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Introduction

D. Michie (1), D. J. Spiegelhalter (2) and C. C. Taylor (3)
(1) University of Strathclyde, (2) MRC Biostatistics Unit, Cambridge' and (3) University
of Leeds

1.1 INTRODUCTION

The aim of this book is to provide an up-to-date review of different approaches to clas-
sification, compare their performance on a wide range of challenging data-sets, and draw
conclusions on their applicability to realistic industrial problems.

Before describing the contents, we first need to define what we mean by classification,
give some background to the different perspectives on the task, and introduce the European
Community StatLog project whose results form the basis for this book.

1.2 CLASSIFICATION

The task of classification occurs in a wide range of human activity. At its broadest, the
term could cover any context in which some decision or forecast is made on the basis of
currently available information, and a classification procedure is then some formal method
for repeatedly making such judgments in new situations. In this book we shall consider a
more restricted interpretation. We shall assume that the problem concerns the construction
of aprocedure that will be applied to a continuing sequence of cases, in which each new case
must be assigned to one of a set of pre-defined classes on the basis of observed artributes
or features. The construction of a classification procedure from a set of data for which the
true classes are known has also been variously termed pattern recognition, discrimination.,
or supervised learning (in order to distinguish it from unsupervised learning or clustering
in which the classes are inferred from the data).

Contexts in which a classification task is fundamental include, for example, mechanical
procedures for sorting letters on the basis of machine-read postcodes, assigning individuals
to credit status on the basis of financial and other personal information, and the preliminary
diagnosis of a patient’s disease in order to select immediate treatment while awaiting
definitive test results. In fact, some of the most urgent problems arising in science, industry

1Address for cor spond. : MRC Bic istics Unit, Institute of Public Health, University Forvie Site,
Robinson Way, Cambridge CB2 2SR, U.K.
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and commerce can be regarded as classification or decision problems using complex and
often very extensive data.

We note that many other topics come under the broad heading of classification. These
include problems of control, which is briefly covered in Chapter 13.

1.3 PERSPECTIVES ON CLASSIFICATION

As the book’s title suggests, a wide variety of approaches has been taken towards this task.
Three main historical strands of research can be identified: statistical, machine learning
and neural network. These have largely involved different professional and academic
groups, and emphasised differentissues. All groups have, however, had some objectives in
common. They have all attempted to derive procedures that would be able:

¢ to equal, if not exceed, a human decision-maker’s behaviour, but have the advantage
of consistency and, to a variable extent, explicitness,

< tohandle a wide variety of problems and, given enough data, to be extremely general,

< tobe used in practical settings with proven success.

1.3.1 Statistical approaches

Two main phases of work on classification can be identified within the statistical community.
The first, “classical” phase concentrated on derivatives of Fisher’s early work on linear
discrimination. The second, “modern” phase exploits more flexible classes of models,
many of which attempt to provide an estimate of the joint distribution of the features within
each class, which can in turn provide a classification rule.

Statistical approaches are generally characterised by having an explicit underlying
probability model, which provides a probability of being in each class rather than simply a
classification. In addition, it is usually assumed that the techniques will be used by statis-
ticians, and hence some human intervention is assumed with regard to variable selection
and transformation, and overall structuring of the problem.

1.3.2 Machine learning

Machine Learning is generally taken to encompass automatic computing procedures based
on logical or binary operations, that learn a task from a series of examples. Here we
are just concerned with classification, and it is arguable what should come under the
Machine Learning umbrella. Attention has focussed on decision-tree approaches, in which
classification results from a sequence of logical steps. These are capable of representing
the most complex problem given sufficient data (but this may mean an enormous amount!).
Other techniques, such as genetic algorithms and inductive logic procedures (ILP), are
currently under active development and in principle would allow us to deal with more
general types of data, including cases where the number and type of attributes may vary,
and where additional layers of learning are superimposed, with hierarchical structure of
attributes and classes and so on.

Machine Learning aims to generate classifying expressions simple enough to be un-
derstood easily by the human. They must mimic human reasoning sufficiently to provide
insight into the decision process. Like statistical approaches, background knowledge may
be exploited in development, but operation is assumed without human intervention.
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1.3.3 Neural networks

The field of Neural Networks has arisen from diverse sources, ranging from the fascination
of mankind with understanding and emulating the human brain, to broader issues of copying
human abilities such as speech and the use of language, to the practical commercial,
scientific, and engineering disciplines of pattern recognition, modelling, and prediction.
The pursuit of technology is a strong driving force for researchers, both in academia and
industry, in many fields of science and engineering. In neural networks, as in Machine
Learning, the excitement of technological progress is supplemented by the challenge of
reproducing intelligence itself.

Abroad class of techniques can come under this heading, but, generally, neural networks
consist of layers of interconnected nodes, each node producing a non-linear function of its
input. The input to a node may come from other nodes or directly from the input data.
Also, some nodes are identified with the output of the network. The complete network
therefore represents a very complex set of interdependencies which may incorporate any
degree of nonlinearity, allowing very general functions to be modelled.

In the simplest networks, the output from one node is fed into another node in such a
way as to propagate “messages” through layers of interconnecting nodes. More complex
behaviour may be modelled by networks in which the final output nodes are connected with
earlier nodes, and then the system has the characteristics of a highly nonlinear system with
feedback. It has been argued that neural networks mirror to a certain extent the behaviour
of networks of neurons in the brain.

Neural network approaches combine the complexity of some of the statistical techniques
with the machine learning objective of imitating human intelligence: however, this is done
at a more “unconscious” level and hence there is no accompanying ability to make learned
concepts transparent to the user.

1.3.4 Conclusions

The three broad approaches outlined above form the basis of the grouping of procedures used
in this book. The correspondence between type of technique and professional background
is inexact: for example, techniques that use decision trees have been developed in parallel
both within the machine learning community, motivated by psychological research or
knowledge acquisition for expert systems, and within the statistical profession as a response
to the perceived limitations of classical discrimination techniques based on linear functions.
Similarly strong parallels may be drawn between advanced regression techniques developed
in statistics, and neural network models with a background in psychology, computer science
and artificial intelligence.

It is the aim of this book to put a/l methods to the test of experiment, and to give an
objective assessment of their strengths and weaknesses. Techniques have been grouped
according to the above categories. It is not always straightforward to select a group: for
example some procedures can be considered as a development from linear regression, but
have strong affinity to neural networks. When deciding on a group for a specific technique,
we have attempted to ignore its professional pedigree and classify according to its essential
nature.

4 Introduction [Ch. 1

1.4 THE STATLOG PROJECT

The fragmentation amongst different disciplines has almost certainly hindered communi-

cation and progress. The StatLog project 2 was designed to break down these divisions

by selecting classification procedures regardless of historical pedigree, testing them on

large-scale and commercially important problems, and hence to determine to what ex-

tent the various techniques met the needs of industry. This depends critically on a clear

understanding of:

1. the aims of each classification/decision procedure;

2. the class of problems for which it is most suited;

3. measures of performance or benchmarks to monitor the success of the method in a
particular application.

About 20 procedures were considered for about 20 datasets, so that results were obtained
from around 20 x 20 = 400 large scale experiments. The set of methods to be considered
was pruned after early experiments, using criteria developed for multi-input (problems),
many treatments (algorithms) and multiple criteria experiments. A management hierarchy
led by Daimler-Benz controlled the full project.

The objectives of the Project were threefold:

1. to provide critical performance measurements on available classification procedures;

2. to indicate the nature and scope of further development which particular methods
require to meet the expectations of industrial users;

3. toindicate the most promising avenues of development for the commercially immature
approaches.

1.4.1 Quality control

The Project laid down strict guidelines for the testing procedure. First an agreed data format
was established, algorithms were “deposited” at one site, with appropriate instructions; this
version would be used in the case of any future dispute. Each dataset was then divided
into a training set and a testing set, and any parameters in an algorithm could be “tuned”
or estimated only by reference to the training set. Once a rule had been determined, it
was then applied to the test data. This procedure was validated at another site by another
(more naive) user for each dataset in the first phase of the Project. This ensured that the
guidelines for parameter selection were not violated, and also gave some information on
the ease-of-use for a non-expert in the domain. Unfortunately, these guidelines were not
followed for the radial basis function (RBF) algorithm which for some datasets determined
the number of centres and locations with reference to the test set, so these results should be
viewed with some caution. However, it is thought that the conclusions will be unaffected.

1.4.2 Caution in the interpretations of comparisons
There are some strong caveats that must be made concerning comparisons between tech-
niques in a project such as this.

First, the exercise is necessarily somewhat contrived. In any real application, there
should be an iterative process in which the constructor of the classifier interacts with the

2ESPRIT project 5170. Comparative testing and evaluation of statistical and logical learning algorithms on
large-scale applications to classification, prediction and control




Sec. 1.5] The structure of this volume 5

expert in the domain, gaining understanding of the problem and any limitations in the data,
and receiving feedback as to the quality of preliminary investigations. In contrast, StatLog
datasets were simply distributed and used as test cases for a wide variety of techniques,
each applied in a somewhat automatic fashion.

Second, the results obtained by applying a technique to a test problem depend on three
factors:

1. the essential quality and appropriateness of the technique;
2. the actual implementation of the technique as a computer program ;
3. the skill of the user in coaxing the best out of the technique.

In Appendix B we have described the implementations used for each technique, and the
availability of more advanced versions if appropriate. However, it is extremely difficult to
control adequately the variations in the background and ability of all the experimenters in
Statlog, particularly with regard to data analysis and facility in “tuning” procedures to give
their best. Individual techniques may, therefore, have suffered from poor implementation
and use, but we hope that there is no overall bias against whole classes of procedure.

1.5 THE STRUCTURE OF THIS VOLUME

The present text has been produced by a variety of authors, from widely differing back-
grounds, but with the common aim of making the results of the StatLog project accessible
to a wide range of workers in the fields of machine learning, statistics and neural networks,
and to help the cross-fertilisation of ideas between these groups.

After discussing the general classification problem in Chapter 2, the next 4 chapters
detail the methods that have been investigated, divided up according to broad headings of
Classical statistics, modern statistical techniques, Decision Trees and Rules, and Neural
Networks. The next part of the book concerns the evaluation experiments, and includes
chapters on evaluation criteria, a survey of previous comparative studies, a description of
the data-sets and the results for the different methods, and an analysis of the results which
explores the characteristics of data-sets that make them suitable for particular approaches:
we might call this “machine learning on machine learning”. The conclusions concerning
the experiments are summarised in Chapter 11.

The final chapters of the book broaden the interpretation of the basic classification
problem. The fundamental theme of representing knowledge using different formalisms is
discussed with relation to constructing classification techniques, followed by a summary
of current approaches to dynamic control now arising from a rephrasing of the problem in
terms of classification and learning.

2

Classification

R. J. Henery
University of Strathclyde!

2.1 DEFINITION OF CLASSIFICATION

Classification has two distinct meanings. We may be given a set of observations with the
aim of establishing the existence of classes or clusters in the data. Or we may know for
certain that there are so many classes, and the aim is to establish a rule whereby we can
classify a new observation into one of the existing classes. The former type is known
as Unsupervised Learning (or Clustering), the latter as Supervised Learning. In this book
when we use the term classification, we are talking of Supervised Learning. In the statistical
literature, Supervised Learning is usually, but not always, referred to as discrimination, by
which is meant the establishing of the classification rule from given correctly classified
data.

The existence of correctly classified data presupposes that someone (the Supervisor) is
able to classify without error, so the question naturally arises: why is it necessary to replace
this exact classification by some approximation?

2.1.1 Rationale

There are many reasons why we may wish to set up a classification procedure, and some
of these are discussed later in relation to the actual datasets used in this book. Here we
outline possible reasons for the examples in Section 1.2.

1. Mechanical classification procedures may be much faster: for example, postal code
reading machines may be able to sort the majority of letters, leaving the difficult cases
to human readers.

2. A mail order firm must take a decision on the granting of credit purely on the basis of

information supplied in the application form: human operators may well have biases,
i.e. may make decisions on irrelevant information and may turn away good customers.

1Address for correspondence: Department of Statistics and Modelling Science, University of Strathclyde,
Glasgow G1 1XH, U.K.
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3. In the medical field, we may wish to avoid the surgery that would be the only sure way
of making an exact diagnosis, so we ask if a reliable diagnosis can be made on purely
external symptoms.

4. The Supervisor (refered to above) may be the verdict of history, as in meteorology or
stock-exchange transaction or investment and loan decisions. In this case the issue is
one of forecasting.

2.1.2 Issues

There are also many issues of concern to the would-be classifier. We list below a few of
these.

e Accuracy. There is the reliability of the rule, usually represented by the proportion
of correct classifications, although it may be that some errors are more serious than
others, and it may be important to control the error rate for some key class.

¢ Speed. In some circumstances, the speed of the classifier is a major issue. A classifier
that is 90% accurate may be preferred over one that is 95% accurate if it is 100 times
faster in testing (and such differences in time-scales are not uncommon in neural
networks for example). Such considerations would be important for the automatic
reading of postal codes, or automatic fault detection of items on a production line for
example.

e Comprehensibility. If it is a human operator that must apply the classification proce-
dure, the procedure must be easily understood else mistakes will be made in applying
the rule. It is important also, that human operators believe the system. An oft-quoted
example is the Three-Mile Island case, where the automatic devices correctly rec-
ommended a shutdown, but this recommendation was not acted upon by the human
operators who did not believe that the recommendation was well founded. A similar
story applies to the Chernobyl disaster.

e Time to Learn. Especially in a rapidly changing environment, it may be necessary
to learn a classification rule quickly, or make adjustments to an existing rule in real
time. “Quickly” might imply also that we need only a small number of observations
to establish our rule.

At one extreme, consider the naive 1-nearest neighbour rule, in which the training set
is searched for the ‘nearest’ (in a defined sense) previous example, whose class is then
assumed for the new case. This is very fast to learn (no time at all!), but is very slow in
practice if all the data are used (although if you have a massively parallel computer you
might speed up the method considerably). At the other extreme, there are cases where it is
very useful to have a quick-and-dirty method, possibly for eyeball checking of data, or for
providing a quick cross-checking on the results of another procedure. For example, a bank
manager might know that the simple rule-of-thumb “only give credit to applicants who
already have a bank account” is a fairly reliable rule. If she notices that the new assistant
(or the new automated procedure) is mostly giving credit to customers who do not have a
bank account, she would probably wish to check that the new assistant (or new procedure)
was operating correctly.
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2.1.3  Class definitions

An important question, that is improperly understood in many studies of classification,
is the nature of the classes and the way that they are defined. We can distinguish three
common cases, only the first leading to what statisticians would term classification:

1. Classes correspond to labels for different populations: membership of the various
populations is not in question. For example, dogs and cats form quite separate classes
or populations, and it is known, with certainty, whether an animal is a dog or a cat
(or neither). Membership of a class or population is determined by an independent
authority (the Supervisor), the allocation to a class being determined independently of
any particular attributes or variables.

2. Classes result from a prediction problem. Here class is essentially an outcome that

must be predicted from a knowledge of the attributes. In statistical terms, the class is
arandom variable. A typical example is in the prediction of interest rates. Frequently
the question is put: will interest rates rise (class=1) or not (class=0).

3. Classes are pre-defined by a partition of the sample space, i.e. of the attributes

themselves. We may say that class is a function of the attributes. Thus a manufactured
item may be classed as faulty if some attributes are outside predetermined limits, and
not faulty otherwise. There is a rule that has already classified the data from the
attributes: the problem is to create a rule that mimics the actual rule as closely as
possible. Many credit datasets are of this type.

In practice, datasets may be mixtures of these types, or may be somewhere in between.

