . 229

8.5 Block Coordinate Descent Algorithms 232

8.6 Relations to Linear Programming Relaxations 240

8.7 Decoding: Finding the MAP Assignment 242

8.8 Discussion . 245

8.10 References . 252

9 Augmented Lagrangian Methods for Learning, Selecting,

and Combining Features

R. Tomioka, T. Suzuki, and M. Sugiyama 255

9.1 Introduction . 256

9.2 Background . 258

9.3 Proximal Minimization Algorithm 263

9.4 Dual Augmented Lagrangian (DAL) Algorithm 265

9.5 Connections . 272

9.6 Application . 276

9.7 Summary . 280

9.9 References . 282

10 The Convex Optimization Approach to Regret

Minimization

E. Hazan 287

10.1 Introduction . 287

10.2 The RFTL Algorithm and Its Analysis 291

10.3 The “Primal-Dual” Approach 294

10.4 Convexity of Loss Functions 298

10.5 Recent Applications . 300

10.6 References . 302

11 Projected Newton-type Methods in Machine Learning

M. Schmidt, D. Kim, and S. Sra 305

11.1 Introduction . 305

11.2 Projected Newton-type Methods 306

11.3 Two-Metric Projection Methods 312

viii

11.4 Inexact Projection Methods 316

11.5 Toward Nonsmooth Objectives 320

11.6 Summary and Discussion . 326

11.7 References . 327

12 Interior-Point Methods in Machine Learning

J. Gondzio 331

12.1 Introduction . 331

12.2 Interior-Point Methods: Background 333

12.3 Polynomial Complexity Result 337

12.4 Interior-Point Methods for Machine Learning 338

12.5 Accelerating Interior-Point Methods 344

12.6 Conclusions . 347

12.7 References . 347

13 The Tradeoffs of Large-Scale Learning

L. Bottou and O. Bousquet 351

13.1 Introduction . 351

13.2 Approximate Optimization 352

13.3 Asymptotic Analysis . 355

13.4 Experiments . 363

13.5 Conclusion . 366

13.6 References . 367

14 Robust Optimization in Machine Learning

C. Caramanis, S. Mannor, and H. Xu 369

14.1 Introduction . 370

14.2 Background on Robust Optimization 371

14.3 Robust Optimization and Adversary Resistant Learning . . . 373

14.4 Robust Optimization and Regularization 377

14.5 Robustness and Consistency 390

14.6 Robustness and Generalization 394

14.7 Conclusion . 399

14.8 References . 399

15 Improving First and Second-Order Methods by Modeling

Uncertainty

N. Le Roux, Y. Bengio, and A. Fitzgibbon 403

15.1 Introduction . 403

15.2 Optimization Versus Learning 404

15.3 Building a Model of the Gradients 406

15.4 The Relative Roles of the Covariance and the Hessian 409

ix

15.5 A Second-Order Model of the Gradients 412

15.6 An Efficient Implementation of Online Consensus Gradient:

TONGA . 414

15.7 Experiments . 419

15.8 Conclusion . 427

15.9 References . 429

16 Bandit View on Noisy Optimization

J.-Y. Audibert, S. Bubeck, and R. Munos 431

16.1 Introduction . 431

16.2 Concentration Inequalities . 433

16.3 Discrete Optimization . 434

16.4 Online Optimization . 443

16.5 References . 452

17 Optimization Methods for Sparse Inverse Covariance

Selection

K. Scheinberg and S. Ma 455

17.1 Introduction . 455

17.2 Block Coordinate Descent Methods 461

17.3 Alternating Linearization Method 469

17.4 Remarks on Numerical Performance 475

17.5 References . 476

18 A Pathwise Algorithm for Covariance Selection

V. Krishnamurthy, S. D. Ahipaşaoğlu, and A. d’Aspremont 479

18.1 Introduction . 479

18.2 Covariance Selection . 481

18.3 Algorithm . 482

18.4 Numerical Results . 487

18.5 Online Covariance Selection 491

18.6 References . 494

Series Foreword

The yearly Neural Information Processing Systems (NIPS) workshops bring

together scientists with broadly varying backgrounds in statistics, mathe-

matics, computer science, physics, electrical engineering, neuroscience, and

cognitive science, unified by a common desire to develop novel computa-

tional and statistical strategies for information processing and to under-

stand the mechanisms for information processing in the brain. In contrast

to conferences, these workshops maintain a flexible format that both allows

and encourages the presentation and discussion of work in progress. They

thus serve as an incubator for the development of important new ideas in

this rapidly evolving field. The series editors, in consultation with work-

shop organizers and members of the NIPS Foundation Board, select specific

workshop topics on the basis of scientific excellence, intellectual breadth,

and technical impact. Collections of papers chosen and edited by the or-

ganizers of specific workshops are built around pedagogical introductory

chapters, while research monographs provide comprehensive descriptions of

workshop-related topics, to create a series of books that provides a timely,

authoritative account of the latest developments in the exciting field of neu-

ral computation.

Michael I. Jordan and Thomas G. Dietterich

Preface

The intersection of interests between machine learning and optimization

has engaged many leading researchers in both communities for some years

now. Both are vital and growing fields, and the areas of shared interest are

expanding too. This volume collects contributions from many researchers

who have been a part of these efforts.

We are grateful first to the contributors to this volume. Their cooperation

in providing high-quality material while meeting tight deadlines is highly

appreciated. We further thank the many participants in the two workshops

on Optimization and Machine Learning, held at the NIPS Workshops in

2008 and 2009. The interest generated by these events was a key motivator

for this volume. Special thanks go to S. V. N. Vishawanathan (Vishy)

for organizing these workshops with us, and to PASCAL2, MOSEK, and

Microsoft Research for their generous financial support for the workshops.

S. S. thanks his father for his constant interest, encouragement, and advice

towards this book. S. N. thanks his wife and family. S. W. thanks all

those colleagues who introduced him to machine learning, especially Partha

Niyogi, to whose memory his efforts on this book are dedicated.

Suvrit Sra, Sebastian Nowozin, and Stephen J. Wright

1 Introduction: Optimization and Machine

Learning

Suvrit Sra suvrit.sra@tuebingen.mpg.de

Max Planck Insitute for Biological Cybernetics

Tübingen, Germany

Sebastian Nowozin Sebastian.Nowozin@Microsoft.com

Microsoft Research

Cambridge, United Kingdom

Stephen J. Wright swright@cs.wisc.edu

University of Wisconsin

Madison, Wisconsin, USA

Since its earliest days as a discipline, machine learning has made use of

optimization formulations and algorithms. Likewise, machine learning has

contributed to optimization, driving the development of new optimization

approaches that address the significant challenges presented by machine

learning applications. This cross-fertilization continues to deepen, producing

a growing literature at the intersection of the two fields while attracting

leading researchers to the effort.

Optimization approaches have enjoyed prominence in machine learning be-

cause of their wide applicability and attractive theoretical properties. While

techniques proposed twenty years and more ago continue to be refined, the

increased complexity, size, and variety of today’s machine learning models

demand a principled reassessment of existing assumptions and techniques.

This book makes a start toward such a reassessment. Besides describing

the resurgence in novel contexts of established frameworks such as first-

order methods, stochastic approximations, convex relaxations, interior-point

methods, and proximal methods, the book devotes significant attention to

newer themes such as regularized optimization, robust optimization, a vari-

ety of gradient and subgradient methods, and the use of splitting techniques

and second-order information. We aim to provide an up-to-date account of

2 Introduction

the optimization techniques useful to machine learning — those that are

established and prevalent, as well as those that are rising in importance.

To illustrate our aim more concretely, we review in Section 1.1 and 1.2

two major paradigms that provide focus to research at the confluence of

machine learning and optimization: support vector machines (SVMs) and

regularized optimization. Our brief review charts the importance of these

problems and discusses how both connect to the later chapters of this book.

We then discuss other themes — applications, formulations, and algorithms

— that recur throughout the book, outlining the contents of the various

chapters and the relationship between them.

Audience. This book is targeted to a broad audience of researchers and

students in the machine learning and optimization communities; but the

material covered is widely applicable and should be valuable to researchers

in other related areas too. Some chapters have a didactic flavor, covering

recent advances at a level accessible to anyone having a passing acquaintance

with tools and techniques in linear algebra, real analysis, and probability.

Other chapters are more specialized, containing cutting-edge material. We

hope that from the wide range of work presented in the book, researchers

will gain a broader perspective of the field, and that new connections will

be made and new ideas sparked.

For background relevant to the many topics discussed in this book, we refer

to the many good textbooks in optimization, machine learning, and related

subjects. We mention in particular Bertsekas (1999) and Nocedal and Wright

(2006) for optimization over continuous variables, and Ben-Tal et al. (2009)

for robust optimization. In machine learning, we refer for background to

Vapnik (1999), Schölkopf and Smola (2002), Christianini and Shawe-Taylor

(2000), and Hastie et al. (2009). Some fundamentals of graphical models

and the use of optimization therein can be found in Wainwright and Jordan

(2008) and Koller and Friedman (2009).

1.1 Support Vector Machines

The support vector machine (SVM) is the first contact that many optimiza-

tion researchers had with machine learning, due to its classical formulation

as a convex quadratic program — simple in form, though with a complicat-

ing constraint. It continues to be a fundamental paradigm today, with new

algorithms being proposed for difficult variants, especially large-scale and

nonlinear variants. Thus, SVMs offer excellent common ground on which to

demonstrate the interplay of optimization and machine learning.

1.1 Support Vector Machines 3

1.1.1 Background

The problem is one of learning a classification function from a set of labeled

training examples. We denote these examples by {(xi, yi), i = 1, . . . ,m},
where xi ∈ R

n are feature vectors and yi ∈ {−1,+1} are the labels. In the

simplest case, the classification function is the signum of a linear function of

the feature vector. That is, we seek a weight vector w ∈ R
n and an intercept

b ∈ R such that the predicted label of an example with feature vector x is

f(x) = sgn(wTx+ b). The pair (w, b) is chosen to minimize a weighted sum

of: (a) a measure of the classification error on the training examples; and

(b) ‖w‖22, for reasons that will be explained in a moment. The formulation

is thus

minimize
w,b,ξ

1
2w

Tw + C
∑m

i=1
ξi

subject to yi(w
Txi + b) ≥ 1− ξi, ξi ≥ 0, 1 ≤ i ≤ m.

(1.1)

Note that the summation term in the objective contains a penalty contribu-

tion from term i if yi = 1 and wTxi+ b < 1, or yi = −1 and wTxi+ b > −1.
If the data are separable, it is possible to find a (w, b) pair for which this

penalty is zero. Indeed, it is possible to construct two parallel hyperplanes in

R
n, both of them orthogonal to w but with different intercepts, that contain

no training points between them. Among all such pairs of planes, the pair

for which ‖w‖2 is minimal is the one for which the separation is greatest.

Hence, this w gives a robust separation between the two labeled sets, and is

therefore, in some sense, most desirable. This observation accounts for the

presence of the first term in the objective of (1.1).

Problem (1.1) is a convex quadratic program with a simple diagonal

Hessian but general constraints. Some algorithms tackle it directly, but for

many years it has been more common to work with its dual, which is

minimize
α

1
2α

TY XTXY α−αT1

subject to
∑

i
yiαi = 0, 0 ≤ αi ≤ C,

(1.2)

where Y = Diag(y1, . . . , ym) and X = [x1, . . . ,xm] ∈ R
n×m. This dual is

also a quadratic program. It has a positive semidefinite Hessian and simple

bounds, plus a single linear constraint.

More powerful classifiers allow the inputs to come from an arbitrary set

X, by first mapping the inputs into a space H via a nonlinear (feature)

mapping φ : X → H, and then solving the classification problem to find

(w, b) with w ∈ H. The classifier is defined as f(x) := sgn(〈w, φ(x)〉 + b),

and it can be found by modifying the Hessian from Y XTXY to Y KY ,

4 Introduction

where Kij := 〈φ(xi), φ(xj)〉 is the kernel matrix. The optimal weight vector

can be recovered from the dual solution by setting w =
∑m

i=1 αiφ(xi), so

that the classifier is f(x) = sgn [
∑m

i=1 αi〈φ(xi), φ(x)〉+ b].

In fact, it is not even necessary to choose the mapping φ explicitly.

We need only define a kernel mapping k : X × X → R and define the

matrix K directly from this function by setting Kij := k(xi,xj). The

classifier can be written purely in terms of the kernel mapping k as follows:

f(x) = sgn [
∑m

i=1 αik(xi,x) + b].

1.1.2 Classical Approaches

There has been extensive research on algorithms for SVMs since at least the

mid-1990s, and a wide variety of techniques have been proposed. Out-of-

the-box techniques for convex quadratic programming have limited appeal

because usually the problems have large size, and the Hessian in (1.2) can be

dense and ill-conditioned. The proposed methods thus exploit the structure

of the problem and the requirements on its (approximate) solution. We

survey some of the main approaches here.

One theme that recurs across many algorithms is decomposition applied

to the dual (1.2). Rather than computing a step in all components of α

at once, these methods focus on a relatively small subset and fix the other

components. An early approach due to Osuna et al. (1997) works with a

subset B ⊂ {1, 2, . . . , s}, whose size is assumed to exceed the number of

nonzero components of α in the solution of (1.2); their approach replaces

one element of B at each iteration and then re-solves the reduced problem

(formally, a complete reoptimization is assumed, though heuristics are used

in practice). The sequential minimal optimization (SMO) approach of Platt

(1999) works with just two components of α at each iteration, reducing

each QP subproblem to triviality. A heuristic selects the pair of variables

to relax at each iteration. LIBSVM1 (see Fan et al., 2005) implements an

SMO approach for (1.2) and a variety of other SVM formulations, with a

particular heuristic based on second-order information for choosing the pair

of variables to relax. This code also uses shrinking and caching techniques

like those discussed below.

SVMlight2 (Joachims, 1999) uses a linearization of the objective around the

current point to choose the working set B to be the indices most likely to give

descent, giving a fixed size limitation on B. Shrinking reduces the workload

further by eliminating computation associated with components of α that

1. http://www.csie.ntu.edu.tw/~cjlin/libsvm/
2. http://www.cs.cornell.edu/People/tj/svm_light/

1.1 Support Vector Machines 5

seem to be at their lower or upper bounds. The method nominally requires

computation of |B| columns of the kernel K at each iteration, but columns

can be saved and reused across iterations. Careful implementation of gra-

dient evaluations leads to further computational savings. In early versions

of SVMlight, the reduced QP subproblem was solved with an interior-point

method (see below), but this was later changed to a coordinate relaxation

procedure due to Hildreth (1957) and D’Esopo (1959). Zanni et al. (2006)

use a similar method to select the working set, but solve the reduced problem

using nonmontone gradient projection, with Barzilai-Borwein step lengths.

One version of the gradient projection procedure is described by Dai and

Fletcher (2006).

Interior-point methods have proved effective on convex quadratic pro-

grams in other domains, and have been applied to (1.2) (see Ferris and

Munson, 2002; Gertz and Wright, 2003). However, the density, size, and

ill-conditioning of the kernel matrix make achieving efficiency difficult. To

ameliorate this difficulty, Fine and Scheinberg (2001) propose a method that

replaces the Hessian with a low-rank approximation (of the form V V T ,

where V ∈ R
m×r for r
 m) and solves the resulting modified dual. This

approach works well on problems of moderate scale, but may be too expen-

sive for larger problems.

In recent years, the usefulness of the primal formulation (1.1) as the basis

of algorithms has been revisited. We can rewrite this formulation as an

unconstrained minimization involving the sum of a quadratic and a convex

piecewise-linear function, as follows:

minimize
w,b

1
2w

Tw + CR(w, b), (1.3)

where the penalty term is defined by

R(w, b) :=
∑m

i=1
max(1− yi(w

Txi + b), 0). (1.4)

Joachims (2006) describes a cutting-plane approach that builds up a con-

vex piecewise-linear lower bounding function for R(w, b) based on subgra-

dient information accumulated at each iterate. Efficient management of the

inequalities defining the approximation ensures that subproblems can be

solved efficiently, and convergence results are proved. Some enhancements

are decribed in Franc and Sonnenburg (2008), and the approach is extended

to nonlinear kernels by Joachims and Yu (2009). Implementations appear in

the code SVMperf.3

3. http://www.cs.cornell.edu/People/tj/svm_light/svm_perf.html

6 Introduction

There has also been recent renewed interest in solving (1.3) by stochastic

gradient methods. These appear to have been proposed originally by Bottou

(see, for example, Bottou and LeCun, 2004) and are based on taking a step

in the (w, b) coordinates, in a direction defined by the subgradient in a single

term of the sum in (1.4). Specifically, at iteration k, we choose a steplength

γk and an index ik ∈ {1, 2, . . . ,m}, and update the estimate of w as follows:

w ←
{
w − γk(w −mCyikxik) if 1− yik(w

Txik + b) > 0,

w − γkw otherwise.

Typically, one uses γk ∝ 1/k. Each iteration is cheap, as it needs to observe

just one training point. Thus, many iterations are needed for convergence;

but in many large practical problems, approximate solutions that yield clas-

sifiers of sufficient accuracy can be found in much less time than is taken by

algorithms that aim at an exact solution of (1.1) or (1.2). Implementations of

this general approach include SGD4 and Pegasos (see Shalev-Shwartz et al.,

2007). These methods enjoy a close relationship with stochastic approxima-

tion methods for convex minimization; see Nemirovski et al. (2009) and the

extensive literature referenced therein. Interestingly, the methods and their

convergence theory were developed independently in the two communities,

with little intersection until 2009.

1.1.3 Approaches Discussed in This Book

Several chapters of this book discuss the problem (1.1) or variants thereof.

In Chapter 12, Gondzio gives some background on primal-dual interior-

point methods for quadratic programming, and shows how structure can

be exploited when the Hessian in (1.2) is replaced by an approximation of

the form Q0+V V T , where Q0 is nonnegative diagonal and V ∈ R
m×r with

r
 m, as above. The key is careful design of the linear algebra operations

that are used to form and solve the linear equations which arise at each

iteration of the interior-point method. Andersen et al. in Chapter 3 also

consider interior-point methods with low-rank Hessian approximations, but

then go on to discuss robust and multiclass variants of (1.1). The robust

variants, which replace each training vector xi with an ellipsoid centered at

xi, can be formulated as second-order cone programs and solved with an

interior-point method.

A similar model for robust SVM is considered by Caramanis et al. in

Chapter 14, along with other variants involving corrupted labels, missing

4. http://leon.bottou.org/projects/sgd.

1.2 Regularized Optimization 7

data, nonellipsoidal uncertainty sets, and kernelization. This chapter also

explores the connection between robust formulations and the regularization

term ‖w‖22 that appears in (1.1).

As Schmidt et al. note in Chapter 11, omission of the intercept term b from

the formulation (1.1) (which can often be done without seriously affecting

the quality of the classifier) leads to a dual (1.2) with no equality constraint

— it becomes a bound-constrained convex quadratic program. As such, the

problem is amenable to solution by gradient projection methods with second-

order acceleration on the components of α that satisfy the bounds.

Chapter 13, by Bottou and Bousquet, describes application of SGD to

(1.1) and several other machine learning problems. It also places the prob-

lem in context by considering other types of errors that arise in its formu-

lation, namely, the errors incurred by restricting the classifier to a finitely

parametrized class of functions and by using an empirical, discretized ap-

proximation to the objective (obtained by sampling) in place of an assumed

underlying continuous objective. The existence of these other errors obviates

the need to find a highly accurate solution of (1.1).

1.2 Regularized Optimization

A second important theme of this book is finding regularized solutions of

optimization problems originating from learning problems, instead of unreg-

ularized solutions. Though the contexts vary widely, even between different

applications in the machine learning domain, the common thread is that

such regularized solutions generalize better and provide a less complicated

explanation of the phenomena under investigation. The principle of Occam’s

Razor applies: simple explanations of any given set of observations are gen-

erally preferable to more complicated explanations. Common forms of sim-

plicity include sparsity of the variable vector w (that is, w has relatively

few nonzeros) and low rank of a matrix variable W .

One way to obtain simple approximate solutions is to modify the opti-

mization problem by adding to the objective a regularization function (or

regularizer), whose properties tend to favor the selection of unknown vec-

tors with the desired structure. We thus obtain regularized optimization

problems with the following composite form:

minimize
w∈Rn

φγ(w) := f(w) + γr(w), (1.5)

where f is the underlying objective, r is the regularizer, and γ is a non-

negative parameter that weights the relative importances of optimality and

8 Introduction

simplicity. (Larger values of γ promote simpler but less optimal solutions.)

A desirable value of γ is often not known in advance, so it may be necessary

to solve (1.5) for a range of values of γ.

The SVM problem (1.1) is a special case of (1.5) in which f represents the

loss term (containing penalties for misclassified points) and r represents the

regularizer wTw/2, with weighting factor γ = 1/C. As noted above, when

the training data are separable, a “simple” plane is the one that gives the

largest separation between the two labeled sets. In the nonseparable case, it

is not as intuitive to relate “simplicity” to the quantity wTw/2, but we do

see a trade-off between minimizing misclassification error (the f term) and

reducing ‖w‖2.
SVM actually stands in contrast to most regularized optimization prob-

lems in that the regularizer is smooth (though a nonsmooth regularization

term ‖w‖1 has also been considered, for example, by Bradley and Mangasar-

ian, 2000). More frequently, r is a nonsmooth function with simple structure.

We give several examples relevant to machine learning.

In compressed sensing, for example, the regularizer r(w) = ‖w‖1 is

common, as it tends to favor sparse vectors w.

In image denoising, r is often defined to be the total-variation (TV) norm,

which has the effect of promoting images that have large areas of constant

intensity (a cartoonlike appearance).

In matrix completion, where W is a matrix variable, a popular regularizer

is the spectral norm, which is the sum of singular values of W . Analogously

to the �1-norm for vectors, this regularizer favors matrices with low rank.

Sparse inverse covariance selection, where we wish to find an approxima-

tion W to a given covariance matrix Σ such that W−1 is a sparse matrix.

Here, f is a function that evaluates the fit between W and Σ, and r(W) is

a sum of absolute values of components of W .

The well-known LASSO procedure for variable selection (Tibshirani, 1996)

essentially uses an �1-norm regularizer along with a least-squares loss term.

Regularized logistic regression instead uses logistic loss with an �1-

regularizer; see, for example, Shi et al. (2008).

Group regularization is useful when the components of w are naturally

grouped, and where components in each group should be selected (or not

selected) jointly rather than individually. Here, r may be defined as a sum

of �2- or �∞-norms of subvectors of w. In some cases, the groups are non-

overlapping (see Turlach et al., 2005), while in others they are overlapping,

for example, when there is a hierarchical relationship between components

of w (see, for example, Zhao et al., 2009).

1.2 Regularized Optimization 9

1.2.1 Algorithms

Problem (1.5) has been studied intensely in recent years largely in the

context of the specific settings mentioned above; but some of the algorithms

proposed can be extended to the general case. One elementary option is

to apply gradient or subgradient methods directly to (1.5) without taking

particular account of the structure. A method of this type would iterate

wk+1 ← wk − δkgk, where gk ∈ ∂φγ(wk), and δk > 0 is a steplength.

When (1.5) can be formulated as a min-max problem; as is often the

case with regularizers r of interest, the method of Nesterov (2005) can

be used. This method ensures sublinear convergence, where the difference

φγ(wk) − φγ(w
∗) ≤ O(1/k2). Later work (Nesterov, 2009) expands on

the min-max approach, and extends it to cases in which only noisy (but

unbiased) estimates of the subgradient are available. For foundations of this

line of work, see the monograph Nesterov (2004).

A fundamental approach that takes advantage of the structure of (1.5)

solves the following subproblem (the proximity problem) at iteration k:

wk+1 := argmin
w

(w −wk)
T∇f(wk) + γr(w) +

1

2μ
‖w −wk‖22, (1.6)

for some μ > 0. The function f (assumed to be smooth) is replaced by a

linear approximation around the current iterate wk, while the regularizer

is left intact and a quadratic damping term is added to prevent excessively

long steps from being taken. The length of the step can be controlled by

adjusting the parameter μ, for example to ensure a decrease in φγ at each

iteration.

The solution to (1.6) is nothing but the proximity operator for γμr, applied

at the point wk−μ∇f(wk); (see Section 2.3 of Combettes and Wajs, 2005).

Proximity operators are particularly attractive when the subproblem (1.6)

is easy to solve, as happens when r(w) = ‖w‖1, for example. Approaches

based on proximity operators have been proposed in numerous contexts

under different guises and different names, such as “iterative shrinking

and thresholding” and “forward-backward splitting.” For early versions, see

Figueiredo and Nowak (2003), Daubechies et al. (2004), and Combettes and

Wajs (2005). A version for compressed sensing that adjusts μ to achieve

global convergence is the SpaRSA algorithm of Wright et al. (2009). Nesterov

(2007) describes enhancements of this approach that apply in the general

setting, for f with Lipschitz continuous gradient. A simple scheme for

adjusting μ (analogous to the classical Levenberg-Marquardt method for

nonlinear least squares) leads to sublinear convergence of objective function

values at rate O(1/k) when φγ is convex, and at a linear rate when φγ is

10 Introduction

strongly convex. A more complex accelerated version improves the sublinear

rate to O(1/k2).

The use of second-order information has also been explored in some

settings. A method based on (1.6) for regularized logistic regression that

uses second-order information on the reduced space of nonzero components

of w is described in Shi et al. (2008), and inexact reduced Newton steps that

use inexpensive Hessian approximations are described in Byrd et al. (2010).

A variant on subproblem (1.6) proposed by Xiao (2010) applies to prob-

lems of the form (1.5) in which f(w) = EξF (w; ξ). The gradient term in (1.6)

is replaced by an average of unbiased subgradient estimates encountered at

all iterates so far, while the final prox-term is replaced by one centered at

a fixed point. Accelerated versions of this method are also described. Con-

vergence analysis uses regret functions like those introduced by Zinkevich

(2003).

Teo et al. (2010) describe the application of bundle methods to (1.5), with

applications to SVM, �2-regularized logistic regression, and graph matching

problems. Block coordinate relaxation has also been investigated; see, for

example, Tseng and Yun (2009) and Wright (2010). Here, most of the

components ofw are fixed at each iteration, while a step is taken in the other

components. This approach is most suitable when the function r is separable

and when the set of components to be relaxed is chosen in accordance with

the separability structure.

1.2.2 Approaches Discussed in This Book

Several chapters in this book discuss algorithms for solving (1.5) or its

special variants. We outline these chapters below while relating them to

the discussion of the algorithms above.

Bach et al. in Chapter 2 consider convex versions of (1.5) and describe

the relevant duality theory. They discuss various algorithmic approaches,

including proximal methods based on (1.6), active-set/pivoting approaches,

block-coordinate schemes, and reweighted least-squares schemes. Sparsity-

inducing norms are used as regularizers to induce different types of structure

in the solutions. (Numerous instances of structure are discussed.) A com-

putational study of the different methods is shown on the specific problem

φγ(w) = (1/2)‖Aw−b‖22+γ‖w‖1, for various choices of the matrix A with

different properties and for varying sparsity levels of the solution.

In Chapter 7, Franc et al. discuss cutting-plane methods for (1.5), in which

a piecewise-linear lower bound is formed for f , and each iterate is obtained

by minimizing the sum of this approximation with the unaltered regularizer

γr(w). A line search enhancement is considered and application to multiple

1.3 Summary of the Chapters 11

kernel learning is discussed.

Chapter 6, by Juditsky and Nemirovski, describes optimal first-order

methods for the case in which (1.5) can be expressed in min-max form.

The resulting saddle-point is solved for by a method that computes prox-

steps similar to those from the scheme (1.6), but is adapted to the min-max

form and uses generalized prox-terms. This “mirror-prox” algorithm is also

distinguished by generating two sequences of primal-dual iterates and by its

use of averaging. Accelerated forms of the method are also discussed.

In Chapter 18, Krishnamurthy et al. discuss an algorithm for sparse co-

variance selection, a particular case of (1.5). This method takes the dual and

traces the path of solutions obtained by varying the regularization parame-

ter γ, using a predictor-corrector approach. Scheinberg and Ma discuss the

same problem in Chapter 17 but consider other methods, including a coor-

dinate descent method and an alternating linearization method based on a

reformulation of (1.5). This reformulation is then solved by a method based

on augmented Lagrangians, with techniques customized to the application

at hand. In Chapter 9, Tomioka et al. consider convex problems of the form

(1.5) and highlight special cases. Methods based on variable splitting that

use an augmented Lagrangian framework are described, and the relationship

to proximal point methods is explored. An application to classification with

multiple matrix-valued inputs is described.

Schmidt et al. in Chapter 11 consider special cases of (1.5) in which r is

separable. They describe a minimum-norm subgradient method, enhanced

with second-order information on the reduced subspace of nonzero compo-

nents, as well as higher-order versions of methods based on (1.6).

1.3 Summary of the Chapters

The two motivating examples discussed above give an idea of the perva-

siveness of optimization viewpoints and algorithms in machine learning. A

confluence of interests is seen in many other areas, too, as can be gleaned

from the summaries of individual chapters below. (We include additional

comments on some of the chapters discussed above alongside a summary of

those not yet discussed.)

Chapter 2 by Bach et al. has been discussed in Section 1.2.2.

We mentioned above that Chapter 3, by Andersen et al., describes solution

of robust and multiclass variants of the SVM problem of Section 1.1, using

interior-point methods. This chapter contains a wider discussion of conic

programming over the three fundamental convex cones: the nonnegative

orthant, the second-order cone, and the semidefinite cone. The linear algebra

12 Introduction

operations that dominate computation time are considered in detail, and the

authors demonstrate how the Python software package CVXOPT5 can be

used to model and solve conic programs.

In Chapter 4, Bertsekas surveys incremental algorithms for convex opti-

mization, especially gradient, subgradient, and proximal-point approaches.

This survey offers an optimization perspective on techniques that have re-

cently received significant attention in machine learning, such as stochastic

gradients, online methods, and nondifferentiable optimization. Incremental

methods encompass some online algorithms as special cases; the latter may

be viewed as one “epoch” of an incremental method. The chapter connects

many threads and offers a historical perspective along with sufficient tech-

nical details to allow ready implementation.

Chapters 5 and 6 by Juditsky and Nemirovski provide a broad and rig-

orous introduction to the subject of large-scale optimization for nonsmooth

convex problems. Chapter 5 discusses state-of-the-art nonsmooth optimiza-

tion methods, viewing them from a computation complexity framework that

assumes only first-order oracle access to the nonsmooth convex objective of

the problem. Particularly instructive is a discussion on the theoretical limits

of performance of first-order methods; this discussion summarizes lower and

upper bounds on the number of iterations needed to approximately mini-

mize the given objective to within a desired accuracy. This chapter covers

the basic theory for mirror-descent algorithms, and describes mirror descent

in settings such as minimization over simple sets, minimization with nonlin-

ear constraints, and saddle-point problems. Going beyond the “black-box”

settings of Chapter 5, the focus of Chapter 6 is on settings where improved

rates of convergence can be obtained by exploiting problem structure. A

key property of the convergence rates is their near dimension independence.

Potential speedups due to randomization (in the linear algebra operations,

for instance) are also explored.

Chapter 7 and 8 both discuss inference problems involving discrete random

variables that occur naturally in many structured models used in computer

vision, natural language processing, and bioinformatics. The use of discrete

variables allows the encoding of logical relations, constraints, and model

assumptions, but poses significant challenges for inference and learning. In

particular, solving for the exact maximum a posteriori probability state in

these models is typically NP-hard. Moreover, the models can become very

large, such as when each discrete variable represents an image pixel or Web

user; problem sizes of a million discrete variables are not uncommon.

5. http://abel.ee.ucla.edu/cvxopt/.

1.3 Summary of the Chapters 13

As mentioned in Section 1.2, in Chapter 7 Franc et al., discuss cutting-

plane methods for machine learning in a variety of contexts. Two contin-

uous optimization problems are discussed — regularized risk minimization

and multiple kernel learning — both of them solvable efficiently, using cus-

tomized cutting-plane formulations. In the discrete case, the authors dis-

cuss the maximum a posteriori inference problem on Markov random fields,

proposing a dual cutting-plane method.

Chapter 8, by Sontag et al., revisits the successful dual-decomposition

method for linear programming relaxations of discrete inference problems

that arise from Markov random fields and structured prediction problems.

The method obtains its efficiency by exploiting exact inference over tractable

substructures of the original problem, iteratively combining the partial

inference results to reason over the full problem. As the name suggests,

the method works in the Lagrangian dual of the original problem. Decoding

a primal solution from the dual iterate is challenging. The authors carefully

analyze this problem and provide a unified view on recent algorithms.

Chapter 9, by Tomioka et al., considers composite function minimization.

This chapter also derives methods that depend on proximity operators, thus

covering some standard choices such as �1-, �2-, and trace-norms. The key

algorithmic approach shown in the chapter is a dual augmented Lagrangian

method, which is shown under favorable circumstances to converge superlin-

early. The chapter concludes with an application to brain-computer interface

(BCI) data.

In Chapter 10, Hazan reviews online algorithms and regret analysis in

the framework of convex optimization. He extracts the key tools essential

to regret analysis, and casts the description using the regularized follow-

the-leader framework. The chapter provides straightforward proofs for basic

regret bounds, and proceeds to cover recent applications of convex optimiza-

tion in regret minimization, for example, to bandit linear optimization and

variational regret bounds.

Chapter 11, by Schmidt et al., considers Newton-type methods and their

application to machine learning problems. For constrained optimization with

a smooth objective (including bound-constrained optimization), two-metric

projection and inexact Newton methods are described. For nonsmooth

regularized minimization problems the form (1.5), the chapter sketches

descent methods based on minimum-norm subgradients that use second-

order information and variants of shrinking methods based on (1.6).

Chapter 12, by Gondzio, and Chapter 13, by Bottou and Bousquet have

already been summarized in Section 1.1.3.

Chapter 14, by Caramanis et al., addresses an area of growing importance

within machine learning: robust optimization. In such problems, solutions

14 Introduction

are identified that are robust to every possible instantiation of the uncertain

data — even when the data take on their least favorable values. The chapter

describes how to cope with adversarial or stochastic uncertainty arising in

several machine-learning problems. SVM, for instance, allows for a number

of uncertain variants, such as replacement of feature vectors with ellipsoidal

regions of uncertainty. The authors establish connections between robustness

and consistency of kernelized SVMs and LASSO, and conclude the chapter

by showing how robustness can be used to control the generalization error

of learning algorithms.

Chapter 15, by Le Roux et al., points out that optimization problems

arising in machine learning are often proxies for the “real” problem of

minimizing the generalization error. The authors use this fact to explicitly

estimate the uncertain gradient of this true function of interest. Thus, a

contrast between optimization and learning is provided by viewing the

relationship between the Hessian of the objective function and the covariance

matrix with respect to sample instances. The insight thus gained guides the

authors’ proposal for a more efficient learning method.

In Chapter 16, Audibert et al. describe algorithms for optimizing functions

over finite sets where the function value is observed only stochastically.

The aim is to identify the input that has the highest expected value by

repeatedly evaluating the function for different inputs. This setting occurs

naturally in many learning tasks. The authors discuss optimal strategies for

optimization with a fixed budget of function evaluations, as well as strategies

for minimizing the number of function evaluations while requiring a (ε, δ)-

PAC optimality guarantee on the returned solution.

Chapter 17, by Scheinberg and Ma, focuses on sparse inverse covariance

selection (SICS), an important problem that arises in learning with Gaus-

sian Markov random fields. The chapter reviews several of the published ap-

proaches for solving SICS; it provides a detailed presentation of coordinate

descent approaches to SICS and a technique called “alternating lineariza-

tion” that is based on variable splitting (see also Chapter 9). Nesterov-style

acceleration can be used to improve the theoretical rate of convergence.

As is common for most methods dealing with SICS, the bottleneck lies in

enforcing the positive definiteness constraint on the learned variable; some

remarks on numerical performance are also provided.

Chapter 18, by Krishnamurthy et al., also studies SICS, but focuses on

obtaining a full path of solutions as the regularization parameter varies over

an interval. Despite a high theoretical complexity of O(n5), the methods are

reported to perform well in practice, thanks to a combination of conjugate

gradients, scaling, and warm restarting. The method could be a strong

contender for small to medium-sized problems.

1.4 References 15

1.4 References

A. Ben-Tal, L. El Ghaoui, and A. Nemirovski. Robust Optimization. Princeton
University Press, Princeton and Oxford, 2009.

D. P. Bertsekas. Nonlinear Programming. Athena Scientific, Belmont, Mas-
sachusetts, second edition, 1999.

L. Bottou and Y. LeCun. Large-scale online learning. In Advances in Neural
Information Processing Systems, Cambridge, Massachusetts, 2004. MIT Press.

P. S. Bradley and O. L. Mangasarian. Massive data discrimination via linear support
vector machines. Optimization Methods and Software, 13(1):1–10, 2000.

R. H. Byrd, G. M. Chin, W. Neveitt, and J. Nocedal. On the use of stochastic Hes-
sian information in unconstrained optimization. Technical report, Optimization
Technology Center, Northwestern University, June 2010.

N. Christianini and J. Shawe-Taylor. An Introduction to Support Vector Machines
and Other Kernel-Based Learning Methods. Cambridge University Press, New
York, NY, 2000.

P. L. Combettes and V. R. Wajs. Signal recovery by proximal forward-backward
splitting. Multiscale Modeling and Simulation, 4(4):1168–1200, 2005.

Y. H. Dai and R. Fletcher. New algorithms for singly linearly constrained quadratic
programs subject to lower and upper bounds. Mathematical Programming, Series
A, 106:403–421, 2006.

I. Daubechies, M. Defriese, and C. De Mol. An iterative thresholding algorithm for
linear inverse problems with a sparsity constraint. Communications on Pure and
Applied Mathematics, 57(11):1413–1457, 2004.

D. A. D’Esopo. A convex programming procedure. Naval Research Logistics
Quarterly, 6(1):33–42, 1959.

R. Fan, P. Chen, and C. Lin. Working set selection using second-order information
for training SVM. Journal of Machine Learning Research, 6:1889–1918, 2005.

M. C. Ferris and T. S. Munson. Interior-point methods for massive support vector
machines. SIAM Journal on Optimization, 13(3):783–804, 2002.

M. A. T. Figueiredo and R. D. Nowak. An EM algorithm for wavelet-based image
restoration. IEEE Transactions on Image Processing, 12(8):906–916, 2003.

S. Fine and K. Scheinberg. Efficient SVM training using low-rank kernel represen-
tations. Journal of Machine Learning Research, 2:243–264, 2001.

V. Franc and S. Sonnenburg. Optimized cutting plane algorithm for support
vector machines. In Proceedings of the 25th International Conference on Machine
Learning, pages 320–327, New York, NY, 2008. ACM.

E. M. Gertz and S. J. Wright. Object-oriented software for quadratic programming.
ACM Transactions on Mathematical Software, 29(1):58–81, 2003.

T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning
Theory. Series in Statistics. Springer, second edition, 2009.

C. Hildreth. A quadratic programming procedure. Naval Research Logistics
Quarterly, 4(1):79–85, 1957.

T. Joachims. Making large-scale support vector machine learning practical. In
B. Schölkopf, C. J. C. Burges, and A. J. Smola, editors, Advances in Kernel
Methods: Support Vector Learning, chapter 11, pages 169–184. MIT Press, Cam-

16 Introduction

bridge, Massachusetts, 1999.

T. Joachims. Training linear SVMs in linear time. In Proceedings of the 12th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining,
pages 217–226, New York, NY, 2006. ACM Press.

T. Joachims and C.-N. J. Yu. Sparse kernel SVMs via cutting-plane training.
Machine Learning Journal, 76(2–3):179–193, 2009. Special Issue for the European
Conference on Machine Learning.

D. Koller and N. Friedman. Probabilistic Graphical Models: Principles and Tech-
niques. MIT Press, Cambridge, Massachusetts, 2009.

A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro. Robust stochastic approxi-
mation approach to stochastic programming. SIAM Journal on Optimization, 19
(4):1574–1609, 2009.

Y. Nesterov. Introductory Lectures on Convex Optimization: A Basic Course.
Kluwer Academic Publishers, 2004.

Y. Nesterov. Smooth minimization of nonsmooth functions. Mathematical Pro-
gramming, Series A, 103:127–152, 2005.

Y. Nesterov. Gradient methods for minimizing composite objective function. CORE
Discussion Paper 2007/76, CORE, Catholic University of Louvain, September
2007. Revised May 2010.

Y. Nesterov. Primal-dual subgradient methods for convex programs. Mathematical
Programming, Series B, 120(1):221–259, 2009.

J. Nocedal and S. J. Wright. Numerical Optimization. Springer, New York, second
edition, 2006.

E. E. Osuna, R. Freund, and F. Girosi. Support vector machines: Training and
applications. A. I. Memo 1602, Artificial Intelligence Laboratory, Massachusetts
Institute of Technology, March 1997.

J. C. Platt. Fast training of support vector machines using sequential minimal
optimization. In B. Schölkopf, C. J. C. Burges, and A. J. Smola, editors, Ad-
vances in Kernel Methods: Support Vector Learning, pages 185–208, Cambridge,
Massachusetts, 1999. MIT Press.

B. Schölkopf and A. J. Smola. Learning with Kernels. MIT Press, Cambridge,
Massachusetts, 2002.

S. Shalev-Shwartz, Y. Singer, and N. Srebro. Pegasos: Primal Estimated sub-
GrAdient SOlver for SVM. In Proceedings of the 24th International Conference
on Machine Learning, pages 807–814, 2007.

W. Shi, G. Wahba, S. J. Wright, K. Lee, R. Klein, and B. Klein. LASSO-
Patternsearch algorithm with application to ophthalmology data. Statistics and
its Interface, 1:137–153, January 2008.

C. H. Teo, S. V. N. Vishwanathan, A. J. Smola, and Q. V. Le. Bundle methods
for regularized risk minimization. Journal of Machine Learning Research, 11:
311–365, 2010.

R. Tibshirani. Regression shrinkage and selection via the LASSO. Journal of the
Royal Statistical Society, Series B, 58(1):267–288, 1996.

P. Tseng and S. Yun. A coordinate gradient descent method for nonsmooth
separable minimization. Mathematical Programming, Series B, 117:387–423, June
2009.

B. Turlach, W. N. Venables, and S. J. Wright. Simultaneous variable selection.

1.4 References 17

Technometrics, 47(3):349–363, 2005.

V. N. Vapnik. The Nature of Statistical Learning Theory. Statistics for Engineering
and Information Science. Springer, second edition, 1999.

M. J. Wainwright and M. I. Jordan. Graphical Models, Exponential Families, and
Variational Inference. Now Publishers, 2008.

S. J. Wright. Accelerated block-coordinate relaxation for regularized optimiza-
tion. Technical report, Computer Sciences Department, University of Wisconsin-
Madison, August 2010.

S. J. Wright, R. D. Nowak, and M. A. T. Figueiredo. Sparse reconstruction by
separable approximation. IEEE Transactions on Signal Processing, 57:2479–2493,
August 2009.

L. Xiao. Dual averaging methods for regularized stochastic learning and online
optimization. Journal of Machine Learning Research, 11:2543–2596, 2010.

L. Zanni, T. Serafini, and G. Zanghirati. Parallel software for training large scale
support vector machines on multiprocessor systems. Journal of Machine Learning
Research, 7:1467–1492, 2006.

P. Zhao, G. Rocha, and B. Yu. The composite absolute penalties family for grouped
and hierarchical model selection. Annals of Statistics, 37(6A):3468–3497, 2009.

M. Zinkevich. Online convex programming and generalized infinitesimal gradient
ascent. In Proceedings of the 20th International Conference on Machine Learning,
pages 928–936, 2003.

2 Convex Optimization with

Sparsity-Inducing Norms

Francis Bach francis.bach@inria.fr

INRIA - Willow Project-Team

23, avenue d’Italie, 75013 PARIS

Rodolphe Jenatton rodolphe.jenatton@inria.fr

INRIA - Willow Project-Team

23, avenue d’Italie, 75013 PARIS

Julien Mairal julien.mairal@inria.fr

INRIA - Willow Project-Team

23, avenue d’Italie, 75013 PARIS

Guillaume Obozinski guillaume.obozinski@inria.fr

INRIA - Willow Project-Team

23, avenue d’Italie, 75013 PARIS

2.1 Introduction

The principle of parsimony is central to many areas of science: the simplest

explanation of a given phenomenon should be preferred over more compli-

cated ones. In the context of machine learning, it takes the form of variable

or feature selection, and it is commonly used in two situations. First, to make

the model or the prediction more interpretable or computationally cheaper

to use, that is, even if the underlying problem is not sparse, one looks for

the best sparse approximation. Second, sparsity can also be used given prior

knowledge that the model should be sparse.

20 Convex Optimization with Sparsity-Inducing Norms

For variable selection in linear models, parsimony may be achieved directly

by penalization of the empirical risk or the log-likelihood by the cardinality of

the support of the weight vector. However, this leads to hard combinatorial

problems (see, e.g., Tropp, 2004). A traditional convex approximation of

the problem is to replace the cardinality of the support with the �1-norm.

Estimators may then be obtained as solutions of convex programs.

Casting sparse estimation as convex optimization problems has two main

benefits. First, it leads to efficient estimation algorithms—and this chapter

focuses primarily on these. Second, it allows a fruitful theoretical analysis

answering fundamental questions related to estimation consistency, predic-

tion efficiency (Bickel et al., 2009; Negahban et al., 2009), or model con-

sistency (Zhao and Yu, 2006; Wainwright, 2009). In particular, when the

sparse model is assumed to be well specified, regularization by the �1-norm

is adapted to high-dimensional problems, where the number of variables to

learn from may be exponential in the number of observations.

Reducing parsimony to finding the model of lowest cardinality turns

out to be limiting, and structured parsimony has emerged as a natural

extension, with applications to computer vision (Jenatton et al., 2010b),

text processing (Jenatton et al., 2010a) and bioinformatics (Kim and Xing,

2010; Jacob et al., 2009). Structured sparsity may be achieved through

regularizing by norms other than the �1-norm. In this chapter, we focus

primarily on norms which can be written as linear combinations of norms

on subsets of variables (section 2.1.1). One main objective of this chapter

is to present methods which are adapted to most sparsity-inducing norms

with loss functions potentially beyond least squares.

Finally, similar tools are used in other communities such as signal process-

ing. While the objectives and the problem setup are different, the resulting

convex optimization problems are often very similar, and most of the tech-

niques reviewed in this chapter also apply to sparse estimation problems in

signal processing.

This chapter is organized as follows. In section 2.1.1, we present the opti-

mization problems related to sparse methods, and in section 2.1.2, we review

various optimization tools that will be needed throughout the chapter. We

then quickly present in section 2.2 generic techniques that are not best suited

to sparse methods. In subsequent sections, we present methods which are

well adapted to regularized problems: proximal methods in section 2.3, block

coordinate descent in section 2.4, reweighted �2-methods in section 2.5, and

working set methods in section 2.6. We provide quantitative evaluations of

all of these methods in section 2.7.

2.1 Introduction 21

2.1.1 Loss Functions and Sparsity-Inducing Norms

We consider in this chapter convex optimization problems of the form

min
w∈Rp

f(w) + λΩ(w), (2.1)

where f : Rp → R is a convex differentiable function and Ω : Rp → R is a

sparsity-inducing—typically nonsmooth and non-Euclidean—norm.

In supervised learning, we predict outputs y in Y from observations x in X;

these observations are usually represented by p-dimensional vectors, so that

X = R
p. In this supervised setting, f generally corresponds to the empirical

risk of a loss function � : Y × R → R+. More precisely, given n pairs of

data points {(x(i), y(i)) ∈ R
p×Y; i = 1, . . . , n}, we have for linear models

f(w) := 1
n

∑n
i=1 �(y

(i),wTx(i)). Typical examples of loss functions are the

square loss for least squares regression, that is, �(y, ŷ) = 1
2(y− ŷ)2 with y in

R, and the logistic loss �(y, ŷ) = log(1 + e−yŷ) for logistic regression, with y

in {−1, 1}. We refer the reader to Shawe-Taylor and Cristianini (2004) for

a more complete description of loss functions.

When one knows a priori that the solutions w� of problem (2.1) have only

a few non-zero coefficients, Ω is often chosen to be the �1-norm, that is,

Ω(w) =
∑p

j=1 |wj |. This leads, for instance, to the Lasso (Tibshirani, 1996)

with the square loss and to the �1-regularized logistic regression (see, for

instance, Shevade and Keerthi, 2003; Koh et al., 2007) with the logistic loss.

Regularizing by the �1-norm is known to induce sparsity in the sense that a

number of coefficients ofw�, depending on the strength of the regularization,

will be exactly equal to zero.

In some situations, for example, when encoding categorical variables by

binary dummy variables, the coefficients of w� are naturally partitioned in

subsets, or groups, of variables. It is then natural to simultaneously select or

remove all the variables forming a group. A regularization norm explicitly

exploiting this group structure can be shown to improve the prediction

performance and/or interpretability of the learned models (Yuan and Lin,

2006; Roth and Fischer, 2008; Huang and Zhang, 2010; Obozinski et al.,

2010; Lounici et al., 2009). Such a norm might, for instance, take the form

Ω(w) :=
∑
g∈G

dg‖wg‖2, (2.2)

where G is a partition of {1, . . . , p}, (dg)g∈G are positive weights, and wg

denotes the vector in R
|g| recording the coefficients of w indexed by g in G.

Without loss of generality we may assume all weights (dg)g∈G to be equal to

one. As defined in Eq. (2.2), Ω is known as a mixed �1/�2-norm. It behaves

22 Convex Optimization with Sparsity-Inducing Norms

like an �1-norm on the vector (‖wg‖2)g∈G in R
|G|, and therefore Ω induces

group sparsity. In other words, each ‖wg‖2, and equivalently each wg, is

encouraged to be set to zero. On the other hand, within the groups g in G,

the �2-norm does not promote sparsity. Combined with the square loss, it

leads to the group Lasso formulation (Yuan and Lin, 2006). Note that when G

is the set of singletons, we retrieve the �1-norm. More general mixed �1/�q-

norms for q > 1 are also used in the literature (Zhao et al., 2009):

Ω(w) =
∑
g∈G

‖wg‖q :=
∑
g∈G

{∑
j∈g
|wj |q

}1/q

.

In practice, though, the �1/�2- and �1/�∞-settings remain the most popular

ones.

In an attempt to better encode structural links between variables at play

(e.g., spatial or hierarchical links related to the physics of the problem at

hand), recent research has explored the setting where G can contain groups of

variables that overlap (Zhao et al., 2009; Bach, 2008a; Jenatton et al., 2009;

Jacob et al., 2009; Kim and Xing, 2010; Schmidt and Murphy, 2010). In this

case, Ω is still a norm, and it yields sparsity in the form of specific patterns

of variables. More precisely, the solutions w� of problem (2.1) can be shown

to have a set of zero coefficients, or simply zero pattern, that corresponds

to a union of some groups g in G (Jenatton et al., 2009). This property

makes it possible to control the sparsity patterns of w� by appropriately

defining the groups in G. This form of structured sparsity has proved to be

useful notably in the context of hierarchical variable selection (Zhao et al.,

2009; Bach, 2008a; Schmidt and Murphy, 2010), multitask regression of gene

expressions (Kim and Xing, 2010), and the design of localized features in

face recognition (Jenatton et al., 2010b).

2.1.2 Optimization Tools

The tools used in this chapter are relatively basic and should be accessible

to a broad audience. Most of them can be found in classic books on convex

optimization (Boyd and Vandenberghe, 2004; Bertsekas, 1999; Borwein and

Lewis, 2006; Nocedal and Wright, 2006), but for self-containedness, we

present here a few of them related to nonsmooth unconstrained optimization.

2.1 Introduction 23

2.1.2.1 Subgradients

Given a convex function g : Rp → R and a vector w in R
p, let us define the

subdifferential of g at w as

∂g(w) := {z ∈ R
p | g(w)+zT (w′−w) ≤ g(w′) for all vectors w′ ∈ R

p}.
The elements of ∂g(w) are called the subgradients of g at w. This defini-

tion admits a clear geometric interpretation: any subgradient z in ∂g(w)

defines an affine function w′ �→ g(w) + zT (w′ −w) which is tangent to the

graph of the function g. Moreover, there is a bijection (one-to-one corre-

spondence) between such tangent affine functions and the subgradients. Let

us now illustrate how subdifferentials can be useful for studying nonsmooth

optimization problems with the following proposition:

Proposition 2.1 (subgradients at optimality).

For any convex function g : Rp → R, a point w in R
p is a global minimum

of g if and only if the condition 0 ∈ ∂g(w) holds.

Note that the concept of a subdifferential is useful mainly for nonsmooth

functions. If g is differentiable at w, the set ∂g(w) is indeed the singleton

{∇g(w)}, and the condition 0 ∈ ∂g(w) reduces to the classical first-order

optimality condition ∇g(w) = 0. As a simple example, let us consider the

following optimization problem:

min
w∈R

1

2
(x− w)2 + λ|w|.

Applying proposition 2.1 and noting that the subdifferential ∂| · | is {+1}
for w > 0, {−1} for w < 0, and [−1, 1] for w = 0, it is easy to show that the

unique solution admits a closed form called the soft-thresholding operator,

following a terminology introduced by Donoho and Johnstone (1995); it can

be written

w� =

{
0 if |x| ≤ λ

(1− λ
|x|)x otherwise.

(2.3)

This operator is a core component of many optimization techniques for

sparse methods, as we shall see later.

2.1.2.2 Dual Norm and Optimality Conditions

The next concept we introduce is the dual norm, which is important to

the study of sparsity-inducing regularizations (Jenatton et al., 2009; Bach,

2008a; Negahban et al., 2009). It arises notably in the analysis of estimation

24 Convex Optimization with Sparsity-Inducing Norms

bounds (Negahban et al., 2009) and in the design of working-set strategies,

as will be shown in section 2.6. The dual norm Ω∗ of the norm Ω is defined

for any vector z in R
p by

Ω∗(z) := max
w∈Rp

zTw such that Ω(w) ≤ 1.

Moreover, the dual norm of Ω∗ is Ω itself, and as a consequence, the formula

above also holds if the roles of Ω and Ω∗ are exchanged. It is easy to show

that in the case of an �q-norm, q ∈ [1; +∞], the dual norm is the �q′-norm,

with q′ in [1;+∞] such that 1
q +

1
q′ = 1. In particular, the �1- and �∞-norms

are dual to each other, and the �2-norm is self-dual (dual to itself).

The dual norm plays a direct role in computing optimality conditions of

sparse regularized problems. By applying proposition 2.1 to equation (2.1),

a little calculation shows that a vector w in R
p is optimal for equation (2.1)

if and only if − 1
λ∇f(w) ∈ ∂Ω(w) with

∂Ω(w) =

{
{z ∈ R

p; Ω∗(z) ≤ 1} if w = 0,

{z ∈ R
p; Ω∗(z) ≤ 1 and zTw = Ω(w)} otherwise.

(2.4)

As a consequence, the vector 0 is a solution if and only if Ω∗(∇f(0)
) ≤ λ.

These general optimality conditions can be specified to the Lasso prob-

lem (Tibshirani, 1996), also known as basis pursuit (Chen et al., 1999):

min
w∈Rp

1

2
‖y −Xw‖22 + λ‖w‖1, (2.5)

where y is in R
n, and X is a design matrix in R

n×p. From equation (2.4)

and since the �∞-norm is the dual of the �1-norm, we obtain that necessary

and sufficient optimality conditions are

∀j = 1, . . . , p,

{
|XT

j (y −Xw)| ≤ λ if wj = 0,

XT
j (y −Xw) = λ sgn(wj) if wj �= 0,

(2.6)

where Xj denotes the jth column of X, and wj the jth entry of w. As we

will see in section 2.6.1, it is possible to derive interesting properties of the

Lasso from these conditions, as well as efficient algorithms for solving it. We

have presented a useful duality tool for norms. More generally, there exists

a related concept for convex functions, which we now introduce.

2.1.2.3 Fenchel Conjugate and Duality Gaps

Let us denote by f∗ the Fenchel conjugate of f (Rockafellar, 1997), defined by

f ∗(z) := sup
w∈Rp

[zTw − f(w)].

2.1 Introduction 25

The Fenchel conjugate is related to the dual norm. Let us define the indicator

function ιΩ such that ιΩ(w) is equal to 0 if Ω(w) ≤ 1 and +∞ otherwise.

Then ιΩ is a convex function and its conjugate is exactly the dual norm Ω∗.
For many objective functions, the Fenchel conjugate admits closed forms,

and therefore can be computed efficiently (Borwein and Lewis, 2006). Then

it is possible to derive a duality gap for problem (2.1) from standard Fenchel

duality arguments (see Borwein and Lewis, 2006), as shown below.

Proposition 2.2 (duality for problem (2.1)).

If f∗ and Ω∗ are respectively the Fenchel conjugate of a convex and differ-

entiable function f , and the dual norm of Ω, then we have

max
z∈Rp: Ω∗(z)≤λ

−f∗(z) ≤ min
w∈Rp

f(w) + λΩ(w). (2.7)

Moreover, equality holds as soon as the domain of f has a non-empty

interior.

Proof. This result is a specific instance of theorem 3.3.5 in Borwein and

Lewis (2006). In particular, we use the facts that (a) the conjugate of a

norm Ω is the indicator function ιΩ∗ of the unit ball of the dual norm Ω∗,
and that (b) the subdifferential of a differentiable function (here, f) reduces

to its gradient.

If w� is a solution of equation (2.1), and w, z in R
p are such that

Ω∗(z) ≤ λ, this proposition implies that we have

f(w) + λΩ(w) ≥ f(w�) + λΩ(w�) ≥ −f∗(z). (2.8)

The difference between the left and right terms of equation (2.8) is called

a duality gap. It represents the difference between the value of the primal

objective function f(w) + λΩ(w) and a dual objective function −f∗(z),
where z is a dual variable. The proposition says that the duality gap for a

pair of optima w� and z� of the primal and dual problem is equal to zero.

When the optimal duality gap is zero, we say that strong duality holds.

Duality gaps are important in convex optimization because they provide

an upper bound on the difference between the current value of an objective

function and the optimal value which allows setting proper stopping criteria

for iterative optimization algorithms. Given a current iterate w, computing

a duality gap requires choosing a “good” value for z (and in particular

a feasible one). Given that at optimality, z(w�) = ∇f(w�) is the unique

solution to the dual problem, a natural choice of dual variable is z =

min
(
1, λ

Ω∗(∇f(w))

)∇f(w), which reduces to z(w�) at the optimum and

therefore yields a zero duality gap at optimality.

26 Convex Optimization with Sparsity-Inducing Norms

Note that in most formulations we will consider, the function f is of the

form f(w) = ψ(Xw) with ψ : Rn → R, and X is a design matrix; typically,

the Fenchel conjugate of ψ is easy to compute, whereas the design matrix

X makes it hard1 to compute f∗. In that case, (2.1) can be rewritten as

min
w∈Rp,u∈Rn

ψ(u) + λ Ω(w) s.t. u = Xw, (2.9)

and equivalently as the optimization of the Lagrangian

min
w∈Rp,u∈Rn

max
α∈Rn

(
ψ(u)− λαTu

)
+ λ

(
Ω(w) +αTXw

)
, (2.10)

which is obtained by introducing the Lagrange multiplier α. The correspond-

ing Fenchel dual2 is then

max
α∈Rn

−ψ∗(λα) such that Ω∗(XTα) ≤ λ, (2.11)

which does not require any inversion of X.

2.2 Generic Methods

The problem defined in equation (2.1) is convex as soon as both the loss f

and the regularizer Ω are convex functions. In this section, we consider opti-

mization strategies which are essentially blind to problem structure, namely,

subgradient descent (e.g., see Bertsekas, 1999), which is applicable under

weak assumptions, and interior-point methods solving reformulations such as

linear programs (LP), quadratic programs (QP) or, more generally, second-

order cone programming (SOCP) or semidefinite programming (SDP) prob-

lems (e.g., see Boyd and Vandenberghe, 2004). The latter strategy is usually

possible only with the square loss and makes use of general-purpose opti-

mization toolboxes.

2.2.1 Subgradient descent

For all convex unconstrained problems, subgradient descent can be used as

soon as one subgradient can be computed efficiently. In our setting, this is

possible when a subgradient of the loss f , and a subgradient of the regularizer

Ω can be computed. This is true for all classical settings, and leads to the

1. It would require computing the pseudo-inverse of X.
2. Fenchel conjugacy naturally extends to this case (for more details see Borwein and
Lewis, 2006, theorem 3.3.5).

2.3 Proximal Methods 27

iterative algorithm

wt+1 = wt − α

t
(s+ λs′), where s ∈ ∂f(wt), s′ ∈ ∂Ω(wt)

with α a positive parameter. These updates are globally convergent. More

precisely, we have, from Nesterov (2004), F (wt)−minw∈Rp F (w) = O(1√
t
).

However, the convergence is in practice slow (i.e., many iterations are

needed), and the solutions obtained are usually not sparse. This is to be

contrasted with the proximal methods presented in the next section, which

are less generic but more adapted to sparse problems.

2.2.2 Reformulation as LP, QP, SOCP, or SDP

For all the sparsity-inducing norms we consider in this chapter, the corre-

sponding regularized least-squares problem can be represented by standard

mathematical programming problems, all of them being SDPs, and often

simpler (e.g., QP). For example, for the �1-norm regularized least-squares

regression, we can reformulate minw∈Rp
1
2n‖y −Xw‖22 + λΩ(w) as

min
w+,w−∈Rp

+

1

2n
‖y −Xw+ +Xw−‖22 + λ(1	w+ + 1	w−),

which is a quadratic program. Other problems can be cast similarly (for the

trace-norm, see Fazel et al., 2001; Bach, 2008b).

General-purpose toolboxes can then be used to get solutions with high

precision (low duality gap). However, in the context of machine learning,

this is inefficient for two reasons: (1) these toolboxes are generic and blind

to problem structure and tend to be too slow, or cannot even run because

of memory problems; (2) as outlined by Bottou and Bousquet (2007), high

precision is not necessary for machine learning problems, and a duality gap

of the order of machine precision (which would be a typical result from

toolboxes) is not necessary.

2.3 Proximal Methods

2.3.1 Principle of Proximal Methods

Proximal methods are specifically tailored to optimize an objective of the

form (2.1), that is, an objective which can be written as the sum of a generic

differentiable function f with Lipschitz gradient, and a non-differentiable

function λΩ. They have drawn increasing attention in the machine learning

community, especially because of their convergence rates (optimal for the

28 Convex Optimization with Sparsity-Inducing Norms

class of first-order techniques) and their ability to deal with large nonsmooth

convex problems (e.g., Nesterov 2007; Beck and Teboulle 2009; Wright et al.

2009; Combettes and Pesquet 2010).

Proximal methods can be described as follows. At each iteration the

function f is linearized around the current point and a problem of the form

min
w∈Rp

f(wt)+∇f(wt)T (w −wt) + λΩ(w) +
L

2
‖w −wt‖22 (2.12)

is solved. The quadratic term, called the proximal term, keeps the update

in a neighborhood of the current iterate wt where f is close to its linear

approximation; L> 0 is a parameter which should essentially be an upper

bound on the Lipschitz constant of ∇f and is typically set with a line search.

This problem can be rewritten as

min
w∈Rp

1

2
‖w − (wt − 1

L∇f(wt)
)‖22 + λ

LΩ(w). (2.13)

It should be noted that when the nonsmooth term Ω is not present, the

solution of (2.13) just yields the standard gradient update rule wt+1 ←
wt − 1

L∇f(wt). Furthermore, if Ω is the indicator function of a set ιC , that

is, defined by ιC(x) = 0 for x ∈ C and ιC(x) = +∞ otherwise, then solving

(2.13) yields the projected gradient update with projection on the set C. This

suggests that the solution of the proximal problem provides an interesting

generalization of gradient updates, and motivates the introduction of the

notion of a proximal operator associated with the regularization term λΩ.

The proximal operator, which we will denote as ProxμΩ, was defined by

Moreau (1962) as the function that maps a vector u ∈ R
p to the unique3

solution of

min
w∈Rp

1

2
‖u−w‖2 + μΩ(w). (2.14)

This operator is clearly central to proximal methods since their main step

consists in computing Prox λ

L
Ω

(
wt − 1

L∇f(wt)
)
.

In section 2.3.3, we present analytical forms of proximal operators asso-

ciated with simple norms and algorithms to compute them in some more

elaborate cases.

2.3.2 Algorithms

The basic proximal algorithm uses the solution of problem (2.13) as the

next update wt+1; however, fast variants such as the accelerated algorithm

3. Because the objective is strongly convex.

2.3 Proximal Methods 29

presented in Nesterov (2007) or FISTA (Beck and Teboulle, 2009) maintain

two variables and use them to combine the solution of (2.13) with informa-

tion about previous steps. Often, an upper bound on the Lipschitz constant

of ∇f is not known, and even if it is, it is often better to obtain a local

estimate. A suitable value for L can be obtained by iteratively increasing L

by a constant factor until the condition

f(w�
L) ≤ML

f (w
t,w�

L) := f(wt)+∇f(wt)T (w�
L−wt)+ L

2 ‖w�
L−wt‖22 (2.15)

is met, where w�
L denotes the solution of (2.13).

For functions f whose gradients are Lipschitz, the basic proximal algo-

rithm has a global convergence rate in O(1t) where t is the number of itera-

tions of the algorithm. Accelerated algorithms like FISTA can be shown to

have global convergence rate in O(1
t2). Perhaps more important, both basic

(ISTA) and accelerated (Nesterov, 2007) proximal methods are adaptive in

the sense that if f is strongly convex—and the problem is therefore better

conditioned—the convergence is actually linear (i.e., with rates in O(Ct) for

some constant C < 1; see Nesterov 2007). Finally, it should be noted that

accelerated schemes are not necessarily descent algorithms, in the sense that

the objective does not necessarily decrease at each iteration in spite of the

global convergence properties.

2.3.3 Computing the Proximal Operator

Computing the proximal operator efficiently and exactly is crucial to enjoy-

ing the fast convergence rates of proximal methods. We therefore focus here

on properties of this operator and on its computation for several sparsity-

inducing norms.

Dual proximal operator. In the case where Ω is a norm, by Fenchel duality

the following problem is dual (see proposition 2.2) to problem (2.13):

max
v∈Rp

−1

2

[‖v − u‖22 − ‖u‖2
]

such that Ω∗(v) ≤ μ. (2.16)

Lemma 2.3 (Relation to dual proximal operator). Let ProxμΩ be the

proximal operator associated with the regularization μΩ, where Ω is a norm,

and let Proj{Ω∗(·)≤μ} be the projector on the ball of radius μ of the dual

norm Ω∗. Then Proj{Ω∗(·)≤μ} is the proximal operator for the dual problem

(2.16) and, denoting the identity Id, these two operators satisfy the relation

ProxμΩ = Id − Proj{Ω∗(·)≤μ}. (2.17)

Proof.By proposition 2.2, if w� is optimal for (2.14) and v� is optimal for

30 Convex Optimization with Sparsity-Inducing Norms

(2.16), we have4 −v� = ∇f(w�) = w� − u. Since v� is the projection of u

on the ball of radius μ of the norm Ω∗, the result follows.

This lemma shows that the proximal operator can always be computed as

the residual of a projection on a convex set.

�1-norm regularization. Using optimality conditions for (2.16) and then

(2.17) or subgradient condition (2.4) applied to (2.14), it is easy to check

that Proj{‖·‖∞≤μ} and Proxμ‖·‖1
respectively satisfy

[
Proj{‖·‖∞≤μ}(u)

]
j
= min

(
1, μ

|uj |
)
uj and

[
Proxμ‖·‖1

(u)
]
j
=
(
1− μ

|uj |
)
+
uj ,

for j ∈ {1, . . . , p}, with (x)+ := max(x, 0). Note that Proxμ‖·‖1
is com-

ponentwise the soft-thresholding operator of Donoho and Johnstone (1995)

presented in section 2.1.2.

�1-norm constraint. Sometimes, the �1-norm is used as a hard constraint

and, in that case, the optimization problem is

min
w

f(w) such that ‖w‖1 ≤ C.

This problem can still be viewed as an instance of (2.1), with Ω defined

by Ω(u) = 0 if ‖u‖1 ≤ C and Ω(u) = +∞ otherwise. Proximal methods

thus apply, and the corresponding proximal operator is the projection on

the �1-ball, for which efficient pivot algorithms with linear complexity have

been proposed (Brucker, 1984; Maculan and Galdino de Paula Jr, 1989).

�1/�q-norm (“group Lasso”). If G is a partition of {1, . . . , p}, the dual norm
of the �1/�q-norm is the �∞/�q′-norm, with 1

q +
1
q′ =1. It is easy to show that

the orthogonal projection on a unit �∞/�q′ ball is obtained by projecting

each subvector ug separately on a unit �q′-ball in R
|g|. For the �1/�2-norm

Ω : w �→∑g∈G ‖wg‖2 we have

[ProxμΩ(u)]g =
(
1− λ

‖ug‖2
)
+
ug, g ∈ G.

This is shown easily by considering that the subgradient of the �2-norm is

∂‖w‖2 =
{

w
‖w‖2

}
if w �= 0 or ∂‖w‖2 = {z | ‖z‖2 ≤ 1} if w = 0 and by

applying the result of (2.4).

For the �1/�∞-norm, whose dual norm is the �∞/�1-norm, an efficient

algorithm to compute the proximal operator is based on (2.17). Indeed,

4. The dual variable from Fenchel duality is −v in this case.

2.3 Proximal Methods 31

this equation indicates that the proximal operator can be computed on each

group g as the residual of a projection on an �1-norm ball in R
|g|; the latter

is done efficiently with the previously mentioned linear-time algorithms.

In general, the case where groups overlap is more complicated because the

regularization is no longer separable. Nonetheless, in some cases it is still

possible to compute the proximal operator efficiently.

Hierarchical �1/�q-norms. Hierarchical norms were proposed by Zhao et al.

(2009). Following Jenatton et al. (2010a), we focus on the case of a norm

Ω : w �→ ∑
g∈G ‖wg‖q, with q ∈ {2,∞}, where the set of groups G is tree-

structured, meaning either that two groups are disjoint or that one is included

in the other. Let � be a total order such that g1 � g2 if and only if either

g1 ⊂ g2 or g1 ∩ g2 = ∅.5 Then, if g1 � . . . � gm with m = |G|, and if we

define Πg as (a) the proximal operator wg �→ Proxμ‖·‖q
(wg) on the subspace

corresponding to group g, and (b) as the identity on the orthogonal, it can

be shown (Jenatton et al., 2010a) that

ProxμΩ = Πgm ◦ . . . ◦Πg1 . (2.18)

In other words, the proximal operator associated with the norm can be ob-

tained as the composition of the proximal operators associated to individual

groups, provided that the ordering of the groups is well chosen. Note that

this result does not hold for q /∈ {1, 2,∞}.
Combined �1 + �1/�q-norm (sparse group Lasso). The possibility of com-

bining an �1/�q-norm that takes advantage of sparsity at the group level

with an �1-norm that induces sparsity within the groups is quite natural

(Friedman et al., 2010; Sprechmann et al., 2010). Such regularizations are in

fact a special case of the hierarchical �1/�q-norms presented above, and the

corresponding proximal operator is therefore readily computed by applying

soft-thresholding and then group soft-thresholding.

Overlapping �1/�∞-norms.When the groups overlap but do not have a tree

structure, computing the proximal operator has proved to be more difficult,

but it can still be done efficiently when q =∞. Indeed, as shown by Mairal

et al. (2010), there exists a dual relation between such an operator and a

quadratic min-cost flow problem on a particular graph, which can be tackled

using network flow optimization techniques.

5. For a tree-structured G such an order exists.

32 Convex Optimization with Sparsity-Inducing Norms

2.4 (Block) Coordinate Descent Algorithms

Coordinate descent algorithms solving �1-regularized learning problems go

back to Fu (1998). They optimize (exactly or approximately) the objective

with respect to one variable at a time while all others are kept fixed.

2.4.1 Coordinate Descent for �1-Regularization

We first consider the following special case of an �1-regularized problem:

min
w∈R

1

2
(w − w0)

2 + λ|w|. (2.19)

As shown in (2.3), w� can be obtained by soft-thresholding :

w� = Proxλ |·|(w0) :=
(
1− λ

|w0|
)
+
w0 (2.20)

2.4.1.1 Lasso Case

In the case of the least-square loss, the minimization with respect to a single

coordinate can be written as

min
wj∈R

∇jf(w
t) (wj −wt

j) +
1

2
∇2

jj f(w
t)(wj −wt

j)
2 + λ|wj |,

with ∇jf(w) = XT
j (Xw − y) and ∇2

jjf(w) = XT
j Xj independent of w.

Since the above equation is of the form (2.19), it is solved in closed form:

w�
j = Proxλ|·|

(
wt

j −∇jf(w
t
j)/∇2

jjf
)
. (2.21)

In words, w�
j is obtained by solving the unregularized problem with respect

to coordinate j and soft-thresholding the solution.

This is the update proposed in the shooting algorithm of Fu (1998), which

cycles through all variables in a fixed order.6

An efficient implementation is obtained if the quantity Xw − y or even

better ∇f(wt) = XTXw −XTy is kept updated.7

6. Coordinate descent with a cyclic order is sometimes called the Gauss-Seidel procedure.
7. In the former case, at each iteration, Xw − y can be updated in Θ(n) operations if
wj changes and ∇jt+1f(w) can always be updated in Θ(n) operations. The complexity of
one cycle is therefore O(pn). However, a better complexity is obtained in the latter case,
provided the matrix XTX is precomputed (with complexity O(p2n)). Indeed, ∇f(wt) is
updated in Θ(p) iterations only if wj does not stay at 0. Otherwise, if wj stays at 0, the
step costs O(1); the complexity of one cycle is therefore Θ(ps) where s is the number of
non-zero variables at the end of the cycle.

2.4 (Block) Coordinate Descent Algorithms 33

2.4.1.2 Smooth loss

For more general smooth losses, such as the logistic loss, the optimization

with respect to a single variable cannot be solved in closed form. It is

possible to solve it numerically, using a sequence of modified Newton steps as

proposed by Shevade and Keerthi (2003). We present here a fast algorithm

of Tseng and Yun (2009) based on solving just a quadratic approximation

of f with an inexact line search at each iteration.

Given d = w�
j − wt

j where w�
j is the solution of (2.21), a line search is

performed to choose the largest step of the form αkd with α ∈ (0, 1), k ∈ N,

such that the following modified Armijo condition is satisfied:

F (wt + αdej)− F (wt) ≤ σα
(∇jf(w)d+ |wt

j + d| − |wt
j |
)

where F (w) := f(w)+λΩ(w) and σ < 1. Tseng and Yun (2009) show that

if f is continuously differentiable and if H t has a uniformly upper and lower

bounded spectrum, the sequence generated by the algorithm is decreasing

and its cluster points are stationary points of F . It should be noted that the

algorithm generalizes to separable regularizations other than the �1-norm.

Variants of coordinate descent algorithms have also been considered by

Genkin et al. (2007), by Krishnapuram et al. (2005), and by Wu and

Lange (2008). Generalizations based on the Gauss-Southwell rule have been

considered by Tseng and Yun (2009).

2.4.2 Block Coordinate Descent for �1/�2-Regularization

When Ω(w) is the �1/�2-norm with groups g ∈ G forming a partition of

{1, . . . , p}, the previous methods are generalized by block coordinate descent

(BCD) algorithms, and in particular the algorithm of Tseng and Yun (2009)

generalizes easily to that case.

Specifically, at each iteration the BCD generalization solves a problem of

the form

min
wg∈R|g|

∇gf(w
t)T (wg−wt

g)+
1

2
(wg−wt

g)
THgg(wg−wt

g)+λ‖wg‖2, (2.22)

where Hgg equals or approximates8 ∇2
ggf(w

t). The above problem is solved

in closed form if Hgg = hggI|g|, in which case the solution w�
g is obtained by

8. It is, however, not required to have good approximation properties of Hgg to obtain
convergence guarantees for the algorithm.

34 Convex Optimization with Sparsity-Inducing Norms

group soft-thresholding of the Newton step:

w�
g = Proxλ ‖·‖2

(
wt

g−h−1
gg ∇gf(w

t
g)
)

with Proxλ ‖·‖2
(w) =

(
1− λ

‖w‖2
)
+
w.

In univariate learning problems regularized by the �1/�2-norm, and for the

square loss, it is common to orthonormalize the set of variables belonging

to a given group (Yuan and Lin, 2006; Wu and Lange, 2008), in which case

it is natural to choose Hgg = ∇2
ggf(w

t) = I|g|. If Hgg is not a multiple of

the identity, the solution of (2.22) can be found by replacing λ‖wg‖2 with

λ′‖wg‖22 in (2.22), which yields an analytic solution; it is then a standard

result in optimization that there exists a value of λ′—which can be found

by binary search—such that the obtained solution also solves (2.22). More

simply, it is sufficient to choose Hgg = hggI|g| with hgg an approximation of

the largest eigenvalue of ∇2
ggf(w

t).9

In the case of general smooth losses, the descent direction is given by

d = w�
g − wt

g with w�
g as above and with a stepsize chosen to satisfy the

modified Armijo rule

F (wt + αd)− F (wt) ≤ σα
(∇gf(w)Td+ ‖wt

g + d‖2 − ‖wt
g‖
)
.

2.5 Reweighted-�2 Algorithms

Approximating a nonsmooth or constrained optimization problem by a series

of smooth unconstrained problems is common in optimization (see, e.g.,

Nesterov, 2005; Boyd and Vandenberghe, 2004; Nocedal and Wright, 2006).

In the context of objective functions regularized by sparsity-inducing norms,

it is natural to consider variational formulations of these norms in terms

of squared �2-norms, since many efficient methods are available to solve �2-

regularized problems (e.g., linear system solvers for least-squares regression).

In this section, we show on our motivating example of sums of �2-norms

of subsets how such formulations arise (see, e.g., Argyriou et al., 2007;

Rakotomamonjy et al., 2008; Jenatton et al., 2010b; Daubechies et al., 2010).

9. This can be done easily for joint feature selection in multitask learning, since in that
case the Hessian ∇2

ggf(w
t) is diagonal (Obozinski et al., 2010).

2.5 Reweighted-�2 Algorithms 35

2.5.1 Variational Formulation for Sums of �2-Norms

A simple application of the Cauchy-Schwarz inequality and the inequality√
ab ≤ 1

2(a+ b) leads to

Ω(w) =
∑
g∈G

‖wg‖2 = 1

2
min

∀g∈G, ηg�0

∑
g∈G

{‖wg‖22
ηg

+ ηg

}
=

1

2
min

∀g∈G, ηg�0

{ p∑
j=1

(∑
g∈G,j∈g

η−1
g

)
w2

j +
∑
g∈G

ηg

}
,

with equality if and only if ∀g ∈ G, ηg = ‖wg‖2 (Argyriou et al., 2007;

Rakotomamonjy et al., 2008; Jenatton et al., 2010b). In the case of the

�1-norm, it simplifies to
∑p

j=1 |wj| = 1
2 minη�0

∑p
j=1

{w2
j

ηj
+ ηj

}
.

The variational formulation we presented in the previous proposition

allows us to consider the following function H(w,η) defined as

H(w,η) = f(w) +
λ

2

p∑
j=1

{ ∑
g∈G,j∈g

η−1
g

}
w2

j +
λ

2

∑
g∈G

ηg.

It is jointly convex in (w,η); the minimization with respect to η can be

done in closed form, and the optimum is equal to F (w) = f(w) + λΩ(w);

as for the minimization with respect to w, it is an �2-regularized problem.

Unfortunately, the alternating minimization algorithm that is immediately

suggested is not convergent in general, because the function H is not

continuous (in particular around η, which has zero coordinates). In order to

make the algorithm convergent, two strategies are usually used:

Smoothing : we can add a term of the form ε
2

∑
g∈G η−1

g , which yields a

joint cost function with compact level sets on the set of positive numbers.

Alternating minimization algorithms are then convergent (as a consequence

of general results on block coordinate descent), and have two different

iterations: (1) minimization with respect to η in closed form, through

ηg = (‖wg‖2 + ε), and (2) minimization with respect to w, which is an

�2-regularized problem which can be, for example, solved in closed form for

the square loss. Note, however, that the second problem does not need to

be optimized exactly at all iterations.

First-order method in η: While the joint cost function H(η,w) is not

continuous, the function I(η) = minw∈Rp H(w,η) is continuous and, under

general assumptions, is continuously differentiable; it is thus amenable to

first-order methods (e.g., proximal methods, gradient descent). When the

groups in G do not overlap, one sufficient condition is that the function f(w)

is of the form f(w) = ψ(Xw), where X ∈ R
n×p is any matrix (typically the

36 Convex Optimization with Sparsity-Inducing Norms

design matrix), and ψ is a strongly convex function on R
n. This strategy is

particularly interesting when evaluating I(η) is computationally cheap.

2.6 Working-Set Methods

Working-set algorithms address optimization problems by solving an increas-

ing sequence of small subproblems of (2.1). The working set, which we will

denote as J , refers to the subset of variables involved in the optimization of

these subproblems.

Working-set algorithms proceed as follows: after computing a solution to

the problem restricted to the variables in J , global optimality is checked to

determine whether the algorithm has to continue. If it does, new variables

enter the working set J according to a strategy that has to be defined. Note

that we consider only forward algorithms, that is, those where the working

set grows monotonically. In other words, there are no backward steps where

variables would be allowed to leave the set J . Provided this assumption

is met, it is easy to see that these procedures stop in a finite number of

iterations.

This class of algorithms takes advantage of sparsity from a computational

point of view (Lee et al., 2007; Szafranski et al., 2007; Bach, 2008a; Roth

and Fischer, 2008; Obozinski et al., 2010; Jenatton et al., 2009; Schmidt and

Murphy, 2010), since the subproblems that need to be solved are typically

much smaller than the original one.

Working-set algorithms require three ingredients:

Inner-loop solver : At each iteration of the working-set algorithm, prob-

lem (2.1) has to be solved on J , that is, subject to the additional equality

constraint that wj = 0 for all j in Jc:

min
w∈Rp

f(w) + λΩ(w), such that wJc = 0. (2.23)

The computation can be performed by any of the methods presented in

this chapter. Working-set algorithms should therefore be viewed as “meta-

algorithms”. Since solutions for successive working sets are typically close

to each other, the approach is efficient if the method chosen can use warm-

restarts.

Computing the optimality conditions: Given a solution w� of prob-

lem (2.23), it is then necessary to check whether w� is also a solution

for the original problem (2.1). This test relies on the duality gaps of prob-

lems (2.23) and (2.1). In particular, if w� is a solution of problem (2.23), it

2.6 Working-Set Methods 37

follows from proposition 2.2 in section 2.1.2 that

f(w�) + λΩ(w�) + f∗(∇f(w�)) = 0.

In fact, the Lagrangian parameter associated with the equality constraint

ensures the feasibility of the dual variable formed from the gradient of f

at w�. In turn, this guarantees that the duality gap of problem (2.23)

vanishes. The candidate w� is now a solution of the full problem (2.1),

that is, without the equality constraint, if and only if

Ω∗(∇f(w�)) ≤ λ. (2.24)

Condition (2.24) points out that the dual norm Ω∗ is a key quantity

to monitor the progress of the working-set algorithm (Jenatton et al.,

2009). In simple settings, for instance, when Ω is the �1-norm, checking

condition (2.24) can be easily computed since Ω∗ is just the �∞-norm. In

this case, condition (2.24) becomes

|[∇f(w�)]j| ≤ λ, for all j in {1, . . . , p}.
Note that by using the optimality of problem (2.23), the components of the

gradient of f indexed by J are already guaranteed to be no greater than λ.

For more general sparsity-inducing norms with overlapping groups of vari-

ables (see section 2.1.1), the dual norm Ω∗ can no longer be computed eas-

ily, prompting the need for approximations and upper bounds of Ω∗ (Bach,

2008a; Jenatton et al., 2009; Schmidt and Murphy, 2010).

Strategy for the growth of the working set : If condition (2.24) is not satisfied

for the current working set J , some inactive variables in Jc have to become

active. This point raises the questions of how many variables and how these

variables should be chosen.

First, depending on the structure of Ω, one or a group of inactive variables

have to be considered to enter the working set. Furthermore, one natural

way to proceed is to look at the variables that violate condition (2.24) most.

In the example of �1-regularized least-squares regression with normalized

predictors, this strategy amounts to selecting the inactive variable that has

the highest correlation with the current residual.

The working-set algorithms we have described so far aim at solving

problem (2.1) for a fixed value of the regularization parameter λ. However,

for specific types of loss and regularization functions, the set of solutions of

problem (2.1) can be obtained efficiently for all possible values of λ, which

is the topic of the next section.

38 Convex Optimization with Sparsity-Inducing Norms

0 0.1 0.2 0.3 0.4 0.5 0.6

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Regularization parameter
w

ei
gh

ts

Figure 2.1: The weights w�(λ) are represented as functions of the regularization
parameter λ. When λ increases, more and more coefficients are set to zero. These
functions are all piecewise linear.

2.6.1 LARS - Homotopy

We present in this section an active-set method for solving the Lasso

problem (Tibshirani, 1996) of equation (2.5). Active-set and working-set

methods are very similar; they differ in that active-set methods allow

variables returning to zero to exit the set. The problem of the Lasso is,

again,

min
w∈Rp

1

2
‖y −Xw‖22 + λ‖w‖1, (2.25)

where y is in R
n, and X is a design matrix in R

n×p. Even though generic

working-set methods introduced above could be used to solve this formu-

lation, a specific property of the �1-norm associated with a quadratic loss

makes it possible to address it more efficiently.

Under mild assumptions (which we will detail later), the solution of equa-

tion (2.25) is unique, and we denote it by w�(λ). We apply the term regular-

ization path to the function λ �→ w�(λ) that associates to a regularization

parameter λ the corresponding solution. We will show that this function

is piecewise linear, a behavior illustrated in figure 2.1, where the entries of

w�(λ) for a particular instance of the Lasso are represented as functions of

λ.

An efficient algorithm can thus be constructed by choosing a particular

value of λ for which finding this solution is trivial, and by following the

piecewise linear path, computing the directions of the current linear parts

and the points where the direction changes (also known as kinks). This

2.6 Working-Set Methods 39

piecewise linearity was first discovered and exploited by Markowitz (1952)

in the context of portfolio selection; revisited by Osborne et al. (2000), who

described a homotopy algorithm; and popularized by Efron et al. (2004) with

the LARS algorithm.

Let us show how to construct the path. From the optimality conditions

presented in equation (2.6), denoting the set of active variables by J :=

{j; |XT
j (y − Xw�)| = λ}, and defining the vector ε in {−1; 0; 1}p as

ε := sgn
(
XT (y −Xw�)

)
, we have the closed form{

w�
J (λ) = (XT

J XJ)
−1(XT

J y − λεJ)

w�
Jc(λ) = 0,

where we have assumed the matrix XT
J XJ to be invertible (which is a

sufficient condition to guarantee the uniqueness of w�). This is an important

point: if one knows the set J and the signs εJ in advance, then w�(λ)

admits a simple closed form. Moreover, when J and εJ are fixed, the function

λ �→ (XT
J XJ)

−1(XT
J y−λεJ) is affine in λ. With this observation in hand, we

can now present the main steps of the path-following algorithm. It basically

starts from a trivial solution of the regularization path, then follows the

path by exploiting this formula, updating J and εJ whenever needed so

that optimality conditions (2.6) remain satisfied. This procedure requires

some assumptions—namely, that (a) the matrix XT
J XJ is always invertible,

and (b) that updating J along the path consists of adding or removing from

this set a single variable at the same time. Concretely, we proceed as follows:

1. Set λ to ‖XTy‖∞ for which it is easy to show from equation (2.6) that

w�(λ) = 0 (trivial solution on the regularization path).

2. Set J := {j; |XT
j y| = λ}.

3. Follow the regularization path by decreasing the value of λ, with the

formula w�
J (λ) = (XT

J XJ)
−1(XT

J y−λεJ) keeping w�
Jc = 0, until one of the

following events occurs:

There exists j in J c such that |XT
j (y −Xw�)| = λ. Then, add j to

the set J .

There exists j in J such that a non-zero coefficient w�
j hits zero. Then,

remove j from J .

We suppose that only one such event can occur at the same time. It is also

easy to show that the value of λ corresponding to the next event can be

obtained in closed form.

4. Go back to 3.

Let us now briefly discuss assumptions (a) and (b). When the matrix XT
J XJ

40 Convex Optimization with Sparsity-Inducing Norms

is not invertible, the regularization path is non-unique, and the algorithm

fails. This can easily be fixed by addressing a slightly modified formulation.

It is possible to consider instead the elastic-net formulation of Zou and

Hastie (2005) that uses Ω(w) = λ‖w‖1 + γ
2‖w‖22. Indeed, it amounts to

replacing the matrix XT
J XJ by XT

J XJ + γI, which is positive definite and

therefore always invertible, even with a small value for γ, and applying the

same algorithm in practice. The second assumption (b) can be unsatisfied

in practice because of machine precision. To the best of our knowledge, the

algorithm will fail in such cases, but we consider this scenario unlikely with

real data.

The complexity of the above procedure depends on the number of kinks

of the regularization path (which is also the number of iterations of the

algorithm). Even though it is possible to build examples where this num-

ber is large, we often observe in practice that the event where one variable

leaves the active set is rare. The complexity also depends on the implemen-

tation. By maintaining the computations of XT
j (y −Xw�) and a Cholesky

decomposition of (XT
J XJ)

−1, it is possible to obtain an implementation in

O(psn+ps2+s3) operations, where s is the sparsity of the solution when the

algorithm is stopped (which we consider approximately equal to the number

of iterations). The product psn corresponds to the computation of the ma-

trices XT
J XJ ; ps

2, to the updates of the correlations XT
j (y −Xw�) along

the path; and s3, to the Cholesky decomposition.

2.7 Quantitative Evaluation

To illustrate and compare the methods presented in this chapter, we con-

sider in this section three benchmarks. These benchmarks are chosen to be

representative of problems regularized with sparsity-inducing norms, involv-

ing different norms and different loss functions. To make comparisons that

are as fair as possible, each algorithm is implemented in C/C++, using effi-

cient BLAS and LAPACK libraries for basic linear algebra operations. All

subsequent simulations are run on a single core of a 3.07Ghz CPU, with

8GB of memory. In addition, we take into account several criteria which

strongly influence the convergence speed of the algorithms. In particular, we

consider (a) different problem scales, (b) different levels of correlations, and

(c) different strengths of regularization. We also show the influence of the

required precision by monitoring the time of computation as a function of

the objective function.

For the convenience of the reader, we list here the algorithms compared

and the acronyms we use to refer to them throughout this section: the LARS

2.7 Quantitative Evaluation 41

algorithm (LARS), coordinate descent (CD), reweighted-�2 schemes (Re-�2),

the simple proximal method (ISTA), and its accelerated version (FISTA); we

will also include in the comparisons generic algorithms such as a subgradient

descent algorithm (SG), and a commercial software (Mosek) for cone (CP),

quadratic (QP), and second-order cone programming (SOCP) problems.

2.7.1 Speed Benchmarks

We first present a large benchmark evaluating the performance of various

optimization methods for solving the Lasso.

We perform small-scale (n = 200, p = 200) and medium-scale (n =

2000, p = 10, 000) experiments. We generate design matrices as follows.

For the scenario with low correlation, all entries of X are independently

drawn from a Gaussian distribution N(0, 1/n), which is a setting often used

to evaluate optimization algorithms in the literature. For the scenario with

large correlation, we draw the rows of the matrix X from a multivariate

Gaussian distribution for which the average absolute value of the correlation

between two different columns is eight times the one of the scenario with

low correlation. Test data vectors y = Xw + n where w are randomly

generated, with two levels of sparsity to be used with the two different

levels of regularization. n is a noise vector whose entries are i.i.d. samples

from a Gaussian distribution N(0, 0.01‖Xw‖22/n). In the low regularization

setting, the sparsity of the vectors w is s = 0.5min(n, p), and in the high

regularization one, s = 0.01min(n, p), corresponding to fairly sparse vectors.

For SG, we take the step size to be equal to a/(k+b), where k is the iteration

number and (a, b) are the best10 parameters selected on a logarithmic grid

(a, b) ∈ {103, . . . , 10} × {102, 103, 104}; we proceeded this way so as not to

disadvantage SG by an arbitrary choice of stepsize.

To sum up, we make a comparison for 8 different conditions (2 scales × 2

levels of correlation × 2 levels of regularization). All results are reported in

figures 2.2 and 2.3, by averaging 5 runs for each experiment. Interestingly,

we observe that the relative performance of the different methods change

significantly with the scenario.

Our conclusions for the different methods are as follows.

LARS: For the small-scale problem, LARS outperforms all other methods

for almost every scenario and precision regime. It is therefore definitely the

right choice for the small-scale setting.

10. “The best step size” is understood here as being the step size leading to the smallest
objective function after 500 iterations.

42 Convex Optimization with Sparsity-Inducing Norms

−4 −3 −2 −1 0 1
−8

−6

−4

−2

0

2

log(CPU time) in seconds

lo
g(

re
la

tiv
e

di
st

an
ce

 to
 o

pt
im

um
)

SG
Fista
Ista
Re−L2
CD
Lars
CP
QP

(a) corr: low, reg: low

−4 −3 −2 −1 0 1
−8

−6

−4

−2

0

2

log(CPU time) in seconds

lo
g(

re
la

tiv
e

di
st

an
ce

 to
 o

pt
im

um
)

SG
Fista
Ista
Re−L2
CD
Lars
CP
QP

(b) corr: low, reg: high

−4 −3 −2 −1 0 1
−8

−6

−4

−2

0

2

log(CPU time) in seconds

lo
g(

re
la

tiv
e

di
st

an
ce

 to
 o

pt
im

um
)

SG
Fista
Ista
Re−L2
CD
Lars
CP
QP

(c) corr: high, reg: low

−4 −3 −2 −1 0 1
−8

−6

−4

−2

0

2

log(CPU time) in seconds

lo
g(

re
la

tiv
e

di
st

an
ce

 to
 o

pt
im

um
)

SG
Fista
Ista
Re−L2
CD
Lars
CP
QP

(d) corr: high, reg: high

Figure 2.2: Benchmarks for solving the Lasso for the small-scale experiment
(n = 200, p = 200), for the two levels of correlation and two levels of regularization,
and 8 optimization methods (see main text for details). The curves represent the
relative value of the objective function as a function of the computational time in
seconds on a log10 / log10 scale.

Unlike first-order methods, its performance does not depend on the corre-

lation of the design matrix X, but on the sparsity s of the solution. In our

larger-scale setting, it has been competitive either when the solution is very

sparse (high regularization) or when there is high correlation in X (in that

case, other methods do not perform as well). More important, LARS gives

an exact solution and computes the regularization path.

Proximal methods (ISTA, FISTA): FISTA outperforms ISTA in all sce-

narios but one. The methods are close for high regularization or low cor-

relation, but FISTA is significantly better for high correlation and/or low

regularization. These methods are almost always outperformed by LARS in

the small-scale setting, except for low precision and low correlation.

Both methods suffer from correlated features, which is consistent with the

fact that their convergence rate is proportional to the Lipschitz constant of

2.7 Quantitative Evaluation 43

−2 −1 0 1 2 3
−8

−6

−4

−2

0

2

log(CPU time) in seconds
lo

g(
re

la
tiv

e
di

st
an

ce
 to

 o
pt

im
um

)

SG
Fista
Ista
Re−L2
CD
Lars
CP

(a) corr: low, reg: low

−2 −1 0 1 2 3
−8

−6

−4

−2

0

2

log(CPU time) in seconds

lo
g(

re
la

tiv
e

di
st

an
ce

 to
 o

pt
im

um
)

SG
Fista
Ista
Re−L2
CD
Lars
CP

(b) corr: low, reg: high

−2 −1 0 1 2 3
−8

−6

−4

−2

0

2

log(CPU time) in seconds

lo
g(

re
la

tiv
e

di
st

an
ce

 to
 o

pt
im

um
)

SG
Fista
Ista
Re−L2
CD
Lars
CP

(c) corr: high, reg: low

−2 −1 0 1 2 3
−8

−6

−4

−2

0

2

log(CPU time) in seconds
lo

g(
re

la
tiv

e
di

st
an

ce
 to

 o
pt

im
um

)

SG
Fista
Ista
Re−L2
CD
Lars
CP

(d) corr: high, reg: high

Figure 2.3: Benchmarks for solving the Lasso for the medium-scale experiment n =
2000, p = 10, 000, for the two levels of correlation and two levels of regularization,
and 8 optimization methods (see main text for details). The curves represent the
relative value of the objective function as a function of the computational time in
seconds on a log10 / log10 scale.

the gradient of f , which grows with the amount of correlation. They are well

adapted to large-scale settings with low or medium correlation.

Coordinate descent (CD): To the best of our knowledge, no theoretical

convergence rate is available for this method. Empirically, we have observed

that the behavior of CD often translates into a “warm-up” stage followed

by a fast convergence phase.

Its performance in the small-scale setting is competitive (though always

behind LARS), but less efficient in the large-scale one. For a reason we

cannot explain, it suffers less than proximal methods do from correlated

features.

Reweighted-�2: This method was outperformed in all our experiments by

44 Convex Optimization with Sparsity-Inducing Norms

other dedicated methods.11 We considered only the smoothed alternating

scheme of section 2.5 and not first-order methods in η such as that of

Rakotomamonjy et al. (2008). A more exhaustive comparison should include

these as well.

Generic methods (SG, QP, CP): As expected, generic methods are not

adapted for solving the Lasso and are always outperformed by dedicated

ones such as LARS.

Among the methods that we have presented, some require an overhead

computation of the Gram matrix XTX: this is the case for coordinate de-

scent and reweighted-�2 methods. We took this overhead time into account

in all figures, which explains the behavior of the corresponding convergence

curves. Like the LARS, these methods could benefit from an offline precom-

putation of XTX, and would therefore be more competitive if the solutions

corresponding to several values of the regularization parameter have to be

computed.

In the above experiments we have considered the case of the square loss.

Obviously, some of the conclusions drawn above would not be valid for other

smooth losses. On the one hand, the LARS no longer applies; on the other

hand, proximal methods are clearly still available, and coordinate descent

schemes, which were dominated by the LARS in our experiments, would

most likely turn out to be very good contenders in that setting.

2.7.2 Structured Sparsity

In this second series of experiments, the optimization techniques of the

previous sections are further evaluated when applied to other types of

loss and sparsity-inducing functions. Instead of the �1-norm previously

studied, we focus on the particular hierarchical �1/�2-norm Ω introduced

in section 2.3. From an optimization standpoint, although Ω shares some

similarities with the �1-norm (e.g., the convexity and the non-smoothness),

it differs in that it cannot be decomposed into independent parts (because

of the overlapping structure of G). CD schemes hinge on this property, and

as a result, they cannot be straightforwardly applied in this case.

11. Note that the reweighted-�2 scheme requires iteratively solving large-scale linear sys-
tems that are badly conditioned. Our implementation uses LAPACK Cholesky decom-
positions, but a better performance might be obtained using a preconditioned conjugate
gradient, especially in the very large-scale setting.

2.7 Quantitative Evaluation 45

−3 −2.5 −2 −1.5 −1 −0.5 0
−8

−6

−4

−2

0

2

log(CPU time) in seconds

lo
g(

re
la

tiv
e

di
st

an
ce

 to
 o

pt
im

um
)

SG
Fista
Ista
Re−L2
SOCP

(a) scale: small, regul: low

−3 −2.5 −2 −1.5 −1 −0.5 0
−8

−6

−4

−2

0

2

log(CPU time) in seconds

lo
g(

re
la

tiv
e

di
st

an
ce

 to
 o

pt
im

um
)

SG
Fista
Ista
Re−L2
SOCP

(b) scale: small, regul: medium

−3 −2.5 −2 −1.5 −1 −0.5 0
−8

−6

−4

−2

0

2

log(CPU time) in seconds

lo
g(

re
la

tiv
e

di
st

an
ce

 to
 o

pt
im

um
)

SG
Fista
Ista
Re−L2
SOCP

(c) scale: small, regul: high

Figure 2.4: Benchmarks for solving a least-squares regression problem regularized
by the hierarchical norm Ω. The experiment is small-scale (n = 256, p = 151) and
shows the performances of five optimization methods (see main text for details) for
three levels of regularization. The curves represent the relative value of the objective
function as a function of the computational time in seconds on a log10 / log10 scale.

2.7.2.1 Denoising of Natural Image Patches

In this first benchmark, we consider a least-squares regression problem

regularized by Ω that arises in the context of the denoising of natural image

patches (Jenatton et al., 2010a). In particular, based on a hierarchical set of

features that accounts for different types of edge orientations and frequencies

in natural images, we seek to reconstruct noisy 16×16 patches. Although the

problem involves a small number of variables (p = 151), it has to be solved

repeatedly for thousands of patches, at moderate precision. It is therefore

crucial to be able to solve this problem efficiently.

The algorithms involved in the comparisons are ISTA, FISTA, Re-�2, SG,

and SOCP. All results are reported in figure 2.4, by averaging five runs.

We can draw several conclusions from the simulations. First, we observe

that across all levels of sparsity, the accelerated proximal scheme performs

better than, or similarly to the other approaches. In addition, as opposed

to FISTA, ISTA seems to suffer in non-sparse scenarios. In the least sparse

setting, the reweighted-�2 scheme matches the performance of FISTA. How-

ever, this scheme does not yield truly sparse solutions, and would therefore

require a subsequent thresholding operation, which can be difficult to mo-

tivate in a principled way. As expected, the generic techniques such as SG

and SOCP do not compete with the dedicated algorithms.

46 Convex Optimization with Sparsity-Inducing Norms

2.7.2.2 Multi-class Classification of Cancer Diagnosis

The second benchmark involves two datasets12 of gene expressions in the

context of cancer diagnosis. More precisely, we focus on two multi-class

classification problems in the “small n, large p” setting. The medium-scale

dataset contains n = 83 observations, p = 4615 variables and 4 classes,

and the large-scale one contains n = 308 samples, p = 30017 variables

and 26 classes. In addition, both datasets exhibit highly correlated features.

Inspired by Kim and Xing (2010), we built a tree-structured set of groups

G by applying Ward’s hierarchical clustering (Johnson, 1967) on the gene

expressions. The norm Ω built that way aims at capturing the hierarchical

structure of gene expression networks (Kim and Xing, 2010).

Instead of the square loss function, we consider the multinomial logistic

loss function, which is better suited for multi-class classification problems. As

a direct consequence, the algorithms whose applicability crucially depends

on the choice of the loss function are removed from the benchmark. This

is, for instance, the case for reweighted-�2 schemes that have closed-form

updates available only with the square loss (see section 2.5). Importantly,

the choice of the multinomial logistic loss function requires optimizing over

a matrix with dimensions p times the number of classes (i.e., a total of

4615 × 4 ≈ 18, 000 and 30, 017 × 26 ≈ 780, 000 variables). Also, for lack of

scalability, generic interior-point solvers could not be considered here. To

summarize, the following comparisons involve ISTA, FISTA, and SG.

All the results are reported in figure 2.5. The benchmark especially points

out that overall the accelerated proximal scheme performs better than the

two other methods. Again, it is important to note that both proximal algo-

rithms yield sparse solutions, which is not the case for SG. More generally,

this experiment illustrates the flexibility of proximal algorithms with respect

to the choice of the loss function.

We conclude this section with general remarks on the experiments that

we presented. First, the use of proximal methods is often advocated because

of their optimal worst-case complexities in O(1
k2). In practice, in our ex-

periments these and several other methods empirically exhibit convergence

rates that are at least linear, if not better, which suggests that the adap-

tivity of the method (e.g., its ability to take advantage of local curvature)

might be more crucial to its practical success. Second, our experiments con-

centrated on regimes that are of interest for sparse methods in machine

learning, where typically p is larger than n and where it is possible to find

12. The two datasets we used are SRBCT and 14 Tumors, which are freely available at
http://www.gems-system.org/.

2.8 Extensions 47

−3 −2 −1 0 1 2 3
−4

−3

−2

−1

0

1

2

3

4

log(CPU time) in seconds
lo

g(
re

la
tiv

e
di

st
an

ce
 to

 o
pt

im
um

)

SG
Fista
Ista

(a) scale: medium, regul: low

−3 −2 −1 0 1 2 3
−4

−3

−2

−1

0

1

2

log(CPU time) in seconds

lo
g(

re
la

tiv
e

di
st

an
ce

 to
 o

pt
im

um
)

SG
Fista
Ista

(b) scale: medium, regul:
medium

−3 −2 −1 0 1 2 3
−4

−3

−2

−1

0

1

2

log(CPU time) in seconds

lo
g(

re
la

tiv
e

di
st

an
ce

 to
 o

pt
im

um
)

SG
Fista
Ista

(c) scale: medium, regul:
high

−3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

2

log(CPU time) in seconds

lo
g(

re
la

tiv
e

di
st

an
ce

 to
 o

pt
im

um
)

SG
Fista
Ista

(d) scale: large, regul: low

−3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

log(CPU time) in seconds
lo

g(
re

la
tiv

e
di

st
an

ce
 to

 o
pt

im
um

)

SG
Fista
Ista

(e) scale: large, regul:
medium

−3 −2 −1 0 1 2 3 4
−4

−3

−2

−1

0

1

log(CPU time) in seconds

lo
g(

re
la

tiv
e

di
st

an
ce

 to
 o

pt
im

um
)

SG
Fista
Ista

(f) scale: large, regul: high

Figure 2.5: Medium- and large-scale multi-class classification problems for three
optimization methods (see details about the datasets and the methods in the main
text). Three levels of regularization are considered. The curves represent the relative
value of the objective function as a function of the computation time in second on
a log10 / log10 scale. In the highly regularized setting, the tuning of the stepsize for
the subgradient turned out to be difficult, which explains the behavior of SG in the
first iterations.

good sparse solutions. The setting where n is much larger than p was out of

scope here, but would be worth a separate study, and should involve meth-

ods from stochastic optimization. Also, even though it might make sense

from an optimization viewpoint, we did not consider problems with low lev-

els of sparsity, that is, with more dense solution vectors, since it would be a

more difficult regime for many of the algorithms that we presented (namely,

LARS, CD, or proximal methods).

2.8 Extensions

We obviously could not exhaustively cover the literature on algorithms for

sparse methods in this chapter.

Surveys and comparisons of algorithms for sparse methods have been

proposed by Schmidt et al. (2007) and Yuan et al. (2010). These papers

48 Convex Optimization with Sparsity-Inducing Norms

present quite a few algorithms, but focus essentially on �1-regularization

and unfortunately do not consider proximal methods. Also, it is not clear

that the metrics used to compare the performances of various algorithms

is the most relevant to machine learning; in particular, we present the full

convergence curves that we believe are more informative than the ordering

of algorithms at fixed precision.

Beyond the material presented here, there a few topics that we did not

develop and that are worth mentioning.

In terms of norms, we did not consider regularization by the nuclear norm,

also known as the trace-norm, which seeks low-rank matrix solutions (Fazel

et al., 2001; Srebro et al., 2005; Recht et al., 2007; Bach, 2008b). Most of the

optimization techniques that we presented do, however, apply to this norm

(with the exception of coordinate descent).

In terms of algorithms, it is possible to relax the smoothness assumptions

that we made on the loss. For instance, some proximal methods are appli-

cable with weaker smoothness assumptions on the function f , such as the

Douglas-Rachford algorithm (see details in Combettes and Pesquet, 2010).

The related augmented Lagrangian techniques (Glowinski and Le Tallec,

1989; Combettes and Pesquet, 2010, and numerous references therein), also

known as alternating-direction methods of multipliers, are also relevant in

that setting. These methods are applicable in particular to cases where sev-

eral regularizations are mixed.

In the context of proximal methods, the metric used to define the proximal

operator can be (1) modified by judicious rescaling operations, in order

to better fit the geometry of the data (Duchi et al., 2010), or even (2)

replaced with norms associated with functional spaces, in the context of

kernel methods (Rosasco et al., 2009).

Finally, from a broader outlook, our—a priori deterministic—optimization

problem (2.1) may also be tackled with stochastic optimization approaches,

which has been the focus of much research (Bottou, 1998; Bottou and LeCun,

2003; Shapiro et al., 2009).

2.9 Conclusion

We presented and compared four families of algorithms for sparse methods:

proximal methods, block coordinate descent algorithms, reweighted-�2 algo-

rithms, and the LARS that are representative of the state of the art. We

did not aim at being exhaustive. The properties of these methods can be

summarized as follows:

2.10 References 49

Proximal methods provide efficient and scalable algorithms that are ap-

plicable to a wide family of loss functions, that are simple to implement,

that are compatible with many sparsity-inducing norms, and, that are often

competitive with the other methods considered.

For the square loss, the LARS remains the fastest algorithm for (a) small-

and medium-scale problems, since its complexity depends essentially on the

size of the active sets, and (b) cases with very correlated designs. It computes

the whole path up to a certain sparsity level.

For smooth losses, block coordinate descent provides one of the fastest

algorithms, but it is limited to separable regularizers.

For the square-loss and possibly sophisticated sparsity-inducing regulariz-

ers, �2-reweighted algorithms provide generic algorithms that are still pretty

competitive compared with subgradient and interior-point methods. For gen-

eral losses, these methods currently require solving �2-regularized problems

iteratively, and it would be desirable to relax this constraint.

2.10 References

A. Argyriou, T. Evgeniou, and M. Pontil. Multi-task feature learning. In
B. Schölkopf, J. Platt, and T. Hoffman, editors, Advances in Neural Informa-
tion Processing Systems 19, pages 41–48. MIT Press, 2007.

F. Bach. Exploring large feature spaces with hierarchical multiple kernel learning.
In D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, editors, Advances in
Neural Information Processing Systems 21, pages 105–112. MIT Press, 2008a.

F. Bach. Consistency of trace norm minimization. Journal of Machine Learning
Research, 9:1019–1048, 2008b.

A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm for
linear inverse problems. SIAM Journal on Imaging Sciences, 2(1):183–202, 2009.

D. P. Bertsekas. Nonlinear programming. Athena Scientific, Belmont, MA, second
edition, 1999.

P. Bickel, Y. Ritov, and A. Tsybakov. Simultaneous analysis of Lasso and Dantzig
selector. Annals of Statistics, 37(4):1705–1732, 2009.

J. M. Borwein and A. S. Lewis. Convex Analysis and Nonlinear Optimization:
Theory and Examples. Springer-Verlag, second edition, 2006.

L. Bottou. Online algorithms and stochastic approximations. In D. Saad, editor,
Online Learning and Neural Networks. Cambridge University Press, Cambridge,
UK, 1998.

L. Bottou and O. Bousquet. The tradeoffs of large scale learning. In J. C. Platt,
D. Koller, Y. Singer, and S. Roweis, editors, Advances in Neural Information
Processing Systems 20, pages 161–168. MIT Press, 2007.

L. Bottou and Y. LeCun. Large scale online learning. In S. Thrun, L. Saul, and
B. Schölkopf, editors, Advances in Neural Information Processing Systems 16,
pages 217–224. MIT Press, 2003.

50 Convex Optimization with Sparsity-Inducing Norms

S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press,
2004.

P. Brucker. An O(n) algorithm for quadratic knapsack problems. Operations
Research Letters, 3(3):163–166, 1984.

S. S. Chen, D. L. Donoho, and M. A. Saunders. Atomic decomposition by basis
pursuit. SIAM Journal on Scientific Computing, 20(1):33–61, 1999.

P. Combettes and J. Pesquet. Fixed-Point Algorithms for Inverse Problems in Sci-
ence and Engineering, chapter Proximal Splitting Methods in Signal Processing.
Springer-Verlag, New York, 2010.

I. Daubechies, R. DeVore, M. Fornasier, and C. S. Güntürk. Iteratively reweighted
least squares minimization for sparse recovery. Communications on Pure and
Applied Mathematics, 63(1):1–38, 2010.

D. L. Donoho and I. M. Johnstone. Adapting to unknown smoothness via wavelet
shrinkage. Journal of the American Statistical Association, 90(432):1200–1224,
1995.

J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online learn-
ing and stochastic optimization. In A. T. Kalai and M. Mohri, editors, Proceedings
of the 23rd Conference on Learning Theory, pages 257–269. Omnipress, 2010.

B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani. Least angle regression. Annals
of Statistics, 32(2):407–499, 2004.

M. Fazel, H. Hindi, and S. P. Boyd. A rank minimization heuristic with application
to minimum order system approximation. In Proceedings of the American Control
Conference, volume 6, pages 4734–4739, 2001.

J. Friedman, T. Hastie, and R. Tibshirani. A note on the group lasso and a sparse
group lasso. preprint, 2010. arXiv:1001.0736.

W. J. Fu. Penalized regressions: The bridge versus the lasso. Journal of Computa-
tional and Graphical Statistics, 7(3):397–416, 1998.

A. Genkin, D. D. Lewis, and D. Madigan. Large-scale bayesian logistic regression
for text categorization. Technometrics, 49(3):291–304, 2007.

R. Glowinski and P. Le Tallec. Augmented Lagrangian and Operator-Splitting
Methods in Nonlinear Mechanics. Studies in Applied Mathematics. SIAM, 1989.

J. Huang and T. Zhang. The benefit of group sparsity. Annals of Statistics, 38(4):
1978–2004, 2010.

L. Jacob, G. Obozinski, and J.-P. Vert. Group Lasso with overlaps and graph Lasso.
In Proceedings of the 26th International Conference on Machine Learning, pages
433–440. ACM Press, 2009.

R. Jenatton, J.-Y. Audibert, and F. Bach. Structured variable selection with
sparsity-inducing norms. Technical report, 2009. Preprint arXiv:0904.3523v1.

R. Jenatton, J. Mairal, G. Obozinski, and F. Bach. Proximal methods for sparse
hierarchical dictionary learning. In Proceedings of the 27th International Confer-
ence on Machine Learning, 2010a.

R. Jenatton, G. Obozinski, and F. Bach. Structured sparse principal component
analysis. In Proceedings of International Conference on Artificial Intelligence and
Statistics, pages 366–373, 2010b.

S. C. Johnson. Hierarchical clustering schemes. Psychometrika, 32(3):241–254,
1967.

S. Kim and E. P. Xing. Tree-guided group lasso for multi-task regression with

2.10 References 51

structured sparsity. In Proceedings of the 27th International Conference on
Machine Learning, pages 543–550, 2010.

K. Koh, S. J. Kim, and S. Boyd. An Interior-Point Method for Large-Scale l 1-
Regularized Logistic Regression. Journal of Machine Learning Research, 8:1555,
2007.

B. Krishnapuram, L. Carin, M. A. T. Figueiredo, and A. J. Hartemink. Sparse
multinomial logistic regression: Fast algorithms and generalization bounds. IEEE
Transactions Pattern Analysis and Machine Intelligence, 27(6):957–968, 2005.

H. Lee, A. Battle, R. Raina, and A. Y. Ng. Efficient sparse coding algorithms.
In J. C. Platt, D. Koller, Y. Singer, and S. Roweis, editors, Advances in Neural
Information Processing Systems 20, pages 801–808. MIT Press, 2007.

K. Lounici, M. Pontil, A. B. Tsybakov, and S. van de Geer. Taking advantage of
sparsity in multi-task learning. Technical report, Preprint arXiv:0903.1468, 2009.

N. Maculan and G. Galdino de Paula Jr. A linear-time median-finding algorithm
for projecting a vector on the simplex of Rn. Operations Research Letters, 8(4):
219–222, 1989.

J. Mairal, R. Jenatton, G. Obozinski, and F. Bach. Network flow algorithms for
structured sparsity. In J. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R. S. Zemel,
and A. Culotta, editors, Advances in Neural Information Processing Systems 23.
MIT Press, 2010.

H. Markowitz. Portfolio selection. Journal of Finance, 7(1):77–91, 1952.

J. Moreau. Fonctions convexes duales et points proximaux dans un espace hilber-
tien. Comptes Rendus de l’Académie des Sciences, Paris, Série A, Mathématique,
255:2897–2899, 1962.

S. Negahban, P. Ravikumar, M. J. Wainwright, and B. Yu. A unified framework
for high-dimensional analysis of M-estimators with decomposable regularizers. In
Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, and A. Culotta, editors,
Advances in Neural Information Processing Systems 22. MIT Press, 2009.

Y. Nesterov. Introductory Lectures on Convex Optimization: A Basic Course.
Kluwer Academic Publishers, 2004.

Y. Nesterov. Smooth minimization of non-smooth functions. Mathematical Pro-
gramming, 103(1):127–152, 2005.

Y. Nesterov. Gradient methods for minimizing composite objective function.
Technical report, Center for Operations Research and Econometrics, Catholic
University of Louvain, 2007. revised 2010.

J. Nocedal and S. J. Wright. Numerical Optimization. Springer-Verlag, second
edition, 2006.

G. Obozinski, B. Taskar, and M. I. Jordan. Joint covariate selection and joint
subspace selection for multiple classification problems. Statistics and Computing,
20(2):231–252, 2010.

M. R. Osborne, B. Presnell, and B. A. Turlach. On the Lasso and its dual. Journal
of Computational and Graphical Statistics, 9(2):319–337, 2000.

A. Rakotomamonjy, F. Bach, S. Canu, and Y. Grandvalet. SimpleMKL. Journal
of Machine Learning Research, 9:2491–2521, 2008.

B. Recht, M. Fazel, and P. A. Parrilo. Guaranteed minimum-rank solutions of
linear matrix equations via nuclear norm minimization. Technical report, 2007.
Preprint arXiv:0706.4138.

52 Convex Optimization with Sparsity-Inducing Norms

R. T. Rockafellar. Convex analysis. Princeton University Press, 1997.

L. Rosasco, S. Mosci, M. Santoro, A. Verri, and S. Villa. Iterative Projection
Methods for Structured Sparsity Regularization. Technical report, Computer
Science and Artificial Intelligence Laboratory, MIT, 2009. CBCL-282.

V. Roth and B. Fischer. The Group-Lasso for generalized linear models: uniqueness
of solutions and efficient algorithms. In Proceedings of the 25th International
Conference on Machine Learning, pages 848–855, 2008.

M. Schmidt and K. Murphy. Convex structure learning in log-linear models: Beyond
pairwise potentials. In Proceedings of the 13th International Conference on
Artificial Intelligence and Statistics, 2010.

M. Schmidt, G. Fung, and R. Rosales. Fast optimization methods for L1 regulariza-
tion: A comparative study and two new approaches. Machine Learning: ECML
2007, pages 286–297, 2007.

A. Shapiro, D. Dentcheva, A. Ruszczyński, and A. P. Ruszczyński. Lectures on
Stochastic Programming: Modeling and Theory. SIAM, 2009.

J. Shawe-Taylor and N. Cristianini. Kernel Methods for Pattern Analysis. Cam-
bridge University Press, 2004.

S. K. Shevade and S. S. Keerthi. A simple and efficient algorithm for gene selection
using sparse logistic regression. Bioinformatics, 19(17):2246–2253, 2003.

P. Sprechmann, I. Ramirez, G. Sapiro, and Y. Eldar. Collaborative hierarchical
sparse modeling. In Proceedings of the 44th Annual Conference on Information
Sciences and Systems, 2010.

N. Srebro, J. D. M. Rennie, and T. S. Jaakkola. Maximum-margin matrix factor-
ization. In L. K. Saul, Y. Weiss, and L. Bottou, editors, Advances in Neural
Information Processing Systems 17, pages 1329–1336. MIT Press, 2005.

M. Szafranski, Y. Grandvalet, and P. Morizet-Mahoudeaux. Hierarchical penaliza-
tion. In J. C. Platt, D. Koller, Y. Singer, and S. Roweis, editors, Advances in
Neural Information Processing Systems 20. MIT Press, 2007.

R. Tibshirani. Regression shrinkage and selection via the Lasso. Journal of the
Royal Statistical Society, series B, 58(1):267–288, 1996.

J. A. Tropp. Greed is good: Algorithmic results for sparse approximation. IEEE
Transactions on Information Theory, 50(10):2231–2242, 2004.

P. Tseng and S. Yun. A coordinate gradient descent method for nonsmooth
separable minimization. Mathematical Programming, series B, 117(1):387–423,
2009.

M. J. Wainwright. Sharp thresholds for noisy and high-dimensional recovery of
sparsity using �1-constrained quadratic programming. IEEE Transactions on
Information Theory, 55(5):2183–2202, 2009.

S. Wright, R. Nowak, and M. Figueiredo. Sparse reconstruction by separable
approximation. IEEE Transactions on Signal Processing, 57(7):2479–2493, 2009.

T. Wu and K. Lange. Coordinate descent algorithms for lasso penalized regression.
Annals of Statistics, 2(1):224–244, 2008.

G. Yuan, K. Chang, C. Hsieh, and C. Lin. A comparison of optimization methods
for large-scale l1-regularized linear classification. Technical report, Department
of Computer Science, National University of Taiwan, 2010.

M. Yuan and Y. Lin. Model selection and estimation in regression with grouped
variables. Journal of the Royal Statistical Society, series B, 68:49–67, 2006.

2.10 References 53

P. Zhao and B. Yu. On model selection consistency of Lasso. Journal of Machine
Learning Research, 7:2541–2563, 2006.

P. Zhao, G. Rocha, and B. Yu. The composite absolute penalties family for grouped
and hierarchical variable selection. Annals of Statistics, 37(6A):3468–3497, 2009.

H. Zou and T. Hastie. Regularization and variable selection via the elastic net.
Journal of the Royal Statistical Society Series B, 67(2):301–320, 2005.

3 Interior-Point Methods for Large-Scale

Cone Programming

Martin Andersen msa@ee.ucla.edu

University of California, Los Angeles

Los Angeles, CA 90095-1594, USA

Joachim Dahl dahl.joachim@gmail.com

MOSEK ApS

Fruebjergvej 3, 2100 København Ø, Denmark

Zhang Liu zhang.liu@gmail.com

Northrop Grumman Corporation

San Diego, CA 92127-2412, USA

Lieven Vandenberghe vandenbe@ee.ucla.edu

University of California, Los Angeles

Los Angeles, CA 90095-1594, USA

In the conic formulation of a convex optimization problem the constraints are

expressed as linear inequalities with respect to a possibly non-polyhedral con-

vex cone. This makes it possible to formulate elegant extensions of interior-

point methods for linear programming to general nonlinear convex optimiza-

tion. Recent research on cone programming algorithms has focused particu-

larly on three convex cones for which symmetric primal-dual methods have

been developed: the nonnegative orthant, the second-order cone, and the pos-

itive semidefinite matrix cone. Although not all convex constraints can be

expressed in terms of the three standard cones, cone programs associated

with these cones are sufficiently general to serve as the basis of convex mod-

eling packages. They are also widely used in machine learning.

The main difficulty in the implementation of interior-point methods for cone

programming is the complexity of the linear equations that need to be solved

at each iteration. These equations are usually dense, unlike the equations

that arise in linear programming, and it is therefore difficult to develop

general-purpose strategies for exploiting problem structure based solely on

56 Interior-Point Methods for Large-Scale Cone Programming

sparse matrix methods. In this chapter we give an overview of ad hoc

techniques that can be used to exploit nonsparse structure in specific classes

of applications. We illustrate the methods with examples from machine

learning and present numerical results with CVXOPT, a software package

that supports the rapid development of customized interior-point methods.

3.1 Introduction

3.1.1 Cone Programming

The cone programming formulation has been popular in the recent literature

on convex optimization. In this chapter we define a cone linear program (cone

LP or conic LP) as an optimization problem of the form

minimize cTx

subject to Gx �C h

Ax = b

(3.1)

with optimization variable x. The inequality Gx �C h is a generalized

inequality, which means that h − Gx ∈ C, where C is a closed, pointed,

convex cone with nonempty interior. We will also encounter cone quadratic

programs (cone QPs),

minimize (1/2)xTPx+ cTx

subject to Gx �C h

Ax = b,

(3.2)

with P positive semidefinite.

If C = R
p
+ (the nonnegative orthant in R

p), the generalized inequality is

a componentwise vector inequality, equivalent to p scalar linear inequalities,

and problem (3.1) reduces to a linear program (LP). If C is a nonpolyhedral

cone, the problem is substantially more general than an LP, in spite of the

similarity in notation. In fact, as Nesterov and Nemirovskii (1994) point

out, any convex optimization problem can be reformulated as a cone LP by

a simple trick: a general constraint x ∈ Q, whereQ is a closed convex set with

nonempty interior, can be reformulated in a trivial way as (x, t) ∈ C, t = 1, if

we define C as the conic hull of Q, that is, C = cl{(x, t) | t > 0, (1/t)x ∈ Q}.
More important in practice, it turns out that a surprisingly small number of

3.1 Introduction 57

cones is sufficient to express the convex constraints that are most commonly

encountered in applications. In addition to the nonnegative orthant, the

most common cones are the second-order cone,

Qp = {(y0, y1) ∈ R× R
p−1 | ‖y1‖2 ≤ y0},

and the positive semidefinite cone,

Sp =
{
vec(U) | U ∈ Sp

+

}
.

Here Sp
+ denotes the positive semidefinite matrices of order p and vec(U) is

the symmetric matrix U stored as a vector:

vec(U) =
√
2

(
U11√
2
, U21, . . . , Up1,

U22√
2
, U32, . . . , Up2, . . . ,

Up−1,p−1√
2

, Up,p−1,
Upp√
2

)
.

(The scaling of the off-diagonal entries ensures that the standard trace

inner product of symmetric matrices is preserved, that is, Tr(UV) =

vec(U)T vec(V) for all U , V .) Since the early 1990s a great deal of re-

search has been directed at developing a comprehensive theory and software

for modeling optimization problems as cone programs involving the three

“canonical” cones (Nesterov and Nemirovskii, 1994; Boyd et al., 1994; Ben-

Tal and Nemirovski, 2001; Alizadeh and Goldfarb, 2003; Boyd and Van-

denberghe, 2004). YALMIP and CVX, two modeling packages for general

convex optimization, use cone LPs with the three canonical cones as their

standard format (Löfberg, 2004; Grant and Boyd, 2007, 2008).

In this chapter we assume that the cone C in (3.1) is a direct product

C = C1 × C2 × · · · × CK , (3.3)

where each cone Ci is of one of the three canonical types (nonnegative

orthant, second-order cone, or positive semidefinite cone). These cones are

self-dual, and the dual of the cone LP therefore involves an inequality with

respect to the same cone:

maximize −hT z − bT y

subject to GT z +AT y + c = 0

z �C 0.

(3.4)

The cone LP (3.1) is called a second-order cone program (SOCP) if C is a

direct product of one or more second-order cones. (The nonnegative orthant

can be written as a product of second-order cones Q1 of order 1.) A common

58 Interior-Point Methods for Large-Scale Cone Programming

and more explicit standard form of an SOCP is

minimize cTx

subject to ‖Fix+ gi‖2 ≤ dTi x+ fi, i = 1, . . . ,K

Ax = b.

(3.5)

This corresponds to choosing

G =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−dT1
−F1

...

−dTK
−FK

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, h =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

f1

g1
...

fK

gK

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, C = Qp1

× · · · × QpK

in (3.1), if the row dimensions of the matrices Fk are equal to pk − 1.

The cone LP (3.1) is called a semidefinite program (SDP) if C is a direct

product of positive semidefinite matrix cones. For purposes of exposition, a

simple standard form with one matrix inequality is sufficient:

minimize cTx

subject to
n∑

i=1
xiFi � F0

Ax = b,

(3.6)

where the coefficients Fi are symmetric matrices of order p and the inequality

denotes matrix inequality. This can be seen as the special case of (3.1)

obtained by choosing

G =
[
vec(F1) · · · vec(Fn)

]
, h = vec(F0), C = Sp. (3.7)

The SDP (3.6) is in fact as general as the cone LP (3.1) with an arbitrary

combination of the three cone types. A componentwise vector inequality

Gx � h can be represented as a diagonal matrix inequality Diag(Gx) �
Diag(h). A second-order cone constraint ‖Fx+ g‖2 ≤ dTx+ f is equivalent

to the linear matrix inequality[
dTx+ f (Fx+ g)T

Fx+ g (dTx+ f)I

]
� 0.

Multiple matrix inequalities can be represented by choosing block-diagonal

matrices Fi. For algorithmic purposes, however, it is better to handle the

three types of cones separately.

3.1 Introduction 59

3.1.2 Interior-Point Methods

Interior-point algorithms dominated the research on convex optimization

methods from the early 1990s until recently. They are popular because

they reach a high accuracy in a small number (10–50) of iterations, almost

independent of problem size, type, and data. Each iteration requires the

solution of a set of linear equations with fixed dimensions and known

structure. As a result, the time needed to solve different instances of a given

problem family can be estimated quite accurately. Interior-point methods

can be extended to handle infeasibility gracefully (Nesterov et al., 1999;

Andersen, 2000), by returning a certificate of infeasibility if a problem is

primal or dual infeasible. Finally, interior-point methods depend on only a

small number of algorithm parameters, which can be set to values that work

well for a wide range of data, and do not need to be tuned for a specific

problem.

The key to efficiency of an interior-point solver is the set of linear equa-

tions solved in each iteration. These equations are sometimes called Newton

equations, because they can be interpreted as a linearization of the non-

linear equations that characterize the central path, or Karush-Kuhn-Tucker

(KKT) equations, because they can be interpreted as optimality (or KKT)

conditions of an equality-constrained quadratic optimization problem. The

cost of solving the Newton equations determines the size of the problems

that can be solved by an interior-point method. General-purpose convex op-

timization packages rely on sparse matrix factorizations to solve the Newton

equations efficiently. This approach is very successful in linear programming,

where problems with several hundred thousand variables and constraints are

solved routinely. The success of general-purpose sparse linear programming

solvers can be attributed to two facts. First, the Newton equations of a

sparse LP can usually be reduced to sparse positive definite sets of equa-

tions, which can be solved very effectively by sparse Cholesky factorization

methods. Second, dense linear programs, which of course are not uncom-

mon in practice, can often be converted into sparse problems by introducing

auxiliary variables and constraints. This increases the problem dimensions,

but if the resulting problem is sufficiently sparse, the net gain in efficiency

is often significant.

For other classes of cone optimization problems (for example, semidefi-

nite programming), the sparse linear programming approach to exploiting

problem structure is less effective, either because the Newton equations are

not sufficiently sparse or because the translation of problem structure into

sparsity requires an excessive number of auxiliary variables. For these prob-

lem classes, it is difficult to develop general-purpose techniques that are as

60 Interior-Point Methods for Large-Scale Cone Programming

efficient and scalable as linear programming solvers. Nevertheless, the recent

literature contains many examples of large-scale convex optimization prob-

lems that were solved successfully by scalable customized implementations

of interior-point algorithms (Benson et al., 1999; Roh and Vandenberghe,

2006; Gillberg and Hansson, 2003; Koh et al., 2007; Kim et al., 2007; Joshi

and Boyd, 2008; Liu and Vandenberghe, 2009; Wallin et al., 2009). These

results were obtained by a variety of direct and iterative linear algebra tech-

niques that take advantage of non-sparse problem structure. The purpose

of this chapter is to survey some of these techniques and illustrate them

with applications from machine learning. There is of course a trade-off in

how much effort one is prepared to make to optimize performance of an

interior-point method for a specific application. We will present results for

a software package, CVXOPT (Dahl and Vandenberghe, 2009), that was

developed to assist in the development of custom interior-point solvers for

specific problem families. It allows the user to specify an optimization prob-

lem via an operator description, that is, by providing functions for evaluating

the linear mappings in the constraints and for supplying a custom method

for solving the Newton equations. This makes it possible to develop effi-

cient solvers that exploit various types of problem structure in a fraction of

the time needed to write a custom interior-point solver from scratch. Other

interior-point software packages that allow customization include the QP

solver OOQP (Gertz and Wright, 2003) and the Matlab-based conic solver

SDPT3 (Tütüncü et al., 2003).

3.2 Primal-Dual Interior-Point Methods

We first describe some implementation details for primal-dual interior-point

methods based on the Nesterov-Todd scaling (Nesterov and Todd, 1997,

1998). However, much of the following discussion also applies to other types

of primal-dual interior-point methods for second-order cone and semidefinite

programming (Helmberg et al., 1996; Kojima et al., 1997; Monteiro and

Zhang, 1998).

