OPTIMIZATION

FOR MACHINE LEARNING

SUVRIT SRA
SEBASTIAN NOWOZIN
STEPHEN J. WRIGHT

Optimization for Machine Learning

Neural Information Processing Series

Michael I. Jordan and Thomas Dietterich, editors

Advances in Large Margin Classifiers, Alexander J. Smola, Peter L. Bartlett,
Bernhard Schélkopf, and Dale Schuurmans, eds., 2000

Advanced Mean Field Methods: Theory and Practice, Manfred Opper and
David Saad, eds., 2001

Probabilistic Models of the Brain: Perception and Neural Function, Rajesh
P. N. Rao, Bruno A. Olshausen, and Michael S. Lewicki, eds., 2002

Ezploratory Analysis and Data Modeling in Functional Neuroimaging,
Friedrich T. Sommer and Andrzej Wichert, eds., 2003

Advances in Minimum Description Length: Theory and Applications, Peter
D. Griinwald, In Jae Myung, and Mark A. Pitt, eds., 2005

Nearest-Neighbor Methods in Learning and Vision: Theory and Practice,
Gregory Shakhnarovich, Piotr Indyk, and Trevor Darrell, eds., 2006

New Directions in Statistical Signal Processing: From Systems to Brains, Si-
mon Haykin, José C. Principe, Terrence J. Sejnowski, and John McWhirter,
eds., 2007

Predicting Structured Data, Gokhan Baklr, Thomas Hofmann, Bernhard
Scholkopf, Alexander J. Smola, Ben Taskar, and S. V. N. Vishwanathan,
eds., 2007

Toward Brain-Computer Interfacing, Guido Dornhege, José del R. Millan,
Thilo Hinterberger, Dennis J. McFarland, and Klaus-Robert Miiller, eds.,
2007

Large-Scale Kernel Machines, Léon Bottou, Olivier Chapelle, Denis De-
Coste, and Jason Weston, eds., 2007

Learning Machine Translation, Cyril Goutte, Nicola Cancedda, Marc
Dymetman, and George Foster, eds., 2009

Dataset Shift in Machine Learning, Joaquin Quinionero-Candela, Masashi
Sugiyama, Anton Schwaighofer, and Neil D. Lawrence, eds., 2009

Optimization for Machine Learning, Suvrit Sra, Sebastian Nowozin, and
Stephen J. Wright, eds., 2012

Optimization for Machine Learning

Edited by Suvrit Sra, Sebastian Nowozin, and Stephen J. Wright

The MIT Press
Cambridge, Massachusetts
London, England

© 2012 Massachusetts Institute of Technology

All rights reserved. No part of this book may be reproduced in any form by any
electronic or mechanical means (including photocopying, recording, or
information storage and retrieval) without permission in writing from the

publisher.

For information about special quantity discounts, please email

special _sales@mitpress.mit.edu

This book was set in LaTeX by the authors and editors. Printed and bound in the

United States of America.

Library of Congress Cataloging-in-Publication Data

Optimization for machine learning / edited by Suvrit Sra, Sebastian Nowozin, and
Stephen J. Wright.
p. cm. — (Neural information processing series)
Includes bibliographical references.
ISBN 978-0-262-01646-9 (hardcover : alk. paper) 1. Machine learning—
Mathematical models. 2. Mathematical optimization. I. Sra, Suvrit, 1976 II.
Nowozin, Sebastian, 1980 I1I. Wright, Stephen J., 1960—
Q325.5.065 2012
006.3'1—c22
2011002059

10 9 8 7 6 543 21

Contents
Series Foreword xi
Preface xiii

1 Introduction: Optimization and Machine Learning

S. Sra, S. Nowozin, and S. J. Wright 1
1.1 Support Vector Machines 2
1.2 Regularized Optimization 7
1.3 Summary of the Chapters 11
1.4 References 15

2 Convex Optimization with Sparsity-Inducing Norms

F. Bach, R. Jenatton, J. Mairal, and G. Obozinski 19
2.1 Introduction 19
2.2 Generic Methods 26
2.3 Proximal Methods 27
2.4 (Block) Coordinate Descent Algorithms 32
2.5 Reweighted-f5 Algorithms 34
2.6 Working-Set Methods 36
2.7 Quantitative Evaluation 40
2.8 Extensions. 47
2.9 Conclusion e 48
2.10 References 49

3 Interior-Point Methods for Large-Scale Cone Programming

M. Andersen, J. Dahl, Z. Liu, and L. Vandenberghe 55
3.1 Introduction 56
3.2 Primal-Dual Interior-Point Methods 60
3.3 Linear and Quadratic Programming 64
3.4 Second-Order Cone Programming 71
3.5 Semidefinite Programming 74

3.6 Conclusion 79

vl

3.7 References 79

Incremental Gradient, Subgradient, and Proximal Methods
for Convex Optimization: A Survey

D. P. Bertsekas 85
4.1 Introduction 86
4.2 Incremental Subgradient-Proximal Methods 98
4.3 Convergence for Methods with Cyclic Order 102
4.4 Convergence for Methods with Randomized Order 108
4.5 Some Applications 111
4.6 Conclusions 114
4.7 References 115

First-Order Methods for Nonsmooth Convex Large-Scale
Optimization, I: General Purpose Methods

A. Juditsky and A. Nemirovski 121
5.1 Introduction. 121
5.2 Mirror Descent Algorithm: Minimizing over a Simple Set . . . 126
5.3 Problems with Functional Constraints 130
5.4 Minimizing Strongly Convex Functions 131
5.5 Mirror Descent Stochastic Approximation 134
5.6 Mirror Descent for Convex-Concave Saddle-Point Problems . 135
5.7 Setting up a Mirror Descent Method 139
5.8 Notes and Remarks 145
5.9 References 146

First-Order Methods for Nonsmooth Convex Large-Scale
Optimization, II: Utilizing Problem’s Structure

A. Juditsky and A. Nemirovski 149
6.1 Introduction., 149
6.2 Saddle-Point Reformulations of Convex Minimization Problems151
6.3 Mirror-Prox Algorithm 154
6.4 Accelerating the Mirror-Prox Algorithm 160
6.5 Accelerating First-Order Methods by Randomization 171
6.6 Notesand Remarks 179
6.7 References 181

Cutting-Plane Methods in Machine Learning

V. Franc, S. Sonnenburg, and T. Werner 185
7.1 Introduction to Cutting-plane Methods 187
7.2 Regularized Risk Minimization 191

7.3 Multiple Kernel Learning 197

Ve

7.4 MAP Inference in Graphical Models 203
7.5 References 214

Introduction to Dual Decomposition for Inference

D. Sontag, A. Globerson, and T. Jaakkola 219
8.1 Introduction 220
8.2 Motivating Applications 222
8.3 Dual Decomposition and Lagrangian Relaxation 224
8.4 Subgradient Algorithms 229
8.5 Block Coordinate Descent Algorithms 232
8.6 Relations to Linear Programming Relaxations 240
8.7 Decoding: Finding the MAP Assignment 242
8.8 Discussion 245
8.10 References 252

Augmented Lagrangian Methods for Learning, Selecting,
and Combining Features

R. Tomioka, T. Suzuki, and M. Sugiyama 255
9.1 Imtroduction. 256
9.2 Background 258
9.3 Proximal Minimization Algorithm 263
9.4 Dual Augmented Lagrangian (DAL) Algorithm 265
9.5 Connectionso 272
9.6 Application 276
0.7 Summary 280
9.9 References 282

10 The Convex Optimization Approach to Regret

11

Minimization

E. Hazan 287
10.1 Introduction 287
10.2 The RFTL Algorithm and Its Analysis 291
10.3 The “Primal-Dual” Approach 294
10.4 Convexity of Loss Functions 298
10.5 Recent Applications 300
10.6 References 302
Projected Newton-type Methods in Machine Learning

M. Schmidt, D. Kim, and S. Sra 305
11.1 Introduction L 305
11.2 Projected Newton-type Methods 306

11.3 Two-Metric Projection Methods 312

VUL

11.4 Inexact Projection Methods
11.5 Toward Nonsmooth Objectives
11.6 Summary and Discussion

11.7 Referenceso

12 Interior-Point Methods in Machine Learning

J. Gondzio

12.1 Introductiono
12.2 Interior-Point Methods: Background
12.3 Polynomial Complexity Result
12.4 Interior-Point Methods for Machine Learning
12.5 Accelerating Interior-Point Methods
12.6 Conclusions L oo
12.7 Referenceso

13 The Tradeoffs of Large-Scale Learning

L. Bottou and O. Bousquet

13.1 Introduction
13.2 Approximate Optimization
13.3 Asymptotic Analysis
13.4 Experiments o
13.5 Conclusion
13.6 References

14 Robust Optimization in Machine Learning

C. Caramanis, S. Mannor, and H. Xu

14.1 Introduction
14.2 Background on Robust Optimization
14.3 Robust Optimization and Adversary Resistant Learning . . .
14.4 Robust Optimization and Regularization
14.5 Robustness and Consistency
14.6 Robustness and Generalization
14.7 Conclusion
14.8 References

15 Improving First and Second-Order Methods by Modeling
Uncertainty
N. Le Roux, Y. Bengio, and A. Fitzgibbon
15.1 Introduction
15.2 Optimization Versus Learning
15.3 Building a Model of the Gradients
15.4 The Relative Roles of the Covariance and the Hessian

331
331
333
337
338
344
347
347

351
351
352
355
363
366
367

i

15.5 A Second-Order Model of the Gradients 412
15.6 An Efficient Implementation of Online Consensus Gradient:
TONGA e 414
15.7 Experimentso 419
15.8 Conclusion 427
15.9 References 429

16 Bandit View on Noisy Optimization

J.-Y. Audibert, S. Bubeck, and R. Munos 431
16.1 Introduction 431
16.2 Concentration Inequalities 433
16.3 Discrete Optimization 434
16.4 Online Optimization 443
16.5 References 452

17 Optimization Methods for Sparse Inverse Covariance

Selection

K. Scheinberg and S. Ma 455
17.1 Introduction 455
17.2 Block Coordinate Descent Methods 461
17.3 Alternating Linearization Method 469
17.4 Remarks on Numerical Performance 475
17.5 References 476

18 A Pathwise Algorithm for Covariance Selection

V. Krishnamurthy, S. D. Ahipasaoglu, and A. d’Aspremont 479
18.1 Introduction 479
18.2 Covariance Selection 481
18.3 Algorithm 482
18.4 Numerical Results 487
18.5 Online Covariance Selection 491

18.6 References 494

Series Foreword

The yearly Neural Information Processing Systems (NIPS) workshops bring
together scientists with broadly varying backgrounds in statistics, mathe-
matics, computer science, physics, electrical engineering, neuroscience, and
cognitive science, unified by a common desire to develop novel computa-
tional and statistical strategies for information processing and to under-
stand the mechanisms for information processing in the brain. In contrast
to conferences, these workshops maintain a flexible format that both allows
and encourages the presentation and discussion of work in progress. They
thus serve as an incubator for the development of important new ideas in
this rapidly evolving field. The series editors, in consultation with work-
shop organizers and members of the NIPS Foundation Board, select specific
workshop topics on the basis of scientific excellence, intellectual breadth,
and technical impact. Collections of papers chosen and edited by the or-
ganizers of specific workshops are built around pedagogical introductory
chapters, while research monographs provide comprehensive descriptions of
workshop-related topics, to create a series of books that provides a timely,
authoritative account of the latest developments in the exciting field of neu-
ral computation.

Michael I. Jordan and Thomas G. Dietterich

Preface

The intersection of interests between machine learning and optimization
has engaged many leading researchers in both communities for some years
now. Both are vital and growing fields, and the areas of shared interest are
expanding too. This volume collects contributions from many researchers
who have been a part of these efforts.

We are grateful first to the contributors to this volume. Their cooperation
in providing high-quality material while meeting tight deadlines is highly
appreciated. We further thank the many participants in the two workshops
on Optimization and Machine Learning, held at the NIPS Workshops in
2008 and 2009. The interest generated by these events was a key motivator
for this volume. Special thanks go to S. V. N. Vishawanathan (Vishy)
for organizing these workshops with us, and to PASCAL2, MOSEK, and
Microsoft Research for their generous financial support for the workshops.

S. S. thanks his father for his constant interest, encouragement, and advice
towards this book. S. N. thanks his wife and family. S. W. thanks all
those colleagues who introduced him to machine learning, especially Partha
Niyogi, to whose memory his efforts on this book are dedicated.

Suvrit Sra, Sebastian Nowozin, and Stephen J. Wright

Introduction: Optimization and Machine
Learning

Suvrit Sra suvrit.sra@tuebingen.mpg.de
Mazx Planck Insitute for Biological Cybernetics
Tibingen, Germany

Sebastian Nowozin Sebastian.Nowozin@Microsoft.com
Microsoft Research
Cambridge, United Kingdom

Stephen J. Wright swright@cs.wisc.edu
University of Wisconsin
Madison, Wisconsin, USA

Since its earliest days as a discipline, machine learning has made use of
optimization formulations and algorithms. Likewise, machine learning has
contributed to optimization, driving the development of new optimization
approaches that address the significant challenges presented by machine
learning applications. This cross-fertilization continues to deepen, producing
a growing literature at the intersection of the two fields while attracting
leading researchers to the effort.

Optimization approaches have enjoyed prominence in machine learning be-
cause of their wide applicability and attractive theoretical properties. While
techniques proposed twenty years and more ago continue to be refined, the
increased complexity, size, and variety of today’s machine learning models
demand a principled reassessment of existing assumptions and techniques.
This book makes a start toward such a reassessment. Besides describing
the resurgence in novel contexts of established frameworks such as first-
order methods, stochastic approximations, convex relaxations, interior-point
methods, and proximal methods, the book devotes significant attention to
newer themes such as regularized optimization, robust optimization, a vari-
ety of gradient and subgradient methods, and the use of splitting techniques
and second-order information. We aim to provide an up-to-date account of

2 Introduction

the optimization techniques useful to machine learning — those that are
established and prevalent, as well as those that are rising in importance.

To illustrate our aim more concretely, we review in Section 1.1 and 1.2
two major paradigms that provide focus to research at the confluence of
machine learning and optimization: support vector machines (SVMs) and
regularized optimization. Our brief review charts the importance of these
problems and discusses how both connect to the later chapters of this book.
We then discuss other themes — applications, formulations, and algorithms
— that recur throughout the book, outlining the contents of the various
chapters and the relationship between them.

Audience. This book is targeted to a broad audience of researchers and
students in the machine learning and optimization communities; but the
material covered is widely applicable and should be valuable to researchers
in other related areas too. Some chapters have a didactic flavor, covering
recent advances at a level accessible to anyone having a passing acquaintance
with tools and techniques in linear algebra, real analysis, and probability.
Other chapters are more specialized, containing cutting-edge material. We
hope that from the wide range of work presented in the book, researchers
will gain a broader perspective of the field, and that new connections will
be made and new ideas sparked.

For background relevant to the many topics discussed in this book, we refer
to the many good textbooks in optimization, machine learning, and related
subjects. We mention in particular Bertsekas (1999) and Nocedal and Wright
(2006) for optimization over continuous variables, and Ben-Tal et al. (2009)
for robust optimization. In machine learning, we refer for background to
Vapnik (1999), Scholkopf and Smola (2002), Christianini and Shawe-Taylor
(2000), and Hastie et al. (2009). Some fundamentals of graphical models
and the use of optimization therein can be found in Wainwright and Jordan
(2008) and Koller and Friedman (2009).

1.1 Support Vector Machines

The support vector machine (SVM) is the first contact that many optimiza-
tion researchers had with machine learning, due to its classical formulation
as a convex quadratic program — simple in form, though with a complicat-
ing constraint. It continues to be a fundamental paradigm today, with new
algorithms being proposed for difficult variants, especially large-scale and
nonlinear variants. Thus, SVMs offer excellent common ground on which to
demonstrate the interplay of optimization and machine learning.

1.1 Support Vector Machines 3

1.1.1 Background

The problem is one of learning a classification function from a set of labeled
training examples. We denote these examples by {(x;,vy;), ¢ = 1,...,m},
where x; € R" are feature vectors and y; € {—1,+1} are the labels. In the
simplest case, the classification function is the signum of a linear function of
the feature vector. That is, we seek a weight vector w € R™ and an intercept
b € R such that the predicted label of an example with feature vector x is
f(x) = sgn(w’z +b). The pair (w,b) is chosen to minimize a weighted sum
of: (a) a measure of the classification error on the training examples; and
(b) |Jw||3, for reasons that will be explained in a moment. The formulation
is thus
m
migi’ﬁize %wTw +C Zi:l &
subject to y;(wla; +b) >1—¢&, &>0, 1<i<m.

(1.1)

Note that the summation term in the objective contains a penalty contribu-
tion from term i if y; = 1 and w” x; +b < 1, ory; = —1 and wz; +b > —1.
If the data are separable, it is possible to find a (w,b) pair for which this
penalty is zero. Indeed, it is possible to construct two parallel hyperplanes in
R"™, both of them orthogonal to w but with different intercepts, that contain
no training points between them. Among all such pairs of planes, the pair
for which ||w||2 is minimal is the one for which the separation is greatest.
Hence, this w gives a robust separation between the two labeled sets, and is
therefore, in some sense, most desirable. This observation accounts for the
presence of the first term in the objective of (1.1).

Problem (1.1) is a convex quadratic program with a simple diagonal
Hessian but general constraints. Some algorithms tackle it directly, but for
many years it has been more common to work with its dual, which is

miniamize %aTYXTXYa —a’1 Ly
subject to Z,yiai =0, 0<a;<C, (12
(2

where Y = Diag(yi,...,ym) and X = [x1,..., 2] € R™™. This dual is
also a quadratic program. It has a positive semidefinite Hessian and simple
bounds, plus a single linear constraint.

More powerful classifiers allow the inputs to come from an arbitrary set
X, by first mapping the inputs into a space H via a nonlinear (feature)
mapping ¢ : X — H, and then solving the classification problem to find
(w,b) with w € H. The classifier is defined as f(x) := sgn({w, ¢(x)) + b),
and it can be found by modifying the Hessian from YX7XY to YKY,

Introduction

where K;; := (¢(x;), ¢(x;)) is the kernel matriz. The optimal weight vector
can be recovered from the dual solution by setting w = Y /", o;¢(x;), so
that the classifier is f(x) = sgn [> ;" a;(d(x;), ¢(x)) + b].

In fact, it is not even necessary to choose the mapping ¢ explicitly.
We need only define a kernel mapping £ : X x X — R and define the
matrix K directly from this function by setting K;; := k(x;, ;). The
classifier can be written purely in terms of the kernel mapping k as follows:
f(x) =sgn D " aik(zi, x) + bl

1.1.2 Classical Approaches

There has been extensive research on algorithms for SVMs since at least the
mid-1990s, and a wide variety of techniques have been proposed. Out-of-
the-box techniques for convex quadratic programming have limited appeal
because usually the problems have large size, and the Hessian in (1.2) can be
dense and ill-conditioned. The proposed methods thus exploit the structure
of the problem and the requirements on its (approximate) solution. We
survey some of the main approaches here.

One theme that recurs across many algorithms is decomposition applied
to the dual (1.2). Rather than computing a step in all components of «
at once, these methods focus on a relatively small subset and fix the other
components. An early approach due to Osuna et al. (1997) works with a
subset B C {1,2,...,s}, whose size is assumed to exceed the number of
nonzero components of a in the solution of (1.2); their approach replaces
one element of B at each iteration and then re-solves the reduced problem
(formally, a complete reoptimization is assumed, though heuristics are used
in practice). The sequential minimal optimization (SMO) approach of Platt
(1999) works with just two components of a at each iteration, reducing
each QP subproblem to triviality. A heuristic selects the pair of variables
to relax at each iteration. LIBSVM! (see Fan et al., 2005) implements an
SMO approach for (1.2) and a variety of other SVM formulations, with a
particular heuristic based on second-order information for choosing the pair
of variables to relax. This code also uses shrinking and caching techniques
like those discussed below.

SVM!Ush2 (Joachims, 1999) uses a linearization of the objective around the
current point to choose the working set B to be the indices most likely to give
descent, giving a fixed size limitation on B. Shrinking reduces the workload
further by eliminating computation associated with components of o that

1. http://www.csie.ntu.edu.tw/~cjlin/libsvm/
2. http://www.cs.cornell.edu/People/tj/svm_light/

1.1 Support Vector Machines 5

seem to be at their lower or upper bounds. The method nominally requires
computation of |B| columns of the kernel K at each iteration, but columns
can be saved and reused across iterations. Careful implementation of gra-
dient evaluations leads to further computational savings. In early versions
of SVM'sht the reduced QP subproblem was solved with an interior-point
method (see below), but this was later changed to a coordinate relaxation
procedure due to Hildreth (1957) and D’Esopo (1959). Zanni et al. (2006)
use a similar method to select the working set, but solve the reduced problem
using nonmontone gradient projection, with Barzilai-Borwein step lengths.
One version of the gradient projection procedure is described by Dai and
Fletcher (2006).

Interior-point methods have proved effective on convex quadratic pro-
grams in other domains, and have been applied to (1.2) (see Ferris and
Munson, 2002; Gertz and Wright, 2003). However, the density, size, and
ill-conditioning of the kernel matrix make achieving efficiency difficult. To
ameliorate this difficulty, Fine and Scheinberg (2001) propose a method that
replaces the Hessian with a low-rank approximation (of the form VVT,
where V' € R™*" for r < m) and solves the resulting modified dual. This
approach works well on problems of moderate scale, but may be too expen-
sive for larger problems.

In recent years, the usefulness of the primal formulation (1.1) as the basis
of algorithms has been revisited. We can rewrite this formulation as an
unconstrained minimization involving the sum of a quadratic and a convex
piecewise-linear function, as follows:

minimize 1w’ w + CR(w,b), (1.3)
w,b

where the penalty term is defined by
R(w,b) = ZL max(1 — y;(w”@; + b),0). (1.4)

Joachims (2006) describes a cutting-plane approach that builds up a con-
vex piecewise-linear lower bounding function for R(w,b) based on subgra-
dient information accumulated at each iterate. Efficient management of the
inequalities defining the approximation ensures that subproblems can be
solved efficiently, and convergence results are proved. Some enhancements
are decribed in Franc and Sonnenburg (2008), and the approach is extended
to nonlinear kernels by Joachims and Yu (2009). Implementations appear in
the code SVMPe T 3

3. http://www.cs.cornell.edu/People/tj/svm_light/svm_perf.html

Introduction

There has also been recent renewed interest in solving (1.3) by stochastic
gradient methods. These appear to have been proposed originally by Bottou
(see, for example, Bottou and LeCun, 2004) and are based on taking a step
in the (w, b) coordinates, in a direction defined by the subgradient in a single
term of the sum in (1.4). Specifically, at iteration k, we choose a steplength
v and an index i € {1,2,...,m}, and update the estimate of w as follows:

w w — Vk(w - mcylkmlk) if 1— Yiy, (waik + b) >0,
w — YW otherwise.

Typically, one uses v o 1/k. Each iteration is cheap, as it needs to observe
just one training point. Thus, many iterations are needed for convergence;
but in many large practical problems, approximate solutions that yield clas-
sifiers of sufficient accuracy can be found in much less time than is taken by
algorithms that aim at an exact solution of (1.1) or (1.2). Implementations of
this general approach include SGD* and Pegasos (see Shalev-Shwartz et al.,
2007). These methods enjoy a close relationship with stochastic approxima-
tion methods for convex minimization; see Nemirovski et al. (2009) and the
extensive literature referenced therein. Interestingly, the methods and their
convergence theory were developed independently in the two communities,
with little intersection until 2009.

1.1.3 Approaches Discussed in This Book

Several chapters of this book discuss the problem (1.1) or variants thereof.
In Chapter 12, Gondzio gives some background on primal-dual interior-
point methods for quadratic programming, and shows how structure can
be exploited when the Hessian in (1.2) is replaced by an approximation of
the form Qo+ V VT, where Qq is nonnegative diagonal and V' € R™*" with
r < m, as above. The key is careful design of the linear algebra operations
that are used to form and solve the linear equations which arise at each
iteration of the interior-point method. Andersen et al. in Chapter 3 also
consider interior-point methods with low-rank Hessian approximations, but
then go on to discuss robust and multiclass variants of (1.1). The robust
variants, which replace each training vector x; with an ellipsoid centered at
x;, can be formulated as second-order cone programs and solved with an
interior-point method.

A similar model for robust SVM is considered by Caramanis et al. in
Chapter 14, along with other variants involving corrupted labels, missing

4. http://leon.bottou.org/projects/sgd.

1.2 Regularized Optimization 7

data, nonellipsoidal uncertainty sets, and kernelization. This chapter also
explores the connection between robust formulations and the regularization
term ||w||3 that appears in (1.1).

As Schmidt et al. note in Chapter 11, omission of the intercept term b from
the formulation (1.1) (which can often be done without seriously affecting
the quality of the classifier) leads to a dual (1.2) with no equality constraint
— it becomes a bound-constrained convex quadratic program. As such, the
problem is amenable to solution by gradient projection methods with second-
order acceleration on the components of a that satisfy the bounds.

Chapter 13, by Bottou and Bousquet, describes application of SGD to
(1.1) and several other machine learning problems. It also places the prob-
lem in context by considering other types of errors that arise in its formu-
lation, namely, the errors incurred by restricting the classifier to a finitely
parametrized class of functions and by using an empirical, discretized ap-
proximation to the objective (obtained by sampling) in place of an assumed
underlying continuous objective. The existence of these other errors obviates
the need to find a highly accurate solution of (1.1).

1.2 Regularized Optimization

A second important theme of this book is finding regularized solutions of
optimization problems originating from learning problems, instead of unreg-
ularized solutions. Though the contexts vary widely, even between different
applications in the machine learning domain, the common thread is that
such regularized solutions generalize better and provide a less complicated
explanation of the phenomena under investigation. The principle of Occam’s
Razor applies: simple explanations of any given set of observations are gen-
erally preferable to more complicated explanations. Common forms of sim-
plicity include sparsity of the variable vector w (that is, w has relatively
few nonzeros) and low rank of a matrix variable W.

One way to obtain simple approximate solutions is to modify the opti-
mization problem by adding to the objective a regularization function (or
reqularizer), whose properties tend to favor the selection of unknown vec-
tors with the desired structure. We thus obtain regularized optimization
problems with the following composite form:

minimize 6 (w) i= f(w) + yr(w) (15)

where f is the underlying objective, r is the regularizer, and v is a non-
negative parameter that weights the relative importances of optimality and

Introduction

simplicity. (Larger values of 7 promote simpler but less optimal solutions.)
A desirable value of v is often not known in advance, so it may be necessary
to solve (1.5) for a range of values of ~.

The SVM problem (1.1) is a special case of (1.5) in which f represents the
loss term (containing penalties for misclassified points) and r represents the
regularizer w’ w/2, with weighting factor v = 1/C. As noted above, when
the training data are separable, a “simple” plane is the one that gives the
largest separation between the two labeled sets. In the nonseparable case, it
is not as intuitive to relate “simplicity” to the quantity w”w/2, but we do
see a trade-off between minimizing misclassification error (the f term) and
reducing ||w||2.

SVM actually stands in contrast to most regularized optimization prob-
lems in that the regularizer is smooth (though a nonsmooth regularization
term ||w/||; has also been considered, for example, by Bradley and Mangasar-
ian, 2000). More frequently, r is a nonsmooth function with simple structure.
We give several examples relevant to machine learning.

= In compressed sensing, for example, the regularizer r(w) = |wl; is
common, as it tends to favor sparse vectors w.

= In image denoising, r is often defined to be the total-variation (T'V) norm,
which has the effect of promoting images that have large areas of constant
intensity (a cartoonlike appearance).

= [n matrix completion, where W' is a matrix variable, a popular regularizer
is the spectral norm, which is the sum of singular values of W. Analogously
to the ¢1-norm for vectors, this regularizer favors matrices with low rank.

® Sparse inverse covariance selection, where we wish to find an approxima-
tion W to a given covariance matrix ¥ such that W ! is a sparse matrix.
Here, f is a function that evaluates the fit between W and X, and r(W) is
a sum of absolute values of components of W.

= The well-known LASSO procedure for variable selection (Tibshirani, 1996)
essentially uses an /1-norm regularizer along with a least-squares loss term.

= Regularized logistic regression instead uses logistic loss with an /¢;-
regularizer; see, for example, Shi et al. (2008).

® Group regularization is useful when the components of w are naturally
grouped, and where components in each group should be selected (or not
selected) jointly rather than individually. Here, » may be defined as a sum
of lo- or £so-norms of subvectors of w. In some cases, the groups are non-
overlapping (see Turlach et al., 2005), while in others they are overlapping,
for example, when there is a hierarchical relationship between components
of w (see, for example, Zhao et al., 2009).

1.2 Regularized Optimization 9

1.2.1 Algorithms

Problem (1.5) has been studied intensely in recent years largely in the
context of the specific settings mentioned above; but some of the algorithms
proposed can be extended to the general case. One elementary option is
to apply gradient or subgradient methods directly to (1.5) without taking
particular account of the structure. A method of this type would iterate
W41 < Wi — 0kgk, where g, € ¢ (wy), and §;, > 0 is a steplength.
When (1.5) can be formulated as a min-max problem; as is often the
case with regularizers r of interest, the method of Nesterov (2005) can
be used. This method ensures sublinear convergence, where the difference
oy (wi) — ¢(w*) < O(1/k?). Later work (Nesterov, 2009) expands on
the min-max approach, and extends it to cases in which only noisy (but
unbiased) estimates of the subgradient are available. For foundations of this
line of work, see the monograph Nesterov (2004).

A fundamental approach that takes advantage of the structure of (1.5)
solves the following subproblem (the proximity problem) at iteration k:

. 1
Wy = argmin (w — wy)"V f(wy) +yr(w) + 2~ w3, (1.6)

for some p > 0. The function f (assumed to be smooth) is replaced by a
linear approximation around the current iterate wy, while the regularizer
is left intact and a quadratic damping term is added to prevent excessively
long steps from being taken. The length of the step can be controlled by
adjusting the parameter p, for example to ensure a decrease in ¢, at each
iteration.

The solution to (1.6) is nothing but the proximity operator for yur, applied
at the point wy — uV f(wy); (see Section 2.3 of Combettes and Wajs, 2005).
Proximity operators are particularly attractive when the subproblem (1.6)
is easy to solve, as happens when r(w) = ||w]|1, for example. Approaches
based on proximity operators have been proposed in numerous contexts
under different guises and different names, such as “iterative shrinking
and thresholding” and “forward-backward splitting.” For early versions, see
Figueiredo and Nowak (2003), Daubechies et al. (2004), and Combettes and
Wajs (2005). A version for compressed sensing that adjusts p to achieve
global convergence is the SpaRSA algorithm of Wright et al. (2009). Nesterov
(2007) describes enhancements of this approach that apply in the general
setting, for f with Lipschitz continuous gradient. A simple scheme for
adjusting p (analogous to the classical Levenberg-Marquardt method for
nonlinear least squares) leads to sublinear convergence of objective function
values at rate O(1/k) when ¢, is convex, and at a linear rate when ¢, is

10

Introduction

strongly convex. A more complex accelerated version improves the sublinear
rate to O(1/k?).

The use of second-order information has also been explored in some
settings. A method based on (1.6) for regularized logistic regression that
uses second-order information on the reduced space of nonzero components
of w is described in Shi et al. (2008), and inexact reduced Newton steps that
use inexpensive Hessian approximations are described in Byrd et al. (2010).

A variant on subproblem (1.6) proposed by Xiao (2010) applies to prob-
lems of the form (1.5) in which f(w) = E¢F(w;¢&). The gradient term in (1.6)
is replaced by an average of unbiased subgradient estimates encountered at
all iterates so far, while the final prox-term is replaced by one centered at
a fixed point. Accelerated versions of this method are also described. Con-
vergence analysis uses regret functions like those introduced by Zinkevich
(2003).

Teo et al. (2010) describe the application of bundle methods to (1.5), with
applications to SVM, {s-regularized logistic regression, and graph matching
problems. Block coordinate relaxation has also been investigated; see, for
example, Tseng and Yun (2009) and Wright (2010). Here, most of the
components of w are fixed at each iteration, while a step is taken in the other
components. This approach is most suitable when the function r is separable
and when the set of components to be relaxed is chosen in accordance with
the separability structure.

1.2.2 Approaches Discussed in This Book

Several chapters in this book discuss algorithms for solving (1.5) or its
special variants. We outline these chapters below while relating them to
the discussion of the algorithms above.

Bach et al. in Chapter 2 consider convex versions of (1.5) and describe
the relevant duality theory. They discuss various algorithmic approaches,
including proximal methods based on (1.6), active-set/pivoting approaches,
block-coordinate schemes, and reweighted least-squares schemes. Sparsity-
inducing norms are used as regularizers to induce different types of structure
in the solutions. (Numerous instances of structure are discussed.) A com-
putational study of the different methods is shown on the specific problem
¢ (w) = (1/2)||Aw — b||3 +~||w||1, for various choices of the matrix A with
different properties and for varying sparsity levels of the solution.

In Chapter 7, Franc et al. discuss cutting-plane methods for (1.5), in which
a piecewise-linear lower bound is formed for f, and each iterate is obtained
by minimizing the sum of this approximation with the unaltered regularizer
~r(w). A line search enhancement is considered and application to multiple

1.3 Summary of the Chapters 11

kernel learning is discussed.

Chapter 6, by Juditsky and Nemirovski, describes optimal first-order
methods for the case in which (1.5) can be expressed in min-max form.
The resulting saddle-point is solved for by a method that computes prox-
steps similar to those from the scheme (1.6), but is adapted to the min-max
form and uses generalized prox-terms. This “mirror-prox” algorithm is also
distinguished by generating two sequences of primal-dual iterates and by its
use of averaging. Accelerated forms of the method are also discussed.

In Chapter 18, Krishnamurthy et al. discuss an algorithm for sparse co-
variance selection, a particular case of (1.5). This method takes the dual and
traces the path of solutions obtained by varying the regularization parame-
ter v, using a predictor-corrector approach. Scheinberg and Ma discuss the
same problem in Chapter 17 but consider other methods, including a coor-
dinate descent method and an alternating linearization method based on a
reformulation of (1.5). This reformulation is then solved by a method based
on augmented Lagrangians, with techniques customized to the application
at hand. In Chapter 9, Tomioka et al. consider convex problems of the form
(1.5) and highlight special cases. Methods based on variable splitting that
use an augmented Lagrangian framework are described, and the relationship
to proximal point methods is explored. An application to classification with
multiple matrix-valued inputs is described.

Schmidt et al. in Chapter 11 consider special cases of (1.5) in which r is
separable. They describe a minimum-norm subgradient method, enhanced
with second-order information on the reduced subspace of nonzero compo-
nents, as well as higher-order versions of methods based on (1.6).

1.3 Summary of the Chapters

The two motivating examples discussed above give an idea of the perva-
siveness of optimization viewpoints and algorithms in machine learning. A
confluence of interests is seen in many other areas, too, as can be gleaned
from the summaries of individual chapters below. (We include additional
comments on some of the chapters discussed above alongside a summary of
those not yet discussed.)

Chapter 2 by Bach et al. has been discussed in Section 1.2.2.

We mentioned above that Chapter 3, by Andersen et al., describes solution
of robust and multiclass variants of the SVM problem of Section 1.1, using
interior-point methods. This chapter contains a wider discussion of conic
programming over the three fundamental convex cones: the nonnegative
orthant, the second-order cone, and the semidefinite cone. The linear algebra

12

Introduction

operations that dominate computation time are considered in detail, and the
authors demonstrate how the Python software package CVXOPT® can be
used to model and solve conic programs.

In Chapter 4, Bertsekas surveys incremental algorithms for convex opti-
mization, especially gradient, subgradient, and proximal-point approaches.
This survey offers an optimization perspective on techniques that have re-
cently received significant attention in machine learning, such as stochastic
gradients, online methods, and nondifferentiable optimization. Incremental
methods encompass some online algorithms as special cases; the latter may
be viewed as one “epoch” of an incremental method. The chapter connects
many threads and offers a historical perspective along with sufficient tech-
nical details to allow ready implementation.

Chapters 5 and 6 by Juditsky and Nemirovski provide a broad and rig-
orous introduction to the subject of large-scale optimization for nonsmooth
convex problems. Chapter 5 discusses state-of-the-art nonsmooth optimiza-
tion methods, viewing them from a computation complexity framework that
assumes only first-order oracle access to the nonsmooth convex objective of
the problem. Particularly instructive is a discussion on the theoretical limits
of performance of first-order methods; this discussion summarizes lower and
upper bounds on the number of iterations needed to approximately mini-
mize the given objective to within a desired accuracy. This chapter covers
the basic theory for mirror-descent algorithms, and describes mirror descent
in settings such as minimization over simple sets, minimization with nonlin-
ear constraints, and saddle-point problems. Going beyond the “black-box”
settings of Chapter 5, the focus of Chapter 6 is on settings where improved
rates of convergence can be obtained by exploiting problem structure. A
key property of the convergence rates is their near dimension independence.
Potential speedups due to randomization (in the linear algebra operations,
for instance) are also explored.

Chapter 7 and 8 both discuss inference problems involving discrete random
variables that occur naturally in many structured models used in computer
vision, natural language processing, and bioinformatics. The use of discrete
variables allows the encoding of logical relations, constraints, and model
assumptions, but poses significant challenges for inference and learning. In
particular, solving for the exact maximum a posteriori probability state in
these models is typically NP-hard. Moreover, the models can become very
large, such as when each discrete variable represents an image pixel or Web
user; problem sizes of a million discrete variables are not uncommon.

5. http://abel.ee.ucla.edu/cvxopt/.

1.3 Summary of the Chapters 13

As mentioned in Section 1.2, in Chapter 7 Franc et al., discuss cutting-
plane methods for machine learning in a variety of contexts. Two contin-
uous optimization problems are discussed — regularized risk minimization
and multiple kernel learning — both of them solvable efficiently, using cus-
tomized cutting-plane formulations. In the discrete case, the authors dis-
cuss the maximum a posteriori inference problem on Markov random fields,
proposing a dual cutting-plane method.

Chapter 8, by Sontag et al., revisits the successful dual-decomposition
method for linear programming relaxations of discrete inference problems
that arise from Markov random fields and structured prediction problems.
The method obtains its efficiency by exploiting exact inference over tractable
substructures of the original problem, iteratively combining the partial
inference results to reason over the full problem. As the name suggests,
the method works in the Lagrangian dual of the original problem. Decoding
a primal solution from the dual iterate is challenging. The authors carefully
analyze this problem and provide a unified view on recent algorithms.

Chapter 9, by Tomioka et al., considers composite function minimization.
This chapter also derives methods that depend on proximity operators, thus
covering some standard choices such as ¢1-, {o-, and trace-norms. The key
algorithmic approach shown in the chapter is a dual augmented Lagrangian
method, which is shown under favorable circumstances to converge superlin-
early. The chapter concludes with an application to brain-computer interface
(BCI) data.

In Chapter 10, Hazan reviews online algorithms and regret analysis in
the framework of convex optimization. He extracts the key tools essential
to regret analysis, and casts the description using the regularized follow-
the-leader framework. The chapter provides straightforward proofs for basic
regret bounds, and proceeds to cover recent applications of convex optimiza-
tion in regret minimization, for example, to bandit linear optimization and
variational regret bounds.

Chapter 11, by Schmidt et al., considers Newton-type methods and their
application to machine learning problems. For constrained optimization with
a smooth objective (including bound-constrained optimization), two-metric
projection and inexact Newton methods are described. For nonsmooth
regularized minimization problems the form (1.5), the chapter sketches
descent methods based on minimum-norm subgradients that use second-
order information and variants of shrinking methods based on (1.6).

Chapter 12, by Gondzio, and Chapter 13, by Bottou and Bousquet have
already been summarized in Section 1.1.3.

Chapter 14, by Caramanis et al., addresses an area of growing importance
within machine learning: robust optimization. In such problems, solutions

14

Introduction

are identified that are robust to every possible instantiation of the uncertain
data — even when the data take on their least favorable values. The chapter
describes how to cope with adversarial or stochastic uncertainty arising in
several machine-learning problems. SVM, for instance, allows for a number
of uncertain variants, such as replacement of feature vectors with ellipsoidal
regions of uncertainty. The authors establish connections between robustness
and consistency of kernelized SVMs and LASSO, and conclude the chapter
by showing how robustness can be used to control the generalization error
of learning algorithms.

Chapter 15, by Le Roux et al., points out that optimization problems
arising in machine learning are often proxies for the “real” problem of
minimizing the generalization error. The authors use this fact to explicitly
estimate the uncertain gradient of this true function of interest. Thus, a
contrast between optimization and learning is provided by viewing the
relationship between the Hessian of the objective function and the covariance
matrix with respect to sample instances. The insight thus gained guides the
authors’ proposal for a more efficient learning method.

In Chapter 16, Audibert et al. describe algorithms for optimizing functions
over finite sets where the function value is observed only stochastically.
The aim is to identify the input that has the highest expected value by
repeatedly evaluating the function for different inputs. This setting occurs
naturally in many learning tasks. The authors discuss optimal strategies for
optimization with a fixed budget of function evaluations, as well as strategies
for minimizing the number of function evaluations while requiring a (e,)-
PAC optimality guarantee on the returned solution.

Chapter 17, by Scheinberg and Ma, focuses on sparse inverse covariance
selection (SICS), an important problem that arises in learning with Gaus-
sian Markov random fields. The chapter reviews several of the published ap-
proaches for solving SICS; it provides a detailed presentation of coordinate
descent approaches to SICS and a technique called “alternating lineariza-
tion” that is based on variable splitting (see also Chapter 9). Nesterov-style
acceleration can be used to improve the theoretical rate of convergence.
As is common for most methods dealing with SICS, the bottleneck lies in
enforcing the positive definiteness constraint on the learned variable; some
remarks on numerical performance are also provided.

Chapter 18, by Krishnamurthy et al., also studies SICS, but focuses on
obtaining a full path of solutions as the regularization parameter varies over
an interval. Despite a high theoretical complexity of O(n®), the methods are
reported to perform well in practice, thanks to a combination of conjugate
gradients, scaling, and warm restarting. The method could be a strong
contender for small to medium-sized problems.

1.4 References 15

1.4 References

A. Ben-Tal, L. El Ghaoui, and A. Nemirovski. Robust Optimization. Princeton
University Press, Princeton and Oxford, 2009.

D. P. Bertsekas. Nonlinear Programming. Athena Scientific, Belmont, Mas-
sachusetts, second edition, 1999.

L. Bottou and Y. LeCun. Large-scale online learning. In Advances in Neural
Information Processing Systems, Cambridge, Massachusetts, 2004. MIT Press.

P. S. Bradley and O. L. Mangasarian. Massive data discrimination via linear support
vector machines. Optimization Methods and Software, 13(1):1-10, 2000.

R. H. Byrd, G. M. Chin, W. Neveitt, and J. Nocedal. On the use of stochastic Hes-
sian information in unconstrained optimization. Technical report, Optimization
Technology Center, Northwestern University, June 2010.

N. Christianini and J. Shawe-Taylor. An Introduction to Support Vector Machines
and Other Kernel-Based Learning Methods. Cambridge University Press, New
York, NY, 2000.

P. L. Combettes and V. R. Wajs. Signal recovery by proximal forward-backward
splitting. Multiscale Modeling and Simulation, 4(4):1168-1200, 2005.

Y. H. Dai and R. Fletcher. New algorithms for singly linearly constrained quadratic
programs subject to lower and upper bounds. Mathematical Programming, Series
A, 106:403-421, 2006.

I. Daubechies, M. Defriese, and C. De Mol. An iterative thresholding algorithm for
linear inverse problems with a sparsity constraint. Communications on Pure and
Applied Mathematics, 57(11):1413-1457, 2004.

D. A. D’Esopo. A convex programming procedure. Naval Research Logistics
Quarterly, 6(1):33-42, 1959.

R. Fan, P. Chen, and C. Lin. Working set selection using second-order information
for training SVM. Journal of Machine Learning Research, 6:1889-1918, 2005.

M. C. Ferris and T. S. Munson. Interior-point methods for massive support vector
machines. SIAM Journal on Optimization, 13(3):783-804, 2002.

M. A. T. Figueiredo and R. D. Nowak. An EM algorithm for wavelet-based image
restoration. IEEE Transactions on Image Processing, 12(8):906-916, 2003.

S. Fine and K. Scheinberg. Efficient SVM training using low-rank kernel represen-
tations. Journal of Machine Learning Research, 2:243-264, 2001.

V. Franc and S. Sonnenburg. Optimized cutting plane algorithm for support
vector machines. In Proceedings of the 25th International Conference on Machine
Learning, pages 320-327, New York, NY, 2008. ACM.

E. M. Gertz and S. J. Wright. Object-oriented software for quadratic programming.
ACM Transactions on Mathematical Software, 29(1):58-81, 2003.

T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning
Theory. Series in Statistics. Springer, second edition, 2009.

C. Hildreth. A quadratic programming procedure. Naval Research Logistics
Quarterly, 4(1):79-85, 1957.

T. Joachims. Making large-scale support vector machine learning practical. In
B. Scholkopf, C. J. C. Burges, and A. J. Smola, editors, Advances in Kernel
Methods: Support Vector Learning, chapter 11, pages 169-184. MIT Press, Cam-

16

Introduction

bridge, Massachusetts, 1999.

T. Joachims. Training linear SVMs in linear time. In Proceedings of the 12th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining,
pages 217-226, New York, NY, 2006. ACM Press.

T. Joachims and C.-N. J. Yu. Sparse kernel SVMs via cutting-plane training.
Machine Learning Journal, 76(2-3):179-193, 2009. Special Issue for the European
Conference on Machine Learning.

D. Koller and N. Friedman. Probabilistic Graphical Models: Principles and Tech-
niques. MIT Press, Cambridge, Massachusetts, 2009.

A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro. Robust stochastic approxi-
mation approach to stochastic programming. SIAM Journal on Optimization, 19
(4):1574-1609, 2009.

Y. Nesterov. Introductory Lectures on Conver Optimization: A Basic Course.
Kluwer Academic Publishers, 2004.

Y. Nesterov. Smooth minimization of nonsmooth functions. Mathematical Pro-
gramming, Series A, 103:127-152, 2005.

Y. Nesterov. Gradient methods for minimizing composite objective function. CORE
Discussion Paper 2007/76, CORE, Catholic University of Louvain, September
2007. Revised May 2010.

Y. Nesterov. Primal-dual subgradient methods for convex programs. Mathematical
Programming, Series B, 120(1):221-259, 2009.

J. Nocedal and S. J. Wright. Numerical Optimization. Springer, New York, second
edition, 2006.

E. E. Osuna, R. Freund, and F. Girosi. Support vector machines: Training and
applications. A. I. Memo 1602, Artificial Intelligence Laboratory, Massachusetts
Institute of Technology, March 1997.