2.14 Accuracy

On the question of accuracy, we should always bear in mind that accuracy as measured
on the training set and accuracy as measured on unseen data (the test set) are often very
different. Indeed it is not uncommon, especially in Machine Learning applications, for the
training set to be perfectly fitted, but performance on the test set to be very disappointing.
Usually, it is the accuracy on the unseen data, when the true classification is unknown, that
is of practical importance. The generally accepted method for estimating this is to use the
given data, in which we assume that all class memberships are known, as follows. Firstly,
we use a substantial proportion (the training set) of the given data to train the procedure.
This rule is then tested on the remaining data (the test set), and the results compared with
the known classifications. The proportion correct in the test set is an unbiased estimate of
the accuracy of the rule provided that the training set is randomly sampled from the given
data.

2.2 EXAMPLES OF CLASSIFIERS

To illustrate the basic types of classifiers, we will use the well-known Iris dataset, which
is given, in full, in Kendall & Stuart (1983). There are three varieties of Iris: Setosa,
Versicolor and Virginica. The length and breadth of both petal and sepal were measured
on 50 flowers of each variety. The original problem is to classify a new Iris flower into one
of these three types on the basis of the four attributes (petal and sepal length and width).
To keep this example simple, however, we will look for a classification rule by which the
varieties can be distinguished purely on the basis of the two measurements on Petal Length
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and Width. We have available fifty pairs of measurements of each variety from which to
learn the classification rule.

2.2.1 Fisher’s linear discriminants

This is one of the oldest classification procedures, and is the most commonly implemented
in computer packages. The idea is to divide sample space by a series of lines in two
dimensions, planes in 3-D and, generally hyperplanes in many dimensions. The line
dividing two classes is drawn to bisect the line joining the centres of those classes, the
direction of the line is determined by the shape of the clusters of points. For example, to
differentiate between Versicolor and Virginica, the following rule is applied:

¢ If Petal Width < 3.272 — 0.3254 x Petal Length, then Versicolor.
e If Petal Width > 3.272 — 0.3254 x Petal Length, then Virginica.

Fisher’s linear discriminants applied to the Iris data are shown in Figure 2.1. Six of the
observations would be misclassified.
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Fig. 2.1: Classification by linear discriminants: Iris data.

2.2.2 Decision tree and Rule-based methods

One class of classification procedures is based on recursive partitioning of the sample space.
Space is divided into boxes, and at each stage in the procedure, each box is examined to
see if it may be split into two boxes, the split usually being parallel to the coordinate axes.
An example for the Iris data follows.

¢ If Petal Length < 2.65 then Setosa.
e If Petal Length > 4.95 then Virginica.

10 Classification [Ch.2

e If2.65 < Petal Length < 4.95 then :
if Petal Width < 1.65 then Versicolor;
if Petal Width > 1.65 then Virginica.

The resulting partition is shown in Figure 2.2. Note that this classification rule has three
mis-classifications.
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Fig. 2.2: Classification by decision tree: Iris data.

Weiss & Kapouleas (1989) give an alternative classification rule for the Iris data that is
very directly related to Figure 2.2. Their rule can be obtained from Figure 2.2 by continuing
the dotted line to the left, and can be stated thus:
¢ If Petal Length < 2.65 then Setosa.

e If Petal Length > 4.95 or Petal Width > 1.65 then Virginica.
¢ Otherwise Versicolor.

Notice that this rule, while equivalent to the rule illustrated in Figure 2.2, is stated more
concisely, and this formulation may be preferred for this reason. Notice also that the rule is
ambiguous if Petal Length < 2.65 and Petal Width > 1.65. The quoted rules may be made
unambiguous by applying them in the given order, and they are then just a re-statement of
the previous decision tree. The rule discussed here is an instance of a rule-based method:
such methods have very close links with decision trees.

2.2.3 Kk-Nearest-Neighbour

We illustrate this technique on the Iris data. Suppose a new Iris is to be classified. The idea
is that it is most likely to be near to observations from its own proper population. So we
look at the five (say) nearest observations from all previously recorded Irises, and classify
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the observation according to the most frequent class among its neighbours. In Figure 2.3,
the new observation is marked by a -} , and the 5 nearest observations lie within the circle
centred on the +. The apparent elliptical shape is due to the differing horizontal and vertical
scales, but the proper scaling of the observations is a major difficulty of this method.

This is illustrated in Figure 2.3 , where an observation centred at |+ would be classified
as Virginica since it has 4 Virginica among its & nearest neighbours.
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Fig. 2.3: Classification by 5-Nearest-Neighbours: Iris data.

2.3 CHOICE OF VARIABLES

As we have just pointed out in relation to k-nearest neighbour, it may be necessary to
reduce the weight attached to some variables by suitable scaling. At one extreme, we might
remove some variables altogether if they do not contribute usefully to the discrimination,
although this is not always easy to decide. There are established procedures (for example,
forward stepwise selection) for removing unnecessary variables in linear discriminants,
but, for large datasets, the performance of linear discriminants is not seriously affected by
including such unnecessary variables. In contrast, the presence of irrelevant variables is
always a problem with k-nearest neighbour, regardless of dataset size.

2.3.1 Transfor ions and binations of variables

Often problems can be simplified by a judicious transformation of variables. With statistical
procedures, the aim is usually to transform the attributes so that their marginal density is
approximately normal, usually by applying a monotonic transformation of the power law
type. Monotonic transformations do not affect the Machine Learning methods, but they can
benefit by combining variables, for example by taking ratios or differences of key variables.
Background knowledge of the problem is of help in determining what transformation or
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combination to use. For example, in the Iris data, the product of the variables Petal Length
and Petal Width gives a single attribute which has the dimensions of area, and might be
labelled as Petal Area. It so happens that a decision rule based on the single variable Petal
Area is a good classifier with only four errors:

e If Petal Area < 2.0 then Setosa.

e If2.0 < Petal Area < 7.4 then Virginica.

¢ If Petal Area > 7.4 then Virginica.

This tree, while it has one more error than the decision tree quoted earlier, might be preferred
on the grounds of conceptual simplicity as it involves only one “concept”, namely Petal
Area. Also, one less arbitrary constant need be remembered (i.e. there is one less node or
cut-point in the decision trees).

2.4 CLASSIFICATION OF CLASSIFICATION PROCEDURES

The above three procedures (linear discrimination, decision-tree and rule-based, k-nearest
neighbour) are prototypes for three types of classification procedure. Not surprisingly,
they have been refined and extended, but they still represent the major strands in current
classification practice and research. The 23 procedures investigated in this book can be
directly linked to one or other of the above. However, within this book the methods have
been grouped around the more traditional headings of classical statistics, modern statistical
techniques, Machine Learning and neural networks. Chapters 3 — 6, respectively, are
devoted to each of these. For some methods, the classification is rather abitrary.

2.4.1 Extensions to linear discri

We can include in this group those procedures that start from linear combinations of
the measurements, even if these combinations are subsequently subjected to some non-
linear transformation. There are 7 procedures of this type: Linear discriminants; logistic
discriminants; quadratic discriminants; multi-layer perceptron (backprop and cascade);
DIPOL92; and projection pursuit. Note that this group consists of statistical and neural
network (specifically multilayer perceptron) methods only.

24.2 Decision trees and Rule-based methods

This is the most numerous group in the book with 9 procedures: NewID; AC?; Cal5; CN2;
C4.5; CART; IndCART; Bayes Tree; and ITrule (see Chapter 5).

2.4.3 Density estimates

This group is a little less homogeneous, but the 7 members have this in common: the
procedure is intimately linked with the estimation of the local probability density at each
point in sample space. The density estimate group contains: k-nearest neighbour; radial
basis functions; Naive Bayes; Polytrees; Kohonen self-organising net; LVQ; and the kernel
density method. This group also contains only statistical and neural net methods.

2.5 A GENERAL STRUCTURE FOR CLASSIFICATION PROBLEMS

There are three essential components to a classification problem.

1. The relative frequency with which the classes occur in the population of interest,
expressed formally as the prior probability distribution.
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2. An implicit or explicit criterion for separating the classes: we may think of an un-
derlying input/output relation that uses observed attributes to distinguish a random
individual from each class.

3. The cost associated with making a wrong classification.

Most techniques implicitly confound components and, for example, produce a classifi-
cation rule that is derived conditional on a particular prior distribution and cannot easily be
adapted to a change in class frequency. However, in theory each of these components may
be individually studied and then the results formally combined into a classification rule.
‘We shall describe this development below.

2.5.1 Prior probabilities and the Default rule

‘We need to introduce some notation. Let the classes be denoted A4;,7 = 1,...,¢, and let
the prior probability 7; for the class 4; be:
m = p(A:)

It is always possible to use the no-data rule: classify any new observation as class Ag,
irrespective of the attributes of the example. This no-data or default rule may even be
adopted in practice if the cost of gathering the data is too high. Thus, banks may give
credit to all their established customers for the sake of good customer relations: here the
cost of gathering the data is the risk of losing customers. The default rule relies only on
knowledge of the prior probabilities, and clearly the decision rule that has the greatest
chance of success is to allocate every new observation to the most frequent class. However,
if some classification errors are more serious than others we adopt the minimum risk (least
expected cost) rule, and the class k is that with the least expected cost (see below).

2.5.2 Separating classes

Suppose we are able to observe data z on an individual, and that we know the probability
distribution of z within each class 4; to be P(z|A4;). Then for any two classes A;, A; the
likelihood ratio P(z|A;)/ P(z|A;) provides the theoretical optimal form for discriminating
the classes on the basis of data z. The majority of techniques featured in this book can be
thought of as implicitly or explicitly deriving an approximate form for this likelihood ratio.

2.5.3 Misclassification costs

Suppose the cost of misclassifying a class A; objectas class 4; is ¢(i, 7). Decisions should
be based on the principle that the total cost of misclassifications should be minimised: for
a new observation this means minimising the expected cost of misclassification.

Let us first consider the expected cost of applying the default decision rule: allocate
all new observations to the class Ag4, using suffix d as label for the decision class. When
decision A4 is made for all new examples, a cost of c(i, d) is incurred for class A; examples
and these occur with probability 7;. So the expected cost Cy of making decision Ag is:

Cq = ch(i, d)
i

The Bayes minimum cost rule chooses that class that has the lowest expected cost. To
see the relation between the minimum error and minimum cost rules, suppose the cost of

14 Classification [Ch.2

misclassifications to be the same for all errors and zero when a class is correctly identified,
i.e. suppose thatc(z,j) = cfori # jandc(s,j) = Cfori = j.
Then the expected cost is

Cq = ch(i, d) = Zw,—c = ch = ¢(1 —mg)
i i#d iZd

and the minimum cost rule is to allocate to the class with the greatest prior probability.

Misclassification costs are very difficult to obtain in practice. Even in situations where
it is very clear that there are very great inequalities in the sizes of the possible penalties
or rewards for making the wrong or right decision, it is often very difficult to quantify
them. Typically they may vary from individual to individual, as in the case of applications
for credit of varying amounts in widely differing circumstances. In one dataset we have
assumed the misclassification costs to be the same for all individuals. (In practice, credit-
granting companies must assess the potential costs for each applicant, and in this case the
classification algorithm usually delivers an assessment of probabilities, and the decision is
left to the human operator.)

2.6 BAYES RULE GIVEN DATA z
We can now see how the three components introduced above may be combined into a
classification procedure.

When we are given information z about an individual, the situation is, in principle,
unchanged from the no-data situation. The difference is that all probabilities must now
be interpreted as conditional on the data . Again, the decision rule with least probability
of error is to allocate to the class with the highest probability of occurrence, but now the
relevant probability is the conditional probability p(A;|z) of class A; given the data z:

p(Ailz) = Prob(classA; givenz)
If we wish to use a minimum cost rule, we must first calculate the expected costs of the
various decisions conditional on the given information .

Now, when decision A4 is made for examples with attributes z, a cost of c(,d)
is incurred for class A; examples and these occur with probability p(4;z). As the
probabilities p(A; [z) depend on z, so too will the decision rule. So too will the expected
cost C4(z) of making decision Ag:

Cul) = Z p(Ailz)e(i,d)

In the special case of equal misclassification costs, the minimum cost rule is to allocate to
the class with the greatest posterior probability.

When Bayes theorem is used to calculate the conditional probabilities p(A; [x) for the
classes, we refer to them as the posterior probabilities of the classes. Then the posterior
probabilities p(A;|z) are calculated from a knowledge of the prior probabilities ; and the
conditional probabilities P(z|A;) of the data for each class A;. Thus, for class A; suppose
that the probability of observing data z is P(z|A4;). Bayes theorem gives the posterior
probability p(4;|z) for class A; as:

p(4ilz) = mP(z|4:)/ Y 7w P(x|4;)
7
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The divisor is common to all classes, so we may use the fact that p(4;|z) is proportional
to m; P(z|A;). The class A4 with minimum expected cost (minimum risk) is therefore that
for which

Z mic(i, d)P(z| As)

is a minimum.

Assuming now that the attributes have continuous distributions, the probabilities above
become probability densities. Suppose that observations drawn from population A; have
probability density function f;(z) = f(z | A;) and that the prior probability that an obser-
vation belongs to class A; is w;. Then Bayes’ theorem computes the probability that an
observation z belongs to class A; as

p(Ailz) = Wifi(z)/z"rjfj(z)

A classification rule then assigns z to the class A4 with maximal a posteriori probability
given z:

P(44lz) = maxp(Aife)
As before, the class A4 with minimum expected cost (minimum risk) is that for which

ch(i,d)fi(z)

is a minimum.
Consider the problem of discriminating between just two classes A; and A;. Then

assuming as before that ¢(z,7) = ¢(3, j) = 0, we should allocate to class 7 if

(i, §)fi (2) < mic(4,4) fi(e)
or equivalently

fi(z) _ 7 c(ig)

TN T

fi(®) © i c(4,4)
which shows the pivotal role of the likelihood ratio, which must be greater than the ratio of
prior probabilities times the relative costs of the errors. We note the symmetry in the above
expression: changes in costs can be compensated in changes in prior to keep constant the
threshold that defines the classification rule - this facility is exploited in some techniques,
although for more than two groups this property only exists under restrictive assumptions
(see Breiman et al., page 112).

2.6.1 Bayes rule in statistics
Rather than deriving p(A;|z) via Bayes theorem, we could also use the empirical frequency
version of Bayes rule, which, in practice, would require prohibitively large amounts of data.
However, in principle, the procedure is to gather together all examples in the training set
that have the same attributes (exactly) as the given example, and to find class proportions
p(Ai|z) among these examples. The minimum error rule is to allocate to the class A4 with
highest posterior probability.

Unless the number of attributes is very small and the training dataset very large, it will be
necessary to use approximations to estimate the posterior class probabilities. For example,
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one way of finding an approximate Bayes rule would be to use not just examples with
attributes matching exactly those of the given example, but to use examples that were near
the given example in some sense. The minimum error decision rule would be to allocate
to the most frequent class among these matching examples. Partitioning algorithms, and
decision trees in particular, divide up attribute space into regions of self-similarity: all
data within a given box are treated as similar, and posterior class probabilities are constant
within the box.

Decision rules based on Bayes rules are optimal - no other rule has lower expected
error rate, or lower expected misclassification costs. Although unattainable in practice,
they provide the logical basis for all statistical algorithms. They are unattainable because
they assume complete information is known about the statistical distributions in each class.
Statistical procedures try to supply the missing distributional information in a variety of
ways, but there are two main lines: parametric and non-parametric. Parametric methods
make assumptions about the nature of the distributions (commonly it is assumed that the
distributions are Gaussian), and the problem is reduced to estimating the parameters of
the distributions (means and variances in the case of Gaussians). Non-parametric methods
make no assumptions about the specific distributions involved, and are therefore described,
perhaps more accurately, as distribution-free.

2.7 REFERENCE TEXTS

There are several good textbooks that we can recommend. Weiss & Kulikowski (1991)
give an overall view of classification methods in a text that is probably the most accessible
to the Machine Learning community. Hand (1981), Lachenbruch & Mickey (1975) and
Kendall et al. (1983) give the statistical approach. Breiman et al. (1984) describe CART,
which s a partitioning algorithm developed by statisticians, and Silverman (1986) discusses
density estimation methods. For neural net approaches, the book by Hertz et al. (1991) is
probably the most comprehensive and reliable. Two excellent texts on pattern recognition
are those of Fukunaga (1990) , who gives a thorough treatment of classification problems,
and Devijver & Kittler (1982) who concentrate on the k-nearest neighbour approach.
A thorough treatment of statistical procedures is given in McLachlan (1992), who also
mentions the more important alternative approaches. A recent text dealing with pattern
recognition from a variety of perspectives is Schalkoff (1992).