3.2.1 Newton Equations

Consider the cone LP (3.1) and cone QP (3.2). The Newton equations for a

primal-dual interior-point method based on the Nesterov-Todd scaling have

3.2 Primal-Dual Interior-Point Methods 61

the form⎡⎢⎣ P AT GT

A 0 0

G 0 −W TW

⎤⎥⎦
⎡⎢⎣ Δx

Δy

Δz

⎤⎥⎦ =

⎡⎢⎣ rx

ry

rz

⎤⎥⎦ (3.8)

(with P = 0 for the cone LP). The right-hand sides rx, ry, rz change at each

iteration and are defined differently in different algorithms. The matrix W

is a scaling matrix that depends on the current primal and dual iterates. If

the inequalities in (3.1) and (3.4) are generalized inequalities with respect to

a cone of the form (3.3), then the scaling matrix W is block-diagonal with

K diagonal blocks Wk, defined as follows:

If Ck is a nonnegative orthant of dimension p (Ck = R
p
+), then Wk is a

positive diagonal matrix,

Wk = Diag(d),

for some d ∈ R
p
++.

If Ck is a second-order cone of dimension p (Ck = Qp), then Wk is a

positive multiple of a hyperbolic Householder matrix

Wk = β(2vvT − J), J =

[
1 0

0 −I

]
, (3.9)

where β > 0, v ∈ R
p satisfies vTJv = 1, and I is the identity matrix of order

p− 1. The inverse of Wk is given by

W−1
k =

1

β
(2JvvTJ − J).

If Ck is a positive semidefinite cone of order p (Ck = Sp), then Wk is the

matrix representation of a congruence operation: Wk and its transpose are

defined by the identities

Wk vec(U) = vec(RTUR), WT
k vec(U) = vec(RURT), (3.10)

for all U , where R ∈ R
p×p is a nonsingular matrix. The inverses of Wk and

W T
k are defined by

W−1
k vec(U) = vec(R−TUR−1), W−T

k vec(U) = vec(R−1UR−T).

The values of the parameters d, β, v, R (or R−1) in these definitions depend

on the current primal and dual iterates, and are updated after each iteration

of the interior-point algorithm.

62 Interior-Point Methods for Large-Scale Cone Programming

The number of Newton equations solved per iteration varies with the type

of algorithm. It is equal to two in a predictor-corrector method, three in a

predictor-corrector method that uses a self-dual embedding, and it can be

higher than three if iterative refinement is used. However, since the scaling

W is identical for all the Newton equations solved in a single iteration, only

one factorization step is required per iteration, and the cost per iteration is

roughly equal to the cost of solving one Newton equation.

By eliminating Δz, the Newton equation can be reduced to a smaller

system:[
P +GTW−1W−TG AT

A 0

][
Δx

Δy

]
=

[
rx +GTW−1W−T rz

ry

]
. (3.11)

The main challenge in an efficient implementation is to exploit structure in

the matrices P , G, A when assembling the matrix

P +GTW−1W−TG = P +

K∑
k=1

GT
kW

−1
k W−T

k Gk, (3.12)

(where Gk is the block row of G corresponding to the kth inequality) and

when solving equation (3.11).

General-purpose solvers for cone programming rely on sparsity in P , G,

and A to solve large-scale problems. For example, if the problem does not

include equality constraints, one can solve (3.11) by a Cholesky factorization

of the matrix (3.12). For pure LPs or QPs (W diagonal) this matrix is

typically sparse if P and G are sparse, and a sparse Cholesky factorization

can be used. In problems that involve all three types of cones it is more

difficult to exploit sparsity. Even when P and G are sparse, the matrix (3.12)

is often dense. In addition, forming the matrix can be expensive.

3.2.2 Customized Implementations

In the following sections we will give examples of techniques for exploiting

certain types of non-sparse problem structure in the Newton equations (3.8).

The numerical results are obtained using the Python software package

CVXOPT, which provides two mechanisms for customizing the interior-

point solvers.

Users can specify the matrices G, A, P in (3.1) and (3.2) as operators by

providing Python functions that evaluate the matrix-vector products and

their adjoints.

Users can provide a Python function for solving the Newton equation (3.8).

3.2 Primal-Dual Interior-Point Methods 63

This is made straightforward by certain elements of the Python syntax, as

the following example illustrates. Suppose we are interested in solving several

equations of the form[
−I AT

A 0

][
x1

x2

]
=

[
b1

b2

]
, (3.13)

with the same matrix A ∈ R
m×n and different right-hand sides b1, b2. (We

assume m ≤ n and rank(A) = m.) The equations can be solved by first

solving

AATx2 = b2 +Ab1,

using a Cholesky factorization of AAT and then computing x1 from x1 =

ATx2 − b1. The following code defines a Python function factor() that

computes the Cholesky factorization of C = AAT , and returns a function

solve() that calculates x1 and x2 for a given right-hand side b. A function

call f = factor(A) therefore returns a function f that can be used to

compute the solution for a particular right-hand side b as x1, x2 = f(b).

from cvxopt import blas, lapack, matrix

def factor(A):

m, n = A.size

C = matrix(0.0, (m, m))

blas.syrk(A, C) # C := A * A^T.

lapack.potrf(C) # Factor C = L * L^T and set C := L.

def solve(b):

x2 = b[-m:] + A * b[:n]

lapack.potrs(C, x2) # x2 := L^-T * L^-1 * x2.

x1 = A.T * x2 - b[:n]

return x1, x2

return solve

Note that the Python syntax proves very useful in this type of application.

For example, Python treats functions as other objects, so the factor function

can simply return a solve function. Note also that the symbols A and C

are used in the body of the function solve() but are not defined there.

To resolve these names, Python therefore looks at the enclosing scope (the

function block with the definition of factor()). These scope rules make it

possible to pass problem-dependent parameters to functions without using

global variables.

64 Interior-Point Methods for Large-Scale Cone Programming

3.3 Linear and Quadratic Programming

In the case of a (non-conic) LP or QP the scaling matrix W in the Newton

equation (3.8) and (3.11) is a positive diagonal matrix. As already men-

tioned, general-purpose interior-point codes for linear and quadratic pro-

gramming are very effective at exploiting sparsity in the data matrices P ,

G, A. Moreover, many types of non-sparse problem structures can be trans-

lated into sparsity by adding auxiliary variables and constraints. Neverthe-

less, even in the case of LPs or QPs, it is sometimes advantageous to exploit

problem structure directly by customizing the Newton equation solver. In

this section we discuss a few examples.

3.3.1 �1-Norm Approximation

The basic idea is illustrated by the �1-norm approximation problem

minimize ‖Xu− d‖1, (3.14)

with X ∈ R
m×n, d ∈ R

m, and variable u ∈ R
n. This is equivalent to an LP

with m+ n variables and 2m constraints:

minimize 1T v

subject to

[
X −I

−X −I

][
u

v

]
�
[

d

−d

]
,

(3.15)

with 1 the m-vector with entries equal to one. The reduced Newton equa-

tion (3.11) for this LP is[
XT (W−2

1 +W−2
2)X XT (W−2

2 −W−2
1)

(W−2
2 −W−2

1)X W−2
1 +W−2

2

][
Δu

Δv

]
=

[
ru

rv

]
(3.16)

where W1 and W2 are positive diagonal matrices. (To simplify the notation,

we do not propagate the expressions for the right-hand sides when applying

block elimination.) By eliminating the variable Δv the Newton equation can

be further reduced to the equation

XTDXΔu = r,

where D is the positive diagonal matrix

D = 4W−2
1 W−2

2 (W−2
1 +W−2

2)−1 = 4(W 2
1 +W 2

2)
−1.

The cost of solving the �1-norm approximation problem is therefore equal

to a small multiple (10–50) of the cost of solving the same problem in

3.3 Linear and Quadratic Programming 65

the �2-norm, that is, solving the normal equations XTXu = XTd of the

corresponding least-squares problem (Boyd and Vandenberghe, 2004, page

617).

The Python code shown below exploits this fact. The matrix

G =

[
X −I
−X −I

]
is specified via a Python function G that evaluates the matrix-vector products

withG andGT . The function F factors the matrixXTDX and returns a solve

routine f that takes the right-hand side of (3.8) as its input argument and

replaces it with the solution. The input argument of F is the scaling matrix

W stored as a Python dictionary W containing the various parameters of W .

The last line calls the CVXOPT cone LP solver. The code can be further

optimized by a more extensive use of the BLAS.

Table 3.1 shows the result of an experiment with six randomly generated

dense matrices X. We compare the speed of the customized CVXOPT solver

shown above, the same solver with further BLAS optimizations, and the

general-purpose LP solver in MOSEK (MOSEK ApS, 2010), applied to the

LP (3.15). The last column shows the results for MOSEK applied to the

equivalent formulation

minimize 1T v + 1Tw

subject to Xu− d = v − w

v � 0, w � 0.

(3.17)

The times are in seconds on an Intel Core 2 Quad Q9550 (2.83 GHz) with

4GB of memory.

The table shows that a customized solver, implemented in Python with a

modest programming effort, can be competitive with one of the best general-

purpose sparse linear programming codes. In this example, the customized

solver takes advantage of the fact that the dense matrix X appears in two

positions of the matrix G. This property is not exploited by a general-

purpose sparse solver.

3.3.2 Least-Squares with �1-Norm Regularization

As a second example, we consider a least-squares problem with �1-norm

regularization,

minimize ‖Xu− d‖22 + ‖u‖1,

66 Interior-Point Methods for Large-Scale Cone Programming

from cvxopt import lapack, solvers, matrix, mul, div

m, n = X.size

def G(x, y, alpha = 1.0, beta = 0.0, trans = ’N’):

if trans == ’N’: # y := alpha * G * x + beta * y

u = X * x[:n]

y[:m] = alpha * (u - x[n:]) + beta * y[:m]

y[m:] = alpha * (-u - x[n:]) + beta * y[m:]

else: # y := alpha * G’ * x + beta * y

y[:n] = alpha * X.T * (x[:m] - x[m:]) + beta * y[:n]

y[n:] = -alpha * (x[:m] + x[m:]) + beta * y[n:]

def F(W):

d1, d2 = W[’d’][:m]**2, W[’d’][m:]**2

D = 4*(d1 + d2)**-1

A = X.T * spdiag(D) * X

lapack.potrf(A)

def f(x, y, z):

x[:n] += X.T * (mul(div(d2 - d1, d1 + d2), x[n:]) +

mul(.5*D, z[:m] - z[m:]))

lapack.potrs(A, x)

u = X * x[:n]

x[n:] = div(x[n:] - div(z[:m], d1) - div(z[m:], d2) +

mul(d1**-1 - d2**-1, u), d1**-1 + d2**-1)

z[:m] = div(u - x[n:] - z[:m], W[’d’][:m])

z[m:] = div(-u - x[n:] - z[m:], W[’d’][m:])

return f

c = matrix(n*[0.0] + m*[1.0])

h = matrix([d, -d])

sol = solvers.conelp(c, G, h, kktsolver = F)

3.3 Linear and Quadratic Programming 67

m n CVXOPT CVXOPT/BLAS MOSEK (3.15) MOSEK (3.17)

500 100 0.12 0.06 0.75 0.40

1000 100 0.22 0.11 1.53 0.81

1000 200 0.52 0.29 1.95 1.06

2000 200 1.23 0.60 3.87 2.19

1000 500 2.44 1.32 3.63 2.38

2000 500 5.00 2.68 7.44 5.11

2000 1000 17.1 9.52 32.4 12.8

Table 3.1: Solution times (seconds) for six randomly generated dense �1-norm
approximation problems of dimension m × n. Column 3 gives the CPU times for
the customized CVXOPT code. Column 4 gives the CPU times for a customized
CVXOPT code with more extensive use of the BLAS for matrix-vector and matrix-
matrix multiplications. Columns 5 and 6 show the times for the interior-point
solver in MOSEK v6 (with basis identification turned off) applied to the LPs (3.15)
and (3.17), respectively.

with X ∈ R
m×n. The problem is equivalent to a QP

minimize (1/2)‖Xu− d‖22 + 1T v

subject to −v � u � v,
(3.18)

with 2n variables and 2n constraints. The reduced Newton equation (3.11)

for this QP is[
XTX +W−2

1 +W−2
2 W−2

2 −W−2
1

W−2
2 −W−2

1 W−2
1 +W−2

2

][
Δu

Δv

]
=

[
ru

rv

]
where W1 and W2 are diagonal. Eliminating Δv, as in the example of

section 3.3.1, results in a positive definite equation of order n:

(XTX +D)Δu = r,

where D = 4(W 2
1 +W 2

2)
−1. Alternatively, we can apply the matrix inversion

lemma and convert this to an equation of order m:

(XD−1XT + I)Δũ = r̃. (3.19)

The second option is attractive when n � m, but requires a customized

interior-point solver, since the matrix D depends on the current iterates. A

general-purpose QP solver applied to (3.18), on the other hand, is expensive

if n � m, since it does not recognize the low-rank structure of the matrix

XTX in the objective.

Table 3.2 shows the result of an experiment with randomly generated

68 Interior-Point Methods for Large-Scale Cone Programming

m n CVXOPT MOSEK (3.18) MOSEK (3.20)

50 200 0.02 0.35 0.32

50 400 0.03 1.06 0.59

100 1000 0.12 9.57 1.69

100 2000 0.24 66.5 3.43

500 1000 1.19 10.1 7.54

500 2000 2.38 68.6 17.6

Table 3.2: Solution times (seconds) for six randomly generated dense least-squares
problems with �1-norm regularization. The matrixX has dimensionm×n. Column 3
gives the CPU times for the customized CVXOPT code. Column 4 shows the times
for MOSEK applied to (3.18). Column 5 shows the times for MOSEK applied
to (3.20).

dense matrices X. We compare the speed of a customized QP solver with

the general-purpose QP solver in MOSEK applied to the QP (3.18) and the

equivalent QP

minimize (1/2)wTw + 1T v

subject to −v � x � v

Xu− w = d

(3.20)

with variables u, v, w. Although this last formulation has more variables

and constraints than (3.18), MOSEK solves it more efficiently because it

is sparser. For the custom solver the choice between (3.18) and (3.20) is

irrelevant because the Newton equations for both QPs reduce to an equation

of the form (3.19).

3.3.3 Support Vector Machine Training

A well-known example of the technique in the previous section arises in the

training of support vector machine classifiers via the QP:

minimize (1/2)uTQu− dTu

subject to 0 � Diag(d)u � γ1

1Tu = 0.

(3.21)

In this problem Q is the kernel matrix and has entries Qij = k(xi, xj),

i, j = 1, . . . , N , where x1, . . . , xN ∈ R
n are the training examples and k :

R
n×Rn → R is a positive definite kernel function. The vector d ∈ {−1,+1}N

contains the labels of the training vectors. The parameter γ is given. The

3.3 Linear and Quadratic Programming 69

reduced Newton equation for (3.21) is[
Q+W−2

1 +W−2
2 1

1T 0

][
Δu

Δy

]
=

[
ru

ry

]
. (3.22)

This equation is expensive to solve whenN is large because the kernel matrix

Q is generally dense. If the linear kernel k(v, ṽ) = vT ṽ is used, the kernel

matrix can be written as Q = XXT where X ∈ R
N×n is the matrix with

rows xTi . If N � n, we can apply the matrix inversion lemma as in the

previous example, and reduce the Newton equation to an equation(
I +XT (W−2

1 +W−2
2)−1X

)
Δw = r

of order n. This method for exploiting low-rank structure or diagonal-plus-

low-rank structure in the kernel matrix Q is well known in machine learning

(Ferris and Munson, 2002; Fine and Scheinberg, 2002).

Crammer and Singer (2001) extended the binary SVM classifier to classi-

fication problems with more than two classes. The training problem of the

Crammer-Singer multiclass SVM can be expressed as a QP

minimize (1/2)Tr(UTQU)− Tr(ETU)

subject to U � γE

U1m = 0

(3.23)

with a variable U ∈ R
N×m, where N is the number of training examples

and m is the number of classes. As in the previous section, Q is a kernel

matrix with entries Qij = k(xi, xj), i, j = 1, . . . , N . The matrix E ∈ R
N×m

is defined as

Eij =

{
1 training example i belongs to class j

0 otherwise.

The inequality U � γE denotes componentwise inequality between matrices.

From the optimal solution U one obtains the multiclass classifier, which maps

a test point x to the class number

argmax
j=1,...,m

N∑
i=1

Uijk(xi, x).

An important drawback of this formulation, compared with multiclass

classifiers based on a combination of binary classifiers, is the high cost of

solving the QP (3.23), which has Nm variables, Nm inequality constraints,

and N equality constraints. Let us therefore examine the reduced Newton

70 Interior-Point Methods for Large-Scale Cone Programming

equations⎡⎢⎢⎢⎢⎢⎢⎢⎣

Q+W−2
1 0 · · · 0 I

0 Q+W−2
2 · · · 0 I

...
...

. . .
...

...

0 0 · · · Q+W−2
m I

I I · · · I 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

Δu1

Δu2
...

Δum

Δy

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

ru1

ru2

...

rum

ry

⎤⎥⎥⎥⎥⎥⎥⎥⎦
with variables Δuk, Δy ∈ R

N . The variables Δuk are the columns of the

search direction ΔU corresponding to the variable U in (3.23). Eliminating

the variables Δuk gives the equation HΔy = r with

H =
m∑

k=1

(Q+W−2
k)−1.

Now suppose the linear kernel is used, and Q = XXT with X ∈ R
N×n and

N large (compared to mn). Then we can exploit the low rank structure in

Q and write H as

H =

m∑
k=1

(
W 2

k −W 2
kX(I +XTW 2

kX)−1XTW 2
k

)
= D − Y Y T

where D =
∑

k W
2
k is diagonal and Y is an N ×mn matrix, and

Y =
[
W 2

1XL−1
1 W 2

2XL−1
2 · · · W 2

mXL−1
m

]
where Lk is a Cholesky factor of I+XTW 2

kX = LkL
T
k . A second application

of the matrix inversion lemma gives

Δy = (D − Y Y T)−1r

=
(
D−1 +D−1Y (I + Y TD−1Y)−1Y TD−1

)
r.

The largest dense matrix that needs to be factored in this method is the

mn × mn matrix I + Y TD−1Y . For large N the cost is dominated by

the matrix products XTW 2
i D

−1W 2
j X, i, j = 1, . . . ,m, needed to compute

Y TD−1Y . This takes O(m2n2N) operations.

In table 3.3 we show computational results for the multiclass classifier

applied to the MNIST handwritten digit data set (LeCun and Cortes, 1998).

The images are 28×28. We add a constant feature to each training example,

so the dimension of the feature space is n = 1 + 282 = 785. We use

γ = 105/N . For the largest N , the QP (3.23) has 600, 000 variables and

inequality constraints, and 60, 000 equality constraints.

3.4 Second-Order Cone Programming 71

N time iterations test error

10000 5699 27 8.6%

20000 12213 33 4.0%

30000 35738 38 2.7%

40000 47950 39 2.0%

50000 63592 42 1.6%

60000 82810 46 1.3%

Table 3.3: Solution times (seconds) and numbers of iterations for the multiclass
SVM training problem applied to the MNIST set of handwritten digits (m = 10
classes, n = 785 features)

3.4 Second-Order Cone Programming

Several authors have provided detailed studies of techniques for exploiting

sparsity in SOCPs (Andersen et al., 2003; Goldfarb and Scheinberg, 2005).

The coefficient matrix (3.12) of the reduced Newton equation of a linear and

quadratic cone program with K second-order cone constraints of dimension

p1, . . . , pK is

P +

K∑
k=1

GT
kW

−2
k Gk, W−1

k =
1

βk
(2Jvkv

T
k J − J). (3.24)

The scaling matrices are parameterized by parameters βk > 0 and vk ∈ R
pk

with vTk Jvk = 1 and J the sign matrix defined in (3.9). Note that

W−2
k =

1

β2
(2wkw

T
k −J) =

1

β2
(I+2wkw

T
k −2e0e

T
0), wk =

[
vTk vk

−2vk0vk1

]
where e0 is the first unit vector in R

p, vk0 is the first entry of vk, and vk1 is

the (p− 1)-vector of the other entries. Therefore

GT
kW

−2
k Gk =

1

β2

(
GT

kGk + 2(GT
kwk)(G

T
kwk)

T − 2(GT
k e0)(G

T
k e0)

T
)
,

that is, a multiple of GT
kGk plus a rank-two term.

We can distinguish two cases when examining the sparsity of the

sum (3.24). If the dimensions pk of the second-order cones are small, then

the matrices Gk are likely to have many zero columns and the vectors GT
kwk

will be sparse (for generic dense wk). Therefore the products G
T
kW

−2
k Gk and

the entire matrix (3.24) are likely to be sparse. At the extreme end (pk = 1)

this reduces to the situation in linear programming where the matrix (3.12)

has the sparsity of P +GTG.

72 Interior-Point Methods for Large-Scale Cone Programming

The second case arises when the dimensions pk are large. Then GT
kwk is

likely to be dense, which results into a dense matrix (3.24). If K
 n, we

can still separate the sum (3.24) in a sparse part and a few dense rank-

one terms, and apply techniques for handling dense rows in sparse linear

programs (Andersen et al., 2003; Goldfarb and Scheinberg, 2005).

3.4.1 Robust Support Vector Machine Training

Second-order cone programming has found wide application in robust opti-

mization. As an example, we discuss the robust SVM formulation of Shiv-

aswamy et al. (2006). This problem can be expressed as a cone QP with

second-order cone constraints:

minimize (1/2)wTw + γ1T v

subject to Diag(d)(Xw + b1) � 1− v + Eu

v � 0

‖Sjw‖2 ≤ uj , j = 1, . . . , t.

(3.25)

The variables are w ∈ R
n, b ∈ R, v ∈ R

N , and u ∈ R
t. The matrixX ∈ R

N×n

has as its rows the training examples xTi , and the vector d ∈ {−1, 1}N
contains the training labels. For t = 0, the term Eu and the norm constraints

are absent, and the problem reduces to the standard linear SVM

minimize (1/2)wTw + γ1T v

subject to di(x
T
i w + b) ≥ 1− vi, i = 1, . . . , N

v � 0.

(3.26)

In problem (3.25) the inequality constraints in (3.26) are replaced by a

robust version that incorporates a model of the uncertainty in the training

examples. The uncertainty is described by t matrices Sj , with t ranging

from 1 to N , and an N ×n-matrix E with 0-1 entries and exactly one entry

equal to one in each row. The matrices Sj can be assumed to be symmetric

positive semidefinite. To interpret the constraints, suppose Eij = 1. Then

the constraint in (3.25) that involves training example xi can be written as

a second-order cone constraint:

di(x
T
i w + b)− ‖Sjw‖2 ≥ 1− vi.

This is equivalent to

inf
‖η‖2≤1

(
di(xi + Sjη)

Tw + b
) ≥ 1− vi.

3.4 Second-Order Cone Programming 73

In other words, we replace the training example xi with an ellipsoid {xi +
Sjη | ‖η‖2 ≤ 1} and require that di(x

Tw + b) ≥ 1− vi holds for all x in the

ellipsoid. The matrix Sj defines the shape and magnitude of the uncertainty

about training example i. If we take t = 1, we assume that all training

examples are subject to the same type of uncertainty. Values of t larger

than one allow us to use different uncertainty models for different subsets of

the training examples.

To evaluate the merits of the robust formulation, it is useful to compare the

costs of solving the robust and non-robust problems. Recall that the cost per

iteration of an interior-point method applied to the QP (3.26) is of orderNn2

if N ≥ n, and is dominated by an equation of the form (I+XTDX)Δw = r

with D positive diagonal. To determine the cost of solving the robust

problem, we write it in the standard cone QP form (3.2) by choosing

x = (w, b, v, u) ∈ R
n×R×R

N ×R
t, K = 1+ t, C = R

2N
+ ×Qn+1× · · ·Qn+1.

We have

P =

⎡⎢⎢⎢⎢⎣
I 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

⎤⎥⎥⎥⎥⎦ , G =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−Diag(d)X −d −I E

0 0 −I 0

0 0 0 −eT1
−S1 0 0 0
...

...
...

...

0 0 0 −eTt
−St 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
where ek is the kth unit vector in R

t. Note that ETDE is diagonal for any

diagonal matrix D, and this property makes it inexpensive to eliminate the

extra variable Δu from the Newton equations. As in the nonrobust case, the

Newton equations can then be further reduced to an equation in n variables

Δw. The cost of forming the reduced coefficient matrix is of order Nn2+tn3.

When n ≤ N and for modest values of t, the cost of solving the robust

counterpart of the linear SVM training problem is therefore comparable to

the standard non-robust linear SVM.

Table 3.4 shows the solution times for a customized CVXOPT interior-

point method applied to randomly generated test problems with n = 200

features. Each training vector is assigned to one of t uncertainty models. For

comparison, the general-purpose solver SDPT3 v.4 called from CVX takes

about 130 seconds for t = 50 and N = 4000 training vectors.

74 Interior-Point Methods for Large-Scale Cone Programming

N t = 2 t = 10 t = 50 t = 100

4000 2.5 2.8 4.1 5.0

8000 5.4 5.3 6.0 6.9

16000 12.5 12.5 12.7 13.7

Table 3.4: Solution times (seconds) for customized interior-point method for robust
SVM training (n = 200 features and t different uncertainty models)

3.5 Semidefinite Programming

We now turn to the question of exploiting problem structure in cone pro-

grams that include linear matrix inequalities. To simplify the notation, we

explain the ideas for the inequality form SDP (3.6).

Consider the coefficient matrix H = GTW−1W−TG of the reduced New-

ton equations, with G defined in (3.7) and the scaling matrix W defined

in (3.10). The entries of H are

Hij = Tr
(
R−1FiR

−TR−1FjR
−T
)
, i, j = 1, . . . , n. (3.27)

The matrix R is generally dense, and therefore the matrixH is usually dense,

so the equation HΔx = r must be solved by a dense Cholesky factorization.

The cost of evaluating the expressions (3.27) is also significant, and often

exceeds the cost of solving the system. For example, if p = O(n) and the

matrices Fi are dense, then it takes O(n4) operations to compute the entire

matrix H and O(n3) operations to solve the system.

Efforts to exploit problem structure in SDPs have focused on using sparsity

and low-rank structure in the coefficient matrices Fi to reduce the cost of as-

sembling H. Sparsity is exploited, in varying degrees, by all general-purpose

SDP solvers (Sturm, 1999, 2002; Tütüncü et al., 2003; Yamashita et al.,

2003; Benson and Ye, 2005; Borchers, 1999). Several of these techniques

use ideas from the theory of chordal sparse matrices and positive definite

matrix completion theory to reduce the problem size or speed up critical cal-

culations (Fukuda et al., 2000; Nakata et al., 2003; Burer, 2003; Andersen

et al., 2010). It was also recognized early on that low-rank structure in the

coefficients Fi can be very useful to reduce the complexity of interior-point

methods (Gahinet and Nemirovski, 1997; Benson et al., 1999). For example,

if Fi = aia
T
i , then it can be verified that

H = (ATR−TR−1A) ◦ (ATR−TR−1A)

where A is the matrix with columns ai and ◦ is componentwise matrix mul-

tiplication. This expression for H takes only O(n3) operations to evaluate

3.5 Semidefinite Programming 75

if p = O(n). Low-rank structure is exploited in the LMI Control Tool-

box (Gahinet et al., 1995), DSDP (Benson and Ye, 2005), and SDPT3

(Tütüncü et al., 2003). Recent applications of dense, low-rank structure

include SDPs derived from sum-of-squares formulations of nonnegative poly-

nomials (Löfberg and Parrilo, 2004; Roh and Vandenberghe, 2006; Roh et al.,

2007; Liu and Vandenberghe, 2007). Kandola et al. (2003) describe an ap-

plication in machine learning.

Sparsity and low-rank structure do not exhaust the useful types of problem

structure that can be exploited in SDP interior-point methods, as demon-

strated by the following two examples.

3.5.1 SDPs with Upper Bounds

A simple example from Toh et al. (2007) and Nouralishahi et al. (2008)

will illustrate the limitations of techniques based on sparsity. Consider a

standard form SDP with an added upper bound:

minimize Tr(CX)

subject to Tr(AiX) = bi, i = 1, . . . ,m

0 � X � I.

(3.28)

The variable X is a symmetric matrix of order p. Since general-purpose

SDP solvers do not accept this format directly, the problem needs to be

reformulated as one without upper bounds. An obvious reformulation is to

introduce a slack variable S and solve the standard form SDP

minimize Tr(CX)

subject to Tr(AiX) = bi, i = 1, . . . ,m

X + S = I

X � 0, S � 0.

(3.29)

This is the semidefinite programming analog of converting an LP with

variable bounds,

minimize cTx

subject to Ax = b

0 � x � 1,

76 Interior-Point Methods for Large-Scale Cone Programming

into a standard form LP,

minimize cTx

subject to Ax = b, x+ s = 1

x � 0, s � 0.

(3.30)

Even though this is unnecessary in practice (LP solvers usually handle vari-

able upper bounds directly), the transformation to (3.30) would have only a

minor effect on the complexity. In (3.30) we add n extra variables (assuming

the dimension of x is n) and n extremely sparse equality constraints. A good

LP solver that exploits the sparsity will solve the LP at roughly the same cost

as the corresponding problem without upper bounds. The situation is very

different for SDPs. In (3.29) we increase the number of equality constraints

from m to m+p(p+1)/2. SDP solvers are not as good at exploiting sparsity

as LP solvers, so (3.29) is much harder to solve using general-purpose solvers

than the corresponding problem without upper bound.

Nevertheless, the SDP with upper bounds can be solved at a cost compa-

rable to the standard form problem, via a technique proposed by Toh et al.

(2007) and Nouralishahi et al. (2008). The reduced Newton equations (3.11)

for the SDP with upper bounds (3.29) are

T1ΔXT1 + T2ΔXT2 +
m∑
i=1

ΔyiAi = rX (3.31a)

Tr(AiΔX) = ryi, i = 1, . . . ,m (3.31b)

where T1 = R−T
1 R−1

1 and T2 = R−T
2 R−1

2 are positive definite matrices. (The

Newton equations for the standard form problem (3.28) are similar, but have

only one term TΔXT in the first equation, making it easy to eliminate ΔX.)

To solve (3.31) we first determine a congruence transformation that si-

multaneously diagonalizes T1 and T2,

V TT1V = I, V TT2V = Diag(γ),

where γ is a positive vector (see (Golub and Van Loan, 1996, section 8.7.2)).

If we define ΔX̃ = V −1ΔXV −T , Ãi = V TAiV , the equations reduce to

ΔX̃ +Diag(γ)ΔX̃ Diag(γ) +

m∑
i=1

ΔyiÃi = V T rXV

Tr(ÃiΔX̃) = ryi
, i = 1, . . . ,m.

From the first equation, we can express ΔX̃ in terms of Δy:

ΔX̃ = (V T rXV) ◦ Γ−
m∑
i=1

Δyi(Ãi ◦ Γ) (3.32)

3.5 Semidefinite Programming 77

m = p time per iteration

50 0.05

100 0.33

200 2.62

300 10.5

400 30.4

500 70.8

Table 3.5: Time (seconds) per iteration of a customized interior-point method
for SDPs with upper bounds

where Γ is the symmetric matrix with entries Γij = 1/(1+γiγj). Substituting

this in the second equation gives a set of equations HΔy = r where

Hij = Tr(Ãi(Ãj ◦ Γ)) = Tr((Ãi ◦ Ãj)Γ)), i, j = 1, . . . ,m.

After solving for Δy, one easily obtains ΔX from (3.32). The cost of this

method is dominated by the cost of computing the matrices Ãi (O(p4) flops

if m = O(p)), the cost of assembling H (O(p4) flops), and the cost of solving

for Δy (O(p3) flops). For dense coefficient matrices Ai, the overall cost is

comparable to the cost of solving the Newton equations for the standard

form SDP (3.28) without upper bound.

Table 3.5 shows the time per iteration of a CVXOPT implementation of

the method described above. The test problems are randomly generated,

with m = p and dense coefficient matrices Ai. The general-purpose SDP

solver SDPT3 v.4, called from CVX, and applied to problem (3.29) with

m = p = 100, takes about 23 seconds per iteration.

3.5.2 Nuclear Norm Approximation

In section 3.3.1 we discussed the �1-norm approximation problem (3.14)

and showed that the cost per iteration of an interior-point method is

comparable to the cost of solving the corresponding least-squares problem

(that is,O(mn2) operations). We can ask the same question about the matrix

counterpart of �1-norm approximation, the nuclear norm approximation

problem:

minimize ‖X(u)−D‖∗. (3.33)

Here ‖ · ‖∗ denotes the nuclear matrix norm (sum of singular values) and

X(u) =
∑n

i=1 uiXi is a linear mapping from R
n to R

p×q. The nuclear norm

is popular in convex heuristics for rank minimization problems in system

78 Interior-Point Methods for Large-Scale Cone Programming

theory and machine learning (Fazel et al., 2001; Fazel, 2002; Fazel et al.,

2004; Recht et al., 2010; Candès and Plan, 2010). These heuristics extend

�1-norm heuristics for sparse optimization.

Problem (3.33) is equivalent to an SDP

minimize (TrV1 +TrV2)/2

subject to

[
V1 X(u)−D

(X(u)−D)T V2

]
� 0,

(3.34)

with auxiliary symmetric matrix variables V1, V2. The presence of the extra

variables V1 and V2 clearly makes solving (3.34) using a general-purpose SDP

solver very expensive unless p and q are small, and much more expensive

than solving the corresponding least-squares approximation problem (that

is, problem (3.33) with the Frobenius norm replacing the nuclear norm).

A specialized interior-point method is described in Liu and Vandenberghe

(2009). The basic idea can be summarized as follows. The Newton equations

for (3.34) are

ΔZ11 = rV1
, ΔZ22 = rV2

, Tr(XT
i ΔZ12) = rui

, i = 1, . . . , n

and [
ΔV1 X(Δu)

X(Δu)T ΔV2

]
+ T

[
ΔZ11 ΔZ12

ΔZT
12 ΔZ22

]
T = rZ ,

where T = RRT . The variables ΔZ11, ΔZ22, ΔV1, ΔV2 are easily eliminated,

and the equations reduce to

X(Δu) + T11ΔZ12T22 + T12ΔZT
12T12 = rZ12

Tr(XT
i ΔZ12) = rui

, i = 1, . . . , n,

where Tij are subblocks of T partitioned as the matrix in the con-

straint (3.34). The method of Liu and Vandenberghe (2009) is based on

applying a transformation that reduces T11 and T22 to identity matrices and

T12 to a (rectangular) diagonal matrix, and then eliminating ΔZ12 from the

first equation, to obtain a dense linear system in Δu. The cost of solving

the Newton equations is O(n2pq) operations if n ≥ max{p, q}. For dense Xi

this is comparable to the cost of solving the approximation problem in the

least-squares (Frobenius norm) sense.

Table 3.6 shows the time per iteration of a CVXOPT code for (3.34). The

problems are randomly generated with n = p = 2q. Note that the SDP (3.34)

has n+ p(p+ 1)/2 + q(q + 1)/2 variables and is very expensive to solve by

general-purpose interior-point codes. CVX/SDPT3 applied to (3.33) takes

3.6 Conclusion 79

n = p = 2q time per iteration

100 0.30

200 2.33

300 8.93

400 23.9

500 52.4

Table 3.6: Time (seconds) per iteration of a customized interior-point method
for the nuclear norm approximation problem

22 seconds per iteration for the first problem (n = p = 100, q = 50).

3.6 Conclusion

Interior-point algorithms for conic optimization are attractive in machine

learning and other applications because they converge to a high accuracy

in a small number of iterations and are quite robust with respect to data

scaling. The main disadvantages are the high memory requirements and the

linear algebra complexity associated with the linear equations that are solved

at each iteration. It is therefore critical to exploit problem structure when

solving large problems. For linear and quadratic programming, sparse ma-

trix techniques provide a general and effective approach to handling problem

structure. For nonpolyhedral cone programs, and semidefinite programs in

particular, the sparse approach is less effective for two reasons. First, trans-

lating non-sparse problem structure into a sparse model may require intro-

ducing a very large number of auxiliary variables and constraints. Second,

techniques for exploiting sparsity in SDPs are less well developed than for

LPs. It is therefore difficult to develop general-purpose techniques for exploit-

ing problem structure in cone programs that are as scalable as sparse linear

programming solvers. However, it is sometimes quite straightforward to find

special-purpose techniques that exploit various types of problem structure.

When this is the case, customized implementations can be developed that

are orders of magnitude more efficient than general-purpose interior-point

implementations.

3.7 References

F. Alizadeh and D. Goldfarb. Second-order cone programming. Mathematical
Programming, series B, 95:3–51, 2003.

80 Interior-Point Methods for Large-Scale Cone Programming

E. D. Andersen. On primal and dual infeasibility certificates in a homogeneous
model for convex optimization. SIAM Journal on Optimization, 11(2):380–388,
2000.

E. D. Andersen, C. Roos, and T. Terlaky. On implementing a primal-dual interior-
point method for conic quadratic optimization. Mathematical Programming,
series B, 95(2):249–277, 2003.

M. S. Andersen, J. Dahl, and L. Vandenberghe. Implementation of nonsymmetric
interior-point methods for linear optimization over sparse matrix cones. Mathe-
matical Programming Computation, 2(3–4):167–201, 2010.

A. Ben-Tal and A. Nemirovski. Lectures on Modern Convex Optimization: Analysis,
Algorithms, and Engineering Applications. SIAM, Philadelphia, 2001.

S. J. Benson and Y. Ye. DSDP5: Software for semidefinite programming. Technical
Report ANL/MCS-P1289-0905, Mathematics and Computer Science Division,
Argonne National Laboratory, Argonne, IL, 2005.

S. J. Benson, Y. Ye, and X. Zhang. Solving large-scale sparse semidefinite programs
for combinatorial optimization. SIAM Journal on Optimization, 10:443–461,
1999.

B. Borchers. CSDP, a C library for semidefinite programming. Optimization
Methods and Software, 11(1):613–623, 1999.

S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press,
2004.

S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan. Linear Matrix Inequalities in
System and Control Theory, volume 15 of SIAM Studies in Applied Mathematics.
Philadelphia, 1994.

S. Burer. Semidefinite programming in the space of partial positive semidefinite
matrices. SIAM Journal on Optimization, 14(1):139–172, 2003.

E. J. Candès and Y. Plan. Matrix completion with noise. Proceedings of the IEEE,
98(6):925–936, 2010.

K. Crammer and Y. Singer. On the algorithmic implementation of the multiclass
kernel-based vector machines. Journal of Machine Learning Research, 2:265–292,
2001.

J. Dahl and L. Vandenberghe. CVXOPT: A Python Package for Convex Optimiza-
tion. http://abel.ee.ucla.edu/cvxopt, 2009.

M. Fazel. Matrix Rank Minimization with Applications. PhD thesis, Stanford
University, 2002.

M. Fazel, H. Hindi, and S. Boyd. A rank minimization heuristic with application to
minimum order system approximation. In Proceedings of the American Control
Conference, volume 6, pages 4734–4739, 2001.

M. Fazel, H. Hindi, and S. Boyd. Rank minimization and applications in system
theory. In Proceedings of the American Control Conference, pages 3273–3278,
2004.

M. C. Ferris and T. S. Munson. Interior-point methods for massive support vector
machines. SIAM Journal on Optimization, 13(3):783–804, 2002.

S. Fine and K. Scheinberg. Efficient SVM training using low-rank kernel represen-
tations. Journal of Machine Learning Research, 2:243–264, 2002.

M. Fukuda, M. Kojima, K. Murota, and K. Nakata. Exploiting sparsity in semidef-
inite programming via matrix completion I: general framework. SIAM Journal

3.7 References 81

on Optimization, 11(3):647–674, 2000.

P. Gahinet and A. Nemirovski. The projective method for solving linear matrix
inequalities. Mathematical Programming, 77(2):163–190, May 1997.

P. Gahinet, A. Nemirovski, A. J. Laub, and M. Chilali. LMI Control Toolbox. The
MathWorks, 1995.

E. M. Gertz and S. J. Wright. Object-oriented software for quadratic programming.
ACM Transactions on Mathematical Software, 29(1):58–81, 2003.

J. Gillberg and A. Hansson. Polynomial complexity for a Nesterov-Todd potential-
reduction method with inexact search directions. In Proceedings of the 42nd
IEEE Conference on Decision and Control, volume 3, pages 3824–3829, 2003.

D. Goldfarb and K. Scheinberg. Product-form Cholesky factorization in interior
point methods for second-order cone programming. Mathematical Programming
Series A, 103(1):153–179, 2005.

G. H. Golub and C. F. Van Loan. Matrix Computations. John Hopkins University
Press, third edition, 1996.

M. Grant and S. Boyd. CVX: Matlab Software for Disciplined Convex Programming
(Web Page and Software). http://stanford.edu/~boyd/cvx, 2007.

M. Grant and S. Boyd. Graph implementations for nonsmooth convex programs.
In V. Blondel, S. Boyd, and H. Kimura, editors, Recent Advances in Learning
and Control (a Tribute to M. Vidyasagar), pages 95–110. Springer, 2008.

C. Helmberg, F. Rendl, R. J. Vanderbei, and H. Wolkowicz. An interior-point
method for semidefinite programming. SIAM Journal on Optimization, 6(2):
342–361, 1996.

S. Joshi and S. Boyd. An efficient method for large-scale gate sizing. IEEE
Transactions on Circuits and Systems I, 55(9):2760–2773, 2008.

J. Kandola, T. Graepel, and J. Shawe-Taylor. Reducing kernel matrix diagonal
dominance using semi-definite programming. In B. Schölkopf and M. War-
muth, editors, Learning Theory and Kernel Machines, Proceedings of the 16th
Annual Conference on Learning Theory and 7th Kernel Workshop, pages 288–
302. Springer-Verlag, 2003.

S.-J. Kim, K. Koh, M. Lustig, S. Boyd, and D. Gorinevsky. An interior-point
method for large-scale �1-regularized least squares. IEEE Journal on Selected
Topics in Signal Processing, 1(4):606–617, 2007.

K. Koh, S.-J. Kim, and S. Boyd. An interior-point method for large-scale �1-
regularized logistic regression. Journal of Machine Learning Research, 8:1519–
1555, 2007.

M. Kojima, S. Shindoh, and S. Hara. Interior-point methods for the monotone
semidefinite linear complementarity problem in symmetric matrices. SIAM
Journal on Optimization, 7:86–125, 1997.

Y. LeCun and C. Cortes. The MNIST Database of Handwritten Digits. Available
at http://yann.lecun.com/exdb/mnist/, 1998.

Z. Liu and L. Vandenberghe. Low-rank structure in semidefinite programs derived
from the KYP lemma. In Proceedings of the 46th IEEE Conference on Decision
and Control, pages 5652–5659, 2007.

Z. Liu and L. Vandenberghe. Interior-point method for nuclear norm approximation
with application to system identification. SIAM Journal on Matrix Analysis and
Applications, 31(3):1235–1256, 2009.

82 Interior-Point Methods for Large-Scale Cone Programming

J. Löfberg. YALMIP: A Toolbox for Modeling and Optimization in MATLAB. In
Proceedings of the International Symposium on Computer Aided Control Systems
Design, pages 284–289, 2004.

J. Löfberg and P. A. Parrilo. From coefficients to samples: A new approach to
SOS optimization. In Proceedings of the 43rd IEEE Conference on Decision and
Control, volume 3, pages 3154–3159, 2004.

R. D. C. Monteiro and Y. Zhang. A unified analysis for a class of long-step
primal-dual path-following interior-point algorithms for semidefinite program-
ming. Mathematical Programming, 81:281–299, 1998.

MOSEK ApS. The MOSEK Optimization Tools Manual. Version 6.0., 2010.
Available from www.mosek.com.

K. Nakata, K. Fujisawa, M. Fukuda, M. Kojima, and K. Murota. Exploiting
sparsity in semidefinite programming via matrix completion II: Implementation
and numerical details. Mathematical Programming, series B, 95(2):303–327, 2003.

Y. Nesterov and A. Nemirovskii. Interior-Point Polynomial Methods in Convex
Programming, volume 13 of Studies in Applied Mathematics. SIAM, Philadelphia,
1994.

Y. Nesterov, M. J. Todd, and Y. Ye. Infeasible-start primal-dual methods and
infeasibility detectors for nonlinear programming problems. Mathematical Pro-
gramming, 84(2):227–267, 1999.

Y. E. Nesterov and M. J. Todd. Self-scaled barriers and interior-point methods for
convex programming. Mathematics of Operations Research, 22(1):1–42, 1997.

Y. E. Nesterov and M. J. Todd. Primal-dual interior-point methods for self-scaled
cones. SIAM Journal on Optimization, 8(2):324–364, May 1998.

M. Nouralishahi, C. Wu, and L. Vandenberghe. Model calibration for optical
lithography via semidefinite programming. Optimization and Engineering, 9:
19–35, 2008.

B. Recht, M. Fazel, and P. A. Parrilo. Guaranteed minimum-rank solutions of linear
matrix equations via nuclear norm minimization. SIAM Review, 52(3):471–501,
2010.

T. Roh and L. Vandenberghe. Discrete transforms, semidefinite programming, and
sum-of-squares representations of nonnegative polynomials. SIAM Journal on
Optimization, 16(4):939–964, 2006.

T. Roh, B. Dumitrescu, and L. Vandenberghe. Multidimensional FIR filter design
via trigonometric sum-of-squares optimization. IEEE Journal of Selected Topics
in Signal Processing, 1(4):641–650, 2007.

P. K. Shivaswamy, C. Bhattacharyya, and A. J. Smola. Second order cone program-
ming approaches for handling missing and uncertain data. Journal of Machine
Learning Research, 7:1283–1314, 2006.

J. F. Sturm. Using SEDUMI 1.02, a Matlab toolbox for optimization over symmetric
cones. Optimization Methods and Software, 11-12:625–653, 1999.

J. F. Sturm. Implementation of interior point methods for mixed semidefinite and
second order cone optimization problems. Optimization Methods and Software,
17(6):1105–1154, 2002.

K. C. Toh, R. H. Tütüncü, and M. J. Todd. Inexact primal-dual path-following
algorithms for a special class of convex quadratic SDP and related problems.
Pacific Journal of Optimization, 3, 2007.

3.7 References 83

R. H. Tütüncü, K. C. Toh, and M. J. Todd. Solving semidefinite-quadratic-linear
programs using SDPT3. Mathematical Programming, series B, 95:189–217, 2003.

R. Wallin, A. Hansson, and J. H. Johansson. A structure exploiting preprocessor
for semidefinite programs derived from the Kalman-Yakubovich-Popov lemma.
IEEE Transactions on Automatic Control, 54(4):697–704, 2009.

M. Yamashita, K. Fujisawa, and M. Kojima. Implementation and evaluation of
SDPA 6.0 (Semidefinite Programming Algorithm 6.0). Optimization Methods
and Software, 18(4):491–505, 2003.

4 Incremental Gradient, Subgradient, and

Proximal Methods for Convex

Optimization: A Survey

Dimitri P. Bertsekas dimitri@mit.edu

Dept. of Electr. Engineering and Comp. Science, M.I.T.

Cambridge, MA, 02139

We survey incremental methods for minimizing a sum
∑m

i=1 fi(x) consist-

ing of a large number of convex component functions fi. Our methods con-

sist of iterations applied to single components, and have proved very effec-

tive in practice. We introduce a unified algorithmic framework for a variety

of such methods, some involving gradient and subgradient iterations, which

are known, and some involving combinations of subgradient and proximal

methods, which are new and offer greater flexibility in exploiting the spe-

cial structure of fi. We provide an analysis of the convergence and rate of

convergence properties of these methods, including the advantages offered

by randomization in the selection of components. We also survey applica-

tions in inference/machine learning, signal processing, and large-scale and

distributed optimization.

86 Incremental Gradient, Subgradient, and Proximal Methods for Convex Optimization

4.1 Introduction

We consider optimization problems with a cost function consisting of a large

number of component functions, such as

minimize

m∑
i=1

fi(x)

subject to x ∈ X,

(4.1)

where fi : �n �→ �, i = 1, . . . ,m are real-valued functions, and X is a closed

convex set.1 We focus on the case where the number of components m is very

large, and there is an incentive to use incremental methods that operate on a

single component fi at each iteration, rather than on the entire cost function.

If each incremental iteration tends to make reasonable progress in some

“average” sense, then, depending on the value of m, an incremental method

may significantly outperform (by orders of magnitude) its nonincremental

counterpart, as extensive experience has shown.

In this chapter, we survey the algorithmic properties of incremental meth-

ods in a unified framework, based on the author’s recent work on incremen-

tal proximal methods (Bertsekas, 2010). In this section, we first provide an

overview of representative applications, and then we discuss three types of

incremental methods: gradient, subgradient, and proximal. We unify these

methods into a combined method, which we use as a vehicle for analysis in

Sections 4.2, 4.3, and 4.4. Finally, we discuss in greater detail some illus-

trative applications in Section 4.5. Some of the proofs of propositions have

been omitted and can be found in the report (Bertsekas, 2010).

4.1.1 Some Examples of Additive Cost Problems

Additive cost problems of the form (4.1) arise in a variety of contexts. Let

us provide a few examples where the incremental approach may have an

advantage over alternatives.

Example 4.1 (Least Squares and Inference). An important context

where cost functions of the form
∑m

i=1 fi(x) arise is inference/machine

learning, where each term fi(x) corresponds to error between some data and

1. Throughout the chapter, we will operate within the n-dimensional space �n with the
standard Euclidean norm, denoted ‖ · ‖. All vectors are considered column vectors and
a prime denotes transposition, so x′x = ‖x‖2. We will be using standard terminology of
convex optimization throughout, as given, for example, in textbooks such as Rockafellar
(1970), or the author’s recent book (Bertsekas, 2009).

4.1 Introduction 87

the output of a parametric model, with x being the vector of parameters. An

example is linear least-squares problems, where fi has quadratic structure,

except for a regularization function, which may be differentiable/quadratic,

as in the classical regression problem

m∑
i=1

(a′ix− bi)
2 + γ‖x− x‖2, s.t. x ∈ �n,

where x is given, or nondifferentiable, as in the �1-regularization problem

m∑
i=1

(a′ix− bi)
2 + γ

n∑
j=1

|xj |, s.t. (x1, . . . , xn) ∈ �n,

which will be discussed further in Section 4.5.

A more general class of additive cost problems is nonlinear least squares.

Here

fi(x) =
(
hi(x)

)2
,

where hi(x) represents the difference between the ith measurement (out of

m) from a physical system and the output of a parametric model whose

parameter vector is x. Problems of nonlinear curve fitting and regression, as

well as problems of training neural networks, fall in this category, and they

are typically nonconvex.

Another possibility is to use a nonquadratic function to penalize the error

between some data and the output of the parametric model. For example,

in place of the squared error (a′ix− bi)
2, we may use

fi(x) = �(a′ix− bi),

where � is a convex function. This is a common approach in robust estimation

and some support vector machine formulations.

Still another example is maximum likelihood estimation, where fi is a log-

likelihood function of the form

fi(x) = − logPY (yi;x),

where y1, . . . , ym represents values of independent samples of a random

vector whose distribution PY (·;x) depends on an unknown parameter vector

x ∈ �n that one wishes to estimate. Related contexts include “incomplete”

data cases, where the expectation-maximization (EM) approach is used.

Example 4.2 (Dual Optimization in Separable Problems). Consider

88 Incremental Gradient, Subgradient, and Proximal Methods for Convex Optimization

the problem

maximize

m∑
i=1

ci(yi)

subject to

m∑
i=1

gi(yi) ≥ 0, yi ∈ Yi, i = 1, . . . ,m,

where ci : � �→ � and gi : � �→ �n are functions of the single scalar

coordinate yi, and Yi are given sets of scalars. Then, by assigning a dual

vector/multiplier x ∈ �n to the n-dimensional constraint function, we obtain

the dual problem

minimize

n∑
i=1

fi(x), subject to x ≥ 0,

where

fi(x) = sup
yi∈Yi

{
ci(yi) + x′gi(yi)

}
,

which has the additive form (4.1). Note that Yi is not assumed to be

convex, so integer programming and other discrete optimization problems

are included. However, the dual cost function components fi are always

convex, and their values and subgradients can often be computed either

analytically or with a one-dimensional maximization.

Example 4.3 (Minimization of an Expected Value: Stochastic Pro-

gramming). Consider the minimization of an expected value

minimize E
{
F (x,w)

}
subject to x ∈ X,

(4.2)

where w is a random variable taking a finite but very large number of values

wi, i = 1, . . . ,m, with corresponding probabilities πi. Then the cost function

consists of the sum of the m functions πiF (x,wi).

An example is stochastic programming , a classical model of two-stage

optimization under uncertainty. A vector x ∈ X is selected, a random event

occurs that has m possible outcomes w1, . . . , wm, and then another vector y

is selected from some set Y with knowledge of the outcome that occurred.

Then, for optimization purposes, we need to specify a different vector yi ∈ Y

for each outcome wi. The problem is to minimize the expected cost

F (x) +

m∑
i=1

πiGi(yi),

4.1 Introduction 89

where Gi(yi) is the cost associated with the occurrence of wi, and πi is the

corresponding probability. This is a problem with an additive cost function.

Furthermore, if there are separable (e.g., linear) constraints coupling the

vectors x and yi, the problem has a separable form.

Additive cost function problems also arise from problem (4.2) in a different

way: when the expected value E
{
F (x,w)

}
is approximated by an m-sample

average

f(x) =
1

m

m∑
i=1

F (x,wi),

where wi are independent samples of the random variable w. The minimum

of the sample average f(x) is then taken as an approximation of the

minimum of E
{
F (x,w)

}
.

Example 4.4 (Problems with Many Constraints). Problems of the

form

minimize f(x)

subject to gj(x) ≤ 0, j = 1, . . . ,m, x ∈ X,
(4.3)

where the number r of constraints is very large, often arise in practice, either

directly or via reformulation from other problems. They can be handled in

a variety of ways. One possibility is to adopt a penalty function approach,

and replace problem (4.3) with

minimize f(x) + c

r∑
j=1

P
(
gj(x)

)
subject to x ∈ X,

(4.4)

where P (·) is a scalar penalty function satisfying P (t) = 0 if t ≤ 0, and

P (t) > 0 if t > 0, and c is a positive penalty parameter. For example,

one may use the quadratic penalty P (t) =
(
max{0, t})2. An interesting

alternative is to use P (t) = max{0, t}, in which case it can be shown that the

optimal solutions of problems (4.3) and (4.4) coincide when c is sufficiently

large (see, for example, Bertsekas et al. (2003, Section 7.3) for the case in

which f is convex). The cost function of the penalized problem (4.4) is of

the additive form (4.1).

The idea of replacing constraints with penalties can be extended to the

case where the constraint x ∈ X in problem (4.3) has the form x ∈ ∩m
j=1Xj .

Then, under relatively mild conditions, problem (4.3) is equivalent to the

90 Incremental Gradient, Subgradient, and Proximal Methods for Convex Optimization

unconstrained minimization of

f(x) + c

r∑
j=1

P
(
gj(x)

)
+ γ

m∑
j=1

dist(x;Xj),

where dist(x;Xj) = infy∈Xj
‖y − x‖ and γ is a sufficiently large penalty

parameter. We discuss this possibility in Section 4.5.

Example 4.5 (Distributed Incremental Optimization in Sensor

Networks). Consider a network of m sensors where data are collected and

used to solve some inference problem involving a parameter vector x. If

fi(x) represents an error penalty for the data collected by the ith sensor,

the inference problem is of the form (4.1). While it is possible to collect all

the data at a fusion center where the problem will be solved in centralized

manner, it may be preferable to adopt a distributed approach in order to

save data communication overhead and/or take advantage of parallelism in

computation. In such an approach the current iterate xk is passed from one

sensor to another, with each sensor i performing an incremental iteration

involving just its local component function fi, and the entire cost function

need not be known at any one location. We refer to Blatt et al. (2007), and

Rabbat and Nowak (2004, 2005) for further discussion.

Example 4.6 (Weber Problem in Location Theory). We want to find

a point x in the plane whose sum of weighted distances from a given set of

points y1, . . . , ym is minimized. Mathematically, the problem is

m∑
i=1

wi‖x− yi‖, s.t. x ∈ �n,

where w1, . . . , wm are given positive scalars. This problem descends from the

famous Fermat-Torricelli-Viviani problem (see (Boltyanski et al., 1999) for

an account of the history; Fermat’s formulation was for the case of a triangle,

where m = 3). It is a basic problem in location theory, and has received a

lot of attention. The algorithmic approaches of this chapter would be of

potential interest when the number of points m is large. We refer to Beck

and Teboulle (2010) for a discussion that is relevant to our context.

4.1.2 Incremental Gradient Methods: Differentiable Problems

In the case where the components fi are differentiable (not necessarily

convex), we may use incremental gradient methods, which have the form

xk+1 = PX

(
xk − αk∇fik(xk)

)
, (4.5)

4.1 Introduction 91

where αk is a positive stepsize, PX(·) denotes projection on X, and ik is

the index of the cost component that is iterated on. Such methods have

a long history, particularly for the unconstrained case (X = �n), starting

with the Widrow-Hoff least-mean-squares (LMS) method (Widrow and Hoff,

1960) for positive semidefinite quadratic component functions (see e.g.,

(Luo, 1993), (Bertsekas and Tsitsiklis, 1996, Section 3.2.5), (Bertsekas, 1999,

Section 1.5.2)). They have also been used extensively for the training of

neural networks, a case of nonquadratic/nonconvex cost components, under

the generic name “backpropagation methods.” There are several variants of

these methods, which differ in the stepsize selection scheme, and iin the order

in which components are taken up for iteration (it could be deterministic

or randomized). They are supported by convergence analyses under various

conditions; see Luo (1993), Grippo (1994), Grippo (2000), Luo and Tseng

(1994), Mangasarian and Solodov (1994), Bertsekas (1997), Solodov (1998),

and Tseng (1998).

When comparing the incremental gradient method with its classical non-

incremental gradient counterpart (where m = 1 and all components are

lumped into a single function f(x) =
∑m

i=1 fi(x)), it is important to realize

that there are two complementary performance issues to consider.

1. Progress when far from convergence. Here the incremental method can

be much faster. For an extreme case let X = �n (no constraints), and

take m very large and all components fi identical to each other. Then an

incremental iteration requires m times less computation than a classical

gradient iteration, but gives exactly the same result. While this is an extreme

example, it reflects the essential mechanism by which incremental methods

can be far superior: when the components fi are not too dissimilar, far from

the minimum a single component gradient will point to, “more or less,” the

right direction (see also the discussion of Bertsekas (1997) and Bertsekas

(1999, Example 1.5.5 and Exercise 1.5.5).)

2. Progress when close to convergence. Here the incremental method is gen-

erally inferior. As we will discuss shortly, it converges at a sublinear rate

because it requires a diminishing stepsize αk, compared with the typically

linear rate achieved with the classical gradient method when a small, con-

stant stepsize is used (αk ≡ α). One may use a constant stepsize with the

incremental method - and indeed this may be the preferred mode of imple-

mentation - but then the method typically oscillates in the neighborhood

of a solution, with the size of the oscillation roughly proportional to α, as

examples and theoretical analysis show.

To understand the convergence mechanism of incremental gradient meth-

ods, let us consider the case X = �n, and assume that the component

92 Incremental Gradient, Subgradient, and Proximal Methods for Convex Optimization

functions fi are selected for iteration according to a cyclic order (i.e., for

every �, i�m = 1, i�m+1 = 2, . . . , i�m+m−1 = m), and let us assume that αk is

constant within a cycle (i.e., α�m = α�m+1 = · · · = α�m+m−1). Then, viewing

the iteration (4.5) in terms of cycles, we have, for every k that marks the

beginning of a cycle (ik = 1),

xk+m = xk − αk

m∑
i=1

∇fi(xk+i−1) = xk − αk

(∇f(xk) + ek),

where f is the cost function/sum of components, f(x) =
∑m

i=1 fi(x), and ek
is given by

ek =
m∑
i=1

(∇fi(xk)−∇fi(xk+i−1)
)
,

and may be viewed as an error in the calculation of the gradient ∇f(xk).

For Lipschitz continuous gradient functions ∇fi, the error ek is proportional

to αk, and this shows two fundamental properties of incremental gradient

methods, which hold generally for the other incremental methods of this

chapter as well.

1. A constant stepsize (αk ≡ α) typically cannot guarantee convergence,

since then the size of the gradient error ‖ek‖ is typically bounded away

from 0. Instead, a peculiar form of convergence takes place for constant

but sufficiently small α, whereby the iterates within cycles converge to

corresponding points of a limit cycle. This is true even in the most favorable

case of a linear least squares problem (see Luo (1993), or the textbook

analysis of Bertsekas (1999, Section 1.5.1)).

2. A diminishing stepsize (such as αk = O(1/k)) leads to a diminishing

error ek, so (under the appropriate Lipschitz condition) it can result in

convergence to a stationary point of f .

A corollary of these properties is that the price for achieving convergence

is the slow (sublinear) asymptotic rate of convergence associated with a

diminishing stepsize, which compares unfavorably with the often linear rate

of convergence associated with a constant stepsize and the nonincremental

gradient method. However, in practical terms this argument does not tell the

entire story, since in the early iterations, the incremental gradient method

often achieves a much faster convergence rate than its nonincremental

counterpart. In practice, the incremental method is usually operated with

a stepsize that either is constant or is gradually reduced up to a positive

value small enough that the resulting asymptotic oscillation is of no essential

concern. An alternative is to use a constant stepsize throughout, but to

4.1 Introduction 93

reduce over time the degree of incrementalism, so that ultimately the

method becomes nonincremental and achieves a linear convergence rate (see

Bertsekas (1997) and Solodov (1998)).

Aside from extensions to nondifferentiable cost problems, for X = �n

there is an important variant of the incremental gradient method that

involves extrapolation along the direction of the difference of the preceding

two iterates:

xk+1 = xk − αk∇fik(xk) + β(xk − xk−1), (4.6)

where β is a scalar in [0, 1) and x−1 = x0 (see e.g., Mangasarian and Solodov

(1994), Tseng (1998), Bertsekas (1996, Section 3.2)). This is sometimes

called the incremental gradient method with momentum. The nonincremen-

tal version of this method is the heavy ball method of Poljak (1964), which

can be shown to have a faster convergence rate than the corresponding gra-

dient method (see Polyak (1987, Section 3.2.1)). A nonincremental method

of this type, but with variable and suitably chosen value of β, has been

proposed by Nesterov (1983), and has received a lot of attention recently

because it has optimal iteration complexity properties under certain condi-

tions (see Nesterov (2004, 2005), Lu et al. (2008), Tseng (2008), and Beck

and Teboulle (2009, 2010)). However, no incremental analogs of this method

with favorable complexity properties are currently known.

Another variant of the incremental gradient method for the case X = �n

has been proposed by Blatt et al. (2007), which (after the first m iterates

are computed) has the form

xk+1 = xk − α

m−1∑
�=0

∇fik−�
(xk−�). (4.7)

(For k < m, the summation should go up to � = min{k,m− 1}, and α should

be replaced by a corresponding larger value, such as αk = mα/(k + 1).)

This method also computes the gradient incrementally, one component per

iteration, but in place of the single component gradient ∇fik(xk) in (4.5),

it uses an approximation to the total cost gradient ∇f(xk), which is an

aggregate of the component gradients computed in the past m iterations. A

cyclic order of component function selection (ik = k modulo m plus 1) is

assumed in (Blatt et al., 2007), and a convergence analysis is given, including

a linear convergence rate result for a sufficiently small constant stepsize α

and quadratic component functions fi. It is not clear how iterations (4.5)

and (4.7) compare in terms of rate of convergence, although the latter seems

likely to make faster progress when close to convergence. Note that iteration

(4.7) bears similarity to the incremental gradient iteration with momentum

94 Incremental Gradient, Subgradient, and Proximal Methods for Convex Optimization

(4.6) where β ≈ 1. In particular, when αk ≡ α, the sequence generated by

(4.6) satisfies

xk+1 = xk − α

k∑
�=0

β�∇fik−�
(xk−�),

which resembles (4.7). There are no known analogs of iterations (4.6) and

(4.7) for nondifferentiable cost problems.

Among alternative incremental methods for differentiable cost problems,

we also mention versions of the Gauss-Newton method for nonlinear least-

squares problems, based on the extended Kalman filter ((Davidon, 1976),

(Bertsekas, 1996), and (Moriyama et al., 2003)). They are mathematically

equivalent to the ordinary Gauss-Newton method for linear least squares,

which they solve exactly after a single pass through the component functions

fi, but they often perform much faster in the nonlinear case, particularly

when m is large.

Let us finally note that incremental gradient methods are related to

stochastic gradient methods, which aim to minimize an expected value

E
{
F (x,w)

}
(cf. Example 1.3) by using the iteration

xk+1 = xk − αk∇F (xk, wk),

where wk is a sample of the random variable w. These methods also have

a long history (see Polyak and Tsypkin (1973), Ljung (1977), Kushner and

Clark (1978), Tsitsiklis et al. (1986), Polyak (1987), Bertsekas and Tsit-

siklis (1989, 1996, 2000), Gaivoronski (1994), Pflug (1996), Kushner and

Yin (1997), Bottou (2005), Meyn (2007), Borkar (2008), Nemirovski et al.

(2009), Lee and Wright (2010)), and are strongly connected with stochastic

approximation algorithms. The main difference between stochastic and de-

terministic formulations is that the former involve sequentially sampling cost

components from an infinite population under some statistical assumptions,

while in the latter the set of cost components is predetermined and finite.

However, it is possible to view the incremental gradient method (4.5), with a

randomized selection of the component function fi (i.e., with ik chosen to be

any one of the indexes 1, . . . ,m, with equal probability 1/m), as a stochas-

tic gradient method (see Bertsekas and Tsitsiklis (1996, Example 4.4) and

(Bertsekas and Tsitsiklis, 2000, Section 5)).

The stochastic formulation of incremental methods just discussed high-

lights an important application context where the component functions fi
are not given a priori, but become known sequentially through some obser-

vation process. Then it often makes sense to use an incremental method to

process the component functions as they become available, and to obtain

4.1 Introduction 95

approximate solutions as early as possible. In fact, this may be essential in

time-sensitive and possibly time-varying environments, where solutions are

needed “online.” In such cases, one may hope that an adequate estimate of

the optimal solution will be obtained before all the functions fi are processed

for the first time.

4.1.3 Incremental Subgradient Methods - Nondifferentiable Problems

Incremental subgradient methods apply to the case where the component

functions fi are convex and nondifferentiable at some points. They are simi-

lar to their gradient counterparts (4.5) except that an arbitrary subgradient

∇̃fik(xk) of the cost component fik is used in place of the gradient:2

xk+1 = PX

(
xk − αk∇̃fik(xk)

)
. (4.8)

Such methods were first proposed in the general form (4.8) in the Soviet

Union by Kibardin (1980), following the earlier paper by Litvakov (1966)

(which considered convex/nondifferentiable extensions of linear least-squares

problems) and related subsequent proposals.3 These works remained unno-

ticed until about 2005 in the Western literature, where incremental methods

were often reinvented in different contexts and with different lines of analy-

sis. See Ben-Tal et al. (2001), Nedić and Bertsekas (2000, 2001, 2010), Nedić

et al. (2001), Kiwiel (2004), Rabbat and Nowak (2004, 2005), Gaudioso et al.

(2006), Shalev-Shwartz et al. (2007), Neto and De Pierro (2009), Johansson

et al. (2009), Predd et al. (2009), Ram et al. (2009a,b), and Duchi et al.

(2010).

Incremental subgradient methods have convergence characteristics that

are similar in many ways to their gradient counterparts, the most important

similarity being the necessity for a diminishing stepsize αk for convergence.

The lines of analysis, however, tend to be different, since incremental gra-

dient methods rely for convergence on arguments based on decrease of the

cost function value, while incremental subgradient methods rely on argu-

2. In this chapter, we use ∇̃f(x) to denote a subgradient of a convex real-valued function
f at a vector x. The choice of ∇̃f(x) from within the subdifferential ∂f(x) at x will be
clear from the context.
3. Generally, in those times, algorithmic ideas relating to simple gradient methods with
and without deterministic and stochastic errors were popular in the Soviet scientific com-
munity, partly due to an emphasis on stochastic iterative algorithms, such as pseudogra-
dient and stochastic approximation; the works of Ermoliev, Polyak, and Tsypkin, to name
a few of the principal contributors, are representative (Ermoliev, 1969; Polyak and Tsyp-
kin, 1973; Ermoliev, 1976; Polyak, 1978, 1987). By contrast, the emphasis in the Western
literature at the time was on more complex Newton-like and conjugate direction methods.

96 Incremental Gradient, Subgradient, and Proximal Methods for Convex Optimization

ments based on decrease of the iterates’ distance from the optimal solution

set. The line of analysis of this chapter is of the latter type, and is similar to

earlier works of the author and his collaborators (see Nedić and Bertsekas

(2000), Nedić and Bertsekas (2001), Nedić et al. (2001), and the textbook

presentations in Bertsekas (1999) and Bertsekas et al. (2003)).

Note two important ramifications of the lack of differentiability of the

component functions fi:

1. Convexity of fi becomes essential, since the notion of subgradient is

connected with convexity (subgradient-like algorithms for nondifferentiable

/ nonconvex problems have been suggested in the literature, but tend to be

complicated and have not found much application thus far).

2. There is more reason to favor the incremental over the nonincremen-

tal methods, since (contrary to the differentiable case) nonincremental sub-

gradient methods also require a diminishing stepsize for convergence, and

typically achieve a sublinear rate of convergence. Thus the one theoretical

advantage of the nonincremental gradient method discussed earlier is not

shared by its subgradient counterpart.

Finally, just as in the differentiable case, there is a substantial literature

for stochastic versions of subgradient methods. In fact, as we will discuss

in this chapter, there is a potentially significant advantage in turning the

method into a stochastic one by randomizing the order of selection of the

components fi for iteration.

4.1.4 Incremental Proximal Methods

We now consider an extension of the incremental approach to proximal

algorithms. The simplest one for problem (4.1) is of the form

xk+1 = argmin
x∈X

{
fik(x) +

1

2αk
‖x− xk‖2

}
, (4.9)

which relates to the proximal minimization algorithm ((Martinet, 1970),

(Rockafellar, 1976)) in the same way that the incremental subgradient

method (4.8) relates to the classical nonincremental subgradient method.4

Here {αk} is a positive scalar sequence, and we will assume that each

fi : �n �→ � is a convex function and X is a nonempty closed convex set.

4. In this chapter, we restrict our attention to proximal methods with the quadratic
regularization term ‖x−xk‖2. Our approach is applicable in principle when a nonquadratic
term is used instead, in order to match the structure of the given problem. The discussion
of such alternative algorithms is beyond our scope.

4.1 Introduction 97

The motivation for this type of method, which was considered only recently

in Bertsekas (2010), is that with a favorable structure of the components,

the proximal iteration (4.8) may be obtained in closed form or be relatively

simple, in which case it may be preferable to a gradient or subgradient

iteration. In this connection, we note that, generally, proximal iterations

are considered more stable than gradient iterations; for example, in the

nonincremental case, they converge essentially for any choice of αk, while

this is not so for gradient methods.

While some cost function components may be well suited for a proximal

iteration, others may not be because the minimization (4.9) is inconvenient,

so it makes sense to consider combinations of gradient/subgradient and prox-

imal iterations. In fact, in the past this has motivated nonincremental com-

binations of gradient and proximal methods for minimizing the sum of two

functions (or more generally, finding a zero of the sum of two nonlinear oper-

ators). These methods have a long history, dating to the splitting algorithms

of Lions and Mercier (1979) and Passty (1979), and have become popular

more recently (see Beck and Teboulle (2009, 2010), and the references they

cite for specialized algorithms, such as shrinkage/thresholding, cf. Section

5.1).

With similar motivation in mind, we adopt in this paper a unified algorith-

mic framework that includes incremental gradient, subgradient, and proxi-

mal methods and their combinations, and highlights their common structure

and behavior. We focus on problems of the form

minimize F (x)
def
=

m∑
i=1

Fi(x)

subject to x ∈ X,

(4.10)

where for all i,

Fi(x) = fi(x) + hi(x), (4.11)

fi : �n �→ �n and hi : �n �→ � are real-valued convex functions, and X is a

nonempty closed convex set.

In Section 4.2, we consider several incremental algorithms that iterate on

the components fi with a proximal iteration, and on the components hi with

a subgradient iteration. By choosing all the fi or all the hi to be identically

zero, we obtain the subgradient and proximal iterations (4.8) and (4.9),

respectively, as special cases. However, our methods offer greater flexibility,

and may exploit the special structure of problems where the functions fi are

suitable for a proximal iteration, while the components hi are not suitable,

and thus may be preferably treated with a subgradient iteration.

98 Incremental Gradient, Subgradient, and Proximal Methods for Convex Optimization

In Section 4.3, we discuss the convergence and rate of convergence prop-

erties of methods that use a cyclic rule for component selection, and in

Section 4.4, we discuss a randomized component selection rule. In summary,

the convergence behavior of our incremental methods is similar to the one

outlined earlier for the incremental subgradient method (4.8). This includes

convergence within a certain error bound for a constant stepsize, exact con-

vergence to an optimal solution for an appropriately diminishing stepsize,

and improved convergence rate/iteration complexity when randomization is

used to select the cost component for iteration. In Section 4.5, we illustrate

our methods for some example applications.

4.2 Incremental Subgradient-Proximal Methods

In this section, we consider problems (4.10) and (4.11), and introduce several

incremental algorithms that involve a combination of a proximal and a

subgradient iteration. One of our algorithms has the form

zk = argmin
x∈X

{
fik(x) +

1

2αk
‖x− xk‖2

}
, (4.12)

xk+1 = PX

(
zk − αk∇̃hik(zk)

)
, (4.13)

where ∇̃hik(zk) is an arbitrary subgradient of hik at zk. The iteration is

well defined because the minimum in (4.12) is uniquely attained since fi
is continuous and ‖x − xk‖2 is real-valued, strictly convex, and coercive,

while the subdifferential ∂hi(zk) is nonempty since hi is real-valued. Also,

by choosing all the fi or all the hi to be identically zero, we obtain the

subgradient and proximal iterations (4.8) and (4.9), respectively, as special

cases.

The iterations (4.12) and (4.13) maintain both sequences {zk} and {xk}
within the constraint set X, but it may be convenient to relax this constraint

for either the proximal or the subgradient iteration, thereby requiring a

potentially simpler computation. This leads to the algorithm

zk = arg min
x∈�n

{
fik(x) +

1

2αk
‖x− xk‖2

}
, (4.14)

xk+1 = PX

(
zk − αk∇̃hik(zk)

)
, (4.15)

where the restriction x ∈ X has been omitted from the proximal iteration,

4.2 Incremental Subgradient-Proximal Methods 99

and to the algorithm

zk = xk − αk∇̃hik(xk), (4.16)

xk+1 = argmin
x∈X

{
fik(x) +

1

2αk
‖x− zk‖2

}
, (4.17)

where the projection onto X has been omitted from the subgradient itera-

tion. It is also possible to use different stepsize sequences in the proximal

and subgradient iterations, but for notational simplicity we will not discuss

this type of algorithm.

All of the incremental proximal algorithms given above are new to our

knowledge, having first been proposed by Bertsekas (2010). The closest

connection to the existing proximal methods is the “proximal gradient”

method, which has been analyzed and discussed recently in the context of

several machine-learning applications by Beck and Teboulle (2009, 2010).

(It can also be interpreted in terms of splitting algorithms (Lions and

Mercier, 1979), (Passty, 1979).) This method is nonincremental, applies to

differentiable hi and, contrary to subgradient and incremental methods, it

does not require a diminishing stepsize for convergence to the optimum.

In fact, the line of convergence analysis of Beck and Teboulle (2009, 2010)

relies on the differentiability of hi and the nonincremental character of the

proximal gradient method, and thus is different from ours.

Part (a) of the following proposition is a key fact about incremental

proximal iterations. It shows that they are closely related to incremental

subgradient iterations, the only difference being that the subgradient is

evaluated at the end point of the iteration rather than at the starting point.

Part (b) of the proposition provides an inequality that is well known in the

theory of proximal methods, and will be useful for our convergence analysis.

In the following method, we denote by ri(S) the relative interior of a convex

set S, and by dom(f) the effective domain {x | f(x) < ∞} of a function

f : �n �→ (−∞,∞].

Proposition 4.1. Let X be a nonempty closed convex set, and let f : �n �→
(−∞,∞] be a closed proper convex function such that ri(X)∩ri(dom(f)) �= ∅.
For any xk ∈ �n and αk > 0, consider the proximal iteration

xk+1 = argmin
x∈X

{
f(x) +

1

2αk
‖x− xk‖2

}
. (4.18)

(a) The iteration can be written as

xk+1 = PX

(
xk − αk∇̃f(xk+1)

)
, i = 1, . . . ,m, (4.19)

where ∇̃f(xk+1) is some subgradient of f at xk+1.

100 Incremental Gradient, Subgradient, and Proximal Methods for Convex Optimization

(b) For all y ∈ X, we have

‖xk+1 − y‖2 ≤ ‖xk − y‖2 − 2αk(f(xk+1)− f(y))− ‖xk − xk+1‖2
≤ ‖xk − y‖2 − 2αk(f(xk+1)− f(y)). (4.20)

Proof. (a) We use the formula for the subdifferential of the sum of the

three functions f , (1/2αk)‖x − xk‖2, and the indicator function of X (cf.

(Bertsekas, 2009, Proposition 5.4.6)), together with the condition that 0

should belong to this subdifferential at the optimum xk+1. We obtain that

(4.18) holds if and only if

1

αk
(xk − xk+1) ∈ ∂f(xk+1) +NX(xk+1), (4.21)

where NX(xk+1) is the normal cone of X at xk+1 (which is the set of vectors

y such that y′(x − xk+1) ≤ 0 for all x ∈ X, and also the subdifferential of

the indicator function of X at xk+1; see (Bertsekas, 2009, p. 185)). This is

true if and only if

xk − xk+1 − αk∇̃f(xk+1) ∈ NX(xk+1)

for some ∇̃f(xk+1) ∈ ∂f(xk+1), which in turn is true if and only if (4.19)

holds (cf. Bertsekas (2009, Proposition 5.4.6)).

(b) We have

‖xk − y‖2 = ‖xk − xk+1 + xk+1 − y‖2
= ‖xk − xk+1‖2 − 2(xk − xk+1)

′(y − xk+1) + ‖xk+1 − y‖2. (4.22)

Also since from (4.21), 1
αk

(xk − xk+1) is a subgradient at xk+1 of the sum

of f and the indicator function of X, we have (also using the assumption

y ∈ X) that

f(xk+1) +
1

αk
(xk − xk+1)

′(y − xk+1) ≤ f(y).

Combining this relation with (4.22), the result follows.

Based on the preceding proposition, we see that all the preceding iterations

can be written in an incremental subgradient format:

(a) Iteration (4.12)-(4.13) can be written as

zk = PX

(
xk − αk∇̃fik(zk)

)
, xk+1 = PX

(
zk − αk∇̃hik(zk)

)
. (4.23)

(b) Iteration (4.14)-(4.15) can be written as

zk = xk − αk∇̃fik(zk), xk+1 = PX

(
zk − αk∇̃hik(zk)

)
. (4.24)

4.2 Incremental Subgradient-Proximal Methods 101

(c) Iteration (4.16)-(4.17) can be written as

zk = xk − αk∇̃hik(xk), xk+1 = PX

(
zk − αk∇̃fik(xk+1)

)
. (4.25)

In all the preceding updates, the subgradient ∇̃hik can be any vector in the

subdifferential of hik , while the subgradient ∇̃fik must be a specific vector

in the subdifferential of fik , specified according to Proposition 4.1(a). Also,

iteration (4.24) can be written as

xk+1 = PX

(
xk − αk∇̃Fik(zk)

)
,

and resembles the incremental subgradient method for minimizing over X

the cost F (x) =
∑m

i=1 Fi(x) (cf. (4.10)), the only difference being that the

subgradient of Fik is taken at zk rather than xk.

An important issue which affects the methods’ effectiveness is the order

in which the components {fi, hi} are chosen for iteration. We consider two

possibilities:

1. A cyclic order , whereby {fi, hi} are taken up in the fixed deterministic

order 1, . . . ,m, so that ik is equal to (k modulo m) plus 1. A contiguous

block of iterations involving {f1, h1}, . . . , {fm, hm} in this order and exactly

once is called a cycle. We assume that the stepsize αk is constant within a

cycle (for all k with ik = 1 we have αk = αk+1 . . . = αk+m−1).

2. A randomized order , whereby at each iteration a component pair {fi, hi}
is chosen randomly by sampling over all component pairs with a uniform

distribution, independently of the past history of the algorithm.

It is essential to include all components in a cycle in the cyclic case, and

to sample according to the uniform distribution in the randomized case, for

otherwise some components will be sampled more often than others, leading

to a bias in the convergence process.

For the remainder of the chapter, we denote the optimal value of problem

(4.10) by F ∗ :

F ∗ = inf
x∈X

F (x),

and the set of optimal solutions (which could be empty) by X∗:

X∗ =
{
x∗ | x∗ ∈ X, F (x∗) = F ∗}.

Also, for a nonempty closed set X, we denote by dist(·;X) the distance

function, defined as follows:

dist(x;X) = min
z∈X

‖x− z‖, x ∈ �n.

102 Incremental Gradient, Subgradient, and Proximal Methods for Convex Optimization

4.3 Convergence for Methods with Cyclic Order

In this section, we discuss convergence under the cyclic order. We consider a

randomized order in the next section. We focus on the sequence {xk} rather
than {zk}, which need not lie within X in the case of iterations (4.24) and

(4.25) when X �= �n. In summary, the idea is to show that the effect of

taking subgradients of fi or hi at points near xk (e.g., at zk rather than at

xk) is inconsequential, and diminishes as the stepsize αk becomes smaller, as

long as some subgradients relevant to the algorithms are uniformly bounded

in norm by some constant. This is similar to the convergence mechanism of

incremental gradient methods described in Section 4.2. We use the following

assumptions throughout the present section.

Assumption 4.1 (For iterations (4.23) and (4.24)). There is a constant

c ∈ � such that for all k

max
{‖∇̃fik(zk)‖, ‖∇̃hik(zk)‖

} ≤ c. (4.26)

Furthermore, for all k that mark the beginning of a cycle (i.e., all k > 0 with

ik = 1), we have for all j = 1, . . . ,m:

max
{
fj(xk)−fj(zk+j−1), hj(xk)−hj(zk+j−1)

} ≤ c ‖xk−zk+j−1‖. (4.27)

Assumption 4.2 (For iteration (4.25)). There is a constant c ∈ � such

that for all k

max
{‖∇̃fik(xk+1)‖, ‖∇̃hik(xk)‖

} ≤ c. (4.28)

Furthermore, for all k that mark the beginning of a cycle (i.e., all k > 0 with

ik = 1), we have for all j = 1, . . . ,m:

max
{
fj(xk)− fj(xk+j−1), hj(xk)− hj(xk+j−1)

} ≤ c ‖xk − xk+j−1‖,
(4.29)

fj(xk+j−1)− fj(xk+j) ≤ c ‖xk+j−1 − xk+j‖. (4.30)

The condition (4.27) is satisfied if for each i and k, there is a subgradient

of fi at xk and a subgradient of hi at xk, whose norms are bounded by c.

Conditions that imply the preceding assumptions are:

(a) For algorithm (4.23): fi and hi are Lipschitz continuous over the set X.

(b) For algorithms (4.24) and (4.25): fi and hi are Lipschitz continuous over

the entire space �n.

(c) For algorithms (4.23), (4.24), and (4.25): fi and hi are polyhedra (this

4.3 Convergence for Methods with Cyclic Order 103

is a special case of (a) and (b)).

(d) The sequences {xk} and {zk} are bounded, since then, fi and hi, being

real-valued and convex, are Lipschitz continuous over any bounded set that

contains {xk} and {zk} (see, e.g., Bertsekas (2009, Proposition 5.4.2))].

The following proposition provides a key estimate that reveals the conver-

gence mechanism of our methods.

Proposition 4.2. Let {xk} be the sequence generated by any one of the

algorithms (4.23)-(4.25), with a cyclic order of component selection. Then

for all y ∈ X and all k that mark the beginning of a cycle (i.e., all k with

ik = 1), we have

‖xk+m − y‖2 ≤ ‖xk − y‖2 − 2αk

(
F (xk)− F (y)

)
+ α2

kβm
2c2, (4.31)

where β = 1
m + 4 in the case of (4.23) and (4.24), and β = 5

m + 4 in the

case of (4.25).

Proof. We first prove the result for algorithms (4.23) and (4.24), and then

indicate the modifications necessary for algorithm (4.25). Using Proposition

4.1(b), we have for all y ∈ X and k,

‖zk − y‖2 ≤ ‖xk − y‖2 − 2αk

(
fik(zk)− fik(y)

)
. (4.32)

Also, using the nonexpansion property of the projection (i.e.,
∥∥PX(u) −

PX(v)
∥∥ ≤ ‖u − v‖ for all u, v ∈ �n), the definition of subgradient, and

(4.26), we obtain for all y ∈ X and k:

‖xk+1 − y‖2 = ∥∥PX

(
zk − αk∇̃hik(zk)

)− y
∥∥2

≤ ‖zk − αk∇̃hik(zk)− y‖2
≤ ‖zk − y‖2 − 2αk∇̃hik(zk)

′(zk − y) + α2
k

∥∥∇̃hik(zk)
∥∥2

≤ ‖zk − y‖2 − 2αk

(
hik(zk)− hik(y)

)
+ α2

kc
2.

(4.33)

Combining (4.32) and (4.33), and using the definition Fj = fj +hj , we have

‖xk+1 − y‖2 ≤ ‖xk − y‖2 − 2αk

(
fik(zk) + hik(zk)− fik(y)− hik(y)

)
+ α2

kc
2

= ‖xk − y‖2 − 2αk

(
Fik(zk)− Fik(y)

)
+ α2

kc
2.

(4.34)

Now let k mark the beginning of a cycle (i.e., ik = 1). Then, at iteration

k+ j − 1, j = 1, . . . ,m, the selected components are {fj , hj}, in view of the

assumed cyclic order. We may thus replicate the preceding inequality with

104 Incremental Gradient, Subgradient, and Proximal Methods for Convex Optimization

k replaced by k + 1, . . . , k +m− 1, and add to obtain

‖xk+m − y‖2 ≤ ‖xk − y‖2 − 2αk

m∑
j=1

(
Fj(zk+j−1)− Fj(y)

)
+mα2

kc
2

or, equivalently,

‖xk+m − y‖2 ≤ ‖xk − y‖2 − 2αk

(
F (xk)− F (y)

)
+mα2

kc
2

+ 2αk

m∑
j=1

(
Fj(xk) − Fj(zk+j−1)

)
. (4.35)

The remainder of the proof deals with appropriately bounding the last term

above.

From (4.27), we have for j = 1, . . . ,m that

Fj(xk)− Fj(zk+j−1) ≤ 2c ‖xk − zk+j−1‖. (4.36)

We also have

‖xk−zk+j−1‖ ≤ ‖xk−xk+1‖+· · ·+‖xk+j−2−xk+j−1‖+‖xk+j−1−zk+j−1‖,
(4.37)

and by the definition of algorithms (4.23) and (4.24), the nonexpansion

property of the projection, and (4.26), each of the terms in the right-hand

side above is bounded by 2αkc, except for the last, which is bounded by αkc.

Thus (4.37) yields ‖xk − zk+j−1‖ ≤ αk(2j− 1)c which, together with (4.36),

shows that

Fj(xk)− Fj(zk+j−1) ≤ 2αkc
2(2j − 1). (4.38)

Combining (4.35) and (4.38), we have

‖xk+m−y‖2 ≤ ‖xk−y‖2−2αk

(
F (xk)−F (y)

)
+mα2

kc
2+4α2

kc
2

m∑
j=1

(2j−1),

and finally

‖xk+m − y‖2 ≤ ‖xk − y‖2 − 2αk

(
F (xk)− F (y)

)
+mα2

kc
2 + 4α2

kc
2m2,

which is of the form (4.31) with β = 1
m + 4.

For algorithm (4.25), a similar argument goes through using Assumption

4.2. In place of (4.32), using the nonexpansion property of the projection,

the definition of subgradient, and (4.28), we obtain, for all y ∈ X and k ≥ 0,

‖zk − y‖2 ≤ ‖xk − y‖2 − 2αk

(
hik(xk)− hik(y)

)
+ α2

kc
2. (4.39)

4.3 Convergence for Methods with Cyclic Order 105

In place of (4.33), using Proposition 4.1(b), we have

‖xk+1 − y‖2 ≤ ‖zk − y‖2 − 2αk

(
fik(xk+1)− fik(y)

)
. (4.40)

Combining these equations, in analogy to (4.34), we obtain

‖xk+1 − y‖2 ≤ ‖xk − y‖2 − 2αk

(
fik(xk+1) + hik(xk)− fik(y)− hik(y)

)
+ α2

kc
2

= ‖xk − y‖2 − 2αk

(
Fik(xk)− Fik(y)

)
+ α2

kc
2 + 2αk

(
fik(xk)− fik(xk+1)

)
. (4.41)

and, similar to (4.35),

‖xk+m − y‖2 ≤ ‖xk − y‖2 − 2αk

(
F (xk)− F (y)

)
+mα2

kc
2

+ 2αk

∑m

j=1

(
Fj(xk)− Fj(xk+j−1)

)
+ 2αk

∑m

j=1

(
fj(xk+j−1)− fj(xk+j)

)
.

(4.42)

We now bound the last two terms in the preceding relation, using Assump-

tion 4.2. From (4.29), we have

Fj(xk)− Fj(xk+j−1) ≤ 2c‖xk − xk+j−1‖
≤ 2c

(‖xk − xk+1‖+ · · ·+ ‖xk+j−2 − xk+j−1‖
)
,

and since by (4.28) and the definition of the algorithm, each norm term in

the right-hand side above is bounded by 2αkc:

Fj(xk)− Fj(xk+j−1) ≤ 4αkc
2(j − 1).

Also, from (4.28) and (4.30) and the nonexpansion property of the projec-

tion, we have

fj(xk+j−1)− fj(xk+j) ≤ c ‖xk+j−1 − xk+j‖ ≤ 2αkc
2.

Combining the preceding relations and adding, we obtain

2αk

m∑
j=1

(
Fj(xk)− Fj(xk+j−1)

)
+ 2αk

m∑
j=1

(
fj(xk+j−1)− fj(xk+j)

)
≤ 8α2

kc
2

m∑
j=1

(j − 1) + 4α2
kc

2m

= 4α2
kc

2m2 + 4α2
kc

2m =

(
4 +

4

m

)
α2
kc

2m2,

which, together with (4.42), yields (4.31) with β = 4 + 5
m .

Among other things, Proposition 4.2 guarantees that with a cyclic order,

106 Incremental Gradient, Subgradient, and Proximal Methods for Convex Optimization

given the iterate xk at the start of a cycle and any point y ∈ X having

lower cost than xk (for example an optimal point), the algorithm yields

a point xk+m at the end of the cycle that will be closer to y than xk,

provided the stepsize αk is less than
2
(
F (xk)−F (y)

)
βm2c2 . In particular, for any

ε > 0 and assuming that there exists an optimal solution x∗, either we are

within αkβm2c2

2 + ε of the optimum,

F (xk) ≤ F (x∗) +
αkβm

2c2

2
+ ε,

or the squared distance to the optimum will be strictly decreased by at least

2αkε:

‖xk+m − x∗‖2 < ‖xk − x∗‖2 − 2αkε.

Thus, using Proposition 4.2, we can provide various types of convergence

results. As an example, for a constant stepsize (αk ≡ α), convergence

can be established to a neighborhood of the that which shrinks to 0 as

α→ 0, as stated in the following proposition. Its proof and all the proofs of

propositions that follow are given in (Bertsekas, 2010).

Proposition 4.3. Let {xk} be the sequence generated by any one of the

algorithms (4.23)-(4.25), with a cyclic order of component selection, and let

the stepsize αk be fixed at some positive constant α.

(a) If F ∗ = −∞, then

lim inf
k→∞

F (xk) = F ∗.

(b) If F ∗ > −∞, then

lim inf
k→∞

F (xk) ≤ F ∗ +
αβm2c2

2
,

where c and β are the constants of Proposition 4.2.

The next proposition gives an estimate of the number of iterations needed

to guarantee a given level of optimality up to the threshold tolerance

αβm2c2/2 of the preceding proposition.

Proposition 4.4. Assume that X∗ is nonempty. Let {xk} be a sequence

generated as in Proposition 4.3. Then, for ε > 0 we have

min
0≤k≤N

F (xk) ≤ F ∗ +
αβm2c2 + ε

2
, (4.43)

4.3 Convergence for Methods with Cyclic Order 107

where N is given by

N = m

⌊
dist(x0;X

∗)2

αε

⌋
. (4.44)

According to Proposition 4.4, to achieve a cost function value within O(ε)

of the optimal, the term αβm2c2 must also be of order O(ε), so α must be of

order O(ε/m2c2), and from (4.44), the number of necessary iterations N is

O(m3c2/ε2) and the number of necessary cycles is O
(
(mc)2/ε2)

)
. This is the

same type of estimate as for the nonincremental subgradient method (i.e.,

O(1/ε2), counting a cycle as one iteration of the nonincremental method, and

viewing mc as a Lipschitz constant for the entire cost function F), and does

not reveal any advantage for the incremental methods given here. However,

in the next section, we demonstrate a much more favorable iteration com-

plexity estimate for the incremental methods that use a randomized order

of component selection.

Exact Convergence for a Diminishing Stepsize

We can also obtain an exact convergence result for the case where the

stepsize αk diminishes to zero. The idea is that with a constant stepsize

α we can get to within an O(α)-neighborhood of the optimum, as shown

above, so with a diminishing stepsize αk, we should be able to reach an

arbitrarily small neighborhood of the optimum. However, for this to happen,

αk should not be reduced too fast, and should satisfy
∑∞

k=0 αk =∞ (so that

the method can “travel” infinitely far if necessary).

Proposition 4.5. Let {xk} be the sequence generated by any one of the

algorithms (4.23)-(4.25), with a cyclic order of component selection, and let

the stepsize αk satisfy

lim
k→∞

αk = 0,

∞∑
k=0

αk =∞.

Then,

lim inf
k→∞

F (xk) = F ∗.

Furthermore, if X∗ is nonempty and∑∞
k=0

α2
k <∞,

then {xk} converges to some x∗ ∈ X∗.

108 Incremental Gradient, Subgradient, and Proximal Methods for Convex Optimization

4.4 Convergence for Methods with Randomized Order

In this section, we discuss convergence for the randomized component selec-

tion order and a constant stepsize α. The randomized versions of iterations

(4.23), (4.24), and (4.25), are

zk = PX

(
xk − α∇̃fωk

(zk)
)
, xk+1 = PX

(
zk − α∇̃hωk

(zk)
)
, (4.45)

zk = xk − α∇̃fωk
(zk), xk+1 = PX

(
zk − α∇̃hωk

(zk)
)
, (4.46)

zk = PX

(
xk − α∇̃fωk

(zk)
)
, xk+1 = zk − α∇̃hωk

(zk), (4.47)

respectively, where {ωk} is a sequence of random variables taking values

from the index set {1, . . . ,m}.
We assume the following throughout the present section.

Assumption 4.3 (For iterations (4.45) and (4.46)).

(a) {ωk} is a sequence of random variables, each uniformly distributed over

{1, . . . ,m}, and such that for each k, ωk is independent of the history

{xk, zk−1, . . . , z0, x0}.
(b) There is a constant c ∈ � such that for all k, we have with probability 1

max
{‖∇̃fi(z

i
k)‖, ‖∇̃hi(z

i
k)‖
} ≤ c, ∀ i = 1, . . . ,m, (4.48)

max
{
fi(xk)− fi(z

i
k), hi(xk)− hi(z

i
k)
} ≤ c‖xk − zik‖, ∀ i = 1, . . . ,m,

(4.49)

where zik is the result of the proximal iteration starting at xk, if ωk were i,

that is,

zik = argmin
x∈X

{
fi(x) +

1

2αk
‖x− xk‖2

}
(4.50)

in the case of iteration (4.45), and

zik = arg min
x∈�n

{
fi(x) +

1

2αk
‖x− xk‖2

}
(4.51)

in the case of iteration (4.46).

Assumption 4.4 (For iteration (4.47)).

(a) {ωk} is a sequence of random variables, each uniformly distributed over

{1, . . . ,m}, and such that for each k, ωk is independent of the history

{xk, zk−1, . . . , z0, x0}.

4.4 Convergence for Methods with Randomized Order 109

(b) There is a constant c ∈ � such that for all k, we have with probability 1

max
{‖∇̃fi(x

i
k+1)‖, ‖∇̃hi(xk)‖

} ≤ c, ∀ i = 1, . . . ,m, (4.52)

fi(xk)− fi(x
i
k+1) ≤ c‖xk − xik+1‖, ∀ i = 1, . . . ,m, (4.53)

where xik+1 is the result of the iteration, starting at xk if ωk would be i, that

is,

xik+1 = PX

(
zik − αk∇̃fi(x

i
k+1)

)
, (4.54)

with

zik = xk − αk∇̃hi(xk). (4.55)

Note that condition (4.49) is satisfied if there exist subgradients of fi and

hi at xk with norms less than or equal to c. Thus the conditions (4.48) and

(4.49) are similar, the main difference being that the first applies to slopes

of fi and hi at z
i
k while the second applies to the slopes of fi and hi at xk.

As in the case of Assumption 4.1, these conditions are guaranteed by Lips-

chitz continuity assumptions on fi and hi. The convergence analysis of the

randomized algorithms of this section is somewhat more complicated than

the one of the cyclic order counterparts, and relies on the Supermartingale

convergence theorem (see Bertsekas (2010)). The following proposition deals

with the case of a constant stepsize, and parallels Proposition 4.3 for the

cyclic-order case.

Proposition 4.6. Let {xk} be the sequence generated by one of the ran-

domized incremental methods (4.45)-(4.47), and let the stepsize αk be fixed

at some positive constant α.

(a) If F ∗ = −∞, then with probability 1

inf
k≥0

F (xk) = F ∗.

(b) If F ∗ > −∞, then with probability 1

inf
k≥0

F (xk) ≤ F ∗ +
αβmc2

2
,

where β = 5.

By comparing Proposition 4.6(b) with Proposition 4.3(b), we see that

when F ∗ > −∞ and the stepsize α is constant, the randomized methods

(4.45), (4.46), and (4.47), have a better error bound (by a factor m) than

their nonrandomized counterparts. In fact, an example given in (Bertsekas

110 Incremental Gradient, Subgradient, and Proximal Methods for Convex Optimization

et al., 2003, p. 514) for the incremental subgradient method can be adapted

to show that the bound of Proposition 4.3(b) is tight in the sense that for

a bad problem/cyclic order we have lim infk→∞ F (xk) − F ∗ = O(αm2c2).

By contrast, the randomized method will get to within O(αmc2) with

probability 1 for any problem, according to Proposition 4.6(b). Thus, with

the randomized algorithm we do not run the risk of accidentally choosing a

bad cyclic order. A related result is provided by the following proposition,

which should be compared with Proposition 4.4 for the nonrandomized

methods.

Proposition 4.7. Assume that X∗ is nonempty. Let {xk} be a sequence

generated as in Proposition 4.6. Then, for any positive scalar ε, we have

with probability 1

min
0≤k≤N

F (xk) ≤ F ∗ +
αβmc2 + ε

2
, (4.56)

where N is a random variable with

E
{
N
} ≤ m

dist(x0;X
∗)2

αε
. (4.57)

Like Proposition 4.6, a comparison of Propositions 4.4 and 4.7 again sug-

gests an advantage for the randomized methods: compared to their deter-

ministic counterparts, they achieve a much smaller error tolerance (a factor

of m) in the same expected number of iterations. Note, however, that the

preceding assessment is based on upper bound estimates, which may not

be sharp on a given problem (although the bound of Proposition 4.3(b) is

tight with a worst-case problem selection as mentioned earlier; see Bertsekas

et al. (2003, p. 514)). Moreover, the comparison based on worst-case values

versus expected values may not be strictly valid. In particular, while Propo-

sition 4.4 provides an upper bound estimate on N , Proposition 4.7 provides

an upper bound estimate on E{N}, which is not quite the same.

Finally, for the case of a diminishing stepsize, the following proposition

parallels Proposition 4.5, for the cyclic order.

Proposition 4.8. Let {xk} be the sequence generated by one of the ran-

domized incremental methods (4.45)-(4.47), and let the stepsize αk satisfy

lim
k→∞

αk = 0,

∞∑
k=0

αk =∞.

Then, with probability 1,

lim inf
k→∞

F (xk) = F ∗.

4.5 Some Applications 111

Furthermore, if X∗ is nonempty and

∞∑
k=0

α2
k <∞,

then {xk} converges to some x∗ ∈ X∗ with probability 1.

4.5 Some Applications

In this section we illustrate our methods in the context of two types of

practical applications, and discuss relations with known algorithms.

4.5.1 Regularized Least Squares

Let us consider least-squares problems involving minimization of a sum of

quadratic component functions fi(x) that correspond to errors between data

and the output of a model that is parameterized by a vector x. Often a

convex regularization function R(x) is added to the least-squares objective,

to induce desirable properties of the solution. This gives rise to problems of

the form

minimize γR(x) +
1

2

m∑
i=1

(c′ix− di)
2

subject to x ∈ �n,

(4.58)

where ci and di are given vectors and scalars, respectively, and γ is a positive

scalar. When R is differentiable (e.g., quadratic), and either m is very large

or the data (ci, di) become available sequentially over time, it makes sense to

consider incremental gradient methods, which have a history of applications

since the 1960s, starting with the Widrow-Hoff least mean-squares (LMS)

method (Widrow and Hoff, 1960).

The classical type of regularization involves a quadratic function R (as

in classical regression and the LMS method), but recently nondifferentiable

regularization functions have become increasingly important. On the other

hand, to apply our incremental methods, a quadratic R is not essential.

What is important is that R has a simple form that facilitates the use of

proximal algorithms, such as a separable form, so that the proximal iteration

on R is simplified through decomposition. As an example, consider the �1-

112 Incremental Gradient, Subgradient, and Proximal Methods for Convex Optimization

regularization problem, where

R(x) = ‖x‖1 =
n∑

j=1

|xj | (4.59)

and xj is the jth coordinate of x. Then the proximal iteration

zk = arg min
x∈�n

{
γ ‖x‖1 + 1

2αk
‖x− xk‖2

}
decomposes into the n one-dimensional minimizations

zjk = arg min
xj∈�

{
γ |xj|+ 1

2αk
|xj − xjk|2

}
, j = 1, . . . , n,

and can be done in closed form: For each component j = 1, 2, . . . , n, we have

zjk =

⎧⎪⎨⎪⎩
xjk − γαk if γαk ≤ xjk,

xjk if − γαk < xjk < γαk,

xjk + γαk if xjk ≤ −γαk.

(4.60)

We refer to Figueiredo et al. (2007), Wright et al. (2009), Beck and Teboulle

(2010), and the references given there for a discussion of a broad variety of

applications in estimation and signal-processing problems, where nondiffer-

entiable regularization functions play an important role.

The incremental algorithms of this chapter are well suited for solution

of �1-regularization problems of the form (4.58)-(4.59). For example, the

kth incremental iteration may consist of selecting a data pair (cik , dik) and

performing a proximal iteration of the form (4.60) to obtain zk, followed by

a gradient iteration on the component 1

2
(c′ikx− dik)

2, starting at zk:

xk+1 = zk − αkcik(c
′
ikzk − dik).

This algorithm is the special case of algorithms (4.23)-(4.25) (here X = �n,

and all three algorithms coincide), with fi(x) being γ‖x‖1 (we use m copies

of this function) and hi(x) = 1

2
(c′ix−di)

2. It can be viewed as an incremental

version of a popular class of algorithms in signal processing, known as

iterative shrinkage/thresholding (see Chambolle et al. (1998); Figueiredo and

Nowak (2003); Daubechies et al. (2004); Combettes and Wajs (2005); Elad

et al. (2006); Bioucas-Dias and Figueiredo (2007); and Beck and Teboulle

(2009, 2010)). Our methods bear the same relation to this class of algorithms

as the LMS method bears to gradient algorithms for the classical linear least-

squares problem with quadratic regularization function.

Finally, as an alternative, the proximal iteration (4.60) could be replaced

by a proximal iteration on γ |xj| for some selected index j, with all indexes

4.5 Some Applications 113

selected cyclically in incremental iterations. Randomized selection of the

data pair (cik , dik) would also be interesting, particularly in contexts where

the data have a natural stochastic interpretation.

4.5.2 Iterated Projection Algorithms

A feasibility problem that arises in many contexts involves finding a point

with certain properties within a set intersection ∩m
i=1Xi, where each Xi is

a closed convex set. For the case where m is large and each of the sets Xi

has a simple form, incremental methods that make successive projections on

the component sets Xi have a long history (see, e.g., Gubin et al. (1967),

and recent works such as (Bauschke, 2001), (Bauschke et al., 2006), and

(Cegielski and Suchocka, 2008), and their bibliographies). We may consider

the following generalized version of the classical feasibility problem,

minimize f(x)

subject to x ∈ ∩m
i=1Xi,

(4.61)

where f : �n �→ � is a convex cost function, and the method is

xk+1 = PXik

(
xk − αk∇̃f(xk)

)
, (4.62)

where the index ik is chosen from {1, . . . ,m} according to a randomized rule.

The incremental approach is particularly well suited for problems of the form

(4.61), where the sets Xi are not known in advance, but are revealed as the

algorithm progresses.

While (4.61) does not involve a sum of component functions, it may

be converted into one that does by using an exact penalty function. In

particular, consider the problem

minimize f(x) + γ

m∑
i=1

dist(x;Xi)

subject to x ∈ �n,

(4.63)

where γ is a positive penalty parameter. Then for f Lipschitz continuous

and γ sufficiently large, problems (4.61) and (4.63) are equivalent, as shown

in the following proposition, the proof of which may be found in (Bertsekas,

2010).

Proposition 4.9. Let f : Y �→ � be a function defined on a subset Y of �n,

and let Xi, i = 1, . . . ,m be closed subsets of Y with nonempty intersection.

Assume that f is Lipschitz continuous over Y . Then there is a scalar γ > 0

such that for all γ ≥ γ, the set of minima of f over ∩m
i=1Xi coincides with

114 Incremental Gradient, Subgradient, and Proximal Methods for Convex Optimization

the set of minima of

f(x) + γ
∑m

i=1
dist(x;Xi)

over Y .

From Proposition 4.9, it follows that we may consider in place of the origi-

nal problem (4.61) the additive cost problem (4.63) to which our algorithms

apply. In particular, let us consider algorithms (4.23)-(4.25), with X = �n,

which involve a proximal iteration on one of the functions c dist(x;Xi) fol-

lowed by a subgradient iteration on f . A key fact here is that the proximal

iteration

zk = arg min
x∈�n

{
γ dist(x;Xik) +

1

2αk
‖x− xk‖2

}
(4.64)

involves a projection on of xk onto Xik , followed by an interpolation. In

particular, it can be shown (see, e.g., Bertsekas (2010)) that the vector zk
produced by the proximal iteration (4.64) is zk = xk if xk ∈ Xik . It is

otherwise given by

zk =

{
(1− βk)xk + βkPXik

(xk) if βk < 1,

PXik
(xk) if βk ≥ 1,

(4.65)

where

βk =
αkγ

dist(xk;Xik)
.

Finally, our incremental methods also apply to the case where f has an

additive form:

minimize

m∑
i=1

fi(x)

subject to x ∈ ∩m
i=1Xi.

In this case the interpolated projection iterations (4.65) on the sets Xi are

followed by subgradient or proximal iterations on the components fi.

4.6 Conclusions

We have surveyed incremental algorithms, which can deal with many of

the challenges posed by large data sets in machine learning applications. We

have used a unified analytical framework that includes incremental proximal

algorithms and their combinations with the more established incremental

4.7 References 115

gradient and subgradient methods. This allows the flexibility to separate

the cost function into the parts that are conveniently handled by proximal

iterations (e.g., in essentially closed form) and the remaining parts to

be handled by subgradient iterations. We have outlined the convergence

properties of these methods, and we have shown that our algorithms apply

to some important problems that have been the focus of recent research.

4.7 References

H. H. Bauschke. Projection algorithms: Results and open problems. In D. Butnariu,
Y. Censor, and S. Reich, editors, Inherently Parallel Algorithms in Feasibility and
Optimization and their Applications. Elsevier, Amsterdam, 2001.

H. H. Bauschke, P. L. Combettes, and S. G. Kruk. Extrapolation algorithm for
affine-convex feasibility problems. Numerical Algorithms, 41:239–274, 2006.

A. Beck and M. Teboulle. A fast iterative shrinkage-threshold algorithm for linear
inverse problems. SIAM Journal on Imaging Sciences, 2:183–202, 2009.

A. Beck and M. Teboulle. Gradient-based algorithms with applications to signal-
recovery problems. In Y. Eldar and D. P. Palomar, editors, Convex Optimization
in Signal Processing and Communications, pages 42–88. Cambridge University
Press, 2010.

A. Ben-Tal, T. Margalit, and A. Nemirovski. The ordered subsets mirror descent op-
timization method and its use for positron emission tomography reconstruction.
In D. Butnariu, Y. Censor, and S. Reich, editors, Inherently Parallel Algorithms in
Feasibility and Optimization and their Applications. Elsevier, Amsterdam, 2001.

D. P. Bertsekas. Incremental least squares methods and the extended Kalman filter.
SIAM Journal on Optimization, 6:807–822, 1996.

D. P. Bertsekas. A hybrid incremental gradient method for least squares. SIAM
Journal on Optimization, 7:913–926, 1997.

D. P. Bertsekas. Nonlinear Programming. Athena Scientific, Belmont, MA, second
edition, 1999.

D. P. Bertsekas. Convex Optimization Theory. Athena Scientific, Belmont, MA,
2009.

D. P. Bertsekas. Incremental proximal methods for large scale convex optimization.
Report LIDS-P-2847, Laboratory for Information and Decision Sciences, MIT,
Cambridge, MA, 2010.

D. P. Bertsekas and J. N. Tsitsiklis. Parallel and Distributed Computation: Numer-
ical Methods. Prentice-Hall, Englewood Cliffs, NJ, 1989.

D. P. Bertsekas and J. N. Tsitsiklis. Neuro-Dynamic Programming. Athena
Scientific, Belmont, MA, 1996.

D. P. Bertsekas and J. N. Tsitsiklis. Gradient convergence in gradient methods.
SIAM Journal on Optimization, 10:627–642, 2000.

D. P. Bertsekas, A. Nedić, and A. E. Ozdaglar. Convex Analysis. Athena Scientific,
Belmont, MA, 2003.

J. M. Bioucas-Dias and M. A. T. Figueiredo. A new TwIST: Two-step iterative
shrinking/thresholding algorithms for image restoration. IEEE Transactions on

116 Incremental Gradient, Subgradient, and Proximal Methods for Convex Optimization

Image Processing, 16(12):2992–3004, 2007.

D. Blatt, A. O. Hero, and H. Gauchman. A convergent incremental gradient method
with a constant step size. SIAM Journal on Optimization, 18(1):29–51, 2007.

V. Boltyanski, H. Martini, and V. Soltan. Geometric Methods and Optimization
Problems. Kluwer Academic, Boston, 1999.

V. S. Borkar. Stochastic Approximation: A Dynamical Systems Viewpoint. Cam-
bridge University Press, 2008.

L. Bottou. SGD: stochastic gradient descent, 2005. URL http://leon.bottou.
org/projects/sgd.

A. Cegielski and A. Suchocka. Relaxed alternating projection methods. SIAM
Journal on Optimization, 19(3):1093–1106, 2008.

A. Chambolle, R. DeVore, N. Y. Lee, and B. J. Lucier. Nonlinear wavelet image pro-
cessing: Variational problems, compression, and noise removal through wavelet
shrinkage. IEEE Transactions on Image Processing, 7(3):319–335, 1998.

P. L. Combettes and V. R. Wajs. Signal recovery by proximal forward-backward
splitting. Multiscale Modeling and Simulation, 4(4):1168–1200, 2005.

I. Daubechies, M. Defriese, and C. De Mol. An iterative thresholding algorithm for
linear inverse problems with a sparsity constraint. Communications on Pure and
Applied Mathematics, 57:1413–1457, 2004.

W. C. Davidon. New least squares algorithms. Journal of Optimization Theory and
Applications, 18:187–197, 1976.

J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online
learning and stochastic optimization. EECS Technical Report 2010-24, UC
Berkeley, 2010. To appear in Journal of Machine Learning Research.

M. Elad, B. Matalon, and M. Zibulevsky. Coordinate and subspace optimization
methods for linear least squares with non-quadratic regularization. Journal on
Applied and Computational Harmonic Analysis, 23:346–367, 2006.

Y. Ermoliev. On the stochastic quasi-gradient method and stochastic quasi-Feyer
sequences. Kibernetika, 2:73–83, 1969.

Y. Ermoliev. Stochastic Programming Methods. Nauka, Moscow, 1976.

M. A. T. Figueiredo and R. D. Nowak. An EM algorithm for wavelet-based image
restoration. IEEE Transactions on Image Processing, 12(8):906–916, 2003.

M. A. T. Figueiredo, R. D. Nowak, and S. J. Wright. Gradient projection for sparse
reconstruction: Application to compressed sensing and other inverse problems.
IEEE Journal on Selected Topics in Signal Processing, 1(4):586–597, 2007.

A. A. Gaivoronski. Convergence of parallel backpropagation algorithm for neural
networks. Optimization Methods and Software, 4:117–134, 1994.

M. Gaudioso, G. Giallombardo, and G. Miglionico. An Incremental method for
solving convex finite min-max problems. Mathematics of Operations Research,
31:173–187, 2006.

L. Grippo. A Class of unconstrained minimization methods for neural network
training. Optimization Methods and Software, 4:135–150, 1994.

L. Grippo. Convergent on-line algorithms for supervised learning in neural net-
works. IEEE Transactions on Neural Networks, 11:1284–1299, 2000.

L. G. Gubin, B. T. Polyak, and E. V. Raik. The method of projection for finding
the common point in convex sets. U.S.S.R. Computational Mathematics and

4.7 References 117

Mathematical Physics (English Translation), 7:1–24, 1967.

B. Johansson, M. Rabi, and M. Johansson. A Randomized incremental subgradient
method for distributed optimization in networked systems. SIAM Journal on
Optimization, 20:1157–1170, 2009.

V. M. Kibardin. Decomposition into functions in the minimization problem.
Automation and Remote Control, 40:1311–1323, 1980.

K. C. Kiwiel. Convergence of approximate and incremental subgradient methods
for Convex Optimization. SIAM Journal on Optimization, 14(3):807–840, 2004.

H. J. Kushner and D. S. Clark. Stochastic Approximation Methods for Constrained
and Unconstrained Systems. Springer-Verlag, New York, NY, 1978.

H. J. Kushner and G. Yin. Stochastic Approximation Methods and Applications.
Springer-Verlag, New York, NY, 1997.

S. Lee and S. J. Wright. Sparse nonlinear support vector machines via stochastic
approximation. Technical report, Computer Sciences Department, University of
Wisconsin, 2010. submitted.

P. L. Lions and B. Mercier. Splitting algorithms for the sum of two nonlinear
operators. SIAM Journal on Numerical Analysis, 16:964–979, 1979.

B. M. Litvakov. On an iteration method in the problem of approximating a function
from a finite number of observations. Avtom. Telemech., 4:104–113, 1966.

L. Ljung. Analysis of recursive stochastic algorithms. IEEE Transactions on
Automatic Control, 22:551–575, 1977.

Z. Lu, R. D. C. Monteiro, and M. Yuan. Convex optimization methods for
dimension reduction and coefficient estimation in multivariate linear regression.
Technical report, School of Industrial and Systems Engineering, Georgia Institute
of Technology, Atlanta, 2008. To appear in Mathematical Programming.

Z. Q. Luo. On the convergence of the LMS algorithm with adaptive learning rate
for linear feedforward networks. Neural Computation, 3(2):226–245, 1993.

Z. Q. Luo and P. Tseng. Analysis of an approximate gradient projection method
with applications to the backpropagation algorithm. Optimization Methods and
Software, 4:85–101, 1994.

O. L. Mangasarian and M. V. Solodov. Serial and parallel backpropagation
convergence via nonmonotone perturbed minimization. Optimization Methods
and Software, 4:103–116, 1994.

B. Martinet. Régularisation d’inéquations variationelles par approximations suc-
cessives. Rev. Franca̧ise Information Recherche Opérationelle, 4:154–159, 1970.

S. Meyn. Control Techniques for Complex Networks. Cambridge University Press,
New York, NY, 2007.

H. Moriyama, Y. N., and M. Fukushima. The incremental Gauss-Newton algorithm
with adaptive stepsize rule. Computational Optimization and Applications, 26(2):
107–141, 2003.

A. Nedić and D. P. Bertsekas. Convergence rate of the incremental subgradient
algorithm. In Stochastic Optimization: Algorithms and Applications, pages 263–
304. Kluwer Academic, 2000.

A. Nedić and D. P. Bertsekas. Incremental subgradient methods for nondifferen-
tiable optimization. SIAM Journal on Optimization, 12:109–138, 2001.

A. Nedić and D. P. Bertsekas. The Effect of deterministic noise in subgradient
methods. Mathematical Programming, 125(1):75–99, 2010.

118 Incremental Gradient, Subgradient, and Proximal Methods for Convex Optimization

A. Nedić, D. P. Bertsekas, and V. Borkar. Distributed asynchronous incremen-
tal subgradient methods. In Inherently Parallel Algorithms in Feasibility and
Optimization and Their Applications. Elsevier, Amsterdam, 2001.

A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro. Robust stochastic approxima-
tion approach to stochastic programming. SIAM Journal on Optimization, 19:
1574–1609, 2009.

Y. Nesterov. A Method for unconstrained convex minimization problem with the
rate of convergence O(1/k2). Doklady AN SSSR, 269:543–547, 1983. translated
as Soviet Math. Dokl.

Y. Nesterov. Introductory Lectures on Convex Optimization. Kluwer Academic,
Dordrecht, The Netherlands, 2004.

Y. Nesterov. Smooth minimization of nonsmooth functions. Mathematical Pro-
gramming, Series A, 103:127–152, 2005.

E. S. Neto and A. R. De Pierro. Incremental subgradients for constrained con-
vex optimization: A Unified framework and new methods. SIAM Journal on
Optimization, 20:1547–1572, 2009.

G. B. Passty. Ergodic convergence to a zero of the sum of monotone operators in
Hilbert Space. Journal of Mathematical Analysis and Applications, 72:383–390,
1979.

G. Pflug. Optimization of Stochastic Models. The Interface Between Simulation
and Optimization. Kluwer Academic, Boston, 1996.

B. T. Poljak. Some methods of speeding up the convergence of iteration methods.
Z. VyC̆isl. Mat. i Mat. Fiz., 4:1–17, 1964.

B. T. Polyak. Nonlinear programming methods in the presence of noise. Mathe-
matical Programming, 14:87–97, 1978.

B. T. Polyak. Introduction to Optimization. Optimization Software Inc., NY, 1987.

B. T. Polyak and Y. Z. Tsypkin. Pseudogradient adaptation and training algo-
rithms. Automation and Remote Control, 12:83–94, 1973.

J. B. Predd, S. R. Kulkarni, and H. V. Poor. A Collaborative training algorithm for
distributed learning. IEEE Transactions on Information Theory, 55:1856–1871,
2009.

M. G. Rabbat and R. D. Nowak. Distributed optimization in sensor networks. In
Proceedings of the International Conference on Information Processing in Sensor
Networks, pages 20–27, 2004.

M. G. Rabbat and R. D. Nowak. Quantized incremental algorithms for distributed
optimization. IEEE Journal on Selected Areas in Communications, 23:798–808,
2005.

S. S. Ram, A. Nedić, and V. V. Veeravalli. Incremental stochastic subgradient
algorithms for convex optimization. SIAM Journal on Optimization, 20:691–717,
2009a.

S. S. Ram, A. Nedić, and V. V. Veeravalli. Distributed stochastic subgradient
projection algorithms for convex optimization. Submitted, 2009b.

R. T. Rockafellar. Convex Analysis. Princeton Univ. Press, 1970.

R. T. Rockafellar. Monotone operators and the proximal point algorithm. SIAM
Journal on Control and Optimization, 14:877–898, 1976.

S. Shalev-Shwartz, Y. Singer, and N. Srebro. Pegasos: Primal Estimated Subgra-
dient Solver for SVM. In Proceedings of the 24th International Conference on

4.7 References 119

Machine Learning, pages 807–814, New York, NY, 2007.

M. V. Solodov. Incremental gradient algorithms with stepsizes bounded away from
zero. Computational Optimization and Applications, 11:28–35, 1998.

P. Tseng. An Incremental gradient(-projection) method with momentum term and
adaptive stepsize rule. SIAM Journal on Optimization, 8:506–531, 1998.

P. Tseng. On Accelerated proximal gradient methods for convex-concave opti-
mization. Technical report, Mathematics Department, University of Washington,
2008.

J. N. Tsitsiklis, D. P. Bertsekas, and M. Athans. Distributed asynchronous deter-
ministic and stochastic gradient optimization algorithms. IEEE Transactions on
Automatic Control, AC-31:803–812, 1986.

B. Widrow and M. E. Hoff. Adaptive switching circuits. In Institute of Radio Engi-
neers, Western Electronic Show and Convention, Convention Record, volume 4,
pages 96–104, 1960.

S. J. Wright, R. D. Nowak, and M. A. T. Figueiredo. Sparse reconstruction by
separable approximation. IEEE Transations on Signal Processing, 57:2479–2493,
2009.

5 First-Order Methods for Nonsmooth

Convex Large-Scale Optimization, I:

General Purpose Methods

Anatoli Juditsky Anatoli.Juditsky@imag.fr

Laboratoire Jean Kuntzmann , Université J. Fourier

B. P. 53 38041 Grenoble Cedex, France

Arkadi Nemirovski nemirovs@isye.gatech.edu

School of Industrial and Systems Engineering, Georgia Institute of Technology

765 Ferst Drive NW, Atlanta Georgia 30332, USA

We discuss several state-of-the-art computationally cheap, as opposed to the

polynomial time interior-point algorithms, first-order methods for minimiz-

ing convex objectives over simple large-scale feasible sets. Our emphasis is

on the general situation of a nonsmooth convex objective represented by de-

terministic/stochastic first-order oracle and on the methods which, under

favorable circumstances, exhibit a (nearly) dimension-independent conver-

gence rate.

5.1 Introduction

At present, almost all of convex programming is within the grasp of polyno-

mial time interior-point methods (IPMs) capable of solving convex programs

to high accuracy at a low iteration count. However, the iteration cost of all

known polynomial methods grows nonlinearly with a problem’s design di-

mension n (number of decision variables), something like n3. As a result, as

the design dimension grows, polynomial time methods eventually become

impractical—roughly speaking, a single iteration lasts forever. What “even-

122 First-Order Methods for Nonsmooth Convex Large-Scale Optimization, I

tually” means in fact depends on a problem’s structure. For instance, typi-

cal linear programming programs of decision-making origin have extremely

sparse constraint matrices, and IPMs are able to solve programs of this type

with tens and hundreds of thousands variables and constraints in reasonable

time. In contrast to this, linear programming programs arising in machine

learning and signal processing often have dense constraint matrices. Such

programs with “just” few thousand variables and constraints can become

very difficult for an IPM. At the present level of our knowledge, the meth-

ods of choice when solving convex programs which, because of their size,

are beyond the practical grasp of IPMs, are the first-order methods (FOMs)

with computationally cheap iterations. In this chapter, we present several

state-of-the-art FOMs for large-scale convex optimization, focusing on the

most general nonsmooth unstructured case, where the convex objective f to

be minimized can be nonsmooth and is represented by a black box, a routine

able to compute the values and subgradients of f .

5.1.1 First-Order Methods: Limits of Performance

We start by explaining what can and cannot be expected from FOMs,

restricting ourselves for the time being to convex programs of the form

Opt(f) = min
x∈X

f(x), (5.1)

where X is a compact convex subset of Rn, and f is known to belong to a

given family F of convex and (at least) Lipschitz continuous functions on X.

Formally, an FOM is an algorithm B which knows in advance what X and

F are, but does not know exactly what f ∈ F is. It is restricted to learning

f via subsequent calls to a first-order oracle—a routine which, given a point

x ∈ X on input, returns on output a value f(x) and a (sub)gradient f ′(x)
of f at x (informally speaking, this setting implicitly assumes that X is

simple (like box, or ball, or standard simplex), while f can be complicated).

Specifically, as applied to a particular objective f ∈ F and given on input

a required accuracy ε > 0, the method B, after generating a finite sequence

of search points xt ∈ X, t = 1, 2, ..., where the first-order oracle is called,

terminates and outputs an approximate solution x̂ ∈ X which should be ε-

optimal: f(x̂)−Opt(f) ≤ ε. In other words, the method itself is a collection

of rules for generating subsequent search points, identifying the terminal

step, and building the approximate solution.

These rules, in principle, can be arbitrary, with the only limitation of

being nonanticipating, meaning that the output of a rule is uniquely defined

by X and the first-order information on f accumulated before the rule

5.1 Introduction 123

is applied. As a result, for a given B and X, x1 is independent of f ,

x2 depends solely on f(x1), f
′(x1), and so on. Similarly, the decision to

terminate after a particular number t of steps, as well as the resulting

approximate solution x̂, are uniquely defined by the first-order information

f(x1), f
′(x1), ..., f(xt), f ′(xt) accumulated in the course of these t steps.

Performance limits of FOMs are given by information-based complexity

theory, which says what, for given X,F, ε, may be the minimal number of

steps of an FOM solving all problems (5.1) with f ∈ F within accuracy ε.

Here are several instructive examples (see Nemirovsky and Yudin, 1983).

(a) Let X ⊂ {x ∈ R
n : ‖x‖p ≤ R}, where p ∈ {1, 2}, and let F = Fp comprise

all convex functions f which are Lipschitz continuous, with a given constant

L, w.r.t. ‖·‖p. When X = {x ∈ R
n : ‖x‖p ≤ R}, the number N of steps of any

FOM able to solve every problem from the outlined family within accuracy

ε is at least O(1)min[n, L2R2/ε2]. 1 When p = 2, this lower complexity

bound remains true when F is restricted to being the family of all functions

of the type f(x) = max
1≤i≤n

[εiLxi + ai] with εi = ±1. Moreover, the bound

is nearly achievable: whenever X ⊂ {x ∈ R
n : ‖x‖p ≤ R}, there exist quite

transparent (and simple to implement when X is simple) FOMs able to solve

all problems (5.1) with f ∈ Fp within accuracy ε in O(1)(ln(n))2/p−1L2R2/ε2

steps.

It should be stressed that the outlined nearly dimension-independent perfor-

mance of FOMs depends heavily on the assumption p ∈ {1, 2}. 2 With p set

to +∞ (i.e., when minimizing convex functions that are Lipschitz continu-

ous with constant L w.r.t. ‖ · ‖∞ over the box X = {x ∈ Rn : ‖x‖∞ ≤ R}),
the lower and upper complexity bounds are O(1)n ln(LR/ε), provided that

LR/ε ≥ 2; these bounds depend heavily on the problem’s dimension.

(b) Let X = {x ∈ R
n : ‖x‖2 ≤ R}, and let F comprise all differentiable

convex functions, Lipschitz continuous with constant L w.r.t. ‖·‖2, gradient.
Then the number N of steps of any FOM able to solve every problem from

the outlined family within accuracy ε is at least O(1)min[n,
√

LR2/ε]. This

lower complexity bound remains true when F is restricted to be the family of

convex quadratic forms 1
2x

TAx+ bTx with positive semidefinite symmetric

matrices A of spectral norm (maximal singular value) not exceeding L.

Here again the lower complexity bound is nearly achievable. Whenever

X ⊂ {x ∈ R
n : ‖x‖2 ≤ R}, there exists a simple implementation when X is

simple (although by far not transparent) FOM: Nesterov’s optimal algorithm

for smooth convex minimization (Nesterov, 1983, 2005), which allows one to

1. From now on, all O(1)’s are appropriate positive absolute constants.
2. In fact, it can be relaxed to 1 ≤ p ≤ 2.

124 First-Order Methods for Nonsmooth Convex Large-Scale Optimization, I

solve within accuracy ε all problems (5.1) with f ∈ F in O(1)
√
LR2/ε steps.

(c) Let X be as in (b), and let F comprise all functions of the form

f(x) = ‖Ax − b‖2, where the spectral norm of A (which is no longer

positive semidefinite) does not exceed a given L. Let us slightly extend

the power of the first-order oracle and assume that at a step of an FOM

we observe b (but not A) and are allowed to carry out O(1) matrix-vector

multiplications involving A and AT . In this case, the number of steps of any

method capable to solve all problems in question within accuracy ε is at

least O(1)min[n, LR/ε], and there exists a method (specifically, Nesterov’s

optimal algorithm as applied to the quadratic form ‖Ax − b‖22), which

achieves the desired accuracy in O(1)LR/ε steps.

The outlined results bring us both bad and good news on FOMs as applied

to large-scale convex programs. The bad news is that unless the number of

steps of the method exceeds the problem’s design dimension n (which is of

no interest when n is really large), and without imposing severe additional

restrictions on the objectives to be minimized, an FOM can exhibit only a

sublinear rate of convergence: specifically denoting by t the number of steps,

the rate O(1)(ln(n))1/p−1/2LR/t1/2 in the case of (a) (better than nothing,

but really slow), O(1)LR2/t2 in the case of (b) (much better, but simple

X along with smooth f is a rare commodity), and O(1)LR/t in the case of

(c) (in-between (a) and (b)). As a consequence, FOMs are poorly suited for

building high-accuracy solutions to large-scale convex problems.

The good news is that for problems with favorable geometry (e.g., those in

(a)-(c)), good FOMs exhibit a dimension-independent, or nearly so, rate of

convergence, which is of paramount importance in large-scale applications.

Another bit of good news (not declared explicitly in the above examples)

is that when X is simple, typical FOMs have cheap iterations—modulo

computations hidden in the oracle, an iteration costs just O(dimX) a.o.

The bottom line is that FOMs are well suited for finding medium-accuracy

solutions to large-scale convex problems, at least when the latter possess

favorable geometry.

Another conclusion of the presented results is that the performance limits

of FOMs depend heavily on the size R of the feasible domain and on the

Lipschitz constant L (of f in the case of (a), and of f ′ in the case of (b)).

This is in a sharp contrast to IPMs, where the complexity bounds depend

logarithmically on the magnitudes of an optimal solution and of the data

(the analogies of R and L, respectively), which, practically speaking, allows

one to handle problems with unbounded domains (one may impose an upper

bound of 106 or 10100 on the variables) and not to bother much about how

5.1 Introduction 125

the data are scaled.3 Strong dependence of the complexity of FOMs on L

and R implies a number of important consequences. In particular:

• Boundedness of X is of paramount importance, at least theoretically. In

this respect, unconstrained settings, as in Lasso: min
x
{λ‖x‖1+‖Ax−b‖22} are

less preferable than their bounded domain counterparts, as in min{‖Ax −
b‖2 : ‖x‖1 ≤ R}4 in full accordance with common sense—however difficult

it is to find a needle in a haystack, a small haystack in this respect is better

than a large one!

• For a given problem (5.1), the size R of the feasible domain and the

Lipschitz constant L of the objective depend on the norm ‖ · ‖ used to

quantify these quantities: R = R‖·‖, L = L‖·‖. When ‖ · ‖ varies, the product
L‖·‖R‖·‖ (this product is all that matters) changes,5 and this phenomenon

should be taken into account when choosing an FOM for a particular

problem.

5.1.2 What Is Ahead

Literature on FOMs, which has always been huge, is now growing explosively—

partly due to rapidly increasing demand for large-scale optimization, and

partly due to endogenous reasons stemming primarily from discovering ways

(Nesterov, 2005) to accelerate FOMs by exploiting problems’ structure (for

more details on the latter subject, see Chapter 6). Even a brief overview

of this literature in a single chapter would be completely unrealistic. Our

primary selection criteria were (a) to focus on techniques for large-scale nons-

mooth convex programs (these are the problems arising in most applications

known to us), (b) to restrict ourselves to FOMs possessing state-of-the-art

(in some cases—even provably optimal) nonasymptotic efficiency estimates,

and (c) the possibility for self-contained presentation of the methods, given

space limitations. Last, but not least, we preferred to focus on the situa-

tions of which we have first-hand (or nearly so) knowledge. As a result, our

presentation of FOMs is definitely incomplete. As for citation policy, we

restrict ourselves to referring to works directly related to what we are pre-

3. In IPMs, scaling of the data affects stability of the methods w.r.t. rounding errors, but
this is another story.
4. We believe that the desire to end up with unconstrained problems stems from the
common belief that the unconstrained convex minimization is simpler than the constrained
one. To the best of our understanding, this belief is misleading, and the actual distinction is
between optimization over simple and over sophisticated domains; what is simple depends
on the method in question.
5. For example, the ratio [L‖·‖2R‖·‖2]/L‖·‖1R‖·‖1 can be as small as 1/

√
n and as large as√

n

126 First-Order Methods for Nonsmooth Convex Large-Scale Optimization, I

senting, with no attempt to give even a nearly exhaustive list of references

to FOM literature. We apologize in advance for potential omissions even on

this reduced list.

