
MACHINE LEARNING OF ROBOT ASSEMBLY PLANS

THE KLUWER INTERNATIONAL SERIES
IN ENGINEERING AND COMPUTER SCIENCE

KNOWLEDGE REPRESENTATION,
LEARNING AND EXPERT SYSTEMS

Other books in the series:

Consulting Editor

Tom Mitchell
Carnegie Mellon University

Universal Subgoaling and Chunking of Goal Hierarchies. J. Laird, P. Rosenbloom, A. Newell.
ISBN 0-89838-213-0.

Machine Learning: A Guide to Current Research. T. Mitchell, J. Carbonell, R. Michalski.
ISBN 0-89838-214-9.

Machine Learning of Inductive Bias. P. Utgoff. ISBN 0-89838-223-8.

A Connectionist Machine for Genetic Hillclimbing. D. H. Ackley. ISBN 0-89838-236-X.

Learning From Good and Bad Data. P. D. Laird. ISBN 0-89838-263-7.

MACHINE LEARNING OF ROBOT
ASSEMBLY PLANS

by

Alberto Maria Segre
Cornell University

~.

" KLUWER ACADEMIC PUBLISHERS
Boston/Dordrecht/Lancaster

Distributors for North America:
Kluwer Academic Publishers
101 Philip Drive
Assinippi Park
Norwell, Massachusetts 02061, USA

Distributors for the UK and Ireland:
Kluwer Academic Publishers
Falcon House, Queen Square
Lancaster LAI IRN, UNITED KINGDOM

Distributors for all other countries:
Kluwer Academic Publishers Group
Distribution Centre
Post Office Box 322
3300 AH Dordrecht, THE NETHERLANDS

Library of Congress Cataloging-in-Publication Data

Segre, Alberto Maria.
Machine learning of robot assembly plans I by Alberto Maria Segre.

p. em. - (Kluwer international series in engineering and
computer science. Knowledge representation, learning, and expert
systems)

Bibliography: p.
Includes index.

ISBN-13: 978-1-4612-8954-8 e-ISBN-13: 978-1-4613-1691-6

DOl: 10.1007/978-1-4613-1691-6

I. Robotics. 2. Robots, Industrial. I. Title. II. Series.
88-2652
CIP

TJ211.S43 1988
670.42 '7-dcI9

Copyright © 1988 by Kluwer Academic Publishers

Softcover reprint of the hardcover 1st edition 1988

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, mechanical, photocopying, recording, or otherwise,
without the prior written permission of the publisher, Kluwer Academic Publishers, 101 Philip
Drive, Assinippi Park, Norwell, Massachusetts 02061.

Table of Contents

Preface .. Xl

Acknowledgements xv

Chapter 1 Introduction 1
1.1. Machine Learning .. 1
1.2. Robotics ... 2

1.2.1. Why Can't Robbie Learn? ... 3
1.2.2. Teach-By-Guiding Systems .. 3

1.2.3. Robot Programming Systems 3
1.2.4. Myopia on the Road to Intelligent Robots 4

1.3. About the Book 5
1.3.1. Organization .. 5
1.3.2. On the Use of the $ Symbol... 6

Chapter 2 Scenario 7
2.1. Preliminaries .. 7
2.1.1. The Widget 7
2.1.2. Moving the Robot Arm ... 9

2.2. Specifying the Problem 9
2.2.1. Describing the Initial State ... 9
2.2.2. Specifying the Goal State ... 10

2.3. Attempting to Solve the Problem ... 11
2.4. Observing the Expert's Plan 11
2.5. Generalizing the Solution ... 18

vi Machine Learning of Robot Assembly Plans

2.6. Solving the Same Problem After Learning 19
2.7. Solving Similar Problems After Learning 28

Chapter 3 Explanation-Based Learning ... 35
3.1. Similarity-Based Learning .. 35
3.1.1. Applying SBL to Classification Tasks 35
3.1.2. Applying SBL to Problem-Solving Tasks 37

3.2. Learning-Apprentice Systems ... 39
3.3. Explanation-Based Learning .. 39
3.4. A Prototypical EBL System 40
3.4.1. The Performance Element 42
3.4.2. The Learning Element .. 42
3.4.2.1. The Understander .. 43

3.4.2.2. The Generalizer .. 43
3.5. Issues for EBL Systems 45

Chapter 4 The Arms World ... 47
4.1. Characterizing the Robot World ... 48
4.1.1. The Pieces .. 49
4.1.2. The Workspace .. 49
4.1.3. The Robot Arm .. 49
4.1.4. The Robot World Domain Theory.................................... 53

4.2. Simulating the Robot World ... 54
4.2.1. The Solid Modeler ... 54
4.2.2. The Emulator .. 57
4.2.2.1. Moving the Robot Arm .. 57
4.2.2.2. Modeling Robot/Piece Interactions 58

4.2.3. The History Mechanism ... 59

Chapter 5 Learning And Problem Solving 61
5.1. Knowledge Representation ... 61
5.1.1. The Schema System .. 62
5.1.1.1. State Schemata .. 62
5.1.1.1.1. Constraint Schemata ... 63
5.1.1.1.2. Joint Schemata .. 64

5.1.1.2. Operator Schemata .. 66
5.1.2. The Database Mechanism .. 67

Table of Contents vii

5.1.2.1. State Schema Validation ... 68
5.1.2.2. Caching Valid State Schema Instances 68
5.1.2.3. Database Parallelism ... 69

5.2. The Performance Element 70
5.2.1. The Design Phase 70
5.2.2. The Planning Phase 71

5.3. The Learning Element 73
5.3.1. The Understander ... 73
5.3.1.1. Specifying the Initial State ... 73
5.3.1.2. Emulating the Input Sequence 73
5.3.1.3. Building the Causal Model.. 74
5.3.1.3.1. Predictive Understanding 74
5.3.1.3.2. Nonpredictive Understanding 75
5.3.1.3.3. The Schema-Activation Mechanism 75

5.3.2. The Generalizer 77
5.3.2.1. The Verification Process .. 78
5.3.2.1.1. Known Physical Joint Schema 80
5.3.2.1.2. New Physical Joint Schema 81

5.3.2.2. Extracting the Explanation ... 83
5.3.2.3. Building a New Operator Schema 83
5.3.2.4. Meeting the Retention Criteria 86
5.3.2.5. Integrating Newly Acquired Schemata 87
5.3.2.6. Meeting the Replacement Criteria 87

Chapter 6 The Arms Implementation ... 89
6.1. A Note About the Implementation Language 89
6.2. Optimization Tools 92
6.2.1. $MatchMixin ... 93
6.2.2. $LazyCopy ... 94

6.3. Implementing the Solid Modeler .. 96
6.3.1. Homogeneous Coordinates ... 97
6.3.2. $WorkSpace ... 98
6.3.3. $PositionedObject .. 100
6.3.4. $Piece 100
6.3.5. $Primitive 105
6.3.6. $Block, $Cylinder .. 106
6.3.7. $Surface ... 108

viii Machine Learning of Robot Assembly Plans

6.3.S. $PlanarSurface, $CylindricalSurface 108
6.3.9. $Hole .. 110

6.3.10. $Arm .. 111
6.4. Implementing the Graphics Subsystem 114
6.4.1. $View ... 114
6.4.2. $Segment 117