3

Classical Statistical Methods

J. M. O. Mitchell
University of Strathclyde®

3.1 INTRODUCTION

This chapter provides an introduction to the classical statistical discrimination techniques
and is intended for the non-statistical reader. It begins with Fisher’s linear discriminant,
which requires no probability assumptions,and then introduces methods based on maximum
likelihood. These are linear discriminant, quadratic discriminant and logistic discriminant.
Next there is a brief section on Bayes’ rules, which indicates how each of the methods
can be adapted to deal with unequal prior probabilities and unequal misclassification costs.
Finally there is an illustrative example showing the result of applying all three methods to
a two class and two attribute problem. For full details of the statistical theory involved the
reader should consult a statistical text book, for example (Anderson, 1958).

The training set will consist of examples drawn from g known classes. (Often g will
be 2.) The values of p numerically-valued attributes will be known for each of n examples,
and these form the artribute vector x = (z1,2,...,2p). It should be noted that these
methods require numerical attribute vectors, and also require that none of the values is
missing. Where an attribute is categorical with two values, an indicator is used, i.e. an
attribute which takes the value 1 for one category, and 0 for the other. Where there are
more than two categorical values, indicators are normally set up for each of the values.
However there is then redundancy among these new attributes and the usual procedure is
to drop one of them. In this way a single categorical attribute with j values is replaced by
j—1 attributes whose values are 0 or 1. Where the attribute values are ordered, it may be
acceptable to use a single numerical-valued attribute. Care has to be taken that the numbers
used reflect the spacing of the categories in an appropriate fashion.

3.2 LINEAR DISCRIMINANTS

There are two quite different justifications for using Fisher’s linear discriminant rule: the
first, as given by Fisher (1936), is that it maximises the separation between the classes in

1 Address for correspondence: Department of Statistics and Modelling Science, University of Strathclyde,
Glasgow G1 1XH, U.K.
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a least-squares sense; the second is by Maximum Likelihood (see Section 3.2.3). We will
give a brief outline of these approaches. For a proof that they arrive at the same solution,
we refer the reader to McLachlan (1992).

3.2.1 Linear discriminants by least squares

Fisher’s linear discriminant (Fisher, 1936) is an empirical method for classification based
purely on attribute vectors. A hyperplane (line in two dimensions, planein three dimensions,
etc.) in the p-dimensional attribute space is chosen to separate the known classes as well
as possible. Points are classified according to the side of the hyperplane that they fall on.
For example, see Figure 3.1, which illustrates discrimination between two “digits”, with
the continuous line as the discriminating hyperplane between the two populations.

This procedure is also equivalent to a t-test or F-test for a significant difference between
the mean discriminants for the two samples, the t-statistic or F-statistic being constructed
to have the largest possible value.

More precisely, in the case of two classes, let X, X1, X5 be respectively the means of
the attribute vectors overall and for the two classes. Suppose that we are given a set of
coefficients ay, ..., a, and let us call the particular linear combination of attributes

9(x) =D a3
the discriminant between the classes. We wish the discriminants for the two classes to
differ as much as possible, and one measure for this is the difference g(X1) — g(X2)
between the mean discriminants for the two classes divided by the standard deviation of
the discriminants, s, say, giving the following measure of discrimination:

9(%1) — g(%2)

S

This measure of discrimination is related to an estimate of misclassification error based on
the assumption of a multivariate normal distribution for g(x) (note that this is a weaker
assumption than saying that x has a normal distribution). For the sake of argument, we
set the dividing line between the two classes at the midpoint between the two class means.
Then we may estimate the probability of misclassification for one class as the probability
that the normal random variable g(x) for that class is on the wrong side of the dividing
line, i.e. the wrong side of

9(%1) 4 g(X2)

and this is easily seen to be
<I>(51(1’?1) 2* !I(iz))
S9

where we assume, without loss of generality, that g(X1) — g(X2) is negative. If the classes
are not of equal sizes, or if, as is very frequently the case, the variance of g(x) is not the
same for the two classes, the dividing line is best drawn at some point other than the
midpoint.

Rather than use the simple measure quoted above, it is more convenient algebraically
to use an equivalent measure defined in terms of sums of squared deviations, as in analysis
of variance. The sum of squares of g(x) within class A; is
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> (g(x) — g(%:))%
the sum being over the examples in class A;. The pooled sum of squares within classes, v
say, is the sum of these quantities for the two classes (this is the quantity that would give
us a standard deviation s,). The fotal sum of squares of g(x) is }_(g(x) — g(X))? = ¢ say,
where this last sum is now over both classes. By subtraction, the pooled sum of squares
between classes is t — v, and this last quantity is proportional to (g(%1) — g(%2))%.

In terms of the F-test for the significance of the difference g(%1) — g(%2), we would
calculate the F-statistic
(t—)/

v/(N —2)

Clearly maximising the F-ratio statistic is equivalent to maximising the ratio t/v, so the
coefficients a;, j = 1, ..., p may be chosen to maximise the ratio ¢/v. This maximisation
problem may be solved analytically, giving an explicit solution for the coefficients a;.
There is however an arbitrary multiplicative constant in the solution, and the usual practice
is to normalise the a; in some way so that the solution is uniquely determined. Often one
coefficient is taken to be unity (so avoiding a multiplication). However the detail of this
need not concern us here.

To justify the “least squares” of the title for this section, note that we may choose the
arbitrary multiplicative constant so that the separation g(%X;) — g(X2) between the class
mean discriminants is equal to some predetermined value (say unity). Maximising the F-
ratio is now equivalent to minimising the total sum of squares v. Put this way, the problem
is identical to a regression of class (treated numerically) on the attributes, the dependent
variable class being zero for one class and unity for the other.

The main point about this method is that it is a /inear function of the attributes that is
used to carry out the classification. This often works well, but it is easy to see that it may
work badly if a linear separator is not appropriate. This could happen for example if the
data for one class formed a tight cluster and the the values for the other class were widely
spread around it. However the coordinate system used is of no importance. Equivalent
results will be obtained after any linear transformation of the coordinates.

A practical complication is that for the algorithm to work the pooled sample covariance
matrix must be invertible. The covariance matrix for a dataset with n; examples from
class A;, is

5=

F =

where X is the n; x p matrix of attribute values, and x is the p-dimensional row-vector
of attribute means. The pooled covariance matrix S is y_(n; — 1)S;/(n — q) where the
summation is over all the classes, and the divisor n — g is chosen to make the pooled
covariance matrix unbiased. For invertibility the attributes must be linearly independent,
which means that no attribute may be an exact linear combination of other attributes. In
order to achieve this, some attributes may have to be dropped. Moreover no attribute can
be constant within each class. Of course an attribute which is constant within each class
but not overall may be an excellent discriminator and is likely to be utilised in decision tree
algorithms. However it will cause the linear discriminant algorithm to fail. This situation
can be treated by adding a small positive constant to the corresponding diagonal element of
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the pooled covariance matrix, or by adding random noise to the attribute before applying
the algorithm.

In order to deal with the case of more than two classes Fisher (1938) suggested the use
of canonical variates. First a linear combination of the attributes is chosen to minimise
the ratio of the pooled within class sum of squares to the total sum of squares. Then
further linear functions are found to improve the discrimination. (The coefficients in
these functions are the eigenvectors corresponding to the non-zero eigenvalues of a certain
matrix.) In general there will be min(g— 1, p) canonical variates. It may turn out that only
a few of the canonical variates are important. Then an observation can be assigned to the
class whose centroid is closest in the subspace defined by these variates. It is especially
useful when the class means are ordered, or lie along a simple curve in attribute-space. In
the simplest case, the class means lie along a straight line. This is the case for the head
injury data (see Section 9.4.1), for example, and, in general, arises when the classes are
ordered in some sense. In this book, this procedure was not used as a classifier, but rather
in a qualitative sense to give some measure of reduced dimensionality in attribute space.
Since this technique can also be used as a basis for explaining differences in mean vectors
as in Analysis of Variance, the procedure may be called manova, standing for Multivariate
Analysis of Variance.

3.2.2  Special case of two classes

The linear discriminant procedure is particularly easy to program when there are just two
classes, for then the Fisher discriminant problem is equivalent to a multiple regression
problem, with the attributes being used to predict the class value which is treated as
a numerical-valued variable. The class values are converted to numerical values: for
example, class A; is given the value 0 and class Az is given the value 1. A standard
multiple regression package is then used to predict the class value. If the two classes are
equiprobable, the discriminating hyperplane bisects the line joining the class centroids.
Otherwise, the discriminating hyperplane is closer to the less frequent class. The formulae
are most easily derived by considering the multiple regression predictor as a single attribute
that is to be used as a one-dimensional discriminant, and then applying the formulae of
the following section. The procedure is simple, but the details cannot be expressed simply.
See Ripley (1993) for the explicit connection between discrimination and regression.

3.2.3 Linear discriminants by maximum likelihood

The justification of the other statistical algorithms depends on the consideration of prob-
ability distributions, and the linear discriminant procedure itself has a justification of this
kind. It is assumed that the attribute vectors for examples of class A; are independent
and follow a certain probability distribution with probability density function (pdf) f;. A
new point with attribute vector x is then assigned to that class for which the probability
density function f;(x) is greatest. This is a maximum likelihood method. A frequently
made assumption is that the distributions are normal (or Gaussian) with different means
but the same covariance matrix. The probability density function of the normal distribution
is
1 1 Tt
e exp (5 (x — )R x - ), 3.0

VAPZ]
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where p is a p-dimensional vector denoting the (theoretical) mean for a class and X,
the (theoretical) covariance matrix, is a p x p (necessarily positive definite) matrix. The
(sample) covariance matrix that we saw earlier is the sample analogue of this covariance
matrix, which is best thought of as a set of coefficients in the pdf or a set of parameters for
the distribution. This means that the points for the class are distributed in a cluster centered
at u of ellipsoidal shape described by X. Each cluster has the same orientation and spread
though their means will of course be different. (It should be noted that there is in theory
no absolute boundary for the clusters but the contours for the probability density function
have ellipsoidal shape. In practice occurrences of examples outside a certain ellipsoid
will be extremely rare.) In this case it can be shown that the boundary separating two
classes, defined by equality of the two pdfs, is indeed a hyperplane and it passes through
the mid-point of the two centres. Its equation is

XI5 (g — ) — %(m 4 u2)TE 7 (1 — p2) = G, (32
where y; denotes the population mean for class A;. However in classification the exact
distribution is usually not known, and it becomes necessary to estimate the parameters for
the distributions. With two classes, if the sample means are substituted for ; and the
pooled sample covariance matrix for X, then Fisher’s linear discriminant is obtained. With
more than two classes, this method does not in general give the same results as Fisher’s
discriminant.

3.2.4 More than two classes
When there are more than two classes, it is no longer possible to use a single linear
discriminant score to separate the classes. The simplest procedure is to calculate a linear
discriminant for each class, this discriminant being just the logarithm of the estimated
probability density function for the appropriate class, with constant terms dropped. Sample
values are substituted for population values where these are unknown (this gives the “plug-
in” estimates). Where the prior class proportions are unknown, they would be estimated
by the relative frequencies in the training set. Similarly, the sample means and pooled
covariance matrix are substituted for the population means and covariance matrix.
Suppose the prior probability of class A; is 7;, and that f;(z) is the probability density
of z in class A;, and is the normal density given in Equation (3.1). The joint probability
of observing class A; and attribute z is 7; f;(z) and the logarithm of the probability of
observing class A; and attribute x is
logm; + xTE_lp.,» - 15#?2_11-'4’

to within an additive constant. So the coefficients g; are given by the coefficients of x
B =37

and the additive constant a; by
a; = logm; — %#?E’lui

though these can be simplified by subtracting the coefficients for the last class.

The above formulae are stated in terms of the (generally unknown) population pa-
rameters X, y; and ;. To obtain the corresponding “plug-in” formulae, substitute the
corresponding sample estimators: S for X; X; for y;; and p; for m;, where p; is the sample
proportion of class A; examples.
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3.3 QUADRATIC DISCRIMINANT

Quadratic discrimination is similar to linear discrimination, but the boundary between two
discrimination regions is now allowed to be a quadratic surface. When the assumption
of equal covariance matrices is dropped, then in the maximum likelihood argument with
normal distributions a quadratic surface (for example, ellipsoid, hyperboloid, etc.) is
obtained. This type of discrimination can deal with classifications where the set of attribute
values for one class to some extent surrounds that for another. Clarke et al. (1979) find
that the quadratic discriminant procedure is robust to small departures from normality
and that heavy kurtosis (heavier tailed distributions than gaussian) does not substantially
reduce accuracy. However, the number of parameters to be estimated becomes gp(p+1)/2,
and the difference between the variances would need to be considerable to justify the use
of this method, especially for small or moderate sized datasets (Marks & Dunn, 1974).
Occasionally, differences in the covariances are of scale only and some simplification may
occur (Kendall e al., 1983) . Linear discriminant is thought to be still effective if the
departure from equality of covariances is small (Gilbert, 1969). Some aspects of quadratic
dependence may be included in the linear or logistic form (see below) by adjoining new
attributes that are quadratic functions of the given attributes.

3.3.1 Quadratic discrimi - progr ing detail

The quadratic discriminant function is most simply defined as the logarithm of the ap-
propriate probability density function, so that one quadratic discriminant is calculated for
each class. The procedure used is to take the logarithm of the probability density function
and to substitute the sample means and covariance matrices in place of the population
values, giving the so-called “plug-in” estimates. Taking the logarithm of Equation (3.1),
and allowing for differing prior class probabilities 7;, we obtain

logns fi(e) = log(m) — 310g((4l) — 5 x — we) 57 (x — )

as the quadratic discriminant for class A;. Here it is understood that the suffix 7 refers to
the sample of values from class A4;.

In classification, the quadratic discriminant is calculated for each class and the class
with the largest discriminant is chosen. To find the a posteriori class probabilities explicitly,
the exponential is taken of the discriminant and the resulting quantities normalised to sum
to unity (see Section 2.6). Thus the posterior class probabilities P(4;|x) are given by

P(Adfx) = expllog(m) — 3 los((d) — 30x— k)2 (x — )]

apart from a normalising factor.

If there is a cost matrix, then, no matter the number of classes, the simplest procedure is
to calculate the class probabilities P(A;|x) and associated expected costs explicitly, using
the formulae of Section 2.6. The most frequent problem with quadratic discriminants is
caused when some attribute has zero variance in one class, for then the covariance matrix
cannot be inverted. One way of avoiding this problem is to add a small positive constant
term to the diagonal terms in the covariance matrix (this corresponds to adding random
noise to the attributes). Another way, adopted in our own implementation, is to use some
combination of the class covariance and the pooled covariance.
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Once again, the above formulae are stated in terms of the unknown population pa-
rameters X;, g; and 7;. To obtain the corresponding “plug-in” formulae, substitute the
corresponding sample estimators: S; for 2;; X; for y;; and p; for ;, where p; is the sample
proportion of class A; examples.

Many statistical packages allow for quadratic discrimination (for example, MINITAB
has an option for quadratic discrimination, SAS also does quadratic discrimination).