In this chapter, we focus on the simplest general-purpose FOMs, mirror

descent (MD) methods aimed at solving nonsmooth convex minimization

problems, specifically, general-type problems (5.1) (Section 5.2), problems

(5.1) with strongly convex objectives (Section 5.4), convex problems with

functional constraints minx∈X {f0(x) : fi(x) ≤ 0, 1 ≤ i ≤ m} (Section 5.3),

and stochastic versions of problems (5.1), where the first-order oracle is

replaced with its stochastic counterpart, thus providing unbiased random

estimates of the subgradients of the objective rather than the subgradients

themselves (Section 5.5). Finally, Section 5.6 presents extensions of the

mirror descent scheme from problems of convex minimization to the convex-

concave saddle-point problems.

As we have already said, this chapter is devoted to general-purpose FOMs,

meaning that the methods in question are fully black-box-oriented—they

do not assume any a priori knowledge of the structure of the objective

(and the functional constraints, if any) aside from convexity and Lipschitz

continuity. By itself, this generality is redundant: convex programs arising in

applications always possess a lot of known in advance structure, and utilizing

a priori knowledge of this structure can accelerate the solution process

dramatically. Acceleration of FOMs by utilizing a problems’ structure is

the subject of Chapter 6.

5.2 Mirror Descent Algorithm: Minimizing over a Simple Set

5.2.1 Problem of Interest

We focus primarily on solving an optimization problem of the form

Opt = min
x∈X

f(x), (5.2)

where X ⊂ E is a closed convex set in a finite-dimensional Euclidean space

E, and f : X→ R is a Lipschitz continuous convex function represented by

a first-order oracle. This oracle is a routine which, given a point x ∈ X on

input, returns the value f(x) and a subgradient f ′(x) of f at x. We always

assume that f ′(x) is bounded on X. We also assume that (5.2) is solvable.

5.2.2 Mirror Descent setup

We set up the MD method with two entities:

5.2 Mirror Descent Algorithm: Minimizing over a Simple Set 127

a norm ‖ · ‖ on the space E embedding X, and the conjugate norm ‖ · ‖∗
on E∗: ‖ξ‖∗ = max

x
{〈ξ, x〉 : ‖x‖ ≤ 1};

a distance-generating function (d.-g.f. for short) for X compatible with the

norm ‖ · ‖, that is, a continuous convex function ω(x) : X→ R such that

—ω(x) admits a selection ω′(x) of a subgradient which is continuous on

the set Xo = {x ∈ X : ∂ω(x) �= ∅};
—ω(·) is strongly convex, with modulus 1, w.r.t. ‖ · ‖:
∀(x, x′ ∈ Xo) : 〈ω′(x)− ω′(x′), x− x′〉 ≥ ‖x− y‖2. (5.3)

For x ∈ Xo, u ∈ X, let

Vx(u) = ω(u)− ω(x)− 〈ω′(x), u− x〉. (5.4)

Denote xc = argminu∈Xω(u) (the existence of a minimizer is given by

continuity and strong convexity of ω on X and by closedness of X, and

its uniqueness by strong convexity of ω). When X is bounded, we define

ω(·)-diameter Ω = maxu∈X Vxc
(u) ≤ maxX ω(u) − minX ω(u) of X. Given

x ∈ Xo, we define the prox-mapping Proxx(ξ) : E → Xo as

Proxx(ξ) = argminu∈X {〈ξ, u〉+ Vx(u)} . (5.5)

From now on we make the

Simplicity Assumption. X and ω are simple and fit each other. Specifi-

cally, given x ∈ Xo and ξ ∈ E, it is easy to compute Proxx(ξ).

5.2.3 Basic Mirror Descent algorithm

The MD algorithm associated with the outlined setup, as applied to problem

(5.2), is the recurrence

(a) x1 = argminx∈X ω(x)

(b) xt+1 = Proxxt
(γtf

′(xt)), t = 1, 2, ...

(c) xt =
[∑t

τ=1 γτ
]−1∑t

τ=1 γτxτ

(d) x̂t = argminx∈{x1,...,xt} f(x)

(5.6)

Here, xt are subsequent search points, and xt (or x̂t—the error bounds that

follow work for both these choices) are subsequent approximate solutions

generated by the algorithm. Note that xt ∈ Xo and xt, x̂t ∈ X for all t.

The convergence properties of MD stem from the following simple obser-

vation:

Proposition 5.1. Suppose that f is Lipschitz continuous on X with L :=

128 First-Order Methods for Nonsmooth Convex Large-Scale Optimization, I

supx∈X ‖f ′(x)‖∗ <∞. Let f t = max[f(xt), f(x̂t)]. Then

(i) for all u ∈ X, t ≥ 1 one has

t∑
τ=1

γτ 〈f ′(xτ), xτ − u〉 ≤ Vx1
(u) + 1

2

∑t
τ=1 γ

2
τ‖f ′(xτ)‖2∗

≤ Vx1
(u) + L2

2

∑t
τ=1 γ

2
τ .

(5.7)

As a result, for all t ≥ 1,

f t −Opt ≤ εt :=
Vx1

(x∗) + L2

2

∑t
τ=1 γ

2
τ∑t

τ=1 γτ
, (5.8)

where x∗ is an optimal solution to (5.2). In particular, in the divergent

series case γt → 0,
∑t

τ=1 γτ → +∞ as t → ∞, the algorithm converges:

f t −Opt→ 0 as t→∞. Moreover, with the stepsizes

γt = γ/[‖f ′(xt)‖∗
√
t]

for all t, one has

f t −Opt ≤ O(1)

[
Vx1

(x∗)
γ

+
ln(t+ 1)γ

2

]
Lt−1/2. (5.9)

(ii) Let X be bounded so that the ω(·)-diameter Ω of X is finite. Then, for

every number N of steps, the N -step MD algorithm with constant stepsizes,

γt =

√
2Ω

L
√
N

, 1 ≤ t ≤ N, (5.10)

ensures that

f
N

= minu∈X 1
N

∑N
τ=1[f(xτ) + 〈f ′(xτ), u− xτ 〉] ≤ Opt,

fN −Opt ≤ fN − f
N
≤

√
2ΩL√
N

.
(5.11)

In other words, the quality of approximate solutions (xN or x̂N) can be

certified by the easy-to-compute online lower bound f
N

on Opt, and the

certified level of nonoptimality of the solutions can only be better than the

one given by the worst-case upper bound in the right-hand side of (5.11).

Proof. From the definition of the prox-mapping,

xτ+1 = argmin
z∈X

{〈γτf ′(xτ)− ω′(xτ), z〉+ ω(z)
}
,

whence, by optimality conditions,

〈γτf ′(xτ)− ω′(xτ) + ω′(xτ+1), u− xτ+1〉 ≥ 0 ∀u ∈ X.

5.2 Mirror Descent Algorithm: Minimizing over a Simple Set 129

When rearranging terms, this inequality can be rewritten as

γτ 〈f ′(xτ), xτ − u〉 ≤ [ω(u)− ω(xτ)− 〈ω′(xτ), u− xτ 〉]
−[ω(u)− ω(xτ+1)− 〈ω′(xτ+1), u− xτ+1〉]
+γτ 〈f ′(xτ), xτ − xτ+1〉
−[ω(xτ+1)− ω(xτ)− 〈ω′(xτ), xτ+1 − xτ 〉]

= Vxτ
(u)− Vxτ+1

(u) + [γτ 〈f ′(xτ), xτ − xτ+1〉 − Vxτ
(xτ+1)]︸ ︷︷ ︸

δτ

. (5.12)

From the strong convexity of Vxτ
it follows that

δτ ≤ γτ 〈f ′(xτ), xτ − xτ+1〉 − 1
2‖xτ − xτ+1‖2

≤ γτ‖f ′(xτ)‖∗‖xτ − xτ+1‖ − 1
2‖xτ − xτ+1‖2

≤ max
s

[γτ‖f ′(xτ)‖∗s− 1
2s

2] = γ2
τ

2 ‖f ′(xτ)‖2∗,

and we get

γτ 〈f ′(xτ), xτ − u〉 ≤ Vxτ
(u)− Vxτ+1

(u) + γ2τ‖f ′(xτ)‖2∗/2. (5.13)

Summing these inequalities over τ = 1, ..., t and taking into account

that Vx(u) ≥ 0, we arrive at (5.7). With u = x∗, (5.7), when tak-

ing into account that 〈f ′(xτ), xτ − x∗〉 ≥ f(xτ) − Opt and setting f t =

[
∑t

τ=1 γτ]
−1
∑t

τ=1 γτf(xτ) results in

f t −Opt ≤ Vx1
(x∗) + L2

[∑t
τ=1γ

2
τ

]
/2∑t

τ=1γτ
.

Since, clearly, f t = max[f(xt), f(x̂t)] ≤ f t, we have arrived at (5.8). This

inequality straightforwardly implies the remaining results of (i).

To prove (ii), note that by the definition of Ω and due to x1 = argminX ω,

(5.7) combines with (5.10) to imply that

fN−f
N

= max
u∈X

[
fN − 1

N

N∑
τ=1

[f(xτ) + 〈f ′(xτ), u− xτ 〉]
]
≤
√
2ΩL√
N

. (5.14)

Since f is convex, the function 1
N

∑N
τ=1[f(xτ) + 〈f ′(xτ), u − xτ 〉] underes-

timates f(u) everywhere on X, that is, f
N
≤ Opt. And, as we have seen,

fN ≥ fN , therefore (ii) follows from (5.14).

130 First-Order Methods for Nonsmooth Convex Large-Scale Optimization, I

5.3 Problems with Functional Constraints

The MD algorithm can be extended easily from the case of problem (5.2) to

the case of problem

Opt = min
x∈X

{f0(x) : fi(x) ≤ 0, 1 ≤ i ≤ m} , (5.15)

where fi, 0 ≤ fi ≤ m, are Lipschitz continuous convex functions on X given

by the first-order oracle which, given x ∈ X on input, returns the values

fi(x) and subgradients f ′
i(x) of fi at x, with selections of the subgradients

f ′
i(·) bounded on X. Consider the N -step algorithm:

1. Initialization: Set x1 = argminX ω.

2. Step t, 1 ≤ t ≤ N : Given xt ∈ X, call the first-order oracle (xt being the

input) and check whether

fi(xt) ≤ γ‖f ′
i(xt)‖∗, i = 1, ...,m. (5.16)

If it is the case (productive step), set i(t) = 0; otherwise (nonproductive

step) choose i(t) ∈ {1, ...,m} such that fi(t)(x) > γ‖f ′
i(t)(xt)‖∗. Set

γt = γ/‖f ′
i(t)(xt)‖∗, xt+1 = Proxxt

(γtf
′
i(t)(xt)).

When t < N , loop to step t+ 1.

3. Termination: AfterN steps are executed, output, as approximate solution

x̂N , the best (with the smallest value of f0) of the points xt associated

with productive steps t; if there were no productive steps, claim (5.15) is

infeasible.

Proposition 5.2. Let X be bounded. Given integer N ≥ 1, set γ =√
2Ω/

√
N . Then

(i) If (5.15) is feasible, x̂N is well defined.

(ii) Whenever x̂N is well defined, one has

max
[
f0(x̂

N)−Opt, f1(x̂
N), ..., fm(x̂N)

] ≤ γL =
√
2ΩL√
N

,

L = max0≤i≤m supx∈X ‖f ′
i(x)‖∗.

(5.17)

Proof. By construction, when x̂N is well defined, it is some xt with produc-

tive t, whence fi(x̂
N) ≤ γL for 1 ≤ i ≤ m by (5.16). It remains to verify that

when (5.15) is feasible, x̂N is well defined and f0(x̂
N) ≤ Opt + γL. Assume

that it is not the case, whence at every productive step t (if any) we have

f0(xt)−Opt > γ‖f ′
0(xt)‖∗. Let x∗ be an optimal solution to (5.15). Exactly

the same reasoning as in the proof of Proposition 5.1 yields the following

5.4 Minimizing Strongly Convex Functions 131

analogy of (5.7) (with u = x∗):∑N

t=1
γt〈f ′

i(t)(xt), xt − x∗〉 ≤ Ω+
1

2

∑N

t=1
γ2t ‖f ′

i(t)(xt)‖2∗ = 2Ω. (5.18)

When t is nonproductive, we have γt〈f ′
i(t)(xt), xt − x∗〉 ≥ γtfi(t)(xt) > γ2,

the concluding inequality being given by the definition of i(t) and γt.

When t is productive, we have γt〈f ′
i(t)(xt), xt − x∗〉 = γt〈f ′

0(xt), xt − x∗〉 ≥
γt(f0(xt)−Opt) > γ2, the concluding inequality being given by the definition

of γt and our assumption that f0(xt) − Opt > γ‖f ′
0(xt)‖∗ at all productive

steps t. The bottom line is that the left-hand side in (5.18) is > Nγ2 = 2Ω,

which contradicts (5.18).

5.4 Minimizing Strongly Convex Functions

The MD algorithm can be modified to obtain the rate O(1/t) in the case

where the objective f in (5.2) is strongly convex. The strong convexity of f

with modulus κ > 0 means that

∀(x, x′ ∈ X) 〈f ′(x)− f ′(x′), x− x′〉 ≥ κ‖x− x′‖2. (5.19)

Further, let ω be the d.-g.f. for the entire E (not just for X, which may be

unbounded in this case), compatible with ‖ · ‖. W.l.o.g. let 0 = argminE ω,

and let

Ω = max
‖u‖≤1

ω(u)− ω(0)

be the variation of ω on the unit ball of ‖ ·‖. Now, let ωR,z(u) = ω
(
u−z
R

)
and

V R,z
x (u) = ωR,z(u) − ωR,z(x) − 〈(ωR,z(x))′, u − x〉. Given z ∈ X and R > 0

we define the prox-mapping

ProxR,z
x (ξ) = argmin

u∈X
[〈ξ, u〉+ V R,z

x (u)]

and the recurrence (cf. (5.6))

xt+1 = ProxR,z
xt

(γtf
′(xt)), t = 1, 2, ...

xt(R, z) =
[∑t

τ=1 γτ
]−1∑t

τ=1 γτxτ .
(5.20)

We start with the following analogue of Proposition 5.1.

Proposition 5.3. Let f be strongly convex on X with modulus κ > 0 and

Lipschitz continuous on X with L := supx∈X ‖f ′(x)‖∗ < ∞. Given R > 0,

t ≥ 1, suppose that ‖x1 − x∗‖ ≤ R, where x∗ is the minimizer of f on X,

132 First-Order Methods for Nonsmooth Convex Large-Scale Optimization, I

and let the stepsizes γτ satisfy

γτ =

√
2Ω

RL
√
t
, 1 ≤ τ ≤ t. (5.21)

Then, after t iterations (5.20) one has

f(xt(R, x1))−Opt ≤ 1

t

t∑
τ=1

〈f ′(xτ), xτ − x∗〉 ≤ LR
√
2Ω√
t

, (5.22)

‖xt(R, x1)− x∗‖2 ≤ 1

tκ

t∑
τ=1

〈f ′(xτ), xτ − x∗〉 ≤ LR
√
2Ω

κ
√
t

. (5.23)

Proof. Observe that the modulus of strong convexity of the function ωR,x1(·)
w.r.t. the norm ‖ · ‖R = ‖ · ‖/R is 1, and the conjugate of the latter norm is

R‖ · ‖∗. Following the steps of the proof of Proposition 5.1, with ‖ · ‖R and

ωR,x1(·) in the roles of ‖ · ‖, respectively, we come to the analogue of (5.7)

as follows:

∀u ∈ X :
t∑

τ=1

γτ 〈f ′(xτ), xτ−u〉 ≤ V R,x1
x1

(u)+
R2L2

2

t∑
τ=1

γ2τ ≤ Ω+
R2L2

2

t∑
τ=1

γ2τ .

Setting u = x∗ (so that V R,x1(x∗) ≤ Ω due to ‖x1 − x∗‖ ≤ R), and

substituting the value (5.21) of γτ , we come to (5.22). Further, from the

strong convexity of f it follows that 〈f ′(xτ), xτ − x∗〉 ≥ κ‖xτ − x∗‖2, which
combines with the definition of xt(R, x1) to imply the first inequality in

(5.23) (recall that γτ is independent of τ , so that xt(R, x1) =
1
t

∑t
τ=1 xτ).

The second inequality in (5.23) follows from (5.22).

Proposition 5.21 states that the smaller R is (i.e., the closer the initial

guess x1 is to x∗), the better the accuracy of the approximate solution

xt(R, x1) will be in terms of f and in terms of the distance to x∗. When

the upper bound on this distance, as given by (5.22), becomes small, we

can restart the MD using xt(·) as the improved initial point, compute a

new approximate solution, and so on. The algorithm below is a simple

implementation of this idea.

Suppose that x1 ∈ X and R0 ≥ ‖x∗ − x1‖ are given. The algorithm is as

follows:

1. Initialization: Set y0 = x1.

2. Stage k = 1, 2, ...: Set Nk = Ceil(2k+2 L2Ω
κ2R2

0
), where Ceil(t) is the smallest

integer ≥ t, and compute yk = xNk(Rk−1, yk−1) according to (5.20), with

γt = γk :=
√
2Ω

LRk−1

√
Nk

, 1 ≤ t ≤ Nk. Set R
2
k = 2−kR2

0 and pass to stage k + 1.

5.4 Minimizing Strongly Convex Functions 133

For the search points x1, ..., xNk
of the kth stage of the method, we define

δk =
1

Nk

Nk∑
τ=1

〈f ′(xτ), xτ − x∗〉.

Let k∗ be the smallest integer such that k ≥ 1 and 2k+2 L2Ω
κ2R2

0
> k, and let

Mk =
∑k

j=1Nj , k = 1, 2, Mk is the total number of prox-steps carried

out at the first k stages.

Proposition 5.4. Setting y0 = x1, the points yk, k = 0, 1, ..., generated by

the above algorithm satisfy the following relations:

‖yk − x∗‖2 ≤ R2
k = 2−kR2

0, (Ik)

k = 0, 1, ...,

f(yk)−Opt ≤ δk ≤ κR2
k = κ2−kR2

0, (Jk)

k = 1, 2, As a result,

(i) When 1 ≤ k < k∗, one has Mk ≤ 5k and

f(yk)−Opt ≤ κ2−kR2
0; (5.24)

(ii) When k ≥ k∗, one has

f(yk)−Opt ≤ 16L2Ω

κMk
. (5.25)

The proposition says that when the approximate solution yk is far from

x∗, the method converges linearly; when approaching x∗, it slows down and

switches to the rate O(1/t).

Proof. We prove (Ik), (Jk) by induction in k. (I0) is valid due to y0 = x1
and the origin of R0. Assume that for some m ≥ 1 relations (Ik) and (Jk)

are valid for 1 ≤ k ≤ m−1, and prove that then (Im), (Jm) are valid as well.

Applying Proposition 5.3 with R = Rm−1, x1 = ym−1 (so that ‖x∗−x1‖ ≤ R

by (Im−1)) and t = Nm, we get

(a) : f(ym)−Opt ≤ δm ≤ LRm−1

√
2Ω√

Nm
, (b) : ‖ym−x∗‖2 ≤ LRm−1

√
2Ω

κ
√
Nm

.

Since R2
m−1 = 21−mR2

0 by (Im−1) and Nm ≥ 2m+2 L2Ω
κ2R2

0
, (b) implies (Im) and

(a) implies (Jm). Induction is completed.

Now prove that Mk ≤ 5k for 1 ≤ k < k∗. For such a k and for 1 ≤ j ≤ k we

have Nj = 1 when 2j+2 L2Ω
κ2R2

0
< 1; let it be so for j < j∗; and Nj ≤ 2j+3 L2Ω

κ2R2
0

for j∗ ≤ j ≤ k. It follows that when j∗ > k, we have Mk = k. When j∗ ≤ k,

134 First-Order Methods for Nonsmooth Convex Large-Scale Optimization, I

we have M :=
∑k

j=j∗ Nj ≤ 2k+4 L2Ω
κ2R2

0
≤ 4k (the concluding inequality is due

to k < k∗), whence Mk = j∗ − 1 + M ≤ 5k, as claimed. Invoking (Jk), we

arrive at (i).

To prove (ii), let k ≥ k∗, whence Nk ≥ k + 1. We have

2k+3 L2Ω

κ2R2
0

>

k∑
j=1

2j+2 L2Ω

κ2R2
0

≥
k∑

j=1

(Nj − 1) = Mk − k ≥Mk/2,

where the concluding ≥ stems from the fact that Nk ≥ k+ 1, and therefore

Mk ≥
∑k−1

j=1 Nj +Nk ≥ (k − 1) + (k + 1) = 2k. Thus Mk ≤ 2k+4 L2Ω
κ2R2

0
, that

is, 2−k ≤ 16L2Ω
Mkκ2R2

0
, and the right-hand side of (Jk) is ≤ 16L2Ω

Mkκ
.

5.5 Mirror Descent Stochastic Approximation

The MD algorithm can be extended to the case when the objective f in (5.2)

is given by the stochastic oracle—a routine which at tth call, the query point

being xt ∈ X, returns a vector G(xt, ξt), where ξ1, ξ2, ... are independent,

identically distributed oracle noises. We assume that for all x ∈ X it holds

that

E
{‖G(x, ξ)‖2∗

} ≤ L2 <∞& ‖g(x)−f ′(x)‖∗ ≤ μ, g(x) = E{G(x, ξ)}. (5.26)

In (5.6), replacing the subgradients f ′(xt) with their stochastic estimates

G(xt, ξt), we arrive at robust mirror descent stochastic approximation

(RMDSA). The convergence properties of this procedure are presented in

the following counterpart of Proposition 5.1:

Proposition 5.5. Let X be bounded. Given an integer N ≥ 1, consider

N -step RMDSA with the stepsizes

γt =
√
2Ω/[L

√
N], 1 ≤ t ≤ N. (5.27)

Then

E
{
f(xN)−Opt

} ≤ √2ΩL/
√
N + 2

√
2Ωμ. (5.28)

Proof. Let ξt = [ξ1; ...; ξt], so that xt is a deterministic function of ξt−1.

Exactly the same reasoning as in the proof of Proposition 5.1 results in the

following analogy of (5.7):∑N

τ=1
γτ 〈G(xτ , ξτ), xτ − x∗〉 ≤ Ω+ 1

2

∑N

τ=1
γ2τ‖G(xτ , ξτ)‖2∗. (5.29)

5.6 Mirror Descent for Convex-Concave Saddle-Point Problems 135

Observe that xτ is a deterministic function of ξt−1, so that

Eξτ{〈G(xτ , ξτ), xτ − x∗〉} = 〈g(xτ), xτ − x∗〉 ≥ 〈f ′(xτ), xτ − x∗〉 − μD,

where D = maxx,x′∈X ‖x − x′‖ is the ‖ · ‖-diameter of X. Now, taking

expectations of both sides of (5.29), we get

E

{∑N

τ=1
γτ 〈f ′(xτ), xτ − x∗〉

}
≤ Ω+

L2

2

∑N

τ=1
γ2τ + μD

∑N

τ=1
γτ .

In the same way as in the proof of Proposition 5.1 we conclude that the

left-hand side in this inequality is ≥ [
∑N

τ=1γτ]E{f(xN)−Opt}, so that

E{f(xN)−Opt} ≤ Ω+ L2

2

∑N
τ=1γ

2
τ∑N

τ=1γτ
+ μD. (5.30)

Observe that when x ∈ X, we have ω(x)−ω(x1)−〈ω′(x1), x−x1〉 ≥ 1
2‖x−x1‖2

by the strong convexity of ω, and ω(x)− ω(x1)− 〈ω′(x1), x− x1〉 ≤ ω(x)−
ω(x1) ≤ Ω (since x1 = argminX ω, and thus 〈ω′(x1), x − x1〉 ≥ 0). Thus,

‖x− x1‖ ≤
√
2Ω for every x ∈ X, whence D := maxx,x′∈X ‖x− x′‖ ≤ 2

√
2Ω.

This relation combines with (5.30) and (5.27) to imply (5.28).

5.6 Mirror Descent for Convex-Concave Saddle-Point Problems

Now we shall demonstrate that the MD scheme can be naturally extended

from problems of convex minimization to the convex-concave saddle-point

problems.

5.6.1 Preliminaries

Convex-concave Saddle-Point Problem. A convex-concave saddle-point

(c.-c.s.p.) problem reads

SadVal = inf
x∈X

sup
y∈Y

φ(x, y), (5.31)

where X ⊂ Ex, Y ⊂ Ey are nonempty closed convex sets in the respective

Euclidean spaces Ex and Ey. The cost function φ(x, y) is continuous on

Z = X× Y ∈ E = Ex ×Ey and convex in the variable x ∈ X and concave in

the variable y ∈ Y; the quantity SadVal is called the saddle-point value of φ

on Z. By definition, (precise) solutions to (5.31) are saddle points of φ on

Z, that is, points (x∗, y∗) ∈ Z such that φ(x, y∗) ≥ φ(x∗, y∗) ≥ φ(x∗, y) for

all (x, y) ∈ Z. The data of problem (5.31) give rise to a primal-dual pair of

136 First-Order Methods for Nonsmooth Convex Large-Scale Optimization, I

convex optimization problems

Opt(P) = min
x∈X

φ(x), φ(x) = supy∈Y φ(x, y) (P)

Opt(D) = max
y∈Y

φ(y), φ(y) = inf
x∈X

φ(x, y). (D)

φ possesses saddle-points on Z if and only if problems (P) and (D) are

solvable with equal optimal values. Whenever saddle-points exist, they

are exactly the pairs (x∗, y∗) comprising optimal solutions x∗, y∗ to the

respective problems (P) and (D), and for every such pair (x∗, y∗) we have

φ(x∗, y∗) = φ(x∗) = Opt(P) = SadVal := inf
x∈X

supy∈Y φ(x, y)

= supy∈Y inf
x∈X

φ(x, y) = Opt(D) = φ(y∗).

From now on, we assume that (5.31) is solvable.

Remark 5.1. With our basic assumptions on φ (continuity and convexity-

concavity on X× Y) and on X,Y (nonemptiness, convexity and closedness),

(5.31) definitely is solvable either if X and Y are bounded, or if both X and

all level sets {y ∈ Y : φ(y) ≥ a}, a ∈ R, of φ are bounded; these are the only

situations we are about to consider in this chapter and in Chapter 6.

Saddle-Point Accuracy Measure. A natural way to quantify the accuracy

of a candidate solution z = (x, y) ∈ Z to the c.-c.s.p. problem (5.31) is given

by the gap

εsad(z) = supη∈Y φ(x, η)− inf
ξ∈X

φ(ξ, y) = φ(x)− φ(y)

=
[
φ(x)−Opt(P)

]
+
[
Opt(D)− φ(y)

] (5.32)

where the concluding equality is given by the fact that, by our standing

assumption, φ has a saddle point and thus Opt(P) = Opt(D). We see that

εsad(x, y) is the sum of nonoptimalities, in terms of the respective objectives:

of x as an approximate solution to (P) and of y as an approximate solution

to (D).

Monotone Operator Associated with (5.31). Let ∂xφ(x, y) be the set of

all subgradients w.r.t. X of (the convex function) φ(·, y), taken at a point

x ∈ X, and let ∂y[−φ(x, y)] be the set of all subgradients w.r.t. Y (of the

convex function) −φ(x, ·), taken at a point y ∈ Y. We can associate with φ

the point-to-set operator

Φ(x, y) = {Φx(x, y) = ∂xφ(x, y)} × {Φy(x, y) = ∂y[−φ(x, y)]}.

5.6 Mirror Descent for Convex-Concave Saddle-Point Problems 137

The domain Dom Φ := {(x, y) : Φ(x, y) �= ∅} of this operator comprises all

pairs (x, y) ∈ Z for which the corresponding subdifferentials are nonempty;

it definitely contains the relative interior rint Z = rint X× rint Y of Z, and

the values of Φ in its domain are direct products of nonempty closed convex

sets in Ex and Ey. It is well known (and easily seen) that Φ is monotone:

∀(z, z′ ∈ Dom Φ, F ∈ Φ(z), F ′ ∈ Φ(z′)) : 〈F − F ′, z − z′〉 ≥ 0,

and the saddle points of φ are exactly the points z∗ such that 0 ∈ Φ(z∗). An

equivalent characterization of saddle points, more convenient in our context,

is as follows: z∗ is a saddle point of φ if and only if for some (and then for

every) selection F (·) of Φ (i.e., a vector field F (z) : rint Z → E such that

F (z) ∈ Φ(z) for every z ∈ rint Z) one has

〈F (z), z − z∗〉 ≥ 0 ∀z ∈ rint Z. (5.33)

5.6.2 Saddle-Point Mirror Descent

Here we assume that Z is bounded and φ is Lipschitz continuous on Z

(whence, in particular, the domain of the associated monotone operator Φ

is the entire Z).

The setup of the MP algorithm involves a norm ‖ · ‖ on the embedding

space E = Ex ×Ey of Z and a d.-g.f. ω(·) for Z compatible with this norm.

For z ∈ Zo, u ∈ Z let (cf. (5.4))

Vz(u) = ω(u)− ω(z)− 〈ω′(z), u− z〉,
and let zc = argminu∈Zω(u). We assume that given z ∈ Zo and ξ ∈ E, it is

easy to compute the prox-mapping

Proxz(ξ) = argmin
u∈Z

[〈ξ, u〉+ Vz(u)]

(
= argmin

u∈Z

[〈ξ − ω′(z), u〉+ ω(u)
])

.

We denote, by Ω = maxu∈ZVzc(u) ≤ maxZω(·)−minZω(·), the ω(·)-diameter

of Z (cf. Section 5.2.2).

Let a first-order oracle for φ be available, so that for every z = (x, y) ∈
Z we can compute a vector F (z) ∈ Φ(z = (x, y)) := {∂xφ(x, y)} ×
{∂y[−φ(x, y)]}. The saddle-point MD algorithm is given by the recurrence

(a) : z1 = zc,

(b) : zτ+1 = Proxzτ (γτF (zτ)),

(c) : zτ = [
∑τ

s=1 γs]
−1∑τ

s=1 γsws,

(5.34)

where γτ > 0 are the stepsizes. Note that zτ , ωτ ∈ Zo, whence zt ∈ Z.

138 First-Order Methods for Nonsmooth Convex Large-Scale Optimization, I

The convergence properties of the algorithm are given by the following.

Proposition 5.6. Suppose that F (·) is bounded on Z, and L is such that

‖F (z)‖∗ ≤ L for all z ∈ Z.

(i) For every t ≥ 1 it holds that

εsad(z
t) ≤

[∑t

τ=1
γτ

]−1
[
Ω+

L2

2

∑t

τ=1
γ2τ

]
. (5.35)

(ii) As a consequence, the N -step MD algorithm with constant stepsizes

γτ = γ/L
√
N, τ = 1, ..., N satisfies

εsad(z
N) ≤ L√

N

[
Ω

γ
+

Lγ

2

]
.

In particular, the N -step MD algorithm with constant stepsizes γτ =

L−1
√

2Ω
N , τ = 1, ..., N satisfies

εsad(z
N) ≤ L

√
2Ω

N
.

Proof. By the definition zτ+1 = Proxzτ (γτF (zτ)) we get

∀u ∈ Z, γτ 〈F (zτ), zτ − u〉 ≤ Vzτ (u)− Vzτ+1
(u) + γ2τ‖F (zτ)‖2∗/2.

(It suffices to repeat the derivation of (5.13) in the proof of Proposition 5.1

with f ′(xτ), xτ , and xτ+1 substituted, respectively, with F (zτ), zτ , and

zτ+1.) When summing for i = 1, ..., t we get, for all u ∈ Z:

t∑
τ=1

γτ 〈F (zτ), zτ − u〉 ≤ Vz1(u) +

t∑
τ=1

γ2τ ‖F (zτ)‖2∗/2 ≤ Ω+
L2

2

t∑
τ=1

γ2τ .(5.36)

Let zτ = (xτ , yτ), zt = (xt, yt), and λτ =
[∑t

s=1 γs
]−1

γτ . Note that∑t
s=1 λs = 1, and for

t∑
τ=1

λτ 〈F (zτ), zτ−u〉 =
t∑

τ=1

λτ [〈∇xφ(xτ , yτ), xτ − x〉+ 〈∇yφ(xτ , yτ), y − yτ 〉]

we have∑t
τ=1 λτ [〈∇xφ(xτ , yτ), xτ − x〉+ 〈∇yφ(xτ , yτ), y − yτ 〉]

≥∑t
τ=1 λτ [[φ(xτ , yτ)− φ(x, yτ)] + [φ(xτ , y)− φ(xτ , yτ)]] (a)

=
∑t

τ=1 λτ [φ(xτ , y)− φ(x, yτ)]

≥ φ(
∑t

τ=1 λτxτ , y)− φ(x,
∑t

τ=1 λτyτ) = φ(xt, y)− φ(x, yt) (b)

(5.37)

(inequalities in (a) and (b) are due to the convexity-concavity of φ). Thus

5.7 Setting up a Mirror Descent Method 139

(5.36) results in

φ(xt, y)− φ(x, yt) ≤ Ω+ L2

2

∑t
τ=1 γ

2
τ∑t

τ=1 γτ
∀(x, y) ∈ Z.

Taking the supremum in (x, y) ∈ Z, we arrive at (5.35).

5.7 Setting up a Mirror Descent Method

An advantage of the mirror descent scheme is that its degrees of freedom

(the norm ‖ · ‖ and the d.-g.f. ω(·)) allow one to adjust the method, to some

extent, to the geometry of the problem under consideration. This is the issue

we are focusing on in this section. For the sake of definiteness, we restrict

ourselves to the minimization problem (5.2); the saddle-point case (5.31) is

completely similar, with Z in the role of X.

5.7.1 Building blocks

The basic MD setups are as follows:

1. Euclidean setup: ‖ · ‖ = ‖ · ‖2, ω(x) = 1
2x

Tx.

2. �1-setup: For this setup, E = R
n, n > 1, and ‖ · ‖ = ‖ · ‖1. As for ω(·),

there could be several choices, depending on what X is:

(a) When X is unbounded, seemingly the only good choice is ω(x) =

C ln(n)‖x‖2p(n) with p(n) = 1 + 1
2 ln(n) , where an absolute constant C is

chosen in a way which ensures (5.3) (one can take C = e).

(b) When X is bounded, assuming w.l.o.g. that X ⊂ Bn,1 := {x ∈ R
n :

‖x‖1 ≤ 1}, one can set ω(x) = C ln(n)
∑n

i=1|xi|p(n) with the same as

above value of p(n) and C = 2e.

(c) When X is a part of the simplex S+n = {x ∈ R
n
+ :
∑n

i=1xi ≤ 1} (or

the flat simplex Sn = {x ∈ R
n
+ :
∑n

i=1xi = 1}) intersecting int Rn
+, a

good choice of ω(x) is the entropy

ω(x) = Ent(x) :=
∑n

i=1
xi ln(xi). (5.38)

3. Matrix setup: This is the matrix analogy of the �1-setup. Here the

embedding space E of X is the space Sν of block-diagonal symmetric

matrices with fixed block-diagonal structure ν = [ν1; ...; νk] (k diagonal

blocks of row sizes ν1, ..., νk). Sν is equipped with the Frobenius inner

product 〈X,Y 〉 = Tr(XY) and the trace norm |X|1 = ‖λ(X)‖1, where

λ(X) is the vector of eigenvalues (taken with their multiplicities in the

140 First-Order Methods for Nonsmooth Convex Large-Scale Optimization, I

nonascending order) of a symmetric matrix X. The d.-g.f.s are the matrix

analogies of those for the �1-setup. Specifically,

(a) When X is unbounded, we set ω(X) = C ln(|ν|)‖λ(X)‖2p(|ν|), where
|ν| =

∑k
�=1ν� is the total row size of matrices from Sν , and C is

an appropriate absolute constant which ensures (5.3) (one can take

C = 2e).

(b) When X is bounded, assuming w.l.o.g. that X ⊂ Bν,1 = {X ∈ Sν :

|X|1 ≤ 1}, we can take ω(X) = 4e ln(|ν|)∑|ν|
i=1|λi(X)|p(|ν|).

(c) When X is a part of the spectahedron Σ+
ν = {X ∈ Sν : X �

0, Tr(X) ≤ 1} (or the flat spectahedron Σν = {X ∈ Sν : X �
0, Tr(X) = 1}) intersecting the interior {X � 0} of the positive

semidefinite cone Sν
+ = {X ∈ Sν : X � 0}, one can take ω(X) as

the matrix entropy: ω(X) = 2Ent(λ(X)) = 2
∑|ν|

i=1λi(X) ln(λi(X)).

Note that the �1-setup can be viewed as a particular case of the matrix setup,

corresponding to the case when the block-diagonal matrices in question are

diagonal, and we identify a diagonal matrix with the vector of its diagonal

entries.

With the outlined setups, the simplicity assumption holds, provided that

X is simple enough. Specifically:

Within the Euclidean setup, Proxx(ξ) is the metric projection of the vector

x − ξ onto X (that is, the point of X which is the closest to x − ξ in �2-

norm). Examples of sets X ⊂ R
n for which metric projection is easy include

‖ · ‖p-balls and intersections of ‖ · ‖p-balls centered at the origin with the

nonnegative orthant Rn
+.

Within the �1-setup, computing the prox-mapping is reasonably easy

—in the case of 2a, when X is the entire R
n or Rn

+,

—in the case of 2b, when X is Bn,1 or Bn,1 ∩ R
n
+,

—in the case of 2c, when X is the entire S+n or Sn.

With the indicated sets X, in the cases of 2a and 2b computing the prox-

mapping requires solving auxiliary one- or two-dimensional convex problems,

which can be done within machine accuracy by, e.g., the ellipsoid algorithm

in O(n) operations (cf. Nemirovsky and Yudin, 1983, Chapter 2). In the case

of 2c, the prox-mappings are given by the explicit formulas

X = S+n ⇒ Proxx(ξ) =

{
[x1e

ξ1−1; ...;xne
ξn−1],

∑
ie

ηi−1 ≤ 1[∑
ixie

ξi
]−1[

x1e
η1 ; ...; xne

ηn
]
, otherwise

X = Sn ⇒ Proxx(ξ) =
[∑

ixie
ξi
]−1[

x1e
η1 ; ...; xne

ηn
]
.

(5.39)

5.7 Setting up a Mirror Descent Method 141

Within the matrix setup, computing the prox-mapping is relatively easy

—in the case of 3a, when X is the entire Sν or the positive semidefinite cone

Sν
+ = {X ∈ Sν : X � 0},

—in the case of 3b, when X is the entire Bν,1 or the intersection of Bν,1 with

Sν
+,

—in the case of 3c, when X is the entire spectahedron Σ+
ν or Σν .

Indeed, in the cases, outlined above, computing W = ProxX(Ξ) reduces to

computing the eigenvalue decomposition of the matrix X (which allows one

to get ω′(X)), and subsequent eigenvalue decomposition of the matrix H =

Ξ−ω′(X): H = U Diag{h}UT (here Diag(A) stands for the diagonal matrix

with the same diagonal as A). It is easily seen that in the cases in question,

W = U Diag{w}UT , w = argmin
z: Diag{z}∈X

{〈Diag{h},Diag{z}〉+ ω(Diag{z})},
and the latter problem is exactly the one arising in the �1-setup.

Illustration: Euclidean setup vs. �1-setup. To illustrate the ability of the

MD scheme to adjust, to some extent, the method to the problem’s geometry,

consider problem (5.2) when X is the unit ‖ · ‖p-ball in R
n, where p = 1 or

p = 2, and compare the respective performances of the Euclidean and the

�1-setups. (To make optimization over the unit Euclidean ball Bn,2 available

for the �1-setup, we pass from min‖x‖2≤1 f(x) to the equivalent problem

min
‖u‖2≤n−1/2

f(n1/2u) and use the setup from Section 5.7.1, item 2b.) The ratio

of the corresponding efficiency estimates (the right-hand sides in (5.11))

within an absolute constant factor is

Θ :=
EffEst(Eucl)

EffEst(�1)
= 1

n1−1/p
√

ln(n)︸ ︷︷ ︸
A

· supx∈X ‖f ′(x)‖2

supx∈X ‖f ′(x)‖1∞︸ ︷︷ ︸
B

.

Note that Θ
 1 means that the MD with the Euclidean setup significantly

outperforms the MD with the �1-setup, while Θ � 1 means exactly the

opposite. Now, A is ≤ 1 and thus is always in favor of the Euclidean setup,

and is as small as 1/
√
n ln(n) when X is the Euclidean ball (p = 2). The

factor B is in favor of the �1-setup—it is ≥ 1 and ≤ √n, and can well be of

the order of
√
n (look what happens when all entries in f ′(x) are of the same

order of magnitude). Which one of the factors overweights depends on f ;

however, a reasonable choice can be made independently of the fine structure

of f . Specifically, when X is the Euclidean ball, the factor A = 1/
√
n lnn is so

small that the product AB definitely is ≤ 1, that is, the situation is in favor

of the Euclidean setup. In contrast to this, when X is the �1-ball (p = 1),

A is nearly constant—just O(1/
√

ln(n)), since B can be as large as
√
n,

the situation is definitely in favor of the �1-setup—it can be outperformed

142 First-Order Methods for Nonsmooth Convex Large-Scale Optimization, I

by the Euclidean setup only marginally (by the factor ≤ √lnn), and it has

a reasonable chance to outperform its adversary quite significantly, by the

factor O(
√

n/ ln(n)). Thus, there are all reasons to select the Euclidean

setup when p = 2 and the �1-setup when p = 1.6

5.7.2 Favorable Geometry Case

Consider the case when the domain X of (5.2) is bounded and, moreover, is

a subset of the direct product X+ of standard blocks:

X+ = X1 × ...× XK ∈ E1 × ...× EK , (5.40)

where for every � = 1, ...,K the pair (X�, E� ⊃ X�) is

either a ball block, that is, E� = R
n� and X� is either the unit Euclidean

ball Bn�,2 = {x ∈ R
n� : ‖x‖2 ≤ 1} in E�, or the intersection of this ball with

R
n�

+ ;

or a spectahedron block, that is, E� = Sν�

is the space of block-diagonal

symmetric matrices with block-diagonal structure ν�, and X� is either the

unit trace-norm ball {X ∈ Sν�

: |X|1 ≤ 1}, or the intersection of this ball

with Sν�

+ , or the spectahedron Σ+
ν� = {X ∈ Sν�

+ : Tr(X) ≤ 1}, or the flat

spectahedron Σν� = {X ∈ Sν�

+ : Tr(X) = 1}.
Note that according to our convention of identifying vectors with diagonals

of diagonal matrices, we allow for some of X� to be the unit �1-balls, or their

nonnegative parts, or simplexes—they are nothing but spectahedron blocks

with purely diagonal structure ν�.

We equip the embedding spaces E� of blocks with the natural inner

products (the standard inner products when E� = R
n� and the Frobenius

inner product when E� = Sν�

) and norms ‖ · ‖(�) (the standard Euclidean

norm when E� = R
n� and the trace-norm when E� = Sν�

), and the standard

6. In fact, with this recommendation we get theoretically unimprovable, in terms of the
information-based complexity theory, methods for large-scale nonsmooth convex optimiza-
tion on Euclidean and �1-balls (for details, see Nemirovsky and Yudin, 1983; Ben-Tal
et al., 2001). Numerical experiments reported in Ben-Tal et al. (2001) and Nemirovski
et al. (2009) seem to fully support the advantages of the �1-setup when minimizing over
large-scale simplexes.

5.7 Setting up a Mirror Descent Method 143

blocks X� with d.-g.f.’s

ω�(x
�) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1
2 [x

�]Tx�, X� is a ball block

4e ln(|ν�|)∑i|λi(X
�)|p(|ν�|),

X� is the unit | · |1 ball Bν�,1 in

E� = Sν�

, or Bν�,1 ∩ Sν�

+

2Ent(λ(X�)),
X� is the spectahedron (Σ+

ν� or

Σν�) in E� = Sν�

(5.41)

(cf. Section 5.7.1). Finally, the embedding space E = E1 × ... × EK of X+

(and thus of X ⊂ X+) is equipped with the direct product type Euclidean

structure induced by the inner products on E1, ..., EK and with the norm

‖(x1, ..., xK)‖ =
√∑K

�=1
α�‖x�‖2(�) (5.42)

where α� > 0 are construction parameters. X+ is equipped with the d.-g.f.

ω(x1, ..., xK) =
∑K

�=1
α�ω�(x

�) (5.43)

which, it is easy to see, is compatible with the norm ‖ · ‖.
Assuming from now on that X intersects the relative interior rint X+, the

restriction of ω(·) onto X is a d.-g.f. for X compatible with the norm ‖ · ‖
on the space E embedding X, and we can solve (5.2) by the MD algorithm

associated with ‖ · ‖ and ω(·). Let us optimize the efficiency estimate of

this algorithm over the parameters α� of our construction. For the sake of

definiteness, consider the case where f is represented by a deterministic first-

order oracle (the tuning of the MD setup in the case of the stochastic oracle

is being completely similar). To this end, assume that we have at our disposal

upper bounds L� < ∞, 1 ≤ � ≤ K, on the quantities ‖f ′
x�(x1, ..., xK)‖(�),∗,

x = (x1, ..., xK) ∈ X. Here f ′
x�(x) is the projection of f ′(x) onto E� and

‖ · ‖(�),∗ is the norm on E� conjugate to ‖ · ‖(�) (that is, ‖ · ‖(�),∗ is the

standard Euclidean norm ‖ · ‖2 on E� when E� = R
n� , and ‖ · ‖(�),∗ is the

standard matrix norm (maximal singular value) when E� = Sν�

). The norm

‖ · ‖∗ conjugate to the norm ‖ · ‖ on E is

‖(ξ1, ..., ξK)‖∗ =
√∑K

�=1α
−1
� ‖ξ�‖2(�),∗

⇒ (∀x ∈ X) : ‖f ′(x)‖∗ ≤ L :=
√∑K

�=1α
−1
� L2

� .
(5.44)

The quantity we need to minimize in order to get as efficient an MD method

as possible within our framework is
√
ΩL (see, e.g., (5.11)). We clearly have

Ω ≤ Ω[X+] ≤∑K
�=1α�Ω�[X�], where Ω�[X�] is the variation (maximum minus

144 First-Order Methods for Nonsmooth Convex Large-Scale Optimization, I

minimum) of ω� on X�. These variations are upper-bounded by the quantities

Ω� =

{
1
2 for ball blocks X�

4e ln(|ν�|) for spectahedron blocks X�

. (5.45)

Assuming that we have Kb ball blocks X1, ...,XKb
and Ks spectahedron

blocks XKb+1, ...,XK=Kb+Ks
, we get

ΩL ≤ Ω[X+]L ≤
[
1

2

∑Kb

�=1
α� + 4e

∑Kb+Ks

�=Kb+1
α� ln(|ν�|)

]√∑K

�=1
α−1
� L2

� .

When optimizing the right-hand side bound in α1, ..., αL, we get

α� =
L�√

Ω�

∑K
i=1Li

√
Ωi

, Ω[X+] = 1, L = L :=
∑K

�=1
L�

√
Ω�. (5.46)

The efficiency estimate (5.11) associated with our optimized setup reads as

follows

fN −Opt ≤ O(1)LN−1/2

= O(1)[max1≤�≤K L�]
[
Kb +

∑Kb+Ks

�=Kb+1

√
ln(|ν�|)

]
N−1/2.

(5.47)

If we consider max1≤�≤K L�, Kb, and Ks as given constants, the rate of

convergence of the MD algorithm is O(1/
√
N), N being the number of steps,

with the factor hidden in O(·) completely independent of the dimensions of

the ball blocks and nearly independent of the sizes of the spectahedron

blocks. In other words, when the total number K of standard blocks in

X+ is O(1), the MD algorithm exhibits a nearly dimension-independent

O(N−1/2) rate of convergence, which is good news when solving large-scale

problems. Needless to say, the rate of convergence is not the only entity

of interest; what matters is the arithmetic cost of an iteration. The latter,

modulo the computational effort for obtaining the first-order information on

f , is dominated by the computational complexity of the prox-mapping. This

complexity—let us denote it C—depends on exactly what X is. As it was

explained in Section 5.7.1, in the case of X = X+, C is O(
∑Kb

�=1 dimX�)

plus the complexity of the eigenvalue decomposition of a matrix from

Sν1 × ... × SνKs
. In particular, when all spectahedron blocks are �1 balls

and simplexes, C is just linear in the dimension of X+. Further, when X is

cut off X+ by O(1) linear inequalities, C is essentially the same as when

X = X+. Indeed, here computing the prox-mapping for X reduces to solving

the problem

min
z∈X+

{〈a, z〉+ ω(z) : z ∈ X+, Az ≤ b
}
, dim b = k = O(1),

5.8 Notes and Remarks 145

or, which is the same, by duality, to solving the problem

max
λ∈Rk

+

f∗(λ), f∗(λ) =
[
−bTλ+ min

z∈X+

[〈a+ATλ, z〉+ ω(z)
]]

.

We are in the situation of O(1) λ-variables, and thus the latter problem can

be solved to machine precision in O(1) steps of a simple first-order algorithm

like the ellipsoid method. The first order information for f∗ required by this

method costs the computation of a single prox-mapping for X+, so that

computing the prox-mapping for X+ is, for all practical purposes, more

costly by just an absolute constant factor than computing this mapping

for X+.

When X is a sophisticated subset of X+, computing the prox-mapping for

X may become more involved, and the outlined setup could become difficult

to implement. One of the potential remedies is to rewrite the problem (5.2)

in the form of (5.15) with X extended to X+, with f in the role of f0 and

the constraints which cut X off X+ in the role of the functional constraints

f1(x) ≤ 0,..., fm(x) ≤ 0 of (5.15).

5.8 Notes and Remarks

1. The research of the second author was partly supported by ONR grant

N000140811104 and NSF grants DMI-0619977 and DMS-0914785.

2. The very first mirror descent method, subgradient descent, originates

from Shor (1967) and Polyak (1967); SD is merely the MD algorithm with

Euclidean setup: xt+1 = argminu∈X ‖(xt − γtf
′(xt)) − u‖2. Non-Euclidean

extensions (i.e., the general MD scheme) originated with Nemirovskii (1979)

and Nemirovsky and Yudin (1983); the form of this scheme used in our

presentation is due to Beck and Teboulle (2003). An ingenious version of

the method, which also allows one to recover dual solutions is proposed by

Nesterov (2009). The construction presented in Section 5.3 originated with

Nemirovsky and Yudin (1983), for a more recent version, see Beck et al.

(2010).

3. The practical performance of FOMs of the type we have considered

can be improved significantly by passing to their bundle versions, explicitly

utilizing both the latest and the past first-order information (in MD, only the

latest first-order information is used explicitly, while the past information is

loosely summarized in the current iterate). The Euclidean bundle methods

originate from Lemaréchal (1978) and are the subject of numerous papers

(see, e.g., Lemaréchal et al., 1981; Mifflin, 1982; Kiwiel, 1983, 1995, 1997;

Schramm and Zowe, 1992; Lemaréchal et al., 1995; Kiwiel et al., 1999, and

146 First-Order Methods for Nonsmooth Convex Large-Scale Optimization, I

references therein). For an MD version of the bundle scheme, see Ben-Tal

and Nemirovski (2005).

4. Classical stochastic approximation (the Euclidean setup version of the

algorithm from Proposition 5.5 without averaging: xt = xt) originated with

Robbins and Monro (1951) and assumes the objective f to be smooth and

strongly convex; there is a huge related literature (see Nevelson and Has-

minskii, 1976; Benveniste et al., 1987, and references therein). The averag-

ing of the trajectory which allows one to extend the method to the case

of nonsmooth convex minimization and plays the crucial role in FOMs for

saddle-point problems and variational inequalities, was introduced, in the

Euclidean setup, in Bruck (1977) and Nemirovskii and Yudin (1978). For

more results on “classical” and robust stochastic approximation, see, for

instance, Nemirovsky and Yudin (1983); Polyak (1991); Polyak and Judit-

sky (1992); Nemirovski and Rubinstein (2002); Kushner and Yin (2003);

Nemirovski et al. (2009) and references therein.

5. The extensions of the MD scheme from convex minimization to convex-

concave saddle-point problems and variational inequalities with monotone

operators originated from Nemirovskii (1981) and Nemirovsky and Yudin

(1983). For a comprehensive presentation, see Ben-Tal and Nemirovski

(2005).

5.9 References

A. Beck and M. Teboulle. Mirror descent and nonlinear projected subgradient
methods for convex optimization. Operations Research Letters, 31(3):167–175,
2003.

A. Beck, A. Ben-Tal, N. Guttmann-Beck, and L. Tetruashvili. The comirror algo-
rithm for solving nonsmooth constrained convex problems. Operations Research
Letters, 38(6):493–498, 2010.

A. Ben-Tal and A. Nemirovski. Non-Euclidean restricted memory level method
for large-scale convex optimization. Mathematical Programming, 102(3):407–456,
2005.

A. Ben-Tal, T. Margalit, and A. Nemirovski. The ordered subsets mirror descent
optimization method with applications to tomography. SIAM Journal on Opti-
mization, 12(1):79–108, 2001.

A. Benveniste, M. Métivier, and P. Priouret. Algorithmes Adaptatifs et Approxi-
mations Stochastiques. Masson, 1987.

R. Bruck. On weak convergence of an ergodic iteration for the solution of variational
inequalities for monotone operators in Hilbert space. Journal of Mathematical
Analalysis and Applications, 61(1):159–164, 1977.

K. C. Kiwiel. An aggregate subgradient method for nonsmooth convex minimiza-
tion. Mathematical Programming, 27(3):320–341, 1983.

K. C. Kiwiel. Proximal level bundle method for convex nondifferentiable optimiza-

5.9 References 147

tion, saddle point problems and variational inequalities. Mathematical Program-
ming, Series B, 69(1):89–109, 1995.

K. C. Kiwiel. Proximal minimization methods with generalized Bregman functions.
SIAM Journal on Control and Optimization, 35(4):1142–1168, 1997.

K. C. Kiwiel, T. Larsson, and P. O. Lindberg. The efficiency of ballstep subgradient
level methods for convex optimization. Mathematics of Operations Research, 24
(1):237–254, 1999.

H. J. Kushner and G. G. Yin. Stochastic Approximation and Recursive Algorithms
and Applications, volume 35 of Stochastic Modelling and Applied Probability.
Springer, 2003.

C. Lemaréchal. Nonsmooth optimization and descent methods. Technical Report
78-4, International Institute for Applied System Analysis, Laxenburg, Austria,
1978.

C. Lemaréchal, J. J. Strodiot, and A. Bihain. On a bundle algorithm for nonsmooth
optimization. In O. L. Mangasarian, R. R.Meyer, and S. M. Robinson, editors,
Nonlinear Programming, volume 4, pages 245–282. Academic Press, 1981.

C. Lemaréchal, A. Nemirovski, and Y. Nesterov. New variants of bundle methods.
Mathematical Programming, Series B, 69(1-3):111–147, 1995.

R. Mifflin. A modification and an extension of Lemaréchal’s algorithm for nons-
mooth minimization. In D. C. Sorensen and R. J.-B. Wets, editors, Nondiffer-
ential and Variational Techniques in Optimization, volume 17 of Mathematical
Programming Study, pages 77–90. Springer, 1982.

A. Nemirovski and R. Rubinstein. An efficient stochastic approximation algorithm
for stochastic saddle point problems. In Modeling Uncertainty: Examination of
Stochastic Theory, Methods, and Applications, pages 155–184. Kluwer Academic
Publishers, 2002.

A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro. Robust stochastic approxi-
mation approach to stochastic programming. SIAM Journal on Optimization, 19
(4):1574–1609, 2009.

A. Nemirovskii. Efficient methods for large-scale convex optimization problems.
Ekonomika i Matematicheskie Metody, 15, 1979. (In Russian).

A. Nemirovskii. Efficient iterative algorithms for variational inequalities with
monotone operators. Ekonomika i Matematicheskie Metody, 17(2):344–359, 1981.
(In Russian).

A. Nemirovskii and D. Yudin. On Cezari’s convergence of the steepest descent
method for approximating saddle points of convex-concave functions. Soviet
Math. Doklady, 19(2), 1978.

A. S. Nemirovsky and D. B. Yudin. Problem Complexity and Method Efficiency in
Optimization. Wiley Interseciences, 1983.

Y. Nesterov. A method for solving a convex programming problem with rate of
convergence o(1/k2). Soviet Math. Doklady, 27(2):372–376, 1983.

Y. Nesterov. Smooth minimization of non-smooth functions. Mathematical Pro-
gramming, Series A, 103(1):127–152, 2005.

Y. Nesterov. Primal-dual subgradient methods for convex problems. Mathematical
Programming, Series A, 120(1):221–259, 2009.

M. B. Nevelson and R. Z. Hasminskii. Stochastic Approximation and Recursive
Estimation. Translations of Mathematical Monographs. American Mathematical

148 First-Order Methods for Nonsmooth Convex Large-Scale Optimization, I

Society, 1976.

B. T. Polyak. A general method for solving extremal problems. Soviet Math.
Doklady, 174:33–36, 1967.

B. T. Polyak. New stochastic approximation type procedures. Automation and
Remote Control, 51:937–946, 1991.

B. T. Polyak and A. B. Juditsky. Acceleration of stochastic approximation by
averaging. SIAM Journal on Control and Optimization, 30(4):838–855, 1992.

H. Robbins and S. Monro. A stochastic approximation method. Annals of
Mathematical Statistics, 22(3):400–407, 1951.

H. Schramm and J. Zowe. A version of the bundle idea for minimizing a nonsmooth
function: Conceptual idea, convergence analysis, numerical results. SIAM Journal
on Optimization, 2(1):121–152, 1992.

N. Z. Shor. Generalized gradient descent with application to block programming.
Kibernetika, 3(3):53–55, 1967. (In Russian).

6 First-Order Methods for Nonsmooth

Convex Large-Scale Optimization, II:

Utilizing Problem’s Structure

Anatoli Juditsky Anatoli.Juditsky@imag.fr

Laboratoire Jean Kuntzmann , Université J. Fourier

B. P. 53 38041 Grenoble Cedex, France

Arkadi Nemirovski nemirovs@isye.gatech.edu

School of Industrial and Systems Engineering, Georgia Institute of Technology

765 Ferst Drive NW, Atlanta Georgia 30332, USA

We present several state-of-the-art first-order methods for well-structured

large-scale nonsmooth convex programs. In contrast to their black-box-

oriented prototypes considered in Chapter 5, the methods in question utilize

the problem structure in order to convert the original nonsmooth minimiza-

tion problem into a saddle-point problem with a smooth convex-concave cost

function. This reformulation allows us to accelerate the solution process

significantly. As in Chapter 5, our emphasis is on methods which, under

favorable circumstances, exhibit a (nearly) dimension-independent conver-

gence rate. Along with investigating the general well-structured situation, we

outline possibilities to further accelerate first-order methods by randomiza-

tion.

6.1 Introduction

The major drawback of the first-order methods (FOMs) considered in Chap-

ter 5 is their slow convergence: as the number of steps t grows, the inaccuracy

decreases as slowly as O(1/
√
t). As explained in Chapter 5, Section 5.1, this

rate of convergence is unimprovable in the unstructured large-scale case;

150 First Order Methods for Nonsmooth Convex Large-Scale Optimization, II

however, convex problems usually have a lot of structure (otherwise, how

could we know that the problem is convex?), and “good” algorithms should

utilize this structure rather than be completely black-box-oriented. For ex-

ample, by utilizing a problem’s structure, we usually can represent it as

a linear/conic quadratic/semidefinite program (which usually is easy), and

thus make the problem amenable to polynomial time interior-point meth-

ods for LP/CQP/SDP. Unfortunately, these algorithms, aimed at generat-

ing high accuracy solutions, can become prohibitively time-consuming in the

large-scale case. A much cheaper way to exploit a problem’s structure when

looking for medium-accuracy solutions was proposed by Nesterov (2005a);

his main observation (although simple in the hindsight, it led to a real break-

through) is that typical problems of nonsmooth convex minimization can be

reformulated (and this is where a problem’s structure is used!) as smooth

(often just bilinear) convex-concave saddle-point problems, and the latter

can be solved by appropriate black-box-oriented FOMs with O(1/t) rate of

convergence. More often than not, this simple observation allows for dra-

matic acceleration of the solution process, compared to the case where a

problem’s structure is ignored while constantly staying within the scope of

computationally cheap FOMs.

In Nesterov’s seminal paper (Nesterov, 2005a) the saddle-point reformula-

tion of the (convex) problem of interest, minx∈X f(x), is used to construct a

computationally cheap smooth convex approximation f̃ of f , which further

is minimized, at the rate O(1/t2), by Nesterov’s method for smooth convex

minimization (Nesterov, 1983, 2005a). Since the smoothness parameters of

f̃ deteriorate as f̃ approaches f , the accuracy to which the problem of in-

terest can be solved in t iterations turns out to be O(1/t); from discussion

in Section 5.1 (see item (c)), this is the best we can get in the large-scale

case when solving a simple-looking problem such as min‖x‖2≤R ‖Ax−b‖2. In
what follows, we use as a “workhorse” the mirror prox (MP) saddle-point

algorithm of Nemirovski (2004), which converges at the same rate O(1/t) as

Nesterov’s smoothing, but is different from the latter algorithm. One of the

reasons motivating this choice is a transparent structure of the MP algorithm

(in this respect, it is just a simple-looking modification of the saddle-point

mirror descent algorithm from Chapter 5, Section 5.6). Another reason is

that, compared to smoothing, MP is better suited for accelerating by ran-

domization (to be considered in Section 6.5).

The main body of this chapter is organized as follows. In Section 6.2,

we present instructive examples of saddle-point reformulations of well-

structured nonsmooth convex minimization problems, along with a kind

of simple algorithmic calculus of convex functions admitting bilinear saddle-

point representation. Our major workhorse — the mirror prox algorithm

6.2 Saddle-Point Reformulations of Convex Minimization Problems 151

with the rate of convergence O(1/t) for solving smooth convex-concave

saddle-point problems — is presented in Section 6.3. In Section 6.4 we con-

sider two special cases where the MP algorithm can be further accelerated.

Another acceleration option is considered in Section 6.5, where we focus on

bilinear saddle-point problems. We show that in this case, the MP algorithm,

under favorable circumstances (e.g., when applied to saddle-point reformu-

lations of �1 minimization problems min
‖x‖1≤R

‖Ax − b‖p, p ∈ {2,∞}), can

be accelerated by randomization — by passing from the precise first-order

saddle-point oracle, which can be too time-consuming in the large-scale case,

to a computationally much cheaper stochastic counterpart of this oracle.

The terminology and notation we use in this chapter follow those intro-

duced in Sections 5.2.2, 5.6.1, and 5.7 of Chapter 5.

6.2 Saddle-Point Reformulations of Convex Minimization Problems

6.2.1 Saddle-Point Representations of Convex Functions

Let X ⊂ E be a nonempty closed convex set in Euclidean space Ex, let

f(x) : X→ R be a convex function, and let φ(x, y) be a continuous convex-

concave function on Z = X × Y, where Y ⊂ Ey is a closed convex set, such

that

∀x ∈ X : f(x) = φ(x) := sup
y∈Y

φ(x, y). (6.1)

In this chapter, we refer to such a pair φ,Y as a saddle-point representation

of f . Given such a representation, we can reduce the problem

min
x∈X

f(x) (6.2)

of minimizing f over X (cf. (5.2)) to the convex-concave saddle-point (c.-

c.s.p.) problem

SadVal = inf
x∈X

sup
y∈Y

φ(x, y), (6.3)

(cf. (5.31)). Namely, assuming that φ has a saddle-point on X × Y, (6.2) is

solvable and, invoking (5.32), we get, for all (x, y) ∈ X× Y:

f(x)−minXf = φ(x)−Opt(P) = φ(x)− SadVal

≤ φ(x)− φ(y) = εsad(x, y).
(6.4)

152 First Order Methods for Nonsmooth Convex Large-Scale Optimization, II

That is, the x-component of an ε-solution to (6.3) (i.e., a point (x, y) ∈ X×Y

with εsad(x, y) ≤ ε) is an ε-solution to (6.2): f(x)−minX f ≤ ε.

The potential benefits of saddle-point representations stem from the fact

that in many important cases a nonsmooth, but well-structured, convex

function f admits an explicit saddle-point representation involving smooth

function φ and simple Y; as a result, the saddle-point reformulation (6.3)

of the problem (6.2) associated with f can be much better suited for

processing by FOMs than problem (6.2) as it is. Let us consider some

examples (where Sn, S
+
n , Σν , Σ

+
ν are the standard flat and full-dimensional

simplexes/spectahedrons, see Chapter 5, Section 5.7.1):

1. f(x) := max1≤�≤L f�(x) = maxy∈SL

[
φ(x, y) :=

∑L
�=1 y�f�(x)

]
; when all

f� are smooth, so is φ.

2. f(x) := ‖Ax − b‖p = max‖y‖q≤1

[
φ(x, y) := yT (Ax− b)

]
, q = p

p−1 . With

the same φ(x, y) = yT (Ax − b), and with the coordinate wise inter-

pretation of [u]+ = max[u, 0] for vectors u, we have f(x) := ‖[Ax −
b]+‖p = max‖y‖q≤1,y≥0 φ(x, y) and f(x) := mins‖[Ax − b − sc]+‖p =

max‖y‖q≤1,y≥0,cT y=0 φ(x, y). In particular,

(a) Let A(·) be an affine mapping. The problem

Opt = minξ∈Ξ [f(ξ) := ‖A(ξ)‖p] (6.5)

with Ξ = {ξ ∈ R
n : ‖ξ‖1 ≤ 1} (cf. Lasso and Dantzig selector) reduces

to the bilinear saddle-point problem

minx∈S+
2n
max‖y‖q≤1y

TA(Jx) [J = [I,−I], q =
p

p− 1
] (6.6)

on the product of the standard simplex and the unit ‖·‖q-ball. When Ξ =

{ξ ∈ R
m×n : ‖ξ‖n ≤ 1}, with ‖ · ‖n being the nuclear norm (cf. nuclear

norm minimization) representing Ξ as the image of the spectahedron

Σ+
m+n under the linear mapping x =

[
u v

vT w

]
�→ Jx := 2v, (6.5)

reduces to the bilinear saddle-point problem

minx∈Σ+
m+n

max‖y‖q≤1y
TA(Jx); (6.7)

(b) the SVM-type problem

min
w∈Rn,‖w‖≤R,

s∈R

∥∥∥[1−Diag{η}(MTw + s1)
]
+

∥∥∥
p
, 1 = [1; ...; 1]

6.2 Saddle-Point Reformulations of Convex Minimization Problems 153

reduces to the bilinear saddle-point problem

min
‖x‖≤1

max
‖y‖q≤1,

y≥0, ηT y=0

⎡⎣φ(x, y) :=∑
j

yj − yT Diag{η}RMTx

⎤⎦ , (6.8)

where x = w/R.

3. Let A(x) = A0 +
∑n

i=1 xiAi with A0, ..., An ∈ Sν , and let Sk(A) be the

sum of the k largest eigenvalues of a symmetric matrix A. Then f(x) :=

Sk(A(x)) = max
y∈Σν ,y�k−1I

[φ(x, y) := k〈y,A(x)〉].

In the above examples, except for the first one, φ is as simple as it could

be — it is just bilinear. The number of examples of this type can easily

be increased due to the observation that the family of convex functions f

admitting explicit bilinear saddle-point representations (b.s.p.r.’s),

f(x) = max
y∈Y

[〈y,Ax+ a〉+ 〈b, x〉+ c] (6.9)

with nonempty compact convex sets Y (with unbounded Y, f typically would

be poorly defined) admits a simple calculus. Namely, it is closed w.r.t.

taking the basic convexity-preserving operations: (a) affine substitution of

the argument x ← Pξ + p, (b) multiplication by nonnegative reals, (c)

summation, (d) direct summation {fi(xi)}ki=1 �→ f(x1, ..., xk) =
∑k

i=1 fi(x
i),

and (e) taking the maximum. Here (a) and (b) are evident, and (c) is nearly

so: if

fi(x) = max
yi∈Yi

[〈yi,Aix+ ai〉+ 〈bi, x〉+ ci
]
, i = 1, ..., k, (6.10)

with nonempty convex compact Yi, then

∑k

i=1
fi(x) = maxy=(y1,...,yk)∈Y1×...×Yk

[〈y,Ax+a〉+〈b,x〉+c︷ ︸︸ ︷∑k

i=1
[〈yi,Aix+ ai〉+ 〈bi, x〉+ ci]

]
.

(d) is an immediate consequence of (a) and (c). To verify (e), let fi be given

by (6.10), let Ei be the embedding space of Yi, and let Ui = {(ui, λi) =

(λiy
i, λi) : yi ∈ Yi, λi ≥ 0} ⊂ E+

i = Ei × R. Since Yi are convex and

compact, the sets Ui are closed convex cones. Now let

U = {y = ((u1, λ1), ..., (u
k, λk)) ∈ U1 × ...× Uk :

∑
i
λi = 1}.

This set clearly is nonempty, convex, and closed; it is immediately seen that

154 First Order Methods for Nonsmooth Convex Large-Scale Optimization, II

it is bounded as well. We have

max
1≤i≤k

fi(x) = max
λ≥0:

∑
i λi=1

k∑
i=1

λifi(x) = max
λ,y1,...,yk

{∑k
i=1

[〈 ui︷︸︸︷
λiy

i ,Aix+ ai〉

+〈λib
i, x〉+ λici

]
: λ ≥ 0,

∑
i λi = 1, yi ∈ Yi, 1 ≤ i ≤ k

}
= max

u={(ui,λi):1≤i≤k}∈U
[∑k

i=1[〈ui,Aix+ ai〉+ 〈λib
i, x〉+ λici]

]
,

and we end up with a b.s.p.r. of maxi fi.

6.3 Mirror-Prox Algorithm

We are about to present the basic MP algorithm for the problem (6.3).

6.3.1 Assumptions and Setup

Here we assume that

A. The closed and convex sets X, Y are bounded.

B. The convex-concave function φ(x, y) : Z = X × Y → R possesses a

Lipschitz continuous gradient ∇φ(x, y) = (∇xφ(x, y),∇yφ(x, y)).

We set F (x, y) = (Fx(x, y) := ∇xφ(x, y), Fy(x, y) := −∇yφ(x, y)), thus get-

ting a Lipschitz continuous selection for the monotone operator associated

with (6.3) (see Section 5.6.1).

The setup for the MP algorithm is given by a norm ‖ ·‖ on the embedding

space E = Ex × Ey of Z and by a d.-g.f. ω(·) for Z compatible with this

norm (cf. Section 5.2.2). For z ∈ Zo and w ∈ Z, let

Vz(w) = ω(w)− ω(z)− 〈ω′(z), w − z〉, (6.11)

(cf. the definition (5.4)) and let zc = argminw∈Zω(w). Further, we assume

that given z ∈ Zo and ξ ∈ E, it is easy to compute the prox-mapping

Proxz(ξ) = argmin
w∈Z

[〈ξ, w〉+ Vz(w)]

(
= argmin

w∈Z

[〈ξ − ω′(z), w〉+ ω(w)
])

,

and set

Ω = maxw∈ZVzc(w) ≤ maxZω(·)−minZω(·) (6.12)

(cf. Chapter 5, Section 5.2.2). We also assume that we have at our disposal

an upper bound L on the Lipschitz constant of F from the norm ‖ · ‖ to the

6.3 Mirror-Prox Algorithm 155

conjugate norm ‖ · ‖∗:
∀(z, z′ ∈ Z) : ‖F (z)− F (z′)‖∗ ≤ L‖z − z′‖. (6.13)

6.3.2 The Algorithm

The MP algorithm is given by the recurrence

(a) : z1 = zc,

(b) : wτ = Proxzτ (γτF (zτ)), zτ+1 = Proxzτ (γτF (wτ)),

(c) : zτ = [
∑τ

s=1 γs]
−1∑τ

s=1 γsws,

(6.14)

where γτ > 0 are the stepsizes. Note that zτ , ωτ ∈ Zo, whence zτ ∈ Z. Let

δτ = γτ 〈F (wτ), wτ − zτ+1〉 − Vzτ (zτ+1) (6.15)

(cf. (5.4)). The convergence properties of the algorithm are given by the

following

Proposition 6.1. Under assumptions A and B:

(i) For every t ≥ 1 it holds (for notation, see (6.12) and (6.15)) that

εsad(z
t) ≤

[∑t

τ=1
γτ

]−1 [
Ω+

∑t

τ=1
δτ

]
. (6.16)

(ii) If the stepsizes satisfy the conditions γτ ≥ L−1 and δτ ≤ 0 for all τ

(which certainly is so when γτ ≡ L−1), we have

∀t ≥ 1 : εsad(z
t) ≤ Ω

[∑t

τ=1
γτ

]−1

≤ ΩL/t. (6.17)

Proof. 10. We start with the following basic observation:

Lemma 6.2. Given z ∈ Zo, ξ, η ∈ E, let w = Proxz(ξ) and z+ = Proxz(η).

Then for all u ∈ Z it holds that

〈η, w − u〉 ≤ Vz(u)− Vz+(u) + 〈η, w − z+〉 − Vz(z+) (a)

≤ Vz(u)− Vz+(u) + 〈η − ξ, w − z+〉 − Vz(w)− Vw(z+) (b)

≤ Vz(u)− Vz+(u) +
[
1
2‖η − ξ‖∗‖w − z+‖ − 1

2‖z − w‖2 − 1
2‖z+ − w‖2] (c)

≤ Vz(u)− Vz+(u) +
1
2 [‖η − ξ‖2∗ − ‖w − z‖2] (d)

(6.18)

Proof. By the definition of z+ = Proxz(η) we have 〈η − ω′(z) + ω′(z+), u −
z+〉 ≥ 0; we obtain (6.18.a) by rearranging terms and taking into account

the definition of Vv(u), (cf. the derivation of (5.12)). By the definition of

w = Proxz(ξ) we have 〈ξ−ω′(z)+ω′(w), z+−w〉 ≥ 0, whence 〈η, w− z+〉 ≤

156 First Order Methods for Nonsmooth Convex Large-Scale Optimization, II

〈η − ξ, w − z+〉 + 〈ω′(w) − ω′(z), z+ − w〉; replacing the third term in the

right-hand side of (a) with this upper bound and rearranging terms, we get

(b). (c) follows from (b) due to the strong convexity of ω, implying that

Vv(u) ≥ 1
2‖u− v‖2, and (d) is an immediate consequence of (c).

20. Applying Lemma 6.2 to z = zτ , ξ = γτF (zτ) (which results in w = wτ)

and to η = γτF (wτ) (which results in z+ = zτ+1), we obtain, due to (6.18.d):

(a) γτ 〈F (wτ), wτ − u〉 ≤ Vzτ (u)− Vzτ+1
(u) + δτ ∀u ∈ Z,

(b) δτ ≤ 1
2

[
γ2τ‖F (wτ)− F (zτ)‖2∗ − ‖wτ − zτ‖2

] (6.19)

Summing (6.19.a) over τ = 1, ..., t, taking into account that Vz1(u) =

Vzc(u) ≤ Ω by (6.12) and setting, for a given t, λτ = γτ/
∑t

τ=1 γτ , we

get λτ ≥ 0,
∑t

τ=1 λτ = 1, and

∀u ∈ Z :
t∑

τ=1

λτ 〈F (wτ), wτ − u〉 ≤ A :=
Ω +

∑t
τ=1δτ∑t

τ=1γτ
. (6.20)

On the other hand, setting wτ = (xτ , yτ), z
t = (xt, yt), u = (x, y), and using

(5.37), we have

t∑
τ=1

λτ 〈F (wτ), wτ − u〉 ≥ φ(xt, y)− φ(x, yt),

so that (6.20) results in φ(xt, y)−φ(x, yt) ≤ A for all (x, y) ∈ Z. Taking the

supremum in (x, y) ∈ Z, we arrive at (6.16); (i) is proved. To prove (ii), note

that with γt ≤ L−1, (6.19.b) implies that δτ ≤ 0, see (6.13).

6.3.3 Setting up the MP Algorithm

Let us restrict ourselves to the favorable geometry case defined completely

similarly to Chapter 5, Section 5.7.2, but with Z in the role of X. Specifically,

we assume that Z = X×Y is a subset of the direct product Z+ of K standard

blocks Z� (Kb ball blocks and Ks = K −Kb spectahedron blocks) and that

Z intersects rint Z+. We assume that the representation Z+ = Z1× ...×ZK

is coherent with the representation Z = X×Y, meaning that X is a subset of

the direct product of some of the blocks Z�, while Y is a subset of the

direct product of the remaining blocks. We equip the embedding space

E = E1 × ... × EK of Z ⊂ Z+ with the norm ‖ · ‖ and a d.-g.f. ω(·)
according to (5.42) and (5.43) (where, for notational consistency, we should

replace x� with z� and X� with Z�). Our current goal is to optimize the

efficiency estimate of the associated MP algorithm over the coefficients α� in

(5.42), (5.43). To this end assume that we have at our disposal upper bounds

6.3 Mirror-Prox Algorithm 157

Lμν = Lνμ on the partial Lipschitz constants of the (Lipschitz continuous

by assumption B) vector field F (z = (x, y)) = (∇xφ(x, y),−∇yφ(x, y)), so

that for 1 ≤ μ ≤ K and all u, v ∈ Z, we have

‖Fμ(u)− Fμ(v)‖(μ),∗ ≤
K∑
ν=1

Lμν‖uν − vν‖(ν),

where the decomposition F (z = (z1, ..., zK)) = (F1(z), ..., FK(z)) is induced

by the representation E = E1 × ...× EK .

Let Ω� be defined by (5.46) with Z� in the role of X�. The choice

α� =

∑K
ν=1 L�ν

√
Ων√

Ω�

∑
μ,νLμν

√
ΩμΩν

(cf. Nemirovski, 2004) results in

Ω ≤ 1 and L ≤ L :=
∑

μ,ν
Lμν

√
ΩμΩν ,

so that the bound (6.17) is

εsad(z
t) ≤ L/t, L =

∑
μ,ν

Lμν

√
ΩμΩν . (6.21)

As far as complexity of a step and dependence of the efficiency estimate

on a problem’s dimension are concerned, the present situation is identical

to that of MD (studied in Chapter 5, Section 5.7). In particular, all our

considerations in the discussion at the end of Section 5.7.2 remain valid

here.

6.3.3.1 Illustration I

As simple and instructive illustrations, consider problems (6.8) and (6.5).

1. Consider problem (6.8), and assume, in full accordance with the SVM

origin of the problem, that ‖w‖ = ‖w‖r with r ∈ {1, 2}, p ∈ {2,∞}, and
that η is a ±1 vector which has both positive and negative entries. When

p = 2, (6.8) is a bilinear saddle-point problem on the product of the unit

‖ · ‖r-ball and a simple part of ‖ · ‖2-ball. Combining (6.21) with what was

said in Section 5.7.2, we arrive at the efficiency estimate

εsad(x
t, yt) ≤ O(1)(ln(dimw))1−r/2R‖M‖2,r∗t−1, r∗ = r/(r − 1),

where ‖M‖2,2 is the spectral norm of M , and ‖M‖2,∞ is the maximum of

the Euclidean norms of the rows in M . When p = 1, the situation becomes

worse: (6.8) is now a bilinear saddle-point problem on the product of the unit

‖·‖r-ball and a simple subset of the unit box {y : ‖y‖∞ ≤ 1}, or, which is the

158 First Order Methods for Nonsmooth Convex Large-Scale Optimization, II

same, a simple subset of the Euclidean ball of the radius ρ =
√
dim η centered

at the origin. Substituting y = ρu, we end up with a bilinear saddle-point

problem on the direct product of the unit ‖ · ‖r ball and a simple subset of

the unit Euclidean ball, the matrix of the bilinear part of the cost function

being ρRDiag{η}MT . As a result, we arrive at the dimension-dependent

efficiency estimate

εsad(x
t, yt) ≤ O(1)(ln(dimw))1−r/2

√
dim ηR‖M‖2,r∗t−1, r∗ = r/(r − 1).

Note that in all cases the computational effort at a step of the MP is dom-

inated by the necessity to compute O(1) matrix-vector products involving

matrices M and MT .

2. Now consider problem (6.5), and let p ∈ {2,∞}.
2.1. Let us start with the case of Ξ = {ξ ∈ R

n : ‖ξ‖1 ≤ 1}, so that

A(Jx) = A0 + Ax, where A is an m × 2n matrix. Here (6.6) is a bilinear

saddle-point problem on the direct product of the standard simplex S+2n in

R
2n and the unit ‖ · ‖q-ball in R

m. Combining (6.21) with derivations in

Section 5.7.2, the efficiency estimate of MP is

εsad(x
t, yt) ≤ O(1)

√
ln(n)(ln(m))

1

2
− 1

p [max1≤j≤dimx‖Aj‖p] t−1, (6.22)

where Aj are columns of A. The complexity of a step is dominated by the

necessity to compute O(1) matrix-vector products involving A and AT .

2.2. The next case, inspired by K. Scheinberg, is the one where Ξ =

{(ξ1, ..., ξk) ∈ R
d1 × ... × R

dk :
∑

j ‖ξj‖2 ≤ 1}, so that problem (6.5)

is of the form arising in block Lasso (p = 2) or block Dantzig selec-

tor (p = ∞). Given di = dim ξi, consider the block-diagonal structure

ν = (d1 + 1, ..., dk + 1), and let X be the part of the corresponding spec-

tahedron Σ+
ν comprised of matrices from this set which have “arrow” di-

agonal blocks Arrow(τi, ξ
i) :=

[
τi [ξi]T

ξi τiIdi

]
. Note that Ξ is nothing but

the image of X under the linear mapping x �→ Jx which maps a matrix

x = Diag

{[
τi [ξi]T

ξi Ti

]
, 1 ≤ i ≤ k

}
∈ Sν (τi ∈ R) into the collection

(ξ1, ..., ξk). Thus, denoting the matrix of the homogeneous part of the affine

mapping A(·) by A, problem (6.5) is equivalent to Opt = minX ‖AJx− b‖p,
and thus is equivalent to the bilinear saddle-point problem

Opt = min
x∈X

max
‖y‖q≤1

yT [Bx− b], B = AJ.

Equipping the embedding space Ex = Sν of X with the trace-norm | · |1,
and X with the d.-g.f. ωx(x) = 2Ent(λ(x)) inherited from Σ+

ν (see item 3c

in Chapter 5, Section 5.7.1) and applying the results of Section 6.3.3, the

6.3 Mirror-Prox Algorithm 159

efficiency estimate of MP is

εsad(z
t) ≤ O(1)

(
ln

(∑k

i=1
(di + 1)

)) 1

2

(ln(m))
1

2
− 1

pπ(B)t−1, (6.23)

where π(B) is the norm of the linear mapping x �→ Bx induced by the trace

norm in the argument space and by the norm ‖ · ‖p in the image space.1

The best part of the story is that the prox-mapping is easy to compute in

this setup. The only nonevident part of this claim is that it is easy to min-

imize over X a function of the form ωx(x) + 〈a, x〉 or, which is the same, a

function of the form g(x) = 1
2ωx(x)+〈b, x〉. Here is the verification: the eigen-

values of the matrix Arrow(τ, ξ), dim ξ = d, are τ+‖ξ‖2, τ−‖ξ‖2, and τ with

multiplicity d− 1. Thus, for x = Diag{Arrow(τ1, ξ1), ...,Arrow(τk, ξ
k)} ∈ X,

we have

g(x) =
k∑

i=1

[
(τi + ‖ξi‖2) ln(τi + ‖ξi‖2) + (τi − ‖ξi‖2) ln(τi − ‖ξi‖2)

+(di − 1)τi ln(τi) + αiτi − βT
i ξ

i
]
.

Note that at the minimizer of this function over X, the vectors ξi are

nonnegative multiples of βi, and finding the minimizer reduces to specifying

τi and σi = ‖ξi‖2. The latter quantities form the optimal solution to the

simple “nearly separable” convex program

minτi,σi

∑k
i=1

[
(τi + σi) ln(τi + σi) + (τi − σi) ln(τi − σi) + (di − 1)τi ln τi

+αiτi − ‖βi‖2σi : 0 ≤ σi ≤ τi,
∑

i τi ≤ 1
]
.

This problem clearly can be solved within machine accuracy in O(
∑

i di)

a.o. As a result, the arithmetic cost of a step of MP in our situation is, for

all practical purposes, dominated by O(1) computations of matrix-vector

products involving A and AT .

2.3. Finally, consider the case when Ξ is the unit nuclear-norm ball, so that

A(Jx) = a0 + [Tr(A1x); ...; Tr(Akx)] with Ai ∈ Sm+n, and (6.7) is a bilinear

saddle-point problem on the direct product of the spectahedron Σ+
m+n and

the unit ‖ · ‖q-ball in R
k. Applying the results of Section 6.3.3, the efficiency

estimate of MP is

εsad(x
t, yt) ≤ O(1)

√
ln(m+ n)(ln(k))

1

2
− 1

p

[
max
‖ζ‖2≤1

‖[ζTA1ζ; ...; ζ
TAkζ]‖p

]
t−1.

1. It can immediately be seen that the norm of the mapping x �→ Jx induced by the
trace-norm in the argument space and the norm

∑
i ‖ξi‖2 in the image space is equal to 1,

so that π(B) is at most the norm of the mapping ξ �→ Aξ induced by the norm
∑

i ‖ξi‖2
in the argument space and the norm ‖ · ‖p in the image space.

160 First Order Methods for Nonsmooth Convex Large-Scale Optimization, II

The complexity of a step is dominated by O(1) computations of the values of

A and of matrices of the form
∑k

i=1 yiAi, plus computing a single eigenvalue

decomposition of a matrix from Sm+n.

In all cases, the approximate solution (xt, yt) to the saddle-point reformu-

lation of (6.5) straightforwardly induces a feasible solution ξt to the problem

of interest (6.5) such that f(ξt)−Opt ≤ εsad(x
t, yt).

6.4 Accelerating the Mirror-Prox Algorithm

In what follows, we present two modifications of the MP algorithm.

6.4.1 Splitting

6.4.1.1 Situation and Assumptions

Consider the c.-c.s.p. problem (6.3) and assume that both X and Y are

bounded. Assume also that we are given norms ‖ · ‖x, ‖ · ‖y on the corre-

sponding embedding spaces Ex, Ey, along with d.-g.f.’s ωx(·) for X and ωy(·)
for Y which are compatible with the respective norms.

We already know that if the convex-concave cost function φ is smooth

(i.e., possesses a Lipschitz continuous gradient), the problem can be solved

at the rate O(1/t). We are about to demonstrate that the same holds true

when, roughly speaking, φ can be represented as a sum of a “simple” part

and a smooth parts. Specifically, let us assume the following:

C.1. The monotone operator Φ associated with (6.3) (see Section 5.6.1)

admits splitting: we can point out a Lipschitz continuous on Z vector

field G(z) = (Gx(z), Gy(z)) : Z → E = Ex × Ey, and a point-to-set

monotone operator H with the same domain as Φ such that the sets

H(z), z ∈ Dom H, are convex and nonempty, the graph of H (the set

{(z, h) : z ∈ Dom H, h ∈ H(z)}) is closed, and
∀z ∈ Dom H : H(z) +G(z) ⊂ Φ(z). (6.24)

C.2. H is simple, specifically, it is easy to find a weak solution to the

variational inequality associated with Z and a monotone operator of the

form Ψ(x, y) = αH(x, y) + [αxω
′
x(x) + e;αyω

′
y(y) + f] (where α, αx, αy are

positive), that is, it is easy to find a point ẑ ∈ Z satisfying

∀(z ∈ rint Z, F ∈ Ψ(z)) : 〈F, z − ẑ〉 ≥ 0. (6.25)

It is easily seen that in the case ofC.1, (6.25) has a unique solution ẑ = (x̂, ŷ)

6.4 Accelerating the Mirror-Prox Algorithm 161

which belongs to Dom Φ ∩ Zo and in fact is a strong solution: there exists

ζ ∈ H(ẑ) such that

∀z ∈ Z : 〈αζ + [αzω
′
x(x̂) + e;αyω

′
y(ŷ) + f], z − ẑ〉 ≥ 0. (6.26)

We assume that when solving (6.25), we get both ẑ and ζ.

We intend to demonstrate that under assumptions C.1 and C.2 we can

solve (6.3) as if there were no H-component at all.

6.4.2 Algorithm MPa

6.4.2.1 Preliminaries

Recall that the mapping G(x, y) = (Gx(x, y), Gy(x, y)) : Z → E defined

in C.1 is Lipschitz continuous. We assume that we have at our disposal

nonnegative constants Lxx, Lyy, Lxy such that

∀(z = (x, y) ∈ Z, z′ = (x′, y′) ∈ Z) :⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
‖Gx(x

′, y)−Gx(x, y)‖x,∗ ≤ Lxx‖x′ − x‖x,
‖Gy(x, y

′)−Gy(x, y)‖y,∗ ≤ Lyy‖y′ − y‖y
‖Gx(x, y

′)−Gx(x, y)‖x,∗ ≤ Lxy‖y′ − y‖y,
‖Gy(x

′, y)−Gy(x, y)‖y,∗ ≤ Lxy‖x′ − x‖x

(6.27)

where ‖·‖x,∗ and ‖·‖y,∗ are the norms conjugate to ‖·‖x and ‖·‖y, respectively.
We set

Ωx = maxXωx(·)−minXωx(·), Ωy = maxYωy(·)−minYωy(·),
L = LxxΩx + LxyΩy + 2Lxy

√
ΩxΩy,

α = [LxxΩx + Lxy

√
ΩxΩy]/L, β = [LyyΩy + Lxy

√
ΩxΩy]/L,

ω(x, y) = α
Ωx

ωx(x) +
β
Ωy

ωy(y) : Z→ R,

‖(x, y)‖ =
√

α
Ωx
‖x‖2x + β

Ωy
‖y‖2y

(6.28)

so that the conjugate norm is ‖(x, y)‖∗ =
√

Ωx

α ‖x‖2x,∗ + Ωy

β ‖y‖2y,∗ (cf. Section
6.3.3). Observe that ω(·) is a d.-g.f. on Z compatible with the norm ‖ · ‖. It
is easily seen that Ω := 1 ≥ maxz∈Z ω(z)−minz∈Z ω(z) and

∀(z, z′ ∈ Z) : ‖G(z)−G(z′)‖∗ ≤ L‖z − z′‖. (6.29)

6.4.2.2 Algorithm MPa

Our new version, MPa, of the MP algorithm is as follows:

162 First Order Methods for Nonsmooth Convex Large-Scale Optimization, II

1. Initialization: Set z1 = argminZ ω(·).
2. Step τ = 1, 2, ...: Given zτ ∈ Zo and a stepsize γτ > 0, we find wτ that

satisfies

(∀u ∈ rint Z, F ∈ H(u)) : 〈γτ (F +G(zτ)) +ω′(u)−ω′(zτ), u−wτ 〉 ≥ 0

and find ζτ ∈ H(wτ) such that

∀(u ∈ Z) : 〈γτ (ζτ +G(zτ)) + ω′(wτ)− ω′(zτ), u− wτ 〉 ≥ 0; (6.30)

by assumption C.2, computation of ωτ and ζτ is easy. Next, we compute

zτ+1 = Proxzτ (γτ (ζτ +G(wτ)))

:= argminz∈Z [〈γτ (ζτ +G(wτ)), z〉+ Vzτ (z)] ,
(6.31)

where V·(·) is defined in (6.11). We set

zτ =
[∑τ

s=1
γs

]−1∑τ

s=1
γsws

and loop to step τ + 1.

Let

δτ = 〈γτ (ζτ +G(wτ)), wτ − zτ+1〉 − Vzτ (zτ+1)

(cf. (6.27)). The convergence properties of the algorithm are given by

Proposition 6.3. Under assumptions C.1 and C.2, algorithm MPa ensures

that

(i) For every t ≥ 1 it holds that

εsad(z
t) ≤

[∑t

τ=1
γτ

]−1 [
1 +
∑t

τ=1
δτ

]
. (6.32)

(ii) If the stepsizes satisfy the condition γτ ≥ L−1, δτ ≤ 0 for all τ (which

certainly is so when γτ ≡ L−1), we have

∀t ≥ 1 : εsad(z
t) ≤

[∑t

τ=1
γτ

]−1

≤ L/t. (6.33)

Proof. Relation (6.30) exactly expresses the fact that wτ = Proxzτ (γτ (ζτ +

G(zτ))). With this in mind, Lemma 6.2 implies that

(a) γτ 〈ζτ +G(wτ), wτ − u〉 ≤ Vzτ (u)− Vzτ+1
(u) + δτ ∀u ∈ Z,

(b) δτ ≤ 1
2

[
γ2τ‖G(wτ)−G(zτ)‖2∗ − ‖wτ − zτ‖2

] (6.34)

(cf. (6.19)). It remains to repeat word by word the reasoning in items 20–30

of the proof of Proposition 6.1, keeping in mind (6.29) and the fact that, by

6.4 Accelerating the Mirror-Prox Algorithm 163

the origin of ζτ and in view of (6.24), we have ζτ +G(wτ) ∈ Φ(wτ).

6.4.2.3 Illustration II

Consider a problem of the Dantzig selector type

Opt = min‖x‖1≤1‖AT (Ax− b)‖∞ [A : m× n,m ≤ n] (6.35)

(cf. (6.5)) along with its saddle-point reformulation:

Opt = min‖x‖1≤1max‖y‖1≤1y
T [Bx− c], B = ATA, c = AT b. (6.36)

As already mentioned, the efficiency estimate for the basic MP as applied to

this problem is εsad(z
t) ≤ O(1)

√
ln(n)‖B‖1,∞t−1, where ‖B‖1,∞ is the max-

imum of magnitudes of entries in B. Now, in typical large-scale compressed

sensing applications, columns Ai of A are of nearly unit ‖ · ‖2-norm and are

nearly orthogonal: the mutual incoherence μ(A) = maxi �=j |AT
i Aj |/AT

i Ai is

 1. In other words, the diagonal entries in B are of order 1, and the

magnitudes of off-diagonal entries do not exceed μ
 1. For example,

for a typical randomly selected A, μ is as small as O(
√

ln(n)/m). Now,

the monotone operator associated with (6.36) admits an affine selection

F (x, y) = (BT y, c−Bx) and can be split as

F (x, y) =

H(x,y)︷ ︸︸ ︷
(Dy,−Dx)+

G(x,y)︷ ︸︸ ︷
(B̂T y, c− B̂x),

where D is the diagonal matrix with the same diagonal as in B, and

B̂ = B−D. Now, the domains X = Y associated with (6.36) are unit �1-balls

in the respective embedding spaces Ex = Ey = R
n. Equipping Ex = Ey with

the norm ‖·‖1, and the unit ‖·‖1 ball X = Y in R
n with the d.-g.f. presented

in item 2b of Chapter 5, Section 5.7.1, we clearly satisfyC.1 and, on a closest

inspection, satisfyC.2 as well. As a result, we can solve the problem by MPa,

the efficiency estimate being εsad(z
t) ≤ O(1) ln(n)‖B̂‖1,∞t−1, which is much

better than the estimate εsad(z
t) ≤ O(1) ln(n)‖B‖1,∞t−1 for the plain MP

(recall that we are dealing with the case of μ := ‖B̂‖1,∞
 ‖B‖1,∞ = O(1)).

To see that C.2 indeed takes place, note that in our situation, finding a

solution ẑ to (6.25) reduces to solving the c.-c.s.p. problem (where α >

0, β > 0, p ∈ (1, 2))

min
‖x‖1≤1

max
‖y‖1≤1

[
α
∑
i

|xi|p − β
∑
i

|yi|p +
∑
i

[aixi + biyi + cixiyi]

]
. (6.37)

164 First Order Methods for Nonsmooth Convex Large-Scale Optimization, II

By duality, this is equivalent to solving the c.-c.s.p. problem

supμ≥0 infν≥0

[
f(μ, ν) := ν − μ

+
∑

iminxi
maxyi

[α|xi|p + μ|xi| − β|yi|p − ν|yi|+ aixi + biyi + cixiyi]
]
.

The function f(μ, ν) is convex-concave; computing first-order informa-

tion on f reduces to solving n simple two-dimensional c.-c.s.p. prob-

lems minxi
maxyi

[...] and, for all practical purposes, costs only O(n)

operations. Then we can solve the (two-dimensional) c.-c.s.p. problem

maxμ≥0minν≥0f(μ, ν) by a polynomial-time first-order algorithm, such as

the saddle-point version of the Ellipsoid method (see, e.g., Nemirovski et al.,

2010). Thus, solving (6.37) within machine accuracy takes just O(n) opera-

tions.

6.4.3 The Strongly Concave Case

6.4.3.1 Situation and Assumptions

Our current goal is to demonstrate that in the situation of the previous

section, assuming that φ is strongly concave, we can improve the rate of

convergence from O(1/t) to O(1/t2). Let us consider the c.-c.s.p. problem

(6.3) and assume that X is bounded (while Y can be unbounded), and that

we are given norms ‖ · ‖x, ‖ · ‖y on the corresponding embedding spaces Ex,

Ey. We assume that we are also given a d.-g.f. ωx(·), compatible with ‖ · ‖x,
for X , and a d.-g.f. ωy(·) compatible with ‖ · ‖y, for the entire Ey (and not

just for Y). W.l.o.g. let 0 = argminEy
ωy. We keep assumption C.1 intact

and replace assumption C.2 with its modification:

C.2′. It is easy to find a solution ẑ to the variational inequality (6.25)

associated with Z and a monotone operator of the form Ψ(x, y) = αH(x, y)+

[αxω
′
x(x)+e;αyω

′
y((y−ȳ)/R)+f] (where α, αx, αy, R are positive and ȳ ∈ Y).

As above, it is easily seen that ẑ = (x̂, ŷ) is in fact a strong solution to

the variational inequality: there exists ζ ∈ H(ẑ) such that

〈αζ + [αxω
′
x(x̂) + e;αyω

′
y((ŷ − ȳ)/R) + f], u− ẑ〉 ≥ 0 ∀u ∈ Z. (6.38)

We assume, as in the case of C.2, that when solving (6.25), we get both ẑ

and ζ.

Furthermore, there are two new assumptions:

C.3. The function φ is strongly concave with modulus κ > 0 w.r.t. ‖ · ‖y:

∀
(

x ∈ X, y ∈ rint Y, f ∈ ∂y[−φ(x, y)],
y′ ∈ rint Y, g ∈ ∂y[−φ(x, y′)]

)
: 〈f − g, y − y′〉 ≥ κ‖y − y′‖2y.

6.4 Accelerating the Mirror-Prox Algorithm 165

C.4. The Ex-component of G(x, y) is independent of x, that is, Lxx = 0

(see (6.27)).

Note that C.4 is automatically satisfied when G(·) = (∇xφ̃(·),−∇yφ̃(·))
comes from a bilinear component φ̃(x, y) = 〈a, x〉+ 〈b, y〉+ 〈y,Ax〉 of φ.
Observe that since X is bounded, the function φ(y) = minx∈X φ(x, y) is

well defined and continuous on Y; by C.3, this function is strongly concave

and thus has bounded level sets. By remark 5.1, φ possesses saddle points,

and since φ is strongly convex, the y-component of a saddle point is the

unique maximizer y∗ of φ on Y. We set

xc = argminXωx(·), Ωx = maxXωx(·)−minXωx(·),
Ωy = max‖y‖y≤1ωy(y)−minyωy(y) = max‖y‖y≤1ωy(y)− ωy(0).

6.4.3.2 Algorithm MPb

The idea we intend to implement is the same one we used in Section 5.4

when designing MD for strongly convex optimization: all other things being

equal, the efficiency estimate (5.28) is the better, the smaller the domain

Z (cf. the factor Ω in (6.17)). On the other hand, when applying MP to a

saddle-point problem with φ(x, y) which is strongly concave in y, we ensure

a qualified rate of convergence of yt to y∗, and thus eventually could replace

the original domain Z with a smaller one by reducing the y-component.

When it happens, we can run MP on this smaller domain, thus accelerating

the solution process. This, roughly speaking, is what is going on in the

algorithm MPb we are about to present.

Building Blocks. Let R > 0, ȳ ∈ Y and z̄ = (xc, ȳ) ∈ Z, so that z̄ ∈ Z.

Define the following entities:

ZR = {(x; y) ∈ Z : ‖y − ȳ‖y ≤ R},
LR = 2Lxy

√
ΩxΩyR+ LyyΩyR

2,

α = [Lxy

√
ΩxΩyR]/LR, β = [Lxy

√
ΩxΩyR+ LyyΩyR

2]/LR,

ωR,ȳ(x, y) = α
Ωx

ωx(x) +
β
Ωy

ωy([y − ȳ]/R),

‖(x, y)‖ =
√

α
Ωx
‖x‖2x + β

ΩyR2 ‖y‖2y

(6.39)

with ‖(ξ, η)‖∗ =
√

Ωx

α ‖ξ‖2x,∗ + ΩyR2

β ‖η‖2y,∗. It is easily seen that ωR,ȳ is a

d.-g.f. for Z compatible with the norm ‖ · ‖, z̄ = argminZ ωR,ȳ(·), and
(a) maxZR

ωR,ȳ(·)−minZR
ωR,ȳ(·) ≤ 1,

(b) ∀(z, z′ ∈ Z) : ‖G(z)−G(z′)‖∗ ≤ LR‖z − z′‖. (6.40)

166 First Order Methods for Nonsmooth Convex Large-Scale Optimization, II

For u ∈ Z and z ∈ Zo we set V R,ȳ
z (u) = ωR,ȳ(u)−ωR,ȳ(z)−〈(ωR,ȳ(z))′, u−z〉

and define the prox-mapping

ProxR,ȳ
z (ξ) = argminu∈Z[〈ξ, u〉+ V R,ȳ

z (u)].

Let z1 = z̄ and γt > 0, t = 1, 2, Consider the following recurrence B (cf.

Section 6.4.1):

(a) Given zt ∈ Zo, we form the monotone operator Ψ(z) = γtH(z) +

(ωR,ȳ)′(z)− (ωR,ȳ)′(zt) + γtG(zt) and solve the variational inequality (6.25)

associated with Z and this operator; let the solution be denoted by wt.

Since the operator Ψ is of the form considered in C.2′, as a by-product of

our computation we get a vector ζt such that ∀u ∈ Z :

ζt ∈ H(wt) & 〈γt[ζt+G(zt)]+(ωR,ȳ)′(wt)− (ωR,ȳ)′(zt), u−wt〉 ≥ 0 (6.41)

(cf. (6.38)).

(b) Compute zt+1 = ProxR,ȳ
zt (γt(ζt +G(wt))) and

zt(R, ȳ) ≡ (xt(R, ȳ), yt(R, ȳ)) =
[∑t

τ=1
γτ
]−1
∑t

τ=1
γτwτ .

Let

Ft = ζt +G(wt), δt = 〈γtFt, wt − zt+1〉 − V R,ȳ
zt (zt+1).

Proposition 6.4. Let assumptions C.1 and C.2′-C.4 hold. Let the stepsizes

satisfy the conditions γτ ≥ L−1
R and δτ ≤ 0 for all τ (which certainly is so

when γτ = L−1
R for all τ).

(i) Assume that ‖ȳ−y∗‖y ≤ R. Then for xt = xt(R, ȳ), yt = yt(R, ȳ) it holds

that

(a) φ̃R(x
t)− φ(yt) ≤ [∑t

τ=1γτ
]−1∑t

τ=1γτ 〈Fτ , wτ − z∗〉
≤ [∑t

τ=1γτ
]−1 ≤ LR

t ,

(b) ‖yt − y∗‖2y ≤ 2
κ [φ̃R(x

t)− φ(yt)] ≤ 2LR

κt ,

(6.42)

where φ̃R(x) = maxy∈Y:‖y−ȳ‖y≤Rφ(x, y).

(ii) Further, if ‖ȳ − y∗‖y ≤ R/2 and t > 8LR

κR2 , then φ̃R(x
t) = φ(xt) :=

max
y∈Y

φ(xt, y), and therefore

εsad(x
t, yt) := φ(xt)− φ(yt) ≤ LR

t
. (6.43)

Proof. (i): Exactly the same argument as in the proof of Proposition 6.3,

6.4 Accelerating the Mirror-Prox Algorithm 167

with (6.40.b) in the role of (6.29), shows that

∀u ∈ Z :
t∑

τ=1

γτ 〈Fτ , zτ − u〉 ≤ V R,ȳ
z1 (u) +

t∑
τ=1

δτ

and that δτ ≤ 0, provided γτ = L−1
R . Thus, under the premise of Proposi-

tion 6.4 we have

t∑
τ=1

γτ 〈Fτ , zτ − u〉 ≤ V R,ȳ
z1 (u) ∀u ∈ Z.

When u = (x, y) ∈ ZR, the right-hand side of this inequality is ≤ 1 by

(6.40.a) and due to z1 = z̄. Using the same argument as in item 20 of the

proof of Proposition 6.1, we conclude that the left-hand side in the inequality

is ≥ [∑t
τ=1 γτ

] [
φ(xt, y)− φ(x, yt)

]
. Thus,

∀u ∈ ZR : φ(xt, y)− φ(x, yt) ≤
[∑t

τ=1
γτ

]−1 t∑
τ=1

γτ 〈Fτ , zτ − u〉.

Taking the supremum of the left hand side of this inequality over u ∈ ZR

and noting that γτ ≥ L−1
R , we arrive at (6.42.a). Further, ‖ȳ − y∗‖ ≤ R,

whence φ̃R(x
t) ≥ φ(xt, y∗) ≥ φ(y∗). Since y∗ is the maximizer of the strongly

concave, modulus κ w.r.t. ‖ · ‖y, function φ(·) over Y, we have

‖yt − y∗‖2y ≤
2

κ
[φ(y∗)− φ(yt)] ≤ 2

κ
[φ̃R(x

t)− φ(yt)],

which is the first inequality in (6.42.b); the second inequality in (6.42.b) is

given by (6.42.a). (i) is proved.

(ii): All we need to derive (ii) from (i) is to prove that under the

premise of (ii), the quantities φ(xt) := maxy∈Y φ(xt, y) and φ̃R(x
t) :=

maxy∈Y,‖y−ȳ‖y≤R φ(xt, y) are equal to each other. Assume that this is not

the case, and let us lead this assumption to a contradiction. Looking at the

definitions of φ and φ̃R, we see that in the case in question the maximizer

ỹ of φ(xt, y) over YR = {y :∈ Y : ‖y − ȳ‖y ≤ R} satisfies ‖ȳ − ỹ‖y = R.

Since ‖ȳ − y∗‖y ≤ R/2, it follows that ‖y∗ − ỹ‖y ≥ R/2. Because y∗ ∈ YR,

ỹ = argmaxy∈YR
φ(xt, y) and φ(xt, y) is strongly concave, modulus κ w.r.t.

‖ · ‖y, we get φ(xt, y∗) ≤ φ(xt, ỹ) − κ
2‖y∗ − ỹ‖2y ≤ φ(xt, ỹ) − κR2

8 , whence

φ̃R(x
t) = φ(xt, ỹ) ≥ φ(xt, y∗) + κR2

8 . On the other hand, φ(xt, y∗) ≥ φ(y∗) ≥
φ(yt), and we arrive at φ̃R(x

t) − φ(yt) ≥ κR2

8 . At the same time, (6.42.a)

says that φ̃R(x
t)− φ(yt) ≤ LRt

−1 < κR2

8 , where the latter inequality is due

to t > 8LR

κR2 . We arrive at the desired contradiction.

168 First Order Methods for Nonsmooth Convex Large-Scale Optimization, II

Algorithm MPb. Let R0 > 0 and y0 ∈ Y such that

‖y0 − y∗‖ ≤ R0/2 (6.44)

are given, and let

Rk = 2−k/2R0,

Nk = Ceil
(
16κ−1

[
2

k+1

2 Lxy

√
ΩxΩyR

−1
0 + LyyΩy

])
,

Mk =

k∑
j=1

Nj , k = 1, 2, ...

Execution of MPb is split into stages k = 1, 2, At the beginning of stage

k, we have at our disposal yk−1 ∈ Y such that

‖yk−1 − y∗‖y ≤ Rk−1/2. (Ik−1)

At stage k, we compute (x̂k, ŷk) = zNk(Rk−1, y
k−1), which takes Nk steps of

the recurrence B (where R is set to Rk−1 and ȳ is set to yk−1). The stepsize

policy can be an arbitrary policy satisfying γτ ≥ L−1
Rk−1

and δτ ≤ 0, e.g.,

γτ ≡ L−1
Rk−1

; see Proposition 6.4. After (x̂k, ŷk) is built, we set yk = ŷk and

pass to stage k + 1.

Note that Mk is merely the total number of steps of B carried out in

course of the first k stages of MPb.

The convergence properties of MPb are given by the following statement

(which can be derived from Proposition 6.4 in exactly the same way that

Proposition 5.4 was derived from Proposition 5.3):

Proposition 6.5. Let assumptions C.1, C.2′–C.4 hold, and let R0 > 0

and y0 ∈ Y satisfy (6.44). Then algorithm MPb maintains relations (Ik−1)

and

εsad(x̂
k, ŷk) ≤ κ2−(k+3)R2

0, (Jk)

k = 1, 2, Further, let k∗ be the smallest integer k such that k ≥ 1 and

2
k

2 ≥ kR0
Lxy

√
ΩxΩy

LyyΩy+κ . Then

— for 1 ≤ k < k∗, we have Mk ≤ O(1)kLyyΩy+κ
κ and εsad(x̂

k, ŷk) ≤ κ2−kR2
0;

— for k ≥ k∗, we have Mk ≤ O(1)Nk and εsad(x̂
k, ŷk) ≤ O(1)

L2
xyΩxΩy

κM2
k

.

Note that MPb behaves in the same way as the MD algorithm for

strongly convex objectives (cf. Chapter 5, Section 5.4). Specifically, when

the approximate solution yk is far from the optimal solution y∗, the method

converges linearly and switches to the sublinear rate (now it is O(1/t2))

when approaching y∗.

6.4 Accelerating the Mirror-Prox Algorithm 169

6.4.3.3 Illustration III

As an instructive application example for algorithm MPb, consider the

convex minimization problem

Opt = min
ξ∈Ξ

f(ξ), f(ξ) = f0(ξ) +
L∑

�=1

1
2dist

2(A�ξ − b�, U� + V�),

dist2(w,W) = minw′∈W ‖w − w′‖22
(6.45)

where

• Ξ ⊂ Eξ = R
nξ is a convex compact set with a nonempty interior, Eξ is

equipped with a norm ‖·‖ξ, and Ξ is equipped with a d.-g.f. ωξ(ξ) compatible

with ‖ · ‖ξ;
• f0(ξ) : Ξ → R is a simple continuous convex function, “simple” meaning

that it is easy to solve auxiliary problems

minξ∈Ξ
{
αf0(ξ) + aT ξ + βωξ(ξ)

]
[α, β > 0]

• U� ⊂ R
m� are convex compact sets such that computing metric projection

ProjU�
(u) = argminu′∈U�

‖u− u′‖2 onto U� is easy;

• V� ⊂ R
m� are polytopes given as V� = Conv{v�,1, ..., v�,n�

}.
On a close inspection, problem (6.45) admits a saddle-point reformulation.

Specifically, recalling that Sk = {x ∈ R
k
+ :
∑

i xi = 1} and setting

X = {x = [ξ;x1; ...;xL] ∈ Ξ× Sn1
× ...× SnL

} ⊂ Ex = R
nξ+n1+...+nL ,

Y = Ey := R
m1

y1 × ...× R
mL

yL ,

g(y = (y1, ..., yL)) =
∑
�

g�(y
�), g�(y

�) =
1

2
[y�]T y� +maxu�∈U�

uT� y
�,

B� = [v�,1, ..., v�,n�
],

A[ξ;x1; ...;xL]− b = [A1ξ −B1x
1; ...;ALξ −B�x

L]− [b1; ...; bL],

φ(x, y) = f0(ξ) + yT [Ax− b]− g(y),

we get a continuous convex-concave function φ on X× Y such that

f(ξ) = minη=(x1,...,xL):(ξ,η)∈Xmaxy∈Yφ((ξ, η), y),

so that if a point (x = [ξ;x1; ...;xL], y = [y1; ...; yL]) ∈ X× Y is an ε-solution

to the c.-c.s.p. problem infx∈X supY φ(x, y), ξ is an ε-solution to the problem

of interest (6.45):

εsad(x, y) ≤ ε⇒ f(ξ)−Opt ≤ ε.

Now we apply algorithmMPb to the saddle-point problem inf
x∈X

supy∈Y φ(x, y).

170 First Order Methods for Nonsmooth Convex Large-Scale Optimization, II

The required setup is as follows:

1. Given positive α, α1, ..., αL (parameters of the construction), we equip

the embedding space Ex of X with the norm

‖[ξ;x1; ...;xL]‖x =

√
α‖ξ‖2 +

∑L

�=1
α�‖x�‖21,

and X itself with the d.-g.f.

ωx([ξ;x
1; ...;xL]) = αωξ(ξ) +

∑L

�=1
α�Ent(x

�), Ent(u) =
∑dimu

i=1
ui lnui,

which, it can immediately be seen, is compatible with ‖ · ‖x.
2. We equip Y = Ey = R

m1+...+mL
y with the standard Euclidean norm ‖y‖2

and the d.-g.f. ωy(y) =
1
2y

T y.

3. The monotone operator Φ associated with (φ, z) is

Φ(x, y) = {∂x[φ(x, y)+χX(x)]}×{∂y[−φ(x, y)]}, χQ(u) =

{
0, u ∈ Q

+∞, u �∈ Q
.

We define its splitting, required by C.1, as

H(x, y) = {{∂ξ[f0(ξ) + χΞ(ξ)} × {0}...× {0}} × {∂y[
∑L

�=1g�(y
�)]},

G(x, y) = (∇x[y
T [Ax− b]] = AT y,−∇y[y

T [Ax− b]] = b−Ax).

With this setup, we satisfy C.1 and C.3-C.4 (C.3 is satisfied with κ = 1).

Let us verify that C.2′ is satisfied as well. Indeed, in our current situation,

finding a solution ẑ to (6.25) means solving the pair of convex optimization

problems

(a) min
[ξ;x1;...;xL]∈X

[
pαωξ(ξ) + qf0(ξ) + eT ξ

+
∑L

�=1

[
pα�Ent(x

�) + eT� x
�
]]

(b) min
y=[y1;...;yL]

∑L
�=1

[
r
2 [y

�]T y� + sg�(y
�) + fT

� y
�
] (6.46)

where p, q, r, and s are positive. Due to the direct product structure of X,

(6.46.a) decomposes into the uncoupled problems minξ∈Ξ[pαωξ(ξ) + f0(ξ) +

eT ξ] and minx�∈S�

[
pα�Ent(x

�) + eT� x
�
]
. We have explicitly assumed that

the first of these problems is easy; the remaining ones admit closed form

solutions (cf. (5.39)). (6.46.b) also is easy: a simple computation yields

y� = − 1
r+s [sProjU�

(−s−1f�) + f�], and it was assumed that it is easy to

project onto U�.

The bottom line is that we can solve (6.45) by algorithm MPb, the

6.5 Accelerating First-Order Methods by Randomization 171

resulting efficiency estimate being

f(ξ̂k)−Opt ≤ O(1)
L2
xyΩx

M2
k

, k ≥ k∗ = O(1) ln(R0Lxy

√
Ωx + 2)

(see Proposition 6.5 and take into account that we are in the situation of

κ = 1,Ωy = 1
2 , Lyy = 0). We can further use the parameters α, α1, ..., αL to

optimize the quantity L2
xyΩx. A rough optimization leads to the following:

let μ� be the norm of the linear mapping ξ → A�ξ induced by the norms

‖ · ‖ξ, ‖ · ‖2 in the argument and the image spaces, respectively, and let

ν� = max1≤j≤n�
‖v�,j‖2. Choosing

α =
∑L

�=1
μ2
� , α� = ν2� , 1 ≤ � ≤ L

results in L2
xyΩx ≤ O(1)

[
Ωξ

∑
� μ

2
� +
∑

� ν
2
� ln(n� + 1)

]
, Ωξ = maxΞωξ(·) −

minΞωξ(·).

6.5 Accelerating First-Order Methods by Randomization

We have seen in Section 6.2.1 that many important well-structured convex

minimization programs reduce to just bilinear saddle-point problems

SadVal = min
x∈X⊂Ex

max
y∈Y⊂Ey

[φ(x, y) := 〈a, x〉+ 〈y,Ax− b〉] , (6.47)

the corresponding monotone operator admitting an affine selection

F (z = (x, y)) = (a+AT y, b−Ax) = (a, b) + Fz,

F(x, y) = (AT y,−Ax). (6.48)

Computing the value of F requires two matrix-vector multiplications involv-

ing A and AT . When X,Y are simple and the problem is large-scale with

dense A (which is the case in many machine learning and signal processing

applications), these matrix-vector multiplications dominate the computa-

tional cost of an iteration of an FOM; as the sizes of A grow, these multipli-

cations can become prohibitively time consuming. The idea of what follows

is that matrix-vector multiplications is easy to randomize, and this random-

ization, under favorable circumstances, allows for dramatic acceleration of

FOMs in the extremely large-scale case.

172 First Order Methods for Nonsmooth Convex Large-Scale Optimization, II

6.5.1 Randomizing Matrix-Vector Multiplications

Let u ∈ Rn. Computing the image of u under a linear mapping u �→
Bu =

∑n
j=1 ujbj : Rn → E are easy to randomize: treat the vector

[|u1|; ...; |un|]/‖u‖1 as a probability distribution on the set {b1, ..., bn}, draw
from this distribution a sample bj and set ξu = ‖u‖1sign(uj)bj, thus getting
an unbiased (E{ξu} = Bu) random estimate of Bu. When bj are represented

by readily available arrays, the arithmetic cost of sampling from the distribu-

tion Pu of ξu, modulo the setup cost O(n) a.o. of computing the cumulative

distribution {‖u‖−1
1

∑j
i=1 |ui|}nj=1 is just O(ln(n)) a.o. to generate j plus

O(dimE) a.o. to compute ‖u‖1sign(uj)bj. Thus, the total cost of getting a

single realization of ξu is O(n) + dimE. For large n and dimE this is much

less than the cost O(n dimE), assuming bj are dense, of a straightforward

precise computation of Bu.

We can generate a number k of independent samples ξ� ∼ Pu, � = 1, ..., k,

and take, as an unbiased estimate of Bu, the average ξ = 1
k

∑k
�=1 ξ

�, thus

reducing the estimate’s variability; with this approach, the setup cost is paid

only once.

6.5.2 Randomized Algorithm for Solving Bilinear Saddle-Point Problem

We are about to present a randomized version MPr of the mirror-prox

algorithm for solving the bilinear saddle-point problem (6.47).

6.5.2.1 Assumptions and Setup

1. As usual, we assume that X and Y are nonempty compact convex

subsets of Euclidean spaces Ex, Ey; these spaces are equipped with the

respective norms ‖ · ‖x, ‖ · ‖y, while X, Y are equipped with d.-g.f.’s ωx(·),
ωy(·) compatible with ‖ · ‖x, resp., ‖ · ‖y, and define Ωx, Ωy according

to (6.28). Further, we define ‖A‖x,y as the norm of the linear mapping

x �→ Ax : Ex → Ey induced by the norms ‖ · ‖x, ‖ · ‖y on the argument

and the image spaces.

2. We assume that every point u ∈ X is associated with a probability

distribution Πu supported on X such that Eξ∼Πu
{ξ} = u, for all u ∈ X.

Similarly, we assume that every point v ∈ Y is associated with a probability

distribution Pv on Ey with a bounded support and such that Eη∼Pv
{η} = v

for all v ∈ Y. We refer to the case when Pv, for every v ∈ Y, is supported

on Y, as the inside case, as opposed to the general case, where support

of Pv, v ∈ Y, does not necessarily belong to Y. We will use Πx, Py to

randomize matrix-vector multiplications. Specifically, given two positive

6.5 Accelerating First-Order Methods by Randomization 173

integers kx, ky (parameters of our construction), and given u ∈ X, we

build a randomized estimate of Au as Aξu, where ξu = 1
kx

∑kx

i=1 ξi and

ξi are sampled, independently of each other, from Πu. Similarly, given

v ∈ Y, we estimate AT v by AT ηv, where ηv = 1
ky

∑ky

i=1 ηi, with ηi sampled

independently of each other from Pv. Note that ξv ∈ X, and in the inside

case ηu ∈ Y. Of course, a randomized estimation of Au, AT v makes sense

only when computing Aξ, ξ ∈ supp(Πu), A
T η, η ∈ supp(Pv) is much easier

than computing Au, AT v for a general type u and v.

We introduce the quantities

σ2
x = sup

u∈X
E{‖A[ξu − u]‖2y,∗}, σ2

y = sup
v∈Y

E{AT [ηv − v]‖2x,∗},
Θ = 2

[
Ωxσ

2
y +Ωyσ

2
x

]
.

(6.49)

where ξu, ηv are the random vectors just defined, and, as always, ‖ · ‖x,∗,
‖ · ‖y,∗ are the norms conjugate to ‖ · ‖x and ‖ · ‖y.
3. The setup for the algorithm MPr is given by the norm ‖ · ‖ on E =

Ex × Ey ⊃ Z = X× Y, and the compatible with this norm d.-g.f. ω(·) for Z
which are given by

‖(x, y)‖ =
√

1

2Ωx
‖x‖2x +

1

2Ωy
‖y‖2y, ω(x, y) =

1

2Ωx
ωx(x) +

1

2Ωy
ωy(y),

so that

‖(ξ, η)‖∗ =
√
2Ωx‖ξ‖2x,∗ + 2Ωy‖η‖2y,∗. (6.50)

For z ∈ Zo, w ∈ Z let (cf. the definition (5.4))

Vz(w) = ω(w)− ω(z)− 〈ω′(z), w − z〉,
and let zc = argminw∈Zω(w). Further, we assume that given z ∈ Zo and

ξ ∈ E, it is easy to compute the prox-mapping

Proxz(ξ) = argmin
w∈Z

[〈ξ, w〉+ Vz(w)]

(
= argmin

w∈Z

[〈ξ − ω′(z), w〉+ ω(w)
])

.

It can immediately be seen that

Ω[Z] = max
Z

ω(·)−min
Z

ω(·) = 1. (6.51)

and the affine monotone operator F (z) given by (6.48) satisfies the relation

∀z, z′ : ‖F (z)− F (z′)‖∗ ≤ L‖z − z′‖, L = 2‖A‖x,y
√

ΩxΩy. (6.52)

174 First Order Methods for Nonsmooth Convex Large-Scale Optimization, II

6.5.2.2 Algorithm

For simplicity, we present here the version of MPr where the number of

steps, N , is fixed in advance. Given N , we set

γ = min

[
1√
3L

,
1√
3ΘN

]
(6.53)

and run N steps of the following randomized recurrence:

1. Initialization: We set z1 = argminZ ω(·).
2. Step t = 1, 2, ..., N : Given zt = (xt, yt) ∈ Zo, we generate ξxt

, ηyt
as

explained above, set ζt = (ξxt
, ηyt

), and compute F (ζt) = (a+AT ηyt
, b−Aξxt

)

and

wt = (x̂t, ŷt) = Proxzt(γF (ζt)).

We next generate ξx̂t
, ηŷt

as explained above, set ζ̂t = (ξx̂t
, ηŷt

), and compute

F (ζ̂t) = (a+AT ηŷt
, b−Aξx̂t

) and zt+1 = Proxzt(γF (ζ̂t)).

3. Termination t = N : we output

zN = (xN , yN) =
1

N

N∑
t=1

(ξx̂t
, ηŷt

), and F (zN) =
1

N

N∑
t=1

F (ζ̂t)

(recall that F (·) is affine).

The efficiency estimate of algorithm MPr is given by the following

Proposition 6.6. For every N , the random approximate solution zN =

(xN , yN) generated by algorithm MPr possesses the following properties:

(i) In the inside case, zN ∈ Z and

E{εsad(zN)} ≤ εN := max

[
2
√
3Θ√
N

,
4
√
3‖A‖x,y

√
ΩxΩy

N

]
; (6.54)

(ii) In the general case, xN ∈ X and E{φ(xN)} −minX φ ≤ εN .

Observe that in the general case we do not control the error εsad(z
N) of

the saddle-point solution. Yet the bound (ii) of Proposition 6.6 allows us to

control the accuracy f(xN) − minX f of the solution xN when the saddle-

point problem is used to minimize the convex function f = φ (cf. (6.4)).

Proof. Setting Ft = F (ζt), F̂t = F (ζ̂t), F
∗
t = F (zt), F̂

∗
t = F (wt), Vz(u) =

6.5 Accelerating First-Order Methods by Randomization 175

ω(u)− ω(z)− 〈ω′(z), u− z〉 and invoking Lemma 6.2, we get

∀u ∈ Z : γ〈F̂t, wt − u〉 ≤ Vzt(u)− Vzt+1
(u) + Δt,

Δt =
1
2

[
γ2‖Ft − F̂t‖2∗ − ‖zt − wt‖2

]
,

whence, taking into account that Vz1(u) ≤ Ω[Z] = 1 (see (6.51)) and that

VzN+1
(u) ≥ 0,

∀u = (x, y) ∈ Z : γ
∑N

t=1
〈F̂t, ζ̂t − u〉 ≤ 1 +

αN︷ ︸︸ ︷∑N

t=1
Δt+

βN︷ ︸︸ ︷
γ
∑N

t=1
〈F̂t, ζ̂t − wt〉 .

Substituting the values of F̂t and taking expectations, the latter inequality

(where the right-hand side is independent of u) implies that

E

{
max

(x,y)∈Z
γN
[
φ(xN , y)− φ(x, yN)

]} ≤ 1 +E{αN}+E{βN}, (6.55)

βN = γ

N∑
t=1

[〈a, ξx̂t
− x̂t〉+ 〈b, ηŷt

− ŷt〉+ 〈Aξx̂t
, ŷt〉 − 〈AT ηx̂t

, x̂t〉
]
.

Now let Ewt
{·} stand for the expectation conditional to the history of

the solution process up to the moment when wt is generated. We have

Ewt
{ξx̂t

} = x̂t and Ewt
{ηŷt

} = ŷt, so that E{βN} = 0. Further, we have

Δt ≤ 1

2

[
3γ2
[
‖F̂ ∗

t − F ∗
t ‖2∗ + ‖F̂ ∗

t − F̂t‖2∗ + ‖F ∗
t − Ft‖2∗

]
− ‖zt − wt‖2

]
and, recalling the origin of F s, ‖F ∗

t − F̂ ∗
t ‖∗ ≤ L‖zt − wt‖ by (6.52). Since

3γ2 ≤ L2 by (6.53), we get

E{Δt} ≤ 3γ2

2
E{‖F̂ ∗

t − F̂t‖2∗ + ‖F ∗
t − Ft‖2∗} ≤ 3γ2Θ,

where the concluding inequality is due to the definitions of Θ and of the

norm ‖ · ‖∗ (see (6.49) and (6.50), respectively). Thus, (6.55) implies that

E

{
max

(x,y)∈Z
[
φ(xN , y)− φ(x, yN)

]} ≤ 1/(Nγ) + 3Θγ ≤ εN , (6.56)

due to the definition of εN . Now, in the inside case we clearly have (xN , yN) ∈
Z, and therefore (6.56) implies (6.54). In the general case we have xN ∈ X.

In addition, let x∗ be the x-component of a saddle point of φ on Z. Replacing

in the left-hand side of (6.56) maximization over all pairs (x, y) from Z with

maximization only over the pair (x∗, y) with y ∈ Y (which can only decrease

176 First Order Methods for Nonsmooth Convex Large-Scale Optimization, II

the left-hand side), we get from (6.56) that

E{φ(xN)} ≤ εN +E{φ(x∗, yN)} = εN + φ
(
x∗,E{yN}

)
. (6.57)

Observe that Ewt
{ηŷt

} = ŷt ∈ Y. We conclude that

E{yN} = E

{
1

N

N∑
t=1

ηŷt

}
= E

{
1

N

N∑
t=1

ŷt

}
∈ Y.

Thus, the right-hand side in (6.57) is ≤ εN + SadVal, and (ii) follows.

Remark 6.1. We stress here that MPr, along with the approximate solution

(xN , yN), returns the value F (xN , yN). This allows for easy computation,

not requiring matrix-vector multiplications, of φ(xN) and φ(yN).

6.5.2.3 Illustration IV: �1-Minimization

Consider problem (6.5) with Ξ = {ξ ∈ R
n : ‖ξ‖1 ≤ 1}. Representing Ξ as

the image of the standard simplex S2n = {x ∈ R
2n
+ :

∑
i xi = 1} under the

mapping x �→ Jnx, Jn = [In,−In], the problem reads

Opt = min
x∈S2n

‖Ax− b‖p [A ∈ R
m×2n]. (6.58)

We consider two cases: p = ∞ (uniform fit, as in the Dantzig selector) and

p = 2 (�2-fit, as in Lasso).

Uniform Fit. Here (6.58) can be converted into the bilinear saddle-point

problem

Opt = min
x∈S2n

max
y∈S2m

[
φ(x, y) := yTJT

m[Ax− b]
]
. (6.59)

Setting ‖ · ‖x = ‖ · ‖1, ωx(x) = Ent(x), ‖ · ‖y = ‖ · ‖1, ωy(y) = Ent(y),

let us specify Πu, u ∈ S2n, and Pv, v ∈ S2m, according to the recipe from

Section 6.5.1, that is, the random vector ξu ∼ Πu with probability ui is the

ith basic orth, i = 1, ...,m, and similarly for ηv ∼ Pv. This is the inside case,

and when we set ‖A‖1,∞ = max
i,j
|Aij|, we get σ2

x = O(1)
‖A‖2

1,∞ ln(2m)

kx+ln(2m) , σ2
y =

6.5 Accelerating First-Order Methods by Randomization 177

O(1)
‖A‖2

1,∞ ln(2n)

ky+ln(2n) ,2 and

Ωx = ln(2n), Ωy = ln(2m), L = 2‖A‖1,∞
√
ln(2n) ln(2m),

Θ ≤ O(1)‖A‖21,∞
[

ln2(2m)
kx+ln(2m) +

ln2(2n)
ky+ln(2n)

]
In this setting Proposition 6.6 reads:

Corollary 6.7. For all positive integers kx, ky, N one can find a ran-

dom feasible solution (xN , yN) to (6.59) along with the quantities φ(xN) =

‖AxN − b‖∞ ≥ Opt and a lower bound φ(yN) on Opt such that

Prob

{
φ(xN)− φ(yN) ≤ O(1)

‖A‖1,∞ ln(2mn)√
N
√

min[N, kx + ln(2m), ky + ln(2n)]

}
≥ 1

2

(6.60)

in N steps, the computational effort per step dominated by the necessity to

extract 2kx columns and 2ky rows from A , given their indexes.

Note that our computation yields, along with (xN , yN), the quantities

φ(xN) and φ(yN). Thus, when repeating the computation � times and choos-

ing the best among the resulting x- and y-components of the solutions we

make the probability of the left-hand side event in (6.60) as large as 1−2−�.

For example, with kx = ky = 1, assuming δ = ε/‖A‖1,∞ ≤ 1, finding an

ε-solution to (6.59) with reliability ≥ 1− β costs O(1) ln2(2mn) ln(1/β)δ−2

steps of the outlined type, that is, O(1)(m + n) ln2(2mn) ln(1/β)δ−2 a.o.

For comparison, when δ stays fixed and m,n are large, the lowest known

(so far) cost of finding an ε-solution to problem (6.58) with unform fit is

O(1)
√

ln(m) ln(n)δ−1 steps, with the effort per step dominated by the ne-

cessity to compute O(1) matrix-vector multiplications involving A and AT

(this cost is achieved by Nesterov’s smoothing or with MP; see (6.22)). When

A is a general-type dense m×n matrix, the cost of the deterministic compu-

tation is O(1)mn
√

ln(m) ln(n)δ−1. We see that for fixed relative accuracy δ

and large m,n, randomization does accelerate the solution process, the gain

growing with m,n.