6.5. Implementing the Schema System l1S

6.5.1. $Schema ... 118
6.5.2. $StateSchema .. 119
6.5.2.1. $ConstraintSchema .. 123
6.5.2.2. $JointSchema ... 125

6.5.2.2.1. $DegreeOfFreedom .. 129
6.5.2.2.1.1. $PrismaticDOF, $RevoluteDOF 131

6.5.2.2.2. $CylindricalJoint ... 132
6.5.2.2.3. $RigidJointA .. 133

6.5.3. $OperatorSchema 134
6.5.3.1. $PrimitiveSchema .. 136

6.6. Implementing the Top Level.................... 137
6.6.1. General Description of $Episode 137
6.6.2. Implementing the History Mechanism 141
6.6.3. Implementing the State Schema Database 142

6.6.4. Implementing the Planner 144
6.6.5. Implementing the Understander 145
6.6.6. Implementing the Verifier ... 145
6.6.7. Implementing the Generalizer ... 146

Chapter 7 Scenario Revisited 149
7.1. Attempting to Solve the Problem ... 149
7.2. Observing the Expert's Plan ... 150
7.3. Verifying the Solution ... 151
7.4. Generalizing the Solution ... 152
7.4.1. A More General New Schema .. 153
7.4.2. A More Operational New Schema 153

7.5. Solving the Same Problem After Learning 155
7.6. Solving Similar Problems After Learning 157
7.7. Observing Similar Problems After Learning 160

Table of Contents ix

Chapter 8 Summary And Future Work .. 161
8.1. Relation to Other Work ... 161
8.1.1. STRIPS .. 161
8.1.2. MA .. 163

8.1.3. LEAP .. 163
8.1.4. ODYSSEUS ... 164
8.1.5. PRODIGY .. 164

8.2. Extensibility of ARMS .. 165
8.2.1. The Solid Modeler Problem 165
8.2.2. Reasoning with Uncertainty................ 166
8.2.3. The Operator/State Problem .. 167
8.2.4. The Temporal Reasoning Problem 167

8.3. Future Research Directions 168
8.3.1. Frame Selection Problem ... 168
8.3.2. Other Explanation Construction Methods 168
8.3.3. When and What to Learn 169
8.3.4. When and What to Forget 169
8.3.5. Refining Existing Knowledge 170
8.3.6. Learning Control Knowledge ... 170
8.3.7. Extending Imperfect Domain Theories 171
8.3.8. Execution Monitoring and Plan Revision 171
8.3.9. Dealing with Multiple Plans .. 172

8.4. Conclusions.......... 172

Appendix A Solid Modeling Systems .. 175

Appendix B Schema Semantics 177

Appendix C A Simpler Example 179
C.l. Describing the Initial State .. 180
C.2. Attempting to Solve the Problem ... 180
C.3. Observing the Expert's Plan ... 181
C.4. Verifying the Solution ... 181
C.5. Generalizing the Solution ... 181
C.6. Solving the Same Problem After Learning 182
C.7. Solving Similar Problems After Learning 183
C.8. Observing Similar Problems After Learning 185

x Machine Learning of Robot Assembly Plans

Appendix D A More Complex Example
D.l. Describing the Initial State
D.2. Attempting to Solve the Problem
D.3. Observing the Expert's Plan .. .
DA. Verifying the Solution .. .
D.5. Generalizing the Solution

D.5.l. A More General New Schema .. .
D.5.2. A More Operational New Schema

D.6. Solving the Same Problem After Learning
D.7. Solving Similar Problems After Learning

Appendix E Performance Considerations
E.l. Learning Episode 1
E.2. Problem-Solving Episode 1
E.3. Problem-Solving Episode 2 .. .
EA. Problem-Solving Episode 3
E.5. Problem-Solving Episode 4

E.G. Learning Episode 2
E.7. Learning Episode 3
E.B. Problem-Solving Episode 5 .. .

E.9. Problem-Solving Episode 6 .. .

Appendix F Built-In Schemata .. .
F.I. State Schemata

F.I.l. Joint Schemata .. .
F.I.2. Degree of Freedom Schemata
F.1.3. Constraint Schemata

F.2. Operator Schemata
F.2.l. Primitive Operator Schemata

References .. .

Index .. .

187
188
188
189
195
196
197
197
201
201

203
204
204
205
207
207
210
210
211

212

213
213
215
215
216
216
217

219

229

Preface

The study of artificial intelligence (AI) is indeed a strange pursuit.
Unlike most other disciplines, few AI researchers even agree on a
mutually acceptable definition of their chosen field of study. Some see
AI as a sub field of computer science, others see AI as a computationally
oriented branch of psychology or linguistics, while still others see it as a
bag of tricks to be applied to an entire spectrum of diverse domains.

This lack of unified purpose among the AI community makes this a
very exciting time for AI research: new and diverse projects are
springing up literally every day. As one might imagine, however, this
diversity also leads to genuine difficulties in assessing the significance
and validity of AI research. These difficulties are an indication that AI
has not yet matured as a science: it is still at the point where people are
attempting to lay down (hopefully sound) foundations.

Ritchie and Hanna [1] posit the following categorization as an aid
in assessing the validity of an AI research endeavor:

(1) The project could introduce, in outline, a novel (or partly novel)
idea or set of ideas.

(2) The project could elaborate the details of some approach. Starting
with the kind of idea in (1), the research could criticize it or fill in
further details

(3) The project could be an AI experiment, where a theory as in (1)
and (2) is applied to some domain. Such experiments are usually
computer programs that implement a particular theory.

As Ritchie and Hanna acknowledge, most AI work falls into categories
(2) and (3). Such is the case here as well: credit for (1) should go to [2-
6].

This book describes an AI experiment: a multiyear effort
investigating the application of a novel machine-learning technique in a

xii Machine Learning of Robot Assembly Plans

particular domain. Experience with the design and implementation of a
computer program embodying these machine-learning ideas helps us in
developing a more complete theory. What steps can be taken to insure
that this work is a contribution to forward progress in the greater
scheme of AI rather than a forgotten side trip?

Ritchie and Hanna go on to note:

It is one of the peculiarities of AI that, although replication of practical
results is a cornerstone of traditional science, it is rare to see published
accounts of repetitions of AI work. It is not clear how to interpret this
phenomenon: it may be that few people have ever successfully re
implemented a large AI program, or it may be that those who do
manage to repeat a published project do not regard this as publishable
material. It may also be the case that an unsuccessful attempt at re
implementation would not be widely notified, since this might appear
as an admission of incompetence. These circumstances impede the es
tablishment of scientific standards within AI.

Here then lies the key: one way to insure that this experiment was not
in vain is to prepare this document with a view towards the rational
reconstruction of the program.

To this end, we now make the following promises (largely inspired
by [7] and [8]):

(1) To describe the theory behind the success of the system in a
straightforward manner.