3.3.2 Regularisation and smoothed estimates
The main problem with quadratic discriminants is the large number of parameters that
need to be estimated and the resulting large variance of the estimated discriminants. A
related problem is the presence of zero or near zero eigenvalues of the sample covariance
matrices. Attempts to alleviate this problem are known as regularisation methods, and
the most practically useful of these was put forward by Friedman (1989), who proposed
a compromise between linear and quadratic discriminants via a two-parameter family of
estimates. One parameter controls the smoothing of the class covariance matrix estimates.
The smoothed estimate of the class i covariance matrix is
(1-6)S: + &S
where S; is the class 4 sample covariance matrix and S is the pooled covariance matrix.
When §; is zero, there is no smoothing and the estimated class ¢ covariance matrix is just
the i’th sample covariance matrix S;. When the §; are unity, all classes have the same
covariance matrix, namely the pooled covariance matrix S. Friedman (1989) makes the
value of §; smaller for classes with larger numbers. For the i’th sample with n; observations:
& = 6(N —g)/{8(N —g) 4+ (1-8)(n: = 1)}
where N =n;y + n2 4 .. 4 n,.

The other parameter A is a (small) constant term that is added to the diagonals of the
covariance matrices: this is done to make the covariance matrix non-singular, and also has
the effect of smoothing out the covariance matrices. As we have already mentioned in
connection with linear discriminants, any singularity of the covariance matrix will cause
problems, and as there is now one covariance matrix for each class the likelihood of such
a problem is much greater, especially for the classes with small sample sizes.

This two-parameter family of procedures is described by Friedman (1989) as “regu-
larised discriminant analysis”. Various simple procedures are included as special cases:
ordinary linear discriminants (§ = 1, A = 0); quadratic discriminants (§ = 6, A = 0); and
the values § = 1, A = 1 correspond to a minimum Euclidean distance rule.

This type of regularisation has been incorporated in the Strathclyde version of Quadisc.
Very little extra programming effort is required. However, it is up to the user, by trial and
error, to choose the values of § and A. Friedman (1989) gives various shortcut methods for
reducing the amount of computation.

3.3.3 Choice of regularisation parameters
The default values of § = 0 and A = 0 were adopted for the majority of StatLog datasets,
the philosophy being to keep the procedure “pure” quadratic.

The exceptions were those cases where a covariance matrix was not invertible. Non-
default values were used for the head injury dataset (A=0.05) and the DNA dataset (6§=0.3
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approx.). In practice, great improvements in the performance of quadratic discriminants
may result from the use of regularisation, especially in the smaller datasets.

3.4 LOGISTIC DISCRIMINANT

Exactly as in Section 3.2, logistic regression operates by choosing a hyperplane to separate
the classes as well as possible, but the criterion for a good separation is changed. Fisher’s
linear discriminants optimises a quadratic cost function whereas in logistic discrimination
it is a conditional likelihood that is maximised. However, in practice, there is often very
little difference between the two, and the linear discriminants provide good starting values
for the logistic. Logistic discrimination is identical, in theory, to linear discrimination for
normal distributions with equal covariances, and also for independent binary attributes, so
the greatest differences between the two are to be expected when we are far from these
two cases, for example when the attributes have very non-normal distributions with very
dissimilar covariances.

The method is only partially parametric, as the actual pdfs for the classes are not
modelled, but rather the ratios between them.

Specifically, the logarithms of the prior odds 71 /7 times the ratios of the probability

density functions for the classes are modelled as linear functions of the attributes. Thus,
for two classes,
T f1(x)
w2 f2(x)
where a and the p-dimensional vector 8 are the parameters of the model that are to be
estimated. The case of normal distributions with equal covariance is a special case of
this, for which the parameters are functions of the prior probabilities, the class means and
the common covariance matrix. However the model covers other cases too, such as that
where the attributes are independent with values 0 or 1. One of the attractions is that the
discriminant scale covers all real numbers. A large positive value indicates that class A1 is
likely, while a large negative value indicates that class Ag is likely.

In practice the parameters are estimated by maximum cenditional likelihood. The
model implies that, given attribute values x, the conditional class probabilities for classes
A; and A, take the forms:

=a+ f'x,

log

exp(a + f'x)

P(A = —t
(A1]x) 17 exp(a 1 f'x)
1
P(A —_
(Az2]x) T3 oxp(ad Bx)
respectively.

Given independent samples from the two classes, the conditional likelihood for the
parameters a and S is defined to be
Lef) = [ P@x ] P4:x)
{4,sample} {4zsample}
and the parameter estimates are the values that maximise this likelihood. They are found by
iterative methods, as proposed by Cox (1966) and Day & Kerridge (1967). Logistic models
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belong to the class of generalised linear models (GLMs), which generalise the use of linear
regression models to deal with non-normal random variables, and in particular to deal with
binomial variables. In this context, the binomial variable is an indicator variable that counts
whether an example is class Ay or not. When there are more than two classes, one class is
taken as a reference class, and there are g—1 sets of parameters for the odds of each class
relative to the reference class. To discuss this case, we abbreviate the notation for a 4+ 5'x
to the simpler 8'x. For the remainder of this section, therefore, X is a (p + 1)-dimensional
vector with leading term unity, and the leading term in 8 corresponds to the constant c.

Again, the parameters are estimated by maximum conditional likelihood. Given at-
tribute values x, the conditional class probability for class A;, where i # ¢, and the
conditional class probability for A, take the forms:

ey = CP(B)
PAR = 5 cena)
i=1,..,q
1
P(A,lx —_—_—
) = s
i=1,...9

respectively. Given independent samples from the g classes, the conditional likelihood for
the parameters £; is defined to be

LB, -B-) = I Pl I P4ex)... J]  P(4dx)

{4,sample} {Azsample} {4A.sample}

Once again, the parameter estimates are the values that maximise this likelihood.

In the basic form of the algorithm an example is assigned to the class for which the
posterior is greatest if that is greater than 0, or to the reference class if all posteriors are
negative.

More complicated models can be accommodated by adding transformations of the
given attributes, for example products of pairs of attributes. As mentioned in Section
3.1, when categorical attributes with r (> 2) values occur, it will generally be necessary
to convert them into r—1 binary attributes before using the algorithm, especially if the
categories are not ordered. Anderson (1984) points out that it may be appropriate to
include transformations or products of the attributes in the linear function, but for large
datasets this may involve much computation. See McLachlan (1992) for useful hints. One
way to increase complexity of model, without sacrificing intelligibility, is to add parameters
in a hierarchical fashion, and there are then links with graphical models and Polytrees.

3.4.1 Logistic discrimi - progr ing detail

Most statistics packages can deal with linear discriminant analysis for two classes. SYSTAT
has, in addition, a version of logistic regression capable of handling problems with more
than two classes. If a package has only binary logistic regression (i.e. can only deal with
two classes), Begg & Gray (1984) suggest an approximate procedure whereby classes are
all compared to a reference class by means of logistic regressions, and the results then
combined. The approximation is fairly good in practice according to Begg & Gray (1984).
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Many statistical packages (GLIM, Splus, Genstat) now include a generalised linear
model (GLM) function, enabling logistic regression to be programmed easily, in two
or three lines of code. ~ The procedure is to define an indicator variable for class A,
occurrences. The indicator variable is then declared to be a “binomial” variable with the
“logit” link function, and generalised regression performed on the attributes. We used the
package Splus for this purpose. This is fine for two classes, and has the merit of requiring
little extra programming effort. For more than two classes, the complexity of the problem
increases substantially, and, although it is technically still possible to use GLM procedures,
the programming effort is substantially greater and much less efficient.

The maximum likelihood solution can be found via a Newton-Raphson iterative pro-
cedure, as it is quite easy to write down the necessary derivatives of the likelihood (or,
equivalently, the log-likelihood). The simplest starting procedure is to set the SB; coeffi-
cients to zero except for the leading coefficients (a;) which are set to the logarithms of the
numbers in the various classes: i.e. a; = logn;, where n; is the number of class A;
examples. This ensures that the values of g; are those of the linear discriminant after the
first iteration. Of course, an alternative would be to use the linear discriminant parameters
as starting values. In subsequent iterations, the step size may occasionally have to be
reduced, but usually the procedure converges in about 10 iterations. This is the procedure
we adopted where possible.

However, each iteration requires a separate calculation of the Hessian, and it is here
that the bulk of the computational work is required. The Hessian is a square matrix with
(g —1)(p+ 1) rows, and each term requires a summation over all the observations in the
whole dataset (although some saving can by achieved using the symmetries of the Hessian).
Thus there are of order ¢p? N computations required to find the Hessian matrix at each
iteration. In the KL digits dataset (see Section 9.3.2), for example, ¢ = 10, p = 40,
and N = 9000, so the number of operations is of order 10° in each iteration. In such
cases, it is preferable to use a purely numerical search procedure, or, as we did when
the Newton-Raphson procedure was too time-consuming, to use a method based on an
approximate Hessian. The approximation uses the fact that the Hessian for the zero’th
order iteration is simply a replicate of the design matrix (cf. covariance matrix) used by
the linear discriminant rule. This zero-order Hessian is used for all iterations. In situations
where there is little difference between the linear and logistic parameters, the approximation
is very good and convergence is fairly fast (although a few more iterations are generally
required). However, in the more interesting case that the linear and logistic parameters
are very different, convergence using this procedure is very slow, and it may still be quite
far from convergence after, say, 100 iterations. We generally stopped after 50 iterations:
although the parameter values were generally not stable, the predicted classes for the data
were reasonably stable, so the predictive power of the resulting rule may not be seriously
affected. This aspect of logistic regression has not been explored.

The final program used for the trials reported in this book was coded in Fortran, since
the Splus procedure had prohibitive memory requirements. Availablility of the Fortran
code can be found in Appendix B.
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3.5 BAYES’ RULES

Methods based on likelihood ratios can be adapted to cover the case of unequal mis-
classification costs and/or unequal prior probabilities. Let the prior probabilities be
{m 11 €1,...,q}, and let (4, j) denote the cost incurred by classifying an example
of Class 4; into class 4;.

As in Section 2.6, the minimum expected cost solution is to assign the data x to class
Ag chosen to minimise ), m;¢(z, d) f(x|A;:). In the case of two classes the hyperplane in
linear discrimination has the equation

g Cl

XD (1 — p2) — %(#1 + p2) (1 — p2) = log ;fcgzg),

the right hand side replacing O that we had in Equation (3.2).

When there are more than two classes, the simplest procedure is to calculate the
class probabilities P(A;|x) and associated expected costs explicitly, using the formulae of
Section 2.6.

3.6 EXAMPLE

As illustration of the differences between the linear, quadratic and logistic discriminants,
we consider a subset of the Karhunen-Loeve version of the digits data later studied in this
book. For simplicity, we consider only the digits ‘1’ and ‘2’, and to differentiate between
them we use only the first two attributes (40 are available, so this is a substantial reduction
in potential information). The full sample of 900 points for each digit was used to estimate
the parameters of the discriminants, although only a subset of 200 points for each digit is
plotted in Figure 3.1 as much of the detail is obscured when the full set is plotted.

3.6.1 Linear discriminant

Also shown in Figure 3.1 are the sample centres of gravity (marked by a cross). Because
there are equal numbers in the samples, the linear discriminant boundary (shown on the
diagram by a full line) intersects the line joining the centres of gravity at its mid-point. Any
new point is classified as a ‘1” if it lies below the line i.e. is on the same side as the centre
of the ‘1°s). In the diagram, there are 18 ‘2’s below the line, so they would be misclassified.

3.6.2 Logistic discriminant

The logistic discriminant procedure usually starts with the linear discriminant line and then
adjusts the slope and intersect to maximise the conditional likelihood, arriving at the dashed
line of the diagram. Essentially, the line is shifted towards the centre of the ‘1’s so as to
reduce the number of misclassified 2’s. This gives 7 fewer misclassified ‘2’s (but 2 more
misclassified ‘1°s) in the diagram.

3.6.3 Quadratic discriminant

The quadratic discriminant starts by constructing, for each sample, an ellipse centred on
the centre of gravity of the points. In Figure 3.1 it is clear that the distributions are of
different shape and spread, with the distribution of ‘2’s being roughly circular in shape
and the ‘1’s being more elliptical. The line of equal likelihood is now itself an ellipse (in
general a conic section) as shown in the Figure. All points within the ellipse are classified
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as ‘1’s. Relative to the logistic boundary, i.e. in the region between the dashed line and the
ellipse, the quadratic rule misclassifies an extra 7 ‘1’s (in the upper half of the diagram) but
correctly classifies an extra 8 ‘2’s (in the lower half of the diagram). So the performance of
the quadratic classifier is about the same as the logistic discriminant in this case, probably
due to the skewness of the ‘1” distribution.

Linear, Logistic and Quadratic discriminants

150

2nd KL-variate
100

50 160 150 200
1st KL-variate

Fig. 3.1: Decision boundaries for the three discriminants: quadratic (curved); linear (full line); and
logistic (dashed line). The data are the first two Karhunen-Loeve components for the digits ‘1* and
2.
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4.1 INTRODUCTION

In the previous chapter we studied the classification problem, from the statistical point of
view, assuming that the form of the underlying density functions (or their ratio) was known.
However, in most real problems this assumption does not necessarily hold. In this chapter
we examine distribution-free (often called nonparametric) classification procedures that
can be used without assuming that the form of the underlying densities are known.

Recall that g, n, p denote the number of classes, of examples and attributes, respec-

tively. Classes will be denoted by A, A3, ..., A, and attribute values for example 7
(i =1,2,...,n) will bedenoted by the p-dimensional vector x; = (Z1i, Z2;, . .., Tpi) € X.
Elements in X will be denoted x = (1, Z2,...,Zp).

The Bayesian approach for allocating observations to classes has already been outlined
in Section 2.6. It is clear that to apply the Bayesian approach to classification we have
to estimate f(x | A4;) and m; or p(A4; | x). Nonparametric methods to do this job will be
discussed in this chapter. We begin in Section 4.2 with kernel density estimation; a close
relative to this approach is the k-nearest neighbour (k-NN) which is outlined in Section 4.3.
Bayesian methods which either allow for, or prohibit dependence between the variables
are discussed in Sections 4.5 and 4.6. A final section deals with promising methods
which have been developed recently, but, for various reasons, must be regarded as methods
for the future. To a greater or lesser extent, these methods have been tried out in the
project, but the results were disappointing. In some cases (ACE), this is due to limitations
of size and memory as implemented in Splus. The pruned implementation of MARS in
Splus (StatSci, 1991) also suffered in a similar way, but a standalone version which also
does classification is expected shortly. We believe that these methods will have a place in
classification practice, once some relatively minor technical problems have been resolved.
As yet, however, we cannot recommend them on the basis of our empirical trials.

lAddres.rfor correspondence: Department of Computer Science and Al Facultad de Ciencas, University of
Granada, 18071 Granada, Spain
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4.2 DENSITY ESTIMATION

A nonparametric approach, proposed in Fix & Hodges (1951), is to estimate the densities
f;(x),3=1,2,...,q by nonparametric density estimation. Then once we have estimated
f;(x) and the prior probabilities 7; we can use the formulae of Section 2.6 and the costs to
classify x by minimum risk or minimum error.

To introduce the method, we assume that we have to estimate the p—dimensional density
function f(x) of an unknown distribution. Note that we will have to perform this process
for each of the g densities f;(x),7 = 1,2,...,q. Then, the probability, P, that a vector x
will fall in a region R is given by

P:/Rf(x')dx'

Suppose that n observations are drawn independently according to f(x). Then we can
approach P by k/n where k is the number of these n observations falling in R. Furthermore,
if f(x) does not vary appreciably within R we can write
P= f(x)V
where V' is the volume enclosed by R. This leads to the following procedure to estimate
the density at x. Let V,, be the volume of R, k, be the number of samples falling in R,
and f(x) the estimate of f(x) based on a sample of size n, then
- kn/n
Foy ="
Equation (4.1) can be written in a much more suggestive way. If R,, is a p—dimensional
hypercube and if A, is the length of the edge of the hypercube we have

N 1 &1 —x;

4.1)

where
_f 1 <12 j=12.p
pv) = { 0 otherwise
Then (4.2) expresses our estimate for f(x) as an average function of x and the samples x;.