2. The bound for σ2
x and σ2

y is readily given by the following fact (see, e.g., Juditsky and
Nemirovski, 2008): when ξ1, ..., ξk ∈ Rn are independent zero mean random vectors with
E{‖ξi‖2∞} ≤ 1 for all i, one has E{‖ 1

k

∑k
i=1 ξi‖2∞} ≤ O(1)min[1, ln(n)/k]; this inequality

remains true when R
n is replaced with Sn, and ‖·‖∞ is replaced with the standard matrix

norm (largest singular value).

178 First Order Methods for Nonsmooth Convex Large-Scale Optimization, II

�2-fit. Here (6.58) can be converted into the bilinear saddle-point problem

Opt = min
x∈S2n

max
‖y‖2≤1

[
φ(x, y) := yT [Ax− b]

]
. (6.61)

In this case we keep ‖ · ‖x = ‖ · ‖1, ωx(x) = Ent(x), and set ‖ · ‖y = ‖ · ‖2,
ωy(y) =

1
2y

T y. We specify Πu, u ∈ S2n, exactly as in the case of uniform fit,

and define Pv, v ∈ Y = {y ∈ R
m : ‖y‖2 ≤ 1} as follows: ηv ∼ Pv takes values

sign(ui)‖u‖1ei, ei being basic orths, with probabilities |ui|/‖u‖1. Note that

we are not in the inside case anymore. Setting ‖A‖1,2 = max
1≤j≤2n

‖Aj‖2, Aj

being the columns of A, we get

Ωx = ln(2n),Ωy = 1
2 , L = ‖A‖1,2

√
2 ln(2n),

Θ ≤ O(1)
[

1
kx
‖A‖21,2 + ln2(2n)

ky+ln(2n) [‖A‖1,2 +
√
m‖A‖1,∞]2

]
.

Now Proposition 6.6 reads:

Corollary 6.8. For all positive integers kx, ky, N , one can find a random

feasible solution xN to (6.58) (where p = 2), along with the vector AxN ,

such that

Prob
{‖AxN − b‖2 ≤ Opt

+ O(1)
‖A‖1,2

√
ln(2n)√

N

√
1
N + 1

kx ln(2n) +
ln(2n)Γ2(A)
ky+ln(2n)

}
≥ 1

2 ,

Γ(A) =
√
m‖A‖1,∞/‖A‖1,2

(6.62)

in N steps, the computational effort per step dominated by the necessity to

extract 2kx columns and 2ky rows from A, given their indexes.

Here again, repeating the computation � times and choosing the best

among the resulting solutions to (6.58), we make the probability of the left-

hand side event in (6.62) as large as 1−2−�. For instance, with kx = ky = 1,

assuming δ := ε/‖A‖1,2 ≤ 1, finding an ε-solution to (6.58) with reliability

≥ 1−β costs O(1) ln(2n) ln(1/β)Γ2(A)δ−2 steps of the outlined type, that is,

O(1)(m+n) ln(2n) ln(1/β)Γ2(A)δ−2 a.o. Assuming that a precise multiplica-

tion of a vector by A takes O(mn) a.o., the best known (so far) deterministic

counterpart of the above complexity bound is O(1)mn
√
ln(2n)δ−1 a.o. (cf.

(6.22)). Now the advantages of randomization when δ is fixed and m,n are

large are not as evident as in the case of uniform fit, since the complexity

bound for the randomized computation contains an extra factor Γ2(A) which

may be as large as O(m). Fortunately, we may “nearly kill” Γ(A) by ran-

domized preprocessing of the form [A, b] �→ [Ā, b̄] = [UDA,UDb], where U is

a deterministic orthogonal matrix with entries of order O(1/
√
m), and D is

a random diagonal matrix with i.i.d. diagonal entries taking values ±1 with

6.6 Notes and Remarks 179

equal probabilities. This preprocessing converts (6.58) into an equivalent

problem, and it is easily seen that for every β
 1, for the transformed ma-

trix Ā with probability ≥ 1−β it holds that Γ(Ā) ≤ O(1)
√

ln(mnβ−1). This

implies that, modulo preprocessing’s cost, the complexity estimate of the

randomized computation reduces to O(1)(m+n) ln(n) ln(mn/β) ln(1/β)δ−2.

Choosing U as a cosine transform or Hadamard matrix, so that the cost of

computing Uu is O(m ln(m)) a.o., the cost of preprocessing does not exceed

O(mn ln(m)), which, for small δ, is a small fraction of the cost of deter-

ministic computation. Thus, there is a meaningful range of values of δ,m, n

where randomization is highly profitable. It should be added that in some

applications (e.g., in compressed sensing) typical values of Γ(A) are quite

moderate, and thus no preprocessing is needed.

6.6 Notes and Remarks

1. The research of the second author was partly supported by ONR grant

N000140811104, BSF grant 2008302, and NSF grants DMI-0619977 and

DMS-0914785.

2. The mirror-prox algorithm was proposed by Nemirovski (2004); its

modification able to handle the stochastic case, where the precise values

of the monotone operator associated with (6.3) are replaced by unbiased

random estimates of these values (cf. Chapter 5, Section 5.5) is devel-

oped by Juditsky et al. (2008). The MP combines two basic ideas: (a)

averaging of the search trajectory to get approximate solutions (this idea

goes back to Bruck (1977) and Nemirovskii and Yudin (1978)) and (b)

exploiting extragradient steps: instead of the usual gradient-type update

z �→ z+ = Proxz(γF (z)) used in the saddle-point MP (Section 5.6), the

update z �→ w = Proxz(γF (z)) �→ z+ = Proxz(γF (w)) is used. This con-

struction goes back to Korpelevich (1983, 1976), see also Noor (2003) and

references therein. Note that a different implementation of the same ideas

is provided by Nesterov (2007b) in his dual extrapolation algorithm.

3. The material in Sections 6.4.1 and 6.4.3 is new; this being said, prob-

lem settings and complexity results considered in these sections (but not

the associated algorithms) are pretty close, although not fully identical,

to those covered by the excessive gap technique of Nesterov (2005b). For

example, the situation considered in illustration III can be treated equally

well via Nesterov’s technique, which perhaps is not the case for illustra-

tion II. It should be added that splitting like the one in Section 6.4.1, in

a slightly more general context of variational inequalities with monotone

180 First Order Methods for Nonsmooth Convex Large-Scale Optimization, II

operators, was considered by Tseng (2000), although without averaging and

thus without any efficiency estimate. These missing elements were added in

the recent papers of Monteiro and Svaiter (2010b,a) which in this respect

can be viewed as independently developed Euclidean case version of Section

6.4.1. For other schemes of accelerating FOMs via exploiting a problem’s

structure, see Nesterov (2007a), Beck and Teboulle (2009), Tseng (2008),

Goldfarb and Scheinberg (2010), and references therein.

4. The material of Section 6.5.1 originated with Juditsky et al. (2010),

where one can find various versions of MPr and (rather encouraging) results

of preliminary numerical experiments. Note that the “cheap randomized

matrix-vector multiplication” outlined in Section 6.5.1 admits extensions

which can be useful when solving semidefinite programs (see Juditsky et al.,

2010, Section 2.1.4).

Obviously, the idea of improving the numerical complexity of optimiza-

tion algorithms by utilizing random subsampling of problem data is not new.

For instance, such techniques have been applied to support vector machine

classification in Kumar et al. (2008), and to solving certain semidefinite

programs in Arora and Kale (2007) and d’Aspremont (2009). Furthermore,

as we have already mentioned, both MD and MP admit modifications (see

Nemirovski et al., 2009; Juditsky et al., 2008) capable to handle c.-c.s.p.

problems (not necessarily bilinear) in the situation where instead of the

precise values of the associated monotone operator, unbiased random esti-

mates of these values are used. A common drawback of these modifications

is that while we have at our disposal explicit nonasymptotical upper bounds

on the expected inaccuracy of random approximate solutions zN (which,

as in the basic MP, are averages of the search points wt) generated by the

algorithm, we do not know what the actual quality of zN is. In the case of a

bilinear problem (6.47) and with the randomized estimates of F (wt) defined

as F (ζ̂t), we get a new option: to define zN as the average of the points ζ̂t.

As a result, we do know F (zN) and thus can easily assess the quality of

zN (n.b. remark 6.1). To the best of our knowledge, this option has been

realized (implicitly) only once, namely, in the randomized sublinear-time

matrix game algorithm of Grigoriadis and Khachiyan (1995) (that ad hoc

algorithm is close, although not identical, to MPr as applied to problem

(6.59), which is equivalent to a matrix game).

On the other hand, the possibility to assess, in a computationally cheap

fashion, the quality of an approximate solution to (6.47) is crucial when solv-

ing parametric bilinear saddle-point problems. Specifically, many important

6.7 References 181

applications reduce to problems of the form

max

{
ρ : SadVal(ρ) := min

x∈X
max
y∈Y

φρ(x, y) ≤ 0

}
, (6.63)

where φρ(x, y) is a bilinear function affinely depending on ρ. For example, the

�1-minimization problem as it arises in sparsity-oriented signal processing is

Opt = minξ {‖ξ‖1 : ‖Aξ − b‖p ≤ δ}, which is nothing but

1

Opt
= max

{
ρ : SadVal(ρ) := min

‖x‖1≤1
max

‖y‖p/(p−1)≤1

[
yT [Ax− ρb]− ρδ

] ≤ 0

}
.

From the complexity viewpoint, the best known (to us) way to process (6.63)

is to solve the master problem max{ρ : SadVal(ρ) ≤ 0} by an appropriate

first-order root-finding routine, the (approximate) first-order information on

SadVal(·) being provided by a first-order saddle-point algorithm. The ability

of the MPr algorithm to provide accurate bounds of the value SadVal(·) of
the inner saddle-point problems makes it the method of choice when solving

extremely large parametric saddle-point problems (6.63). For more details

on this subject, see Juditsky et al. (2010).

6.7 References

S. Arora and S. Kale. A combinatorial primal-dual approach to semidefinite
programs. In: Proceedings of the 39th Annual ACM Symposium on the Theory
of Computations, pages 227–236, 2007.

A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm for
linear inverse problems. SIAM Journal on Imaging Sciences, 2(1):183–202, 2009.

R. Bruck. On weak convergence of an ergodic iteration for the solution of variational
inequalities with monotone operators in Hilbert space. Journal of Mathematical
Analysis and Applications, 61(1):15–164, 1977.

A. d’Aspremont. Subsampling algorithms for semidefinite programming. Technical
report, arXiv:0803.1990v5,
http://arxiv.org/abs/0803.1990, November 2009.

D. Goldfarb and K. Scheinberg. Fast first order method for separable convex opti-
mization with line search. Technical report, Department of Industrial Engineering
and Operations Research, Columbia University, 2010.

M. D. Grigoriadis and L. G. Khachiyan. A sublinear-time randomized approxi-
mation algorithm for matrix games. Operations Research Letters, 18(2):53–58,
1995.

A. Juditsky and A. Nemirovski. Large deviations of vector-valued martin-
gales in 2-smooth normed spaces. Technical report, HAL: hal-00318071,
http://hal.archives-ouvertes.fr/hal-00318071/, 2008.

A. Juditsky, A. Nemirovski, and C. Tauvel. Solving variational inequalities
with stochastic mirror prox algorithm. Technical report, HAL: hal-00318043,

182 First Order Methods for Nonsmooth Convex Large-Scale Optimization, II

http://hal.archives-ouvertes.fr/hal-00318043/, 2008.

A. Juditsky, F. K. Karzan, and A. Nemirovski. �1-minimization via ran-
domized first order algorithms. Technical report, Optimization Online,
http://www.optimization-online.org/DB FILE/2010/05/2618.pdf, 2010.

G. M. Korpelevich. The extragradient method for finding saddle points and other
problems. Ekonomika i Matematicheskie Metody, 12:747–756, 1976. (in Russian).

G. M. Korpelevich. Extrapolation gradient methods and relation to modified
lagrangeans. Ekonomika i Matematicheskie Metody, 19:694–703, 1983. (in
Russian).

K. Kumar, C. Bhattacharya, and R. Hariharan. A randomized algorithm for large
scale support vector learning. In J. Platt, D. Koller, Y. Singer, and S. Roweis,
editors, Advances in Neural Information Processing Systems, volume 20. MIT
Press, 2008.

R. D. C. Monteiro and B. F. Svaiter. Complexity of vairants of Tseng’s modified
F-B splitting and Korpelevich’s methods for generalized variational inequalities
with applications to saddle point and convex optimization problems. Technical
report, Optimization Online,
http://www.optimization-online.org/DB HTML/2010/07/2675.html, 2010a.

R. D. C. Monteiro and B. F. Svaiter. On the complexity of the hybrid proximal
extragradient method for the iterates and the ergodic mean. SIAM Journal on
Optimization, 20:2755–2787, 2010b.

A. Nemirovski. Prox-method with rate of convergence o(1/t) for variational inequal-
ities with lipschitz continuous monotone operators and smooth convex-concave
saddle-point problems. SIAM Journal on Optimization, 15:229–251, 2004.

A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro. Robust stochastic approxi-
mation approach to stochastic programming. SIAM Journal on Optimization, 19
(4):1574–1609, 2009.

A. Nemirovski, S. Onn, and U. Rothblum. Accuracy certificates for computational
problems with convex structure. Mathematics of Operations Research, 35:52–78,
2010.

A. Nemirovskii and D. Yudin. On Cezari’s convergence of the steepest descent
method for approximating saddle points of convex-concave functions. Soviet
Math. Doklady, 19(2), 1978.

Y. Nesterov. A method for solving a convex programming problem with rate of
convergence o(1/k2). Soviet Math. Doklady, 27(2):372–376, 1983.

Y. Nesterov. Smooth minimization of nonsmooth functions. Mathematical Pro-
gramming, Series A, 103:127–152, 2005a.

Y. Nesterov. Excessive gap technique in nonsmooth convex minimization. SIAM
Journal on Optimization, 16(1):235–239, 2005b.

Y. Nesterov. Gradient methods for minimizing composite objective function.
Technical Report 2007/76, Center for Operations Rersearch and Econometrics,
Catholic University of Louvain,
http://www.uclouvain.be/cps/ucl/doc/core/documents/coredp2007 76.pdf,
2007a.

Y. Nesterov. Dual extrapolation and its application for solving variational in-
equalities and related problems. Mathematical Programming, Series A, 109(2–3):
319–344, 2007b.

M. A. Noor. New extragradient-type methods for general variational inequalities.

6.7 References 183

Journal of Mathematical Analysis and Applications, 277:379–394, 2003.

P. Tseng. A modified forward-backward splitting method for maximal monotone
mappings. SIAM Journal on Control and Optimization, 38(2):431–446, 2000.

P. Tseng. On accelerated proximal gradient methods for convex-concave optimiza-
tion. Technical report,
http://www.math.washington.edu/∼tseng/papers/apgm.pdf, 2008.

7 Cutting-Plane Methods in Machine

Learning

Vojtěch Franc xfrancv@cmp.felk.cvut.cz

Czech Technical University in Prague

Technická 2, 166 27 Prague 6

Czech Republic

Sören Sonnenburg Soeren.Sonnenburg@tu-berlin.de

Berlin Institute of Technology

Franklinstr. 28/29

10587 Berlin, Germany

Tomáš Werner werner@cmp.felk.cvut.cz

Czech Technical University in Prague

Technická 2, 166 27 Prague 6

Czech Republic

Cutting-plane methods are optimization techniques that incrementally con-

struct an approximation of a feasible set or an objective function by linear

inequalities called cutting planes. Numerous variants of this basic idea are

among standard tools used in convex nonsmooth optimization and integer

linear programing. Recently, cutting-plane methods have seen growing inter-

est in the field of machine learning. In this chapter, we describe the basic

theory behind these methods and show three of their successful applications to

solving machine learning problems: regularized risk minimization, multiple

kernel learning, and MAP inference in graphical models.

Many problems in machine learning are elegantly translated into convex

optimization problems, which, however, are sometimes difficult to solve

efficiently with off-the-shelf solvers. This difficulty can stem from complexity

of either the feasible set or the objective function. Often, these can be

accessed only indirectly via an oracle. To access a feasible set, the oracle

186 Cutting-plane Methods in Machine Learning

either asserts that a given query point lies in the set or finds a hyperplane

that separates the point from the set. To access an objective function, the

oracle returns the value and a subgradient of the function at the query point.

Cutting-plane methods solve the optimization problem by approximating

the feasible set or the objective function by a bundle of linear inequalities,

called cutting planes. The approximation is iteratively refined by adding

new cutting planes computed from the responses of the oracle.

Cutting-plane methods have been extensively studied in the literature. We

refer to Boyd and Vandenberge (2008) for an introductory yet comprehensive

overview. For the sake of self-consistency, we review the basic theory in

Section 7.1. Then, in three separate sections, we describe their successful

applications to three machine learning problems.

The first application, Section 7.2, is on learning linear predictors from

data based on regularized risk minimization (RRM). RRM often leads to a

convex but nonsmooth task, which cannot be efficiently solved by general-

purpose algorithms, especially for large-scale data. Prominent examples of

RRM are support vector machines, logistic regression, and structured output

learning. We review a generic risk minimization algorithm proposed by Teo

et al. (2007, 2010), inspired by a variant of cutting-plane methods known

as proximal bundle methods. We also discuss the accelerated version (Franc

and Sonnenburg, 2008, 2010; Teo et al., 2010), which is among the fastest

solvers for large-scale learning.

The second application, Section 7.3, is multiple kernel learning (MKL).

Although classical kernel-based learning algorithms use a single kernel, it is

sometimes desirable to use multiple kernels (Lanckriet et al., 2004a). Here,

we focus on the convex formulation of the MKL problem for classification as

first stated in Zien and Ong (2007) and Rakotomamonjy et al. (2007). We

show how this problem can be efficiently solved by a cutting-plane algorithm

recycling standard SVM implementations. The resulting MKL solver is

equivalent to the column generation approach applied to the semi-infinite

programming formulation of the MKL problem proposed by Sonnenburg

et al. (2006a).

The third application, Section 7.4, is maximum a posteriori (MAP) infer-

ence in graphical models. It leads to a combinatorial optimization problem

which can be formulated as a linear optimization over the marginal polytope

(Wainwright and Jordan, 2008). Cutting-plane methods iteratively construct

a sequence of progressively tighter outer bounds of the marginal polytope

that corresponds to a sequence of LP relaxations. We revisit the approach by

Werner (2008a, 2010), in which a dual cutting-plane method is a straightfor-

ward extension of a simple message-passing algorithm. It is a generalization

of the dual LP relaxation approach of Shlezinger (1976) and of the max-sum

7.1 Introduction to Cutting-plane Methods 187

diffusion algorithm by Kovalevsky and Koval.

7.1 Introduction to Cutting-plane Methods

Suppose we want to solve the optimization problem

min{ f(x) | x ∈ X } , (7.1)

where X ⊆ R
n is a convex set, f : Rn → R is a convex function, and

we assume that the minimum exists. Set X can be accessed only via the

separation oracle (or separation algorithm). Given x̂ ∈ R
n, the separation

oracle either asserts that x̂ ∈ X or returns a hyperplane 〈a, x〉 ≤ b (called

a cutting plane) that separates x̂ from X, that is, 〈a, x̂〉 > b and 〈a, x〉 ≤ b

for all x ∈ X. Figure 7.1(a) illustrates this.

The cutting-plane algorithm (algorithm 7.1) solves (7.1) by constructing

progressively tighter convex polyhedrons Xt containing the true feasible set

X, by cutting off infeasible parts of an initial polyhedron X0. It stops when

xt ∈ X (possibly up to some tolerance).

The trick behind the method is not to approximate X well by a convex

polyhedron, but to do so only near the optimum. This is best seen if X

is already a convex polyhedron described by a set of linear inequalities. At

optimum, only some of the inequalities are active. We could in fact remove all

the inactive inequalities without affecting the problem. Of course, we do not

know which ones to remove until we know the optimum. The cutting-plane

algorithm imposes more than the minimal set of inequalities, but possibly

many fewer than the whole original description of X.

Algorithm 7.1 Cutting-plane algorithm

1: Initialization: t ← 0, X0 ⊇ X
2: loop
3: Let xt ∈ argminx∈Xt

f(x)
4: If xt ∈ X, then stop, else find a cutting plane 〈a, x〉 ≤ b separating xt from X
5: Xt+1 ← Xt ∩ {x | 〈a, x〉 ≤ b }
6: t ← t+ 1
7: end loop

This basic idea has many incarnations. Next we describe three of them,

which have been used in the three machine learning applications presented

in this chapter. Section 7.1.1 describes a cutting-plane method suited for

minimization of nonsmooth convex functions. An improved variant thereof,

called the bundle method , is described in Section 7.1.2. Finally, Section 7.1.3

188 Cutting-plane Methods in Machine Learning

a x̂

X

x0x1

f(x)

X
x2

f2(x)

f(x0) + 〈f ′(x0), x− x0〉 f(x1) + 〈f ′(x1), x− x1〉
(a) (b)

Figure 7.1: (a) illustrates the cutting plane 〈a, x〉 ≤ b cutting off the query point
x̂ from the light gray half-space {x | 〈a, x〉 ≤ b}, which contains the feasible
set X (dark gray). (b) shows a feasible set X (gray interval) and a function
f(x) which is approximated by a cutting-plane model f2(x) = max{f(x0) +
〈f ′(x0), x− x0〉, f(x1) + 〈f ′(x1), x− x1〉}. Starting from x0, the cutting-plane
algorithm generates points x1 and x2 = argminx∈X f2(x).

describes application of cutting-plane methods to solving combinatorial

optimization problems.

7.1.1 Nonsmooth Optimization

When f is a complicated nonsmooth function while the set X is simple, we

want to avoid explicit minimization of f in the algorithm. This can be done

by writing (7.1) in epigraph form as

min{ y | (x, y) ∈ Z } where Z = { (x, y) ∈ X ×R | f(x) ≤ y } . (7.2)

In this case, cutting planes can be generated by means of subgradients.

Recall that f ′(x̂) ∈ R
n is a subgradient of f at x̂ if

f(x) ≥ f(x̂) + 〈f ′(x̂), x− x̂〉 , x ∈ X . (7.3)

Thus, the right-hand side is a linear underestimator of f . Assume that

x̂ ∈ X. Then, the separation algorithm for the set Z can be constructed

as follows. If f(x̂) ≤ ŷ, then (x̂, ŷ) ∈ Z. If f(x̂) > ŷ, then the inequality

y ≥ f(x̂) + 〈f ′(x̂), x− x̂〉 (7.4)

defines a cutting plane separating (x̂, ŷ) from Z.

This leads to the algorithm proposed independently by Cheney and Gold-

7.1 Introduction to Cutting-plane Methods 189

stein (1959) and Kelley (1960). Starting with x0 ∈ X, it computes the next

iterate xt by solving

(xt, yt) ∈ argmin
(x,y)∈Zt

y where

Zt =
{
(x, y) ∈ X × R | y ≥ f(xi) + 〈f ′(xi), x− xi〉, i = 0, . . . , t− 1

}
.

(7.5)

Here, Zt is a polyhedral outer bound of Z defined by X and the cutting

planes from previous iterates {x0, . . . ,xt−1}. Problem (7.5) simplifies to

xt ∈ argmin
x∈X

ft(x) where ft(x) = max
i=0,...,t−1

[
f(xi) + 〈f ′(xi), x− xi〉

]
.

(7.6)

Here, ft is a cutting-plane model of f (see Figure 7.1(b)). Note that

(xt, ft(xt)) solves (7.5). By (7.3) and (7.6), f(xi) = ft(xi) for i = 0, . . . , t−1

and f(x) ≥ ft(x) for x ∈ X, that is, ft is an underestimator of f which

touches f at the points {x0, . . . ,xt−1}. By solving (7.6) we get not only an

estimate xt of the optimal point x∗ but also a lower bound ft(xt) on the

optimal value f(x∗). It is natural to terminate when f(xt) − ft(xt) ≤ ε,

which guarantees that f(xt) ≤ f(x∗) + ε. The method is summarized in

algorithm 7.2.

Algorithm 7.2 Cutting-plane algorithm in epigraph form

1: Initialization: t ← 0, x0 ∈ X, ε > 0
2: repeat
3: t ← t+ 1
4: Compute f(xt−1) and f ′(xt−1)
5: Update the cutting-plane model ft(x) ← maxi=0,...,t−1

[
f(xi) + 〈f ′(xi), x− xi〉

]
6: Let xt ∈ argminx∈X ft(x)
7: until f(xt)− ft(xt) ≤ ε

In Section 7.3, this algorithm is applied to multiple kernel learning. This

requires solving the problem

min{ f(x) | x ∈ X } where f(x) = max{ g(α,x) | α ∈ A } . (7.7)

X is a simplex, and function g is linear in x and quadratic negative

semi-definite in α. In this case, the subgradient f ′(x) equals the gradient

∇xg(α̂,x) where α̂ is obtained by solving a convex quadratic program

α̂ ∈ argmaxα∈A g(α,x).

190 Cutting-plane Methods in Machine Learning

7.1.2 Bundle Methods

Algorithm 7.2 may converge slowly (Nemirovskij and Yudin, 1983) because

subsequent solutions can be very distant, exhibiting a zig-zag behavior. Thus

many cutting planes do not actually contribute to the approximation of f

around the optimum x∗. Bundle methods (Kiwiel, 1983; Lemaréchal et al.,

1995) try to reduce this behavior by adding a stabilization term to (7.6).

The proximal bundle methods compute the new iterate as

xt ∈ argmin
x∈X

{ νt‖x− x+
t ‖22 + ft(x) } ,

where x+
t is a current prox-center selected from {x0, . . . ,xt−1} and νt is

a current stabilization parameter. The added quadratic term ensures that

the subsequent solutions are within a ball centered at x+
t whose radius

depends on νt. If f(xt) sufficiently decreases the objective, the decrease step

is performed by moving the prox-center as x+
t+1 := xt. Otherwise, the null

step is performed, x+
t+1 := x+

t . If there is an efficient line-search algorithm,

the decrease step computes the new prox-center x+
t+1 by minimizing f along

the line starting at x+
t and passing through xt. Though bundle methods

may improve the convergence significantly, they require two parameters: the

stabilization parameter νt and the minimal decrease in the objective which

defines the null step. Despite significantly influencing the convergence, there

is no versatile method for choosing these parameters optimally.

In Section 7.2, a variant of this method is applied to regularized risk

minimization which requires minimizing f(x) = g(x) + h(x) over Rn where

g is a simple (typically differentiable) function and h is a complicated

nonsmooth function. In this case, the difficulties with setting two parameters

are avoided because g naturally plays the role of the stabilization term.

7.1.3 Combinatorial Optimization

A typical combinatorial optimization problem can be formulated as

min{ 〈c,x〉 | x ∈ C } , (7.8)

where C ⊆ Z
n (often just C ⊆ {0, 1}n) is a finite set of feasible configura-

tions, and c ∈ R
n is a cost vector. Usually C is combinatorially large but

highly structured. Consider the problem

min{ 〈c,x〉 | x ∈ X } where X = convC . (7.9)

Clearly,X is a polytope (bounded convex polyhedron) with integral vertices.

Hence, (7.9) is a linear program. Since a solution of a linear program is always

7.2 Regularized Risk Minimization 191

attained at a vertex, problems (7.8) and (7.9) have the same optimal value.

The set X is called the integral hull of problem (7.8).

Integral hulls of hard problems are complex. If problem (7.8) is not polyno-

mially solvable, then inevitably the number of facets of X is not polynomial.

Therefore (7.9) cannot be solved explicitly. This is where algorithm 7.1 is

used. The initial polyhedron X0 ⊇ X is described by a tractable number

of linear inequalities, and usually it is already a good approximation of X,

often, but not necessarily, we also have X0 ∩ Z
n = C. The cutting-plane

algorithm then constructs a sequence of gradually tighter LP relaxations

of (7.8).

A fundamental result states that a linear optimization problem and the

corresponding separation problem are polynomial-time equivalent (Grötschel

et al., 1981). Therefore, for an intractable problem (7.8) there is no hope

of finding a polynomial algorithm to separate an arbitrary point from X.

However, a polynomial separation algorithm may exist for a subclass (even

intractably large) of linear inequalities describing X.

After this approach was first proposed by Dantzig et al. (1954) for the

travelling salesman problem, it became a breakthrough in tackling hard

combinatorial optimization problems. Since then, much effort has been

devoted to finding good initial LP relaxations X0 for many such problems,

subclasses of inequalities describing integral hulls for these problems, and

polynomial separation algorithms for these subclasses. This is the subject of

polyhedral combinatorics (e.g., Schrijver, 2003).

In Section 7.4, we focus on the NP-hard combinatorial optimization

problem arising in MAP inference in graphical models. This problem, in

its full generality, has not been properly addressed by the optimization

community. We show how its LP relaxation can be incrementally tightened

during a message-passing algorithm. Because message-passing algorithms

are dual, this can be understood as a dual cutting-plane algorithm: it does

not add constraints in the primal, but does add variables in the dual. The

sequence of approximations of the integral hull X (the marginal polytope)

can be seen as arising from lifting and projection.

7.2 Regularized Risk Minimization

Learning predictors from data is a standard machine learning problem.

A wide range of such problems are special instances of regularized risk

minimization. In this case, learning is often formulated as an unconstrained

192 Cutting-plane Methods in Machine Learning

minimization of a convex function:

w∗ ∈ argmin
w∈Rn

F (w) where F (w) = λΩ(w) +R(w) . (7.10)

The objective F : Rn → R, called regularized risk, is composed of a reg-

ularization term Ω: Rn → R and an empirical risk R : Rn → R, both of

which are convex functions. The number λ ∈ R+ is a predefined regular-

ization constant, and w ∈ R
n is a parameter vector to be learned. The

regularization term Ω is typically a simple, cheap-to-compute function used

to constrain the space of solutions in order to improve generalization. The

empirical risk R evaluates how well the parameter w explains the training

examples. Evaluation of R is often computationally expensive.

Example 7.1. Given a set of training examples {(x1, y1), . . . , (xm, ym)} ∈
(Rn × {+1,−1})m, the goal is to learn a parameter vector w ∈ R

n of a

linear classifier h : Rn → {−1,+1} which returns h(x) = +1 if 〈x, w〉 ≥ 0

and h(x) = −1 otherwise. Linear support vector machines (Cortes and

Vapnik, 1995) without bias learn the parameter vector w by solving (7.10)

with the regularization term Ω(w) = 1
2‖w‖22 and the empirical risk R(w) =

1
m

∑m
i=1max{0, 1−yi〈xi, w〉}, which in this case is a convex upper bound on

the number of mistakes the classifier h(x) makes on the training examples.

There is a long list of learning algorithms which at their core are solvers

of a special instance of (7.10), see, e.g., Schölkopf and Smola (2002). If F

is differentiable, (7.10) is solved by algorithms for a smooth optimization.

If F is nonsmooth, (7.10) is typically transformed to an equivalent prob-

lem solvable by off-the-shelf methods. For example, learning of the linear

SVM classifier in example 7.1 can be equivalently expressed as a quadratic

program. Because off-the-shelf solvers are often not efficient enough in prac-

tice, a huge effort has been put into development of specialized algorithms

tailored to particular instances of (7.10).

Teo et al. (2007, 2010) proposed a generic algorithm to solve (7.10) which

is a modification of the proximal bundle methods. The algorithm, called the

bundle method for risk minimization (BMRM), exploits the specific struc-

ture of the objective F in (7.10). In particular, only the risk term R is ap-

proximated by the cutting-plane model, while the regularization term Ω is

used without any change to stabilize the optimization. In contrast, standard

bundle methods introduce the stabilization term artificially. The resulting

BMRM is highly modular and was proved to converge to an ε-precise so-

lution in O(1ε) iterations. In addition, if an efficient line-search algorithm is

available, BMRM can be drastically accelerated with a technique proposed

by Franc and Sonnenburg (2008, 2010), and Teo et al. (2010). The acceler-

7.2 Regularized Risk Minimization 193

Algorithm 7.3 Bundle Method for Regularized Risk Minimization (BMRM)

1: input & initialization: ε > 0, w0 ∈ R
n, t ← 0

2: repeat
3: t ← t+ 1
4: Compute R(wt−1) and R′(wt−1)
5: Update the model Rt(w) ← maxi=0,...,t−1 R(wi) + 〈R′(wi), w −wi〉
6: Solve the reduced problem wt ← argminw Ft(w) where Ft(w) = λΩ(w) +Rt(w)
7: until F (wt)− Ft(wt) ≤ ε

ated BMRM has been shown to be highly competitive with state-of-the-art

solvers tailored to particular instances of (7.10).

In the next two sections, we describe the BMRM algorithm and its version

accelerated by line-search.

7.2.1 Bundle Method for Regularized Risk Minimization

Following optimization terminology, we will call (7.10) the master problem.

Using the approach of Teo et al. (2007), one can approximate the master

problem (7.10) by its reduced problem

wt ∈ argmin
w∈Rn

Ft(w) where Ft(w) = λΩ(w) +Rt(w) . (7.11)

The reduced problem (7.11) is obtained from the master problem (7.10) by

substituting the cutting-plane model Rt for the empirical risk R while the

regularization term Ω remains unchanged. The cutting-plane model reads

Rt(w) = max
i=0,...,t−1

[
R(wi) + 〈R′(wi), w −wi〉

]
, (7.12)

where R′(w) ∈ R
n is a subgradient of R at point w. Since R(w) ≥ Rt(w),

∀w ∈ R
n, the reduced problem’s objective Ft is an underestimator of the

master objective F . Starting from w0 ∈ R
n, the BMRM of Teo et al.

(2007) (Algorithm 7.3) computes a new iterate wt by solving the reduced

problem (7.11). In each iteration t, the cutting-plane model (7.12) is updated

by a new cutting plane computed at the intermediate solution wt, leading to

a progressively tighter approximation of F . The algorithm halts if the gap

between the upper bound F (wt) and the lower bound Ft(wt) falls below a

desired ε, meaning that F (wt) ≤ F (w∗) + ε.

In practice, the number of cutting planes t required before the algorithm

converges is typically much lower than the dimension n of the parameter

vector w ∈ R
n. Thus, it is beneficial to solve the reduced problem (7.11)

in its dual formulation. Let A = [a0, . . . ,at−1] ∈ R
n×t be a matrix whose

columns are the subgradients ai = R′(wi), and let b = [b0, . . . , bt−1] ∈ R
t be

194 Cutting-plane Methods in Machine Learning

a column vector whose components equal bi = R(wi)− 〈R′(wi), wi〉. Then
the reduced problem (7.11) can be equivalently expressed as

wt ∈ argmin
w∈Rn,ξ∈R

[
λΩ(w)+ξ

]
s.t. ξ ≥ 〈w, ai〉+bi , i = 0, . . . , t−1 . (7.13)

The Lagrange dual of (7.13) reads (Teo et al., 2010, theorem 2)

αt ∈ argmin
α∈Rt

[−λΩ∗(−λ−1Aα)+ 〈α, b〉] s.t. ‖α‖1 = 1 ,α ≥ 0 , (7.14)

where Ω∗ : Rn → R
t denotes the Fenchel dual of Ω defined as

Ω∗(μ) = sup
{〈w, μ〉 − Ω(w)

∣∣ w ∈ R
n
}
.

Having the dual solution αt, the primal solution can be computed by

solving wt ∈ argmaxw∈Rn

[〈w, −λ−1Aαt〉 −Ω(w)
]
, which for differentiable

Ω simplifies to wt = ∇μΩ
∗(−λ−1Aαt).

Example 7.2. For the quadratic regularizer Ω(w) = 1
2‖w‖22 the Fenchel

dual reads Ω∗(μ) = 1
2‖μ‖22. The dual reduced problem (7.14) boils down to

the quadratic program

αt ∈ argmin
α∈Rt

[
− 1

2λ
αTATAα+αTb

]
s.t. ‖α‖1 = 1 ,α ≥ 0,

and the primal solution can be computed analytically by wt = −λ−1Aαt.

The convergence of Algorithm 7.3 in a finite number of iterations is

guaranteed by the following theorem.

Theorem 7.1. (Teo et al., 2010, theorem 5). Assume that (i) F (w) ≥ 0,

∀w ∈ R
n, (ii) maxg∈∂R(w) ‖g‖2 ≤ G for all w ∈ {w0, . . . ,wt−1} where

∂R(w) denotes the subdifferential of R at point w, and (iii) Ω∗ is twice

differentiable and has bounded curvature, that is, ‖∂2Ω∗(μ)‖ ≤ H∗ for all

μ ∈ {μ′ ∈ R
t | μ′ = λ−1Aα , ‖α‖1 = 1 ,α ≥ 0 } where ∂2Ω∗(μ) is the

Hessian of Ω∗ at point μ. Then Algorithm 7.3 terminates after at most

T ≤ log2
λF (0)

G2H∗ +
8G2H∗

λε
− 1

iterations for any ε < 4G2H∗λ−1.

Furthermore, for a twice differentiable F with bounded curvature, Al-

gorithm 7.3 requires only O(log 1
ε) iterations instead of O(1ε) (Teo et al.,

2010, theorem 5). The most constraining assumption of theorem 7.1 is

that it requires Ω∗ to be twice differentiable. This assumption holds, for

instance, for the quadratic Ω(w) = 1
2‖w‖22 and the negative entropy

7.2 Regularized Risk Minimization 195

Ω(w) =
∑n

i=1wi logwi regularizers. Unfortunately, the theorem does not

apply to the �1-norm regularizer Ω(w) = ‖w‖1 that is often used to enforce

sparse solutions.

7.2.2 BMRM Algorithm Accelerated by Line-search

BMRM can be drastically accelerated whenever an efficient line-search

algorithm for the master objective F is available. An accelerated BMRM

for solving linear SVM problems (c.f. Example 7.1) was first proposed by

Franc and Sonnenburg (2008). Franc and Sonnenburg (2010) generalized

the method for solving (7.10) with an arbitrary risk R and a quadratic

regularizer Ω(w) = 1
2‖w‖22. Finally, Teo et al. (2010) proposed a fully general

version imposing no restrictions on Ω and R. BMRM accelerated by the line-

search, in Teo et al. (2010) called LS-BMRM, is described by Algorithm 7.4.

Algorithm 7.4 BMRM accelerated by line-search (LS-BMRM)

1: input & initialization: ε ≥ 0, θ ∈ (0, 1], wb
0, w

c
0 ← wb

0, t ← 0
2: repeat
3: t ← t+ 1
4: Compute R(wc

t−1) and R′(wc
t−1)

5: Update the model Rt(w) ← maxi=1,...,t−1 R(wc
i) + 〈R′(wc

i), w −wc
i 〉

6: wt ← argminw Ft(w) where Ft(w) = λΩ(w) +Rt(w)
7: Line-search: kt ← argmink≥0 F (wb

t + k(wt −wb
t−1))

8: wb
t ← wb

t−1 + kt(wt −wb
t−1)

9: wc
t ← (1− θ)wb

t−1 + θwt

10: until F (wb
t)− Ft(wt) ≤ ε

Unlike BMRM, LS-BMRM simultaneously optimizes the master and re-

duced problems’ objectives F and Ft, respectively. In addition, LS-BMRM

selects cutting planes that are close to the best-so-far solution which has a

stabilization effect. Moreover, such cutting planes have a higher chance of

actively contributing to the approximation of the master objective F around

the optimum w∗. In particular, there are three main changes compared to

BMRM:

1. LS-BMRM maintains the best-so-far solution wb
t obtained during the

first t iterations, that is, F (wb
0), . . . , F (wb

t) is a monotonically decreasing

sequence.

2. The new best-so-far solutionwb
t is found by searching along a line starting

at the previous solution wb
t−1 and crossing the reduced problem’s solution

wt. This is implemented on lines 7 and 8.

3. The new cutting plane is computed to approximate the master objective

196 Cutting-plane Methods in Machine Learning

F at the point wc
t ← (1−θ)wb

t +θwt (line 9), which lies on the line segment

between the best-so-far solution wb
t and the reduced problem’s solution wt.

θ ∈ (0, 1] is a prescribed parameter. Note that wc
t must not be set directly

to wb
t in order to guarantee convergence (i.e., θ = 0 is not allowed). It was

found experimentally (Franc and Sonnenburg, 2010) that the value θ = 0.1

works consistently well.

LS-BMRM converges to and ε-precise solution in O(1ε) iterations:

Theorem 7.2. (Teo et al., 2010, theorem 7). Under the assumption of

theorem 7.1 Algorithm 7.4 converges to the desired precision after

T ≤ 8G2H∗

λε

iterations for any ε < 4G2H∗λ−1.

At line 7 LS-BMRM requires solution of a line-search problem:

k∗ = argmin
k≥0

f(k) where f(k) = λΩ(w′ + kw) +R(w′ + kw) . (7.15)

Franc and Sonnenburg (2008, 2010) proposed a line-search algorithm which

finds the exact solution of (7.15) if Ω(w) = 1
2‖w‖22 and

R(w) =

m∑
i=1

max
j=1,...,p

(uij + 〈vij , w〉) , (7.16)

where uij ∈ R and vij ∈ R
n, i = 1, . . . ,m, j = 1, . . . , p, are fixed scalars

and vectors, respectively. In this case, the subdifferential of ∂f(k) can be

described by O(pm) line segments in 2D. Problem (7.15) can be replaced

by solving ∂f(k) ∈ 0 w.r.t. k, which is equivalent to finding among the line

segments the one intersecting the x-axis. This line-search algorithm finds

the exact solution of (7.15) in O(mp2 + mp logmp) time. The risk (7.16)

emerges in most variants of the support vector machines learning algorithms,

such as binary SVMs, multi-class SVMs, or SVM regression. Unfortunately,

the algorithm is not applicable if p is huge, which excludes applications to

structured-output SVM learning (Tsochantaridis et al., 2005).

7.2.3 Conclusions

A notable advantage of BMRM is its modularity and simplicity. One only

needs to supply a procedure to compute the risk R(w) and its subgradient

R′(w) at a point w. The core part of BMRM, that is, solving the reduced

problem, remains unchanged for a given regularizer Ω. Thus, many exist-

7.3 Multiple Kernel Learning 197

ing learning problems can be solved by a single optimization technique.

Moreover, one can easily experiment with new learning formulations just by

specifying the risk term R and its subgradient R′, without spending time on

development of a new solver for that particular problem.

The convergence speeds of BMRM and the accelerated LS-BMRM have

been extensively studied on a variety of real-life problems in domains ranging

from text classification, bioinformatics, and computer vision to computer

security systems (Teo et al., 2007; Franc and Sonnenburg, 2008, 2010; Teo

et al., 2010). Compared to the state-of-the-art dedicated solvers, BMRM

is typically slightly slower, though, it is still competitive and practically

useful. On the other hand, the LS-BMRM has proved to be among the

fastest optimization algorithms for a variety of problems. Despite the similar

theoretical convergence times, in practice the LS-BMRM is on average an

order of magnitude faster than BMRM.

The most time-consuming part of BMRM, as well as of LS-BMRM, is

the evaluation of the risk R and its subgradient R′. Fortunately, the risk,

and thus also its subgradient, typically are additively decomposable, which

allows for an efficient parallelization of their computation. The effect of the

parallelization on the reduction of the computational time is empirically

studied in Franc and Sonnenburg (2010) and Teo et al. (2010).

The relatively high memory requirements of BMRM/LS-BMRM may be

the major deficiency if the method is applied to large-scale problems. The

method stores in each iteration t a cutting plane of size O(n), where n is the

dimension of the parameter vector w ∈ R
n, which leads to O(nt) memory

complexity not counting the reduced problem, which is typically much less

memory demanding. To alleviate the problem, Teo et al. (2010) propose

a limited memory variant of BMRM maintaining up to K cutting planes

aggregated from the original t cutting planes. Though that variant does not

have an impact on the theoretical upper bound of the number of iterations,

in practice it may significantly slow down the convergence.

The implementations of BMRM and LS-BMRM can be found in the

SHOGUN machine learning toolbox (Sonnenburg et al., 2010) or in the

open-source packages BMRM (http://users.cecs.anu.edu.au/~chteo/

BMRM.html) and LIBOCAS (http://cmp.felk.cvut.cz/~xfrancv/ocas/

html/).

7.3 Multiple Kernel Learning

Multiple kernel learning (MKL) (e.g., Bach et al., 2004) has recently become

an active line of research. Given a mapping Φ : X �→ R
n that represents each

198 Cutting-plane Methods in Machine Learning

object x ∈ X in n-dimensional feature space,1, a kernel machine employs a

kernel function

k(x,x′) = 〈Φ(x),Φ(x′)〉
to compare two objects x and x′ without explicitly computing Φ(x). Ulti-

mately, a kernel machine learns an α-weighted linear combination of kernel

functions with bias b

h(x) =

m∑
i=1

αik(xi,x) + b , (7.17)

where x1, . . . ,xm is a set of training objects. For example, the support

vector machine (SVM) classifier uses the sign of h(x) to assign a class label

y ∈ {−1,+1} to the object x (e.g., Schölkopf and Smola, 2002).

Traditionally, just a single kernel function has been used. However, it has

proved beneficial to consider not just a single kernel, but multiple kernels in

various applications (see Section 7.3.4). Currently, the most popular way to

combine kernels is via convex combinations, that is, introducing

B =
{
β ∈ R

K
∣∣‖β‖1 = 1 ,β ≥ 0} , (7.18)

the composite kernel is defined as

k(x,x′) =
K∑
k=1

βkkk(x,x
′) , β ∈ B , (7.19)

where kk : X×X→ R, k = 1, . . . ,K is a given set of positive-definite kernels

(Schölkopf and Smola, 2002). Now, in contrast to single kernel algorithms,

MKL learns, in addition to the coefficients α and b, the weighting over

kernels β.

In Section 7.3.1, we review convex MKL for classification, and in Sec-

tion 7.3.2, we show that this problem can be cast as minimization of a

complicated convex function over a simple feasible set. In Section 7.3.3, we

derive a CPA that transforms the MKL problem into a sequence of linear

and quadratic programs, the latter of which can be efficiently solved by

existing SVM solvers. Section 7.3.4 concludes this part.

1. For the sake of simplicity, we consider the n-dimensional Euclidean feature space.
However, all the methods in this section can be applied even if the objects are mapped
into arbitrary reproducing kernel Hilbert space (Schölkopf and Smola, 2002).

7.3 Multiple Kernel Learning 199

7.3.1 Convex Multiple Kernel Learning

Various MKL formulations have been proposed (Lanckriet et al., 2004a;

Bach et al., 2004; Sonnenburg et al., 2006a; Varma and Babu, 2009; Kloft

et al., 2009; Bach, 2008; Nath et al., 2009; Cortes et al., 2009). Here we focus

solely on the convex optimization problem for classification as it was first

stated by Zien and Ong (2007) and Rakotomamonjy et al. (2007). The same

authors have shown that the mixed-norm approaches of Bach et al. (2004)

and Sonnenburg et al. (2006a) are equivalent.

Let {(x1, y1), . . . , (xm, ym)} ∈ (X × {−1,+1})m be a training set of

examples of input x and output y assumed to be i.i.d. from an unknown

distribution p(x, y). The input x is translated into a compositional feature

vector (Φ1(x); . . . ; ΦK(x)) ∈ R
n1+···+nk that is constructed by a set of K

mappings Φk : X → R
nk , k = 1, . . . ,K. The goal is to predict y from an

unseen x by using a linear classifier,

y = sgn
(
h(x)

)
where h(x) =

K∑
k=1

〈wk, Φk(x)〉+ b , (7.20)

whose parameters wk ∈ R
nk , k = 1, . . . ,K, b ∈ R, are learned from the

training examples. Using the definition x
0 = 0 if x = 0 and ∞ otherwise,

the parameters of the classifier (7.20) can be obtained by solving the

following convex primal MKL optimization problem (Zien and Ong, 2007;

Rakotomamonjy et al., 2007):

min
1

2

K∑
k=1

1

βk
‖wk‖22 + C

m∑
i=1

ξi (7.21)

w.r.t. β ∈ B ,w = (w1, . . . ,wK) ∈ R
n1+···+nK , ξ ∈ R

m, b ∈ R

s.t. ξi ≥ 0 and yi

(
K∑
k=1

〈wk,Φk(xi)〉+ b

)
≥ 1− ξi, i = 1, . . . ,m .

Analogously to the SVMs, the objective of (7.21) is composed of two terms.

The first (regularization) term constrains the spaces of the parameters wk,

k = 1, . . . ,K in order to improve the generalization of the classifier (7.20).

The second term, weighted by a prescribed constant C > 0, is an upper

bound on the number of mistakes the classifier (7.20) makes on the training

examples. In contrast to SVMs, positive weights β with �1-norm constraint

(see (7.18)) are introduced to enforce block-wise sparsity, that is, rather few

blocks of features Φk are selected (have non-zero weight wk). Since
1
βk
� 1

for small βk, non-zero components of wk experience stronger penalization,

200 Cutting-plane Methods in Machine Learning

and thus the smaller βk is, the smoother wk is. By definition, wk = 0 if

βk = 0. Note that for K = 1, the MKL problem (7.21) reduces to the

standard two-class linear SVM classifier.

7.3.2 Min-Max Formulation of Multiple Kernel Learning

To apply kernels, the primal MKL problem (7.21) must be reformulated

such that the feature vectors Φk(xi) appear in terms of dot products only.

Following Rakotomamonjy et al. (2007), we can rewrite (7.21) as

min{F (β) | β ∈ B} , (7.22)

where F (β) is a shortcut for solving the standard SVM primal on the β-

weighted concatenated feature space:

F (β) = min
1

2

K∑
k=1

1

βk
‖wk‖22 + C

m∑
i=1

ξi (7.23)

w.r.t. w = (w1, . . . ,wK) ∈ R
n1+···+nK , ξ ∈ R

m, b ∈ R

s.t. ξi ≥ 0 and yi

(
K∑
k=1

〈wk,Φk(xi)〉+ b

)
≥ 1− ξi , i = 1, . . . ,m.

Note that in (7.23) the weights β are fixed and the minimization is over only

(w, ξ, b). The Lagrange dual of (7.23) reads (Rakotomamonjy et al., 2007)

D(β) = max{S(α,β) | α ∈ A} where S(α,β) =
K∑
k=1

βkSk(α) , (7.24)

and Sk and A are defined as follows:

Sk(α) =

m∑
i=1

αi − 1

2

m∑
i=1

m∑
j=1

αiαjyiyj〈Φk(xi), Φk(xj)〉

A = {α ∈ R
m | 0 ≤ αi ≤ C , i = 1, . . . ,m ,

m∑
i=1

αiyi = 0} .
(7.25)

Note that (7.24) is equivalent to solving the standard SVM dual with

the composite kernel (7.19). Because (7.23) is convex and the Slater’s

qualification condition holds, the duality gap is zero, that is. F (β) = D(β).

Substituting D(β) for F (β) in (7.22) leads to an equivalent min-max MKL

problem:

min{D(β) | β ∈ B} . (7.26)

7.3 Multiple Kernel Learning 201

Let β∗ ∈ argmaxβ∈B D(β) and α∗ ∈ argmaxα∈A S(α,β∗). Then the solu-

tion of the primal MKL problem (7.21) can be computed analytically as

w∗
k = β∗

k

m∑
i=1

α∗
i yiΦk(xi) and b∗ = yi−

K∑
k=1

〈w∗
k, Φk(xi)〉 , i ∈ J , (7.27)

where J = {j ∈ {1, . . . ,m} | 0 < α∗
i < C}. The equalities (7.27) follow

from the Karush-Kuhn-Tucker optimality conditions of problem (7.23) (e.g.,

Schölkopf and Smola, 2002). Note that in practice, b∗ is computed as an

average over all |J | equalities, which is numerically more stable.

By substituting (7.27) and kk(xi,x) = 〈Φk(xi), Φk(x)〉 in the linear

classification rule (7.20), we obtain the kernel classifier (7.17) with the

composite kernel (7.19). In addition, after substituting kk(xi,xj) for the

dot products 〈Φk(xi), Φk(xj)〉 in (7.25) we can compute all the parameters

of the kernel classifier without explicitly using the features Φk(xi).

7.3.3 Solving MKL via Cutting-planes

In this section, we will apply the cutting-plane Algorithm 7.2 to the min-max

MKL problem (7.26).

It follows from (7.24) that the objective D is convex, since it is a point-

wise maximum over an infinite number of functions S(α,β), α ∈ A,

which are linear in β (e.g., Boyd and Vandenberghe, 2004). By Danskin’s

theorem (Bertsekas, 1999, proposition B.25), the subgradient of D at point

β equals the gradient ∇βS(α̂,β) where α̂ ∈ argmaxα∈A S(α,β), that is,

the subgradient reads

D′(β) = [S1(α̂); . . . ;SK(α̂)] ∈ R
K . (7.28)

Note that computing D(β) and its subgradient D′(β) requires solving the

convex quadratic program (7.24) which is equivalent to the standard SVM

dual computed on the composite kernel (7.19) with a fixed weighting β

(Rakotomamonjy et al., 2007). Thus, existing SVM solvers are directly

applicable.

Having the means to compute D and its subgradient D′, we can approxi-

mate the objective D by its cutting-plane model

Dt(β) = max
i=0,...,t−1

[
D(βi) + 〈D′(βi), β − βi〉

]
= max

i=0,...,t−1
〈β, D′(βi)〉 . (7.29)

The points {β0, . . . ,βt−1} can be computed by Kelley’s CPA (Algorithm 7.2)

202 Cutting-plane Methods in Machine Learning

Algorithm 7.5 Cutting-plane algorithm for solving the MKL problem. The al-

gorithm requires solving a simple LP (line 7) and a convex QP (line 3) which is

equivalent to the standard SVM dual.

1: Initialization: t ← 0, β0 ∈ B (e.g. β0 = [1
K
; . . . ; 1

K
]), ε > 0

2: repeat
3: Let αt ∈ argmaxα∈A S(α, βt)
4: Compute D(βt) ← S(αt,βt) and D′(βt) = [S1(αt); . . . ;SK(αt)]
5: t ← t+ 1
6: Update the cutting plane model Dt(β) ← maxi=0,...,t−1〈D′(βi), β〉
7: Let βt ∈ argminβ∈B Dt(β)
8: until D(βt−1)−Dt(βt) ≤ ε

as follows. Starting with β0 ∈ B, a new iterate is obtained by solving

βt ∈ argmin
β∈B

Dt(β) , (7.30)

which can be cast as a linear program. Note that since the feasible set B is

bounded, so is the solution of (7.30). In each iteration t, the obtained point

βt is an estimate of the optimal β∗, and it is also used to update the cutting-

plane model (7.29). The process is repeated until the gap between D(βt−1)

and Dt(βt) falls below a prescribed ε, meaning that D(βt) ≤ D(β∗) + ε

holds. Algorithm 7.5 summarizes the method.

Originally, Sonnenburg et al. (2006a) converted problem (7.26) into a semi-

infinite linear problem (SILP) that was solved by column generation. How-

ever, the SILP is equivalent to the epigraph form of (7.26) (see Section 7.1.1),

and the column generation results in exactly the same Algorithm 7.5.

Since large-scale SVM training problems are usually solved by decom-

position techniques such as chunking (e.g., used in Joachims, 1999), one

may significantly speedup Algorithm 7.5 by alternately solving for α and β

within the SVM solver, avoiding solution of the full SVM model with high

precision (Sonnenburg et al., 2006a). Furthermore, as noted in Section 7.2.1,

potential oscillations occurring in cutting-plane methods can be reduced by

the bundle methods, as has been done by Xu et al. (2009a).

7.3.4 Conclusions

Multiple kernel learning has been used in various applications across diverse

fields such as bioinformatics, image analysis, signal processing, and biomed-

ical applications like brain-computer interfaces. It is being applied to fusing

heterogeneous data (Lanckriet et al., 2004b; Sonnenburg et al., 2006b; Zien

and Ong, 2007; Rakotomamonjy et al., 2008; Varma and Babu, 2009), to

understand the learned kernel classifier (Sonnenburg et al., 2005), to fea-

7.4 MAP Inference in Graphical Models 203

ture selection (Szafranski et al., 2008; Xu et al., 2009b; Subrahmanya and

Shin, 2010), or to automated model selection (Sonnenburg et al., 2006a).

In this section, we have illustrated that the min-max formulation of MKL

problem (7.22) can be converted into a sequence of linear and quadratic pro-

grams, of which the LP is simple and the QP can be directly solved using

any of the existing SVM solvers. There exist further extensions of this ap-

proach not discussed in this section, such as an infinite dimensional version

of the min-max MKL which was proposed by Argyriou et al. (2006). We

have provided efficient implementations of MKL in the SHOGUN machine

learning toolbox (Sonnenburg et al., 2010).

7.4 MAP Inference in Graphical Models

MAP inference in graphical models (Wainwright and Jordan, 2008) leads to

the following NP-hard combinatorial optimization problem: given a set of

variables and a set of functions of (small) subsets of the variables, maximize

the sum of the functions over all the variables . This is also known as the

weighted constraint satisfaction problem (Rossi et al., 2006, chapter 9).

The problem has a natural LP relaxation, proposed independently by

Shlezinger (1976), Koster et al. (1998), and Wainwright et al. (2005). It is

crucial to optimize the LP in the dual because primal methods do not scale to

large problems, which is not done in Koster et al. (1998). The relaxation was

extended by Wainwright et al. (2005), Wainwright and Jordan (2008), and

Johnson et al. (2007) to a hierarchy of progressively tighter LP relaxations.

Komodakis et al. (2007) pointed out that the LP approach can be seen as a

dual decomposition of the problem to tractable subproblems.

Several authors have proposed to tighten the relaxation incrementally.

First, primal methods were proposed by Koster et al. (1998), Sontag and

Jaakkola (2007), and Sontag (2007). Then came dual methods (Werner,

2008a, 2010; Kumar and Torr, 2008; Sontag et al., 2008; Komodakis and

Paragios, 2008). Not all of the authors related these incremental schemes to

cutting-plane methods.

We revisit here the approach of Werner (2008a, 2010), which, we believe,

captures the very core of the dual cutting-plane approach to MAP inference

in a clean and transparent way. It is a generalization of the dual LP relax-

ation approach of Shlezinger (1976) and the max-sum diffusion algorithm of

Kovalevsky and Koval, which have recently been reviewed by Werner (2005,

2007).

The approach is surprisingly simple and general. Every subset of the vari-

ables is assigned a function (“interaction”), all of them except a small part

204 Cutting-plane Methods in Machine Learning

(which defines the problem) being initially zero. Max-sum diffusion passes

messages between pairs of the variable subsets, acting as reparameterizations

of the problem which monotonically decrease its upper bound. While in the

extreme case all pairs of variable subsets are coupled like this, coupling only

some of them results in a relaxation of the problem. At any time during

diffusion we can tighten the relaxation by coupling new pairs—this results

in an incremental scheme, recognized as a dual cutting-plane method.

After introducing notation, we construct the integer hull of the problem

and the hierarchy of its LP relaxations in Section 7.4.2. In Sections 7.4.3

and 7.4.4 we dualize the LP relaxation and describe the max-sum diffusion

algorithm which optimizes the dual. In Section 7.4.5 we augment this to

a dual cutting-plane algorithm and discuss the corresponding separation

problem. Section 7.4.6 explains the geometry of this cutting-plane algorithm

in the primal domain, relating it to the marginal polytope.

7.4.1 Notation and Problem Definition

Let V be an ordered set of variables (the order on V is used only for notation

consistency). A variable v ∈ V attains states xv ∈ Xv, where Xv is the

(finite) domain of the variable. The joint domain of a subset A ⊆ V of the

variables is the Cartesian productXA =
∏

v∈A Xv, where the order of factors

is given by the order on V . A tuple xA ∈ XA is a joint state of variables A.

An interaction with scope A ⊆ V is a function θA: XA → R = R ∪ {−∞}.
Let E ⊆ 2V be a hypergraph on V (a set of subsets of V). Every variable

subset A ⊆ V is assigned an interaction, while θA is identically zero whenever

A /∈ E. Having to deal with so many interactions may seem scary—but it

will always be evident that the vast majority of them do not contribute to

sums and are never visited in algorithms. Our task is to compute

max
xV ∈XV

∑
A∈E

θA(xA) = max
xV ∈XV

∑
A⊆V

θA(xA) . (7.31)

For instance, if V = (1, 2, 3, 4) and E = {(1, 3, 4), (2, 3), (2, 4), (3)}, then
(7.31) reads max

x1,x2,x3,x4

[θ134(x1, x3, x4) + θ23(x2, x3) + θ24(x2, x4) + θ3(x3)].

Note, that since V is an ordered set, we use (· · ·) rather than {· · · } to

denote V and its subsets.

We will use T = { (A, xA) | A ⊆ V, xA ∈ XA } to denote the set of all

joint states of all variable subsets (T stands for “tuples”). All interactions

θA, A ⊆ V , will be understood as a single vector θ ∈ R
T .

7.4 MAP Inference in Graphical Models 205

7.4.2 The Hierarchy of LP Relaxations

We define a mapping δ: XV → {0, 1}T as follows: δA(yA)(xV) equals 1

if the joint state yA is the restriction of joint state xV on variables A,

and 0 otherwise. Here, δA(yA)(xV) denotes the (A, yA)-component of vector

δ(xV) ∈ {0, 1}T . This lets us write the objective function of (7.31) as a

scalar product:∑
A⊆V

θA(xA) =
∑
A⊆V

∑
yA

θA(yA) δA(yA)(xV) = 〈θ, δ(xV)〉 .

Problem (7.31) can now be reformulated as

max
xV ∈XV

∑
A⊆V

θA(xA) = max
xV ∈XV

〈θ, δ(xV)〉 = max
μ∈δ(XV)

〈θ,μ〉 = max
μ∈conv δ(XV)

〈θ,μ〉

where δ(XV) = { δ(xV) | xV ∈ XV }. This expresses problem (7.31) in the

form (7.9), as a linear optimization over the integral hull conv δ(XV) ⊆
[0, 1]T .

Let I = { (A,B) | B ⊆ A ⊆ V } denote the set of hyperedge pairs related

by inclusion, that is, the inclusion relation on 2V . For any J ⊆ I, we define

a polytope M(J) to be the set of vectors μ ∈ [0, 1]T satisfying∑
xA\B

μA(xA) = μB(xB) , (A,B) ∈ J, xB ∈ XB , (7.32a)∑
xA

μA(xA) = 1 , A ⊆ V . (7.32b)

What is this object? Any μ ∈M(J) is a set of distributions μA: XA → [0, 1]

over every subset A ⊆ V of the variables. Constraint (7.32b) normalizes the

distributions. Constraint (7.32a) couples pairs of distributions, imposing μB

as the marginal of μA whenever (A,B) ∈ J . For example, if A = (1, 2, 3, 4)

and B = (2, 4), then (7.32a) reads
∑

x1,x3
μ1234(x1, x2, x3, x4) = μ24(x2, x4).

For brevity, we will use the shorthand M(I) = M. We claim that

conv δ(XV) = M . (7.33)

To see it, let us write a convex combination of the elements of δ(XV),

μ =
∑
xV

μV (xV) δ(xV) , (7.34)

where μV (xV) denotes the coefficients of the convex combination. But μV is

206 Cutting-plane Methods in Machine Learning

already part of μ. The (A, yA)-component of vector (7.34) reads

μA(yA) =
∑
xV

μV (xV) δA(yA)(xV) =
∑
yV \A

μV (yV) .

But this is (7.32a) for (A,B) = (V,A).

By imposing only a subset of all possible marginalization constraints

(7.32a), an outer relaxation of the integral hull conv δ(XV) = M is obtained.

Namely, for any J ⊆ I we have M(J) ⊇M, and hence

max{ 〈θ,μ〉 | μ ∈M(J) } (7.35)

is a linear programming relaxation of problem (7.31), that is, its optimum is

an upper bound on (7.31). All possible relaxations form a partially ordered

hierarchy, indexed by J ⊆ I. Figure 7.2 shows examples.

The hierarchy could be made finer-grained by also selecting subsets of joint

states, that is, by imposing marginalization equality (7.32a) for (A,B, xB) ∈
J where J ⊆ I = { (A,B, xB) | B ⊆ A ⊆ V, xB ∈ XB }.

123 124 134 234

13

1234

12 14 23 24 34

4321

123 124 134 234

13

1234

12 14 23 24 34

4321

123 124 134 234

13

1234

12 14 23 24 34

4321

(a) (b) (c)

Figure 7.2: The Hasse diagram of the set 2V of all subsets of V = (1, 2, 3, 4). The
nodes depict hyperedges A ⊆ V (with hyperedge ∅ omitted) and the arcs depict
hyperedge pairs (A,B) ∈ I. The hyperedges in circles form the problem hypergraph
E = {(1), (2), (3), (4), (1, 2), (1, 4), (2, 3), (2, 4), (3, 4)}, and the interactions over the
non circled hyperedges are zero. Any subset J ⊆ I of the arcs yields one possible
relaxation (7.35) of problem (7.31). (a), (b), and (c) show three example relaxations,
with J depicted as thick arcs.

7.4.3 The Dual of the LP Relaxation

Rather than solving the linear program (7.35) directly, it is much better to

solve its dual. This dual is constructed as follows. Let matrices A and B be

such that Aμ = 0 and Bμ = 1 are the sets of equalities (7.32a) and (7.32b),

7.4 MAP Inference in Graphical Models 207

respectively. Then (7.35) can be written as the left linear program below:

〈θ,μ〉 → max 〈ψ,1〉 → min (7.36a)

Aμ = 0 ϕ ≶ 0 (7.36b)

Bμ = 1 ψ ≶ 0 (7.36c)

μ ≥ 0 ϕA+ψB ≥ θ (7.36d)

On the right we wrote the LP dual, such that in (7.36b-d) a constraint and

its Lagrange multiplier are always on the same line (≶ 0 means that the

variable vector is unconstrained). By eliminating the variables ψ, the dual

reads

min
ϕ

∑
A⊆V

max
xA

θϕA(xA), (7.37)

where we abbreviated θϕ = θ −ϕA. The components of vector θϕ read

θϕA(xA) = θA(xA)−
∑

B|(B,A)∈J
ϕBA(xA) +

∑
B|(A,B)∈J

ϕAB(xB) (7.38)

where ϕ = {ϕAB(xB) | (A,B) ∈ J, xB ∈ XB }. Next we explain the

meaning of (7.38) and (7.37).

A reparameterization is a transformation of θ that preserves the objective

function
∑

A⊆V θA of problem (7.31). The simplest reparameterization is

done as follows: pick two interactions θA and θB with B ⊆ A, add an

arbitrary function (a “message”) ϕAB: XB → R to θA, and subtract the

same function from θB :

θA(xA)← θA(xA) + ϕAB(xB) , xA ∈ XA , (7.39a)

θB(xB)← θB(xB)− ϕAB(xB) , xB ∈ XB . (7.39b)

For instance, if A = (1, 2, 3, 4) and B = (2, 4), then we add a function

ϕ24(x2, x4) to θ1234(x1, x2, x3, x4) and subtract ϕ24(x2, x4) from θ24(x2, x4).

This preserves θA + θB (because ϕAB cancels out), and hence
∑

A⊆V θA
as well. Applying reparameterization (7.39) to all pairs (A,B) ∈ J yields

(7.38).

Thus, (7.38) describes reparameterizations, that is, for every xV and ϕ we

have ∑
A⊆V

θA(xA) =
∑
A⊆V

θϕA(xA) .

In addition (7.38) also preserves (for feasible μ) the objective of the primal

program (7.36): Aμ = 0 implies 〈θϕ,μ〉 = 〈θ −ϕA,μ〉 = 〈θ,μ〉.

208 Cutting-plane Methods in Machine Learning

By the well-known max-sum dominance, for any θ we have

max
xV

∑
A⊆V

θA(xA) ≤
∑
A⊆V

max
xA

θA(xA) , (7.40)

so the right-hand side of (7.40) is an upper bound on (7.31), which shows that

the dual (7.37) minimizes an upper bound on (7.31) by reparameterizations .

Note that for each (A,B) ∈ J , marginalization constraint (7.32a) corre-

sponds via duality to message ϕAB. The larger J is, the larger the set of

reparameterizations (7.38) and hence the smaller the optimal value of (7.37).

When is inequality (7.40) (and hence the upper bound) tight? It happens

if and only if the independent maximizers of the interactions agree on a

common global assignment, that is, if there exists yV ∈ XV such that

yA ∈ argmax
xA

θA(xA) , A ⊆ V .

We will further refer to the set argmaxxA
θA(xA) as the active joint states

of interaction θA. The test can be cast as the constraint satisfaction problem

(CSP) (Mackworth, 1991; Rossi et al., 2006) formed by the active joint states

of all the interactions (Shlezinger, 1976; Werner, 2007, 2010). Thus, if after

solving (7.37) this CSP is satisfiable for θϕ, the relaxation is tight and we

have solved our instance of problem (7.31) exactly. Otherwise, we have only

an upper bound on (7.31).

7.4.4 Max-sum diffusion

Max-sum diffusion is a simple convergent “message-passing” algorithm to

tackle the dual LP. It seeks to reparameterize θ such that

max
xA\B

θA(xA) = θB(xB) , (A,B) ∈ J, xB ∈ XB . (7.41)

The algorithm repeats the following iteration:

Enforce (7.41) for a single pair (A,B) ∈ J by reparameterization (7.39).

This is done by setting ϕAB(xB) = [θB(xB)−maxxA\B θA(xA)]/2 in (7.39).

The algorithm converges to a fixed point when (7.41) holds for all (A,B) ∈ J .

Originally (Kovalevsky and Koval) max-sum diffusion was formulated for

problems with only binary (no unary) interactions. The generalization (7.41)

by Werner (2008a, 2010) is interesting because (7.41) has exactly the same

form as (7.32a). This idea was pursued further in (Werner, 2008b).

Reparameterizing by messages rather than by modifying θ yields Algo-

rithm 7.6. To handle infinite weights correctly, the algorithm expects that

[θB(xB) > −∞]⇔ [maxxA\B θA(xA) > −∞] for every (A,B) ∈ J .

7.4 MAP Inference in Graphical Models 209

Algorithm 7.6 Max-sum diffusion

1: repeat
2: for (A,B) ∈ J and xB ∈ XB such that θB(xB) > −∞ do
3: ϕAB(xB) ← ϕAB(xB) + [θϕB(xB)− max

xA\B
θϕA(xA)]/2

4: end for
5: until convergence

1

46

4

5

2
4

−1

5

0

0 7

7

5

7

2

2

47

5

2

6

−2

−2

−2

5

3

−6

3

4

0

1

4

4

4

4

1

3

2
4

1

42

4 42

1

1

3

3

4

4 4 2

−1

−3

5

5

5

5

5

5

5

5

5

5

5

5

5 5

5

2

4

3

4

0 4

2

5

5

5

−3

−2

−1

(a) (b) (c)

Figure 7.3: The visualization of a problem with |Xv| = 2 variable states and
hypergraph E as in Figure 7.2. The variables are shown as boxes; their numbering

is 2
1
3 4. Variable states are shown as circles, and joint states of variable pairs as edges.

Weights θA(xA), A ∈ E, are written in the circles and next to the edges. Active joint
states are emphasized (black circles, thick edges). Example (a) is not a diffusion
fixed point; (b) and (c) are diffusion fixed points for J from Figure 7.2a. Examples
(a) and (b) are reparameterizations of each other (this is not obvious at first sight);
(c) is not a reparameterization of (a) and (b). For (b), a global assignment xV can
be composed of the active joint states, and hence inequality (7.40) is tight. For (a)
and (c), no global assignment xV can be composed of the active joint states, hence
inequality (7.40) is not tight.

The diffusion iteration decreases or preserves, but never increases, the

upper bound. In general, the algorithm does not find the global minimum

of (7.37) but only a certain local minimum (where “local” is meant w.r.t.

block-coordinate moves), which is nevertheless very good in practice. These

local minima are characterized by local consistency (Rossi et al., 2006,

chapter 3) of the CSP formed by the active joint states.

Note that the only non trivial operation in Algorithm 7.6 is computing

the max-marginals maxxA\B θϕA(xA). By (7.38), this is an instance of prob-

lem (7.31). When |A| is small (such as for a binary interaction), computing

the max-marginals is trivial. But even when |A| is large, depending on the

function θA and on J , there may exist an algorithm polynomial in |A| to
compute maxxA\B θϕA(xA). In that case, Algorithm 7.6 can still be used.

210 Cutting-plane Methods in Machine Learning

If θA = 0, it depends only on J whether maxxA\B θϕA(xA) can be computed

in polynomial time. For instance, in Figure 7.2c we have θ1234 = 0 and

hence, by (7.38), θϕ1234(x1, x2, x3, x4) = ϕ1234,12(x1, x2) + ϕ1234,23(x2, x3) +

ϕ1234,34(x3, x4)+ϕ1234,14(x1, x4). Thus we have a problem on a cycle, which

can be solved more efficiently than by going through all states (x1, x2, x3, x4).

This suggests that in a sense diffusion solves certain small subproblems

exactly (which links it to the dual decomposition interpretation (Komodakis

et al., 2007)). This can be formalized as follows. Let A ∈ F ⊆ 2A. Clearly,

max
xA

∑
B∈F

θB(xB) ≤
∑
B∈F

max
xB

θB(xB) (7.42)

for any θ, which is inequality (7.40) written for subproblem F . Let J =

{ (A,B) | B ∈ F }. In this case, the minimal upper bound for subproblem F

is tight. To see it, do reparameterization (7.39) with ϕAB = θB for B ∈ F ,

which results in θB = 0 for B ∈ F \{A}; hence (7.42) is trivially tight. What

is not self-evident is that diffusion finds the global minimum in this case. It

does: if θ satisfies (7.41) for J = { (A,B) | B ∈ F }, then (7.42) is tight.

7.4.5 Dual Cutting-plane Algorithm

The relaxation can be tightened incrementally during dual optimization. At

any time during algorithm 7.6, the current J can be extended by any J ′ ⊆ I,

J ′∩J = ∅. The messages ϕAB for (A,B) ∈ J ′ are initialized to zero. Clearly,

this does not change the current upper bound. Future diffusion iterations

can only preserve or improve the bound, so the scheme remains monotonic.

This can be imagined as if the added variables ϕAB extended the space of

possible reparameterizations, and diffusion is now trying to take advantage

of it. If the bound does not improve, all we will have lost is the memory

occupied by the added variables. Algorithm 7.7 describes this.

In the primal domain, this incremental scheme can be understood as a

cutting-plane algorithm. We discuss this in Section 7.4.6.

Algorithm 7.7 Dual cutting-plane algorithm

1: Initialization: Choose J ⊆ I and J ⊆ 2I

2: repeat
3: Execute any number of iterations of algorithm 7.6
4: Separation oracle: choose J ′ ∈ J, J ∩ J ′ = ∅
5: J ← J ∪ J ′

6: Allocate messages ϕAB, (A,B) ∈ J ′, and set them to zero
7: until no suitable J ′ can be found

On line 4 of Algorithm 7.7 the separation oracle, which chooses a promising

7.4 MAP Inference in Graphical Models 211

extension J ′ from some predefined set J ⊆ 2I of candidate extensions, is

called. We assume |J| is small so that it can be searched exhaustively. For

that, we need a test to recognize whether a given J ′ would lead to a (good)

bound improvement. We refer to this as the separation test .

Of course, a trivial necessary and sufficient separation test is to extend

J by J ′ and run diffusion until convergence. One can easily invent a faster

test:

Execute several diffusion iterations only on pairs J ′. If this improves

the bound, then running diffusion on J ∪J ′ would inevitably improve

the bound, too.

This local test is sufficient but not necessary for improvement because even

if running diffusion on J ′ does not improve the bound, it may change the

problem such that future diffusion iterations on J ∪ J ′ improve it.

Even with a sufficient and necessary separation test, Algorithm 7.7 is

“greedy” in the following sense. For J ′
1, J

′
2 ⊆ I, it can happen that extending

J by J ′
1 alone or by J ′

2 alone does not lead to a bound improvement but

extending J by J ′
1 ∪ J ′

2 does. See (Werner, 2010) for an example.

The extension J ′ can be an arbitrary subset of I. One form of extension has

a clear meaning: pick a hyperedge A not yet coupled to any other hyperedge,

choose F ⊆ 2A, and let J ′ = { (A,B) | B ∈ F }. This can be seen as

connecting a so far disconnected interaction θA to the problem.

An important special case is connecting a zero interaction, θA = 0.

Because, by (7.38), we have θϕA(xA) =
∑

B∈F θB(xB), we refer to this

extension as adding a zero subproblem F . In this case, the separation test

can be done more efficiently than by running diffusion on J ′. This is based
on the fact stated at the end of Section 7.4.4: if inequality (7.42) is not tight

for current θϕ, then running diffusion on J ′ will surely make it tight, that

is, improve the bound. We do not need A ∈ F here because θA = 0. The

gap in (7.42) is an estimate of the expected improvement.

This has a clear interpretation in CSP terms. Inequality (7.42) is tight

if and only if the CSP formed by the active joint states of interactions

F is satisfiable. If this CSP is unsatisfiable, then J ′ will improve the

bound. Therefore, the separation oracle needs to find a (small) unsatisfiable

subproblem of the CSP formed by the active joint states.

For instance, Figure 7.3c shows a problem after diffusion convergence,

for J defined by Figure 7.2a. The CSP formed by the active joint states

is not satisfiable because it contains an unsatisfiable subproblem, the cycle

F = {(1, 2), (1, 4), (2, 4)}. Hence, adding zero subproblem F (which yields J

from Figure 7.2b) and running diffusion would improve the bound. Adding

the zero cycle F = {(1, 2), (1, 4), (2, 3), (3, 4)} (yielding J from Figure 7.2c)

212 Cutting-plane Methods in Machine Learning

(a) (b) (c)

Figure 7.4: Two steps of the cutting-plane algorithm for a problem with an 8× 8
grid graph E and |Xv| = 4 variable states. The set J of candidate extensions
contains all cycles of length 4. Only the active joint states are shown. (a) shows
the problem after diffusion has converged for J = { (A,B) | B ⊆ A; A,B ∈ E }.
The upper bound is not tight because of the depicted unsatisfiable subproblem (an
inconsistent cycle). Adding the cycle and letting diffusion reconverge results in (b)
with a better bound. The original cycle is now satisfiable, but a new unsatisfiable
cycle has occurred. Adding this cycle solves the problem (c).

or the whole zero problem F = E would improve the bound too.

Figure 7.4 shows a more complex example.

Message-passing algorithms have a drawback: after extending J , they

need a long time to reconverge. This can be partially alleviated by adding

multiple subproblems at a time before full convergence. As some of the added

subproblems might later turn out to be redundant, we found it helpful to

remove redundant subproblems occasionally—which can be done without

sacrificing monotonicity of bound improvement. This is a (dual) way of

constraint management, often used in cutting-plane methods.

7.4.6 Zero Interactions as Projection, Marginal Polytope

In the beginning, formula (7.31), we added all possible zero interactions to

our problem. This proved to be natural because the problem is, after all,

defined only up to reparameterizations, and thus any zero interaction can

become nonzero. Now, let us see what the LP relaxation would look like

without adopting this abstraction. Let T (E) = { (A, xA) | A ∈ E, xA ∈
XA } denote the restriction of the set T to hypergraph E. Since zero

interactions do not contribute to the objective function of (7.35), the latter

can be written as

max{ 〈θ,μ〉 | μ ∈M(J) } = max{ 〈πT (E)θ, μ〉 | μ ∈ πT (E)M(J) } (7.43)

7.4 MAP Inference in Graphical Models 213

where πD′a ∈ R
D′

denotes the projection of a vector a ∈ R
D on dimensions

D′ ⊆ D; thus πD′ deletes the components D \D′ of a. Applied to a set of

vectors, πD′ does this for every vector in the set. Informally, (7.43) shows

that zero interactions act as the projection of the feasible set onto the space

of nonzero interactions .

The set πT (E)M ⊆ [0, 1]T (E) is recognized as the marginal polytope (Wain-

wright et al., 2005) of hypergraph E. Its elements μ are the marginals over

variable subsets E of some global distribution μV , which is not necessarily

part of μ. The marginal polytope of the complete hypergraph πT (2V)M = M

is of fundamental importance because all other marginal polytopes are its

projections. For J ⊆ I, the set πT (E)M(J) ⊇ πT (E)M is a relaxation of the

marginal polytope, which may contain elements μ that no longer can be

realized as the marginals of any global distribution μV .

While conv δ(XV) = M is the integral hull of the problem max{ 〈θ,μ〉 |
μ ∈ δ(XV) }, the polytope conv πT (E)δ(XV) = πT (E) conv δ(XV) = πT (E)M

is the integral hull of the problem max{ 〈πT (E)θ,μ〉 | μ ∈ πT (E)δ(XV) }.
Following Wainwright et al. (2005), we say a relaxation J is local in E if

A,B ∈ E for every (A,B) ∈ J . For instance, in Figure 7.2 only relaxation (a)

is local. For local relaxations, the distributions μA, A /∈ E, are not coupled to

any other distributions and the action of πT (E) on M(J) is simple: it simply

removes these superfluous coordinates. Thus, πT (E)M(J) has an explicit

description by a small (polynomial in |E|) number of linear constraints.

For nonlocal relaxations, the effect of the projection is in general complex

and the number of facets of πT (E)M(J) is exponential in |E|. It is well-known
that computing the explicit description of a projection of a polyhedron can

be extremely difficult—which suggests that directly looking for the facets

of πT (E)M might be a bad idea. Nonlocal relaxations can be seen as a lift-

and-project approach: we lift from dimensions T (E) to dimensions T , impose

constraints in this lifted space, and project back onto dimensions T (E).

Now the geometry of our cutting-plane algorithm in the primal space

[0, 1]T (E) is clear. Suppose max-sum diffusion has found a global optimum

of the dual and let μ∗ ∈ [0, 1]T (E) be a corresponding primal optimum.

A successful extension of J means that a set (perhaps exponentially large)

of cutting planes is added to the primal that separates μ∗ from πT (E)M.

However, μ∗ is not computed explicitly (and it is expensive to compute μ∗

from a dual optimum for large problems). In fact, μ∗ may not even exist

because diffusion may find only a local optimum of the dual—we even need

not run diffusion to full convergence.

214 Cutting-plane Methods in Machine Learning

7.4.7 Conclusions

We have presented the theory of the cutting-plane approach to the MAP

inference problem, as well as a very general message-passing algorithm to

implement this approach. In comparison with similar works, the theory,

and Algorithm 7.6 in particular, is very simple. We have shown that for the

case of adding subproblems, separation means finding a (small) unsatisfiable

subproblem of the CSP formed by the active joint states.

We assumed, in Section 7.4.5, that the set J of candidate extensions is

tractably small. Is there a polynomial algorithm to select an extension from

an intractably large set J? In particular, is there a polynomial algorithm

to find a small, unsatisfiable subproblem (most interestingly, a cycle) in a

given CSP? This is currently an open problem. An inspiration for finding

such algorithms are local consistencies in CSP (Rossi et al., 2006, chapter 3).

Several polynomial algorithms are known to separate intractable families

of cutting planes of the max-cut polytope (Deza and Laurent, 1997), which

is closely related to the marginal polytope. Some of them have been applied

to MAP inference by Sontag and Jaakkola (2007) and Sontag (2007). Since

these algorithms work in the primal space, they cannot be used in our dual

cutting-plane scheme—we need a dual separation algorithm.

Acknowledgments

Vojtěch Franc was supported by the Czech Ministry of Education project

1M0567 and by EC projects FP7-ICT-247525 HUMAVIPS and PERG04-

GA-2008-239455 SEMISOL. Soeren Sonneburg was supported by the EU

under the PASCAL2 Network of Excellence (ICT-216886) as well as DFG

grants MU 987/6-1 and RA-1894/1-1. Tomáš Werner was supported by the

EC grant 215078 (DIPLECS), Czech government grant MSM6840770038,

and the Grant Agency of the Czech Republic grant P103/10/0783.

7.5 References

A. Argyriou, R. Hauser, C. A. Micchelli, and M. Pontil. A dc-programming
algorithm for kernel selection. In Proceedings of the International Conference
on Machine Learning, pages 41–48. ACM Press, 2006.

F. Bach. Exploring large feature spaces with hierarchical multiple kernel learning.
In D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, editors, Advances in
Neural Information Processing Systems 21, pages 105–112. MIT Press, 2008.

F. R. Bach, G. R. G. Lanckriet, and M. I. Jordan. Multiple kernel learning, conic
duality, and the smo algorithm. In Proceedings of the International Conference
on Machine Learning. ACM Press, 2004.

7.5 References 215

D. P. Bertsekas. Nonlinear Programming. Athena Scientific, Belmont, MA, second
edition, 1999.

S. Boyd and L. Vandenberge. Localization and cutting-plane methods.
Unpublished lecture notes, Stanford University, California, USA, 2008.
URL http://see.stanford.edu/materials/lsocoee364b/05-localization_
methods_notes.pdf.

S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press,
March 2004.

E. W. Cheney and A. A. Goldstein. Newton’s method for convex programming and
Tchebycheff approximation. Numerische Mathematik, 1:253–268, 1959.

C. Cortes and V. Vapnik. Support-vector networks. Machine Learning, 20(3):
273–297, 1995.

C. Cortes, M. Mohri, and A. Rostamizadeh. Learning non-linear combinations of
kernels. In Y. Bengio, D. Schuurmans, J. Lafferty, C. Williams, and A. Culotta,
editors, Advances in Neural Information Processing Systems 22, pages 396–404.
MIT Press, 2009.

G. Dantzig, R. Fulkerson, and S. Johnson. Solution of a large-scale traveling-
salesman problem. Operations Research, 2:393–410, 1954.

M. M. Deza and M. Laurent. Geometry of Cuts and Metrics. Springer, Berlin,
1997.

V. Franc and S. Sonnenburg. OCAS optimized cutting plane algorithm for support
vector machines. In Proceedings of the International Conference on Machine
Learning, pages 320–327. ACM Press, 2008.

V. Franc and S. Sonnenburg. Optimized cutting plane algorithm for large-scale risk
minimization. Journal of Machine Learning Research, 10:2157–2192, 2010.

M. Grötschel, L. Lovász, and A. Schrijver. The ellipsoid method and its conse-
quences in combinatorial optimization. Combinatorica, 1(2):169–197, 1981.

T. Joachims. Making large–scale SVM learning practical. In B. Schölkopf,
C. Burges, and A. Smola, editors, Advances in Kernel Methods: Support Vec-
tor Learning, pages 169–184, Cambridge, MA, USA, 1999. MIT Press.

J. K. Johnson, D. M. Malioutov, and A. S. Willsky. Lagrangian relaxation for
MAP estimation in graphical models. In Allerton Conference on Communication,
Control and Computing, 2007.

J. E. Kelley. The cutting-plane method for solving convex programs. Journal of
the Society for Industrial and Applied Mathematics, 8(4):703–712, 1960.

K. C. Kiwiel. An aggregate subgradient method for nonsmooth convex minimiza-
tion. Mathematical Programming, 27(3):320–341, 1983.

M. Kloft, U. Brefeld, S. Sonnenburg, P. Laskov, K.-R. Müller, and A. Zien. Efficient
and accurate Lp-norm multiple kernel learning. In Y. Bengio, D. Schuurmans,
J. Lafferty, C. Williams, and A. Culotta, editors, Advances in Neural Information
Processing Systems 22, pages 997–1005. MIT Press, 2009.

N. Komodakis and N. Paragios. Beyond loose LP-relaxations: Optimizing MRFs by
repairing cycles. In Proceedings of the European Conference on Computer Vision,
pages 806–820, 2008.

N. Komodakis, N. Paragios, and G. Tziritas. MRF optimization via dual decom-
position: Message-passing revisited. In Proceedings of the IEEE International
Conference on Computer Vision, 2007.

216 Cutting-plane Methods in Machine Learning

A. M. Koster, S. P. M. van Hoesel, and A. W. J. Kolen. The partial constraint
satisfaction problem: Facets and lifting theorems. Operations Research Letters,
23(3–5):89–97, 1998.

V. A. Kovalevsky and V. K. Koval. A diffusion algorithm for decreasing the
energy of the max-sum labeling problem. Unpublished, Glushkov Institute of
Cybernetics, Kiev, USSR, circa 1975. Personally communicated to T.Werner by
M. I. Schlesinger.

M. P. Kumar and P. H. S. Torr. Efficiently solving convex relaxations for MAP
estimation. In Proceedings of the International Conference on Machine Learning,
pages 680–687. ACM Press, 2008.

G. Lanckriet, N. Cristianini, L. E. Ghaoui, P. Bartlett, and M. I. Jordan. Learning
the kernel matrix with semi-definite programming. Journal of Machine Learning
Research, 5:27–72, 2004a.

G. Lanckriet, T. de Bie, N. Cristianini, M. Jordan, and W. Noble. A statistical
framework for genomic data fusion. Bioinformatics, 20(16):2626–2635, 2004b.

C. Lemaréchal, A. Nemirovskii, and Y. Nesterov. New variants of bundle methods.
Mathematical Programming, 69(1–3):111–147, 1995.

A. Mackworth. Constraint satisfaction. In Encyclopaedia of Artificial Intelligence,
pages 285–292. John Wiley, 1991.

J. S. Nath, G. Dinesh, S. Raman, C. Bhattacharyya, A. Ben-Tal, and K. R. Ra-
makrishnan. On the algorithmics and applications of a mixed-norm based kernel
learning formulation. In Y. Bengio, D. Schuurmans, J. Lafferty, C. Williams,
and A. Culotta, editors, Advances in Neural Information Processing Systems 22,
pages 844–852. MIT Press, 2009.

A. S. Nemirovskij and D. B. Yudin. Problem Complexity and Method Efficiency in
Optimization. Wiley Interscience, New York, 1983.

A. Rakotomamonjy, F. Bach, S. Canu, and Y. Grandvalet. More efficiency in
multiple kernel learning. In Proceedings of the International Conference on
Machine Learning, pages 775–782, 2007.

A. Rakotomamonjy, F. R. Bach, S. Canu, and Y. Grandvalet. SimpleMKL. Journal
of Machine Learning Research, 9:2491–2521, 2008.

F. Rossi, P. van Beek, and T. Walsh, editors. Handbook of Constraint Programming.
Elsevier, 2006.

B. Schölkopf and A. Smola. Learning with Kernels. MIT Press, 2002.

A. Schrijver. Combinatorial Optimization : Polyhedra and Efficiency. Algorithms
and Combinatorics. Springer, 2003.

M. I. Shlezinger. Syntactic analysis of two-dimensional visual signals in noisy
conditions. Cybernetics and Systems Analysis, 12(4):612–628, 1976. Translated
from the Russian.

S. Sonnenburg, G. Rätsch, and C. Schäfer. Learning interpretable SVMs for
biological sequence classification. In S. Miyano, J. P. Mesirov, S. Kasif, S. Istrail,
P. A. Pevzner, and M. Waterman, editors, Research in Computational Molecular
Biology, Proceedings of the 9th Annual International Conference (RECOMB),
volume 3500 of Lecture Notes in Computer Science, pages 389–407. Springer-
Verlag, 2005.

S. Sonnenburg, G. Rätsch, C. Schäfer, and B. Schölkopf. Large scale multiple kernel
learning. Journal of Machine Learning Research, 7:1531–1565, 2006a.

7.5 References 217

S. Sonnenburg, A. Zien, and G. Rätsch. ARTS: Accurate recognition of transcrip-
tion starts in human. Bioinformatics, 22(14):e472–e480, 2006b.

S. Sonnenburg, G. Rätsch, S. Henschel, C. Widmer, J. Behr, A. Zien, F. de Bona,
A. Binder, C. Gehl, and V. Franc. The SHOGUN machine learning toolbox.
Journal of Machine Learning Research, 11:1799–1802, June 2010. URL http:
//www.shogun-toolbox.org.

D. Sontag. Cutting plane algorithms for variational inference in graphical models.
Master’s thesis, Department of Electrical Engineering and Computer Science,
MIT, 2007.

D. Sontag and T. Jaakkola. New outer bounds on the marginal polytope. In
Advances in Neural Information Processing Systems 20. MIT Press, 2007.

D. Sontag, T. Meltzer, A. Globerson, T. Jaakkola, and Y. Weiss. Tightening LP
relaxations for MAP using message passing. In Proceedings of the 24th Conference
on Uncertainty in Artificial Intelligence (UAI). AUAI Press, Corvallis, Oregon,
2008.

N. Subrahmanya and Y. C. Shin. Sparse multiple kernel learning for signal
processing applications. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 32(5):788–798, 2010.

M. Szafranski, Y. Grandvalet, and A. Rakotomamonjy. Composite kernel learning.
In Proceedings of the International Conference on Machine Learning, 2008.

C. Teo, Q. Le, A. Smola, and S. Vishwanathan. A scalable modular convex solver
for regularized risk minimization. In Proceedings of the 13th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pages 727–
736, 2007.

C. Teo, S. Vishwanathan, A. Smola, and V. Quoc. Bundle methods for regularized
risk minimization. Journal of Machine Learning Research, 11:311–365, 2010.

I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun. Large margin methods
for structured and interdependent output variables. Journal of Machine Learning
Research, 6:1453–1484, 2005.

M. Varma and B. R. Babu. More generality in efficient multiple kernel learning. In
Proceedings of the International Conference on Machine Learning, pages 1065–
1072, New York, NY, USA, 2009. ACM Press.

M. Wainwright, T. Jaakkola, and A. Willsky. MAP estimation via agreement
on (hyper)trees: message passing and linear programming approaches. IEEE
Transactions on Information Theory, 51(11):3697–3717, 2005.

M. J. Wainwright and M. I. Jordan. Graphical models, exponential families, and
variational inference. Foundations and Trends in Machine Learning, 1(1-2):1–
305, 2008.

T. Werner. A linear programming approach to max-sum problem: A review.
Technical Report CTU–CMP–2005–25, Center for Machine Perception, Czech
Technical University, 2005.

T. Werner. A linear programming approach to max-sum problem: A review. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 29(7):1165–1179,
2007.

T. Werner. High-arity interactions, polyhedral relaxations, and cutting plane
algorithm for soft constraint optimisation (MAP-MRF). In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2008a.

T. Werner. Marginal consistency: Unifying constraint propagation on commutative

218 Cutting-plane Methods in Machine Learning

semirings. In International Workshop on Preferences and Soft Constraints (held
in conjunction with the 14th International Conference on Principles and Practice
of Constraint Programming), pages 43–57, 2008b.

T. Werner. Revisiting the linear programming relaxation approach to Gibbs
energy minimization and weighted constraint satisfaction. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 32(8):1474–1488, 2010.

Z. Xu, R. Jin, I. King, and M. Lyu. An extended level method for efficient multiple
kernel learning. In Y. Bengio, D. Schuurmans, J. Lafferty, C. Williams, and
A. Culotta, editors, Advances in Neural Information Processing Systems 22, pages
1825–1832, 2009a.

Z. Xu, R. Jin, J. Ye, M. R. Lyu, and I. King. Non-monotonic feature selection. In
Proceedings of the International Conference on Machine Learning, pages 1145–
1152, 2009b.

A. Zien and C. S. Ong. Multiclass multiple kernel learning. In Proceedings of the
International Conference on Machine Learning, pages 1191–1198. ACM Press,
2007.

8 Introduction to Dual Decomposition for

Inference

David Sontag dsontag@csail.mit.edu

Microsoft Research New England

Cambridge, MA

Amir Globerson gamir@cs.huji.ac.il

Hebrew University

Jerusalem, Israel

Tommi Jaakkola tommi@csail.mit.edu

CSAIL, MIT

Cambridge, MA

Many inference problems with discrete variables result in a difficult combina-

torial optimization problem. In recent years, the technique of dual decompo-

sition, also called Lagrangian relaxation, has proved to be a powerful means

of solving these inference problems by decomposing them into simpler com-

ponents that are repeatedly solved independently and combined into a global

solution. In this chapter, we introduce the general technique of dual decom-

position through its application to the problem of finding the most likely

(MAP) assignment in graphical models. We discuss both subgradient and

block coordinate descent approaches to solving the dual problem. The re-

sulting message-passing algorithms are similar to max-product, but can be

shown to solve a linear programming relaxation of the MAP problem. We

show how many of the MAP algorithms are related to each other, and also

quantify when the MAP solution can and cannot be decoded directly from the

dual solution.

220 Introduction to Dual Decomposition for Inference

8.1 Introduction

Many problems in engineering and the sciences require solutions to challeng-

ing combinatorial optimization problems. These include traditional problems

such as scheduling, planning, fault diagnosis, or searching for molecular con-

formations. In addition, a wealth of combinatorial problems arise directly

from probabilistic modeling (graphical models). Graphical models (Koller

and Friedman, 2009) have been widely adopted in areas such as compu-

tational biology, machine vision, and natural language processing, and are

increasingly being used as frameworks expressing combinatorial problems.

Consider, for example, a protein side-chain placement problem where

the goal is to find the minimum energy conformation of amino acid side-

chains along a fixed carbon backbone. The orientations of the side-chains

are represented by discretized angles called rotamers. The combinatorial

difficulty arises here from the fact that rotamer choices for nearby amino

acids are energetically coupled. For globular proteins, for example, such

couplings may be present for most pairs of side-chain orientations. This

problem is couched in probabilistic modeling terms by associating molecular

conformations with the setting of discrete random variables corresponding

to the rotamer angles. The interactions between such random variables

come from the energetic couplings between nearby amino acids. Finding

the minimum energy conformation is then equivalently solved by finding the

most probable assignment of states to the variables.

We will consider combinatorial problems that are expressed in terms of

structured probability models (graphical models). A graphical model is

defined over a set of discrete variables x = {xj}j∈V . Local interactions

between the variables are modeled by functions θf (xf) which depend only

on a subset of variables xf = {xj}j∈f . For example, if xf = (xi, xj),

θf (xf) = θij(xi, xj) may represent the coupling between rotamer angles xi
and xj corresponding to nearby amino acids. The functions θf (xf) are often

represented as small tables of numbers with an adjustable value for each

local assignment xf . The joint probability distribution over all the variables

x is then defined by combining all the local interactions,

logP (x) =
∑
i∈V

θi(xi) +
∑
f∈F

θf (xf) + const,

where we have included (singleton) functions biasing the states of indi-

vidual variables. The local interactions provide a compact parametric de-

scription of the joint distribution, since we only need to specify the local

functions (as small tables) rather than the full probability table involv-

ing one value for each complete assignment x.

8.1 Introduction 221

Despite their compact description, graphical models are capable of de-

scribing complex dependencies among the variables. These dependences arise

from the combined effect of all the local interactions. The problem of prob-

abilistic inference is to reason about the underlying state of the variables in

the model. Given the complex dependencies, it is not surprising that proba-

bilistic inference is often computationally intractable. For example, finding

the maximum probability assignment of a graphical model (also known as

the MAP assignment) is NP-hard. Finding the MAP assignment remains

hard even if the local functions depend on only two variables, as in the

protein side-chain example. This has prompted extensive research into ap-

proximation algorithms, some of which often work well in practice.

One of the most successful approximation schemes has been to use relax-

ations of the original MAP problem. Relaxation methods take the original

combinatorial problem and pose it as a constrained optimization problem.

They then relax some of the constraints in an attempt to factor the problem

into more independent subproblems, resulting in a tractable approximation

of the original one. Two closely related relaxation schemes are dual decom-

position (Johnson, 2008; Komodakis et al., 2011) and linear programming

(LP) relaxations (Schlesinger, 1976; Wainwright et al., 2005). Although the

approaches use different derivations of the approximation, they result in

equivalent optimization problems.

Practical uses of MAP relaxations involve models with thousands of

variables and constraints. While the relaxed optimization problems can

generally be solved in polynomial time using a variety of methods and

off-the-shelf solvers, most of these do not scale well to the problem sizes

encountered in practice (e.g., see Yanover et al., 2006, for an evaluation

of commercial LP solvers on inference problems). However, often the LP

relaxations arising from graphical models have significant structure that

can be exploited to design algorithms that scale well with the problem size.

This chapter introduces the dual decomposition approach, also known as

Lagrangian relaxation, and focuses on efficient scalable algorithms for solv-

ing the relaxed problem. With dual decomposition, the original problem is

broken up into smaller subproblems with the help of Lagrange multipliers.

The smaller subproblems can be then be solved exactly by using combinato-

rial algorithms. The decomposition is subsequently optimized with respect

to the Lagrange multipliers so as to encourage the subproblems to agree

about the variables they share. For example, we could decompose the MAP

problem into subproblems corresponding separately to each local function

θf (xf). The Lagrange multipliers introduced in the decomposition would

then modify the functions θf (xf) so that the local maximizing assignments

agree across the subproblems. The decomposition may also involve larger

222 Introduction to Dual Decomposition for Inference

components that nevertheless can be solved efficiently, such as a set of span-

ning trees that together cover all edges of a pairwise graphical model.

The chapter is organized as follows. We begin in section 8.2 with two

example applications that illustrate the types of problems that can be

solved using our techniques. We next define the MAP problem formally

and introduce the dual decomposition approach in section 8.3. The next two

sections, 8.4 and 8.5, describe algorithmic approaches to solving the dual

decomposition optimization problem. In section 8.6 we discuss the relation

between dual decomposition and LP relaxations of the MAP problem,

showing that they are essentially equivalent. Finally, in section 8.7 we discuss

how the MAP solution can be approximated from the dual decomposition

solutions, and what formal guarantees we can make about it.

8.2 Motivating Applications

We will use two example applications to illustrate the role of local interac-

tions, types of decompositions, and how they can be optimized. The first ex-

ample, outlined earlier, is the protein side-chain placement problem (Yanover

et al., 2008). The goal is to find the minimum energy conformation of amino

acid side-chains in a fixed protein backbone structure. Each side-chain orien-

tation is represented by a discrete variable xi specifying the corresponding

rotamer angles. Depending on the discretization and the side-chain (the

number of dihedral angles), the variables may take on tens or hundreds of

possible values (states). Energy functions for this problem typically separate

into individual and pairwise terms; the pairwise terms take into considera-

tion attractive and repulsive forces between side-chains that are near each

other in the 3D structure.

The problem is equivalently represented as an inference problem in a

pairwise Markov random field (MRF) model. Graphically, the MRF is

an undirected graph with nodes i ∈ V corresponding to variables (side-

chain orientations xi) and edges ij ∈ E indicating interactions. Each

pairwise energy term implies an edge ij ∈ E in the model and defines a

potential function θij(xi, xj) over local assignments (xi, xj). Single node

potential functions θi(xi) can be included separately or absorbed by the

edge potentials. The MAP inference problem is then to find the assignment

x = {xi}i∈V that maximizes∑
i∈V

θi(xi) +
∑
ij∈E

θij(xi, xj).

Without additional restrictions on the choice of potential functions, or which

8.2 Motivating Applications 223

Figure 8.1: Example of dependency parsing for a sentence in English. Every
word has one parent (i.e., a valid dependency parse is a directed tree). The red arc
demonstrates a non-projective dependency.

edges to include, the problem is known to be NP-hard. Using the dual

decomposition approach, we will break the problem into much simpler sub-

problems involving maximizations of each single node potential θi(xi) and

each edge potential θij(xi, xj) independently from the other terms. Although

these local maximizing assignments are easy to obtain, they are unlikely

to agree with each other without our modifying the potential functions.

These modifications are provided by the Lagrange multipliers associated

with agreement constraints.

Our second example is dependency parsing, a key problem in natural

language processing (McDonald et al., 2005). Given a sentence, we wish

to predict the dependency tree that relates the words in the sentence. A

dependency tree is a directed tree over the words in the sentence where

an arc is drawn from the head word of each phrase to words that modify

it. For example, in the sentence shown in Fig. 8.1, the head word of the

phrase “John saw a movie” is the verb “saw”, and its modifiers are the

subject “John” and the object “movie”. Moreover, the second phrase “that

he liked” modifies “movie”. In many languages the dependency tree is non-

projective in the sense that each word and its descendants in the tree do not

necessarily form a contiguous subsequence.

Formally, given a sentence with m words, we have m(m − 1) binary arc

selection variables xij ∈ {0, 1}. Since the selections must form a directed

tree, the binary variables are governed by an overall function θT (x) with

the idea that θT (x) = −∞ is used to rule out any non-trees. The selections

are further biased by weights on individual arcs, through θij(xij), which

depend on the given sentence. In a simple arc-factored model, the predicted

dependency structure is obtained by maximizing (McDonald et al., 2005)

θT (x) +
∑
ij

θij(xij),

and can be found with directed maximum-weight spanning-tree algorithms.

More realistic dependency parsing models include additional higher-order

interactions between the arc selections. For example, we may couple the

modifier selections x|i = {xij}j �=i (all outgoing edges) for a given word

224 Introduction to Dual Decomposition for Inference

i, expressed by a function θi|(x|i). Finding the maximizing non-projective

parse tree in a model that includes such higher-order couplings, without

additional restrictions, is known to be NP-hard (McDonald and Satta,

2007). We consider here models where θi|(x|i) can be individually maximized

by dynamic programming algorithms (e.g., head-automata models), but

become challenging as part of the overall dependency tree model:(
θT (x)

)
+

(∑
ij

θij(xij) +
∑
i

θi|(x|i)
)

= θ1(x) + θ2(x).

The first component θ1(x) ensures that we obtain a tree, and the second

component θ2(x) incorporates higher-order biases on the modifier selections.

A natural dual decomposition in this case will be to break the problem into

these two manageable components, which are then forced to agree on the

arc selection variables (Koo et al., 2010).

8.3 Dual Decomposition and Lagrangian Relaxation

The previous section described several problems where we wish to maximize

a sum over factors, each defined on some subset of the variables. Here

we describe this problem in its general form, and introduce a relaxation

approach for approximately maximizing it.

Consider a set of n discrete variables x1, . . . , xn, and a set F of subsets

on these variables (i.e., f ∈ F is a subset of V = {1, . . . , n}), where each

subset corresponds to the domain of one of the factors. Also, assume we

are given functions θf (xf) on these factors, as well as functions θi(xi) on

each of the individual variables.1 The goal of the MAP problem is to find an

assignment x = (x1, . . . , xn) for all the variables which maximizes the sum

of the factors:

MAP(θ) = max
x

∑
i∈V

θi(xi) +
∑
f∈F

θf (xf). (8.1)

The maximizing value is denoted by MAP(θ), and the maximizing assign-

ment is called the MAP assignment. It can be seen that the examples in

section 8.2 indeed correspond to this formulation.2

1. The singleton factors are not needed for generality, but we keep them for notational
convenience and because one often has such factors.
2. Recall the protein side-chain placement problem, where we have an energy function
defined on a pairwise MRF. Here, the set of factors F would simply be the edge potentials
θij(xi, xj) characterizing the couplings between orientations of nearby side-chains. In
contrast, in non-projective dependency parsing we have just two factors, θ1(x) and θ2(x),

8.3 Dual Decomposition and Lagrangian Relaxation 225

As mentioned earlier, the problem in Eq. 8.1 is generally intractable, and

we thus need to resort to approximations. The key difficulty in maximizing

Eq. 8.1 is that we need to find an x that maximizes the sum over factors

rather than each factor individually. The key assumption we shall make in

our approximations is that maximizing each of the factors θf (xf) can be

done efficiently, so that the only complication is their joint maximization.

Our approximation will proceed as follows: we will construct a dual

function L(δ) with variables δ such that for all values of δ it holds that

L(δ) ≥ MAP(θ). In other words, L(δ) will be an upper bound on the value

of the MAP assignment. We will then seek a δ that minimizes L(δ) so as to

make this upper bound as tight as possible.

To describe the dual optimization problem, we first specify what the dual

variables are. For every choice of f ∈ F , i ∈ f , and xi, we will have a dual

variable denoted by δfi(xi).
3 This variable may be interpreted as themessage

that factor f sends to variable i about its state xi. The dual function L(δ)

and the corresponding optimization problem are then given by

min
δ

L(δ), (8.2)

L(δ) =
∑
i∈V

max
xi

(
θi(xi) +

∑
f :i∈f

δfi(xi)
)
+
∑
f∈F

max
xf

(
θf (xf)−

∑
i∈f

δfi(xi)
)
.

The key property of the function L(δ) is that it involves maximization

only over local assignments xf , a task which we assume to be tractable. The

dual thus decouples the original problem, resulting in a problem that can

be optimized using local operations. Figure 8.2 illustrates this for a simple

pairwise model.

We will introduce algorithms that minimize the approximate objective

L(δ) using local updates. Each iteration of the algorithms repeatedly finds

a maximizing assignment for the subproblems individually, using these to

update the dual variables that glue the subproblems together. We describe

two classes of algorithms, one based on a subgradient method (see section

8.4) and another based on block coordinate descent (see section 8.5). These

dual algorithms are simple and widely applicable to combinatorial problems

in machine learning such as finding MAP assignments of graphical models.

both defined on all of the variables, and the single node potentials θi(xi) are identically
zero (not used). The variables here are binary, one for each directed edge, denoting whether
a particular dependency exists.
3. We use the notation δfi(xi) to denote a variable indexed by i, f , and xi. An alternative
notation could have been δ(xi, f, i), but δfi(xi) is more compact.

226 Introduction to Dual Decomposition for Inference

x1 x2

x3 x4

θf(x1, x2)

θh(x2, x4)

θk(x3, x4)

θg(x1, x3)

x1

δf2(x2)

δf1(x1)

δk4(x4)δk3(x3)

δg1(x1)
+

− −

− −δf1(x1)

δg3(x3)
δg1(x1)

−
− δh2(x2)

δh4(x4)

−
−

+ x3

δg3(x3)

δk3(x3)
x4 +

δk4(x4)

δh4(x4)

+x2

δf2(x2)

δh2(x2)

θf(x1, x2)

θh(x2, x4)

θk(x3, x4)

θg(x1, x3)

x3 x4

x4

x2

x2x1

x1

x3

Figure 8.2: Illustration of the the dual decomposition objective. Left: The orig-
inal pairwise model consisting of four factors. Right: The maximization problems
corresponding to the objective L(δ). Each blue ellipse contains the factor to be
maximized over. In all figures the singleton terms θi(xi) are set to zero for simplic-
ity.

8.3.1 Derivation of the Dual

In what follows we show how the dual optimization in Eq. 8.2 is derived

from the original MAP problem in Eq. 8.1. We first slightly reformulate

the problem by duplicating the xi variables, once for each factor, and then

enforcing that these are equal. Let xfi denote the copy of xi used by factor f .

Also, denote by xf
f = {xfi }i∈f the set of variables used by factor f , and, by

xF = {xf
f}f∈F , the set of all variable copies. This is illustrated graphically

in Fig. 8.3. Then, our reformulated—but equivalent—optimization problem

is

max
∑

i∈V θi(xi) +
∑

f∈F θf (x
f
f)

s.t. xfi = xi, ∀f, i ∈ f.
(8.3)

If we did not have the constraints, this maximization would simply de-

compose into independent maximizations for each factor, each of which we

assume can be done efficiently. To remove these complicating constraints,

we use the technique of Lagrangian relaxation (Geoffrion, 1974; Schlesinger,

1976; Fisher, 1981; Lemaréchal, 2001; Guignard, 2003). First, introduce La-

8.3 Dual Decomposition and Lagrangian Relaxation 227

x1 x2

x3 x4

xf
1 xf

2

xg
1

xg
3

xh
2

xh
4

xk
3 xk

4
θk(x

k
3, x

k
4)

θh(x
h
2 , x

h
4)

θf(x
f
1 , x

f
2)

=

==

=

= =

= =

θg(x
g
1, x

g
3)

Figure 8.3: Illustration of the the derivation of the dual decomposition objective
by creating copies of variables. The graph in Fig. 8.2 is shown here with the
corresponding copies of the variables for each of the factors.

grange multipliers δ = {δfi(xi) : f ∈ F, i ∈ f, xi}, and define the Lagrangian:

L(δ,x,xF) =
∑
i∈V

θi(xi) +
∑
f∈F

θf (x
f
f)

+
∑
f∈F

∑
i∈f

∑
x̂i

δfi(x̂i)
(
1[xi = x̂i]− 1[xfi = x̂i]

)
. (8.4)

The following problem is still equivalent to Eq. 8.3 for any value of δ,

maxx,xF L(δ,x,xF)

s.t. xfi = xi, ∀f, i ∈ f.
(8.5)

This follows because if the constraints in the above hold, then the last term

in Eq. 8.4 is zero for any value of δ. In other words, the Lagrange multipliers

are unnecessary if we already enforce the constraints.

Solving the maximization in Eq. 8.5 is as hard as the original MAP

problem. To obtain a tractable optimization problem, we omit the constraint

in Eq. 8.5 and define the function L(δ):

L(δ) = max
x,xF

L(δ,x,xF)

=
∑
i∈V

max
xi

(
θi(xi) +

∑
f :i∈f

δfi(xi)
)
+
∑
f∈F

max
xf

f

(
θf (x

f
f)−

∑
i∈f

δfi(x
f
i)
)
.

Since L(δ) maximizes over a larger space (x may not equal xF), we have

that MAP(θ) ≤ L(δ). The dual problem is to find the tightest such upper

bound by optimizing the Lagrange multipliers: solving minδ L(δ).

Note that the maximizations are now unambiguously independent. We

obtain Eq. 8.2 by replacing xf
f with xf .

228 Introduction to Dual Decomposition for Inference

8.3.2 Reparameterization Interpretation of the Dual

The notion of reparameterization has played a key role in understanding

approximate inference in general and MAP approximations in particular

(Sontag and Jaakkola, 2009; Wainwright et al., 2003). It can also be used to

interpret the optimization problem in Eq. 8.2, as we briefly review here.

Given a set of dual variables δ, define new factors on xi and xf given by

θ̄δi (xi) = θi(xi) +
∑
f :i∈f

δfi(xi)

θ̄δf (xf) = θf (xf)−
∑
i∈f

δfi(xi) . (8.6)

It is easy to see that these new factors define essentially the same function

as the original factors θ. Namely, for all assignments x,∑
i∈V

θi(xi) +
∑
f∈F

θf (xf) =
∑
i∈V

θ̄δi (xi) +
∑
f∈F

θ̄δf (xf) . (8.7)

We call θ̄ a reparameterization of the original parameters θ. Next we observe

that the function L(δ) can be written as

L(δ) =
∑
i∈V

max
xi

θ̄δi (xi) +
∑
f∈F

max
xf

θ̄δf (xf). (8.8)

To summarize the above, dual decomposition may be viewed as searching

over a set of reparameterizations of the original factors θ, where each

reparameterization provides an upper bound on the MAP and we are seeking

to minimize this bound.

8.3.3 Formal Guarantees

In the previous section we showed that the dual always provides an upper

bound on the optimum of our original optimization problem (Eq. 8.1),

max
x

∑
i∈V

θi(xi) +
∑
f∈F

θf (xf) ≤ min
δ

L(δ). (8.9)

We do not necessarily have strong duality, that is, equality in the above

equation. However, for some functions θ(x) strong duality does hold, as

stated in the following theorem4

Theorem 8.1. Suppose that ∃δ∗,x∗ where x∗i ∈ argmaxxi
θ̄δ

∗
i (xi) and

4. Versions of this theorem appear in multiple papers (e.g., see Geoffrion, 1974; Wainwright
et al., 2005; Weiss et al., 2007).

8.4 Subgradient Algorithms 229

x∗
f ∈ argmaxxf

θ̄δ
∗

f (xf). Then x∗ is a solution to the maximization problem

in Eq. 8.1 and hence L(δ∗) = MAP(θ).

Proof. For the given δ∗ and x∗ we have that

L(δ∗) =
∑
i

θ̄δ
∗

i (x∗i) +
∑
f∈F

θ̄δ
∗

f (x∗
f) =

∑
i

θi(x
∗
i) +

∑
f∈F

θf (x
∗
f), (8.10)

where the equalities follow from the maximization property of x∗ and the

reparameterization property of θ̄. On the other hand, from the definition of

MAP(θ) we have that∑
i

θi(x
∗
i) +

∑
f∈F

θf (x
∗
f) ≤ MAP(θ). (8.11)

Taking Eq. 8.10 and Eq. 8.11 together with L(δ∗) ≥ MAP(θ), we have

equality in Eq. 8.11, so that x∗ attains the MAP value and is therefore the

MAP assignment, and L(δ∗) = MAP(θ).

The conditions of theorem 8.1 correspond to the subproblems agreeing on

a maximizing assignment. Since agreement implies optimality of the dual, it

can occur only after our algorithms find the tightest upper bound. Although

the agreement is not guaranteed, if we do reach such a state, then theorem 8.1

ensures that we have the exact solution to Eq. 8.1. The dual solution δ is

said to provide a certificate of optimality in this case. In other words, if we

find an assignment whose value matches the dual value, then the assignment

has to be the MAP (strong duality).

For both the non-projective dependency parsing and protein side-chain

placement problems, exact solutions (with certificates of optimality) are

frequently found by using dual decomposition, in spite of the corresponding

optimization problems being NP-complete (Koo et al., 2010; Sontag et al.,

2008; Yanover et al., 2006).

We show in section 8.6 that equation (8.2) is the dual of an LP relaxation

of the original problem. When the conditions of theorem 8.1 are satisfied, it

means the LP relaxation is tight for this instance.

8.4 Subgradient Algorithms

For the remainder of this chapter, we show how to efficiently minimize

the upper bound on the MAP assignment provided by the Lagrangian

relaxation. Although L(δ) is convex and continuous, it is non-differentiable

at all points δ where θ̄δi (xi) or θ̄δf (xf) have multiple optima (for some i

or f). There are a large number of non-differentiable convex optimization

techniques that could be applied in this setting (Fisher, 1981). In this section

230 Introduction to Dual Decomposition for Inference

we describe the subgradient method, which has been widely applied to

solving Lagrangian relaxation problems and is often surprisingly effective,

in spite of being such a simple method. The subgradient method is similar

to gradient descent, but is applicable to non-differentiable objectives.

A complete treatment of subgradient methods is beyond the scope of

this chapter. Our focus will be to introduce the general idea so that we

can compare and contrast it with the block coordinate descent algorithms

described in the next section. We refer the reader to Komodakis et al.

(2011) for a detailed treatment of subgradient methods as they relate to

inference problems (see also Held et al. (1974) for an early application of

the subgradient method for Lagrangian relaxation, and to Koo et al. (2010)

for a recent application to the non-projective dependency parsing problem

described earlier). Our dual decomposition differs slightly from these earlier

works in that we explicitly included single node factors and enforced that

all other factors agree with them. As a result, our optimization problem is

unconstrained, regardless of the number of factors. In contrast, Komodakis

et al. (2011) have constraints enforcing that some of the dual variables sum

to zero, resulting in a projected subgradient method.

A subgradient of a convex function L(δ) at δ is a vector gδ such that for

all δ′, L(δ′) ≥ L(δ)+ gδ · (δ′−δ). The subgradient method is very simple to

implement, alternating between individually maximizing the subproblems

(which provides the subgradient) and updating the dual parameters δ using

the subgradient. More specifically, the subgradient descent strategy is as

follows. Assume that the dual variables at iteration t are given by δt. Then

their value at iteration t+ 1 is given by

δt+1
fi (xi) = δtfi(xi)− αt g

t
fi(xi) , (8.12)

where gt is a subgradient of L(δ) at δt (i.e., g ∈ ∂L(δt)) and αt is a stepsize

that may depend on t. We show one way to calculate this subgradient in

section 8.4.1.

A well-known theoretical result is that the subgradient method is guar-

anteed to solve the dual to optimality whenever the stepsizes are chosen

such that limt→∞ αt = 0 and
∑∞

t=0 αt =∞ (Anstreicher and Wolsey, 2009).

One example of such a stepsize is αt =
1
t . However, there are a large num-

ber of heuristic choices that can make the subgradient method faster. See

Komodakis et al. (2011) for further possibilities of how to choose the step

size, and for an empirical evaluation of these choices on inference problems

arising from computer vision.

8.4 Subgradient Algorithms 231

8.4.1 Calculating the Subgradient of L(δ)

In this section we show how to calculate the subgradient of L(δ), complet-

ing the description of the subgradient algorithm. Given the current dual

variables δt, we first choose a maximizing assignment for each subproblem.

Let xsi be a maximizing assignment of θ̄δ
t

i (xi), and let xf
f be a maximizing

assignment of θ̄δ
t

f (xf). The subgradient of L(δ) at δt is then given by the

following pseudocode:

gtfi(xi) = 0, ∀f, i ∈ f, xi

For f ∈ F and i ∈ f :

If xfi �= xsi :

gtfi(x
s
i) = +1 (8.13)

gtfi(x
f
i) = −1 . (8.14)

Thus, each time that xfi �= xsi , the subgradient update decreases the

value of θ̄δ
t

i (xsi) and increases the value of θ̄δ
t

i (xfi). Similarly, for all xf\i,
the subgradient update decreases the value of θ̄δ

t

f (xfi ,xf\i) and increases

the value of θ̄δ
t

f (xsi ,xf\i). Intuitively, as a result of the update, in the next

iteration the factors are more likely to agree with one another on the value

of xi in their maximizing assignments.

Typically one runs the subgradient algorithm until either L(δ) stops

decreasing significantly or we have reached some maximum number of

iterations. If at any iteration t we find that gt = 0, then xfi = xsi for all

f ∈ F, i ∈ f . Therefore, by theorem 8.1, xs must be an MAP assignment,

and so we have solved the dual to optimality. However, the converse does not

always hold: gt may be non-zero even when δt is dual optimal. We discuss

these issues further in section 8.7.

In the incremental subgradient method, at each iteration one computes

the subgradient using only some of the subproblems, F ′ ⊂ F , rather than

using all factors in F (Bertsekas, 1995). This can significantly decrease the

overall running time, and is also more similar to the block coordinate descent

methods that we describe next, which make updates with respect to only

one factor at a time.

8.4.2 Efficiently Maximizing over the Subproblems

To choose a maximizing assignment for each subproblem, needed for mak-

ing the subgradient updates, we have to solve the following combinatorial

232 Introduction to Dual Decomposition for Inference

optimization problem:

max
xf

⎡⎣θf (xf)−
∑
i∈f

δfi(xi)

⎤⎦ . (8.15)

When the number of possible assignments xf is small, this maximization

can be done simply by enumeration. For example, in pairwise MRFs each

factor f ∈ F consists of just two variables, |f | = 2. Suppose each variable

takes k states. Then this maximization takes k2 time.

Often the number of assignments is large but the functions θf (xf) are

sparse, allowing the maximization to be performed using dynamic program-

ming or combinatorial algorithms. For example, in the non-projective de-

pendency parsing problem, θ1(x) = −∞ if the set of edges specified by x

include a cycle, and 0 otherwise. Maximization in Eq. 8.15 can be solved

efficiently in this case as follows: We form a directed graph where the weight

of the edge corresponding to xi is δ1i(1)− δ1i(0). Then, we solve Eq. 8.15 by

finding a directed minimum-weight spanning tree on this graph.

The following are some of the sparse factors that are frequently found in

inference problems, all of which can be efficiently maximized over:

Tree structures (Wainwright et al., 2005; Komodakis et al., 2011)

Matchings (Lacoste-Julien et al., 2006; Duchi et al., 2007; Yarkony et al.,

2010)

Supermodular functions (Komodakis et al., 2011)

Cardinality and order constraints (Gupta et al., 2007; Tarlow et al., 2010)

Functions with small support (Rother et al., 2009)

Consider, for example, a factor which enforces a cardinality constraint over

binary variables: θf (xf) = 0 if
∑

i∈f xi = L, and θf (xf) = −∞ otherwise.

Let ei = δfi(1) − δfi(0). To solve Eq. 8.15, we first sort ei in ascending

order for i ∈ f . Then, the maximizing assignment is obtained by setting the

corresponding xi = 1 for the first L values, and xi = 0 for the remainder.

Thus, computing the maximum assignment takes only O(|f | log |f |) time.

8.5 Block Coordinate Descent Algorithms

A different approach to solving the optimization problem in Eq. 8.2 is via

coordinate descent. Coordinate-descent algorithms have a long history of

being used to optimize Lagrangian relaxations (e.g., see Erlenkotter, 1978;

Guignard and Rosenwein, 1989). Such algorithms work by fixing the values

8.5 Block Coordinate Descent Algorithms 233

of all dual variables except for a set of variables, and then minimizing the

objective as much as possible with respect to that set. The two key design

choices to make are which variables to update and how to update them. In all

the updates we consider below, the coordinates are updated to their optimal

value (i.e., the one that minimizes L(δ)), given the fixed coordinates.

There is a significant amount of flexibility with regard to choosing the

coordinate blocks, that is, the variables to update. A first attempt at

choosing such a block may be to focus only on coordinates for which the

subgradient is non-zero. For example, if xsi = argmaxxi
θ̄δ

t

i (xi), we may

choose to update only δfi(x
s
i), and not δfi(xi), for xi �= xsi . However, this may

result in too small a change in L(δ), and the coordinates we have not updated

may require update at a later stage. The updates we consider below will

update δfi(xi) for all values of xi regardless of the maximizing assignment.

This is very different from the subgradient method, which updates only

the dual variables corresponding to the maximizing assignments for the

subproblems, δfi(x
s
i) and δfi(x

f
i).

We shall describe various block coordinate descent algorithms, each al-

gorithm using an increasingly larger block size. The advantage of coor-

dinate descent algorithms is that they are local, parameter free, simple to

implement, and often provide faster convergence than subgradient methods.

However, as we discuss later, there are cases where coordinate descent algo-

rithms may not reach the dual optimum. In section 8.8 we discuss the issue

of choosing between coordinate descent and subgradient based schemes.

For the practitioner interested in an algorithm to apply, in Fig. 8.4 we

give pseudocode for one of the block coordinate descent algorithms.

8.5.1 The Max-Sum Diffusion algorithm

Suppose that we fix all of the dual variables δ except δfi(xi) for a specific f

and i. We now wish to find the values of δfi(xi) that minimize the objective

L(δ), given the other fixed values. In general there is not a unique solution

to this restricted optimization problem, and different update strategies will

result in different overall running times.

The max-sum diffusion (MSD) algorithm (Kovalevsky and Koval; Werner,

2007, 2008) performs the following block coordinate descent update (for all

xi simultaneously):

δfi(xi) = −1
2δ

−f
i (xi) +

1
2 max

xf\i

⎡⎣θf (xf)−
∑
î∈f\i

δf î(xî)

⎤⎦ , (8.17)

where we define δ−f
i (xi) = θi(xi) +

∑
f̂ �=f δf̂ i(xi). The algorithm iteratively

234 Introduction to Dual Decomposition for Inference

Inputs:

A set of factors θi(xi), θf (xf)

Output:

An assignment x1, . . . , xn that approximates the MAP

Algorithm:

Initialize δfi(xi) = 0, ∀f ∈ F, i ∈ f, xi

Iterate until small enough change in L(δ) (see Eq. 8.2):
For each f ∈ F , perform the updates

δfi(xi) = −δ−f
i (xi) +

1

|f | max
xf\i

⎡⎣θf (xf) +
∑
î∈f

δ−f

î
(xî)

⎤⎦ (8.16)

simultaneously for all i ∈ f and xi. We define δ−f
i (xi) = θi(xi) +

∑
f̂ �=f δf̂ i(xi)

Return xi ∈ argmaxx̂i θ̄
δ
i (x̂i) (see Eq. 8.6).

Figure 8.4: Description of the MPLP block coordinate descent algorithm for
minimizing the dual L(δ) (see section 8.5.2). Similar algorithms can be devised for
different choices of coordinate blocks. See sections 8.5.1 and 8.5.3. The assignment
returned in the final step follows the decoding scheme discussed in section 8.7.

chooses some f and sequentially performs these updates for each i ∈ f . In

appendix 8.9.1 we show how to derive this algorithm as block coordinate de-

scent on L(δ). The proof also illustrates the following equalization property:

after the update, we have θ̄δi (xi) = maxxf\i θ̄
δ
f (xf), ∀xi. In other words, the

reparameterized factors for f and i agree on the utility of state xi.

8.5.2 The MPLP algorithm

In this section, we show that it is possible to do coordinate descent in

closed form over a significantly larger block of coordinates than that of

section 8.5.1. The max-product linear programming (MPLP) algorithm was

introduced as a coordinate-descent algorithm for LP relaxations of MAP

problems (Globerson and Jaakkola, 2008). Here we show that it can also be

interpreted as a block coordinate descent algorithm for Eq. 8.2.

Assume we fix all the variables δ except δfi(xi) for a specific f and all i

(note that this differs from section 8.5.1, where only one i was not fixed).

We now wish to find the values of δfi(xi) that minimize the objective L(δ),

given the other fixed values. We claim that the following update achieves

8.5 Block Coordinate Descent Algorithms 235

this:

δfi(xi) = −
(
1− 1

|f |
)
δ−f
i (xi) +

1

|f | max
xf\i

⎡⎣θf (xf) +
∑
î∈f\i

δ−f

î
(xî)

⎤⎦ .(8.18)
The update can be equivalently written as

δfi(xi) = −δ−f
i (xi) +

1

|f | max
xf\i

⎡⎣θf (xf) +
∑
î∈f

δ−f

î
(xî)

⎤⎦ . (8.19)

In appendix 8.9.2 we show that this update indeed corresponds to the

desired block coordinate descent on L(δ). Note that the update needs to be

performed for all i ∈ f and xi simultaneously, unlike MSD, which updates

for a particular i each time.

One iteration of MPLP (i.e., performing the updates once for every f ∈ F ,

i ∈ f , and xi) has exactly the same running time as an iteration of MSD.5

However, each MPLP update is much more effective, with bigger gains

expected as |f | grows. For example, consider a model with single node

factors θi(xi) and only one θf (xf), that is |F | = 1. For this model, MPLP

exactly solves the dual in the first iteration, whereas MSD would take several

iterations to solve the dual to optimality.

8.5.3 Larger Coordinate Blocks

Ideally we would like to optimize in closed form over as large a coordinate

block as possible. It turns out that when the factors are pairwise, we can

use considerably larger blocks than those that have been discussed above.

As an illustration of this approach, we now show a star update for pairwise

models (Globerson and Jaakkola, 2008). Consider a model where factors

correspond to pairs of variables, so that the elements of F are of the

form {i, j}. Now, consider a block coordinate descent approach where the

free coordinates are δ{i,j}j(xj), δ{i,j}i(xi) for a given i and all its neighbors

j ∈ N(i). Although it is non-trivial to derive, we show in appendix 8.9.3

that a closed form update for these coordinates exists. The free coordinates

5. Assuming that we keep θ̄δi (xi) in memory and compute δ−f
i (xi) = θ̄δi (xi)− δfi(xi).

236 Introduction to Dual Decomposition for Inference

that minimize the objective L(δ) are given by6

δ{i,j}i(xi) = − 1

1 +Ni
γi(xi) + γji(xi) (8.20)

δ{i,j}j(xj) = −1
2δ

−i
j (xj) +

1
2 max

xi

[
θij(xi, xj) +

2

1 +Ni
γi(xi)− γji(xi)

]
where we define δ−i

j (xj) = θj(xj) +
∑

k∈N(j)\i δ{k,j}j(xj), and

γji(xi) = max
xj

[
θij(xi, xj) + δ−i

j (xj)
]

γi(xi) = θi(xi) +
∑

j∈N(i)

γji(xi)

where Ni = |N(i)| is the number of neighbors of node i in the pairwise

model. For a given node i, the update needs to be performed for all factors

{i, j}, xi, and xj simultaneously, where j ∈ N(i).

Often a closed-form update is not possible, but one can still efficiently

compute the updates. For example, Sontag and Jaakkola (2009) give a

linear time algorithm for coordinate descent in pairwise models using blocks

corresponding to the edges of a tree-structured graph.

8.5.4 Efficiently Computing the Updates

Recall that the subgradient method needs to solve only one maximization per

subproblem to perform the subgradient update (see Eq. 8.15). We showed in

section 8.4.2 that these can be solved efficiently for a large number of sparse

factors, even though the factors may involve a large number of variables.

Consider the MPLP update given in Eq. 8.16. To perform the updates,

one must compute max-marginals for each subproblem, that is, the value of

the optimal assignment after fixing each variable (individually) to one of its

states. Specifically, for every f , i, and xi, we must compute

max
xf\i

h(xf\i, xi), h(xf) = θf (xf) +
∑
î∈f

δ−f

î
(xî) .

Often this can be done in the same running time that it takes to find

the maximizing assignment, that is, maxxf
h(xf).