(2) To describe this system in as code-free a fashion as possible,
preferring to revert to pseudo-code descriptions of important
algorithms rather than reprinting the implementation!.

(3) To give annotated examples of the system in operation which give
helpful insights into the operation of particular parts of the code.

(4) To avoid McDermott's third sin of AI research:

Only in a cautious footnote does he say, "the program was never
actually finished," or, "only a preliminary version of the program
was actually written."

All of the examples in this document are the product of a single
version of the system, and are reproduced without embellishment.2

lOur aim is to encourage rational reconstruction, not blind porting of com
puter code.

2 McDermott calls this sin .,.,. Only a Preliminary Version of the Program
was Actually Implemented. The other sins discussed in [8] are wishful mnemon
ics and unnatural language. This is not meant to be an exhaustive list by any
means.

Preface xiii

Any judgement of the merits or success of this project must be
based on the assumption that the technique here described
(explanation-based learning) is a worthwhile addition to the machine
learning repertory. If one believes this to be the case, the validity of the
work done and reported herein depends on meeting the following
criteria:

(1) The description of the technique is thorough enough to give the
reader a clear understanding of how it works.

(2) The experiment itself clearly establishes the relation between
theory and practice (the implementation).

(3) The description of the program is thorough enough to permit the
rational reconstruction and, therefore, the independent verification
of this experiment.

If all of these criteria are met, then this research has accomplished its
primary goal: to further elaborate and validate (by means of a prototype
computer implementation in a nontrivial domain) a novel method of
automatic knowledge acquisition.

Acknow ledgements

This book describes research conducted over a four-year period
while a graduate student in the Coordinated Science Laboratory of the
University of Illinois at Urbana-Champaign.

The completion of the Ph.D. normally marks the end of a student
career and the beginning of one's professional life. It therefore seems
appropriate that this work be dedicated to my mother and father, the
two people who have had the greatest influence on who and what I am
today. Their love, support, and noble example have instilled in me the
deepest feelings of love, gratitude, and respect. I am truly very
fortunate in having two such extraordinary role models.

Many people contributed to this work in one way or another. I
wish to thank my advisor, Professor Gerald DeJong, for his faith and
trust in me. His insight and originality have time and time again
provided that first dent in a problem's armor. Professors Narendra
Ahuja, Edward Davidson, Kenneth Forbus, Franco Preparata, and
Robert Stepp served on my preliminary and final examination
committees, providing many worthwhile comments and suggestions for
improvements. In addition, Professor David Waltz was influential in the
early formative stages of this project. Whatever small amount of praise
this work may merit, but for them it would deserve far less.

It is impossible to remain immersed in a particular problem for
many years without a vital and stimulating research environment. This
environment is, in large part, provided by my fellow graduate students
in the Coordinated Science Laboratory, from both within and outside the
Artificial Intelligence Research Group. Special thanks go to Scott
Bennett, Gianfranco Bilardi, Steve Chien, Marcy Dorfman, Scot
Hornick, Anthony Maddox, Bartlett Mel, Ray Mooney, Laura Neher,
Jeft'Yung-Choa Pan, Jordan Pollack, Ashwin Ram, Shankar Rajamoney,
Jude Shavlik, David Spoor and Brad Whitehall for many profitable
hours of discussion and interaction.

xvi Machine Learning of Robot Assembly Plans

Professor Stephen Lu of the University of Illinois Department of
Mechanical and Industrial Engineering contributed his much
appreciated robotics' expertise. Brad Gustafson, with the help of Paul
Chen, was responsible for the real-world robot arm experiment.

Finally, I would be remiss in not acknowledging my friend,
confidante, then fiancee and now wife, Lisa, for sharing the ups and
downs of the final graduate-student year. She has made it so much more
bearable and enjoyable.

Support for this research was provided by a Caterpillar
Corporation Graduate Fellowship, the Air Force Office of Scientific
Research under grant F49620-82-K-0009, and the National Science
Foundation under grants NSF-IST-83-17889 and NSF-IST-85-11542.

A.M.S.

MACHINE LEARNING OF ROBOT ASSEMBLY PLANS

Chapter 1

Introduction

This book describes an experiment involving the application of a
recently developed machine-learning technique, explanation -based
learning, to the robot retraining problem. Explanation-based learning
permits a system to acquire generalized problem-solving knowledge on
the basis of a single observed problem-solving example. The description
of the design and implementation of this experimental computer
program serves as a vehicle for discussing issues related to this
particular type of learning. This work clarifies and extends the corpus of
knowledge so that explanation-based learning can be successfully
applied to real-world problems.

The ability to generalize from examples in order to produce new,
operational knowledge makes for a very powerful system. Since the very
early days of artificial intelligence (AI) research, many AI researchers
felt that the development of learning machines was their eventual goal:

Our ultimate objective is to make programs that learn from their ex·
perience as effectively as humans do [9].

In fact, some AI researchers believe that the ability to learn lies at the
very heart of intelligence:

It should also be clear that an AI program that cannot build itself up
gradually, without requiring all its knowledge stuffed in at the begin
ning, is not really intelligent [10].

Machine learning is precisely that subfield of AI which aims to
understand this process.

1.1. Machine Learning

Why do we study machine learning? Any answer must rest on one
of the most basic methodological assumptions of AI, the knowledge

2 Machine Learning of Robot Assembly Plans

representation hypothesis:

Any mechanically embodied intelligent process will be comprised of
structural ingredients that (a) we as external observers naturally take
to represent a propositional account of the knowledge that the overall
process exhibits, and (b) independent of such external semantical attri
bution, play a formal but causal and essential role in engendering the
behavior that manifests that knowledge [11].

Paraphrasing more simply:

any intelligent system will require knowledge about its domain that is
explicitly and recognizably encoded.

Apart from any controversy about what scheme should be used to
encode this domain knowledge,3 there are real questions about how to
maintain consistency across the knowledge base. These systems have
tremendous potential for the adverse interaction of inconsistent
knowledge:

Perhaps you know how knowledge is organized in your brain; I don't
know how it's organized in mine. As a consequence, I think it would be
exceedingly difficult for me to create new, debugged code that would be
compatible with what is already stored there [12].

But consistency is only one of our concerns: if past experience with
microworlds is any indication, AI systems that are to operate in
restricted real-world environments will require staggering amounts of
domain knowledge. And as the restrictions are relaxed, the amount of
knowledge manipulated by such systems will grow still larger. This
raises some concern over the pragmatic aspect of building these large
quantities of domain-specific knowledge into a system:

Perhaps the deepest legitimate reason for doing machine learning
research is that, in the long run for big knowledge-based systems,
learning will turn out to be more efficient than programming, however
inefficient such learning is [12].

1.2. Robotics

The robot domain has long been a favorite for AI research. This is
due to the fact that it represents a real world domain, albeit with an
important restriction: industrial robots exist in a controlled
environment. Even with this restriction, the robot domain has been too
complex for most AI projects, forcing so many simplifying assumptions
that the experimental domain bears little resemblance to any real-world
application.