In general we could use
R 1 &
f6) = 5 L Kxxisda)
i=

where K (x,x;, A,) are kernel functions. For instance, we could use, instead of the Parzen
window defined above,

I S B R VTR TAN
K(x.xi.AnL(mAn)pexp QX]:( " ) “3)

The role played by Ay, is clear. For (4.3), if A, is very large K (x, x;, A,) changes very
slowly with x, resulting in a very smooth estimate for f(x). On the other hand, if A, is
small then f (x) is the superposition of n sharp normal distributions with small variances
centered at the samples producing a very erratic estimate of f(x). The analysis for the
Parzen window is similar.
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Before going into details about the kernel functions we use in the classification problem
and about the estimation of the smoothing parameter A, we briefly comment on the mean
behaviour of f(x). We have

Bl = [ Kxu, A ()i

and so the expected value of the estimate f (x) is an averaged value of the unknown density.
By expanding f (x) in a Taylor series (in A,,) about x one can derive asymptotic formulae
for the mean and variance of the estimator. These can be used to derive plug-in estimates
for A, which are well-suited to the goal of density estimation, see Silverman (1986) for
further details.

We now consider our classification problem. Two choices have to be made in order
to estimate the density, the specification of the kernel and the value of the smoothing
parameter. It is fairly widely recognised that the choice of the smoothing parameter is
much more important. With regard to the kernel function we will restrict our attention to
kernels with p independent coordinates, i.e.

?
K(x,x;,A) = H K(y(z5, 256, A)
i=1
with K(;y indicating the kernel function component of the jth attribute and A being not
dependent on j. It is very important to note that as stressed by Aitchison & Aitken (1976),
this factorisation does not imply the independence of the attributes for the density we are
estimating.

Itis clear that kernels could have a more complex form and that the smoothing parameter
could be coordinate dependent. We will not discuss in detail that possibility here (see
McLachlan, 1992 for details). Some comments will be made at the end of this section.

The kernels we use depend on the type of variable. For continuous variables

2
1 T — Tji

Kiy(eg,z0)) = exp{ — [ 2 Zi

(25 ) V/—n/logX xp{ <\/—]/10g/\>

= 1 ey

\/—m/logA

For binary variables

N O\ gy Im(ee)?
Koy (2j 2 2) = (m) (m)

= 1 y@wey

142
For nominal variables with T; nominal values

1 1z 250) A 1-1(2,,2,)
soeied = (o) (@)

1

IR ¥ ey CHEPD)
T4 (T, — 1)
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where I(z,y) = 1ifz =y, O otherwise.
For ordinal variables with T; nominal values

Masi—z5:)?

S N
For the above expressions we can see that in all cases we can write

Kiy(zg.250,8) = ﬁ/\di(f"z")
The problem is that since we want to use the same smoothing parameter, A , for all the
variables, we have to normalise them. To do so we substitute A by A/ ** where 52 is
defined, depending on the type of variable, by

continuous binary

Kjy(zj, 256, 0)

Yz -5 YLi(ei— &)

nominal ordinal

T,
n? = 3L NP(k) 1 Zn:(z—i)z
2n(n—1) n—14% e
i=1
where N; (k) denotes the number of examples for which attribute j has the value k and &;
is the sample mean of the jth attribute.
With this selection of 52 we have
averagey ,;d%(z;k, 254) /52 =2 Vj
So we can understand the above process as rescaling all the variables to the same scale.
For discrete variables the range of the smoothness parameter is the interval (G, 1). One
extreme leads to the uniform distribution and the other to a one-point distribution:
A =1 K(zj,25:,1)=1/T;
A =0 K(zj,2;:,0)=1 if a; =z, 0 if =z £y

For continuous variables the range is 0 < A < 1and A = 1 and A = 0 have to be
regarded as limiting cases. As A — 1 we get the “uniform distribution over the real line”
and as A — 0 we get the Dirac spike function situated at the z;;.

Having defined the kernels we will use, we need to choose A. As A — 0 the estimated
density approaches zero at all x except at the samples where it is 1/n times the Dirac delta
function. This precludes choosing A by maximizing the log likelihood with respect to A. To
estimate a good choice of smoothing parameter, a jackknife modification of the maximum
likelihood method can be used. This was proposed by Habbema et al. (1974) and Duin
(1976) and takes X to maximise [ [, fi(x:) where

. 1 kid
filwi) = = DK@ (xi,xi, )

P
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This criterion makes the smoothness data dependent, leads to an algorithm for an arbi-
trary dimensionality of the data and possesses consistency requirements as discussed by
Aitchison & Aitken (1976).

An extension of the above model for A is to make A; dependent on the kth nearest
neighbour distance to x;, so that we have a A; for each sample point. This gives rise to
the so-called variable kernel model. An extensive description of this model was first given
by Breiman et al. (1977). This method has promising results especially when lognormal
or skewed distributions are estimated. The kernel width A; is thus proportional to the
kth nearest neighbour distance in x; denoted by dix, i.e. A = adix. We take for djj
the euclidean distance measured after standardisation of all variables. The proportionality
factor a is (inversely) dependent on k. The smoothing value is now determined by two
parameters, a and k; a can be though of as an overall smoothing parameter, while k defines
the variation in smoothness of the estimated density over the different regions. If, for
example k = 1, the smoothness will vary locally while for larger k values the smoothness
tends to be constant over large regions, roughly approximating the fixed kernel model.

We use a Normal distribution for the component

K(J)(zjizjnl\i) - adiksj-\/ﬁexl){ 2 ( adis; )

To optimise for a and k the jackknife modification of the maximum likelihood method
can again be applied . However, for the variable kernel this leads to a more difficult two-
dimensional optimisation problem of the likelihood function L(a, k) with one continuous
parameter () and one discrete parameter (k).

Silverman (1986, Sections 2.6 and 5.3) studies the advantages and disadvantages of
this approach. He also proposes another method to estimate the smoothing parameters in
a variable kernel model (see Silverman, 1986 and McLachlan, 1992 for details).

The algorithm we mainly used in our trials to classify by density estimationis ALLOC80
by Hermans at al. (1982) (see Appendix B for source).

4.2.1 Example

We illustrate the kernel classifier with some simulated data, which comprise 200 obser-
vations from a standard Normal distribution (class 1, say) and 100 (in total) values from
an equal mixture of N(+.8,1) (class 2). The resulting estimates can then be used as a
basis for classifying future observations to one or other class. Various scenarios are given
in Figure 4.1 where a black segment indicates that observations will be allocated to class
2, and otherwise to class 1. In this example we have used equal priors for the 2 classes
(although they are not equally represented), and hence allocations are based on maximum
estimated likelihood. It is clear that the rule will depend on the smoothing parameters, and
can result in very disconnected sets. In higher dimensions these segments will become
regions, with potentially very nonlinear boundaries, and possibly disconnected, depending
on the smoothing parameters used. For comparison we also draw the population probability
densities, and the “true” decision regions in Figure 4.1 (top), which are still disconnected
but very much smoother than some of those constructed from the kernels.
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True Probability Densities with Decision Regions
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Fig. 4.1: Classification regions for kernel classifier (bottom) with true probability densities (top).
The smoothing parameters quoted in (A) — (D) are the values of A, used in Equation (4.3) for class
1 and class 2, respectively.
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4.3 K-NEAREST NEIGHBOUR

Suppose we consider estimating the quantities f(x | Ay), h = 1, ..., g by a nearest neigh-
bour method. If we have training data in which there are nj, observations from class A, with
n =) np, and the hypersphere around x containing the k nearest observations has volume
v(x) and contains k1 (x), . .., k,(x) observations of classes A1, ..., A, respectively, then
7y is estimated by ny/n and f(x | Ap) is estimated by kp(x)/(npv(x)), which then gives
an estimate of p(Ap | x) by substitution as (A | x) = ka(x)/k. This leads immediately
to the classification rule: classify x as belonging to class A, if k. = maxs (k). This is
known as the k-nearest neighbour (k-NN) classification rule. For the special case when
k =1, itis simply termed the nearest-neighbour (NN) classification rule.

There is a problem that is important to mention. In the above analysis it is assumed that
wp is estimated by ny /n. However, it could be the case that our sample did not estimate
properly the group-prior probabilities. This issue is studied in Davies (1988).

We study in some depth the NN rule. We first try to get a heuristic understanding of why
the nearest-neighbour rule should work. To begin with, note that the class A y associated
with the nearest neighbour is a random variable and the probability that Ayny = A;
is merely p(A; |xyn) where xyy is the sample nearest to x. When the number of
samples is very large, it is reasonable to assume that xyx is sufficiently close to x so
that p(A; | x) &~ p(A; |xnwn). In this case, we can view the nearest-neighbour rule as a
randomised decision rule that classifies x by selecting the category A; with probability
p(A: | x). As a nonparametric density estimator the nearest neighbour approach yields a
non-smooth curve which does not integrate to unity, and as a method of density estimation
itis unlikely to be appropriate. However, these poor qualities need not extend to the domain
of classification. Note also that the nearest neighbour method is equivalent to the kernel
density estimate as the smoothing parameter tends to zero, when the Normal kernel function
is used. See Scott (1992) for details.

It is obvious that the use of this rule involves choice of a suitable metric, i.e. how is
the distance to the nearest points to be measured? In some datasets there is no problem,
but for multivariate data, where the measurements are measured on different scales, some
standardisation is usually required. This is usually taken to be either the standard deviation
or the range of the variable. If there are indicator variables (as will occur for nominal
data) then the data is usually transformed so that all observations lie in the unit hypercube.
Note that the metric can also be class dependent, so that one obtains a distance conditional
on the class. This will increase the processing and classification time, but may lead to
a considerable increase in performance. For classes with few samples, a compromise is
to use a regularised value, in which there is some trade-off between the within — class
value, and the global value of the rescaling parameters. A study on the influence of data
transformation and metrics on the k-NN rule can be found in Todeschini (1989).

To speed up the process of finding the nearest neighbours several approaches have been
proposed. Fukunaka & Narendra (1975) used a branch and bound algorithm to increase
the speed to compute the nearest neighbour, the idea is to divide the attribute space in
regions and explore a region only when there are possibilities of finding there a nearest
neighbour. The regions are hierarchically decomposed to subsets, sub-subsets and so on.
Other ways to speed up the process are to use a condensed-nearest-neighbour rule (Hart,
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1968), areduced-nearest-neighbour-rule (Gates, 1972) or the edited-nearest-neighbour-rule
(Hand & Batchelor, 1978). These methods all reduce the training set by retaining those
observations which are used to correctly classify the discarded points, thus speeding up the
classification process. However they have not been implemented in the k-NN programs
used in this book.

The choice of k can be made by cross-validation methods whereby the training data
is split, and the second part classified using a k-NN rule. However, in large datasets, this
method can be prohibitive in CPU time. Indeed for large datasets, the method is very time
consuming for k& > 1 since all the training data must be stored and examined for each
classification. Enas & Choi (1986), have looked at this problem in a simulation study and
proposed rules for estimating k for the two classes problem. See McLachlan (1992) for
details.

In the trials reported in this book, we used the nearest neighbour (k = 1) classifier with
no condensing. (The exception to this was the satellite dataset - see Section 9.3.6 - in which
k was chosen by cross-validation.) Distances were scaled using the standard deviation for
each attribute, with the calculation conditional on the class. Ties were broken by a majority
vote, or as a last resort, the default rule.

4.3.1 Example

nearest neighbour classifier

1
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400

08 09 10 11 12
Relative weight

Fig. 4.2: Nearest neighbour classifier for one test example.

The following example shows how the nearest (k = 1) neighbour classifier works. The
data are a random subset of dataset 36 in Andrews & Herzberg (1985) which examines
the relationship between chemical subclinical and overt nonketotic diabetes in 145 patients
(see above for more details). For ease of presentation, we have used only 50 patients and
two of the six variables; Relative weight and Glucose area, and the data are shown in Figure
4.2 The classifications of 50 patients are one of overt diabetic (1), chemical diabetic (2)
and normal(3) are labeled on the graph. In this example, it can be seen that Glucose Area
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(y-axis) is more useful in separating the three classes, and that class 3 is easier to distinguish
than classes 1 and 2. A new patient, whose condition is supposed unknown is assigned the
same classification as his nearest neighbour on the graph. The distance, as measured to
each point, needs to be scaled in some way to take account for different variability in the
different directions. In this case the patient is classified as being in class 2, and is classified
correctly.

The decision regions for the nearest neighbour are composed of piecewise linear bound-
aries, which may be disconnected regions. These regions are the union of Dirichlet cells;
each cell consists of points which are nearer (in an appropriate metric) to a given observa-
tion than to any other. For this data we have shaded each cell according to the class of its
centre, and the resulting decision regions are shown in Figure 4.3

nearest neighbour decision regions

Glucose area
800 1000 1200 1400

600

400

Relative weight

Fig. 4.3: Decision regions for nearest neighbour classifier.

4.4 PROJECTION PURSUIT CLASSIFICATION
As we have seen in the previous sections our goal has been to estimate
{f(x]A;),7;,7=1,...,q} in order to assign x to class A;, when
S elio, d)ws fx | 45) <> ei, )i f(x | 4;) i
j J
We assume that we know 7;,j = 1,...,q and to simplify problems transform our
minimum risk decision problem into a minimum error decision problem. To do so we
simply alter {;} and {c(4, j)} to {m}} and {c(4, j)} such that
(4, 9)m; = e(i, )m;  Vi,j
constraining {c'(z, )} to be of the form
i: ~ _ J constant ifj#i
¢ = { v otherwise
Then an approximation to 1r§ is
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;o mj Zc(i,j)
i
(see Breiman et al., 1984 for details).
With these new prior and costs x is assigned to class 4;, when

R F(x| Ai) 2 #f(x | 4;) Vi

or
B(4io | %) 2 B(45 %) Vi

So our final goal is to build a good estimator {#(4; [x),7=1,..
To define the quality of an estimator d(x) = {$(4; |x),7 =

E[Y (p(4; %) — B(4; |x))7] 4.4
i

a)

,--.;q} we could use

Obviously the best estimator is dp(x) = {p(4;|x),j = 1,...,q}, however, (4.4) is
useless since it contains the unknown quantities {p(A4; | x),7 = 1, ..., ¢} that we are trying
to estimate. The problem can be put into a different setting that resolves the difficulty. Let
Y, X arandom vector on {A41,...,4,} x & with distribution p(4;,x) and define new
variables Z;,7=1,...,q by

Z,-:{ 1Y = 4

0 otherwise
then E[Z; | x] = p(A; | x). We then define the mean square error R*(d) by
B (% — 5(4;1%))*] “5)
7

The very interesting point is that it can be easily shown that for any class probability
estimator d we have
R*(d) — R*(dg) = E[Y_(p(4; | %) — 8(4; |x))]
J

and so to compare two estimators di(x) = {B(4;[x),7 = 1,...,q} and da(x) =
{p'(4; |=),7=1,...,q} we can compare the values of R*(d:) and R*(d2).

When projection pursuit techniques are used in classification problems E[Z; | x] is
modelled as

M ?
Bz |x]=Zi+ Z ﬁkm'ﬁm(z Qjma;)
m=1 i=1

with Zy, = EZy, Bym = 0, EYZ, = 1and 3F_, a?,, = 1. The coefficients fim, ajm
and the functions ., are parameters of the model and are estimated by least squares.
Equation (4.5) is approximated by

M »
3 Wf,% Sl =z = Y Bemtom (D ajmaie)?]/n (4.6)
* i m=1 =
with

2= 1 if in observationz, Y = 4;
¥ = 0 otherwise
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Then the above expression is minimised with respect to the parameters Sim, aZ, =
(@1m, - -, Qpm) and the functions ¥, .

The “projection” part of the term projection pursuit indicates that the vector x is
projected onto the direction vectors ay, @z, . . ., aag to get the lengths eyz®, i = 1,2,..., M
of the projections, and the “pursuit” part indicates that the optimization technique is used
to find “good direction” vectors a1, @z, . .., am.

A few words on the 9 functions are in order. They are special scatterplot smoother
designed to have the following features: they are very fast to compute and have a variable
span. Aee StatSci (1991 for details.