J. C. Platt. Fast training of support vector machines using sequential minimal
optimization. In B. Schélkopf, C. J. C. Burges, and A. J. Smola, editors, Ad-
vances in Kernel Methods: Support Vector Learning, pages 185—208, Cambridge,
Massachusetts, 1999. MIT Press.

B. Scholkopf and A. J. Smola. Learning with Kernels. MIT Press, Cambridge,
Massachusetts, 2002.

S. Shalev-Shwartz, Y. Singer, and N. Srebro. Pegasos: Primal Estimated sub-
GrAdient SOlver for SVM. In Proceedings of the 24th International Conference
on Machine Learning, pages 807-814, 2007.

W. Shi, G. Wahba, S. J. Wright, K. Lee, R. Klein, and B. Klein. LASSO-
Patternsearch algorithm with application to ophthalmology data. Statistics and
its Interface, 1:137-153, January 2008.

C. H. Teo, S. V. N. Vishwanathan, A. J. Smola, and Q. V. Le. Bundle methods
for regularized risk minimization. Journal of Machine Learning Research, 11:
311-365, 2010.

R. Tibshirani. Regression shrinkage and selection via the LASSO. Journal of the
Royal Statistical Society, Series B, 58(1):267-288, 1996.

P. Tseng and S. Yun. A coordinate gradient descent method for nonsmooth
separable minimization. Mathematical Programming, Series B, 117:387-423, June
2009.

B. Turlach, W. N. Venables, and S. J. Wright. Simultaneous variable selection.

1.4 References

17

Technometrics, 47(3):349-363, 2005.

V. N. Vapnik. The Nature of Statistical Learning Theory. Statistics for Engineering
and Information Science. Springer, second edition, 1999.

M. J. Wainwright and M. 1. Jordan. Graphical Models, Exponential Families, and
Variational Inference. Now Publishers, 2008.

S. J. Wright. Accelerated block-coordinate relaxation for regularized optimiza-
tion. Technical report, Computer Sciences Department, University of Wisconsin-
Madison, August 2010.

S. J. Wright, R. D. Nowak, and M. A. T. Figueiredo. Sparse reconstruction by
separable approximation. IEEE Transactions on Signal Processing, 57:2479-2493,
August 20009.

L. Xijao. Dual averaging methods for regularized stochastic learning and online
optimization. Journal of Machine Learning Research, 11:2543-2596, 2010.

L. Zanni, T. Serafini, and G. Zanghirati. Parallel software for training large scale
support vector machines on multiprocessor systems. Journal of Machine Learning
Research, 7:1467-1492, 2006.

P. Zhao, G. Rocha, and B. Yu. The composite absolute penalties family for grouped
and hierarchical model selection. Annals of Statistics, 37(6A):3468-3497, 2009.

M. Zinkevich. Online convex programming and generalized infinitesimal gradient

ascent. In Proceedings of the 20th International Conference on Machine Learning,
pages 928-936, 2003.

2 Convex Optimization with
Sparsity-Inducing Norms

Francis Bach
INRIA - Willow Project-Team
23, avenue d’Italie, 75013 PARIS

Rodolphe Jenatton
INRIA - Willow Project-Team
23, avenue d’ltalie, 75013 PARIS

Julien Mairal
INRIA - Willow Project-Team
23, avenue d’Iltalie, 75013 PARIS

Guillaume Obozinski
INRIA - Willow Project-Team
23, avenue d’Italie, 75013 PARIS

francis.bach@inria.fr

rodolphe. jenatton@inria.fr

julien.mairal@inria.fr

guillaume.obozinski@inria.fr

2.1 Introduction

The principle of parsimony is central to many areas of science: the simplest

explanation of a given phenomenon should be preferred over more compli-

cated ones. In the context of machine learning, it takes the form of variable
or feature selection, and it is commonly used in two situations. First, to make
the model or the prediction more interpretable or computationally cheaper

to use, that is, even if the underlying problem is not sparse, one looks for

the best sparse approximation. Second, sparsity can also be used given prior
knowledge that the model should be sparse.

20

Convex Optimization with Sparsity-Inducing Norms

For variable selection in linear models, parsimony may be achieved directly
by penalization of the empirical risk or the log-likelihood by the cardinality of
the support of the weight vector. However, this leads to hard combinatorial
problems (see, e.g., Tropp, 2004). A traditional convex approximation of
the problem is to replace the cardinality of the support with the ¢;-norm.
Estimators may then be obtained as solutions of convex programs.

Casting sparse estimation as convex optimization problems has two main
benefits. First, it leads to efficient estimation algorithms—and this chapter
focuses primarily on these. Second, it allows a fruitful theoretical analysis
answering fundamental questions related to estimation consistency, predic-
tion efficiency (Bickel et al., 2009; Negahban et al., 2009), or model con-
sistency (Zhao and Yu, 2006; Wainwright, 2009). In particular, when the
sparse model is assumed to be well specified, regularization by the £;-norm
is adapted to high-dimensional problems, where the number of variables to
learn from may be exponential in the number of observations.

Reducing parsimony to finding the model of lowest cardinality turns
out to be limiting, and structured parsimony has emerged as a natural
extension, with applications to computer vision (Jenatton et al., 2010b),
text processing (Jenatton et al., 2010a) and bioinformatics (Kim and Xing,
2010; Jacob et al., 2009). Structured sparsity may be achieved through
regularizing by norms other than the ¢;-norm. In this chapter, we focus
primarily on norms which can be written as linear combinations of norms
on subsets of variables (section 2.1.1). One main objective of this chapter
is to present methods which are adapted to most sparsity-inducing norms
with loss functions potentially beyond least squares.

Finally, similar tools are used in other communities such as signal process-
ing. While the objectives and the problem setup are different, the resulting
convex optimization problems are often very similar, and most of the tech-
niques reviewed in this chapter also apply to sparse estimation problems in
signal processing.

This chapter is organized as follows. In section 2.1.1, we present the opti-
mization problems related to sparse methods, and in section 2.1.2, we review
various optimization tools that will be needed throughout the chapter. We
then quickly present in section 2.2 generic techniques that are not best suited
to sparse methods. In subsequent sections, we present methods which are
well adapted to regularized problems: proximal methods in section 2.3, block
coordinate descent in section 2.4, reweighted f2-methods in section 2.5, and
working set methods in section 2.6. We provide quantitative evaluations of
all of these methods in section 2.7.

2.1 Introduction

21
2.1.1 Loss Functions and Sparsity-Inducing Norms
We consider in this chapter convex optimization problems of the form
min f(w) + AQ(w), (2.1)

weRP

where f : RP — R is a convex differentiable function and © : R?P — R is a
sparsity-inducing—typically nonsmooth and non-Euclidean—norm.

In supervised learning, we predict outputs y in Y from observations @ in X;
these observations are usually represented by p-dimensional vectors, so that
X = RP. In this supervised setting, f generally corresponds to the empirical
risk of a loss function ¢ : Y x R — Ry. More precisely, given n pairs of
data points {(z¥,y?) € RPxY; i=1,...,n}, we have for linear models
fw) = L3770 0(y®, wlz®). Typical examples of loss functions are the
square loss for least squares regression, that is, ¢(y,9) = %(y —)% with y in
R, and the logistic loss £(y, 7)) = log(1 + e~¥¥) for logistic regression, with y
in {—1,1}. We refer the reader to Shawe-Taylor and Cristianini (2004) for
a more complete description of loss functions.

When one knows a priori that the solutions w* of problem (2.1) have only
a few non-zero coefficients, €2 is often chosen to be the fi-norm, that is,
Qw) = Z?Zl |wj|. This leads, for instance, to the Lasso (Tibshirani, 1996)
with the square loss and to the ¢;-regularized logistic regression (see, for
instance, Shevade and Keerthi, 2003; Koh et al., 2007) with the logistic loss.
Regularizing by the ¢1-norm is known to induce sparsity in the sense that a
number of coefficients of w*, depending on the strength of the regularization,
will be exactly equal to zero.

In some situations, for example, when encoding categorical variables by
binary dummy variables, the coefficients of w* are naturally partitioned in
subsets, or groups, of variables. It is then natural to simultaneously select or
remove all the variables forming a group. A regularization norm explicitly
exploiting this group structure can be shown to improve the prediction
performance and/or interpretability of the learned models (Yuan and Lin,
2006; Roth and Fischer, 2008; Huang and Zhang, 2010; Obozinski et al.,
2010; Lounici et al., 2009). Such a norm might, for instance, take the form

Qw) =) dgl|wyl2, (2.2)

geSs

where G is a partition of {1,...,p}, (dy)geg are positive weights, and w,
denotes the vector in RI9 recording the coefficients of w indexed by ¢ in G.
Without loss of generality we may assume all weights (dg)geg to be equal to
one. As defined in Eq. (2.2), Q is known as a mixed ¢; /¢-norm. It behaves

22

Convex Optimization with Sparsity-Inducing Norms

like an £1-norm on the vector (|Jwyll2)geg in RI¥!, and therefore induces
group sparsity. In other words, each ||wyl|2, and equivalently each w,, is
encouraged to be set to zero. On the other hand, within the groups ¢ in G,
the fo-norm does not promote sparsity. Combined with the square loss, it
leads to the group Lasso formulation (Yuan and Lin, 2006). Note that when §
is the set of singletons, we retrieve the ¢;-norm. More general mixed ¢y /¢,-
norms for ¢ > 1 are also used in the literature (Zhao et al., 2009):

0w) =3y~ 3 { S rwj\q}l/q-

g€S geG ~ jeg

In practice, though, the ¢1 /f5- and ¢1 /¢ -settings remain the most popular
ones.

In an attempt to better encode structural links between variables at play
(e.g., spatial or hierarchical links related to the physics of the problem at
hand), recent research has explored the setting where G can contain groups of
variables that overlap (Zhao et al., 2009; Bach, 2008a; Jenatton et al., 2009;
Jacob et al., 2009; Kim and Xing, 2010; Schmidt and Murphy, 2010). In this
case, () is still a norm, and it yields sparsity in the form of specific patterns
of variables. More precisely, the solutions w* of problem (2.1) can be shown
to have a set of zero coeflicients, or simply zero pattern, that corresponds
to a union of some groups ¢g in § (Jenatton et al., 2009). This property
makes it possible to control the sparsity patterns of w* by appropriately
defining the groups in §. This form of structured sparsity has proved to be
useful notably in the context of hierarchical variable selection (Zhao et al.,
2009; Bach, 2008a; Schmidt and Murphy, 2010), multitask regression of gene
expressions (Kim and Xing, 2010), and the design of localized features in
face recognition (Jenatton et al., 2010b).

2.1.2 Optimization Tools

The tools used in this chapter are relatively basic and should be accessible
to a broad audience. Most of them can be found in classic books on convex
optimization (Boyd and Vandenberghe, 2004; Bertsekas, 1999; Borwein and
Lewis, 2006; Nocedal and Wright, 2006), but for self-containedness, we
present here a few of them related to nonsmooth unconstrained optimization.

2.1 Introduction

23

2.1.2.1 Subgradients

Given a convex function g : RP — R and a vector w in RP, let us define the
subdifferential of g at w as

dg(w) = {z € R? | g(w) + 2T (w' — w) < g(w') for all vectors w’ € RP}.

The elements of dg(w) are called the subgradients of g at w. This defini-
tion admits a clear geometric interpretation: any subgradient z in dg(w)
defines an affine function w’ + g(w) + 27 (w’ — w) which is tangent to the
graph of the function g. Moreover, there is a bijection (one-to-one corre-
spondence) between such tangent affine functions and the subgradients. Let
us now illustrate how subdifferentials can be useful for studying nonsmooth
optimization problems with the following proposition:

Proposition 2.1 (subgradients at optimality).
For any convex function g : RP — R, a point w in RP is a global minimum
of g if and only if the condition 0 € dg(w) holds.

Note that the concept of a subdifferential is useful mainly for nonsmooth
functions. If ¢ is differentiable at w, the set dg(w) is indeed the singleton
{Vg(w)}, and the condition 0 € dg(w) reduces to the classical first-order
optimality condition Vg(w) = 0. As a simple example, let us consider the
following optimization problem:

1 2
min 5(:6 —w)” + Mw|.
Applying proposition 2.1 and noting that the subdifferential 9| - | is {+1}
for w > 0, {—1} for w < 0, and [—1, 1] for w = 0, it is easy to show that the
unique solution admits a closed form called the soft-thresholding operator,
following a terminology introduced by Donoho and Johnstone (1995); it can
be written

N {0 if 2] < A

w* = N _
(1— m)w otherwise.

(2.3)

This operator is a core component of many optimization techniques for
sparse methods, as we shall see later.

2.1.2.2 Dual Norm and Optimality Conditions

The next concept we introduce is the dual norm, which is important to
the study of sparsity-inducing regularizations (Jenatton et al., 2009; Bach,
2008a; Negahban et al., 2009). It arises notably in the analysis of estimation

24

Convex Optimization with Sparsity-Inducing Norms

bounds (Negahban et al., 2009) and in the design of working-set strategies,
as will be shown in section 2.6. The dual norm 2* of the norm € is defined
for any vector z in R? by

Q*(2) := max 27w such that Q(w) < 1.
weRP

Moreover, the dual norm of 2* is) itself, and as a consequence, the formula
above also holds if the roles of 2 and Q" are exchanged. It is easy to show
that in the case of an {;-norm, ¢ € [1;4+00], the dual norm is the ¢, -norm,
with ¢/ in [1; 4+00] such that % + % = 1. In particular, the £;- and {,-norms
are dual to each other, and the ¢3-norm is self-dual (dual to itself).

The dual norm plays a direct role in computing optimality conditions of
sparse regularized problems. By applying proposition 2.1 to equation (2.1),
a little calculation shows that a vector w in R? is optimal for equation (2.1)
if and only if —1V f(w) € 9Q(w) with

RP; Q*(z) <1} ifw=0
s = [(FERH 2@ < ifw =0, o
{z € RP; Q*(z) <1 and zTw = Q(w)} otherwise.

As a consequence, the vector 0 is a solution if and only if Q*(V f(0)) < A.
These general optimality conditions can be specified to the Lasso prob-
lem (Tibshirani, 1996), also known as basis pursuit (Chen et al., 1999):

1 2
min —|ly — Xw A||w 2.5
min ~ly — Xwl+ Alwll, (25)
where y is in R”, and X is a design matrix in R"*P. From equation (2.4)
and since the /,.-norm is the dual of the /1-norm, we obtain that necessary
and sufficient optimality conditions are

{|XjT(y—Xw)| < A if w; =0,
1,....p,

Vj= 2 .
X (y—Xw) = Asgn(w;) ifw; #0,

(2.6)
where X; denotes the jth column of X, and w; the jth entry of w. As we
will see in section 2.6.1, it is possible to derive interesting properties of the
Lasso from these conditions, as well as efficient algorithms for solving it. We
have presented a useful duality tool for norms. More generally, there exists
a related concept for convex functions, which we now introduce.

2.1.2.3 Fenchel Conjugate and Duality Gaps

Let us denote by f* the Fenchel conjugate of f (Rockafellar, 1997), defined by

F1(2) = sup [Tw — f(w)].

weRP

2.1 Introduction

25

The Fenchel conjugate is related to the dual norm. Let us define the indicator
function tq such that to(w) is equal to 0 if Q(w) < 1 and +oo otherwise.
Then 1q is a convex function and its conjugate is exactly the dual norm Q*.

For many objective functions, the Fenchel conjugate admits closed forms,
and therefore can be computed efficiently (Borwein and Lewis, 2006). Then
it is possible to derive a duality gap for problem (2.1) from standard Fenchel
duality arguments (see Borwein and Lewis, 2006), as shown below.

Proposition 2.2 (duality for problem (2.1)).
If f* and Q* are respectively the Fenchel conjugate of a convex and differ-
entiable function f, and the dual norm of 2, then we have
—f* < i w) + AQ(w). 2.7
el T S i () +A0w) =0
Moreover, equality holds as soon as the domain of f has a non-empty
interior.

Proof. This result is a specific instance of theorem 3.3.5 in Borwein and
Lewis (2006). In particular, we use the facts that (a) the conjugate of a
norm) is the indicator function itq- of the unit ball of the dual norm Q*,
and that (b) the subdifferential of a differentiable function (here, f) reduces
to its gradient.

If w* is a solution of equation (2.1), and w,z in RP are such that
0*(z) < A, this proposition implies that we have

f(w) + A (w) = f(w”) + AQ(w") > —f*(2). (2.8)

The difference between the left and right terms of equation (2.8) is called
a duality gap. It represents the difference between the value of the primal
objective function f(w) 4+ AQ(w) and a dual objective function — f*(z),
where z is a dual variable. The proposition says that the duality gap for a
pair of optima w* and z* of the primal and dual problem is equal to zero.
When the optimal duality gap is zero, we say that strong duality holds.

Duality gaps are important in convex optimization because they provide
an upper bound on the difference between the current value of an objective
function and the optimal value which allows setting proper stopping criteria
for iterative optimization algorithms. Given a current iterate w, computing
a duality gap requires choosing a “good” value for z (and in particular
a feasible one). Given that at optimality, z(w*) = Vf(w*) is the unique
solution to the dual problem, a natural choice of dual variable is z =
min (1,W)Vf(w), which reduces to z(w*) at the optimum and
therefore yields a zero duality gap at optimality.

26

Convex Optimization with Sparsity-Inducing Norms

Note that in most formulations we will consider, the function f is of the
form f(w) = ¥(Xw) with ¢ : R — R, and X is a design matrix; typically,
the Fenchel conjugate of ¢ is easy to compute, whereas the design matrix
X makes it hard! to compute f*. In that case, (2.1) can be rewritten as

min Y(u) + A Q(w) st. u=Xw, (2.9)

wERP ueR™

and equivalently as the optimization of the Lagrangian

min max (Y(u) — Aol u) + A (Q(w) + o' Xw), (2.10)

weR? ueR™ acR"
which is obtained by introducing the Lagrange multiplier ct. The correspond-

ing Fenchel dual? is then

max —¢*(Aa) such that Q*(XTa) <\, (2.11)

acRn”

which does not require any inversion of X.

2.2 Generic Methods

The problem defined in equation (2.1) is convex as soon as both the loss f
and the regularizer) are convex functions. In this section, we consider opti-
mization strategies which are essentially blind to problem structure, namely,
subgradient descent (e.g., see Bertsekas, 1999), which is applicable under
weak assumptions, and interior-point methods solving reformulations such as
linear programs (LP), quadratic programs (QP) or, more generally, second-
order cone programming (SOCP) or semidefinite programming (SDP) prob-
lems (e.g., see Boyd and Vandenberghe, 2004). The latter strategy is usually
possible only with the square loss and makes use of general-purpose opti-
mization toolboxes.

2.2.1 Subgradient descent

For all convex unconstrained problems, subgradient descent can be used as
soon as one subgradient can be computed efficiently. In our setting, this is
possible when a subgradient of the loss f, and a subgradient of the regularizer
2 can be computed. This is true for all classical settings, and leads to the

1. It would require computing the pseudo-inverse of X.
2. Fenchel conjugacy naturally extends to this case (for more details see Borwein and
Lewis, 2006, theorem 3.3.5).

2.8 Proximal Methods 27

iterative algorithm
W] = Wy — %(s + \s’), where s € 0f(wy), s’ € 0Q(wy)

with « a positive parameter. These updates are globally convergent. More
precisely, we have, from Nesterov (2004), F'(w¢) — mingere F(w) = O(%)
However, the convergence is in practice slow (i.e., many iterations are
needed), and the solutions obtained are usually not sparse. This is to be
contrasted with the proximal methods presented in the next section, which

are less generic but more adapted to sparse problems.

2.2.2 Reformulation as LP, QP, SOCP, or SDP

For all the sparsity-inducing norms we consider in this chapter, the corre-
sponding regularized least-squares problem can be represented by standard
mathematical programming problems, all of them being SDPs, and often
simpler (e.g., QP). For example, for the ¢1-norm regularized least-squares
regression, we can reformulate mingers 55 ||y — Xwl|3 + AQ(w) as

. 1
min = —

» 9 ly — Xwy + Xw_ |5+ A1 Twy +1Tw_),
wi,w_€RY 2N

which is a quadratic program. Other problems can be cast similarly (for the
trace-norm, see Fazel et al., 2001; Bach, 2008b).

General-purpose toolboxes can then be used to get solutions with high
precision (low duality gap). However, in the context of machine learning,
this is inefficient for two reasons: (1) these toolboxes are generic and blind
to problem structure and tend to be too slow, or cannot even run because
of memory problems; (2) as outlined by Bottou and Bousquet (2007), high
precision is not necessary for machine learning problems, and a duality gap
of the order of machine precision (which would be a typical result from
toolboxes) is not necessary.

2.3 Proximal Methods
2.3.1 Principle of Proximal Methods

Proximal methods are specifically tailored to optimize an objective of the
form (2.1), that is, an objective which can be written as the sum of a generic
differentiable function f with Lipschitz gradient, and a non-differentiable
function AQ2. They have drawn increasing attention in the machine learning
community, especially because of their convergence rates (optimal for the

28

Convex Optimization with Sparsity-Inducing Norms

class of first-order techniques) and their ability to deal with large nonsmooth
convex problems (e.g., Nesterov 2007; Beck and Teboulle 2009; Wright et al.
2009; Combettes and Pesquet 2010).

Proximal methods can be described as follows. At each iteration the
function f is linearized around the current point and a problem of the form

Inin F(w')+Vf (") (w — w') + AQ(w) + gllw —w'|3 (2.12)
is solved. The quadratic term, called the proximal term, keeps the update
in a neighborhood of the current iterate w’ where f is close to its linear
approximation; L > 0 is a parameter which should essentially be an upper
bound on the Lipschitz constant of V f and is typically set with a line search.
This problem can be rewritten as

min Jw — (w' ~ 1973 + 30(w). (2.13)
It should be noted that when the nonsmooth term €2 is not present, the
solution of (2.13) just yields the standard gradient update rule w!™! <«
wt — %Vf (w?). Furthermore, if € is the indicator function of a set t¢, that
is, defined by tc(z) =0 for x € C and tc(x) = 00 otherwise, then solving
(2.13) yields the projected gradient update with projection on the set C'. This
suggests that the solution of the proximal problem provides an interesting
generalization of gradient updates, and motivates the introduction of the
notion of a proximal operator associated with the regularization term).
The proximal operator, which we will denote as Prox,qn, was defined by
Moreau (1962) as the function that maps a vector u € RP to the unique?®
solution of
min %||u—w\|2+,u9('w). (2.14)
This operator is clearly central to proximal methods since their main step
consists in computing Proxs g (w' — 1V f(wh)).
In section 2.3.3, we present analytical forms of proximal operators asso-
ciated with simple norms and algorithms to compute them in some more
elaborate cases.

2.3.2 Algorithms

The basic proximal algorithm uses the solution of problem (2.13) as the

next update w'*!; however, fast variants such as the accelerated algorithm

3. Because the objective is strongly convex.

2.8 Proximal Methods 29

presented in Nesterov (2007) or FISTA (Beck and Teboulle, 2009) maintain
two variables and use them to combine the solution of (2.13) with informa-
tion about previous steps. Often, an upper bound on the Lipschitz constant
of Vf is not known, and even if it is, it is often better to obtain a local
estimate. A suitable value for L can be obtained by iteratively increasing L
by a constant factor until the condition

fwi) < Mf(w',wi) = f(w")+Vf(w')" (w] —w')+ 5 |w] w3 (2.15)

is met, where w7 denotes the solution of (2.13).

For functions f whose gradients are Lipschitz, the basic proximal algo-
rithm has a global convergence rate in O(%) where ¢ is the number of itera-
tions of the algorithm. Accelerated algorithms like FISTA can be shown to
have global convergence rate in O(t%) Perhaps more important, both basic
(ISTA) and accelerated (Nesterov, 2007) proximal methods are adaptive in
the sense that if f is strongly convex—and the problem is therefore better
conditioned—the convergence is actually linear (i.e., with rates in O(C?) for
some constant C' < 1; see Nesterov 2007). Finally, it should be noted that
accelerated schemes are not necessarily descent algorithms, in the sense that
the objective does not necessarily decrease at each iteration in spite of the
global convergence properties.

2.3.3 Computing the Proximal Operator

Computing the prozimal operator efficiently and exactly is crucial to enjoy-
ing the fast convergence rates of proximal methods. We therefore focus here
on properties of this operator and on its computation for several sparsity-
inducing norms.

= Dual proximal operator. In the case where 2 is a norm, by Fenchel duality
the following problem is dual (see proposition 2.2) to problem (2.13):

max 1 [llv— ul|3 — ||u||2] such that Q*(v) < p. (2.16)
vERP 2
Lemma 2.3 (Relation to dual proximal operator). Let Proz,o be the
proximal operator associated with the reqularization S, where § is a norm,
and let Projig.(y<uy be the projector on the ball of radius p of the dual
norm . Then Projiq.(y<,y s the prozimal operator for the dual problem
(2.16) and, denoting the identity 14, these two operators satisfy the relation

Prox,q = Iy — Projig-()<u)- (2.17)

Proof.By proposition 2.2, if w* is optimal for (2.14) and v* is optimal for

30

Convex Optimization with Sparsity-Inducing Norms

(2.16), we have? —v* = Vf(w*) = w* — u. Since v* is the projection of u
on the ball of radius p of the norm *, the result follows.

This lemma shows that the proximal operator can always be computed as
the residual of a projection on a convex set.

= /1-norm regularization. Using optimality conditions for (2.16) and then
(2.17) or subgradient condition (2.4) applied to (2.14), it is easy to check

that Projy. <, and Prox respectively satisfy

Il

[Proj{H,”mSM}(u)]j = min (1, ﬁ) u; and [Proxuu_”l(u)]j = <1—ﬁ)+uj,

for j € {1,...,p}, with (), = max(z,0). Note that Prox,|., is com-
ponentwise the soft-thresholding operator of Donoho and Johnstone (1995)
presented in section 2.1.2.

m /1-norm constraint. Sometimes, the ¢1-norm is used as a hard constraint
and, in that case, the optimization problem is

min f(w) such that ||Jw]|; <C.
w

This problem can still be viewed as an instance of (2.1), with Q defined
by Q(u) = 0 if ||u|; < C and Q(u) = +oo otherwise. Proximal methods
thus apply, and the corresponding proximal operator is the projection on
the #1-ball, for which efficient pivot algorithms with linear complexity have
been proposed (Brucker, 1984; Maculan and Galdino de Paula Jr, 1989).

w (1 /lg-norm (“group Lasso”).1f G is a partition of {1, ..., p}, the dual norm
of the ¢1/¢4-norm is the ¢, /{,-norm, with % + % =1. It is easy to show that
the orthogonal projection on a unit ¢ /¢, ball is obtained by projecting
each subvector u, separately on a unit £,-ball in RI9I. For the ¢, /¢a-norm
Qw3 g llwgll2 we have

A

g2

[Prox,o(u)]y = (1 >+ug, geq§.

This is shown easily by considering that the subgradient of the f3-norm is
I|wll2 = {m} if w# 0 or J|wll2 = {z | ||z]2 < 1} if w = 0 and by
applying the result of (2.4).

For the {;/lsx-norm, whose dual norm is the f./¢;-norm, an efficient
algorithm to compute the proximal operator is based on (2.17). Indeed,

4. The dual variable from Fenchel duality is —wv in this case.

2.8 Proximal Methods 31

this equation indicates that the proximal operator can be computed on each
group g as the residual of a projection on an ¢;-norm ball in RI9/; the latter
is done efficiently with the previously mentioned linear-time algorithms.

In general, the case where groups overlap is more complicated because the
regularization is no longer separable. Nonetheless, in some cases it is still
possible to compute the proximal operator efficiently.

» Hierarchical {1 /{4-norms. Hierarchical norms were proposed by Zhao et al.
(2009). Following Jenatton et al. (2010a), we focus on the case of a norm
Q:w =3 g |lwgllg, with ¢ € {2,00}, where the set of groups § is tree-
structured, meaning either that two groups are disjoint or that one is included
in the other. Let < be a total order such that g; < go if and only if either
g1 C g2 or g1 Ngo = 0.° Then, if g1 = ... < g, with m = |G|, and if we
define Il as (a) the proximal operator w, — Prox, . (w,) on the subspace
corresponding to group g, and (b) as the identity on the orthogonal, it can
be shown (Jenatton et al., 2010a) that

Prox,o =1I,, o...oll,. (2.18)

In other words, the proximal operator associated with the norm can be ob-
tained as the composition of the proximal operators associated to individual
groups, provided that the ordering of the groups is well chosen. Note that
this result does not hold for ¢ ¢ {1,2, co}.

= Combined ¢ + {1/ly-norm (sparse group Lasso). The possibility of com-
bining an ¢;/{,norm that takes advantage of sparsity at the group level
with an ¢1-norm that induces sparsity within the groups is quite natural
(Friedman et al., 2010; Sprechmann et al., 2010). Such regularizations are in
fact a special case of the hierarchical ¢; /¢;,-norms presented above, and the
corresponding proximal operator is therefore readily computed by applying
soft-thresholding and then group soft-thresholding.

= Querlapping {1 [l -norms. When the groups overlap but do not have a tree
structure, computing the proximal operator has proved to be more difficult,
but it can still be done efficiently when ¢ = oo. Indeed, as shown by Mairal
et al. (2010), there exists a dual relation between such an operator and a
quadratic min-cost flow problem on a particular graph, which can be tackled
using network flow optimization techniques.

5. For a tree-structured G such an order exists.

32

Convex Optimization with Sparsity-Inducing Norms

2.4 (Block) Coordinate Descent Algorithms

Coordinate descent algorithms solving ¢;-regularized learning problems go
back to Fu (1998). They optimize (exactly or approximately) the objective
with respect to one variable at a time while all others are kept fixed.

2.4.1 Coordinate Descent for /;-Regularization

We first consider the following special case of an ¢i-regularized problem:

1 2
min i(w —wp)” + Aw|. (2.19)

As shown in (2.3), w* can be obtained by soft-thresholding:

N A
w* = Proxy |.|(wo) 1= (1 — W>+w0 (2.20)

2.4.1.1 Lasso Case

In the case of the least-square loss, the minimization with respect to a single
coordinate can be written as
. 1
min V;f(w') (w; - w)) + 595 f(w') (w; - w))* + Nwjl,
with V; f(w) = XJT(Xw —y) and V?jf('w) = XJTXJ- independent of w.
Since the above equation is of the form (2.19), it is solved in closed form:

w} = Prox, | (w} — ij(w§)/vjzjf)- (2.21)

In words, 'wj*- is obtained by solving the unregularized problem with respect
to coordinate j and soft-thresholding the solution.

This is the update proposed in the shooting algorithm of Fu (1998), which
cycles through all variables in a fixed order.%

An efficient implementation is obtained if the quantity Xw — y or even
better Vf(w!) = X" Xw — X"y is kept updated.”

6. Coordinate descent with a cyclic order is sometimes called the Gauss-Seidel procedure.
7. In the former case, at each iteration, Xw — y can be updated in ©(n) operations if
w; changes and V;:+1 f(w) can always be updated in ©(n) operations. The complexity of
one cycle is therefore O(pn). However, a better complexity is obtained in the latter case,
provided the matrix X7 X is precomputed (with complexity O(p*n)). Indeed, V f(w') is
updated in ©(p) iterations only if w; does not stay at 0. Otherwise, if w; stays at 0, the
step costs O(1); the complexity of one cycle is therefore ©(ps) where s is the number of
non-zero variables at the end of the cycle.

2.4 (Block) Coordinate Descent Algorithms 38

2.4.1.2 Smooth loss

For more general smooth losses, such as the logistic loss, the optimization
with respect to a single variable cannot be solved in closed form. It is
possible to solve it numerically, using a sequence of modified Newton steps as
proposed by Shevade and Keerthi (2003). We present here a fast algorithm
of Tseng and Yun (2009) based on solving just a quadratic approximation
of f with an inexact line search at each iteration.

Given d = wj — w;i where w3 is the solution of (2.21), a line search is
performed to choose the largest step of the form o*d with o € (0,1), k € N,

such that the following modified Armijo condition is satisfied:
F(w' + adej) — F(w') < oa(V, f(w)d + |'w§ +d| — |w§])

where F(w) := f(w) + AQ(w) and o < 1. Tseng and Yun (2009) show that
if f is continuously differentiable and if H' has a uniformly upper and lower
bounded spectrum, the sequence generated by the algorithm is decreasing
and its cluster points are stationary points of F'. It should be noted that the
algorithm generalizes to separable regularizations other than the ¢;-norm.

Variants of coordinate descent algorithms have also been considered by
Genkin et al. (2007), by Krishnapuram et al. (2005), and by Wu and
Lange (2008). Generalizations based on the Gauss-Southwell rule have been
considered by Tseng and Yun (2009).

2.4.2 Block Coordinate Descent for ¢, //s-Regularization

When Q(w) is the ¢ /¢s-norm with groups g € G forming a partition of
{1,...,p}, the previous methods are generalized by block coordinate descent
(BCD) algorithms, and in particular the algorithm of Tseng and Yun (2009)
generalizes easily to that case.

Specifically, at each iteration the BCD generalization solves a problem of
the form

. 1

w Rl Vol ()" (wy _wfy) + 5(’“’9 - w;)THgg(wg _wfﬂ + Allwgll2, (2.22)

where H,, equals or approximates® Vzg f(w?). The above problem is solved

* is obtained by

in closed form if Hyy = hggl|y, in which case the solution wyj

8. It is, however, not required to have good approximation properties of Hy, to obtain
convergence guarantees for the algorithm.

34

Convex Optimization with Sparsity-Inducing Norms

group soft-thresholding of the Newton step:

w; = PI'OX)\ II-I]2 (wé—hg_glvgf(wé)) with PI'OX)\ III]2 (w) = (1— H’u)J\||2>+w

In univariate learning problems regularized by the ¢1 /¢3-norm, and for the
square loss, it is common to orthonormalize the set of variables belonging
to a given group (Yuan and Lin, 2006; Wu and Lange, 2008), in which case
it is natural to choose H,, = Vggf('wt) = ljg- If Hyy is not a multiple of
the identity, the solution of (2.22) can be found by replacing \||wgl[2 with
Nllwg||3 in (2.22), which yields an analytic solution; it is then a standard
result in optimization that there exists a value of N'—which can be found
by binary search—such that the obtained solution also solves (2.22). More
simply, it is sufficient to choose Hyy = hgyyl|, with hgy an approximation of
the largest eigenvalue of Vgg f(w?).?

In the case of general smooth losses, the descent direction is given by

* as above and with a stepsize chosen to satisfy the

_ * t :
d = wy — Wy with wy

modified Armijo rule

F(wt + ad) — F(wt) < aa(ng('w)Td+ ||'w§ +dl2 — Hwé”)

2.5 Reweighted-/, Algorithms

Approximating a nonsmooth or constrained optimization problem by a series
of smooth unconstrained problems is common in optimization (see, e.g.,
Nesterov, 2005; Boyd and Vandenberghe, 2004; Nocedal and Wright, 2006).
In the context of objective functions regularized by sparsity-inducing norms,
it is natural to consider variational formulations of these norms in terms
of squared fs-norms, since many efficient methods are available to solve £o-
regularized problems (e.g., linear system solvers for least-squares regression).

In this section, we show on our motivating example of sums of /y-norms
of subsets how such formulations arise (see, e.g., Argyriou et al., 2007;
Rakotomamonjy et al., 2008; Jenatton et al., 2010b; Daubechies et al., 2010).

9. This can be done easily for joint feature selection in multitask learning, since in that
case the Hessian V7, f(w") is diagonal (Obozinski et al., 2010).

2.5 Reweighted-la Algorithms 35

2.5.1 Variational Formulation for Sums of /5-Norms

A simple application of the Cauchy-Schwarz inequality and the inequality
Vab < 1(a+b) leads to

- Juwy 3
Qw) = 3 lwle=5 min_ S {102 1n,}

969 9’ 7 geg ng
1 P
i —1\,,.2
= — min w? +
2 vgeg, ng>o{ A (Z Ty) j an},
j=1 g€§,jeg ges

with equality if and only if Vg € G, my = [Jwy|l2 (Argyriou et al., 2007;
Rakotomamonjy et al., 2008; Jenatton et al., 2010b). In the case of the
{1-norm, it simplifies to E?:l lw;| = %minn>0 Z?Zl {% + 15}

The variational formulation we presented in the previous proposition
allows us to consider the following function H(w,n) defined as

H(w,n)=f(w)+22{ > ng‘l}'w?Jr;an-

j=1 *g€§,jeg IS]

It is jointly convex in (w,n); the minimization with respect to n can be
done in closed form, and the optimum is equal to F(w) = f(w) + A\Q(w);
as for the minimization with respect to w, it is an fo-regularized problem.

Unfortunately, the alternating minimization algorithm that is immediately
suggested is not convergent in general, because the function H is not
continuous (in particular around 7, which has zero coordinates). In order to
make the algorithm convergent, two strategies are usually used:

= Smoothing: we can add a term of the form %deg 779_1, which yields a
joint cost function with compact level sets on the set of positive numbers.
Alternating minimization algorithms are then convergent (as a consequence
of general results on block coordinate descent), and have two different
iterations: (1) minimization with respect to m in closed form, through
Ny = (JJwgll2 + €), and (2) minimization with respect to w, which is an
{s-regularized problem which can be, for example, solved in closed form for
the square loss. Note, however, that the second problem does not need to
be optimized exactly at all iterations.

= First-order method in m: While the joint cost function H(n,w) is not
continuous, the function () = min,err H(w,n) is continuous and, under
general assumptions, is continuously differentiable; it is thus amenable to
first-order methods (e.g., proximal methods, gradient descent). When the
groups in § do not overlap, one sufficient condition is that the function f(w)
is of the form f(w) = (X w), where X € R"*P is any matrix (typically the

36 Convex Optimization with Sparsity-Inducing Norms

design matrix), and v is a strongly convex function on R™. This strategy is
particularly interesting when evaluating I(n) is computationally cheap.

2.6 Working-Set Methods

Working-set algorithms address optimization problems by solving an increas-
ing sequence of small subproblems of (2.1). The working set, which we will
denote as J, refers to the subset of variables involved in the optimization of
these subproblems.

Working-set algorithms proceed as follows: after computing a solution to
the problem restricted to the variables in .J, global optimality is checked to
determine whether the algorithm has to continue. If it does, new variables
enter the working set J according to a strategy that has to be defined. Note
that we consider only forward algorithms, that is, those where the working
set grows monotonically. In other words, there are no backward steps where
variables would be allowed to leave the set J. Provided this assumption
is met, it is easy to see that these procedures stop in a finite number of
iterations.

This class of algorithms takes advantage of sparsity from a computational
point of view (Lee et al., 2007; Szafranski et al., 2007; Bach, 2008a; Roth
and Fischer, 2008; Obozinski et al., 2010; Jenatton et al., 2009; Schmidt and
Murphy, 2010), since the subproblems that need to be solved are typically
much smaller than the original one.

Working-set algorithms require three ingredients:

m [nner-loop solver: At each iteration of the working-set algorithm, prob-
lem (2.1) has to be solved on J, that is, subject to the additional equality
constraint that w; = 0 for all j in J“

Héiﬂg f(w) + AQ2(w), such that ws. = 0. (2.23)

The computation can be performed by any of the methods presented in
this chapter. Working-set algorithms should therefore be viewed as “meta-
algorithms”. Since solutions for successive working sets are typically close
to each other, the approach is efficient if the method chosen can use warm-
restarts.

= Computing the optimality conditions: Given a solution w* of prob-
lem (2.23), it is then necessary to check whether w* is also a solution
for the original problem (2.1). This test relies on the duality gaps of prob-
lems (2.23) and (2.1). In particular, if w* is a solution of problem (2.23), it

2.6 Working-Set Methods 37

follows from proposition 2.2 in section 2.1.2 that
fw®) + AQ(w*) + f*(V f(w")) = 0.

In fact, the Lagrangian parameter associated with the equality constraint
ensures the feasibility of the dual variable formed from the gradient of f
at w*. In turn, this guarantees that the duality gap of problem (2.23)
vanishes. The candidate w* is now a solution of the full problem (2.1),
that is, without the equality constraint, if and only if

O(Vf(w) < A (2.24)

Condition (2.24) points out that the dual norm Q* is a key quantity
to monitor the progress of the working-set algorithm (Jenatton et al.,
2009). In simple settings, for instance, when €2 is the ¢;-norm, checking
condition (2.24) can be easily computed since Q* is just the /o-norm. In
this case, condition (2.24) becomes

[V f(w*)];] <A, forall jin {1,...,p}.

Note that by using the optimality of problem (2.23), the components of the
gradient of f indexed by J are already guaranteed to be no greater than .
For more general sparsity-inducing norms with overlapping groups of vari-
ables (see section 2.1.1), the dual norm Q* can no longer be computed eas-
ily, prompting the need for approximations and upper bounds of Q* (Bach,
2008a; Jenatton et al., 2009; Schmidt and Murphy, 2010).

= Strategy for the growth of the working set: If condition (2.24) is not satisfied
for the current working set J, some inactive variables in J¢ have to become
active. This point raises the questions of how many variables and how these
variables should be chosen.

First, depending on the structure of €2, one or a group of inactive variables
have to be considered to enter the working set. Furthermore, one natural
way to proceed is to look at the variables that violate condition (2.24) most.
In the example of ¢i-regularized least-squares regression with normalized
predictors, this strategy amounts to selecting the inactive variable that has
the highest correlation with the current residual.

The working-set algorithms we have described so far aim at solving
problem (2.1) for a fixed value of the regularization parameter \. However,
for specific types of loss and regularization functions, the set of solutions of
problem (2.1) can be obtained efficiently for all possible values of A, which
is the topic of the next section.

38

Convex Optimization with Sparsity-Inducing Norms

weights

0 01 02 03 04 05 06
Regularization parameter

Figure 2.1: The weights w*(\) are represented as functions of the regularization
parameter A. When A increases, more and more coefficients are set to zero. These
functions are all piecewise linear.

2.6.1 LARS - Homotopy

We present in this section an active-set method for solving the Lasso
problem (Tibshirani, 1996) of equation (2.5). Active-set and working-set
methods are very similar; they differ in that active-set methods allow
variables returning to zero to exit the set. The problem of the Lasso is,
again,

min Sy~ Xwl3 + N, (2.25)
where y is in R™, and X is a design matrix in R™*P. Even though generic
working-set methods introduced above could be used to solve this formu-
lation, a specific property of the ¢;-norm associated with a quadratic loss
makes it possible to address it more efficiently.

Under mild assumptions (which we will detail later), the solution of equa-
tion (2.25) is unique, and we denote it by w*(\). We apply the term regular-
ization path to the function A\ — w*(\) that associates to a regularization
parameter A the corresponding solution. We will show that this function
is piecewise linear, a behavior illustrated in figure 2.1, where the entries of
w*(A) for a particular instance of the Lasso are represented as functions of
A

An efficient algorithm can thus be constructed by choosing a particular
value of A for which finding this solution is trivial, and by following the
piecewise linear path, computing the directions of the current linear parts
and the points where the direction changes (also known as kinks). This

2.6 Working-Set Methods 39

piecewise linearity was first discovered and exploited by Markowitz (1952)
in the context of portfolio selection; revisited by Osborne et al. (2000), who
described a homotopy algorithm; and popularized by Efron et al. (2004) with
the LARS algorithm.

Let us show how to construct the path. From the optimality conditions
presented in equation (2.6), denoting the set of active variables by J :=
{j;\XjT(y — Xw*)] = A}, and defining the vector € in {—1;0;1}" as
e :=sgn (X7 (y — Xw*)), we have the closed form

{wm = (XTX,) " (XTy — Aey)
wi.(\) =0,

where we have assumed the matrix X:‘]FX ; to be invertible (which is a
sufficient condition to guarantee the uniqueness of w*). This is an important
point: if one knows the set J and the signs €; in advance, then w*(\)
admits a simple closed form. Moreover, when .J and € are fixed, the function
A= (XTX,)"YXTy—Ney) is affine in A\. With this observation in hand, we
can now present the main steps of the path-following algorithm. It basically
starts from a trivial solution of the regularization path, then follows the
path by exploiting this formula, updating J and €; whenever needed so
that optimality conditions (2.6) remain satisfied. This procedure requires
some assumptions—namely, that (a) the matrix X L:]FX 7 is always invertible,
and (b) that updating J along the path consists of adding or removing from
this set a single variable at the same time. Concretely, we proceed as follows:

1. Set A to || XTy|« for which it is easy to show from equation (2.6) that
w*(A) = 0 (trivial solution on the regularization path).
2. Set J = {j;|X]y| = A}.
3. Follow the regularization path by decreasing the value of A, with the
formula w%(\) = (X7 X,) Y X y — \e;) keeping w?*. = 0, until one of the
following events occurs:
= There exists j in J¢ such that \X]-T(y — Xw*)| = A. Then, add j to
the set J.
= There exists j in J such that a non-zero coefficient 'w}‘ hits zero. Then,
remove j from J.
We suppose that only one such event can occur at the same time. It is also

easy to show that the value of A corresponding to the next event can be
obtained in closed form.

4. Go back to 3.

Let us now briefly discuss assumptions (a) and (b). When the matrix XX,

40

Convex Optimization with Sparsity-Inducing Norms

is not invertible, the regularization path is non-unique, and the algorithm
fails. This can easily be fixed by addressing a slightly modified formulation.
It is possible to consider instead the elastic-net formulation of Zou and
Hastie (2005) that uses Q(w) = Al|lw|; + [lw|/3. Indeed, it amounts to
replacing the matrix X7 X, by XT X, + I, which is positive definite and
therefore always invertible, even with a small value for «, and applying the
same algorithm in practice. The second assumption (b) can be unsatisfied
in practice because of machine precision. To the best of our knowledge, the
algorithm will fail in such cases, but we consider this scenario unlikely with
real data.

The complexity of the above procedure depends on the number of kinks
of the regularization path (which is also the number of iterations of the
algorithm). Even though it is possible to build examples where this num-
ber is large, we often observe in practice that the event where one variable
leaves the active set is rare. The complexity also depends on the implemen-
tation. By maintaining the computations of X]T(y — Xw*) and a Cholesky
decomposition of (X fX J)_l, it is possible to obtain an implementation in
O(psn+ps®+s3) operations, where s is the sparsity of the solution when the
algorithm is stopped (which we consider approximately equal to the number
of iterations). The product psn corresponds to the computation of the ma-
trices X T X; ps?, to the updates of the correlations X]T(y — Xw*) along
the path; and s3, to the Cholesky decomposition.