3 This is still the open question of knowledge representation research.

Introduction 3

1.2.1. Why Can't Robbie Learn?

Robots have the potential to revolutionize the manufacturing
process. Unfortunately, the robot has yet to live up to expectations.
While it is indeed a general-purpose device, it is far from the flexible
automation tool it was first touted to be. This lack of flexibility is
manifest in the difficulties encountered when preparing a robot to
perform some novel task: we call this the robot retraining problem.

There are two general strategies in use today to address the robot
retraining problem: teach-by-guiding systems, and robot programming
systems. A good description of these systems with examples can be
found in [13].

1.2.2. Teach-By-Guiding Systems

Teach-by-guiding systems are trained by leading the robot through
the task it is to perform. Important points are-marked during teaching
and then replayed by the robot over and over again. These systems are
also referred to as tape-recorder mode robot systems.

The greatest advantage of teach-by-guiding systems is that they
are extremely easy to implement. In addition, in practical use it is only
necessary to have a task expert do the teaching; it is fairly easy to train
a task expert (such as a job foreman) how to use the teaching pendant
on a commercially available robot. Their greatest disadvantage is the
lack of any control constructs. For example, in the simpler systems,
there is no way to repeat a given subsequence at different locations in
the workspace. The absence of control structures that provide
conditional branching precludes the use of iteration, and also makes any
complex interaction with sensors difficult.

Extended guiding systems (also referred to as hybrid systems since
they incorporate a mix of guiding and programming) attempt to resolve
these difficulties by adding simple control structures and prepackaged
sensor strategies to guiding systems. They fall short of full
programming systems in that not all control strategies are supported,
and only direct testing of sensor input values is permitted for
conditional execution.

1.2.3. Robot Programming Systems

Robot programming systems provide a language for the
construction of robot programs to guide the manipulator in the same
way that computer programming languages are used to instruct a
computer. These systems can be further divided into two general
categories: robot-level programming systems and task-level programming
systems.

4 Machine Learning of Robot Assembly Plans

Robot-level programming systems require that the user specify
robot motion and sensor interaction. AML [14] is a good example of
today's robot-level programming languages. The emphasis in AML is on
developing a good, easily-customized user interface. The quality of the
user interface is important, since the user must enter every detail of the
robot's actions and sensory interaction.

Current research in robot programming is aimed at developing
task-level programming systems where the user specifies higher-level
constructs as they relate to the objects being manipulated in the
workspace. The system then synthesizes the robot-level program that
carries out the task given the current state of the world. This synthesis
process, done by the task planner, is critically sensitive to the particular
knowledge about the world that is built into the system. This
knowledge must include not only information about the objects being
manipulated, but also specific control strategies, including when and
how to use sensors. In short, a task-level system relies on the user to
specify an object-relative description of the steps in the assembly
sequence, from which it then generates a robot-level program embodying
the desired assembly sequence. Research in task-level systems is still
fairly preliminary; no applications exist as yet outside the research
laboratories.

1.2.4. Myopia on the Road to Intelligent Robots

Robot programming is not, however, a panacea. In conjunction
with research on more advanced sensory devices (e.g., machine vision,
tactile sensors), the robotics community has placed a great deal of
emphasis on the construction of better programming languages and user
interfaces. But robot-level programming languages must rely on the
skill and foresight of human programmers for their apparent abilities to
adapt to new situations. Even task-level systems rely on the human
programmer to define the general strategy and ordering with which to
attack the problem.

To define intelligence as
the ability to use information to modify system behavior in prepro
grammed ways [14] (emphasis added)

is, at best, myopic. We do not ascribe the elusive trait intelligence to
FORTRAN programs that invert large matrices, so why should we
consider the end product of any robot programming tool (regardless of
how sophisticated its user interface may be) to be intelligent?

In the final analysis, robot planning systems must inevitably (if
only due to the sheer quantity of domain knowledge they require) face
the knowledge acquisition bottleneck. At that point, the marriage

Introduction 5

between machine learning and robotics becomes a matter of absolute
practical necessity.

1.3. About the Book

Described in this book is the computer program that resulted from
an experimental application of explanation-based learning to a
restricted robot manufacturing domain. The program is called ARMS,
for Acquiring Robotic Manufacturing Schemata [15]. We feel that this
experiment is an important contribution to artificial intelligence
research for the following reasons:

(1) From the machine-learning perspective, it is an ambitious
implementation of explanation-based learning. Unlike many other
vehicles for machine-learning research, the ARMS system operates
in a nontrivial domain conveying the flavor of a real robot
assembly application. As such, ARMS has addressed the crucial
open issues in explanation-based learning as no paper-and-pencil
simulation can.

(2) From the robotics perspective, it represents an important first step
towards a learning-apprentice system for manufacturing. It posits
a theoretically more satisfactory solution to the robot retraining
problem, and offers an eventual alternative to the limitations of
robot programming.

1.3.1. Organization

We begin with an example from a robot assembly domain. This
particular example serves as a framework for the discussion in the rest
of the book. It is first introduced in Chapter 2, where discussion of the
example is limited to a very intuitive level. The goal is to establish in
the mind of the reader a concrete idea of what the system is capable of
doing.

In Chapter 3 we present an overview of the theory of explanation
based learning. We begin by examining previous research in machine
learning and then introduce the explanation-based learning paradigm.

Described in Chapter 4 is the domain of application for our
explanation-based learning experiment, giving a full description of the
robot domain manipulated by ARMS.

The discussion of Chapter 5 covers those knowledge representation
issues relevant to ARMS, as well as a general description of the ARMS
learning and problem-solving mechanisms.

The ARMS implementation is described in full detail in Chapter 6.
This description is intended to permit the reconstruction of the ARMS

6 Machine Learning of Robot Assembly Plans

system from scratch, and is, therefore, necessarily very technical in
nature. As discussed in the preface, reconstruction is an important
mechanism for independent verification of the validity of this research.

In Chapter 7 we revisit the example of Chapter 2. In it, we provide
a more detailed description of the behavior of the ARMS system when
presented with the same example.

In Chapter 8 we analyze the important issues addressed by this
research. In it we outline the relation of ARMS to other systems, as well
as directions for future research.

The appendices contain additional information related to this
experiment. In Appendices A and B we provide helpful background
information intended to help the reader unfamiliar with certain areas.
In Appendices C and 0 we present two other examples from the same
robot assembly domain as the example of Chapters 2 and 7. These
examples are significantly different and serve to illustrate various issues
and problems addressed by ARMS. The discussion of Appendix E
presents empirical evidence of ARMS performance and how it supports
the conclusions of the rest of the work. In Appendix F we provide a
quick reference to the domain knowledge built into the ARMS system.

There are various approaches to reading this document. In every
case, Chapter 2 should be read carefully. Those primarily interested in
explanation-based learning issues should pay special attention to
Chapters 3 and 5. The casual reader is encouraged to skip Chapter 6, as
its technical nature limits its readibility. Those contemplating a
reconstruction effort should, of course, study Chapter 6. Chapters 7 and
8 should be perused by all readers.

1.3.2. On the Use of the $ Symbol

The alert reader will no doubt notice the use of the special symbol
"$" as the first character of certain words throughout the book. This
symbol is used to indicate that the item is a data structure. Often the
characters following the "$" contain sufficient information for the reader
to infer what the data structure represents. For more information about
the proper use of this special symbol, see Section 6.1.