7 For example, if the

subproblem is a tree structure, then with just two passes—propagating max-

product messages from the leaves to the root, and then from the root back

to the leaves—we can compute the max-marginals. Tarlow et al. (2010)

6. The star update that appeared in Globerson and Jaakkola (2008) under the name
NMPLP, had an error. This is the correct version.
7. To perform the updates we need only the optimal value, not the maximizing assignment.

8.5 Block Coordinate Descent Algorithms 237

0 10 20 30 40 50 60
46

47

48

49

50

51

52

Iteration

O
bj

ec
tiv

e

MSD
MSD++
MPLP
Star

Figure 8.5: Comparison of three coordinate descent algorithms on a 10× 10 two
dimensional Ising grid. The dual objective L(δ) is shown as a function of iteration
number. We multiplied the number of iterations for the star update by two, since
each edge variable is updated twice.

show how max-marginals can be efficiently computed for factors enforcing

cardinality and order constraints, and Duchi et al. (2007) show how to do

this for matchings. In all of these cases, one iteration of MPLP has the same

running time as one iteration of the subgradient method.

However, for some problems, computing the max-marginals can take

longer. For example, it is not clear how to compute max-marginals effi-

ciently for the factor θ1(x) which enforced acyclicity in the non-projective

dependency problem. The weight for the edge corresponding to xi is δ
−1
i (0)−

δ−1
i (1). The computational problem is to find, for each edge, the weight of

the minimum directed spanning tree (MST) if we force it to include this

edge (xi = 1) and if we force it not to include this edge (xi = 0).8 We

could compute the max-marginals by solving 2|V | separate directed MST

problems, but this would increase the overall running time of each iteration.

Thus, it is possible that the subgradient approach is more suitable here.

238 Introduction to Dual Decomposition for Inference

8.5.5 Empirical Comparison of the Algorithms

All the algorithms described in this section minimize L(δ), but do so

via different coordinate blocks. How do these algorithms compare to one

another? One criterion is the number of coordinates per block. The more

coordinates we optimize in closed form, the faster we would expect our

algorithm to make progress. Thus, we would expect the MPLP updates

given in section 8.5.2 to minimize L(δ) in fewer iterations than the MSD

updates from section 8.5.1, since the former optimizes over more coordinates

simultaneously. Comparing the star update from section 8.5.3 to MPLP with

edge updates is a bit more delicate since, in the former, the coordinate blocks

overlap. Thus, we may be doing redundant computations in the star update.

On the other hand, it does provide a closed-form update over larger blocks

and thus may result in faster convergence.

To assess the difference between the algorithms, we test them on a pairwise

model with binary variables. The graph structure is a two dimensional 10×10
grid and the interactions are Ising (see Globerson and Jaakkola, 2008, for a

similar experimental setup). We compare three algorithms:

MSD – At each iteration, for each edge, it updates the message from the

edge to one of its endpoints (i.e., δ{i,j}i(xi) for all xi), and then updates the

message from the edge to its other endpoint.

MPLP – At each iteration, for each edge, it updates the messages from the

edge to both of its endpoints (i.e., δ{i,j}i(xi) and δ{i,j}j(xj), for all xi, xj).
Star update – At each iteration, for each node i, it updates the messages

from all edges incident on i to both of their endpoints (i.e., δ{i,j}i(xi) and

δ{i,j}j(xj) for all j ∈ N(i), xi, xj).

MSD++ – See section 8.5.6.

The running times per iteration of MSD and MPLP are identical. We let

each iteration of the star update correspond to two iterations of the edge

updates to make the running times comparable.

Results for a model with random parameters are shown in Fig. 8.5, and

are representative of what we found across a range of model parameters.

The results verify the arguments made above: MPLP is considerably faster

than MSD, and the star update is somewhat faster than MPLP.

8. The corresponding max-marginal is the MST’s weight plus the constant −∑
i∈f δ

−1
i (0).

8.5 Block Coordinate Descent Algorithms 239

8.5.6 What Makes MPLP Faster Than MSD?

It is clear that MPLP uses a larger block size than MSD. However, the two

algorithms also use different equalization strategies, which we will show is

just as important. We illustrate this difference by giving a new algorithm,

MSD++, which uses the same block size as MPLP, but an equalization

method that is more similar to MSD’s.

For a given factor f , assume all δ variables are fixed except δfi(xi) for all

i ∈ f and xi (as in MPLP). We would like to minimize L(δ) with respect to

the free variables. The part of the objective L(δ) that depends on the free

variables is

L̄(δ) =
∑
i∈f

max
xi

θ̄δi (xi) + max
xf

θ̄δf (xf) ,

where θ̄ are the reparameterizations defined in Eq. 8.6.

The MPLP update can be shown to give a δt+1 such that L̄(δt+1) =

maxxf
hδ

t

(xf), where hδ
t

(xf) =
∑

i∈f θ̄
δt

i (xi)+ θ̄δ
t

f (xf). However, there are

many possible choices for δt+1 that would achieve the same decrease in the

dual objective. In particular, for any choice of non-negative weights αf , αi

for i ∈ f such that αf +
∑

i∈f αi = 1, we can choose δt+1 so that

θ̄δ
t+1

i (xi) = αi ·max
xf\i

hδ
t

(xf) ∀i ∈ f,

θ̄δ
t+1

f (xf) = hδ
t

(xf)−
∑
i∈f

αi ·max
x̂f\i

hδ
t

(xi, x̂f\i).

Thus, we have that maxxi
θ̄δ

t+1

i (xi) = αi·maxxf
hδ

t

(xf) and maxxf
θ̄δ

t+1

f (xf)

= αf ·maxxf
hδ

t

(xf). All of these statements can be proved using arguments

analogous to those given in appendix 8.9.2.

The MPLP algorithm corresponds to the choice αf = 0, αi = 1
|f | for

i ∈ f . The reparameterization results in as much of hδ
t

(xf) being pushed

to the single node terms θ̄δ
t+1

i (xi) as possible. Thus, subsequent updates for

other factors that share variables with f will be affected by this update as

much as possible. Intuitively, this increases the amount of communication

between the subproblems. MPLP’s dual optimal fixed points will have

maxxi
θ̄δi (xi) =

L(δ)
|V | for all i, and maxxf

θ̄δf (xf) = 0 for all f ∈ F .

In contrast, each MSD update to δfi(xi) divides the objective equally

between the factor term and the node term (see appendix 8.9.1). As a

result, MSD’s dual optimal fixed points have maxxi
θ̄δi (xi) = maxxf

θ̄δf (xf) =
L(δ)

|V |+|F | for all i ∈ V and f ∈ F . Consider the alternative block coordinate

240 Introduction to Dual Decomposition for Inference

descent update given by

δfi(xi) =
−|f |
|f |+ 1

δ−f
i (xi) +

1

|f |+ 1
max
xf\i

⎡⎣θf (xf) +
∑
î∈f\i

δ−f

î
(xî)

⎤⎦ (8.21)

for all i ∈ f and xi simultaneously. This update, which we call MSD++,

corresponds to the choice αi = αf = 1
|f |+1 , and has similar fixed points.

We show in Fig. 8.5 that MSD++ is only slightly faster than MSD, despite

using a block size that is the same as that of MPLP. This suggests that it

is MPLP’s choice of equalization method (i.e., the αi’s) that provides the

substantial improvements over MSD, not simply the choice of block size. As

αf → 1, the number of iterations required to solve the dual to optimality

increases even further. The extreme case, αf = 1, although still a valid block

coordinate descent step, gets stuck after the first iteration.

8.5.7 Convergence of Dual Coordinate Descent

Although coordinate descent algorithms decrease the dual objective at every

iteration, they are not generally guaranteed to converge to the dual opti-

mum. The reason is that although the dual objective L(δ) is convex, it is

not strictly convex. This implies that the minimizing coordinate value may

not be unique, and thus convergence guarantees for coordinate descent algo-

rithms do not hold (Bertsekas, 1995). Interestingly, for pairwise MRFs with

binary variables, the fixed points of the coordinate descent algorithms do

correspond to global optima (Kolmogorov and Wainwright, 2005; Globerson

and Jaakkola, 2008).

One strategy to avoid the above problem is to replace the max function

in the objective of Eq. 8.2 with a soft-max function (e.g., see Johnson,

2008; Hazan and Shashua, 2010) which is smooth and strictly convex. As a

result, coordinate descent converges globally.9 An alternative approach are

the auction algorithms proposed by Bertsekas (1992). However, currently

there does not seem to be a coordinate descent approach to Eq. 8.2 that is

guaranteed to converge globally for general problems.

8.6 Relations to Linear Programming Relaxations

Linear programming relaxations are a popular approach to approximating

combinatorial optimization problems. One of these relaxations is in fact well

9. To solve the original dual, the soft-max needs to be gradually changed to the true max.

8.6 Relations to Linear Programming Relaxations 241

known to be equivalent to the dual decomposition approach discussed in

this chapter (Schlesinger, 1976; Guignard and Kim, 1987; Komodakis et al.,

2011; Wainwright et al., 2005; Werner, 2007). In this section we describe the

corresponding LP relaxation.

We obtain a relaxation of the discrete optimization problem given in

Eq. 8.1 by replacing it with the following linear program:

max
μ∈ML

{∑
f

∑
xf

θf (xf)μf (xf) +
∑
i

∑
xi

θi(xi)μi(xi)

}
(8.22)

where the local marginal polytope ML enforces that {μi(xi), ∀xi} and

{μf (xf), ∀xf} correspond to valid (local) probability distributions and that,

for each factor f , μf (xf), is consistent with μi(xi) for all i ∈ f, xi:

ML =

{
μ ≥ 0 :

∑
xf\i μf (xf) = μi(xi) ∀f, i ∈ f, xi∑
xi
μi(xi) = 1 ∀i

}
. (8.23)

Standard duality transformations can be used to show that the convex

dual of the LP relaxation (Eq. 8.22) is the Lagrangian relaxation (Eq. 8.2).

The integral vertices of the local marginal polytope (i.e., μ such that

μi(xi) ∈ {0, 1}) can be shown to correspond 1-to-1 with assignments x

to the variables of the graphical model. The local marginal polytope also

has fractional vertices that do not correspond to any global assignment

(Wainwright and Jordan, 2008). Since the relaxation optimizes over this

larger space, the value of the LP solution always upper-bounds the value

of the MAP assignment. We call the relaxation tight for an instance if the

optimum of the LP has the same value as the MAP assignment.

The connection to LP relaxations is important for a number of reasons.

First, it shows how the algorithms discussed in this chapter apply equally

to dual decomposition and linear programming relaxations for the MAP

problem. Second, it allows us to understand when two different dual decom-

positions are equivalent to each other in the sense that, for all instances,

the Lagrangian relaxation provides the same upper bound (at optimality).

Realizing that two formulations are equivalent allows us to attribute differ-

ences in empirical results to the algorithms used to optimize the duals, not

the tightness of the LP relaxation.

The third reason why the connection to LP relaxations is important is

that it allows us to tighten the relaxation by adding valid constraints that

are guaranteed not to cut off any integer solutions. The dual decomposition

that we introduced in section 8.3 used only single node intersection sets,

enforcing that the subproblems are consistent with one another on the

individual variables. To obtain tighter LP relaxations, we typically have

242 Introduction to Dual Decomposition for Inference

to use larger intersection sets along with the new constraints.10 Although

further discussion of this is beyond the scope of this chapter, details can be

found in Sontag (2010) and Werner (2008).

8.7 Decoding: Finding the MAP Assignment

Thus far, we have discussed how the subgradient method and block coor-

dinate descent can be used to solve the Lagrangian relaxation. Although

this provides an upper bound on the value of the MAP assignment, for most

inference problems we actually want to find the assignment itself. In Fig. 8.4

we suggested one simple way to find an assignment from the dual beliefs, by

locally decoding the single node reparameterizations:

xi ← argmax
x̂i

θ̄δi (x̂i). (8.24)

The node terms θ̄δi (xi) may not have a unique maximum. However, when

they do have a unique maximum, we say that δ is locally decodable to x. This

section addresses the important question of when this and related approaches

will succeed in finding the MAP assignment. Proofs are given in appendix

8.9.4.

Before the dual is solved (close) to optimality, it is typically not possible

to give guarantees as to how good an assignment will be found by this

local decoding scheme. However, once the algorithms have solved the dual

to optimality, if the solution is locally decodable to x, then x is both the

MAP assignment and the only LP solution, as stated in the next theorem.

Theorem 8.2. If a dual optimal δ∗ is locally decodable to x∗, then the LP

relaxation has a unique solution, and it is x∗.

Thus, this result gives a strong necessary condition for when locally decoding

the dual solution can find the MAP assignments only when the LP relaxation

is tight, the MAP assignment is unique, and there are no optimal fractional

solutions.11

A natural question is whether this assumption that the LP relaxation has

a unique solution that is integral, is sufficient for a dual solution to be locally

decodable. As we illustrate later, in general the answer is no, as not all dual

10. Globerson and Jaakkola (2008) give the MPLP updates for larger intersection sets.
11. An alternative way to find the MAP assignment in this setting would be to directly
solve the LP relaxation using a generic LP solver. However, recall that we use dual
decomposition for reasons of computational efficiency.

8.7 Decoding: Finding the MAP Assignment 243

solutions are locally decodable. We are, however, guaranteed that one exists.

Theorem 8.3. If the LP relaxation has a unique solution and it is integral,

there exists a dual optimal δ∗ that is locally decodable.

Ideally, our algorithms would be guaranteed to find such a locally decod-

able dual solution. We show in section 8.7.1 that the subgradient method is

indeed guaranteed to find a locally decodable solution under this assump-

tion. For coordinate descent methods there do exist cases where a locally

decodable solution may not be found. However, in practice this is often not

a problem, and there are classes of graphical models where locally decodable

solutions are guaranteed to be found (see section 8.7.2).

Rather than locally decoding an assignment, we could try searching for

a global assignment x∗ which maximizes each of the local subproblems.

We showed in theorem 8.1 that such an agreeing assignment would be an

MAP assignment, and its existence would imply that the LP relaxation is

tight. Thus, the LP relaxation being tight is a necessary requirement for this

strategy to succeed. For pairwise models with binary variables, an agreeing

assignment can be found in linear time when one exists (Johnson, 2008).

However, this does not extend to larger factors or non-binary variables.

Theorem 8.4. Finding an agreeing assignment is NP-complete even when

the LP relaxation is tight and the MAP assignment is unique.

The construction in the above theorem uses a model where the optimum

of the LP relaxation is not unique; although there may be a unique MAP

assignment, there are also fractional vertices that have the same optimal

value. When the LP has a unique and integral optimum, the decoding

problem is no longer hard (e.g., it can be solved by optimizing an LP). Thus,

asking that the LP relaxation have a unique solution that is integral seems

to be a very reasonable assumption for a decoding method to succeed. When

the LP relaxation does not have a unique solution, a possible remedy is to

perturb the objective function by adding a small (in magnitude) random

vector. If the LP relaxation is not tight, we can attempt to tighten the

relaxation, for example by using the approaches discussed in Sontag et al.

(2008).

8.7.1 Subgradient Method

The problem of recovering a primal solution (i.e., a solution to the LP

relaxation given in Eq. 8.22) when solving a Lagrangian relaxation using

subgradient methods has been well studied (e.g., see Anstreicher andWolsey,

2009; Nedić and Ozdaglar, 2009; Shor, 1985). We next describe one such

244 Introduction to Dual Decomposition for Inference

approach (the simplest) and discuss its implications for finding the MAP

assignment from the dual solution.

Given the current dual variables δt, define the following indicator func-

tions for a maximizing assignment of the subproblems: μt
f (xf) = 1[xf =

argmaxx̂f
θ̄δ

t

f (x̂f)], and μt
i(xi) = 1[xi = argmaxx̂i

θ̄δ
t

i (x̂i)]. When the maxi-

mum is not unique, choose any one of the maximizing assignments.

Next, consider the average of these indicator functions across all subgra-

dient iterations:

μf (xf) =
1

T

T∑
t=1

μt
f (xf)

μi(xi) =
1

T

T∑
t=1

μt
i(xi).

For many common choices of stepsizes, the estimate μ can be shown to

converge to a solution of the LP relaxation given in Eq. 8.22, as T →∞.

When the LP relaxation has a unique solution and it is integral, then μ is

guaranteed to converge to the unique MAP assignment. In particular, this

implies that there must exist a subgradient iteration when μt corresponds

to the MAP assignment. At this iteration the subgradient is zero, and we

obtain a certificate of optimality by theorem 8.1. When the LP relaxation is

not tight, recovering a primal solution may be helpful for finding additional

constraints to use in tightening the relaxation.

8.7.2 Coordinate Descent

As mentioned in section 8.5, the coordinate descent algorithms, while always

providing a monotonic improvement in the dual objective, are not in general

guaranteed to solve the Lagrangian relaxation to optimality. However, for

some graphical models, such as pairwise models with binary variables, fixed

points of the coordinate descent algorithms can be used to construct a

solution to the LP relaxation (Kolmogorov and Wainwright, 2005; Globerson

and Jaakkola, 2008). Thus, for these graphical models, all fixed points of the

algorithms are dual optimal.

We additionally show that when the LP relaxation has a unique solution

that is integral, then the fixed point must be locally decodable to the MAP

assignment. On the other hand, for more general graphical models, there do

exist degenerate cases when a fixed point of the coordinate descent algorithm

is not locally decodable, even if it corresponds to a dual solution.

Theorem 8.5. Suppose the LP relaxation has a unique solution and it is

8.8 Discussion 245

integral.12 Then the following hold:

1. For binary pairwise MRFs, fixed points of the coordinate descent algo-

rithms are locally decodable to x∗.
2. For pairwise tree-structured MRFs, fixed points of the coordinate descent

algorithms are locally decodable to x∗.
3. There exist non-binary pairwise MRFs with cycles and dual optimal fixed

points of the coordinate descent algorithms that are not locally decodable.

The second result can be generalized to graphs with a single cycle. Despite

the theoretical difficulty hinted at in the third result, empirically we have

found that when the LP relaxation has a unique solution that is integral,

local decoding nearly always finds the MAP assignment, when used with the

coordinate descent algorithms (Sontag et al., 2008).

8.8 Discussion

The dual decomposition formulation that we introduced in this chapter is

applicable whenever one can break an optimization problem into smaller

subproblems that can be solved exactly by using combinatorial algorithms.

The dual objective is particularly simple, consisting of a sum of maximiza-

tions over the individual subproblems, and provides an upper bound on the

value of the MAP assignment. Minimizing the Lagrangian relaxation makes

this bound tighter by pushing the subproblems to agree with one another

on their maximizing assignment. If we succeed in finding an assignment that

maximizes each of the individual subproblems, then this assignment is the

MAP assignment and the dual provides a certificate of optimality. Even

when not exact, the upper bound provided by the dual can be extremely

valuable when used with a branch-and-bound procedure to find the MAP

assignment (Geoffrion, 1974).

We described both subgradient methods and block coordinate algorithms

for minimizing the Lagrangian relaxation. Both are notable for their sim-

plicity and their effectiveness at solving real-world inference problems. A

natural question is how to choose between the two for a specific problem.

This question has been the subject of continual debate since the early work

on Lagrangian relaxations (see Guignard, 2003, for a review).

Each approach has its advantages and disadvantages. The subgradient

method is guaranteed to converge, but does not monotonically decrease

12. This implies that the MAP assignment x∗ is unique.

246 Introduction to Dual Decomposition for Inference

the dual and requires a delicate choice of stepsize. The coordinate descent

algorithms are typically much faster at minimizing the dual, especially in the

initial iterations, and are also monotonic. However, to perform each update,

one must compute max-marginals, and this may be impractical for some

applications. We presented several coordinate update schemes. These vary

both in the coordinates that they choose to minimize in each update, and

in the way this minimization is performed. MPLP appears to be the best

general choice.

It may be advantageous to use the two approaches together. For example,

one could first use coordinate descent and then, when the algorithm is close

to convergence, use the subgradient method to ensure global optimality.

Another possibility is to alternate between the updates, as in the spacer

step approach in optimization (see Bertsekas, 1995).

There are often many different ways to decompose a problem when

applying dual decomposition. For example, in this chapter we suggested

using a decomposition for pairwise models that uses one subproblem per

edge. An alternative decomposition is to use a set of spanning trees that

together cover all of the edge potentials (Wainwright et al., 2005). Still

another approach is, before constructing the decomposition, to split some

of the variables and introduce new potentials to enforce equality among all

copies of a variable (Guignard, 2003). Using this technique, Yarkony et al.

(2010) give a decomposition that uses a single tree spanning all of the original

edge potentials. Although in all of these cases the decompositions correspond

to the same LP relaxation, often a different decomposition can result in

tighter or looser bounds being provided by the Lagrangian relaxation.

Dual decomposition methods have a wide range of potential applications in

machine learning and, more broadly, engineering and the sciences. We have

already observed some empirical successes for natural language processing,

computational biology, and machine vision. We expect that as graphical

models become more complex, techniques like the ones discussed in this

chapter will become essential for performing fast and accurate inference.

Acknowledgments We thank Michael Collins, Ce Liu, and the editors

for their very useful feedback, and also M. Collins for Fig. 8.1. This work

was partly supported by BSF grant 2008303.

8.8 Discussion 247

Appendix: Technical Details

8.9.1 Derivation of the Max-Sum Diffusion Updates

For a given factor f and variable i, assume all δ variables are fixed except

δfi(xi). We would like to minimize L(δ) in Eq. 8.2 w.r.t. the free variables.

Here we prove that the choice of δfi(xi) in Eq. 8.17 corresponds to this

minimization (other updates that achieve the same objective are possible

since L(δ) is not strictly convex).

The part of the objective L(δ) that depends on the free parameters is

max
xi

(
θi(xi) +

∑
f :i∈f

δfi(xi)
)
+max

xf

(
θf (xf)−

∑
î∈f

δf î(xî)
)

= max
xi

(
δfi(xi) + δ−f

i (xi)
)
+max

xi

(
−δfi(xi) + max

xf\i

[
θf (xf)−

∑
î∈f\i

δf î(xî)
])

≥ max
xi

(
δ−f
i (xi) + max

xf\i

[
θf (xf)−

∑
î∈f\i

δf î(xî)
])

= max
xi

g(xi).

This lower bound can be achieved by choosing a δfi(xi) such that

δfi(xi) + δ−f
i (xi) = 1

2g(xi),

−δfi(xi) + max
xf\i

[
θf (xf)−

∑
î∈f\i

δf î(xî)
]

= 1
2g(xi).

Indeed, the δfi(xi) given by the update in Eq. 8.17 satisfies the above.

8.9.2 Derivation of the MPLP Updates

For a given factor f assume all δ variables are fixed except δfi(xi) for all

i ∈ f . We would like to minimize L(δ) in Eq. 8.2 w.r.t. the free variables.

Here we prove that Eq. 8.18 does this optimally.

The part of the objective L(δ) that depends on the free parameters is

L̄(δ) =
∑
i∈f

max
xi

(
θi(xi)+

∑
f̂ :i∈f̂

δf̂ i(xi)
)
+max

xf

(
θf (xf)−

∑
i∈f

δfi(xi)
)
. (8.25)

DenoteAi(δ) = maxxi

(
θi(xi)+

∑
f̂ :i∈f̂ δf̂ i(xi)

)
andAf (δ) = maxxf

(
θf (xf)−∑

i∈f δfi(xi)
)
. Then it follows that

L̄(δ) =
∑
i∈f

Ai(δ) +Af (δ) ≥ max
xf

(
θf (xf) +

∑
i∈f

δ−f
i (xi)

)
= B.

248 Introduction to Dual Decomposition for Inference

This gives a lower bound B on the minimum of L̄(δ). We next show that

this lower bound is achieved by the MPLP update in Eq. 8.18. For each of

the terms Ai(δ) we have (after the update)

Ai(δ) = max
xi

1

|f |δ
−f
i (xi) +

1

|f | max
xf\i

⎡⎣θf (xf) +
∑
î∈f\i

δ−f

î
(xî)

⎤⎦
=

1

|f | max
xf

(
θf (xf) +

∑
i∈f

δ−f
i (xi)

)
=

B

|f | . (8.26)

The value of Af (δ) after the MPLP update is

max
xf

(
θf (xf) +

∑
i∈f

{ |f | − 1

|f | δ−f
i (xi)− 1

|f | max
x̂f\i

[
θf (xi, x̂f) +

∑
î∈f\i

δ−f

î
(x̂î)
]})

=
1

|f | max
xf

(∑
i∈f

{
θf (xf) +

∑
î∈f\i

δ−f

î
(xî)−max

x̂f\i

[
θf (xi, x̂f) +

∑
î∈f\i

δ−f

î
(x̂î)
]})

≤ 1

|f |
∑
i∈f

max
xf

(
θf (xf) +

∑
î∈f\i

δ−f

î
(xî)−max

x̂f\i

[
θf (xi, x̂f) +

∑
î∈f\i

δ−f

î
(x̂î)
])

=
1

|f |
∑
i∈f

max
xi

(
max
xf\i

[
θf (xf) +

∑
î∈f\i

δ−f

î
(xî)
]
−max

xf\i

[
θf (xf) +

∑
î∈f\i

δ−f

î
(xî)
])

= 0,

where the first equality used
∑

i∈f (|f | − 1)δ−f
i (xi) =

∑
i∈f
∑

î∈f\i δ
−f

î
(xî).

From the above and Eq. 8.26 it follows that L̄(δ) ≤ B. However, we know

that B is a lower bound on L̄(δ), so we must have L̄(δ) = B, implying the

optimality of the MPLP update.

8.9.3 Derivation of the Star Update

The MPLP update gives the closed form solution for block coordinate

descent on coordinates δ{i,j}j(xj) and δ{i,j}i(xi) for a particular {i, j} ∈ F

(i.e., an edge update). We now wish to find the update where the free

coordinates are δ{i,j}j(xj), δ{i,j}i(xi) for a fixed i and all j ∈ N(i). One way

to find the optimal coordinates is by iterating the MPLP update for all the

edges in the star until convergence. Notice that δ−i
j (xj), γji(xi), and γi(xi)

do not change after each edge update. We solve for δ{i,j}j(xj) and δ{i,j}i(xi)
in terms of these quantities, using fixed point equations for MPLP.

The MPLP edge update for f = {i, j} is given by

δ{i,j}i(xi) = −1
2δ

−j
i (xi) +

1
2γji(xi). (8.27)

8.8 Discussion 249

Multiplying by 2, and then subtracting δ{i,j}i(xi) from both sides, we obtain

δ{i,j}i(xi) = −δi(xi) + γji(xi), (8.28)

where we define δi(xi) = θi(xi) +
∑

j∈N(i) δ{i,j}i(xi). Summing this over all

neighbors of i, and adding θi(xi) to both sides, we obtain

δi(xi) = −Niδi(xi) + γi(xi)

δi(xi) =
1

1 +Ni
γi(xi). (8.29)

Applying Eq. 8.28 and Eq. 8.29, we obtain the following for δ−j
i (xi):

δ−j
i (xi) = δi(xi)− δ{i,j}i(xi) = 2δi(xi)− γji(xi) =

2γi(xi)

1 +Ni
− γji(xi) .

Substituting this back into the MPLP update (Eq. 8.27) yields the update

for δ{i,j}i(xi) given in Eq. 8.20. The update for δ{i,j}j(xj) is obtained by

taking the MPLP update and substituting the above expression for δ−j
i (xi).

The dual variables given by the star update in Eq. 8.20 can be seen to

be a fixed point of MPLP for all edges in the star. Since any fixed point of

MPLP on a tree is dual optimal (see section 8.7.2), these updates provide

the optimum for these coordinates.

8.9.4 Proofs of the Decoding Results

Duality in linear programming specifies complementary slackness conditions

that every primal and dual solution must satisfy. In particular, it can be

shown that for any optimal μ∗ for the local LP relaxation given in Eq. 8.22

and any optimal δ∗ for the Lagrangian relaxation minδ L(δ):

μ∗
i (xi) > 0 ⇒ θ̄δ

∗
i (xi) = max

x̂i

θ̄δ
∗

i (x̂i), (8.30)

μ∗
f (xf) > 0 ⇒ θ̄δ

∗
f (xf) = max

x̂f

θ̄δ
∗

f (x̂f). (8.31)

Proof of theorem 8.2. Consider any xi �= x∗i . Since θ̄δ
∗

i (xi) < θ̄δ
∗

i (x∗i), com-

plementary slackness (8.30) implies that μ∗
i (xi) = 0 for all optimal μ∗. Thus,

the only solution to the LP relaxation corresponds to x∗.

Proof of theorem 8.3. This follows from strict complementary slackness

(Vanderbei, 2007), which guarantees that a primal-dual pair (μ∗, δ∗) exists
that satisfies the implication in (8.30) both ways. Since the LP relaxation

has only one solution, and it corresponds to the MAP assignment, strict

complementary slackness guarantees that such a δ∗ is locally decodable.

Proof of theorem 8.4. We reduce from 3SAT. First, we encode 3SAT as an

250 Introduction to Dual Decomposition for Inference

optimization problem of the form given in Eq. 8.1. The variables xi ∈ {0, 1}
are the same as in the 3SAT formula. We have one factor θf (xf) for each

clause f in the formula, defined on the corresponding three variables. θf (xf)

is 0 if the clause is satisfied by xf , and −∞ otherwise. θi(xi) = 0 for all i, xi.

Suppose we could efficiently find an agreeing assignment when one exists.

By theorem 8.1, this would be an MAP assignment (and the LP relaxation is

tight), which in this case corresponds to a satisfying assignment of the 3SAT

formula. Thus, if we could efficiently find an MAP assignment whenever the

LP relaxation is tight, then we could efficiently solve 3SAT.

Finding the MAP assignment is hard even if it is unique, because the

problem of finding a satisfying assignment when we are guaranteed that a

formula has at most one satisfying assignment, called Unique-SAT, is also

NP-hard, under randomized reductions (Valiant and Vazirani, 1985).

For 3SAT, the LP relaxation always has a fractional solution μ ∈ ML

with objective value 0. Thus, by theorem 8.2 the dual solutions will never

be locally decodable. Let μi(0) = μi(1) = .5 for all i. For each clause f , if

it is satisfied by both x1
f = (0, 0, 0) and x2

f = (1, 1, 1), then let μf (x
1
f) =

μf (x
2
f) = .5 and μf (xf) = 0 for xf �= x1

f ,x
2
f . Otherwise, f must be satisfied

by x1
f = (0, 1, 1) and x2

f = (1, 0, 0), so we set μf (x
1
f) = μf (x

2
f) = .5.

Proof of theorem 8.5, part 1. The claim follows from (Globerson and Jaakkola,

2008, proposition 4). This result shows how to construct a fractional primal

solution whenever at least one of the nodes i has θ̄δi (0) = θ̄δi (1), that is, when

δ is not locally decodable. However, this would contradict our assumption

that the LP relaxation has a unique solution and it is integral. Thus, δ must

be locally decodable.

All fixed points of the coordinate descent algorithms can be shown to

satisfy max-consistency. Let Ai consist of all states x̂i that maximize θ̄δi (xi).

By max-consistency, we mean that for all f ∈ F, i ∈ f , and xi ∈ Ai,

maxxf\i θ̄
δ
f (xf) = maxx̂f

θ̄δf (x̂f). This is trivial to see for MSD, since at

a fixed point, θ̄δi (xi) = maxxf\i θ̄
δ
f (xf) ∀f, i ∈ f and xi. Thus, for xi ∈ Ai,

θ̄δi (xi) = maxx̂f
θ̄δf (x̂f). Putting these together shows max-consistency.

Proof of theorem 8.5, part 2. First, construct a reduced pairwise MRF with

potentials θ′ where for each variable i we consider only those states xi that

maximize θ̄δi (xi) (hereafter ignoring the other states). We let θ′ij(x̂i, x̂j) = 0 if

x̂i, x̂j maximize θ̄δij(xi, xj), and −∞ otherwise. By complementary slackness,

all solutions of the LP relaxation for θ′ are also optimal for θ. By max-

consistency, for every state xi, ∃xj such that θ′(xi, xj) = 0.

Suppose that there exist a vertex i and a state x′i where x
′
i �= x∗i (that is, δ

is not locally decodable to x∗). Then, by max-consistency we can construct

8.8 Discussion 251

X1

X2

X3

X4

1 2 3

4

1

1

1

2

2

2

3

3

3 4

4

4

Figure 8.6: Illustration of the parameters of the pairwise MRF that we use in
the proof of theorem 8.5, part 3. Each node represents a state xi ∈ {1, 2, 3, 4}. An
edge between xi and xj signifies that θij(xi, xj) = 0, whereas no edge between xi

and xj signifies that θij(xi, xj) = −1.

an assignment (going one edge at a time in the tree rooted at i) x′ �= x∗ such
that θ′(x′) = 0. This shows that x′ is an MAP assignment for θ. However,

this contradicts the uniqueness of the MAP assignment.

Proof of theorem 8.5, part 3. Consider a pairwise MRF on four variables

with edges E = {(1, 2), (2, 3), (3, 4), (1, 4), (1, 3)} and where each variable

has four states. Let the parameters θ be as specified in Fig. 8.6, and let the

dual variables δ be identically zero. Since the MAP assignment (xi = 4 for

all i) has value 0 and L(δ) = 0, δ is dual optimal and the LP relaxation is

tight. δ is also a fixed point of the MPLP update given in Eq. 8.18.

What remains is to show that the LP relaxation has a unique solution (i.e.,

xi = 4 for all i). First, note that for any primal optimal μ∗, μ∗
ij(xi, xj) must

be 0 whenever θij(xi, xj) = −1. Subject to these constraints, we next show

that μ∗
i (xi) must be 0 for all i and xi ∈ {1, 2, 3}. For x ∈ {1, 2, 3}, the local

consistency constraints (see Eq. 8.23) along edges (1, 2), (2, 3) and (3, 4)

imply that μ∗
1(x) = μ∗

12(x, x) = μ∗
2(x) = μ∗

2,3(x, x) = μ∗
3(x) = μ∗

3,4(x) =

μ∗
4(x). Similarly, the local consistency constraints along edge (1, 3) imply

that μ∗
1(1) = μ∗

1,3(1, 2) = μ∗
3(2) and μ∗

1(2) = μ∗
1,3(2, 3) = μ∗

3(3). Together,

these imply that μ∗
i (xi) = a for all i and xi ∈ {1, 2, 3}. Now consider the

local consistency constraints for edge (1, 4). One of the constraints is that

μ∗
1(3) = μ∗

1,4(3, 3) + μ∗
1,4(3, 2) = μ∗

4(3) + μ∗
4(2). Thus, we must have that

a = 2a, which implies that a = 0.

Note that there do exist locally decodable solutions for the example given

252 Introduction to Dual Decomposition for Inference

in Fig. 8.6. In particular, consider δ defined as δ{i,j}i(4) = δ{i,j}j(4) = 0 and

δ{i,j}i(x) = δ{i,j}j(x) = ε for x ∈ {1, 2, 3}. When −.5 ≤ ε < 0, δ is dual

optimal, locally decodable, and a fixed point of MPLP.

8.10 References

K. M. Anstreicher and L. A. Wolsey. Two “well-known” properties of subgradient
optimization. Mathematical Programming, 120(1):213–220, 2009.

D. P. Bertsekas. Auction algorithms for network flow problems: A tutorial intro-
duction. Computational Optimization and Applications, 1:7–66, 1992.

D. P. Bertsekas. Nonlinear Programming. Athena Scientific, Belmont, MA, 1995.

J. Duchi, D. Tarlow, G. Elidan, and D. Koller. Using combinatorial optimization
within max-product belief propagation. In B. Schölkopf, J. Platt, and T. Hoffman,
editors, Advances in Neural Information Processing Systems 19, pages 369–376.
MIT Press, 2007.

D. Erlenkotter. A dual-based procedure for uncapacitated facility location. Opera-
tions Research, 26(6):992–1009, 1978.

M. L. Fisher. The lagrangian relaxation method for solving integer programming
problems. Management Science, 27(1):1–18, 1981.

A. M. Geoffrion. Lagrangean relaxation for integer programming. Mathematical
Programming Study, 2:82–114, 1974.

A. Globerson and T. Jaakkola. Fixing max-product: Convergent message passing
algorithms for MAP LP-relaxations. In J. Platt, D. Koller, Y. Singer, and
S. Roweis, editors, Advances in Neural Information Processing Systems 20, pages
553–560. MIT Press, Cambridge, MA, 2008.

M. Guignard. Lagrangean relaxation. TOP: An Official Journal of the Spanish
Society of Statistics and Operations Research, 11(2):151–200, 2003.

M. Guignard and S. Kim. Lagrangean decomposition: A model yielding stronger
Lagrangean bounds. Mathematical Programming, 39(2):215–228, 1987.

M. Guignard and M. Rosenwein. An application-oriented guide for designing
lagrangean dual ascent algorithms. European Journal of Operational Research,
43(2):197–205, 1989.

R. Gupta, A. Diwan, and S. Sarawagi. Efficient inference with cardinality-based
clique potentials. In Proceedings of the 24th International Conference on Machine
Learning, pages 329–336. ACM Press, New York, 2007.

T. Hazan and A. Shashua. Norm-product belief propagation: Primal-dual message-
passing for approximate inference. IEEE Transactions on Information Theory,
56(12):6294–6316, 2010.

M. Held, P. Wolfe, and H. Crowder. Validation of subgradient optimization.
Mathematical Programming, 6(1):62–88, 1974.

J. Johnson. Convex Relaxation Methods for Graphical Models: Lagrangian and
Maximum Entropy Approaches. PhD thesis, Department of Electrical Engineering
and Computer Science, MIT, 2008.

D. Koller and N. Friedman. Probabilistic Graphical Models: Principles and Tech-
niques. MIT Press, 2009.

8.10 References 253

V. Kolmogorov and M. Wainwright. On the optimality of tree-reweighted max-
product message-passing. In Proceedings of the 21st Conference on Uncertainty
in Artificial Intelligence, pages 316–323. AUAI Press, Arlington, VA, 2005.

N. Komodakis, N. Paragios, and G. Tziritas. MRF energy minimization and beyond
via dual decomposition. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 33(3):531–552, 2011.

T. Koo, A. M. Rush, M. Collins, T. Jaakkola, and D. Sontag. Dual decomposition
for parsing with non-projective head automata. In Proceedings of the 2010
Conference on Empirical Methods in Natural Language Processing, pages 1288–
1298, 2010.

V. A. Kovalevsky and V. K. Koval. A diffusion algorithm for decreasing the
energy of the max-sum labeling problem. Unpublished, Glushkov Institute of
Cybernetics, Kiev, USSR, circa 1975. Personally communicated to T.Werner by
M. I. Schlesinger.

S. Lacoste-Julien, B. Taskar, D. Klein, and M. I. Jordan. Word alignment via
quadratic assignment. In R. C. Moore, J. A. Bilmes, J. Chu-Carroll, and
M. Sanderson, editors, Proceedings of the Human Language Technology Confer-
ence of the North American Chapter of the Association of Computational Linguis-
tics, pages 112–119. The Association for Computational Linguistics, New York,
2006.

C. Lemaréchal. Lagrangian relaxation. In Computational Combinatorial Optimiza-
tion, pages 112–156. Berlin, Springer, 2001.

R. McDonald and G. Satta. On the complexity of non-projective data-driven
dependency parsing. In Proceedings of the 10th International Conference on
Parsing Technologies, pages 121–132. Association for Computational Linguistics,
Morristown, NJ, 2007.

R. McDonald, F. Pereira, K. Ribarov, and J. Hajic. Non-projective dependency
parsing using spanning tree algorithms. In Proceedings of the Conference on
Human Language Technology and Empirical Methods in Natural Language Pro-
cessing, pages 523–530, 2005.

A. Nedić and A. Ozdaglar. Approximate primal solutions and rate analysis for dual
subgradient methods. SIAM Journal on Optimization, 19(4):1757–1780, 2009.

C. Rother, P. Kohli, W. Feng, and J. Jia. Minimizing sparse higher order energy
functions of discrete variables. Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 1382–1389, 2009.

M. I. Schlesinger. Syntactic analysis of two-dimensional visual signals in noisy
conditions. Kibernetika, 4:113–130, 1976. in Russian.

N. Z. Shor. Minimization Methods for Non-Differentiable Functions. Springer-
Verlag, New York, NY, USA, 1985.

D. Sontag. Approximate Inference in Graphical Models using LP Relaxations. PhD
thesis, Department of Electrical Engineering and Computer Science, MIT, 2010.

D. Sontag and T. Jaakkola. Tree block coordinate descent for MAP in graphical
models. In Proceedings of the 12th International Workshop on Artificial Intelli-
gence and Statistics, volume 9, pages 544–551. JMLR: W&CP, 2009.

D. Sontag, T. Meltzer, A. Globerson, T. Jaakkola, and Y. Weiss. Tightening LP
relaxations for MAP using message passing. In Proceedings of the 24th Conference
on Uncertainty in Artificial Intelligence, pages 503–510. AUAI Press, Arlington,
VA, 2008.

254 Introduction to Dual Decomposition for Inference

D. Tarlow, I. Givoni, and R. Zemel. HOP-MAP: Efficient message passing with
high order potentials. In Proceedings of the 13th International Conference on
Artificial Intelligence and Statistics, volume 9, pages 812–819. JMLR: W&CP,
2010.

L. G. Valiant and V. V. Vazirani. NP is as easy as detecting unique solutions. In
Proceedings of the 17th Annual ACM Symposium on Theory of Computing, pages
458–463, New York, 1985. ACM Press.

R. Vanderbei. Linear Programming: Foundations and Extensions. Springer, 3rd
edition, 2007.

M. Wainwright and M. I. Jordan. Graphical models, exponential families, and
variational inference. Foundations and Trends in Machine Learning, 1(1-2):1–
305, 2008.

M. Wainwright, T. Jaakkola, and A. Willsky. Tree-based reparameterization frame-
work for analysis of sum-product and related algorithms. IEEE Transactions on
Information Theory, 49(5):1120–1146, 2003.

M. Wainwright, T. Jaakkola, and A. Willsky. MAP estimation via agreement on
trees: message-passing and linear programming. IEEE Transactions on Informa-
tion Theory, 51(11):3697–3717, 2005.

Y. Weiss, C. Yanover, and T. Meltzer. MAP estimation, linear programming
and belief propagation with convex free energies. In Proceedings of the 23rd
Conference on Uncertainty in Artificial Intelligence, pages 416–425. AUAI Press,
Arlington, VA, 2007.

T. Werner. A linear programming approach to max-sum problem: A review. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 29(7):1165–1179,
2007.

T. Werner. High-arity interactions, polyhedral relaxations, and cutting plane
algorithm for soft constraint optimisation (MAP-MRF). In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2008.

C. Yanover, T. Meltzer, and Y. Weiss. Linear programming relaxations and belief
propagation – an empirical study. Journal of Machine Learning Research, 7:
1887–1907, 2006.

C. Yanover, O. Schueler-Furman, and Y. Weiss. Minimizing and learning energy
functions for side-chain prediction. Journal of Computational Biology, 15(7):
899–911, 2008.

J. Yarkony, C. Fowlkes, and A. Ihler. Covering trees and lower-bounds on quadratic
assignment. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2010.

9 Augmented Lagrangian Methods for

Learning, Selecting, and Combining

Features

Ryota Tomioka tomioka@mist.i.u-tokyo.ac.jp

The University of Tokyo

Tokyo, Japan

Taiji Suzuki s-taiji@stat.t.u-tokyo.ac.jp

The University of Tokyo

Tokyo, Japan

Masashi Sugiyama sugi@cs.titech.ac.jp

Tokyo Institute of Technology

Tokyo, Japan

We investigate the family of Augmented Lagrangian (AL) methods for min-

imizing the sum of two convex functions. In the context of machine learn-

ing, minimization of such a composite objective function is useful in enforc-

ing various structures, such as sparsity, on the solution in a learning task.

We introduce a particularly efficient instance of an augmented Lagrangian

method called the Dual Augmented Lagrangian (DAL) algorithm, and discuss

its connection to proximal minimization and operator splitting algorithms in

the primal. Furthermore, we demonstrate that the DAL algorithm for the

trace norm regularization can be used to learn features from multiple data

sources and optimally combine them in a convex optimization problem.

256 Augmented Lagrangian Methods for Learning, Selecting, and Combining Features

9.1 Introduction

Sparse estimation has recently been attracting attention from both the the-

oretical side (Candès et al., 2006; Bach, 2008; Ng, 2004) and the practical

side, for example, magnetic resonance imaging (Weaver et al., 1991; Lustig

et al., 2007), natural language processing (Gao et al., 2007), and bioinfor-

matics (Shevade and Keerthi, 2003).

Sparse estimation is commonly formulated in two ways: the regularized

estimation (or MAP estimation) framework (Tibshirani, 1996), and the em-

pirical Bayesian estimation (also known as the automatic relevance deter-

mination) (Neal, 1996; Tipping, 2001). Both approaches are based on opti-

mizing some objective functions, though the former is usually formulated as

a convex optimization and the later is usually nonconvex.

Recently, a connection between the two formulations has been discussed

in Wipf and Nagarajan (2008) which showed that in some special cases the

(nonconvex) empirical Bayesian estimation can be carried out by iteratively

solving reweighted (convex) regularized estimation problems. Therefore, in

this chapter we will focus on the convex approach.

A regularization-based sparse estimation problem can be formulated as

min
x∈Rn

L(x) +R(x)︸ ︷︷ ︸
=:f(x)

, (9.1)

where L : Rn → R is called the loss term, which we assume to be convex

and differentiable; R : Rn → R is called the regularizer, which is assumed to

be convex but may be non-differentiable, and for convenience we denote the

sum of the two by f . In addition, we assume that f(x)→∞ as ‖x‖ → ∞.

Problem (9.1) is closely related to solving an operator equation

(A+B)(x) & 0, (9.2)

where A and B are nonlinear maximal monotone operators. In fact, if A

and B are the subdifferentials of L and R, respectively, problems (9.1)

and (9.2) are equivalent. Algorithms to solve the operator equation (9.2)

are extensively studied and are called operator splitting methods (see Lions

and Mercier (1979); Eckstein and Bertsekas (1992)). We will discuss their

connections to minimization algorithms for (9.1) in sections 9.2.2 and 9.5.

We will distinguish between a simple sparse estimation problem, and a

structured sparse estimation problem. A simple sparse estimation problem

9.1 Introduction 257

is written as

min
x∈Rn

L(x) + φλ(x), (9.3)

where φλ is a closed proper convex function1 and is “simple” in the sense

of separability and sparsity, which we define in section 9.2.1. Examples of a

simple sparse estimation problem include the Lasso (Tibshirani, 1996), also

known as basis pursuit denoising (Chen et al., 1998); the group Lasso (Yuan

and Lin, 2006); and the trace norm regularization (Fazel et al., 2001; Srebro

et al., 2005; Tomioka and Aihara, 2007; Yuan et al., 2007).

A structured sparse estimation problem is written as

min
x∈Rn

L(x) + φλ(Bx), (9.4)

where B ∈ R
l×n is a matrix and φλ is a simple sparse regularizer as in

the simple sparse estimation problem (9.3). Examples of a structured sparse

estimation problem include total variation denoising (Rudin et al., 1992),

wavelet shrinkage (Weaver et al., 1991; Donoho, 1995), the fused Lasso (Tib-

shirani et al., 2005), and structured sparsity-inducing norms (Jenatton et al.,

2009).

In this chapter, we present an augmented Lagrangian (AL) method

(Hestenes, 1969; Powell, 1969) for the dual of the simple sparse estimation

problem. We show that the proposed dual augmented Lagrangian (DAL) is

equivalent to the proximal minimization algorithm in the primal, converges

super-linearly2, and each step is computationally efficient because DAL can

exploit the sparsity in the intermediate solution. There has been a series of

studies that derive AL approaches using Bregman divergence (see Yin et al.

(2008); Cai et al. (2008); Setzer (2010)).

Although our focus will be mostly on the simple sparse estimation problem

(9.3), the methods we discuss are also relevant for the structured sparse

estimation problem (9.4). In fact, by taking the Fenchel dual (Rockafellar,

1970, theorem 31.2), we notice that solving the structured sparse estimation

problem (9.4) is equivalent to solving the following minimization problem:

min
β∈Rl

L∗(BTβ) + φ∗
λ(−β), (9.5)

1. “Closed” means that the epigraph {(z, y) ∈ R
m+1 : y ≥ φλ(z)} is a closed set, and

“proper” means that the function is not everywhere +∞; see, e.g., Rockafellar (1970). In
the sequel, we use the term “convex function” in the meaning of “closed proper convex
function”.
2. A sequence xt (t = 1, 2, . . .) converges to x∗ super-linearly, if ‖xt+1−x∗‖ ≤ ct‖xt−x∗‖,
where 0 ≤ ct < 1 and ct → 0 as t → ∞.

258 Augmented Lagrangian Methods for Learning, Selecting, and Combining Features

where L∗ and φ∗
λ are the convex conjugate functions of L and φλ, respec-

tively. The above minimization problem resembles the simple sparse esti-

mation problem (9.3) (the matrix BT can be considered as part of the loss

function). This fact was effectively used by Goldstein and Osher (2009) to

develop the split Bregman iteration (SBI) algorithm (see also Setzer (2010)).

See section 9.5 for more detailed discussion.

This chapter is organized as follows. In the next section, we introduce some

simple sparse regularizers and review different types of sparsity they produce

through the so-called proximity operator. A brief operator theoretic back-

ground for the proximity operator is also given. In section 9.3, we present the

proximal minimization algorithm, which is the primal representation of the

DAL algorithm. The proposed DAL algorithm is introduced in section 9.4

and we discuss both why the dual formulation is particularly suitable for the

simple sparse estimation problem, and its rate of convergence. We discuss

connections between approximate AL methods and two operator splitting

algorithms, the forward-backward splitting and the Douglas-Rachford split-

ting, in section 9.5. In section 9.6, we apply the trace norm regularization to

a real brain-computer interface data set for learning feature extractors and

their optimal combination. The computational efficiency of the DAL algo-

rithm is also demonstrated. Finally, we summarize the chapter in section 9.7.

Some background material on convex analysis is given in the appendix.

9.2 Background

In this section, we define “simple” sparse regularizers through the associ-

ated proximity operators. In addition, section 9.2.2 provides some operator

theoretic backgrounds, which we use in later sections, especially section 9.5.

9.2.1 Simple sparse regularizers

Here, we provide three examples of simple sparse regularizers: the �1-

regularizer, the group Lasso regularizer, and the trace norm regularizer.

Other regularizers obtained by applying these three regularizers in a block-

wise manner will also be called simple; for example, the �1-regularizer for the

first 10 variables and the group Lasso regularizer for the remaining variables.

These regularizers share two important properties. First, they are separa-

ble (in some manner). Second, the so-called proximity operators they define

return “sparse” vectors (with respect to their separability).

First, we need to define the proximity operator as below (see also Moreau

(1965); Rockafellar (1970); Combettes and Wajs (2005)).

9.2 Background 259

Definition 9.1. The proximity operator corresponding to a convex function

f : Rn → R over R
n is a mapping from R

n to itself and is defined as

proxf (z) = argmin
x∈Rn

(
f(x) +

1

2
‖x− z‖2

)
, (9.6)

where ‖ · ‖ denotes the Euclidean norm.

Note that the minimizer is unique because the objective is strongly convex.

Although the above definition is given in terms of a function f over Rn, the

definition extends naturally to a function over a general Hilbert space (see

Moreau (1965); Rockafellar (1970)).

The proximity operator (9.6) defines a unique decomposition of a vector

z as

z = x+ y,

where x = proxf (z) and y = proxf∗(z) (f∗ is the convex conjugate of

f). This is called Moreau’s decomposition (see appendix 9.8.2). We denote

Moreau’s decomposition corresponding to the function f as follows:

(x,y) = decompf (z). (9.7)

Note that the above expression implies y ∈ ∂f(x) because x minimizes the

objective (9.6) and ∂f(x)+x−z & 0, where ∂f(x) denotes the subdifferential

of f at x.

The first example of sparse regularizers is the �1-regularizer, or the Lasso

regularizer (Tibshirani, 1996), which is defined as follows:

φ�1
λ (x) = λ‖x‖1 = λ

n∑
j=1

|xj |, (9.8)

where | · | denotes the absolute value. We can also allow each component

to have a different regularization constant, which can be used to include an

unregularized bias term.

The proximity operator corresponding to the �1-regularizer is known as

the soft threshold operator (Donoho, 1995) and can be defined elementwise

as follows:

prox�1λ (z) :=

(
max(|zj| − λ, 0)

zj
|zj |
)n

j=1

, (9.9)

where the ratio zj/|zj | is defined to be zero if zj = 0. The above expression

can easily be derived because the objective (9.6) can be minimized for each

component xj independently for the �1-regularizer.

260 Augmented Lagrangian Methods for Learning, Selecting, and Combining Features

The second example of sparse regularizers is the group Lasso (Yuan and

Lin, 2006) regularizer

φG
λ (x) = λ

∑
g∈G

‖xg‖, (9.10)

where G is a nonoverlapping partition of {1, . . . , n}, g ∈ G is an index set

g ⊆ {1, . . . , n}, and xg is a sub-vector of x specified by the indices in g.

For example, the group Lasso regularizer arises when we are estimating a

vector field on a grid over a two-dimensional vector space. Shrinking each

component of the vectors individually through �1-regularization can produce

vectors pointing along either the x-axis or the y-axis but not necessarily

sparse as a vector field. We can group the x- and y-components of the vectors

and apply the group Lasso regularizer (9.10) to shrink both components of

the vectors simultaneously.

The proximity operator corresponding to the group Lasso regularizer can

be written blockwise as follows:

proxGλ (z) :=

(
max(‖zg‖ − λ, 0)

zg
‖zg‖

)
g∈G

, (9.11)

where the ratio zg/‖zg‖2 is defined to be zero if ‖zg‖2 is zero. The above

expression can be derived in a way analogous to the �1-case, because the

objective (9.6) can be minimized for each block, and from the Cauchy-

Schwarz inequality we have

‖xg − zg‖2 + λ‖xg‖ ≥ (‖xg‖ − ‖zg‖)2 + λ‖xg‖,
where the equality is obtained when xg = czg; the coefficient c can be

obtained by solving the one-dimensional minimization.

The last example of sparse regularizers is the trace-norm3 regularizer,

which is defined as

φmat
λ (x) = λ‖X‖∗ = λ

r∑
j=1

σj(X), (9.12)

where X is a matrix obtained by rearranging the elements of x into a matrix

of a prespecified size, σj(X) is the jth largest singular value of X, and r

is the minimum of the number of rows and columns of X. The proximity

3. The trace norm is also known as the nuclear norm (Boyd and Vandenberghe, 2004) and
also as the Ky Fan r-norm (Yuan et al., 2007).

9.2 Background 261

operator corresponding to the trace norm regularizer can be written as

proxmat
λ (z) := vec

(
U max(S − λ, 0)V T

)
, (9.13)

where Z = USV T is the singular value decomposition of the matrix

Z obtained by appropriately rearranging the elements of z. The above

expression can again be obtained by using the separability of φλ as follows:

‖X −Z‖2F + λ
r∑

j=1

σj(X)

=
r∑

j=1

σ2
j (X)− 2〈X, Z〉+

r∑
j=1

σ2
j (Z) + λ

r∑
j=1

σj(Z)

≥
r∑

j=1

σ2
j (X)− 2

r∑
j=1

σj(X)σj(Z) +

r∑
j=1

σ2
j (Z) + λ

r∑
j=1

σj(Z)

=

r∑
j=1

(
(σj(X)− σj(Z))2 + λσj(Z)

)
,

where ‖·‖F denotes the Frobenius norm and the inequality in the second line

is due to von Neumann’s trace theorem (Horn and Johnson, 1991), for which

equality is obtained when the singular vectors of X and Z are the same.

Singular values σj(X) are obtained by the one-dimensional minimization in

the last line.

Note again that the above three regularizers are separable. The �1-

regularizer (9.8) decomposes into the sum of the absolute values of com-

ponents of x. The group Lasso regularizer (9.10) decomposes into the sum

of the Euclidean norms of the groups of variables. Finally, the trace norm

regularizer (9.12) decomposes into the sum of singular values. Moreover,

the proximity operators they define sparsify vectors with respect to the

separability of the regularizers, see equations (9.9), (9.11), and (9.13).

Note that the regularizer in the dual of the structured sparse estimation

problem (9.5) is also separable, but the corresponding proximity operator

does not sparsify a vector, see section 9.4.4 for more discussion.

The sparsity produced by the proximity operator (9.6) is a computational

advantage of algorithms that iteratively compute the proximity operator,

see Figueiredo and Nowak (2003); Daubechies et al. (2004); Combettes

and Wajs (2005); Figueiredo et al. (2007); Wright et al. (2009); Beck and

Teboulle (2009); Nesterov (2007). Other methods, such as interior point

methods (Koh et al., 2007; Kim et al., 2007; Boyd and Vandenberghe, 2004),

achieve sparsity only asymptotically.

262 Augmented Lagrangian Methods for Learning, Selecting, and Combining Features

9.2.2 Monotone Operator Theory Background

The proximity operator has been studied intensively in the context of

monotone operator theory. This framework provides an alternative view on

proximity operator-based algorithms and forms the foundation of operator

splitting algorithms, which we discuss in section 9.5. In this section, we

briefly provide background on monotone operator theory, see Rockafellar

(1976a); Lions and Mercier (1979); Eckstein and Bertsekas (1992) for more

details.

A nonlinear set-valued operator T : R
n → 2R

n

is called monotone if

∀x,x′ ∈ R
n,

〈y′ − y, x′ − x〉 ≥ 0, for all y ∈ T (x),y′ ∈ T (x′),

where 〈y, x〉 denotes the inner product of two vectors y,x ∈ R
n.

The graph of a set-valued operator T is the set {(x,y) : x ∈ R
n,y ∈

T (x)} ⊆ R
n × R

n. A monotone operator T is called maximal if the graph

of T is not strictly contained in that of any other monotone operator on

R
n. The subdifferential of a convex function over R

n is an example of a

maximal monotone operator. A set-valued operator T is called single-valued

if the set T (x) consists of a single vector for every x ∈ R
n. With a slight

abuse of notation we denote y = T (x) in this case. The subdifferential of the

function f defined over Rn is single-valued if and only if f is differentiable.

The sum of two set-valued operators A and B is defined by the graph

{(x,y + z) : y ∈ A(x), z ∈ B(x),x ∈ R
n}. The inverse T−1 of a set-valued

operator T is the operator defined by the graph {(x,y) : x ∈ T (y), y ∈ R
n}.

Denoting the subdifferential of the function f by Tf := ∂f , we can rewrite

the proximity operator (9.6) as

proxf (z) = (I + Tf)
−1 (z), (9.14)

where I denotes the identity mapping. The above expression can be de-

rived from the optimality condition Tf (x) +x− z & 0. Note that the above

expression is single-valued, because the minimizer defining the proximity

operator (9.6) is unique. Moreover, the monotonicity of the operator Tf

guarantees that the proximity operator (9.14) is firmly nonexpansive4. Fur-

thermore, proxf (z) = z if and only if 0 ∈ Tf (z), because if z′ = proxf (z),

then z − z′ ∈ Tf (z
′) and 0 ≤ 〈z′ − z, z − z′ − y〉 for all y ∈ Tf (z).

4. An operator T is called firmly nonexpansive if ‖y′ − y‖2 ≤ 〈x′ − x, y′ − y〉 holds
for all y ∈ T (x), y′ ∈ T (x′), x,x′ ∈ R

n. This is clearly stronger than the ordinary
nonexpansiveness defined by ‖y′ − y‖ ≤ ‖x′ − x‖.

9.3 Proximal Minimization Algorithm 263

9.3 Proximal Minimization Algorithm

The proximal minimization algorithm (or the proximal point algorithm)

iteratively applies the proximity operator (9.6) to obtain the minimizer of

some convex function f . Although in practice it is probably never used in

its original form, it functions as a foundation for the analysis of both AL

algorithms and operator splitting algorithms.

Let f : Rn → R ∪ {+∞} be a convex function that we wish to minimize.

Without loss of generality, we focus on unconstrained minimization of f ;

minimizing a function f0(x) in a convex set C is equivalent to minimizing

f(x) := f0(x) + δC(x) where δC(x) is the indicator function of C.

A proximal minimization algorithm for minimizing f starts from some

initial solution x0 and iteratively solves the minimization problem

xt+1 = argmin
x∈Rn

(
f(x) +

1

2ηt
‖x− xt‖2

)
. (9.15)

The second term in the iteration (9.15) keeps the next iterate xt+1 in the

proximity of the current iterate xt; the parameter ηt controls the strength

of the proximity term. From the above iteration, one can easily see that

f(xt+1) ≤ f(xt)− 1

2ηt
‖xt+1 − xt‖2.

Thus, the objective value f(xt) decreases monotonically as long as xt+1 �=
xt.

The iteration (9.15) can also be expressed in terms of the proximity

operator (9.6) as follows:

xt+1 = proxηtf (x
t) = (I + ηtTf)

−1(xt), (9.16)

which is called the proximal point algorithm (Rockafellar, 1976a). Since

each step is an application of the proximity operator (9.16), it is a firmly

nonexpansive mapping for any choice of ηt. Actually, any iterative algorithm

that uses a firmly nonexpansive mapping can be considered as a proximal

point algorithm (Eckstein and Bertsekas, 1992). Moreover, xt+1 = xt if and

only if 0 ∈ Tf (x
t); that is, xt is a minimizer of f . The connection between

minimizing a convex function and finding a zero of a maximal monotone

operator can be summarized as in table 9.1.

The iteration (9.15) can also be considered as an implicit gradient step

because

xt+1 − xt ∈ −ηt∂f(xt+1). (9.17)

264 Augmented Lagrangian Methods for Learning, Selecting, and Combining Features

Table 9.1: Comparison of the proximal minimization algorithm for convex opti-
mization and the proximal point algorithm for solving operator equations

Convex optimization Operator equation

Objective minimize f(x) find 0 ∈ Tf (x)

Algorithm Proximal minimization algorithm Proximal point algorithm

xt+1 = proxηtf
(xt) xt+1 = (I + ηtTf)

−1(xt)

Note that the subdifferential in the right-hand side is evaluated at the new

point xt+1.

Rockafellar (1976a) has shown under mild assumptions, which also allow

errors in the minimization (9.15), that the sequence x0,x1,x2, . . . converges5

to a point x∞ that satisfies 0 ∈ Tf (x
∞). Rockafellar (1976a) has also shown

that the convergence of the proximal minimization algorithm is super-linear

under the assumption that T−1
f is locally Lipschitz around the origin.

The following theorem states the super-linear convergence of the proximal

minimization algorithm in a non-asymptotic sense.

Theorem 9.1. Let x0,x1,x2 . . . be the sequence generated by the exact

proximal minimization algorithm (9.15) and let x∗ be a minimizer of the

objective function f . Assume that there is a positive constant σ and a scalar

α (1 ≤ α ≤ 2) such that

(A1) f(xt+1)− f(x∗) ≥ σ‖xt+1 − x∗‖α (t = 0, 1, 2, . . .).

Then the following inequality is true:

‖xt+1 − x∗‖
1+(α−1)σηt

1+σηt ≤ 1

1 + σηt
‖xt − x∗‖.

That is, xt converges to x∗ super-linearly if α < 2 or α = 2 and ηt is

increasing, in a global and non-asymptotic sense.

Proof. See Tomioka et al. (2010a).

Assumption (A1) is implied by assuming the strong convexity of f .

However, it is weaker because we require (A1) only on the points generated

by the algorithm. For example, the �1-regularizer (9.8) is not strongly convex,

but it can be lower-bounded, as in assumption (A1), inside any bounded set

centered at the origin. In fact, the assumption on the Lipschitz continuity of

∂f−1 around the origin used in Rockafellar (1976b) implies assumption (A1)

5. The original statement was “converges in the weak topology”, which is equivalent to
strong convergence in a finite dimensional vector space.

9.4 Dual Augmented Lagrangian (DAL) Algorithm 265

due to the nonexpansiveness of the proximity operator (9.16), see Tomioka

et al. (2010a) for a detailed discussion.

So far we have ignored the cost of the minimization (9.15). The conver-

gence rate in the above theorem becomes faster as the proximity parameter

ηt increases. However, typically the cost of the minimization (9.15) increases

as ηt increases. In the next section, we focus on how we can carry out the

update step (9.15) efficiently.

9.4 Dual Augmented Lagrangian (DAL) Algorithm

In this section, we introduce the Dual Augmented Lagrangian (DAL) (Tomioka

and Sugiyama, 2009; Tomioka et al., 2010a) and show that it is equivalent

to the proximal minimization algorithm discussed in the previous section.

For the simple sparse estimation problem (9.3) each step in DAL is com-

putationally efficient. Thus it is practical and can be analyzed through the

proximal minimization framework.

9.4.1 DAL as Augmented Lagrangian Applied to the Dual Problem

DAL is an application of the augmented Lagrangian (AL) algorithm (Hestenes,

1969; Powell, 1969) to the dual of the simple sparse estimation problem

(P) min
x∈Rn

f�(Ax) + φλ(x), (9.18)

where f� : Rm → R is a loss function, which we assume to be a smooth

convex function; A ∈ R
m×n is a design matrix. Note that we have further

introduced a structure L(x) = f�(Ax) from the simple sparse estimation

problem (9.3). This is useful in decoupling the property of the loss function

f� from that of the design matrix A. In a machine learning problem, it is

easy to discuss properties of the loss function (because we choose it), but

we have to live with whatever property is possessed by the design matrix

(the data matrix). For notational convenience we assume that for η > 0,

ηφλ(x) = φλη(x); for example, see the �1-regularizer (9.8).

The dual problem of (P) can be written as the following minimization

problem:

(D) min
α∈Rm,v∈Rn

f∗
� (−α) + φ∗

λ(v), (9.19)

subject to v = ATα, (9.20)

where f∗
� and φ∗

λ are the convex conjugate functions of f� and φλ, respec-

tively.

266 Augmented Lagrangian Methods for Learning, Selecting, and Combining Features

Let η be a nonnegative real number. The augmented Lagrangian (AL)

function Jη(α,v;x) is written as follows:

Jη(α,v;x) := f∗
� (−α) + φ∗

λ(v) + 〈x, ATα− v〉+ η

2
‖ATα− v‖2.

(9.21)

Note that the AL function is reduced to the ordinary Lagrangian if η = 0;

the primal variable x appears in the AL function (9.21) as a Lagrangian

multiplier vector; it is easy to verify that minα,v J0(α,v;x) gives the (sign

inverted) primal objective function (9.18).

Similar to the proximal minimization approach discussed in the previous

section, we choose a sequence of positive step size parameters η0, η1, . . . , and

an initial Lagrangian multiplier x0. At every iteration, the DAL algorithm

minimizes the AL function Jηt
(α,v;xt) (9.21) with respect to (α,v), and

the minimizer (αt+1,vt+1) is used to update the Lagrangian multiplier xt

as follows:

(αt+1,vt+1) := argmin
α,v

Jηt
(α,v;xt), (9.22)

xt+1 := xt + ηt(A
Tαt+1 − vt+1). (9.23)

Intuitively speaking, we minimize an inner objective (9.22) and update (9.23)

the Lagrangian multiplier xt proportionally to the violation of the equality

constraint (9.20). In fact, it can be shown that the direction (ATαt+1−vt+1)

is the negative gradient direction of the differentiable auxiliary function

fηt
(x) := −minα,v Jηt

(α,v;x), which coincides with f(x) at the optimum

(see Bertsekas (1982)).

Note that the terms in the AL function (9.21) that involve v are linear,

quadratic, and the convex conjugate of the regularizer φλ. Accordingly, by

defining Moreau’s envelope function (see appendix 9.8.2 and also Moreau

(1965); Rockafellar (1970)) Φ∗
λ as

Φ∗
λ(y) := min

y′∈Rn

(
φ∗
λ(y

′) +
1

2
‖y − y′‖2

)
, (9.24)

we can rewrite the update equations (9.22) and (9.23) as follows:

αt+1 = argmin
α∈Rm

(
f∗
� (−α) +

1

ηt
Φ∗
ληt

(xt + ηtA
Tα)︸ ︷︷ ︸

=:ϕt(α)

)
, (9.25)

xt+1 := proxφληt

(
xt + ηtA

Tαt+1
)
, (9.26)

where we use the identity proxf (x) + proxf∗(x) = x (see appendix 9.8.2).

See Tomioka and Sugiyama (2009); Tomioka et al. (2010a) for the derivation.

9.4 Dual Augmented Lagrangian (DAL) Algorithm 267

9.4.2 DAL as a Primal Proximal Minimization

The following proposition states that the DAL algorithm is equivalent to

the proximal minimization algorithm in the primal (and thus the algorithm

is stable for any positive step size ηt); see also table 9.2.

Proposition 9.2. The iteration (9.25)-(9.26) is equivalent to the proximal

minimization algorithm (9.15) on the primal problem (P).

Proof. The proximal minimization algorithm for the problem (9.18) is writ-

ten as follows:

xt+1 := argmin
x∈Rn

(
f�(Ax) + φλ(x) +

1

2ηt
‖x− xt‖2

)
= argmin

x∈Rn

(
f�(Ax) +

1

ηt

(
φληt

(x) +
1

2
‖x− xt‖2

))
.

Now we define

Φλ(x;xt) := φλ(x) +
1

2
‖x− xt‖2 (9.27)

and use the Fenchel duality to obtain

min
x∈Rn

(
f�(Ax) +

1

ηt
Φληt

(x;xt)

)
= max

α∈Rm

(
−f∗

� (−α)− 1

ηt
Φ∗
ληt

(ηtA
Tα;xt)

)
,

(9.28)

where f∗
� and Φ∗

λ(·;xt) are the convex conjugate functions of f� and Φλ(·;xt),

respectively. Here, since Φλ(·;xt) is a sum of two convex functions, its convex

conjugate is the infimal convolution (see appendix 9.8.1) of the convex

conjugates, that is,

Φ∗
λ(y;x

t) = inf
ṽ∈Rn

(
φ∗
λ(ṽ) +

1

2
‖y − ṽ‖2 + 〈y − ṽ, xt〉

)
. (9.29)

Since Φ∗
λ(y;x

t) = Φ∗
λ(x

t + y;0) = Φ∗
λ(x

t + y), ignoring a constant term

that does not depend on y, we have the inner minimization problem (9.25).

In order to obtain the update equation (9.26), we turn back to the Fenchel

duality theorem and notice that the minimizer xt+1 in the left-hand side of

equation (9.28) satisfies

xt+1 ∈ ∂yΦ
∗
ληt

(y;xt)|y=ηtATαt+1 .

Since Φ∗
λ(y;x

t) is Moreau’s envelope function of φ∗
λ (ignoring constants), it

is differentiable and the derivative ∇yΦ
∗
ληt

(ηtA
Tαt+1;xt) is given as follows

268 Augmented Lagrangian Methods for Learning, Selecting, and Combining Features

Φ
λ
(x)

φ
λ
(x)

−λ 0 λ

φ
λ
*(y)

Φ
λ
*(y)

Nondifferentiable Differentiable

Figure 9.1: Comparison of Φλ(x; 0) (left) and Φ∗
λ(y; 0) (right) for the one-

dimensional �1-regularizer φλ(x) = λ|x|.

(see appendix 9.8.2):

xt+1 = ∇yΦ
∗
ληt

(ηtA
Tαt+1;xt)

= ∇yΦ
∗
ληt

(xt + ηtA
Tαt+1;0) = proxφληt

(xt + ηtA
Tαt+1),

from which we have the update equation (9.26).

The equivalence of proximal minimization and augmented Lagrangian we

have shown above is not novel; it can be found, for example, in Rockafellar

(1976b); Ibaraki et al. (1992). However, the above derivation can easily be

generalized to the case when the loss function f� is not differentiable (Suzuki

and Tomioka, 2010).

It is worth noting that Φλ(·;xt) is not differentiable but Φ∗
λ(·;xt) is. See

figure 9.1 for a schematic illustration of the case of the one-dimensional

�1-regularizer. Both the �1-regularizer φλ and its convex conjugate φ∗
λ are

nondifferentiable at some points. The function Φλ(x) := Φλ(x;0) is obtained

by adding a quadratic proximity term to φλ (see equation (9.27)). Although

Φλ is still nondifferentiable, its convex conjugate Φ∗
λ is differentiable due

to the infimal convolution operator (see appendix 9.8.1) with the proximity

term (see Equation (9.29)).

The differentiability of Moreau’s envelope function Φ∗
λ makes the DAL

approach (9.25)-(9.26) computationally efficient. At every step, we minimize

a differentiable inner objective (9.25) and use the minimizer to compute the

update step (9.26).

9.4 Dual Augmented Lagrangian (DAL) Algorithm 269

9.4.3 Exemplary Instance: �1-Regularizer

In order to understand the efficiency of minimizing the inner objective (9.25),

let us consider the simplest sparse estimation problem: the �1-regularization.

For the �1-regularizer, φλ(x) = λ‖x‖1, the update equations (9.25) and

(9.26) can be rewritten as follows:

αt+1 = argmin
α∈Rm

(
f∗
� (−α) +

1

2ηt

∥∥∥prox�1ληt
(xt + ηtA

Tα)
∥∥∥2︸ ︷︷ ︸

=:ϕt(α)

)
, (9.30)

xt+1 = prox�1ληt

(
xt + ηtA

Tαt+1
)
, (9.31)

where prox�1λ is the soft threshold function (9.9); see Tomioka and Sugiyama

(2009) and Tomioka et al. (2010a) for the derivation.

Note that the second term in the inner objective function ϕt(α) (9.30) is

the squared sum of n one-dimensional soft thresholds. Thus we only need

to compute the sum over the active components J+ := {j : |xtj(α)| > ληt}
where xt(α) := xt + ηtA

Tα. In fact,∥∥∥prox�1ληt
(xt(α))

∥∥∥2 = n∑
j=1

(prox�1ληt
(xtj(α)))2 =

∑
j∈J+

(prox�1ληt
(xtj(α)))2.

Note that the flat area in the plot of Φ∗
λ(y) in figure 9.1 corresponds to an

inactive component.

Moreover, the gradient and the Hessian of ϕt(α) can be computed as

follows:

∇ϕt(α) = −∇f∗
� (−α) +A prox�1ληt

(xt + ηtA
Tα),

∇2ϕt(α) = ∇2f∗
� (−α) + ηtA+A

T
+,

where A+ is the submatrix of A that consists of columns of A that

correspond to the active components J+. Again, notice that only the active

components enter the computation of the gradient and the Hessian.

Looking at figure 9.1 carefully, one might wonder what happens if the

minimizer αt+1 lands on a point where Φ∗
λ(y) starts to diverge from φ∗

λ(y)

(y = −λ, λ in figure 9.1). In fact, the second derivative of Φ∗
λ is discontinuous

on such a point. Nevertheless, we can show that such an event is rare as in

the following theorem.

Theorem 9.3. Assume the regularizer φλ(x) = λ
∑n

j=1 |xj | (�1-regularizer).
A minimizer x∗ of the objective (9.18) has no component located exactly at

the threshold λ for most λ in the sense that it can be avoided by an arbitrary

small perturbation of λ.

270 Augmented Lagrangian Methods for Learning, Selecting, and Combining Features

Proof. The optimality condition for the objective (9.18) with the �1-

regularizer can be written as

x∗ = prox�1λ (x
∗ + v∗), v∗ = −AT∇f�(Ax∗),

which implies ‖v‖∞ ≤ λ and the complementary slackness conditions

xj ≥ 0 if vj = λ, (9.32a)

xj = 0 if − λ < vj < λ, (9.32b)

xj ≤ 0 if vj = −λ, (9.32c)

for all j = 1, . . . , n. Since the event xj = 0 and vj = −λ, or xj = 0

and vj = λ, can be avoided by an arbitrary small perturbation of λ for

a generic design matrix A and a differentiable loss function f�, either

x∗j + v∗j > λ (9.32a), −λ < x∗j + v∗j < λ (9.32b), or x∗j + v∗j < −λ (9.32c)

holds, which concludes the proof.

The above theorem guarantees that the inner objective (9.30) behaves like

a twice differentiable function around the optimum for a generic choice of

λ and A. The theorem can immediately be generalized to the group Lasso

regularizer (9.10) and the trace-norm regularizer (9.12) by appropriately

defining the complementary slackness conditions (9.32a)–(9.32c).

9.4.4 Why Do We Apply the AL Method to the Dual?

One reason for applying the AL method to the dual problem (D) is that

some loss functions are strongly convex only in the dual; for instance, the

logistic loss, which is not strongly convex, becomes strongly convex by taking

the convex conjugate. In general loss functions with Lipschitz continuous

gradients become strongly convex in the dual (see also section 9.4.5).

Another reason is that the inner objective function does not have the

sparsity discussed in section 9.4.3 when the AL method is applied to the

primal. In fact, applying the AL method to the primal problem (P) is

equivalent to applying the proximal minimization algorithm to the dual

problem (D). Therefore, for the �1-case, the regularizer φλ(x) is defined as

φλ(x) := (φ�1
λ)

∗(x) =

{
0 (if ‖x‖∞ ≤ λ),

+∞ (otherwise),

which is the convex conjugate of the �1-regularizer φ
�1
λ . Adding a quadratic

proximity term, we obtain Φλ. By taking the convex conjugate of φλ and of

Φλ, we obtain the �1-regularizer φ∗
λ := φ�1

λ and Moreau’s envelope function

Φ∗
λ of the �1-regularizer (see figure 9.2).

9.4 Dual Augmented Lagrangian (DAL) Algorithm 271

Φ
λ
(x)

φ
λ
(x)

−λ 0 λ −λ 0 λ

φ
λ
*(y)

Φ
λ
*(y)

DifferentiableNondifferentiable

Figure 9.2: Comparison of Φλ(x) (left) and Φ∗
λ(y) (right) for the primal applica-

tion of the AL method to the one-dimensional �1-problem.

Now, from figure 9.2, we can see that the envelope function Φ∗
λ(y) is

quadratic for |y| ≤ λ, which corresponds to inactive components and is

linear for |y| > λ, which corresponds to active components. Thus, we need

to compute the terms in the envelope function Φ∗
λ that correspond to both

the active and the inactive components. Moreover, for the active components

the envelope function behaves like a linear function around the minimum,

which might be difficult to optimize, especially when combined with a loss

function that is not strongly convex.

9.4.5 Super-linear Convergence of DAL

The asymptotic convergence rate of the DAL approach is guaranteed by

classic results (see Rockafellar (1976a); Kort and Bertsekas (1976)) under

mild conditions even when the inner minimization (9.25) is carried out

only approximately. However, the condition to stop the inner minimization

proposed in Rockafellar (1976a) is often difficult to check in practice. In

addition, the analysis in Kort and Bertsekas (1976) assumes strong convexity

of the objective. In our setting, the dual objective (9.19) is not necessarily

strongly convex as a function of α and v; thus we cannot directly apply

the result of Kort and Bertsekas (1976) to our problem, though the result

is very similar to ours.

Here we provide a non-asymptotic convergence rate of DAL, which gener-

alizes theorem 9.1 to allow for approximate inner minimization (9.25) with

a practical stopping criterion.

Theorem 9.4. Let x1,x2, . . . be the sequence generated by the DAL algo-

272 Augmented Lagrangian Methods for Learning, Selecting, and Combining Features

rithm (9.25)-(9.26) and let x∗ be a minimizer of the objective function f .

Assume the same condition (A1) as in theorem 9.1 and in addition assume

that the following conditions hold:

(A2) The loss function f� has a Lipschitz continuous gradient with modulus

1/γ, that is,

‖∇f�(z)−∇f�(z
′)‖ ≤ 1

γ
‖z − z′‖ (∀z, z′ ∈ R

m). (9.33)

(A3) The proximity operator corresponding to φλ can be computed exactly.

(A4) The inner minimization (9.25) is solved to the following tolerance:

‖∇ϕt(α
t+1)‖ ≤

√
γ

ηt
‖xt+1 − xt‖,

where γ is the constant in assumption (A2).

Under assumptions (A1)-(A4), the following inequality is true:

‖xt+1 − x∗‖
1+ασηt
1+2σηt ≤ 1√

1 + 2σηt
‖xt − x∗‖.

That is, xt converges to x∗ super-linearly if α < 2 or α = 2 and ηt is

increasing.

Proof. See Tomioka et al. (2010a).

Note that the above stopping criterion (A4) is computable, since the

Lipschitz constant γ depends only on the loss function used and not on

the data matrix A. Although the constant σ in assumption (A1) is difficult

to quantify in practice, it is enough to know that it exists, because we do not

need σ to compute the stopping criterion (A4). See Tomioka et al. (2010a)

for more details.

9.5 Connections

The AL formulation in the dual is connected to various operator theoretic

algorithms in the primal. We have already seen that the exact application

of DAL corresponds to the proximal point algorithm in the primal (sec-

tion 9.4.2). In this section, we show that two well-known operator splitting

algorithms—forward-backward splitting and Douglas-Rachford splitting in

the primal—can be regarded as approximate computations of the DAL ap-

proach. The results in this section are not novel and are based on Lions and

Mercier (1979); Eckstein and Bertsekas (1992); Tseng (1991), see also recent

9.5 Connections 273

Table 9.2: Primal-dual correspondence of operator splitting algorithms and aug-
mented Lagrangian algorithms

Primal Dual

Exact Proximal minimization Augmented Lagrangian
algorithm (Rockafellar,
1976b)

Approximation Forward-backward splitting Alternating minimiza-
tion algorithm (Tseng,
1991)

Douglas-Rachford splitting Alternating direction
method of multipli-
ers (Gabay and Mercier,
1976)

reviews in Yin et al. (2008); Setzer (2010); Combettes and Pesquet (2010).

The methods we discuss in this section are summarized in table 9.2.

Note that these approximations are most valuable when the inner min-

imization problem (9.22) is not easy to minimize. In Goldstein and Osher

(2009), an approximate AL method was applied to a structured sparse esti-

mation problem, namely, the total variation denoising.

In this section we use the notation L(x) = f�(Ax) for simplicity, since the

discussions do not require the separation between the loss function and the

design matrix as in section 9.4.

9.5.1 Forward-Backward Splitting

When the loss function L is differentiable, replacing the inner minimiza-

tion (9.22) with the following sequential minimization steps

αt+1 = argmin
α∈Rm

J0(α,vt;xt), (9.34)

vt+1 = argmin
v∈Rn

Jηt
(αt+1,v;xt) (9.35)

gives the forward-backward splitting (FBS) algorithm (Lions and Mercier,

1979; Combettes and Wajs, 2005; Combettes and Pesquet, 2010):

xt+1 = proxφληt

(
xt − ηt∇L(xt)

)
. (9.36)

Note that in the first step (9.34), the ordinary Lagrangian (η = 0) is used

and the augmented Lagrangian is used only in the second step (9.35). The

above sequential procedure is proposed in Han and Lou (1988) and analyzed

in Tseng (1991) under the name “alternating minimization algorithm”.

274 Augmented Lagrangian Methods for Learning, Selecting, and Combining Features

The FBS algorithm was proposed in the context of finding a zero of the

operator equation (9.2). When the operator A is single valued, the operator

equation (9.2) implies

(I + ηB)(x) & (I − ηA)(x).

This motivates us to use the iteration

xt+1 = (I + ηB)−1(I − ηA)(xt).

The above iteration converges to the solution of the operator equation (9.2)

if A is Lipschitz continuous and the step size η is small enough (see Lions

and Mercier (1979); Combettes and Wajs (2005)). The iteration (9.36) is ob-

tained by identifying A = ∇L and B = ∂φλ. Intuitively, the FBS algorithm

takes an explicit (forward) gradient step with respect to the differentiable

term L and then takes an implicit (backward) gradient step (9.17) with

respect to the nondifferentiable term φλ.

The FBS algorithm is also known as the iterative shrinkage/thresholding

(IST) algorithm (see Figueiredo and Nowak (2003); Daubechies et al. (2004);

Figueiredo et al. (2007); Wright et al. (2009); Beck and Teboulle (2009) and

the references therein). The FBS algorithm converges as fast as the gradient

descent on the loss term in problem (9.3). For example, when the loss term

has a Lipschitz continuous gradient and is strongly convex, it converges

linearly (Tseng, 1991). However, this is rarely the case in sparse estimation

because typically the number of unknowns n is larger than the number

of observations m. Beck and Teboulle (2009) proved that FBS converges

as O(1/k) without the strong convexity assumption. However, since the

Lipschitz constant depends on the design matrix A, it is difficult to quantify

it for a machine learning problem. Nesterov (2007) and Beck and Teboulle

(2009) proposed accelerated IST algorithms that converge as O(1/k2), which

is also optimal under the first-order black-box model (Nesterov, 2007). The

connection between the accelerated IST algorithm and the operator splitting

framework is unknown.

9.5.2 Douglas-Rachford Splitting

Another commonly used approximation to minimize the inner objective

function (9.22) is to perform minimization with respect to α and v alter-

nately, which is called the alternating direction method of multipliers (Gabay

and Mercier, 1976). This approach is known to be equivalent to the Douglas-

Rachford splitting (DRS) algorithm (Douglas Jr. and Rachford Jr., 1956;

Lions and Mercier, 1979; Eckstein and Bertsekas, 1992; Combettes and Pes-

9.5 Connections 275

quet, 2010) when the proximity parameter ηt is chosen to be constant ηt = η.

Similar to the FBS algorithm, the DRS algorithm splits the operator

equation (9.2) as follows:

(I + ηB)(x) & x− ηy, (I + ηA)(x) & x+ ηy.

Accordingly, starting from some appropriate initial point (x0,y0), the DRS

algorithm performs the iteration(
xt+1, ηyt+1

)
= decompηA

(
(I + ηB)−1(xt − ηyt) + ηyt

)
,

where with a slight abuse of notation, we denote by (x,y) = decompA (z)

the decomposition x+ y = z with x = (I +A)−1(z). Note that this implies

y ∈ A(x); see the original definition (9.7).

Turning back to the DAL algorithm (9.22)-(9.23), due to the symmetry

between α and v, there are two ways to convert the DAL algorithm to a

DRS algorithm. First, by replacing the inner minimization (9.22) with the

steps

vt+1 = argmin
v∈Rn

Jη(α
t,v;xt), αt+1 = argmin

α∈Rm

Jη(α,vt+1;xt),

we obtain the (primal) DRS algorithm:(
xt+1,−ηATαt+1

)
= decompηL

(
proxφλη

(
xt + ηATαt

)− ηATαt
)
,

(9.37)

where (x,y) = decompηL(z) denotes Moreau’s decomposition (9.7). We can

identify A = ∂L and B = ∂φλ in update equation (9.37). This version

of DRS (regularizer inside, loss outside) was considered in Combettes and

Pesquet (2007) for image denoising with non-Gaussian likelihood models.

When the loss function L is differentiable, the update equation (9.37) can

be simplified as follows:

xt+1 = proxηL

(
proxφλη

(xt − η∇L(xt)) + η∇L(xt)
)
,

which more closely resembles the FBS iteration (9.36).

On the other hand, by replacing the inner minimization (9.22) with the

steps

αt+1 = argmin
α∈Rm

Jη(α,vt;xt),

vt+1 = argmin
v∈Rn

Jη(α
t+1,v;xt),

276 Augmented Lagrangian Methods for Learning, Selecting, and Combining Features

we obtain another (primal) DRS algorithm:(
xt+1, ηvt+1

)
= decompφλη

(
proxηL(x

t − ηvt) + ηvt
)
. (9.38)

Here, we can identify A = ∂φλ and B = ∂L in the update equation (9.38).

This version of DRS (loss inside, regularizer outside) was proposed by

Goldstein and Osher (2009) as an alternating direction method for the total

variation denoising problem (9.5).

Each step of DRS is a firmly nonexpansive mapping, and thus DRS is

unconditionally stable (Lions and Mercier, 1979), whereas the stability of

FBS depends on the choice of the proximity parameter η. Moreover, DRS

can be applied in both ways (see update equations (9.37) and (9.38)). In

other words, both the loss function L and the regularizer φλ may be nondif-

ferentiable, whereas FBS assumes that the loss function L is differentiable.

However, this also means that both proximity operators need to be imple-

mented for DRS, whereas FBS requires only one of them (Combettes and

Pesquet, 2010).

9.6 Application

In this section, we demonstrate that the trace norm regularizer (9.12) can be

used to learn features from multiple sources and combine them in an optimal

way in a single optimization problem. We also demonstrate that DAL can

efficiently optimize the associated minimization problem.

9.6.1 Problem setting

The problem we solve is a classification problem with multiple matrix-valued

inputs (Tomioka et al., 2010b):

min
W (1),...,W (K),

b∈R

m∑
i=1

�
(∑K

k=1〈X(k)
i , W (k)〉+ b, yi

)
+ λ

K∑
k=1

‖W (k)‖∗,

(9.39)

where the loss function � is the logistic loss function

�(z, y) = log(1 + exp(−yz)), (9.40)

and ‖ · ‖∗ denotes the trace norm (9.12).

9.6 Application 277

By defining

x =
(
vec(W (1))T , . . . , vec(W (K))T , b

)T
,

f�(z) =

m∑
i=1

�(zi, yi),

A : an m× n matrix whose ith row is given as

Ai =
(
vec(X

(1)
i)T , . . . , vec(X

(K)
i)T , 1

)
,

φλ(x) = λ

K∑
k=1

‖W (k)‖∗,

we can see that problem (9.39) is a special case of problem (9.18).

As a concrete example, we take a data set from a real brain-computer

interface (BCI) experiment, where the task is to predict whether the up-

coming voluntary finger movement is either right or left hand from the

electroencephalography (EEG) measurements (Blankertz et al., 2002). The

data set is publicly available through the BCI competition 2003 (data set

IV) (Blankertz et al., 2004). More specifically, the data set consists of short

segments of 28 channel multivariate signals of length 50 (500 ms long at 100

Hz sampling). The training set consists of m = 316 input segments (159 left

and 157 right), and we tested the classifier on a separate test set consisting

of 100 test segments.

Following the preprocessing used in Tomioka and Müller (2010), we com-

pute three matrices from each segment. The first matrix is 28 × 50 and is

obtained directly from the original signal by low-pass filtering at 20Hz. The

second matrix is 28×28 and is derived by computing the covariance between

the channels in the frequency band 7–15Hz (known as the α-band). Finally,

the third matrix is 28× 28 and is computed similarly to the second matrix

in the frequency band 15–30Hz (known as the β-band). The total number

of unknown variables is n = 2969.

We chose 20 log-linearly separated values of the regularization constant

λ from 10 to 0.001. The proximity parameter is increased geometrically as

ηt = 1, 2, 4, 8, . . .; after 22 iterations it was as large as 221 ' 2.1×106, which

shows that DAL is stable across a wide range of ηt. The Lipschitz constant

γ (see assumption (A2) in theorem 9.4) for the logistic loss (9.40) is γ = 4.

We used the Newton method for the inner minimization problem (9.25). We

implemented DAL in Matlab6. Each optimization was terminated when the

6. The code is available from http://www.ibis.t.u-tokyo.ac.jp/RyotaTomioka/Softwares.

278 Augmented Lagrangian Methods for Learning, Selecting, and Combining Features

0 5 10 15 20 25
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

Number of iterations

P
rim

al
−

ob
j.

−
 D

ua
l−

ob
j.

10

6.1585

3.7927

2.3357

1.4384

0.88587

0.54556

0.33598

0.20691

0.12743

0.078476

0.048329

0.029764

0.01833

0.011288

0.0069519

0.0042813

0.0026367

0.0016238

0.001

Figure 9.3: Convergence of DAL algorithm applied to a classification problem
in BCI. The duality gap is plotted against the number of iterations. Each curve
corresponds to a different regularization constant λ (shown on the right). Note that
no warm start is used. Each iteration consumed roughly 1.2 seconds.

duality gap fell below 10−3; see section 9.8.3.

9.6.2 Results

Figure 9.3 shows the sequence of the duality gap obtained by running the

DAL algorithm on 20 different values of the regularization constant λ against

the number of iterations. Note that the vertical axis is logarithmically scaled.

We can see that the convergence of DAL becomes faster as the iteration pro-

ceeds; that is, it converges super-linearly. Each iteration consumed roughly

1.2 seconds on a Linux server with two 3.33 GHz Xeon processors, and the

computation for 20 values of the regularization constant λ took about 350

seconds. Note that applying a simple warm start can significantly speedup

the computation (about 70 percent reduction), but it is not used here be-

cause we are interested in the basic behavior of the DAL algorithm.

Figure 9.4 shows the singular value spectra of the coefficient matrices

W (1), W (2), and W (3) obtained at the regularization constant λ = 0.5456,

which achieved the highest test accuracy, 85 percent. The classifier has se-

lected three components from the first data source (first-order component),

four components from the second data source (second-order (α-band) com-

ponent), and five components from the third data source (second-order (β-

band) component). From the magnitude of the singular values, it seems

9.6 Application 279

0 10 20 30
0

10

20

30

40

50

SV index
S

in
gu

la
r

va
lu

es

1st order

0 10 20 30
0

2

4

6

8

10

SV index

2nd order (alpha−band)

0 10 20 30
0

5

10

15

SV index

2nd order (beta−band)

Figure 9.4: Singular value spectra of W (1), W (2), and W (3), which corre-
spond to the first-order component, the second-order (alpha) component, and
the second-order (beta) component, respectively, obtained by solving optimization
problem (9.39) at λ = 0.5456.

Pattern

−600 −500 −400 −300 −200
−2

−1.5

−1

−0.5

0

Time (ms)

Time course
Filter

1:
 σ

=
41

.7
1

1s
t o

rd
er

 c
om

po
ne

nt

Figure 9.5: The visualization of the left singular vector (filter) and the right
singular vector (time course) corresponding to the largest singular value of W (1).
Both filter and pattern are shown topographically on a head seen from above. The
pattern shows the typical activity captured by the filter. See Tomioka and Müller
(2010) for more details.

that the first-order component and the β-component are the most impor-

tant for the classification, whereas the contribution of the α-component is

less prominent (see Tomioka and Müller (2010)).

Within each data source, the trace norm regularization automatically

learns feature extractors. Figure 9.5 visualizes the spatiotemporal profile of

the learned feature extractor that corresponds to the leading singular value

of W (1) in figure 9.4. The filter (left) and the pattern (center) visualize

the left singular-vector topographically according to the geometry of the

EEG sensors. The time course (right) shows the right singular vector as a

time series. Both the filter and the pattern show a clear lateralized bipolar

structure. This bipolar structure, together with the downward trend in the

280 Augmented Lagrangian Methods for Learning, Selecting, and Combining Features

time course is physiologically known as the lateralized readiness potential (or

Bereitschaftspotential) (Cui et al., 1999). Note that the time course starts

630 ms and ends 130 ms prior to the actual movement because the task is

to predict the laterality of the movement before it is executed.

9.7 Summary

In this chapter, we have presented the dual augmented Lagrangian (DAL)

algorithm for sparse estimation problems, and discussed its connections to

proximal minimization and other operator splitting algorithms.

The DAL algorithm is an augmented Lagrangian algorithm (Powell, 1969;

Hestenes, 1969; Rockafellar, 1976b; Bertsekas, 1982) applied to the dual of

the simple sparse estimation problem (9.3). For this problem, the sparsity

of the intermediate solution can effectively be exploited to efficiently solve

the inner minimization problem. This link between the sparsity and the

efficiency distinguishes DAL from other AL algorithms.

We have shown that DAL is equivalent to the proximal minimization algo-

rithm in the primal, which enabled us to rigorously analyze the convergence

rate of DAL through the proximal minimization framework. We have shown

that DAL converges superlinearly even in the case of inexact inner mini-

mization. Importantly, the stopping criterion we used can be computed in

practice; this is because we have separated the loss function f� from the

design matrix A (see section 9.4.1).

The structured sparse estimation problem (9.4) can also be tackled through

augmented Lagrangian algorithms in the primal (see Goldstein and Osher

(2009); Lin et al. (2009)). However, as was discussed in section 9.4.4, for

these algorithms the inner minimization is not easy to carry out exactly,

because the convex conjugate regularizer φ∗
λ does not produce a sparse vector

through the associated proximity operator.

Currently we are interested in how much the insights we gained about

DAL transfer to approximate augmented Lagrangian algorithms, such as

the alternating direction method, applied to the primal problem (structured

sparse estimation) and the dual problem (simple sparse estimation), and the

associated operator splitting methods in their respective dual problems. Ap-

plication of augmented Lagrangian algorithms to kernel methods is another

interesting direction (Suzuki and Tomioka, 2010).

9.7 Summary 281

Acknowledgment

We would like to thank Masakazu Kojima and Masao Fukushima for help-

ful discussions. This work was partially supported by MEXT KAKENHI

22700138 and 22700289, and the FIRST program.

Appendix: Mathematical Details

9.8.1 Infimal Convolution

Let f : Rn → R and g : Rn → R be two convex functions, and let f∗ and g∗

be their convex conjugate functions, respectively; That is,

f∗(y) = sup
x∈Rn

(〈y, x〉 − f(x)) , g∗(y) = sup
x∈Rn

(〈y, x〉 − g(x)) .

Then,

(f + g)∗(y) = inf
y′∈Rn

(
f∗(y′) + g∗(y − y′)

)
=: (f∗�g∗)(y),

where � denotes the infimal convolution.

See (Rockafellar, 1970, Theorem 16.4) for the proof.

9.8.2 Moreau’s Theorem

Let f : Rn → R be convex and f∗ its conjugate. Then, for x ∈ R
n

proxf (x) + proxf∗(x) = x. (9.41)

Moreover,

f̂(x) + f̂∗(x) =
1

2
‖x‖2, (9.42)

where f̂ is Moreau’s envelope function of f , namely,

f̂(x) = min
x′∈Rn

(
f(x′) +

1

2
‖x′ − x‖2

)
.

Furthermore, the envelope f̂ is differentiable, and its gradient is:

∇f̂(x) = proxf∗(x), ∇f̂∗(x) = proxf (x).

See Moreau (1965) and (Rockafellar, 1970, theorem 31.5) for the proof.

Danskin’s theorem (Bertsekas, 1999, proposition B.25) can also be used to

282 Augmented Lagrangian Methods for Learning, Selecting, and Combining Features

show the result. Note that by differentiating both sides of equation (9.42), we

obtain equation (9.41), which confirms the validity of the above statement.

9.8.3 Computation of the Duality Gap

We use the same strategy as in Koh et al. (2007) and Wright et al. (2009)

to compute the duality gap as a stopping criterion for the DAL algorithm.

Let ᾱt := −∇f�(Axt). Note that the vector AT ᾱt does not necessarily

lie in the domain of φ∗
λ in the dual problem (9.19). For trace norm regular-

ization, the domain of φ∗
λ is matrices with maximum singular value equal to

or smaller than λ. Thus we define α̃t = ᾱtmin(1, λ/‖AT ᾱt‖), where ‖ · ‖
is the spectral norm. Notice that ‖AT α̃t‖ ≤ λ by construction. We com-

pute the dual objective value as d(xt) = −f∗
� (−α̃t); and the duality gap is

Gapt = f(xt)− d(xt), where f is the primal objective function (9.18).

9.9 References

F. R. Bach. Consistency of the group lasso and multiple kernel learning. J. Mach.
Learn. Res., 9:1179–1225, 2008.

A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm for
linear inverse problems. SIAM J. Imaging Sciences, 2(1):183–202, 2009.

D. P. Bertsekas. Constrained Optimization and Lagrange Multiplier Methods.
Academic Press, 1982.

D. P. Bertsekas. Nonlinear Programming. Athena Scientific, second edition, 1999.

B. Blankertz, G. Curio, and K.-R. Müller. Classifying single trial EEG: Towards
brain computer interfacing. In T. G. Diettrich, S. Becker, and Z. Ghahramani,
editors, Adv. in Neural Inf. Proc. Sys., volume 14, pages 157–164, 2002.

B. Blankertz, K.-R. Müller, G. Curio, T. M. Vaughan, G. Schalk, J. R. Wolpaw,
A. Schlögl, C. Neuper, G. Pfurtscheller, T. Hinterberger, M. Schröder, and
N. Birbaumer. The BCI competition 2003: Progress and perspectives in detection
and discrimination of EEG single trials. IEEE Trans. Biomed. Eng., 51(6):1044–
1051, 2004.

S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press,
2004.

J.-F. Cai, E. J. Candès, and Z. Shen. A singular value thresholding algorithm for
matrix completion. arXiv:0810.3286, 2008.

E. J. Candès, J. Romberg, and T. Tao. Robust uncertainty principles: Exact
signal reconstruction from highly incomplete frequency information. IEEE Trans.
Inform. Theory, 52(2):489–509, 2006.

S. Chen, D. Donoho, and M. Saunders. Atomic decomposition by basis pursuit.
SIAM J. Sci. Comput., 20(1):33–61, 1998.

P. L. Combettes and J.-C. Pesquet. A Douglas-Rachford splitting approach to
nonsmooth convex variational signal recovery. IEEE Journal on Selected Topics
in Signal Processing, 1(4):564–574, 2007.

9.9 References 283

P. L. Combettes and J.-C. Pesquet. Proximal splitting methods in signal processing.
In H. H. Bauschke, R. Burachik, P. L. Combettes, V. Elser, D. R. Luke, and
H. Wolkowicz, editors, Fixed-Point Algorithms for Inverse Problems in Science
and Engineering. Springer, 2010.

P. L. Combettes and V. R. Wajs. Signal recovery by proximal forward-backward
splitting. Multiscale Modeling and Simulation, 4(4):1168–1200, 2005.

R. Q. Cui, D. Huter, W. Lang, and L. Deecke. Neuroimage of voluntary movement:
Topography of the bereitschaftspotential, a 64-channel DC current source density
study. Neuroimage, 9(1):124–134, 1999.

I. Daubechies, M. Defrise, and C. De Mol. An iterative thresholding algorithm for
linear inverse problems with a sparsity constraint. Commun. Pur. Appl. Math.,
LVII:1413–1457, 2004.

D. L. Donoho. De-noising by soft-thresholding. IEEE Trans. Inform. Theory, 41
(3):613–627, 1995.

J. Douglas Jr. and H. H. Rachford Jr. On the numerical solution of heat conduction
problems in two and three space variables. Trans. Amer. Math. Soc., 82(2):421–
439, 1956.

J. Eckstein and D. P. Bertsekas. On the Douglas-Rachford splitting method and
the proximal point algorithm for maximal monotone operators. Mathematical
Programming, 55(1):293–318, 1992.

M. Fazel, H. Hindi, and S. P. Boyd. A rank minimization heuristic with application
to minimum order system approximation. In Proc. of the American Control
Conference, volume 6, pages 4734–4738, 2001.

M. A. T. Figueiredo and R. Nowak. An EM algorithm for wavelet-based image
restoration. IEEE Trans. Image Process., 12(8):906–916, 2003.

M. A. T. Figueiredo, J. M. Bioucas-Dias, and R. D. Nowak. Majorization-
minimization algorithm for wavelet-based image restoration. IEEE Trans. Image
Process., 16(12):2980–2991, 2007.

D. Gabay and B. Mercier. A dual algorithm for the solution of nonlinear variational
problems via finite element approximation. Computers and Mathematics with
Applications, 2(1):17–40, 1976.

J. Gao, G. Andrew, M. Johnson, and K. Toutanova. A comparative study of
parameter estimation methods for statistical natural language processing. In
Proceedings of the 45th Annual Meeting of the Association for Computational
Linguistics, volume 45, pages 824–831, 2007.

T. Goldstein and S. Osher. The split Bregman method for L1 regularized problems.
SIAM Journal on Imaging Sciences, 2(2):323–343, 2009.

S.-P. Han and G. Lou. A parallel algorithm for a class of convex programs. SIAM
J. Control Optimiz., 26(2):345–355, 1988.

M. R. Hestenes. Multiplier and gradient methods. J. Optim. Theory Appl., 4:
303–320, 1969.

R. A. Horn and C. R. Johnson. Topics in matrix analysis. Cambridge University
Press, 1991.

S. Ibaraki, M. Fukushima, and T. Ibaraki. Primal-dual proximal point algorithm for
linearly constrained convex programming problems. Computational Optimization
and Applications, 1(2):207–226, 1992.

R. Jenatton, J.-Y. Audibert, and F. Bach. Structured variable selection with

284 Augmented Lagrangian Methods for Learning, Selecting, and Combining Features

sparsity-inducing norms. Technical report, arXiv:0904.3523, 2009.

S.-J. Kim, K. Koh, M. Lustig, S. Boyd, and D. Gorinvesky. An interior-point method
for large-scale l-regularized least squares. IEEE Journal of Selected Topics in
Signal Processing, 1(4):606–617, 2007.

K. Koh, S.-J. Kim, and S. Boyd. An interior-point method for large-scale �1-
regularized logistic regression. Journal of Machine Learning Research, 8:1519–
1555, 2007.

B. W. Kort and D. P. Bertsekas. Combined primal–dual and penalty methods
for convex programming. SIAM Journal on Control and Optimization, 14(2):
268–294, 1976.

Z. Lin, M. Chen, L. Wu, and Y. Ma. The augmented Lagrange multiplier method
for exact recovery of corrupted low-rank matrices. Mathematical Programming,
2009. submitted.

P. L. Lions and B. Mercier. Splitting algorithms for the sum of two nonlinear
operators. SIAM Journal on Numerical Analysis, 16(6):964–979, 1979.

M. Lustig, D. Donoho, and J. M. Pauly. Sparse MRI: The application of compressed
sensing for rapid MR imaging, 2007. Magn. Reson. Med., 58(6):1182–1195, 2007.

J. J. Moreau. Proximité et dualité dans un espace hilbertien. Bulletin de la Soc.
Math. France, 93:273–299, 1965.

R. M. Neal. Bayesian Learning for Neural Networks. Springer, New York, 1996.

Y. Nesterov. Gradient methods for minimizing composite objective function.
Technical Report 2007/76, Center for Operations Research and Econometrics
(CORE), Catholic University of Louvain, 2007. Revised May 2010.

A. Y. Ng. Feature selection, L1 vs. L2 regularization, and rotational invariance. In
Proc. of the 21st International Conference on Machine Learning, page 78, New
York, NY, USA, 2004. ACM Press, New York.

M. J. D. Powell. A method for nonlinear constraints in minimization problems. In
R. Fletcher, editor, Optimization, pages 283–298. Academic Press, London and
New York, 1969.

R. T. Rockafellar. Convex Analysis. Princeton University Press, 1970.

R. T. Rockafellar. Monotone operators and the proximal point algorithm. SIAM
Journal on Control and Optimization, 14:877–898, 1976a.

R. T. Rockafellar. Augmented Lagrangians and applications of the proximal point
algorithm in convex programming. Math. of Oper. Res., 1:97–116, 1976b.

L. I. Rudin, S. Osher, and E. Fatemi. Nonlinear total variation based noise removal
algorithms. Physica D, 60:259–268, 1992.

S. Setzer. Operator splittings, Bregman methods and frame shrinkage in image
processing. International Journal of Computer Vision, 92(3):265–280, 2010.

S. K. Shevade and S. S. Keerthi. A simple and efficient algorithm for gene selection
using sparse logistic regression. Bioinformatics, 19(17):2246–2253, 2003.

N. Srebro, J. D. M. Rennie, and T. S. Jaakkola. Maximum-margin matrix factoriza-
tion. In Advances in Neural Information Processing Systems 17, pages 1329–1336.
MIT Press, Cambridge, MA, 2005.

T. Suzuki and R. Tomioka. SpicyMKL. Machine Learning, 2010. Submitted.

R. Tibshirani. Regression shrinkage and selection via the lasso. J. Roy. Stat. Soc.
series B, 58(1):267–288, 1996.

9.9 References 285

R. Tibshirani, M. Saunders, S. Rosset, J. Zhu, and K. Knight. Sparsity and
smoothness via the fused lasso. J. Roy. Stat. Soc. series B, 67(1):91–108, 2005.

M. E. Tipping. Sparse bayesian learning and the relevance vector machine. J.
Mach. Learn. Res., 1:211–244, 2001.

R. Tomioka and K. Aihara. Classifying matrices with a spectral regularization. In
Proc. of the 24th International Conference on Machine Learning, pages 895–902.
ACM Press, 2007.

R. Tomioka and K.-R. Müller. A regularized discriminative framework for EEG
analysis with application to brain-computer interface. Neuroimage, 49(1):415–
432, 2010.

R. Tomioka and M. Sugiyama. Dual augmented Lagrangian method for efficient
sparse reconstruction. IEEE Signal Processing Letters, 16(12):1067–1070, 2009.

R. Tomioka, T. Suzuki, and M. Sugiyama. Super-linear convergence of dual
augmented-Lagrangian algorithm for sparsity regularized estimation. Technical
report, arXiv:0911.4046v2, 2010a.

R. Tomioka, T. Suzuki, M. Sugiyama, and H. Kashima. A fast augmented La-
grangian algorithm for learning low-rank matrices. In Proc. of the 27th Interna-
tional Conference on Machine Learning. Omnipress, 2010b.

P. Tseng. Applications of a splitting algorithm to decomposition in convex pro-
gramming and variational inequalities. SIAM J. Control Optimiz., 29(1):119–138,
1991.

J. B. Weaver, Y. Xu, D. M. Healy Jr, and L. D. Cromwell. Filtering noise from
images with wavelet transforms. Magnetic Resonance in Medicine, 21(2):288–295,
1991.

D. Wipf and S. Nagarajan. A new view of automatic relevance determination. In
Advances in Neural Information Processing Systems 20, pages 1625–1632. MIT
Press, 2008.

S. J. Wright, R. D. Nowak, and M. A. T. Figueiredo. Sparse reconstruction by
separable approximation. IEEE Trans. Signal Process., 57(7):2479–2493, 2009.

W. Yin, S. Osher, D. Goldfarb, and J. Darbon. Bregman iterative algorithms
for L1-minimization with applications to compressed sensing. SIAM J. Imaging
Sciences, 1(1):143–168, 2008.

M. Yuan and Y. Lin. Model selection and estimation in regression with grouped
variables. J. Roy. Stat. Soc. series B, 68(1):49–67, 2006.

M. Yuan, A. Ekici, Z. Lu, and R. Monteiro. Dimension reduction and coefficient
estimation in multivariate linear regression. J. Roy. Stat. Soc. series B, 69(3):
329–346, 2007.

10 The Convex Optimization Approach to

Regret Minimization

Elad Hazan ehazan@ie.technion.ac.il

Technion - Israel Institute of Technology

Haifa, Israel

A well-studied and general setting for prediction and decision making is re-

gret minimization in games. Recently the design of algorithms in this set-

ting has been influenced by tools from convex optimization. In this chapter

we describe the recent framework of online convex optimization which nat-

urally merges optimization and regret minimization. We describe the basic

algorithms and tools at the heart of this framework, which have led to the

resolution of fundamental questions of learning in games.

10.1 Introduction

In the online decision making scenario, a player has to choose from a pool

of available decisions and then incurs a loss corresponding to the quality of

the decision made. The regret minimization paradigm suggests the goal of

incurring an average loss which approaches that of the best fixed decision

in hindsight. Recently tools from convex optimization have given rise to

algorithms which are more general, unifying previous results and many times

giving new and improved regret bounds.

In this chapter we survey some of the recent developments in this excit-

ing merger of optimization and learning. We start by describing two general

templates for producing algorithms and proving regret bounds. The tem-

plates are very simple, and unify the analysis of many previous well-known

and frequently used algorithms (i.e., multiplicative weights and gradient de-

288 The Convex Optimization Approach to Regret Minimization

scent). For the setting of online linear optimization, we also prove that the

two templates are equivalent.

After describing the framework and algorithmic templates, we describe

some successful applications: characterization of regret bounds in terms of

convexity of loss functions, bandit linear optimization, and variational regret

bounds.

10.1.1 The Online Convex Optimization Model

In online convex optimization, an online player iteratively chooses a point

from a set in Euclidean space denoted K ⊆ R
n. Following Zinkevich (2003),

we assume that the set K is non-empty, bounded, and closed. For algorithmic

efficiency reasons that will be apparent later, we also assume the set K to

be convex.

We denote the number of iterations by T (which is unknown by the online

player). At iteration t, the online player chooses xt ∈ K . After committing

to this choice, a convex cost function ft : K �→ R is revealed. The cost

incurred to the online player is the value of the cost function at the point

she committed to ft(xt). Henceforth we consider mostly linear cost functions,

and abuse notation to write ft(x) = f	t x.

The feedback available to the player falls into two main categories. In the

full information model, all information about the function ft is observable

by the player (after incurring the loss). In the “bandit” model, the player

observes only the loss ft(xt) itself.

The regret of the online player using algorithm A at time T is defined to

be the total cost minus the cost of the best fixed single decision, where the

best is chosen with the benefit of hindsight. We are usually interested in an

upper bound on the worst-case guaranteed regret, denoted

RegretT (A) = sup
{f1,...,ft}

{
E[
∑T

t=1ft(xt)]−min
x∈K

∑T
t=1ft(x)

}
.

Regret is the defacto standard in measuring the performance of learning

algorithms.1

Intuitively, an algorithm performs well if its regret is sublinear in T , that

is, RegretT (A) = o(T), since this implies that “on the average” the algorithm

performs as well as the best fixed strategy in hindsight.

1. For some problems it is more natural to talk of the “payoff” given to the online player
rather than the cost she incurs. If so, the payoff functions need to be concave and regret
is defined analogously.

10.1 Introduction 289

The running time of an algorithm for online game playing is defined to be

the worst-case expected time to produce xt, for an iteration t ∈ [T] 2 in a

T iteration repeated game. Typically, the running time will depend on n, T

and the parameters of the cost functions and underlying convex set.

10.1.2 Examples

10.1.2.1 Prediction from Experts Advice

Perhaps the best-known problem in prediction theory is the “experts prob-

lem”. The decision maker has to choose from the advice of n given experts.

After choosing one, a loss between zero and one is incurred. This scenario

is repeated iteratively, and at each iteration the costs of the various experts

are arbitrary. The goal is to do as well as the best expert in hindsight.

The online convex optimization problem captures this problem as a special

case: the set of decisions is the set of all distributions over n elements

(experts), that is the n-dimensional simplex K = Δn = {x ∈ R
n,
∑

i xi =

1 ,xi ≥ 0}. Let the cost to the i’th expert at iteration t be denoted by ft(i).

Then the cost functions are given by ft(x) = f	t x. This is the expected cost

of choosing an expert according to distribution x, and happens to be linear.

10.1.2.2 Online Shortest Paths

In the online shortest path problem, the decision maker is given a directed

graph G = (V,E) and a source-sink pair s, t ∈ V . At each iteration t ∈ [T],

the decision maker chooses a path pt ∈ Ps,t, where Ps,t ⊆ {E}|V | is the set

of all s, t-paths in the graph. The adversary independently chooses weights

on the edges of the graph, given by a function from the edges to the reals

ft : E �→ R, which can be represented as a vector in m-dimensional space:

ft ∈ R
m. The decision maker suffers and observes loss, which is the weighted

length of the chosen path
∑

e∈pt
ft(e).

The discrete description of this problem as an experts problem, where we

have an expert for every path, presents an efficiency challenge: there are

potentially exponentially many paths in terms of the graph representation

size. Much work has been devoted to resolving this efficiency issue, and

efficient algorithms have been found in this discrete formulation, such as

(Takimoto and Warmuth, 2003; Awerbuch and Kleinberg, 2008). However,

the optimal regret bound for the bandit version of this problem eluded

researchers for some time, and was finally resolved only within the online

2. Here and henceforth we denote the set of integers {1, ..., n} by [n].

290 The Convex Optimization Approach to Regret Minimization

convex optimization framework (Abernethy et al., 2008; Dani et al., 2008).

The online convex optimization framework suggests an inherently efficient

model to capture this problem. Recall the standard description of the set of

all distributions over paths (flows) in a graph as a convex set in R
m, with

O(m+ |V |) constraints. Denote this flow polytope by K. The expected cost

of a given flow x ∈ K (distribution over paths) is then a linear function,

given by f	t x, where ft(e) is the length of the edge e ∈ E.

10.1.2.3 Portfolio Selection

The universal portfolio selection problem which we briefly describe is due

to Cover (1991). At each iteration t = 1 to T , the decision maker chooses

a distribution of her wealth over n assets xt ∈ Δn. The adversary inde-

pendently chooses market returns for the assets, that is a vector rt ∈ R
n
+

such that each coordinate rt(i) is the price ratio for the i’th asset between

the iterations t and t + 1. The ratio between the wealth of the investor at

iterations t+1 and t is r	t xt, and hence the gain in this setting is defined to

be the logarithm of this change ratio in wealth log(r	t xt). Notice that since

xt is the distribution of the investor’s wealth, even if xt+1 = xt, the investor

may still need to trade in order to adjust for price changes.

The goal of regret minimization, which in this case corresponds to minimiz-

ing the difference maxx∈Δn

∑T
t=1 log(r

	
t x)−

∑T
t=1 log(r

	
t xt), has an intuitive

interpretation. The first term is the logarithm of the wealth accumulated by

the distribution x∗. Since this distribution is fixed, it corresponds to a strat-

egy of rebalancing the position after every trading period, and hence is called

a constant rebalanced portfolio. The second expression is the logarithm of the

wealth accumulated by the online decision maker. Hence regret minimiza-

tion corresponds to maximizing the ratio of investor wealth against wealth

of the best benchmark from a pool of investing strategies.

A universal portfolio selection algorithm is defined to be one that attains

regret converging to zero in this setting. Such an algorithm, albeit requiring

exponential time, was first described in Cover (1991). The online convex

optimization framework has given rise to much more efficient algorithms

based on Newton’s method (Hazan et al., 2007).

10.1.3 Algorithms for Online Convex Optimization

Algorithms for online convex optimization can be derived from rich algo-

rithmic techniques developed for prediction in various statistical and ma-

chine learning settings. We describe two general algorithmic frameworks

from which many previous algorithms can be derived as special cases.

10.2 The RFTL Algorithm and Its Analysis 291

Perhaps the most straightforward approach is for the online player to

use whatever decision (point in the convex set) would have been optimal.

Formally, let

xt = argmin
x∈K

t−1∑
i=1

fi(x).

This type of strategy is known as “fictitious play” in economics, and was

named “follow the leader” (FTL) by Kalai and Vempala (2005). As Kalai

and Vempala point out, this strategy fails miserably in a worst-case sense.

That is, its regret can be linear in the number of iterations, as the following

example shows. Consider K to be the real line segment between -1 and +1,

and f0 =
1
2x, and let fi alternate between −x and x. The FTL strategy will

keep shifting between −1 and +1, always making the wrong choice.

Kalai and Vempala proceed to analyze a modification of FTL with added

noise to “stabilize” the decision (this modification was originally due to

Hannan (1957)). Similarly, much more general and varied twists on this

basic FTL strategy can be conjured up, and, as we shall show, also analyzed

successfully. This is the essence of the meta-algorithm defined in this section.

Another natural approach for online convex optimization is an iterative

approach. Start with some decision x ∈ K, and iteratively modify it ac-

cording to the cost functions that are encountered. Some natural update

rules include the gradient update, updates based on a multiplicative rule,

on Newton’s method, and so forth. Indeed, all of these suggestions make for

useful algorithms. But as we shall show, they can all be seen as special cases

of the general methodology we analyze next.

10.2 The RFTL Algorithm and Its Analysis

Recall the caveat about straightforward use of follow-the-leader. As in the

bad example we have considered, the prediction of FTL may vary wildly

from one iteration to the next. This motivates the modification of the basic

FTL strategy in order to stabilize the prediction. By adding a regularization

term, we obtain the RFTL (regularized follow the leader) algorithm.

We proceed to formally describe the RFTL algorithmic template, and

analyze it. While the analysis given is optimal asymptotically, we do not

give the best constants possible, in order to simplify presentation.

In this section we consider only linear cost functions, f(x) = fTx. The

case of convex cost functions can be reduced to the linear case via the

inequality ft(xt) − ft(x
∗) ≤ ∇ft(xt)(xt − x∗), and considering the function

292 The Convex Optimization Approach to Regret Minimization

f̂t(x) = ∇ft(xt)
	x, which is now linear.

10.2.1 Algorithm Definition

The generic RFTL meta-algorithm is defined below. The regularization

function R is assumed to be strongly convex and smooth such that it has a

continuous second derivative.

Algorithm 10.1 RFTL

1: Input: η > 0, strongly convex regularizer function R, and a convex compact set K
2: Let x1 = argminx∈K [R(x)]
3: for t = 1 to T do
4: Predict xt

5: Observe the payoff function ft
6: Update

xt+1 = argmin
x∈K

[
η

t∑
s=1

fT
sx+ R(x)

]
︸ ︷︷ ︸

Φt(x)

(10.1)

7: end for

10.2.2 Special Cases: Multiplicative Updates and Gradient Descent

Two famous algorithms which are captured by algorithm 10.1 are called

the multiplicative update algorithm and the gradient descent method. If

K = Δn = {x ≥ 0 ,
∑

i x(i) = 1}, then taking R(x) = x logx gives a

multiplicative update algorithm, in which

xt+1(i) =
xt(i) · eηft(i)∑n
i=1 xt(i) · eηft(i)

.

If K is the unit ball and R(x) = ‖x‖22, we get the gradient descent algorithm,

in which

xt+1 =
xt − ηft
‖xt − ηft‖2 .

It is possible to derive these special cases by the KKT optimality conditions

of equation 10.1. However, we give an easier proof of these facts in the next

section, in which we give an equivalent definition of RFTL for the case of

linear cost functions.

10.2 The RFTL Algorithm and Its Analysis 293

10.2.3 The Regret Bound

Henceforth we make use of general matrix norms. A PSD matrix A � 0

gives rise to the norm ‖x‖A =
√
xTAx. The dual norm of this matrix norm

is ‖x‖A−1 = ‖x‖∗A. The generalized Cauchy-Schwartz theorem asserts that

x · y ≤ ‖x‖A‖y‖∗A. We usually take A to be the Hessian of the regularization

function R(x), denoted ∇2R(x). In this case, we shorthand the notation to

be ‖x‖∇2R(y) = ‖x‖y, and similarly ‖x‖∇−2R(y) = ‖x‖∗y. Denote

λ = max
t,x∈K

f T

t [∇2R(x)]−1ft , D = max
u∈K

R(u)− R(x1)

Notice that both λ and D depend on the regularization function, the convex

decision set, and the magnitude of the cost functions.

Theorem 10.1. Algorithm 10.1 achieves the following bound on the regret

for every u ∈ K:

RegretT =

T∑
t=1

f	t (xt − u) ≤ 2
√
2λDT .

Consider the expert problem, for example: the convex set is the sim-

plex, R is taken to be the negative entropy function (which corresponds

to the multiplicative update algorithm), and the costs are bounded by

1 in each coordinate. Then f T[∇2R(x)]−1f =
∑

i f(i)
2x(i) ≤ ∑

i x(i) =

1, which implies λ ≤ 1. The parameter D in this case is bounded by

maxu∈Δ
∑

i u(i) log
1

u(i) ≤ log n. This gives the regret bound O(
√
T log n),

which is known to be tight.3

To prove theorem 10.1, we first relate the regret to the stability in

prediction. This is formally captured by the FTL-BTL lemma, which holds

in the general scenario.

Lemma 10.2 (FTL-BTL lemma). For every u ∈ K, the algorithm defined

by (10.1) enjoys the following regret guarantee

T∑
t=1

f T

t (xt − u) ≤
T∑
t=1

f T

t (xt − xt+1) +
1

η
[R(u)− R(x1)].

We defer the proof of this simple lemma to the appendix, and proceed

with the (short) proof of the main theorem.

3. In the case of multiplicative updates, as well as in other regularization functions of
interest, it is possible to obtain a tighter bound in theorem 10.1: the term λ can be
redefined as λ = maxt f

T
t [∇2R(xt)]

−1ft. The derivation is not in the scope of this survey;
see Abernethy et al. (2008) for more details.

294 The Convex Optimization Approach to Regret Minimization

Main Theorem. Recall that R(x) is a convex function andK is convex. Then,

by Taylor expansion (with its explicit remainder term via the mean value

theorem) at xt+1, there exists a zt ∈ [xt+1,xt] for which

Φt(xt) = Φt(xt+1) + (xt − xt+1)
T∇Φt(xt+1) +

1

2
‖xt − xt+1‖2zt

≥ Φt(xt+1) +
1

2
‖xt − xt+1‖2zt

Recall our notation ‖y‖2z = yT∇2Φt(z)y, and it follows that ‖y‖2z =

yT∇2R(z)y. The inequality above is true because xt+1 is a minimum of

Φt over K. Thus,

‖xt − xt+1‖2zt
≤ 2Φt(xt)− 2Φt(xt+1)

= 2 (Φt−1(xt)− Φt−1(xt+1)) + 2ηf T

t (xt − xt+1)

≤ 2 η f T

t (xt − xt+1).

By the generalized Cauchy-Schwartz inequality,

f T

t (xt − xt+1) ≤ ‖ft‖∗zt
· ‖xt − xt+1‖zt

general CS (10.2)

≤ ‖ft‖∗zt
·
√

2 η f T

t (xt − xt+1).

Shifting sides and squaring, we get

f T

t (xt − xt+1) ≤ 2 η ‖ft‖∗ 2
zt
≤ 2 η λ.

Using this, together with the FTL-BTL lemma, and summing over T periods,

we obtain the theorem. Choosing the optimal η, we obtain

RT ≤ min
η

{
2 ηλT +

1

η
[R(u)− R(x1)]

}
≤ 2

√
2DλT .

10.3 The “Primal-Dual” Approach

The other approach for proving regret bounds, which we call primal-dual,

originates from the link-function methodology, as introduced in Grove et al.

(2001); Kivinen and Warmuth (2001), and is related to the mirrored descent

paradigm in the optimization community. A central concept useful for this

method are Bregman divergences, formally defined below.

Definition 10.1. Denote by BR(x||y) the Bregman divergence with respect

to the function R, defined as

BR(x||y) = R(x)− R(y)− (x− y)T∇R(y) .

10.3 The “Primal-Dual” Approach 295

The primal-dual algorithm is an iterative algorithm, which computes the

next prediction using a simple update rule and the previous prediction. The

generality of the method stems from the update being carried out in a dual

space, where the duality notion is defined by the choice of regularization.

Algorithm 10.2 Primal-dual

1: Let K be a convex set
2: Input: parameter η > 0, regularizer function R(x)
3: for t = 1 to T do
4: If t = 1, choose y1 such that ∇R(y1) = 0
5: If t > 1, choose yt such that

Lazy version: ∇R(yt) = ∇R(yt−1)− η ft−1.

Active version: ∇R(yt) = ∇R(xt−1)− η ft−1.

6: Project according to BR:

xt = argmin
x∈K

BR(x||yt)

7: end for

10.3.1 Equivalence to RFTL in the Linear Setting

For the special case of linear cost functions, algorithm 10.2 (lazy version) and

RFTL are identical, as we show now. The primal-dual algorithm, however,

can be analyzed in a very different way, which is extremely useful in certain

online scenarios.

Lemma 10.3. For linear cost functions, the lazy primal-dual and RFTL

algorithms produce identical predictions, that is,

argmin
x∈K

(
f T

t x+
1

η
R(x)

)
= argmin

x∈K
BR(x||yt) .

Proof. First, observe that the unconstrained minimum

x∗
t ≡ arg min

x∈Rn

{ t−1∑
s=1

f T

sx+
1

η
R(x)

}
satisfies

t−1∑
s=1

fs +
1

η
∇R(x∗

t) = 0 .

Since R(x) is strictly convex, there is only one solution for the above

296 The Convex Optimization Approach to Regret Minimization

equation and thus yt = x∗
t . Hence,

BR(x||yt) = R(x)− R(yt)− (∇R(yt))
T(x− yt)

= R(x)− R(yt) + η

t−1∑
s=1

f T

s (x− yt) .

Since R(yt) and
∑t−1

s=1 f
T

syt are independent of x, it follows that B
R(x||yt) is

minimized at the point x that minimizes R(x) + η
∑t−1

s=1 f
T

sx over K, which

in turn implies that

argmin
x∈K

BR(x||yt) = argmin
x∈K

{ t−1∑
s=1

f T

sx+
1

η
R(x)

}
.

10.3.2 Regret Bounds for the Primal-Dual Algorithm

Theorem 10.4. Suppose that R is such that BR(x,y) ≥ ‖x−y‖2 for some

norm ‖ · ‖. Let ‖∇ft(xt)‖∗ ≤ G∗ for all t, and ∀x ∈ K BR(x,x1) ≤ D2.

Applying the primal-dual algorithm (active version) with η = D
2G∗

√
T
, we

have

RegretT ≤ DG∗
√
T

Proof. Since the functions ft are convex, for any x∗ ∈ K,

ft(xt)− ft(x
∗) ≤ ∇ft(xt)

	(xt − x∗).

The following property of Bregman divergences follows easily from the

definition: for any vectors x,y, z,

(x− y)	(∇R(z)−∇R(y)) = BR(x,y)−BR(x, z) +BR(y, z).

Combining both observations,

2(ft(xt)− ft(x
∗)) ≤ 2∇ft(xt)

	(xt − x∗)

=
1

η
(∇R(yt+1)−∇R(xt))

	(x∗ − xt)

=
1

η
[BR(x

∗,xt)−BR(x
∗,yt+1) +BR(xt,yt+1)]

≤ 1

η
[BR(x

∗,xt)−BR(x
∗,xt+1) +BR(xt,yt+1)]

where the last inequality follows from the generalized Pythagorean inequality

(see Cesa-Bianchi and Lugosi (2006), lemma 11.3), as xt+1 is the projection

10.3 The “Primal-Dual” Approach 297

w.r.t the Bregman divergence of yt+1 and x∗ ∈ K is in the convex set.

Summing over all iterations,

2Regret ≤ 1

η
[BR(x

∗,x1)−BR(x
∗,xT)] +

T∑
t=1

1

η
BR(xt,yt+1)

≤ 1

η
D2 +

T∑
t=1

1

η
BR(xt,yt+1). (10.3)

We proceed to bound BR(xt,yt+1). By definition of the Bregman diver-

gence, and the dual norm inequality stated before,

BR(xt,yt+1) +BR(yt+1,xt) = (∇R(xt)−∇R(yt+1))
	(xt − yt+1)

= 2η∇ft(xt)
	(xt − yt+1)

≤ η2G∗ 2 + ‖xt − yt+1‖2.
Thus, by our assumption BR(x,y) ≥ ‖x− y‖2, we have

BR(xt,yt+1) ≤ η2G2
∗ + ‖xt − yt+1‖2 −BR(yt+1,xt) ≤ η2G2

∗.

Plugging back into equation (10.3), and by non-negativity of the Bregman

divergence, we get

Regret ≤ 1

2
[
1

η
D2 + ηTG∗ 2] ≤ DG∗

√
T

by taking η = D
2
√
TG∗

10.3.3 Deriving the Multiplicative Update and Gradient Descent

Algorithms

We stated in section 10.3.2 that by taking R to be the negative entropy

function over the simplex, the RFTL template specializes to become a mul-

tiplicative update algorithm. Since we have proved that RFTL is equivalent

to the primal-dual algorithm, the same is true for the latter, and the same

regret bound applies.

If R(x) = x logx is the negative entropy function, then ∇R(x) = 1+logx,

and hence the update rule for the primal-dual algorithm 10.2 (the lazy and

adaptive versions are identical in this case) becomes

logyt = logxt−1 − ηft−1

or yt(i) = xt−1(i) · e−ηft−1(i). Since the entropy projection corresponds to

scaling by the �1-norm, it follows that xt+1(i) =
xt(i)·eηft(i)∑
n
i=1 xt(i)·eηft(i)

.

298 The Convex Optimization Approach to Regret Minimization

As for the regret bound, it is well-known that the entropy function satisfies

that BR(x,y) ≥ 1
4‖x − y‖21 (which is essentially Pinsker’s inequality (see

(Cover and Thomas, 1991)). Thus, to apply theorem 10.4, we need to bound

the the �∞-norm of the gradients, which corresponds to the maximal cost

incurred by the experts. Assume this is bounded by 1, that is, G∗ ≤ 1. The

Bregman divergence with respect to R is the relative entropy, and starting

from x1 being the uniform distribution, it holds that BR(x,x1) ≤ log n for

any x in the simplex. Thus, by theorem 10.4 the regret of the multiplicative

weights algorithm for the experts problem is bounded by O(
√
T log n).

To derive the online gradient descent algorithm, take R = 1
2‖x‖22. In

this case, ∇R(x) = x, and hence the update rule for the primal-dual

algorithm 10.2 becomes

yt = yt−1 − ηft−1,

and thus when K is the unit ball,

xt+1 =
x1 − η

∑t
τ=2 fτ

‖x1 − η
∑t

τ=2 fτ‖2
=

xt − ηft
‖xt − ηft‖2 .