2.7 Quantitative Evaluation

To illustrate and compare the methods presented in this chapter, we con-
sider in this section three benchmarks. These benchmarks are chosen to be
representative of problems regularized with sparsity-inducing norms, involv-
ing different norms and different loss functions. To make comparisons that
are as fair as possible, each algorithm is implemented in C/C++, using effi-
cient BLAS and LAPACK libraries for basic linear algebra operations. All
subsequent simulations are run on a single core of a 3.07Ghz CPU, with
8GB of memory. In addition, we take into account several criteria which
strongly influence the convergence speed of the algorithms. In particular, we
consider (a) different problem scales, (b) different levels of correlations, and
(c) different strengths of regularization. We also show the influence of the
required precision by monitoring the time of computation as a function of
the objective function.

For the convenience of the reader, we list here the algorithms compared
and the acronyms we use to refer to them throughout this section: the LARS

2.7 Quantitative Evaluation 41

algorithm (LARS), coordinate descent (CD), reweighted-f2 schemes (Re-¢3),
the simple proximal method (ISTA), and its accelerated version (FISTA); we
will also include in the comparisons generic algorithms such as a subgradient
descent algorithm (SG), and a commercial software (Mosek) for cone (CP),
quadratic (QP), and second-order cone programming (SOCP) problems.

2.7.1 Speed Benchmarks

We first present a large benchmark evaluating the performance of various
optimization methods for solving the Lasso.

We perform small-scale (n = 200,p = 200) and medium-scale (n =
2000,p = 10,000) experiments. We generate design matrices as follows.
For the scenario with low correlation, all entries of X are independently
drawn from a Gaussian distribution N(0,1/n), which is a setting often used
to evaluate optimization algorithms in the literature. For the scenario with
large correlation, we draw the rows of the matrix X from a multivariate
Gaussian distribution for which the average absolute value of the correlation
between two different columns is eight times the one of the scenario with
low correlation. Test data vectors y = Xw + m where w are randomly
generated, with two levels of sparsity to be used with the two different
levels of regularization. n is a noise vector whose entries are i.i.d. samples
from a Gaussian distribution N(0, 0.01|| Xw||3/n). In the low regularization
setting, the sparsity of the vectors w is s = 0.5 min(n, p), and in the high
regularization one, s = 0.01 min(n, p), corresponding to fairly sparse vectors.
For SG, we take the step size to be equal to a/(k+b), where k is the iteration
number and (a,b) are the best!Y parameters selected on a logarithmic grid
(a,b) € {103,...,10} x {10%,103,10*}; we proceeded this way so as not to
disadvantage SG by an arbitrary choice of stepsize.

To sum up, we make a comparison for 8 different conditions (2 scales x 2
levels of correlation x 2 levels of regularization). All results are reported in
figures 2.2 and 2.3, by averaging 5 runs for each experiment. Interestingly,
we observe that the relative performance of the different methods change
significantly with the scenario.

Our conclusions for the different methods are as follows.

= LARS: For the small-scale problem, LARS outperforms all other methods
for almost every scenario and precision regime. It is therefore definitely the
right choice for the small-scale setting.

10. “The best step size” is understood here as being the step size leading to the smallest
objective function after 500 iterations.

42

Convex Optimization with Sparsity-Inducing Norms

-SG -—SG
. 2r Fista | __ 2 Fista
5 b-1sta |E b-Ista
E f Re-L2| E Re-L2
g,_ 0 —=CD 'g_ 0 =+-CD
Ie) ===Lars | o ===Lars
@ CP @ CP
gy wQp |E72 o QP
: S g ~
g -4t LN 2
k] 5
e e
88 8-
-8 -4 -3 -2 -1 0 1 -8 -4 -3 -2 -1 0 1
log(CPU time) in seconds log(CPU time) in seconds
(a) corr: low, reg: low (b) corr: low, reg: high
—SG % —SG
_ 2 Fista | 2 % Fista
5 Ista |E | 0 % O-lsta
£ | Re-L2| £ H 2 Re-L2
g0 —+cD |8 9 —-CD
' %
° ==-lars | o . 0 ===Lars
@ CP | @ H ' cP
g2 wap |E7F N : QP
g ve | N
24 24 :
k] 5 ' !
o 2 :
5’—6* 3—6 3
' %
" -3 -2 -1 0 1 -3 -2 -1 0 1
log(CPU time) in seconds log(CPU time) in seconds
(c) corr: high, reg: low (d) corr: high, reg: high

Figure 2.2: Benchmarks for solving the Lasso for the small-scale experiment
(n =200, p = 200), for the two levels of correlation and two levels of regularization,
and 8 optimization methods (see main text for details). The curves represent the
relative value of the objective function as a function of the computational time in
seconds on a log,, /log,, scale.

Unlike first-order methods, its performance does not depend on the corre-
lation of the design matrix X, but on the sparsity s of the solution. In our
larger-scale setting, it has been competitive either when the solution is very
sparse (high regularization) or when there is high correlation in X (in that
case, other methods do not perform as well). More important, LARS gives
an exact solution and computes the regularization path.

= Proximal methods (ISTA, FISTA): FISTA outperforms ISTA in all sce-
narios but one. The methods are close for high regularization or low cor-
relation, but FISTA is significantly better for high correlation and/or low
regularization. These methods are almost always outperformed by LARS in
the small-scale setting, except for low precision and low correlation.

Both methods suffer from correlated features, which is consistent with the
fact that their convergence rate is proportional to the Lipschitz constant of

2.7 Quantitative Evaluation 43

log(relative distance to optimum)
log(relative distance to optimum)

-2 -1 0 1 2 3 -2 -1 0 1 2 3
log(CPU time) in seconds log(CPU time) in seconds
(a) corr: low, reg: low (b) corr: low, reg: high

2% 2
B S YWY =
= ad =
€ £
£ 0 SN £ 0 LN
o » s)
i) 1 L —
82 . 82
i) . °
5 |[—SG : 3
o -4 Fista . o -4
> . >
B ||Olsta . 5
3 Re-L2) : 3 Re-L2| :
2 -6(| =+=CD H S -6(|=+=CD :
- ===Lars N - ===Lars .

cP : cP
8 - 0 1 2 3 5 -1 0 1 2 3
log(CPU time) in seconds log(CPU time) in seconds
(c) corr: high, reg: low (d) corr: high, reg: high

Figure 2.3: Benchmarks for solving the Lasso for the medium-scale experiment n =
2000, p = 10,000, for the two levels of correlation and two levels of regularization,
and 8 optimization methods (see main text for details). The curves represent the
relative value of the objective function as a function of the computational time in
seconds on a log, /log,, scale.

the gradient of f, which grows with the amount of correlation. They are well
adapted to large-scale settings with low or medium correlation.

= Coordinate descent (CD): To the best of our knowledge, no theoretical
convergence rate is available for this method. Empirically, we have observed
that the behavior of CD often translates into a “warm-up” stage followed
by a fast convergence phase.

Its performance in the small-scale setting is competitive (though always
behind LARS), but less efficient in the large-scale one. For a reason we
cannot explain, it suffers less than proximal methods do from correlated
features.

® Reweighted-f: This method was outperformed in all our experiments by

44

Convex Optimization with Sparsity-Inducing Norms

other dedicated methods.!1 We considered only the smoothed alternating
scheme of section 2.5 and not first-order methods in 7 such as that of
Rakotomamonyjy et al. (2008). A more exhaustive comparison should include
these as well.

= Generic methods (SG, QP, CP): As expected, generic methods are not
adapted for solving the Lasso and are always outperformed by dedicated
ones such as LARS.

Among the methods that we have presented, some require an overhead
computation of the Gram matrix X7 X: this is the case for coordinate de-
scent and reweighted-fo methods. We took this overhead time into account
in all figures, which explains the behavior of the corresponding convergence
curves. Like the LARS, these methods could benefit from an offline precom-
putation of X7 X, and would therefore be more competitive if the solutions
corresponding to several values of the regularization parameter have to be
computed.

In the above experiments we have considered the case of the square loss.
Obviously, some of the conclusions drawn above would not be valid for other
smooth losses. On the one hand, the LARS no longer applies; on the other
hand, proximal methods are clearly still available, and coordinate descent
schemes, which were dominated by the LARS in our experiments, would
most likely turn out to be very good contenders in that setting.

2.7.2 Structured Sparsity

In this second series of experiments, the optimization techniques of the
previous sections are further evaluated when applied to other types of
loss and sparsity-inducing functions. Instead of the ¢;-norm previously
studied, we focus on the particular hierarchical ¢1/¢3-norm € introduced
in section 2.3. From an optimization standpoint, although 2 shares some
similarities with the ¢;-norm (e.g., the convexity and the non-smoothness),
it differs in that it cannot be decomposed into independent parts (because
of the overlapping structure of §). CD schemes hinge on this property, and
as a result, they cannot be straightforwardly applied in this case.

11. Note that the reweighted-¢> scheme requires iteratively solving large-scale linear sys-
tems that are badly conditioned. Our implementation uses LAPACK Cholesky decom-
positions, but a better performance might be obtained using a preconditioned conjugate
gradient, especially in the very large-scale setting.

2.7 Quantitative Evaluation 45

2 2 2|

g o\;\ g £
~

E 0 E E N
e - .
o = 5] X)
i<} o X o
@ 2 @ 2 @2
8 8 3
2 2 2 \
o = ke
k] k] (] Sk
T _4 S _4 T _4 R
g 2 H
= Fista L Fista L 5 Fista
g”e -O-Ista g,—ﬁ ©-Ista S °[|-0-Ista
- Re-L2 - Re-L2 - Re-L2

R =+=SOCP =SOCP =+ SOCP

h 05 0 -3 - 05 0

© 3 25 05 0 -3 -25
log log

-2 -15 -1 -25 -2 -15 -1 -2 -15 -1
(CPU time) in seconds log(CPU time) in seconds (CPU time) in seconds

(a) scale: small, regul: low (b) scale: small, regul: medium (c) scale: small, regul: high

Figure 2.4: Benchmarks for solving a least-squares regression problem regularized
by the hierarchical norm 2. The experiment is small-scale (n = 256, p = 151) and
shows the performances of five optimization methods (see main text for details) for
three levels of regularization. The curves represent the relative value of the objective
function as a function of the computational time in seconds on a log;, /log;, scale.

2.7.2.1 Denoising of Natural Image Patches

In this first benchmark, we consider a least-squares regression problem
regularized by €2 that arises in the context of the denoising of natural image
patches (Jenatton et al., 2010a). In particular, based on a hierarchical set of
features that accounts for different types of edge orientations and frequencies
in natural images, we seek to reconstruct noisy 16x16 patches. Although the
problem involves a small number of variables (p = 151), it has to be solved
repeatedly for thousands of patches, at moderate precision. It is therefore
crucial to be able to solve this problem efficiently.

The algorithms involved in the comparisons are ISTA, FISTA, Re-f2, SG,
and SOCP. All results are reported in figure 2.4, by averaging five runs.

We can draw several conclusions from the simulations. First, we observe
that across all levels of sparsity, the accelerated proximal scheme performs
better than, or similarly to the other approaches. In addition, as opposed
to FISTA, ISTA seems to suffer in non-sparse scenarios. In the least sparse
setting, the reweighted-f5 scheme matches the performance of FISTA. How-
ever, this scheme does not yield truly sparse solutions, and would therefore
require a subsequent thresholding operation, which can be difficult to mo-
tivate in a principled way. As expected, the generic techniques such as SG
and SOCP do not compete with the dedicated algorithms.

46

Convex Optimization with Sparsity-Inducing Norms

2.7.2.2 Multi-class Classification of Cancer Diagnosis

The second benchmark involves two datasets!? of gene expressions in the
context of cancer diagnosis. More precisely, we focus on two multi-class
classification problems in the “small n, large p” setting. The medium-scale
dataset contains n = 83 observations, p = 4615 variables and 4 classes,
and the large-scale one contains n = 308 samples, p = 30017 variables
and 26 classes. In addition, both datasets exhibit highly correlated features.
Inspired by Kim and Xing (2010), we built a tree-structured set of groups
G by applying Ward’s hierarchical clustering (Johnson, 1967) on the gene
expressions. The norm built that way aims at capturing the hierarchical
structure of gene expression networks (Kim and Xing, 2010).

Instead of the square loss function, we consider the multinomial logistic
loss function, which is better suited for multi-class classification problems. As
a direct consequence, the algorithms whose applicability crucially depends
on the choice of the loss function are removed from the benchmark. This
is, for instance, the case for reweighted-fo schemes that have closed-form
updates available only with the square loss (see section 2.5). Importantly,
the choice of the multinomial logistic loss function requires optimizing over
a matrix with dimensions p times the number of classes (i.e., a total of
4615 x 4 ~ 18,000 and 30,017 x 26 ~ 780,000 variables). Also, for lack of
scalability, generic interior-point solvers could not be considered here. To
summarize, the following comparisons involve ISTA, FISTA, and SG.

All the results are reported in figure 2.5. The benchmark especially points
out that overall the accelerated proximal scheme performs better than the
two other methods. Again, it is important to note that both proximal algo-
rithms yield sparse solutions, which is not the case for SG. More generally,
this experiment illustrates the flexibility of proximal algorithms with respect
to the choice of the loss function.

We conclude this section with general remarks on the experiments that
we presented. First, the use of proximal methods is often advocated because
of their optimal worst-case complexities in O(k—lz) In practice, in our ex-
periments these and several other methods empirically exhibit convergence
rates that are at least linear, if not better, which suggests that the adap-
tivity of the method (e.g., its ability to take advantage of local curvature)
might be more crucial to its practical success. Second, our experiments con-
centrated on regimes that are of interest for sparse methods in machine
learning, where typically p is larger than n and where it is possible to find

12. The two datasets we used are SRBCT and 14_Tumors, which are freely available at
http://wuw.gems-system.org/.

2.8 FExtensions

47

log(relative distance to optimum)
o

log(relative distance to optimum)
1

log(relative distance to optimum)
1

—sG _sll—sa _s[—sa
-3 Fista Fista Fista
£-Ista - Ista - Ista
3 -2 -1 0 1 2 3 =) -2 -1 0 1 2 3 =) -2 -1 0 1 2 3
log(CPU time) in seconds log(CPU time) in seconds log(CPU time) in seconds
(a) scale: medium, regul: low (b) scale: medium, regul: (c) scale: medium, regul:
medium high

2 1 1

N

log(relative distance to optimum)
i

log(relative distance to optimum)

log(relative distance to optimum)

_3l[—sG -3[f—sG -3[[—sG
Fista Fista Fista
©-Ista . ©-Ista . ©-Ista
3 1 0o 1 3 4 -3 - 0o 1 2 3 4 3 - 0o 1 2 3 4
og(CPU fime) in seconds log(CPU time) in seconds log(CPU time) in seconds
(d) scale: large, regul: low (e) scale: large, regul: (f) scale: large, regul: high
medium

Figure 2.5: Medium- and large-scale multi-class classification problems for three
optimization methods (see details about the datasets and the methods in the main
text). Three levels of regularization are considered. The curves represent the relative
value of the objective function as a function of the computation time in second on
a logy, / logy, scale. In the highly regularized setting, the tuning of the stepsize for
the subgradient turned out to be difficult, which explains the behavior of SG in the
first iterations.

good sparse solutions. The setting where n is much larger than p was out of
scope here, but would be worth a separate study, and should involve meth-
ods from stochastic optimization. Also, even though it might make sense
from an optimization viewpoint, we did not consider problems with low lev-
els of sparsity, that is, with more dense solution vectors, since it would be a
more difficult regime for many of the algorithms that we presented (namely,
LARS, CD, or proximal methods).

2.8 Extensions

We obviously could not exhaustively cover the literature on algorithms for
sparse methods in this chapter.

Surveys and comparisons of algorithms for sparse methods have been
proposed by Schmidt et al. (2007) and Yuan et al. (2010). These papers

48

Convex Optimization with Sparsity-Inducing Norms

present quite a few algorithms, but focus essentially on /;-regularization
and unfortunately do not consider proximal methods. Also, it is not clear
that the metrics used to compare the performances of various algorithms
is the most relevant to machine learning; in particular, we present the full
convergence curves that we believe are more informative than the ordering
of algorithms at fixed precision.

Beyond the material presented here, there a few topics that we did not
develop and that are worth mentioning.

In terms of norms, we did not consider regularization by the nuclear norm,
also known as the trace-norm, which seeks low-rank matrix solutions (Fazel
et al., 2001; Srebro et al., 2005; Recht et al., 2007; Bach, 2008b). Most of the
optimization techniques that we presented do, however, apply to this norm
(with the exception of coordinate descent).

In terms of algorithms, it is possible to relax the smoothness assumptions
that we made on the loss. For instance, some proximal methods are appli-
cable with weaker smoothness assumptions on the function f, such as the
Douglas-Rachford algorithm (see details in Combettes and Pesquet, 2010).
The related augmented Lagrangian techniques (Glowinski and Le Tallec,
1989; Combettes and Pesquet, 2010, and numerous references therein), also
known as alternating-direction methods of multipliers, are also relevant in
that setting. These methods are applicable in particular to cases where sev-
eral regularizations are mixed.

In the context of proximal methods, the metric used to define the proximal
operator can be (1) modified by judicious rescaling operations, in order
to better fit the geometry of the data (Duchi et al., 2010), or even (2)
replaced with norms associated with functional spaces, in the context of
kernel methods (Rosasco et al., 2009).

Finally, from a broader outlook, our—a priori deterministic—optimization
problem (2.1) may also be tackled with stochastic optimization approaches,
which has been the focus of much research (Bottou, 1998; Bottou and LeCun,
2003; Shapiro et al., 2009).

2.9 Conclusion

We presented and compared four families of algorithms for sparse methods:
proximal methods, block coordinate descent algorithms, reweighted-£¢s algo-
rithms, and the LARS that are representative of the state of the art. We
did not aim at being exhaustive. The properties of these methods can be
summarized as follows:

2.10 References 49

m Proximal methods provide efficient and scalable algorithms that are ap-
plicable to a wide family of loss functions, that are simple to implement,
that are compatible with many sparsity-inducing norms, and, that are often
competitive with the other methods considered.

= For the square loss, the LARS remains the fastest algorithm for (a) small-
and medium-scale problems, since its complexity depends essentially on the
size of the active sets, and (b) cases with very correlated designs. It computes
the whole path up to a certain sparsity level.

= For smooth losses, block coordinate descent provides one of the fastest
algorithms, but it is limited to separable regularizers.

= For the square-loss and possibly sophisticated sparsity-inducing regulariz-
ers, fo-reweighted algorithms provide generic algorithms that are still pretty
competitive compared with subgradient and interior-point methods. For gen-
eral losses, these methods currently require solving fo-regularized problems
iteratively, and it would be desirable to relax this constraint.

2.10 References

A. Argyriou, T. Evgeniou, and M. Pontil. Multi-task feature learning. In
B. Scholkopf, J. Platt, and T. Hoffman, editors, Advances in Neural Informa-
tion Processing Systems 19, pages 41-48. MIT Press, 2007.

F. Bach. Exploring large feature spaces with hierarchical multiple kernel learning.
In D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, editors, Advances in
Neural Information Processing Systems 21, pages 105-112. MIT Press, 2008a.

F. Bach. Consistency of trace norm minimization. Journal of Machine Learning
Research, 9:1019-1048, 2008b.

A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm for
linear inverse problems. SIAM Journal on Imaging Sciences, 2(1):183-202, 2009.

D. P. Bertsekas. Nonlinear programming. Athena Scientific, Belmont, MA, second
edition, 1999.

P. Bickel, Y. Ritov, and A. Tsybakov. Simultaneous analysis of Lasso and Dantzig
selector. Annals of Statistics, 37(4):1705-1732, 2009.

J. M. Borwein and A. S. Lewis. Conver Analysis and Nonlinear Optimization:
Theory and Examples. Springer-Verlag, second edition, 2006.

L. Bottou. Online algorithms and stochastic approximations. In D. Saad, editor,
Online Learning and Neural Networks. Cambridge University Press, Cambridge,
UK, 1998.

L. Bottou and O. Bousquet. The tradeoffs of large scale learning. In J. C. Platt,
D. Koller, Y. Singer, and S. Roweis, editors, Advances in Neural Information
Processing Systems 20, pages 161-168. MIT Press, 2007.

L. Bottou and Y. LeCun. Large scale online learning. In S. Thrun, L. Saul, and
B. Scholkopf, editors, Advances in Neural Information Processing Systems 16,
pages 217-224. MIT Press, 2003.

50

Convex Optimization with Sparsity-Inducing Norms

S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press,
2004.

P. Brucker. An O(n) algorithm for quadratic knapsack problems. Operations
Research Letters, 3(3):163-166, 1984.

S. S. Chen, D. L. Donoho, and M. A. Saunders. Atomic decomposition by basis
pursuit. SIAM Journal on Scientific Computing, 20(1):33-61, 1999.

P. Combettes and J. Pesquet. Fized-Point Algorithms for Inverse Problems in Sci-
ence and Engineering, chapter Proximal Splitting Methods in Signal Processing.
Springer-Verlag, New York, 2010.

I. Daubechies, R. DeVore, M. Fornasier, and C. S. Giintiirk. Iteratively reweighted
least squares minimization for sparse recovery. Communications on Pure and
Applied Mathematics, 63(1):1-38, 2010.

D. L. Donoho and I. M. Johnstone. Adapting to unknown smoothness via wavelet
shrinkage. Journal of the American Statistical Association, 90(432):1200-1224,
1995.

J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online learn-
ing and stochastic optimization. In A. T. Kalai and M. Mohri, editors, Proceedings
of the 23rd Conference on Learning Theory, pages 257-269. Omnipress, 2010.

B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani. Least angle regression. Annals
of Statistics, 32(2):407-499, 2004.

M. Fazel, H. Hindi, and S. P. Boyd. A rank minimization heuristic with application
to minimum order system approximation. In Proceedings of the American Control
Conference, volume 6, pages 4734-4739, 2001.

J. Friedman, T. Hastie, and R. Tibshirani. A note on the group lasso and a sparse
group lasso. preprint, 2010. arXiv:1001.0736.

W. J. Fu. Penalized regressions: The bridge versus the lasso. Journal of Computa-
tional and Graphical Statistics, 7(3):397-416, 1998.

A. Genkin, D. D. Lewis, and D. Madigan. Large-scale bayesian logistic regression
for text categorization. Technometrics, 49(3):291-304, 2007.

R. Glowinski and P. Le Tallec. Augmented Lagrangian and Operator-Splitting
Methods in Nonlinear Mechanics. Studies in Applied Mathematics. STAM, 1989.

J. Huang and T. Zhang. The benefit of group sparsity. Annals of Statistics, 38(4):
1978-2004, 2010.

L. Jacob, G. Obozinski, and J.-P. Vert. Group Lasso with overlaps and graph Lasso.
In Proceedings of the 26th International Conference on Machine Learning, pages
433-440. ACM Press, 2009.

R. Jenatton, J.-Y. Audibert, and F. Bach. Structured variable selection with
sparsity-inducing norms. Technical report, 2009. Preprint arXiv:0904.3523v1.
R. Jenatton, J. Mairal, G. Obozinski, and F. Bach. Proximal methods for sparse
hierarchical dictionary learning. In Proceedings of the 27th International Confer-

ence on Machine Learning, 2010a.

R. Jenatton, G. Obozinski, and F. Bach. Structured sparse principal component
analysis. In Proceedings of International Conference on Artificial Intelligence and
Statistics, pages 366-373, 2010b.

S. C. Johnson. Hierarchical clustering schemes. Psychometrika, 32(3):241-254,
1967.

S. Kim and E. P. Xing. Tree-guided group lasso for multi-task regression with

2.10 References

51

structured sparsity. In Proceedings of the 27th International Conference on
Machine Learning, pages 543-550, 2010.

K. Koh, S. J. Kim, and S. Boyd. An Interior-Point Method for Large-Scale 1 1-
Regularized Logistic Regression. Journal of Machine Learning Research, 8:1555,
2007.

B. Krishnapuram, L. Carin, M. A. T. Figueiredo, and A. J. Hartemink. Sparse
multinomial logistic regression: Fast algorithms and generalization bounds. IEEE
Transactions Pattern Analysis and Machine Intelligence, 27(6):957-968, 2005.

H. Lee, A. Battle, R. Raina, and A. Y. Ng. Efficient sparse coding algorithms.
In J. C. Platt, D. Koller, Y. Singer, and S. Roweis, editors, Advances in Neural
Information Processing Systems 20, pages 801-808. MIT Press, 2007.

K. Lounici, M. Pontil, A. B. Tsybakov, and S. van de Geer. Taking advantage of
sparsity in multi-task learning. Technical report, Preprint arXiv:0903.1468, 2009.

N. Maculan and G. Galdino de Paula Jr. A linear-time median-finding algorithm
for projecting a vector on the simplex of R™. Operations Research Letters, 8(4):
219-222, 1989.

J. Mairal, R. Jenatton, G. Obozinski, and F. Bach. Network flow algorithms for
structured sparsity. In J. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R. S. Zemel,
and A. Culotta, editors, Advances in Neural Information Processing Systems 23.
MIT Press, 2010.

H. Markowitz. Portfolio selection. Journal of Finance, 7(1):77-91, 1952.

J. Moreau. Fonctions convexes duales et points proximaux dans un espace hilber-
tien. Comptes Rendus de I’Académie des Sciences, Paris, Série A, Mathématique,
255:2897-2899, 1962.

S. Negahban, P. Ravikumar, M. J. Wainwright, and B. Yu. A unified framework
for high-dimensional analysis of M-estimators with decomposable regularizers. In
Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, and A. Culotta, editors,
Advances in Neural Information Processing Systems 22. MIT Press, 2009.

Y. Nesterov. Introductory Lectures on Convex Optimization: A Basic Course.
Kluwer Academic Publishers, 2004.

Y. Nesterov. Smooth minimization of non-smooth functions. Mathematical Pro-
gramming, 103(1):127-152, 2005.

Y. Nesterov. Gradient methods for minimizing composite objective function.
Technical report, Center for Operations Research and Econometrics, Catholic
University of Louvain, 2007. revised 2010.

J. Nocedal and S. J. Wright. Numerical Optimization. Springer-Verlag, second
edition, 2006.

G. Obozinski, B. Taskar, and M. 1. Jordan. Joint covariate selection and joint
subspace selection for multiple classification problems. Statistics and Computing,
20(2):231-252, 2010.

M. R. Osborne, B. Presnell, and B. A. Turlach. On the Lasso and its dual. Journal
of Computational and Graphical Statistics, 9(2):319-337, 2000.

A. Rakotomamonjy, F. Bach, S. Canu, and Y. Grandvalet. SimpleMKL. Journal
of Machine Learning Research, 9:2491-2521, 2008.

B. Recht, M. Fazel, and P. A. Parrilo. Guaranteed minimum-rank solutions of
linear matrix equations via nuclear norm minimization. Technical report, 2007.
Preprint arXiv:0706.4138.

52

Convex Optimization with Sparsity-Inducing Norms

R. T. Rockafellar. Convez analysis. Princeton University Press, 1997.

L. Rosasco, S. Mosci, M. Santoro, A. Verri, and S. Villa. Iterative Projection
Methods for Structured Sparsity Regularization. Technical report, Computer
Science and Artificial Intelligence Laboratory, MIT, 2009. CBCL-282.

V. Roth and B. Fischer. The Group-Lasso for generalized linear models: uniqueness
of solutions and efficient algorithms. In Proceedings of the 25th International
Conference on Machine Learning, pages 848855, 2008.

M. Schmidt and K. Murphy. Convex structure learning in log-linear models: Beyond
pairwise potentials. In Proceedings of the 13th International Conference on
Artificial Intelligence and Statistics, 2010.

M. Schmidt, G. Fung, and R. Rosales. Fast optimization methods for L1 regulariza-
tion: A comparative study and two new approaches. Machine Learning: ECML
2007, pages 286-297, 2007.

A. Shapiro, D. Dentcheva, A. Ruszczynski, and A. P. Ruszczynski. Lectures on
Stochastic Programming: Modeling and Theory. STAM, 2009.

J. Shawe-Taylor and N. Cristianini. Kernel Methods for Pattern Analysis. Cam-
bridge University Press, 2004.

S. K. Shevade and S. S. Keerthi. A simple and efficient algorithm for gene selection
using sparse logistic regression. Bioinformatics, 19(17):2246-2253, 2003.

P. Sprechmann, I. Ramirez, G. Sapiro, and Y. Eldar. Collaborative hierarchical
sparse modeling. In Proceedings of the 44th Annual Conference on Information
Sciences and Systems, 2010.

N. Srebro, J. D. M. Rennie, and T. S. Jaakkola. Maximum-margin matrix factor-
ization. In L. K. Saul, Y. Weiss, and L. Bottou, editors, Advances in Neural
Information Processing Systems 17, pages 1329-1336. MIT Press, 2005.

M. Szafranski, Y. Grandvalet, and P. Morizet-Mahoudeaux. Hierarchical penaliza-
tion. In J. C. Platt, D. Koller, Y. Singer, and S. Roweis, editors, Advances in
Neural Information Processing Systems 20. MIT Press, 2007.

R. Tibshirani. Regression shrinkage and selection via the Lasso. Journal of the
Royal Statistical Society, series B, 58(1):267-288, 1996.

J. A. Tropp. Greed is good: Algorithmic results for sparse approximation. [EEFE
Transactions on Information Theory, 50(10):2231-2242, 2004.

P. Tseng and S. Yun. A coordinate gradient descent method for nonsmooth
separable minimization. Mathematical Programming, series B, 117(1):387-423,
2009.

M. J. Wainwright. Sharp thresholds for noisy and high-dimensional recovery of
sparsity using fi-constrained quadratic programming. I[FEE Transactions on
Information Theory, 55(5):2183-2202, 20009.

S. Wright, R. Nowak, and M. Figueiredo. Sparse reconstruction by separable
approximation. IEEE Transactions on Signal Processing, 57(7):2479-2493, 2009.

T. Wu and K. Lange. Coordinate descent algorithms for lasso penalized regression.
Annals of Statistics, 2(1):224-244, 2008.

G. Yuan, K. Chang, C. Hsieh, and C. Lin. A comparison of optimization methods
for large-scale 11-regularized linear classification. Technical report, Department
of Computer Science, National University of Taiwan, 2010.

M. Yuan and Y. Lin. Model selection and estimation in regression with grouped
variables. Journal of the Royal Statistical Society, series B, 68:49-67, 2006.

2.10 References 53

P. Zhao and B. Yu. On model selection consistency of Lasso. Journal of Machine
Learning Research, 7:2541-2563, 2006.

P. Zhao, G. Rocha, and B. Yu. The composite absolute penalties family for grouped
and hierarchical variable selection. Annals of Statistics, 37(6A):3468-3497, 2009.

H. Zou and T. Hastie. Regularization and variable selection via the elastic net.
Journal of the Royal Statistical Society Series B, 67(2):301-320, 2005.

3 Interior-Point Methods for Large-Scale
Cone Programming

Martin Andersen msa@ee.ucla.edu
University of California, Los Angeles
Los Angeles, CA 90095-159/4, USA

Joachim Dahl dahl. joachim@gmail.com

MOSEK ApS
Fruebjerguej 3, 2100 Kobenhavn O, Denmark

Zhang Liu zhang.liu@gmail.com
Northrop Grumman Corporation
San Diego, CA 92127-2412, USA

Lieven Vandenberghe vandenbe@ee.ucla.edu
University of California, Los Angeles
Los Angeles, CA 90095-159/4, USA

In the conic formulation of a convex optimization problem the constraints are
expressed as linear inequalities with respect to a possibly non-polyhedral con-
vex cone. This makes it possible to formulate elegant extensions of interior-
point methods for linear programming to general nonlinear convex optimiza-
tion. Recent research on cone programming algorithms has focused particu-
larly on three convex cones for which symmetric primal-dual methods have
been developed: the nonnegative orthant, the second-order cone, and the pos-
itive semidefinite matriz cone. Although not all convex constraints can be
expressed in terms of the three standard cones, cone programs associated
with these cones are sufficiently general to serve as the basis of convexr mod-
eling packages. They are also widely used in machine learning.

The main difficulty in the implementation of interior-point methods for cone
programming is the complexity of the linear equations that need to be solved
at each iteration. These equations are usually dense, unlike the equations
that arise in linear programming, and it is therefore difficult to develop
general-purpose strategies for exploiting problem structure based solely on

56 Interior-Point Methods for Large-Scale Cone Programming

sparse matriz methods. In this chapter we give an overview of ad hoc
techniques that can be used to exploit nonsparse structure in specific classes
of applications. We illustrate the methods with examples from machine
learning and present numerical results with CVXOPT, a software package
that supports the rapid development of customized interior-point methods.

3.1 Introduction
3.1.1 Cone Programming
The cone programming formulation has been popular in the recent literature

on convex optimization. In this chapter we define a cone linear program (cone
LP or conic LP) as an optimization problem of the form

minimize ¢ (3.1)
subject to Gx =2¢c h
Az =b

with optimization variable x. The inequality Gz =<¢ h is a generalized
inequality, which means that h — Gz € C, where C is a closed, pointed,
convex cone with nonempty interior. We will also encounter cone quadratic
programs (cone QPs),

minimize (1/2)z7 Pz + 'z (3.2)
subject to Gz =<¢ h
Ax = b,

with P positive semidefinite.

If C = Rﬁ (the nonnegative orthant in RP), the generalized inequality is
a componentwise vector inequality, equivalent to p scalar linear inequalities,
and problem (3.1) reduces to a linear program (LP). If C' is a nonpolyhedral
cone, the problem is substantially more general than an LP, in spite of the
similarity in notation. In fact, as Nesterov and Nemirovskii (1994) point
out, any convex optimization problem can be reformulated as a cone LP by
a simple trick: a general constraint x € @, where @) is a closed convex set with
nonempty interior, can be reformulated in a trivial way as (z,t) € C, ¢t = 1, if
we define C' as the conic hull of @, that is, C' = cl{(x,t) | t > 0, (1/t)x € Q}.
More important in practice, it turns out that a surprisingly small number of

8.1 Introduction

57

cones is sufficient to express the convex constraints that are most commonly
encountered in applications. In addition to the nonnegative orthant, the
most common cones are the second-order cone,

Q= {(yo. y1) ERX R | [y |l2 < wo},

and the positive semidefinite cone,
8y ={vec(U)|U e St}.

Here S denotes the positive semidefinite matrices of order p and vec(U) is
the symmetric matrix U stored as a vector:

vec(U) =

f(iflfl Ugl,...,Upl,[\J;E Uss, . ..,Upz,...,Up‘\}’Qp‘l,Up,pl,(\]/pg).
(The scaling of the off-diagonal entries ensures that the standard trace
inner product of symmetric matrices is preserved, that is, Tr(UV) =
vec(U)T vec(V) for all U, V.) Since the early 1990s a great deal of re-
search has been directed at developing a comprehensive theory and software
for modeling optimization problems as cone programs involving the three
“canonical” cones (Nesterov and Nemirovskii, 1994; Boyd et al., 1994; Ben-
Tal and Nemirovski, 2001; Alizadeh and Goldfarb, 2003; Boyd and Van-
denberghe, 2004). YALMIP and CVX, two modeling packages for general
convex optimization, use cone LPs with the three canonical cones as their
standard format (Lofberg, 2004; Grant and Boyd, 2007, 2008).

In this chapter we assume that the cone C' in (3.1) is a direct product

0201X02><"-XCK, (3.3)

where each cone C; is of one of the three canonical types (nonnegative
orthant, second-order cone, or positive semidefinite cone). These cones are
self-dual, and the dual of the cone LP therefore involves an inequality with
respect to the same cone:

maximize —hTz—bTy (3.4)
subject to GTz+ ATy +c=0
z>=c 0.

The cone LP (3.1) is called a second-order cone program (SOCP) if C'is a
direct product of one or more second-order cones. (The nonnegative orthant
can be written as a product of second-order cones Q; of order 1.) A common

58 Interior-Point Methods for Large-Scale Cone Programming

and more explicit standard form of an SOCP is
minimize ¢’z
subject to [|Fiz + gillo < dlz+ fi, i=1,...,K
Az =b.

This corresponds to choosing

[—dl] f1
—I g1
a=| |, n=|: |, c=9,x
—d}; IK
| —Fk | | 9K |

in (3.1), if the row dimensions of the matrices F} are equal to p; — 1.

(3.5)

The cone LP (3.1) is called a semidefinite program (SDP) if C' is a direct
product of positive semidefinite matrix cones. For purposes of exposition, a

simple standard form with one matrix inequality is sufficient:

minimize Lz
n
iy < Fy
i=1
Az = b,

subject to

(3.6)

where the coefficients F; are symmetric matrices of order p and the inequality

denotes matrix inequality. This can be seen as the special case of (3.1)

obtained by choosing

G = [vec(Fy) --- vec(F))] : h = vec(Fy),

C =8, (3.7)

The SDP (3.6) is in fact as general as the cone LP (3.1) with an arbitrary
combination of the three cone types. A componentwise vector inequality

Gz = h can be represented as a diagonal matrix inequality Diag(Gz) =<
Diag(h). A second-order cone constraint ||Fx + g|ls < d"x + f is equivalent

to the linear matrix inequality

dl'z+f (Fr+g)7

=0
Fr+g (dfz+ f)I

Multiple matrix inequalities can be represented by choosing block-diagonal
matrices Fj. For algorithmic purposes, however, it is better to handle the

three types of cones separately.

8.1 Introduction

59

3.1.2 Interior-Point Methods

Interior-point algorithms dominated the research on convex optimization
methods from the early 1990s until recently. They are popular because
they reach a high accuracy in a small number (10-50) of iterations, almost
independent of problem size, type, and data. Each iteration requires the
solution of a set of linear equations with fixed dimensions and known
structure. As a result, the time needed to solve different instances of a given
problem family can be estimated quite accurately. Interior-point methods
can be extended to handle infeasibility gracefully (Nesterov et al., 1999;
Andersen, 2000), by returning a certificate of infeasibility if a problem is
primal or dual infeasible. Finally, interior-point methods depend on only a
small number of algorithm parameters, which can be set to values that work
well for a wide range of data, and do not need to be tuned for a specific
problem.

The key to efficiency of an interior-point solver is the set of linear equa-
tions solved in each iteration. These equations are sometimes called Newton
equations, because they can be interpreted as a linearization of the non-
linear equations that characterize the central path, or Karush-Kuhn-Tucker
(KKT) equations, because they can be interpreted as optimality (or KKT)
conditions of an equality-constrained quadratic optimization problem. The
cost of solving the Newton equations determines the size of the problems
that can be solved by an interior-point method. General-purpose convex op-
timization packages rely on sparse matrix factorizations to solve the Newton
equations efficiently. This approach is very successful in linear programming,
where problems with several hundred thousand variables and constraints are
solved routinely. The success of general-purpose sparse linear programming
solvers can be attributed to two facts. First, the Newton equations of a
sparse LP can usually be reduced to sparse positive definite sets of equa-
tions, which can be solved very effectively by sparse Cholesky factorization
methods. Second, dense linear programs, which of course are not uncom-
mon in practice, can often be converted into sparse problems by introducing
auxiliary variables and constraints. This increases the problem dimensions,
but if the resulting problem is sufficiently sparse, the net gain in efficiency
is often significant.

For other classes of cone optimization problems (for example, semidefi-
nite programming), the sparse linear programming approach to exploiting
problem structure is less effective, either because the Newton equations are
not sufficiently sparse or because the translation of problem structure into
sparsity requires an excessive number of auxiliary variables. For these prob-
lem classes, it is difficult to develop general-purpose techniques that are as

60 Interior-Point Methods for Large-Scale Cone Programming

efficient and scalable as linear programming solvers. Nevertheless, the recent
literature contains many examples of large-scale convex optimization prob-
lems that were solved successfully by scalable customized implementations
of interior-point algorithms (Benson et al., 1999; Roh and Vandenberghe,
2006; Gillberg and Hansson, 2003; Koh et al., 2007; Kim et al., 2007; Joshi
and Boyd, 2008; Liu and Vandenberghe, 2009; Wallin et al., 2009). These
results were obtained by a variety of direct and iterative linear algebra tech-
niques that take advantage of non-sparse problem structure. The purpose
of this chapter is to survey some of these techniques and illustrate them
with applications from machine learning. There is of course a trade-off in
how much effort one is prepared to make to optimize performance of an
interior-point method for a specific application. We will present results for
a software package, CVXOPT (Dahl and Vandenberghe, 2009), that was
developed to assist in the development of custom interior-point solvers for
specific problem families. It allows the user to specify an optimization prob-
lem via an operator description, that is, by providing functions for evaluating
the linear mappings in the constraints and for supplying a custom method
for solving the Newton equations. This makes it possible to develop effi-
cient solvers that exploit various types of problem structure in a fraction of
the time needed to write a custom interior-point solver from scratch. Other
interior-point software packages that allow customization include the QP
solver OOQP (Gertz and Wright, 2003) and the Matlab-based conic solver
SDPT3 (Tiitiinci et al., 2003).

3.2 Primal-Dual Interior-Point Methods

We first describe some implementation details for primal-dual interior-point
methods based on the Nesterov-Todd scaling (Nesterov and Todd, 1997,
1998). However, much of the following discussion also applies to other types
of primal-dual interior-point methods for second-order cone and semidefinite
programming (Helmberg et al., 1996; Kojima et al., 1997; Monteiro and
Zhang, 1998).

3.2.1 Newton Equations

Consider the cone LP (3.1) and cone QP (3.2). The Newton equations for a
primal-dual interior-point method based on the Nesterov-Todd scaling have

3.2 Primal-Dual Interior-Point Methods 61

the form
p AT GT Az Ty
A 0 0 Ay | = | ry (3.8)
G 0 —-WTw Az o

(with P = 0 for the cone LP). The right-hand sides r,, r,, . change at each
iteration and are defined differently in different algorithms. The matrix W
is a scaling matriz that depends on the current primal and dual iterates. If
the inequalities in (3.1) and (3.4) are generalized inequalities with respect to
a cone of the form (3.3), then the scaling matrix W is block-diagonal with
K diagonal blocks Wy, defined as follows:

= If C) is a nonnegative orthant of dimension p (Cj = Rﬁ), then Wy, is a
positive diagonal matrix,

P
for some d € R, , .

= If C) is a second-order cone of dimension p (Cy = Q,), then Wy is a
positive multiple of a hyperbolic Householder matrix

Lo] , (3.9)

Wi, = B(2vvT — J), J =
k= 0B() 0 1

where 8 > 0, v € RP satisfies v7'Jv = 1, and I is the identity matrix of order
p — 1. The inverse of Wy, is given by

1
Wt = E(ZJUUTJ —J).

» If C) is a positive semidefinite cone of order p (C = 8,), then Wy, is the
matrix representation of a congruence operation: Wy and its transpose are
defined by the identities

Wy vec(U) = vec(RTUR), W} vec(U) = vec(RUR"), (3.10)

for all U, where R € RP*P is a nonsingular matrix. The inverses of W) and
WkT are defined by

W, 'vec(U) = vec(R"TUR™), W T vec(U) = vec(R'UR™T).

The values of the parameters d, 8, v, R (or R™!) in these definitions depend
on the current primal and dual iterates, and are updated after each iteration
of the interior-point algorithm.

62

Interior-Point Methods for Large-Scale Cone Programming

The number of Newton equations solved per iteration varies with the type
of algorithm. It is equal to two in a predictor-corrector method, three in a
predictor-corrector method that uses a self-dual embedding, and it can be
higher than three if iterative refinement is used. However, since the scaling
W is identical for all the Newton equations solved in a single iteration, only
one factorization step is required per iteration, and the cost per iteration is
roughly equal to the cost of solving one Newton equation.

By eliminating Az, the Newton equation can be reduced to a smaller
System:

P+GTw—tw-Ta AT
A 0

Ax
Ay

re + GTW W -Tp,

Ty

. (3.11)

The main challenge in an efficient implementation is to exploit structure in
the matrices P, G, A when assembling the matrix

K
P+GW WG =P+ GIW, "W, TGy, (3.12)
k=1
(where Gy, is the block row of G corresponding to the kth inequality) and
when solving equation (3.11).

General-purpose solvers for cone programming rely on sparsity in P, G,
and A to solve large-scale problems. For example, if the problem does not
include equality constraints, one can solve (3.11) by a Cholesky factorization
of the matrix (3.12). For pure LPs or QPs (W diagonal) this matrix is
typically sparse if P and G are sparse, and a sparse Cholesky factorization
can be used. In problems that involve all three types of cones it is more
difficult to exploit sparsity. Even when P and G are sparse, the matrix (3.12)
is often dense. In addition, forming the matrix can be expensive.

3.2.2 Customized Implementations

In the following sections we will give examples of techniques for exploiting
certain types of non-sparse problem structure in the Newton equations (3.8).
The numerical results are obtained using the Python software package
CVXOPT, which provides two mechanisms for customizing the interior-
point solvers.

= Users can specify the matrices G, A, P in (3.1) and (3.2) as operators by
providing Python functions that evaluate the matrix-vector products and
their adjoints.

= Users can provide a Python function for solving the Newton equation (3.8).

3.2 Primal-Dual Interior-Point Methods 63

This is made straightforward by certain elements of the Python syntax, as
the following example illustrates. Suppose we are interested in solving several
equations of the form

x| _ | b
1-[4] o

with the same matrix A € R™*" and different right-hand sides by, ba. (We
assume m < n and rank(A) = m.) The equations can be solved by first
solving

-1 AT
A 0

AAT 19 = by + Aby,

using a Cholesky factorization of AA” and then computing x; from z; =
ATzy — by. The following code defines a Python function factor() that
computes the Cholesky factorization of C' = AA”, and returns a function
solve () that calculates x1 and z9 for a given right-hand side b. A function
call £ = factor(A) therefore returns a function f that can be used to
compute the solution for a particular right-hand side b as x1, x2 = f(b).

from cvxopt import blas, lapack, matrix

def factor(A):
m, n = A.size
C = matrix(0.0, (m, m))
blas.syrk(A, C) # C := A x A°T.
lapack.potrf (C) # Factor C = L * L"T and set C := L.
def solve(b):
x2 = b[-m:] + A * b[:n]
lapack.potrs(C, x2) # x2 := L°-T % L"-1 * x2.
x1 = A.T * x2 - b[:n]
return x1, x2
return solve

Note that the Python syntax proves very useful in this type of application.
For example, Python treats functions as other objects, so the factor function
can simply return a solve function. Note also that the symbols A and C
are used in the body of the function solve() but are not defined there.
To resolve these names, Python therefore looks at the enclosing scope (the
function block with the definition of factor()). These scope rules make it
possible to pass problem-dependent parameters to functions without using
global variables.

64 Interior-Point Methods for Large-Scale Cone Programming

3.3 Linear and Quadratic Programming

In the case of a (non-conic) LP or QP the scaling matrix W in the Newton
equation (3.8) and (3.11) is a positive diagonal matrix. As already men-
tioned, general-purpose interior-point codes for linear and quadratic pro-
gramming are very effective at exploiting sparsity in the data matrices P,
G, A. Moreover, many types of non-sparse problem structures can be trans-
lated into sparsity by adding auxiliary variables and constraints. Neverthe-
less, even in the case of LPs or QPs, it is sometimes advantageous to exploit
problem structure directly by customizing the Newton equation solver. In
this section we discuss a few examples.