Chapter 2

Scenario

In this chapter we examine a transcript of the ARMS system in
operation. The emphasis here is in providing an intuitive feel for the
operation of the system; later, we will revisit the same example and
provide more detail.

The system, acting as an apprentice, learns how to assemble simple
mechanisms by observing an external problem-solving agent. In this
example, we will see a human expert guiding the robot arm step by step
through a solution to an assembly problem which the system was not
able to solve. As the system observes the expert's solution, it constructs
an internal explanation of why the expert's solution successfully solves
the problem. A generalized version of the explanation is added to the
system's knowledge base, where it is later used by the system to
automatically generate solutions (sequences of robot arm commands) for
similar tasks.

2.1. Preliminaries

Before we begin the transcript, there is some essential background
information we must supply about the robot arm and the assembly
being constructed. The domain consists of a simple disembodied two
fingered robot gripper moving about a set of pieces sitting on a
workspace surface. The pieces are assembled into a mechanism that
demonstrates a well-defined mechanical behavior.

2.1.1. The Widget

Consider the simple widget4 mechanism illustrated in Figure 2.1.5

4 We use the term widget throughout this book to describe the type of

8 Machine Learning of Robot Assembly Plans

It consists of three pieces: a peg, a washer, and a block. The three pieces
in this particular set will be represented by the data structures $Peg1,
$Washer1, and $BoredBlock1, respectively.

The widget is assembled by aligning $Washer1 over the hole in
$BoredBlock1 and then inserting the shaft of $Peg1 through both of the
other pieces. Once assembled, $Washer1 spins freely about the shaft of
$Peg1, but is restricted in any sliding motion along this shaft by
collisions with the underside of the head of $Peg1 on one side and the
upper surface of $BoredBlock1 on the other.

This kind of mechanical behavior can be described as a revolute
joint between $Washer1 and $BoredBlockl. A revolute joint has a one
and only one degree of freedom (a revolute degree of freedom) between its
two pieces.

\,

Exploded View of Widget Assem bly

Figure 2.1

peg/washerlblock assembly shown in Figure 2.1.

5 Figure 2.1, like all of the other figures in this document, is rep rod uced
directly from system output. It consists of a perspective projection of the current
state of the workspace. Each piece is represented as a wireframe without the
benefit of a hidden line removal algorithm.

Scenario 9

2.1.2. Moving the Robot Arm

The system manipulates an abstract, idealized, model of a robot
arm. We are not concerned with the geometry of the arm itself, but
only with the position and orientation of the end-effector that in this
case is a two-fingered gripper. Thus the state of the arm can be
completely specified by giving the Cartesian location of the gripper hot
spot (the point directly between the tips of the two fingers) along with
the orientation of the hand. In addition, one must specify whether the
fingers are opened or closed.

This idealized arm is capable of executing five robot arm
commands:

(1) Open: Open the gripper fingers.

(2) Close: Close the gripper fingers.

(3) Translate (unitVector, delta): Move the gripper in a straight line.

(4) Rotate (unitVector, theta): Rotate the gripper about an axis.

(5) MoveTo (newPosition): Move the gripper to a new position along
some free path.

All input to the robot arm is given as a sequence of instances of
these commands with all their parameters (e.g., unitVector, theta, etc.)
bound. These instances are also represented with data structures such
as $Translate and $Rotate.

2.2. Specifying the Problem

Now we are ready to give the system a problem to solve. An
ARMS problem specification consists of two parts: an initial state
description and a functional goal specification.

2.2.1. Describing the Initial State

Figure 2.2 shows an initial placement of the widget pieces on the
workspace surface. $BoredBlockl is on the right, with its socket also
facing towards the right. $Washerl is in the foreground, with $Pegl
stacked on top of it. In addition, there is a fourth piece (hereafter
$Blockl) in the left rear part of the workspace which, as we shall soon
see, does not belong to the finished widget. The disembodied robot arm
gripper is shown in its home position as a two-fingered palm with the
two (closed) fingers pointed downwards.

This particular placement is one of an infinite number of legal
initial piece placements possible for these four pieces. The physical
specifications of the pieces, along with their positions relative to the
workspace frame of reference, constitute the initial state specification for

10 Machine Learning of Robot Assembly Plans

I II

-------.+--+:"-1r---- \,

... ----
l .. _. ______ --------..

Initial State for Widget Assembly Problem

The disembodied robot arm gripper is located in the center of the picture with its fingers
closed and pointing downwards. $BoredBlockl is off to the right, with its socket also point.
ing to the right. $Blockl is in the left rear of the picture. $Pegl is stacked on top of
$Washerl in the foreground, just left of center.

Figure 2.2

the system.

2.2.2. Specifying the Goal State

At this point we specify a goal state for the system to achieve. The
goal state is specified by a shorthand description of the data structure
representing the desired function of the completed widget assembly:

$RevoluteJoint($Washerl, $BoredBlockl)

rather than by a physical description (e.g., the mating conditions of the
assembled pieces). This functional goal specification is a much more
natural way to specify a mechanism, since the designer need not be
overly concerned with details of the mechanism's physical appearance.

The shorthand notation used for specifying a mechanism's function
describes the behavior of one piece ($Washerl in this case) with respect
to another ($BoredBlockl). The type of behavior is implicit in the
predicate $RevoluteJoint; in this case it describes a simple rotation of
$Washerl with respect to $BoredBlockl about an axis. This rotation is
the only motion of $Washerl with respect to $BoredBlockl permitted by
the mechanism.

Scenario 11

2.3. Attempting to Solve tbe Problem

Given this complete problem specification, the system attempts to
generate a solution to the problem. A solution consists of a sequence of
robot arm commands which, when executed beginning from the initial
state, produce a mechanical assembly with the desired functional
property. In this case, the system fails to solve the problem for two
reasons:

(1) the system does not know of any mechanical assemblies that have
the desired functional property, and

(2) the system has no idea what sequence of operations to use to put
the pieces together.

2.4. Observing the Expert's Plan

Once the system has failed to generate a solution, control is
transferred to the expert so that the system may be shown a valid
solution. On the factory floor, the solution sequence would presumably
be given by a factory foreman through some sort of teach-pendant
device.

We now follow along as the expert leads the system through an
assembly episode that results in the successful assembly of the widget
from the starting position of Figure 2.2. There are a total of 30 robot
arm commands in this sequence. Figures 2.3 through 2.15 show some of
the intermediate workspace configurations during execution of the
observed command sequence.

There are three especially interesting quirks in the expert's plan:

(1) While removing $Peg1 from of the top of $Washer1 (Figures 2.6
through 2.8), the expert chooses to move the arm using four
$Translate commands (along Z, X, Y, and negative Z axes,
respectively) where a single $MoveTo would do as well. Due to the
implementations of these primitives on most industrial arms, the
computational expense of a $MoveTo is always much less than a
$Translate.

(2) $Peg1 is transferred to the top of $Block1 (Figure 2.8) rather than
simply placing it directly on the workspace surface. This would
condemn a normal teach-by-guiding robot arm to reliance on the
presence of this redundant piece.