It is the purpose of the projection pursuit algorithm to minimise (4.6) with respect to
the parameters ajm, Brm and functions ¥m, 1 <k <q,1<j<p, 1 <m < M, given
the training data. The principal task of the user is to choose M , the number of predictive
terms comprising the model. Increasing the number of terms decreases the bias (model
specification error) at the expense of increasing the variance of the (model and parameter)
estimates.

The strategy is to start with a relatively large value of M (say M = My) and find
all models of size My, and less. That is, solutions that minimise Ly are found for M =
My, My — 1, My — 2,...,1 in order of decreasing M. The starting parameter values
for the numerical search in each M -term model are the solution values for the M most
important (out of M + 1) terms of the previous model. The importance is measured as

]

In=Y WilBim| (1<m<M)

k=1
normalised so that the most important term has unit importance. (Note that the variance of
all the 4y, is one.) The starting point for the minimisation of the largest model, M = My,
is given by an My, term stagewise model (Friedman & Stuetzle, 1981 and StatSci, 1991 for
a very precise description of the process).

The sequence of solutions generated in this manner is then examined by the user and a
final model is chosen according to the guidelines above.

The algorithm we used in the trials to classify by projection pursuit is SMART (see
Friedman, 1984 for details, and Appendix B for availability)

44.1 Example
This method is illustrated using a 5-dimensional dataset with three classes relating to
chemical and overt diabetes. The data can be found in dataset 36 of Andrews & Herzberg
(1985) and were first published in Reaven & Miller (1979). The SMART model can be
examined by plotting the smooth functions in the two projected data co-ordinates:
09998 z1 + 00045z - 0.0213z3 + 0.0010zs - 0.0044 z5
21 - 00065zz - 0.000lz3 + 0.0005z4 - 0.0008zg
These are given in Figure 4.4 which also shows the class values given by the projected
points of the selected training data (100 of the 145 patients). The remainder of the model
chooses the values of f;,, to obtain a linear combination of the functions which can then
be used to model the conditional probabilities. In this example we get
Bu = -005 Pz = -033
P21 = -040 B2z = 034
Pz = 046 Bz = -0.01
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smooth functions with training data projections
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Fig. 4.4: Projected training data with smooth functions.

The remaining 45 patients were used as a test data set, and for each class the unscaled
conditional probability can be obtained using the relevant coefficients for that class. These
are shown in Figure 4.5, where we have plotted the predicted value against only one of the
projected co-ordinate axes. It is clear that if we choose the model (and hence the class) to
maximise this value, then we will choose the correct class each time.

4.5 NAIVE BAYES

All the nonparametric methods described so far in this chapter suffer from the requirements
that all of the sample must be stored. Since a large number of observations is needed to
obtain good estimates, the memory requirements can be severe.

In this section we will make independence assumptions, to be described later, among
the variables involved in the classification problem. In the next section we will address
the problem of estimating the relations between the variables involved in a problem and
display such relations by mean of a directed acyclic graph.

The naive Bayes classifier is obtained as follows. We assume that the joint distribution
of classes and attributes can be wri}t}len as

P(Ai 21, zn) = m [ | flas | 4:) Vi
j=1

the problem is then to obtain the probabilities {7, f(z; | 4i), Vi,j}. The assumption
of independence makes it much easier to estimate these probabilities since each attribute
can be treated separately. If an attribute takes a continuous value, the usual procedure is to
discretise the interval and to use the appropriate frequency of the interval, although there
is an option to use the normal distribution to calculate probabilities.

The implementation used in our trials to obtain a naive Bayes classifier comes from the
IND package of machine learning algorithms IND 1.0 by Wray Buntine (see Appendix B
for availability).
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Fig. 4.5: Projected test data with conditional probablities for three classes. Class 1 (top), Class 2
(middle), Class 3 (bottom).
4.6 CAUSAL NETWORKS
We start this section by introducing the concept of causal network.

Let G = (V, E) be a directed acyclic graph (DAG). With each node v € V a finite state
space €1, is associated. The total set of configuration is the set

Q= Xpevih

Typical elements of €2, are denoted z,, and elements of £ are (z,, v € V). We assume that
we have a probability distribution P(V') over €, where we use the short notation

P(V)=P{X, =z, veV}

Definition 1 Let G = (V, E) be a directed acyclic graph (DAG). For each v € V let
c(v) C V be the set of all parents of v and d(v) C V be the set of all descendent of v.
Furthermore forv € V let a(v) be the set of variables in V excluding v andv’s descendent.
Then if for every subset W C a(v), W and v are conditionally independent given c(v), the
C = (V, E, P) is called a causal or Bayesian network.

There are two key results establishing the relations between a causal network C =
(V, E, P) and P(V). The proofs can be found in Neapolitan (1990).

The first theorem establishes that if C = (V, E, P) is a causal network, then P(V) can
be written as

PV) =[] Pv]ev))
vev

Thus, in a causal network, if one knows the conditional probability distribution of each
variable given its parents, one can compute the joint probability distribution of all the
variables in the network. This obviously can reduce the complexity of determining the
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distribution enormously. The theorem just established shows that if we know that a DAG
and a probability distribution constitute a causal network, then the joint distribution can
be retrieved from the conditional distribution of every variable given its parents. This
does not imply, however, that if we arbitrarily specify a DAG and conditional probability
distributions of every variables given its parents we will necessary have a causal network.
This inverse result can be stated as follows.

Let V be a set of finite sets of alternatives (we are not yet calling the members of V'
variables since we do not yet have a probability distribution) and let G = (V, E) be a DAG.
In addition, for v € V let ¢(v) C V be the set of all parents of v, and let a conditional
probability distribution of v given c(v) be specified for every event in c(v), that is we have
a probability distribution P(w | ¢(v)). Then a joint probability distribution P of the vertices
in V is uniquely determined by

P(V)= H P(v]c(v))
veV
and C = (V, E, P) constitutes a causal network.

We illustrate the notion of network with a simple example taken from Cooper (1984).
Suppose that metastatic cancer is a cause of brain tumour and can also cause an increase
in total serum calcium. Suppose further that either a brain tumor or an increase in total
serum calcium could cause a patient to fall into a coma, and that a brain tumor could cause
papilledema. Let

a; = metastatic cancer present  a; =metastatic cancer not present
5, = serum calcium increased bz = serum calcium not increased

¢y = brain tumor present ¢ = brain tumor not present
d; = coma present da = coma not present
e1 = papilledema present ez = papilledema not present

Fig. 4.6: DAG for the cancer problem.

Then, the structure of our knowledge-base is represented by the DAG in Figure 4.6.
This structure together with quantitative knowledge of the conditional probability of every
variable given all possible parent states define a causal network that can be used as device to
perform efficient (probabilistic) inference, (absorb knowledge about variables as it arrives,
be able to see the effect on the other variables of one variable taking a particular value and
so on). See Pearl (1988) and Lauritzen & Spiegelhalter (1988).
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So, once a causal network has been built, it constitutes an efficient device to perform
probabilistic inference. However, there remains the previous problem of building such
a network, that is, to provide the structure and conditional probabilities necessary for
characterizing the network. A very interesting task is then to develop methods able to learn
the net directly from raw data, as an alternative to the method of eliciting opinions from
the experts.

In the problem of learning graphical representations, it could be said that the statistical
community has mainly worked in the direction of building undirected representations:
chapter 8 of Whittaker (1990) provides a good survey on selection of undirected graphical
representations up to 1990 from the statistical point of view. The program BIFROST
(Hgjsgaard et al., 1992) has been developed, very recently, to obtain causal models. A
second literature on model selection devoted to the construction of directed graphs can be
found in the social sciences (Glymour et al., 1987; Spirtes et al., 1991) and the artificial
intelligence community (Pearl, 1988; Herkovsits & Cooper, 1990; Cooper & Herkovsits ,
1991 and Fung & Crawford, 1991).

In this section we will concentrate on methods to build a simplified kind of causal
structure, polytrees (singly connected networks); networks where no more than one path
exists between any two nodes. Polytrees, are directed graphs which do not contain loops
in the skeleton (the network without the arrows) that allow an extremely efficient local
propagation procedure.

Before describing how to build polytrees from data, we comment on how to use a
polytree in a classification problem. In any classification problem, we have a set of variables
W ={X;,i=1,...,p} that (possibly) have influence on a distinguished classification
variable A. The problem is, given a particular instantiation of these variables, to predict
the value of A, that is, to classify this particular case in one of the possible categories of A.
For this task, we need a set of examples and their correct classification, acting as a training
sample. In this context, we first estimate from this training sample a network (polytree),
structure displaying the causal relationships among the variables V = {X;,1 = 1,..,p}UA;
next, in propagation mode, given a new case with unknown classification, we will instantiate
and propagate the available information, showing the more likely value of the classification
variable 4.

It is important to note that this classifier can be used even when we do not know the
value of all the variables in V. Moreover, the network shows the variables in V' that
directly have influence on A, in fact the parents of A, the children of A and the other
parents of the children of A (the knowledge of these variables makes A independent of
the rest of variables in V)(Pearl, 1988). So the rest of the network could be pruned, thus
reducing the complexity and increasing the efficiency of the classifier. However, since
the process of building the network does not take into account the fact that we are only
interested in classifying, we should expect as a classifier a poorer performance than other
classification oriented methods. However, the built networks are able to display insights
into the classification problem that other methods lack. We now proceed to describe the
theory to build polytree-based representations for a general set of variables Y3, ..., Yp,.

Assume that the distribution P(y) of m discrete-value variables (which we are trying
to estimate) can be represented by some unknown polytree Fo, that is, P(y) has the form
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m
P(y) = T] P 1950 ¥iae)r -1 ¥is(0))
i=1
where {y;, (i), Yja(i): - - *+ Yju(s)} 1S the (possibly empty) set of direct parents of the variable
X; in Fg, and the parents of each variable are mutually independent. So we are aiming
at simpler representations than the one displayed in Figure 4.6. The skeleton of the graph
involved in that example is not a tree.

Then, according to key results seen at the beginning of this section, we have a causal
network C = (Y, E, P) and (Y, E) is a polytree. We will assume that P(y) is nondegen-
erate, meaning that there exists a connected DAG that displays all the dependencies and
independencies embedded in P.

It is important to keep in mind that a naive Bayes classifier (Section 4.5) can be
represented by a polytree, more precisely a tree in which each attribute node has the class
variable C' as a parent.

The first step in the process of building a polytree is to learn the skeleton. To build the
skeleton we have the following theorem:

Theorem 1  If a nondegenerate distribution P(y) is representable by a polytree Fg, then
any Maximum Weight Spanning Tree (MWST) where the weight of the branch connecting
Y: and Y; is defined by

P(%i,y5)

I(Y:,Y;) = ZPwixw)‘“gW

will unambiguously recover the skeleton of Fy.

Having found the skeleton of the polytree we move on to find the directionality of the
branches. To recover the directions of the branches we use the following facts: nondegen-
eracy implies that for any pairs of variables (Y;, Y;) that do not have a common descendent
we have

I(Y:,Y;) >0
Furthermore, for the pattern

Y. oY« Y; 4.7
we have

I(Y;,Y;) =0 and I(Y;,Y; | Y) > G

where

Plyi v y)
I(Y:,Y;|Ya) = P(yi,v;, yx) log —— Yir Y | Uk)
(00190 = D Planss vVt 5150 )

and for any of the patterns
Y <Y« Y, VieYr > YandY, - Y, > Y
we have

I(Y:,Y;) > 0 and I(¥:, ¥;| Ys) = 0
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Taking all these facts into account we can recover the head—to-head patterns, (4.7),
which are the really important ones. The rest of the branches can be assigned any direction
as long as we do not produce more head—to-head patterns. The algorithm to direct the
skeleton can be found in Pearl (1988).

The program to estimate causal polytrees used in our trials is CASTLE, (Causal
Structures From Inductive Learning). It has been developed at the University of Granada
for the ESPRIT project StatLog (Acid et al. (1991a); Acid et al. (1991b)). See Appendix
B for availability.

4.6.1 Example

‘We now illustrate the use of the Bayesian learning methodology in a simple model, the
digit recognition in a calculator.

Digits are ordinarily displayed on electronic watches and calculators using seven hor-
izontal and vertical lights in on—off configurations (see Figure 4.7). We number the lights
as shown in Figure 4.7. We take Z = (Cl, Z1, Za, . .., Zv) to be an eight-dimensional
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Fig. 4.7: Digits.
vector where Cl = ¢ denotes the ith digit,7 = 0,1,2,...,9 and when fixing C! to i the
remaining (Z1, Z3, . . ., Z7) is a seven dimensional vector of zeros and ones with z,, =1
if the light in the m position is on for the itk digit and z,,, = C otherwise.

We generate examples from a faulty calculator. The data consist of outcomes from
the random vector Cl, X1, X, ..., X7 where Cl is the class label, the digit, and assumes
the values in 0,1,2,...,9 with equal probability and the X1, X5, ..., X+ are zero-one
variables. Given the value of C1, the X, X3, ..., Xy are each independently equal to the
value corresponding to the Z; with probability 0.9 and are in error with probability 0.1.
Our aim is to build up the polytree displaying the (in)dependencies in X.

We generate four hundred samples of this distributionand use them as a learning sample.
After reading in the sample, estimating the skeleton and directing the skeleton the polytree
estimated by CASTLE is the one shown in Figure 4.8. CASTLE then tells us what we had
expected:

Z; and Zj are conditionally independent given Cl, 1,5 =1,2,...,7

Finally, we examine the predictive power of this polytree. The posterior probabilities of
each digit given some observed patterns are shown in Figure 4.9.
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Fig. 4.8: Obtained polytree.

Digit 0 1 2 3 4 5 6 7 8 9
G 463 0 2 0 0 0 519 0 16 0
! 0 749 0 0 0 0 0 251 0 0
? 1 0 971 0 6 0 1 12 0 0
El 1 0 0 280 0 699 19 2 0 0
4 0 21 0 913 0 0 1 2 63
i 290 0 0 0 0 644 51 5 10 0

Fig. 4.9: Probabilities x 1000 for some ‘digits’.
4.7 OTHER RECENT APPROACHES

The methods discussed in this section are available via anonymous ftp from statlib, internet
address 128.2.241.142. A version of ACE for nonlinear discriminant analysis is available
as the S coded function gdisc. MARS is available in a FORTRAN version. Since these
algorithms were not formally included in the StatLog trials (for various reasons), we give
only a brief introduction.

47.1 ACE

Nonlinear transformation of variables is a commonly used practice in regression problems.
The Alternating Conditional Expectation algorithm (Breiman & Friedman, 1985) is a
simple iterative scheme using only bivariate conditional expectations, which finds those
transformations that produce the best fitting additive model.

Suppose we have two random variables: the response, Y and the predictor, X, and we
seek transformations 6(Y') and f(X) so that E{6(Y )| X} ~ f(X). The ACE algorithm
approaches this problem by minimising the squared-error objective

E{6(Y) - F(X)}*. 4.8)

For fixed 6, the minimising f is f(X) = E{6(Y)|X}.and conversely, for fixed f the
minimising 8 is 6(Y) = E{f(X)|Y}. The key idea in the ACE algorithm is to begin with
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some starting functions and alternate these two steps until convergence. With multiple

predictors X1, ..., X, ACE seeks to minimise
» 2
E=E6(Y) - f(X;) “9)
j=1

In practice, given a dataset, estimates of the conditional expectations are constructed
using an automatic smoothing procedure. In order to stop the iterates from shrinking
to zero functions, which trivially minimise the squared error criterion, 6(Y) is scaled
to have unit variance in each iteration. Also, without loss of generality, the condition
E6 = Efi = ... = Ef, = 0 is imposed. The algorithm minimises Equation (4.9)
through a series of single-function minimisations involving smoothed estimates of bivariate
conditional expectations. For a given set of functions fi, ..., f,, minimising (4.9) with
respect to 6(Y') yields a new 6(Y’)

E [Z’j’:l fi (Xj)IY]
Eaa|

with || || = [E(. )2]1/2. Next e? is minimised for each f; in turn with given §(Y') and
fj#4 yielding the solution

6(Y) = bpen(Y) = (4.10)

fi(Xa) = fimen(X) = B |6(Y) = > £5(X;) | X: (.11
Jj#i
This constitutes one iteration of the algorithm which terminates when an iteration fails to
decrease €.