3.3.1 /;-Norm Approximation

The basic idea is illustrated by the £;-norm approximation problem
minimize || Xu —d|1, (3.14)

with X € R™*" d € R™, and variable u € R™. This is equivalent to an LP
with m 4+ n variables and 2m constraints:

minimize 17w

) X -1 U d
subject to =

with 1 the m-vector with entries equal to one. The reduced Newton equa-
tion (3.11) for this LP is

(3.15)

)

Au
Av

Ty

(W52 =W)X W24 wy?

Ty

[XTW 4wy Hx X7 (Wy2 — wi2)

](3m)

where W7 and Wj are positive diagonal matrices. (To simplify the notation,
we do not propagate the expressions for the right-hand sides when applying
block elimination.) By eliminating the variable Av the Newton equation can
be further reduced to the equation

XT'DXAu =r,
where D is the positive diagonal matrix
D =AW W2 (W 2 + Wy)7t = 4(WE + W)~

The cost of solving the ¢1-norm approximation problem is therefore equal
to a small multiple (10-50) of the cost of solving the same problem in

3.3 Linear and Quadratic Programming 65

the fo-norm, that is, solving the normal equations X7 Xu = X”d of the
corresponding least-squares problem (Boyd and Vandenberghe, 2004, page
617).

The Python code shown below exploits this fact. The matrix

X -1

-X I

is specified via a Python function G that evaluates the matrix-vector products
with G and GT'. The function F factors the matrix X7 DX and returns a solve
routine f that takes the right-hand side of (3.8) as its input argument and
replaces it with the solution. The input argument of F is the scaling matrix
W stored as a Python dictionary W containing the various parameters of W.

The last line calls the CVXOPT cone LP solver. The code can be further
optimized by a more extensive use of the BLAS.

G:

Table 3.1 shows the result of an experiment with six randomly generated
dense matrices X. We compare the speed of the customized CVXOPT solver
shown above, the same solver with further BLAS optimizations, and the
general-purpose LP solver in MOSEK (MOSEK ApS, 2010), applied to the
LP (3.15). The last column shows the results for MOSEK applied to the
equivalent formulation

minimize 170 4+ 17w
subject to Xu—d=v—w (3.17)
v>=0, w=0.

The times are in seconds on an Intel Core 2 Quad Q9550 (2.83 GHz) with
4GB of memory.

The table shows that a customized solver, implemented in Python with a
modest programming effort, can be competitive with one of the best general-
purpose sparse linear programming codes. In this example, the customized
solver takes advantage of the fact that the dense matrix X appears in two
positions of the matrix G. This property is not exploited by a general-
purpose sparse solver.

3.3.2 Least-Squares with /;-Norm Regularization

As a second example, we consider a least-squares problem with ¢;-norm
regularization,

minimize || Xu — d||3 + ||ull1,

Interior-Point Methods for Large-Scale Cone Programming

from cvxopt import lapack, solvers, matrix, mul, div
m, n = X.size

def G(x, y, alpha = 1.0, beta = 0.0, trans = ’N’):

if trans == ’N’: # y := alpha * G * x + beta *x y
u =X * x[:n]
y[:m] = alpha * (u - x[n:]) + beta * y[:m]
y[m:1 = alpha * (-u - x[n:]) + beta * y[m:]

else: # y := alpha * G’ * x + beta *x y
y[:n] = alpha * X.T * (x[:m] - x[m:]) + beta * y[:n]
y[n:1 = -alpha * (x[:m] + x[m:]) + beta * y[n:]

def F(W):
dl, d2 = W[’d’][:m]**2, W[’d’] [m:]**2
D = 4%(dl + d2)**-1
A = X.T * spdiag(D) * X
lapack.potrf (A)
def f(x, y, z):
x[:n] += X.T * (mul(div(d2 - d1, d1 + d2), x[n:]) +
mul(.5%D, z[:m] - z[m:]))
lapack.potrs(A, x)
u =X * x[:n]
x[n:] = div(x[n:] - div(z[:m], d1) - div(z[m:], d42) +
mul (di**-1 - d2**x-1, u), di**x-1 + d2%*x-1)
z[:m] = div(u - x[n:] - z[:m], W[’d’]1[:m])
z[m:] = div(-u - x[n:] - z[m:1, W[’d’] [m:])
return f

¢ = matrix(n*[0.0] + m*x[1.0])
h = matrix([d, -d])
sol = solvers.conelp(c, G, h, kktsolver = F)

3.3 Linear and Quadratic Programming 67

m n | CVXOPT | CVXOPT/BLAS | MOSEK (3.15) | MOSEK (3.17)
500 | 100 0.12 0.06 0.75 0.40
1000 | 100 0.22 0.11 1.53 0.81
1000 | 200 0.52 0.29 1.95 1.06
2000 | 200 1.23 0.60 3.87 2.19
1000 | 500 2.44 1.32 3.63 2.38
2000 | 500 5.00 2.68 7.44 5.11
2000 | 1000 17.1 9.52 32.4 12.8

Table 3.1: Solution times (seconds) for six randomly generated dense ¢;-norm
approximation problems of dimension m x n. Column 3 gives the CPU times for
the customized CVXOPT code. Column 4 gives the CPU times for a customized
CVXOPT code with more extensive use of the BLAS for matrix-vector and matrix-
matrix multiplications. Columns 5 and 6 show the times for the interior-point
solver in MOSEK v6 (with basis identification turned off) applied to the LPs (3.15)
and (3.17), respectively.

with X € R™*™, The problem is equivalent to a QP

minimize (1/2)[|Xu — d||3 + 17v

. (3.18)
subject to —v <X u X v,

with 2n variables and 2n constraints. The reduced Newton equation (3.11)
for this QP is
Ty

where W7 and Wy are diagonal. Eliminating Av, as in the example of

Au
Av

XTX+W24+w,? w2 —w?
W2 — w2 W2+ W,

section 3.3.1, results in a positive definite equation of order n:
(XTX + D)Au=r,

where D = 4(W2+W2)~1. Alternatively, we can apply the matrix inversion
lemma and convert this to an equation of order m:

(XD'XT + NAw = 7. (3.19)

The second option is attractive when n > m, but requires a customized
interior-point solver, since the matrix D depends on the current iterates. A
general-purpose QP solver applied to (3.18), on the other hand, is expensive
if n > m, since it does not recognize the low-rank structure of the matrix
XT X in the objective.

Table 3.2 shows the result of an experiment with randomly generated

68

Interior-Point Methods for Large-Scale Cone Programming

m | n | CVXOPT | MOSEK (3.18) | MOSEK (3.20)
50 | 200 0.02 0.35 0.32
50 | 400 0.03 1.06 0.59
100 | 1000 0.12 9.57 1.69
100 | 2000 0.24 66.5 3.43
500 | 1000 1.19 10.1 7.54
500 | 2000 2.38 68.6 17.6

Table 3.2: Solution times (seconds) for six randomly generated dense least-squares
problems with ¢1-norm regularization. The matrix X has dimension mxn. Column 3
gives the CPU times for the customized CVXOPT code. Column 4 shows the times
for MOSEK applied to (3.18). Column 5 shows the times for MOSEK applied
to (3.20).

dense matrices X. We compare the speed of a customized QP solver with
the general-purpose QP solver in MOSEK applied to the QP (3.18) and the
equivalent QP

minimize (1/2)ww + 17w
subject to —v <z <w (3.20)
Xu—w=d
with variables u, v, w. Although this last formulation has more variables
and constraints than (3.18), MOSEK solves it more efficiently because it
is sparser. For the custom solver the choice between (3.18) and (3.20) is

irrelevant because the Newton equations for both QPs reduce to an equation
of the form (3.19).

3.3.3 Support Vector Machine Training

A well-known example of the technique in the previous section arises in the
training of support vector machine classifiers via the QP:

minimize (1/2)u’Qu — d'u

subject to 0 < Diag(d)u < ~1 (3.21)

17y =0.
In this problem @ is the kernel matrix and has entries Q;; = k(x;,x;),
1,7 =1,...,N, where x1, ..., zxy € R” are the training examples and k :

R"xR"™ — R is a positive definite kernel function. The vector d € {—1,+1}¥
contains the labels of the training vectors. The parameter v is given. The

3.3 Linear and Quadratic Programming 69

reduced Newton equation for (3.21) is

-2 -2
Q+W11T+W2 3”?]:[7%], (3.22)
) Ty

This equation is expensive to solve when N is large because the kernel matrix
Q is generally dense. If the linear kernel k(v,7) = v7¥ is used, the kernel
matrix can be written as Q = X X7 where X € R¥*" is the matrix with
rows :L‘;-F If N > n, we can apply the matrix inversion lemma as in the

previous example, and reduce the Newton equation to an equation
I+ XTW 2+ W) X) Aw =r

of order n. This method for exploiting low-rank structure or diagonal-plus-
low-rank structure in the kernel matrix @ is well known in machine learning
(Ferris and Munson, 2002; Fine and Scheinberg, 2002).

Crammer and Singer (2001) extended the binary SVM classifier to classi-
fication problems with more than two classes. The training problem of the
Crammer-Singer multiclass SVM can be expressed as a QP

minimize (1/2) Tr(UTQU) — Tr(ETU)
subject to U = ~E (3.23)
Ul, =0

with a variable U € RYX™ where N is the number of training examples
and m is the number of classes. As in the previous section, @) is a kernel
matrix with entries Q;; = k(x;,x;), 4,7 = 1,..., N. The matrix £ € RN>m
is defined as

. 1 training example ¢ belongs to class j
Y 0 otherwise.

The inequality U < vE denotes componentwise inequality between matrices.
From the optimal solution U one obtains the multiclass classifier, which maps
a test point x to the class number

N
argmax Z Uijk(x;, x).
Jj=1,....m i—

An important drawback of this formulation, compared with multiclass
classifiers based on a combination of binary classifiers, is the high cost of
solving the QP (3.23), which has N'm variables, Nm inequality constraints,
and N equality constraints. Let us therefore examine the reduced Newton

70

Interior-Point Methods for Large-Scale Cone Programming

equations
_Q—i-Wl_Q 0 0 I] —Aul_ _rul_
0 Q+wy,?% ... 0 I Aug T,
0 QAW Ay, Tu,,
i 1 e 1 0] Ay | | Ty]

with variables Auy, Ay € RYN. The variables Auy, are the columns of the
search direction AU corresponding to the variable U in (3.23). Eliminating
the variables Auy gives the equation HAy = r with

H=> (Q+W;)"
k=1

Now suppose the linear kernel is used, and Q = X X7 with X € RV*" and
N large (compared to mn). Then we can exploit the low rank structure in
() and write H as
m
H = Y (W -=WeX(I+X"w2X)' xTWg)
k=1
= D-YY"

where D = ", W7 is diagonal and Y is an N x mn matrix, and
Y= [WPXIh WRXIyt o WAXL! |

where Ly, is a Cholesky factor of I+ X TWkQX = LkLg. A second application
of the matrix inversion lemma gives

Ay = (D-YY")™y
= (D'+D'YI+Y"™D YY) lY"D 0

The largest dense matrix that needs to be factored in this method is the
mn x mn matrix I + Y7TD™1Y. For large N the cost is dominated by
the matrix products XTWZ-QD*WJ-QX, 1,7 = 1,...,m, needed to compute
YT D=1y This takes O(m?n%N) operations.

In table 3.3 we show computational results for the multiclass classifier
applied to the MNIST handwritten digit data set (LeCun and Cortes, 1998).
The images are 28 x 28. We add a constant feature to each training example,
so the dimension of the feature space is n = 1 + 282 = 785. We use
v = 10°/N. For the largest N, the QP (3.23) has 600,000 variables and
inequality constraints, and 60,000 equality constraints.

3.4 Second-Order Cone Programming 71

N time | iterations | test error
10000 | 5699 27 8.6%
20000 | 12213 33 4.0%
30000 | 35738 38 2.7%
40000 | 47950 39 2.0%
50000 | 63592 42 1.6%
60000 | 82810 46 1.3%

Table 3.3: Solution times (seconds) and numbers of iterations for the multiclass
SVM training problem applied to the MNIST set of handwritten digits (m = 10
classes, n = 785 features)

3.4 Second-Order Cone Programming

Several authors have provided detailed studies of techniques for exploiting
sparsity in SOCPs (Andersen et al., 2003; Goldfarb and Scheinberg, 2005).
The coefficient matrix (3.12) of the reduced Newton equation of a linear and
quadratic cone program with K second-order cone constraints of dimension

P, ---, PK is
K 1
P+Y GIW. Gy, W, '=—(2JufJ -). (3.24)
— Bk
The scaling matrices are parameterized by parameters 5 > 0 and v, € RP*
with v{ Juy = 1 and J the sign matrix defined in (3.9). Note that

1 1
—2 T

where eq is the first unit vector in R?, vy is the first entry of vy, and vy is
the (p — 1)-vector of the other entries. Therefore

1
32
that is, a multiple of GZGk plus a rank-two term.

We can distinguish two cases when examining the sparsity of the
sum (3.24). If the dimensions pj, of the second-order cones are small, then
the matrices G, are likely to have many zero columns and the vectors G;‘gwk
will be sparse (for generic dense wy,). Therefore the products G;{W,; 2@} and
the entire matrix (3.24) are likely to be sparse. At the extreme end (py = 1)
this reduces to the situation in linear programming where the matrix (3.12)
has the sparsity of P + GTG.

T
)
(I+2wkw£—2eoeg), wy = k 7k
—2050Vk1

GLW2Gl, = — (GL Gy + 2(GLwg) (GLwg)T — 2(Gleo)(GEeo)T)

72

Interior-Point Methods for Large-Scale Cone Programming

The second case arises when the dimensions py are large. Then Ggwk is
likely to be dense, which results into a dense matrix (3.24). If K < n, we
can still separate the sum (3.24) in a sparse part and a few dense rank-
one terms, and apply techniques for handling dense rows in sparse linear
programs (Andersen et al., 2003; Goldfarb and Scheinberg, 2005).

3.4.1 Robust Support Vector Machine Training

Second-order cone programming has found wide application in robust opti-
mization. As an example, we discuss the robust SVM formulation of Shiv-
aswamy et al. (2006). This problem can be expressed as a cone QP with
second-order cone constraints:
minimize (1/2)w’w +~y1Tv
subject to Diag(d)(Xw +b1) =1 —v+ Eu
v>=0
|Sjwlla <wj, j=1,...,t

(3.25)

The variables are w € R?, b € R, v € RV, and v € R?. The matrix X € RV*”?
has as its rows the training examples 27, and the vector d € {—1,1}¥
contains the training labels. For ¢ = 0, the term Eu and the norm constraints

are absent, and the problem reduces to the standard linear SVM

minimize (1/2)w?w +y17v
subject to di(zfw+b)>1—v;, i=1,...,N (3.26)
v = 0.

In problem (3.25) the inequality constraints in (3.26) are replaced by a
robust version that incorporates a model of the uncertainty in the training
examples. The uncertainty is described by ¢ matrices S;, with ¢ ranging
from 1 to N, and an N x n-matrix £/ with 0-1 entries and exactly one entry
equal to one in each row. The matrices S; can be assumed to be symmetric
positive semidefinite. To interpret the constraints, suppose E;; = 1. Then
the constraint in (3.25) that involves training example x; can be written as
a second-order cone constraint:

di(z] w+b) = [[Sjwllz > 1 - v;.
This is equivalent to

inf (dl(azz + Sjn)Tw + b) >1—v;.
lInll-<1

3.4 Second-Order Cone Programming 73

In other words, we replace the training example z; with an ellipsoid {z; +
S;n | |Inll2 < 1} and require that d;(z7w + b) > 1 — v; holds for all x in the
ellipsoid. The matrix S; defines the shape and magnitude of the uncertainty
about training example i. If we take ¢t = 1, we assume that all training
examples are subject to the same type of uncertainty. Values of ¢ larger
than one allow us to use different uncertainty models for different subsets of
the training examples.

To evaluate the merits of the robust formulation, it is useful to compare the
costs of solving the robust and non-robust problems. Recall that the cost per
iteration of an interior-point method applied to the QP (3.26) is of order Nn?
if N > n, and is dominated by an equation of the form (I + X7 DX)Aw = r
with D positive diagonal. To determine the cost of solving the robust
problem, we write it in the standard cone QP form (3.2) by choosing
= (w,b,v,u) ER"XRxRY xR, K =1+¢, C=R*» x Q1 x- Q1.

We have
[—Diag(d)X —-d —-I E |
0 0 —I 0
I 000 0 0 0 T
p_| 0000 G- _s, 0 o0 o
0000 _ L
0000 '
0 0 —ef
S 0 0 0 |

where ey, is the kth unit vector in Rf. Note that ETDE is diagonal for any
diagonal matrix D, and this property makes it inexpensive to eliminate the
extra variable Au from the Newton equations. As in the nonrobust case, the
Newton equations can then be further reduced to an equation in n variables
Aw. The cost of forming the reduced coefficient matrix is of order Nn?+tn>.
When n < N and for modest values of ¢, the cost of solving the robust
counterpart of the linear SVM training problem is therefore comparable to
the standard non-robust linear SVM.

Table 3.4 shows the solution times for a customized CVXOPT interior-
point method applied to randomly generated test problems with n = 200
features. Each training vector is assigned to one of ¢ uncertainty models. For
comparison, the general-purpose solver SDPT3 v.4 called from CVX takes
about 130 seconds for t = 50 and N = 4000 training vectors.

74 Interior-Point Methods for Large-Scale Cone Programming

N |[t=2 t=10 t=50 t=100
4000 | 25 2.8 4.1 5.0
8000 | 5.4 5.3 6.0 6.9
16000 | 12.5 125 12.7 13.7

Table 3.4: Solution times (seconds) for customized interior-point method for robust
SVM training (n = 200 features and ¢ different uncertainty models)

3.5 Semidefinite Programming

We now turn to the question of exploiting problem structure in cone pro-
grams that include linear matrix inequalities. To simplify the notation, we
explain the ideas for the inequality form SDP (3.6).

Consider the coefficient matrix H = GTW W TG of the reduced New-
ton equations, with G defined in (3.7) and the scaling matrix W defined
in (3.10). The entries of H are

Hyy =Tt (R'ERTR'FRT), ij=1,...,n (3.27)

The matrix R is generally dense, and therefore the matrix H is usually dense,
so the equation HAx = r must be solved by a dense Cholesky factorization.
The cost of evaluating the expressions (3.27) is also significant, and often
exceeds the cost of solving the system. For example, if p = O(n) and the
matrices F; are dense, then it takes O(n*) operations to compute the entire
matrix H and O(n?) operations to solve the system.

Efforts to exploit problem structure in SDPs have focused on using sparsity
and low-rank structure in the coefficient matrices F; to reduce the cost of as-
sembling H. Sparsity is exploited, in varying degrees, by all general-purpose
SDP solvers (Sturm, 1999, 2002; Titinci et al., 2003; Yamashita et al.,
2003; Benson and Ye, 2005; Borchers, 1999). Several of these techniques
use ideas from the theory of chordal sparse matrices and positive definite
matrix completion theory to reduce the problem size or speed up critical cal-
culations (Fukuda et al., 2000; Nakata et al., 2003; Burer, 2003; Andersen
et al., 2010). It was also recognized early on that low-rank structure in the
coeflicients F; can be very useful to reduce the complexity of interior-point
methods (Gahinet and Nemirovski, 1997; Benson et al., 1999). For example,
if F; = aia;fp, then it can be verified that

H=(ATRTTRA)o (ATR"TR™4)

where A is the matrix with columns a; and o is componentwise matrix mul-
tiplication. This expression for H takes only O(n®) operations to evaluate

3.5 Semidefinite Programming 75

if p = O(n). Low-rank structure is exploited in the LMI Control Tool-
box (Gahinet et al., 1995), DSDP (Benson and Ye, 2005), and SDPT3
(Titiinct et al., 2003). Recent applications of dense, low-rank structure
include SDPs derived from sum-of-squares formulations of nonnegative poly-
nomials (Lofberg and Parrilo, 2004; Roh and Vandenberghe, 2006; Roh et al.,
2007; Liu and Vandenberghe, 2007). Kandola et al. (2003) describe an ap-
plication in machine learning.

Sparsity and low-rank structure do not exhaust the useful types of problem
structure that can be exploited in SDP interior-point methods, as demon-
strated by the following two examples.

3.5.1 SDPs with Upper Bounds

A simple example from Toh et al. (2007) and Nouralishahi et al. (2008)
will illustrate the limitations of techniques based on sparsity. Consider a
standard form SDP with an added upper bound:

minimize Tr(CX)
subject to Tr(A4;X)=0b;, i=1,....,m (3.28)
0=X =<1
The variable X is a symmetric matrix of order p. Since general-purpose
SDP solvers do not accept this format directly, the problem needs to be
reformulated as one without upper bounds. An obvious reformulation is to
introduce a slack variable S and solve the standard form SDP
minimize Tr(CX)
subject to Tr(A4;X)=0b;, i=1,....m
X+5=1
X>=0, Sx=0.

(3.29)

This is the semidefinite programming analog of converting an LP with
variable bounds,

minimize Iz

subject to Ax =0b
0<z=x1,

76

Interior-Point Methods for Large-Scale Cone Programming

into a standard form LP,

minimize Lz

subject to Ax =0, z+s=1 (3.30)
z>=0, s=0.

Even though this is unnecessary in practice (LP solvers usually handle vari-
able upper bounds directly), the transformation to (3.30) would have only a
minor effect on the complexity. In (3.30) we add n extra variables (assuming
the dimension of x is n) and n extremely sparse equality constraints. A good
LP solver that exploits the sparsity will solve the LP at roughly the same cost
as the corresponding problem without upper bounds. The situation is very
different for SDPs. In (3.29) we increase the number of equality constraints
from m to m+p(p+1)/2. SDP solvers are not as good at exploiting sparsity
as LP solvers, so (3.29) is much harder to solve using general-purpose solvers
than the corresponding problem without upper bound.

Nevertheless, the SDP with upper bounds can be solved at a cost compa-
rable to the standard form problem, via a technique proposed by Toh et al.
(2007) and Nouralishahi et al. (2008). The reduced Newton equations (3.11)
for the SDP with upper bounds (3.29) are

m

TIAXT) + ThoAXT, + Z Ay A; =rx (3.31a)
=1
Tr(A;AX) =71y, i=1,....,m (3.31b)

where Ty = Ry TRy and Ty = Ry T R, ! are positive definite matrices. (The
Newton equations for the standard form problem (3.28) are similar, but have
only one term TAXT in the first equation, making it easy to eliminate AX.)

To solve (3.31) we first determine a congruence transformation that si-
multaneously diagonalizes 177 and 15,

vinwv =1, VIT,V = Diag(ny),

where 7 is a positive vector (see (Golub and Van Loan, 1996, section 8.7.2)).
If we define AX = VIAXV~T, A; = VT A;V, the equations reduce to

AX + Diag(y)AX Diag(y) + Z AyiA; = VgV
i=1

Tr(AAX) = 7y, i=1,...,m.

From the first equation, we can express AX in terms of Ay:

AX = (VIryV)ol — i Ayi(A; oT) (3.32)

i=1

3.5 Semidefinite Programming 77

m = p | time per iteration
50 0.05
100 0.33
200 2.62
300 10.5
400 30.4
500 70.8

Table 3.5: Time (seconds) per iteration of a customized interior-point method
for SDPs with upper bounds

where I' is the symmetric matrix with entries I';; = 1/(1+7;7;). Substituting
this in the second equation gives a set of equations HAy = r where

Hij = Tr(A;(Aj o)) = Tr((4; 0 A))T)), 4,5 =1,...,m.

After solving for Ay, one easily obtains AX from (3.32). The cost of this
method is dominated by the cost of computing the matrices A; (O(p*) flops
if m = O(p)), the cost of assembling H (O(p*) flops), and the cost of solving
for Ay (O(p*) flops). For dense coefficient matrices A;, the overall cost is
comparable to the cost of solving the Newton equations for the standard
form SDP (3.28) without upper bound.

Table 3.5 shows the time per iteration of a CVXOPT implementation of
the method described above. The test problems are randomly generated,
with m = p and dense coefficient matrices A;. The general-purpose SDP
solver SDPT3 v.4, called from CVX, and applied to problem (3.29) with
m = p = 100, takes about 23 seconds per iteration.

3.5.2 Nuclear Norm Approximation

In section 3.3.1 we discussed the ¢1-norm approximation problem (3.14)
and showed that the cost per iteration of an interior-point method is
comparable to the cost of solving the corresponding least-squares problem
(that is, O(mn?) operations). We can ask the same question about the matrix
counterpart of ¢1-norm approximation, the nuclear norm approximation
problem:

minimize || X (u) — D||s. (3.33)

Here || - ||« denotes the nuclear matrix norm (sum of singular values) and
X(u) =>" u;X; is a linear mapping from R™ to RP*%. The nuclear norm
is popular in convex heuristics for rank minimization problems in system

78

Interior-Point Methods for Large-Scale Cone Programming

theory and machine learning (Fazel et al., 2001; Fazel, 2002; Fazel et al.,
2004; Recht et al., 2010; Candes and Plan, 2010). These heuristics extend
f1-norm heuristics for sparse optimization.

Problem (3.33) is equivalent to an SDP

minimize (TrV; + TrV3)/2

V] X(u)—D 3.34
subject to ! () ()

with auxiliary symmetric matrix variables Vi, V5. The presence of the extra
variables V; and V3 clearly makes solving (3.34) using a general-purpose SDP
solver very expensive unless p and ¢ are small, and much more expensive
than solving the corresponding least-squares approximation problem (that
is, problem (3.33) with the Frobenius norm replacing the nuclear norm).

A specialized interior-point method is described in Liu and Vandenberghe
(2009). The basic idea can be summarized as follows. The Newton equations
for (3.34) are

AZH =TV, AZQQ =TV, TI'(XzTAZm) = Tu; = 1, N

and

AZL, AZy

AVy X(Au)

=T s
X(AWT AVs 7

where T = RR”T. The variables AZy1, AZay, AVy, AVs are easily eliminated,
and the equations reduce to

X(Au) + T AZyoToy + T1oAZLT, = 7y,
To(XIAZy) = 1o, i=1,...,n,

where Tj; are subblocks of T partitioned as the matrix in the con-
straint (3.34). The method of Liu and Vandenberghe (2009) is based on
applying a transformation that reduces 711 and Ths to identity matrices and
Ti2 to a (rectangular) diagonal matrix, and then eliminating AZ9 from the
first equation, to obtain a dense linear system in Awu. The cost of solving
the Newton equations is O(n?pq) operations if n > max{p, ¢}. For dense X;
this is comparable to the cost of solving the approximation problem in the
least-squares (Frobenius norm) sense.

Table 3.6 shows the time per iteration of a CVXOPT code for (3.34). The
problems are randomly generated with n = p = 2¢. Note that the SDP (3.34)
has n 4+ p(p+1)/2 + q(q + 1)/2 variables and is very expensive to solve by
general-purpose interior-point codes. CVX/SDPT3 applied to (3.33) takes

8.6 Conclusion

79

n =p = 2q | time per iteration
100 0.30
200 2.33
300 8.93
400 23.9
500 52.4

Table 3.6: Time (seconds) per iteration of a customized interior-point method
for the nuclear norm approximation problem

22 seconds per iteration for the first problem (n = p = 100, g = 50).

3.6 Conclusion

Interior-point algorithms for conic optimization are attractive in machine
learning and other applications because they converge to a high accuracy
in a small number of iterations and are quite robust with respect to data
scaling. The main disadvantages are the high memory requirements and the
linear algebra complexity associated with the linear equations that are solved
at each iteration. It is therefore critical to exploit problem structure when
solving large problems. For linear and quadratic programming, sparse ma-
trix techniques provide a general and effective approach to handling problem
structure. For nonpolyhedral cone programs, and semidefinite programs in
particular, the sparse approach is less effective for two reasons. First, trans-
lating non-sparse problem structure into a sparse model may require intro-
ducing a very large number of auxiliary variables and constraints. Second,
techniques for exploiting sparsity in SDPs are less well developed than for
LPs. It is therefore difficult to develop general-purpose techniques for exploit-
ing problem structure in cone programs that are as scalable as sparse linear
programming solvers. However, it is sometimes quite straightforward to find
special-purpose techniques that exploit various types of problem structure.
When this is the case, customized implementations can be developed that
are orders of magnitude more efficient than general-purpose interior-point
implementations.

3.7 References

F. Alizadeh and D. Goldfarb. Second-order cone programming. Mathematical
Programming, series B, 95:3-51, 2003.

80

Interior-Point Methods for Large-Scale Cone Programming

E. D. Andersen. On primal and dual infeasibility certificates in a homogeneous
model for convex optimization. SIAM Journal on Optimization, 11(2):380-388,
2000.

E. D. Andersen, C. Roos, and T. Terlaky. On implementing a primal-dual interior-
point method for conic quadratic optimization. Mathematical Programming,
series B, 95(2):249-277, 2003.

M. S. Andersen, J. Dahl, and L. Vandenberghe. Implementation of nonsymmetric
interior-point methods for linear optimization over sparse matrix cones. Mathe-
matical Programming Computation, 2(3-4):167-201, 2010.

A. Ben-Tal and A. Nemirovski. Lectures on Modern Convex Optimization: Analysis,
Algorithms, and Engineering Applications. STAM, Philadelphia, 2001.

S. J. Benson and Y. Ye. DSDP5: Software for semidefinite programming. Technical
Report ANL/MCS-P1289-0905, Mathematics and Computer Science Division,
Argonne National Laboratory, Argonne, IL, 2005.

S. J. Benson, Y. Ye, and X. Zhang. Solving large-scale sparse semidefinite programs
for combinatorial optimization. SIAM Journal on Optimization, 10:443-461,
1999.

B. Borchers. CSDP, a C library for semidefinite programming. Optimization
Methods and Software, 11(1):613-623, 1999.

S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press,
2004.

S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan. Linear Matriz Inequalities in
System and Control Theory, volume 15 of SIAM Studies in Applied Mathematics.
Philadelphia, 1994.

S. Burer. Semidefinite programming in the space of partial positive semidefinite
matrices. SIAM Journal on Optimization, 14(1):139-172, 2003.

E. J. Candes and Y. Plan. Matrix completion with noise. Proceedings of the IEEE,
98(6):925-936, 2010.
K. Crammer and Y. Singer. On the algorithmic implementation of the multiclass

kernel-based vector machines. Journal of Machine Learning Research, 2:265-292,
2001.

J. Dahl and L. Vandenberghe. CVXOPT: A Python Package for Convex Optimiza-
tion. http://abel.ee.ucla.edu/cvxopt, 2009.

M. Fazel. Matriz Rank Minimization with Applications. PhD thesis, Stanford
University, 2002.

M. Fazel, H. Hindi, and S. Boyd. A rank minimization heuristic with application to
minimum order system approximation. In Proceedings of the American Control
Conference, volume 6, pages 4734-4739, 2001.

M. Fazel, H. Hindi, and S. Boyd. Rank minimization and applications in system
theory. In Proceedings of the American Control Conference, pages 3273-3278,
2004.

M. C. Ferris and T. S. Munson. Interior-point methods for massive support vector
machines. SIAM Journal on Optimization, 13(3):783-804, 2002.

S. Fine and K. Scheinberg. Efficient SVM training using low-rank kernel represen-
tations. Journal of Machine Learning Research, 2:243-264, 2002.

M. Fukuda, M. Kojima, K. Murota, and K. Nakata. Exploiting sparsity in semidef-
inite programming via matrix completion I: general framework. STIAM Journal

3.7 References

81

on Optimization, 11(3):647-674, 2000.

P. Gahinet and A. Nemirovski. The projective method for solving linear matrix
inequalities. Mathematical Programming, 77(2):163-190, May 1997.

P. Gahinet, A. Nemirovski, A. J. Laub, and M. Chilali. LMI Control Toolbox. The
MathWorks, 1995.

E. M. Gertz and S. J. Wright. Object-oriented software for quadratic programming.
ACM Transactions on Mathematical Software, 29(1):58-81, 2003.

J. Gillberg and A. Hansson. Polynomial complexity for a Nesterov-Todd potential-
reduction method with inexact search directions. In Proceedings of the 42nd
IEEE Conference on Decision and Control, volume 3, pages 3824-3829, 2003.

D. Goldfarb and K. Scheinberg. Product-form Cholesky factorization in interior
point methods for second-order cone programming. Mathematical Programming
Series A, 103(1):153-179, 2005.

G. H. Golub and C. F. Van Loan. Matriz Computations. John Hopkins University
Press, third edition, 1996.

M. Grant and S. Boyd. CVX: Matlab Software for Disciplined Convex Programming
(Web Page and Software). http://stanford.edu/ boyd/cvx, 2007.

M. Grant and S. Boyd. Graph implementations for nonsmooth convex programs.
In V. Blondel, S. Boyd, and H. Kimura, editors, Recent Advances in Learning
and Control (a Tribute to M. Vidyasagar), pages 95-110. Springer, 2008.

C. Helmberg, F. Rendl, R. J. Vanderbei, and H. Wolkowicz. An interior-point
method for semidefinite programming. SIAM Journal on Optimization, 6(2):
342-361, 1996.

S. Joshi and S. Boyd. An efficient method for large-scale gate sizing. I[IEEFE
Transactions on Circuits and Systems I, 55(9):2760-2773, 2008.

J. Kandola, T. Graepel, and J. Shawe-Taylor. Reducing kernel matrix diagonal
dominance using semi-definite programming. In B. Schélkopf and M. War-
muth, editors, Learning Theory and Kernel Machines, Proceedings of the 16th
Annual Conference on Learning Theory and 7th Kernel Workshop, pages 288—
302. Springer-Verlag, 2003.

S.-J. Kim, K. Koh, M. Lustig, S. Boyd, and D. Gorinevsky. An interior-point
method for large-scale ¢-regularized least squares. IEFEE Journal on Selected
Topics in Signal Processing, 1(4):606-617, 2007.

K. Koh, S.-J. Kim, and S. Boyd. An interior-point method for large-scale ¢;-
regularized logistic regression. Journal of Machine Learning Research, 8:1519—
1555, 2007.

M. Kojima, S. Shindoh, and S. Hara. Interior-point methods for the monotone
semidefinite linear complementarity problem in symmetric matrices. SIAM
Journal on Optimization, 7:86-125, 1997.

Y. LeCun and C. Cortes. The MNIST Database of Handwritten Digits. Available
at http://yann.lecun.com/exdb/mnist/, 1998.
Z. Liu and L. Vandenberghe. Low-rank structure in semidefinite programs derived

from the KYP lemma. In Proceedings of the 46th IEEE Conference on Decision
and Control, pages 56525659, 2007.

Z. Liu and L. Vandenberghe. Interior-point method for nuclear norm approximation
with application to system identification. SIAM Journal on Matrixz Analysis and
Applications, 31(3):1235-1256, 2009.

82

Interior-Point Methods for Large-Scale Cone Programming

J. Lofberg. YALMIP: A Toolbox for Modeling and Optimization in MATLAB. In
Proceedings of the International Symposium on Computer Aided Control Systems
Design, pages 284-289, 2004.

J. Lofberg and P. A. Parrilo. From coefficients to samples: A new approach to
SOS optimization. In Proceedings of the 43rd IEEE Conference on Decision and
Control, volume 3, pages 3154-3159, 2004.

R. D. C. Monteiro and Y. Zhang. A unified analysis for a class of long-step
primal-dual path-following interior-point algorithms for semidefinite program-
ming. Mathematical Programming, 81:281-299, 1998.

MOSEK ApS. The MOSEK Optimization Tools Manual. Version 6.0., 2010.
Available from www.mosek.com.

K. Nakata, K. Fujisawa, M. Fukuda, M. Kojima, and K. Murota. Exploiting
sparsity in semidefinite programming via matrix completion II: Implementation
and numerical details. Mathematical Programming, series B, 95(2):303-327, 2003.

Y. Nesterov and A. Nemirovskii. Interior-Point Polynomial Methods in Convez
Programming, volume 13 of Studies in Applied Mathematics. SIAM, Philadelphia,
1994.

Y. Nesterov, M. J. Todd, and Y. Ye. Infeasible-start primal-dual methods and
infeasibility detectors for nonlinear programming problems. Mathematical Pro-
gramming, 84(2):227-267, 1999.

Y. E. Nesterov and M. J. Todd. Self-scaled barriers and interior-point methods for
convex programming. Mathematics of Operations Research, 22(1):1-42, 1997.

Y. E. Nesterov and M. J. Todd. Primal-dual interior-point methods for self-scaled
cones. SIAM Journal on Optimization, 8(2):324-364, May 1998.

M. Nouralishahi, C. Wu, and L. Vandenberghe. Model calibration for optical
lithography via semidefinite programming. Optimization and Engineering, 9:
19-35, 2008.

B. Recht, M. Fazel, and P. A. Parrilo. Guaranteed minimum-rank solutions of linear

matrix equations via nuclear norm minimization. SIAM Review, 52(3):471-501,
2010.

T. Roh and L. Vandenberghe. Discrete transforms, semidefinite programming, and
sum-of-squares representations of nonnegative polynomials. SIAM Journal on
Optimization, 16(4):939-964, 2006.

T. Roh, B. Dumitrescu, and L. Vandenberghe. Multidimensional FIR filter design
via trigonometric sum-of-squares optimization. IEEE Journal of Selected Topics
in Signal Processing, 1(4):641-650, 2007.

P. K. Shivaswamy, C. Bhattacharyya, and A. J. Smola. Second order cone program-
ming approaches for handling missing and uncertain data. Journal of Machine
Learning Research, 7:1283-1314, 2006.

J. F. Sturm. Using SEDUMI 1.02, a Matlab toolbox for optimization over symmetric
cones. Optimization Methods and Software, 11-12:625-653, 1999.

J. F. Sturm. Implementation of interior point methods for mixed semidefinite and
second order cone optimization problems. Optimization Methods and Software,
17(6):1105-1154, 2002.

K. C. Toh, R. H. Tiitiincii, and M. J. Todd. Inexact primal-dual path-following

algorithms for a special class of convex quadratic SDP and related problems.
Pacific Journal of Optimization, 3, 2007.

3.7 References 83

R. H. Tiitiincii, K. C. Toh, and M. J. Todd. Solving semidefinite-quadratic-linear
programs using SDPT3. Mathematical Programming, series B, 95:189-217, 2003.

R. Wallin, A. Hansson, and J. H. Johansson. A structure exploiting preprocessor
for semidefinite programs derived from the Kalman-Yakubovich-Popov lemma.
IEEE Transactions on Automatic Control, 54(4):697-704, 2009.

M. Yamashita, K. Fujisawa, and M. Kojima. Implementation and evaluation of
SDPA 6.0 (Semidefinite Programming Algorithm 6.0). Optimization Methods
and Software, 18(4):491-505, 2003.

Incremental Gradient, Subgradient, and
Proximal Methods for Convex
Optimization: A Survey

Dimitri P. Bertsekas dimitri@mit.edu
Dept. of Electr. Engineering and Comp. Science, M.1.T.
Cambridge, MA, 02139

We survey incremental methods for minimizing a sum Y ;- fi(x) consist-
ing of a large number of convex component functions f;. Our methods con-
sist of iterations applied to single components, and have proved very effec-
tive in practice. We introduce a unified algorithmic framework for a variety
of such methods, some involving gradient and subgradient iterations, which
are known, and some involving combinations of subgradient and proximal
methods, which are new and offer greater flexibility in exploiting the spe-
cial structure of f;. We provide an analysis of the convergence and rate of
convergence properties of these methods, including the advantages offered
by randomization in the selection of components. We also survey applica-
tions in inference/machine learning, signal processing, and large-scale and
distributed optimization.

86 Incremental Gradient, Subgradient, and Proximal Methods for Convex Optimization

4.1 Introduction

We consider optimization problems with a cost function consisting of a large
number of component functions, such as

minimize Z fi(x)

i=1 (4.1)
subject to x € X,
where f; : R — R, i =1,...,m are real-valued functions, and X is a closed

convex set.] We focus on the case where the number of components m is very
large, and there is an incentive to use incremental methods that operate on a
single component f; at each iteration, rather than on the entire cost function.
If each incremental iteration tends to make reasonable progress in some
“average” sense, then, depending on the value of m, an incremental method
may significantly outperform (by orders of magnitude) its nonincremental
counterpart, as extensive experience has shown.

In this chapter, we survey the algorithmic properties of incremental meth-
ods in a unified framework, based on the author’s recent work on incremen-
tal proximal methods (Bertsekas, 2010). In this section, we first provide an
overview of representative applications, and then we discuss three types of
incremental methods: gradient, subgradient, and proximal. We unify these
methods into a combined method, which we use as a vehicle for analysis in
Sections 4.2, 4.3, and 4.4. Finally, we discuss in greater detail some illus-
trative applications in Section 4.5. Some of the proofs of propositions have
been omitted and can be found in the report (Bertsekas, 2010).

4.1.1 Some Examples of Additive Cost Problems

Additive cost problems of the form (4.1) arise in a variety of contexts. Let
us provide a few examples where the incremental approach may have an
advantage over alternatives.

Example 4.1 (Least Squares and Inference). An important context
where cost functions of the form > ", fi(z) arise is inference/machine
learning, where each term f;(z) corresponds to error between some data and

1. Throughout the chapter, we will operate within the n-dimensional space " with the
standard Euclidean norm, denoted || - ||. All vectors are considered column vectors and
a prime denotes transposition, so 2’z = ||z||>. We will be using standard terminology of
convex optimization throughout, as given, for example, in textbooks such as Rockafellar
(1970), or the author’s recent book (Bertsekas, 2009).

4.1 Introduction

87

the output of a parametric model, with x being the vector of parameters. An
example is linear least-squares problems, where f; has quadratic structure,
except for a regularization function, which may be differentiable/quadratic,
as in the classical regression problem

m

Z(ag:r —b)? +qllz — 7% st xe R

i=1
where T is given, or nondifferentiable, as in the ¢;-regularization problem

m

n
Z(agx—bi)Q—i—’yZ]:rj\, st (z1,...,2,) € R,
j=1

=1

which will be discussed further in Section 4.5.
A more general class of additive cost problems is nonlinear least squares.
Here

filz) = (hi(2))?,

where h;(z) represents the difference between the ith measurement (out of
m) from a physical system and the output of a parametric model whose
parameter vector is . Problems of nonlinear curve fitting and regression, as
well as problems of training neural networks, fall in this category, and they
are typically nonconvex.

Another possibility is to use a nonquadratic function to penalize the error
between some data and the output of the parametric model. For example,
in place of the squared error (aix — b;)?, we may use

fi(z) = L{ajz = bi),

where £ is a convex function. This is a common approach in robust estimation
and some support vector machine formulations.

Still another example is mazimum likelihood estimation, where f; is a log-
likelihood function of the form

fi(x) = —log Py (y;; x),

where yi1,...,ym represents values of independent samples of a random
vector whose distribution Py (+;) depends on an unknown parameter vector
x € R™ that one wishes to estimate. Related contexts include “incomplete”
data cases, where the expectation-maximization (EM) approach is used.

Example 4.2 (Dual Optimization in Separable Problems). Consider

88

Incremental Gradient, Subgradient, and Proximal Methods for Convex Optimization

the problem

m
maximize Z ci(yi)
i=1

m
subject to Zgi(yi) >0, yeY, i=1,...,m,
i=1
where ¢; : ® — R and g; : ® — R" are functions of the single scalar
coordinate y;, and Y; are given sets of scalars. Then, by assigning a dual
vector/multiplier € R™ to the n-dimensional constraint function, we obtain
the dual problem

n
minimize Z fi(x), subject to x >0,
i=1

where

fi(z) = sup {ci(yi) +2'gi(yi) } »
Yi€Y;
which has the additive form (4.1). Note that Y; is not assumed to be
convex, so integer programming and other discrete optimization problems
are included. However, the dual cost function components f; are always
convex, and their values and subgradients can often be computed either
analytically or with a one-dimensional maximization.

Example 4.3 (Minimization of an Expected Value: Stochastic Pro-
gramming). Consider the minimization of an expected value

minimize E{F(z,w)}

) (4.2)
subject to x € X,

where w is a random variable taking a finite but very large number of values
w;, 7 =1,...,m, with corresponding probabilities ;. Then the cost function
consists of the sum of the m functions m; F'(x, w;).

An example is stochastic programming, a classical model of two-stage
optimization under uncertainty. A vector x € X is selected, a random event
occurs that has m possible outcomes wi, ..., wy,, and then another vector y
is selected from some set Y with knowledge of the outcome that occurred.
Then, for optimization purposes, we need to specify a different vector y; € Y
for each outcome w;. The problem is to minimize the expected cost

F(z)+) mGiyi),
=1

4.1 Introduction

89

where G;(y;) is the cost associated with the occurrence of w;, and ; is the
corresponding probability. This is a problem with an additive cost function.
Furthermore, if there are separable (e.g., linear) constraints coupling the
vectors x and y;, the problem has a separable form.

Additive cost function problems also arise from problem (4.2) in a different
way: when the expected value £ {F (z, w)} is approximated by an m-sample
average

1 m
flx)=— F(z,w;),
()= 1 L Flavw)
where w; are independent samples of the random variable w. The minimum

of the sample average f(x) is then taken as an approximation of the
minimum of E{F(z,w)}.

Example 4.4 (Problems with Many Constraints). Problems of the
form

minimize T

e flo) (43)

subject to gj(z) <0, j=1,...,m,z € X,
where the number r of constraints is very large, often arise in practice, either
directly or via reformulation from other problems. They can be handled in
a variety of ways. One possibility is to adopt a penalty function approach,
and replace problem (4.3) with

minimize r)+c Plgi(x
f(z) + ; (9j()) (4.4

subject to x € X,

where P(-) is a scalar penalty function satisfying P(¢t) = 0 if ¢ < 0, and
P(t) > 0if t > 0, and ¢ is a positive penalty parameter. For example,
one may use the quadratic penalty P(t) = (max{O,t})2. An interesting
alternative is to use P(t) = max{0,t}, in which case it can be shown that the
optimal solutions of problems (4.3) and (4.4) coincide when c is sufficiently
large (see, for example, Bertsekas et al. (2003, Section 7.3) for the case in
which f is convex). The cost function of the penalized problem (4.4) is of
the additive form (4.1).

The idea of replacing constraints with penalties can be extended to the
case where the constraint € X in problem (4.3) has the form z € N2, X;.
Then, under relatively mild conditions, problem (4.3) is equivalent to the

90

Incremental Gradient, Subgradient, and Proximal Methods for Convex Optimization

unconstrained minimization of

flx) + CZ P(gj(x)) + Z dist(z; X;),
j=1

J=1

where dist(x; X;) = infyex, ||y — 2| and v is a sufficiently large penalty
parameter. We discuss this possibility in Section 4.5.