(3) Before grasping $Washerl, the expert directs the arm to execute a
$Rotate command (Figure 2.10), twisting the gripper 90 degrees
around the vertical axis. This twist is redundant, since by the
symmetry of $Washerl it makes no difference what two points on
its exterior surface are grasped by the robot gripper so long as they
are diametrically opposed.

12 Machine Learning of Robot Assembly Plans

,..,""::.-"-"-"..,""1--------,- ."

I
---~ ---.

\,
L-__ -.-::l'.

\

. ----- -----.. .
L ________ -=--=--_------

$MoveTo, $Open

The gripper is positioned over $BoredBlockl with a $MoveTo command. The gripper
fingers are then opened to their maximum aperture with an $Open command"

Figure 2.3

.... =
I II

.--- - - I

------- ----.

$Translate, $Close, $MoveTo

The gripper is lowered over $BoredBlockl using a $Translate command" The subsequent
$Close command closes the gripper fingers until they make contact with two opposing
faces of $BoredBlockL A $MoveTo command is then used to reposition $BoredBlockl.

Figure 2.4

Scenario 13

I'""::'-"--'-l" --------, -=-

I ----- ---,..:...
-----+-+f-1f--~---.• \

-------- ---_A

$Open, $Translate, $MoveTo

The $Open command is used to drop $BoredBlockl at its new position. The gripper is
backed away from $BoredBlockl with a $Translate command, and then approaches $Pegl
from above with a $MoveTo.

Figure 2.5

.-------- -=-

"'----+-~~=--~~:-=!---f-:=---~~].
1::-- _-:.

L •• ________ ---------

. ...•...•.

$Translate, $Close, $Translate

The gripper is lowered over the shaft of $Pegl. The fingers are closed, grasping $Pegl by
diametrically opposing spots on the cylindrical shaft. $Pegl is then raised straight up from
$Washer! with a $Translate.

Figure 2.6

14 Machine Learning of Robot Assembly Plans

I_J --------- I r-=- -. I

L.=

--

----------+-------+----l-
L •• __________ --------/

I ..•....•...•.

$Translate

$Pegl is moved to the left along a straight line with a $Translate command.

Figure 2.7

I (I
.. ----- I r-=='"I

J
I _.-....

.-.- ---I-

---- ----+--+-----~--·-.l
.---

L •• _______ ---------

$Translate, $Translate

$Pegl is moved away from the viewer along a straight line with a $Translate command,
and then lowered straight down onto $Blockl with another $Translate command.

Figure 2.8

Scenario 15

I I I I

"---------+--.--~~-~--~-~.l·.·
... -----

L •• ______ ~~--------

\ ...•...•

$Open, $Translate, $MoveTo

$Pegl is dropped on top of $Blockl with an $Open command. The gripper then backs up
away from $Pegl with a $Translate and approaches $Washerl from above with a
$MoveTo.

Figure 2.9

I (I
-=-

==-

I \ .•....•

-.-- .---
-.. ...-..--

------ ----+----+---~l
L. ___________ --------

$Rotate

The gripper is rotated by ninety degrees about a vertical axis.

Figure 2.10

16

I

. ---
. .---

,~

, .•.. -

_--f-

----_.

Machine Learning of Robot Assembly Plans

r----___ -----~,.,

---.
"'~.

",

----._,
----~-----.

_---_0.

$Translate, $Close

The gripper is lowered, using a $Translate, so as to surround $Washerl. The fingers are
closed with a $Close command, grasping $Washerl by diametrically opposing spots on
$Washerl's exterior cylindrical surface.

Figure 2.11

I (I
.. -...... '

... /'

~--------------¥

$MoveTo, $Open, $Translate

A $MoveTo command is used to move $Washer to a new position on top of $BoredBlockl.
The $Open command drops $Washerl, and a $Translate is used to back up away from
$Washerl.

Figure 2.12

Scenario 17

--.. --

.... /
~ ____________ -J.

$MoveTo

The $MoveTo command repositions the gripper facing the side of $Pegl's head.

Figure 2.13

~-----~-----7~

~
·0

'. ----'-'"

J
I •...•...•

~ ________________ -.J"

$Translate, $Close, $MoveTo

A $Translate moves the gripper to the left along a straight line until it surrounds the
head of $Pegl. The $Close command grasps $Pegl, and a $MoveTo is used to reposition
$Pegl over $Washerl.

Figure 2.14

18 Machine Learning of Robot Assembly Plans

u

.. ---_.--

=

,/
~ _______ ..Ji

$Translate

The $Translate command moves $Pegl down along a vertical axis until it is inserted
through $Washerl into $BoredBlockl.

Figure 2.15

Notice that these three shortcomings in the expert's plan do not
affect its eventual outcome: the widget is still assembled successfully.
They do, however, affect the plan's efficiency:

(1) The expert gave several inefficient $Translate commands where
one, more efficient, $MoveTo would have sufficed. The relative
efficiency of the various robot arm commands is proportional to the
number of times the kinematic equations governing the arm's links
must be solved. A $MoveTo is almost always more efficient than a
$Translate or a $Rotate, at the expense of not guaranteeing the
intermediate positions the arm will assume.

(2) The plan should not depend on the presence of $Block 1, since
$Block1 is not a part of the widget. In some cases, it may be
necessary to use an extra piece in intermediate stages of an
assembly (e.g., as a prop), but this not the case here.

(3) The expert's use of the $Rotate command is unnecessary, as it does
not contribute to achieving the requisite $RevoluteJoint.

2.5. Generalizing the Solution

The system adds a generalized version of the expert's solution to
its knowledge base. The generalization process relies on the initial state
description, the functional goal description, the observed sequence of
robot arm commands, and the final state determined by executing the

Scenario 19

robot arm commands supplied by the expert. It also relies on the
system's domain-specific knowledge to tie all of these elements together.

2.6. Solving the Same Problem After Learning

We again pose the original functional goal specification with the
same initial state as Figure 2.2. This time, the system is able to
generate a robot arm command sequence that successfully assembles the
widget. The system's solution consists of 24 robot arm commands: 6 less
than the observed sequence provided by the expert. The new solution
does not rely on the presence of $Block1, nor does it insert redundant
commands like the $Rotate of Figure 2.10. In addition, the sequence
formulated by the system uses the most efficient robot arm commands
possible, preferring to clear $Peg1 using a single $MoveTo rather than a
set of four $Translates. Note, however, that the system recognizes the
importance of the $Translate of Figure 2.15 to the success of the plan,
and does not replace it with a more efficient but, in this case ineffective,
$MoveTo.6

Now consider the initial piece placement of Figure 2.16. Note that
$Block1 does not appear in this initial configuration. In addition, note
that the starting positions for $Peg1, $Washer1 and $BoredBlock1 have
been changed.

The system is again given:

$RevoluteJoint($Washerl, $BoredBlockl)

as a functional goal specification. By applying the generalized plan just
acquired, the system is able to generate an assembly sequence of just 12
robot arm commands to assemble the widget from this initial state (see
Figures 2.16 through 2.21).