10.4 Convexity of Loss Functions

In this section we review one of the first consequences of the convex op-

timization approach to decision making: the characterization of attainable

regret bounds in terms of convexity of loss functions. It has long been known

that special kinds of loss functions permit tighter regret bounds than other

loss functions. For example, in the portfolio selection problem, Cover’s al-

gorithm attained regret which depends on the number of iterations T as

O(log T). This is in contrast to online linear optimization or the experts

problem, in which Θ(
√
T) is known to be tight.

In this section we give a simple gradient descent-based algorithm which

attains logarithmic regret if the loss functions are strongly convex. Inter-

estingly, the naive fictitious play (FTL) algorithm attains essentially the

same regret bounds in this special case. Similar bounds are attainable under

weaker conditions on the loss functions, which capture the portfolio selection

problem, and have led to the efficient algorithm for Cover’s problem (Hazan

et al., 2007).

We say that a function is α-strongly convex if its second derivative is

strictly bounded away from zero. In higher dimensions this corresponds to

the matrix inequality ∇2f(x) � α · I, where ∇2f(x) is the Hessian of the

function and A � B denotes that the matrix A−B is positive semi-definite.

10.4 Convexity of Loss Functions 299

For example, the squared loss, that is, f(x) = ‖x−a‖22, is 1-strongly convex.

Algorithm 10.3 Online gradient descent

1: Input: convex set K, initial point x0 ∈ K, learning rates η1, ..., ηt
2: for t = 1 to T do
3: Let yt = xt−1 − ηt−1∇ft−1(xt−1)
4: Project onto K:

xt = argmin
x∈K

‖x− yt‖2

5: end for

The following theorem, proved in Hazan et al. (2007), establishes logarith-

mic bounds on the regret if the cost functions are strongly convex. Denote

by G an upper bound on the Euclidean norm of the gradients.

Theorem 10.5. The online gradient descent algorithm with stepsizes ηt =
1
αt achieves the following guarantee for all T ≥ 1:

RegretT (OGD) ≤ G2

2α
(1 + log T).

Proof. Let x∗ ∈ argminx∈P
∑T

t=1 ft(x). Recall the definition of regret:

RegretT (OGD) =

T∑
t=1

ft(xt)−
T∑
t=1

ft(x
∗).

Denote ∇t � ∇ft(xt). By α-strong convexity, we have

ft(x
∗) ≥ ft(xt) +∇	

t (x
∗ − xt) +

α

2
‖x∗ − xt‖2

2(ft(xt)− ft(x
∗)) ≤ 2∇	

t (xt − x∗)− α‖x∗ − xt‖2. (10.4)

Following Zinkevich’s analysis, we upper-bound ∇	
t (xt − x∗). Using the

update rule for xt+1 and the generalized Pythagorian inequality (Cesa-

Bianchi and Lugosi (2006), lemma 11.3), we get

‖xt+1 − x∗‖2 = ‖Π(xt − ηt+1∇t)− x∗‖2 ≤ ‖xt − ηt+1∇t − x∗‖2.
Hence,

‖xt+1 − x∗‖2 ≤ ‖xt − x∗‖2 + η2t+1‖∇t‖2 − 2ηt+1∇	
t (xt − x∗).

Then, shifting sides,

2∇	
t (xt − x∗) ≤ ‖xt − x∗‖2 − ‖xt+1 − x∗‖2

ηt+1
+ ηt+1G

2. (10.5)

300 The Convex Optimization Approach to Regret Minimization

Summing (10.5) from t = 1 to T . Set ηt+1 = 1/(αt) and, using (10.4), we

have

2

T∑
t=1

ft(xt)− ft(x
∗) ≤

T∑
t=1

‖xt − x∗‖2
(

1

ηt+1
− 1

ηt
− α

)
+G2

T∑
t=1

ηt+1

= G2
T∑
t=1

1

αt
≤ G2

α
(1 + log T).

10.5 Recent Applications

In this section we describe two recent applications of the convex optimization

view to regret minimization which have resolved open questions in the field.

10.5.1 Bandit Linear Optimization

The first application is to the bandit linear optimization problem. Online

linear optimization is a special case of online convex optimization in which

the loss functions are linear (such as analyzed for the RFTL algorithm).

In the bandit version, called bandit linear optimization, the only feedback

available to the decision maker is the loss (rather than the entire loss

function). This general framework naturally captures important problems

such as online routing and online ad-placement for search engine results.

This generalization was put forth by Awerbuch and Kleinberg (2008) in the

context of the online shortest path problem. Awerbuch and Kleinberg (2008)

gave an efficient algorithm for the problem with a suboptimal regret bound,

and conjectured the existence of an efficient and optimal regret algorithm.

The problem attracted much attention in the machine learning community

(Flaxman et al., 2005; Dani and Hayes, 2006; Dani et al., 2008; Bartlett et al.,

2008). This question was finally resolved in (Abernethy et al., 2008) where

an efficient and optimal expected regret algorithm was described. Later

Abernethy and Rakhlin (2009) gave an efficient algorithm which also attains

this optimal regret bound with high probability. The paper introduced the

use of self-concordant barrier functions as a regularization in the RFTL

framework. Self-concordant barriers are a powerful tool from optimization

which has enabled researchers in operations research to develop efficient

polynomial-time algorithms for (offline) convex optimization. The scope of

this deep technical issue is beyond this survey, but the resolution of this open

question is an excellent example of how the convex optimization approach

to regret minimization led to the discovery of powerful tools which in turn

resolved fundamental questions in machine learning.

10.5 Recent Applications 301

10.5.2 Variational Regret Bounds

A cornerstone of modern machine learning are algorithms for prediction

from expert advice, the first example of regret minimization we described.

It is already well-established that there exist algorithms that, under fully

adversarial cost sequences, attain average cost approaching that of the best

expert in hindsight. More precisely, there exist efficient algorithms which

attain regret of O(
√
T log n) in the setting of prediction from expert advice

with n experts.

However, a priori it is not clear why online learning algorithms should

have high regret (growing with the number of iterations) in an unchanging

environment. As an extreme example, consider a setting in which there are

only two experts. Suppose that the first expert always incurs cost 1, whereas

the second expert always incurs cost 1
2 . One would expect to figure out this

pattern quickly, and focus on the second expert, thus incurring a total cost

that is at most T
2 plus at most a constant extra cost (irrespective of the

number of rounds T), thus having only constant regret. However, for a long

time all analyses of expert learning algorithms gave only a regret bound of

Θ(
√
T) in this simple case (or very simple variations of it).

More generally, the natural bound on the regret of a “good” learning

algorithm should depend on variation in the sequence of costs, rather than

purely on the number of iterations. If the cost sequence has low variation,

we expect our algorithm to be able to perform better.

This intuition has a direct analog in the stochastic setting: here, the

sequence of experts’ costs is independently sampled from a distribution.

In this situation, a natural bound on the rate of convergence to the optimal

expert is controlled by the variance of the distribution (low variance should

imply faster convergence). This conjecture was formalized by Cesa-Bianchi,

Mansour and Stoltz (henceforth the “CMS conjecture”) in (Cesa-Bianchi

et al., 2007), who assert that “proving such a rate in the fully adversarial

setting would be a fundamental result”.

The CMS conjecture was proved in the more general case of online linear

optimization in Hazan and Kale (2008). Again, the convex optimization view

was instrumental in the solution, and taking the general linear optimization

view, it was found that a simple geometric argument implies the result.

Further work on variational bounds included an extension to the bandit

linear optimization setting (Hazan and Kale, 2009a) and to exp-concave

loss functions including the problem of portfolio selection (Hazan and Kale,

2009b).

302 The Convex Optimization Approach to Regret Minimization

10.6 References

J. Abernethy and A. Rakhlin. Beating the adaptive bandit with high probability.
In Proceedings of the 22nd Annual Conference on Learning Theory, 2009.

J. Abernethy, E. Hazan, and A. Rakhlin. Competing in the dark: An efficient
algorithm for bandit linear optimization. In Proceedings of the 21st Annual
Conference on Learning Theory, pages 263–274, 2008.

B. Awerbuch and R. Kleinberg. Online linear optimization and adaptive routing.
J. Comput. Syst. Sci., 74(1):97–114, 2008.

P. L. Bartlett, V. Dani, T. P. Hayes, S. Kakade, A. Rakhlin, and A. Tewari. High-
probability regret bounds for bandit online linear optimization. In Proceedings
of the 21st Annual Conference on Learning Theory, pages 335–342, 2008.

N. Cesa-Bianchi and G. Lugosi. Prediction, Learning, and Games. Cambridge
University Press, 2006.

N. Cesa-Bianchi, Y. Mansour, and G. Stoltz. Improved second-order bounds for
prediction with expert advice. Machine Learning, 66(2–3):321–352, 2007.

T. Cover. Universal portfolios. Math. Finance, 1(1):1–19, 1991.

T. Cover and J. Thomas. Elements of Information Theory. John Wiley, 1991.

V. Dani and T. P. Hayes. Robbing the bandit: Less regret in online geometric
optimization against an adaptive adversary. In Proceedings of the 16th ACM-
SIAM Symposium on Discrete Algorithms, pages 937–943, 2006.

V. Dani, T. Hayes, and S. Kakade. The price of bandit information for online
optimization. In J. Platt, D. Koller, Y. Singer, and S. Roweis, editors, Advances
in Neural Information Processing Systems 20. MIT Press, Cambridge, MA, 2008.

A. Flaxman, A. T. Kalai, and H. B. McMahan. Online convex optimization in the
bandit setting: Gradient descent without a gradient. In Proceedings of the 16th
Annual ACM-SIAM Symposium on Discrete Algorithms, pages 385–394, 2005.

A. J. Grove, N. Littlestone, and D. Schuurmans. General convergence results for
linear discriminant updates. Machine Learning, 43(3):173–210, 2001.

J. Hannan. Approximation to bayes risk in repeated play. In M. Dresher, A. W.
Tucker, and P. Wolfe, editors, Contributions to the Theory of Games, volume 3,
pages 97–139, 1957.

E. Hazan and S. Kale. Extracting certainty from uncertainty: Regret bounded by
variation in costs. In The 21st Annual Conference on Learning Theory (COLT),
pages 57–68, 2008.

E. Hazan and S. Kale. Better algorithms for benign bandits. In C. Mathieu, editor,
ACM-SIAM Symposium on Discrete Algorithms (SODA)., pages 38–47. SIAM,
2009a.

E. Hazan and S. Kale. On stochastic and worst-case models for investing. In
Advances in Neural Information Processing Systems 22. MIT Press, 2009b.

E. Hazan, A. Agarwal, and S. Kale. Logarithmic regret algorithms for online convex
optimization. Machine Learning, 69(2-3):169–192, 2007.

A. Kalai and S. Vempala. Efficient algorithms for online decision problems. Journal
of Computer and System Sciences, 71(3):291–307, 2005.

J. Kivinen and M. K. Warmuth. Relative loss bounds for multidimensional regres-
sion problems. Machine Learning, 45(3):301–329, 2001.

10.6 References 303

E. Takimoto and M. K. Warmuth. Path kernels and multiplicative updates. Journal
of Machine Learning Research, 4:773–818, 2003. special issue on learning theory.

M. Zinkevich. Online convex programming and generalized infinitesimal gradient
ascent. In Proceedings of the 20th International Conference on Machine Learning,
pages 928–936, 2003.

Appendix: The FTL-BTL Lemma

The following proof is essentially due to Kalai and Vempala (2005).

Proof of Lemma 10.2. For convenience, denote by f0 = 1
ηR, and assume we

start the algorithm from t = 0 with an arbitrary x0. The lemma is now

proved by induction on T .

Induction base:Note that by definition, we have that x1 = argminx{R(x)},
and thus f0(x1) ≤ f0(u) for all u, and f0(x0)− f0(u) ≤ f0(x0)− f0(x1).

Induction step: Assume that that for T , we have∑T

t=0
ft(xt)− ft(u) ≤

∑T

t=0
ft(xt)− ft(xt+1),

and let us prove for T + 1. Since xT+2 = argminx{
∑T+1

t=0 ft(x)}, we have∑T+1

t=0
ft(xt)−

∑T+1

t=0
ft(u)

≤
∑T+1

t=0
ft(xt)−

∑T+1

t=0
ft(xT+2)

=
∑T

t=0
(ft(xt)− ft(xT+2)) + fT+1(xT+1)− fT+1(xT+2)

≤
∑T

t=0
(ft(xt)− ft(xt+1)) + fT+1(xT+1)− fT+1(xT+2)

=
∑T+1

t=0
ft(xt)− ft(xt+1),

where in the fourth line we used the induction hypothesis for u = xT+2. We

conclude that∑T

t=1
ft(xt)− ft(u)

≤
∑T

t=1
ft(xt)− ft(xt+1) + [−f0(x0) + f0(u) + f0(x0)− f0(x1)]

=
∑T

t=1
ft(xt)− ft(xt+1) +

1

η
[R(u)− R(x1)] .

11 Projected Newton-type Methods in

Machine Learning

Mark Schmidt schmidtmarkw@gmail.com

University of British Columbia

Vancouver, BC, V6T 1Z4

Dongmin Kim dmkim@cs.utexas.edu

University of Texas at Austin

Austin, Texas 78712

Suvrit Sra suvrit@tuebingen.mpg.de

Max Planck Institute for Intelligent Systems

72076, Tübingen, Germany

We consider projected Newton-type methods for solving large-scale optimiza-

tion problems arising in machine learning and related fields. We first intro-

duce an algorithmic framework for projected Newton-type methods by re-

viewing a canonical projected (quasi-)Newton method. This method, while

conceptually pleasing, has a high computation cost per iteration. Thus, we

discuss two variants that are more scalable: two-metric projection and in-

exact projection methods. Finally, we show how to apply the Newton-type

framework to handle nonsmooth objectives. Examples are provided through-

out the chapter to illustrate machine learning applications of our framework.

11.1 Introduction

We study Newton-type methods for solving the optimization problem

min
x

f(x) + r(x), subject to x ∈ Ω, (11.1)

306 Projected Newton-type Methods in Machine Learning

where f : Rn → R is twice continuously differentiable and convex; r : Rn →
R is continuous and convex, but not necessarily differentiable everywhere;

and Ω is a simple convex constraint set. This formulation is general and

captures numerous problems in machine learning, especially where f cor-

responds to a loss, and r to a regularizer. Let us, however, defer concrete

examples of (11.1) until we have developed some theoretical background.

We propose to solve (11.1) via Newton-type methods, a certain class of

second-order methods that are known to often work well for unconstrained

problems. For constrained problems too, we may consider Newton-type

methods that, akin to their unconstrained versions, iteratively minimize a

quadratic approximation to the objective, this time subject to constraints.

This idea dates back to Levitin and Polyak (1966, §7), and it is referred to

as a projected Newton method.

Projected Newton methods for optimization over convex sets share many

of the appealing properties of their unconstrained counterparts. For example,

their iterations are guaranteed to improve the objective function for a small

enough stepsize; global convergence can be shown under a variant of the

Armijo condition; and rapid local convergence rates can be shown around

local minima satisfying strong convexity (Bertsekas, 1999). In a similar vein,

we may consider projected quasi-Newton methods, where we interpolate

differences in parameter and gradient values to approximate the Hessian

matrix. The resulting Newton-type methods are the subject of this chapter,

and we will focus particularly on the limited memory Broyden-Fletcher-

Goldfarb-Shanno (L-BFGS) quasi-Newton approximation. The main appeals

of the L-BFGS approximation are its linear time iteration complexity and its

strong empirical performance on a variety of problems.

The remainder of this chapter is organized as follows. We first restrict our-

selves to smooth optimization, where r(x) = 0. For this setting, we describe

projected Newton-type methods (Section 11.2), covering basic implementa-

tion issues such as Hessian approximation and line-search. Then, we describe

two-metric projection methods (Section 11.3), followed by inexact (or trun-

cated) projected-Newton methods (Section 11.4). Finally, we discuss the

nonsmooth setting, where r(x) �= 0, for which we describe two Newton-type

methods (Section 11.5).

11.2 Projected Newton-type Methods

Projected Newton-type methods optimize their objective iteratively. At

iteration k, they first approximate the objective function around the current

11.2 Projected Newton-type Methods 307

iterate xk by the quadratic model

Qk(x, α) � f(xk)+ (x−xk)T∇f(xk)+
1

2α
(x−xk)THk(x−xk). (11.2)

This model is parameterized by a positive stepsize α, and it uses a positive

definite matrix Hk to approximate the Hessian ∇2f(xk). To generate the

next iterate that decreases the objective while remaining feasible, the meth-

ods minimize the quadratic model (11.2) over the (convex) constraint set Ω.

Thus, for a fixed α > 0, they compute the unique element

x̄k
α = argmin

x∈Ω
Qk(x, α), (11.3)

which is then used to obtain the new iterate by simply setting

xk+1 ← xk + β(x̄k
α − xk), (11.4)

where β ∈ (0, 1] is another stepsize. To ensure a sufficient decrease in

the objective value, one typically begins by setting α = β = 1, and then

decreases one of them until xk+1 satisfies the following Armijo condition1

f(xk+1) ≤ f(xk) + ν〈∇f(xk), xk+1 − xk〉, ν ∈ (0, 1). (11.5)

We collect the above described steps into Algorithm 11.1, which we present

as the general framework for projected Newton-type methods.

Algorithm 11.1 A projected Newton-type method.

Given x0 ∈ Ω, H0 � 0
for k = 0, . . . , until some stopping criteria met do

Step I: Build Qk(x, α) using (11.2)
repeat

Step IIa: Minimize Qk(x, α) over Ω
Step IIb: Update xk+1 ← xk + β(x̄k

α − xk)
Step III: Update α and/or β

until descent condition (11.5) is satisfied
end for

Convergence properties of various forms of this method are discussed, for

example, in Bertsekas (1999, Section 2.3). In particular, convergence to a

stationary point can be shown under the assumption that the eigenvalues of

Hk are bounded between two positive constants. Also, if x∗ is a minimizer

of f(x) over Ω satisfying certain conditions, and once xk is sufficiently close

1. A typical value for the sufficient decrease parameter ν is 10−4.

308 Projected Newton-type Methods in Machine Learning

to x∗, then α = 1 and β = 1 are accepted as stepsizes and the sequence

||xk − x∗|| converges to zero at a superlinear rate.

Algorithm 11.1 is conceptually simple, and thus appealing. It can, however,

have numerous variants, depending on how each step is implemented. For

example, in Step I, which particular quadratic model is used; in Step II,

how we minimize the model function; and in Step III, how we compute the

stepsizes α and β. For each of these three steps there are multiple possible

choices, and consequently, different combinations lead to methods of differing

character. We describe some popular implementation choices below.

11.2.1 Building a Quadratic Model

When a positive definite Hessian is readily available, we can simply set

Hk = ∇2f(xk). By doing so, the quadratic model (11.2) becomes merely

the approximation obtained via a second-order Taylor expansion of f . This

model leads to computation of an exact Newton step at each iteration. At

the other extreme, if we select Hk = I, the identity matrix of appropriate

size, then the search direction of the resulting method reduces to the nega-

tive gradient, essentially yielding the projected gradient method. These two

strategies often contrast with each other in terms of computing a search (de-

scent) direction: the Newton step is considered one of the most sophisticated,

while the gradient step is regarded as one of the simplest. In cases where we

can efficiently compute the Euclidean projection operator, projected gradi-

ent steps have a low per-iteration computational cost. However, this benefit

comes at the expense of linear convergence speed. The Newton step is usu-

ally more expensive; Step IIb will typically be costly to solve even if we can

efficiently compute the Euclidean projection onto the constraint set. How-

ever, the more expensive Newton step generally enjoys a local superlinear

convergence rate.

Despite its theoretical advantages, an exact Newton step often is resource

intensive, especially when computing the exact Hessian is expensive. To cir-

cumvent some of the associated computational issues, one usually approxi-

mates the Hessian: this idea underlies the well-known quasi-Newton approx-

imation. Let us therefore briefly revisit the BFGS update that approximates

the exact Hessian.

11.2.1.1 BFGS Update

There exist several approximations to the Hessian, such as the Powell-

Symmetric-Broyden (PSB), the Davidson-Fletcher-Powell (DFP), and the

Broyden-Fletcher-Goldfarb-Shanno (BFGS). We focus on BFGS because it

11.2 Projected Newton-type Methods 309

is believed to be the most effective in general (Gill et al., 1981; Bertsekas,

1999).

First, define the difference vectors g and s as follows:

g = ∇f(xk+1)−∇f(xk), and s = xk+1 − xk.

Now, assume we already haveHk, the current approximation to the Hessian.

Then, the BFGS update adds a rank-two correction to Hk to obtain

Hk+1 = Hk − HkssTHk

sTHks
+

ggT

sTg
. (11.6)

We can plug Hk+1 into (11.2) to obtain an updated model Qk+1. But

depending on the implementation of subsequent steps (11.3) and (11.4),

it might be more convenient and computationally efficient to update an

estimate to the inverse of Hk instead. For this case, we can apply the

Sherman-Morrison-Woodbury formula to (11.6), thus obtaining the update

Sk+1 = Sk +

(
1 +

gTSkg

sTg

)
ssT

sTg
− (SkgsT + sgTSk)

sTg
, (11.7)

where Sk is the inverse of Hk, also known as the gradient scaling matrix.

11.2.1.2 Limited Memory BFGS Update.

Though the BFGS update may greatly relieve the burden of Hessian compu-

tation, it still requires the same storage: O(n2) for dense Hk or Sk, which

is troublesome for large-scale problems. This difficulty is addressed by the

limited memory BFGS (L-BFGS) update, where, instead of using full matrices

Hk and Sk, a small number of vectors, say m, are used to approximate the

Hessian or its inverse. The standard L-BFGS approach (Nocedal, 1980) can

be implemented using the following formula (Nocedal and Wright, 2000)

Sk =
sTk−1gk−1

gTk−1gk−1
V̄ T
k−M V̄k−M + ρk−M V̄ T

k−M+1sk−MsTk−M V̄k−M+1

+ ρk−M+1V̄
T
k−M+2sk−M+1s

T
k−M+1V̄k−M+2

+ · · ·
+ ρk−1sk−1s

T
k−1,

(11.8)

for k ≥ 1; the scalars ρk and matrices V̄k−M are defined by

ρk = 1/(sTk gk), V̄k−M = [Vk−M · · ·Vk−1] , and Vk = I − ρkskg
T
k .

310 Projected Newton-type Methods in Machine Learning

The L-BFGS approximation requires only O(mn) storage; moreover, multi-

plication of Sk by a vector can also be performed at this cost.

For both BFGS and L-BFGS, a choice that can significantly impact perfor-

mance is the initial approximation H0. A typical strategy to select H0 is

to set it to the negative gradient direction on the first iteration, and then

to set H0 = (gTg)/(gTs)I on the next iteration. This choice was proposed

by Shanno and Phua (1978) to optimize the condition number of the ap-

proximation. In the L-BFGS method we can reset H0 using this formula after

each iteration (Nocedal and Wright, 2000, Section 7.2). With this strategy,

the unit stepsizes of α = 1 and β = 1 are typically accepted, which may

remove the need for a line search on most iterations.

Provided that H0 is positive definite, the subsequent (implicit) Hessian

approximations Hk generated by the L-BFGS update are guaranteed to be

positive definite as long as gT s is positive (Nocedal and Wright, 2000,

Section 6.1). This positivity is guaranteed if f(x) is strongly convex, but

when f(x) is not strongly convex a more advanced strategy is required, see

for instance Nocedal and Wright (2000, Section 18.3).

11.2.2 Solving the Subproblem

With our quadratic approximation Qk(x, α) in hand, the next step is to solve

the subproblem (11.3). For α �= 0, simple rearrangement shows that2

x̄k
α = argmin

x∈Ω
Qk(x, α) = argmin

x∈Ω
1

2
||x− yk||2Hk , (11.9)

where ‖x‖Hk is defined by the norm
√
xTHkx, and yk is the unconstrained

Newton step: yk = xk − α[Hk]−1∇f(xk). In words, x̄k
α is obtained by

projecting the Newton step onto the constraint set Ω, where projection is

with respect to the metric defined by the Hessian approximation Hk.

One major drawback of (11.9) is that it can be computationally challeng-

ing, even when Ω has relatively simple structure. To ease the computational

burden, instead of using the metric defined by Hk, we could compute the

projection under the standard Euclidean norm while slightly modifying the

Newton step to ensure convergence. This is the subject of Section 11.3. Al-

ternatively, in Section 11.4 we consider computing an approximate solution

to (11.9) itself.

Note that if we replace Hk with I, both as the projection metric and in

2. If we use Sk, the inverse of the Hessian, then x̄k
α may be equivalently obtained by

solving argminx∈Ω
1
2
||x− (xk − αSk∇f(xk))||2[Sk]−1 = argminx∈Ω

1
2
||x− yk||2[Sk]−1 .

11.2 Projected Newton-type Methods 311

the Newton step, we recover gradient projection methods.

11.2.3 Computing the Stepsizes

Consider the stepsizes α and β in (11.3) and (11.4). Generally speaking, any

positive α and β that generate xk+1 satisfying the descent condition (11.5)

are acceptable. Practical choices are discussed below.

11.2.3.1 Backtracking

Suppose we fix α = 1 for all k, and let dk = x̄k
1 − xk. Then we obtain the

following update:

xk+1 ← xk + βdk.

To select β, we can simply start with β = 1 and iteratively decrease β until

the resulting xk+1 satisfies (11.5)3. More formally, we set β = τ · σm for

some τ > 0 and σ ∈ (0, 1), where m ≥ 0 is the first integer that satisfies

f(xk+1) ≤ f(xk) + τ · σm∇f(xk)(xk+1 − xk).

Several strategies are available to reduce the number of backtracking

iterations. For example, rather than simply dividing the stepsize by a

constant, we can use information collected about the function during the

line search to make a more intelligent choice. For example, if some trial

value of β is not accepted, then we can set the next β to the minimum of

the quadratic polynomial that has a value of f(xk) at zero, f(xk+βdk) at β,

and a slope of ∇f(xk)Tdk at zero (Nocedal and Wright, 2000, Section 3.5).

This choice gives the optimal stepsize if f(x) is a quadratic function, and

often drastically reduces the number of backtracking iterations needed. For

some functions, quadratic interpolation can also be used to give a more

intelligent choice than β = 1 for the first trial value of β, while cubic

interpolation can be used if we have tested more than one value of β or

if we compute ∇f(xk + βdk) for the trial values of β (Nocedal and Wright,

2000, Section 3.5).

11.2.3.2 Backtracking (Armijo) along projection arc (Bertsekas, 1999)

Alternatively, we can set β = 1 for all k to obtain

xk+1 ← x̄k
α,

3. Also known as Armijo backtracking along a feasible direction.

312 Projected Newton-type Methods in Machine Learning

and then determine an α satisfying (11.5). Similar to simple backtracking,

we compute α = s · σm for some s, τ > 0, and σ ∈ (0, 1), where m ≥ 0 is the

first integer that satisfies

f(x̄k
s·σm) ≤ f(xk) + τ∇f(xk)(x̄k

s·σm − xk).

Unlike simple backtracking that searches along a line segment as β varies,

this strategy searches along a potentially nonlinear path as α varies. Because

of this, polynomial interpolation to select trial values of α is more tenuous

than for simple backtracking, but on many problems polynomial interpola-

tion still significantly decreases the number of trial values evaluated.

This stepsize computation might be more involved when computing pro-

jections onto Ω is expensive, since it requires solving an optimization problem

to compute x̄k
α for each trial value of α. However, it can still be appealing

because it is more likely to yield iterates that lie on the boundaries of the

constraints. This property is especially useful when the boundaries of the

constraints represent a solution of interest, such as sparse solutions with the

constraint set Ω = R
n
+.

We next consider a few specific instantiations of the general framework in-

troduced in this section. Specifically, we first consider two-metric projection

methods for the specific case of bound-constrained problems (Section 11.3).

Subsequently, we consider inexact projected Newton methods for optimiza-

tion over more general simple convex sets (Section 11.4). Finally, we explore

the versatility of the framework by extending it to problems with nonsmooth

objective functions (Section 11.5).

11.3 Two-Metric Projection Methods

As mentioned earlier, computing the projection with respect to a quadratic

norm defined by Hk can be computationally challenging. However, we often

encounter problems with simple convex domains, onto which we can effi-

ciently compute Euclidean projections. For optimization over such domains,

we might therefore prefer projecting the Newton step under the Euclidean

norm. Indeed, this choice is made by the well-known two-metric projection

method, so named because it uses different matrices (metrics) for scaling

the gradient and for computing the projection.

In two-metric projection algorithms, we can benefit from low iteration

complexity if we use L-BFGS approximations. However, some problems still

persist: the “obvious” procedure with an unmodified Newton step may not

improve on the objective function, even for an arbitrarily small positive

11.3 Two-Metric Projection Methods 313

stepsize. Nevertheless, there are many cases where one can derive a two-

metric projection method that can dodge this drawback without giving

up the attractive properties of its unconstrained counterpart. A particular

example is Bertsekas’s projected Newton method (Bertsekas, 1982), and we

discuss it below for the case where Ω consists of bound constraints.

The projected-Newton method may be viewed in light of Algorithm 11.1.

Specifically, it takes the Hessian ∇2f(xk) and modifies its inverse so that

the gradient scaling matrix Sk has a special structure. It subsequently

invokes orthogonal projection in Step II, and then in Step III, it computes

its stepsize using backtracking along the projection arc. The key variation

from Algorithm 11.1 lies in how to modify the inverse Hessian to obtain a

valid gradient scaling; the details follow below.

11.3.1 Bound Constrained Smooth Convex Problems

Consider the following special case of (11.1)

min
x∈Rn

f(x), subject to l ≤ x ≤ u, (11.10)

where l and u are fixed vectors, and inequalities are taken componentwise

(which can be set to ∞ or −∞ if the variables are unbounded). The

function f is assumed to be convex and twice continuously differentiable.

Such bound-constrained problems arise as Lagrangian duals of problems

with convex inequality constraints, or when we have natural restrictions

(e.g., nonnegativity) on the variables. For bound-constrained problems the

projection under the Euclidean norm is the standard orthogonal projection

obtained by taking componentwise medians among li,ui, and xi:

[P(x)]i � mid{li, xi, ui}.
At each iteration, we partition the variables into two groups: free and

restricted. Restricted variables are defined as a particular subset of the

variables close to their bounds, based on the sign of the corresponding

components in the gradient. Formally, the set of restricted variables is

Ik �
{
i
∣∣xki ≤ li + ε ∧ ∂if(x

k) > 0, or xki ≥ ui − ε ∧ ∂if(x
k) < 0

}
,

for some small positive ε. The set Ik collects variables that are near their

bounds, and for which the objective f(x) can be decreased by moving the

variables toward (or past) their bounds. The set of free variables, denoted

Fk, is simply defined as the complement of Ik in the set {1, 2, . . . , n}.
Without loss of generality, let us assume that Fk = {1, 2, · · · , N} and

Ik = {N + 1, · · · , n}. Now define a diagonal matrix Dk ∈ R
n−N×n−N that

314 Projected Newton-type Methods in Machine Learning

scales the restricted variables, a typical choice being the identity matrix. We

denote the scaling with respect to the free variables as S̄k ∈ R
N×N , which,

for the projected-Newton method, is given by the principal submatrix of the

inverse of the Hessian ∇2f(xk), as induced by the free variables. In symbols,

this is

S̄k ← [∇2f(xk)]−1
Fk . (11.11)

With these definitions, we are now ready to present the main step of the

two-metric projection algorithm. This step can be written as the Euclidean

projection of a Newton step that uses a gradient scaling Sk of the form

Sk �
[
S̄k 0

0 Dk

]
. (11.12)

The associated stepsize α can be selected by backtracking along the projec-

tion arc until the Armijo condition is satisfied. Note that this choice of the

stepsize computation does not increase the computational complexity of the

method, since computing the orthogonal projection after each backtracking

step is trivial. Combining this gradient scaling with orthogonal projection,

we obtain the projected Newton update:

xk+1 ← x̄k
α = argmin

l≤x≤u

1

2
||x− (xk − αSk∇f(xk))||2[Sk]−1

≈ argmin
l≤x≤u

1

2
||x− (xk − αSk∇f(xk))||2I

= P[xk − αkSk∇f(xk)], (11.13)

where αk is computed by backtracking along the projection arc.

This algorithm has been shown to be globally convergent (Bertsekas, 1982;

Gafni and Bertsekas, 1984), and under certain conditions achieves local

superlinear convergence.

Theorem 11.1 (Convergence). Assume that ∇f is Lipschitz continuous

on Ω, and ∇2f has bounded eigenvalues. Then every limit point of {xk}
generated by iteration (11.13) is a stationary point of (11.10).

Theorem 11.2 (Convergence rate). Let f be strictly convex and twice con-

tinuously differentiable. Let x∗ be the non degenerate optimum of Prob-

lem (11.13) and assume that for some δ > 0, ∇2f(x) has bounded eigenval-

ues for all x that satisfy ‖x− x∗‖ < δ. Then the sequence {xk} generated by

iteration (11.13) converges to x∗, and the rate of convergence in {‖xk − x∗‖}
is superlinear.

11.3 Two-Metric Projection Methods 315

Although the convergence rate of the two-metric projection method has

been shown for Sk derived from the Hessian, the convergence itself merely

requires a positive definite gradient scaling Sk with bounded eigenvalues for

all k (Bertsekas, 1982). Thus, the quasi-Newton approximations introduced

in Section 11.2 are viable choices to derive convergent methods,4 and we

present such variations of the two-metric method in the following example.

Example 11.1 (Nonnegative least-squares). A problem of considerable

importance in the applied sciences is the nonnegative least-squares (NNLS):

min
x

1
2‖Ax− b‖22, subject to x ≥ 0, (11.14)

where A ∈ R
m×n. This problem is essentially an instance of (11.10).

Given Algorithm 11.1, one can simply implement the update (11.13) and

then use BFGS or L-BFGS to obtain Sk. However, we can further exploit

the simple constraint x ≥ 0 and improve the computational (empirical)

efficiency of the algorithm. To see how, consider the restricted variables in

the update (11.13). When variable i ∈ Ik and ε becomes sufficiently small,

we obtain

P[xk − αkSk∇f(xk)]i = P[xki − αk[Dk]ii · ∂if(xk)] = 0.

In other words, if i ∈ Ik, then xk+1
i = 0, whereby we can safely ignore these

variables throughout the update. In an implementation, this means that we

can confine computations to free variables, which can save a large number

of floating point operations, especially when |Fk|
 |Ik|.
Example 11.2 (Linear SVM). Consider the standard binary classification

task with inputs (xi, yi)
m
i=1, where xi ∈ R

n and yi ∈ ±1. Assume for sim-

plicity that we wish to learn a bias-free decision function f(x) = sgn(wTx)

by solving either the SVM primal

minimize
w

1
2w

Tw + C
∑m

i=1
ξi

subject to yi(w
Txi) ≥ 1− ξi, ξi ≥ 0, 1 ≤ i ≤ m,

(11.15)

or its (more familiar) dual

minimize
α

1
2α

TY XTXY α−αT1

subject to 0 ≤ αi ≤ C,
(11.16)

4. In a simpler but still globally convergent variation of the two-metric projection method,
we could simply set Sk to be a diagonal matrix with positive diagonal elements.

316 Projected Newton-type Methods in Machine Learning

where Y = Diag(y1, . . . , ym) and X = [x1, . . . ,xm] ∈ R
n×m. The

dual (11.16) is a special case of (11.10), and can be solved by adapting

the two-metric projection method in a manner similar to that for NNLS.

Example 11.3 (Sparse Gaussian graphical models). The dual to a stan-

dard formulation for learning sparse Gaussian graphical models takes the

form (Banerjee et al., 2006)

min
Σ̃+X�0

− log det(Σ̃ +X), subject to |Xij | ≤ λij , ∀ij . (11.17)

There has been substantial recent interest in solving this problem (Banerjee

et al., 2006). Here Σ̃ represents the empirical covariance of a data set, and

the bound constraints on the elements of the matrix encourage the associated

graphical model to be sparse for sufficiently large values of the λij variables.

Notice that the constraint |Xij | ≤ λij is equivalent to the bound constraints

−λij ≤ Xij ≤ λij. Thus, provided Σ̃ +X is positive definite for the initial

X, we can apply a simplified two-metric projection algorithm to this problem

in which we use projection to address the bound constraints and backtracking

to modify the iterates when they leave the positive definite cone.

11.4 Inexact Projection Methods

The previous section focused on examples with bound constraints. For opti-

mizing over more general but still simple convex sets, an attractive choice is

inexact projected Newton methods. These methods represent a natural gen-

eralization of methods for unconstrained optimization that are alternatively

referred to as Hessian-free, truncated, or inexact Newton methods. In inexact

projected Newton methods, rather than finding the exact minimizer in Step

IIa of Algorithm 11.1, we find an approximate minimizer using an iterative

solver. That is, we use a single-metric projection, but solve the projection

inexactly. Note that the iterative solver can be a first-order optimization

strategy, and thus can take advantage of an efficient Euclidean projection

operator. Under only mild conditions on the iterative solver, this approx-

imate projection algorithm still leads to an improvement in the objective

function. There are many ways to implement an inexact projected Newton

strategy, but in this section we focus on the one described in Schmidt et al.

(2009). In this method, we use the L-BFGS Hessian approximation, which

we combine with simple Armijo backtracking and a variant of the projected

gradient algorithm for iteratively solving subproblems. In Section 11.4.1 we

review an effective iterative solver, and Section 11.4.2 we discuss using it

within an inexact projected-Newton method.

11.4 Inexact Projection Methods 317

11.4.1 Spectral Projected Gradient

The traditional motivation for examining projected Newton methods is that

the basic gradient projection method may take a very large number of

iterations to reach an acceptably accurate solution. However, there has been

substantial recent interest in variants of gradient projection that exhibit

much better empirical convergence properties. For example, Birgin et al.

(2000) presented several spectral projected gradient (SPG) methods. In SPG

methods, either α or β is set to 1, and the other stepsize is set to one of the

stepsizes proposed by Barzilai and Borwein (1988). For example, we might

set β = 1 and α to

αbb � gTs

gTg
, where g = ∇f(xk+1)−∇f(xk), and s = xk+1−xk. (11.18)

Subsequently, backtracking along one of the two stepsizes is used to satisfy

the non monotonic Armijo condition (Grippo et al., 1986):

f(xk+1) ≤ max
i=k−m:k

{f(xi)}+ τ∇f(xk)(xk+1 − xk), τ ∈ (0, 1).

Unlike the ordinary Armijo condition (11.5), allows some temporary increase

in the objective. This non monotonic Armijo condition typically accepts

the initial step length, even if it increases the objective function, while

still ensuring global convergence of the method.5 Experimentally, these two

simple modifications lead to large improvements in the convergence speed

of the method. Indeed, due to its strong empirical performance, SPG has

recently been explored in several other applications (Dai and Fletcher, 2005;

Figueiredo et al., 2007; van den Berg and Friedlander, 2008).

An alternative to SPG for accelerating the basic projected gradient method

is the method of Nesterov (2004, Section 2.2.4). In this strategy, an extra

extrapolation step is added to the iteration, thereby allowing the method

to achieve the optimal worst-case convergence rate among a certain class

of algorithms. Besides SPG and this optimal gradient algorithm, there can

be numerous alternative iterative solvers. But we restrict our discussion to

an SPG-based method and consider some implementation and theoretical

details for it.

5. A typical value for the number m of previous function values to consider is 10.

318 Projected Newton-type Methods in Machine Learning

11.4.2 SPG-based Inexact Projected Newton

Recall Step IIa in the general framework of Algorithm 11.1:6

x̄k
1 = argmin

x∈Ω
Qk(x, 1), (11.19)

where the quadratic model is

Qk(x, 1) = f(xk) + (x− xk)T∇f(xk) +
1

2
(x− xk)THk(x− xk).

For the remainder of this section, we denote Qk(x, 1) by Qk when there is no

confusion. Inexact projected Newton methods solve the subproblem (11.19)

only approximately; we denote this approximate solution by zk below.

At each iteration of an SPG-based inexact projected Newton method, we

first compute the gradient ∇f(xk) and (implicitly) compute the quadratic

termHk in Qk. Subsequently, we try to minimize this Qk over the feasible set,

using iterations of an SPG algorithm. Even if f or ∇f is difficult to compute,

this SPG subroutine can be efficient if Qk and ∇Qk can be evaluated rapidly.

Given f(xk) and ∇f(xk), the dominant cost in evaluating Qk and ∇Qk is

pre-multiplication by Hk. By taking the compact representation of Byrd

et al. (1994),

Hk = σkI−NM−1NT , where N ∈ R
n×2m, M ∈ R

2m×2m, (11.20)

we can compute Qk and ∇Qk in O(mn) under the L-BFGS Hessian approxi-

mation.

In addition to Qk and ∇Qk, the SPG subroutine also requires computing

the Euclidean projection PΩ onto the feasible set Ω. However, note that the

SPG subroutine does not evaluate f or ∇f . Hence, the SPG-based inexact

projected Newton method is most effective on problems where computing

the projection is much less expensive than evaluating the objective function.7

Although in principle we could use SPG to solve the problem (11.19)

exactly, in practice this is expensive and ultimately unnecessary. Thus,

we terminate the SPG subroutine before the exact solution is found. One

might be concerned about terminating the SPG subroutine early, especially

because an approximate solution to (11.3) will in general not be a descent

6. We assume that α = 1 and backtrack along β so that the iterative solver is invoked
only once for each iteration; however, the inexact Newton method does not rule out the
possibility of fixing β (and invoking the iterative solver for each backtracking step).
7. This is different from many classical optimization problems such as quadratic program-
ming, where evaluating the objective function may be relatively inexpensive but computing
the projection may be as difficult as solving the original problem.

11.4 Inexact Projection Methods 319

direction. Fortunately, we can guarantee that the SPG subroutine yields a

descent direction even under early termination if we initialize it with xk

and we perform at least one SPG iteration. To see this, note that positive

definiteness of Hk implies that a sufficient condition for zk − xk to be a

descent direction for some vector zk is that Qk(zk, αk) < f(xk), since this

implies the inequality

(zk − xk)T∇f(xk) < 0.

By substituting Qk(xk, αk) = f(xk), we see that

Qk(zk, αk) < Qk(xk, αk) = f(xk),

where zk is the first point satisfying the Armijo condition when we initialize

SPG with xk.8 In other words, if we initialize the SPG subroutine with

xk, then the SPG iterate gives a descent direction after the first iteration,

and every subsequent iteration. Thus, it can be safely terminated early. In

an implementation we can parameterize the maximum number of the SPG

iterations by c, which results in an O(mnc) iteration cost for the inexact

Newton method, assuming that projection requires O(n) time.

Example 11.4 (Blockwise-sparse Gaussian graphical models). Consider a

generalization of Example 11.3 where instead of constraining the absolute

values of matrix elements, we constrain the norms of a disjoint set of groups

(indexed by g) of elements:

min
Σ̃+X�0

1
2 log det(Σ̃ +X), subject to ‖Xg‖2 ≤ λg, ∀g. (11.21)

This generalization is similar to those examined in Duchi et al. (2008)

and Schmidt et al. (2009), and it encourages the Gaussian graphical model

to be sparse across groups of variables (i.e., all edges in a group g will be

either included in or excluded from the graph). Thus, formulation (11.21)

encourages the precision matrix to have a blockwise sparsity pattern. Un-

fortunately, this generalization can no longer be written as a problem with

bound constraints, nor can we characterize the feasible set with a finite num-

ber of linear constraints (though it is possible to write the feasible set using

quadratic constraints). Nevertheless, it is easy to compute the projection onto

the norm constraints; to project a matrix X onto the feasible set with re-

spect to the norm constraints we simply set Xg = λg/‖Xg‖2 for each group

g. Considering the potentially high cost of evaluating the log-determinant

8. We will be able to satisfy the Armijo condition, provided that xk is not already a
minimizer.

320 Projected Newton-type Methods in Machine Learning

function (and its derivative), this simple projection suggests that inexact

projected Newton methods are well suited for solving (11.21).

11.5 Toward Nonsmooth Objectives

In this section we reconsider Problem (11.1), but unlike previous sections, we

now allow r(x) �= 0. The resulting composite optimization problem occurs

frequently in machine learning and statistics, especially with r(x) being a

sparsity-promoting regularizer (see e.g., Chapter 2).

How should we deal with the nondifferentiability of r(x) in the context

of Newton-like methods? While there are many possible answers to this

question, we outline two simple but effective solutions that align well with

the framework laid out so far.

11.5.1 Two-Metric Subgradient Projection Methods

We first consider the following special case of (11.1):

min
x∈Rn

F(x) = f(x) +
∑

i
ri(xi), (11.22)

where r(x) has the separable form r(x) =
∑

i ri(xi) and each ri : R → R

is continuous and convex but not necessarily differentiable. A widely used

instance of this problem is when we have ri(xi) = λi|xi| for fixed λi > 0,

corresponding to �1-regularization. Note that this problem has a structure

similar to the bound-constrained optimization problem (11.10); the latter

has separable constraints, while problem (11.22) has a separable nonsmooth

term. We can use separability of the nonsmooth term to derive a two-metric

subgradient projection method for (11.22), that is analogous to the two-

metric gradient projection method discussed in Section 11.3. The main idea

is to choose an appropriately defined steepest descent direction and then to

take a step resembling a two-metric projection iteration in this direction.

To define an appropriate steepest descent direction, we note that even

though the objective in (11.22) is not differentiable, its directional derivatives

always exist. Thus, analogous to the differentiable case, we can define the

steepest descent direction as the direction that minimizes the directional

derivative; among all vectors with unit norm, the steepest descent direction

locally decreases the objective most quickly. This direction is closely related

to the element of the subdifferential of a function F(x) with minimum norm.

11.5 Toward Nonsmooth Objectives 321

Definition 11.1 (Mininum-norm subgradient). Let

zk = argmin
z∈∂F(x)

||z||2. (11.23)

Following an argument outlined in (Bertsekas et al., 2003, Section 8.4),9

the steepest descent direction for a convex function F(x) at a point xk is

−zk, where the subdifferential of (11.22) is given by

∂F(x) = ∂{f(xk) + r(xk)} = ∇f(xk) + ∂r(xk).

Using the separability of r(x), we see that the minimum-norm subgradi-

ent (11.23) with respect to a variable xi, is given by

zki =

{
0, if −∇if(x

k) ∈ {∂−ri(xki), ∂+ri(x
k
i)
}
,

min
{∣∣∇if(x

k) + ∂−ri(xki)
∣∣ , ∣∣∇if(x

k) + ∂+ri(x
k
i)
∣∣} , otherwise,

where the directional derivative ∂+ri(x
k
i) is given by

∂+ri(x
k
i) = lim

δ→0+

ri(x
k
i + δ)− ri(x

k
i)

δ
.

The directional derivative ∂−ri(xki) is defined similarly, with δ going to zero

from below. Thus, it is easy to compute zk given ∇f(xk), as well as the

left and right partial derivatives (∂−ri(xki) and ∂+ri(x
k
i)) for each ri(x

k
i).

Observe that when ri(x
k
i) is differentiable, ∂−ri(xki) = ∂+ri(x

k
i), whereby

the minimum norm subgradient is simply ∇if(x
k)+∇ir(x

k). Further, note

that zk = 0 at a global optimum; otherwise −zk yields a descent direction

and we can use it in place of the negative gradient within a line search

method.

Similar to steepest descent for smooth functions, a generalized steepest

descent for nonsmooth functions may converge slowly, and thus we seek a

Newton-like variant. A natural question is whether we can merely use a

scaling matrix Sk to scale the steepest descent direction. Similar to the

two-metric projection algorithm, the answer is “no” for essentially the same

reason: in general a scaled version of the steepest descent direction may turn

out to be an ascent direction.

However, we can still use a similar solution to the problem. If we make

the positive definite scaling matrix Sk diagonal with respect to the variables

xi that are close to locations where ri(xi) is nondifferentiable, then we can

still ensure that the method generates descent directions. Thus, we obtain

9. Replacing maximization with minimization and concavity with convexity.

322 Projected Newton-type Methods in Machine Learning

a simple Newton-like method for nonsmooth optimization that uses iterates

of the form

xk+1 ← xk − αSkzk. (11.24)

Here, matrix Sk has the same structure as (11.12), but now the variables

that receive a diagonal scaling are variables close to nondifferentiable values.

Formally, the set of restricted variables is:

Ik �
{
i
∣∣ min
di∈Di

|di − xi| ≤ ε
}
, (11.25)

where Di is the (countable) set containing all locations where ri(xi) is

nondifferentiable.

In many applications where we seek to solve a problem of the form (11.22),

we expect the function to be nondifferentiable with respect to several of

the variables at a solution. Further, it may be desirable that intermediate

iterations of the algorithm lie at nondifferentiable points. For example, these

might represent sparse solutions if a nondifferentiability occurs at zero. In

these cases, we can add a projection step to the iteration that encourages

intermediate iterates to lie at points of nondifferentiability. Specifically, if

a variable xi crosses a point of nondifferentiability, we project onto the

point of nondifferentiability. Since we use a diagonal scaling with respect to

the variables that are close to points of nondifferentiability, this projection

reduces to computing the Euclidean projection onto bound constraints,

where the upper and lower bounds are given by the nearest upper and lower

points of nondifferentiability. Thus, each iteration is effectively a two-metric

subgradient projection iteration. To make our description concrete, let us

look at a specific example below.

Example 11.5 (�1-Regularization). A prototypical composite minimization

problem in machine learning is the �1-regularized task

min
x∈Rn

f(x) +
∑n

i=1
λi|xi|. (11.26)

The scalars λi ≥ 0 control the degree of regularization, and for sufficiently

large λi, the parameter xi is encouraged to be exactly zero.

To apply our framework, we need to efficiently compute the minimum norm

subgradient zk for (11.26); this gradient may be computed as

zki �

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∇if(x) + λi sgn(xi), |xi| > 0

∇if(x) + λi, xi = 0,∇if(x) < −λi

∇if(x)− λi, xi = 0,∇if(x) > λi

0, xi = 0,−λi ≤ ∇if(x) ≤ λi.

(11.27)

11.5 Toward Nonsmooth Objectives 323

For this problem, the restrictied variable set (11.25) corresponds to those

variables sufficiently close to zero, {i||xi| ≤ ε}. Making Sk partially diagonal

with respect to the restricted variables as before, we define the two-metric

projection step for �1-regularized optimization as

xk+1 = PO[x
k − αSkzk,xk]. (11.28)

Here, the orthant projection (that sets variables to exactly zero) is defined

as

PO(y,x)i �
{
0, if xiyi < 0,

yi, otherwise.

Applying this projection is effective at sparsifying the parameter vector since

it sets variables that change sign to exactly zero, and it also ensures that the

line search does not cross points of nondifferentiability. Provided that xk is

not stationary, the steps in (11.28) are guaranteed to improve the objective

for sufficiently small α. The stepsize α is selected by a backtracking line

search along the projection arc to satisfy a variant of the Armijo condition

where the gradient is replaced by the minimum norm subgradient. If at

some iteration the algorithm identifies the correct set of nonzero variables

and then maintains the orthant of the optimal solution, then the algorithm

essentially reduces to an unconstrained Newton-like method applied to the

nonzero variables.

In the two-metric projection algorithm for bound-constrained optimization

the choice of the diagonal scaling matrix Dk simply controls the rate at

which very small variables move toward zero, and does not have a significant

impact on the performance of the algorithm. However, the choice of Dk

in the algorithm for �1-regularization can have a significant effect on the

performance of the method, since if Dk is too large, we may need to perform

several backtracking steps before the step length is accepted, while too small

a value will require many iterations to set very small variables to exactly

zero. One possibility is to compute the Barzilai-Borwein scaling αbb of the

variables given by (11.18), and set Dk to αbbI.

11.5.2 Proximal Newton-like Methods

The method of Section 11.5.1 crucially relies on separability of the nons-

mooth function r(x). For more general nonsmooth r(x), an attractive choice

is to tackle the nondifferentiability of r(x) via proximity operators (Moreau,

1962; Combettes and Wajs, 2005; Combettes and Pesquet, 2009). These

operators are central to forward-backward splitting methods (Combettes

324 Projected Newton-type Methods in Machine Learning

and Pesquet, 2009),10 as well as to methods based on surrogate optimiza-

tion (Figueiredo and Nowak, 2003; Daubechies et al., 2004), separable ap-

proximation (Wright et al., 2009), gradient-mapping (Nesterov, 2007), or to

a proximal trust-region framework (Kim et al., 2010).

The idea of a proximity operator is simple. Let r : X ⊆ R
d → (−∞,∞]

be a lower semicontinuous, proper convex function. For a point y ∈ X, the

proximity operator for r applied to y is defined as

proxr(y) = argmin
x∈X

1
2‖x− y‖22 + r(x). (11.29)

This operator generalizes the projection operator, since when r(x) is the

indicator function for a convex set C, (11.29) reduces to projection onto

C. This observation suggests that we might be able to replace projection

operators with proximity operators. Indeed, this replacement is done in

forward-backward splitting methods, where one iterates

xk+1 = proxαkr(x
k − αk∇f(xk));

the iteration “splits” the update into differentiable (forward) and nondiffer-

entiable (proximal or backward) steps. This method generalizes first-order

projected gradient methods, and under appropriate assumptions it can be

shown that the sequence {f(xk)+ r(xk)} converges to f(x∗)+ r(x∗), where
x∗ is a stationary point.

At this point, the reader may already suspect how we might use proxim-

ity operators in our Newton-like methods. The key idea is simple: build a

quadratic model, but only for the differentiable part, and tackle the nondif-

ferentiable part via a suitable proximity operator. This simple idea was also

previously exploited by Wright et al. (2009) and Kim et al. (2010). Formally,

we consider the regularized quadratic model

Qk(x, α) � f(xk)+ (x−xk)T∇f(xk)+
1

2α
(x−xk)THk(x−xk)+ r(x),

(11.30)

whose minimizer can be recast as the generalized proximity operator :

proxH
k

α·r (y
k) = argmin

x∈Rn

1
2‖x− yk‖2Hk + αr(x), (11.31)

where yk = xk − α[Hk]−1∇f(xk); observe that under the transformation

10. Including iterative soft-thresholding as a special case.

11.5 Toward Nonsmooth Objectives 325

x→ [Hk]1/2x, (11.31) may be viewed as a standard proximity operator.

Using this generalized proximity operator, our Newton-like algorithm

becomes

xk+1 = proxH
k

α·r (x
k − α[Hk]−1∇f(xk)). (11.32)

If instead of the true inverse Hessian, we use Hk = I, iteration (11.32)

degenerates to the traditional forward-backward splitting algorithm. Fur-

thermore, it is equally straightforward to implement a quasi-Newton variant

of (11.32), where, for example, Hk is obtained by an L-BFGS approximation

to ∇2f(xk). Another practical choice might be an inexact quasi-Newton

variant, where we use iterations of the SPG-like method of Wright et al.

(2009) to approximately minimize Qk(x, α) under an L-BFGS approximation

of f(x); in other words, the generalized proximity operator (11.31) is com-

puted inexactly.

Similar to inexact projected Newton methods, under only mild assump-

tions we can guarantee that an inexact solution to the generalized proximity

operator yields an improvement on the original objective for a sufficiently

small stepsize α. For example, assume that ∇f(x) is Lipschitz continuous

and that we find a value y such that Qk(y, α) < Qk(xk, α) in (11.30). Then

we have

f(xk) + r(xk) = Qk(xk, α)

> Qk(y, α)

= f(xk) + (y − xk)T∇f(xk) +
1

2α
(y − xk)THk(y − xk) + r(y)

≥ f(xk) + (y − xk)T∇f(xk) +
m

2α
||y − xk||22 + r(y)

≥ f(y) + r(y) (for 0 < α ≤ m/L),

wherem is the smallest eigenvalue of Hk and the last inequality follows from

Lipschitz continuity of the gradient (Bertsekas, 1999, Proposition A.24),

where L is the Lipschitz constant of the gradient of f(x). A similar property

holds if ∇f(x) is only locally Lipschitz continuous.

Example 11.6 (Group �1-regularization). Consider a generalization of

Example 11.5 where instead of penalizing the absolute values of each element

of x, we penalize the �2 norms of a set of disjoint groups indexed by g:

min
x∈Rn

f(x) +
∑

g
λg‖xg‖2. (11.33)

The regularizer in (11.33) is referred to as a group regularizer (�1,2-

regularizer), since it encourages sparsity in terms of groups of variables,

326 Projected Newton-type Methods in Machine Learning

and dates back to Bakin (1999). The regularization term is nonsmooth when

an entire group of variables is set to 0. However, the proximal operator for

this regularizer is easily computed: given a vector y, with groups yg, we

simply set xg = (yg/‖yg‖2)max{0, ‖yg‖2 − αλg}. Thus, inexact proximal

Newton methods are well suited to solving (11.33).

Example 11.7 (Group nuclear norm regularization). A related problem is

optimizing a smooth function of several matrix inputs with regularization of

the nuclear norms of the matrices:

min
X1,X2,...,Xn

f(X1,X2, . . . ,Xn) +
∑n

i=1
λi‖Xi‖∗. (11.34)

Here we use ‖X‖∗ to the denote the nuclear norm (or trace norm), the

sum of the singular values of X. This regularization not only encourages

sparsity across individual matrices, but also encourages each matrix to be

low rank. The proximal operator for the nuclear norm can be computed by

soft-thresholding the singular values of each Xi (Cai et al., 2010). That

is, to compute the proximal operator, we replace each singular value σj of

each Xi with σj = max{0, σj − αλi}, where α is the parameter of the

quadratic approximation (11.30). Thus, inexact proximal Newton methods

are well suited to solving (11.34) too, especially when it is more expensive

to evaluate f and ∇f than it is to compute the singular value decomposition

of each Xi.

11.6 Summary and Discussion

In this chapter, we have concentrated on minimizing twice-differentiable

convex functions, both when their exact Hessian is feasible to use and

when quasi-Newton choices are more practical. Note that the quasi-Newton

approach can also be applied when the objective function is only once

differentiable. Furthermore, we may relax the assumption of convexity if

we concede that the stationary point found by the method may not be a

local or global minimum.

As for implementational strategies, while we have focused on L-BFGSmeth-

ods, an alternative restricted memory strategy is to use implicit Hessian-

vector products. For example, in the two-metric projection strategy we can

use Hessian-vector products within a linear conjugate gradient iteration to

solve the scaling with respect to the free variables, as in Nocedal and Wright

(2000, Section 7.1), while we can use Hessian-vector products within the SPG

subroutine for inexact projected Newton methods. An alternative means to

optimize nonsmooth objectives with an L-BFGS approximation is given by Yu

11.7 References 327

et al. (2010). Variants of the L-BFGS approximation that apply in stochastic

scenarios are examined in Sunehag et al. (2009).

We close by noting some open issues regarding convergence of the methods

discussed in this section. First, global convergence of methods based on the

minimum norm subgradient without a diminishing stepsize can be tenuous

because of the lack of continuity in the derivatives of sequences. For example,

see the counterexample in Bertsekas (1999, Exercise 6.3.8). Andrew and

Gao (2007) give a proof of global convergence of a method related to the

two-metric subgradient projection method we discuss in Section 11.5.1, but

as pointed out by Yu et al. (2010), their proof does not account for this

lack of continuity. Thus, while the algorithms of Andrew and Gao (2007)

and Section 11.5.1 appear to be very effective in practice, it remains to be

shown whether they are globally convergent in general without additional

assumptions.

A related issue is showing whether the two-metric subgradient projection

method identifies the correct set of nonzero variables after a finite number of

iterations, and then has a superlinear convergence rate when exact second-

order information is available. Also, in Examples 1.5 and 1.6, we use a

projection with respect to a subset of the constraints and do not project with

respect to the positive definite constraint that is known not to be active at

the solution. Although this strategy has been used by several authors, and

seems not to significantly affect empirical convergence of the method when

given a suitable starting point, formally examining convergence under this

heuristic deserves some theoretical attention.

Finally, there are not yet formal proofs of global and local convergence

for inexact projected Newton methods, but this appears to be a simpler

task than showing convergence of the methods discussed in the previous

paragraph. For example, it is likely that global convergence can be proved

by showing that a suitable gradient-related condition (Bertsekas, 1999,

Section 1.2) applies to the first iteration in the SPG subroutine that satisfies

the Armijo condition, while a local convergence rate can likely be shown

by using a forcing sequence (Nocedal and Wright, 2000, Section 7.1) on the

solution accuracy of the SPG subroutine.

11.7 References

G. Andrew and J. Gao. Scalable training of L1-regularized log-linear models. In
Proceedings of the 24th International Conference on Machine Learning, pages
33–40, 2007.

S. Bakin. Adaptive regression and model selection in data mining problems. PhD
thesis, Australian National University, Canberra, 1999.

328 Projected Newton-type Methods in Machine Learning

O. Banerjee, L. El Ghaoui, A. d’Aspremont, and G. Natsoulis. Convex optimization
techniques for fitting sparse Gaussian graphical models. In Proceedings of the 23rd
International Conference on Machine Learning, pages 89–96, 2006.

J. Barzilai and J. Borwein. Two-point step size gradient methods. IMA Journal of
Numerical Analysis, 8(1):141–148, 1988.

D. P. Bertsekas. Projected Newton methods for optimization problems with simple
constraints. SIAM Jounal on Control and Optimization, 20(2):221–246, 1982.

D. P. Bertsekas. Nonlinear Programming. Athena Scientific, second edition, 1999.

D. P. Bertsekas, A. Nedic, and A. E. Ozdaglar. Convex Analysis and Optimization.
Athena Scientific, 2003.

E. G. Birgin, J. M. Mart́ınez, and M. Raydan. Nonmonotone spectral projected
gradient methods on convex sets. SIAM Journal on Optimization, 10(4):1196–
1211, 2000.

R. H. Byrd, J. Nocedal, and R. B. Schnabel. Representations of quasi-Newton
matrices and their use in limited memory methods. Mathematical Programming,
63(1):129–156, 1994.

J. F. Cai, E. J. Candès, and Z. Shen. A singular value thresholding algorithm for
matrix completion. SIAM Journal on Optimization, 20(4):1956–1982, 2010.

P. L. Combettes and J. Pesquet. Proximal Splitting Methods in Signal Processing.
arXiv:0912.3522v2, December 2009.

P. L. Combettes and V. R. Wajs. Signal recovery by proximal forward-backward
splitting. Multiscale Modeling and Simulation, 4(4):1168–1200, 2005.

Y. H. Dai and R. Fletcher. Projected Barzilai-Borwein methods for large-scale
box-constrained quadratic programming. Numerische Mathematik, 100(1):21–47,
2005.

I. Daubechies, M. Defrise, and C. De Mol. An iterative thresholding algorithm for
linear inverse problems with a sparsity constraint. Communications on Pure and
Applied Mathematics, 57(11):1413–1457, 2004.

J. Duchi, S. Gould, and D. Koller. Projected subgradient methods for learning
sparse gaussians. In Proceedings of the 24th Conference on Uncertainty in
Artificial Intelligence, pages 145–152, 2008.

M. Figueiredo, R. Nowak, and S. Wright. Gradient projection for sparse recon-
struction: Application to compressed sensing and other inverse problems. IEEE
Journal of Selected Topics in Signal Processing, 1(4):586–597, 2007.

M. A. T. Figueiredo and R. D. Nowak. An EM algorithm for wavelet-based image
restoration. IEEE Transactions on Image Processing, 12(8):906–916, 2003.

E. M. Gafni and D. P. Bertsekas. Two-metric projection methods for constrained
optimization. SIAM Journal on Control and Optimization, 22(6):936–964, 1984.

P. E. Gill, W. Murray, and M. H. Wright. Practical Optimization. Academic Press,
1981.

L. Grippo, F. Lampariello, and S. Lucidi. A nonmonotone line search technique for
Newton’s method. SIAM Journal on Numerical Analysis, 23(4):707–716, 1986.

D. Kim, S. Sra, and I. S. Dhillon. A scalable trust-region algorithm with application
to mixed-norm regression. In Proceedings of the 27th International Conference
on Machine Learning, pages 519–526, 2010.

E. S. Levitin and B. T. Polyak. Constrained minimization methods. USSR
Computational Mathematics and Mathematical Physics, 6:1–50, 1966. English

11.7 References 329

translation of a paper in Zh. Vȳchisl. Mat. i Mat. Fiz. 6, 5, 787-823, 1966.

J.-J. Moreau. Fonctions convexes duales et points proximaux dans un espace
hilbertien. C. R. Acad. Sci. Paris, 255:2897–2899, 1962.

Y. Nesterov. Introductory Lectures on Convex Optimization: A Basic Course.
Springer, 2004.

Y. Nesterov. Gradient methods for minimizing composite objective function.
Technical report, Université Catholique de Louvain, 2007.

J. Nocedal. Updating quasi-Newton matrices with limited storage. Mathematics of
Computation, 35(151):773–782, 1980.

J. Nocedal and S. J. Wright. Numerical Optimization. Springer, second edition,
2000.

M. Schmidt, E. van den Berg, M. Friedlander, and K. Murphy. Optimizing costly
functions with simple constraints: A limited-memory projected quasi-Newton
algorithm. In Proceedings of the 12th International Conference on Artificial
Intelligence and Statistics, volume 5, pages 456–463, 2009.

D. F. Shanno and K. H. Phua. Matrix conditioning and nonlinear optimization.
Mathematical Programming, 14(1):149–160, 1978.

P. Sunehag, J. Trumpf, S. V. N. Vishwanathan, and N. N. Schraudolph. Variable
metric stochastic approximation theory. In Proceedings of the 12th International
Conference on Artificial Intelligence and Statistics, volume 5, pages 560–566,
2009.

E. van den Berg and M. P. Friedlander. Probing the Pareto frontier for basis pursuit
solutions. SIAM Journal on Scientific Computing, 31(2):890–912, 2008.

S. J. Wright, R. D. Nowak, and M. A. T. Figueiredo. Sparse reconstruction by
separable approximation. IEEE Transactions on Signal Processing, 57(7):2479–
2493, 2009.

J. Yu, S. V. N. Vishwanathan, S. Günter, and N. N. Schraudolph. A quasi-newton
approach to nonsmooth convex optimization. Journal of Machine Learning
Research, 11:1145–1200, 2010.

12 Interior-Point Methods in Machine

Learning

Jacek Gondzio J.Gondzio@ed.ac.uk

School of Mathematics and Maxwell Institute for Mathematical Sciences

The University of Edinburgh, Mayfield Road, Edinburgh EH9 3JZ, United Kingdom

Interior-point methods for linear and (convex) quadratic programming dis-

play several features which make them particularly attractive for very large-

scale optimization. They have an impressive low-degree polynomial worst-

case complexity. In practice, they display an unrivalled ability to deliver

optimal solutions in an almost constant number of iterations which depends

very little, if at all, on the problem’s dimension. Since many problems in

machine learning can be recast as linear or quadratic optimization problems

and it is common for them to have large or huge sizes, interior-point methods

are natural candidates to be applied in this context.

In this chapter we will discuss several major issues related to interior point

methods, including the worst-case complexity result, the features responsible

for their ability to solve very large problems, and their existing and potential

applications in machine learning.

12.1 Introduction

Soon after Karmarkar (1984) had published his seminal paper, interior-

point methods (IPMs) were claimed to have unequalled efficiency when

applied to large-scale problems. Karmarkar’s first worst-case complexity

proof was based on the use of projective geometry and cleverly chosen

potential function, but was rather complicated. It generated huge interest in

the optimization community and soon led to improvements and clarifications

332 Interior-Point Methods in Machine Learning

of the theory. A major step in this direction was made by Gill et al. (1986),

who drew the community’s attention to a close relation between Karmarkar’s

projective method and the projected Newton barrier method. The impressive

effort of Lustig, Marsten, Shanno, and their collaborators in the late 1980s

provided a better understanding of the computational aspects of IPMs for

linear programming, including the central role played by the logarithmic

barrier functions in the theory (Marsten et al., 1990). In the early 1990s

sufficient evidence was already gathered to justify claims of the spectacular

efficiency of IPMs for very large-scale linear programming (Lustig et al.,

1994) and their ability to compete with a much older rival, the simplex

method (Dantzig, 1963).

The simplex method has also gone through major developments over the

last 25 years (Forrest and Goldfarb, 1992; Maros, 2003; Hall and McKinnon,

2005). It remains competitive for solving linear optimization problems and

certainly provides a healthy pressure for further development of IPMs. It is

widely accepted nowadays that there exist classes of problems for which one

method may significantly outperform the other. The large size of the problem

generally seems to favor interior-point methods. However, the structure of

the problem, and in particular the sparsity pattern of the constraint matrix

which determines the cost of linear algebra operations, may occasionally

render one of the approaches impractical. The simplex method exploits

well the hypersparsity of the problem (Hall and McKinnon, 2005). On the

other hand, interior-point methods have a well-understood ability to take

advantage of any block-matrix structure in the linear algebra operations,

and therefore are significantly easier to parallelize (Gondzio and Grothey,

2006).

Many machine learning (ML) applications are formulated as optimization

problems. Although, the vast majority of them lead to (easy) unconstrained

optimization problems, certain classes of ML applications require dealing

with linear constraints or variable nonnegativity constraints. interior-point

methods are well suited to solve such problems because of their ability to

handle inequality constraints very efficiently by using the logarithmic barrier

functions.

The support vector machine training problems form an important class

of ML applications which lead to constrained optimization formulations,

and therefore can take a full advantage of IPMs. The early attempts to

apply IPMs in the support vector machine training context (Ferris and

Munson, 2003; Fine and Scheinberg, 2002; Goldfarb and Scheinberg, 2004)

were very successful and generated further interest among the optimization

community, stimulating several new developments (Gertz and Griffin, 2009;

Jung et al., 2008; Woodsend and Gondzio, 2009, 2010). They relied on

12.2 Interior-Point Methods: Background 333

the ability of IPMs at taking advantage of the problem’s special structure

to reduce the cost of linear algebra operations. In this chapter we will

concentrate on the support vector machine training problems and will use

them to demonstrate the main computational features of interior-point

methods.

The chapter is organized as follows. In Section 12.2 we will introduce the

quadratic optimization problem and define the notation used. In Section 12.3

we will comment on the worst-case complexity result of a particular interior-

point algorithm for convex quadratic programming, the feasible algorithm

operating in a small neighborhood of the central path induced by the 2-

norm. In Section 12.4 we will discuss several applications of interior-point

methods which have been developed since about 2000 for solving different

constrained optimization problems arising in support vector machine train-

ing. In Section 12.5 we will discuss existing and potential techniques which

may accelerate the performance of interior-point methods in this context.

Finally, in Section 12.6 we will give our conclusions and comment on possible

further developments of interior-point methods.

12.2 Interior-Point Methods: Background

Consider the primal-dual pair of convex quadratic programming (QP) prob-

lems

Primal Dual

min cTx+ 1
2x

TQx max bT y − 1
2x

TQx

s.t. Ax = b, s.t. AT y + s−Qx = c,

x ≥ 0; y free, s ≥ 0,

(12.1)

where A ∈ Rm×n has full row rank m ≤ n, Q ∈ Rn×n is a positive

semidefinite matrix, x, s, c ∈ Rn, and y, b ∈ Rm. Using Lagrangian duality

theory (see Bertsekas, 1995), the first-order optimality conditions for these

problems can be written as

Ax = b

AT y + s−Qx = c

XSe = 0

(x, s) ≥ 0,

(12.2)

where X and S are diagonal matrices in Rn×n with elements of vectors x and

s spread across the diagonal, respectively, and e ∈ Rn is the vector of ones.

The third equation, XSe = 0, called the complementarity condition, can be

rewritten as xjsj = 0, ∀j = {1, 2, . . . , n} and implies that at least one of the

334 Interior-Point Methods in Machine Learning

two variables xj and sj has to be zero at the optimum. The complementarity

condition is often a source of difficulty when solving optimization problems,

and the optimization approaches differ essentially in the way they deal with

this condition.

Active set methods and their prominent example, the simplex method

for linear programming, make an intelligent guess that either xj = 0 or

sj = 0. They choose a subset of indices j ∈ B ⊂ {1, 2, . . . , n} such that xj
is allowed to be nonzero and force the corresponding sj = 0, while for the

remaining indices j ∈ N = {1, 2, . . . , n}\B they force xj = 0 and allow sj to

take nonzero values. Such a choice simplifies the linear algebra operations

which can be reduced (in the LP case) to consider only a submatrix of

A induced by columns from set B. The simplex method allows only one

index to be swapped between B and N at each iteration. (In the more

general context of active set methods, only one index of variable and/or

active constraint can be exchanged at each iteration.) Hence an inexpensive

update is performed to refresh active/inactive matrices, and this is reflected

in a very low (almost negligible) cost of a single iteration. However, active

set methods may require a huge number of iterations to be performed.

This is a consequence of the difficulty in guessing the correct partition of

indices into basic-nonbasic (active-inactive) subsets. The simplex method for

linear programming is not a polynomial algorithm. Klee and Minty (1972)

constructed a problem of dimension n, the solution of which requires 2n

iterations of the simplex method. However, in practice it is very rare for

the simplex method to perform more than m + n iterations on its way to

an optimal solution (Forrest and Goldfarb, 1992; Maros, 2003; Hall and

McKinnon, 2005).

Interior-point methods perturb the complementarity condition and re-

place xjsj = 0 with xjsj = μ, where the parameter μ is driven to zero.

This removes the need to “guess” the partitioning into active and inactive

inequality constraints: the algorithm gradually reduces μ, and the partition

of vectors x and s into zero and nonzero elements is gradually revealed as the

algorithm progresses. Removing the need to “guess” the optimal partition

is at the origin of the proof of the polynomial worst-case complexity of the

interior-point method. Indeed, the best IPM algorithm known to date finds

the ε-accurate solution of an LP or convex QP problem in O(
√
n log(1/ε))

iterations (Renegar, 1988). Again, in practice IPMs perform much better

than that and converge in a number of iterations which is almost a constant,

independent of the problem dimension (Colombo and Gondzio, 2008). How-

ever, one iteration of an IPM may be costly. Unlike the simplex method,

which works with a submatrix of A, IPM involves the complete matrix A

to compute the Newton direction for the perturbed first-order optimality

12.2 Interior-Point Methods: Background 335

conditions, and for nontrivial sparsity patterns in A this operation may be

expensive and occasionally prohibitive.

The derivation of an interior-point method for optimization relies on three

basic ideas:

1. Logarithmic barrier functions are used to “replace” the inequality con-

straints

2. Duality theory is applied to barrier subproblems to derive the first-order

optimality conditions which take the form of a system of nonlinear equations,

and

3. Newton’s method is employed to solve this system of nonlinear equations.

To avoid the need to guess the activity of inequality constraints x ≥ 0,

interior-point methods employ the logarithmic barrier function of the form

−μ∑n
j=1 log xj added to the objective of the primal problem in (12.1). The

barrier parameter μ weighs the barrier in relation to the QP objective. A

large value of μ means that the original objective is less important, and

the optimization focuses on minimizing the barrier term. The repelling

force of the barrier prevents any of the components xj from approaching

their boundary value of zero. In other words, the presence of the barrier

keeps the solution x in the interior of the positive orthant. Reducing the

barrier term changes the balance between the original QP objective and the

penalty for approaching the boundary. The smaller μ is the stronger the role

of the original QP objective is. Much of the theory and practice of IPMs

concentrates on clever ways of reducing the barrier term from a large initial

value, used to promote centrality at the beginning of the optimization, to

small values needed to weaken the barrier and to allow the algorithm to

approach an optimal solution. In the linear programming case, the optimal

solution lies on the boundary of the feasible region and many components

of vector x are zero.

Applying Lagrangian duality theory to the barrier QP subproblem

min cTx+
1

2
xTQx− μ

n∑
j=1

log xj s.t. Ax = b (12.3)

gives the following first-order optimality conditions:

Ax = b

AT y + s−Qx = c

XSe = μe

(x, s) ≥ 0.

(12.4)

Comparison of (12.2) and (12.4) reveals that the only difference is a pertur-

336 Interior-Point Methods in Machine Learning

bation of the complementarity constraint which for the barrier subproblem

requires all complementarity products xjsj to take the same value μ. Ob-

serve that the perturbed complementarity condition is the only nonlinear

equation in (12.4). For any μ > 0, system (12.4) has a unique solution,

(x(μ), y(μ), s(μ)), x(μ) > 0, s(μ) > 0, which is called a μ-center. A family

of these solutions for all positive values of μ determines a (continuous) path

{(x(μ), y(μ), s(μ)) : μ > 0} which is called the primal-dual central path or

central trajectory.

interior-point algorithms apply Newton’s method to solve the system of

nonlinear equations (12.4). There is no need to solve this system to a high

degree of accuracy. Recall that (12.4) is only an approximation of (12.2)

corresponding to a specific choice of the barrier parameter μ. There is

no need to solve it exactly because the barrier μ will have to be reduced

anyway. IPMs apply only one iteration of the Newton method to this system

of nonlinear equations and immediately reduce the barrier. Driving μ to

zero is a tool which enforces convergence of (12.4) to (12.2), and takes

iterates of IPM toward an optimal solution of (12.1). To perform a step of

Newton’s method for (12.4), the Newton direction (Δx,Δy,Δs) is computed

by solving the following system of linear equations,⎡⎣ A 0 0

−Q AT In
S 0 X

⎤⎦ ·
⎡⎣ Δx

Δy

Δs

⎤⎦ =

⎡⎣ ξp
ξd
ξμ

⎤⎦ =

⎡⎣ b−Ax

c+Qx−AT y − s

μe−XSe

⎤⎦ ,(12.5)
where In denotes the identity matrix of dimension n.

The theory of interior-point methods requires careful control of the error

in the perturbed complementarity condition XSe ≈ μe. Take an arbitrary

θ ∈ (0, 1), compute μ = xT s/n, and define

N2(θ) = {(x, y, s) ∈ F0 | ‖XSe− μe‖ ≤ θμ}, (12.6)

where F0 = {(x, y, s) |Ax = b, AT y + s − Qx = c, (x, s) > 0} denotes

the primal-dual strictly feasible set. (Unless explicitly stated otherwise, the

vector norm ‖ · ‖ will always denote the Euclidean norm.) Observe that all

points in N2(θ) exactly satisfy the first two (linear) equations in (12.4) and

approximately satisfy the third (nonlinear) equation. In fact, N2(θ) defines a

neighborhood of the central path. Interestingly, the size of this neighborhood

reduces with the barrier parameter μ. The theory of IPMs requires all the

iterates to stay in this neighborhood. This explains why an alternative

name to IPMs is path-following methods: indeed, these algorithms follow

the central path on their way to optimality.

In the next section we will comment on an impressive feature of the

interior-point method: it is possible to prove that an algorithm operating

12.3 Polynomial Complexity Result 337

in the N2(θ) neighborhood that is applied to a convex QP converges to an

ε-accurate solution in O(
√
n log(1/ε)) iterations.

12.3 Polynomial Complexity Result

A detailed proof of the complexity result is beyond the scope of this chapter.

The reader interested in the proof may consult an excellent textbook on

IPMs by Wright (1997) in which a proof for the linear programming case is

given. An extension to an IPM for quadratic programming requires some

extra effort, and care has to be taken of terms which result from the

quadratic objective.

The proof heavily uses the fact that all iterates belong to an N2(θ)

neighborhood (12.6) of the central path. Consequently, all iterates are

strictly primal-dual feasible which simplifies the right-hand-side vector in

the linear system defining the Newton direction (12.5):⎡⎣ A 0 0

−Q AT In
S 0 X

⎤⎦ ·
⎡⎣ Δx

Δy

Δs

⎤⎦ =

⎡⎣ 0

0

σμe−XSe

⎤⎦ . (12.7)

A systematic (though very slow) reduction of the complementarity gap

is imposed by forcing a decrease of the barrier term in each iteration l.

The required reduction of μ may seem very small: μl+1 = σμl, where

σ = 1 − β/
√
n for some β ∈ (0, 1). However, after a sufficiently large

number of iterations, proportional to
√
n, the achieved reduction is already

noticeable because

μl

μ0
= (1− β/

√
n)

√
n ≈ e−β.

After C · √n iterations, the reduction achieves e−Cβ. For a sufficiently

large constant C the reduction can thus be arbitrarily large (i.e., the

complementarity gap can become arbitrarily small). In other words, after a

number of iterations proportional to
√
n, the algorithm gets arbitrarily close

to a solution. In the parlance of complexity theory, the algorithm converges

in O(
√
n) iterations. We state the complexity result but omit the proof.

Theorem 12.3.1. Given ε > 0, suppose that a feasible starting point

(x0, y0, s0) ∈ N2(0.1) satisfies (x0)T s0 = nμ0, where μ0 ≤ 1/εκ, for some

positive constant κ. Then there exists an index L with L = O(
√
n ln(1/ε)),

such that μl ≤ ε, ∀l ≥ L.

The very good worst-case complexity result of IPM for quadratic program-

338 Interior-Point Methods in Machine Learning

ming is beyond any competition in the field of optimization. Two features

in particular are unprecedented. First, the number of iterations is bounded

by the square root of the problem dimension. The computational experience

of Colombo and Gondzio (2008) shows a much better practical iteration

complexity which displays a logarithmic dependence on the problem dimen-

sion. Second, the complexity result reveals the dependence O(ln(1/ε)) on the

required precision ε. Unlike IPMs, gradient methods (Nesterov, 2005) can

provide only complexity results of O(1/ε) or O(1/ε2). If one solves problems

to merely 1- or 2-digit exact solution (ε = 10−1 or ε = 10−2), the terms

1/ε or 1/ε2 in the complexity result may seem acceptable. However, for a

higher accuracy, say, ε = 10−3 or smaller, the superiority of IPMs becomes

obvious. (In the author’s opinion, this outstanding feature of IPMs is not

appreciated enough by the machine learning community.)

The practical implementation of IPMs differs in several points from the

algorithm which possesses the best theoretical worst-case complexity. First,

the most efficient primal-dual method is the infeasible algorithm. Indeed,

there is no reason to force the algorithm to stay within the primal-dual

strictly feasible set F0 and unnecessarily limit its space to maneuver. IPMs

deal easily with any infeasibility in the primal and dual equality constraints

by taking them into account in the Newton system (12.5). Second, there is

no reason to restrict the iterates to the (very small) N2(θ) neighborhood of

the central path. Practical algorithms (Colombo and Gondzio, 2008) use a

symmetric neighborhood NS(γ) = {(x, y, s) ∈ F0 | γμ ≤ xjsj ≤ 1/γμ, ∀j},
where γ ∈ (0, 1) or a so-called infinity neighborhood N∞(γ) = {(x, y, s) ∈
F0 | γμ ≤ xjsj , ∀j}, in which only too-small complementarity products are

forbidden. Third, there is no reason to be overcautious in reducing the

complementarity gap by a term σ = 1−β/√n which is so close to 1. Practical

algorithms allow σ to be any number from the interval (0, 1] and, indeed, the

author’s experience (Colombo and Gondzio, 2008) shows that the average

reduction of the complementarity gap achieved in each IPM iteration σaverage
is usually in the interval (0.1, 0.5). Deviation from the (close to 1) value of

σ allowed by the theory requires the extra safeguards to make sure x and s

remain nonnegative. This means that Newton steps have to be damped and

stepsize α takes values smaller than 1.

12.4 Interior-Point Methods for Machine Learning

The main difficulty and the main computational effort in IPM algorithms is

the solution of the Newton equation system: either (12.7) if we use a feasible

algorithm of theoretical interest, or (12.5) if we use a practical infeasible

12.4 Interior-Point Methods for Machine Learning 339

algorithm. A common approach is to eliminate Δs = X−1(ξμ − SΔx) and

get the following symmetric but indefinite augmented system,[−Q−Θ−1 AT

A 0

] [
Δx

Δy

]
=

[
f

h

]
=

[
ξd −X−1ξμ

ξp

]
, (12.8)

where Θ = XS−1, or make one more elimination step Δx = (Q +

Θ−1)−1(ATΔy − f) and get the symmetric and positive definite normal

equations system

(A(Q+Θ−1)−1AT)Δy = g = A(Q+Θ−1)−1f + h. (12.9)

For linear optimization problems (when Q = 0) the normal equations system

(12.9) is usually the preferred (and default) option. For quadratic optimiza-

tion problems with nontrivial matrix Q, an augmented system (12.8) is the

best option. Indeed, the inversion of (Q + Θ−1) might completely destroy

the sparsity in (12.9) and make the solution of this system very inefficient.

There exists an important class of separable quadratic optimization problems

in which Q is a diagonal matrix, and therefore the operation (Q + Θ−1)−1

produces a diagonal matrix and allows for the reduction to normal equations.

Several well-known reformulation tricks allow the extension of the class

of separable problems and the conversion of certain nonseparable problems

into separable ones (see Vanderbei, 1997). This is possible, for example, when

matrixQ can be represented asQ = Q0+VDV T , whereQ0 is easily invertible

(say, diagonal) and V ∈ Rn×k, D ∈ Rk×k with k
 n defining a low-

rank correction. By introducing an extra variable u = V Tx, the quadratic

objective term in problem (12.1) can be rewritten as xTQx = xTQ0x+uTDu

and the following quadratic optimization problem equivalent to (12.1) is

obtained:

min cTx+ 1
2x

TQ0x+ uTDu

s.t. Ax = b,

V Tx− u = 0,

x ≥ 0, u free.

(12.10)

Although this new problem has more constraints (m + k as opposed to m

in (12.1)) and has n+ k variables, while (12.1) had only n, it is significantly

easier to solve because its quadratic form

[
Q0 0
0 D

]
is easily invertible

(diagonal) and allows for the use of the normal equations formulation in the

computation of Newton direction.

Numerous classification problems in support vector machine training ap-

plications benefit from the above transformation. They include, for exam-

ple, 1- or 2-norm classification, universum classification, and ordinal and

ε-insensitive regressions. To demonstrate how the technique works, we will

340 Interior-Point Methods in Machine Learning

consider a 2-norm classification with support vector machines using the sim-

plest linear kernel. Let a training set of n points pj ∈ Rk, j = 1, 2, ..., n with

binary labels rj ∈ {−1, 1}, j = 1, 2, ..., n be given. We look for a hyperplane

wT p+w0 = 0 which best separates the points with different labels, namely,

it maximizes the separation margin and minimizes the overall 1-norm error

of misclassifications. The corresponding quadratic optimization problem and

its dual have the following forms:

Primal Dual

min 1
2w

Tw + τeT ξ max eTz− 1
2z

T(RP TPR)z

s.t. R(P Tw + w0e) ≥ e−ξ s.t. rT z = 0

ξ ≥ 0; 0 ≤ z ≤ τe,

(12.11)

where P ∈ Rk×n is a matrix the columns of which are formed by the

points pj ∈ Rk, R ∈ Rn×n is a diagonal matrix with labels rj on the

diagonal, ξ ∈ Rn are errors of misclassification, and τ is a positive parameter

measuring the penalty of misclassifications.

Direct application of IPM to any of these problems would be challenging

because of the expected very large size of the data set n. The primal

problem has an easy, separable quadratic objective but a large number of

linear constraints. The dual problem, on the other hand, has only a single

equality constraint but its Hessian matrix RPTPR ∈ Rn×n is completely

dense. The dual form is preferred by the ML community because it can

easily accommodate any general kernel K. (The dual problem in (12.11)

corresponds to a linear kernel K = P TP .)

To provide a better understanding of where the difficulty is hidden, we

give forms of augmented equation systems which would be obtained if an

IPM was applied directly to the primal or to the dual in (12.11):⎡⎣ −Ik 0 PR

0 −Θ−1
ξ In

RP T In 0

⎤⎦⎡⎣ Δw

Δξ

Δy

⎤⎦ =

⎡⎣ fw
fξ
h

⎤⎦ (12.12)

and [−(RP TPR+Θ−1
z) r

rT 0

] [
Δz

Δy

]
=

[
fz
h

]
. (12.13)

To simplify the discussion, we keep using the notation of (12.8) and always

denote Lagrange multipliers associated with the linear constraints as y and

the right-hand-side vectors in these equations as (f, h). The dimensions of

these vectors have to be derived from the formulations of the primal and

dual problems in (12.11). For example, for the primal problem and equation

12.4 Interior-Point Methods for Machine Learning 341

(12.12), Δy ∈ Rn, fw ∈ Rk, fξ ∈ Rn, and h ∈ Rn; for the dual problem and

equation (12.13), Δy ∈ R, fz ∈ Rn, and h ∈ R. It is easy to verify that the

elimination of diagonal block diag{Ik,Θ−1
ξ } in (12.12) (which corresponds

to the elimination of Δw and Δξ) would create a dense normal equations

matrix of form RPTPR+Θξ, producing a dense linear equation system with

difficulty comparable to that of (12.13).

Although the matrix RP TPR + Θξ ∈ Rn×n (or RP TPR + Θ−1
z ∈ Rn×n

in (12.13)) is completely dense and is expected to be large, its inversion

can be computed efficiently using the Sherman-Morrison-Woodbury (SMW)

formula, which exploits the low-rank representation of this matrix. Indeed,

since PR ∈ Rk×n and Θξ ∈ Rn×n is invertible, we can write

(RP TPR+Θξ)
−1 = Θ−1

ξ −Θ−1
ξ RP T (Ik +PRΘ−1

ξ RP T)PRΘ−1
ξ (12.14)

and then replace equation (RP TPR + Θξ)Δy = g with a sequence of

operations:

Step 1: calculate t1 = PRΘ−1
ξ g,

Step 2: solve (Ik + PRΘ−1
ξ RPT)t2 = t1,

Step 3: calculate Δy = Θ−1
ξ (g −RPT t2).

Since we expect k
 n, the application of the SMW formula offers a

major improvement over a direct inversion of the large and dense matrix

RP TPR+Θξ. Indeed, SMW requires several matrix-vector multiplications

with PR ∈ Rk×n which involve only kn flops, and building and inversion of

the Schur complement matrix

S = Ik + PRΘ−1
ξ RP T , (12.15)

which needs O(k2n + k3) flops. In contrast, building and inversion of

RP TPR + Θξ would require O(kn2 + n3) flops. An additional and very

important advantage of the SMW algorithm is its storage efficiency: the

matrix RPTPR + Θξ does not have to be formulated and stored; we only

need to store original data PR ∈ Rk×n and the k × k Schur complement

matrix (12.15).

Ferris and Munson (2003) considered a variety of formulations of linear

support vector machines and applied interior-point methods to solve them.

They used the OOQP solver of Gertz and Wright (2003) as a basic tool

for their developments. The Newton equation systems were solved using the

SMW formula. The results of their efforts very clearly demonstrated the

IPM’s ability to deal with problems in which the number of data points n

was large, reaching millions. Their test examples had a moderate number of

features k = 34.

The efficiency of an SMW-based IPM implementation is determined by

342 Interior-Point Methods in Machine Learning

the linear algebra operation of solving (12.12) (or (12.13)). This approach

is very easy to parallelize (Ferris and Munson, 2003) because the bulk of

the work lies in the matrix-vector multiplications operating on PR and its

transpose. Indeed, significant speedups may be achieved simply by splitting

the storage of this matrix between different processors and reducing the

number ni of points stored on a given processor i = 1, 2, ..., p, (
p∑

i=1
ni = n)

to improve data locality.

The Schur complement approach has an inherent weakness that is difficult

to overcome. Its numerical accuracy critically depends on the stability of

the easily invertible matrix (Θξ in (12.14)) and the scaling of columns in

the low-rank corrector (PR in (12.14)). It is actually a general weakness

of SMW that is unrelated to IPM applications. In our case, when SMW is

applied in the interior-point method for support vector machines, only one

of these two potential weaknesses can be remedied. It is possible to scale

the original problem data P and improve the properties of the low-rank

corrector PR. However, to the best of the author’s knowledge, there is no

easy way to control the behavior of matrix Θξ. The entries of this matrix

display a disastrous difference in magnitude: as IPM approaches optimality,

elements in one subset go to infinity while elements in the other subset go to

zero. Consequently, the inversion of Θξ is very unstable and always adversely

affects the accuracy of the solution which can be obtained using the SMW

formula (12.14).

Goldfarb and Scheinberg (2008) constructed a small artificial dataset

on which a Schur complement-based IPM implementation ran into nu-

merical difficulties and could not attain the required accuracy of solution.

The product-form Cholesky factorization (PFCF) approach of Goldfarb and

Scheinberg (2004) can handle such cases in a stable way. Instead of comput-

ing an explicit Cholesky decomposition, their approach builds the Cholesky

matrix through a sequence of updates of an initial factor. The approach is

well suited to dealing with matrices of the form Q = Q0 + V V T , such as

the matrix Θξ + RPTPR in (12.14). It starts from a decomposition of Q0

and updates it after adding every rank-1 corrector ViV
T
i from the matrix

V V T . The approach has been implemented in two solvers, SVM-QP and

SVM-QP-presolve (Goldfarb and Scheinberg, 2008), and when applied to

medium-scale problems it has demonstrated numerical stability in practice.

It is not clear whether the PFCF can be implemented in parallel and this

seems to question its applicability to large-scale machine learning problems

(see Woodsend and Gondzio, 2009).

Bearing in mind the need to develop parallel implementation to tackle very

large problems, Woodsend and Gondzio (2010) have exploited the separable

12.4 Interior-Point Methods for Machine Learning 343

QP formulations of several support vector machine problems and solved

them directly with an interior-point method. Their approach avoids the use

of the SMW formula, which could introduce instability but still relies on

parallelism-friendly block-matrix operations. We will illustrate the key idea

by considering the dual in (12.11).

As we have already observed, the matrix of the quadratic form in this

problem, RP TPR, is dense. However, it is a low-rank matrix and we will

exploit its known decomposition. Namely, we define u = PRz and observe

that zTRP TPRz = uTu, so the problem can be reformulated as

min −eT z + 1
2u

Tu

s.t. rT z = 0

PRz − u = 0

0 ≤ z ≤ τe, u free.

(12.16)

Unlike the dual in (12.11), which had n variables and only one constraint,

the new problem has n+k variables and k+1 constraints. It is slightly larger

than (12.11) but is separable, and the linear equation system to compute

the Newton direction⎡⎢⎢⎣
−Θ−1

z 0 r RP T

0 −Ik 0 −Ik
rT 0 0 0

PR −Ik 0 0

⎤⎥⎥⎦
⎡⎢⎢⎣

Δz

Δu

Δy1
Δy2

⎤⎥⎥⎦ =

⎡⎢⎢⎣
fz
fu
h1
h2

⎤⎥⎥⎦ , (12.17)

has an easy-to-invert (n+k)×(n+k) diagonal block at position (1, 1). After

the elimination of this leading block (which corresponds to the elimination

of Δz and Δu), we obtain the normal equations([
rT 0

PR −Ik

] [
Θz 0

0 Ik

] [
r RP T

0 −Ik

])[
Δy1
Δy2

]
=

[
g1
g2

]
, (12.18)

which form a system of only k + 1 linear equations with k + 1 unknowns.

Forming the matrix involved in this system can easily be parallelized. It

suffices to split the matrix P ∈ Rk×n into blocks Pi ∈ Rk×ni , i = 1, 2, ..., p

with
p∑

i=1
ni = n and gather the partial summation results in the operation

PRΘzRP T =

p∑
i=1

PiRiΘziRiP
T
i , (12.19)

executed on p independent blocks. The separability-exploiting IPM approach

of Woodsend and Gondzio (2009) described above has been implemented

using OOPS (Gondzio and Grothey, 2006) and tested on very large-scale

problems from the PASCAL Challenge,

344 Interior-Point Methods in Machine Learning

http://largescale.first.fraunhofer.de/.

The implementation is available for research use from

http://www.maths.ed.ac.uk/ERGO/software.html.

It is worth mentioning important advantages of the separable QP formu-

lation which distinguish it from two approaches discussed earlier: the one

based on the SMW formula (Ferris and Munson, 2003) and the one em-

ploying the product form Cholesky factorization (Goldfarb and Scheinberg,

2004, 2008). Unlike the SMW approach which can easily lose accuracy due

to multiple inversions of Θξ in (12.14), the separable formulation (12.16)

avoids such operations and does not suffer from any instability. In contrast

to the PFCF approach, which is inherently sequential, the separable formu-

lation (12.16) allows for an easy parallelization of its major computational

tasks.

In summary, interior-point methods provide an attractive alternative to

a plethora of other approaches in machine learning. In the context of sup-

port vector machines, extensive tests on large instances from the PASCAL

Challenge demonstrated (Woodsend and Gondzio, 2009) that IPMs compete

very well with the other approaches in terms of CPU time efficiency, and

outperform the other approaches in terms of reliability. This is consistent

with a general reputation of IPMs as very stable and reliable optimization

algorithms.

12.5 Accelerating Interior-Point Methods

Stability and reliability of IPMs have their origin in the use of the Newton

method for barrier subproblems and a very “mild” nonlinearity introduced

by the logarithmic barrier function. In some applications these features come

at too high a price. Numerous optimization problems, including those arising

in machine learning, do not have to be solved to a high degree of accuracy.

Therefore, fast algorithms are sought which could provide a very rough

approximation to the solution of the optimization problem in no time at

all. This is one of the reasons why the ML community is so keen on very

simple first-order (gradient)-based optimization techniques.

There have been several attempts to improve interior-point methods by

reducing the cost of a single iteration. Two of them have been specifically

developed for support vector machine applications. They share a common

feature and try to guess the activity of inequality constraints, then use only

a subset of these constraints when computing Newton directions. Consider

again the primal problem in (12.11) and the corresponding Newton equation

12.5 Accelerating Interior-Point Methods 345

system in (12.12). The elimination of a large but easily invertible block[−Θ−1
ξ In

In 0

]
,

which corresponds to the elimination of Δξ and Δy from the equation system

(12.12), produces the small k × k system

(Ik + PRΘξRP T)Δw = gw. (12.20)

We have already mentioned that the magnitude of elements of matrix Θξ

may vary significantly. Indeed, Θξj = ξj/ηj , where ηj is the Lagrange

multiplier associated with the simple inequality constraint ξj ≥ 0. The

complementarity condition requires that ξjηj = 0 at optimality. IPM uses

a perturbed complementarity condition ξjηj = μ and forces ξj and ηj to

be strictly positive. However, when IPM approaches optimality, one of these

variables necessarily has to become very small. Consequently, the ratio ξj/ηj
goes either to infinity or to zero. Although this might be the source of

numerical difficulties when solving systems (12.12) and (12.20), it may also

be exploited as a feature to simplify these equations. The matrix in (12.20)

can be written in the outer product form

M = Ik +

n∑
j=1

r2jΘξjpjp
T
j , (12.21)

where r2j = 1 (because rj ∈ {−1,+1}) and pj denotes column j of P, that

is, point j in the training set. Since many elements of Θξ are very small,

their corresponding outer product contributions to M may be neglected. An

approximation of M may be formed as follows:

M̃ = Ik +
∑

{j:Θξj≥δ}
Θξjpjp

T
j , (12.22)

where δ is a prescribed tolerance.

Jung et al. (2008) use information on complementarity products of ξj
and ηj to determine small elements of Θξj which may be dropped in the

summation. The constraints rj(p
T
j w + w0) ≥ 1 − ξj in the primal problem

(12.11), which correspond to indices j associated with small terms Θξj , are

likely to be active at optimality. Jung et al. (2008) use the approximation M̃

of M to compute an approximate Newton step. Gertz and Griffin (2009) use

the same approximation for a different purpose. They employ a conjugate

gradient algorithm to solve (12.20) and use M̃ as a preconditioner of M . In

summary, both approaches try to simplify the computations and replace

M with its approximation M̃ , exploiting obvious savings resulting from

346 Interior-Point Methods in Machine Learning

replacing the summation over j ∈ {1, 2, ..., n} with the summation over

a subset of indices {j : Θξj ≥ δ}. However, both approaches have to deal

with certain computational overheads: Jung et al. (2008) have to accept

a significant increase of the number of iterations resulting from the use of

inexact directions, while Gertz and Griffin (2009) need to bear an extra

effort of matrix-vector multiplications in the conjugate gradient algorithm.

To conclude the discussion of different acceleration techniques applicable

in the IPM context, we need to draw the reader’s attention to a recent

development of a matrix-free variant of the interior-point method (Gondzio,

2010). This approach has been developed with the purpose of solving very

large and huge optimization problems for which storage of the problem

data alone may already be problematic, and constructing and factoring

any of the matrices in the Newton equations (augmented system or normal

equations) is expected to be prohibitive. The approach works in a matrix-

free regime: Newton equations are never formulated explicitly. Instead, an

inexact Newton method (Dembo et al., 1982; Bellavia, 1998) is used, that

is, the Newton direction is computed using an iterative approach from

the Krylov subspace family. The key feature of the new method which

distinguishes it from other matrix-free approaches is that the preconditioner

for the iterative method is constructed using the matrix-free regime as well.

The method has been described in Gondzio (2010) as a general-purpose one.

However, it should be straightforward to specialize it to machine learning

problems. We discuss it briefly below.

Consider a problem such as the separable reformulation (12.16) of the

dual problem (12.11) and assume that the number of rows, k + 1, and the

number of columns, n + k, are large. One might think of the number of

features k being one the order 104 or larger, and the number of training

points n going into millions or larger. The otherwise very efficient separable

formulation (12.16) would demonstrate its limitations for such dimensions

because the (k + 1) × (k + 1) normal equation matrix (12.18) would be

excessively expensive to form and factor. Following Woodsend and Gondzio

(2010), building the matrix would need O(nk2) flops, and factoring it would

require an additional O(k3) flops. The matrix-free approach (Gondzio, 2010)

solves (12.18) without forming and factoring the normal equation matrix. It

uses the conjugate gradient method, which does not require the normal

equation matrix

H = ĀD̄ĀT =

[
rT 0

PR −Ik

] [
Θz 0

0 Ik

] [
r RPT

0 −Ik

]
(12.23)

to be explicitly formulated but needs only to perform matrix-vector multi-

plications with it. These operations can be executed as a sequence of matrix-

12.6 Conclusions 347

vector multiplications with the constraint matrix Ā, its transpose, and the

diagonal scaling matrix D̄. Matrix Θz in the diagonal part is always very

ill-conditioned, and consequently so is H. The conjugate gradient algorithm

will never converge unless an appropriate preconditioner is used. The pre-

conditioner proposed by Gondzio (2010) is a low-rank partial Cholesky fac-

torization of H which is also constructed in the matrix-free regime.

12.6 Conclusions

In this chapter we have discussed the main features of interior-point methods

which make them attractive for very large-scale optimization and for appli-

cation in the machine learning context. IPMs offer an unequalled worst-case

complexity: they converge to an ε-accurate solution in O(
√
n log(1/ε)) iter-

ations. In practice they perform much better than the worst-case analysis

predicts, and solve linear or convex quadratic problems in a number of itera-

tions which very slowly (logarithmically) grows with the problem dimension.

Since machine learning applications are usually very large, IPMs offer an at-

tractive solution methodology for them. We have illustrated the use of IPMs

in a particular class of ML problems: support vector machine training. IPMs

display excellent stability and robustness, which makes them very competi-

tive in this context. A novel matrix-free variant of the interior-point method

is a promising approach for solving very large and huge optimization prob-

lems arising in machine learning applications.

Acknowledgment

The author is grateful to Marco Colombo, Pedro Munari and Kristian

Woodsend for reading a draft of this chapter and offering useful suggestions

which led to its improvement.

12.7 References

S. Bellavia. An inexact interior-point method. Journal of Optimization Theory and
Applications, 96(1):109–121, 1998.

D. P. Bertsekas. Nonlinear Programming. Athena Scientific, 1995.

M. Colombo and J. Gondzio. Further development of multiple centrality correctors
for interior point methods. Computational Optimization and Applications, 41(3):
277–305, 2008.

G. B. Dantzig. Linear Programming and Extensions. Princeton University Press,
Princeton, N.J., 1963.

348 Interior-Point Methods in Machine Learning

R. S. Dembo, S. C. Eisenstat, and T. Steihaug. Inexact Newton methods. SIAM
Journal on Numerical Analysis, 19:400–408, 1982.

M. C. Ferris and T. S. Munson. Interior point methods for massive support vector
machines. SIAM Journal on Optimization, 13(3):783–804, 2003.

S. Fine and K. Scheinberg. Efficient SVM training using low-rank kernel represen-
tations. Journal of Machine Learning Research, 2:243–264, 2002.

J. J. H. Forrest and D. Goldfarb. Steepest-edge simplex algorithms for linear
programming. Mathematical Programming, 57:341–374, 1992.

E. M. Gertz and J. Griffin. Using an iterative linear solver in an interior-point
method for generating support vector machines. Computational Optimization
and Applications, 47(3):431–453, 2009.

E. M. Gertz and S. J. Wright. Object-oriented software for quadratic programming.
ACM Transactions on Mathematical Software, 29(1):58–81, 2003.

P. E. Gill, W. Murray, M. A. Saunders, J. A. Tomlin, and M. H. Wright. On the
projected Newton barrier methods for linear programming and an equivalence to
Karmarkar’s projective method. Mathematical Programming, 36:183–209, 1986.

D. Goldfarb and K. Scheinberg. A product-form Cholesky factorization method
for handling dense columns in interior point methods for linear programming.
Mathematical Programming, 99(1):1–34, 2004.

D. Goldfarb and K. Scheinberg. Numerically stable LDLT factorizations in interior
point methods for convex quadratic programming. IMA Journal of Numerical
Analysis, 28(4):806–826, 2008.

J. Gondzio. Matrix-free interior point method. Technical Report ERGO-2009-012,
School of Mathematics, University of Edinburgh, Edinburgh EH9 3JZ, Scotland,
UK, April 2010.

J. Gondzio and A. Grothey. Direct solution of linear systems of size 109 arising
in optimization with interior point methods. In R. Wyrzykowski, J. Dongarra,
N. Meyer, and J. Wasniewski, editors, Parallel Processing and Applied Mathemat-
ics, volume 3911 of Lecture Notes in Computer Science, pages 513–525. Springer-
Verlag, Berlin, 2006.

J. A. J. Hall and K. I. M. McKinnon. Hyper-sparsity in the revised simplex method
and how to exploit it. Computational Optimization and Applications, 32(3):259–
283, 2005.

J. H. Jung, D. O’Leary, and A. Tits. Adaptive constraint reduction for training
support vector machines. Elecronic Transactions on Numerical Analysis, 31:
156–177, 2008.

N. K. Karmarkar. A new polynomial–time algorithm for linear programming.
Combinatorica, 4(4):373–395, 1984.

V. Klee and G. Minty. How good is the simplex algorithm? In O. Shisha, editor,
Inequalities-III, pages 159–175. Academic Press, 1972.

I. J. Lustig, R. E. Marsten, and D. F. Shanno. Interior point methods for linear
programming: Computational state of the art. ORSA Journal on Computing, 6
(1):1–14, 1994.

I. Maros. Computational Techniques of the Simplex Method. Kluwer Academic,
Boston, 2003.

R. E. Marsten, R. Subramanian, M. J. Saltzman, I. J. Lustig, and D. F. Shanno.
Interior point methods for linear programming: Just call Newton, Lagrange, and

12.7 References 349

Fiacco and McCormick! Interfaces, 20(4):105–116, 1990.

Y. Nesterov. Smooth minimization of non-smooth functions. Mathematical Pro-
gramming, Series A, 103:127–152, 2005.

J. Renegar. A polynomial-time algorithm, based on Newton’s method, for linear
programming. Mathematical Programming, 40:59–93, 1988.

R. J. Vanderbei. Linear Programming: Foundations and Extensions. Kluwer
Academic, Boston, 1st edition, 1997.

K. Woodsend and J. Gondzio. Hybrid MPI/OpenMP parallel linear support vector
machine training. Journal of Machine Learning Research, 10:1937–1953, 2009.

K. Woodsend and J. Gondzio. Exploiting separability in large-scale linear support
vector machine training. Computational Optimization and Applications, 2010.
Published online October 14 2009.

S. J. Wright. Primal-Dual Interior-Point Methods. SIAM, Philadelphia, 1997.

13 The Tradeoffs of Large-Scale Learning

Léon Bottou leon@bottou.org

NEC Laboratories of America

Princeton, NJ, USA

Olivier Bousquet olivier.bousquet@m4x.org

Google

Zurich, Switzerland

This chapter develops a theoretical framework that takes into account the ef-

fect of approximate optimization on learning algorithms. The analysis shows

distinct tradeoffs for the case of small-scale and large-scale learning prob-

lems. Small-scale learning problems are subject to the usual approximation–

estimation tradeoff. Large-scale learning problems are subject to a qualita-

tively different tradeoff involving the computational complexity of the under-

lying optimization algorithm in non-trivial ways. For instance, a mediocre

optimization algorithm, stochastic gradient descent, is shown to perform very

well on large-scale learning problems.

13.1 Introduction

The computational complexity of learning algorithms has seldom been taken

into account by the learning theory. Valiant (1984) states that a problem

is “learnable” when there exists a “probably approximately correct” learn-

ing algorithm with polynomial complexity. Whereas much progress has been

made on the statistical aspect (e.g., Vapnik, 1982; Boucheron et al., 2005;

Bartlett and Mendelson, 2006), very little has been said about the complex-

ity side of this proposal (e.g., Judd, 1988).

Computational complexity becomes the limiting factor when one envisions

352 The Tradeoffs of Large-Scale Learning

large amounts of training data. Two important examples come to mind:

Data mining exists because competitive advantages can be achieved by

analyzing the masses of data that describe the life of our computerized

society. Since virtually every computer generates data, the data volume is

proportional to the available computing power. Therefore, one needs learning

algorithms that scale roughly linearly with the total volume of data.

Artificial intelligence attempts to emulate the cognitive capabilities of

human beings. Our biological brains can learn quite efficiently from the

continuous streams of perceptual data generated by our senses, using limited

amounts of sugar as a source of power. This observation suggests that there

are learning algorithms whose computing time requirements scale roughly

linearly with the total volume of data.

This chapter develops the ideas initially proposed by Bottou and Bousquet

(2008). Section 13.2 proposes a decomposition of the test error where

an additional term represents the impact of approximate optimization.

In the case of small-scale learning problems, this decomposition reduces

to the well-known tradeoff between approximation error and estimation

error. In the case of large-scale learning problems, the tradeoff is more

complex because it involves the computational complexity of the learning

algorithm. Section 13.3 explores the asymptotic properties of the large-

scale learning tradeoff for various prototypical learning algorithms under

various assumptions regarding the statistical estimation rates associated

with the chosen objective functions. This part clearly shows that the best

optimization algorithms are not necessarily the best learning algorithms.

Maybe more surprisingly, certain algorithms perform well regardless of

the assumed rate of the statistical estimation error. Section 13.4 reports

experimental results supporting this analysis.

13.2 Approximate Optimization

13.2.1 Setup

Following Duda and Hart (1973) and Vapnik (1982), we consider a space of

input-output pairs (x, y) ∈ X × Y endowed with a probability distribution

P (x, y). The conditional distribution P (y|x) represents the unknown rela-

tionship between inputs and outputs. The discrepancy between the predicted

output ŷ and the real output y is measured with a loss function �(ŷ, y). Our

13.2 Approximate Optimization 353

benchmark is the function f∗ that minimizes the expected risk

E(f) =

∫
�(f(x), y) dP (x, y) = E [�(f(x), y)],

that is,

f∗(x) = argmin
ŷ

E [�(ŷ, y)|x].

Although the distribution P (x, y) is unknown, we are given a sample S of

n independently drawn training examples (xi, yi), i = 1 . . . n. We define the

empirical risk

En(f) =
1

n

n∑
i=1

�(f(xi), yi) = En[�(f(x), y)].

Our first learning principle is choosing a family F of candidate prediction

functions and finding the function fn = argminf∈F En(f) that minimizes the

empirical risk. Well-known combinatorial results (e.g., Vapnik, 1982) support

this approach, provided that the chosen family F is sufficiently restrictive.

Since the optimal function f ∗ is unlikely to belong to the family F, we also

define f∗
F = argminf∈F E(f). For simplicity, we assume that f∗, f∗

F, and fn
are well defined and unique.

We can then decompose the excess error as

E = E [E(f∗
F)− E(f∗)] + E [E(fn)− E(f∗

F)]

= Eapp + Eest, (13.1)

where the expectation is taken with respect to the random choice of training

set. The approximation error Eapp measures how closely functions in F can

approximate the optimal solution f∗. The estimation error Eest measures

the effect of minimizing the empirical risk En(f) instead of the expected

risk E(f). The estimation error is determined by the number of training

examples and by the capacity of the family of functions (Vapnik, 1982).

Large families1 of functions have smaller approximation errors but lead to

higher estimation errors. This tradeoff has been extensively discussed in the

literature (Vapnik, 1982; Boucheron et al., 2005) and has led to excess errors

that scale between the inverse and the inverse square root of the number of

1. We often consider nested families of functions of the form Fc = {f ∈ H, Ω(f) ≤ c}.
Then, for each value of c, function fn is obtained by minimizing the regularized empirical
risk En(f)+λΩ(f) for a suitable choice of the Lagrange coefficient λ. We can then control
the estimation-approximation tradeoff by choosing λ instead of c.

354 The Tradeoffs of Large-Scale Learning

examples (Zhang, 2004; Steinwart and Scovel, 2005).

13.2.2 Optimization Error

Finding fn by minimizing the empirical risk En(f) is often a computationally

expensive operation. Since the empirical risk En(f) is already an approxima-

tion of the expected risk E(f), it should not be necessary to carry out this

minimization with great accuracy. For instance, we could stop an iterative

optimization algorithm long before its convergence.

Let us assume that our minimization algorithm returns an approximate

solution f̃n such that En(f̃n) < En(fn) + ρ where ρ ≥ 0 is a predefined

tolerance. An additional term Eopt = E
[
E(f̃n)− E(fn)

]
then appears in the

decomposition of the excess error E = E
[
E(f̃n)− E(f∗)

]
:

E = E [E(f∗
F)− E(f∗)] + E [E(fn)− E(f∗

F)] + E
[
E(f̃n)− E(fn)

]
= Eapp + Eest + Eopt. (13.2)

We call this additional term the optimization error. It reflects the impact

of the approximate optimization on the generalization performance. Its

magnitude is comparable to ρ (see section 13.3.1).

13.2.3 The Approximation–Estimation–Optimization Tradeoff

This decomposition leads to a more complicated compromise. It involves

three variables and two constraints. The constraints are the maximal number

of available training examples and the maximal computation time. The

variables are the size of the family of functions F, the optimization accuracy

ρ, and the number of examples n. This is formalized by the following

optimization problem:

min
F,ρ,n

E = Eapp+Eest+Eopt subject to

{
n ≤ nmax

T (F, ρ, n) ≤ Tmax
(13.3)

The number n of training examples is a variable because we could choose

to use only a subset of the available training examples in order to complete

the optimization within the alloted time. This happens often in practice.

Table 13.1 summarizes the typical evolution of the quantities of interest as

the three variables F, n, and ρ increase.

The solution of the optimization program (13.3) depends critically on

which budget constraint is active: constraint n < nmax on the number of

examples, or constraint T < Tmax on the training time.

13.3 Asymptotic Analysis 355

Table 13.1: Typical variations when F, n, and ρ increase

F n ρ

Eapp (approximation error) ↘
Eest (estimation error) ↗ ↘
Eopt (optimization error) · · · · · · ↗
T (computation time) ↗ ↗ ↘

We speak of a small-scale learning problem when (13.3) is constrained by

the maximal number of examples nmax. Since the computing time is not

limited, we can reduce the optimization error Eopt to insignificant levels by

choosing a ρ that is arbitrarily small. The excess error is then dominated by

the approximation and estimation errors, Eapp and Eest. Taking n = nmax, we

recover the approximation-estimation tradeoff that is the object of abundant

literature.

We speak of a large-scale learning problem when (13.3) is constrained

by the maximal computing time Tmax. Approximate optimization, that

is, choosing ρ > 0, possibly can achieve better generalization because

more training examples can be processed during the allowed time. The

specifics depend on the computational properties of the chosen optimization

algorithm through the expression of the computing time T (F, ρ, n).

13.3 Asymptotic Analysis

In section 13.2.2, we extended the classical approximation–estimation trade-

off by taking the optimization error into account. We gave an objective

criterion to distiguish small-scale and large-scale learning problems. In the

small-scale case, we recovered the classical tradeoff between approximation

and estimation. The large-scale case is substantially different because it in-

volves the computational complexity of the learning algorithm. In order to

clarify the large-scale learning tradeoff with sufficient generality, this section

makes several simplifications:

We are studying upper bounds of the approximation, estimation, and

optimization errors (13.2). It is often accepted that these upper bounds

give a realistic idea of the actual convergence rates (Vapnik et al., 1994;

Bousquet, 2002; Tsybakov, 2004; Bartlett et al., 2006). Another way to find

comfort in this approach is to say that we study guaranteed convergence

rates instead of the possibly pathological special cases.

356 The Tradeoffs of Large-Scale Learning

We are studying the asymptotic properties of the tradeoff when the

problem size increases. Instead of carefully balancing the three terms, we

write E = O(Eapp) + O(Eest) + O(Eopt) and only need to ensure that the

three terms decrease with the same asymptotic rate.

We are considering a fixed family of functions F, and therefore avoid taking

into account the approximation error Eapp. This part of the tradeoff covers

a wide spectrum of practical realities, such as choosing models and features.

In the context of this work, we do not believe we can meaningfully address

this without discussing, for instance, the thorny issue of feature selection.

Instead, we focus on the choice of optimization algorithm.

Finally, in order to keep this chapter short, we consider that the family of

functions F is linearly parameterized by a vector w ∈ R
d. We also assume

that x, y, and w are bounded, ensuring that there is a constant B such that

0 ≤ �(fw(x), y) ≤ B and �(·, y) is Lipschitz.
We first explain how the uniform convergence bounds provide conver-

gence rates that take the optimization error into account. Then we discuss

and compare the asymptotic learning properties of several optimization al-

gorithms.

13.3.1 Convergence of the Estimation and Optimization Errors

The optimization error Eopt depends on the optimization accuracy ρ. How-

ever, the accuracy ρ involves the empirical quantity En(f̃n)−En(fn), whereas

the optimization error Eopt involves its expected counterpart E(f̃n)−E(fn).

This section discusses the impact of the optimization error Eopt and of the

accuracy ρ on generalization bounds that leverage the uniform convergence

concepts pioneered by Vapnik and Chervonenkis (e.g., Vapnik, 1982).

Following Massart (2000), in the following discussion we use the letter c

to refer to any positive constant. Successive occurrences of the letter c do

not necessarily imply that the constants have identical values.

13.3.1.1 Simple Uniform Convergence Bounds

Recall that we assume that F is linearly parameterized by w ∈ R
d. Elemen-

tary uniform convergence results then state that

E

[
sup
f∈F

|E(f)− En(f)|
]
≤ c

√
d

n
,

13.3 Asymptotic Analysis 357

where the expectation is taken with respect to the random choice of the

training set.2 This result immediately provides a bound on the estimation

error:

Eest = E
[(

E(fn)− En(fn)
)
+
(
En(fn)− En(f

∗
F)
)
+
(
En(f

∗
F)− E(f∗

F)
)]

≤ 2 E

[
sup
f∈F

|E(f)− En(f)|
]
≤ c

√
d

n
.

This same result also provides a combined bound for the estimation and

optimization errors:

Eest + Eopt = E
[
E(f̃n)− En(f̃n)

]
+ E
[
En(f̃n)− En(fn)

]
+ E [En(fn)− En(f

∗
F)] + E [En(f

∗
F)− E(f∗

F)]

≤ c

√
d

n
+ ρ+ 0 + c

√
d

n
= O

(
ρ+

√
d

n

)
.

Unfortunately, this convergence rate is known to be pessimistic in many

important cases. More sophisticated bounds are required.

13.3.1.2 Faster Rates in the Realizable Case

When the loss function �(ŷ, y) is positive, with probability 1 − e−τ for any

τ > 0, relative uniform convergence bounds (e.g., Vapnik, 1982) state that

sup
f∈F

E(f)− En(f)√
E(f)

≤ c

√
d

n
log

n

d
+

τ

n
.

This result is very useful because it provides faster convergence rates

O(log n/n) in the realizable case, that is, when �(fn(xi), yi) = 0 for all train-

ing examples (xi, yi). We then have En(fn) = 0, and En(f̃n) ≤ ρ, and we

can write

E(f̃n)− ρ ≤ c

√
E(f̃n)

√
d

n
log

n

d
+

τ

n
.

Viewing this as a second-degree polynomial inequality in variable
√

E(f̃n),

we obtain

2. Although the original Vapnik-Chervonenkis bounds have the form c
√

d
n
log n

d
, the

logarithmic term can be eliminated using the “chaining” technique (e.g., Bousquet, 2002).

358 The Tradeoffs of Large-Scale Learning

E(f̃n) ≤ c

(
ρ+

d

n
log

n

d
+

τ

n

)
.

Integrating this inequality using a standard technique (see, e.g., Massart,

2000), we obtain a better convergence rate of the combined estimation and

optimization error:

Eest + Eopt = E

[
E(f̃n)− E(f∗

F)
]
≤ E

[
E(f̃n)

]
= c

(
ρ+

d

n
log

n

d

)
.

13.3.1.3 Fast Rate Bounds

Many authors (e.g., Bousquet, 2002; Bartlett and Mendelson, 2006; Bartlett

et al., 2006) obtain fast statistical estimation rates in more general condi-

tions. These bounds have the general form

Eapp + Eest ≤ c

(
Eapp +

(
d

n
log

n

d

)α)
for

1

2
≤ α ≤ 1 . (13.4)

This result holds when one can establish the following variance condition:

∀f ∈ F E

[(
�(f(X), Y)− �(f∗

F(X), Y)
)2] ≤ c

(
E(f)− E(f∗

F)

)2− 1
α

. (13.5)

The convergence rate of (13.4) is described by the exponent α, which is

determined by the quality of the variance bound (13.5). Works on fast

statistical estimation identify two main ways to establish such a variance

condition.

Exploiting the strict convexity of certain loss functions (Bartlett et al.,

2006, theorem 12). For instance, Lee et al. (1998) establish a O(log n/n)

rate using the squared loss �(ŷ, y) = (ŷ − y)2.

Making assumptions on the data distribution. In the case of pattern recog-

nition problems, for instance, the Tsybakov condition indicates how cleanly

the posterior distributions P (y|x) cross near the optimal decision bound-

ary (Tsybakov, 2004; Bartlett et al., 2006). The realizable case discussed in

section 13.3.1.2 can be viewed as an extreme example of this.

Despite their much greater complexity, fast rate estimation results can

accommodate the optimization accuracy ρ, using essentially the methods

illustrated in sections 13.3.1.1 and 13.3.1.2. We then obtain a bound of the

form

13.3 Asymptotic Analysis 359

E = Eapp +Eest +Eopt = E

[
E(f̃n)− E(f∗)

]
≤ c

(
Eapp +

(
d

n
log

n

d

)α

+ ρ

)
.

(13.6)

For instance, a general result with α = 1 is provided by Massart (2000,

theorem 4.2). Combining this result with standard bounds on the complexity

of classes of linear functions (e.g., Bousquet, 2002) yields the following result:

E = Eapp+Eest+Eopt = E

[
E(f̃n)− E(f∗)

]
≤ c

(
Eapp +

d

n
log

n

d
+ ρ

)
. (13.7)

See also Mendelson (2003), and Bartlett and Mendelson (2006) for more

bounds taking the optimization accuracy into account.

13.3.2 Gradient Optimization Algorithms

We now discuss and compare the asymptotic learning properties of four

gradient optimization algorithms. Recall that the family of function F is

linearly parameterized by w ∈ R
d. Let w∗

F and wn correspond to the

functions f∗
F and fn defined in section 13.2.1. In this section, we assume

that the functions w �→ �(fw(x), y) are convex and twice differentiable

with continuous second derivatives. For simplicity we also assume that the

empirical const function C(w) = En(fw) has a single minimum, wn.

Two matrices play an important role in the analysis: the Hessian matrix

H and the gradient covariance matrix G, both measured at the empirical

optimum wn:

H =
∂2C

∂w2
(wn) = En

[
∂2�(fwn

(x), y)

∂w2

]
, (13.8)

G = En

[(
∂�(fwn

(x), y)

∂w

)(
∂�(fwn

(x), y)

∂w

)′]
. (13.9)

The relation between these two matrices depends on the chosen loss function.

In order to summarize them, we assume that there are constants λmax ≥
λmin > 0 and ν > 0 such that, for any η > 0, we can choose the number of

examples n large enough to ensure that the following assertion is true with

probability greater than 1− η :

tr(GH−1) ≤ ν and EigenSpectrum(H) ⊂ [λmin , λmax] . (13.10)

The condition number κ = λmax/λmin provides a convenient measure of

the difficulty of the optimization problem (Dennis Jr. and Schnabel, 1983).

360 The Tradeoffs of Large-Scale Learning

The assumption λmin > 0 avoids complications with stochastic gradient al-

gorithms. This assumption is weaker than strict convexity because it applies

only in the vicinity of the optimum. For instance, consider a loss function

obtained by smoothing the well-known hinge loss �(z, y) = max{0, 1−yz} in
a small neighborhood of its non-differentiable points. Function C(w) is then

piecewise linear with smoothed edges and vertices. It is not strictly convex.

However, its minimum is likely to be on a smoothed vertex with a non singu-

lar Hessian. When we have strict convexity, the argument of Bartlett et al.

(2006, theorem 12) yields fast estimation rates α ≈ 1 in (13.4) and (13.6).

That is not necessarily the case here.

The four algorithms considered in this chapter use information about the

gradient of the cost function to iteratively update their current estimate

w(t) of the parameter vector.

Gradient descent (GD) iterates

w(t+ 1) = w(t)− η
∂C

∂w
(w(t)) = w(t)− η

1

n

n∑
i=1

∂

∂w
�
(
fw(t)(xi), yi

)
where η > 0 is a small enough gain. GD is an algorithm with linear con-

vergence (Dennis Jr. and Schnabel, 1983): when η = 1/λmax, this algorithm

requires O(κ log(1/ρ)) iterations to reach accuracy ρ. The exact number of

iterations depends on the choice of the initial parameter vector.

Second-order gradient descent (2GD) iterates

w(t+1) = w(t)−H−1 ∂C

∂w
(w(t)) = w(t)− 1

n
H−1

n∑
i=1

∂

∂w
�
(
fw(t)(xi), yi

)
where matrix H−1 is the inverse of the Hessian matrix (13.8). This is

more favorable than Newton’s algorithm because we do not evaluate the

local Hessian at each iteration, but optimistically assume that an oracle

has revealed in advance the value of the Hessian at the optimum. 2GD is

a superlinear optimization algorithm with quadratic convergence (Dennis

Jr. and Schnabel, 1983). When the cost is quadratic, a single iteration is

sufficient. In the general case, O(log log(1/ρ)) iterations are required to reach

accuracy ρ.

Stochastic gradient descent (SGD) picks a random training example (xt, yt)

at each iteration and updates the parameter w on the basis of this example

13.3 Asymptotic Analysis 361

only:

w(t+ 1) = w(t)− η

t

∂

∂w
�
(
fw(t)(xt), yt

)
.

Murata (1998, section 2.2) characterizes the mean ES[w(t)] and variance

VarS[w(t)] with respect to the distribution implied by the random exam-

ples drawn from a given training set S at each iteration. Applying this

result to the discrete training set distribution for η = 1/λmin, we have

δw(t)2 = O(1/t) where δw(t) is a shorthand notation for w(t)− wn.

We can then write

ES[C(w(t))− inf C] = ES

[
tr
(
H δw(t) δw(t)′

)]
+ o
(
1
t

)
= tr

(
H ES[δw(t)]ES[δw(t)]

′
+H VarS[w(t)]

)
+ o
(
1
t

)
≤ tr(GH)

t + o
(
1
t

) ≤ νκ2

t + o
(
1
t

)
.

(13.11)

Therefore, the SGD algorithm reaches accuracy ρ after less than νκ2/ρ +

o(1/ρ) iterations on average. The SGD convergence is essentially limited by

the stochastic noise induced by the random choice of one example at each

iteration. Neither the initial value of the parameter vector w nor the total

number of examples n appears in the dominant term of this bound! When

the training set is large, one could reach the desired accuracy ρ measured on

the whole training set without even visiting all the training examples. This

is in fact a kind of generalization bound.

Second-order stochastic gradient descent (2SGD) replaces the gain η with

the inverse of the Hessian matrix H:

w(t+ 1) = w(t)− 1

t
H−1 ∂

∂w
�
(
fw(t)(xt), yt

)
.

Unlike standard gradient algorithms, using the second-order information

does not change the influence of ρ on the convergence rate but improves the

constants. Again using (Murata, 1998, theorem 4), accuracy ρ is reached

after ν/ρ+ o(1/ρ) iterations.

For each of the four gradient algorithms, the first three columns of

table 13.2 report the time for a single iteration, the number of iterations

needed to reach a predefined accuracy ρ, and their product, the time needed

to reach accuracy ρ. These asymptotic results are valid with probability 1,

since the probability of their complement is smaller than η for any η > 0.

The fourth column bounds the time necessary to reduce the excess error E

below c (Eapp + ε) where c is the constant from (13.6). This is computed by

362 The Tradeoffs of Large-Scale Learning

Algorithm Cost of one Iterations Time to reach Time to reach
iteration to reach ρ accuracy ρ E ≤ c (Eapp + ε)

GD O(nd) O
(
κ log 1

ρ

)
O
(
ndκ log 1

ρ

)
O
(

d2 κ

ε1/α
log2 1

ε

)
2GD O

(
d2 + nd

)
O
(
log log 1

ρ

)
O
((

d2 + nd
)
log log 1

ρ

)
O
(

d2

ε1/α
log 1

ε
log log 1

ε

)
SGD O(d) νκ2

ρ
+ o

(
1
ρ

)
O
(

dνκ2

ρ

)
O
(

d ν κ2

ε

)
2SGD O

(
d2
)

ν
ρ
+ o

(
1
ρ

)
O
(

d2ν
ρ

)
O
(

d2 ν
ε

)
Table 13.2: Asymptotic results for gradient algorithms (with probability 1).
Compare the second-to-last column (time to optimize) with the last column (time
to reach the excess test error ε). n–number of examples; d–parameter dimension;
for κ, ν see equation (13.10).

observing that choosing ρ ∼ (dn log n
d

)α
in (13.6) achieves the fastest rate for

ε, with minimal computation time. We can then use the asymptotic equiv-

alences ρ ∼ ε and n ∼ d
ε1/α

log 1
ε . Setting the fourth column expressions to

Tmax and solving for ε yields the best excess error achieved by each algorithm

within the limited time Tmax . This provides the asymptotic solution of the

estimation–optimization tradeoff (13.3) for large-scale problems satisfying

our assumptions.

These results clearly show that the generalization performance of large-

scale learning systems depends on both the statistical properties of the ob-

jective function and the computational properties of the chosen optimization

algorithm. Their combination leads to surprising consequences:

The SGD and 2SGD results do not depend on the estimation rate α. When

the estimation rate is poor, there is less need to optimize accurately. That

leaves time to process more examples. A potentially more useful interpreta-

tion leverages the fact that (13.11) is already a kind of generalization bound:

its fast rate trumps the slower rate assumed for the estimation error.

Second-order algorithms bring few asymptotical improvements in ε. Al-

though the superlinear 2GD algorithm improves the logarithmic term, all

four algorithms are dominated by the polynomial term in (1/ε). However,

there are important variations in the influence of the constants d, κ, and ν.

These constants are very important in practice.

Stochastic algorithms (SGD, 2SGD) yield the best generalization perfor-

mance despite showing the worst optimization performance on the empirical

cost. This phenomenon has already been described and observed in experi-

ments (e.g., Bottou and Le Cun, 2004).

In contrast, since the optimization error Eopt of small-scale learning systems

can be reduced to insignificant levels, their generalization performance is

13.4 Experiments 363

Model Algorithm Training Time Objective Test Error

Hinge loss
λ = 10−4

SVMLight 23,642 secs 0.2275 6.02%
SVMPerf 66 secs 0.2278 6.03%
SGD 1.4 secs 0.2275 6.02%

Logistic loss
λ = 10−5

TRON (ρ = 10−2) 30 secs 0.18907 5.68%
TRON (ρ = 10−3) 44 secs 0.18890 5.70%
SGD 2.3 secs 0.18893 5.66%

Table 13.3: Results with linear Support Vector Machines on the RCV1 dataset.

determined solely by the statistical properties of the objective function.

13.4 Experiments

This section empirically compares SGD with other optimization algorithms

on two well known machine learning tasks. The SGD C++ source code is

available from http://leon.bottou.org/projects/sgd.