Example 4.5 (Distributed Incremental Optimization in Sensor
Networks). Consider a network of m sensors where data are collected and
used to solve some inference problem involving a parameter vector x. If
fi(x) represents an error penalty for the data collected by the ith sensor,
the inference problem is of the form (4.1). While it is possible to collect all
the data at a fusion center where the problem will be solved in centralized
manner, it may be preferable to adopt a distributed approach in order to
save data communication overhead and/or take advantage of parallelism in
computation. In such an approach the current iterate x; is passed from one
sensor to another, with each sensor ¢ performing an incremental iteration
involving just its local component function f;, and the entire cost function
need not be known at any one location. We refer to Blatt et al. (2007), and
Rabbat and Nowak (2004, 2005) for further discussion.

Example 4.6 (Weber Problem in Location Theory). We want to find
a point x in the plane whose sum of weighted distances from a given set of
points y1, ..., Yn is minimized. Mathematically, the problem is

m
Zlex —yill, st. zeR",
i=1

where wi, . .., w,, are given positive scalars. This problem descends from the
famous Fermat-Torricelli-Viviani problem (see (Boltyanski et al., 1999) for
an account of the history; Fermat’s formulation was for the case of a triangle,
where m = 3). It is a basic problem in location theory, and has received a
lot of attention. The algorithmic approaches of this chapter would be of
potential interest when the number of points m is large. We refer to Beck
and Teboulle (2010) for a discussion that is relevant to our context.

4.1.2 Incremental Gradient Methods: Differentiable Problems

In the case where the components f; are differentiable (not necessarily
convex), we may use incremental gradient methods, which have the form

Th41 = PX ($k - Oszfik (xk)), (4.5)

4.1 Introduction

91

where oy, is a positive stepsize, Px(-) denotes projection on X, and i is
the index of the cost component that is iterated on. Such methods have
a long history, particularly for the unconstrained case (X = R"), starting
with the Widrow-Hoff least-mean-squares (LMS) method (Widrow and Hoff,
1960) for positive semidefinite quadratic component functions (see e.g.,
(Luo, 1993), (Bertsekas and Tsitsiklis, 1996, Section 3.2.5), (Bertsekas, 1999,
Section 1.5.2)). They have also been used extensively for the training of
neural networks, a case of nonquadratic/nonconvex cost components, under
the generic name “backpropagation methods.” There are several variants of
these methods, which differ in the stepsize selection scheme, and iin the order
in which components are taken up for iteration (it could be deterministic
or randomized). They are supported by convergence analyses under various
conditions; see Luo (1993), Grippo (1994), Grippo (2000), Luo and Tseng
(1994), Mangasarian and Solodov (1994), Bertsekas (1997), Solodov (1998),
and Tseng (1998).

When comparing the incremental gradient method with its classical non-
incremental gradient counterpart (where m = 1 and all components are
lumped into a single function f(z) = Y"", fi(z)), it is important to realize
that there are two complementary performance issues to consider.

1. Progress when far from convergence. Here the incremental method can
be much faster. For an extreme case let X = R" (no constraints), and
take m very large and all components f; identical to each other. Then an
incremental iteration requires m times less computation than a classical
gradient iteration, but gives exactly the same result. While this is an extreme
example, it reflects the essential mechanism by which incremental methods
can be far superior: when the components f; are not too dissimilar, far from
the minimum a single component gradient will point to, “more or less,” the
right direction (see also the discussion of Bertsekas (1997) and Bertsekas
(1999, Example 1.5.5 and Exercise 1.5.5).)

2. Progress when close to convergence. Here the incremental method is gen-
erally inferior. As we will discuss shortly, it converges at a sublinear rate
because it requires a diminishing stepsize ay, compared with the typically
linear rate achieved with the classical gradient method when a small, con-
stant stepsize is used (ax = «). One may use a constant stepsize with the
incremental method - and indeed this may be the preferred mode of imple-
mentation - but then the method typically oscillates in the neighborhood
of a solution, with the size of the oscillation roughly proportional to «, as
examples and theoretical analysis show.

To understand the convergence mechanism of incremental gradient meth-
ods, let us consider the case X = R, and assume that the component

92

Incremental Gradient, Subgradient, and Proximal Methods for Convex Optimization

functions f; are selected for iteration according to a cyclic order (i.e., for
every £, igm, = 1, ipme1 = 2, -, lgm+m—1 = m), and let us assume that ay, is
constant within a cycle (i.e., agpy = Qpme1 =+ = Qpmim—1)- Then, viewing
the iteration (4.5) in terms of cycles, we have, for every k that marks the
beginning of a cycle (i, = 1),

m
Tpgm = T — @k YV fil@pric1) = 2 — o (VF(2r) + ex),
i=1
where f is the cost function/sum of components, f(x) = > /", fi(z), and ey
is given by
m
er =Y (Vilzr) = Vi(zrrio)),
i=1
and may be viewed as an error in the calculation of the gradient V f(xy).
For Lipschitz continuous gradient functions V f;, the error ey is proportional
to ag, and this shows two fundamental properties of incremental gradient
methods, which hold generally for the other incremental methods of this
chapter as well.

1. A constant stepsize («ap = «) typically cannot guarantee convergence,
since then the size of the gradient error |leg| is typically bounded away
from 0. Instead, a peculiar form of convergence takes place for constant
but sufficiently small «, whereby the iterates within cycles converge to
corresponding points of a limit cycle. This is true even in the most favorable
case of a linear least squares problem (see Luo (1993), or the textbook
analysis of Bertsekas (1999, Section 1.5.1)).

2. A diminishing stepsize (such as o, = O(1/k)) leads to a diminishing
error ey, so (under the appropriate Lipschitz condition) it can result in
convergence to a stationary point of f.

A corollary of these properties is that the price for achieving convergence
is the slow (sublinear) asymptotic rate of convergence associated with a
diminishing stepsize, which compares unfavorably with the often linear rate
of convergence associated with a constant stepsize and the nonincremental
gradient method. However, in practical terms this argument does not tell the
entire story, since in the early iterations, the incremental gradient method
often achieves a much faster convergence rate than its nonincremental
counterpart. In practice, the incremental method is usually operated with
a stepsize that either is constant or is gradually reduced up to a positive
value small enough that the resulting asymptotic oscillation is of no essential
concern. An alternative is to use a constant stepsize throughout, but to

4.1 Introduction

93

reduce over time the degree of incrementalism, so that ultimately the
method becomes nonincremental and achieves a linear convergence rate (see
Bertsekas (1997) and Solodov (1998)).

Aside from extensions to nondifferentiable cost problems, for X = R"
there is an important variant of the incremental gradient method that
involves extrapolation along the direction of the difference of the preceding
two iterates:

Ty = T — Vi, (xg) + Bz — Tp—1), (4.6)

where [is a scalar in [0,1) and x_; = z (see e.g., Mangasarian and Solodov
(1994), Tseng (1998), Bertsekas (1996, Section 3.2)). This is sometimes
called the incremental gradient method with momentum. The nonincremen-
tal version of this method is the heavy ball method of Poljak (1964), which
can be shown to have a faster convergence rate than the corresponding gra-
dient method (see Polyak (1987, Section 3.2.1)). A nonincremental method
of this type, but with variable and suitably chosen value of 5, has been
proposed by Nesterov (1983), and has received a lot of attention recently
because it has optimal iteration complexity properties under certain condi-
tions (see Nesterov (2004, 2005), Lu et al. (2008), Tseng (2008), and Beck
and Teboulle (2009, 2010)). However, no incremental analogs of this method
with favorable complexity properties are currently known.

Another variant of the incremental gradient method for the case X = R"
has been proposed by Blatt et al. (2007), which (after the first m iterates
are computed) has the form

m—1

Tyt =ax —a Y Vi (Trr). (4.7)
=0

(For k < m, the summation should go up to ¢ = min{k, m — 1}, and a should
be replaced by a corresponding larger value, such as ap = ma/(k + 1).)
This method also computes the gradient incrementally, one component per
iteration, but in place of the single component gradient V f;, (zx) in (4.5),
it uses an approximation to the total cost gradient V f(zy), which is an
aggregate of the component gradients computed in the past m iterations. A
cyclic order of component function selection (i = k modulo m plus 1) is
assumed in (Blatt et al., 2007), and a convergence analysis is given, including
a linear convergence rate result for a sufficiently small constant stepsize «
and quadratic component functions f;. It is not clear how iterations (4.5)
and (4.7) compare in terms of rate of convergence, although the latter seems
likely to make faster progress when close to convergence. Note that iteration
(4.7) bears similarity to the incremental gradient iteration with momentum

94

Incremental Gradient, Subgradient, and Proximal Methods for Convex Optimization

(4.6) where 8 ~ 1. In particular, when aj = «, the sequence generated by
(4.6) satisfies

k
vep=ak—ay BV (@),
=0

which resembles (4.7). There are no known analogs of iterations (4.6) and
(4.7) for nondifferentiable cost problems.

Among alternative incremental methods for differentiable cost problems,
we also mention versions of the Gauss-Newton method for nonlinear least-
squares problems, based on the extended Kalman filter ((Davidon, 1976),
(Bertsekas, 1996), and (Moriyama et al., 2003)). They are mathematically
equivalent to the ordinary Gauss-Newton method for linear least squares,
which they solve exactly after a single pass through the component functions
fi, but they often perform much faster in the nonlinear case, particularly
when m is large.

Let us finally note that incremental gradient methods are related to
stochastic gradient methods, which aim to minimize an expected value
E{F(z,w)} (cf. Example 1.3) by using the iteration

Th1 = T — ap VEF (2, wy),

where wy, is a sample of the random variable w. These methods also have
a long history (see Polyak and Tsypkin (1973), Ljung (1977), Kushner and
Clark (1978), Tsitsiklis et al. (1986), Polyak (1987), Bertsekas and Tsit-
siklis (1989, 1996, 2000), Gaivoronski (1994), Pflug (1996), Kushner and
Yin (1997), Bottou (2005), Meyn (2007), Borkar (2008), Nemirovski et al.
(2009), Lee and Wright (2010)), and are strongly connected with stochastic
approximation algorithms. The main difference between stochastic and de-
terministic formulations is that the former involve sequentially sampling cost
components from an infinite population under some statistical assumptions,
while in the latter the set of cost components is predetermined and finite.
However, it is possible to view the incremental gradient method (4.5), with a
randomized selection of the component function f; (i.e., with iy chosen to be
any one of the indexes 1,...,m, with equal probability 1/m), as a stochas-
tic gradient method (see Bertsekas and Tsitsiklis (1996, Example 4.4) and
(Bertsekas and Tsitsiklis, 2000, Section 5)).

The stochastic formulation of incremental methods just discussed high-
lights an important application context where the component functions f;
are not given a priori, but become known sequentially through some obser-
vation process. Then it often makes sense to use an incremental method to
process the component functions as they become available, and to obtain

4.1 Introduction

95

approximate solutions as early as possible. In fact, this may be essential in
time-sensitive and possibly time-varying environments, where solutions are
needed “online.” In such cases, one may hope that an adequate estimate of
the optimal solution will be obtained before all the functions f; are processed
for the first time.

4.1.3 Incremental Subgradient Methods - Nondifferentiable Problems

Incremental subgradient methods apply to the case where the component
functions f; are convex and nondifferentiable at some points. They are simi-
lar to their gradient counterparts (4.5) except that an arbitrary subgradient
V fi, (x1) of the cost component f;, is used in place of the gradient:2

Tr+1 = Px (:Ek — ak@flk (a:k)) (4.8)

Such methods were first proposed in the general form (4.8) in the Soviet
Union by Kibardin (1980), following the earlier paper by Litvakov (1966)
(which considered convex/nondifferentiable extensions of linear least-squares
problems) and related subsequent proposals.® These works remained unno-
ticed until about 2005 in the Western literature, where incremental methods
were often reinvented in different contexts and with different lines of analy-
sis. See Ben-Tal et al. (2001), Nedi¢ and Bertsekas (2000, 2001, 2010), Nedié
et al. (2001), Kiwiel (2004), Rabbat and Nowak (2004, 2005), Gaudioso et al.
(2006), Shalev-Shwartz et al. (2007), Neto and De Pierro (2009), Johansson
et al. (2009), Predd et al. (2009), Ram et al. (2009a,b), and Duchi et al.
(2010).

Incremental subgradient methods have convergence characteristics that
are similar in many ways to their gradient counterparts, the most important
similarity being the necessity for a diminishing stepsize «; for convergence.
The lines of analysis, however, tend to be different, since incremental gra-
dient methods rely for convergence on arguments based on decrease of the
cost function value, while incremental subgradient methods rely on argu-

2. In this chapter, we use V f(z) to denote a subgradient of a convex real-valued function
f at a vector . The choice of Vf(z) from within the subdifferential df(z) at z will be
clear from the context.

3. Generally, in those times, algorithmic ideas relating to simple gradient methods with
and without deterministic and stochastic errors were popular in the Soviet scientific com-
munity, partly due to an emphasis on stochastic iterative algorithms, such as pseudogra-
dient and stochastic approximation; the works of Ermoliev, Polyak, and Tsypkin, to name
a few of the principal contributors, are representative (Ermoliev, 1969; Polyak and Tsyp-
kin, 1973; Ermoliev, 1976; Polyak, 1978, 1987). By contrast, the emphasis in the Western
literature at the time was on more complex Newton-like and conjugate direction methods.

96

Incremental Gradient, Subgradient, and Proximal Methods for Convex Optimization

ments based on decrease of the iterates’ distance from the optimal solution
set. The line of analysis of this chapter is of the latter type, and is similar to
earlier works of the author and his collaborators (see Nedi¢ and Bertsekas
(2000), Nedi¢ and Bertsekas (2001), Nedi¢ et al. (2001), and the textbook
presentations in Bertsekas (1999) and Bertsekas et al. (2003)).

Note two important ramifications of the lack of differentiability of the
component functions f;:

1. Convexity of f; becomes essential, since the notion of subgradient is
connected with convexity (subgradient-like algorithms for nondifferentiable
/ nonconvex problems have been suggested in the literature, but tend to be
complicated and have not found much application thus far).

2. There is more reason to favor the incremental over the nonincremen-
tal methods, since (contrary to the differentiable case) nonincremental sub-
gradient methods also require a diminishing stepsize for convergence, and
typically achieve a sublinear rate of convergence. Thus the one theoretical
advantage of the nonincremental gradient method discussed earlier is not
shared by its subgradient counterpart.

Finally, just as in the differentiable case, there is a substantial literature
for stochastic versions of subgradient methods. In fact, as we will discuss
in this chapter, there is a potentially significant advantage in turning the
method into a stochastic one by randomizing the order of selection of the
components f; for iteration.

4.1.4 Incremental Proximal Methods

We now consider an extension of the incremental approach to proximal
algorithms. The simplest one for problem (4.1) is of the form

. 1
Tpa1 :arggél)r(l{fik(x)—k MH:L‘—xk]Q} , (4.9)

which relates to the proximal minimization algorithm ((Martinet, 1970),
(Rockafellar, 1976)) in the same way that the incremental subgradient
method (4.8) relates to the classical nonincremental subgradient method.*
Here {ay} is a positive scalar sequence, and we will assume that each
fi + R — R is a convex function and X is a nonempty closed convex set.

4. In this chapter, we restrict our attention to proximal methods with the quadratic
regularization term ||z —z||?. Our approach is applicable in principle when a nonquadratic
term is used instead, in order to match the structure of the given problem. The discussion
of such alternative algorithms is beyond our scope.

4.1 Introduction

97

The motivation for this type of method, which was considered only recently
in Bertsekas (2010), is that with a favorable structure of the components,
the proximal iteration (4.8) may be obtained in closed form or be relatively
simple, in which case it may be preferable to a gradient or subgradient
iteration. In this connection, we note that, generally, proximal iterations
are considered more stable than gradient iterations; for example, in the
nonincremental case, they converge essentially for any choice of aj, while
this is not so for gradient methods.

While some cost function components may be well suited for a proximal
iteration, others may not be because the minimization (4.9) is inconvenient,
so it makes sense to consider combinations of gradient /subgradient and prox-
imal iterations. In fact, in the past this has motivated nonincremental com-
binations of gradient and proximal methods for minimizing the sum of two
functions (or more generally, finding a zero of the sum of two nonlinear oper-
ators). These methods have a long history, dating to the splitting algorithms
of Lions and Mercier (1979) and Passty (1979), and have become popular
more recently (see Beck and Teboulle (2009, 2010), and the references they
cite for specialized algorithms, such as shrinkage/thresholding, cf. Section
5.1).

With similar motivation in mind, we adopt in this paper a unified algorith-
mic framework that includes incremental gradient, subgradient, and proxi-
mal methods and their combinations, and highlights their common structure
and behavior. We focus on problems of the form

m
minimize F(x) & ZE(&?)
i=1

(4.10)
subject to = € X,
where for all 7,
Fy(z) = fi(x) + hi(x), (4.11)

fi i R" — R™ and h; : R — R are real-valued convex functions, and X is a
nonempty closed convex set.

In Section 4.2, we consider several incremental algorithms that iterate on
the components f; with a proximal iteration, and on the components h; with
a subgradient iteration. By choosing all the f; or all the h; to be identically
zero, we obtain the subgradient and proximal iterations (4.8) and (4.9),
respectively, as special cases. However, our methods offer greater flexibility,
and may exploit the special structure of problems where the functions f; are
suitable for a proximal iteration, while the components h; are not suitable,
and thus may be preferably treated with a subgradient iteration.

98

Incremental Gradient, Subgradient, and Proximal Methods for Convex Optimization

In Section 4.3, we discuss the convergence and rate of convergence prop-
erties of methods that use a cyclic rule for component selection, and in
Section 4.4, we discuss a randomized component selection rule. In summary,
the convergence behavior of our incremental methods is similar to the one
outlined earlier for the incremental subgradient method (4.8). This includes
convergence within a certain error bound for a constant stepsize, exact con-
vergence to an optimal solution for an appropriately diminishing stepsize,
and improved convergence rate/iteration complexity when randomization is
used to select the cost component for iteration. In Section 4.5, we illustrate
our methods for some example applications.

4.2 Incremental Subgradient-Proximal Methods

In this section, we consider problems (4.10) and (4.11), and introduce several
incremental algorithms that involve a combination of a proximal and a
subgradient iteration. One of our algorithms has the form

1
2 :arggéi)rcl{fik(x)—i- MH&:—%P}, (4.12)
T4t = Px (2 — o Vhi, (1)), (4.13)

where Vh;, (z) is an arbitrary subgradient of h;, at z;. The iteration is
well defined because the minimum in (4.12) is uniquely attained since f;
is continuous and ||z — x| is real-valued, strictly convex, and coercive,
while the subdifferential dh;(zy) is nonempty since h; is real-valued. Also,
by choosing all the f; or all the h; to be identically zero, we obtain the
subgradient and proximal iterations (4.8) and (4.9), respectively, as special
cases.

The iterations (4.12) and (4.13) maintain both sequences {z;} and {z}
within the constraint set X, but it may be convenient to relax this constraint
for either the proximal or the subgradient iteration, thereby requiring a
potentially simpler computation. This leads to the algorithm

1 2
_ ; . — 4.14
o = ang ip {1 (o) + 5l — P (414
Tr+1 = Px (Zk — o Vh, (Zk)), (4.15)

where the restriction € X has been omitted from the proximal iteration,

4.2 Incremental Subgradient-Prozimal Methods 99

and to the algorithm
Zk = T — ak@hik (zk), (4.16)
. 1
Tha1 :argirél)r}{fik(x) —1—2ak||:1:—zk|2} , (4.17)

where the projection onto X has been omitted from the subgradient itera-
tion. It is also possible to use different stepsize sequences in the proximal
and subgradient iterations, but for notational simplicity we will not discuss
this type of algorithm.

All of the incremental proximal algorithms given above are new to our
knowledge, having first been proposed by Bertsekas (2010). The closest
connection to the existing proximal methods is the “proximal gradient”
method, which has been analyzed and discussed recently in the context of
several machine-learning applications by Beck and Teboulle (2009, 2010).
(It can also be interpreted in terms of splitting algorithms (Lions and
Mercier, 1979), (Passty, 1979).) This method is nonincremental, applies to
differentiable h; and, contrary to subgradient and incremental methods, it
does not require a diminishing stepsize for convergence to the optimum.
In fact, the line of convergence analysis of Beck and Teboulle (2009, 2010)
relies on the differentiability of h; and the nonincremental character of the
proximal gradient method, and thus is different from ours.

Part (a) of the following proposition is a key fact about incremental
proximal iterations. It shows that they are closely related to incremental
subgradient iterations, the only difference being that the subgradient is
evaluated at the end point of the iteration rather than at the starting point.
Part (b) of the proposition provides an inequality that is well known in the
theory of proximal methods, and will be useful for our convergence analysis.
In the following method, we denote by ri(S) the relative interior of a convex
set S, and by dom(f) the effective domain {x| f(x) < oo} of a function
f:R" = (—o0,00].

Proposition 4.1. Let X be a nonempty closed convex set, and let f : R" —
(—00, 00] be a closed proper convex function such that ri(X)Nri(dom(f)) # 0.
For any x, € R and ag > 0, consider the proximal iteration

. 1
Frp1 = arggél)r(l{f(w) L xkn?}. (4.18)

(a) The iteration can be written as

wry1 = Px (2, — apV f(2r41)), i=1,...,m, (4.19)

where V f(xy41) is some subgradient of f at Tjy1.

100

Incremental Gradient, Subgradient, and Proximal Methods for Convex Optimization

(b) For ally € X, we have

k1 =yl < llo =yl = 20k (f(2ra1) = F()) = Iz — x|
< lwn = yl* = 200(f(@r41) = f())- (4.20)
Proof. (a) We use the formula for the subdifferential of the sum of the
three functions f, (1/2ay)|lz — zx||?, and the indicator function of X (cf.
(Bertsekas, 2009, Proposition 5.4.6)), together with the condition that 0

should belong to this subdifferential at the optimum zj,;. We obtain that
(4.18) holds if and only if

1

;k(xk — :L'k+1) € af(.%'k+1) + NX(karl)? (4.21)

where Nx(zg41) is the normal cone of X at x4 (which is the set of vectors
y such that y'(x — x41) < 0 for all z € X, and also the subdifferential of
the indicator function of X at zj1; see (Bertsekas, 2009, p. 185)). This is
true if and only if

o, — Tpp1 — aV f(@p41) € Nx(Tp41)

for some Vf(zy11) € Of (xpy1), which in turn is true if and only if (4.19)
holds (cf. Bertsekas (2009, Proposition 5.4.6)).

(b) We have
ok — ylI> = |2k — Tpr1 + Tps1 — vl
= |l — 21l = 2(@k — Tog1) (Y — Tos1) + lzer —yl> (4.22)

Also since from (4.21), L (x), — z341) is a subgradient at ., of the sum

9 [e7%
of f and the indicator function of X, we have (also using the assumption

y € X) that

Fanan) + alkm)y — st < £().

Combining this relation with (4.22), the result follows. O

Based on the preceding proposition, we see that all the preceding iterations
can be written in an incremental subgradient format:

(a) Iteration (4.12)-(4.13) can be written as
2L = PX (ack - Oékﬁfik (Zk)), Lh4+1 = PX (Z]C - ak@hik (Zk)) (4.23)
(b) Iteration (4.14)-(4.15) can be written as

Zk = T — ak@flk (Zk), Tht1 = PX (Zk - ak@hik (Zk)) (4.24)

4.2 Incremental Subgradient-Prozimal Methods 101

(c) Iteration (4.16)-(4.17) can be written as
2k =T — ak@hik (zk), Tr+1 = Px (Zk — Oék@fzk ($k+1)). (4.25)

In all the preceding updates, the subgradient ﬁhik can be any vector in the
subdifferential of h;, , while the subgradient v fi, must be a specific vector
in the subdifferential of f;, , specified according to Proposition 4.1(a). Also,
iteration (4.24) can be written as

wp41 = Px (x5 — .V Fi, (21)),

and resembles the incremental subgradient method for minimizing over X
the cost F'(z) = >, F;(z) (cf. (4.10)), the only difference being that the
subgradient of Fj, is taken at z; rather than xy.

An important issue which affects the methods’ effectiveness is the order
in which the components { f;, h;} are chosen for iteration. We consider two
possibilities:

1. A cyclic order, whereby {f;, h;} are taken up in the fixed deterministic
order 1,...,m, so that iy is equal to (kK modulo m) plus 1. A contiguous
block of iterations involving { fi,h1},...,{fm, hm} in this order and exactly
once is called a cycle. We assume that the stepsize «y is constant within a
cycle (for all k£ with i = 1 we have ap = agy1 ... = Qkrm—1)-

2. A randomized order, whereby at each iteration a component pair { f;, h; }
is chosen randomly by sampling over all component pairs with a uniform
distribution, independently of the past history of the algorithm.

It is essential to include all components in a cycle in the cyclic case, and
to sample according to the uniform distribution in the randomized case, for
otherwise some components will be sampled more often than others, leading
to a bias in the convergence process.

For the remainder of the chapter, we denote the optimal value of problem

(4.10) by F* :
F* = inf F(x),
zeX

and the set of optimal solutions (which could be empty) by X*:
X*={z"|2* € X, F(z*)=F*}.

Also, for a nonempty closed set X, we denote by dist(-; X) the distance
function, defined as follows:

dist(z; X)) = min ||z — ||, x e RN".
zeX

102 Incremental Gradient, Subgradient, and Proximal Methods for Convex Optimization

4.3 Convergence for Methods with Cyclic Order

In this section, we discuss convergence under the cyclic order. We consider a
randomized order in the next section. We focus on the sequence {z}} rather
than {z;}, which need not lie within X in the case of iterations (4.24) and
(4.25) when X # R". In summary, the idea is to show that the effect of
taking subgradients of f; or h; at points near xj (e.g., at zj rather than at
xy) is inconsequential, and diminishes as the stepsize oy becomes smaller, as
long as some subgradients relevant to the algorithms are uniformly bounded
in norm by some constant. This is similar to the convergence mechanism of
incremental gradient methods described in Section 4.2. We use the following
assumptions throughout the present section.

Assumption 4.1 (For iterations (4.23) and (4.24)). There is a constant
c € R such that for all k

max { ||V fi, (zi) I, | VR (z1) |} < e (4.26)

Furthermore, for all k that mark the beginning of a cycle (i.e., all k > 0 with
i = 1), we have for all j =1,...,m:

max { fj(xr) = fi(zhyj—1), hj(ar) —hj(zeej1)} < cllag—zeej]l. (4.27)

Assumption 4.2 (For iteration (4.25)). There is a constant ¢ € R such
that for all k

max { |V fi, (zar0) I, | VA (@)} < e (4.28)

Furthermore, for all k that mark the beginning of a cycle (i.e., all k > 0 with
i = 1), we have for all j =1,...,m:

max { fj(zx) — fj(Zrsj-1), hj(zr) — hyj(@pgjo1) } < cllzr — zrpjll,
(4.29)

Ji@rtj—1) = fi(@h) < el @rtjm1 — Thg - (4.30)

The condition (4.27) is satisfied if for each i and k, there is a subgradient
of f; at x and a subgradient of h; at xi, whose norms are bounded by c.
Conditions that imply the preceding assumptions are:

(a) For algorithm (4.23): f; and h; are Lipschitz continuous over the set X.

(b) For algorithms (4.24) and (4.25): f; and h; are Lipschitz continuous over
the entire space R".

(c) For algorithms (4.23), (4.24), and (4.25): f; and h; are polyhedra (this

4.8 Convergence for Methods with Cyclic Order 108

is a special case of (a) and (b)).
(d) The sequences {x} and {z;} are bounded, since then, f; and h;, being

real-valued and convex, are Lipschitz continuous over any bounded set that
contains {z}} and {z;} (see, e.g., Bertsekas (2009, Proposition 5.4.2))].

The following proposition provides a key estimate that reveals the conver-
gence mechanism of our methods.

Proposition 4.2. Let {x}} be the sequence generated by any one of the
algorithms (4.23)-(4.25), with a cyclic order of component selection. Then
for ally € X and all k that mark the beginning of a cycle (i.e., all k with
ir = 1), we have

[Tkt — yl* < llzw — ylI* — 205 (F(zg) — F(y)) + apfm?c®, (4.31)

where 3 = L + 4 in the case of (4.23) and (4.24), and B = 2 + 4 in the
case of (4.25).

Proof. We first prove the result for algorithms (4.23) and (4.24), and then
indicate the modifications necessary for algorithm (4.25). Using Proposition
4.1(b), we have for all y € X and k,

2 = yl* < lew =yl — 20 (fir (20) = fir (). (4.32)

Also, using the nonexpansion property of the projection (i.e., ’Px(u) —
Px()|| < [Ju =] for all u,v € R"), the definition of subgradient, and
(4.26), we obtain for all y € X and k:

|zri1 — ylI? = || Px (21 — arVhi, (21)) — yH2
<z — axVhi (zi) =yl
<z — yll? = 206 Vhi, (1) (21 —) + @3||Vhi, (1))
<lzw = yll? = 200 (hi, (21) — hi, () + agc?.
Combining (4.32) and (4.33), and using the definition Fj = f; 4+ h;, we have

(4.33)

ki = ylI* < llze — ylI* = 20k (fi (21) + ha (21) = fir (W) = hay () + aZc?
= |l =yl = 20k (F () — Fi () + aic®.
(4.34)

Now let & mark the beginning of a cycle (i.e., iy = 1). Then, at iteration
k+j—1,j=1,...,m, the selected components are {f;, h;}, in view of the
assumed cyclic order. We may thus replicate the preceding inequality with

104

Incremental Gradient, Subgradient, and Proximal Methods for Convex Optimization
k replaced by k+1,...,k+m — 1, and add to obtain

[ET—— <ka—yu2—2ak2 3 (2hpjo1) — Fi(y)) + maic®
7j=1

or, equivalently,

|2ksm = yll* < o = yll* — 200 (F (2 k) — F(y)) + majc®

+2ak2 Fj(2k4j-1)). (4.35)

The remainder of the proof deals with appropriately bounding the last term
above.
From (4.27), we have for j = 1,...,m that

Fj(xr) = Fj(2r4j-1) < 2¢|[zp — 241]l- (4.36)

We also have

2k —2krj—1ll < lwp =2+ FllThsj—2 = Thsj-1 |+ | Th+j-1— 204511,
(4.37)

and by the definition of algorithms (4.23) and (4.24), the nonexpansion
property of the projection, and (4.26), each of the terms in the right-hand
side above is bounded by 2ayc, except for the last, which is bounded by ayc.
Thus (4.37) yields ||z — zx+j—1]] < ox(2j —1)c which, together with (4.36),
shows that

Fj(wg) — Fj(zrpj-1) < 205¢3(25 — 1). (4.38)

Combining (4.35) and (4.38), we have

m
|2k sm —yl® < o —yl> =20k (F(ax) = F(y)) +maic® +4ajc® Y (2j-1),
7j=1

and finally

i =y < o — yll? = 200 (F(ax) = F(y) + mode? + dadcm?,
which is of the form (4.31) with 8 = L +4.

For algorithm (4.25), a similar argument goes through using Assumption
4.2. In place of (4.32), using the nonexpansion property of the projection,
the definition of subgradient, and (4.28), we obtain, for all y € X and k > 0,

26 = ylI* < llaw — ylI? — 200 (hiy (2%) — hi, (y)) + aic®. (4.39)

4.8 Convergence for Methods with Cyclic Order 105

In place of (4.33), using Proposition 4.1(b), we have

2kr1 = ylI* < llzn = yll* = 20 (fir (zra1) = fir (1)) (4.40)
Combining these equations, in analogy to (4.34), we obtain
lzrs1 = yll* < [l =yl = 200 (fir (@rs1) + iy (1) = fir (y) = i (9)) + @iic?

= |lzx — ylI* — 20 (Fy, (z1) — Fi, (v))
+ Oéic2 + 20ék (fzk (xk) — fzk ($k+1)). (4.41)

and, similar to (4.35),
2sm — 9l < ok — 9 — 200 (Flax) — F(y)) + made?
+ 2ay, Zm Fj(w) = Fj(@p4j-1) (4.42)
+2akz (fi(@rrj—1) = fi(@rss))-

We now bound the last two terms in the preceding relation, using Assump-
tion 4.2. From (4.29), we have

Fi(zg) — Fj(wpyj-1) < 2¢|lzp — Tpqj|
< 2¢(leg — 2pea || + -+ ([@rgj—2 — Thgi—)

and since by (4.28) and the definition of the algorithm, each norm term in
the right-hand side above is bounded by 2ayc¢:

Fj(ag) — Fi(wppj1) < 4ap?(j — 1).

Also, from (4.28) and (4.30) and the nonexpansion property of the projec-
tion, we have

Fi@rrj1) = fi(@re) < ellmppjo1 — Tl < 20067

Combining the preceding relations and adding, we obtain

20y, Z Fj(apey1)) + 20 Z Fi(@rej-1) = fi(@rs;)
J=1
< 8ajc? Z(] —1) +4aic*m
j=1

4
= 402cPm? + daicPm = (4—1—) azc®m?,
m

which, together with (4.42), yields (4.31) with 3 =4+ 2. O

Among other things, Proposition 4.2 guarantees that with a cyclic order,

106

Incremental Gradient, Subgradient, and Proximal Methods for Convex Optimization

given the iterate xj at the start of a cycle and any point ¥y € X having
lower cost than zj (for example an optimal point), the algorithm yields

a point Tp4,, at the end of the cycle that will be closer to y than zy,

2(F(xy)-F
provided the stepsize «j is less than % In particular, for any

€ > 0 and assuming that there exists an optimal solution x*, either we are

within %m%z + € of the optimum,

aifm?c?
2

or the squared distance to the optimum will be strictly decreased by at least
20u€:

+ €,

F(zy) < F(z") +

|k — 271 < [l — 2" — 2ae.

Thus, using Proposition 4.2, we can provide various types of convergence
results. As an example, for a constant stepsize (ap = «), convergence
can be established to a neighborhood of the that which shrinks to 0 as
a — 0, as stated in the following proposition. Its proof and all the proofs of
propositions that follow are given in (Bertsekas, 2010).

Proposition 4.3. Let {x}} be the sequence generated by any one of the
algorithms (4.23)-(4.25), with a cyclic order of component selection, and let
the stepsize ay, be fixed at some positive constant a.

(a) If F* = —o0, then

liminf F(zy) = F*.

k—o00
(b) If F* > —o0, then
afm?c?
2)

where ¢ and B are the constants of Proposition 4.2.

liminf F'(zy) < F* +
k—roc0

The next proposition gives an estimate of the number of iterations needed
to guarantee a given level of optimality up to the threshold tolerance
afm?c? /2 of the preceding proposition.

Proposition 4.4. Assume that X* is nonempty. Let {xr} be a sequence
generated as in Proposition 4.3. Then, for e > 0 we have

2.2
min F(zy) < F* 4+ 2PmC te

4.43
0<k<N 2 ’ ()

4.8 Convergence for Methods with Cyclic Order 107

where N is given by

dist(zo; X*)QJ ' (4.44)

(019

|

According to Proposition 4.4, to achieve a cost function value within O(e)
of the optimal, the term aSm?c? must also be of order O(e), so o must be of
order O(e/m?c?), and from (4.44), the number of necessary iterations N is
O(m?c?/e*) and the number of necessary cycles is O((mc)?/€?)). This is the
same type of estimate as for the nonincremental subgradient method (i.e.,
O(1/€?), counting a cycle as one iteration of the nonincremental method, and
viewing mc as a Lipschitz constant for the entire cost function F'), and does
not reveal any advantage for the incremental methods given here. However,
in the next section, we demonstrate a much more favorable iteration com-
plexity estimate for the incremental methods that use a randomized order
of component selection.

Exact Convergence for a Diminishing Stepsize

We can also obtain an exact convergence result for the case where the
stepsize «y diminishes to zero. The idea is that with a constant stepsize
a we can get to within an O(«a)-neighborhood of the optimum, as shown
above, so with a diminishing stepsize «j, we should be able to reach an
arbitrarily small neighborhood of the optimum. However, for this to happen,
ay should not be reduced too fast, and should satisfy > "7, ax = oo (so that
the method can “travel” infinitely far if necessary).

Proposition 4.5. Let {x}} be the sequence generated by any one of the
algorithms (4.23)-(4.25), with a cyclic order of component selection, and let
the stepsize oy, satisfy

oo
li = = 00.
ki)ngo ap =0, Zak 00
k=0
Then,
liminf F(zy) = F*.
k—o0

Furthermore, if X* is nonempty and

9
ai < 0o
Zk:o k ’

then {x} converges to some z* € X*.

108 Incremental Gradient, Subgradient, and Proximal Methods for Convex Optimization

4.4 Convergence for Methods with Randomized Order

In this section, we discuss convergence for the randomized component selec-
tion order and a constant stepsize . The randomized versions of iterations
(4.23), (4.24), and (4.25), are

2z, = Px (2, — aV fo, (z1)), Tpp1 = Px (2 — aVhy, (1)), (4.45)
Zp = X — OéVfwk_ (Zk), T+1 = PX (Zk - av}ka (Zk)), (4.46)
2k = Px (xp — oV fu, (21)) Try1 = 2 — aVhy, (2k), (4.47)
respectively, where {wy} is a sequence of random variables taking values

from the index set {1,...,m}.
We assume the following throughout the present section.

Assumption 4.3 (For iterations (4.45) and (4.46)).

(a) {wi} is a sequence of random variables, each uniformly distributed over
{1,...,m}, and such that for each k, wy is independent of the history

{zk, 26-1, -5 20,70} -
(b) There is a constant ¢ € R such that for all k, we have with probability 1

maX{H@fi(z};)H, H@hz(z}g)ﬂ} <ec, Vi=1,...,m, (4.48)
max{ fi(zr) = fi(zp), hizr) = hi(z) } < cllzie =20l Yi=1,....m,
(4.49)
where z,i, is the result of the prozimal iteration starting at xy, if wg were 4,
that 1is,
4 = argmin | fi(z) + 5 I|o — a1 (4.50)
rzeX QOék

in the case of iteration (4.45), and
. 1
7 i 2
_ . _ 451
oh = arg min { o) + ol - 2 (4.51)
in the case of iteration (4.46).

Assumption 4.4 (For iteration (4.47)).

(a) {wk} is a sequence of random variables, each uniformly distributed over
{1,...,m}, and such that for each k, wy is independent of the history

{xky Zl—1y++ > Z07$0}'

4.4 Convergence for Methods with Randomized Order 109

(b) There is a constant ¢ € R such that for all k, we have with probability 1

max {[|Vfi(z)|, [Vhi(zi)|} <e, Vi=1,...,m, (4.52)

filer) = fizig) S cllag =z l, Vi=1,....m, (4.53)
where x};_H is the result of the iteration, starting at xp if wi would be i, that
18,

ZEerl = Py (z,’f — ak@fi(xffﬂ)), (4.54)
with

2 = 1y — ap Vhy(ap). (4.55)

Note that condition (4.49) is satisfied if there exist subgradients of f; and
hi at xj with norms less than or equal to c. Thus the conditions (4.48) and
(4.49) are similar, the main difference being that the first applies to slopes
of f; and h; at z,i while the second applies to the slopes of f; and h; at xy.
As in the case of Assumption 4.1, these conditions are guaranteed by Lips-
chitz continuity assumptions on f; and h;. The convergence analysis of the
randomized algorithms of this section is somewhat more complicated than
the one of the cyclic order counterparts, and relies on the Supermartingale
convergence theorem (see Bertsekas (2010)). The following proposition deals
with the case of a constant stepsize, and parallels Proposition 4.3 for the
cyclic-order case.

Proposition 4.6. Let {x;} be the sequence generated by one of the ran-
domized incremental methods (4.45)-(4.47), and let the stepsize ay, be fized
at some positive constant .

(a) If F* = —o0, then with probability 1

inf F' = F".
faf Fa)

(b) If F* > —o0, then with probability 1

afBmc?
inf F' < F*
Inf Fag) < F*+ ——,
where § = 5.

By comparing Proposition 4.6(b) with Proposition 4.3(b), we see that
when F* > —oo and the stepsize « is constant, the randomized methods
(4.45), (4.46), and (4.47), have a better error bound (by a factor m) than
their nonrandomized counterparts. In fact, an example given in (Bertsekas

110

Incremental Gradient, Subgradient, and Proximal Methods for Convex Optimization

et al., 2003, p. 514) for the incremental subgradient method can be adapted
to show that the bound of Proposition 4.3(b) is tight in the sense that for
a bad problem/cyclic order we have liminf .o, F(z) — F* = O(am?c?).
By contrast, the randomized method will get to within O(amc?) with
probability 1 for any problem, according to Proposition 4.6(b). Thus, with
the randomized algorithm we do not run the risk of accidentally choosing a
bad cyclic order. A related result is provided by the following proposition,
which should be compared with Proposition 4.4 for the nonrandomized
methods.

Proposition 4.7. Assume that X* is nonempty. Let {xy} be a sequence
generated as in Proposition 4.6. Then, for any positive scalar €, we have
with probability 1

afmc® + €
in F <4 4.
0ShEN () < F7 + 9) (4.56)
where N is a random variable with
dist(xo; X*)?
E{N} < i Jst(w0s X7 (4.57)

(673

Like Proposition 4.6, a comparison of Propositions 4.4 and 4.7 again sug-
gests an advantage for the randomized methods: compared to their deter-
ministic counterparts, they achieve a much smaller error tolerance (a factor
of m) in the same expected number of iterations. Note, however, that the
preceding assessment is based on upper bound estimates, which may not
be sharp on a given problem (although the bound of Proposition 4.3(b) is
tight with a worst-case problem selection as mentioned earlier; see Bertsekas
et al. (2003, p. 514)). Moreover, the comparison based on worst-case values
versus expected values may not be strictly valid. In particular, while Propo-
sition 4.4 provides an upper bound estimate on N, Proposition 4.7 provides
an upper bound estimate on E{N}, which is not quite the same.

Finally, for the case of a diminishing stepsize, the following proposition
parallels Proposition 4.5, for the cyclic order.

Proposition 4.8. Let {zy} be the sequence generated by one of the ran-
domized incremental methods (4.45)-(4.47), and let the stepsize «y, satisfy

o0
li = = 00.
k;ngo ap =0, Zak 00
k=0
Then, with probability 1,

liminf F(xg) = F*.
k—o0

4.5 Some Applications 111

Furthermore, if X* is nonempty and

oo
> aj < oo,
k=0

then {x} converges to some x* € X* with probability 1.

4.5 Some Applications

In this section we illustrate our methods in the context of two types of
practical applications, and discuss relations with known algorithms.

4.5.1 Regularized Least Squares

Let us consider least-squares problems involving minimization of a sum of
quadratic component functions f;(x) that correspond to errors between data
and the output of a model that is parameterized by a vector x. Often a
convex regularization function R(x) is added to the least-squares objective,
to induce desirable properties of the solution. This gives rise to problems of

the form
1 m
minimize ~yR(z)+ = i — d;)?
VR() + 5) el = d .

subject to z € R",

where ¢; and d; are given vectors and scalars, respectively, and -y is a positive
scalar. When R is differentiable (e.g., quadratic), and either m is very large
or the data (¢;, d;) become available sequentially over time, it makes sense to
consider incremental gradient methods, which have a history of applications
since the 1960s, starting with the Widrow-Hoff least mean-squares (LMS)
method (Widrow and Hoff, 1960).

The classical type of regularization involves a quadratic function R (as
in classical regression and the LMS method), but recently nondifferentiable
regularization functions have become increasingly important. On the other
hand, to apply our incremental methods, a quadratic R is not essential.
What is important is that R has a simple form that facilitates the use of
proximal algorithms, such as a separable form, so that the proximal iteration
on R is simplified through decomposition. As an example, consider the ¢;-

112

Incremental Gradient, Subgradient, and Proximal Methods for Convex Optimization

reqularization problem, where

n

R(z) = ||zl =) _ || (4.59)

=1

and 27 is the jth coordinate of . Then the proximal iteration

. 1
s = arg i { ol + 5l — 12}

decomposes into the n one-dimensional minimizations

. , 1 , .
J ; J J J |2 -
Z; = arg min |+ —|z' —x , =1,...,n,
and can be done in closed form: For each component j = 1,2,...,n, we have

‘ ﬂ%—yak if yay §xi, A
z, = if — oy < a, < yoy, (4.60)

zy +yoy if @], < —yay.

We refer to Figueiredo et al. (2007), Wright et al. (2009), Beck and Teboulle
(2010), and the references given there for a discussion of a broad variety of
applications in estimation and signal-processing problems, where nondiffer-
entiable regularization functions play an important role.

The incremental algorithms of this chapter are well suited for solution
of ¢1-regularization problems of the form (4.58)-(4.59). For example, the
kth incremental iteration may consist of selecting a data pair (¢, , d;,) and
performing a proximal iteration of the form (4.60) to obtain zj, followed by
a gradient iteration on the component 1(cj — d;,)?, starting at zj:

/
Th4+1 = 2B — QG (Cikzk —d;,).

This algorithm is the special case of algorithms (4.23)-(4.25) (here X = R",
and all three algorithms coincide), with f;(x) being v||z||; (we use m copies
of this function) and h;(z) = 1(ciz —d;)%. It can be viewed as an incremental
version of a popular class of algorithms in signal processing, known as
iterative shrinkage/thresholding (see Chambolle et al. (1998); Figueiredo and
Nowak (2003); Daubechies et al. (2004); Combettes and Wajs (2005); Elad
et al. (2006); Bioucas-Dias and Figueiredo (2007); and Beck and Teboulle
(2009, 2010)). Our methods bear the same relation to this class of algorithms
as the LMS method bears to gradient algorithms for the classical linear least-
squares problem with quadratic regularization function.

Finally, as an alternative, the proximal iteration (4.60) could be replaced
by a proximal iteration on +y |27| for some selected index j, with all indexes

4.5 Some Applications 118

selected cyclically in incremental iterations. Randomized selection of the
data pair (¢, ,d;,) would also be interesting, particularly in contexts where
the data have a natural stochastic interpretation.

4.5.2 TIterated Projection Algorithms

A feasibility problem that arises in many contexts involves finding a point
with certain properties within a set intersection N, X;, where each X; is
a closed convex set. For the case where m is large and each of the sets X;
has a simple form, incremental methods that make successive projections on
the component sets X; have a long history (see, e.g., Gubin et al. (1967),
and recent works such as (Bauschke, 2001), (Bauschke et al., 2006), and
(Cegielski and Suchocka, 2008), and their bibliographies). We may consider
the following generalized version of the classical feasibility problem,

minimize f(x)

subject to =z € M2 X, (4.61)
where f: 1" — R is a convex cost function, and the method is

Tpr1 = Px,, (a:k — ak?f(:vk)), (4.62)
where the index i, is chosen from {1, ..., m} according to a randomized rule.

The incremental approach is particularly well suited for problems of the form
(4.61), where the sets X; are not known in advance, but are revealed as the
algorithm progresses.