6 We are assuming that $MoveTo requires fewer kinematic solutions and,
therefore, is always more efficient than a $Translate or $Rotate. Recall that,
unlike $Translate or $Rotate, $MoveTo does not guarantee a parllcular arm tra
jectory but simply a final gripper position and orientation. When inserting $Pegl
into $Washerl and $BoredBlockl, the trajectory followed by the gripper is cru
cial.

20 Machine Learning of Robot Assembly Plans

C-=D=1
. ----~---------

First Alternate Initial State for Widget Assembly Problem

-" .
.....

The robot gripper is located in the center of the picture with fingers closed. $BoredBlockl
is to the right, $Peg! is to the left, and $Washerl is in the foreground just left of center.

Figure 2.16

l""------' ... ··~=.-I [:~=--=--~+-----J~.
~-------+-=t--------...

L •• ______ -~_-----......

.•....•.

$MoveTo, $Open

The gripper is moved to a position above $Washerl with a $MoveTo. The $Open command
opens the gripper fingers to their maximum aperture.

Figure 2.17

Scenario 21

=

~ ___ -V'/ ...•.
"

$Translate, $Close $MoveTo

The gripper is moved downward in a straight line with a $Translate in order to surround
$Washerl. The $Close command grasps $Washerl by diametrically opposed points on its
exterior cylindrical surface. The $MoveTo moves $Washerl to its new position atop
$BoredBlockl.

Figure 2.18

'- - J
==

I .. \ ..•.

$Open, $Translate, $MoveTo

The $Open command drops $Washerl on $BoredBlockl. The $Translate backs the gripper
away from $Washerl, and the $MoveTo repositions the gripper facing the head of $Pegl.

Figure 2.19

22 Machine Learning of Robot Assembly Plans

~----=---=-

.•....•....•

$Translate, $Close, $MoveTo

The gripper surrounds the head of $Pegl with a $Translate. The $Close command grasps
$Pegl, while $MoveTo positions $Pegl above $Washerl.

Figure 2.20

"- 1
=

I ..•.•....

$Translate

The $Translate command moves $Pegl along a vertical axis until it is inserted through
$Washerl into $BoredBlockl.

Figure 2.21

Scenario 23

In Figure 2.22, we note the addition of a new piece, $Block2, to
$Peg1, $Washer1 and $BoredBlockl. $Block2 and $Peg1 are both sitting
on top of $Washerl. Notice also that, like the situation in Figure 2.16,
the starting positions of $Peg1, $Washer1, and $BoredBlock1 have been
changed from the situation of Figure 2.2.

Again we give the system:

$RevoluteJoint($Washerl, $BoredBlockll

as a functional goal specification. The system generates a command
sequence of 30 steps to assemble the widget from this, initially more
complex, starting state (see Figures 2.22 through 2.31).

-

If II
'L- j

-+.'--+-It-----~j

.-~----------~-...

Second Alternate Initial State for Widget Assembly Problem

The robot gripper is located in the center of the picture with fingers closed. $BoredBlockl
is to the left. $Washerl is to the right, with $Block2 and $Pegl stacked on top of it.

Figure 2.22

24 Machine Learning of Robot Assembly Plans

.. --- -----.. '----------- ------:

$MoveTo, $Open, $Translate, $Close

The $MoveTo positions the gripper facing $BoredBlockl. The $Translate surrounds
$BoredBlockl, while the $Close grasps it_

u

Figure 2.23

r=d [[.---:=--+-'1 ~)-J-------.-----r--r-------j
__ ---.-----+_---.::_-_r----------_

'------------------ ---'

$MoveTo, $Open, $Translate, $MoveTo, $Translate, $Close, $MoveTo

The $MoveTo and $Open deposit $BoredBlockl on its back with its socket pointing up_
The $Translate backs away from $BoredBlockl, while the following $MoveTo, $Translate
and $Close achieve a grasping of $Block2_ The last $MoveTo places $Block2 in a free spot
at the back of the workspace_

Figure 2.24

Scenario 25

"'-_______ -J /

-----.-~t_--_t---

. ----- -------.
~---, .

--------- -- --~--------..
$Open, $Translate, $MoveTo

The $Open command drops $Block2 in the background, while the subsequent $MoveTo
leaves the gripper facing the shaft of $Pegl.

Figure 2.25

" r---==----.."

$Translate, $Close, $MoveTo

The $Translate and $Close achieve grasp $Pegl by diametrically opposed points on its
shaft. The $MoveTo positions $Pegl at a free spot at the back of the workspace.

Figure 2.26

26

u

Machine Learning of Robot Assembly Plans

~ bJ'
:.---~u·-- ----~·:l
... ------- --- --------..
\.-.._--- ---- ----_ .. ,

$Open, $Translate, $MoveTo

The $Open and $Translate drop $Pegl and back the gripper away from it. The $MoveTo
leaves the gripper facing $Washerl from above.

Figure 2.27

Ffi
r·. u 1

-.~ ,-,. ::':;;1"

~

.' o
$Translate, $Close, $MoveTo

The gripper approaches $Washerl with a $Translate, and then the $Close grasps it. The
$MoveTo places $Washerl on top of $BoredBlockl with their holes aligned.

Figure 2.28

Scenario 27

r:- 1
--~ ..-. :"7

'==l o
$Open, $Translate, $MoveTo

The $Open and $Translate drop $Washerl and back away from it. The $MoveTo ap
proaches the head of $Pegl from the front.

Figure 2.29

J. I 1 - ,:</"-

'==l

-' o
$Translate, $Close, $MoveTo

$Translate and $Close grasp $Pegl, while the $MoveTo positions it aligned above $Wash
erl.

Figure 2.30

28 Machine Learning of Robot Assembly Plans

[.
.. -< -

= o
,Translate

The final $Translate inserts $Pegl through $Washerl into $BoredBlockl.

Figure 2.31

2.7. Solving Similar Problems After Learning

In every case so far, the goal description has been only partially
specified: to actually realize the widget requires a third piece, $Peg1.
The system must decide what other piece(s) are involved in the
construction of the assembly. This is accomplished by matching
constraints attached to the newly acquired plan to the extra pieces in
the workspace, constraints derived automatically by the system during
generalization. These constraints are based on the function the
unspecified piece(s) plays in the mechanical assembly.

In the next example, a physically different widget is constructed
displaying the same functionality as our original widget. Consider the
initial state of Figure 2.32. The workspace contains three new pieces as
well as $Peg1 and $Block1 from the previous example.

(1) $Washer2 is a small, flat, square washer with a large round hole.
It is lying on $Blockl at the far right of the workspace.

(2) $Peg3 consists of a cylindrical shaft with a slightly larger
cylindrical head. It is also lying, shaft pointing upwards, on top of
$Blockl, just to the left of $Washer2. Note that the shaft of $Peg3
is fatter and shorter than the shaft of $Pegl.

(3) $BoredCylinderl is much like $BoredBlockl, except that the hole
is bored into a large cylinder instead of a large block.