13.4.1 SGD for Support Vector Machines

We first consider a well-known text categorization task, the classification of

documents belonging to the ccat category in the RCV1-v2 dataset (Lewis

et al., 2004). In order to collect a large training set, we swap the RCV1-

v2 official training and testing sets. The resulting training sets and test

sets contain 781,265 and 23,149 examples, respectively. The 47,152 TF/IDF

features are recomputed on the basis of this new split. We use a simple linear

model with the usual hinge loss Support Vector Machine objective function

min
w

C(w, b) =
λ

2
+

1

n

n∑
i=1

�(yt(wxt+ b)) with �(z) = max{0, 1− z} .

The first two rows of table 13.3 replicate the results reported by Joachims

(2006) for the same data and the same value of the hyperparameter λ.

The third row of table 13.3 reports results obtained with the SGD algo-

rithm:

wt+1 = wt − ηt

(
λw +

∂�(yt(wxt + b))

∂w

)
with ηt =

1

λ(t+ t0)
.

The bias b is updated similarly. Since λ is a lower bound of the smallest

eigenvalue of the Hessian, our choice of gains ηt approximates the optimal

schedule (see section 13.3.2). The offset t0 was chosen to ensure that the

364 The Tradeoffs of Large-Scale Learning

50

100

0.1 0.01 0.001 0.0001 1e−05 1e−07 1e−08 1e−09

Training time (secs)

1e−06

Optimization accuracy (trainingCost−optimalTrainingCost)

TRON

SGD

0.25 Expected risk

0.20

Figure 13.1: Training time and testing loss as a function of the optimization
accuracy ρ for SGD and TRON (Lin et al., 2007)

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.001 0.01 0.1 10 100 1000

Testing loss

1

n=30000
n=100000

n=300000
n=781265n=10000

Training time (secs)

SGD

CONJUGATE GRADIENTS

Figure 13.2: Testing loss versus training time for SGD, and for conjugate
gradients running on subsets of the training set

13.4 Experiments 365

initial gain is comparable with the expected size of the parameter w. The

results clearly indicate that SGD offers a good alternative to the usual

Support Vector Machine solvers.

Comparable results were obtained by Shalev-Shwartz et al. (2007), using

an algorithm that essentially amounts to a stochastic gradient corrected by

a projection step. Our results indicate that the projection step is not an

essential component of this performance.

Table 13.3 also reports results obtained with the logistic loss �(z) =

log(1 + e−z) in order to avoid the issues related to the nondifferentiability

of the hinge loss. Note that this experiment uses a much better value for λ.

Our comparison points were obtained with a state-of-the-art superlinear

optimizer (Lin et al., 2007), using the stopping criteria ρ = 10−2 and

ρ = 10−3. The very simple SGD algorithm clearly learns faster.

Figure 13.1 shows how much time each algorithm takes to reach a given op-

timization accuracy. The superlinear algorithm TRON reaches the optimum

with 10 digits of accuracy in less than one minute. The stochastic gradient

starts more quickly but is unable to deliver such a high accuracy. The upper

part of the figure clearly shows that the testing set loss stops decreasing long

before the superlinear algorithm overcomes the SGD algorithm.

Figure 13.2 shows how the testing loss evolves with the training time.

The stochastic gradient descent curve can be compared with the curves

obtained using conjugate gradients3 on subsets of the training examples with

increasing sizes. Assume, for instance, that our computing time budget is

one second. Running the conjugate gradient algorithm on a random subset of

30,000 training examples achieves a much better performance than running

it on the whole training set. How to guess the right subset size a priori

remains unclear. Meanwhile, running the SGD algorithm on the full training

set reaches the same testing set performance much faster.

13.4.2 SGD for Conditional Random Fields

The CoNLL 2000 chunking task (Tjong Kim Sang and Buchholz, 2000)

consists of dividing a sentence into syntactically correlated segments such as

noun phrase, verb phrase, and so on. The training set contains 8936 sentences

divided into 106,978 segments. Error measurements are performed using a

separate set of 2012 sentences divided into 23,852 segments. Results are

3. This experimental setup was suggested by Olivier Chapelle (personal communication).
His variant of the conjugate gradient algorithm performs inexact line searches using a single
inexpensive Newton step. This is effective because exact line searches usually demand
many function evaluations which are expensive when the training set is large.

366 The Tradeoffs of Large-Scale Learning

Algorithm Training Time Training Cost Test F1 Score

CRF++/L-BFGS 4335 secs 9042 93.74%
CRFSGD 568 secs 9098 93.75%

Table 13.4: Results for Conditional Random Fields on the CoNLL 2000 chunking
task

traditionally reported using an F1 measure that takes into account both the

segment boundaries and the segment classes.

The chunking task has been successfully approached using Conditional

Random Fields (Lafferty et al., 2001; Sha and Pereira, 2003) to tag the

words with labels indicating the class and the boundaries of each segment.

Our baseline is the Conditional Random Field model provided with the

CRF++ software (Kudo, 2007). Our CRFSGD implementation replicates

the features of the CRF++ software but uses SGD to optimize the Con-

ditional Random Field objective function. The model contains 1,679,700

parameters in both cases.

Table 13.4 compares the training time, the final training cost, and the test

performance of the model when trained using the standard CRF++ L-BFGS

optimizer and the SGD implementation. The SGD version runs considerably

faster.

Comparable speeds were obtained by Vishwanathan et al. (2006), using

a stochastic gradient with a novel adaptive gain scheduling method. Our

results indicate that this adaptive gain is not the essential component of this

performance. The main cause lies with the fundamental tradeoffs outlined

in this chapter.

13.5 Conclusion

Taking into account budget constraints on both the number of examples and

the computation time, we find qualitative differences between the general-

ization performance of small-scale learning systems and large-scale learning

systems. The generalization properties of large-scale learning systems de-

pend on both the statistical properties of the objective function and the

computational properties of the optimization algorithm. We illustrate this

fact with some asymptotic results on gradient algorithms.

This framework leaves room for considerable refinements. Shalev-Shwartz

and Srebro (2008) rigorously extend the analysis to regularized risk formula-

tions with linear parameterization and find again that, for learning purposes,

SGD algorithms are often more attractive than standard primal or dual al-

13.6 References 367

gorithms with good optimization complexity (Joachims, 2006; Hush et al.,

2006). It could also be interesting to investigate how the choice of a surro-

gate loss function (Zhang, 2004; Bartlett et al., 2006) impacts the large-scale

case.

13.6 References

P. L. Bartlett and S. Mendelson. Empirical minimization. Probability Theory and
Related Fields, 135(3):311–334, 2006.

P. L. Bartlett, M. I. Jordan, and J. D. McAuliffe. Convexity, classification and
risk bounds. Journal of the American Statistical Association, 101(473):138–156,
2006.

L. Bottou and O. Bousquet. The tradeoffs of large scale learning. In J. Platt,
D. Koller, Y. Singer, and S. Roweis, editors, Advances in Neural Information
Processing Systems 20, pages 161–168. MIT Press, 2008.

L. Bottou and Y. Le Cun. Large scale online learning. In S. Thrun, L. K. Saul,
and B. Schölkopf, editors, Advances in Neural Information Processing Systems
16. MIT Press, Cambridge, MA, 2004.

S. Boucheron, O. Bousquet, and G. Lugosi. Theory of classification: a survey of
recent advances. ESAIM: Probability and Statistics, 9:323–375, 2005.

O. Bousquet. Concentration Inequalities and Empirical Processes Theory Applied
to the Analysis of Learning Algorithms. PhD thesis, Ecole Polytechnique, 2002.

J. E. Dennis Jr. and R. B. Schnabel. Numerical Methods for Unconstrained
Optimization and Nonlinear Equations. Prentice-Hall, Englewood Cliffs, NJ,
1983.

R. O. Duda and P. E. Hart. Pattern Classification and Scene Analysis. John Wiley,
1973.

D. Hush, P. Kelly, C. Scovel, and I. Steinwart. QP algorithms with guaranteed
accuracy and run time for support vector machines. Journal of Machine Learning
Research, 7:733–769, 2006.

T. Joachims. Training linear SVMs in linear time. In Proceedings of the 12th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining,
pages 217–226, Philadelphia, PA, August 2006. ACM Press.

J. S. Judd. On the complexity of loading shallow neural networks. Journal of
Complexity, 4(3):177–192, 1988.

T. Kudo. CRF++: Yet another CRF toolkit, 2007. http://crfpp.sourceforge.
net.

J. D. Lafferty, A. McCallum, and F. C. N. Pereira. Conditional random fields:
Probabilistic models for segmenting and labeling sequence data. In C. E.
Brodley and A. P. Danyluk, editors, Proceedings of the Eighteenth International
Conference on Machine Learning, pages 282–289. Morgan Kaufmann, 2001.

W. S. Lee, P. L. Bartlett, and R. C. Williamson. The importance of convexity in
learning with squared loss. IEEE Transactions on Information Theory, 44(5):
1974–1980, 1998.

D. D. Lewis, Y. Yang, T. G. Rose, and F. Li. RCV1: A new benchmark collection for

368 The Tradeoffs of Large-Scale Learning

text categorization research. Journal of Machine Learning Research, 5:361–397,
2004.

C.-J. Lin, R. C. Weng, and S. S. Keerthi. Trust region Newton methods for
large-scale logistic regression. In Z. Ghahramani, editor, Proceedings of the 24th
International Conference on Machine Learning, pages 561–568, Corvallis, OR,
June 2007. ACM Press.

P. Massart. Some applications of concentration inequalities to statistics. Annales
de la Faculté des Sciences de Toulouse, series 6, 9(2):245–303, 2000.

S. Mendelson. A few notes on statistical learning theory. In S. Mendelson and A. J.
Smola, editors, Advanced Lectures in Machine Learning, volume 2600 of Lecture
Notes in Computer Science, pages 1–40. Springer-Verlag, New York, 2003.

N. Murata. A statistical study of on-line learning. In D. Saad, editor, Online
Learning and Neural Networks. Cambridge University Press, 1998.

F. Sha and F. Pereira. Shallow parsing with conditional random fields. In
Proceedings of the 2003 Human Language Technology Conference and 4th Meeting
of the North American Chapter of the Association for Computational Linguistics,
2003.

S. Shalev-Shwartz and N. Srebro. SVM optimization: inverse dependence on
training set size. In Proceedings of the 25th International Conference on Machine
Learning, pages 928–935. ACM Press, 2008.

S. Shalev-Shwartz, Y. Singer, and N. Srebro. Pegasos: Primal estimated subgradient
solver for SVM. In Z. Ghahramani, editor, Proceedings of the 24th International
Conference on Machine Learning, pages 807–814. ACM Press, June 2007.

I. Steinwart and C. Scovel. Fast rates for support vector machines. In P. Auer
and R. Meir, editors, Proceedings of the 18th Conference on Learning Theory
(COLT 2005), volume 3559 of Lecture Notes in Computer Science, pages 279–
294, Bertinoro, Italy, June 2005. Springer-Verlag.

E. F. Tjong Kim Sang and S. Buchholz. Introduction to the CoNLL-2000 Shared
Task: Chunking. In C. Cardie, W. Daelemans, C. Nedellec, and E. Tjong
Kim Sang, editors, Proceedings of CoNLL-2000 and LLL-2000, pages 127–132,
2000.

A. B. Tsybakov. Optimal aggregation of classifiers in statistical learning. Annals
of Statististics, 32(1):135–166, 2004.

L. G. Valiant. A theory of the learnable. Proceedings of the 16th Annual ACM
Symposium on the Theory of Computing, pages 436–445, 1984.

V. N. Vapnik. Estimation of Dependences Based on Empirical Data. Springer-
Verlag, Berlin, 1982.

V. N. Vapnik, E. Levin, and Y. LeCun. Measuring the VC-dimension of a learning
machine. Neural Computation, 6(5):851–876, 1994.

S. V. N. Vishwanathan, N. N. Schraudolph, M. W. Schmidt, and K. P. Murphy. Ac-
celerated training of conditional random fields with stochastic gradient methods.
In W. W. Cohen and A. Moore, editors, Proceedings of the 23rd International
Conference on Machine Learning, pages 969–976. ACM Press, 2006.

T. Zhang. Statistical behavior and consistency of classification methods based on
convex risk minimization. The Annals of Statistics, 32:56–85, 2004.

14 Robust Optimization in Machine Learning

Constantine Caramanis caramanis@mail.utexas.edu

The University of Texas at Austin

Austin, Texas

Shie Mannor shie@ee.technion.ac.il

Technion, the Israel Institute of Technology

Haifa, Israel

Huan Xu huan.xu@mail.utexas.edu

The University of Texas at Austin

Austin, Texas

Robust optimization is a paradigm that uses ideas from convexity and duality

to immunize solutions of convex problems against bounded uncertainty in the

parameters of the problem. Machine learning is fundamentally about making

decisions under uncertainty, and optimization has long been a central tool;

thus, at a high level there is no surprise that robust optimization should

have a role to play. Indeed, the first part of the story told in this chapter

is about specializing robust optimization to specific optimization problems in

machine learning. Yet, beyond this, there have been several surprising and

deep developments in the use of robust optimization and machine learning,

connecting consistency, generalization ability, and other properties (such as

sparsity and stability) to robust optimization.

In addition to surveying the direct applications of robust optimization to

machine learning, important in their own right, this chapter explores some

of these deeper connections, and points the way toward opportunities for

applications and challenges for further research.

370 Robust Optimization in Machine Learning

14.1 Introduction

Learning, optimization, and decision making from data must cope with un-

certainty introduced both implicitly and explicitly. Uncertainty can be ex-

plicitly introduced when the data collection process is noisy, or when some

data are corrupted. It may be introduced when the model specification is

wrong, assumptions are missing, or factors are overlooked. Uncertainty is

also implicitly present in pristine data, insofar as a finite sample empirical

distribution, or function thereof, cannot exactly describe the true distribu-

tion in most cases. In the optimization community, it has long been known

that the effect of even small uncertainty can be devastating in terms of the

quality or feasibility of a solution. In machine learning, overfitting has long

been recognized as a central challenge, and a plethora of techniques, many

of them regularization-based, have been developed to combat this problem.

The theoretical justification for many of these techniques lies in controlling

notions of complexity, such as metric entropy or VC-dimension.

This chapter considers both uncertainty in optimization, and overfitting,

from a unified perspective: robust optimization. In addition to introducing

a novel technique for designing algorithms that are immune to noise and do

not overfit data, robust optimization also provides a theoretical justification

for the success of these algorithms: algorithms have certain properties, such

as consistency, good generalization, or sparsity, because they are robust.

Robust optimization (e.g., Soyster, 1973; El Ghaoui and Lebret, 1997; Ben-

Tal and Nemirovski, 2000; Bertsimas and Sim, 2004; Bertsimas et al., 2010;

Ben-Tal et al., 2009, and many others) is designed to deal with parameter

uncertainty in convex optimization problems. For example, one can imagine

a linear program, min : {c	x |Ax ≤ b}, where there is uncertainty in the

constraint matrix A, the objective function, c, or the right-hand-side vector,

b. Robust optimization develops immunity to a deterministic or set-based

notion of uncertainty. Thus, in the face of uncertainty in A, instead of solving

min : {c	x |Ax ≤ b}, one solves min : {c	x |Ax ≤ b, ∀A ∈ U}, for some

suitably defined uncertainty set U. We give a brief introduction to robust

optimization in Section 14.2.

The remainder of this chapter is organized as follows. In Section 14.2 we

provide a brief review of robust optimization. In Section 14.3 we discuss

direct applications of robust optimization to constructing algorithms that

are resistant to data corruption. This is a direct application not only

of the methodology of robust optimization, but also of the motivation

behind the development of robust optimization. The focus is on developing

computationally efficient algorithms, resistant to bounded but otherwise

14.2 Background on Robust Optimization 371

arbitrary (even adversarial) noise. In Sections 14.4–14.6, we show that robust

optimization’s impact on machine learning extends far outside the originally

envisioned scope as developed in the optimization literature. In Section

14.4, we show that many existing machine learning algorithms that are

based on regularization, including support vector machines (SVMs), ridge

regression, and Lasso, are special cases of robust optimization. Using this

reinterpretation, their success can be understood from a unified perspective.

We also show how the flexibility of robust optimization paves the way for

the design of new regularization-like algorithms. Moreover, we show that

robustness can be used directly to prove properties such as regularity and

sparsity. In Section 14.5, we show that robustness can be used to prove

statistical consistency. Then, in Section 14.6, we extend the results of Section

14.5, showing that an algorithm’s generalization ability and its robustness

are related in a fundamental way.

In summary, we show that robust optimization has deep connections

to machine learning. In particular it yields a unified paradigm that (a)

explains the success of many existing algorithms; (b) provides a prescriptive

algorithmic approach to creating new algorithms with desired properties;

and (c) allows us to prove general properties of an algorithm.

14.2 Background on Robust Optimization

In this section we provide a brief background on robust optimization, and

refer the reader to the survey by Bertsimas et al. (2010), the textbook

of Ben-Tal et al. (2009), and references to the original papers therein for

more details.

Optimization affected by parameter uncertainty has long been a focus of

the mathematical programming community. As has been demonstrated in

compelling fashion (Ben-Tal and Nemirovski, 2000), solutions to optimiza-

tion problems can exhibit remarkable sensitivity to perturbations in the

problem parameters, thus often rendering a computed solution highly in-

feasible, suboptimal, or both. This parallels developments in related fields,

particularly robust control (refer to Zhou et al., 1996; Dullerud and Paganini,

2000, and the references therein).

Stochastic programming (e.g., Prékopa, 1995; Kall and Wallace, 1994)

assumes that the uncertainty has a probabilistic description. In contrast, ro-

bust optimization is built on the premise that the parameters vary arbitrarily

in some a priori known bounded set, called the uncertainty set. Suppose we

are optimizing a function f0(x), subject to the m constraints fi(x,ui) ≤ 0,

i = 1, . . . ,m, where ui denotes the parameters of function i. Then, whereas

372 Robust Optimization in Machine Learning

the nominal optimization problem solves min{f0(x) : fi(x,ui) ≤ 0, i =

1, . . . ,m}, assuming that the ui are known, robust optimization solves

minx : f0(x) (14.1)

s.t. : fi(x,ui) ≤ 0, ∀ui ∈ Ui, i = 1, . . . ,m.

14.2.1 Computational Tractability

The tractability of robust optimization, subject to standard and mild Slater-

like regularity conditions, amounts to separation for the convex set: X(U)
�
=

{x : fi(x,ui) ≤ 0, ∀ui ∈ Ui, i = 1, . . . ,m}. If there is an efficient algorithm

that asserts x ∈ X(U) or otherwise provides a separating hyperplane, then

(14.2) can be solved in polynomial time. While the set X(U) is a convex

set as long as each function fi is convex in x, it is not in general true that

there is an efficient separation algorithm for the set X(U). However, in many

cases of broad interest and application, solving the robust problem can be

done efficiently—the robustified problem may be of complexity comparable

to that of the nominal one. We outline some of the main complexity results

below.

14.2.1.1 An Example: Linear Programs with Polyhedral Uncertainty

When the uncertainty set, U, is polyhedral, the separation problem is not

only efficiently solvable, it is also in fact linear; thus the robust counterpart

is equivalent to a linear optimization problem. To illustrate this, consider

the problem with uncertainty in the constraint matrix:

minx : c	x
s.t. : max{ai:Diai≤di}[a

	
i x] ≤ bi, i = 1, . . . ,m.

The dual of the subproblem (recall that x is not a variable of optimization

in the inner max) again becomes a linear program[
maxai

: a	i x
s.t. : Diai ≤ di

]
←→

⎡⎣ minpi
: p	

i di

s.t. : p	
i Di = x

pi ≥ 0

⎤⎦ ,
and therefore the robust linear optimization now becomes:

minx,p1,...,pm
: c	x

s.t. : p	
i di ≤ bi, i = 1, . . . ,m

p	
i Di = x, i = 1, . . . ,m

pi ≥ 0, i = 1, . . . ,m.

14.3 Robust Optimization and Adversary Resistant Learning 373

Thus the size of such problems grows polynomially in the size of the nominal

problem and the dimensions of the uncertainty set.

14.2.1.2 Some General Complexity Results

We now list a few of the complexity results that are relevant to this chapter.

The reader may refer to Bertsimas et al. (2010); Ben-Tal et al. (2009), and

references therein for further details. The robust counterpart for a linear

program (LP) with polyhedral uncertainty is again an LP. For an LP with

ellipsoidal uncertainty, the counterpart is a second order cone program

(SOCP). A convex quadratic program with ellipsoidal uncertainty has a

robust counterpart that is a semidefinite program (SDP). An SDP with

ellipsoidal uncertainty has an NP-hard robust counterpart.

14.2.2 Probabilistic Interpretations and Results

The computational advantage of robust optimization is largely due to the

fact that the formulation is deterministic, and one deals with uncertainty

sets rather than probability distributions. While the paradigm makes sense

when the disturbances are not stochastic, or the distribution is not known,

tractability advantages have made robust optimization an appealing com-

putational framework even when the uncertainty is stochastic and the dis-

tribution is fully or partially known. A major success of robust optimization

has been the ability to derive a priori probability guarantees—for instance,

probability of feasibility—that the solution to a robust optimization will sat-

isfy, under a variety of probabilistic assumptions. Thus robust optimization

is a tractable framework one can use to build solutions with probabilistic

guarantees such as minimum probability of feasibility, or maximum proba-

bility of hinge loss beyond some threshold level, and so on. This probabilistic

interpretation of robust optimization is used throughout this chapter.

14.3 Robust Optimization and Adversary Resistant Learning

In this section we overview some of the direct applications of robust opti-

mization to coping with uncertainty (adversarial or stochastic) in machine

learning problems. The main themes are (a) the formulations one obtains

when using different uncertainty sets and (b) the probabilistic interpretation

and results one can derive by using robust optimization. Using ellipsoidal un-

certainty, we show that the resulting robust problem is tractable. Moreover,

we show that this robust formulation has interesting probabilistic interpre-

374 Robust Optimization in Machine Learning

tations. Then, using a polyhedral uncertainty set, we show that sometimes

it is possible to tractably model combinatorial uncertainty, such as missing

data.

Robust optimization-based learning algorithms have been proposed for

various learning tasks, such as learning and planning (Nilim and El

Ghaoui, 2005), Fisher linear discriminant analysis (Kim et al., 2005),

PCA (d’Aspremont et al., 2007), and many others. Instead of providing a

comprehensive survey, we use support vector machines (SVMs; e.g., Vapnik

and Lerner, 1963; Boser et al., 1992; Cortes and Vapnik, 1995) to illustrate

the methodology of robust optimization.

Standard SVMs consider the standard binary classification problem, where

we are given a finite number of training samples {xi, yi}mi=1 ⊆ R
n×{−1,+1},

and must find a linear classifier, specified by the function hw,b(x) =

sgn(〈w, x〉 + b), where 〈·, ·〉 denotes the standard inner product. The pa-

rameters (w, b) are obtained by solving the following convex optimization

problem:

min
w,b,ξ

: r(w, b) + C

m∑
i=1

ξi

s.t. : ξi ≥
[
1− yi(〈w,xi〉+ b)], i = 1, . . . ,m; (14.2)

ξi ≥ 0, i = 1, . . . ,m;

where r(w, b) is a regularization term, e.g., r(w, b) = 1
2‖w‖22. There are a

number of related formulations, some focusing on controlling VC-dimension,

promoting sparsity, or some other property (see Schölkopf and Smola (2001);

Steinwart and Christmann (2008), and references therein).

There are three natural ways that uncertainty affects the input data:

corruption in the location, xi; corruption in the label, yi; and corruption via

altogether missing data. We outline some applications of robust optimization

to these three settings.

14.3.1 Corrupted Location

Given observed points {xi}, the additive uncertainty model assumes that

xtrue
i = xi +ui. Robust optimization protects against the uncertainty ui by

minimizing the regularized training loss on all possible locations of the ui

in some uncertainty set, Ui.

Trafalis and Gilbert (2007) consider the ellipsoidal uncertainty set given

by

Ui =
{
ui : u	

i Σiui ≤ 1
}
, i = 1, . . . ,m,

14.3 Robust Optimization and Adversary Resistant Learning 375

so that each constraint becomes ξi ≥
[
1− yi(〈w,xi+ui〉+ b)], ∀ui ∈ Ui. By

duality, this is equivalent to yi(w
	xi + b) ≥ 1 + ‖Σ1/2

i w‖2 − ξi, and hence

their version of robust SVM reduces to

min
w,b,ξ

: r(w, b) + C

m∑
i=1

ξi

s.t. yi(w
	xi + b) ≥ 1− ξi + ‖Σ1/2

i w‖2; i = 1, . . . ,m; (14.3)

ξi ≥ 0; i = 1, . . . ,m.

Trafalis and Gilbert (2007) use r(w, b) = 1
2‖w‖2, while Bhattacharyya et al.

(2004) use the sparsity-inducing regularizer r(w, b) = ‖w‖1. In both settings,

the robust problem is an instance of a second-order cone program (SOCP).

Available solvers can solve SOCPs with hundreds of thousands of variables

and more.

If the uncertainty ui is stochastic, one can use this robust formulation

to find a classifier that satisfies constraints on the probability (w.r.t. the

distribution of ui) that each constraint is violated. In Shivaswamy et al.

(2006), the authors consider two varieties of such chance constraints for

i = 1, . . . ,m:

(a) Prui∼N(0̃,Σi)

(
yi(w

	(xi + ui) + b) ≥ 1− ξi
) ≥ 1− κi; (14.4)

(b) inf
ui∼(0̃,Σi)

Prui

(
yi(w

	(xi + ui) + b) ≥ 1− ξi
) ≥ 1− κi.

Constraint (a) controls the probability of constraint violation when the

uncertainty follows a known Gaussian distribution. Constraint (b) is more

conservative: it controls the worst-case probability of constraint violation,

over all centered distributions with variance Σi. Theorem 14.1 says that the

robust formulation with ellipsoidal uncertainty sets as above can be used to

control both of these quantities.

Theorem 14.1. For i = 1, . . . ,m consider the robust constraint as given

above:

yi(w
	xi + b) ≥ 1− ξi + γi‖Σ1/2w‖2.

If we take γi = Φ−1(κi), for Φ the Gaussian c.d.f., this constraint is

equivalent to constraint (a) of (14.4), while taking γi =
√

κi/(1− κi) yields

constraint (b).

14.3.2 Missing Data

Globerson and Roweis (2006) use robust optimization with polyhedral un-

certainty set to address the problem where some of the features of the testing

376 Robust Optimization in Machine Learning

samples may be deleted (possibly in an adversarial fashion). Using a dummy

feature to remove the bias term b if necessary, we can rewrite the nominal

problem as

min
w

:
1

2
‖w‖22 + C

m∑
i=1

[1− yiw
	xi]+.

For a given choice of w, the value of the term [1−yiw
	xi]+ in the objective,

under an adversarial deletion of K features, becomes

max
αi

[1− yiw
	(xi ◦ (1−αi))]+

s.t: αij ∈ {0, 1}; j = 1, . . . , n;
n∑

j=1

αij = K,

where ◦ denotes pointwise vector multiplication. While this optimization

problem is combinatorial, relaxing the integer constraint αij ∈ {0, 1} to be

0 ≤ αij ≤ 1 does not change the objective value. Thus, taking the dual of

the maximization and substituting into the original problem, one obtains

the classifier that is maximally resistant to up to K missing features:

min
w,vi,zi,ti,ξ

1

2
‖w‖22 + C

m∑
i=1

ξi

s.t. yiw
	xi − ti ≥ 1− ξi; i = 1, . . . ,m;

ξi ≥ 0; i = 1, . . . ,m;

ti ≥ Kzi +

n∑
j=1

vij ; i = 1, . . . ,m;

vi ≥ 0; i = 1, . . . ,m;

zi + vij ≥ yixijwij ; i = 1, . . . ,m; j = 1, . . . n.

This is again an SOCP, and hence fairly large instances can be solved with

specialized software.

14.3.3 Corrupted Labels

When the labels are corrupted, the problem becomes more difficult to

address due to its combinatorial nature. However, it too has been recently

addressed using robust optimization (Caramanis and Mannor, 2008). While

there is still a combinatorial price to pay in the complexity of the classifier

class, robust optimization can be used to find the optimal classifier; see

Caramanis and Mannor (2008) for details.

14.4 Robust Optimization and Regularization 377

14.4 Robust Optimization and Regularization

In this section and sections 14.5 and 14.6, we demonstrate that robustness

can provide a unified explanation for many desirable properties of a learning

algorithm, from regularity and sparsity, to consistency and generalization.

A main message of this chapter is that many regularized problems exhibit

a “hidden robustness”—they are in fact equivalent to a robust optimiza-

tion problem—which can then be used to directly prove properties such as

consistency and sparsity, and also to design new algorithms. The main prob-

lems that highlight this equivalence are regularized support vector machines,

�2-regularized regression, and �1-regularized regression, also known as Lasso.

14.4.1 Support Vector Machines

We consider regularized SVMs, and show that they are algebraically equiva-

lent to a robust optimization problem. We use this equivalence to provide a

probabilistic interpretation of SVMs, which allows us to propose new prob-

abilistic SVM-type formulations. This section is based on Xu et al. (2009).

At a high level it is known that regularization and robust optimization

are related; see for instance, El Ghaoui and Lebret (1997), Anthony and

Bartlett (1999), and Section 14.3. Yet, the precise connection between

robustness and regularized SVMs did not appear until Xu et al. (2009).

One of the mottos of robust optimization is to harness the consequences of

probability theory without paying the computational cost of having to use

its axioms. Consider the additive uncertainty model from Section 14.3.1:

xi+ui. If the uncertainties ui are stochastic, various limit results (LLN, CLT,

etc.) promise that even independent variables will exhibit strong aggregate

coupling behavior. For instance, the set {(u1, . . . ,um) :
∑m

i=1 ‖ui‖ ≤ c} will
have increasing probability asm grows. This motivates designing uncertainty

sets with this kind of coupling across uncertainty parameters. We leave it

to the reader to check that the constraint-wise robustness formulations of

Section 14.3.1 cannot be made to capture such coupling constraints across

the disturbances {ui}.
We rewrite SVM without slack variables, as an unconstrained optimiza-

tion. The natural robust formulation now becomes

min
w,b

max
u∈U

{r(w, b) +

m∑
i=1

max
[
1− yi(〈w,xi − ui〉+ b), 0

]}, (14.5)

where u denotes the collection of uncertainty vectors, {ui}. Describing our

coupled uncertainty set requires a few definitions. Definition 14.1 character-

izes the effect of different uncertainty sets, and captures the coupling that

378 Robust Optimization in Machine Learning

they exhibit. As an immediate consequence we obtain an equivalent robust

optimization formulation for regularized SVMs.

Definition 14.1. A set U0 ⊆ R
n is called an atomic uncertainty set if

(I) 0 ∈ U0;

(II) For any w0 ∈ R
n : sup

u∈U0

[w	
0 u] = sup

u′∈U0

[−w	
0 u

′] < +∞.

Definition 14.2. Let U0 be an atomic uncertainty set. A set U ⊆ R
n×m is

called a sublinear aggregated uncertainty set of U0, if

U− ⊆ U ⊆ U+,

where U− �
m⋃
t=1

U−
t ; U−

t � {(u1, . . . ,um)|ut ∈ U0; ui �=t = 0}.

U+ � {(α1u1, . . . , αmum)|
m∑
i=1

αi = 1; αi ≥ 0, ui ∈ U0, i = 1, . . . ,m}.

Sublinear aggregated uncertainty models the case where the disturbances

on each sample are treated identically, but their aggregate behavior across

multiple samples is controlled. Some interesting examples include

(1) U = {(u1, . . . ,um)|
m∑
i=1

‖ui‖ ≤ c};

(2) U = {(u1, . . . ,um)|∃t ∈ [1 : m]; ‖ut‖ ≤ c; ui = 0, ∀i �= t}; and

(3) U = {(u1, . . . ,um)|
m∑
i=1

√
c‖ui‖ ≤ c}.

All these examples share the same atomic uncertainty set U0 =
{
u
∣∣ ‖u‖ ≤

c
}
. Figure 14.1 illustrates a sublinear aggregated uncertainty set for n = 1

and m = 2, that is, the training set consists of two univariate samples.

Theorem 14.2. Assume {xi, yi}mi=1 are nonseparable, r(·, ·) : Rn+1 → R is

an arbitrary function, and U is a sublinear aggregated uncertainty set with

corresponding atomic uncertainty set U0. Then the min-max problem

min
w,b

sup
(u1,...,um)∈U

{
r(w, b) +

m∑
i=1

max
[
1− yi(〈w,xi − ui〉+ b), 0

]}
(14.6)

14.4 Robust Optimization and Regularization 379

xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx
xxx

xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx
xx

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

a. U− b. U+ c. U d. Box uncertainty

Figure 14.1: A sublinear aggregated uncertainty set U, and its contrast with the
box uncertainty set.

is equivalent to the following optimization problem on w, b, ξ:

min
w,b,ξ

: r(w, b) + sup
u∈U0

(w	u) +
m∑
i=1

ξi,

s.t. : ξi ≥ 1− [yi(〈w, xi〉+ b)], i = 1, . . . ,m;

ξi ≥ 0, i = 1, . . . ,m.

(14.7)

The minimization of (14.7) is attainable when r(·, ·) is lower semi-continuous.

Proof. We give only the proof idea. The details can be found in Xu et al.

(2009). Define

v(w, b) � sup
u∈U0

(w	u) +
m∑
i=1

max
[
1− yi(〈w,xi〉+ b), 0

]
.

In the first step, we show

v(ŵ, b̂) ≤ sup
(u1,...,um)∈U−

m∑
i=1

max
[
1− yi(〈ŵ,xi − ui〉+ b̂), 0

]
. (14.8)

This follows because the samples are nonseparable. In the second step, we

prove the reverse inequality:

sup
(u1,...,um)∈U+

m∑
i=1

max
[
1− yi(〈ŵ,xi − ui〉+ b̂), 0

] ≤ v(ŵ, b̂). (14.9)

This holds regardless of separability. Combining the two, adding the regu-

larizer, and then infimizing both sides concludes the proof.

An immediate corollary is that a special case of our robust formulation is

equivalent to the norm-regularized SVM setup:

Corollary 14.3. Let T �
{
(u1, . . .um)|∑m

i=1 ‖ui‖∗ ≤ c
}
, where ‖ · ‖∗

380 Robust Optimization in Machine Learning

stands for the dual norm of ‖ · ‖. If the training samples {xi, yi}mi=1 are

nonseparable, then the following two optimization problems on (w, b) are

equivalent.

min
w,b

: max
(u1,...,um)∈T

m∑
i=1

max
[
1− yi

(〈w, xi − ui〉+ b
)
, 0
]
, (14.10)

min
w,b

: c‖w‖+
m∑
i=1

max
[
1− yi

(〈w, xi〉+ b
)
, 0
]
. (14.11)

Proof. Let U0 be the dual-norm ball {u|‖u‖∗ ≤ c} and r(w, b) ≡ 0. Then

sup‖u‖∗≤c(w
	u) = c‖w‖. The corollary follows from Theorem 14.2. Notice

that the equivalence holds for any w and b.

This corollary explains the common belief that regularized classifiers

tend to be more robust. Specifically, it explains the observation that when

the disturbance is noise like and neutral rather than adversarial, a norm-

regularized classifier (without explicit robustness) has a performance often

superior to a box-type robust classifier (see Trafalis and Gilbert, 2007). One

take-away message is that while robust optimization is adversarial in its

formulation, it can be quite flexible, and can be designed to yield solutions,

such as the regularized solution above, that are appropriate for a non-

adversarial setting.

One interesting research direction is to use this equivalence to find good

regularizers without the need for cross validation. This could be done by

mapping a measure of the variation in the training data to an appropriate

uncertainty set, and then using the above equivalence to map back to a

regularizer.

14.4.1.1 Kernelization

The previous results can easily be generalized to the kernelized setting. The

kernelized SVM formulation considers a linear classifier in the feature space

H, a Hilbert space containing the range of some feature mapping Φ(·). The
standard formulation is as follows,

min
w,b,ξ

: r(w, b) +

m∑
i=1

ξi

s.t. : ξi ≥
[
1− yi(〈w,Φ(xi)〉+ b)], i = 1, . . . ,m;

ξi ≥ 0, i = 1, . . . ,m;

where we use the representer theorem (see Schölkopf and Smola (2001)).

The definitions of an atomic uncertainty set and a sublinear aggregated

14.4 Robust Optimization and Regularization 381

uncertainty set in the feature space are identical to Definitions 14.1 and 14.2,

with R
n replaced by H. Theorem 14.4 is a feature space counterpart of

Theorem 14.2, and the proof follows from a similar argument.

Theorem 14.4. Assume {Φ(xi), yi}mi=1 are not linearly separable, r(·) :

H × R → R is an arbitrary function, U ⊆ Hm is a sublinear aggregated

uncertainty set with corresponding atomic uncertainty set U0 ⊆ H. Then

the min-max problem

min
w,b

sup
(u1,...,um)∈U

{
r(w, b) +

m∑
i=1

max
[
1− yi(〈w,Φ(xi)− ui〉+ b), 0

]}
is equivalent to

min
w,b,ξ

: r(w, b) + sup
u∈U0

(〈w, u〉) +
m∑
i=1

ξi,

s.t. : ξi ≥ 1− yi
(〈w, Φ(xi)〉+ b

)
, i = 1, . . . ,m; (14.12)

ξi ≥ 0, i = 1, . . . ,m.

The minimization of (14.12) is attainable when r(·, ·) is lower semi-

continuous.

For some widely used feature mappings (e.g., RKHS of a Gaussian kernel),

{Φ(xi), yi}mi=1 are always separable. In this case, the equivalence reduces to

a bound.

Corollary 14.5 is the feature space counterpart of Corollary 14.3, where

‖ · ‖H stands for the RKHS norm, that is, for z ∈ H, ‖z‖H =
√〈z, z〉.

Corollary 14.5. Let TH �
{
(u1, . . .um)|∑m

i=1 ‖ui‖H ≤ c
}
. If {Φ(xi), yi}mi=1

are non-separable, then the following two optimization problems on (w, b)

are equivalent:

min
w,b

: max
(u1,...,um)∈TH

m∑
i=1

max
[
1− yi

(〈w, Φ(xi)− ui〉+ b
)
, 0
]
,

min
w,b

: c‖w‖H +
m∑
i=1

max
[
1− yi

(〈w, Φ(xi)〉+ b
)
, 0
]
. (14.13)

Equation (14.13) is a variant form of the standard SVM that has a squared

RKHS norm regularization term, and by convexity arguments the two for-

mulations are equivalent up to a change of tradeoff parameter c. Therefore,

Corollary 14.5 essentially means that the standard kernelized SVM is im-

plicitly a robust classifier (without regularization) with disturbance in the

featurespace, and the sum of the magnitudes of the disturbance is bounded.

Disturbance in the feature space is less intuitive than disturbance in the

382 Robust Optimization in Machine Learning

sample space, and Lemma 14.6 relates these two different notions.

Lemma 14.6. Suppose there exists X ⊆ R
n, ρ > 0, and a continuous non-

decreasing function f : R+ → R
+ satisfying f(0) = 0, such that

k(x,x) + k(x′,x′)− 2k(x,x′) ≤ f(‖x− x′‖22), ∀x,x′ ∈ X, ‖x− x′‖2 ≤ ρ.

Then,

‖Φ(x̂+ u)− Φ(x̂)‖H ≤
√

f(‖u‖22), ∀‖u‖2 ≤ ρ, x̂, x̂+ δ ∈ X.

Lemma 14.6 essentially says that under certain conditions, robustness in

the feature space is a stronger requirement than robustness in the sample

space. Therefore, a classifier that achieves robustness in the feature space

also achieves robustness in the sample space. Notice that the condition of

Lemma 14.6 is rather weak. In particular, it holds for any continuous k(·, ·)
and bounded domain X.

14.4.1.2 Probabilistic Interpretations

As discussed and demonstrated above, robust optimization can often be used

for probabilistic analysis. In this section, we show that robust optimization

and the equivalence theorem can be used to construct a classifier with prob-

abilistic margin protection, that is, a classifier with probabilistic constraints

on the chance of violation beyond a given threshold. Second, we show that

in the Bayesian setup, if one has a prior only on the total magnitude of the

disturbance vector, robust optimization can be used to tune the regularizer.

Probabilistic Protection. We can use Problem (14.6) to obtain an

upper bound for a chance-constrained classifier. Suppose the disturbance

is stochastic with known distribution. We denote the disturbance vector by

(ur
1, . . .u

r
m) to emphasize that it is now a random variable. The chance-

constrained classifier minimizes the hinge loss that occurs with probability

above some given confidence level η ∈ [0, 1]. The classifier is given by the

optimization problem

min
w,b,l

: l (14.14)

s.t. : P

{ m∑
i=1

max
[
1− yi(〈w, xi − ur

i 〉+ b), 0
] ≤ l

}
≥ 1− η.

The constraint controls the η-quantile of the average (or equivalently the

sum of) empirical errors. In Shivaswamy et al. (2006), Lanckriet et al.

(2003), and Bhattacharyya et al. (2004), the authors explore a different

direction; starting from the constraint formulation of SVM as in (14.2),

14.4 Robust Optimization and Regularization 383

they impose probabilistic constraints on each random variable individually.

This formulation requires all constraints to be satisfied with high probability

simultaneously. Thus, instead of controlling the η-quantile of the average

loss, they control the η-quantile of the hinge loss for each sample. For

the same reason that box uncertainty in the robust setting may be too

conservative, this constraint-wise formulation may also be too conservative.

Problem (14.14) is generally intractable. However, we can approximate it

as follows. Let

ĉ � inf {α |P(
m∑
i=1

‖ui‖∗ ≤ α) ≥ 1− η}.

Notice that ĉ is easily simulated, given μ. Then for any (w, b), with proba-

bility no less than 1− η, the following holds:

m∑
i=1

max
[
1− yi(〈w, xi − ur

i 〉+ b), 0
]

≤ max∑
i ‖ui‖∗≤ĉ

m∑
i=1

max
[
1− yi(〈w, xi − ui〉+ b), 0

]
.

Thus (14.14) is upper-bounded by (14.11) with c = ĉ. This gives an

additional probabilistic robustness property of the standard regularized

classifier. We observe that we can follow a similar approach using the

constraint-wise robust setup, that is, the box uncertainty set. The interested

reader can check that this would lead to considerably more pessimistic

approximations of the chance constraint.

A Bayesian Regularizer. Next, we show how the above can be used in a

Bayesian setup, to obtain an appropriate regularization coefficient. Suppose

the total disturbance cr �
∑m

i=1 ‖ur
i‖∗ is a random variable and follows

a prior distribution ρ(·). This can model, for example, the case where the

training sample set is a mixture of several data sets in which the disturbance

magnitude of each set is known. Such a setup leads to the following classifier

which minimizes the Bayesian (robust) error:

min
w,b

:

∫ {
max∑ ‖δi‖∗≤c

m∑
i=1

max
[
1− yi

(〈w, xi − ui〉+ b
)
, 0
]}

dρ(c).(14.15)

By Corollary 14.3, the Bayesian classifier (14.15) is equivalent to

min
w,b

:

∫ {
c‖w‖+

m∑
i=1

max
[
1− yi

(〈w, xi〉+ b
)
, 0
]}

dρ(c),

384 Robust Optimization in Machine Learning

which can be further simplified as

min
w,b

: c‖w‖+
m∑
i=1

max
[
1− yi

(〈w, xi〉+ b
)
, 0
]
,

where c �
∫
c dρ(c). This provides a justifiable parameter tuning method

different from cross validation: simply using the expected value of cr.

14.4.2 Tikhonov Regularized �2-Regression

We now move from classification and SVMs to regression, and show that

�2-regularized regression, like SVM, is equivalent to a robust optimization

problem. This equivalence is then used to define new regularization-like

algorithms, and also to prove properties of the regularized solution.

Given input-output pairs xi, yi which form the rows of X and the elements

of vector y, respectively, the goal is to find a predictor β that minimizes the

squared loss ‖y−Xβ‖22. As is well known, this problem is often notoriously

ill-conditioned, and may not have a unique solution. The classical and much-

explored remedy has been, as in the SVM case, regularization. Regularizing

with an �2-norm, known in statistics as ridge regression (Hoerl, 1962) and

in analysis as Tikhonov regularization (Tikhonov and Arsenin, 1977), solves

the problem1

min
β

: ‖y −Xβ‖2 + λ‖β‖2. (14.16)

The main result of this section states that Tikhonov-regularized regression

is the solution to a robust optimization, where X is subject to matrix-

disturbance U with a bounded Frobenius norm.

Theorem 14.7. The robust optimization formulation

min
β

: max
U :‖U‖F≤λ

‖y − (X + U)β‖2

is equivalent to Tikhonov-regularized regression (14.16).

Proof. For any perturbation U , we have ‖y−(X+U)β‖2 = ‖y−Xβ−Uβ‖2.
By the triangle inequality and because ‖U‖F ≤ λ, we thus have ‖y − (X +

U)β‖2 ≤ ‖y − Xβ‖ + λ‖β‖2. On the other hand, for any given β, we can

choose a rank-1 U so that Uβ is aligned with (y −Xβ), and thus equality

is attained.

1. This problem is equivalent to one where we square the norm, up to a change in the
regularization coefficient, λ.

14.4 Robust Optimization and Regularization 385

This connection was first explored in the seminal work of El Ghaoui and

Lebret (1997). There, they further show that the solution to the robust coun-

terpart is almost as easily determined as that to the nominal problem: one

need perform only a line search, in the case where the SVD of A is available.

Thus, the computational cost of the robust regression is comparable to the

original formulation.

As with SVMs, the “hidden robustness” has several consequences. By

changing the uncertainty set, robust optimization allows for a rich class of

regularization-like algorithms. Motivated by problems from robust control,

El Ghaoui and Lebret (1997) then consider perturbations that have struc-

ture, leading to structured robust least-squares problems. They then analyze

tractability and approximations to these structured least squares.2 Finally,

they use the robustness equivalence to prove regularity properties of the

solution. Refer to El Ghaoui and Lebret (1997) for further details about

structured robustness, tractability, and regularity.

14.4.3 Lasso

In this section, we consider a similar problem: �1-regularized regression, also

known as Lasso (Tibshirani, 1996). Lasso has been explored extensively

for its remarkable sparsity properties (e.g., Tibshirani, 1996; Bickel et al.,

2009; Wainwright, 2009), most recently under the banner of compressed

sensing (e.g., Chen et al. (1999); Candès et al. (2006), Candès and Tao

(2006); Candès and Tao (2007); Candès and Tao (2008), Donoho (2006),

for an incomplete list). Following the theme of this section, we show that

the solution to Lasso is the solution to a robust optimization problem.

As with Tikhonov regularization, robustness provides a connection of the

regularizer to a physical property: protection from noise. This allows a

principled selection of the regularizer. Moreover, by considering different

uncertainty sets, we obtain generalizations of Lasso. Next, we go on to show

that robustness can itself be used as an avenue for exploring properties of the

solution. In particular, we show that robustness explains why the solution

is sparse—that is, Lasso is sparse because it is robust. The analysis and

the specific results obtained differ from standard sparsity results, providing

different geometric intuition. This section is based on results reported in Xu

et al. (2010a), where full proofs to all stated results can be found.

Lasso, or �1-regularized regression, has a form similar to ridge regression,

2. Note that arbitrary uncertainty sets may lead to intractable problems. This is because
the inner maximization in the robust formulation is of a convex function, and hence is
nonconvex.

386 Robust Optimization in Machine Learning

differing only in the regularizer: 3

min : ‖y −Xβ‖2 + λ‖β‖1.
For a general uncertainty set U, using the same notation as in Section 14.4.2,

the robust regression formulation becomes

min
β∈Rm

max
U∈U

‖y − (X + U)β‖2, (14.17)

In the previous section, the uncertainty set was U = {U : ‖U‖F ≤ λ}. We

consider a different uncertainty set here. Writing

U =

⎡⎣ | | · · · |
u1 u2 · · · um

| | · · · |

⎤⎦ , where (u1, . . . ,um) ∈ U,

let the uncertainty set U have the form

U �
{
(u1, · · · ,um)

∣∣∣‖ui‖2 ≤ ci, i = 1, · · · ,m
}
. (14.18)

This is a featurewise uncoupled uncertainty set: the uncertainty in different

features need not satisfy any joint constraints. In contrast, the constraint

‖U‖F ≤ 1 used in Section 14.4.2 is featurewise coupled. We revisit coupled

uncertainty sets below.

Theorem 14.8. The robust regression problem (14.17) with an uncertainty

set of the form (14.18) is equivalent to the following �1-regularized regression

problem:

min
β∈Rm

{
‖y −Xβ‖2 +

m∑
i=1

ci|βi|
}
. (14.19)

Proof. Fix β∗. We prove that maxU∈U ‖y − (X + U)β∗‖2 = ‖y −Xβ∗‖2 +∑m
i=1 ci|β∗

i |.
The inequality

max
U∈U

‖y − (X + U)β∗‖2 ≤ ‖y −Xβ∗‖2 +
m∑
i=1

|β∗
i |ci

follows from the triangle inequality, as in our proof in Section 14.4.2. The

3. Again we remark that with a change of regularization parameter, this is equivalent to
the more common form appearing with a square outside the norm.

14.4 Robust Optimization and Regularization 387

other inequality follows, if we take

u �
{

y−Xβ∗

‖y−Xβ∗‖2
if Xβ∗ �= y,

any vector with unit �2-norm otherwise;

and let

u∗
i �
{ −cisgn(β∗

i)u if x∗i �= 0;

−ciu otherwise.

Taking ci = c and normalizing xi for all i, Problem (14.19) recovers the

well-known Lasso (Tibshirani, 1996; Efron et al., 2004).

14.4.3.1 General Uncertainty Sets

Using this equivalence, we generalize to Lasso-like regularization algorithms

in two ways: (a) to the case of an arbitrary norm and (b) to the case of

coupled uncertainty sets.

Theorem 14.9. For ‖ · ‖a, an arbitrary norm in the Euclidean space, the

robust regression problem

min
β∈Rm

{
max
U∈Ua

‖y − (X + U)β‖a
}
,

where

Ua �
{
(u1, · · · ,um)

∣∣∣‖ui‖a ≤ ci, i = 1, · · · ,m
}
,

is equivalent to the following regularized regression problem

min
β∈Rm

{
‖y −Xβ‖a +

m∑
i=1

ci|βi|
}
.

We next consider featurewise coupled uncertainty sets. They can be used

to incorporate additional information about potential noise in the problem,

when available, to limit the conservativeness of the worst-case formulation.

Consider the uncertainty set

U′ �
{
(u1, · · · ,um)

∣∣ fj(‖u1‖a, · · · , ‖um‖a) ≤ 0; j = 1, · · · , k} ,
where each fj(·) is a convex function. The resulting robust formulation is

equivalent to a more general regularization type of problem and, moreover,

it is tractable.

388 Robust Optimization in Machine Learning

Theorem 14.10. Let U′ be as above, and assume that the set

Z � {z ∈ R
m|fj(z) ≤ 0, j = 1, · · · , k; z ≥ 0}

has a nonempty relative interior. Then the robust regression problem

min
β∈Rm

{
max
U∈U′

‖y − (X + U)β‖a
}

is equivalent to the following regularized regression problem:

min
λ∈Rk

+,κ∈Rm
+ ,β∈Rm

{
‖y −Xβ‖a + v(λ,κ,β)

}
, (14.20)

where v(λ,κ,β) � max
c∈Rm

[
(κ+ |β|)	c−

k∑
j=1

λjfj(c)
]

and, in particular, is efficiently solvable.

The next two corollaries are a direct application of Theorem 14.10.

Corollary 14.11. Suppose

U′ =
{
(δ1, · · · , δm)

∣∣∣∥∥‖δ1‖a, · · · , ‖δm‖a∥∥s ≤ l
}
,

for arbitrary norms ‖ · ‖a and ‖ · ‖s. Then the robust problem is equivalent

to the regularized regression problem

min
β∈Rm

{
‖y −Xβ‖a + l‖β‖∗s

}
,

where ‖ · ‖∗s is the dual norm of ‖ · ‖s.
This corollary interprets arbitrary norm-based regularizers from a robust

regression perspective. For example, taking both ‖ · ‖α and ‖ · ‖s to be the

Euclidean norm, U′ is the set of matrices with bounded Frobenius norm,

and Corollary 14.11 recovers Theorem 14.7.

The next corollary considers general polytope uncertainty sets, where the

columnwise norm vector of the realizable uncertainty belongs to a polytope.

To illustrate the flexibility and potential use of such an uncertainty set, take

‖ · ‖a to be the �1-norm and the polytope to be the standard simplex, the

resulting uncertainty set consists of matrices with bounded ‖·‖2,1-norm. This

is the �1-norm of the �2-norm of the columns, and has numerous applications,

including outlier removal (Xu et al., 2010c).

Corollary 14.12. Suppose

U′ =
{
(u1, · · · ,um)

∣∣∣Tc ≤ s; where: cj = ‖uj‖a
}
,

14.4 Robust Optimization and Regularization 389

for a given matrix T , vector s, and arbitrary norm ‖ · ‖a. Then the robust

regression is equivalent to the following regularized regression problem with

variables β and λ:

min
β,λ

: ‖y −Xβ‖a + s	λ

s.t. β ≤ T	λ;
−β ≤ T	λ;
λ ≥ 0.

14.4.3.2 Sparsity

In this section, we investigate the sparsity properties of robust regression,

and show in particular that Lasso is sparse because it is robust. This new

connection between robustness and sparsity suggests that robustifying with

respect to a featurewise independent uncertainty set might be a plausible

way to achieve sparsity for other problems.

We show that if there is any perturbation in the uncertainty set that

makes some feature irrelevant, that is, not contributing to the regression

error, then the optimal robust solution puts no weight there. Thus, if the

features in an index set I ⊂ {1, . . . , n} can be perturbed so as to be made

irrelevant, then the solution will be supported on the complement, Ic.

To state the main theorem of this section, we introduce some notation.

Given an index subset I ⊆ {1, . . . , n}, and a matrix U , let U I denote the

restriction of U to feature set I, that is, U I equals U on each feature indexed

by i ∈ I, and is zero elsewhere. Similarly, given a featurewise uncoupled

uncertainty set U, let UI be the restriction of U to the feature set I, that is,

UI � {U I |U ∈ U}. Any element U ∈ U can be written as UI + U Ic

(here

Ic � {1, . . . , n} \ I) with U I ∈ UI and U Ic ∈ UIc

.

Theorem 14.13. The robust regression problem

min
β∈Rm

{
max
ΔA∈U

‖y − (X + U)β‖2
}

(14.21)

has a solution supported on an index set I if there exists some perturbation

Ũ ∈ UIc

, such that the robust regression problem

min
β∈Rm

{
max
U∈UI

‖y − (X + Ũ + U)β‖2
}

(14.22)

has a solution supported on the set I.

Theorem 14.13 is a special case of Theorem 14.13’ with cj = 0 for all j �∈ I.

Theorem 14.13’: Let β∗ be an optimal solution of the robust regression

390 Robust Optimization in Machine Learning

problem

min
β∈Rm

{
max
U∈U

‖y − (X + U)β‖2
}
, (14.23)

and let I ⊆ {1, · · · ,m} be such that β∗
j = 0 ∀ j �∈ I. Let

Ũ �
{
(u1, · · · ,um)

∣∣∣‖ui‖2 ≤ ci, i ∈ I; ‖uj‖2 ≤ cj + lj , j �∈ I
}
.

Then, β∗ is an optimal solution of

min
β∈Rm

{
max
U∈Ũ

‖y − (X̃ + U)β‖2
}

(14.24)

for any X̃ that satisfies ‖x̃j − xj‖ ≤ lj for j �∈ I, and x̃i = xi for i ∈ I.

In fact, we can replace the �2-norm loss with any loss function f(·)
which satisfies the condition that if βj = 0, X and X ′ differ only in

the jth column, and then f(y, X,β) = f(y, X ′,β). This theorem thus

suggests a methodology for constructing sparse algorithms by solving a

robust optimization with respect to columnwise uncoupled uncertainty sets.

When we consider �2-loss, we can translate the condition of a feature being

“irrelevant” to a geometric condition: orthogonality. We now use the result

of Theorem 14.13 to show that robust regression has a sparse solution as long

as an incoherence-type property is satisfied. This result is more in line with

the traditional sparsity results, but we note that the geometric reasoning

is different, now based on robustness. Specifically, we show that a feature

receives zero weight if it is “nearly” (i.e., within an allowable perturbation)

orthogonal to the signal and all relevant features.

Theorem 14.14. Let ci = c for all i and consider �2-loss. Suppose that there

exists I ⊂ {1, · · · ,m} such that for all v ∈ span
({xi, i ∈ I}⋃{y}), ‖v‖ = 1,

we have v	xj ≤ c, ∀j �∈ I. Then there exists an optimal solution β∗ that

satisfies β∗
j = 0, ∀j �∈ I.

The proof proceeds as Theorem 14.13’ would suggest: the columns in Ic

can be perturbed so that they are made irrelevant, and thus the optimal

solution will not be supported there; see Xu et al. (2010a) for details..

14.5 Robustness and Consistency

In this section we explore a fundamental connection between learning and

robustness by using robustness properties to re-prove the consistency of ker-

nelized SVM, and then of Lasso. The key difference from the proofs here and

those seen elsewhere (e.g., Steinwart, 2005; Steinwart and Christmann, 2008;

14.5 Robustness and Consistency 391

Wainwright, 2009) is that we replace the metric entropy, VC-dimension, and

stability conditions typically used, with a robustness condition. Thus we con-

clude that SVM and Lasso are consistent because they are robust.

14.5.1 Consistency of SVM

Let X ⊆ R
n be bounded, and suppose the training samples (xi, yi)

∞
i=1

are generated according to an unknown i.i.d. distribution P supported on

X × {−1, +1}. Theorem 14.15 shows that our robust classifier, and thus

regularized SVM, asymptotically minimizes an upper bound of the expected

classification error and hinge loss as the number of samples increases.

Theorem 14.15. Let K � maxx∈X ‖x‖2. Then there exists a random

sequence {γm,c} such that

1. The following bounds on the Bayes loss and the hinge loss hold uniformly

for all (w, b):

E(x,y)∼P(1y �=sgn(〈w,x〉+b)) ≤ γm,c + c‖w‖2 + 1

m

m∑
i=1

max
[
1− yi(〈w, xi〉+ b), 0

]
;

E(x,y)∼P

(
max(1− y(〈w, x〉+ b), 0)

) ≤
γm,c(1 +K‖w‖2 + |b|) + c‖w‖2 + 1

m

m∑
i=1

max
[
1− yi(〈w, xi〉+ b), 0

]
.

2. For every c > 0, limm→∞ γm,c = 0 almost surely, and the convergence is

uniform in P.

Proof. We outline the basic idea of the proof here; refer to Xu et al.

(2009) for the technical details. We consider the testing sample set as a

perturbed copy of the training sample set, and measure the magnitude

of the perturbation. For testing samples that have “small” perturbations,

Corollary 14.3 guarantees that the quantity c‖w‖2 + 1
m

∑m
i=1 max

[
1 −

yi(〈w, xi〉 + b), 0
]
upper-bounds their total loss. Therefore, we only need

to show that the fraction of testing samples having “large” perturbations

diminishes to prove the theorem. We show this using a balls and bins

argument. Partitioning X×{−1,+1}, we match testing and training samples

that fall in the same partition. We then use the Bretagnolle-Huber-Carol

inequality for multinomial distributions to conclude that the fraction of

unmatched points diminishes to zero.

Based on Theorem 14.15, it can be further shown that the expected

classification error of the solutions of SVM converges to the Bayes risk,

that is, SVM is consistent.

392 Robust Optimization in Machine Learning

14.5.2 Consistency of Lasso

In this section, we re-prove the asymptotic consistency of Lasso by using

robustness. The basic idea of the consistency proof is as follows. We show

that the robust optimization formulation can be seen to have the maximum

expected error w.r.t. a class of probability measures. This class includes a

kernel density estimator, and using this, we show that Lasso is consistent.

14.5.2.1 Robust Optimization and Kernel Density Estimation

En route to proving the consistency of Lasso based on robust optimization,

we discuss another result of independent interest. We link robust optimiza-

tion to worst-case expected utility, that is, the worst-case expectation over

a set of measures. For the proofs, and more along this direction, see Xu

et al. (2010a,b). Throughout this section, we use P to represent the set of

all probability measures (on Borel σ-algebra) of Rm+1.

We first establish a general result on the equivalence between a robust

optimization formulation and a worst-case expected utility:

Proposition 14.16. Given a function f : R
m+1 → R and Borel sets

Z1, · · · ,Zn ⊆ R
m+1, let

Pn � {μ ∈ P|∀S ⊆ {1, · · · , n} : μ(
⋃
i∈S

Zi) ≥ |S|/n}.

The following holds:

1

n

n∑
i=1

sup
(xi,yi)∈Zi

f(xi, yi) = sup
μ∈Pn

∫
Rm+1

f(x, y)dμ(x, y).

This leads to the Corollary 14.17 for Lasso, which states that for a given

solution β, the robust regression loss over the training data is equal to the

worst-case expected generalization error.

Corollary 14.17. Given y ∈ R
n, X ∈ R

n×m, the following equation holds

for any β ∈ R
m,

‖y−Xβ‖2+
√
ncn(‖β‖1+1) = sup

μ∈P̂(n)

√
n

∫
Rm+1

(y′−x′	β)2dμ(x′, y′). (14.25)

14.5 Robustness and Consistency 393

Where we let xij and uij be the (i, j)-entries of X and U , respectively, and

P̂(n) �
⋃

‖σ‖2≤√
ncn; ∀i:‖ui‖2≤√

ncn

Pn(X,U,y,σ);

Pn(X,U,y,σ) � {μ ∈ P|Zi = [yi − σi, yi + σi]×
m∏
j=1

[xij − uij , xij + uij];

∀S ⊆ {1, · · · , n} : μ(
⋃
i∈S

Zi) ≥ |S|/n}.

The proof of consistency relies on showing that the set P̂(n) of distribu-

tions contains a kernel density estimator. Recall the basic definition: the

kernel density estimator for a density h in R
d, originally proposed in Rosen-

blatt (1956) and Parzen (1962), is defined by

hn(x) = (ncdn)
−1

n∑
i=1

K

(
x− x̂i

cn

)
,

where {cn} is a sequence of positive numbers, x̂i are i.i.d. samples generated

according to h, and K is a Borel measurable function (kernel) satisfying

K ≥ 0,
∫
K = 1. See Devroye and Györfi (1985), Scott (1992), and references

therein for detailed discussions. A celebrated property of a kernel density

estimator is that it converges in L1 to h when cn ↓ 0 and ncdn ↑ ∞ (Devroye

and Györfi, 1985).

14.5.2.2 Density Estimation and Consistency of Lasso

We now use robustness of Lasso to prove its consistency. Throughout, we

use cn to represent the robustness level c where there are n samples. We

take cn to zero as n grows.

Recall the standard generative model in statistical learning: let P be a

probability measure with bounded support that generates i.i.d. samples

(yi,xi), and has a density f∗(·). Denote the set of the first n samples by

Sn. Define

β(cn, Sn) � argmin
β

{√√√√ 1

n

n∑
i=1

(yi − x	
i β)

2 + cn‖β‖1
}

= argmin
β

{√n

n

√√√√ n∑
i=1

(yi − x	
i β)

2 + cn‖β‖1
}
;

β(P) � argmin
β

{√∫
y,x

(y − x	β)2dP(y,x)
}
.

394 Robust Optimization in Machine Learning

In words, β(cn, Sn) is the solution to Lasso with the tradeoff parameter

set to cn
√
n, and β(P) is the “true” optimal solution. We establish that

β(cn, Sn)→ β(P) using robustness.

Theorem 14.18. Let {cn} be such that cn ↓ 0 and limn→∞ n(cn)
m+1 =∞.

Suppose there exists a constant H such that ‖β(cn, Sn)‖2 ≤ H for all n.

Then,

lim
n→∞

√∫
y,x

(y − x	β(cn,Sn))2dP(y,x) =

√∫
y,x

(y − x	β(P))2dP(y,x),

almost surely.

We give an outline of the proof; refer to Xu et al. (2010a) for the details. In

Section 14.4.3 we showed that Lasso is a special case of robust optimization.

Then, in Section 14.5.2.1, we proved that robust optimization is equivalent

to a worst-case expectation. The proof follows by showing that the sets Pn,

in the worst-case expectation equivalent to Lasso, contain a kernel density

estimator. Since these sets shrink, consistency follows.

The assumption that ‖x(cn, Sn)‖2 ≤ H can be removed. As in Theo-

rem 14.18, the proof technique rather than the result itself is of interest. We

refer the interested reader to Xu et al. (2010a).

14.6 Robustness and Generalization

We have already seen that regularized regression and regularized SVMs are

special cases of robust optimization, and hence exhibit robustness to per-

turbed data. This robustness was used above to show that ridge regression

has a Lipschitz solution, that Lasso is sparse, and that SVM and Lasso are

consistent. In this section, we show that robustness can be used to control

the estimation of the risk (i.e., generalization error) of learning algorithms.

The results we describe are based on Xu and Mannor (2010b).

Several approaches have been proposed to bound the deviation of the risk

from its empirical measurement, and among these methods, those based on

uniform convergence and stability are the most widely used (e.g., Vapnik and

Chervonenkis, 1991; Evgeniou et al., 2000; Alon et al., 1997; Bartlett, 1998;

Bartlett and Mendelson, 2002; Bartlett et al., 2005; Bousquet and Elisseeff,

2002; Poggio et al., 2004; Mukherjee et al., 2006, and many others). We

provide a new, robustness-driven approach to proving generalization bounds.

Whereas in previous sections “robustness” was defined directly in terms

of robust optimization, here we abstract this definition. Because we consider

abstract algorithms in this section, we introduce some necessary notations,

14.6 Robustness and Generalization 395

that differ from those in previous sections. We use Z to denote the set

from which each sample is drawn, and H to denote the hypothesis set.

Throughout this section we use s ∈ Zm to denote the training sample set

consisting ofm training samples (s1, · · · , sm). A learning algorithm A is thus

a mapping from Zm to H. We use As to represent the hypothesis learned,

given training set s. For each hypothesis h ∈ H and each point z ∈ Z, there is

an associated loss l(h, z), which is nonnegative and upper-bounded uniformly

by a scalar M . In the special case of supervised learning, the sample space

can be decomposed as Z = Y × X, and the goal is to learn a mapping from

X to Y, that is, to predict the y-component given the x-component. Hence

we use As(x) to represent the predicted y-component (label) of x ∈ X when

A is trained on s. We call X the input space and Y the output space. We

use |x and |y to denote the x-component and y-component of a point. For

example, si|x is the x-component of si. Finally, we use N(ε, T, ρ) to denote

the ε-covering number of a space T equipped with a metric ρ (see van der

Vaart and Wellner, 2000, for a precise definition).

Definition 14.3 says that an algorithm is robust, if we can partition the

sample set into finite subsets, such that if a new sample falls into the same

subset as a training sample, then the loss of the former is close to the loss

of the latter.

Definition 14.3. Algorithm A is (K, ε(s)) robust if Z can be partitioned

into K disjoint sets, denoted by {Ci}Ki=1, such that ∀s ∈ s,

s, z ∈ Ci, =⇒ |l(As, s)− l(As, z)| ≤ ε(s). (14.26)

14.6.1 Generalization Properties of Robust Algorithms

In this section we use Definition 14.3 to derive PAC bounds for robust

algorithms. Let the sample set s consist of m i.i.d. samples generated by

an unknown distribution μ. Let l̂(·) and lemp(·) denote the expected error

and the training error, respectively. That is,

l̂(As) � Ez∼μl(As, z); lemp(As) �
1

m

∑
si∈s

l(As, si).

Theorem 14.19. If s consists of m i.i.d. samples, the loss function l(·, ·)
is upper-bounded by M , and A is (K, ε(s))-robust, then for any δ > 0, with

probability at least 1− δ,∣∣∣l̂(As)− lemp(As)
∣∣∣ ≤ ε(s) +M

√
2K ln 2 + 2 ln(1/δ)

m
.

Proof. The proof follows by partitioning the set and using inequalities for

396 Robust Optimization in Machine Learning

multinomial random variables, à la the Bretagnolle-Huber-Carol inequality.

Theorem 14.19 requires that we fix aK a priori. However, it is often worth-

while to consider adaptive K. For example, in the large-margin classification

case, typically the margin is known only after s is realized. That is, the value

of K depends on s. Because of this dependency, we need a generalization

bound that holds uniformly for all K.

Corollary 14.20. If s consists of m i.i.d. samples, and A is (K, εK(s))-

robust for all K ≥ 1, then for any δ > 0, with probability at least 1− δ,

∣∣∣l̂(As)− lemp(As)
∣∣∣ ≤ inf

K≥1

⎡⎣εK(s) +M

√
2K ln 2 + 2 ln K(K+1)

δ

m

⎤⎦ .
If ε(s) does not depend on s, we can sharpen the bound given in Corol-

lary 14.20.

Corollary 14.21. If s consists of m i.i.d. samples, and A is (K, εK)-robust

for all K ≥ 1, then for any δ > 0, with probability at least 1− δ,

∣∣∣l̂(As)− lemp(As)
∣∣∣ ≤ inf

K≥1

⎡⎣εK +M

√
2K ln 2 + 2 ln 1

δ

m

⎤⎦ .
14.6.2 Examples of Robust Algorithms

In this section we provide some examples of robust algorithms. For the proofs

of these examples, refer to Xu and Mannor (2010b,a). Our first example is

majority voting (MV) classification (e.g., Devroye et al., 1996, Section 6.3),

which partitions the input space X and labels each partition set according

to a majority vote of the training samples belonging to it.

Example 14.1 (majority voting). Let Y = {−1,+1}. Partition X to

C1, · · · ,CK , and use C(x) to denote the set to which x belongs. A new sample

xa ∈ X is labeled

As(xa) �
{

1, if
∑

si∈C(xa)
1(si|y = 1) ≥∑si∈C(xa)

1(si|y = −1);
−1, otherwise.

If the loss function is the prediction error l(As, z) = 1z|y �=As(z|x), then MV

is (2K, 0)-robust.

The MV algorithm has a natural partition of the sample space that

makes it robust. Another class of robust algorithms is those that have

14.6 Robustness and Generalization 397

approximately the same testing loss for testing samples that are close (in the

sense of geometric distance) to each other, since we can partition the sample

space with norm balls, as in the standard definition of covering numbers

(van der Vaart and Wellner, 2000). Theorem 14.22 states that an algorithm

is robust if two samples being close implies that they have a similar testing

error. Thus, in particular, this means that robustness is weaker than uniform

stability (Bousquet and Elisseeff, 2002).

Theorem 14.22. Fix γ > 0 and metric ρ of Z. Suppose A satisfies

|l(As, z1)− l(As, z2)| ≤ ε(s), ∀z1, z2 : z1 ∈ s, ρ(z1, z2) ≤ γ,

and N(γ/2,Z, ρ) <∞. Then A is
(
N(γ/2,Z, ρ), ε(s)

)
-robust.

Theorem 14.22 leads Example 14.3: if the testing error, given the output

of an algorithm, is Lipschitz continuous, then the algorithm is robust.

Example 14.2 (Lipschitz continuous functions). If Z is compact w.r.t.

metric ρ, and l(As, ·) is Lipschitz continuous with Lipschitz constant c(s),

that is,

|l(As, z1)− l(As, z2)| ≤ c(s)ρ(z1, z2), ∀z1, z2 ∈ Z,

then A is
(
N(γ/2,Z, ρ), c(s)γ

)
-robust for all γ > 0.

Theorem 14.22 also implies that SVM, Lasso, feed-forward neural net-

works, and PCA are robust, as stated in Examples 14.3–14.6.

Example 14.3 (support vector machines). Let X be compact. Consider the

standard SVM formulation (Cortes and Vapnik, 1995; Schölkopf and Smola,

2001), as discussed in Sections 14.3 and 14.4.

min
w,d

c‖w‖2H +

m∑
i=1

ξi

s.t. 1− si|y[〈w, φ(si|x)〉+ d] ≤ ξi, i = 1, · · · ,m;

ξi ≥ 0, i = 1, · · · ,m.

Here φ(·) is a feature mapping, ‖ · ‖H is its RKHS kernel, and k(·, ·)
is the kernel function. Let l(·, ·) be the hinge loss, that is, l

(
(w, d), z

)
=

[1− z|y(〈w, φ(z|x)〉+ d)]+, and define fH(γ) � maxa,b∈X,‖a−b‖2≤γ

(
k(a,a)+

k(b,b) − 2k(a,b)
)
. If k(·, ·) is continuous, then for any γ > 0, fH(γ) is

finite, and SVM is (2N(γ/2,X, ‖ · ‖2),
√

fH(γ)/c) robust.

Example 14.4 (Lasso). Let Z be compact and the loss function be l(As, z) =

|z|y − As(z|x)|. Lasso (Tibshirani, 1996), which is the following regression

398 Robust Optimization in Machine Learning

formulation:

min
w

:
1

m

m∑
i=1

(si|y −w	si|x)2 + c‖w‖1,

is
(
N(γ/2,Z, ‖ · ‖∞), (Y (s)/c + 1)γ

)
-robust for all γ > 0, where Y (s) �

1
n

∑n
i=1 si|y

2 .

Example 14.5 (Feed-forward neural networks). Let Z be compact and the

loss function be l(As, z) = |z|y−As(z|x)|. Consider the d-layer neural network
(trained on s), which is the following predicting rule, given an input x ∈ X

x0 := z|x

∀v = 1, · · · , d− 1 : xvi := σ(

Nv−1∑
j=1

wv−1
ij xv−1

j); i = 1, · · · , Nv;

As(x) := σ(

Nd−1∑
j=1

wd−1
j xd−1

j);

If there exist α and β such that the d-layer neural network satisfying that

|σ(a)−σ(b)| ≤ β|a−b|, and∑Nv

j=1 |wv
ij | ≤ α for all v, i, then it is

(
N(γ/2,Z, ‖·

‖∞), αdβdγ
)
-robust, for all γ > 0.

In Example 14.5, the number of hidden units in each layer has no effect

on the robustness of the algorithm and, consequently, on the bound on the

testing error. This indeed agrees with Bartlett (1998), where the author

showed (using a different approach based on fat-shattering dimension) that

for neural networks, the weight plays a more important role than the number

of hidden units.

Example 14.6 considers an unsupervised learning algorithm, namely, the

principal component analysis algorithm. We show that it is robust if the

sample space is bounded. This does not contradict the well-known fact that

the principal component analysis is sensitive to outliers which are far from

the origin.

Example 14.6 (Principal component analysis (PCA)). Let Z ⊂ R
m be

such that maxz∈Z ‖z‖2 ≤ B. If the loss function is l((w1, · · · , wd), z) =∑d
k=1(w

	
k z)

2, then finding the first d principal components, which solves the

14.7 Conclusion 399

optimization problem over d vectors w1, · · · , wd ∈ R
m,

max
w1,··· ,wk

m∑
i=1

d∑
k=1

(w	
k si)

2

s.t. ‖wk‖2 = 1, k = 1, · · · , d;
w	

i wj = 0, i �= j.

is (N(γ/2,Z, ‖ · ‖2), 2dγB)-robust.

14.7 Conclusion

The purpose of this chapter has been to hint at the wealth of applications and

uses of robust optimization in machine learning. Broadly speaking, there are

two main methodological frameworks developed here: robust optimization

used as a way to make an optimization-based machine learning algorithm

robust to noise; and robust optimization as a fundamental tool for analyzing

properties of machine learning algorithms and for constructing algorithms

with special properties. The properties we have discussed here include spar-

sity, consistency and generalization. There are many directions of interest

that future work can pursue. We highlight two that we consider of particular

interest and promise. The first is learning in the high-dimensional setting,

where the dimensionality of the models (or parameter space) is of the same

order of magnitude as the number of training samples available. Hidden

structure such as sparsity or low rank has offered ways around the chal-

lenges of this regime. Robustness and robust optimization may offer clues as

to how to develop new tools and new algorithms for this setting. A second

direction of interest is the design from data of uncertainty sets for robust

optimization. Constructing uncertainty sets from data is a central problem

in robust optimization that has not been adequately addressed, and machine

learning methodology may be able to provide a way forward.

14.8 References

N. Alon, S. Ben-David, N. Cesa-Bianchi, and D. Haussler. Scale-sensitive dimension,
uniform convergence, and learnability. Journal of the ACM, 44(4):615–631, 1997.

M. Anthony and P. L. Bartlett. Neural Network Learning: Theoretical Foundations.
Cambridge University Press, 1999.

P. L. Bartlett. The sample complexity of pattern classification with neural networks:
The size of the weight is more important than the size of the network. IEEE
Transactions on Information Theory, 44(2):525–536, 1998.

400 Robust Optimization in Machine Learning

P. L. Bartlett and S. Mendelson. Rademacher and Gaussian complexities: Risk
bounds and structural results. Journal of Machine Learning Research, 3:463–
482, November 2002.

P. L. Bartlett, O. Bousquet, and S. Mendelson. Local Rademacher complexities.
Annals of Statistics, 33(4):1497–1537, 2005.

A. Ben-Tal and A. Nemirovski. Robust solutions of linear programming problems
contaminated with uncertain data. Mathematical Programming, Series A, 88(3):
411–424, 2000.

A. Ben-Tal, L. El Ghaoui, and A. Nemirovski. Robust Optimization. Princeton
University Press, 2009.

D. Bertsimas and M. Sim. The price of robustness. Operations Research, 52(1):
35–53, January-February 2004.

D. Bertsimas, D. B. Brown, and C. Caramanis. Theory and applications of robust
optimization. To appear in SIAM Review, 2010.

C. Bhattacharyya, L. R. Grate, M. I. Jordan, L. El Ghaoui, and I. S. Mian. Robust
sparse hyperplane classifiers: Application to uncertain molecular profiling data.
Journal of Computational Biology, 11(6):1073–1089, 2004.

P. Bickel, Y. Ritov, and A. Tsybakov. Simultaneous analysis of Lasso and Dantzig
selector. Annals of Statistics, 37(4):1705–1732, 2009.

B. E. Boser, I. M. Guyon, and V. N. Vapnik. A training algorithm for optimal
margin classifiers. In Proceedings of the 5th Annual ACM Workshop on Compu-
tational Learning Theory, pages 144–152, New York, 1992. ACM Press.

O. Bousquet and A. Elisseeff. Stability and generalization. Journal of Machine
Learning Research, 2:499–526, 2002.

E. J. Candès and T. Tao. Near-optimal signal recovery from random projections:
Universal encoding strategies? IEEE Transactions on Information Theory, 52
(12):5406–5425, 2006.

E. J. Candès and T. Tao. The Dantzig selector: Statistical estimation when p is
much larger than n. Annals of Statistics, 35(6):2313–2351, 2007.

E. J. Candès and T. Tao. Reflections on compressed sensing. IEEE Information
Theory Society Newsletter, 58(4):20–23, 2008.

E. J. Candès, J. Romberg, and T. Tao. Robust uncertainty principles: Exact signal
reconstruction from highly incomplete frequency information. IEEE Transactions
on Information Theory, 52(2):489–509, 2006.

C. Caramanis and S. Mannor. Learning in the limit with adversarial disturbances.
In Proceedings of the 21st Annual Conference on Learning Theory, pages 467–478,
2008.

S. S. Chen, D. L. Donoho, and M. A. Saunders. Atomic decomposition by basis
pursuit. SIAM Journal on Scientific Computing, 20(1):33–61, 1999.

C. Cortes and V. N. Vapnik. Support vector networks. Machine Learning, 20:1–25,
1995.

A. d’Aspremont, L. El Ghaoui, M. I. Jordan, and G. R. Lanckriet. A direct
formulation for sparse PCA using semidefinite programming. SIAM Review, 49
(3):434–448, 2007.

L. Devroye and L. Györfi. Nonparametric Density Estimation: the l1 View. John
Wiley & Sons, 1985.

L. Devroye, L. Györfi, and G. Lugosi. A Probabilistic Theory of Pattern Recognition.

14.8 References 401

Springer, New York, 1996.

D. L. Donoho. Compressed sensing. IEEE Transactions on Information Theory,
52(4):1289–1306, 2006.

G. E. Dullerud and F. Paganini. A Course in Robust Control Theory: A Convex
Approach, volume 36 of Texts in Applied Mathematics. Springer-Verlag, New
York, 2000.

B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani. Least angle regression. Annals
of Statistics, 32(2):407–499, 2004.

L. El Ghaoui and H. Lebret. Robust solutions to least-squares problems with
uncertain data. SIAM Journal on Matrix Analysis and Applications, 18(4):1035–
1064, 1997.

T. Evgeniou, M. Pontil, and T. Poggio. Regularization networks and support vector
machines. In A. J. Smola, P. L. Bartlett, B. Schölkopf, and D. Schuurmans,
editors, Advances in Large Margin Classifiers, pages 171–203, Cambridge, MA,
2000. MIT Press.

A. Globerson and S. Roweis. Nightmare at test time: Robust learning by feature
deletion. In Proceedings of the 23rd International Conference on Machine Learn-
ing, pages 353–360, New York, 2006. ACM Press.

A. Hoerl. Application of ridge analysis to regression problems. Chemical Engineer-
ing Progress, 58:54–59, 1962.

P. Kall and S. W. Wallace. Stochastic Programming. John Wiley & Sons, 1994.

S.-J. Kim, A. Magnani, and S. Boyd. Robust Fisher discriminant analysis. In
Advances in Neural Information Processing Systems, pages 659–666, 2005.

G. R. Lanckriet, L. El Ghaoui, C. Bhattacharyya, and M. I. Jordan. A robust
minimax approach to classification. Journal of Machine Learning Research, 3:
555–582, March 2003.

S. Mukherjee, P. Niyogi, T. Poggio, and R. Rifkin. Learning theory: Stability
is sufficient for generalization and necessary and sufficient for consistency of
empirical risk minimization. Advances in Computational Mathematics, 25(1-3):
161–193, 2006.

A. Nilim and L. El Ghaoui. Robust control of Markov decision processes with
uncertain transition matrices. Operations Research, 53(5):780–798, September
2005.

E. Parzen. On the estimation of a probability density function and the mode.
Annals of Mathematical Statistics, 33(3):1065–1076, 1962.

T. Poggio, R. Rifkin, S. Mukherjee, and P. Niyogi. General conditions for predic-
tivity in learning theory. Nature, 428(6981):419–422, 2004.

A. Prékopa. Stochastic Programming. Kluwer Academic Publishers, 1995.

M. Rosenblatt. Remarks on some nonparametric estimates of a density function.
Annals of Mathematical Statistics, 27(3):832–837, 1956.

B. Schölkopf and A. J. Smola. Learning with Kernels. MIT Press, 2001.

D. W. Scott. Multivariate Density Estimation: Theory, Practice, and Visualization.
John Wiley & Sons, New York, 1992.

P. K. Shivaswamy, C. Bhattacharyya, and A. J. Smola. Second order cone program-
ming approaches for handling missing and uncertain data. Journal of Machine
Learning Research, 7:1283–1314, July 2006.

402 Robust Optimization in Machine Learning

A. L. Soyster. Convex programming with set-inclusive constraints and applications
to inexact linear programming. Operations Research, 21(5):1154–1157, 1973.

I. Steinwart. Consistency of support vector machines and other regularized kernel
classifiers. IEEE Transactions on Information Theory, 51(1):128–142, 2005.

I. Steinwart and A. Christmann. Support Vector Machines. Springer, New York,
2008.

R. Tibshirani. Regression shrinkage and selection via the Lasso. Journal of the
Royal Statistical Society, Series B, 58(1):267–288, 1996.

A. N. Tikhonov and V. Arsenin. Solutions of Ill-Posed Problems. Winston, New
York, 1977.

T. Trafalis and R. Gilbert. Robust support vector machines for classification
and computational issues. Optimization Methods and Software, 22(1):187–198,
February 2007.

A. W. van der Vaart and J. A. Wellner. Weak Convergence and Empirical Processes.
Springer-Verlag, New York, 2000.

V. N. Vapnik and A. Chervonenkis. The necessary and sufficient conditions for
consistency in the empirical risk minimization method. Pattern Recognition and
Image Analysis, 1(3):284–305, 1991.

V. N. Vapnik and A. Lerner. Pattern recognition using generalized portrait method.
Automation and Remote Control, 24:744–780, 1963.

M. Wainwright. Sharp thresholds for noisy and high-dimensional recovery of
sparsity using �1-constrained quadratic programming (Lasso). IEEE Transactions
on Information Theory, 55:2183–2202, 2009.

H. Xu and S. Mannor. Robustness and generalization. ArXiv 1005.2243, 2010a.

H. Xu and S. Mannor. Robustness and generalizability. In Proceeding of the 23rd
Annual Conference on Learning Theory, pages 503–515, 2010b.

H. Xu, C. Caramanis, and S. Mannor. Robustness and regularization of support
vector machines. Journal of Machine Learning Research, 10(July):1485–1510,
2009.

H. Xu, C. Caramanis, and S. Mannor. Robust regression and Lasso. IEEE
Transactions on Information Theory, 56(7):3561–3574, 2010a.

H. Xu, C. Caramanis, and S. Mannor. A distributional interpretation to robust
optimization. submitted, 2010b.

H. Xu, C. Caramanis, and S. Sanghavi. Robust PCA via outlier pursuit. To appear
Advances in Neural Information Processing Systems, 2010c.

K. Zhou, J. Doyle, and K. Glover. Robust and Optimal Control. Prentice-Hall,
1996.

15 Improving First and Second-Order

Methods by Modeling Uncertainty

Nicolas Le Roux nicolas.le.roux@gmail.com

Microsoft Research Cambridge

Yoshua Bengio yoshua.bengio@umontreal.ca

University of Montreal

Andrew Fitzgibbon awf@microsoft.com

Microsoft Research Cambridge

Machine learning’s goal is to provide algorithms able to deal with new

situations or data. Thus, what matters is their performance on unseen test

data. For that purpose, we have at our disposal data on which we can train

our model. Much previous work aimed at taking account of the fact that the

training data are only a sample from the distribution of interest, for instance,

by optimizing training error plus a regularization term. We present here a

new way to take that information into account, based on an estimator of

the gradient of generalization error that takes this uncertainty into account

through a weak prior. We show how taking into account the uncertainty

across training data can yield faster and more stable convergence, even

when using a first-order method. We then show that in spite of apparent

similarities with second-order methods, taking this uncertainty into account

is different and can be used in conjunction with an approximate Newton

method to yield even faster convergence.

15.1 Introduction

Machine learning often looks like optimization: write down the likelihood of

some training data under some model and find the model parameters which

404 Improving First and Second-Order Methods by Modeling Uncertainty

maximize that likelihood, or which minimize some divergence between the

model and the data. In this context, conventional wisdom is that one should

find in the optimization literature the state-of-the-art optimizer for one’s

problem, and use it.

However, this should not hide the fundamental difference between these

two concepts: while optimization is about minimizing some error on the

training data, it is the performance on the test data we care about in machine

learning. Of course, by their very definition, test data are not available to

us at training time, and thus we must use alternative techniques to prevent

the model from focusing too much on the training data at the expense of

generalization performance (a phenomenon known as overfitting), such as

weight decay or limited model capacity.

The goal of this chapter is to prove that this misfit between training and

test error can be dealt with by modifying the optimization procedure rather

than the objective function itself, using a technique similar to the natural

gradient. It is organized as follows: we start by exploring the differences

between the optimization and the learning frameworks in section 15.2, before

introducing a model of the gradients which modifies the search direction in

section 15.3. Then, after exploring the similarities and differences between

the covariance and the Hessian in section 15.4, we propose a modification

of our model of the gradients, enabling us to use second-order information

to find the optimal search direction, in section 15.5. Section 15.6 presents

TONGA, an efficient algorithm to obtain these new search directions, which

is tested in section 15.7.

15.2 Optimization Versus Learning

15.2.1 Optimization Methods

The goal of optimization is to minimize a function f , which we will assume

to be twice differentiable and defined from a space E to R, over E. This is

a problem with a considerable literature (see Nocedal and Wright (2006),

for instance). It is well known that second-order descent methods, which

rely on the Hessian of f (or approximations thereof), enjoy much faster

theoretical convergence than first-order methods (quadratic versus linear),

in terms of number of updates. Such methods include the following: Newton,

Gauss-Newton, Levenberg-Marquardt, and quasi-Newton (such as BFGS).

15.2 Optimization Versus Learning 405

15.2.2 Online Learning

The learning framework for online learning differs slightly from the opti-

mization one. The function f we wish to minimize (which we call the cost

function) is defined as the expected value of a function L under a distribution

p over the space E of possible inputs, that is,

f(θ) =

∫
x∈E

L(θ, x)p(x) dx, (15.1)

and we have access only to samples xi drawn from p. If we have n samples,

we can define a new function,

f̂(θ) =
1

n

∑
i

L(θ, xi) . (15.2)

Let us call f the test cost, and f̂ the training cost. The xi are the training

data. As n goes to infinity, the difference between f and f̂ vanishes.

Bottou and Bousquet (2008) study the case where one has access to a

potentially infinite amount of training data but only a finite amount of

time. This setting, which they dub large-scale learning, calls for a tradeoff

between the quality of the optimization for each data point and the number

of data points treated. They show that

1. good optimization algorithms may be poor learning algorithms;

2. stochastic gradient descent enjoys a faster convergence rate than batch

gradient descent;

3. introducing second-order information can win us a constant factor (the

condition parameter).

Therefore, the choice lies between first- and second-order stochastic gradient

descent, depending on the additional cost of taking second-order information

into account and the condition parameter. Several authors have developed

algorithms allowing for efficient use of this second-order information in a

stochastic setting (Schraudolph et al., 2007; Bordes et al., 2009). However,

we argue, all of these methods are derived from optimization methods

without taking into account the particular nature of the learning problem.

More precisely, the gradient we would like to compute is the one of the

true cost defined in (15.1). Differentiating both sides of this equation with

respect to θ yields (assuming we can swap the integral and the derivative)

g∗(θ0) =
∂f

∂θ
(θ0) =

∫
x∈E

∂L

∂θ
(θ0, xi)p(x) dx . (15.3)

406 Improving First and Second-Order Methods by Modeling Uncertainty

Similarly, differentiating both sides of (15.2) with respect to θ yields

g(θ0) =
∂f̂

∂θ
(θ0) =

1

n

∑
i

∂L

∂θ
(θ0, xi) . (15.4)

Thus, for each parameter value θ0, the true gradient g∗ is the expectation

of
∂L

∂θ
(θ0, x) under p, and we are given only samples gi =

∂L

∂θ
(θ0, xi) from

this distribution. This bears a lot of resemblance to the standard setting of

machine learning: given a set of samples (here, the gi’s) from a distribution,

one wishes to estimate interesting properties of that distribution (here, its

expectation). We will thus proceed in the standard way, that is, we shall

build a model of the gradients gi and estimate its parameters. At this point,

it is important to recall that our model is valid only for one value of θ0, and

thus needs to be reevaluated every time we move in parameter space. We

shall discuss this issue further in section 15.3.1.

Also, note that the same reasoning may be applied to stochastic optimiza-

tion. Modeling the distribution of the gradients will prevent us from focusing

too much on the previously seen examples, which should enhance the final

performance of the algorithm. This intuition will be proved in section 15.7.

15.3 Building a Model of the Gradients

We shall now describe in detail the model of gradients we use. Since our

goal is to achieve fast treatment of incoming data, it must be simple enough

to be estimated accurately with little computation. Additionally, a simpler

model will regularize our estimate, making it more robust. We will thus use

a Gaussian model, which we will see has the extra advantage of having an

interpretation as an approximation to the central-limit theorem.

The only quantity we are interested in is the mean of this Gaussian, which

is the true gradient g∗.
The likelihood term is

gi|g∗ ∼ N(g∗, C∗) (15.5)

where C∗ is the true covariance of the gradients, that is,

C∗ =
∫
x

(
∂L(θ, x)

∂θ
− g∗

)(
∂L(θ, x)

∂θ
− g∗

)T

p(x) dx. (15.6)

Indeed, according to the central-limit theorem, if the gi’s were averages

of gradients over a minibatch, then their distribution would converge to a

Gaussian as the minibatch size grows to infinity, thus yielding the correct

15.3 Building a Model of the Gradients 407

likelihood. Of course, one must bear in mind that this becomes an approxi-

mation for finite sizes, and even more so when gi is a single gradient.

Before receiving any gradient, we know neither the direction nor the

amplitude of the true gradient. Hence it is reasonable to take a prior over

g∗ that is centered on 0 and has an isotropic covariance:

g∗ ∼ N(0, σ2I) . (15.7)

Assuming we receive n gradients g1, . . . , gn with average g, the posterior

distribution over g∗ is obtained by combining (15.7) and (15.5), yielding

g∗|(g1, . . . , gn) ∼ N

([
I +

C∗

nσ2

]−1

g,

[
nC∗−1 +

I

σ2

]−1
)

. (15.8)

Even though we care about only the mean g∗, its posterior depends on the

covariance matrix C∗, which should be estimated using data. Though the

proper Bayesian way would be to place a prior on C∗ (which could be inverse-

Wishart to keep the model conjugate) and estimate the joint posterior over

(g, C∗), we will set C∗ to the empirical covariance matrix C of the gradients.

In doing so, we will lose in robustness but gain in computational efficiency.

Replacing C∗ with the empirical covariance C in (15.8), we have the

estimator

g∗|(g1, . . . , gn) ∼ N

([
I +

C

nσ2

]−1

g,

[
nC−1 +

I

σ2

]−1
)
, (15.9)

with

C =
1

n

n∑
i=1

(gi − g) (gi − g)T . (15.10)

Now that we have estimated the posterior distribution over g∗, we can

estimate the expected decrease in L for a given update Δθ, which is simply

E[ΔL] = (Δθ)TE[g∗] . (15.11)

For a given norm of Δθ, the optimal decrease is obtained for Δθ ∝ −E[g∗],
that is,

(Δθ)opt ∝ −
[
I +

C

nσ2

]−1

g . (15.12)

This quantity, which we call consensus gradient, is reminiscent of the natural

gradient of Amari (1998). In his work, Amari showed that in a neural

network, the direction of steepest descent in the Riemannian manifold

408 Improving First and Second-Order Methods by Modeling Uncertainty

defined by that network is

(Δθ)Amari ∝ −
[
GGT + λI

]−1
g , (15.13)

where G is the matrix containing one gradient per column (λI acts as a

regularizer and the direction of steepest descent uses λ = 0). However,

there are some important differences. First, here the covariance matrix C

is centered and scaled, and thus not the Fisher information matrix, GGT ,

as in Amari’s work. Second, and perhaps more important, this formulation

makes it obvious that the term C
nσ2 acts here as a regularizer of the standard

gradient direction, rather than defining a completely new direction based on

another metric.

Let us pause a bit and analyze the behavior of such a direction. If there is

a strong disagreement between gradients along a direction d, the covariance

will be large along this direction (that is, the value of dTCd will be large),

which will reduce the update Δθ along d. Thus, (15.12) naturally and

gracefully deals with incoherent or noisy data. This is in stark contrast with,

for example, outlier detectors which discard data points entirely. Moreover,

the direction along which to shrink the updates is also learned and does not

require any heuristic.

If, on the other hand, there is very little disagreement along a direction,

then the step along this direction will be taken as usual. It is worth empha-

sizing that in this setting, the smallest eigenvalues of C are unimportant, as

they will have very little effect on the final direction, as opposed to existing

natural gradient methods, where they dominate the final update. As they

are often harder to estimate correctly, those methods need to add a regular-

izer, which is unnecessary here. Once again, in our case the matrix C is the

regularizer, not the identity matrix. soit clair. Le style me parat aussi lourd

et redondant.

Figure 15.1 shows an example of consensus gradient and one of mean

gradient directions, with varying amounts of disagreement among gradients.

Figure 15.1: Left: when gradients (solid lines) agree, the consensus gradient
direction (dashed line) is indistinguishable from the mean gradient (dashed-dotted
line). Right: when gradients disagree, the consensus gradient shrinks in direction
of high variance while leaving the others untouched.

15.4 The Relative Roles of the Covariance and the Hessian 409

The dot product of the empirical gradient and the consensus gradient

direction of (15.12) is gT
[
I +

C

nσ2

]−1

g, which is always positive since(
I + C

nσ2

)
is a positive definite matrix. Thus, though the consensus gradient

direction is a modification of the original direction, they will never be in

disagreement (that is, if the magnitude of the update is small enough, the

training cost is guaranteed to decrease as well).

Moreover, when the number n of gradients goes to infinity, the optimal

direction converges to g: this makes sense, since the modification to standard

gradient descent arises from the uncertainty around the particular set of

samples chosen, which becomes nonexistent in the case of infinite sample

size. However, as we recover a standard optimization problem, we may be

disappointed by the use of a first-order method, which, as mentioned earlier,

is theoretically slower than second-order ones.

15.3.1 Setting a Zero-Centered Prior at Each Timestep

Before moving on to the second-order version of our consensus gradient

algorithm, we will briefly comment on the choice of our prior at each step.

Indeed, (15.9) has been obtained using the zero-centered Gaussian prior

defined in (15.7). Except for the first update, one may wonder why we would

use such a distribution rather than the posterior distribution at the previous

timestep as our prior. There are two reasons for that. The first one is that

whenever we update the parameters of our model, the distribution over the

gradients changes. If the function to optimize were truly quadratic, we could

quantify the change in gradient exactly using the Hessian. Unfortunately,

this is not the case, and if this path is explored (as we believe it should

be), it will involve approximations of the posterior. The second reason is

computational. Even if we were able to follow the mean of the posterior

exactly, the resulting distributions would become more and more complex

over time (while still being Gaussians, their means and covariances would

depend on a sum of covariance matrices). Thus, while acknowledging that

using the prior of (15.7) at every timestep is a suboptimal strategy that

future work might enhance, we believe that it is very appealing because of

the simplicity of the algorithm.

15.4 The Relative Roles of the Covariance and the Hessian

In its original formulation, the natural gradient algorithm has often been

considered as approximation to the Newton method. Indeed, their updates

410 Improving First and Second-Order Methods by Modeling Uncertainty

look very similar (d = (GGT)−1g for the natural gradient and d = H−1g

for the Newton method), and there are several reasons to believe that the

covariance (either centered, that is, C, or uncentered, that is, GGT) and H

have analogous properties. However, as we will see, they encode completely

different kinds of information. From there, it seems natural to exploit both,

yielding an algorithm combining their advantages.

15.4.1 Similarities Between C and H

Let us first focus on the similarities between the covariance matrix and the

Hessian.

15.4.1.1 Maximum Likelihood

Let us assume that we are training a density model by minimizing the

negative log-likelihood. The cost function fnll is defined by

fnll(θ) = −
∫
x
log[L(θ, x)]p(x) dx . (15.14)

Note that this L is related to the L used in section 15.2.2 through L =

− logL, but with the constraint that L is a distribution. Let us consider

the case where there is a parameter vector θ such that our model is perfect

(where p(x) = L(θ, x)) and that we are at this θ. Then the covariance matrix

of the gradients at that point is equal to the Hessian of fnll. In the general

case, this equality does not hold.

15.4.1.2 Gauss-Newton

Gauss-Newton is an approximation to the Newton method when f can be

written as a sum of squared residuals:

f(θ) =
1

2

∑
i

fi(θ)
2. (15.15)

Computing the Hessian of f yields

∂2f(θ)

∂θ2
=
∑
i

fi(θ)
∂2fi
∂θ2

+
∑
i

∂fi
∂θ

∂fi
∂θ

T

. (15.16)

If the fi get close to 0 (relative to their gradient), the first term may be

ignored, yielding the following approximation to the Hessian:

H ≈
∑
i

∂fi
∂θ

∂fi
∂θ

T

. (15.17)

15.4 The Relative Roles of the Covariance and the Hessian 411

One, however, must be aware of the following:

this approximation is interesting only when the fi are residuals (that is,

when the approximation is valid close to the optimum);

the gradients involved are those of fi and not of f2
i ;

the term on the right-hand side is the uncentered covariance of these

gradients.

In order to compare the result of (15.17) to the natural gradient, we will

assume that the sum in (15.15) is over data points, that is,

f(θ) =
1

2

∑
i

fi(θ)
2 =

1

N

∑
i

L(θ, xi) (15.18)

with the cost for each data point being

L(θ, xi) =
N

2
fi(θ)

2 . (15.19)

The gradient of this cost with respect to θ is

gi =
∂L(θ, xi)

∂θ
= Nfi(θ)

∂fi(θ)

∂θ
. (15.20)

At the optimum (where the average of the gradients is zero and the centered

and uncentered covariance matrices are equal), the covariance matrix of the

gi’s is

C =
∑
i

gig
T
i = N2

∑
i

fi(θ)
2 ∂fi
∂θ

∂fi
∂θ

T

, (15.21)

which is a weighted sum of the terms involved in (15.17). Thus the natural

gradient and the Gauss-Newton approximation, while related, are different

quantities and (as we will show) have very different properties.

15.4.2 Differences Between C and H

Remember what the Hessian is: a measure of the change in gradient when

we move in parameter space. In other words, the Hessian helps to answer

the following question: If I were at a slightly different position in parameter

space, how different would the gradient be? It is a quantity defined for any

(twice differentiable) function.

On the other hand, the covariance matrix of the gradients captures the

uncertainty around this particular choice of training data, that is, the change

in gradient when we move in input space. In other words, the covariance helps

us to answer the following question: If I had slightly different training data,

412 Improving First and Second-Order Methods by Modeling Uncertainty

how different would the gradient be? This quantity makes only sense when

there are training data.

Whereas the Hessian seems naturally suited to optimization problems (it

allows us to be less shortsighted when minimizing a function), the covariance

matrix unleashes its power in the learning setting, where we are given

only a subset of the data. We do not claim that there are no numerical

similarities between them, and indeed the experiments hint at differing and

complementary effects, so we really wish to clarify how they differ.

From this observation, it seems natural to combine these two matrices.

15.5 A Second-Order Model of the Gradients

In our first model of the gradients, in section 15.3, we did not assume

any particular form of the function L to minimize. In the Newton method,

however, one assumes that the cost function is locally quadratic, that is,

L(θ) ≈ f(θ) =
1

2
(θ − θ∗)TH(θ − θ∗) (15.22)

for some value of θ∗.
The derivative of this cost is

g∗(θ) =
∂f(θ)

∂θ
= H(θ − θ∗) . (15.23)

We can see that in the context of a quadratic function, the isotropic prior

over g∗ proposed in (15.7) is erroneous, as g∗ is clearly influenced by H. We

shall, rather, consider an isotropic Gaussian prior on the quantity θ− θ∗, as
we do not have any information about the position of θ relative to θ∗. The
resulting prior distribution over g∗ is

g∗ ∼ N
(
0, σ2H2

)
, (15.24)

where we omit the dependence on θ to keep the notation uncluttered. In

a fashion similar to section 15.3, we will suppose that we are given only a

finite training set composed of n data points xi with associated gradients

gi. The empirical gradient g is the mean of the gi’s. Using the central limit

theorem, we again have

g|g∗ ∼ N

(
g,

C∗

n

)
(15.25)

where C∗ is the true covariance of the gradients, which we will once again

replace with the empirical covariance C. Therefore, the posterior distribution

15.5 A Second-Order Model of the Gradients 413

over g is

g∗|g ∼ N

([
I +

CH−2

nσ2

]
g,

[
H−2

σ2
+ nC−1

]−1
)

. (15.26)

Since the function L is locally quadratic, we wish to move in the direction

H−1g. This direction follows the Gaussian distribution

H−1g|g ∼ N

([
I +

H−1CH−1

nσ2

]−1

H−1g,

[
I

σ2
+ nHC−1H

]−1
)

. (15.27)

Since the mean of the Gaussian in (15.27) appears complicated, we shall

explain it. Let us write di for the Newton directions:

di = H−1gi . (15.28)

Since C is the covariance matrix of the gradients gi, H
−1CH−1 = CH is the

covariance matrix of the di’s. We can therefore rewrite

H−1g|g ∼ N

([
I +

CH

nσ2

]−1

d,

[
I

σ2
+ n(CH)−1

]−1
)

(15.29)

where d is the average of the Newton directions, that is, d = H−1g. The

direction which maximizes the expected gain is thus

Δθ ∝ −
[
I +

CH

nσ2

]−1

d . (15.30)

This formula is exactly the consensus gradient (15.12), but on the Newton

directions. This makes perfect sense, as the Newton method is the standard

gradient descent on a space linearly reparameterized by H0.5. Here, the

direction is the one obtained after having computed the consensus gradient

in the same linearly reparameterized space.

From a computational perspective, this simple combination is excellent

news. It means that one may choose his or her favorite second-order gradient

descent method to compute the Newton directions, and then his or her

favorite consensus gradient algorithm to apply to these Newton directions,

to yield an algorithm combining the advantages of both methods.

As a side note, one can see that as the number n of data points used to

compute the mean increases, the prior vanishes and the posterior distribu-

tion concentrates around the empirical Newton direction. This is in contrast

with the method of section 15.3, which converged to the first-order gradient

descent algorithm.

414 Improving First and Second-Order Methods by Modeling Uncertainty

15.6 An Efficient Implementation of Online Consensus Gradient: TONGA

So far, we have

provided a justification for the consensus gradient as a means of dealing

with the uncertainty arising from having only a finite number of samples in

our dataset;

explored the similarities and differences between the covariance matrix C

and the Hessian H;

shown how the information in these two matrices could be combined to

yield an efficient algorithm, both from an optimization and from a learning

point of view.

However, these techniques require matrix inversions, which makes them

unsuitable for practical cases, where the number of model parameters and

of training data may be very large. Also, since our main focus is online

learning, we wish to be able to update our parameters after each example

(stochastic), or each small group of examples (minibatch), as recommended

in Bottou and Bousquet (2008).

Section 15.6.1 will uncover a set of optimizations and approximations

which renders possible fast online natural or consensus gradient algorithms:

TONGA. This algorithm will provide the basis for the second-order version

using the Hessian.

15.6.1 Computing a Low-Rank Approximation of the Covariance

Matrix

In a model with P parameters, the covariance C of the gradients over n

data points takes O(nP 2) to compute and has an O(P 2) memory storage

requirement. Computing its first k eigenvectors is in O(kP 2). When P is

large, none of these operations is feasible. This section will thus introduce a

way of finding the first k eigenvectors of the covariance matrix without ever

storing it.

For the moment, we will assume that the centered covariance matrix may

be written in the form C = GGT for some matrix G. The proof that such

a factorization is possible and the explicit formula for G will appear in

section 15.6.2. We will assume that G has n columns (and P rows for C to

have the correct size).

Writing G in terms of its compact SVD, we get

G = UGΣGV
T
G , (15.31)

15.6 An Efficient Implementation of Online Consensus Gradient: TONGA 415

where (assuming we have n < P) UG is of size P ×n, and ΣG and VG are of

size n × n. With this notation, the eigenvectors of C associated with non-

zero eigenvalues are the columns of UG and the associated eigenvalues are

the diagonal elements of Σ2
G.

Let us now consider the matrix

D = GTG . (15.32)

This is an n×n matrix whose eigenvectors are the columns of VG and whose

eigenvalues are the same as those of C. Left-multiplying those eigenvectors

by G and right-multiplying them by Σ−1
V , we get

GVGΣ
−1
G = UG . (15.33)

Thus, we can retrieve the first k eigenvectors and eigenvalues of C by

computing D (for a cost of O(Pn2)), extracting its first k eigenvectors (for a

cost of O(kn2)), and then performing the matrix multiplications (for a cost

of O(Pn2)). Therefore, if n is much smaller than P , this method is much

faster than computing C and its eigenvectors directly (O(Pn2), instead of

O(nP 2)).

Another advantage is that it is never required to store or even compute

C, but only to have access to the matrix G. Section 15.6.2 will show how to

get this matrix G efficiently whenever a new data point comes in.

15.6.2 A Fast Update of the Covariance Matrix

Since efficiency is our main goal, we need a fast way to update the covariance

matrix of the data points as they arrive. Also, we need to satisfy two con-

straints. First, the covariance needs to be estimated over many data points.

Second, as it will change during the optimization, we need to progressively

reduce the contribution of the older data points and replace it with the con-

tribution of the newer ones. For that purpose, we shall use exponentially

moving mean μn and covariance Cn:

μ1 = g1 (15.34)

C1 = 0 (15.35)

μn = γμn−1 + (1− γ)gn (15.36)

Cn = γCn−1 + γ(1− γ)(gn − μn−1)(gn − μn−1)
T (15.37)

where gi is the gradient obtained at time step i and γ is the discount factor.

The closer γ is to 1, the longer an example seen at time t will influence the

means and covariance estimated at later times.

Thus, since we wish to keep a factorization of C under the form GGT ,

416 Improving First and Second-Order Methods by Modeling Uncertainty

whenever a new gradient gn comes in, we simply have to

1. multiply G by
√
γ

2. append the column (gn − μn−1)
√

γ(1− γ) to G.

15.6.3 Finding the Consensus Gradient Direction Between Two Updates

In section 15.6.1, we have showed that computing the first k eigenvectors of

the matrix C = GGT when G has n columns and is in O(Pn2). We could

thus use the following strategy:

1. compute the first k eigenvectors of C,

2. compute the consensus gradient update using the eigendecomposition of

C,

3. write the low-rank approximation under the form UUT (U then being

the matrix of unnormalized eigenvectors),

4. update the matrix U when a new data point arrives, following sec-

tion 15.6.2, where G plays the role of U ,

5. recompute the first k eigenvectors of the new C for a cost of O(P (k+1)2),

6. iterate from 2.

One can see that the cost of this algorithm is O(Pk2) for every new gradient,

which is approximately k2 slower than standard gradient descent. The idea

will thus be to update this covariance matrix as new data points arrive,

but not to recompute the eigendecomposition every time. Instead, we will

add data points until there are k + B vectors in the matrix G (with B a

hyperparameter), at which point we will recompute the eigendecomposition

of this new covariance matrix.

There is a problem, however. While it is easy to compute the consensus

gradient direction when one has access to the eigendecomposition of C, this

will not be the case when several data points have been added. Luckily,

the computation remains tractable, as we will see. b steps after the last

eigendecomposition, the matrix G may be written as

G = [K0U K1(g1 − μ0) . . .Kb(gb − μb−1)]

(the constants K0, . . . ,Kb stem from the
√
γ and

√
γ(1− γ) factors of

section 15.6.2). Since C = GGT , and in order to compute the naturalized

gradient d = (I + C/[nσ2])−1gb, we wish to find the direction d such that(
I +

GGT

nσ2

)
d = gb . (15.38)

15.6 An Efficient Implementation of Online Consensus Gradient: TONGA 417

We will assume that d is of the form d = Gx + λμb−1 for some vector x

and some value of λ. With y = [0 . . . 0 (1/Kb)]
T , we have gb = Gy + μb−1,

and (15.38) thus becomes

Gx+ λμb−1 +
GGTGx+ λGGTμb−1

nσ2
= Gy + μb−1 .

Using λ = 1 and moving the fraction to the right-hand side, we get

Gx = Gy − GGTGx+ λGGTμb−1

nσ2
(15.39)

x =

(
I +

GTG

nσ2

)−1(
y − GTμb−1

nσ2

)
(15.40)

(assuming G is of full rank), yielding

d = G

(
I +

GTG

nσ2

)−1(
y − GTμb−1

nσ2

)
+ μb−1 . (15.41)

Since G is of size P × (k + b), computing d costs O((k + b)3 + P (k +B)) =

O(P (k + B)), since we will limit ourselves to the setting where the rank of

the covariance matrix is much less than the square root of the number of

parameters.

15.6.4 Analysis of the Computational Cost

We will now briefly analyze the average computational cost of a gradient

update where there are P parameters. We will assume that the gradients

are computed over minibatches of size m:

1. every B steps, we compute the first k eigenvectors of the covariance ma-

trix of k+B data points for a total cost of O(P (k+B)2) (see section 15.6.1)

2. every step, we compute the consensus gradient direction for a total cost

of O(P (k +B)) (see section 15.6.3)

3. computing the average gradient over a minibatch costs O(Pm) at every

step.

The average cost per update is thus O
(
P
[
m+ k +B + (k+B)2

B

])
as

opposed to O(Pm) for standard minibatch gradient descent. Thus, if we

keep (k+B) close to m, the cost of each iteration will be of the same order

of magnitude as the standard gradient descent.

418 Improving First and Second-Order Methods by Modeling Uncertainty

15.6.5 Block-Diagonal Online Consensus Gradient for Neural Networks

We now have a strategy to compute the consensus gradient direction using

a low-rank approximation of the covariance matrix (with the rank varying

between k and k+B). The question remains as to which value of k provides

a reasonable approximation. Unfortunately, experiments showed that, in

general, a high value of k (around 200 for P = 2000) was necessary for

d to be a meaningful modification of the original gradient direction. In this

setting, provided m, the minibatch size, is small (between 5 and 10), each

update is at least 20 times slower than the standard gradient descent, and

this extra computational cost cannot be made up by better search directions.

One might thus wonder if there are better approximations of the covari-

ance matrix C than computing its first k eigenvectors. Collobert (2004)

showed that the Hessian of a neural network with one hidden layer trained

with the cross-entropy cost converges to a block-diagonal matrix during op-

timization. These blocks are composed of the weights linking all the hidden

units to one output unit and all the input units to one hidden unit (fan-

in). Since we listed some of the numerical similarities between the Hessian

and the covariance, it may be useful to investigate the use of such a block

structure for the covariance estimator. We will thus use a block-diagonal

approximation of the covariance matrix. Instead of computing the first k

eigenvectors of the entire covariance matrix, we will compute the first k

eigenvectors of each block. Some remarks are worth making on that point:

the rank of the approximation is not k but k× (number of blocks), which

is much higher;

all the terms outside of these blocks are set to 0. Thus, this approximation

will be better only if these elements are actually negligible in the original

covariance matrix;

one may pick a different value of k for each block, depending on its size or

the knowledge one has about the problem.

Figure 15.2 shows the correlation between the standard stochastic gradi-

ents of the parameters of a 16 − 50 − 26 neural network. The first blocks

represent the weights going from the input units to each hidden unit (thus

50 blocks of size 17, bias included), and the following blocks represent the

weights going from the hidden units to each output unit (26 blocks of size

51). One can see that the block-diagonal approximation is reasonable. In the

matrices shown in figure 15.2, which are of size 2176, a value of k = 5 yields

an approximation of rank 380.

Another way of verifying the validity of our block-diagonal assumption

15.7 Experiments 419

Figure 15.2: Absolute value of correlation between the standard stochastic gradi-
ents after one epoch in a neural network with 16 input units, 50 hidden units and
26 output units when following stochastic gradient directions (left) and consensus
gradient directions (right). The first blocks in the diagonal are for input to hidden
weights (per hidden unit), and the larger ones that follow are for hidden output
weights (per output unit), showing a strong within-block correlation. One can see
that the off-block terms are not zero, but still are much smaller than the terms in
the block. Also, following natural directions helped in making the covariance more
block-diagonal, though the reason behind it is unknown.

is to compute the error induced by our low-rank approximations, with or

without this assumption. Figure 15.3 shows the relative approximation error

of the covariance matrix as a ratio of Frobenius norms ‖C−C̄‖2
F

‖C‖2
F

for different

types of approximations C̄ (full or block-diagonal). We can first notice that

approximating only the blocks yields a ratio of .35 (in comparison, taking

only the diagonal of C yields a ratio of .80), even though we considered only

82, 076 out of the 4, 734, 976 elements of the matrix (1.73 percent of the

total). This ratio is almost obtained with k = 6. We can also notice that for

k < 30, the block-diagonal approximation is much better (in terms of the

Frobenius norm) than the full approximation, which proves its effectiveness

in the case of neural networks. Yet this approximation also readily applies

to any mixture algorithm where we can assume some form of decoupling

between the components.

Thus in all our experiments, we used a value of k = 5, which allowed us

to keep a cost per iteration of the same order of magnitude as standard

gradient descent.

15.7 Experiments

In our experiments we wish to validate the two claims we have made so far:

420 Improving First and Second-Order Methods by Modeling Uncertainty

200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number k of eigenvectors kept

R
at

io
 o

f t
he

 s
qu

ar
ed

 F
ro

be
ni

us
 n

or
m

s

Full matrix approximation
Block diagonal approximation

5 10 15 20 25 30 35 40
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number k of eigenvectors kept

R
at

io
 o

f t
he

 s
qu

ar
ed

 F
ro

be
ni

us
 n

or
m

s

Full matrix approximation
Block diagonal approximation

Figure 15.3: Quality of the approximation C̄ of the covariance C, depending on
the number of eigenvectors kept (k), in terms of the ratio of the Frobenius norms
‖C−C̄‖2

F

‖C‖2
F

, for different types of approximation C̄ (full matrix or block-diagonal).

On the right we zoom on smaller values of k where the full matrix low-rank
approximation overtakes the block-diagonal approximation.

1. that taking the uncertainty into account will speed up learning;

2. that C and H encode different pieces of information and that combining

them will lead to even faster convergence.

The first set of experiments will thus compare TONGA with standard

stochastic gradient descent, whereas the second will compare an approximate

Newton method with the second-order TONGA, which we call Natural-

Newton.

15.7.1 Datasets

Several datasets, architectures, and losses were used in our experiments.

15.7.1.1 Experiments with TONGA

We tried TONGA on two different datasets:

1. the MNIST digits dataset consists of 50, 000 training samples, 10, 000

validation samples, and 10, 000 test samples, each one composed of 784

pixels. There are 10 classes (one for every digit)

2. the UCI USPS dataset consists of 9298 samples (broken into 6291 for

training, 1000 for validation, and 2007 for the official test set), each one

composed of 256 pixels. There are 10 different classes (one for every digit).

In both cases we minimized the negative log-likelihood on the training

set, using a neural network with one hidden layer. The block-diagonal

approximation of section 15.6.5 was used for TONGA, and no second-order

information was used.

15.7 Experiments 421

15.7.1.2 Experiments with Natural-Newton (Second-Order TONGA)

Whereas the goal of the experiments with TONGA was to determine if it

was possible to use the information contained in the covariance matrix in

an efficient manner, the experiments with Natural-Newton aim at exploring

the differences between C and H.

As mentioned in section 15.5, one needs to use a second-order gradient

descent method to compute the Newton directions. We chose to use the

SGD-QN algorithm (Bordes et al., 2009), since it had recently won the Wild

Track competition at the Pascal Large Scale Learning Challenge, on the

same datasets it was used on: Alpha, Gamma, Delta, Epsilon, Zeta, and

Face.

Labels were available only for the training examples of the challenge. We

therefore split these examples into several sets:

the first 100K (1M for the Face dataset) examples constituted our training

set;

the last 100K (1M for the Face dataset) examples constituted our test set.

The architecture used was a linear SVM. We did not change the hyperpa-

rameters of the SGD-QN algorithm; the interested reader may find them in

the original paper.

Since this method uses a diagonal approximation to the Hessian, we

decided to use a diagonal approximation to the covariance matrix. Though

this was not required, and we could have used a low-rank covariance matrix,

using a diagonal approximation shows the improvements over the original

method that one can obtain with little extra effort. Thus, though (15.30)

was used, none of the tricks presented in section 15.6 were necessary, except

for the exponentially moving covariance matrix.

15.7.2 Experimental Details for Natural-Newton

15.7.2.1 Frequency of Updates

The covariance matrix of the gradients changes very slowly. Therefore, one

does not need to update it as often as the Hessian approximation. In the

SGD-QN algorithm, the authors introduce a counter skip which specifies how

many gradient updates are done before the approximation to the Hessian

is updated. We introduce an additional variable skipC , which specifies

how many Hessian approximation updates are done before updating the

covariance approximation. The total number of gradient updates between

two covariance approximation updates is therefore skip · skipC .

422 Improving First and Second-Order Methods by Modeling Uncertainty

Experiments using the validation set showed that using values of skipC

lower than 8 did not yield any improvement while increasing the cost of each

update. We therefore used this value in all our experiments. This allows us to

use the information contained in the covariance with very little computation

overhead.

15.7.2.2 Limiting the Influence of the Covariance

Equation (15.29) tells us that the direction to follow is[
I +

CH

nσ2

]−1

d̂. (15.42)

The only unknown in this formula is σ2, which is the variance of our Gaussian

prior on θ − θ∗. To avoid having to set this quantity by hand at every time

step, we will devise a heuristic to find a sensible value of σ2. While this

will lack the purity of a full Bayesian treatment, it will allow us to reduce

the number of parameters to be set by hand, which we think is a valuable

feature of any gradient descent algorithm.

If we knew the distance from our position in parameter space, θ, to the

optimal solution, θ∗, then the optimal value for σ2 would be ‖θ − θ∗‖2. Of

course, this information is not available to us. However, if the function to be

optimized were truly quadratic, the squared norm of the Newton direction

would be exactly ‖θ − θ∗‖2. We shall therefore replace σ2 with the squared

norm of the last-computed Newton direction. Since this estimate may be

too noisy, we will replace it with the squared norm of the running average

of the Newton directions, that is, ‖μn‖2.
Even then, however, we may still get undesirable variations. We shall

therefore adopt a conservative strategy: we will set an upper bound on the

correction to the Newton method brought by (15.42). More precisely, we will

bound the eigenvalues of CH

n‖μn‖2 by a positive number BC . The parameter

update then becomes

θn − θn−1 = −
[
I +min

(
BC ,

CH

n‖μn‖2
)]−1

H−1gn (15.43)

where BC is a scalar hyperparameter and min(BC ,M) is defined for sym-

metric matrices M with eigenvectors u1, . . . , un and eigenvalues λ1, . . . , λn

as

min(BC ,M) =

n∑
i=1

min(BC , λi)uiu
T
i (15.44)

15.7 Experiments 423

(we bound each eigenvalue of M by BC). If we set BC = 0, we recover

the standard Newton method. This modification transforms the algorithm

in a conservative way, trading off potential gains brought by the covariance

matrix for guarantees that the parameter update will not differ too much

from the Newton direction.

In our experiments, the last 50K (500K for the Face dataset) examples

of the training set were used as validation examples to tune the bound BC

defined in (15.43).

The pseudocode for the full algorithm, which we call Natural-Newton, is

shown in algorithm 15.1.

Algorithm 15.1 Pseudocode of the Natural-Newton algorithm

Require: : skip (number of gradient updates between Hessian updates)
Require: : skipC (number of Hessian updates between covariance updates). Default

value is skipC = 8.
Require: : θ0 (the original set of parameters)
Require: : γ (the discount factor). Default value is 0.995.
Require: : T (the total number of epochs)
Require: : t0
Require: : λ (the weight decay)
Require: : BC the bound on the eigenvalues of the covariance matrix. Default value is

BC = 2.
1: t = 0, count = skip, countC = skipC
2: H− = λ I, D = I
3: μ0 = 0 (the running mean vector), CH

0 = 0 (the running covariance matrix)
4: while t �= T do
5: gt ← ∂L(θt,xt,yt)

∂θt

6: θt+1 ← θt − (t+ t0)
−1DH−gt

7: if count == 0 then
8: count ← skip
9: Update H−, the approximate inverse Hessian computed by SGD-QN.
10: if countC == 0 then
11: countC ← skipC
12: μt ← γμt−1 + (1− γ)dt
13: CH

t ← γCH
t−1 + γ(1− γ)(dt − μt−1)(dt − μt−1)

T

14: D =

(
I +

min(BC ,CH
t+1)

N·‖μt+1‖2

)−1

15: else
16: countC ← countC - 1
17: end if
18: else
19: count ← count - 1
20: end if
21: end while

424 Improving First and Second-Order Methods by Modeling Uncertainty

15.7.2.3 Parameter Tuning

In all the experiments γ has been set to 0.995, as in TONGA. Again, to

test the sensitivity of the algorithm to this parameter, we tried other values

(0.999, 0.992, 0.99, and 0.9) without noticing any significant difference in

validation errors.

We optimized the bound on the covariance (section 15.7.2.2) based on

validation set error. The best value was chosen for the test set, but we found

that a value of 2 yielded near-optimal results on all datasets, the difference

between B = 1, B = 2, and B = 5 being minimal, as shown in figure 15.6

in the case of the Alpha dataset.

15.7.3 Results

15.7.3.1 TONGA

We performed a small number of experiments with TONGA’s low-rank ap-

proximation of the full covariance matrix, keeping the overhead of the con-

sensus gradient small (i.e., limiting the rank of the approximation). Regret-

tably, TONGA performed only as well as stochastic gradient descent, while

being rather sensitive to the hyperparameter values. The following exper-

iments, on the other hand, use TONGA with the block-diagonal approx-

imation and yield impressive results. We believe this is a reflection of the

phenomenon illustrated in figure 15.3 (right): the block-diagonal approxima-

tion makes for a very cost-effective approximation of the covariance matrix.

All the experiments have been done by optimizing hyperparameters on a

validation set (not shown here) and selecting the best set of hyperparame-

ters for testing, trying to keep the overhead small due to natural gradient

calculations.

One could worry about the number of hyperparameters of TONGA.

However, default values of k = 5, B = 50, and γ = .995 yielded good

results in every experiment.

Figure 15.4 shows that in terms of training CPU time (which includes

the overhead due to TONGA), TONGA allows much faster convergence

in training NLL, as well as in testing classification error and NLL than

ordinary stochastic and minibatch gradient descent on this task. Also note

that the minibatch stochastic gradient is able to profit from matrix-matrix

multiplications, but this advantage is seen mainly in training classification

error.

Note that the gain obtained on the USPS dataset is much slimmer. One

possibility is that since the training set is much smaller, the independence

15.7 Experiments 425

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

0.01

0.02

0.03

0.04

0.05

0.06

CPU time (in seconds)

C
la

ss
ifi

ca
tio

n
er

ro
r

on
 th

e
tr

ai
ni

ng
 s

et

Block diagonal TONGA
Stochastic batchsize=1
Stochastic batchsize=400
Stochastic batchsize=1000
Stochastic batchsize=2000

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

0.06

CPU time (in seconds)

C
la

ss
ifi

ca
tio

n
er

ro
r

on
 th

e
te

st
 s

et

Block diagonal TONGA
Stochastic batchsize=1
Stochastic batchsize=400
Stochastic batchsize=1000
Stochastic batchsize=2000

Train class. error Test class. error

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

CPU time (in seconds)

N
eg

at
iv

e
lo

g−
lik

el
ih

oo
d

on
 th

e
tr

ai
ni

ng
 s

et

Block diagonal TONGA
Stochastic batchsize=1
Stochastic batchsize=400
Stochastic batchsize=1000
Stochastic batchsize=2000

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0.05

0.1

0.15

0.2

CPU time (in seconds)

N
eg

at
iv

e
lo

g−
lik

el
ih

oo
d

on
 th

e
te

st
 s

et

Block diagonal TONGA
Stochastic batchsize=1
Stochastic batchsize=400
Stochastic batchsize=1000
Stochastic batchsize=2000

Train NLL Test NLL

Figure 15.4: Comparison between stochastic gradient (with different minibatch
sizes) and TONGA on the MNIST dataset, in terms of training (50, 000 examples)
and test (10, 000 examples) classification error and negative log-likelihood (NLL).
The mean and standard error have been computed using nine different initializa-
tions.

assumption used to obtain (15.9) becomes invalid.

Finally, though we expected an improvement only on the convergence

speed of the test error, the training error decreased faster when using

TONGA. This may be due to the stochastic nature of the optimization,

where using the covariance prevented disagreeing gradients from having too

much influence and ultimately slowing down the optimization.

15.7.3.2 Natural-Newton

Natural-Newton exhibited various behaviors on the datasets it was tried on:

Natural-Newton never performs worse than SGD-QN and always better

than TONGA. Using a large value of skipC ensures that the overhead of

426 Improving First and Second-Order Methods by Modeling Uncertainty

0 10 20 30 40 50 60 70
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

CPU time (in seconds)

C
la

ss
ifi

ca
tio

n
er

ro
r

Block diagonal TONGA
Stochastic gradient

0 10 20 30 40 50 60 70
0.05

0.1

0.15

0.2

0.25

0.3

CPU time (in seconds)

C
la

ss
ifi

ca
tio

n
er

ro
r

Block diagonal TONGA
Stochastic gradient

Train class. error Test class. error

0 10 20 30 40 50 60 70
−0.5

0

0.5

1

1.5

2

CPU time (in seconds)

N
eg

at
iv

e
lo

g−
lik

el
ih

oo
d

Block diagonal TONGA
Stochastic gradient

0 10 20 30 40 50 60 70
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

CPU time (in seconds)

N
eg

at
iv

e
lo

g−
lik

el
ih

oo
d

Block diagonal TONGA
Stochastic gradient

Train NLL Test NLL

Figure 15.5: Comparison of stochastic gradient and TONGA on the USPS dataset,
in terms of training (6291 examples) and test (2007 examples) classification error
and negative log-likelihood (NLL). The mean and standard error were computed
using nine different initializations.

using the covariance matrix is negligible.

On the Alpha dataset, using the information contained in the covariance

resulted in significantly faster convergence, with or without second-order

information.

On the Epsilon, Zeta, and Face datasets, using the covariance information

stabilized the results while yielding the same convergence speed. This is in

accordance with the use of the covariance, which reduces the influence of

directions where gradients vary wildly.

On the Gamma and the Delta datasets, using the covariance information

helped a lot when the Hessian was not used, and provided no improvement

otherwise.

15.8 Conclusion 427

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.21

0.22

0.23

0.24

0.25

0.26

0.27

0.28

0.29

0.3

Training time (sec)

B = 1
B = 2
B = 5
B = 10

Figure 15.6: Validation error versus time on the Alpha dataset, for various values
of B.

15.8 Conclusion

A lot of effort has been put into designing efficient online optimization al-

gorithms, with great results. Most of these algorithms rely on some approx-

imation to the Hessian or to the covariance matrix of the gradients. While

the latter is commonly believed to be an approximation of the former, we

showed that they encode very different kinds of information. Based on this,

we proposed a way of combining information contained in the Hessian and

in the covariance matrix of the gradients.

Experiments showed that on most datasets, our method offered either

faster convergence or increased robustness, compared with the original

algorithm. Furthermore, the second-order version of our algorithm never

performed worse than the Newton algorithm it was built upon.

Moreover, our algorithm is able to use any existing second-order algorithm

as base method. Therefore, while we used SGD-QN for our experiments, one

may pick any algorithm best suited for a given task.

We hope to have shown two things. First, the covariance matrix of the

gradients is usefully viewed not as an approximation to the Hessian, but as

a source of additional information about the problem, for typical machine

learning objective functions. Second, it is possible with little extra effort to

use this information in addition to that provided by the Hessian matrix, in

some cases yielding faster or more robust convergence.

428 Improving First and Second-Order Methods by Modeling Uncertainty

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0.22

0.23

0.24

0.25

0.26

0.27

0.28

0.29

0.3

SGD

TONGA

SGD-QN

Natural-Newton

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0.2

0.21

0.22

0.23

0.24

0.25

0.26

0.27

0.28

SGD

TONGA

SGD-QN

Natural-Newton

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0.21

0.22

0.23

0.24

0.25

0.26

0.27

0.28

0.29

SGD

TONGA

SGD-QN

Natural-Newton

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0.1

0.11

0.12

0.13

0.14

0.15

0.16

0.17

0.18

0.19

0.2

SGD

TONGA

SGD-QN

Natural-Newton

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0.055

0.06

0.065

0.07

0.075

0.08

0.085

0.09

0.095

0.1

SGD

TONGA

SGD-QN

Natural-Newton

0 0.5 1 1.5 2 2.5 3

0.28

0.3

0.32

0.34

0.36

0.38

0.4

SGD-QN

Natural-Newton

Figure 15.7: Test error versus time on the Alpha (top left), the Gamma (top
right), the Delta (middle left), the Epsilon (middle right), the Zeta (bottom left),
and the Face (bottom right) datasets.

Despite all these successes, we believe that these algorithms may be

improved in several ways, whether it is by retaining some of the information

contained in the posterior distribution between timesteps or in the selection

of the parameter σ2.

15.9 References 429

15.9 References

S. Amari. Natural gradient works efficiently in learning. Neural Computation, 10
(2):251–276, 1998.

A. Bordes, L. Bottou, and P. Gallinari. SGD-QN: Careful quasi-newton stochastic
gradient descent. Journal of Machine Learning Research, 10:1737–1754, July
2009.

L. Bottou and O. Bousquet. The tradeoffs of large scale learning. In J. C. Platt,
D. Koller, Y. Singer, and S. Roweis, editors, Advances in Neural Information
Processing Systems 20, pages 161–168. MIT Press, 2008.