While (4.61) does not involve a sum of component functions, it may
be converted into one that does by using an exact penalty function. In
particular, consider the problem

minimize f(z) 4+~)y dist(z; X;)
; (4.63)

subject to x € R",

where « is a positive penalty parameter. Then for f Lipschitz continuous
and ~ sufficiently large, problems (4.61) and (4.63) are equivalent, as shown
in the following proposition, the proof of which may be found in (Bertsekas,
2010).

Proposition 4.9. Let f : Y — R be a function defined on a subset Y of R",
and let X;, 1 =1,...,m be closed subsets of Y with nonempty intersection.
Assume that f is Lipschitz continuous over Y. Then there is a scalar 5 > 0
such that for all v > 7, the set of minima of f over NI, X; coincides with

114 Incremental Gradient, Subgradient, and Proximal Methods for Convex Optimization

the set of minima of

—I—WZ dist(x; X;)

over Y.

From Proposition 4.9, it follows that we may consider in place of the origi-
nal problem (4.61) the additive cost problem (4.63) to which our algorithms
apply. In particular, let us consider algorithms (4.23)-(4.25), with X = R",
which involve a proximal iteration on one of the functions cdist(z; X;) fol-
lowed by a subgradient iteration on f. A key fact here is that the proximal
iteration

1
2 = argmrrelgb {’ydist(x;XZ-k) + EHSE - l‘k||2} (4.64)

involves a projection on of x; onto Xj,, followed by an interpolation. In
particular, it can be shown (see, e.g., Bertsekas (2010)) that the vector z
produced by the proximal iteration (4.64) is zp = zy if 2 € X;,. It is
otherwise given by

) (= Br)wk + BrPx, (z1) if B <1,
2 = (4.65)
where
«
By = kY

dist(zp; X5,)

Finally, our incremental methods also apply to the case where f has an
additive form:

m
minimize Z fi(x)
=1
subject to z € N% Xj.

In this case the interpolated projection iterations (4.65) on the sets X; are
followed by subgradient or proximal iterations on the components f;.

4.6 Conclusions

We have surveyed incremental algorithms, which can deal with many of
the challenges posed by large data sets in machine learning applications. We
have used a unified analytical framework that includes incremental proximal
algorithms and their combinations with the more established incremental

4.7

References

115

gradient and subgradient methods. This allows the flexibility to separate
the cost function into the parts that are conveniently handled by proximal
iterations (e.g., in essentially closed form) and the remaining parts to
be handled by subgradient iterations. We have outlined the convergence
properties of these methods, and we have shown that our algorithms apply
to some important problems that have been the focus of recent research.

4.7 References

H. H. Bauschke. Projection algorithms: Results and open problems. In D. Butnariu,
Y. Censor, and S. Reich, editors, Inherently Parallel Algorithms in Feasibility and
Optimization and their Applications. Elsevier, Amsterdam, 2001.

H. H. Bauschke, P. L. Combettes, and S. G. Kruk. Extrapolation algorithm for
affine-convex feasibility problems. Numerical Algorithms, 41:239-274, 2006.

A. Beck and M. Teboulle. A fast iterative shrinkage-threshold algorithm for linear
inverse problems. SIAM Journal on Imaging Sciences, 2:183-202, 2009.

A. Beck and M. Teboulle. Gradient-based algorithms with applications to signal-
recovery problems. In Y. Eldar and D. P. Palomar, editors, Convexr Optimization
in Signal Processing and Communications, pages 42—-88. Cambridge University
Press, 2010.

A. Ben-Tal, T. Margalit, and A. Nemirovski. The ordered subsets mirror descent op-
timization method and its use for positron emission tomography reconstruction.
In D. Butnariu, Y. Censor, and S. Reich, editors, Inherently Parallel Algorithms in
Feasibility and Optimization and their Applications. Elsevier, Amsterdam, 2001.

D. P. Bertsekas. Incremental least squares methods and the extended Kalman filter.
SIAM Journal on Optimization, 6:807-822, 1996.

D. P. Bertsekas. A hybrid incremental gradient method for least squares. STAM
Journal on Optimization, 7:913-926, 1997.

D. P. Bertsekas. Nonlinear Programming. Athena Scientific, Belmont, MA, second
edition, 1999.

D. P. Bertsekas. Convex Optimization Theory. Athena Scientific, Belmont, MA,
20009.

D. P. Bertsekas. Incremental proximal methods for large scale convex optimization.
Report LIDS-P-2847, Laboratory for Information and Decision Sciences, MIT,
Cambridge, MA, 2010.

D. P. Bertsekas and J. N. Tsitsiklis. Parallel and Distributed Computation: Numer-
ical Methods. Prentice-Hall, Englewood Cliffs, NJ, 1989.

D. P. Bertsekas and J. N. Tsitsiklis. ~Neuro-Dynamic Programming. Athena
Scientific, Belmont, MA, 1996.

D. P. Bertsekas and J. N. Tsitsiklis. Gradient convergence in gradient methods.
SIAM Journal on Optimization, 10:627-642, 2000.

D. P. Bertsekas, A. Nedi¢, and A. E. Ozdaglar. Conver Analysis. Athena Scientific,
Belmont, MA, 2003.

J. M. Bioucas-Dias and M. A. T. Figueiredo. A new TwIST: Two-step iterative
shrinking/thresholding algorithms for image restoration. IEEE Transactions on

116

Incremental Gradient, Subgradient, and Proximal Methods for Convex Optimization

Image Processing, 16(12):2992-3004, 2007.

D. Blatt, A. O. Hero, and H. Gauchman. A convergent incremental gradient method
with a constant step size. SIAM Journal on Optimization, 18(1):29-51, 2007.
V. Boltyanski, H. Martini, and V. Soltan. Geometric Methods and Optimization
Problems. Kluwer Academic, Boston, 1999.

V. S. Borkar. Stochastic Approximation: A Dynamical Systems Viewpoint. Cam-
bridge University Press, 2008.

L. Bottou. SGD: stochastic gradient descent, 2005. URL http://leon.bottou.
org/projects/sgd.

A. Cegielski and A. Suchocka. Relaxed alternating projection methods. SIAM
Journal on Optimization, 19(3):1093-1106, 2008.

A. Chambolle, R. DeVore, N. Y. Lee, and B. J. Lucier. Nonlinear wavelet image pro-
cessing: Variational problems, compression, and noise removal through wavelet
shrinkage. IEEE Transactions on Image Processing, 7(3):319-335, 1998.

P. L. Combettes and V. R. Wajs. Signal recovery by proximal forward-backward
splitting. Multiscale Modeling and Simulation, 4(4):1168-1200, 2005.

I. Daubechies, M. Defriese, and C. De Mol. An iterative thresholding algorithm for
linear inverse problems with a sparsity constraint. Communications on Pure and
Applied Mathematics, 57:1413-1457, 2004.

W. C. Davidon. New least squares algorithms. Journal of Optimization Theory and
Applications, 18:187-197, 1976.

J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online
learning and stochastic optimization. EECS Technical Report 2010-24, UC
Berkeley, 2010. To appear in Journal of Machine Learning Research.

M. Elad, B. Matalon, and M. Zibulevsky. Coordinate and subspace optimization
methods for linear least squares with non-quadratic regularization. Journal on
Applied and Computational Harmonic Analysis, 23:346-367, 2006.

Y. Ermoliev. On the stochastic quasi-gradient method and stochastic quasi-Feyer
sequences. Kibernetika, 2:73-83, 1969.

Y. Ermoliev. Stochastic Programming Methods. Nauka, Moscow, 1976.

M. A. T. Figueiredo and R. D. Nowak. An EM algorithm for wavelet-based image
restoration. IEEE Transactions on Image Processing, 12(8):906-916, 2003.

M. A. T. Figueiredo, R. D. Nowak, and S. J. Wright. Gradient projection for sparse
reconstruction: Application to compressed sensing and other inverse problems.
IEEFE Journal on Selected Topics in Signal Processing, 1(4):586-597, 2007.

A. A. Gaivoronski. Convergence of parallel backpropagation algorithm for neural
networks. Optimization Methods and Software, 4:117-134, 1994.

M. Gaudioso, G. Giallombardo, and G. Miglionico. An Incremental method for
solving convex finite min-max problems. Mathematics of Operations Research,
31:173-187, 2006.

L. Grippo. A Class of unconstrained minimization methods for neural network
training. Optimization Methods and Software, 4:135-150, 1994.

L. Grippo. Convergent on-line algorithms for supervised learning in neural net-
works. IEEE Transactions on Neural Networks, 11:1284-1299, 2000.

L. G. Gubin, B. T. Polyak, and E. V. Raik. The method of projection for finding
the common point in convex sets. U.S.S.R. Computational Mathematics and

4.7

References

117

Mathematical Physics (English Translation), 7:1-24, 1967.

B. Johansson, M. Rabi, and M. Johansson. A Randomized incremental subgradient
method for distributed optimization in networked systems. SIAM Journal on
Optimization, 20:1157-1170, 2009.

V. M. Kibardin. Decomposition into functions in the minimization problem.
Automation and Remote Control, 40:1311-1323, 1980.

K. C. Kiwiel. Convergence of approximate and incremental subgradient methods
for Convex Optimization. STAM Journal on Optimization, 14(3):807-840, 2004.

H. J. Kushner and D. S. Clark. Stochastic Approzimation Methods for Constrained
and Unconstrained Systems. Springer-Verlag, New York, NY, 1978.

H. J. Kushner and G. Yin. Stochastic Approximation Methods and Applications.
Springer-Verlag, New York, NY, 1997.

S. Lee and S. J. Wright. Sparse nonlinear support vector machines via stochastic
approximation. Technical report, Computer Sciences Department, University of
Wisconsin, 2010. submitted.

P. L. Lions and B. Mercier. Splitting algorithms for the sum of two nonlinear
operators. SIAM Journal on Numerical Analysis, 16:964-979, 1979.

B. M. Litvakov. On an iteration method in the problem of approximating a function
from a finite number of observations. Avtom. Telemech., 4:104-113, 1966.

L. Ljung. Analysis of recursive stochastic algorithms. [EFEE Transactions on
Automatic Control, 22:551-575, 1977.

Z. Lu, R. D. C. Monteiro, and M. Yuan. Convex optimization methods for
dimension reduction and coefficient estimation in multivariate linear regression.
Technical report, School of Industrial and Systems Engineering, Georgia Institute
of Technology, Atlanta, 2008. To appear in Mathematical Programming.

Z. Q. Luo. On the convergence of the LMS algorithm with adaptive learning rate
for linear feedforward networks. Neural Computation, 3(2):226-245, 1993.

Z. Q. Luo and P. Tseng. Analysis of an approximate gradient projection method
with applications to the backpropagation algorithm. Optimization Methods and
Software, 4:85-101, 1994.

O. L. Mangasarian and M. V. Solodov. Serial and parallel backpropagation
convergence via nonmonotone perturbed minimization. Optimization Methods
and Software, 4:103-116, 1994.

B. Martinet. Régularisation d’inéquations variationelles par approximations suc-
cessives. Rev. Francgise Information Recherche Opérationelle, 4:154-159, 1970.

S. Meyn. Control Techniques for Compler Networks. Cambridge University Press,
New York, NY, 2007.

H. Moriyama, Y. N., and M. Fukushima. The incremental Gauss-Newton algorithm
with adaptive stepsize rule. Computational Optimization and Applications, 26(2):
107-141, 2003.

A. Nedi¢ and D. P. Bertsekas. Convergence rate of the incremental subgradient
algorithm. In Stochastic Optimization: Algorithms and Applications, pages 263~
304. Kluwer Academic, 2000.

A. Nedi¢ and D. P. Bertsekas. Incremental subgradient methods for nondifferen-
tiable optimization. SIAM Journal on Optimization, 12:109-138, 2001.

A. Nedi¢ and D. P. Bertsekas. The Effect of deterministic noise in subgradient
methods. Mathematical Programming, 125(1):75-99, 2010.

118

Incremental Gradient, Subgradient, and Proximal Methods for Convex Optimization

A. Nedi¢, D. P. Bertsekas, and V. Borkar. Distributed asynchronous incremen-
tal subgradient methods. In Inherently Parallel Algorithms in Feasibility and
Optimization and Their Applications. Elsevier, Amsterdam, 2001.

A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro. Robust stochastic approxima-
tion approach to stochastic programming. SIAM Journal on Optimization, 19:
1574-1609, 2009.

Y. Nesterov. A Method for unconstrained convex minimization problem with the
rate of convergence O(1/k?). Doklady AN SSSR, 269:543-547, 1983. translated
as Soviet Math. Dokl.

Y. Nesterov. Introductory Lectures on Convexr Optimization. Kluwer Academic,
Dordrecht, The Netherlands, 2004.

Y. Nesterov. Smooth minimization of nonsmooth functions. Mathematical Pro-
gramming, Series A, 103:127-152, 2005.

E. S. Neto and A. R. De Pierro. Incremental subgradients for constrained con-
vex optimization: A Unified framework and new methods. SIAM Journal on
Optimization, 20:1547-1572, 2009.

G. B. Passty. Ergodic convergence to a zero of the sum of monotone operators in
Hilbert Space. Journal of Mathematical Analysis and Applications, 72:383-390,
1979.

G. Pflug. Optimization of Stochastic Models. The Interface Between Simulation
and Optimization. Kluwer Academic, Boston, 1996.

B. T. Poljak. Some methods of speeding up the convergence of iteration methods.
Z. VyCisl. Mat. i Mat. Fiz., 4:1-17, 1964.

B. T. Polyak. Nonlinear programming methods in the presence of noise. Mathe-
matical Programming, 14:87-97, 1978.

B. T. Polyak. Introduction to Optimization. Optimization Software Inc., NY, 1987.

B. T. Polyak and Y. Z. Tsypkin. Pseudogradient adaptation and training algo-
rithms. Automation and Remote Control, 12:83-94, 1973.

J. B. Predd, S. R. Kulkarni, and H. V. Poor. A Collaborative training algorithm for

distributed learning. IFEE Transactions on Information Theory, 55:1856—1871,
20009.

M. G. Rabbat and R. D. Nowak. Distributed optimization in sensor networks. In
Proceedings of the International Conference on Information Processing in Sensor
Networks, pages 20-27, 2004.

M. G. Rabbat and R. D. Nowak. Quantized incremental algorithms for distributed
optimization. IEEE Journal on Selected Areas in Communications, 23:798-808,
2005.

S. S. Ram, A. Nedi¢, and V. V. Veeravalli. Incremental stochastic subgradient
algorithms for convex optimization. SIAM Journal on Optimization, 20:691-717,
2009a.

S. S. Ram, A. Nedi¢, and V. V. Veeravalli. Distributed stochastic subgradient
projection algorithms for convex optimization. Submitted, 2009b.

R. T. Rockafellar. Convexr Analysis. Princeton Univ. Press, 1970.

R. T. Rockafellar. Monotone operators and the proximal point algorithm. SIAM
Journal on Control and Optimization, 14:877-898, 1976.

S. Shalev-Shwartz, Y. Singer, and N. Srebro. Pegasos: Primal Estimated Subgra-
dient Solver for SVM. In Proceedings of the 24th International Conference on

4.7

References

119

Machine Learning, pages 807-814, New York, NY, 2007.

M. V. Solodov. Incremental gradient algorithms with stepsizes bounded away from
zero. Computational Optimization and Applications, 11:28-35, 1998.

P. Tseng. An Incremental gradient(-projection) method with momentum term and
adaptive stepsize rule. SIAM Journal on Optimization, 8:506-531, 1998.

P. Tseng. On Accelerated proximal gradient methods for convex-concave opti-
mization. Technical report, Mathematics Department, University of Washington,
2008.

J. N. Tsitsiklis, D. P. Bertsekas, and M. Athans. Distributed asynchronous deter-
ministic and stochastic gradient optimization algorithms. IEFEFE Transactions on
Automatic Control, AC-31:803-812, 1986.

B. Widrow and M. E. Hoff. Adaptive switching circuits. In Institute of Radio Engi-
neers, Western Electronic Show and Convention, Convention Record, volume 4,
pages 96-104, 1960.

S. J. Wright, R. D. Nowak, and M. A. T. Figueiredo. Sparse reconstruction by
separable approximation. IEEE Transations on Signal Processing, 57:2479-2493,
2009.

5 First-Order Methods for Nonsmooth
Convex Large-Scale Optimization, I:
General Purpose Methods

Anatoli Juditsky Anatoli.Juditsky@imag.fr
Laboratoire Jean Kuntzmann , Université J. Fourier
B. P. 53 38041 Grenoble Cedex, France

Arkadi Nemirovski nemirovs@isye.gatech.edu
School of Industrial and Systems Engineering, Georgia Institute of Technology
765 Ferst Drive NW, Atlanta Georgia 30332, USA

We discuss several state-of-the-art computationally cheap, as opposed to the
polynomial time interior-point algorithms, first-order methods for minimiz-
ing convex objectives over simple large-scale feasible sets. Qur emphasis is
on the general situation of a nonsmooth convex objective represented by de-
termanistic/stochastic first-order oracle and on the methods which, under
favorable circumstances, exhibit a (nearly) dimension-independent conver-
gence rate.

5.1 Introduction

At present, almost all of convex programming is within the grasp of polyno-
mial time interior-point methods (IPMs) capable of solving convex programs
to high accuracy at a low iteration count. However, the iteration cost of all
known polynomial methods grows nonlinearly with a problem’s design di-
mension n (number of decision variables), something like n3. As a result, as
the design dimension grows, polynomial time methods eventually become
impractical—roughly speaking, a single iteration lasts forever. What “even-

122

First-Order Methods for Nonsmooth Convex Large-Scale Optimization, I

tually” means in fact depends on a problem’s structure. For instance, typi-
cal linear programming programs of decision-making origin have extremely
sparse constraint matrices, and IPMs are able to solve programs of this type
with tens and hundreds of thousands variables and constraints in reasonable
time. In contrast to this, linear programming programs arising in machine
learning and signal processing often have dense constraint matrices. Such
programs with “just” few thousand variables and constraints can become
very difficult for an IPM. At the present level of our knowledge, the meth-
ods of choice when solving convex programs which, because of their size,
are beyond the practical grasp of IPMs, are the first-order methods (FOMs)
with computationally cheap iterations. In this chapter, we present several
state-of-the-art FOMs for large-scale convex optimization, focusing on the
most general nonsmooth unstructured case, where the convex objective f to
be minimized can be nonsmooth and is represented by a black box, a routine
able to compute the values and subgradients of f.

5.1.1 First-Order Methods: Limits of Performance

We start by explaining what can and cannot be expected from FOMs,
restricting ourselves for the time being to convex programs of the form

Opt(f) = min f(z), (5.1)

where X is a compact convex subset of R”, and f is known to belong to a
given family F of convex and (at least) Lipschitz continuous functions on X.
Formally, an FOM is an algorithm B which knows in advance what X and
F are, but does not know exactly what f € F is. It is restricted to learning
f via subsequent calls to a first-order oracle—a routine which, given a point
x € X on input, returns on output a value f(z) and a (sub)gradient f'(z)
of f at x (informally speaking, this setting implicitly assumes that X is
simple (like box, or ball, or standard simplex), while f can be complicated).
Specifically, as applied to a particular objective f € F and given on input
a required accuracy € > 0, the method B, after generating a finite sequence
of search points x; € X, t = 1,2,..., where the first-order oracle is called,
terminates and outputs an approximate solution Z € X which should be e-
optimal: f(Z) — Opt(f) < e. In other words, the method itself is a collection
of rules for generating subsequent search points, identifying the terminal
step, and building the approximate solution.

These rules, in principle, can be arbitrary, with the only limitation of
being nonanticipating, meaning that the output of a rule is uniquely defined
by X and the first-order information on f accumulated before the rule

5.1 Introduction

123

is applied. As a result, for a given B and X, x; is independent of f,
xo depends solely on f(z1), f(x1), and so on. Similarly, the decision to
terminate after a particular number ¢ of steps, as well as the resulting
approximate solution Z, are uniquely defined by the first-order information
f(x1), f'(x1), -y f(2e), f'(2¢) accumulated in the course of these t steps.
Performance limits of FOMs are given by information-based complexity
theory, which says what, for given X, J, e, may be the minimal number of
steps of an FOM solving all problems (5.1) with f € F within accuracy e.
Here are several instructive examples (see Nemirovsky and Yudin, 1983).

(a) Let X C {z € R" : ||z||, < R}, wherep € {1,2}, and let F = F), comprise
all convex functions f which are Lipschitz continuous, with a given constant
L,wrt. ||-]p. When X = {z € R : ||z||, < R}, the number N of steps of any
FOM able to solve every problem from the outlined family within accuracy
¢ is at least O(1) min[n, L?R?/¢%]. 1 When p = 2, this lower complexity
bound remains true when J is restricted to being the family of all functions
of the type f(z) = ax [e;Lx; + a;] with ¢; = £1. Moreover, the bound

is nearly achievable: whenever X C {z € R" : ||z, < R}, there exist quite
transparent (and simple to implement when X is simple) FOMs able to solve
all problems (5.1) with f € F, within accuracy ¢ in O(1)(In(n))?/?~'L?R? /¢
steps.

It should be stressed that the outlined nearly dimension-independent perfor-
mance of FOMs depends heavily on the assumption p € {1,2}. 2 With p set
to 400 (i.e., when minimizing convex functions that are Lipschitz continu-
ous with constant L w.r.t. || - ||c over the box X = {z € R" : ||z]|s < R}),
the lower and upper complexity bounds are O(1)nIn(LR/€), provided that
LR/e > 2; these bounds depend heavily on the problem’s dimension.

(b) Let X = {z € R" : ||z]]2 < R}, and let F comprise all differentiable
convex functions, Lipschitz continuous with constant L w.r.t. |- ||2, gradient.
Then the number N of steps of any FOM able to solve every problem from
the outlined family within accuracy e is at least O(1) min[n, \/LR?/¢]. This
lower complexity bound remains true when JF is restricted to be the family of
convex quadratic forms %xTAx + bz with positive semidefinite symmetric
matrices A of spectral norm (maximal singular value) not exceeding L.
Here again the lower complexity bound is nearly achievable. Whenever
X C {x € R": ||z||]s < R}, there exists a simple implementation when X is
simple (although by far not transparent) FOM: Nesterov’s optimal algorithm
for smooth convex minimization (Nesterov, 1983, 2005), which allows one to

1. From now on, all O(1)’s are appropriate positive absolute constants.
2. In fact, it can be relaxed to 1 < p < 2.

124

First-Order Methods for Nonsmooth Convex Large-Scale Optimization, I

solve within accuracy e all problems (5.1) with f € Fin O(1)y/LR? /e steps.

(c) Let X be as in (b), and let F comprise all functions of the form
f(x) = ||Az — bll2, where the spectral norm of A (which is no longer
positive semidefinite) does not exceed a given L. Let us slightly extend
the power of the first-order oracle and assume that at a step of an FOM
we observe b (but not A) and are allowed to carry out O(1) matrix-vector
multiplications involving A and AT In this case, the number of steps of any
method capable to solve all problems in question within accuracy ¢ is at
least O(1) min[n, LR /€], and there exists a method (specifically, Nesterov’s
optimal algorithm as applied to the quadratic form | Az — b||3), which
achieves the desired accuracy in O(1)LR/e steps.

The outlined results bring us both bad and good news on FOMs as applied
to large-scale convex programs. The bad news is that unless the number of
steps of the method exceeds the problem’s design dimension n (which is of
no interest when n is really large), and without imposing severe additional
restrictions on the objectives to be minimized, an FOM can exhibit only a
sublinear rate of convergence: specifically denoting by ¢ the number of steps,
the rate O(1)(In(n))/P~Y2LR/t'/? in the case of (a) (better than nothing,
but really slow), O(1)LR?/t? in the case of (b) (much better, but simple
X along with smooth f is a rare commodity), and O(1)LR/t in the case of
(¢) (in-between (a) and (b)). As a consequence, FOMs are poorly suited for
building high-accuracy solutions to large-scale convex problems.

The good news is that for problems with favorable geometry (e.g., those in
(a)-(c)), good FOMs exhibit a dimension-independent, or nearly so, rate of
convergence, which is of paramount importance in large-scale applications.
Another bit of good news (not declared explicitly in the above examples)
is that when X is simple, typical FOMs have cheap iterations—modulo
computations hidden in the oracle, an iteration costs just O(dimX) a.o.
The bottom line is that FOMs are well suited for finding medium-accuracy
solutions to large-scale convex problems, at least when the latter possess
favorable geometry.

Another conclusion of the presented results is that the performance limits
of FOMs depend heavily on the size R of the feasible domain and on the
Lipschitz constant L (of f in the case of (a), and of f’ in the case of (b)).
This is in a sharp contrast to IPMs, where the complexity bounds depend
logarithmically on the magnitudes of an optimal solution and of the data
(the analogies of R and L, respectively), which, practically speaking, allows
one to handle problems with unbounded domains (one may impose an upper
bound of 105 or 10'%° on the variables) and not to bother much about how

5.1 Introduction 125

the data are scaled.? Strong dependence of the complexity of FOMs on L
and R implies a number of important consequences. In particular:

e Boundedness of X is of paramount importance, at least theoretically. In
this respect, unconstrained settings, as in Lasso: min{\||z||; 4 || Az —b||3} are
less preferable than their bounded domain countgrparts, as in min{||Az —
bll2 : |lzi € R}* in full accordance with common sense—however difficult
it is to find a needle in a haystack, a small haystack in this respect is better
than a large one!

e For a given problem (5.1), the size R of the feasible domain and the
Lipschitz constant L of the objective depend on the norm | - || used to
quantify these quantities: R = R, L = L. When | - [| varies, the product
Ly Ry (this product is all that matters) changes,” and this phenomenon
should be taken into account when choosing an FOM for a particular
problem.

5.1.2 What Is Ahead

Literature on FOMs, which has always been huge, is now growing explosively—
partly due to rapidly increasing demand for large-scale optimization, and
partly due to endogenous reasons stemming primarily from discovering ways
(Nesterov, 2005) to accelerate FOMs by exploiting problems’ structure (for
more details on the latter subject, see Chapter 6). Even a brief overview
of this literature in a single chapter would be completely unrealistic. Our
primary selection criteria were (a) to focus on techniques for large-scale nons-
mooth convex programs (these are the problems arising in most applications
known to us), (b) to restrict ourselves to FOMs possessing state-of-the-art
(in some cases—even provably optimal) nonasymptotic efficiency estimates,
and (c) the possibility for self-contained presentation of the methods, given
space limitations. Last, but not least, we preferred to focus on the situa-
tions of which we have first-hand (or nearly so) knowledge. As a result, our
presentation of FOMs is definitely incomplete. As for citation policy, we
restrict ourselves to referring to works directly related to what we are pre-

3. In IPMs, scaling of the data affects stability of the methods w.r.t. rounding errors, but
this is another story.

4. We believe that the desire to end up with unconstrained problems stems from the
common belief that the unconstrained convex minimization is simpler than the constrained
one. To the best of our understanding, this belief is misleading, and the actual distinction is
between optimization over simple and over sophisticated domains; what is simple depends
on the method in question.

5. For example, the ratio [Lj.;, R,/ Ly, By, can be as small as 1/4/n and as large as

N

126 First-Order Methods for Nonsmooth Convex Large-Scale Optimization, I

senting, with no attempt to give even a nearly exhaustive list of references
to FOM literature. We apologize in advance for potential omissions even on
this reduced list.

In this chapter, we focus on the simplest general-purpose FOMs, mirror
descent (MD) methods aimed at solving nonsmooth convex minimization
problems, specifically, general-type problems (5.1) (Section 5.2), problems
(5.1) with strongly convex objectives (Section 5.4), convex problems with
functional constraints mingey { fo(x) : fi(x) <0, 1 <i < m} (Section 5.3),
and stochastic versions of problems (5.1), where the first-order oracle is
replaced with its stochastic counterpart, thus providing unbiased random
estimates of the subgradients of the objective rather than the subgradients
themselves (Section 5.5). Finally, Section 5.6 presents extensions of the
mirror descent scheme from problems of convex minimization to the convex-
concave saddle-point problems.

As we have already said, this chapter is devoted to general-purpose FOMs,
meaning that the methods in question are fully black-box-oriented—they
do not assume any a priori knowledge of the structure of the objective
(and the functional constraints, if any) aside from convexity and Lipschitz
continuity. By itself, this generality is redundant: convex programs arising in
applications always possess a lot of known in advance structure, and utilizing
a priori knowledge of this structure can accelerate the solution process
dramatically. Acceleration of FOMs by utilizing a problems’ structure is
the subject of Chapter 6.

5.2 Mirror Descent Algorithm: Minimizing over a Simple Set
5.2.1 Problem of Interest
We focus primarily on solving an optimization problem of the form
Opt = rxlélglcl f(x), (5.2)

where X C FE is a closed convex set in a finite-dimensional Euclidean space
E, and f: X — R is a Lipschitz continuous convex function represented by
a first-order oracle. This oracle is a routine which, given a point x € X on
input, returns the value f(x) and a subgradient f’(x) of f at . We always
assume that f’(x) is bounded on X. We also assume that (5.2) is solvable.

5.2.2 Mirror Descent setup

We set up the MD method with two entities:

5.2 Mirror Descent Algorithm: Minimizing over a Simple Set 127

= a norm || - || on the space E embedding X, and the conjugate norm || - ||,
on B |[€]l« = max {(¢, z) : [|=[| < 1};

= a distance-generating function (d.-g.f. for short) for X compatible with the
norm || - ||, that is, a continuous convex function w(z) : X — R such that

—w(z) admits a selection w’(x) of a subgradient which is continuous on
the set X° = {x € X : dw(z) # 0};

—w(+) is strongly convex, with modulus 1, w.r.t. || - [|:
V(z,2' € X°) : (W (z) — ' (), z — 2') > ||z —y||*. (5.3)
For x € X°, u € X, let
Ve(u) = w(u) — w(z) — (W'(x),u —). (5.4)

Denote . = argmin,cqw(u) (the existence of a minimizer is given by
continuity and strong convexity of w on X and by closedness of X, and
its uniqueness by strong convexity of w). When X is bounded, we define
w(-)-diameter 2 = maxyuex Va, (v) < maxy w(u) — miny w(u) of X. Given
x € X°, we define the prox-mapping Prox,(§) : E — X° as

Prox,(€) = argmin, ey {{€,u) + Va(u)} (5.5)

From now on we make the
Simplicity Assumption. X and w are simple and fit each other. Specifi-
cally, given x € X° and £ € F, it is easy to compute Prox, ().

5.2.3 Basic Mirror Descent algorithm

The MD algorithm associated with the outlined setup, as applied to problem

(5.2), is the recurrence

a) x = argmin,cy w(z)

b) x4r1 = Proxg, (v f'(ze)), t =1,2,...
t 1t

c) at= [ZT:l %] > 1 Vs

d) Tt = argminxe{xl,...,xt} f(l:)

(5.6)

~—~ T~

Here, x; are subsequent search points, and z! (or Z'—the error bounds that
follow work for both these choices) are subsequent approximate solutions
generated by the algorithm. Note that z; € X° and zf, 2! € X for all .

The convergence properties of MD stem from the following simple obser-
vation:

Proposition 5.1. Suppose that f is Lipschitz continuous on X with L :=

128

First-Order Methods for Nonsmooth Convex Large-Scale Optimization, I

sup,ex ||/ (@)lls < 00. Let f, = max[f(a"), f(3")]. Then
(i) for allu € X, t > 1 one has

t

P I AU D v ol .

< Vo (uw) + % ZtT:1 V2.

As a result, for allt > 1,

_ Vi, (2 + LSt 42
ZTZIV’T

where x, is an optimal solution to (5.2). In particular, in the divergent
series case vy — 0, ZtT:l Y- — 400 as t — oo, the algorithm converges:
fi—Opt — 0 as t = co. Moreover, with the stepsizes

v =/ (@) [V

(5.8)

for all t, one has

_ L 1 1 _
f: — Opt < 0O(1) lesx) + n(t; W g (5.9)

(ii) Let X be bounded so that the w(-)-diameter Q of X is finite. Then, for
every number N of steps, the N-step MD algorithm with constant stepsizes,

V2Q
’Yt:m, I<t<N, (5.10)

ensures that

[y = mingex & 2N [f(@) + (f/ (@), u — ;)] < Opt,

Fy—Opt < fy— f <YL

In other words, the quality of approzimate solutions (x™ or z) can be
certified by the easy-to-compute online lower bound iN on Opt, and the
certified level of mnonoptimality of the solutions can only be better than the
one given by the worst-case upper bound in the right-hand side of (5.11).

(5.11)

Proof. From the definition of the prox-mapping,
Tr41 = argmin {(ef/(@r) = ' (2r), 2) +w(2)},
FAS]
whence, by optimality conditions,

(e f'(r) = W' (@7) + W (Tr41),u — 2r41) > 0 Vu € X.

5.2 Mirror Descent Algorithm: Minimizing over a Simple Set 129

When rearranging terms, this inequality can be rewritten as

Vo' (@r), wr —u) < w(u) —w(er) = (W(er),u—z7)]

—[ww) = w(@r1) = (W'(Tr1), u = 2711)]

+y-(f ()y Ty — Tri1)
—w(@ri1) — W(Z'T) (W'(2r), Br41 — 27)]
= Vo, (u) = Vo, () + [y (f'(27), r — @7 10) = Vo (2711)] . (5.12)
dr

From the strong convexity of V,_ it follows that

or < (1), 2r — Trp1) — %fo - $T+1H2
< vl o) lllar — wr+1H ngL’r — arp1?
< max[y[|f(w7)]l«s — 35°] = e FESIE
and we get
Vel (), r = u) < Vi, (u) = Vo, () + 221 (20)|12/2. (5.13)
Summing these inequalities over 7 = 1,...,t and taking into account

that V,(u) > 0, we arrive at (5.7). With u = x,, (5.7), when tak-
ing into account that (f/(z.),7, — z«) > f(x,) — Opt and setting f! =
5y Y £ (@) results in

Var(z) + L[S 2] /2
Zf—:l’)’r

Since, clearly, f, = max|[f(x!), f(z!)] < f!, we have arrived at (5.8). This
inequality straightforwardly implies the remaining results of (i).

ff—Opt <

To prove (ii), note that by the definition of 2 and due to x; = argminy w,
(5.7) combines with (5.10) to imply that

N
V20
Py = ma | 1Y 23 + () u)] < Y

T=1

. (5.14)

Since f is convex, the function + Ziv:l[f(:nT) + (f'(x7),u — z,)] underes-
timates f(u) everywhere on X, that is, f, < Opt. And, as we have seen,
N > fy, therefore (ii) follows from (5.14). O

130 First-Order Methods for Nonsmooth Convex Large-Scale Optimization, I

5.3 Problems with Functional Constraints

The MD algorithm can be extended easily from the case of problem (5.2) to
the case of problem

Opt = mé%% {fo(z): fi(z) <0, 1 <i<m}, (5.15)

where f;, 0 < f; < m, are Lipschitz continuous convex functions on X given
by the first-order oracle which, given x € X on input, returns the values
fi(z) and subgradients f/(z) of f; at x, with selections of the subgradients
f1(-) bounded on X. Consider the N-step algorithm:

1. Initialization: Set x1 = argming w.

2. Stept, 1 <t < N:Given x; € X, call the first-order oracle (z; being the
input) and check whether

filz) Afi @l i =1,0,m. (5.16)

If it is the case (productive step), set i(t) = 0; otherwise (nonproductive
step) choose i(t) € {1,...,m} such that f;;(z) > ’y||fl.’(t) (@) ||« Set

Y=/ iy (@)lls, e1 = Proxs, (v fiy (20)).
When ¢t < N, loop to step t + 1.

3. Termination: After N steps are executed, output, as approximate solution
2V, the best (with the smallest value of fy) of the points z; associated
with productive steps t; if there were no productive steps, claim (5.15) is
infeasible.

Proposition 5.2. Let X be bounded. Given integer N > 1, set v =
V2Q/VN. Then
(i) If (5.15) is feasible, T is well defined.

(ii) Whenever 2V is well defined, one has

~N ~N ~N _ V20L
max [fo(@ >—0pt,f1<x/>,.--,fm<x)] <ol =205 (5.17)
L = maxo<i<m subgex |1 £(@)])s-

Proof. By construction, when Z% is well defined, it is some z; with produc-

tive ¢, whence f;(zV) < 4L for 1 < i < m by (5.16). It remains to verify that
when (5.15) is feasible, 7V is well defined and fo(z"") < Opt + yL. Assume
that it is not the case, whence at every productive step ¢ (if any) we have
fo(zt) — Opt > 7| fi(xt)]]« Let x4 be an optimal solution to (5.15). Exactly
the same reasoning as in the proof of Proposition 5.1 yields the following

5.4 Minimizing Strongly Convex Functions 131

analogy of (5.7) (with u = x,):

N 1N
Zt:17t<f£(t)(xt)7$t —x) <Q+ 52

Y R =29 (518)

When ¢t is nonproductive, we have 'Yt<fi/(t) (z¢), ¢ — @) > Yefir) (1) > 72,
the concluding inequality being given by the definition of i(¢) and ~;.
When t is productive, we have %(fi’(t) (@), me — xs) = () (2e), 26 — 24) >
vt (fo(z¢)—Opt) > 72, the concluding inequality being given by the definition
of v and our assumption that fo(z¢) — Opt > || fi(x¢)|« at all productive
steps t. The bottom line is that the left-hand side in (5.18) is > Nv? = 2Q,
which contradicts (5.18). O

5.4 Minimizing Strongly Convex Functions

The MD algorithm can be modified to obtain the rate O(1/t) in the case
where the objective f in (5.2) is strongly convez. The strong convexity of f
with modulus k > 0 means that

V(z,2' € X) (f'(z) — f'(a), 2 — 2') > kllz — 2’| (5.19)
Further, let w be the d.-g.f. for the entire E (not just for X, which may be
unbounded in this case), compatible with || - [|. W.l.o.g. let 0 = argming w,
and let

Q = max w(u) —w(0
fJull<1) (©)
be the variation of w on the unit ball of || - ||. Now, let w™*(u) = w(“%*) and

Vi (1) = w7 (1) — wB () — (WP (), u — z). Given z € X and R > 0
we define the prox-mapping

Prox;"*(¢) = argmin{(¢, u) + V5 (u)]

and the recurrence (cf. (5.6))
Tpp1 = Proxft’z(%f’(xt)), t=1,2,...
~1
2'(R, z) = [23:1 r] > Ve

We start with the following analogue of Proposition 5.1.

(5.20)

Proposition 5.3. Let f be strongly convex on X with modulus k > 0 and
Lipschitz continuous on X with L := sup,cy || f'(z)|lx < co. Given R > 0,
t > 1, suppose that |x1 — z4|| < R, where . is the minimizer of f on X,

1582

First-Order Methods for Nonsmooth Convex Large-Scale Optimization, I

and let the stepsizes vr satisfy

’VT:LQ7 1§
RL\t

Then, after t iterations (5.20) one has

r<t. (5.21)

f(z'(R,z1)) —Opt < %Z x*>g%/?”, (5.22)
T7=1
ot (R, 21) — < izww oz < HVE (5)

)
1 KV

Proof. Observe that the modulus of strong convexity of the function w®1(-)

\]
I

w.r.t. the norm || - ||[g = || - ||/R is 1, and the conjugate of the latter norm is
R|| - ||«. Following the steps of the proof of Proposition 5.1, with || - ||z and
w1 (.) in the roles of || - ||, respectively, we come to the analogue of (5.7)
as follows:

272 ¢ 272 t
VueX: Z% 7)), tr—u) < VI (u HL Z:: RQL ;%?

Setting u = . (so that V%1 (z,) < Q due to |Jz; — z«]| < R), and
substituting the value (5.21) of 7,, we come to (5.22). Further, from the
strong convexity of f it follows that (f'(z,), 2, — z«) > kl|z; — 24]|?, which
combines with the definition of z!(R,x1) to imply the first inequality in
(5.23) (recall that 7, is independent of 7, so that 2'(R,z;) = %22:1 Tr).
The second inequality in (5.23) follows from (5.22). O

Proposition 5.21 states that the smaller R is (i.e., the closer the initial
guess x1 is to x,), the better the accuracy of the approximate solution
z'(R,z1) will be in terms of f and in terms of the distance to z.. When
the upper bound on this distance, as given by (5.22), becomes small, we
can restart the MD using z(-) as the improved initial point, compute a
new approximate solution, and so on. The algorithm below is a simple
implementation of this idea.

Suppose that 1 € X and Ry > ||z, — x1]| are given. The algorithm is as
follows:

1. Initialization: Set yo = 1.

2. Stage k =1,2,...: Set Ny = Ceil(2F+2 L;RQQ) where Ceil(?) is the smallest
integer > t, and compute y, = ™% (Rp_1,yr_1) according to (5.20), with

Y =" # 1 <t < Ng. Set R? = 27*RZ and pass to stage k + 1.

5.4 Minimizing Strongly Convex Functions 138

For the search points x1,...,zy, of the kth stage of the method, we define

1 O

0k = 7Z<f/(w7')vx7 — Ty).

=1

Let k. be the smallest integer such that £ > 1 and 2’“*2% > k, and let
0

M = Z?Zl Nj, k =1,2,.... M}, is the total number of prox-steps carried

out at the first k stages.

Proposition 5.4. Setting yo = x1, the points yi, k = 0,1, ..., generated by
the above algorithm satisfy the following relations:

lye — z:l|* < Ry = 27" Rg, (Ix)
k=0,1,..,
f(yr) — Opt < 6, < kRZ = K27FRZ (J3)

k=1,2,.... As a result,
(i) When 1 <k < ki, one has My < 5k and

f(yr) — Opt < k27" Rg; (5.24)

(ii) When k > k., one has

(5.25)

The proposition says that when the approximate solution y is far from
Z«, the method converges linearly; when approaching x,, it slows down and
switches to the rate O(1/t).

Proof. We prove (Iy), (Jx) by induction in k. (1) is valid due to yo = =1
and the origin of Ry. Assume that for some m > 1 relations (Ix) and (Jx)
are valid for 1 < k < m—1, and prove that then (1,,,), (J,,,) are valid as well.
Applying Proposition 5.3 with R = Ry,—1, 1 = Ym—1 (so that ||z, —z1]| < R
by (Iy—1)) and t = N,,, we get

LRy_1V29 V20
(@)t f(ym)—Opt < 4, < W B) : |[ym —z])? < LR~

Since R%,_| = 21" R2 by (I,,—1) and N,,, > 2m+2 ,5221%, (b) implies (I,,) and
(a) implies (J,,). Induction is completed.

Now prove that M < 5k for 1 < k < k,. For such a k and for 1 < j < k we
have N; = 1 when 2772 ,5221% < 1; let it be so for j < j,; and N; < 2j+3’f;;%93

for j, < j < k. It follows that when j. > k, we have My = k. When j, <k,

134 First-Order Methods for Nonsmooth Convexr Large-Scale Optimization, I

we have M := Z - N; < 2k+4 L Q < 4k (the concluding inequality is due
to k < ki), whence Mk = Jx — 1 —|— "M < 5k, as claimed. Invoking (Jg), w
arrive at (i).

To prove (ii), let k > k,, whence N > k + 1. We have

L?*Q Lo L2Q
ok+3 =~ *% >223+2HTRO > Nj —1) = M, — k> My/2,

1

k
Jj=

where the concluding > stems from the fact that Ny > k + 1, and therefore

My, > VU N+ N > (k= 1) + (k + 1) = 2k. Thus My, < o+ L, that

is, 27F < 1\}[%22%37 and the right-hand side of (Ji) is < %. O

5.5 Mirror Descent Stochastic Approximation

The MD algorithm can be extended to the case when the objective f in (5.2)
is given by the stochastic oracle—a routine which at ¢th call, the query point
being x; € X, returns a vector G(z, &), where £, &o, ... are independent,
identically distributed oracle noises. We assume that for all x € X it holds
that

E{||G(z, [} < L* < co & [lg(x)—f'(@)[l« < p, 9(2) = E{G(,€)}. (5.26)

In (5.6), replacing the subgradients f’(z;) with their stochastic estimates
G(x,&), we arrive at robust mirror descent stochastic approximation
(RMDSA). The convergence properties of this procedure are presented in
the following counterpart of Proposition 5.1:

Proposition 5.5. Let X be bounded. Given an integer N > 1, consider
N-step RMDSA with the stepsizes

v = V2Q/[LVN], 1 <t < N. (5.27)
Then
E {f(=") - Opt} < V2QL/VN +2v2Qu. (5.28)

Proof. Let € = [£15...:&], so that x; is a deterministic function of &1
Exactly the same reasoning as in the proof of Proposition 5.1 results in the
following analogy of (5.7):

S G)t —w) QI G &R (5.29)

5.6 Mirror Descent for Convex-Concave Saddle-Point Problems 135

Observe that z, is a deterministic function of £/~!, so that

E£T{<G($7757)a$f =z} = (9(2r), 7 — 24) > <f,(x'r)a$7 — T) — puD,

where D = max, yex ||z — 2/|| is the || - ||-diameter of X. Now, taking
expectations of both sides of (5.29), we get

E N , - R) D N
Z7':1f}/7—<f (x7)7 T $*> - + 727':177— + H ZT:lfYT

In the same way as in the proof of Proposition 5.1 we conclude that the
left-hand side in this inequality is > [Z]TV:{VT]E{ f(zN) — Opt}, so that

L2~N
Q + 727:1772'
N

T:l’YT

E{f(z") - Opt} < + uD. (5.30)
Observe that when z € X, we have w(z)—w(z1)—(w'(z1), z—21) > 3[|z—21]?
by the strong convexity of w, and w(z) — w(x1) — (W'(z1), 2 — 1) < w(x) —

w(z1) < Q (since x1 = argmingy w, and thus (w'(z1),2 — 1) > 0). Thus,
|z —21]| < V29 for every z € X, whence D := max, yex ||z — /|| < 2v/2Q.
This relation combines with (5.30) and (5.27) to imply (5.28). O

5.6 Mirror Descent for Convex-Concave Saddle-Point Problems

Now we shall demonstrate that the MD scheme can be naturally extended
from problems of convex minimization to the convex-concave saddle-point
problems.