ACE places no restriction on the type of each variable. The transformation functions
6(Y), fi(X1), ..., fp(Xp) assume values on the real line but their arguments may assume
values on any set so ordered real, ordered and unordered categorical and binary variables
can all be incorporated in the same regression equation. For categorical variables, the
procedure can be regarded as estimating optimal scores for each of their values.

For use in classification problems, the response is replaced by a categorical variable
representing the class labels, 4;. ACE then finds the transformations that make the
relationship of 6(A4) to the f;(X;) as linear as possible.

472 MARS

The MARS (Multivariate Adaptive Regression Spline) procedure (Friedman, 1991) is
based on a generalisation of spline methods for function fitting. Consider the case of only
one predictor variable, z. An approximating g** order regression spline function f;(:) is
obtained by dividing the range of z valuesinto K - 1 disjoint regions separated by K points
called “knots”. The approximation takes the form of a separate g** degree polynomial in
each region, constrained so that the function and its g — 1 derivatives are continuous. Each
¢'" degree polynomial is defined by g+ 1 parameters so there are a total of (K + 1)(g+ 1)
parameters to be adjusted to best fit the data. Generally the order of the spline is taken to
be low (g < 3) . Continuity requirements place g constraints at each knot location making
a total of K g constraints.

48  Modern statistical techniques [Ch. 4

While regression spline fitting can be implemented by directly solving this constrained
minimisation problem, it is more usual to convert the problem to an unconstrained optimi-
sation by chosing a set of basis functions that span the space of all g** order spline functions
(given the chosen knot locations) and performing a linear least squares fit of the response
on this basis function set. In this case the approximation takes the form

K4q

fol@) =Y e BO(2) “.12)
k=0C

where the values of the expansion coefficients {ak}f *4 are unconstrained and the continu-
ity constraints are intrinsically embodied in the basis functions {B,(cq)(z) K44 One such
basis, the “truncated power basis”, is comprised of the functions

{2 Yoo {= — )33 @.13)
where {t;}¥ are the knot locations defining the K - 1 regions and the truncated power
functions are defined

(z —ts)} = { ?1 . : E:Z (4.14)
The flexibility of the regression spline approach can be enhanced by incorporating an au-
tomatic knot selection strategy as part of the data fitting process. A simple and effective
strategy for automatically selecting both the number and locations for the knots was de-
scribed by Smith(1982), who suggested using the truncated power basis in a numerical

minimisation of the least squares criterion

2
N

[ K
3w - Yobiat - S au(e )} @.15)
i=1 j=0 k=1
Here the coefficients {b;}3 , {ax}¥ can be regarded as the parameters associated with
a multiple linear least squares regression of the response y on the “variables” {z7}¢ and
{(z —tx)3 }¥. Adding or deleting aknot is viewed as adding or deleting the corresponding
variable (z — tk)i . The strategy involves starting with a very large number of eligible knot
locations {t1,...,tk,, } : we may choose one at every interior data point, and considering
corresponding variables {(z — tk)ﬂ}f'““ as candidates to be selected through a statistical
variable subset selection procedure. This approach to knot selection is both elegant and
powerful. It automatically selects the number of knots K and their locations ¢1,...,tx
thereby estimating the global amount of smoothing to be applied as well as estimating the
separate relative amount of smoothing to be applied locally at different locations.

The multivariate adaptive regression spline method (Friedman, 1991) can be viewed as
a multivariate generalisation of this strategy. An approximating spline function fq(x) of n
variables is defined analogously to that for one variable. The n-dimensional space R” is
divided into a set of disjoint regions and within each one fq (x) is taken to be a polynomial
in n variables with the maximum degree of any single variable being g. The approximation
and its derivatives are constrained to be everywhere continuous. This places constraints on
the approximating polynomials in seperate regions along the (n — 1)-dimensional region
boundaries. As in the univariate case, fq (x) is most easily constructed using a basis
function set that spans the space of all g** order n-dimensional spline functions.
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MARS implements a forward/backward stepwise selection strategy. The forward se-
lection begins with only the constant basis function Bg(x) = 1 in the model. In each
iteration we consider adding two terms to the model

Bj(z —t)4

Bj(t —z)4
where B, is one of the basis functions already chosen, z is one of the predictor variables
not represented in B; and ¢ is a knot location on that variable. The two terms of this
form, which cause the greatest decrease in the residual sum of squares, are added to the
model. The forward selection process continues until a relatively large number of basis
functions is included in a deliberate attempt to overfit the data. The backward “pruning”
procedure, standard stepwise linear regression, is then applied with the basis functions
representing the stock of “variables”. The best fitting model is chosen with the fit measured
by a cross-validation criterion.

MARS is able to incorporate variables of different type; continuous, discrete and
categorical.

(4.16)
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Machine Learning of Rules and Trees

C. Feng (1) and D. Michie (2)
(1) The Turing Institute! and (2) University of Strathclyde

This chapter is arranged in three sections. Section 5.1 introduces the broad ideas underlying
the main rule-learning and tree-learning methods. Section 5.2 summarises the specific
characteristics of algorithms used for comparative trials in the StatlLog project. Section
5.3 looks beyond the limitations of these particular trials to new approaches and emerging
principles.

5.1 RULES AND TREES FROM DATA: FIRST PRINCIPLES
5.1.1 Data fit and mental fit of classifiers

In a 1943 lecture (for text see Carpenter & Doran, 1986) A.M.Turing identified Machine
Learning (ML)? as a precondition for intelligent systems. A more specific engineering
expression of the same idea was given by Claude Shannon in 1953, and that year also
saw the first computational learning experiments, by Christopher Strachey (see Muggleton,
1993). After steady growth ML has reached practical maturity under two distinct headings:
(a) as a means of engineering rule-based software (for example in “expert systems”) from
sample cases volunteered interactively and (b) as a method of data analysis whereby rule-
structured classifiers for predicting the classes of newly sampled cases are obtained from a
“training set” of pre-classified cases. We are here concerned with heading (b), exemplified
by Michalski and Chilausky’s (1980) landmark use of the AQ11 algorithm (Michalski &
Larson, 1978) to generate automatically a rule-based classifier for crop farmers.

Rules for classifying soybean diseases were inductively derived from a training set of
290 records. Each comprised a description in the form of 35 attribute-values, together
with a confirmed allocation to one or another of 15 main soybean diseases. When used to

1 Addresses for correspond : Cao Feng, D of Computer Science, University of Ottowa, Ottowa,
KIN 6NS5, Canada; Donald Michie, Academic Research Associates, 6 Inveralmond Grove, Edinburgh EH4 6RA,
UK.

2This chapter confines itself to a subset of machine learning algorithms, i.e. those that output propositional
classifiers. Inductive Logic Programming (ILP) uses the symbol system of predicate (as opposed to propositional)
logic, and is described in Chapter 12
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classify 340 or so new cases, machine-learned rules proved to be markedly more accurate
than the best existing rules used by soybean experts.

As important as a good fit to the data, is a property that can be termed “mental fit”.
As statisticians, Breiman and colleagues (1984) see data-derived classifications as serving
“two purposes: (1) to predict the response variable corresponding to future measurement
vectors as accurately as possible; (2) to understand the structural relationships between the
response and the measured variables.” ML takes purpose (2) one step further. The soybean
rules were sufficiently meaningful to the plant pathologist associated with the project that
he eventually adopted them in place of his own previous reference set. ML requires that
classifiers should not only classify but should also constitute explicit concepts, that is,
expressions in symbolic form meaningful to humans and evaluable in the head.

We need to dispose of confusion between the kinds of computer-aided descriptions
which form the ML practitioner’s goal and those in view by statisticians. Knowledge-
compilations, “meaningful to humans and evaluable in the head”, are available in Michalski
& Chilausky’s paper (their Appendix 2), and in Shapiro & Michie (1986, their Appendix B)
in Shapiro (1987, his Appendix A), and in Bratko, Mozetic & Lavrac (1989, their Appendix
A), among other sources. A glance at any of these computer-authored constructions will
suffice to show their remoteness from the main-stream of statistics and its goals. Yet ML
practitioners increasingly need to assimilate and use statistical techniques.

Once they are ready to go it alone, machine learned bodies of knowledge typically
need little further human intervention. But a substantial synthesis may require months
or years of prior interactive work, first to shape and test the overall logic, then to develop
suitable sets of attributes and definitions, and finally to select or synthesize voluminous data
files as training material. This contrast has engendered confusion as to the role of human
interaction. Like music teachers, ML engineers abstain from interaction only when their
pupil reaches the concert hall. Thereafter abstention is total, clearing the way for new forms
of interaction intrinsic to the pupil’s delivery of what has been acquired. But during the
process of extracting descriptions from data the working method of ML engineers resemble
that of any other data analyst, being essentially iterative and interactive.

In ML the “knowledge” orientation is so important that data-derived classifiers, however
accurate, are not ordinarily acceptable in the absence of mental fit. The reader should bear
this point in mind when evaluating empirical studies reported elsewhere in this book.
StatLog’s use of ML algorithms has not always conformed to purpose (2) above. Hence
the reader is warned that the book’s use of the phrase “machine learning” in such contexts
is by courtesy and convenience only.

The Michalski-Chilausky soybean experiment exemplifies supervised learning,

given: a sample of input-output pairs of an unknown class-membership function,

required: a conjectured reconstruction of the function in the form of a rule-based

expression human-evaluable over the domain.
Note that the function’s output-set is unordered (i.e. consisting of categoric rather than
numerical values) and its outputs are taken to be names of classes. The derived function-
expression is then a classifier. In contrast to the prediction of numerical quantities, this
book confines itself to the classification problem and follows a scheme depicted in Figure
5.1.
Constructing ML-type expressions from sample data is known as “concept learning”.
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Fig. 5.1: Classification process from training to testing.

The first such learner was described by Earl Hunt (1962). This was followed by Hunt,
Marin & Stone’s (1966) CLS. The acronym stands for “Concept Learning System”. In
ML, the requirement for user-transparency imparts a bias towards logical, in preference to
arithmetical, combinations of attributes. Connectives such as “and”, “or”, and “if-then”
supply the glue for building rule-structured classifiers, as in the following englished form
of a rule from Michalski and Chilausky’s soybean study.

if leaf malformation is absent and stem is abnormal and internal discoloration
is black
then Diagnosis is CHARCOAL ROT

Example cases (the “training set” or “learning sample”) are represented as vectors of
attribute-values paired with class names. The generic problem is to find an expression that
predicts the classes of new cases (the “test set”) taken at random from the same population.
Goodness of agreement between the true classes and the classes picked by the classifier is
then used to measure accuracy. An underlying assumption is that either training and test
sets are randomly sampled from the same data source, or full statistical allowance can be
made for departures from such a regime.

Symbolic learning is used for the computer-based construction of bodies of articulate
expertise in domains which lie partly at least beyond the introspective reach of domain
experts. Thus the above rule was not of human expert authorship, although an expert
can assimilate it and pass it on. To ascend an order of magnitude in scale, KARDIO’s
comprehensive treatise on ECG interpretation (Bratko ef al., 1989) does not contain a
single rule of human authorship. Above the level of primitive descriptors, every formu-
lation was data-derived, and every data item was generated from a computable logic of
heart/electrocardiograph interaction. Independently constructed statistical diagnosis sys-
tems are commercially available in computer-driven ECG kits, and exhibit accuracies in
the 80% — 90% range. Here the ML product scores higher, being subject to error only if
the initial logical model contained flaws. None have yet come to light. But the difference
that illuminates the distinctive nature of symbolic ML concerns mental fit. Because of its
mode of construction, KARDIO is able to support its decisions with insight into causes.
Statistically derived systems do not. However, developments of Bayesian treatments ini-
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tiated by ML-leaning statisticians (see Spiegelhalter, 1986) and statistically inclined ML
theorists (see Pearl, 1988) may change this.

Although marching to a different drum, ML people have for some time been seen as a
possibly useful source of algorithms for certain data-analyses required in industry. There
are two broad circumstances that might favour applicability:

1. categorical rather than numerical attributes;
2. strong and pervasive conditional dependencies among attributes.

As an example of what is meant by a conditional dependency, let us take the classification
of vertebrates and consider two variables, namely “breeding-ground” (values: sea, fresh-
water, land) and “skin-covering” (values: scales, feathers, hair, none). As a value for the
first, “sea” votes overwhelmingly for FISH. If the second attribute has the value “none”,
then on its own this would virtually clinch the case for AMPHIBIAN. But in combination
with “breeding-ground = sea” it switches identification decisively to MAMMAL. Whales
and some other sea mammals now remain the only possibility. “Breeding-ground” and
“skin-covering” are said to exhibit strong conditional dependency. Problems characterised
by violent attribute-interactions of this kind can sometimes be important in industry. In
predicting automobile accident risks, for example, information that a driver is in the age-
group 17 — 23 acquires great significance if and only if sex = male.

To examine the “horses for courses” aspect of comparisons between ML, neural-net
and statistical algorithms, a reasonable principle might be to select datasets approximately
evenly among four main categories as shown in Figure 5.2.

conditional dependencies

strong and ~ weak or
pervasive absent

all or mainly categorical + (+)
attributes
all or mainly numerical + )
Key: + ML expected to do well

(+) ML expected to do well, marginally
(-) ML expected to do poorly, marginally

Fig. 5.2: Relative performance of ML algorithms.

In Statlog, collection of datasets necessarily followed opportunity rather than design,
so that for light upon these particular contrasts the reader will find much that is suggestive,
but less that is clear-cut. Attention is, however, called to the Appendices which contain
additional information for readers interested in following up particular algorithms and
datasets for themselves.