R. Collobert. Large Scale Machine Learning. PhD thesis, Université de Paris VI,
LIP6, 2004.

J. Nocedal and S. J. Wright. Numerical Optimization. Springer Verlag, New York,
second edition, 2006.

N. N. Schraudolph, J. Yu, and S. Günter. A stochastic quasi-Newton method for
online convex optimization. In M. Meila and X. Shen, editors, Proceedings of the
11th International Conference on Artificial Intelligence and Statistics, volume 2
of Workshop and Conference Proceedings, pages 433–440. MIT Press, 2007.

16 Bandit View on Noisy Optimization

Jean-Yves Audibert audibert@certis.enpc.fr

Imagine, Université Paris Est; Willow, CNRS/ENS/INRIA

Paris, France

Sébastien Bubeck sebastien.bubeck@inria.fr

Sequel Project, INRIA Lille - Nord Europe

Lille, France

Rémi Munos remi.munos@inria.fr

Sequel Project, INRIA Lille - Nord Europe

Lille, France

This chapter deals with the problem of making the best use of a finite

number of noisy evaluations to optimize an unknown function. We are

concerned primarily with the case where the function is defined over a finite

set. In this discrete setting, we discuss various objectives for the learner,

from optimizing the allocation of a given budget of evaluations to optimal

stopping time problems with (ε, δ)-PAC guarantees. We also consider the

so-called online optimization framework, where the result of an evaluation is

associated to a reward, and the goal is to maximize the sum of obtained

rewards. In this case, we extend the algorithms to continuous sets and

(weakly) Lipschitzian functions (with respect to a prespecified metric).

16.1 Introduction

In this chapter, we investigate the problem of function optimization with

a finite number of noisy evaluations. While at first one may think that

simple repeated sampling can overcome the difficulty introduced by noisy

evaluations, it is far from being an optimal strategy. Indeed, to make the

432 Bandit View on Noisy Optimization

best use of the evaluations, one may want to estimate the seemingly best

options more precisely, while for bad options a rough estimate might be

enough. This reasoning leads to non-trivial algorithms, which depend on the

objective criterion that we set and on how we define the budget constraint on

the number of evaluations. The main mathematical tool that we use to build

good strategies is a set of concentration inequalities that we briefly recall in

section 16.2. Then in section 16.3, we discuss the fundamental case of discrete

optimization under various budget constraints. Finally, in section 16.4 we

consider the case where the optimization has to be performed online, in the

sense that the value of an evaluation can be considered a reward, and the

goal of the learner is to maximize his or her cumulative rewards. In this case,

we also consider the extension to continuous optimization.

16.1.1 Problem Setup and Notation

Consider a finite set of options {1, . . . ,K}, also called actions or arms

(in reference to the multi-armed bandit terminology). To each option i ∈
{1, . . . ,K} we associate a (reward) distribution νi on [0, 1], with mean μi.

Let i∗ denote an optimal arm, that is, μi∗ = max1≤j≤K μj . We denote the

suboptimality gap of option i by Δi = μi∗ − μi, and the minimal positive

gap by Δ = mini:Δi>0Δi. We assume that when one evaluates an option

i, one receives a random variable drawn from the underlying probability

distribution νi (independently from the previous draws). We investigate

strategies that perform sequential evaluations of the options to find the one

with the highest mean. More precisely, at each time step t ∈ N, a strategy

chooses an option It to evaluate. We denote by Ti(t) the number of times we

evaluated option i up to time t, and by X̂i,Ti(t) the empirical mean estimate

of option i at time t (based on Ti(t) i.i.d. random variables). In this chapter,

we consider two objectives for the strategy.

1. The learner possesses an evaluation budget, and once this budget is

exhausted, he or she has to select an option J as the candidate for being the

best option. The performance of the learner is evaluated only through the

quality of option J . This setting corresponds to the pure exploration multi-

armed bandit setting (Bubeck et al., 2009; Audibert et al., 2010). We study

this problem under two different assumptions on the evaluation budget in

Section 16.3.

2. The result of an evaluation is associated to a reward, and the learner

wants to maximize his or her cumulative rewards. This setting corresponds

to the classical multi-armed bandit setting (Robbins, 1952; Lai and Robbins,

1985; Auer et al., 2002). We study this problem in Section 16.4.

16.2 Concentration Inequalities 433

16.2 Concentration Inequalities

In this section, we state the fundamental concentration properties of sums

of random variables. While we do not directly use the following theorems

in this chapter (since we do not provide any proof), this concentration

phenomenon is the cornerstone of our reasoning, and a good understanding

of it is necessary to get the insights behind our proposed algorithms.

We start with the celebrated Hoeffding-Azuma inequality (Hoeffding,

1963) for the sum of martingale differences. See, for instance, Williams

(1991) for an introductory-level textbook on martingales, and Lugosi (1998)

and Massart (2007) for lecture notes on concentration inequalities.

Theorem 16.1 (Hoeffding-Azuma inequality for martingales). Let F1 ⊂
· · · ⊂ Fn be a filtration, and X1, . . . , Xn be real random variables such that

Xt is Ft-measurable, E(Xt|Ft−1) = 0 and Xt ∈ [At, At + ct] where At is a

random variable Ft−1-measurable and ct is a positive constant. Then, for

any ε > 0, we have

P

(n∑
t=1

Xt ≥ ε
)
≤ exp

(
− 2ε2∑n

t=1 c
2
t

)
, (16.1)

or equivalently, for any δ > 0, with probability at least 1− δ, we have

n∑
t=1

Xt ≤
√√√√ log(δ−1)

2

n∑
t=1

c2t . (16.2)

In particular, when X1, . . . , Xn are i.i.d. centered random variables taking

their values in [a, b] for some real numbers a and b, with probability at least

1− δ, we have

n∑
t=1

Xt ≤ (b− a)

√
n log(δ−1)

2
. (16.3)

The next result is a refinement of the previous concentration inequality

which takes into account the variance of the random variables. More precisely

up to a second-order term it replaces the range (squared) of the random

variables with their variances.

Theorem 16.2 (Bernstein’s inequality for martingales). Let F1 ⊂ · · · ⊂ Fn

be a filtration, and X1, . . . , Xn real random variables such that Xt is Ft-

measurable, E(Xt|Ft−1) = 0, |Xt| ≤ b for some b > 0, and E(X2
t |Ft−1) ≤ v

434 Bandit View on Noisy Optimization

for some v > 0. Then, for any ε > 0, we have

P

(n∑
t=1

Xt ≥ ε
)
≤ exp

(
− ε2

2nv + 2bε/3

)
, (16.4)

and for any δ > 0, with probability at least 1− δ, we have

n∑
t=1

Xt ≤
√

2nv log(δ−1) +
b log(δ−1)

3
. (16.5)

Inequalities (16.4) and (16.5) are two ways of expressing the concentration

of the mean of i.i.d. random variables. They are almost equivalent to the

extent that up to minor modification of the constants, one can go from (16.4)

to (16.5) and conversely by a change of variables.

The next inequality was proved by Audibert et al. (2009). It allows to

replace the true variance with its empirical estimate in Bernstein’s bound.

Theorem 16.3 (Empirical Bernstein bound). Let X1, . . . , Xn be i.i.d. cen-

tered real random variables in [a, b] for some a, b ∈ R. Then, for any δ > 0

and s ∈ {1, . . . , n}, with probability at least 1− δ, we have

s∑
t=1

Xt ≤
√

2nVs log(3δ−1) + 3(b− a) log(3δ−1),

where Vs =
1
s

∑s
t=1

(
Xt − 1

s

∑s
�=1X�

)2
.

Variants and refinement of this bound can be found in Maurer and Pontil

(2009) and Audibert (2010).

16.3 Discrete Optimization

In this section, we focus on strategies that use a finite budget of evaluations

to find the best option. We consider two different (but related) assumptions

on this budget.

There is a fixed budget of n evaluations (Bubeck et al., 2009; Audibert

et al., 2010). The value of n can be known or unknown by the learner. When

it is unknown, the learner has thus to design an anytime strategy, that is, a

policy with good theoretical guarantees whatever the budget is.

The strategy must stop as soon as possible with the guarantee that an

ε-optimal option has been found with probability at least 1−δ, where ε and

δ are fixed before the procedure starts (Maron and Moore, 1993; Domingo

et al., 2002; Dagum et al., 2000; Even-Dar et al., 2006; Mnih et al., 2008).

16.3 Discrete Optimization 435

Let A1 = {1, . . . ,K}, log(K) = 1
2 +
∑K

i=2
1
i , n0 = 0 and for k ∈ {1, . . . ,K− 1},

nk =

⌈
1

log(K)

n−K

K + 1− k

⌉
.

For each phase k = 1, 2, . . . ,K − 1:

(1) For each i ∈ Ak, select option i for nk − nk−1 evaluations.

(2) Let Ak+1 = Ak\argmini∈Ak X̂i,nk
(we remove only one element from Ak; if

there is a tie, randomly select the option to dismiss among the worst options).

Recommend the unique element of AK .

Figure 16.1: SR (successive rejects) algorithm.

16.3.1 Fixed Budget

In this section, the number of evaluations is fixed, and the goal is to make

the best use of the budget. We propose a strategy, that is simple, yet

almost optimal in a strong sense (see theorem 16.4). The algorithm, called

SR (successive rejects) is described precisely in figure 16.1. Informally, it

proceeds as follows. First the algorithm divides the budget (i.e., the n

evaluations) in K − 1 phases. At the end of each phase, the algorithm

dismisses the option with the lowest empirical mean. During the next phase,

it equally often evaluates all the options which have not been dismissed.

The recommended arm J is the last surviving option. The lengths of the

phases are carefully chosen to obtain an optimal (up to a logarithmic factor)

convergence rate. More precisely, one option is evaluated n1 =
⌈

1
log(K)

n−K
K

⌉
times, one n2 =

⌈
1

log(K)
n−K
K−1

⌉
times, ..., and two options are evaluated

nK−1 =
⌈

1
log(K)

n−K
2

⌉
times. SR does not exceed the budget of n evaluations,

since, from the definition log(K) = 1
2 +
∑K

i=2
1
i we have

n1 + . . .+ nK−1 + nK−1 ≤ K +
n−K

log(K)

(
1

2
+

K−1∑
k=1

1

K + 1− k

)
= n.

Theorem 16.4 (Successive rejects). Assume that there is a unique arm i∗

with maximal mean and let H = 1
Δ +
∑

i �=i∗
1
Δi

. Then the probability of error

436 Bandit View on Noisy Optimization

of SR satisfies

P(J �= i∗) ≤ K(K − 1)

2
exp

(
− n−K

log(2K)H

)
. (16.6)

Moreover, if ν1, . . . , νK are Bernoulli distributions with parameters in [p, 1−
p], p ∈ (0, 1/2), then for any strategy there exists a permutation σ :

{1, . . . ,K} → {1, . . . ,K} such that the probability of error of the strategy

on the problem defined by ν̃1 = νσ(1), . . . , ν̃K = νσ(K) satisfies

P(J �= i∗) ≥ exp

(
−(5 + o(1))n log(2K)

p(1− p)H

)
, (16.7)

where the o(1) term depends only on K and n, and goes to 0 when n goes

to infinity.

16.3.1.1 Interpretation of Theorem 16.4

Essentially, equation (16.6) indicates that if the number of evaluations is on

the order of H log2K, then SR finds the best option with high probability.

On the other hand, equation (16.7) shows that it is statistically impossible

to find the best option with fewer than (order of) H/ logK evaluations.

Thus H is a good measure of the hardness of the task; it characterizes the

order of magnitude of the number of evaluations required to find the best

option with a reasonable probability.

Closing the logarithmic gap between the upper and lower bounds in

theorem 16.4 is an open problem. Audibert et al. (2010) exhibit an algorithm

which requires only (on the order of) H log n evaluations to find the best

option with high probability. However, this algorithm needs to know the

value of H to tune its parameters. One can overcome this difficulty by trying

to estimate H online, which leads to the algorithm Adaptive UCB-E that is

described precisely in figure 16.2. We do not give any further details about

this algorithm and refer the interested reader to Audibert et al. (2010);

we simply point out that in our numerical simulations, Adaptive UCB-E

outperformed SR.

16.3.1.2 Anytime Versions of SR and Adaptive UCB-E.

Both algorithms that we propose depend heavily on the knowledge of the

number of evaluations n. However in many natural cases this number is only

implicitly defined (for instance through CPU time). Thus, it is important

to have strategies which do not need to know the time horizon in advance.

16.3 Discrete Optimization 437

Parameter: exploration rate c > 0.

Definitions: For k ∈ {1, . . . ,K − 1}, let nk =
⌈

1
log(K)

n−K
K+1−k

⌉
, t0 = 0,

t1 = Kn1, and for k > 1, tk = n1 + . . . nk−1 + (K − k + 1)nk.
For i ∈ {1, . . . ,K} and a > 0, let Bi,s(a) = X̂i,s+

√
a
s for s ≥ 1 and Bi,0 = +∞.

Algorithm: For each phase k = 0, 1, . . . ,K − 1:
Let Ĥk = K if k = 0, and otherwise

Ĥk = max
K−k+1≤i≤K

iΔ̂−2
<i>,

where Δ̂i =
(
max1≤j≤K X̂j,Tj(tk)

) − X̂i,Ti(tk) and < i > is an ordering such

that Δ̂<1> ≤ . . . ≤ Δ̂<K>.

For t = tk + 1, . . . , tk+1:
Evaluate It ∈ argmaxi∈{1,...,K} Bi,Ti(t−1)(cn/Ĥk).

Recommendation: Let J ∈ argmaxi∈{1,...,K} X̂i,Ti(n).

Figure 16.2: Adaptive UCB-E (Upper Confidence Bound Exploration).

One simple and famous trick for this purpose is the doubling trick. The idea

is to introduce metaphases, s = 1, 2, . . . , such that from the evaluations

t = 2s−1 + 1 to t = 2s, one runs a new instance of the algorithm with n

replaced by 2s−1. While it is often assumed that the new instance of the

algorithm does not use the samples obtained in the previous phases, here we

do not need to make this assumption. For instance, the anytime version of SR

would work as follows. At time 2s there is only one surviving option. Then

at time 2s+1 we “revive” all the options and run SR with n replaced by 2s+1

(to define the length of the phases of SR). However, the empirical mean of

each option is computed over the whole run of the algorithm, starting with

t = 1.

16.3.2 Hoeffding and Bernstein Races

Racing algorithms aim to reduce the computational burden of performing

tasks such as model selection using a holdout set by discarding poor models

quickly (Maron and Moore, 1993; Ortiz and Kaelbling, 2000). A racing

algorithm terminates either when it runs out of time (i.e., at the end of

the n-th round) or when it can say that with probability at least 1 − δ, it

has found the best option, that is, an option i∗ ∈ argmaxi∈{1,...,K} μi. The

goal is to stop as soon as possible, and the time constraint n is here to stop

the algorithm when the two best options have (almost) equal mean rewards.

438 Bandit View on Noisy Optimization

Parameter: the confidence level δ.

Let A = {1, . . . ,K} and t = 1

While |A| > 1

(1) sample every option in A for the t-th time.

(2) remove from A all the options having an empirical mean differing from the
highest empirical mean by more than

√
2 log(nK/δ)/t, that is,

A← A \
{
j ∈ A : X̂j,t ≤ max

1≤i≤K
X̂i,t −

√
2 log(nK/δ)

t

}
.

(3) t← t+ 1.

Output the unique element of A.

Figure 16.3: Hoeffding race.

The Hoeffding race introduced by Maron and Moore (1993) is an algorithm

based on discarding options which are likely to have a smaller mean than the

optimal one until only one option remains. Precisely, for each time step and

each option i, δ/(nK)-confidence intervals are constructed for the mean μi.

Options with an upper confidence bound smaller than the lower confidence

bound of another option are discarded. The algorithm samples one by one

all the options that have not been discarded. The process is detailed in

Figure 16.3. The correctness of this algorithm is proved by Maron and Moore

(1993), and its sample complexity is given by the following theorem (Even-

Dar et al., 2006; Mnih et al., 2008).

Theorem 16.5 (Hoeffding race). With probability at least 1−δ, the optimal

option is not discarded, and the non-discarded option(s) (which can be

multiple when the algorithm runs out of time) satisfy(ies)

Δi = O

(√
log(nK/δ)

n/K

)
.

Besides, if there is a unique optimal arm i∗, with probability at least 1− δ,

the Hoeffding race stops after at most O
(∑

i �=i∗
1
Δ2

i
log
(
nK
δ

))
time steps.

Empirical and theoretical studies show that replacing the Hoeffding in-

equality with the empirical Bernstein bound to build the confidence intervals

generally leads to significant improvements. The algorithm based on the em-

pirical Bernstein bound is described in Figure 16.4. Theorem 16.6 provides

16.3 Discrete Optimization 439

its theoretical guarantee, and table 16.1 shows the percentage of work saved

by each method (1− number of samples taken by method divided by nK),

as well as the number of options remaining after termination (see Mnih et al.

(2008) for a more detailed description of the experiments).

Theorem 16.6 (Bernstein race). Let σi denote the standard deviation of

νi. With probability at least 1 − δ, the optimal option is not discarded, and

the non-discarded option(s) (which can be multiple when the algorithm runs

out of time) satisfy(ies)

Δi = O

(
(σi + σi∗)

√
log(nK/δ)

n/K
+

log(nK/δ)

n/K

)
.

Besides, if there is a unique optimal arm i∗, with probability at least 1− δ,

the Bernstein race stops after at most O
(∑

i �=i∗
σ2
i+σ2

i∗+Δi

Δ2
i

log
(
nK
δ

))
time

steps.

Parameter: the confidence level δ.

Let A = {1, . . . ,K} and t = 1

While |A| > 1

(1) sample every option in A for the t-th time.

(2) remove suboptimal options from A:

A← A \
{
j ∈ A : X̂j,t +

√
2Vj,t log(nK/δ)

t
+ 6

log(nK/δ)

t

≤ max
1≤i≤K

(
X̂i,t −

√
2Vi,t log(nK/δ)

t

)}
,

where Vi,t =
1
t

∑t
s=1

(
Xi,s − X̂i,t

)2
is the empirical variance of option i.

(3) t← t+ 1.

Output the unique element of A.

Figure 16.4: Bernstein race.

440 Bandit View on Noisy Optimization

Data set Hoeffding Empirical Bernstein

SARCOS 0.0% / 11 44.9% / 4
Covertype2 14.9% / 8 29.3% / 5
Local 6.0% / 9 33.1% / 6

Table 16.1: Percentage of work saved/number of options left after termination

16.3.3 Optimal Stopping Times

Section 16.3.3.1 takes a step back since it considers the single option case

(that is, when K = 1). The additive and multiplicative stopping time

problems are tackled there. Section 16.3.3.2 then deals with the multiple

options case for the additive stopping time problem.

16.3.3.1 For a Single Option

Algorithms described in section 16.3 rely on either the Hoeffding or the

(empirical) Bernstein inequality, and on a probabilistic union bound corre-

sponding to both the different options and the different time steps. Maximal

inequalities based on a martingale argument due to Doob (1953) (see also

Freedman (1975) for maximal inequalities more similar to the one below)

allow one to reduce the impact on the confidence levels of the union bound

across time steps. Precisely, one can write the following version of the em-

pirical Bernstein inequality, which holds uniformly over time.

Theorem 16.7. Let X1, . . . , Xn be n ≥ 1 i.i.d. random variables taking

their values in [a, b]. Let μ = EX1 be their common expected value. For

any 1 ≤ t ≤ n, introduce the empirical mean X̂t and variance Vt, defined

respectively by

X̂t =

∑t
i=1Xi

t
and Vt =

∑t
i=1(Xi − X̂t)

2

t
.

For any x > 0, with probability at least

1− 3 inf
1<α≤3

min
(log n
logα

, n
)
e−x/α, (16.8)

the following inequality holds simultaneously for any t ∈ {1, 2, . . . , n}:

|X̂t − μ| ≤
√

2Vtx

t
+

3(b− a)x

t
. (16.9)

This theorem allows one to address the additive stopping time problem in

which the learner stops sampling an unknown distribution ν supported in

16.3 Discrete Optimization 441

[a, b] as soon as it can output an estimate μ̂ of the mean μ of ν with additive

error at most ε with probability at least 1− δ, that is,

P
(|μ̂− μ| ≤ ε

) ≥ 1− δ, (16.10)

with the time constraint that the learner is not allowed to sample more than

n times. Indeed, from Theorem 16.7, it suffices to stop sampling at time t

such that the right-hand side of (16.9) is below ε where x is set such that

(16.8) equals 1 − δ. Besides, it can be shown that the sampling complexity

is in expectation

O

((
log(δ−1) + log

(
log(3n)

))
max

(
σ2

ε2
,
b− a

ε

))
,

where σ2 is the variance of the sampling distribution. This is optimal up to

the log-log term.

In the multiplicative stopping time problem, the learner stops sampling

an unknown distribution ν supported in [a, b] as soon as it can output an

estimate μ̂ of the mean μ of ν with relative error at most ε with probability

at least 1− δ, that is,

P
(|μ̂− μ| ≤ ε|μ|) ≥ 1− δ, (16.11)

with the time constraint that the learner is not allowed to sample more

than n times. The multiplicative stopping time problem is similar to the

additive one, except when μ is close to 0 (but nonzero). Considering relative

errors introduces an asymmetry between the left and right bounds of the

confidence intervals, which requires more involved algorithms to get better

practical performances. The state-of-the-art method to handle the task is

the geometric empirical Bernstein stopping proposed by Mnih et al. (2008)

and detailed in Figure 16.5. A slightly refined version is given in Audibert

(2010).

It uses a geometric grid and parameters ensuring that the event E =

{|X̂t − μ| ≤ ct, t ≥ t1} occurs with probability at least 1 − δ. It oper-

ates by maintaining a lower bound, LB, and an upper bound, UB, on the

absolute value of the mean of the random variable being sampled, ter-

minates when (1 + ε)LB < (1 − ε)UB, and returns the mean estimate

μ̂ = sign(X̂t)
(1+ε)LB+(1−ε)UB

2 . Mnih et al. (2008) proved that the output

satisfies (16.11) and that the expected stopping time of the policy is

O

((
log
(1
δ

)
+ log

(
log

3

ε|μ|
))

max

(
σ2

ε2μ2
,
b− a

ε|μ|
))

.

442 Bandit View on Noisy Optimization

Parameters: q > 0, t1 ≥ 1, and α > 1 defining the geometric grid tk = +αtk−1,.
(Good default choice: q = 0.1, t1 = 20, and α = 1.1.)

Initialization:
c = 3

δtq1(1−α−q)

LB ← 0
UB ←∞
For t = 1, . . . , t1 − 1,

sample Xt from ν
End For

For k = 1, 2, . . . ,
For t = tk, . . . , tk+1 − 1,
sample Xt from ν
compute �t =

tk+1

t2 log(ctqk) and ct =
√
2�tVt + 3(b− a)�t

LB ← max(LB, |X̂t| − ct)
UB ← min(UB, |X̂t|+ ct)
If (1 + ε)LB < (1− ε)UB, Then

stop simulating X and return the mean estimate
sign(X̂t)

(1+ε)LB+(1−ε)UB
2

End If
End For

End For

Figure 16.5: Geometric empirical Bernstein stopping rule.

Up to the log-log term, this is optimal from the work of Dagum et al. (2000).

16.3.3.2 For Multiple Options

Let us go back to the case where we consider K > 1 options. A natural

variant of the best option identification problems addressed in sections 16.3.1

and 16.3.2 is to find, with high probability, a near-optimal option while not

sampling for too long a time. Precisely, the learner wants to stop sampling

as soon as he or she can say that with probability at least 1 − δ, he or she

has identified an option i with μi ≥ max1≤j≤K μj − ε. An algorithm solving

this problem will be called an (ε, δ)-correct policy. A simple way to get such

a policy is to adapt the Hoeffding or Bernstein race (figures 16.3 and 16.4)

by adding an ε in the right-hand side of the inequality defining the removal

step. It can easily be shown that this strategy is (ε, δ)-correct and has an

expected sampling time of O
(
K
ε2 log

(
nK
δ

))
. This is minimax optimal up to

the log(nK) term in view of the following lower bound due to Mannor and

Tsitsiklis (2004).

Theorem 16.8 (Additive optimal sampling lower bound). There exist

16.4 Online Optimization 443

positive constants c1, c2 such that for any K ≥ 2, 0 < δ < 1/250,

0 < ε < 1/8, and any (ε, δ)-correct policy, there exist distributions ν1, . . . , νK
on [0, 1] such that the average stopping time of the policy is greater than

c1
K
ε2 log

(
c2
δ

)
.

Parameters: ε > 0, δ > 0.

Let A = {1, . . . ,K}, ε̃ = ε/4 and δ̃ = δ/2.

While |A| > 1

(1) sample every option in A for
⌊

4
ε̃2

log(3/δ̃)
⌋
times.

(2) remove from A suboptimal options:

A← A \ {j ∈ A : X̂j,t is smaller than the median of (X̂i,t)i∈A

}
,

(3) ε̃← 3
4 ε̃ and δ̃ ← 1

2 δ̃.

Output the unique element of A.

Figure 16.6: Median elimination.

Even-Dar et al. (2006) propose a policy, called median elimination (de-

tailed in figure 16.6), with a sampling complexity matching the previous

lower bound according to the following sampling complexity result.

Theorem 16.9 (Median elimination). The median elimination algorithm is

(ε, δ)-correct and stops after at most O
(
K
ε2 log

(
2
δ

))
.

16.4 Online Optimization

In this section we consider a setting different from the one presented in

section 16.3. We assume that the result of an evaluation is associated to

a reward, and the objective is to maximize the sum of obtained rewards.

This notion induces an explicit trade-off between exploration and exploita-

tion: at each time step the strategy has to balance between trying to obtain

more information about the options and selecting the option which seems to

yield (in expectation) the highest rewards. As we shall see in section 16.4.1,

good strategies perform both exploration and exploitation at the same time.

This framework is known as the multi-armed bandit problem. It was

444 Bandit View on Noisy Optimization

introduced by Robbins (1952). Since about 2000 there has been a flurry of

activity around this type of problem, with many different extensions. In this

section we concentrate on the basic version where there is a finite number

of options, as well as on the extension to an arbitrary set of options with a

Lipschitz assumption on the mapping from options to expected rewards. A

more extensive review of the existing literature (as well as the proofs of the

results of section 16.4.1) can be found in Bubeck (2010, chapter 2).

16.4.1 Discrete Case

We propose three strategies for the case of a finite number of options. We

describe these algorithms in figure 16.7. They are all based on the same

underlying principle: optimism in face of uncertainty. More precisely, these

methods assign an upper confidence bound on the mean reward of each

option (which holds with high probability), and then select the option with

the highest bound.

We now review the theoretical performances of the proposed strategies,

and briefly discuss the implications of the different results. In particular, as

we shall see, none of these strategies is uniformly (over all possible K-tuple

of distributions) better (in the sense that it would have a larger expected

sum of rewards) than the others.

To assess a strategy, we use the expected cumulative regret, defined as

Rn = n max
1≤i≤K

μi −
n∑

t=1

EμIt .

That is, Rn represents the difference in expected reward between the optimal

strategy (which always selects the best option) and the strategy we used.

16.4.1.1 UCB (Auer et al., 2002).

This strategy relies on the basic Hoeffding’s inequality (16.3) to build the

upper confidence bound. This leads to a simple and natural algorithm, yet

one that is almost optimal. More precisely, the distribution-dependent upper

bound (16.12) has the optimal logarithmic rate in n, but not the optimal

distribution-dependent constant (see theorem 16.13 for the corresponding

lower bound). On the other hand, the distribution-free upper bound (16.13)

is optimal up to a logarithmic term (see theorem 16.14 for the corresponding

lower bound). The two other strategies, UCB-V and MOSS, are designed to

improve on these weaknesses.

Theorem 16.10 (Upper Confidence Bound algorithm). UCB with α > 1/2

16.4 Online Optimization 445

UCB (Upper Confidence Bound), UCB-V (Upper Confidence Bound with Vari-
ance), and MOSS (Minimax Optimal Strategy for the Stochastic case):

Parameter: exploration rate α > 0.

For an arm i, define its index Bi,s,t by

UCB index: Bi,s,t = X̂i,s +

√
α log(t)

s
,

UCB-V index: Bi,s,t = X̂i,s +

√
2αVi,s log(t)

s
+ 3α

log(t)

s
,

MOSS index: Bi,s,t = X̂i,s +

√
max

(
log(n

Ks) , 0
)

s
,

for s, t ≥ 1, and Bi,0,t = +∞.
At time t, evaluate an option It maximizing Bi,Ti(t−1),t, where Ti(t−1) denotes
the number of times we evaluated option i during the t− 1 first steps.

Figure 16.7: Upper confidence bound-based policies.

satisfies

Rn ≤
∑

i:Δi>0

4α

Δi
log(n) + Δi

(
1 +

4

log(α+ 1/2)

(
α+ 1/2

α− 1/2

)2
)
, (16.12)

and

Rn ≤
√√√√nK

(
4α log n+ 1 +

4

log(α+ 1/2)

(
α+ 1/2

α− 1/2

)2
)
. (16.13)

16.4.1.2 UCB-V (Audibert et al., 2009).

Here the confidence intervals are derived from an empirical version of

Bernstein’s inequality (see theorem 16.3). This leads to an improvement in

the distribution-dependent rate, where basically one can replace the range

of the distributions with their variances.

Theorem 16.11 (Upper Confidence Bound with Variance algorithm).

446 Bandit View on Noisy Optimization

UCB-V with α > 1 satisfies1

Rn ≤ 8α
∑

i:Δi>0

(
σ2
i

Δi
+ 2

)
log(n)+Δi

(
2 +

12

log(α+ 1)

(
α+ 1

α− 1

)2
)
. (16.14)

16.4.1.3 MOSS (Audibert and Bubeck, 2009).

In this second modification of UCB, one combines the Hoeffding-type confi-

dence intervals by using a tight peeling device. This leads to a minimax strat-

egy, in the sense that the distribution-free upper bound (16.16) is optimal

up to a numerical constant. On the other hand, the distribution-dependent

bound (16.15) can be slightly worse than the one for UCB. Note also that,

contrary to UCB and UCB-V, MOSS needs to know in advance the number

of evaluations. Again, one can overcome this difficulty with the doubling

trick.

Theorem 16.12 (Minimax Optimal Strategy for the Stochastic case).

MOSS satisfies

Rn ≤ 23K

Δ
log

(
max

(
110nΔ2

K
, 104

))
(16.15)

and

Rn ≤ 25
√
nK. (16.16)

16.4.1.4 Lower Bounds (Lai and Robbins, 1985; Auer et al., 2003).

For the sake of completeness, we state here the two main lower bounds

for multi-armed bandits. In theorem 16.13, we use the Kullback-Leibler

divergence between two Bernoulli distributions of parameters p, q ∈ (0, 1),

defined as

KL(p, q) = p log

(
p

q

)
+ (1− p) log

(
1− p

1− q

)
.

1. In the context of UCB-V it is interesting to see the influence of the range of the
distributions. Precisely, if the support of all distributions νi are included in [0, b], and if
one uses the upper confidence bound sequence Bi,s,t = X̂i,s+

√
2αVi,s log(t)/s+3bα log(t)

s
,

then one can easily prove that the leading constant in the bound becomes
σ2
i

Δi
+2b, which

can be much smaller than the b2/Δi factor characterizing the regret bound of UCB.

16.4 Online Optimization 447

A useful inequality to compare the lower bound of theorem 16.13 with (16.12)

and (16.14) is the following:

2(p− q)2 ≤ KL(p, q) ≤ (p− q)2

q(1− q)
.

Theorem 16.13 (Distribution-dependent lower bound). Let us consider a

strategy such that for any set of K distributions, any arm i such that Δi > 0

and any a > 0, we have ETi(n) = o(na). Then, if ν1, . . . , νK are Bernoulli

distributions, all different from a Dirac distribution at 1, the following holds

true:

lim inf
n→+∞

Rn

log n
≥
∑

i:Δi>0

Δi

KL(μi,max1≤j≤K μj)
. (16.17)

An extension of Theorem 16.13 can be found in Burnetas and Katehakis

(1996).

Theorem 16.14 (Distribution-free lower bound). Let sup represent the

supremum taken over all sets of K distributions on [0, 1] and inf the infimum

taken over all strategies. Then the following holds true:

inf supRn ≥ 1

20

√
nK. (16.18)

16.4.2 Continuous Case

In many natural examples, the number of options is extremely large, poten-

tially infinite. One particularly important and ubiquitous case is when the

set of options is identified by a finite number of continuous-valued parame-

ters. Unfortunately, this type of problem can be arbitrarily difficult without

further assumptions. One standard way to constrain the problem is to make

a smoothness assumption on the mapping from options to expected reward

(the mean payoff function). In this section we present the approach pro-

posed in Bubeck et al. (2008), where there is essentially a weak compactness

assumption on the set of options, and a weak Lipschitz assumption on the

mean payoff. We make these assumptions more precise in section 16.4.3.

Then section 16.4.4 details the algorithm called HOO (Hierarchical Opti-

mistic Optimization), which is based on the recent successful tree optimiza-

tion algorithms (Kocsis and Szepesvári, 2006; Coquelin and Munos, 2007).

Finally, section 16.4.5 provides the theoretical guarantees that one can de-

rive for HOO. The latter can be informally summed up as follows: if one

knows the local smoothness of the mean payoff function around its maxi-

mum, then with n evaluations it is possible to find an option which is (on

the order of) 1/
√
n-optimal (no matter what the ambient dimension is).

448 Bandit View on Noisy Optimization

16.4.3 Assumptions and Notation

Let X denote the set of options, f the mean payoff function, and f∗ =

supx∈X f(x) the supremum of f over X. Recall that when one evaluates a

point x ∈ X, one receives an independent random variable in [0, 1] with

expectation f(x). Let Xt be the tth point that one chooses to evaluate.

As we said, one needs to place some restriction on the set of possible mean

payoff functions. We shall do this by resorting to some (weakly) Lipschitz

condition. However, somewhat unconventionally, we shall use dissimilarity

functions rather than metric distances, which allows us to deal with function

classes of highly different smoothness orders in a unified manner. Formally,

a dissimilarity � over X is a non-negative mapping � : X2 → R satisfying

�(x, x) = 0 for all x ∈ X. The weakly Lipschitz assumption on the mean

payoff requires that for all x, y ∈ X,

f∗ − f(y) ≤ f∗ − f(x) + max
{
f∗ − f(x), �(x, y)

}
. (16.19)

The choice of this terminology follows from the fact that if f is 1–Lipschitz

w.r.t. �, so that for all x, y ∈ X, one has |f(x) − f(y)| ≤ �(x, y), then it

is also weakly Lipschitz w.r.t. �. On the other hand, weak Lipschitzness is

a milder requirement. It implies local (one-sided) 1–Lipschitzness at any

global maximum (if one exists) x∗ (i.e., such that f(x∗) = f∗), since in that

case the criterion (16.19) rewrites to f(x∗)− f(y) ≤ �(x∗, y). In the vicinity

of other options x, the constraint is milder as the option x gets worse (as

f∗ − f(x) increases) since the condition (16.19) rewrites to

∀ y ∈ X, f(x)− f(y) ≤ max
{
f∗ − f(x), �(x, y)

}
.

In fact, it is possible to relax (16.19) and require it only to hold locally at

the global maximum (or the set of maxima if there are several). We refer

the interested reader to Bubeck et al. (2010) for further details.

We also make a mild assumption on the set X which can be viewed as

some sort of compacity w.r.t. �. More precisely, we assume that there exists

a sequence (Ph,i)h≥0,1≤i≤2h of subsets of X satisfying

P0,1 = X, and for all h ≥ 0, 1 ≤ i ≤ 2h, Ph,i = Ph+1,2i−1 ∪ Ph,2i.

There exist ν1, ν2 > 0 and ρ ∈ (0, 1) such that each Ph,i is included in a

ball of radius ν1ρ
h (w.r.t. �) and contains a ball of radius ν2ρ

h. Moreover,

for a given h, the balls of radius ν2ρ
h are all disjoint.

Intuitively, for a given h, the sets (Ph,i)1≤i≤2h represent a covering of X at

“scale” h.

The proposed algorithm takes this sequence of subsets and the real num-

16.4 Online Optimization 449

bers ν1, ρ as inputs. Moreover, the sequence (Ph,i) will be represented as an

infinite binary tree, where the nodes are indexed by pairs of integers (h, i),

such that the nodes (h+ 1, 2i− 1) and (h+ 1, 2i) are the children of (h, i).

The subset Ph,i is associated with node (h, i).

16.4.4 The Hierarchical Optimistic Optimization (HOO) Strategy

The HOO strategy (see algorithm 16.1) incrementally builds an estimate of

the mean payoff function f over X. The core idea is to estimate f precisely

around its maxima, while estimating it loosely in other parts of the space

X. To implement this idea, HOO maintains the binary tree described in

section 16.4.3, whose nodes are associated with subsets of X such that the

regions associated with nodes deeper in the tree (farther from the root)

represent increasingly smaller subsets of X. The tree is built in an incre-

mental manner. At each node of the tree, HOO stores some statistics based

on the information received in previous evaluations. In particular, HOO

keeps track of the number of times a node was traversed up to round n and

the corresponding empirical average of the rewards received so far. Based

on these, HOO assigns an optimistic estimate (denoted by B) to the max-

imum mean payoff associated with each node. These estimates are then

used to select the next node to “play”. This is done by traversing the tree,

beginning from the root and always following the node with the highest

B–value (see lines 4–14 of algorithm 16.1). Once a node is selected, a point

in the region associated with it is chosen (line 16) and is evaluated. Based on

the point selected and the reward received, the tree is updated (lines 18–33).

Note that the total running time up to the nth evaluation is quadratic

in n. However, it is possible to modify the algorithm slightly to obtain a

running time of order O(n log n). The details can be found in Bubeck et al.

(2010).

16.4.5 Regret Bound for HOO

In this section, we show that the regret of HOO depends on how fast the

volumes of the set Xε of ε–optimal options shrink as ε → 0. We formalize

this notion with the near-optimality dimension of the mean payoff function.

We start by recalling the definition of packing numbers.

Definition 16.1 (Packing number). The ε–packing number N(X, �, ε) of

X w.r.t. the dissimilarity � is the largest integer k such that there exist k

disjoint �–open balls with radius ε contained in X.

450 Bandit View on Noisy Optimization

Algorithm 16.1 The HOO strategy

Parameters: Two real numbers ν1 > 0 and ρ ∈ (0, 1), a sequence (Ph,i)h≥0,1≤i≤2h of
subsets of X.

Auxiliary function Leaf(T): outputs a leaf of T.

Initialization: T =
{
(0, 1)

}
and B1,2 = B2,2 = +∞.

1: for n = 1, 2, . . . do � Strategy HOO in round n ≥ 1
2: (h, i) ← (0, 1) � Start at the root
3: P ← {(h, i)} � P stores the path traversed in the tree
4: while (h, i) ∈ T do � Search the tree T

5: if Bh+1,2i−1 > Bh+1,2i then � Select the “more promising” child
6: (h, i) ← (h+ 1, 2i− 1)
7: else if Bh+1,2i−1 < Bh+1,2i then
8: (h, i) ← (h+ 1, 2i)
9: else � Tie-breaking rule
10: Z ∼ Ber(0.5) � e.g., choose a child at random
11: (h, i) ← (h+ 1, 2i− Z)
12: end if
13: P ← P ∪ {(h, i)}
14: end while
15: (H, I) ← (h, i) � The selected node
16: Choose option x in PH,I and evaluate it � Arbitrary selection of an option
17: Receive corresponding reward Y
18: T ← T ∪ {(H, I)} � Extend the tree
19: for all (h, i) ∈ P do � Update the statistics T and μ̂ stored in the path
20: Th,i ← Th,i + 1 � Increment the counter of node (h, i)
21: μ̂h,i ←

(
1− 1/Th,i

)
μ̂h,i + Y/Th,i � Update the mean μ̂h,i of node (h, i)

22: end for
23: for all (h, i) ∈ T do � Update the statistics U stored in the tree
24: Uh,i ← μ̂h,i +

√
(2 log n)/Th,i + ν1ρ

h � Update the U–value of node (h, i)
25: end for
26: BH+1,2I−1 ← +∞ � B–values of the children of the new leaf
27: BH+1,2I ← +∞
28: T′ ← T � Local copy of the current tree T

29: while T′ �= {
(0, 1)

}
do � Backward computation of the B–values

30: (h, i) ← Leaf(T′) � Take any remaining leaf

31: Bh,i ← min
{
Uh,i, max

{
Bh+1,2i−1, Bh+1,2i

}}
� Backward computation

32: T′ ← T′ \ {(h, i)} � Drop updated leaf (h, i)
33: end while
34: end for

16.4 Online Optimization 451

We now define the c–near-optimality dimension, which characterizes the

size of the sets Xcε as a function of ε. It can be seen as some growth rate in

ε of the metric entropy (measured in terms of � and with packing numbers

rather than covering numbers) of the set of cε–optimal options.

Definition 16.2 (Near-optimality dimension). For c > 0, the c–near-

optimality dimension of f w.r.t. � equals

max

{
0, lim sup

ε→0

log N
(
Xcε, �, ε

)
log
(
ε−1
) }

.

Theorem 16.15 (Hierarchical Optimistic Optimization). Let d be the

4ν1/ν2–near-optimality dimension of the mean payoff function f w.r.t. �.

Then, for all d′ > d, there exists a constant γ such that for all n ≥ 1, HOO

satisfies

Rn = nf∗ − E

n∑
t=1

f(Xt) ≤ γ n(d′+1)/(d′+2)
(
log n

)1/(d′+2)
.

To put this result in perspective, we present the following example. Equip

X = [0, 1]D with a norm ‖ · ‖ and assume that the mean payoff function

f satisfies the Hölder-type property at any global maximum x∗ of f (these

maxima being additionally assumed to be in finite number):

f(x∗)− f(x) = Θ
(‖x− x∗‖α) as x→ x∗,

for some smoothness order α ∈ [0,∞). This means that there exist c1, c2, δ >

0 such that for all x satisfying ‖x− x∗‖ ≤ δ,

c2‖x− x∗‖α ≤ f(x∗)− f(x) ≤ c1‖x− x∗‖α .
In particular, one can check that f is locally weakly Lipschitz for the

dissimilarity defined by �c,β(x, y) = c‖x − y‖β, where β ≤ α (and c ≥ c1
when β = α) (see Bubeck et al. (2010) for a precise definition). We further

assume that HOO is run with parameters ν1 and ρ and a tree of dyadic

partitions such that the assumptions of Section 16.4.3 are satisfied. The

following statements can then be formulated on the regret of HOO:

Known smoothness: If we know the true smoothness of f around its

maxima, then we set β = α and c ≥ c1. This choice �c1,α of a dissimilarity

is such that f is locally weakly Lipschitz with respect to it and the near-

optimality dimension is d = 0. Theorem 16.15 thus implies that the expected

regret of HOO is Õ(
√
n), that is, the rate of the bound is independent of the

dimension D.

452 Bandit View on Noisy Optimization

Smoothness underestimated: Here, we assume that the true smooth-

ness of f around its maxima is unknown and that it is underestimated

by choosing β < α (and some c). Then f is still locally weakly Lipschitz

with respect to the dissimilarity �c,β and the near-optimality dimension is

d = D(1/β − 1/α); the regret of HOO is Õ
(
n(d+1)/(d+2)

)
.

Smoothness overestimated: Now, if the true smoothness is overesti-

mated by choosing β > α or α = β and c < c1, then the assumption of weak

Lipschitzness is violated and we are unable to provide any guarantee on the

behavior of HOO. The latter, when used with an overestimated smoothness

parameter, may lack exploration and exploit too heavily from the beginning.

As a consequence, it may get stuck in some local optimum of f , missing the

global one(s) for a very long time (possibly indefinitely). Such a behavior

is illustrated in the example provided in Coquelin and Munos (2007) and

shows the possible problematic behavior of the closely related algorithm

UCT of Kocsis and Szepesvári (2006). UCT is an example of an algorithm

overestimating the smoothness of the function; this is because the B–values

of UCT are defined similarly to the ones of the HOO algorithm but without

the additional third term in the definition of the U–values. In such cases,

the corresponding B–values do not provide high-probability upper bounds

on the supremum of f over the corresponding domains, and the resulting

algorithms no longer implement the idea of “optimistism in the face of un-

certainty”.

16.5 References

J.-Y. Audibert. PAC-Bayesian aggregation and multi-armed bandits, 2010. Habil-
itation thesis, Université Paris Est, arXiv:1011.3396.

J.-Y. Audibert and S. Bubeck. Minimax policies for adversarial and stochastic
bandits. In Proceedings of the 22nd Annual Conference on Learning Theory.
Omnipress, 2009.

J.-Y. Audibert, R. Munos, and C. Szepesvári. Exploration-exploitation trade-off
using variance estimates in multi-armed bandits. Theoretical Computer Science,
410(19):1876–1902, 2009.

J.-Y. Audibert, S. Bubeck, and R. Munos. Best arm identification in multi-armed
bandits. In Proceedings of the 23rd Annual Conference on Learning Theory, 2010.

P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time analysis of the multiarmed
bandit problem. Machine Learning Journal, 47(2-3):235–256, 2002.

P. Auer, N. Cesa-Bianchi, Y. Freund, and R. Schapire. The non-stochastic multi-
armed bandit problem. SIAM Journal on Computing, 32(1):48–77, 2003.

S. Bubeck. Bandits Games and Clustering Foundations. PhD thesis, Université
Lille 1, 2010.

S. Bubeck, R. Munos, G. Stoltz, and C. Szepesvári. Online optimization in X-

16.5 References 453

armed bandits. In D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, editors,
Advances in Neural Information Processing Systems 22, pages 201–208, 2008.

S. Bubeck, R. Munos, and G. Stoltz. Pure exploration in multi-armed bandits
problems. In Proceedings of the 20th International Conference on Algorithmic
Learning Theory, pages 29–37, 2009.

S. Bubeck, R. Munos, G. Stoltz, and C. Szepesvári. X-armed bandits. arXiv preprint
1001.4475, 2010.

A. Burnetas and M. Katehakis. Optimal adaptive policies for sequential allocation
problems. Advances in Applied Mathematics, 17(2):122–142, 1996.

P.-A. Coquelin and R. Munos. Bandit algorithms for tree search. In Proceedings of
the 23rd Conference on Uncertainty in Artificial Intelligence, pages 67–74, 2007.

P. Dagum, R. Karp, M. Luby, and S. Ross. An optimal algorithm for Monte Carlo
estimation. SIAM Journal on Computing, 29(5):1484–1496, 2000.

C. Domingo, R. Gavaldà, and O. Watanabe. Adaptive sampling methods for scaling
up knowledge discovery algorithms. Data Mining and Knowledge Discovery, 6
(2):131–152, 2002.

J. Doob. Stochastic processes. John Wiley, New York, 1953.

E. Even-Dar, S. Mannor, and Y. Mansour. Action elimination and stopping
conditions for the multi-armed bandit and reinforcement learning problems.
Journal of Machine Learning Research, 7:1079–1105, 2006.

D. Freedman. On tail probabilities for martingales. The Annals of Probability, 3
(1):100–118, 1975.

W. Hoeffding. Probability inequalities for sums of bounded random variables.
Journal of the American Statistical Association, 58(301):13–30, 1963.

L. Kocsis and C. Szepesvári. Bandit based Monte-carlo planning. In Proceedings
of the 15th European Conference on Machine Learning, pages 282–293, 2006.

T. L. Lai and H. Robbins. Asymptotically efficient adaptive allocation rules.
Advances in Applied Mathematics, 6(1):4–22, 1985.

G. Lugosi. Concentration-of-measure inequalities. Lecture notes, 1998.

S. Mannor and J. N. Tsitsiklis. The sample complexity of exploration in the multi-
armed bandit problem. Journal of Machine Learning Research, 5:623–648, 2004.

O. Maron and A. W. Moore. Hoeffding races: Accelerating model selection search
for classification and function approximation. In Advances in Neural Information
Processing Systems, pages 59–66, 1993.

P. Massart. Concentration inequalities and model selection: Ecole d’Eté de Proba-
bilités de Saint-Flour XXXIII-2003. Springer, 2007.

A. Maurer and M. Pontil. Empirical bernstein bounds and sample-variance pe-
nalization. In Proceedings of the 22th Annual Conference on Learning Theory,
2009.

V. Mnih, C. Szepesvári, and J.-Y. Audibert. Empirical bernstein stopping. In
Proceedings of the 25th International Conference on Machine Learning, pages
672–679, 2008.

L. E. Ortiz and L. P. Kaelbling. Sampling methods for action selection in influence
diagrams. In Proceedings of the National Conference on Artificial Intelligence,
pages 378–385, 2000.

H. Robbins. Some aspects of the sequential design of experiments. Bulletin of the

454 Bandit View on Noisy Optimization

American Mathematics Society, 58:527–535, 1952.

D. Williams. Probability with martingales. Cambridge University Press, 1991.

17 Optimization Methods for Sparse Inverse

Covariance Selection

Katya Scheinberg katyas@lehigh.edu

Department of Industrial and Systems Engineering

Lehigh University

Bethlehem, PA 18015-1582

Shiqian Ma sm2756@columbia.edu

Department of Industrial Engineering and Operations Research

Columbia University

New York, NY 10027

17.1 Introduction

In many practical applications of statistical learning the objective is not

simply to construct an accurate predictive model, but rather to discover

meaningful interactions among the variables. For example, in applications

such as reverse engineering of gene networks, discovery of functional brain

connectivity patterns from brain-imaging data, and analysis of social inter-

actions, the main focus is on reconstructing the network structure repre-

senting dependencies among multiple variables, such as genes, brain areas,

and individuals. Probabilistic graphical models, such as Markov networks

(or Markov random fields), provide a statistical tool for multivariate data

analysis that allows the capture of interactions such as conditional inde-

pendence relationships between variables. We focus on the task of learning

the structure of a Markov network over Gaussian random variables, which

is equivalent to learning the zero pattern of the inverse covariance matrix.

A standard approach is to choose the sparsest network (inverse covariance

matrix) that adequately explains the data. This can be achieved by solving

a regularized maximum likelihood problem with the regularization term in-

volving the number of nonzeros (�0-norm) in the inverse covariance matrix—

456 Optimization Methods for Sparse Inverse Covariance Selection

a generally intractable problem that is often solved approximately by greedy

search (Heckerman, 1995). Recently, however, novel tractable approxima-

tions have been suggested that exploit the sparsity-enforcing property of �1-

norm regularization and yield convex optimization problems (Meinshausen

and Buhlmann, 2006; Wainwright et al., 2007; Yuan and Lin, 2007; Baner-

jee et al., 2008; Friedman et al., 2007). In this chapter we focus on one such

convex formulation, often referred to as sparse inverse covariance selection

(SICS), and describe several optimization approaches to this problem.

17.1.1 Problem Formulation

Let S be a set of p random variables with joint distribution P (S). It is

common to assume a multivariate Gaussian probability density function over

S, hence, if s is a p-dimensional vector which is a realization of p random

variables, then

p(s) = (2π)−p/2 det(Σ)−
1

2 e−
1

2
(s−μ)TΣ−1(s−μ), (17.1)

where μ is the mean and Σ is the covariance matrix of the distribution,

respectively. Without loss of generality we assume that the data are centered

so that μ = 0; hence the purpose is to estimate Σ. Introducing X :=

det(Σ)−1, we can rewrite (17.1) as

p(s) = (2π)−p/2 det(X)
1

2 e−
1

2
s	Xs. (17.2)

Missing edges in the above graphical model correspond to zero entries

in the inverse covariance matrix X, and vice versa (Lauritzen, 1996), and

thus the problem of structure learning for the above probabilistic graphical

model is equivalent to the problem of learning the zero pattern of the

inverse covariance matrix. Note that the maximum likelihood estimate of

the covariance matrix Σ is the empirical covariance matrix S = 1
n

∑n
i=1 sis

	
i

where si is the ith sample, i = 1, ..., n. The inverse of S, even if it exists,

does not typically contain any elements that are exactly zero. Therefore an

explicit sparsity-enforcing constraint needs to be added to the estimation

process.

A common approach is to include the (vector) �1-norm of X as a penalty

term in the objective function, which is equivalent to imposing a Laplace

prior on Σ−1 in a maximum likelihood framework (Friedman et al., 2007;

Banerjee et al., 2008; Yuan and Lin, 2007). Formally, the entries Xij of the

inverse covariance matrix are assumed to be independent random variables,

each following a Laplace distribution

p(Xij) =
λ

2
e−λ|Xij−αij | (17.3)

17.1 Introduction 457

with zero location parameter (mean) αij , yielding

p(X) =

p∏
i=1

p∏
j=1

p(Xij) = (λ/2)p
2

e−λ||X||1 , (17.4)

where ||X||1 =
∑

ij |Xij | is the (vector) �1-norm of X. Then the objective is

to find the maximum log-likelihood solution argmaxX�0 log p(X|S), where S
is the n×p data matrix whose rows are given by s	, and X � 0 denotes that

X is positive definite. Invoking Bayes’s rule, p(X|S) = P (S|X)P (X)/p(S),

this max-likelihood estimate can be obtained by

argmax
X�0

log

n∏
i=1

[
det(X)

1

2

(2π)p/2
e−

1

2
s	i Xsi] + log[(λ/2)p

2

e−λ||X||1]. (17.5)

We write 1
n

∑n
i=1 s

	
i Xsi = 〈S,X〉. This yields the following optimization

problem (also see Friedman et al. (2007); Banerjee et al. (2008); Yuan and

Lin (2007)):

max
X�0

log det(X)− 〈S,X〉 − ρ||X||1, (17.6)

where ρ = 2
nλ.

More generally, one can consider the following formulation:

max
X�0

log det(X)− 〈S,X〉 −
∑
ij

Mij |Xij |. (17.7)

If M is a product of ρ = 2
nλ and E is the matrix of all ones, then problem

formulation (17.7) reduces to (17.6).

Note that by allowing the matrix M to have arbitrary nonnegative entries,

we automatically include in the formulation the case where the diagonal

elements of X are not penalized or the case when the absolute values of the

entries of X are scaled by their estimated value, as was considered in Yuan

and Lin (2007).

We will refer to (17.6) and (17.7) as the SICS problem. The two formu-

lations are very similar in terms of optimization effort. In some cases, for

brevity we present methods for (17.6) and explain its extension for (17.7)

afterward.

The dual of (17.7) can be written as (Banerjee et al., 2008)

max
W�0

{log det(W)− p : s.t. −M ≤W − S ≤M}, (17.8)

where the inequalities involving matrices W , S, and M are element-wise.

Problems (17.6) and (17.7) are both strictly convex, and as long as the off-

diagonal elements of M are positive, the optimal solution is always attained.

458 Optimization Methods for Sparse Inverse Covariance Selection

The optimality conditions for this pair of primal and dual problems imply

that W = X−1 and that Wij − Sij = Mij if Xij > 0 and Wij − Sij = −Mij

if Xij < 0. These optimality conditions are imperative when the primal

sparsity structure needs to be recovered from the dual solution. Several

existing methods solve (17.8) and obtain an approximate solution to (17.7)

by inverting the solution of (17.8). Since the obtained dual solution is

also approximate, the resulting primal approximate solution is not sparse.

However, it is often the case that the dual solution is an accurate projection

onto the dual feasible set. Hence, for the “true” nonzero elements of Xij the

appropriate complementarity conditions Wij − Sij = Mij and Wij − Sij =

−Mij are observed from the solution obtained for (17.8).

17.1.2 Overview of Optimization Approaches

Problems (17.6) and (17.7) are special cases of a semidefinite programming

problem (SDP) (Wolkowicz et al., 2000) which can be solved in polynomial

time by interior-point methods (IPM). However, as is well known, each

iteration of an IPM applied to a semidefinite programming problem of

size p requires up to O(p6) operations and O(p4) memory space, which

is very costly. Although an approximate IPM has recently been proposed

for the SICS problem (Li and Toh, 2010), another reason that using an

IPM is undesirable for our problem is that an IPM does not produce the

sparsity pattern of the solution. The sparsity is, in theory, recovered in

the limit. In practice it is recovered by thresholding the elements of an

approximate solution; hence, numerical inaccuracy can interfere with the

structure recovery.

As an alternative to IPMs, more efficient approaches, COVSEL and glasso,

were developed for problem (17.6) in Banerjee et al. (2008) and (Friedman

et al., 2007). The methods are similar in that they are based on applying

a block coordinate descent (BCD) method to the dual of (17.6). At each

iteration only one row (and the corresponding symmetric column) of the

dual matrix is optimized while the rest of that matrix remains fixed. The

resulting subproblem is a convex quadratic problem. The difference between

the COVSEL method, described in Banerjee et al. (2008), and the glasso

method in Friedman et al. (2007), is that COVSEL solves the subproblems

via an interior-point approach, while glasso poses the subproblem as a dual

of the Lasso problem (Tibshirani, 1996) and utilizes a coordinate descent

(CD) approach (Tibshirani, 1996) to solve the resulting Lasso subproblem.

Due to the use of the coordinate descent, the sparsity of the primal matrix

is recovered more accurately than with the interior-point approach, and the

glasso method (Friedman et al., 2007) is faster than COVSEL because it

17.1 Introduction 459

takes advantage of that sparsity. On the other hand, subproblems solved

by glasso are solved by coordinate descent up to an unknown accuracy;

hence, the current implementation of this method lacks rigor. A recent

row-by-row (RBR) method for general SDP (Wen et al., 2009) is based

on the same idea of updating one row and column at a time, like glasso

and COVSEL, but can also be applied directly to the primal matrix. The

resulting subproblem is in general a second-order cone problem (SOCP),

while in the dual case it reduces to a convex quadratic problem (QP).

It follows from the result in Wen et al. (2009) that the BCD approach

converges to the optimal solution when applied to the primal and dual SICS

formulations. The SINCO method proposed by Scheinberg and Rish (2009)

is a greedy coordinate descent method applied to the primal problem. We

will describe the approaches of glasso and SINCO in more detail below. Sun

et al. (2009) propose solving the primal problem (17.6) by using a BCD

method. They formulate the subproblem as a min-max problem and solve it

using a prox-method proposed by Nemirovski (2005). All of these BCD and

CD approaches lack iteration complexity bounds as of now.

As alternatives to block coordinate based approaches several gradient

based approaches, for problem (17.6) have been suggested. A projected

gradient method for solving the dual problem (17.8) was proposed by Duchi

et al. (2008). Variants of Nesterov’s method (Nesterov, 2005, 2004) were

applied to solving the SICS problem by d’Aspremont et al. (2008) and Lu

(2009, 2010). d’Aspremont et al. (2008) apply Nesterov’s optimal first-order

method to solve the primal problem (17.6) after smoothing the nonsmooth

�1-term, obtaining an iteration complexity bound of O(1/ε) for an ε-optimal

solution. Lu solves the dual problem (17.8), which is a smooth problem, by

Nesterov’s algorithm, and improves the iteration complexity to O(1/
√
ε).

However, since the practical performance of this algorithm is not attractive,

Lu gives a variant of it (VSM) with unknown complexity that exhibits

better performance. Yuan (2009) proposes an alternating direction method

based on an augmented Lagrangian framework. Goldfarb et al. (2009) and

Scheinberg et al. (2010) have developed an alternating linearization method

with O(1/
√
ε) complexity which is similar to the augmented Lagrangian

approach. A proximal point algorithm was proposed by Wang et al. (2009)

which requires a reformulation which increases the size of the problem. The

IPM in Li and Toh (2010) also requires such a reformulation.

In this chapter we give details of BCD approaches developed in Friedman

et al. (2007) and Scheinberg and Rish (2009). The fundamental difference

between the two approaches is in the choice of the next coordinates that are

updated. From the class of the first-order methods we choose to present the

alternating linearization method from Goldfarb et al. (2009) and Scheinberg

460 Optimization Methods for Sparse Inverse Covariance Selection

et al. (2010), which currently appears to be the most efficient approach for

SICS (see Scheinberg et al. (2010) for computational comparison).

17.1.3 Preliminaries

17.1.3.1 Properties of Matrix Determinant and Inverse

Let X ∈ Sn
++ be a positive definite matrix. We will list here a few useful

properties from linear algebra.

Let X be partitioned as

X =

(
ξ y	

y B

)
where ξ ∈ R, y ∈ R

n−1, and B ∈ Sn−1
++ . Then

detX = (ξ − y	B−1y) detB. (17.9)

Consider a matrix X + uv	, where u, v ∈ R
n, then

det(X + uv) = det(X)(1 + v	X−1u) (17.10)

and

(X + uv)−1 = X−1 −X−1uv	X−1/(1 + v	X−1u). (17.11)

The last expression is well known as the Sherman-Morrison-Woodbury

formula.

17.1.3.2 Soft Thresholding and Shrinkage

We will use the well-known fact that the solution to the following optimiza-

tion problem,

min
x

1

2
‖x− r‖22 + λ‖x‖1, (17.12)

where x and r are vectors in R
n, can be obtained in closed form by a

shrinkage operator x∗ = shrink(r, λ), where

x∗i = shrink(ri, λ) =

⎧⎨⎩
ri − λ if ri ≥ λ

0 if − λ < ri < λ

ri + λ if ri ≤ −λ.
(17.13)

17.2 Block Coordinate Descent Methods 461

17.1.3.3 Coordinate Descent for Lasso

Let us consider a general Lasso problem (Tibshirani, 1996),

min
x

1

2
‖Ax− b‖22 + ρ‖x‖1, (17.14)

where A ∈ R
m×n, b ∈ R

m and x ∈ R
n. The idea of a coordinate descent

approach is at each step to fix all elements of x except for the ith element

and to optimize the objective function for only one variable xi. Let x̄ denote

the fixed part of vector x, and Ā the part of matrix A that corresponds to

x̄. Writing the reduced problem omitting the terms that do not depend on

xi, we get

min
xi

1

2
x	i A

	
i Aixi + x̄	Ā	Aixi − b	Aixi + ρ|xi|, (17.15)

where Ai is the ith column of A. Let ri = −A	
i (Āx̄ − b)/‖Ai‖2 and

ηi = ρ/‖Ai‖2; then problem (17.15) is equivalent to

min
xi

1

2
(xi − ri)

2 + ηi|xi|, (17.16)

which is solved by the soft thresholding step x∗i = shrink(ri, ηi). Hence, each

step of coordinate descent for Lasso requires computing ri and ηi. The cost

of this computation depends on the manner in which different parts of the

expression for r are stored and updated. For instance, if the elements of

A	A are precomputed and stored, then at each step all ri’s can be updated

in O(n) operations. Alternatively, the residual Ax − b can be stored and

updated at the cost of O(m) storage and operations, in which case each ri
can be computed in O(m) operations whenever it is required.

17.2 Block Coordinate Descent Methods

17.2.1 Row-by-Row Method

For simplicity let us consider the case when M = ρE, that is, formulation

(17.6). Instead of solving (17.6) directly, the approaches in Banerjee et al.

(2008) and Friedman et al. (2007) consider the dual

max
W�0

{log det(W)− p : s.t. ‖W − S‖∞ ≤ ρ}. (17.17)

The subproblems solved at each iteration of the BCD methods in Banerjee

et al. (2008) and Friedman et al. (2007) are constructed as follows. Given a

462 Optimization Methods for Sparse Inverse Covariance Selection

positive definite matrix W � 0, W and S are partitioned conformally as

W =

(
ξ y	

y B

)
and S =

(
ξS y	S
yS BS

)
,

where ξ, ξS ∈ R, y, yS ∈ R
n−1, and B,BS ∈ Sn−1. It follows from (17.9)

that log detW = log(ξ − y	B−1y) + log detB, and B is fixed, so the BCD

subproblem for (17.6) becomes the quadratic program

min
[ξ;y]

y	B−1y − ξ, s.t. ‖[ξ; y]− [ξS ; yS]‖∞ ≤ ρ, ξ ≥ 0. (17.18)

Note that (17.18) is separable in y and ξ. The solution ξ is equal to ξS + ρ.

In fact, the first-order optimality conditions of (17.6) and X � 0 imply that

Wii = Sii + ρ for i = 1, . . . , n. Hence, problem (17.18) reduces to

min
y

y	B−1y, s.t. ‖y − yS‖∞ ≤ ρ. (17.19)

The BCD method in Banerjee et al. (2008) solves a sequence of constrained

problems (17.19). After each step the duality gap for (17.6) at the current

iterate W k can be obtained as 〈(W k)−1, S〉 − p + ρ‖(W k)−1‖1. The BCD

method proposed in Banerjee et al. (2008) for solving (17.17) is outlined in

algorithm 17.1.

Algorithm 17.1 Block coordinate descent method for (17.17)

1: Set W 1 = S + ρI, k := 1, and ε ≥ 0.
2: while 〈(W k)−1, S〉 − p+ ρ‖(W k)−1‖1 ≥ ε do
3: for i = 1, · · · , p do
4: Set B := W k

ic,ic , yS = Sic,i, and BS = Sic,ic .
5: Solve (17.19) to get y.
6: Update W k

ic,i := y and W k
i,ic := y
.

7: end for
8: Set W k+1 := W k and k := k + 1.
9: end while

Each instance of (17.19) is solved by applying an interior-point quadratic

programming solver. Also, the inverse of W k is computed at each iteration.

This makes each iteration of the BCD costly. Moreover, the sparsity of the

primal solution Xk = (W k)−1 is not exploited, and is obtained only in the

limit. Since the BCD approach typically does not produce accurate solutions,

this sparsity is hard to recover accurately.

The glasso method proposed in Friedman et al. (2007) is based on algo-

rithm 17.1 except for the method of solving (17.19). Specifically, it can be

17.2 Block Coordinate Descent Methods 463

easily verified that the dual of (17.19) is

min
x

x	Bx− y	S x+ ρ‖x‖1, (17.20)

which is also equivalent to

min
x

∥∥∥∥B 1
2x− 1

2B
−1
2 yS

∥∥∥∥2
2

+ ρ‖x‖1. (17.21)

If x solves (17.21), then y = Bx solves (17.19).

Problem (17.21) is equivalent to the Lasso problem (Tibshirani, 1996). The

Lasso problem is then solved using a coordinate descent algorithm, which

does not require computation of either B
1
2 or B−1

2 . Indeed, if we recall the

subproblem (17.16) which is generated and solved at each coordinate descent

step for (17.14) we see that to compute the scalars ri and ηi we require only

elements of B and y, since B
1
2
i B

1
2
i = Bi and B

1
2
i B

−1
2

i yi = yi.

For each BCD iteration, the resulting solution of the Lasso subproblem

(17.21) has the same nonzero pattern as the corresponding row of Xk =

(W k)−1, which can be viewed as the current estimate of the inverse of the

covariance. Hence, the sparsity pattern is explicitly available and is exploited

by the glasso algorithm. This makes glasso significantly more efficient than

COVSEL (developed in Banerjee et al. (2008)). In terms of CPU time glasso

is currently the most efficient block coordinate descent approach to the

SICS problem. On the other hand, it is unclear if the convergence results of

BCD apply to glasso due to the way the subproblems are addressed in the

implementation.

It is easy to extend the BCD approach to the more general formulation

(17.7). One needs to consider the appropriate partitioning of M ,

M =

(
ξM y	M
yM BM

)
.

The bound constraints in (17.19) become −yM ≤ (y − yS) ≤ yM and

ξ = ξs + ξM . Both glasso and COVSEL easily extend to this formulation.

The BCD approach cycles through each row/column of W one by one.

Hence the nonzeros in the inverse covariance matrix generated by glasso

are generated by rows. This may introduce small nonzero elements, which

are undesirable in the solution. It is possible to modify this method so that

only one element in each row is updated at a time, thus bringing the whole

approach closer to the simple coordinate descent used for Lasso. However, it

is unclear how to efficiently select the next working variable to be updated. A

simple cycling rule would be equivalent to the approach in Friedman et al.

(2007) which we just described. The method in the next subsection is a

464 Optimization Methods for Sparse Inverse Covariance Selection

primal greedy coordinate descent, which addresses the issue of the working

variable selection.

17.2.2 Primal Greedy Coordinate Descent

We now describe an algorithm which addresses the primal problem directly

and also uses coordinate descent,1 which naturally preserves the sparsity

of the solution. The method is referred to as SINCO (Sparse INverse

COvariance) and is introduced in Scheinberg and Rish (2009). Unlike the

dual BCD approach of COVSEL, glasso, and the general RBR, SINCO

optimizes only one diagonal or two (symmetric) off-diagonal entries of the

matrix X at each step. The advantages of this approach are that only one

nonzero entry (discounting the matrix symmetry) can be introduced at each

step, and that the solution to each subproblem is available in closed form

as a root of a quadratic equation. Computation at each step requires a

constant number of arithmetic operations, independent of p. Hence, in O(p2)

operations a potential step can be computed for all pairs of symmetric

elements (i.e., for all pairs (i, j)). Then the step which provides the best

objective function value improvement can be chosen, which is the essence

of the greedy nature of this approach. Once the step is taken, the update

of the gradient information requires O(p2) operations. Hence, overall, each

iteration takes O(p2) operations. Note that each step is also suitable for

massive parallelization.

In comparison, glasso and COVSEL (and RBR) require solution of a

quadratic programming problem whose theoretical and empirical complexity

varies depending on the method used, but always exceeds O(p2). These

algorithms apply optimization to each row/column consecutively; hence the

greedy nature is lacking. On the other hand, a whole row and a whole

column are optimized at each step, thus reducing the overall number of

steps. As is shown in Scheinberg and Rish (2009), SINCO, in a serial mode,

is comparable to glasso, which is orders of magnitude faster than COVSEL,

according to the results in Friedman et al. (2007). Also, SINCO may lead to

a lower false-positive error than glasso since it introduces nonzero elements

greedily. On the other hand, it may suffer from introducing too few nonzeros

and thus misses some of the true positives, especially on dense networks.

Perhaps the most interesting consequence of SINCO’s greedy nature is

that it reproduces the regularization path behavior while using only one

value of the regularization parameter ρ. We will discuss this property further

1. We should call it “coordinate ascent” since we are solving a maximization problem;
however, we use the word “descent” to adhere to standard terminology.

17.2 Block Coordinate Descent Methods 465

after we describe the algorithm.

17.2.2.1 Algorithm Description

The main idea of the method is that at each iteration, the matrix X is

updated by changing one element on the diagonal or two symmetric off-

diagonal elements. This implies the change in X that can be written as

X + θ(eie
	
j + eje

	
i), where i and j are the indices corresponding to the

elements that are being changed. The key observation is that given the

matrix W = X−1, the exact line search that optimizes the objective function

of problem (17.7) along the direction eie
	
j + eje

	
i reduces to a solution of a

quadratic equation, as we will show below. Hence, each such line search takes

a constant number of operations. Moreover, given the starting objective

value, the new function value on each step can be computed in a constant

number of steps. This means that we can perform such line search for all

(i, j) pairs in O(p2) time, which is linear in the number of unknown variables

Xij . We then can choose the step that gives the best improvement in the

value of the objective function. After the step is chosen, the dual matrix

W = X−1 and, hence, the objective function gradient are updated in O(p2)

operations.

We now describe the method. For a fixed pair (i, j) consider now the

update of X of the form X(θ) = X + θ(eie
	
j + eje

	
i), such that X ≥ 0. Let

us consider the objective function as the function of θ:

f(θ) = log det(X + θeie
	
j + θeje

	
i)− (17.22)

〈S,X + θeie
	
j + θeje

	
i 〉 −

p∑
i,j=1

Mij|X + θeie
	
j + θeje

	
i |. (17.23)

We use the property of the determinant (17.10) and the Sherman-Morrison-

Woodbury formula (17.11) to obtain

det(X + θeie
	
j + θeje

	
i) = det(X + θeje

	
i)(1 + θe	j (X + θeje

	
i)

−1ei)

= det(X)(1 + θe	i X
−1ej)(1 + θe	j X

−1ei − θ2e	j X
−1ej(1 + θe	i X

−1ej)
−1e	i X

−1ei)

= det(X)(1 + 2θe	i X
−1ej + (θe	j X

−1ei)
2 − θ2e	i X

−1eie
	
j X

−1ej).

Given the dual solution W = X−1, we can write the above as

det(X + θeie
	
j + θeje

	
i) = det(X)(1 + 2θWij + θ2(W 2

ij −WiiWjj)).

We define the function g(θ) as

g(θ) := 1 + 2θWij + θ2(W 2
ij −WiiWjj).

466 Optimization Methods for Sparse Inverse Covariance Selection

Recalling that W and S are symmetric, but M is not necessarily so,

maximizing the objective function f(θ) over θ is equivalent to

max
θ

log(g(θ))− 2Sijθ − (Mij +Mji)|Xij + θ|. (17.24)

This problem can be rewritten as

max
θ

min
u∈R: |u|≤Mij+Mji

log(g(θ))− 2Sijθ − u(Xij + θ). (17.25)

Swapping the min and the max, we have as the inner problem

max
θ

fu(θ) = log g(θ)− 2Sijθ − u(Xij + θ), (17.26)

which can be solved by setting the derivative of the objective with respect

to θ to zero.

f ′
u(θ) =

g′(θ)
g(θ)

− 2Sij − u =
Wij + θ(W 2

ij −WiiWjj)

θ2(W 2
ij −WiiWjj) + 1 + 2θWij

− 2Sij − u.

To find the maximum of f(θ), we need to find θ for which f ′(θ) = 0.

Letting a denote WiiWjj −W 2
ij , this condition can be written as

Wij − 2Sij − u− (a+ 2Wij(2Sij + u)θ + a(2Sij + u)θ2 = 0.

If we know the value of u, we can obtain the optimal θ from the above

quadratic equation. From the optimality conditions for the primal-dual

problem (17.25) we know that for optimal θ

Xij + θ ≥ 0 if u = Mij +Mji

Xij + θ ≤ 0 if u = −Mij −Mji

Xij + θ = 0 if −Mij −Mji < u < Mij +Mji.

Hence, considering the three different scenarios, one can find the optimal

solution to (17.25) via solving quadratic equations in a constant number of

steps, which does not depend on p. In Scheinberg and Rish (2009) the details

of solving the quadratic equation are given along with the proof that the

solution corresponding to the maximum of f(θ) always exists.

Once the optimal θ is computed, the objective function improvement is

easily obtained from f(θ)− f(0), where f(0) is the objective function value

from the previous iteration. Since for each (i, j) pair the optimal θ and

the objective function value improvement can be computed in a constant

number of operations, then in O(p2) operations one can compute the (i, j)

pair, which gives the largest objective function improvement. Once such a

pair is determined, the appropriate update to X can be performed and the

iteration is completed.

17.2 Block Coordinate Descent Methods 467

The inverse W̄ of X̄ = X + θeiej + θejej is obtained, according to the

Sherman-Morrison-Woodbury formula, in O(p2) operations as follows:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
W̄ = W − θ(κ1WiW

	
j + κ2WiW

	
i + κ3WjW

	
j + κ1WjW

	
i)

κ1 = −(1 + θWij)/κ

κ2 = θWjj/κ

κ3 = θWii/κ

κ = θ2(WiiWjj −W 2
ij)− 1− 2θWij

(17.27)

We outline the steps of the SINCO method in algorithm 17.2.

Algorithm 17.2 Coordinate descent method for (17.7)

1: Set X1 = I, set k := 1, θk = 0, and ε ≥ 0. Compute f(X1).
2: while f(θk)− f(Xk) ≥ ε do
3: for i = 1, · · · , p, j = i, · · · , p do
4: Compute θij = argmaxθ f(θ) where f(θ) is defined by (17.22)
5: If f(θk) > f(θij), θ

k = θij , (i, j)
k = (i, j)

6:

7: end for
8: Update W k according to (17.27) for (i, j) = (i, j)k.
9: end while

The overall per-iteration complexity of SINCO is O(p2). Moreover, this

algorithm lends itself readily to massive parallelization. Indeed, at each

iteration of the algorithm the step computation for each (i, j) pair can be

parallelized, and the procedure that updates W involves simply adding to

each element of W a function that involves only two rows of W . Hence,

the updates can be also done in parallel, and in very large-scale cases the

matrix W can also be stored in a distributed manner. The same is true of

the storage of matrices S and M (assuming that M needs to be stored, that

is, not all elements of M are the same), while the best way to store the X

matrix may be in sparse form.

The convergence of the method follows from the convergence of a block

coordinate descent method on a strictly convex objective function, as is

shown for the RBR method in Wen et al. (2009). The only constraints are

box constraints (nonnegativity), and they do not hinder the convergence. In

the case of SINCO we extensively use the fact that each coordinate descent

step is cheap and, unlike the glasso algorithm, we select the next step based

on the best function value improvement. On the other hand, we maintain

both the primal matrix X and the inverse matrix W , while glasso method

does not. However, none of these differences prevent the convergence result

for RBR in Wen et al. (2009) to apply to both methods.

468 Optimization Methods for Sparse Inverse Covariance Selection

17.2.3 Regularization Path

One of the main challenges in sparse inverse covariance selection is the

proper choice of the weight matrix M in (17.6). Typically M is chosen

to be a multiple of the matrix of all ones as in the formulation (17.6). The

multiplying coefficient ρ is called the regularization parameter. Clearly, for

large values of ρ as ρ → ∞, the solution to (17.6) is likely to be very

sparse and eventually diagonal, which means that no structure recovery is

achieved. On the other hand, if ρ is small as ρ→ 0, the solution X is likely

to be dense and eventually approach S−1 and, again, no structure recovery

occurs. Hence, exploration of a regularization path is an integral part of the

sparse inverse covariance selection.

Typically, problem (17.6) is solved for several values of ρ in a predefined

range and the best value, according to some criteria, is selected. The reason

only a scalar parameter ρ is usually considered is that it is expensive to

explore solutions along a multi-dimensional grid.

The work in Krishnamurthy and d’Aspremont (2009), also presented in

this volume, addresses an algorithm for the SICS problem that computes

the entire regularization path by a path-following method.

In this section, we concentrate on computing the regularization path (or

some parts of it) by solving the SICS problem for a finite range of values

of ρ rather than the complete path. All methods described in this chapter,

including the alternating linearization method described below, are very

well suited for the efficient computation of the regularization path, since

it directly exploits warm starts. When ρ is relatively large, a very sparse

solution can be obtained quickly. This solution can be used as a warm start

to the problem with a smaller value of ρ and, if the new value of ρ is not too

small compared with the previous value, then the new solution is typically

obtained in just a few iterations, because the new solution has only a few

extra nonzero elements.

The regularization path is evaluated via the ROC curves showing the

trade-off between the number of true positive (TP) elements recovered and

the number of false positive (FP) elements. Producing better curves (where

the number of TPs rises fast relative to FPs) is usually an objective of any

method that does not focus on specific ρ selection. An interesting property

of SINCO is that it introduces nonzero entries into the matrix X as it

progresses. Hence, if one uses looser tolerance and stops the algorithm early,

then a sparser solution is obtained for any specific value of ρ. What we

observe, as seen in figure 17.1, is that if we apply SINCO to problem (17.6)

with ever tighter tolerance, the ROC curves obtained from the tolerance

solution path match the ROC curves obtained from the regularization

17.3 Alternating Linearization Method 469

path. Here we show several examples of the matching ROC curves for

various random networks (see Scheinberg and Rish (2009), for details of

the experiments). The ROC curves of the regularization path computed by

glasso are very similar to SINCO’s ROC curves (Scheinberg and Rish, 2009).

Note that changing tolerance does not have the same affect on glasso as it

does on SINCO. The numbers of TP and FP do not change noticeably with

increasing tolerance. This is due to the fact that the algorithm in glasso

updates a whole row and a column of C at each iteration while it cycles

through the rows and columns, rather than selecting the updates in a greedy

manner.

Our observations imply that methods like SINCO can be used to greedily

select the elements of the graphical model until the desired trade-off between

FPs and TPs is achieved. In the limit SINCO solves the same problem as

glasso and hence the limit numbers of the true and false positives are dictated

by the choice of ρ. But since the real goal is to recover the true nonzero

structure of the covariance matrix, it is not necessary to solve problem (17.6)

accurately. For the purpose of recovering a good TP/FP ratio, one can apply

the SINCO method without adjustments to ρ.

For details on the numerical experiments presented here, see Scheinberg

and Rish (2009).

17.3 Alternating Linearization Method

Efficient alternatives to BCD methods are the gradient based methods

which we discussed briefly in section 17.1.2. These methods have higher

per-iteration complexity (typically O(p3)), but they usually converge in

fewer iterations than a BCD method. Moreover, several of these methods,

including the one presented here, have variants with provable complexity

bounds.

We discuss here the alternating linearization method (ALM) introduced

in Goldfarb et al. (2009) for solving (17.6) which we write here as

min
X∈Sp

++

F (X) ≡ f(X) + g(X), (17.28)

where f(X) = − log det(X) + 〈S,X〉 and g(X) = ρ‖X‖1. An effective way

to approach an objective function of this form is to “split” f and g by

introducing a new variable, that is, to rewrite (17.28) as

min
X,Y ∈Sp

++

{f(X) + g(Y) : X − Y = 0}, (17.29)

and to apply an alternating-direction augmented Lagrangian method to it.

470 Optimization Methods for Sparse Inverse Covariance Selection

SINCO paths when varying tolerance and ρ for SF network

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.2

0.4

0.6

0.8

1

FP

T
P

tolerance path

regularization path

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

FP

T
P

tolerance path

regularization path

(a) p = 100, N = 5000 (b) p = 100, N = 500

SINCO paths when varying tolerance and ρ for a random network

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

FP

T
P

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

FP

T
P

(c) p = 100, N = 5000 (d) p = 100, N = 500

Figure 17.1: Random and scale-free networks: SINCO paths when varying toler-
ance and ρ.

Given a penalty parameter 1/μ, and an estimate of the Lagrange multiplier

Λ, at the kth iteration the augmented Lagrangian method minimizes the

augmented Lagrangian function

L(X,Y ; Λ) := f(X) + g(Y)− 〈Λ, X − Y 〉+ 1

2μ
‖X − Y ‖22,

with respect to X and Y , that is, it solves the subproblem

(Xk, Y k) := arg min
X,Y ∈Sp

++

L(X,Y ; Λk) (17.30)

and updates the Lagrange multiplier Λ via

Λk+1 := Λk − (Xk − Y k)/μ. (17.31)

Minimizing L(X,Y ; Λ) with respect to X and Y jointly is difficult, while

doing so with respect to X and Y alternatingly can be done efficiently, as

17.3 Alternating Linearization Method 471

we will show below. Moreover, minimization over Y does not have to include

the constraint Y ∈ Sp
++.

The following alternating-direction version of the augmented Lagrangian

method (ADAL) is often advocated (see, e.g., Fortin and Glowinski (1983);

Glowinski and Le Tallec (1989)):⎧⎨⎩
Xk+1 := argminX∈Sp

++
L(X,Y k; Λk)

Y k+1 := argminY L(Xk+1, Y ; Λk)

Λk+1 := Λk − (Xk+1 − Y k+1)/μ.

(17.32)

In Goldfarb et al. (2009) the following symmetric version of the ADAL

method is considered:⎧⎪⎪⎨⎪⎪⎩
Xk+1 := argminX L(X,Y k; Λk

Y)

Λk+1
X := Λk

Y − (Xk+1 − Y k)/μ

Y k+1 := argminY L(Xk+1, Y ; Λk+1
X)

Λk+1
Y := Λk+1

X − (Xk+1 − Y k+1)/μ.

(17.33)

Let us assume for the moment that f(X) is in the class C1,1 with Lipschitz

constant L(f),2 while g(X) is simply convex. In this case, from the first-order

optimality conditions for the two subproblems in (17.33), we have

Λk+1
X = ∇f(Xk+1) and− Λk+1

Y ∈ ∂g(Y k+1), (17.34)

where ∂g(Y k+1) is the subdifferential of g(Y) at Y = Y k+1. Substituting

these relations into (17.33), we obtain the following algorithm for solving

(17.28), which we refer to as an alternating linearization minimization

algorithm.

Algorithm 17.3 Alternating linearization method (ALM)

1: Input: X0 = Y 0

2: for k = 0, 1, · · · do
3: 1. Solve Xk+1 := argminX∈S

p
++

Qg(X,Y k) ≡ f(X) + g(Y k) − 〈
Λk, X − Y k

〉
+

1
2μ

‖X − Y k‖22;
4: 2. Solve Y k+1 := argminY Qf (X

k+1, Y) ≡ f(Xk+1) +
〈∇f(Xk+1), Y −Xk+1

〉
+

1
2μ

‖Y −Xk+1‖22 + g(Y);

5: 3. Λk+1 = ∇f(Xk+1)− (Xk+1 − Y k+1)/μ.
6: end for

Algorithm 17.3 can be viewed in the following way: at each iteration we

construct a quadratic approximation of the functions g(X) at the current

2. This does not hold for our f(X) if we consider X ∈ Sp
++, but it holds in a smaller

feasible set.

472 Optimization Methods for Sparse Inverse Covariance Selection

iterates Y k and minimize the sum of this approximation and f(X). The

approximation is based on linearizing g(X) (hence the name “alternating

linearization method”) and adding a “prox”-term 1
2μ‖X − Y k‖22. Then the

linearization step is applied to f(X) at the next iterate Xk+1. The purpose

of these linearizations is to replace one of the functions with a simple

linear function with a prox-term to make optimization easy. It is important,

however, that the resulting functions Qg(X,Y k) and Qf (X
k+1, Y) provide a

good approximation of F (X). For theoretical purposes it is sufficient that at

the obtained minimum Qg(X,Y k) ≤ F (X) (Qf (X
k+1, Y) ≤ F (Y)), which

means that the reduction in the value of F (X) achieved by minimizing

Qg(X,Y k) in step 1 and Qf (X
k+1, Y) in step 2 is not smaller than the

reduction achieved in the value of Qg(X,Y k) (Qf (X
K+1, Y)) itself. For

the case of Qf (X
k+1, Y), when μ is small enough (μ ≤ 1/L(f)), the

quadratic function f(Xk+1)+
〈∇f(Xk+1), Y −Xk+1

〉
+ 1

2μ‖Y −Xk+1‖22 is an
upper approximation to f(X), which means that condition Qf (X

k+1, Y) ≤
F (Y) is guaranteed to hold. For the case of Qg(X,Y k), however, condition

Qg(X,Y k) ≤ F (X) may fail for any μ > 0, since g(X) is not smooth.

In this case, if the condition fails, one can simply skip the step in X by

assigning Xk+1 = Y k. This leads to the following ALM with skipping steps

(algorithm 17.4).

Algorithm 17.4 Alternating linearization method with skipping step

1: Input: X0 = Y 0

2: for k = 0, 1, · · · do
3: 1. Solve Xk+1 := argminX Qg(X,Y k) ≡ f(X) + g(Y k)− 〈

Λk, X − Y k
〉
+ 1

2μ
‖X −

Y k‖22;
4: 2. If F (Xk+1) > Qg(X

k+1, Y k), then Xk+1 := Y k.
5: 3. Solve Y k+1 := argminY Qf (X

k+1, Y) ≡ f(Xk+1) +
〈∇f(Xk+1), Y −Xk+1

〉
+

1
2μ

‖Y −Xk+1‖22 + g(Y);

6: 4. Λk+1 = ∇f(Xk+1)− (Xk+1 − Y k+1)/μ.
7: end for

Algorithm 17.4 is identical to 17.3, and hence to the symmetric ADAL

algorithm (17.33) as long as F (Xk+1) ≤ Qg(X
k+1, Y k) at each iteration. If

this condition fails, then the algorithm simply sets Xk+1 ← Y k. Algorithm

17.4 has the following convergence property and iteration complexity bound

(Goldfarb et al., 2009).

Theorem 17.1. Assume ∇f is Lipschitz continuous with Lipschitz constant

17.3 Alternating Linearization Method 473

L(f). For μ ≤ 1/L(f), algorithm 17.4 satisfies

F (yk)− F (x∗) ≤ ‖x0 − x∗‖2
2μ(k + kn)

, ∀k, (17.35)

where x∗ is an optimal solution of (17.28) and kn is the number of iterations

until the kth for which F (xk+1) ≤ Qg(x
k+1, yk). Thus, algorithm 17.4

produces a sequence which converges to the optimal solution in function

value, and the number of iterations needed is O(1/ε) for an ε-optimal

solution.

The iteration complexity bound in theorem 17.1 can be improved. Nes-

terov (1983, 2004) proved that one can obtain an optimal iteration complex-

ity bound of O(1/
√
ε), using only the first-order information. His accelera-

tion technique is based on using a linear combination of previous iterates to

obtain a point where the approximation is built. This technique has been ex-

ploited and extended by Tseng (2008), Beck and Teboulle (2009), and many

others. Specifically for SICS a method with complexity bound O(1/
√
ε) was

introduced by Lu (2009). A similar technique can be adopted to derive a

fast version of algorithm 17.4 that has an improved complexity bound of

O(1/
√
ε), while keeping the computational effort in each iteration almost

unchanged. However, we do not present this method here, since when it is

applied to the SICS problem, it does not appear to work as well as algo-

rithm 17.4.

Note that in our case f(X) = − log det(X) + 〈S,X〉 does not have a

Lipschitz continuous gradient in general. Moreover, f(X) is defined only for

positive definite matrices while g(X) is defined everywhere. These properties

of the objective function make the SICS problem especially challenging for

optimization methods. Nevertheless, we can still apply (17.33) to solve the

problem directly. Moreover, we can apply algorithm 17.4 and obtain the

complexity bound in theorem 17.1 as follows. As proved in Lu (2009), the

optimal solution X∗ of (17.28) satisfies X � αI, where α = 1
‖S‖+pρ (see

proposition 3.1 in Lu (2009)). Therefore, the SICS problem (17.28) can be

formulated as

min
X,Y

{f(X) + g(Y) : X − Y = 0, X ∈ C, Y ∈ C}, (17.36)

where C := {X ∈ Sn : X � α
2 I}. We know that the constraint X � α

2 I

is not tight at the solution. Hence, if we start the algorithm with X � αI

and restrict the stepsize μ to be sufficiently small, then the iterates of the

method will remain in the domain where the gradient of f(X) is Lipschitz

continuous, and we can apply algorithm 17.3 and theorem 17.1.

Note, however, that the bound on the Lipschitz constant of the gradient

474 Optimization Methods for Sparse Inverse Covariance Selection

of f(X) is 1/α2, and hence can be very large. It is not practical to restrict

μ in the algorithm to be smaller than α2, since μ determines the stepsize at

each iteration. Below is a practical version of our algorithm applied to the

SICS problem.

Algorithm 17.5 Alternating linearization method for SICS

1: Input: X0 = Y 0, μ0.
2: for k = 0, 1, · · · do
3: 0. Pick μk+1 ≤ μk.
4: 1. Solve Xk+1 := argminX∈C Qg(X,Y k) ≡ f(X) + g(Y k) − 〈Λk, X − Y k〉 +

1
2μk+1

‖X − Y k‖2F ;
5: 2. If F (Xk+1) > Qg(X

k+1, Y k), then Xk+1 := Y k.
6: 3. Solve Y k+1 := argminY f(Xk+1)+〈∇f(Xk+1), Y −Xk+1〉+ 1

2μk+1
‖Y −Xk+1‖2F+

g(Y);
7: 4. Λk+1 = ∇f(Xk+1)− (Xk+1 − Y k+1)/μk+1.
8: end for

17.3.1 Solving Subproblems of ALM for SICS

We now show how to solve the two optimization problems in algorithm 17.5.

The first-order optimality conditions for step 1 in algorithm 17.5, ignoring

the constraint X ∈ C, are

∇f(X)− Λk + (X − Y k)/μk+1 = 0. (17.37)

Consider V Diag(d)V 	, the spectral decomposition of Y k + μk+1(Λ
k − S),

and let

γi =

(
di +

√
d2i + 4μk+1

)
/2, i = 1, . . . , p. (17.38)

Since ∇f(X) = −X−1 + S, it is easy to verify that Xk+1 := V Diag(γ)V 	

satisfies (17.37). When the constraintX ∈ C is imposed, the optimal solution

changes to Xk+1 := V Diag(γ)V 	 with

γi = max

{
α/2,

(
di +

√
d2i + 4μk+1

)
/2

}
, i = 1, . . . , p.

We observe that solving (17.37) requires approximately the same effort

(O(p3)) as is required to compute ∇f(Xk+1) itself. Moreover, from the

solution to (17.37), ∇f(Xk+1) is obtained with only a negligible amount

of additional effort, since (Xk+1)−1 := V Diag(γ)−1V 	.
The first-order optimality conditions for step 2 in algorithm 17.5 are

0 ∈ ∇f(Xk+1) + (Y −Xk+1)/μk+1 + ∂g(Y). (17.39)

17.4 Remarks on Numerical Performance 475

Since g(Y) = ρ‖Y ‖1, the solution to (17.39) is given by

Y k+1 = shrink(Xk+1 − μk+1(S − (Xk+1)−1), μk+1ρ),

where the “shrinkage operator” shrink(Z, ρ) is defined as shrink(Z, ρ)ij =

shrink(Zij , ρ). It is trivial to see that to apply algorithm 17.5 to the ex-

tended formulation (17.7), one only needs to modify the shrinkage step

shrink(Z,M), which is then defined as [shrink(Z,M)]ij = shrink(Zij ,Mij).

Note that the O(p3) complexity of step 1 which requires a spectral

decomposition, dominates the O(p2) complexity of step 2 which requires

a simple shrinkage. There is no closed-form solution for the subproblem

corresponding to Y when the constraint Y ∈ C is imposed. One can

attempt to impose this by a line search on the value of μk. Imposing such a

constraint in practice limits the stepsize too much, and the performance of

the algorithm deteriorates substantially. Thus, resulting iterates Y k may not

be positive definite, while the iterates Xk remain so. Eventually, due to the

convergence of Y k and Xk, the Y k iterates become positive definite and the

constraint Y ∈ C is satisfied. Relaxing the positive definiteness constraint

during the course of the algorithm appears to be desirable for the overall

performance.

17.4 Remarks on Numerical Performance

A number of numerical comparisons of optimization methods for SICS have

been presented in the literature. See, for instance, Duchi et al. (2008);

Goldfarb et al. (2009); Scheinberg et al. (2010); Friedman et al. (2007); Lu

(2009); Scheinberg and Rish (2009) for the comparison of methods discussed

in this chapter. The comparison we discuss here is based solely on the time

and iteration efficiency of the algorithms to achieve comparable solutions in

terms of their objective function values. The sparsity patterns recovered by

these methods (aside from COVSEL) appears to be comparable.

In summary, the first-order methods in Duchi et al. (2008); Goldfarb et al.

(2009); Scheinberg et al. (2010); Lu (2009) outperform glasso in Friedman

et al. (2007), which substantially outperforms 3 COVSEL in Banerjee et al.

(2008) and somewhat outperforms SINCO in Scheinberg and Rish (2009).

Most of the tests were performed on instances up to the size p = 2000.

On very sparse structured large matrices SINCO outperforms glasso. In

3. The Fortran implementation of glasso has some faults and occasionally breaks down,
especially in large-scale cases. We believe it is an issue with the implementation rather
than the algorithm so we do not elaborate on this further.

476 Optimization Methods for Sparse Inverse Covariance Selection

all experiments in Scheinberg et al. (2010) ALM outperforms the projected

gradient method in Duchi et al. (2008), and the smooth accelerated gradient

method in Lu (2009), in terms of CPU time and accuracy of the solution. The

first-order methods do not exploit the solution sparsity, in that regardless of

the sparsity, the per-iteration complexity remains O(p3). The per-iteration

complexity of glasso and SINCO is empirically smaller, but the number of

iterations required to achieve comparable accuracy is larger than that of the

first-order methods.

17.5 References

O. Banerjee, L. El Ghaoui, and A. d’Aspremont. Model selection through sparse
maximum likelihood estimation for multivariate gaussian for binary data. Journal
of Machine Learning Research, 9:485–516, 2008.

A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm for
linear inverse problems. SIAM Journal of Imaging Sciences, 2(1):183–202, 2009.

A. d’Aspremont, O. Banerjee, and L. El Ghaoui. First-order methods for sparse
covariance selection. SIAM Journal on Matrix Analysis and its Applications, 30
(1):56–66, 2008.

J. Duchi, S. Gould, and D. Koller. Projected subgradient methods for learning
sparse Gaussians. Proceedings of the 24th Conference on Uncertainty in Artificial
Intelligence, 2008.

M. Fortin and R. Glowinski. Augmented Lagrangian methods: applications to the
numerical solution of boundary-value problems. North-Holland, 1983.

J. Friedman, T. Hastie, and R. Tibshirani. Sparse inverse covariance estimation
with the graphical lasso. Biostatistics, 9(3):432–441, 2007.

R. Glowinski and P. Le Tallec. Augmented Lagrangian and Operator-Splitting
Methods in Nonlinear Mechanics. SIAM, Philadelphia, 1989.

D. Goldfarb, S. Ma, and K. Scheinberg. Fast alternating linearization methods for
minimizing the sum of two convex functions. Technical report, Department of
IEOR, Columbia University, 2009.

D. Heckerman. A tutorial on learning Bayesian networks. Technical report,
Microsoft Research, 1995.

V. Krishnamurthy and A. d’Aspremont. A pathwise algorithm for covariance
selection. preprint, 2009. arXiv:0908.0143.

S. Lauritzen. Graphical Models. Oxford University Press, 1996.

L. Li and K.-C. Toh. An inexact interior point method for l1-regularized sparse
covariance selection. Mathematical Programming Computation, 2(3–4):291–315,
2010.

Z. Lu. Smooth optimization approach for sparse covariance selection. SIAM Journal
on Optimization, 19(4):1807–1827, 2009.

Z. Lu. Adaptive first-order methods for general sparse inverse covariance selection.
SIAM Journal on Matrix Analysis and Applications, 31(4):2000–2016, 2010.

N. Meinshausen and P. Buhlmann. High dimensional graphs and variable selection

17.5 References 477

with the Lasso. Annals of Statistics, 34(3):1436–1462, 2006.

A. Nemirovski. Prox-method with rate of convergence O(1/t) for variational
inequalities with Lipschitz continuous monotone operators and smooth convex-
concave saddle point problems. SIAM Journal on Optimization, 15(1):229–251,
2005.

Y. E. Nesterov. A method for unconstrained convex minimization problem with
the rate of convergence O(1/k2). Doklady Akademia Nauk SSSR, 269:543–547,
1983.

Y. E. Nesterov. Introductory lectures on convex optimization: A basic course. 87,
2004.

Y. E. Nesterov. Smooth minimization of non-smooth functions. Mathematical
Programming, series A, 103:127–152, 2005.

K. Scheinberg and I. Rish. SINCO - a greedy coordinate ascent method for
sparse inverse covariance selection problem. 2009. Preprint available at
http://www.optimization-online.org/DB HTML/2009/07/2359.html.

K. Scheinberg, S. Ma, and D. Goldfarb. Sparse inverse covariance selection via
alternating linearization methods. In Advances in Neural Information Processing
Systems 23, 2010.

L. Sun, R. Patel, J. Liu, K. Chen, T. Wu, J. Li, E. Reiman, and J. Ye. Mining brain
region connectivity for alzheimer’s disease study via sparse inverse covariance
estimation. Proceedings of the 15th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, 2009.

R. Tibshirani. Regression shrinkage and selection via the lasso. J. Royal. Statist.
Soc B., 58(1):267–288, 1996.

P. Tseng. On accelerated proximal gradient methods for convex-concave optimiza-
tion. submitted to SIAM Journal on Optimization, 2008.

M. Wainwright, P. Ravikumar, and J. Lafferty. High-dimensional graphical model
selection using �1-regularized logistic regression. In Advances in Neural Informa-
tion Processing Systems 20, pages 1465–1472. 2007.

C. Wang, D. Sun, and K.-C. Toh. Solving log-determinant optimization problems
by a Newton-CG primal proximal point algorithm. Preprint, 2009.

Z. Wen, D. Goldfarb, S. Ma, and K. Scheinberg. Row by row methods for
semidefinite programming. Technical report, Department of IEOR, Columbia
University, 2009.

H. Wolkowicz, R. Saigal, and L. Vandenberghe, editors. Handbook of Semidefinite
Programming. Kluwer Academic, 2000.

M. Yuan and Y. Lin. Model selection and estimation in the gaussian graphical
model. Biometrika, 94(1):19–35, 2007.

X. Yuan. Alternating direction methods for sparse covariance se-
lection. 2009. Preprint available at http://www.optimization-
online.org/DB FILE/2009/09/2390.pdf.

18 A Pathwise Algorithm for Covariance

Selection

Vijay Krishnamurthy kvijay@princeton.edu

ORFE, Princeton University

Princeton, NJ 08544, USA

Selin Damla Ahipaşaoğlu sahipasa@princeton.edu

ORFE, Princeton University

Princeton, NJ 08544, USA

Alexandre d’Aspremont aspremon@princeton.edu

ORFE, Princeton University

Princeton, NJ 08544, USA

Covariance selection seeks to estimate a covariance matrix by maximum

likelihood while restricting the number of nonzero inverse covariance matrix

coefficients. A single penalty parameter usually controls the tradeoff between

log-likelihood and sparsity in the inverse matrix. We describe an efficient al-

gorithm for computing a full regularization path of solutions to this problem.

18.1 Introduction

We consider the problem of estimating a covariance matrix from sample

multivariate data by maximizing its likelihood while penalizing the inverse

covariance so that its graph is sparse. This problem is known as covari-

ance selection and can be traced back at least to Dempster (1972). The

coefficients of the inverse covariance matrix define the representation of a

particular Gaussian distribution as a member of the exponential family;

hence sparse maximum likelihood estimates of the inverse covariance yield

sparse representations of the model in this class. Furthermore, in a Gaussian

480 A Pathwise Algorithm for Covariance Selection

model, zeros in the inverse covariance matrix correspond to conditionally

independent variables, so this penalized maximum likelihood procedure si-

multaneously stabilizes estimation and isolates structure in the underlying

graphical model Lauritzen (1996, see).

Given a sample covariance matrix Σ ∈ Sn, the covariance selection

problem is written as

maximize log detX −Tr(ΣX)− ρCard(X)

in the matrix variable X ∈ Sn, where ρ > 0 is a penalty parameter

controlling sparsity and Card(X) is the number of nonzero elements in X.

This is a combinatorially hard (nonconvex) problem and, as in Dahl et al.

(2008), Banerjee et al. (2006), and Dahl et al. (2005), we form the convex

relaxation

maximize log detX −Tr(ΣX)− ρ‖X‖1, (18.1)

which is a convex problem in the matrix variable X ∈ Sn, where ‖X‖1 is

the sum of absolute values of the coefficients of X here. After scaling, the

‖X‖1 penalty can be understood as a convex lower bound on Card(X). An-

other completely different approach, derived in Meinshausen and Bühlmann

(2006), reconciles the local dependence structure inferred from n distinct

�1-penalized regressions of a single variable against all the others. Both this

approach and the convex relaxation (18.1) have been shown to be consistent

in Meinshausen and Bühlmann (2006) and Banerjee et al. (2008), respec-

tively.

In practice, however, both methods are computationally challenging

when n gets large. Various algorithms have been employed to solve (18.1)

with Dahl et al. (2005), using a custom interior-point method, and Banerjee

et al. (2008), using a block coordinate descent method where each iteration

required solving a Lasso-like problem, among others. This last method is

efficiently implemented in the Glasso package by Friedman et al. (2008),

using coordinate descent algorithms from Friedman et al. (2007) to solve

the inner regression problems.

One key issue in all these methods is that there is no a priori obvious

choice for the penalty parameter. In practice, at least a partial regularization

path of solutions has to be computed, and this procedure is then repeated

many times to get confidence bounds on the graph structure by cross-

validation. Pathwise Lasso algorithms such as LARS (Efron et al., 2004)

can be used to get a full regularization path of solution using the method

in Meinshausen and Bühlmann (2006), but this still requires solving and

reconciling n regularization paths on regression problems of dimension n.

18.2 Covariance Selection 481

Our contribution here is to formulate a pathwise algorithm for solving

problem (18.1) using numerical continuation methods (see Bach et al. (2005)

for an application in kernel learning). Each iteration requires solving a large

structured linear system (predictor step), then improving precision using

a block coordinate descent method (corrector step). Overall, the cost of

moving from one solution of problem (18.1) to another is typically much

lower than that of solving two separate instances of (18.1). We also derive

a coordinate descent algorithm for solving the corrector step, where each

iteration is closed form and requires only solving a cubic equation. We

illustrate the performance of our methods on several artificial and realistic

data sets.

The paper is organized as follows. Section 18.2 reviews some basic convex

optimization results on the covariance selection problem in (18.1). Our main

pathwise algorithm is described in Section 18.3. Finally, we present some

numerical results in Section 18.4.

In what follows, we write Sn for the set of symmetric matrices of dimension

n. For a matrix X ∈ R
m×n, we write ‖X‖F its Frobenius norm; ‖X‖1 =∑

ij |Xij |, the �1 norm of its vector of coefficients; and Card(X), the number

of nonzero coefficients in X.

18.2 Covariance Selection

Starting from the convex relaxation defined above

maximize log detX −Tr(ΣX)− ρ‖X‖1 (18.2)

in the variable X ∈ Sn, where ‖X‖1 can be understood as a convex

lower bound on the Card(X) function whenever |Xij | ≤ 1 (we can always

scale ρ otherwise). Let us write X∗(ρ) for the optimal solution of problem

(18.2). In what follows, we will seek to compute (or approximate) the entire

regularization path of solutions X∗(ρ) for ρ ∈ R+. To remove the nonsmooth

penalty, we can set X = L−M and rewrite Problem (18.2) as

maximize log det(L−M)−Tr(Σ(L−M))− ρ1T (L+M)1

subject to Lij,Mij ≥ 0, i, j = 1, . . . , n,
(18.3)

in the matrix variables L,M ∈ Sn. We can form the following dual to

problem (18.2) as

minimize − log det(U)− n

subject to Uij ≤ Σij + ρ, i, j = 1, . . . , n,

Uij ≥ Σij − ρ, , i, j = 1, . . . , n,

(18.4)

482 A Pathwise Algorithm for Covariance Selection

in the variable U ∈ Sn. As in Bach et al. (2005), for example, in the spirit

of barrier methods for interior-point algorithms, we then form the following

(unconstrained) regularized problem

min
U∈Sn

− log det(U)− t

⎛⎝ n∑
i,j=1

log(ρ+Σij − Uij) +

n∑
i,j=1

log(ρ− Σij + Uij)

⎞⎠
(18.5)

in the variable U ∈ Sn, and t > 0 specifies a desired tradeoff level between

centrality (smoothness) and optimality. From every solution U∗(t) corre-

sponding to each t > 0, the barrier formulation also produces an explicit

dual solution (L∗(t),M∗(t)) to Problem (18.4). Indeed, we can define ma-

trices L,M ∈ Sn as follows

Lij(U, ρ) =
t

ρ+Σij − Uij
and Mij(U, ρ) =

t

ρ− Σij + Uij
.

First-order optimality conditions for Problem (18.5) then imply

(L−M) = U−1.

As t tends to 0, (18.5) traces a central path toward the optimal solution to

Problem (18.4). If we write f(U) for the objective function of (18.4) and call

p∗ its optimal value, we get (as in Boyd and Vandenberghe (2004, §11.2.2)),
f(U∗(t))− p∗ ≤ 2n2t.

Hence t can be understood as a surrogate duality gap when solving the dual

Problem (18.4).

18.3 Algorithm

In this section we derive a predictor-corrector algorithm to approximate the

entire path of solutions X∗(ρ) when ρ varies between 0 and maxiΣii (beyond

which the solution matrix is diagonal). Defining

H(U, ρ) = L(U, ρ)−M(U, ρ)− U−1,

we trace the curve H(U, ρ) = 0, the first-order optimality condition for

Problem (18.5). Our pathwise covariance selection algorithm is defined in

Algorithm 18.1.

Typically, in Algorithm 18.1, h is a small constant, ρ0 = maxiΣii, and U0

is computed by solving a single (very sparse) instance of problem (18.5) for

18.3 Algorithm 483

Algorithm 18.1 Pathwise Covariance Selection

Input: Σ ∈ Sm

1: Start with (U0, ρ0) s.t H(U0, ρ0) = 0.
2: for i = 1 to k do
3: Predictor Step. Let ρi+1 = ρi + h. Compute a tangent direction by solving the

linear system

∂H

∂ρ
(Ui, ρi) + J(Ui, ρi)

∂U

∂ρ
= 0

in ∂U/∂ρ ∈ Sn, where J(Ui, ρi) = ∂H(U, ρ)/∂U ∈ Sn2 is the Jacobian matrix of the
function H(U, ρ).

4: Update Ui+1 = Ui + h∂U/∂ρ.
5: Corrector Step. Solve problem (18.5) starting at U = Ui+1.
6: end for
Output: Sequence of matrices Ui, i = 1, . . . , k.

example.

18.3.1 Predictor: Conjugate Gradient Method

In Algorithm 18.1, the tangent direction in the predictor step is computed

by solving a linear system Ax = b where A = (U−1 ⊗ U−1 +D) and D is a

diagonal matrix. This system of equations has dimension n2, and we solve

it using the conjugate gradient (CG) method.

18.3.1.1 CG iterations

The most expensive operation in the CG iterations is the computation

of a matrix vector product Apk, with pk ∈ R
n2

. Here, however, we can

exploit problem structure to compute this step efficiently. Observe that

(U−1 ⊗ U−1)pk = vec(U−1PkU
−1) when pk = vec(Pk), so the computation

of the matrix vector product Apk needs only O(n3) flops instead of O(n4).

The CG method then needs at most O(n2) iterations to converge, leading

to a total complexity of O(n5) for the predictor step. In practice, we will

observe that CG needs considerably fewer iterations.

18.3.1.2 Stopping criterion

To speed up the computation of the predictor step, we can stop the conjugate

gradient solver when the norm of the residual falls below the numerical

tolerance t. In our experiments here, we stopped the solver after the residual

decreases by two orders of magnitude.

484 A Pathwise Algorithm for Covariance Selection

18.3.1.3 Scaling and warm start

Another option, much simpler than the predictor step detailed above, is

warm starting. This means simply scaling the current solution to make it

feasible for the problem after ρ is updated. In practice, this method turns

out to be as efficient as the predictor step, as it allows us to follow the path

starting from the sparse end (where more interesting solutions are located).

Here, we start the algorithm from the sparsest possible solution, a diagonal

matrix U such that

Uii = Σii + (1− ε)ρmaxI, i = 1, . . . , n,

where ρmax = maxiΣii. Suppose, now, that iteration k of the algorithm

produced a matrix solution Uk corresponding to a penalty ρk. Then, the

algorithm with (lower) penalty ρk+1 is started at the matrix

U = (1− ρk+1/ρk)Σ + (ρk+1/ρk)Uk,

which is a feasible starting point for the corrector problem that follows. This

is the method that was implemented in the final version of our code and that

is used in the numerical experiments detailed in Section 18.4.

18.3.2 Corrector: Block Coordinate Descent

For small problems, we can use Newton’s method to solve (18.5). However,

from a computational perspective, this approach is not practical for large

values of n. We can simplify iterations by using a block coordinate descent

algorithm that updates one row/column of the matrix in each iteration

(Banerjee et al., 2008). Let us partition the matrices U and Σ as

U =

(
V u

uT w

)
and S =

(
A b

bT c

)
.

We keep V fixed in each iteration and solve for u and w. Without loss of

generality, we can always assume that we are updating the last row/column.

18.3.2.1 Algorithm

Problem (18.5) can be written in block format as

minimize − log(w − uTV −1u)− t(log(ρ+ c− w) + log(ρ− c+ w))

−2t (∑i log(ρ+ bi − ui) +
∑

i log(ρ− bi + ui)) ,

(18.6)

18.3 Algorithm 485

in the variables u ∈ R
(n−1) and w ∈ R. Here V ∈ S(n−1) is kept fixed in

each iteration. We use the Sherman-Woodbury-Morrison (SWM) formula

Algorithm 18.2 Block coordinate descent corrector steps

Input: U0, Σ ∈ Sn

1: for i = 1 to k do
2: Pick the row and column to update.
3: Solve the inner problem (18.6) using coordinate descent (each coordinate descent

step requires solving a cubic equation).
4: Update U−1.
5: end for
Output: A matrix Uk solving (18.5).

(see e.g., Boyd and Vandenberghe, 2004, Section C.4.3) to efficiently update

U−1 at each iteration, so it suffices to compute the full inverse only once,

at the beginning of the path. The choice and order of row/column updates

significantly affect performance. Although predicting the effect of a whole ith

row/column update is numerically expensive, we use the fact that the impact

of updating diagonal coefficients usually dominates all others and can be

computed explicitly at a very low computational cost. It corresponds to the

maximum improvement in the dual objective function that can be achieved

by updating the current solution U to U + weie
T
i , where ei is the ith unit

vector. The objective function value is a decreasing function of w and w must

be lower than ρ+ Σii − Uii to preserve dual feasibility, so updating the ith

diagonal coefficient will decrease the objective by δi = (ρ+Σii−Uii)U
−1
ii after

minimizing over w. In practice, updating the top 10 percent row/columns

with the largest δ is often enough to reach our precision target, and very

significantly speeds up computations. We also solve the inner problem (18.6)

by a coordinate descent method (as in (Friedman et al., 2007)), taking

advantage of the fact that a point minimizing (18.6) over a single coordinate

can be computed in closed form by solving a cubic equation. Suppose (u,w)

is the current point and that we wish to optimize coordinate uj of the vector

u. We define

α = −V −1
jj

β = −2uj(
∑

k �=j V
−1
kj uk)

γ = w − uTV −1u− αuj − βu2j .

(18.7)

The optimality conditions imply that the the optimal u∗j must satisfy the

cubic equation

p1x
3 + p2x

2 + p3x+ p4 = 0, (18.8)

486 A Pathwise Algorithm for Covariance Selection

where

p1 = 2(1 + 2t)α, p2 = (1 + 4t)β − 4(1 + 2t)αbj
p3 = 4tγ − 2(1 + 2t)βbj + 2α(b2j − 2ρ2), p4 = β(b2j − ρ2)− 4tγbj .

Similarly, the diagonal update w satisfies the following quadratic equation:

(1 + 2t)w2 − 2(t(uTV −1u) + c(1 + t))w + c2 − ρ2 + 2tc(uTV −1u) = 0

Here too, the order in which we optimize the coordinates has a significant

impact.

18.3.2.2 Dual Block Problem

We can derive a dual to Problem (18.6) by rewriting it as a constrained

optimization problem to get

minimize − log x1 − t(log x2 + log x3)− 2t (
∑

i(log yi + log zi))

subject to x1 ≤ w − uTV −1u

x2 = ρ+ c− w, x3 = ρ− c+ w

yi = ρ+ bi − ui, zi = ρ− bi + ui,

(18.9)

in the variables u ∈ R
(n−1), w ∈ R, x ∈ R

3, y ∈ R
(n−1), z ∈ R

(n−1). The dual

to Problem (18.9) is written

maximize 1 + 2t(2n− 1) + logα1 − α2(ρ+ c)− α3(ρ− c)

−∑i (βi(ρ+ bi) + ηi(ρ− bi))

+t log(α2/t) + t log(α3/t) + 2t (
∑

i (log(βi/2t) + log(ηi/2t)))

subject to α1 = α2 − α3

α1 ≥ 0,

(18.10)

in the variables α ∈ R
3, β ∈ R

(n−1) and η ∈ R
(n−1). Surrogate dual points

then produce an explicit stopping criterion.

18.3.3 Complexity

Solving for the predictor step using conjugate gradient as in Section 18.3.1

requires O(n2) matrix products (at a cost of O(n3) each) in the worst

case, but the number of iterations necessary to get a good estimate of the

predictor is typically much lower (see experiments in Section 18.4). Scaling

and warm start, on the other hand, have complexity O(n2). The inner and

outer loops of the corrector step are solved using coordinate descent, with

each coordinate iteration requiring the (explicit) solution of a cubic equation.

18.4 Numerical Results 487

Results on the convergence of the coordinate descent in the smooth case

can be traced back at least to Luo and Tseng (1992) or Tseng (2001), who

focus on local linear convergence in the strictly convex case. More precise

convergence bounds have been derived in Nesterov (2010), who shows linear

convergence (with complexity growing as log(1/ε)) of a randomized variant

of coordinate descent for strongly convex functions, and a complexity bound

growing proportionally to 1/ε when the gradient is Lipschitz continuous

coordinatewise. Unfortunately, because it uses a randomized step selection

strategy, the algorithm in its standard form is inefficient in our case here,

as it requires too many SWM matrix updates to switch between columns.

Optimizing the algorithm in Nesterov (2010) to adapt it to our problem (e.g.,

by adjusting the variable selection probabilities to account for the relative

cost of switching columns) is a potentially promising research direction.

The complexity of our algorithm can be summarized as follows.

Because our main objective function is strictly convex, our algorithm

converges locally linearly, but we have no explicit bound on the total number

of iterations required.

Starting the algorithm requires forming the inverse matrix V −1 at a cost

of O(n3).

Each iteration requires solving a cubic equation for each coordinatewise

minimization problem to form the coefficients in (18.7), at a cost of O(n2).

Updating the problem to switch from one iteration to the next, using SWM

updates, then costs O(n2). This means that scanning the full matrix with

coordinate descent requires O(n4) flops.

While the lack of a precise complexity bound is a clear shortcoming of our

choice of algorithm for solving the corrector step, as discussed by Nesterov

(2011), algorithm choices are usually guided by the type of operations

(projections, barrier computations, inner optimization problems) that can be

solved very efficiently or in closed form. In our case here, it turns out that

coordinate descent iterations can be performed very fast, in closed form

(by solving cubic equations), which seems to provide a clear (empirical)

complexity advantage to this technique.

18.4 Numerical Results

We compare the numerical performance of several methods for computing

a full regularization path of solutions to Problem (18.2) on several realistic

data sets: the senator votes covariance matrix from Banerjee et al. (2006),

488 A Pathwise Algorithm for Covariance Selection

the Science topic model in Blei and Lafferty (2007) with 50 topics, the

covariance matrix of 20 foreign exchange rates, the UCI SPECTF heart

dataset (diagnosing of cardiac images), the UCI LIBRAS hand movement

dataset, and the UCI HillValley dataset. We compute a path of solutions

using the methods detailed here (Covpath) and repeat this experiment using

the Glasso path code (Friedman et al., 2008), which restarts the covariance

selection problem at ρ+ε at the current solution of (18.2) obtained at ρ. We

also tested the smooth first-order code with warm start ASPG (described in

Lu (2010)) as well as the greedy algorithm SINCO by Scheinberg and Rish

(2009). Note that the latter only identifies good sparsity patterns but does

not (directly) produce feasible solutions to problem (18.4). Our prototype

code here is written in MATLAB (except for a few steps in C), ASPG

and SINCO are also written in MATLAB, and Glasso is compiled from

FORTRAN and interfaced with R. We use the scaling/warm start approach

detailed in Section 18.3 and scan the full set of variables at each iteration

of the block-coordinate descent algorithm (optimizing over the 10 percent

most promising variables sometimes significantly speeds up computations

but is more unstable), so the results reported here describe the behavior of

the most robust implementation of our algorithm. We report CPU time (in

seconds) versus problem dimension in Table 18.1. Unfortunately, Glasso does

not use the duality gap as a stopping criterion, but rather lack of progress

(average absolute parameter change less than 10−4). Glasso fails to converge

on the HillValley example.

Dataset Dimension Covpath Glasso ASPG SINCO

Interest Rates 20 0.036 0.200 0.30 0.007
FX Data 20 0.016 1.467 4.88 0.109

Heart 44 0.244 2.400 11.25 5.895
ScienceTopics 50 0.026 2.626 11.58 5.233

Libras 91 0.060 3.329 35.80 40.690
HillValley 100 0.068 - 47.22 68.815
Senator 102 4.003 5.208 10.44 5.092

Table 18.1: CPU time (in seconds) versus problem type for computing a reg-
ularization path for 50 values of the penalty ρ, using the path-following method
detailed here (Covpath), the Glasso code with warm-start (Glasso), the pathwise
code (ASPG) in Lu (2010) and the SINCO greedy code by Scheinberg and Rish
(2009).

As in Banerjee et al. (2008), to test the behavior of the algorithm on

examples with known graphs, we also sample sparse random matrices with

Gaussian coefficients, add multiples of the identity to make them positive

18.4 Numerical Results 489

semidefinite, then use the inverse matrix as our sample matrix Σ. We

use these examples to study the performance of the various algorithms

listed above on increasingly large problems. Computing times are listed in

Table 18.2 for a path of length 10, and in Table 18.3 for a path of length 50.

The penalty coefficients ρ are chosen to produce a target sparsity around 10

percent.

Dimension Covpath Glasso ASPG SINCO

20 0.0042 2.32 0.53 0.22
50 0.0037 0.59 4.11 3.80

100 0.0154 1.11 13.36 13.58
200 0.0882 4.73 73.24 61.02
300 0.2035 13.52 271.05 133.99

Table 18.2: CPU time (in seconds) versus problem dimension for computing a
regularization path for 10 values of the penalty ρ, using the path-following method
detailed here (Covpath), the Glasso code with warm-start (Glasso), the pathwise
code (ASPG) in Lu (2010) and the SINCO greedy code by Scheinberg and Rish
(2009) on randomly generated problems.

Dimension Covpath Glasso ASPG SINCO

20 0.0101 0.64 2.66 1.1827
50 0.0491 1.91 23.2 22.0436

100 0.0888 10.60 140.75 122.4048
200 0.3195 61.46 681.72 451.6725
300 0.8322 519.05 5203.46 1121.0408

Table 18.3: CPU time (in seconds) versus problem dimension for computing a
regularization path for 50 values of the penalty ρ, using the path-following method
detailed here (Covpath), the Glasso code with warm-start (Glasso), the pathwise
code (ASPG) in Lu (2010) and the SINCO greedy code by Scheinberg and Rish
(2009) on randomly generated problems.

In Figure 18.1, we plot the number of nonzero coefficients (cardinality)

in the inverse covariance versus the penalty parameter ρ, along a path of

solutions to problem (18.2). We observe that the solution cardinality appears

to be linear in the log of the regularization parameter. We then plot the

number of conjugate gradient iterations required to compute the predictor in

Section 18.3.1 versus number of nonzero coefficients in the inverse covariance

matrix. We notice that the number of CG iterations decreases significantly

for sparse matrices, which makes computing predictor directions faster at

the sparse (i.e., interesting) end of the regularization path. Nevertheless,

490 A Pathwise Algorithm for Covariance Selection

the complexity of corrector steps dominates the total complexity of the

algorithm, and there was little difference in computing time between using

the scaling method detailed in Section 18.3 and using the predictor step.

Hence the final version of our code and the CPU time results listed here

make use of scaling/warm start exclusively, which is more robust.

����

���

����

���

ρ

��� ��� ��� ��� ���

Figure 18.1: Left: We plot the fraction of nonzero coefficients in the inverse
covariance versus penalty parameter ρ, along a path of solutions to Problem (18.2).
Right: Number of conjugate gradient iterations required to compute the predictor
step versus number of nonzero coefficients in the inverse covariance matrix.

Finally, to illustrate the method on intuitive data sets, we solve for a

full regularization path of solutions to Problem (18.2) on financial data

consisting of the covariance matrix of U.S. forward rates for maturities

ranging from 6 months to 10 years from 1998 until 2005. Forward rates

move as a curve, so we expect their inverse covariance matrix to be close to

band diagonal. Figure 18.2 shows the dependence network obtained from the

solution of Problem (18.2) on this matrix along a path, for ρ = .02, ρ = .008,

and ρ = .006. The graph layout was formed using the yFiles–Organic option

in Cytoscape.

The string like dynamics of the rates clearly appear in the last plot. We

also applied our algorithm to the covariance matrix extracted from the

correlated topic model calibrated in Blei and Lafferty (2007) on 10 years

of articles from the journal Science, targeting a graph density low enough to

reveal some structure. The corresponding network is detailed in Figure 18.3.

Graph edge color is related to the sign of the conditional correlation (green

for positive, red for negative), while edge thickness is proportional to the

correlation magnitude. The five most important words are listed for each

topic.

18.5 Online Covariance Selection 491

1

0.5

1.5

2

8

9
7

7.5 8.5

6 10

4.5

5.5

6.5

7.5

8.5

9.5

9

10

8

7

4

3

2.5

1

0.5
1.5

2

6

8

7

9

10

9.5

8.5

7.5

6.5

5.5

4.5

4

3

12.5

0.5

1.5

2

Figure 18.2: Three sample dependence graphs corresponding to the solution of
problem (18.2) on a U.S. forward rates covariance matrix for ρ = .02 (left), ρ = .008
(center), and ρ = .006 (right).

18.5 Online Covariance Selection

In this section we will briefly discuss the online version of the covariance

selection problem. This version arises if we obtain a better estimate of the

covariance matrix after the problem is already solved for a set of parameter

values. We will assume that the new (positive definite) covariance matrix

Σ̂ is the sum of the old covariance matrix Σ and an arbitrary symmetric

matrix C. With such a change, the “new” dual problem can be written as

minimize − log det(U)− n

subject to Uij ≤ ρ+Σij + μCij , i, j = 1, . . . , n,

Uij ≥ Σij + μCij − ρ, , i, j = 1, . . . , n,

(18.11)

in the variable U ∈ Sn, where ρ is a parameter value for which the

corresponding optimal solution is already calculated with the old covariance

matrix Σ. The problem is parameterized with μ, so that μ = 0 gives the

original problem whereas μ = 1 corresponds to the new problem.

For many applications, one would expect C to be small and the optimal

solution U∗ of the original problem to be close to the optimal solution of

the new problem, say Û∗. Hence, regardless of the algorithm, U∗ should be

used as an initial solution instead of solving the problem from scratch.

In the spirit of the barrier methods and the predictor-corrector method

that we have devised in this chapter, we can develop a predictor-corrector

algorithm to solve the online version of the problem fast, as follows. We form

a parameterized version of the regularized problem

492 A Pathwise Algorithm for Covariance Selection

Figure 18.3: Topic network for the Science Correlated Topic Model in Blei and
Lafferty (2007). Network layout using cytoscape. Graph edge grayscale is related
to the magnitude of the conditional correlation while edge thickness is proportional
to the correlation magnitude.

min
U∈Sn

− log det(U)− t
∑n

i,j=1 log(ρ+Σij + μCij − Uij)

−t∑n
i,j=1 log(ρ− Σij − μCij + Uij)

(18.12)

in the variable U ∈ Sn, and t > 0 is the tradeoff level as before. Let us define

matrices L̂, M̂ ∈ Sn as follows:

L̂ij(U, μ) =
t

ρ+Σij + μCij − Uij
and M̂ij(U, μ) =

t

ρ− Σij − μCij + Uij
.

As before, optimal L̂ and M̂ should satisfy (L̂ − M̂) = U−1, and Problem

(18.12) traces a central path toward the optimal solution to Problem (18.11)

as t goes to 0.

18.5 Online Covariance Selection 493

Defining

Ĥ(U, μ) = L̂(U, μ)− M̂(U, μ)− U−1,

we trace the curve Ĥ(U, μ) = 0, the first-order optimality condition for

problem (18.12), from the solution for the original problem to one for the new

problem as μ goes from 0 to 1. The resulting predictor-corrector algorithm

is Algorithm 18.3, which solves the online version efficiently.

Algorithm 18.3 Online Pathwise Covariance Selection

Input: Σ, U∗ ∈ Sm, ρ ∈ R, and c ∈ R
n×r .

1: Start with (U0, μ0) s.t Ĥ(U0, μ0) = 0, specifically, set μ0 = 0 and U0 = U∗.
2: for i = 1 to k do
3: Predictor Step. Let μi+1 = μi + 1/k. Compute a tangent direction by solving the

linear system

∂Ĥ

∂μ
(Ui, μi) + J(Ui, μi)

∂U

∂μ
= 0

in ∂U/∂μ ∈ Sn, where J(Ui, μi) = ∂Ĥ(U, μ)/∂U ∈ Sn2 is the Jacobian matrix of the
function Ĥ(U, μ).

4: Update Ui+1 = Ui + (∂U/∂μ)/k.
5: Corrector Step. Solve Problem (18.12) for μi+1 starting at U = Ui+1.
6: end for
Output: Matrix Uk that solves Problem (18.11).

As for the offline version, the most demanding computation in this algo-

rithm is the calculation of the tangent direction, which can be carried out by

the CG method discussed above. When carefully implemented and tuned,

it produces a solution for the new problem very fast. Although one can try

different values of k, setting k = 1 and applying one step of the algorithm

is usually enough in practice. This algorithm, and the online approach dis-

cussed in this section in general, would be especially useful and sometimes

necessary for very large datasets, as solving the problem from scratch is an

expensive task for such problems and should be avoided whenever possible.

Acknowledgements

The authors are grateful to two anonymous referees whose comments signif-

icantly improved the chapter. The authors would also like to acknowledge

support from NSF grants SES-0835550 (CDI), CMMI-0844795 (CAREER),

CMMI-0968842, a Peek junior faculty fellowship, a Howard B. Wentz Jr.

award, and a gift from Google.

494 A Pathwise Algorithm for Covariance Selection

18.6 References

F. Bach, R. Thibaux, and M. Jordan. Computing regularization paths for learn-
ing multiple kernels. In Advances in Neural Information Processing Systems,
volume 17, pages 73–80. MIT Press, 2005.

O. Banerjee, L. El Ghaoui, A. d’Aspremont, and G. Natsoulis. Convex optimization
techniques for fitting sparse Gaussian graphical models. In Proceedings of the 23rd
International Conference on Machine Learning, 2006.

O. Banerjee, L. El Ghaoui, and A. d’Aspremont. Model selection through sparse
maximum likelihood estimation for multivariate Gaussian or binary data. Journal
of Machine Learning Research, 9:485–516, 2008.

D. Blei and J. Lafferty. A correlated topic model of science. Annals of Applied
Statistics, 1(1):17–35, 2007.

S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press,
2004.

J. Dahl, V. Roychowdhury, and L. Vandenberghe. Maximum likelihood estimation
of gaussian graphical models: numerical implementation and topology selection.
UCLA preprint, 2005.

J. Dahl, L. Vandenberghe, and V. Roychowdhury. Covariance selection for non-
chordal graphs via chordal embedding. Optimization Methods and Software, 23
(4):501–520, 2008.

A. Dempster. Covariance selection. Biometrics, 28(1):157–175, 1972.

B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani. Least angle regression. Annals
of Statistics, 32(2):407–499, 2004.

J. Friedman, T. Hastie, H. Höfling, and R. Tibshirani. Pathwise coordinate
optimization. Annals of Applied Statistics, 1(2):302–332, 2007.

J. Friedman, T. Hastie, and R. Tibshirani. Sparse inverse covariance estimation
with the graphical lasso. Biostatistics, 9(3):432–441, 2008.

S. Lauritzen. Graphical Models. Clarendon Press, 1996.

Z. Lu. Adaptive first-order methods for general sparse inverse covariance selection.
SIAM Journal on Matrix Analysis and Applications, 31(4):2000–2016, 2010.

Z. Q. Luo and P. Tseng. On the convergence of the coordinate descent method
for convex differentiable minimization. Journal of Optimization Theory and
Applications, 72(1):7–35, 1992.

N. Meinshausen and P. Bühlmann. High dimensional graphs and variable selection
with the Lasso. Annals of Statistics, 34(3):1436–1462, 2006.

Y. Nesterov. Efficiency of coordinate descent methods on huge-scale optimization
problems. CORE Discussion Papers, 2010/2, 2010.

Y. Nesterov. Barrier subgradient method. Mathematical Programming, Series B,
127:31–56, 2011.

K. Scheinberg and I. Rish. SINCO—a greedy coordinate ascent method for sparse
inverse covariance selection problem. 2009.

P. Tseng. Convergence of a block coordinate descent method for nondifferentiable
minimization. Journal of Optimization Theory and Applications, 109(3):475–494,
2001.

	Contents
	Series Foreword
	Preface
	Chapter 1. Introduction: Optimization and Machine Learning
	1.1 Support Vector Machines
	1.2 Regularized Optimization
	1.3 Summary of the Chapters
	1.4 References

	Chapter 2. Convex Optimization with Sparsity-Inducing Norms
	2.1 Introduction
	2.2 Generic Methods
	2.3 Proximal Methods
	2.4 (Block) Coordinate Descent Algorithms
	2.5 Reweighted-�2 Algorithms
	2.6 Working-Set Methods
	2.7 Quantitative Evaluation
	2.8 Extensions
	2.9 Conclusion
	2.10 References