5.6.1 Preliminaries

Convex-concave Saddle-Point Problem. A convex-concave saddle-point
(c.-c.s.p.) problem reads

SadVal = inf sup ¢(x,y), (5.31)
zeX yeY
where X C F,, Y C E, are nonempty closed convex sets in the respective
Euclidean spaces E, and E,. The cost function ¢(x,y) is continuous on
2Z=XxYeFE=F,xE, and convex in the variable z € X and concave in
the variable y € Y; the quantity SadVal is called the saddle-point value of ¢
on Z. By definition, (precise) solutions to (5.31) are saddle points of ¢ on
Z, that is, points (2., y«) € Z such that ¢(z,ys) > d(xx,yx) > (x4, y) for
all (z,y) € Z. The data of problem (5.31) give rise to a primal-dual pair of

186

First-Order Methods for Nonsmooth Convex Large-Scale Optimization, I

convex optimization problems

Opt(P) = ming(z), ¢(x)=supeyd(z,y) (P)
%

xeX
Opt(D) = maxg(y), (y)zzirelgcqb(:v,y)- (D)

yeY —

¢ possesses saddle-points on Z if and only if problems (P) and (D) are
solvable with equal optimal values. Whenever saddle-points exist, they
are exactly the pairs (z.,y.) comprising optimal solutions x., y. to the
respective problems (P) and (D), and for every such pair (x4, ys) we have

¢(24, ys) = p(2:) = Opt(P) = SadVal := inf supycy ¢(z,y)
= SUP,ey ggccb(x, y) = Opt(D) = d(yx).

From now on, we assume that (5.31) is solvable.

Remark 5.1. With our basic assumptions on ¢ (continuity and convezity-
concavity on X xY) and on X,Y (nonemptiness, convexity and closedness),
(5.31) definitely is solvable either if X and Y are bounded, or if both X and
all level sets {y € Y : ¢(y) > a}, a € R, of ¢ are bounded; these are the only
situations we are about to consider in this chapter and in Chapter 6.

Saddle-Point Accuracy Measure. A natural way to quantify the accuracy
of a candidate solution z = (x,y) € Z to the c.-c.s.p. problem (5.31) is given
by the gap

€ad(2) = sup,ey d(z,n) — éigafcsb(& y) = o(z) — o(y)
= [¢(z) — Opt(P)] + [Opt(D) — ¢(y)]

where the concluding equality is given by the fact that, by our standing
assumption, ¢ has a saddle point and thus Opt(P) = Opt(D). We see that
€sad (T, y) is the sum of nonoptimalities, in terms of the respective objectives:
of z as an approximate solution to (P) and of y as an approximate solution
to (D).

(5.32)

Monotone Operator Associated with (5.31). Let 0,¢(x,y) be the set of
all subgradients w.r.t. X of (the convex function) ¢(-,y), taken at a point
x € X, and let 0y[—¢(x,y)] be the set of all subgradients w.r.t. Y (of the
convex function) —¢(z,-), taken at a point y € Y. We can associate with ¢
the point-to-set operator

(I)(.T,y) = {(I)x(x7y) - 8$¢($,y)} X {(I)y(may) = 8y[_¢($7y)]}

5.6 Mirror Descent for Convex-Concave Saddle-Point Problems 137

The domain Dom @ := {(x,y) : ®(z,y) # 0} of this operator comprises all
pairs (z,y) € Z for which the corresponding subdifferentials are nonempty;
it definitely contains the relative interior rint Z = rint X X rint Y of Z, and
the values of ® in its domain are direct products of nonempty closed convex
sets in £, and E,. It is well known (and easily seen) that ® is monotone:

V(z,2' € Dom ®,F € ®(2), F' € (")) : (F — F',z—2') > 0,

and the saddle points of ¢ are exactly the points z, such that 0 € ®(z,). An
equivalent characterization of saddle points, more convenient in our context,
is as follows: z, is a saddle point of ¢ if and only if for some (and then for
every) selection F(-) of ® (i.e., a vector field F(z) : rint Z — F such that
F(z) € ®(z) for every z € rint Z) one has

(F(2),z — z4+) > 0V2z € rint Z. (5.33)
5.6.2 Saddle-Point Mirror Descent

Here we assume that Z is bounded and ¢ is Lipschitz continuous on Z
(whence, in particular, the domain of the associated monotone operator ®
is the entire Z).

The setup of the MP algorithm involves a norm || - || on the embedding
space E = E; x Ey of Z and a d.-g.f. w(-) for Z compatible with this norm.
For z € Z°, u € Z let (cf. (5.4))

Va(u) = w(u) — w(z) — (W'(2),u - 2),

and let z, = argmin,c,w(u). We assume that given z € Z° and € € E, it is
easy to compute the prox-mapping

Prox,(§) = arggzin (&, u) + Va(u)] (: argérgin [(€ —/(2),u) + w(u)]) .

We denote, by Q = max,ez V;, (1) < maxgw(-)—mingw(-), the w(-)-diameter
of Z (cf. Section 5.2.2).

Let a first-order oracle for ¢ be available, so that for every z = (x,y) €
Z we can compute a vector F(z) € ®(z = (x,y)) = {0:0(x,y)} X
{0y[—¢(z,y)]}. The saddle-point MD algorithm is given by the recurrence

(CL) S T
(b) 1 zry1 = Prox, (v+F(zr)), (5.34)
(0): 2= s a1 VsWs,

where 7, > 0 are the stepsizes. Note that z,,w, € Z°, whence 2! € Z.

188

First-Order Methods for Nonsmooth Convex Large-Scale Optimization, I

The convergence properties of the algorithm are given by the following.
Proposition 5.6. Suppose that F(-) is bounded on Z, and L is such that
|E(2)||« < L forall z € Z.

(i) For every t > 1 it holds that

cwa < [3] [9 + I;z;lﬁ] . (5.35)

(ii) As a consequence, the N-step MD algorithm with constant stepsizes

vr =~v/LVN, 7 =1,...,N satisfies

€sad (Z

In particular, the N-step MD algorithm with constant stepsizes ~v; =
Lflw/%, T=1,...,N satisfies

/29
Esad(ZN) < L W

Proof. By the definition z;41 = Prox, (v-F(z;)) we get
Vu € Z, yr(F(2r), 2 —u) S Vi, (u) =V, (u) + A2 F (2)[12/2.

(It suffices to repeat the derivation of (5.13) in the proof of Proposition 5.1
with f/(x;), z;, and x;41 substituted, respectively, with F(z;), zr, and
Zr4+1.) When summing for i = 1, ..., ¢ we get, for all u € Z:

t ¢ 9 t
Sl F o), 2 —) < Ve, () + S IFIR/2 < 0 3 285.36)
T=1

T=1 T=1
Let zr = (zr,yr), 28 = (24,9y'), and N\, = [Zizl 75]71%. Note that
S As =1, and for

t

Z A (F(27), 20 —u) = Z A ((Ved(2r,y7), 20 — 2) + <Vy¢(x7'7y7')7y —yr)]
=1

T=1

we have

S A [(Vad(@r yr), zr — @) + (Vyd(zr, yr),y — yr)]

>3 A [0(xr,yr) — G, yo)] + [b(2r,y) — dlary:)]] (a)
= Aoz, y) — bl yr)]

> G hoy A, y) — O, 02 Aryr) = bt y) — ') ()

(inequalities in (a) and (b) are due to the convexity-concavity of ¢). Thus

(5.37)

5.7 Setting up a Mirror Descent Method 139

(5.36) results in

QO+ 53T 7
ZtT:1 Yr

Taking the supremum in (z,y) € Z, we arrive at (5.35). O

oz’ y) — ¢(x,y") < Y(z,y) € 2.

5.7 Setting up

a Mirror Descent Method

An advantage of the mirror descent scheme is that its degrees of freedom
(the norm || - || and the d.-g.f. w(+)) allow one to adjust the method, to some
extent, to the geometry of the problem under consideration. This is the issue
we are focusing on in this section. For the sake of definiteness, we restrict
ourselves to the minimization problem (5.2); the saddle-point case (5.31) is
completely similar, with Z in the role of X.

5.7.1 Building blocks

The basic MD setups are as follows:

1. Euclidean setup: || - || = || - ||2, w(z) = 327 x.

2. {1-setup: For this setup, F = R", n > 1, and || - || = || - [1. As for w(+),
there could be several choices, depending on what X is:
(a) When X is unbounded, seemingly the only good choice is w(x) =
Cln(n)Hfo)(n) with p(n) =1+ 21111870, where an absolute constant C' is

chosen in a way which ensures (5.3) (one can take C' = e).

(b) When X is bounded, assuming w.l.o.g. that X C B™! := {z € R":
|z[li < 1}, one can set w(z) = Cln(n)S ", |z:[P™ with the same as
above value of p(n) and C' = 2e.

(c) When X is a part of the simplex S} = {z € R : Y"1 j2; < 1} (or
the flat simplex S, = {# € R} : }°" x; = 1}) intersecting int R"}, a
good choice of w(x) is the entropy

w(z) = Ent(x) := Zn i In(z;). (5.38)

3. Matrix setup: This is the matrix analogy of the /¢i-setup. Here the
embedding space I of X is the space S” of block-diagonal symmetric
matrices with fixed block-diagonal structure v = [v1;...;v,] (k diagonal
blocks of row sizes vy,...,v). S” is equipped with the Frobenius inner
product (X,Y) = Tr(XY) and the trace norm |X|; = |[A(X)|}1, where
A(X) is the vector of eigenvalues (taken with their multiplicities in the

140 First-Order Methods for Nonsmooth Convexr Large-Scale Optimization, I

nonascending order) of a symmetric matrix X. The d.-g.f.s are the matrix
analogies of those for the ¢;-setup. Specifically,

(a) When X is unbounded, we set w(X) = Cln(]u!)H/\(X)H;(‘VI), where
lv| = Zlgzlug is the total row size of matrices from S”, and C is
an appropriate absolute constant which ensures (5.3) (one can take
C = 2e).

(b) When X is bounded, assuming w.l.o.g. that X ¢ B»! = {X € S :
Xy < 1}, we can take w(X) = deIn(|v|) 320 | A (X)[P0¥D.

(c) When X is a part of the spectahedron ¥} = {X € S : X =
0, Tr(X) < 1} (or the flat spectahedron ¥, = {X € S : X >
0, Tr(X) = 1}) intersecting the interior {X > 0} of the positive
semidefinite cone 8% = {X € S” : X > 0}, one can take w(X) as
the matrix entropy: w(X) = 2Ent(A(X)) = 257 N (X) In(Ai(X)).

Note that the £1-setup can be viewed as a particular case of the matrix setup,
corresponding to the case when the block-diagonal matrices in question are
diagonal, and we identify a diagonal matrix with the vector of its diagonal
entries.

With the outlined setups, the simplicity assumption holds, provided that
X is simple enough. Specifically:

= Within the Euclidean setup, Prox, () is the metric projection of the vector
x — & onto X (that is, the point of X which is the closest to x — £ in /o-
norm). Examples of sets X C R™ for which metric projection is easy include
|| - |l-balls and intersections of || - ||,-balls centered at the origin with the
nonnegative orthant R'y.

» Within the /;-setup, computing the prox-mapping is reasonably easy
—in the case of 2a, when X is the entire R" or R},

—in the case of 2b, when X is B™! or B»' N R%,

—in the case of 2¢, when X is the entire S} or S,,.

With the indicated sets X, in the cases of 2a and 2b computing the prox-
mapping requires solving auxiliary one- or two-dimensional convex problems,
which can be done within machine accuracy by, e.g., the ellipsoid algorithm
in O(n) operations (cf. Nemirovsky and Yudin, 1983, Chapter 2). In the case
of 2¢, the prox-mappings are given by the explicit formulas

[z1e51 7L s wpetn Y, el <1
[Zixie&} -1 [9316771; s $ne’7"], otherwise

X =S8, = Prox;(§) = [Zixiefi}_l [w1e™; .5 ape].

X =S, = Prox,(¢) = {

(5.39)

5.7 Setting up a Mirror Descent Method 141

» Within the matrix setup, computing the prox-mapping is relatively easy

—in the case of 3a, when X is the entire S” or the positive semidefinite cone
" ={XeS:X >0},

—in the case of 3b, when X is the entire B¥"! or the intersection of B*'! with
L

—in the case of 3¢, when X is the entire spectahedron X or ¥,,.

Indeed, in the cases, outlined above, computing W = Proxx (Z) reduces to

computing the eigenvalue decomposition of the matrix X (which allows one

to get w'(X)), and subsequent eigenvalue decomposition of the matrix H =

E—w(X): H = U Diag{h}UT (here Diag(A) stands for the diagonal matrix

with the same diagonal as A). It is easily seen that in the cases in question,

W = UDiag{w}UT, w = argmin {(Diag{h}, Diag{z}) + w(Diag{z})},
z: Diag{z}€X
and the latter problem is exactly the one arising in the ¢{-setup.

Ilustration: Euclidean setup vs. (1-setup. To illustrate the ability of the
MD scheme to adjust, to some extent, the method to the problem’s geometry;,
consider problem (5.2) when X is the unit || - ||,-ball in R™, where p =1 or
p = 2, and compare the respective performances of the Euclidean and the
¢1-setups. (To make optimization over the unit Euclidean ball B™? available
for the ¢;-setup, we pass from min|,|,<; f(x) to the equivalent problem

f(n'/?u) and use the setup from Section 5.7.1, item 2b.) The ratio

l[ull:<n=1/2

of the corresponding efficiency estimates (the right-hand sides in (5.11))
within an absolute constant factor is

= EHESt(EuCl) — 1 . SUPgex Hf/(x)llz
T UEMEst(6) n/ry/l(n) SPeex [0
A B

Note that ©® < 1 means that the MD with the Euclidean setup significantly
outperforms the MD with the ¢1-setup, while ® > 1 means exactly the
opposite. Now, A is < 1 and thus is always in favor of the Euclidean setup,
and is as small as 1/4/nIn(n) when X is the Euclidean ball (p = 2). The
factor B is in favor of the ¢1-setup—it is > 1 and < /n, and can well be of
the order of \/n (look what happens when all entries in f/(z) are of the same
order of magnitude). Which one of the factors overweights depends on f;
however, a reasonable choice can be made independently of the fine structure
of f. Specifically, when X is the Euclidean ball, the factor A = 1/v/nlnn is so
small that the product AB definitely is < 1, that is, the situation is in favor
of the Euclidean setup. In contrast to this, when X is the ¢;-ball (p = 1),
A is nearly constant—just O(1/4/In(n)), since B can be as large as \/n,
the situation is definitely in favor of the £;-setup—it can be outperformed

142

First-Order Methods for Nonsmooth Convex Large-Scale Optimization, I

by the Euclidean setup only marginally (by the factor < \/ﬂ), and it has
a reasonable chance to outperform its adversary quite significantly, by the
factor O(y/n/In(n)). Thus, there are all reasons to select the Euclidean
setup when p = 2 and the ¢;-setup when p = 1.6

5.7.2 Favorable Geometry Case

Consider the case when the domain X of (5.2) is bounded and, moreover, is
a subset of the direct product Xt of standard blocks:

Xt =Xy x...x X € By x...x Eg, (5.40)
where for every ¢ =1, ..., K the pair (Xy, E; D X) is

» cither a ball block, that is, B, = R™ and X, is either the unit Euclidean
ball B2 = {z € R™ : ||z|l2 < 1} in Ey, or the intersection of this ball with
an.

=+

= or a spectahedron block, that is, Ey = S”* is the space of block-diagonal
symmetric matrices with block-diagonal structure v¢, and X, is either the
unit trace-norm ball {X € 8" : |X|; < 1}, or the intersection of this ball
with S%', or the spectahedro(n vh ={X ¢ S%' : Tr(X) < 1}, or the flat
spectahedron ¥, = {X € 8% : Tr(X) = 1}.

Note that according to our convention of identifying vectors with diagonals
of diagonal matrices, we allow for some of Xy to be the unit ¢;-balls, or their
nonnegative parts, or simplexes—they are nothing but spectahedron blocks
with purely diagonal structure v/*.

We equip the embedding spaces FE,y of blocks with the natural inner
products (the standard inner products when E; = R™ and the Frobenius
inner product when E; = S*) and norms || - ¢y (the standard Euclidean

norm when FE; = R™ and the trace-norm when F, = S¥ Z), and the standard

6. In fact, with this recommendation we get theoretically unimprovable, in terms of the
information-based complexity theory, methods for large-scale nonsmooth convex optimiza-
tion on Euclidean and ¢;-balls (for details, see Nemirovsky and Yudin, 1983; Ben-Tal
et al., 2001). Numerical experiments reported in Ben-Tal et al. (2001) and Nemirovski
et al. (2009) seem to fully support the advantages of the ¢;-setup when minimizing over
large-scale simplexes.

5.7 Setting up a Mirror Descent Method 143

blocks X, with d.-g.f.’s

e]Txe, X, is a ball block
, X, is the unit | - |; ball BY! in
4eln(|v’ I (X! p(“’q),
we(xf) _ (‘ |)Zz| z()| Ez _ Sl/, or BV271 N Sf
X is the spectahedron (E:Q or

2Ent(A (X)), $,.) in Hy — S

(5.41)

(cf. Section 5.7.1). Finally, the embedding space E = FEy X ... X Fx of Xt
(and thus of X C XT) is equipped with the direct product type Euclidean
structure induced by the inner products on Fi, ..., Ex and with the norm

K
(@t ™) = \/Zezlazllwéllfa (5.42)

where oy > 0 are construction parameters. X is equipped with the d.-g.f.

w(z!, ..., 2™ = Zzlagwg(mg) (5.43)

which, it is easy to see, is compatible with the norm || - [|.

Assuming from now on that X intersects the relative interior rint X, the
restriction of w(-) onto X is a d.-g.f. for X compatible with the norm || - ||
on the space E embedding X, and we can solve (5.2) by the MD algorithm
associated with || - || and w(-). Let us optimize the efficiency estimate of
this algorithm over the parameters «ay of our construction. For the sake of
definiteness, consider the case where f is represented by a deterministic first-
order oracle (the tuning of the MD setup in the case of the stochastic oracle
is being completely similar). To this end, assume that we have at our disposal
upper bounds Ly < co, 1 < ¢ < K, on the quantities | f/,(z?, ...,xK)H(Z)’*,
z = (z!,..,2") € X. Here f/,(z) is the projection of f’(x) onto E; and
Il - ll(¢)« is the norm on Ej; conjugate to || - ||y (that is, || - [[(s)« is the
standard Euclidean norm || - ||z on Ep when E; = R™, and || - ||y, is the
standard matrix norm (maximal singular value) when E; = S'). The norm
|| - ||« conjugate to the norm || - || on E is

1L e € = /107 MR,
= (Vo e X): | f' (@)l < L= /S5 0 L2,

(5.44)

The quantity we need to minimize in order to get as efficient an MD method
as possible within our framework is vVQL (see, e.g., (5.11)). We clearly have
N <OXT] < ZleagQgDCg], where y[X,] is the variation (maximum minus

144

First-Order Methods for Nonsmooth Convex Large-Scale Optimization, I

minimum) of wy on Xy. These variations are upper-bounded by the quantities

L { % for ball blocks X (5.45)

4eln(|vf|) for spectahedron blocks Xy

Assuming that we have K3 ball blocks Xy, ..., X
blocks Xx,+1,...; Xx=K,+K., We get

1 b Ky+K K 1
QL < Q[XT]L < {Ze: ag—i—élez ozg In(|v |)] 22:10% L?.

and K spectahedron

b

2
When optimizing the right-hand side bound in ay, ..., ay, we get

Lg K
ap = L QXtT) =1, L=2L:= Lo/ 5.46
BN AV 2oLV (340)

The efficiency estimate (5.11) associated with our optimized setup reads as

follows
fn—Opt <O()LN1/?

5.47
= O(l)[maxlSeSK Lg] [Kb + Zf:b;(fj—sl ln(yyé|)i| N_l/Q. ()

If we consider maxi<y<x Ly, Ky, and K, as given constants, the rate of
convergence of the MD algorithm is O(1/v/N), N being the number of steps,
with the factor hidden in O(-) completely independent of the dimensions of
the ball blocks and nearly independent of the sizes of the spectahedron
blocks. In other words, when the total number K of standard blocks in
X* is O(1), the MD algorithm exhibits a nearly dimension-independent
O(N -1/ 2) rate of convergence, which is good news when solving large-scale
problems. Needless to say, the rate of convergence is not the only entity
of interest; what matters is the arithmetic cost of an iteration. The latter,
modulo the computational effort for obtaining the first-order information on
f, is dominated by the computational complexity of the prox-mapping. This
complexity—Ilet us denote it C—depends on exactly what X is. As it was
explained in Section 5.7.1, in the case of X = X, C is O(Zf:bl dim Xy)
plus the complexity of the eigenvalue decomposition of a matrix from
S”" x ... x 8", In particular, when all spectahedron blocks are {1 balls
and simplexes, C is just linear in the dimension of X*. Further, when X is
cut off X* by O(1) linear inequalities, € is essentially the same as when
X = X.. Indeed, here computing the prox-mapping for X reduces to solving
the problem

mécri{ a,z) +w(z):z2€ X, Az < b}, dimb=k = O(1),
ze

5.8 Notes and Remarks 145

or, which is the same, by duality, to solving the problem

T . T
)I\Iel%}é f«(N), fueX) = |=b" A+ Inin [{(a+ A"X, 2) + w(z)]
We are in the situation of O(1) A-variables, and thus the latter problem can
be solved to machine precision in O(1) steps of a simple first-order algorithm
like the ellipsoid method. The first order information for f, required by this
method costs the computation of a single prox-mapping for X', so that
computing the prox-mapping for X, is, for all practical purposes, more
costly by just an absolute constant factor than computing this mapping
for XT.

When X is a sophisticated subset of X, computing the prox-mapping for
X may become more involved, and the outlined setup could become difficult
to implement. One of the potential remedies is to rewrite the problem (5.2)
in the form of (5.15) with X extended to X*, with f in the role of fp and
the constraints which cut X off Xt in the role of the functional constraints
fi(z) <0,...; fm(z) <0 of (5.15).

5.8 Notes and Remarks

1. The research of the second author was partly supported by ONR grant
N000140811104 and NSF grants DMI-0619977 and DMS-0914785.

2. The very first mirror descent method, subgradient descent, originates
from Shor (1967) and Polyak (1967); SD is merely the MD algorithm with
Euclidean setup: x;41 = argmin,cq ||(z¢ — vef'(2¢)) — ul|2. Non-Euclidean
extensions (i.e., the general MD scheme) originated with Nemirovskii (1979)
and Nemirovsky and Yudin (1983); the form of this scheme used in our
presentation is due to Beck and Teboulle (2003). An ingenious version of
the method, which also allows one to recover dual solutions is proposed by
Nesterov (2009). The construction presented in Section 5.3 originated with
Nemirovsky and Yudin (1983), for a more recent version, see Beck et al.
(2010).

3. The practical performance of FOMs of the type we have considered
can be improved significantly by passing to their bundle versions, explicitly
utilizing both the latest and the past first-order information (in MD, only the
latest first-order information is used explicitly, while the past information is
loosely summarized in the current iterate). The Euclidean bundle methods
originate from Lemaréchal (1978) and are the subject of numerous papers
(see, e.g., Lemaréchal et al., 1981; Mifflin, 1982; Kiwiel, 1983, 1995, 1997;
Schramm and Zowe, 1992; Lemaréchal et al., 1995; Kiwiel et al., 1999, and

146

First-Order Methods for Nonsmooth Convex Large-Scale Optimization, I

references therein). For an MD version of the bundle scheme, see Ben-Tal
and Nemirovski (2005).

4. Classical stochastic approximation (the Euclidean setup version of the
algorithm from Proposition 5.5 without averaging: z' = x;) originated with
Robbins and Monro (1951) and assumes the objective f to be smooth and
strongly convex; there is a huge related literature (see Nevelson and Has-
minskii, 1976; Benveniste et al., 1987, and references therein). The averag-
ing of the trajectory which allows one to extend the method to the case
of nonsmooth convex minimization and plays the crucial role in FOMs for
saddle-point problems and variational inequalities, was introduced, in the
Euclidean setup, in Bruck (1977) and Nemirovskii and Yudin (1978). For
more results on “classical” and robust stochastic approximation, see, for
instance, Nemirovsky and Yudin (1983); Polyak (1991); Polyak and Judit-
sky (1992); Nemirovski and Rubinstein (2002); Kushner and Yin (2003);
Nemirovski et al. (2009) and references therein.

5. The extensions of the MD scheme from convex minimization to convex-
concave saddle-point problems and variational inequalities with monotone
operators originated from Nemirovskii (1981) and Nemirovsky and Yudin
(1983). For a comprehensive presentation, see Ben-Tal and Nemirovski
(2005).

5.9 References

A. Beck and M. Teboulle. Mirror descent and nonlinear projected subgradient
methods for convex optimization. Operations Research Letters, 31(3):167-175,
2003.

A. Beck, A. Ben-Tal, N. Guttmann-Beck, and L. Tetruashvili. The comirror algo-
rithm for solving nonsmooth constrained convex problems. Operations Research
Letters, 38(6):493-498, 2010.

A. Ben-Tal and A. Nemirovski. Non-Euclidean restricted memory level method
for large-scale convex optimization. Mathematical Programming, 102(3):407-456,
2005.

A. Ben-Tal, T. Margalit, and A. Nemirovski. The ordered subsets mirror descent
optimization method with applications to tomography. SIAM Journal on Opti-
mization, 12(1):79-108, 2001.

A. Benveniste, M. Métivier, and P. Priouret. Algorithmes Adaptatifs et Approxi-
mations Stochastiques. Masson, 1987.

R. Bruck. On weak convergence of an ergodic iteration for the solution of variational
inequalities for monotone operators in Hilbert space. Journal of Mathematical
Analalysis and Applications, 61(1):159-164, 1977.

K. C. Kiwiel. An aggregate subgradient method for nonsmooth convex minimiza-
tion. Mathematical Programming, 27(3):320-341, 1983.

K. C. Kiwiel. Proximal level bundle method for convex nondifferentiable optimiza-

5.9

References

147

tion, saddle point problems and variational inequalities. Mathematical Program-
ming, Series B, 69(1):89-109, 1995.

K. C. Kiwiel. Proximal minimization methods with generalized Bregman functions.
SIAM Journal on Control and Optimization, 35(4):1142-1168, 1997.

K. C. Kiwiel, T. Larsson, and P. O. Lindberg. The efficiency of ballstep subgradient
level methods for convex optimization. Mathematics of Operations Research, 24
(1):237-254, 1999.

H. J. Kushner and G. G. Yin. Stochastic Approzimation and Recursive Algorithms
and Applications, volume 35 of Stochastic Modelling and Applied Probability.
Springer, 2003.

C. Lemaréchal. Nonsmooth optimization and descent methods. Technical Report
78-4, International Institute for Applied System Analysis, Laxenburg, Austria,
1978.

C. Lemaréchal, J. J. Strodiot, and A. Bihain. On a bundle algorithm for nonsmooth
optimization. In O. L. Mangasarian, R. R.Meyer, and S. M. Robinson, editors,
Nonlinear Programming, volume 4, pages 245-282. Academic Press, 1981.

C. Lemaréchal, A. Nemirovski, and Y. Nesterov. New variants of bundle methods.
Mathematical Programming, Series B, 69(1-3):111-147, 1995.

R. Mifflin. A modification and an extension of Lemaréchal’s algorithm for nons-
mooth minimization. In D. C. Sorensen and R. J.-B. Wets, editors, Nondiffer-
ential and Variational Techniques in Optimization, volume 17 of Mathematical
Programming Study, pages 77-90. Springer, 1982.

A. Nemirovski and R. Rubinstein. An efficient stochastic approximation algorithm
for stochastic saddle point problems. In Modeling Uncertainty: Examination of
Stochastic Theory, Methods, and Applications, pages 155-184. Kluwer Academic
Publishers, 2002.

A. Nemirovski, A. Juditsky, G. Lan, and A. Shapiro. Robust stochastic approxi-
mation approach to stochastic programming. SIAM Journal on Optimization, 19
(4):1574-1609, 2009.

A. Nemirovskii. Efficient methods for large-scale convex optimization problems.
FEkonomika i Matematicheskie Metody, 15, 1979. (In Russian).

A. Nemirovskii. Efficient iterative algorithms for variational inequalities with
monotone operators. Ekonomika i Matematicheskie Metody, 17(2):344-359, 1981.
(In Russian).

A. Nemirovskii and D. Yudin. On Cezari’s convergence of the steepest descent
method for approximating saddle points of convex-concave functions. Soviet
Math. Doklady, 19(2), 1978.

A. S. Nemirovsky and D. B. Yudin. Problem Complezity and Method Efficiency in
Optimization. Wiley Interseciences, 1983.

Y. Nesterov. A method for solving a convex programming problem with rate of
convergence o(1/k?). Soviet Math. Doklady, 27(2):372-376, 1983.

Y. Nesterov. Smooth minimization of non-smooth functions. Mathematical Pro-
gramming, Series A, 103(1):127-152, 2005.

Y. Nesterov. Primal-dual subgradient methods for convex problems. Mathematical
Programming, Series A, 120(1):221-259, 2009.

M. B. Nevelson and R. Z. Hasminskii. Stochastic Approximation and Recursive
Estimation. Translations of Mathematical Monographs. American Mathematical

148

First-Order Methods for Nonsmooth Convex Large-Scale Optimization, I

Society, 1976.

B. T. Polyak. A general method for solving extremal problems. Soviet Math.
Doklady, 174:33-36, 1967.

B. T. Polyak. New stochastic approximation type procedures. Automation and
Remote Control, 51:937-946, 1991.

B. T. Polyak and A. B. Juditsky. Acceleration of stochastic approximation by
averaging. SIAM Journal on Control and Optimization, 30(4):838-855, 1992.

H. Robbins and S. Monro. A stochastic approximation method. Annals of
Mathematical Statistics, 22(3):400-407, 1951.

H. Schramm and J. Zowe. A version of the bundle idea for minimizing a nonsmooth
function: Conceptual idea, convergence analysis, numerical results. STAM Journal
on Optimization, 2(1):121-152, 1992.

N. Z. Shor. Generalized gradient descent with application to block programming.
Kibernetika, 3(3):53-55, 1967. (In Russian).

6 First-Order Methods for Nonsmooth
Convex Large-Scale Optimization, II:
Utilizing Problem’s Structure

Anatoli Juditsky Anatoli.Juditsky@imag.fr
Laboratoire Jean Kuntzmann , Université J. Fourier
B. P. 53 38041 Grenoble Cedex, France

Arkadi Nemirovski nemirovs@isye.gatech.edu
School of Industrial and Systems Engineering, Georgia Institute of Technology
765 Ferst Drive NW, Atlanta Georgia 30332, USA

We present several state-of-the-art first-order methods for well-structured
large-scale monsmooth convexr programs. In contrast to their black-boz-
oriented prototypes considered in Chapter 5, the methods in question utilize
the problem structure in order to convert the original nonsmooth minimiza-
tion problem into a saddle-point problem with a smooth convex-concave cost
function. This reformulation allows us to accelerate the solution process
significantly. As in Chapter 5, our emphasis is on methods which, under
favorable circumstances, exhibit a (nearly) dimension-independent conver-
gence rate. Along with investigating the general well-structured situation, we
outline possibilities to further accelerate first-order methods by randomiza-
tion.

6.1 Introduction

The major drawback of the first-order methods (FOMs) considered in Chap-
ter 5 is their slow convergence: as the number of steps ¢t grows, the inaccuracy
decreases as slowly as O(1/1/t). As explained in Chapter 5, Section 5.1, this
rate of convergence is unimprovable in the unstructured large-scale case;

150

First Order Methods for Nonsmooth Convex Large-Scale Optimization, 11

however, convex problems usually have a lot of structure (otherwise, how
could we know that the problem is convex?), and “good” algorithms should
utilize this structure rather than be completely black-box-oriented. For ex-
ample, by utilizing a problem’s structure, we usually can represent it as
a linear/conic quadratic/semidefinite program (which usually is easy), and
thus make the problem amenable to polynomial time interior-point meth-
ods for LP/CQP/SDP. Unfortunately, these algorithms, aimed at generat-
ing high accuracy solutions, can become prohibitively time-consuming in the
large-scale case. A much cheaper way to exploit a problem’s structure when
looking for medium-accuracy solutions was proposed by Nesterov (2005a);
his main observation (although simple in the hindsight, it led to a real break-
through) is that typical problems of nonsmooth convex minimization can be
reformulated (and this is where a problem’s structure is used!) as smooth
(often just bilinear) convex-concave saddle-point problems, and the latter
can be solved by appropriate black-box-oriented FOMs with O(1/t) rate of
convergence. More often than not, this simple observation allows for dra-
matic acceleration of the solution process, compared to the case where a
problem’s structure is ignored while constantly staying within the scope of
computationally cheap FOMs.

In Nesterov’s seminal paper (Nesterov, 2005a) the saddle-point reformula-
tion of the (convex) problem of interest, mingex f(x), is used to construct a
computationally cheap smooth convex approximation fof f, which further
is minimized, at the rate O(1/t?), by Nesterov’s method for smooth convex
minimization (Nesterov, 1983, 2005a). Since the smoothness parameters of
f deteriorate as f approaches f, the accuracy to which the problem of in-
terest can be solved in ¢ iterations turns out to be O(1/t); from discussion
in Section 5.1 (see item (c)), this is the best we can get in the large-scale
case when solving a simple-looking problem such as min,,<g || Az —b|2. In
what follows, we use as a “workhorse” the mirror prox (MP) saddle-point
algorithm of Nemirovski (2004), which converges at the same rate O(1/t) as
Nesterov’s smoothing, but is different from the latter algorithm. One of the
reasons motivating this choice is a transparent structure of the MP algorithm
(in this respect, it is just a simple-looking modification of the saddle-point
mirror descent algorithm from Chapter 5, Section 5.6). Another reason is
that, compared to smoothing, MP is better suited for accelerating by ran-
domization (to be considered in Section 6.5).

The main body of this chapter is organized as follows. In Section 6.2,
we present instructive examples of saddle-point reformulations of well-
structured nonsmooth convex minimization problems, along with a kind
of simple algorithmic calculus of convex functions admitting bilinear saddle-
point representation. Our major workhorse — the mirror prox algorithm

6.2 Saddle-Point Reformulations of Convexr Minimization Problems 151

with the rate of convergence O(1/t) for solving smooth convex-concave
saddle-point problems — is presented in Section 6.3. In Section 6.4 we con-
sider two special cases where the MP algorithm can be further accelerated.
Another acceleration option is considered in Section 6.5, where we focus on
bilinear saddle-point problems. We show that in this case, the MP algorithm,
under favorable circumstances (e.g., when applied to saddle-point reformu-

lations of ¢; minimization problems HrﬁlinRHAx —bllp, p € {2,00}), can
z|[1 <

be accelerated by randomization — by passing from the precise first-order
saddle-point oracle, which can be too time-consuming in the large-scale case,
to a computationally much cheaper stochastic counterpart of this oracle.

The terminology and notation we use in this chapter follow those intro-
duced in Sections 5.2.2, 5.6.1, and 5.7 of Chapter 5.

6.2 Saddle-Point Reformulations of Convex Minimization Problems
6.2.1 Saddle-Point Representations of Convex Functions

Let X C E be a nonempty closed convex set in Euclidean space E,, let
f(z) : X — R be a convex function, and let ¢(x,y) be a continuous convex-
concave function on Z = X x Y, where Y C E is a closed convex set, such
that

Ve e X : f(z) = ¢(z) := 31615 o(x,y). (6.1)

In this chapter, we refer to such a pair ¢, Y as a saddle-point representation
of f. Given such a representation, we can reduce the problem

min f(z) (6.2)

of minimizing f over X (cf. (5.2)) to the convex-concave saddle-point (c.-
c.s.p.) problem

SadVal = inf sup ¢(z,y), (6.3)
reX yey

(cf. (5.31)). Namely, assuming that ¢ has a saddle-point on X x Y, (6.2) is
solvable and, invoking (5.32), we get, for all (z,y) € X x Y:

f(x) —minyxf = ¢(x) — Opt(P) = ¢(x) — SadVal
¢

(&) = 6(3) = €wale,y). (4

152

First Order Methods for Nonsmooth Convex Large-Scale Optimization, 11

That is, the z-component of an e-solution to (6.3) (i.e., a point (z,y) € X xY
with €qq(z,y) < €) is an e-solution to (6.2): f(x) — miny f <e.

The potential benefits of saddle-point representations stem from the fact
that in many important cases a nonsmooth, but well-structured, convex
function f admits an explicit saddle-point representation involving smooth
function ¢ and simple Y; as a result, the saddle-point reformulation (6.3)
of the problem (6.2) associated with f can be much better suited for
processing by FOMs than problem (6.2) as it is. Let us consider some
examples (where S, S, 3, ¥} are the standard flat and full-dimensional
simplexes/spectahedrons, see Chapter 5, Section 5.7.1):

L. f(z) = maxj<y<y, fo(x) = maxyes, {cb(x,y) = 25:1 ygfg(.%)}; when all
fr are smooth, so is ¢.

2. f(z) = [|[Az — bll, = max),), <1 [¢(z,y) = y" (Az —b)], ¢ = 527 With

the same ¢(x,y) = y?(Ar — b), and with the coordinate wise inter-
pretation of [u]; = max[u,0] for vectors w, we have f(z) = |[|[[Az —
O illy = maxjy),<1y>0¢(2,y) and f(z) = mingl[[Ax — b — sclyfl, =

max||y||, <1,y>0,cTy—0 #(z, y). In particular,

(a) Let A(:) be an affine mapping. The problem

Opt = minge= [£(£) := [[AE)]l] (6.5)

with 2 ={£ € R" : ||¢||1 < 1} (cf. Lasso and Dantzig selector) reduces
to the bilinear saddle-point problem
. p
mlnxes;lmaxHy”qSlnyl(Jx) [J=1[I,-1], ¢= p—1 1]
on the product of the standard simplex and the unit [|-|[,-ball. When = =
{& e R™*™ ¢ |[¢]|, < 1}, with || - ||, being the nuclear norm (cf. nuclear
norm minimization) representing = as the image of the spectahedron

Z+

m-+n

(6.6)

under the linear mapping z = LU“T v } — Jr = 2v, (6.5)

w
em

reduces to the bilinear saddle-point prob
minzezjnﬂmaxHquglyTA(Ha:); (6.7)
(b) the SVM-type problem

min
weRM [lwl|<R,
seR

‘ [1 — Diag{n}(M"w+ 81)]+’

p

6.2 Saddle-Point Reformulations of Convexr Minimization Problems 158

reduces to the bilinear saddle-point problem

H%i?l max | $(z,y) = > y; —y" Diag{n}RM"z| , (6.8)
— y>0,nTy=0 j

where z = w/R.
3. Let A(z) = Ao+ >, x;A; with Ay, ..., A, € S”, and let S;(A) be the
sum of the k largest eigenvalues of a symmetric matrix A. Then f(z) :=

Sp(A(z)) = jeshax [p(z,y) = k(y, A(x))].

In the above examples, except for the first one, ¢ is as simple as it could
be — it is just bilinear. The number of examples of this type can easily
be increased due to the observation that the family of convex functions f
admitting explicit bilinear saddle-point representations (b.s.p.r.’s),

(@) = max [(y, Av + @) + (b,2) + (6.9)

with nonempty compact convex sets Y (with unbounded Y, f typically would
be poorly defined) admits a simple calculus. Namely, it is closed w.r.t.
taking the basic convexity-preserving operations: (a) affine substitution of
the argument = < P¢ + p, (b) multiplication by nonnegative reals, (c)
summation, (d) direct summation {f;(z)}5_, — f(z!,...,2%) = Zle fi(z%),
and (e) taking the maximum. Here (a) and (b) are evident, and (c) is nearly
so: if

yre
with nonempty convex compact Y;, then
(y,Az+a)+(bx)+c
k k . . .
Zizlfi(x) = maxy:(y17_._7yk)ey1X___ka [Zi:1[<yz,ﬂi$’ -+ a’) + <bz, 5L'> + Ci]] .

(d) is an immediate consequence of (a) and (c). To verify (e), let f; be given
by (6.10), let E; be the embedding space of Y;, and let U; = {(u?, \;) =
Ny, N) + Yt € Y, A > 0} C E;r = F; x R. Since Y; are convex and
compact, the sets U; are closed convex cones. Now let

U= {y=((u', A1), ..., (W \p)) € Uy x oo x Uy : Zi)\i =1}

This set clearly is nonempty, convex, and closed; it is immediately seen that

154 First Order Methods for Nonsmooth Convexr Large-Scale Optimization, 11

it is bounded as well. We have

ut

k & = .
i(z) = Aifi(w) = 1 (Y A ’
g%xk fil@) /\20%%}/{\7::1 Z; fi@) A,;{lf%y’“ { izt [< Y T+ a)
+ (b x) +)\ici] A>0,),N = Ly €Y;,1<i< k:}
= max [0 [(uf, Asz 4 a?) + (b, @) + Niei]],

u={(u?,\;):1<i<k}eU

and we end up with a b.s.p.r. of max; f;.

6.3 Mirror-Prox Algorithm
We are about to present the basic MP algorithm for the problem (6.3).
6.3.1 Assumptions and Setup

Here we assume that

A. The closed and convex sets X, Y are bounded.

B. The convex-concave function ¢(z,y) : Z = X x Y — R possesses a
Lipschitz continuous gradient Vo(x,y) = (Vad(x,y), Vyo(z,y)).
We set F(z,y) = (Fp(z,y) := Vao(z,y), Fy(z,y) := —=Vyd(x,y)), thus get-
ting a Lipschitz continuous selection for the monotone operator associated
with (6.3) (see Section 5.6.1).

The setup for the MP algorithm is given by a norm || - || on the embedding
space £ = E; x E, of Z and by a d.-g.f. w(:) for Z compatible with this
norm (cf. Section 5.2.2). For z € Z° and w € Z, let

V(w) = w(w) —w(z) — (W'(2),w — 2), (6.11)

(cf. the definition (5.4)) and let z. = argmin,c,w(w). Further, we assume
that given z € Z° and € € E, it is easy to compute the prox-mapping

Prox,(§) = arfglzin [(§,w) + Vi (w)] <: arfglzin [({ —u'(2),w) + w(w)]) ,

and set
Q= maxyez Vs, (w) < maxgw(-) — mingw(-) (6.12)

(cf. Chapter 5, Section 5.2.2). We also assume that we have at our disposal
an upper bound L on the Lipschitz constant of F' from the norm || - || to the

6.3 Mirror-Prox Algorithm 155

conjugate norm || - [|.:
V(z,2' € 2): |[F(2) — F(2)|« < L||z = #'||. (6.13)
6.3.2 The Algorithm

The MP algorithm is given by the recurrence

(@) : 21 =z,
(0): wr; =Prox, (7+F(27)), zr+1 = Prox,_(7v.F(w;)), (6.14)
(€): 27 =Xy vl iy vsws,

where ~; > 0 are the stepsizes. Note that z;,w; € Z°, whence 27 € Z. Let
57’ = ’YT(F(wT)y Wr — ZT+1> - ‘/ZT (ZT+1) (615)

(cf. (5.4)). The convergence properties of the algorithm are given by the
following

Proposition 6.1. Under assumptions A and B:
(i) For every t > 1 it holds (for notation, see (6.12) and (6.15)) that

ewna(2) < [Z;%} B [Q + 2;157] . (6.16)

(ii) If the stepsizes satisfy the conditions v, > L~' and §, < 0 for all T
(which certainly is so when v, = L™'), we have

VE>1:ega(2) < Q [Z;l%]_l < QL/t. (6.17)

Proof. 1°. We start with the following basic observation:

Lemma 6.2. Given z € 2°, {,n € E, let w = Prox,(§) and z4 = Prox.(n).
Then for all w € Z it holds that

(n,w—u) <Va(u) =V, (u) + (), w — 24) = Va(zy) (a)
S Ve(u) = Vo (u) + (=& w—2z4) = Va(w) — Vi(24) (b)
< Va(u) = Va, (u) + [3lln = Ellllw — 24| = 5llz = w]]? = 3llz4 —wl?] (¢)
< Va(u) = Ve, (u) + 5l — €112 = [lw — =[] (d)

(6.18)

Proof. By the definition of z; = Prox,(n) we have (n — w'(2) + «'(24),u —
z4) > 0; we obtain (6.18.a) by rearranging terms and taking into account
the definition of V,(u), (cf. the derivation of (5.12)). By the definition of
w = Prox,(§) we have (§{ —w/(2) +w'(w), zy —w) > 0, whence (n,w —z4) <

156

First Order Methods for Nonsmooth Convex Large-Scale Optimization, 11

(n—&w— zy) + (W(w) — W'(2), 24+ — w); replacing the third term in the
right-hand side of (a) with this upper bound and rearranging terms, we get
(b). (c) follows from (b) due to the strong convexity of w, implying that
Vo(u) > 3llu — v||?, and (d) is an immediate consequence of (c). O

20, Applying Lemma 6.2 to z = z,, £ = v, F(2,) (which results in w = w,)
and to n = v, F(w;) (which results in z; = z,41), we obtain, due to (6.18.d):

(a) v (F(ws),w, —u) <V, (u) =V, (u)+ 6, Vu € Z,

e (6.19)
(b) - < % [772—”F(w7) — F(z0)|12 = [lw- — ZTHQ]
Summing (6.19.a) over 7 = 1,...,¢, taking into account that V, (u) =

V..(u) < Q by (6.12) and setting, for a given ¢, A\; = 7,/ 23:1 Yr, We
get A, >0, 3F_ A\, =1, and

_ Q40
— : .

ZT:lFYT
On the other hand, setting w, = (z.,y,), 2 = (2%, 9"), u = (z,y), and using
(5.37), we have

t

SN F(wr), we —u) > d(at,y) — d(z,yb),

T=1

so that (6.20) results in ¢(z',y) — ¢(z,y") < A for all (z,y) € Z. Taking the
supremum in (z,y) € Z, we arrive at (6.16); (i) is proved. To prove (ii), note
that with v; < L~!, (6.19.b) implies that &, < 0, see (6.13). O

t
VueZ: Y A(F(w.),w, —u) < A: (6.20)
T=1

6.3.3 Setting up the MP Algorithm

Let us restrict ourselves to the favorable geometry case defined completely
similarly to Chapter 5, Section 5.7.2, but with Z in the role of X. Specifically,
we assume that Z = X x Y is a subset of the direct product ZT of K standard
blocks Zy (K} ball blocks and Ks = K — K} spectahedron blocks) and that
Z intersects rint 2. We assume that the representation 27 = Z; x ... x Zx
is coherent with the representation Z = X x Y, meaning that X is a subset of
the direct product of some of the blocks Z,, while Y is a subset of the
direct product of the remaining blocks. We equip the embedding space
E = By x ... x Ex of Z C Z* with the norm || - || and a d.-g.f. w(-)
according to (5.42) and (5.43) (where, for notational consistency, we should
replace 2* with z¢ and X, with Z;). Our current goal is to optimize the
efficiency estimate of the associated MP algorithm over the coefficients ay in
(5.42), (5.43). To this end assume that we have at our disposal upper bounds

6.3 Mirror-Prox Algorithm 157

L,, = L,, on the partial Lipschitz constants of the (Lipschitz continuous
by assumption B) vector field F(z = (z,y)) = (Voo(z,y), —Vyé(z,y)), so
that for 1 < p < K and all u,v € Z, we have

K
1B (w) = Fu(0)lluy e < D Luwlle” = 0"l),

v=1

where the decomposition F(z = (2!, ..., 25)) = (F1(2), ..., Fx(2)) is induced
by the representation £ = E; X ... X Fk.
Let €y be defined by (5.46) with Z; in the role of Xy. The choice

_ Zﬁ(zl Léu V Qu
VU, L/

(cf. Nemirovski, 2004) results in

Q<1 and L<L:i=> L/,
v

so that the bound (6.17) is
€ad(2) S L/t L= L /0. (6.21)
[7%7%

As far as complexity of a step and dependence of the efficiency estimate

ay

on a problem’s dimension are concerned, the present situation is identical
to that of MD (studied in Chapter 5, Section 5.7). In particular, all our
considerations in the discussion at the end of Section 5.7.2 remain valid
here.