Classification learning is characterised by (i) the data-description language, (ii) the
language for expressing the classifier, — i.e. as formulae, rules, ezc. and (iii) the learning
algorithm itself. Of these, (i) and (ii) correspond to the “observation language” and
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“hypothesis language” respectively of Section 12.2. Under (ii) we consider in the present
chapter the machine learning of if-then rule-sets and of decision trees. The two kinds of
language are interconvertible, and group themselves around two broad inductive inference
strategies, namely specific-to-general and general-to-specific

5.1.2  Specific-to-general: a paradigm for rule-learning

Michalski’s AQ11 and related algorithms were inspired by methods used by electrical en-
gineers for simplifying Boolean circuits (see, for example, Higonnet & Grea, 1958). They
exemplify the specific-to-general, and typically start with a maximally specific rule for
assigning cases to a given class, — for example to the class MAMMAL in a taxonomy of
vertebrates. Such a “seed”, as the starting rule is called, specifies a value for every member
of the set of attributes characterizing the problem, for example
Rule 1.123456789  if skin-covering = hair, breathing = lungs, tail = none, can-fly =
y, reproduction = viviparous, legs =y, warm-blooded =y, diet =
carnivorous, activity = nocturnal
then MAMMAL.
‘We now take the reader through the basics of specific-to-general rule learning. As a mini-
malist tutorial exercise we shall build a MAMMAL-recogniser.
The initial rule, numbered 1.123456789 in the above, is so specific as probably to be
capable only of recognising bats. Specificity is relaxed by dropping attributes one at a time,

thus:
Rule 1.23456789 if breathing = lungs, tail = none, can-fly =y, reproduction =
viviparous, legs = y, warm-blooded = y, diet = carnivorous, ac-
tivity = nocturnal

then MAMMAL;

Rule 1.13456789 if skin-covering = hair, tail = none, can-fly =y, reproduction =
viviparous, legs =y, warm-blooded =y, diet = carnivorous, activity
= nocturnal
then MAMMAL;

Rule 1.12456789 if skin-covering = hair, breathing = lungs, can-fly = y, reproduction
iparous, legs =y, warm-blooded =y, diet = carnivorous,
activity = nocturnal
then MAMMAL;

Rule 1.12356789 if skin-covering = hair, breathing = lungs, tail = none, reproduction
= viviparous, legs =y, warm-blooded =y, diet = carnivorous,
activity = nocturnal
thenMAMMAL;

Rule 1.12346789 if skin-covering = hair, breathing = lungs, tail = none, can-fly =y,
legs =y, warm-blooded =y, diet = carnivorous, activity = nocturnal
bf then MAMMAL;

and so on for all the ways of dropping a single attribute, followed by all the ways of drop-
ping two attributes, three attributes etc. Any rule which includes in its cover a “negative
example”, i.e. a non-mammal, is incorrect and is discarded during the process. The cycle
terminates by saving a set of shortest rules covering only mammals. As a classifier, such a
set is guaranteed correct, but cannot be guaranteed complete, as we shall see later.
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In the present case the terminating set has the single-attribute description:

Rule 1.1 if skin-covering = hair
then MAMMAL;

The process now iterates using a new “seed” for each iteration, for example:

Rule 2.123456789  if skin-covering = none, breathing = lungs, tail = none, can-fly =
n, reproduction = viviparous, legs = n, warm-blooded =y, diet =
mixed, activity = diurnal
then MAMMAL;

leading to the following set of shortest rules:

Rule 2.15 if skin-covering = none, reproduction = viviparous
then MAMMAL;

Rule 2.17 if skin-covering = none, warm-blooded = y
then MAMMAL;

Rule 2.67 if legs = n, warm-blooded = y
then MAMMAL;

Rule 2.57 if reproduction = viviparous, warm-blooded = y

then MAMMAL;

Of these, the first covers naked mammals. Amphibians, although uniformly naked, are
oviparous. The second has the same cover, since amphibians are not warm-blooded, and
birds, although warm-blooded, are not naked (we assume that classification is done on adult
forms). The third covers various naked marine mammals. So far, these rules collectively
contribute little information, merely covering a few overlapping pieces of a large patch-
work. But the last rule at a stroke covers almost the whole class of mammals. Every attempt
at further generalisation now encounters negative examples. Dropping “warm-blooded”
causes the rule to cover viviparous groups of fish and of reptiles. Dropping “viviparous”
causes the rule to cover birds, unacceptable in a mammal-recogniser. But it also has the
effect of including the egg-laying mammals “Monotremes”, consisting of the duck-billed
platypus and two species of spiny ant-eaters. Rule 2.57 fails to cover these, and is thus
an instance of the earlier-mentioned kind of classifier that can be guaranteed correct, but
cannot be guaranteed complete. Conversion into a complete and correct classifier is not
an option for this purely specific-to-general process, since we have run out of permissible
generalisations. The construction of Rule 2.57 has thus stalled in sight of the finishing line.
But linking two or more rules together, each correct but not complete, can effect the desired
result. Below we combine the rule yielded by the first iteration with, in turn, the first and
the second rule obtained from the second iteration:

Rule 1.1 if skin-covering = hair
then MAMMAL;

Rule 2.15 if skin-covering = none, reproduction = viviparous
then MAMMAL;

Rule 1.1 if skin-covering = hair
then MAMMAL;

Rule 2.17 if skin-covering = none, warm-blooded = y

then MAMMAL;
These can equivalently be written as disjunctive rules:
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if skin-covering = hair
or skin-covering = none, reproduction = viviparous
then MAMMAL;
and
if skin-covering = hair
or skin-covering = none, warm-blooded =y
then MAMMAL;

Inrule induction, following Michalski, an attribute-test is called a selector, a conjunction
of selectors is a complex, and a disjunction of complexes is called a cover. If a rule is true
of an example we say that it covers the example. Rule learning systems in practical use
qualify and elaborate the above simple scheme, including by assigning a prominent role to
general-to-specific processes. In the StatlLog experiment such algorithms are exemplified
by CN2 (Clarke & Niblett, 1989) and ITrule. Both generate decision rules for each class
in turn, for each class starting with a universal rule which assigns all examples to the
current class. This rule ought to cover at least one of the examples belonging to that class.
Specialisations are then repeatedly generated and explored until all rules consistent with
the data are found. Each rule must correctly classify at least a prespecified percentage of
the examples belonging to the current class. As few as possible negative examples, i.e.
examples in other classes, should be covered. Specialisations are obtained by adding a
condition to the left-hand side of the rule.

CN2 is an extension of Michalski’s (1969) algorithm AQ with several techniques to
process noise in the data. The main technique for reducing error is to minimise (k +
1)/(k+ n- ¢) (Laplacian function) where k is the number of examples classified correctly
by arule, n is the number classified incorrectly, and c is the total number of classes.

ITrule produces rules of the form “if ... then ... with probability ...”. This algorithm
contains probabilistic inference through the J-measure, which evaluates its candidate rules.
J-measure is a product of prior probabilities for each class and the cross-entropy of class
values conditional on the attribute values. ITrule cannot deal with continuous numeric
values. It needs accurate evaluation of prior and posterior probabilities. So when such
information is not present it is prone to misuse. Detailed accounts of these and other
algorithms are given in Section 5.2.

5.1.3 Decision trees

Reformulation of the MAMMAL-recogniser as a completed decision tree would require the
implicit “else NOT-MAMMAL” to be made explicit, as in Figure 5.3. Construction of the
complete outline taxonomy as a set of descriptive concepts, whether in rule-structured or
tree-structured form, would entail repetition of the induction process for BIRD, REPTILE,
AMPHIBIAN and FISH.

In order to be meaningful to the user (i.e. to satisfy the “mental fit” criterion) it has been
found empirically that trees should be as small and as linear as possible. In fully linear
trees, such as that of Figure 5.3, an internal node (i.e. attribute test) can be the parent of at
most one internal node. All its other children must be end-node or “leaves” (outcomes).
Quantitative measures of linearity are discussed by Arbab & Michie (1988), who present
an algorithm, RG, for building trees biased towards linearity. They also compare RG with
Bratko’s (1983) AOCDL directed towards the same end. We now consider the general
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skin-covering?

none hair scales feathers

MAMMAL NOT-MAMMAL NOT-MAMMAL

viviparous?
no ye\
NOT-MAMMAL MAMMAL

Fig. 5.3: Translation of a mammal-recognising rule (Rule 2.15, see text) into tree form. The
attribute-values that figured in the rule-sets built earlier are here set larger in bold type. The rest are
tagged with NOT-MAMMAL labels.

properties of algorithms that grow trees from data.

5.1.4 General-to-specific: top-down induction of trees

In common with CN2 and ITrule but in contrast to the specific-to-general earlier style of
Michalski’s AQ family of rule learning, decision-tree learning is general-to-specific. In
illustrating with the vertebrate taxonomy example we will assume that the set of nine at-
tributes are sufficient to classify without error all vertebrate species into one of MAMMAL,
BIRD, AMPHIBIAN, REPTILE, FISH. Later we will consider elaborations necessary in
underspecified or in inherently “noisy” domains, where methods from statistical data anal-
ysis enter the picture.

As shown in Figure 5.4, the starting point is a tree of only one node that allocates all
cases in the training set to a single class. In the case that a mammal-recogniser is required,
this default class could be NOT-MAMMAL. The presumption here is that in the population
there are more of these than there are mammals.

Unless all vertebrates in the training set are non-mammals, some of the training set of
cases associated with this single node will be correctly classified and others incorrectly,
— in the terminology of Breiman and colleagues (1984), such a node is “impure”. Each
available attribute is now used on a trial basis to split the set into subsets. Whichever split
minimises the estimated “impurity” of the subsets which it generates is retained, and the
cycle is repeated on each of the augmented tree’s end-nodes.

Numerical measures of impurity are many and various. They all aim to capture the
degree to which expected frequencies of belonging to given classes (possibly estimated, for
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example, in the two-class mammal/not-mammal problem of Figure 5.4 as M/(M + M'))
are affected by knowledge of attribute values. In general the goodness of a split into subsets
(for example by skin-covering, by breathing organs, by tail-type, etc.) is the weighted mean
decrease in impurity, weights being proportional to the subset sizes. Let us see how these
ideas work out in a specimen development of a mammal-recognising tree. To facilitate
comparison with the specific-to-general induction shown earlier, the tree is represented in
Figure 5.5 as an if-then-else expression. We underline class names that label temporary
leaves. These are nodes that need further splitting to remove or diminish impurity.

This simple taxonomic example lacks many of the complicating factors encountered
in classification generally, and lends itself to this simplest form of decision tree learning.
Complications arise from the use of numerical attributes in addition to categorical, from the
occurrence of error, and from the occurrence of unequal misclassification costs. Error can
inhere in the values of attributes or classes (“noise”), or the domain may be deterministic,
yet the supplied set of attributes may not support error-free classification. But to round off
the taxonomy example, the following from Quinlan (1993) gives the simple essence of tree
learning:

To construct a decision tree from a set T" of training cases, let the classes be denoted

C1,Cy, ..., Cj. There are three possibilities:

e T contains one or more cases, all belonging to a single class C;;
The decision tree for T is a leaf identifying class C;.

¢ T contains no cases:
The decision tree is again a leaf, but the class to be associated with the leaf
must be determined from information other than T'. For example, the leaf
might be chosen in accordance with some background knowledge of the
domain, such as the overall majority class.

e T contains cases that belong to a mixture of classes:
In this situation, the idea is to refine T' into subsets of cases that are, or
seem to be heading towards, single-class collections of cases. A test is
chosen based on a single attribute, that has two or more mutually exclusive
outcomes O1,0z,...,0p,. T is partitioned into subsets T4, T3, ..., Ty,
where T} contains all the cases in T' that have outcome Oi of the chosen test.
The decision tree for T' consists of a decision node identifying the test and
one branch for each possible outcome. The same tree-building machinery
is applied recursively to each subset of training cases, so that the ith branch
leads to the decision tree constructed from the subset T; of training cases.

Note that this schema is general enough to include multi-class trees, raising a tactical
problem in approaching the taxonomic material. Should we build in turn a set of yes/no
recognizers, one for mammals, one for birds, one for reptiles, etc., and then daisy-chain
them into a tree? Or should we apply the full multi-class procedure to the data wholesale,
risking a disorderly scattering of different class labels along the resulting tree’s perimeter?
If the entire tree-building process is automated, as for the later standardised comparisons,
the second regime is mandatory. But in interactive decision-tree building there is no
generally “correct” answer. The analyst must be guided by context, by user-requirements
and by intermediate results.
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empty attribute-test

if no misclassifications
NOT-MAMMAL | —— confirm leaf (solid lines)

empty attribute-test

NOT-MAMMAL and EXIT

if misclassifications occur
choose an attribute for
splitting the set; for each,
calculate a purity measure
from the tabulations below:

skin-covering?

feathers none hair scales TOTAL
number of MAMMAL: in set: ™fe mno Mmpy Msc M
number of NOT-MAMMALSs: mlfe Mho mlha me M!
breathing?

lungs gills

number of MAMMALS in subset my, mgi M
number of NOT-MAMMALs miu m:gi M
tail?

long short none

number of MAMMALS in set m|, Mgy Mno M

/ U / U

number of NOT-MAMMALs my, Mg Mo M
and so on

Fig. 5.4: First stage in growing a decision tree from a training set. The single end-node is a candidate
to be a leaf, and is here drawn with broken lines. It classifies all cases to NOT-MAMMAL. If
correctly, the candidate is confirmed as a leaf. Otherwise available attribute-applications are tried for
their abilities to split the set, saving for incorporation into the tree whichever maximises some chosen
purity measure. Each saved subset now serves as a candidate for recursive application of the same
split-and-test cycle.
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Step 1: construct a single-leaf tree rooted in the empty attribute test:

if ()
then NO-MAMMAL

Step2: if no impure nodes then EXIT

Step 3: construct from the training set all single-attribute trees and, for each, calculate the
weighted mean impurity over its leaves;

Step 4: retain the attribute giving least impurity. Assume this to be skin-covering:

if (skin-covering = hair)
then MAMMAL

if (skin-covering = feathers)
then NOT-MAMMAL

if (skin-covering = scales)
then NO-MAMMAL

if (skin-covering = none)
then NOT-MAMMAL

Step 5: if no impure nodes then EXIT
Otherwise apply Steps 3, and 4 and 5 recursively to each impure node, thus

Step 3: construct from the NOT-MAMMAL subset of Step 4 all single-attribute trees and,
for each, calculate the weighted mean impurity over its leaves;

3

Step 4: retain the attribute giving leastimpurity. Perfect scores are achieved by “viviparous”
and by “warm-blooded”, giving:

if (skin-covering = hair) and if (skin-covering = hair)
then MAMMAL then MAMMAL

if (skin-covering = feathers) if (skin-covering = feathers)
then NOT-MAMMAL then NO-MAMMAL

if (skin-covering = scales) if (skin-covering = scales)
then NOT-MAMMAL then NOT-MAMMAL

if (skin-covering = none)

then if (reproduction = viviparous)
then MAMMAL

else NOT-MAMMAL

Step 5: EXIT

if (skin-covering = none)
then if (warm-blooded = y)
then MAMMAL

else NOT-MAMMAL

Fig. 5.5: Illustration, using the MAMMAL problem, of the basic idea of decision-tree induction.
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Either way, the crux is the idea of refining T “into subsets of cases that are, or seem to be
heading towards, single-class collections of cases.” This is the same as the earlier described
search for purity. Departure from purity is used as the “splitting criterion”, i.e. as the basis
on which to select an attribute to apply to the members of a less pure node for partitioning
it into purer sub-nodes. But how to measure departure from purity? In practice, as noted
by Breiman ez al., “overall misclassification rate is not sensitive to the choice of a splitting
rule, as long as it is within a reasonable class of rules.” For a more general consideration
of splitting criteria, we first introduce the case where total purity of nodes is not attainable:
i.e. some or all of the leaves necessarily end up mixed with respect to class membership.
In these circumstances the term “noisy data” is often applied. But we must remember that
“noise” (i.e. irreducible measurement error) merely characterises one particular form of
inadequate information. Imagine the multi-class taxonomy problem under the condition
that “skin-covering”, “tail”, and “viviparous” are omitted from the attribute set. Owls and
bats, for example, cannot now be discriminated. Stopping rules based on complete purity
have then to be replaced by something less stringent.

5.1.5 Stopping rules and class probability trees

One method, not necessarily recommended, is to stop when the purity measure exceeds
some threshold. The trees that result are no longer strictly “decision trees” (although
for brevity we continue to use this generic term), since a leaf is no longer guaranteed to
contain a single-class collection, but instead a frequency distribution over classes. Such
trees are known as “class probability trees”. Conversion into classifiers requires a separate
mapping from distributions to class labels. One popular but simplistic procedure says “pick
the candidate with the most votes”. Whether or not such a “plurality rule” makes sense
depends in each case on (1) the distribution over the classes in the population from which
the training set was drawn, i.e. on the priors, and (2) differential misclassification costs.
Consider two errors: classifying the shuttle main engine as “ok to fly” when it is not, and
classifying it as “not ok” when it is. Obviously the two costs are unequal.

Use of purity measures for stopping, sometimes called “forward pruning”, has had
mixed results. The authors of two of the leading decision tree algorithms, CART (Breiman
et al., 1984) and C4.5 (Quinlan 1993), independently arrived at the opposite philosophy,
summarised by Breiman and colleagues as “Prune instead of stopping. Grow a tree that
is much too large and prune it upward ...” This is sometimes called “backward pruning”.
These authors’ definition of “much too large” requires that we continue splitting until each
terminal node

either is pure,
or contains only identical attribute-vectors (in which case splitting is impossible),
or has fewer than a pre-specified number of distinct attribute-vectors.

Approaches to the backward pruning of these “much too large” trees form the topic of a
later section. We first return to the concept of a node’s purity in the context of selecting
one attribute in preference to another for splitting a given node.

5.1.6 Splitting criteria

Readers accustomed to working with categorical data will recognise in Figure 5.4 cross-
tabulations reminiscent of the “contingency tables” of statistics. For example it only
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