6.3.3.1 Illustration I

As simple and instructive illustrations, consider problems (6.8) and (6.5).
1. Consider problem (6.8), and assume, in full accordance with the SVM
origin of the problem, that ||w| = ||w]|, with r € {1,2}, p € {2,000}, and
that n is a +1 vector which has both positive and negative entries. When
p = 2, (6.8) is a bilinear saddle-point problem on the product of the unit
|| - [|--ball and a simple part of || - |[2-ball. Combining (6.21) with what was
said in Section 5.7.2, we arrive at the efficiency estimate

esad(a:t,yt) < O(l)(ln(dimw))l_r/2R||MH27T*t_1, re =71/(r—1),

where ||M||22 is the spectral norm of M, and || M2, is the maximum of
the Euclidean norms of the rows in M. When p = 1, the situation becomes
worse: (6.8) is now a bilinear saddle-point problem on the product of the unit
||-||--ball and a simple subset of the unit box {y : ||y|loc < 1}, or, which is the

158

First Order Methods for Nonsmooth Convex Large-Scale Optimization, 11

same, a simple subset of the Euclidean ball of the radius p = y/dim 7 centered
at the origin. Substituting y = pu, we end up with a bilinear saddle-point
problem on the direct product of the unit || - ||, ball and a simple subset of
the unit Euclidean ball, the matrix of the bilinear part of the cost function
being pR Diag{n}M7. As a result, we arrive at the dimension-dependent
efficiency estimate

€saa(2t, y) < O(1)(In(dim w)) "/ /dimnR|| M ||9p.t ™, 7 = 7/(r —1).

Note that in all cases the computational effort at a step of the MP is dom-
inated by the necessity to compute O(1) matrix-vector products involving
matrices M and M7T.

2. Now consider problem (6.5), and let p € {2,00}.

2.1. Let us start with the case of 2 = {£ € R" : [|€|ly < 1}, so that
A(Jzx) = Ay + Az, where A is an m x 2n matrix. Here (6.6) is a bilinear
saddle-point problem on the direct product of the standard simplex S;n in
R?" and the unit || - |[,-ball in R™. Combining (6.21) with derivations in
Section 5.7.2, the efficiency estimate of MP is

€sad(z',y") < O(1)y In(n)(In(m))= " [maxi<j<daimal|4jllp] ", (6.22)

where A; are columns of A. The complexity of a step is dominated by the
necessity to compute O(1) matrix-vector products involving A and AT

2.2. The next case, inspired by K. Scheinberg, is the one where = =
{(€Y,...,€") € R% x .. x R%* > €7]]2 < 1}, so that problem (6.5)
is of the form arising in block Lasso (p = 2) or block Dantzig selec-
tor (p = o). Given d; = dim¢’, consider the block-diagonal structure
v=(di +1,..,d; + 1), and let X be the part of the corresponding spec-
tahedron 3 comprised of matrices from this set which have “arrow” di-
agonal blocks Arrow(r;, &%) = { 2 [TEILT } Note that = is nothing but
the image of X under the linear mappirfg x + Jx which maps a matrix

| 1T
r = Diag{[i | €] 1 <i<kp € S” (1, € R) into the collection

& T
(€1,...,&%). Thus, denoting the matrix of the homogeneous part of the affine
mapping A(-) by A, problem (6.5) is equivalent to Opt = miny ||Adx — bl|,,
and thus is equivalent to the bilinear saddle-point problem

Opt = min max 37 [Bx —b], B = AJ.
zeX lylly<1
Equipping the embedding space E, = S” of X with the trace-norm | - |,
and X with the d.-g.f. w,(z) = 2Ent(\(z)) inherited from X (see item 3c
in Chapter 5, Section 5.7.1) and applying the results of Section 6.3.3, the

6.3 Mirror-Prox Algorithm 159

efficiency estimate of MP is

esa(2) < O(1) <ln <Zfl(di + 1))) C(n(m)F (B, (6.23)

where 7(B) is the norm of the linear mapping x — Bz induced by the trace
norm in the argument space and by the norm || - ||, in the image space.!
The best part of the story is that the prox-mapping is easy to compute in
this setup. The only nonevident part of this claim is that it is easy to min-
imize over X a function of the form w,(z) + (a,z) or, which is the same, a
function of the form g(z) = 2w, (2)+ (b, z). Here is the verification: the eigen-
values of the matrix Arrow(7,§), dim& = d, are 7+||€]|2, 7—||€||2, and T with
multiplicity d — 1. Thus, for = = Diag{Arrow(r1, &), ..., Arrow (73, %)} € X,

we have

g(x) = ; (i + [1€°112) (i + [|€°]]2) + (i — [1€°]]2) In(7i — [I€"]]2)
—I—(di — l)Ti hl(Ti) —+ o7 — Bngz] .

Note that at the minimizer of this function over X, the vectors & are
nonnegative multiples of 3;, and finding the minimizer reduces to specifying
7 and o; = [|€Y]]2. The latter quantities form the optimal solution to the
simple “nearly separable” convex program

ming, o, Z§:1 [(7’Z + o) In(r +0y) + (1 — o3) In(7; — 03) + (di —)13 In 7
G+ T — HB%HQUz 0<0; < Ti?Zi T < 1].

This problem clearly can be solved within machine accuracy in O(}, d;)
a.0. As a result, the arithmetic cost of a step of MP in our situation is, for
all practical purposes, dominated by O(1) computations of matrix-vector
products involving A and A7

2.3. Finally, consider the case when = is the unit nuclear-norm ball, so that

A(Jz) = ag + [Tr(A1x); ...; Tr(Agz)] with A; € S™" and (6.7) is a bilinear
+

m—+n

the unit || - [|,-ball in R¥. Applying the results of Section 6.3.3, the efficiency

saddle-point problem on the direct product of the spectahedron X and

estimate of MP is

cuaa(@',5) < O/l +m) ()= | amass 1T AL i €Ay | £

1. It can immediately be seen that the norm of the mapping = +— Jz induced by the
trace-norm in the argument space and the norm), I€%]|2 in the image space is equal to 1,
so that 7(B) is at most the norm of the mapping { — A induced by the norm 3, 1€7]]2
in the argument space and the norm || - ||, in the image space.

160 First Order Methods for Nonsmooth Convex Large-Scale Optimization, 11

The complexity of a step is dominated by O(1) computations of the values of
A and of matrices of the form Zle y;A;, plus computing a single eigenvalue
decomposition of a matrix from S™*".

In all cases, the approximate solution (z!,y') to the saddle-point reformu-
lation of (6.5) straightforwardly induces a feasible solution &' to the problem
of interest (6.5) such that f(£') — Opt < egaa(zt, yb).

6.4 Accelerating the Mirror-Prox Algorithm
In what follows, we present two modifications of the MP algorithm.
6.4.1 Splitting
6.4.1.1 Situation and Assumptions

Consider the c.-c.s.p. problem (6.3) and assume that both X and Y are
bounded. Assume also that we are given norms || - ||, || - ||, on the corre-
sponding embedding spaces E,, E,, along with d.-g.f.’s w,(-) for X and w,(-)
for Y which are compatible with the respective norms.

We already know that if the convex-concave cost function ¢ is smooth
(i.e., possesses a Lipschitz continuous gradient), the problem can be solved
at the rate O(1/t). We are about to demonstrate that the same holds true
when, roughly speaking, ¢ can be represented as a sum of a “simple” part
and a smooth parts. Specifically, let us assume the following:

C.1. The monotone operator ® associated with (6.3) (see Section 5.6.1)
admits splitting: we can point out a Lipschitz continuous on Z vector
field G(z2) = (Gu(2),Gy(2)) + Z - E = E, x E,, and a point-to-set
monotone operator H with the same domain as ® such that the sets
H(z), z € Dom H, are convex and nonempty, the graph of H (the set
{(z,h) : z € Dom H,h € H(z)}) is closed, and

Vz € Dom H : H(z) + G(2) C ®(2). (6.24)

C.2. H is simple, specifically, it is easy to find a weak solution to the
variational inequality associated with Z and a monotone operator of the
form W(z,y) = a¥(z,y) + [azw,(z) + €; aywy (y) + f] (where o, oy, oy are
positive), that is, it is easy to find a point z € Z satisfying

V(z €rint Z, F € ¥(2)) : (F,z—2) > 0. (6.25)

It is easily seen that in the case of C.1, (6.25) has a unique solution z = (7, y)

6.4 Accelerating the Mirror-Prox Algorithm 161

which belongs to Dom ® N Z° and in fact is a strong solution: there exists
¢ € H(Zz) such that

Vz e Z: (al + [a.wy(Z) + € ayw, (7) + fl, 2 — 2) > 0. (6.26)

We assume that when solving (6.25), we get both z and (.
We intend to demonstrate that under assumptions C.1 and C.2 we can
solve (6.3) as if there were no H-component at all.

6.4.2 Algorithm MPa
6.4.2.1 Preliminaries

Recall that the mapping G(z,y) = (Gaz(z,y),Gy(z,y)) : Z — E defined
in C.1 is Lipschitz continuous. We assume that we have at our disposal
nonnegative constants Lz, Lyy, Lgy such that

v(z = (z,)EZZ’Z(’ y)ez):
1G2(2,y) = Ga(@, Y) o < Laal|2” — 2|a,
1Gy(2,y") = Gy(@,y)llys < Lyylly" —ylly (6.27)
1G2(2,9") = Ga(, Y) e < Laylly" = ylly,
1Gy (2", y) = Gy(2,y)llys < Layll2’ — x|

where |||« and ||-||y,« are the norms conjugate to |||, and ||-||,, respectively.
We set

Q = maxyw,(-) — minyw,(-), Qy = maxyw,(-) — minywy(-),

£ = LypQq + Luyy + 2Ly /00,

@ = [Lzz82s + Lwy\/m}/ﬁ’ B = [LyySy + ny\/TQy]/L, (6.28)
w(z,y) = Fwe(z) + Q%wy(y) : 2 = R,

.90l = /8 T + 210l

so that the conjugate norm is ||(z,y)||. = \/%H:UH%* + %Hyﬂi* (cf. Section
6.3.3). Observe that w(-) is a d.-g.f. on Z compatible with the norm || - ||. It
is easily seen that 2 := 1 > max,cz w(z) — min ey w(z) and

V(z,2' € 2): ||G(2) — G(Z)|« < L]z = #]- (6.29)
6.4.2.2 Algorithm MPa

Our new version, MPa, of the MP algorithm is as follows:

162

First Order Methods for Nonsmooth Convex Large-Scale Optimization, 11

1. Initialization: Set z; = argming w(-).
2. Step T =1,2,...: Given z, € Z° and a stepsize v, > 0, we find w, that
satisfies

(Vu erint Z, F € H(u)) : (7 (F + G(zr)) + ' (u) — ' (27),u —w;) >0
and find ¢, € H(w;) such that

V(w € 2): (3r(Gr+ Gler) + /() () u—w) > 0 (6.30)
by assumption C.2, computation of w, and (; is easy. Next, we compute

Zr41 = Prox, (v(¢ + G(wr)))
= argmin, ey (V- (G + G(wr)), 2) + V2 (2)],

where V.(+) is defined in (6.11). We set

2T = [Z:zlf}/s} B Z;l%ws

and loop to step 7+ 1.

(6.31)

Let

or = (7 (G + G(wr)), wr — 2r41) — Vo (2741)
(cf. (6.27)). The convergence properties of the algorithm are given by

Proposition 6.3. Under assumptions C.1 and C.2, algorithm MPa ensures
that
(i) For every t > 1 it holds that

e (1) < [Z;%] o [1 + 2;157} . (6.32)

(ii) If the stepsizes satisfy the condition v, > L™, 6; <0 for all T (which
certainly is so when v, = L71), we have

VE>1: €qa(zh) < [Zizl%]

Proof. Relation (6.30) exactly expresses the fact that w, = Prox,_(v-(¢; +
G(#:))). With this in mind, Lemma 6.2 implies that

= L/t. (6.33)

(CL) 77'((7 + G(w7)7w7 - u> <V. (U) - V;;T_H (u) +0r Yu € Z,

6.34
4) 8 <4 P2IGwr) = G2 = lwr — 2] (654

(cf. (6.19)). It remains to repeat word by word the reasoning in items 2°9-3°
of the proof of Proposition 6.1, keeping in mind (6.29) and the fact that, by

6.4 Accelerating the Mirror-Prox Algorithm 163

the origin of (; and in view of (6.24), we have (; + G(w;) € ®(w;). O
6.4.2.3 Illustration IT

Consider a problem of the Dantzig selector type

Opt = min”leSlHAT(Aa: — b))l [A:m xmn,m <n] (6.35)
(cf. (6.5)) along with its saddle-point reformulation:

Opt = min”leSlmax”yHlSlyT[B:r —¢|, B=ATA, c= ATb, (6.36)

As already mentioned, the efficiency estimate for the basic MP as applied to
this problem is €.,4(2") < O(1)\/In(n)||B||1.00t !, where || B|1 00 is the max-
imum of magnitudes of entries in B. Now, in typical large-scale compressed
sensing applications, columns A; of A are of nearly unit || - ||o-norm and are
nearly orthogonal: the mutual incoherence p(A) = max; ;| AT A;|/AT A; is
< 1. In other words, the diagonal entries in B are of order 1, and the
magnitudes of off-diagonal entries do not exceed u < 1. For example,
for a typical randomly selected A, p is as small as O(y/In(n)/m). Now,
the monotone operator associated with (6.36) admits an affine selection
F(z,y) = (BTy,c — Bx) and can be split as

H(w,y) G(@:y)

e ﬁ
F(z,y) = (Dy,—Dx)+ (B y,c — Bx),

where D is the diagonal matrix with the same diagonal as in B, and
B = B—D. Now, the domains X = Y associated with (6.36) are unit £1-balls
in the respective embedding spaces F, = E, = R". Equipping £, = F, with
the norm |- ||1, and the unit || ||; ball X =Y in R™ with the d.-g.f. presented
in item 2b of Chapter 5, Section 5.7.1, we clearly satisfy C.1 and, on a closest
inspection, satisfy C.2 as well. As a result, we can solve the problem by MPa,
the efficiency estimate being e.,q(2!) < O(1) ln(n)||§||1,oot*1, which is much
better than the estimate €..q(2") < O(1)In(n)||B||1,00t~* for the plain MP
(recall that we are dealing with the case of p := HEHMO < ||B|l1,00 = O(1)).
To see that C.2 indeed takes place, note that in our situation, finding a
solution z to (6.25) reduces to solving the c.-c.s.p. problem (where a >
0,8>0,pe(1,2)

IIII\\liI<11IIHII\a§1 OZE |zi|P = B E lyil? + E laiz; + biy; + ciziys] | - (6.37)
Tl1> Yihh= - - X
3 3 3

164

First Order Methods for Nonsmooth Convex Large-Scale Optimization, 11

By duality, this is equivalent to solving the c.-c.s.p. problem

Sup,,> inf, >0 [f(u, v)i=v—p
+ >, ming, maxy, [a|z; [P + plzs| — Blyl? — vlvil + aizi + biys + ciziyi] |

The function f(u,v) is convex-concave; computing first-order informa-
tion on f reduces to solving n simple two-dimensional c.-c.s.p. prob-
lems min,, maxy,[...] and, for all practical purposes, costs only O(n)
operations. Then we can solve the (two-dimensional) c.-c.s.p. problem
max,>omin,>o f(u,) by a polynomial-time first-order algorithm, such as
the saddle-point version of the Ellipsoid method (see, e.g., Nemirovski et al.,
2010). Thus, solving (6.37) within machine accuracy takes just O(n) opera-
tions.

6.4.3 The Strongly Concave Case
6.4.3.1 Situation and Assumptions

Our current goal is to demonstrate that in the situation of the previous
section, assuming that ¢ is strongly concave, we can improve the rate of
convergence from O(1/t) to O(1/t?). Let us consider the c.-c.s.p. problem
(6.3) and assume that X is bounded (while Y can be unbounded), and that
we are given norms || - ||z, || - ||y on the corresponding embedding spaces E.,
E,. We assume that we are also given a d.-g.f. w,(-), compatible with || - ||,
for X, and a d.-g.f. wy(-) compatible with || - ||, for the entire E, (and not
just for Y). W.lo.g. let 0 = argming wy. We keep assumption C.1 intact
and replace assumption C.2 with its modification:

C.2'. Tt is easy to find a solution Z to the variational inequality (6.25)
associated with Z and a monotone operator of the form ¥ (z,y) = aH(z,y)+
[y () +e; ayw, ((y—9) /R)+ f] (where o, o, oy, R are positive and g € Y).

As above, it is easily seen that z = (Z,y) is in fact a strong solution to
the variational inequality: there exists (€ H(Z) such that

(€ + 00wy (2) + € aywy (T — §)/R) + fl,u —2) 2 0Vu € 2. (6.38)

We assume, as in the case of C.2, that when solving (6.25), we get both 2z
and (.

Furthermore, there are two new assumptions:

C.3. The function ¢ is strongly concave with modulus x > 0 w.r.t. || - |,

v < reX,yerint Y, f € 0y[—o(x,y)],

. o — N > o /2.
J exint .0 ¢ B[p(o.4)) (f =9y =) 2 sy —v/I;

6.4 Accelerating the Mirror-Prox Algorithm 165

C.4. The E;-component of G(z,y) is independent of z, that is, L,, = 0
(see (6.27)).
Note that C.4 is automatically satisfied when G(-) = (vng(.),—vygE(-))
comes from a bilinear component ¢(z,y) = (a,z) + (b, y) + (y, Azx) of ¢.

Observe that since X is bounded, the function ¢(y) = mingex ¢(z,y) is
well defined and continuous on Y; by C.3, this function is strongly concave
and thus has bounded level sets. By remark 5.1, ¢ possesses saddle points,
and since ¢ is strongly convex, the y-component of a saddle point is the
unique maximizer y, of ¢ on Y. We set

Ze = argmingwy(+), Qy = maxywy(+) — minywy(+),

Qy = max,| <1wy(y) — minyw, (y) = max;, |, <1wy (y) — wy(0).

6.4.3.2 Algorithm MPb

The idea we intend to implement is the same one we used in Section 5.4
when designing MD for strongly convex optimization: all other things being
equal, the efficiency estimate (5.28) is the better, the smaller the domain
Z (cf. the factor € in (6.17)). On the other hand, when applying MP to a
saddle-point problem with ¢(z,y) which is strongly concave in y, we ensure
a qualified rate of convergence of 3/ to v, and thus eventually could replace
the original domain Z with a smaller one by reducing the y-component.
When it happens, we can run MP on this smaller domain, thus accelerating
the solution process. This, roughly speaking, is what is going on in the
algorithm MPb we are about to present.

Building Blocks. Let R > 0,y € Y and z = (z.,y) € Z, so that z € Z.
Define the following entities:

Zr={(z;y) € Z: |y — ylly < R},

LR =2Lyy\/QuQyR + LyyQy R%,

& = [Loy\/QQyR] /LR, B = [Lay/QuQyR + LyQyR* /LR, (6.39)
Wi (z,y) = g%wz(*r) + Qﬁywy([y —Yl/R),
H@wW=¢&W%+@%M%

. QR : : 7 i
with [[(&,n)]« = %Hfﬂg* + =5 ||17||§7* It is easily seen ‘fhat wh¥ i a
d.-g.f. for Z compatible with the norm | - ||, Z = argmin, w*¥(-), and

(a) maxy,w®¥(:) — ming ,wf(-) <1,

(6.40)
(0) V(z,2' €2):[G(2) = G(2')|l« < Lrllz = 2||.

166

First Order Methods for Nonsmooth Convex Large-Scale Optimization, 11

For u € Z and z € 2° we set VI (u) = wf(u) —wB¥(2) — (0B (2)), u—2)
and define the prox-mapping

Prox["(¢) = argmin, ¢ [(€, u) + V%7 (w)].

Let zy = Z and vy > 0, t = 1,2,.... Consider the following recurrence B (cf.
Section 6.4.1):

(a) Given z; € Z° we form the monotone operator ¥(z) = vH(z) +
(WY (2) — (W) (2) + 4G (2) and solve the variational inequality (6.25)
associated with Z and this operator; let the solution be denoted by wy.
Since the operator W is of the form considered in C.2’, as a by-product of
our computation we get a vector (; such that Yu € Z :

Gt € F(we) & (elGe + Gzo)] + (W) (wr) — (@) (20), u—we) > 0 (6.41)

(cf. (6.38)).
(b) Compute 211 = Prox2¥(v,(¢; + G(wy))) and

7t (R7 g) = (xt(R7 g)? yt(Rv g)) = [Zizl%] 712::1777177-

Let

=G +G(w), 0= (vFp,we — 2z41) — VR’y(Zt+1)

Proposition 6.4. Let assumptions C.1 and C.2'-C.4 hold. Let the stepsizes
satisfy the conditions ~; > Lgl and 6, < 0 for all T (which certainly is so
when ~; = L;Ll for all 7).

(i) Assume that ||y —y.|y < R. Then for z* = z'(R,3), y* = y'(R,) it holds
that

> 1%]_12 Ve (Frowr — 24)

< [Z 177] < £ =,
(0) Iyt = yal2 < Z[dr(at) — o(y")] < 2

where ¢r(T) = max,cy:|y—g), <r (T, Y).
(ii) Further, if ||y — y«lly < R/2 and t > i%;, then ¢r(xt) = ¢(at) =
mayx é(xt,y), and therefore

ye

(a) or(a') — oy

IN

(6.42)

€saa(2h,y") == (at) — Q(yt) < - (6.43)

Proof. (i): Exactly the same argument as in the proof of Proposition 6.3,

6.4 Accelerating the Mirror-Prox Algorithm 167

with (6.40.b) in the role of (6.29), shows that

t
Vu € Z: ZVT(F’MZT - u> < szf@(u) + 25T

=1 =1

and that d; < 0, provided v, = L]}l. Thus, under the premise of Proposi-
tion 6.4 we have

t
Z"YT<F7'727' - 'LL> < Vrz]?g(u) Vu € Z.
=1

When u = (z,y) € Zp, the right-hand side of this inequality is < 1 by
(6.40.a) and due to z; = z. Using the same argument as in item 2° of the
proof of Proposition 6.1, we conclude that the left-hand side in the inequality

is > [30_ 7] [¢(at,y) — é(z,y")]. Thus,

Lt
Vu € 2R : ¢(xt7 y) - gﬁ(az, yt) < [Zi:177] 1 Z’YT<F77 Zr — u>
T=1

Taking the supremum of the left hand side of this inequality over u € Zg
and noting that v, > £3', we arrive at (6.42.a). Further, |7 — v.| < R,
whence 5 r(z') > ¢(a,y.) > ¢(ys). Since ys is the maximizer of the strongly
concave, modulus £ w.r.t. || - ||, function ¢(-) over Y, we have

2 Br(zt) — o))

2
ly* = yelly < =le(ys) — o(y")] < =
K K
which is the first inequality in (6.42.b); the second inequality in (6.42.b) is
given by (6.42.a). (i) is proved.

(ii): All we need to derive (i) from (i) is to prove that under the
premise of (ii), the quantities ¢(z') := maxyey ¢(zt,y) and dr(z?) =
maxycy |ly—gl, <R é(xt,y) are equal to each other. Assume that this is not
the case, and let us lead this assumption to a contradiction. Looking at the
definitions of ¢ and ¢r, we see that in the case in question the maximizer
y of ¢(zt,y) over Yp = {y :€ Y : |ly — glly, < R} satisfies |7 — ll, = R.
Since ||y — y«|ly < R/2, it follows that ||y, —y|l, > R/2. Because y, € Y,
y= argmax,cy . o(xt,y) and ¢(a',y) is strongly concave, modulus x w.r.t.
I lly, we get ¢(at,ys) < d(z",7) = 5llys — 9ll; < o(a*,§) — =g, whence
or(a") = ¢(2',§) = ¢(a’,) + 5. On the other hand, ¢(a',.) > ¢(ys) >
o(y'), and we arrive at or(x') — d(yh) 22 “Tm. At the same time, (6.42.a)
says that ¢r(z") — ¢(y") < Lpt™! < %, where the latter inequality is due
tot > i%’;. We arrive at the desired contradiction. O

168

First Order Methods for Nonsmooth Convex Large-Scale Optimization, 11

Algorithm MPb. Let Ry > 0 and 3° € Y such that
1y° =yl < Ro/2 (6.44)

are given, and let

Ry =2""?Ry,
Ni = Ceil (16&‘1 [2%%,/9191,1%51 + LnyyD ,
k
M, = ZNj, k=1,2, ..
j=1

Execution of MPb is split into stages k = 1,2, At the beginning of stage
k, we have at our disposal y*~! € Y such that

y* = yully < Ri—1/2. (Ir—1)

At stage k, we compute (z¥, %) = V¢ (Rp_1,y*~1), which takes N}, steps of
the recurrence B (where R is set to Rj_; and ¢ is set to y*~1). The stepsize
policy can be an arbitrary policy satisfying v, > Léi_l and 6, < 0, e.g.,
— Léiil; see Proposition 6.4. After (2%, 7*) is built, we set y* = 7* and
pass to stage k + 1.

Note that Mj is merely the total number of steps of B carried out in
course of the first k stages of MPb.

The convergence properties of MPb are given by the following statement
(which can be derived from Proposition 6.4 in exactly the same way that

Proposition 5.4 was derived from Proposition 5.3):

Proposition 6.5. Let assumptions C.1, C.2'—C.4 hold, and let Ry > 0
and y° € Y satisfy (6.44). Then algorithm MPb maintains relations (Ij,_1)
and

esad(i‘\kagk) S ’{2_(k+3)R(2)7 (Jk‘)

k = 1,2,.... Further, let k. be the smallest integer k such that k > 1 and

k Lay+/Qa2
22 2 kROW Then

— for 1 < k < ks, we have M, < O(l)k% and esad(’:fk,ﬂk) < EQ*kR%;

— for k> k., we have My, < O(1)Ny, and ea(*,7¥) < O(1) 2™

Note that MPb behaves in the same way as the MD algorithm for
strongly convex objectives (cf. Chapter 5, Section 5.4). Specifically, when
the approximate solution yy, is far from the optimal solution y,, the method
converges linearly and switches to the sublinear rate (now it is O(1/t?))
when approaching y,.

6.4 Accelerating the Mirror-Prox Algorithm 169

6.4.3.3 Illustration IIT

As an instructive application example for algorithm MPb, consider the
convex minimization problem

L
Opt = rggél (&), f(&) = fo(§) + ;_:1 Tdist?(Ag — by, Uy + V),

dist?(w, W) = minyew ||w — w'[l3

(6.45)

where

e = C E: = R" is a convex compact set with a nonempty interior, F¢ is
equipped with a norm ||-||¢, and Z is equipped with a d.-g.f. we(§) compatible
with || - [|e;

e fo(&) : E — R is a simple continuous convex function, “simple” meaning
that it is easy to solve auxiliary problems

mingez {afo(€) + a’ € + Bwe ()] [, B> 0]

e U, C R™ are convex compact sets such that computing metric projection
Projy;, (u) = argmin,, ¢y, [|u — u'||2 onto Uy is easy;
e V;, C R™ are polytopes given as Vy = Conv{v 1, ..., ¢ n, }-

On a close inspection, problem (6.45) admits a saddle-point reformulation.
Specifically, recalling that Sy = {z € R’i 1>,y = 1} and setting

X={z=[&z". ;2] €ExS,, x..x8,,} C E, =RetmtFn.
Y=F, =]R"}l X ... X R’"LL,
1
gy =", . Z ge(y = 5"y + maxy, cv,ufy,
Bf — [’0&17 ceey vfﬂ’bg]?
Algats 2] = b= [Aif — Bia's..; ALE — Bea"] — [by; b
$a,y) = fo(€) +y" [Ax —b] — g(y),
we get a continuous convex-concave function ¢ on X x Y such that
f(f) = minn:(acl,...,:vL):(g,n)EDCmaXyEH @Z)((gv 77)7 y)7

so that if a point (x = [¢;2';..; 2],y = [y';...;¥*]) € X x Y is an e-solution
to the c.-c.s.p. problem inf,cx supy ¢(z,y), 5 is an e-solution to the problem
of interest (6.45):

€sad(T,Y) < €= f(§) — Opt <.

Now we apply algorithm MPb to the saddle-point problem ingc SUpPycy o(z,y).
xe

170

First Order Methods for Nonsmooth Convex Large-Scale Optimization, 11

The required setup is as follows:

1. Given positive a, ayq, ..., ar (parameters of the construction), we equip
the embedding space E, of X with the norm

L
s szt = el + 7 oalal,
and X itself with the d.-g.f.
dim
we([& 2 s 2]) = awe(€) + Z agEnt), Ent(u) = Zi:l u; Inw;,

which, it can immediately be seen, is compatible with || - [|,.

2. We equip Y = E, = Ry T™t with the standard Euclidean norm |[|y||2
and the d.-g.f. wy(y) = %yTy.

3. The monotone operator ¢ associated with (¢, z) is

0, u € Q

®(z,y) = {0[o(z, y)+xa (@)} x{0y[=d(x, y)]}, xo(u) = { oo, udQ
We define its splitting, required by C.1, as
9 (.) = {Olfo(€) +x2(6)} x {0} x {01} x {8, [190y)]}
G(x,y) = (Valy" [Az = b]] = ATy, =V, [y"[Az — b]] = b — Az).

With this setup, we satisfy C.1 and C.3-C.4 (C.3 is satisfied with x = 1).
Let us verify that C.2’ is satisfied as well. Indeed, in our current situation,
finding a solution z to (6.25) means solving the pair of convex optimization
problems

(a) min [pawe(€) + qfo(&) +e'¢

&zt 5z l]eX
+320 [pacEnt(af) + f '] | (6.46)
®) _min 3 (57 + sge(v) + STy

where p, q,r, and s are positive. Due to the direct product structure of X,
(6.46.a) decomposes into the uncoupled problems mingez[powe (§) + fo(§) +
eT'¢] and mingecg, [pagEnt(azg) + e{xe]. We have explicitly assumed that
the first of these problems is easy; the remaining ones admit closed form
solutions (cf (5.39)). (6.46.b) also is easy: a simple computation yields
Yt = T,+S [sProj;,(—s s~ fy) + fo], and it was assumed that it is easy to
project onto Up.

The bottom line is that we can solve (6.45) by algorithm MPb, the

6.5 Accelerating First-Order Methods by Randomization 171

resulting efficiency estimate being

L2, Q,
F(€¥) = Opt < O(1) =35~k > kv = O(1) In(Ro Liry v/ Qs +2)
k

(see Proposition 6.5 and take into account that we are in the situation of
k=18, = %, L, = 0). We can further use the parameters o, o, ..., ar, to
optimize the quantity Lngx. A rough optimization leads to the following:
let 1y be the norm of the linear mapping £ — Ay¢ induced by the norms

|| - [le; || - |l2 in the argument and the image spaces, respectively, and let
Vg = maxi<j<n,||ve ;2. Choosing
S e = 1<i<L
o= e_llu’Zvaf_Vﬁ)]-_ =

results in L?:sz <O) [QeX, 18 + Y, viIn(ng +1)], Qe = maxzwe(-) —
minzwe (-).

6.5 Accelerating First-Order Methods by Randomization

We have seen in Section 6.2.1 that many important well-structured convex
minimization programs reduce to just bilinear saddle-point problems

SadVal = mi = Az —b 6.47
adVa xg&lggmyg*;%%yww’y) (a,z) + (y, Az — b)], (6.47)

the corresponding monotone operator admitting an affine selection

F(z=(z,y)) = (a+ ATy,b — Az) = (a,b) + Tz,

F(z,y) = (ATy, —Ax). (6.48)

Computing the value of F' requires two matrix-vector multiplications involv-
ing A and AT. When X,Y are simple and the problem is large-scale with
dense A (which is the case in many machine learning and signal processing
applications), these matrix-vector multiplications dominate the computa-
tional cost of an iteration of an FOM; as the sizes of A grow, these multipli-
cations can become prohibitively time consuming. The idea of what follows
is that matrix-vector multiplications is easy to randomize, and this random-
ization, under favorable circumstances, allows for dramatic acceleration of
FOMs in the extremely large-scale case.

172

First Order Methods for Nonsmooth Convex Large-Scale Optimization, 11

6.5.1 Randomizing Matrix-Vector Multiplications

Let v € R". Computing the image of v under a linear mapping u
Bu = Z?Zl ujb; : R" — FE are easy to randomize: treat the vector
[Juil; ... lun]]/||u]l1 as a probability distribution on the set {b1, ..., b,}, draw
from this distribution a sample b, and set &, = ||u||1sign(u,)b,, thus getting
an unbiased (E{{,} = Bu) random estimate of Bu. When b; are represented
by readily available arrays, the arithmetic cost of sampling from the distribu-
tion P, of &,, modulo the setup cost O(n) a.o. of computing the cumulative
distribution {||ul/;* >0, luil}7_; is just O(In(n)) a.o. to generate j plus
O(dim E) a.o. to compute ||u||1sign(u,)b,. Thus, the total cost of getting a
single realization of &, is O(n) + dim E. For large n and dim E this is much
less than the cost O(ndim E), assuming b; are dense, of a straightforward
precise computation of Bu.

We can generate a number k of independent samples &6 ~ P, £ =1, ..., k,
and take, as an unbiased estimate of Bu, the average & = %2521 ¢ thus
reducing the estimate’s variability; with this approach, the setup cost is paid
only once.

6.5.2 Randomized Algorithm for Solving Bilinear Saddle-Point Problem

We are about to present a randomized version MPr of the mirror-prox
algorithm for solving the bilinear saddle-point problem (6.47).

6.5.2.1 Assumptions and Setup

1. As usual, we assume that X and Y are nonempty compact convex
subsets of Euclidean spaces E,, F,; these spaces are equipped with the
respective norms || - ||z, || - ||y, while X, Y are equipped with d.-g.f.’s wg(-),
wy(+) compatible with || - ||z, resp., || - ||y, and define €, Q, according
to (6.28). Further, we define [|Al|;, as the norm of the linear mapping
x +— Az : E, — E, induced by the norms || - ||, || - [, on the argument
and the image spaces.

2. We assume that every point u € X is associated with a probability
distribution II, supported on X such that E¢om, {¢} = u, for all u € X.
Similarly, we assume that every point v € Y is associated with a probability
distribution P, on E, with a bounded support and such that E,p {n} =v
for all v € Y. We refer to the case when P,, for every v € Y, is supported
on Y, as the inside case, as opposed to the general case, where support
of P,, v € Y, does not necessarily belong to Y. We will use 1I,, P, to
randomize matrix-vector multiplications. Specifically, given two positive

6.5 Accelerating First-Order Methods by Randomization 178

integers k;, k, (parameters of our construction), and given u € X, we
build a randomized estimate of Au as AE,, where &, = é Zf;l & and
& are sampled, independently of each other, from II,. Similarly, given
v €Y, we estimate ATv by AT, where n, = ki Zfi1 1;, with 7; sampled
independently of each other from P,. Note that & € X, and in the inside
case 1, € Y. Of course, a randomized estimation of Au, ATv makes sense
only when computing A¢, € € supp(IL,), ATy, n € supp(P,) is much easier
than computing Au, ATv for a general type u and v.

We introduce the quantities

o2 =sup E{||A[¢, — U]HZ*L UZ = sup E{A”[n, — v] %*}7
ueX veY (6.49)
0 =2 [Qzag + ang] .
where &,, 1, are the random vectors just defined, and, as always, || - ||z,
|| - ||y« are the norms conjugate to || - || and || - ||,.
3. The setup for the algorithm MPr is given by the norm || - | on E =

E, x E, D Z =X xY, and the compatible with this norm d.-g.f. w(-) for Z
which are given by

4 Y

1 1 1 1
(z,)| = \/QQxHxH?g + T%”y“?ﬁ w(z,y) = ﬁ%(m) + ﬁwy(y),

so that

1)l = \/22lIEI0 + 262]2, (6.50)

For z € 2°, w € Z let (cf. the definition (5.4))

Va(w) = w(w) - w(2) = (W'(2),w - 2),

and let z. = argmin,c,w(w). Further, we assume that given z € Z° and
¢ € FE, it is easy to compute the prox-mapping

Prox,(§) = arfgzin [(§,w) 4+ Vi (w)] <: arfél}zin [(€ — ' (2),w) + w(w)]) .

It can immediately be seen that
Q[Z] = mgxw(-) - mzinw(-) =1. (6.51)
and the affine monotone operator F'(z) given by (6.48) satisfies the relation

Va2 1 |F(z) = P < £llz = 211, £ = 20 Aoy VB, (652)

174

First Order Methods for Nonsmooth Convex Large-Scale Optimization, 11

6.5.2.2 Algorithm

For simplicity, we present here the version of MPr where the number of
steps, IV, is fixed in advance. Given N, we set

1 1

=min | —, —— 6.53
! [\/EL \/3®N] (6.53)

and run N steps of the following randomized recurrence:

1. Initialization: We set z; = argming w(-).

2. Stept = 1,2,...,N: Given 2z = (x¢,y:) € 2°, we generate &, 1y, as

explained above, set ¢; = (£;,,1my,), and compute F(¢;) = (a+ATn,,, b—AE,,)
and

wy = (T, Yi) = Proxe, (VF(Gr))-

We next generate £z, , 73, as explained above, set Q (fgt . Mg,), and compute
F(G) = (a+ ATng,, b — A&,) and 241 = Prox., (YF(G,)).
3. Termination t = N: we output

N
N N N
2N = (2™, y NZ@t,nyt and F(z NZ

(recall that F'(-) is affine).

The efficiency estimate of algorithm MPr is given by the following
Proposition 6.6. For every N, the random approzimate solution zV =
(N, yN) generated by algorithm MPr possesses the following properties:

(i) In the inside case, 2V € Z and

2v/30 4\/§||A z,y\ Qny . (6 54)
\/N ; N) .

(ii) In the general case, ¥ € X and E{¢(x™)} — miny ¢ < ey.

E{esad(zN)} < ey := max

Observe that in the general case we do not control the error €sad(ZN) of
the saddle-point solution. Yet the bound (ii) of Proposition 6.6 allows us to
control the accuracy f(z) — miny f of the solution 2 when the saddle-
point problem is used to minimize the convex function f = ¢ (cf. (6.4)).

Proof. Setting Fy = F(¢), Fy, = F(Q), Ff = F(z),Ff = F(w), Va(u) =

6.5 Accelerating First-Order Methods by Randomization 175

w(u) —w(z) — (W'(2),u — z) and invoking Lemma 6.2, we get

Yu e Z: fy(ﬁt,wt —u) <V, (u) =V, (u) + Ay,

Ay =3 [IF = B2 = 20— wil?]
whence, taking into account that V. (u) < Q[Z] = 1 (see (6.51)) and that
VvZN+1 (U) 2 07

an BN
7\

N N N
Vu = (l‘,y) S Z: ’}/Zt:1<Ft,Ct — u) S 1 + Zt:lAt +’th:1<Ft, Ct — wt> .

Substituting the values of ﬁt and taking expectations, the latter inequality
(where the right-hand side is independent of u) implies that

B { max AN [0) - ol)] } <1+E{ax}+E{fn}, (655)

N
By =7 [la.&, —F) + (b.ng, — Te) + (A&, . T) — (ATng,, 3)] -
t=1

Now let E,, {-} stand for the expectation conditional to the history of
the solution process up to the moment when w; is generated. We have
E, {&,} = 7y and Ey, {ng,} = i, so that E{8y} = 0. Further, we have

1 % * oy - *
B¢ <5 [392 (1B = B2+ 1By = B2+ By = Ful2] = 122 — el

and, recalling the origin of Fs, ||F} — Ff||l, < £]|z — we|| by (6.52). Since
3v2 < L% by (6.53), we get

3’)/2 e fn *
B{A) < TB(IF; - B2 + K - B2 < 3%,

where the concluding inequality is due to the definitions of ©® and of the
norm || - ||« (see (6.49) and (6.50), respectively). Thus, (6.55) implies that

B{ max [o6a"0) — ol b < 1/0V) 430 e (050

due to the definition of €. Now, in the inside case we clearly have (zV,3V) €
2, and therefore (6.56) implies (6.54). In the general case we have xV € X.
In addition, let =, be the x-component of a saddle point of ¢ on Z. Replacing
in the left-hand side of (6.56) maximization over all pairs (z,y) from Z with
maximization only over the pair (z,,y) with y € Y (which can only decrease

176

First Order Methods for Nonsmooth Convex Large-Scale Optimization, 11

the left-hand side), we get from (6.56) that

E{¢p(a™)} < en + B{d(zs,y")} = en + ¢ (2., E{y"}). (6.57)

Observe that E, {13} = y: € Y. We conclude that

1 & 1 &
N+ | 1 -
E{y }—E{NZU%} _E{Nzyt} €Y.
t=1 t=1
Thus, the right-hand side in (6.57) is < ey + SadVal, and (ii) follows. [

Remark 6.1. We stress here that MPr, along with the approximate solution
(N, y™N), returns the value F(zN,yN). This allows for easy computation,
not requiring matriz-vector multiplications, of ¢(z™) and Q(yN).

6.5.2.83 Illustration IV: (1-Minimization

Consider problem (6.5) with = = {£ € R™ : |||l < 1}. Representing = as
the image of the standard simplex Sa, = {z € R2" : 3", z; = 1} under the
mapping © — Jyz, Jp = [I,, —I], the problem reads

Opt = min |Az —bl|, [A € R™*n. (6.58)

We consider two cases: p = oo (uniform fit, as in the Dantzig selector) and
p = 2 (lo-fit, as in Lasso).

Uniform Fit. Here (6.58) can be converted into the bilinear saddle-point
problem
Opt = min ma =yl JL Az —b]]. 6.59
pt = min max [¢(z,y) =y J;[Az —] (6.59)
Setting || - [0 = [| - |1, we(z) = Ent(z), [- ly = [- I, wy(y) = Ent(y),
let us specify II,, u € Sy, and P,, v € Sg,,, according to the recipe from
Section 6.5.1, that is, the random vector &, ~ II, with probability u; is the
ith basic orth, i = 1, ..., m, and similarly for n, ~ P,. This is 2the inside case,
and when we set || A||1,00 = max |4;;], we get 02 = O(I)M 2
Z?J

E.+In(2m) %y

6.5 Accelerating First-Order Methods by Randomization 177

[A[, o In(2n) 2
ky+In(2n)
Q =In(2n), Q, =In(2m), £ = 2||All1,00v/In(2n) In(2m),

In?(2m In%(2n
6 < O AR o, [l + fea)]

o(1) and

In this setting Proposition 6.6 reads:

Corollary 6.7. For all positive integers kg, ky, N one can find a ran-
dom feasible solution (z™,yN) to (6.59) along with the quantities ¢p(z¥) =
|Az™ — bllsc > Opt and a lower bound ¢(y™) on Opt such that

- N N [Al1,00 In(2mn) 1
Prob {¢(JE) —o(y™) <0(1) VN /N, ks (@), hy + In(20) } =
(6.60)

i N steps, the computational effort per step dominated by the necessity to
extract 2k, columns and 2k, rows from A , given their indexes.

Note that our computation yields, along with (2V,y"), the quantities
¢(zN) and Q(yN). Thus, when repeating the computation ¢ times and choos-
ing the best among the resulting x- and y-components of the solutions we
make the probability of the left-hand side event in (6.60) as large as 1 —27*.
For example, with k, = k, = 1, assuming 6 = €/||A[[1,0 < 1, finding an
e-solution to (6.59) with reliability > 1 — 8 costs O(1) In?(2mn) In(1/3)5 2
steps of the outlined type, that is, O(1)(m + n)In?(2mn)In(1/8)6~2 a.o.
For comparison, when § stays fixed and m,n are large, the lowest known
(so far) cost of finding an e-solution to problem (6.58) with unform fit is
O(1)4/In(m) In(n)d~! steps, with the effort per step dominated by the ne-
cessity to compute O(1) matrix-vector multiplications involving A and A”
(this cost is achieved by Nesterov’s smoothing or with MP; see (6.22)). When
A is a general-type dense m X n matrix, the cost of the deterministic compu-
tation is O(1)mn/In(m) In(n)d~t. We see that for fixed relative accuracy &
and large m, n, randomization does accelerate the solution process, the gain
growing with m,n.

2. The bound for ¢2 and 05 is readily given by the following fact (see, e.g., Juditsky and
Nemirovski, 2008): when &1, ...,&; € R™ are independent zero mean random vectors with
E{[|& 1%} <1 for all i, one has E{||+ Zle &%} < O(1) min[1,1n(n)/k]; this inequality
remains true when R" is replaced with S™, and || - || is replaced with the standard matrix
norm (largest singular value).

178

First Order Methods for Nonsmooth Convex Large-Scale Optimization, 11

lo-fit. Here (6.58) can be converted into the bilinear saddle-point problem

Opt = mi =yl [Az — 1] . 6.61
Pl = min max [o(z,y) == y" [Az — b]] (6.61)
In this case we keep || - ||z = || - |1, we(z) = Ent(x), and set || - ||y = || - [|2,

wy(y) = %yTy. We specify II,,, u € So,, exactly as in the case of uniform fit,
and define P,, v € Y = {y € R™ : |ly|]|]2 < 1} as follows: n, ~ P, takes values
sign(u;)||ull1e;, e; being basic orths, with probabilities |u;|/||u||1. Note that

we are not in the inside case anymore. Setting || A1 2 = max |4 ll2, A;
<j<2n

being the columns of A, we get

0, =n(2n),9Q, = 3, £ =[|A||1 21n(2n)
0 < O() [LI1AJ3, + | ol

Now Proposition 6.6 reads:

Corollary 6.8. For all positive integers ks, ky, N, one can find a random
feasible solution x to (6.58) (where p = 2), along with the vector Ax™
such that

Prob {||Az™ — b2 < Opt
All1,24/In(2n n(2n)I'2(A
+O(1)L H JN ()\/%_‘_kxln 2n)+lk(2 e)} >3, (6.62)

+In(2n)
T(4) =

in N steps, the computational effort per step dominated by the necessity to
extract 2k, columns and 2k, rows from A, given their indexes.

Here again, repeating the computation ¢ times and choosing the best
among the resulting solutions to (6.58), we make the probability of the left-
hand side event i