Scenario 29

The system is given

$RevoluteJoint($Washer2, $BoredCylinderl)

as the functional goal specification. By applying the generalized plan
just acquired, the system is able to plan the assembly sequence for this
never-before-seen new widget. Also note that the goal specification is
once again incomplete, as it is missing any reference to any peg, much
less $Peg3. The selection of $Peg3, over the other unused pieces in the
workspace ($B1ockI or the training example's $Pegl), is based on
constraints derived from the function of the original widget. These
functional constraints are translated into necessary physical
characteristics that constrain the peg choice. The I8-sequence plan
generated by the system is illustrated in Figures 2.32 through 2.38.

J .: . ---.

... -----------------

~--------------

Third Alternate Initial State for Widget Assembly Problem

The robot gripper is located in the center of the picture with fingers closed. $Bored
Cylinderl is to the left, with $Pegl stacked on top of it. $Peg3 and $Washer2 are stacked
(from left to right) on top of $Blockl on the right side of the workspace.

Figure 2.32

30 Machine Learning of Robot Assembly Plans

~

rr II

r---r
L-___

1 1
--. '- ~ I.- -'

.. ..--- ----.,
\, ..•..........•....

~-------~ .• ---------------_.
$MoveTo, $Open, $Translate, $Close

The $MoveTo and $Open leave the gripper facing the shaft of $Pegl with fingers opened.
The $Translate and $Close cause the gripper to grasp $Peg! by diametrically opposed
spots on the shaft.

-.. ----------------~~.
.. _--------------

Figure 2.33

$MoveTo

1'1.- :J '. "--.

\"'"
~-------~

The $MoveTo positions $Peg! at the left rear of the workspace.

Figure 2.34

Scenario

~'--1-J--~
'-----

. -.-----------------
.~-.---------------

1'1.; J

....
\, .L-______________ ~

$Open, $Translate, $MoveTo

31

The $Open and $Translate drop $Pegl, while the subsequent $MoveTo positions the
gripper facing $Washer2,

Figure 2.35

-.-.-._-

\"'" L-________________ ~ .--------------.

$Translate, $Close, $MoveTo, $Open, $Translate, $MoveTo

$Translate and $Close accomplish the grasping of $Washer2, The $MoveTo positions
$Washer2 on top of $BoredCylinderl. $Open and $Translate drop $Washer2 and back
away from it, while the last $MoveTo leaves the gripper facing the head of $Peg3,

Figure 2.36

32

IT

--.------------~--.

"-'. -~-----

Machine Learning of Robot Assembly Plans

...... ,......-------+-._ :::.,.

\

~---------~

,Translate, ,Close, 'MoveTo

The $Translate and $Close grasp $Peg3 by diametrically opposing points on its cylindrical
head. The 'MoveTo positions $Peg3 above $Washer2.

Figure 2.37

...........

------- ---. \..... . •...•... , ..
.L-_____________ ~

.-._--------------

,Translate

The fiDal $Translate accomplishes the insertion of $Peg3 through $Washer2 into $Bored
CyliDderl.

Figure 2.38

Scenario 33

The important points to note are

(1) The generalized plan is insensitive to initial piece placements.

(2) The system can generate plans for complex initial piece
placements, such as in Figure 2.22.

(3) The plans generated by the system ignore extra pieces in the
workspace, even if the training example contains such useless
dependencies (see initial state of Figure 2.16).

(4) The system generates plans that contain only necessary steps, even
if the training example contains useless extra steps.

(5) The system is cognizant of the operational efficiency of the plan: it
attempts to generate an efficient assembly sequence, often
improving on the observed plan.

(6) The system can generate assembly plans for assemblies which are
functionally similar, yet physically different, as demonstrated by
the widget of Figure 2.32.

(7) The system generates constraints that can be used to guide the
completion of missing information in the goal specification. These
constraints on physical characteristics of the pieces involved in the
assembly are derived from functional considerations.

Chapter 3

Explanation-Based Learning

The mechanism by which the ARMS system increases its planning
ability belongs to that category of machine learning known as
explanation-based learning (hereafter EBL) [2-6]. Explanation-based
learning is a fairly recent addition to the machine-learning toolbox;
relatively few systems have been implemented, and most are small
prototypes.

In this chapter we examine previous research in machine learning,
introduce the EBL paradigm, and prepare a framework for discussion of
the ARMS system.

3.1. Similarity-Based Learning

Initially, machine-learning research focused primarily on
similarity-based learning (SBL) systems, i.e., systems which rely on
inductive inference for generalization [16]. Systems using these
techniques are particularly well suited to classification tasks, where the
goal is to determine whether or not an example belongs to a given
solution class. Classification tasks can be contrasted with problem
solving tasks, or those tasks characterized by the application of a series
of operators to cause changes in the state of the system's domain.

3.1.1. Applying SBL to Classification Tasks

A good example of a classification task is medical diagnosis [17].
The system generates a rule to be used for classifying future examples
on the basis of a training set of correctly classified examples. Each
example is described using a feature set of attribute/value pairs. Given
a large and varied enough training set (e.g., case records and correct
diagnoses), performance of such correlational learning systems in
classifying new cases can actually exceed that of rules derived manually

36 Machine Learning of Robot Assembly Plans

in collaboration with a human expert [18]. It was precisely this kind of
system that provided the impetus for machine-learning research in its
early years.

There are, however, a number of assumptions implicit in SBL:

(1) The training set must be a representative sample of the underlying
process that will generate future examples presented for
classification. By preselecting members of the training set from a
larger set based on some difference metric and by increasing the
size of the training set itself the accuracy of the rule increases.

(2) The training set must be correct. Most SBL systems do not tolerate
noise or inconsistent training sets.

(3) The feature set must be large enough to discriminate between
positive and negative instances of the concept.

(4) Correlational evidence is sufficient for the inductive step, and
explicit causal relations are not generally considered. In some
cases the quality of the generated rule may rely on the presence of
negative training instances along with positive training instances.

As noted above, the performance and accuracy of the induced rule
increases with the sizes of the training set and the feature set.
Unfortunately, these increases have an adverse effect on the time
necessary to induce a rule that adequately classifies the examples. For
the more naive algorithms, this measure increases as the product of the
feature set size and a combinatorial function ofthe training set size [19].

By adding heuristics to the induction algorithm (at the expense of
the global optimality of solutions), the complexity can be reduced,
although this makes any complexity analysis difficult. Empirical
evidence, at least, lends credence to the claim that the addition of
heuristics allows the complexity to approach linear growth with the
product of the feature set and training set sizes [20].

It is possible to reduce an SBL system's dependence on having a
training set that has been classified completely correctly. Most current
SBL systems encompass some sort of probabilistic mechanism to reduce
this sensitivity to noise in the training set [21].

One of the problems with classical SBL techniques is the inductive
leap problem described above. Consider, for example, attempting to
induce a rule that describes a classification of "terrorist" on the basis of
accounts of terrorist acts. Further assume that, in every case, the
terrorist carried a gun and wore blue jeans. Since the correlational
evidence for these two features is identical, a naive system would have
no reason to prefer one discriminating feature over the other.

Explanation-Based Learning 37

There are two ways out: one is to include a constraining instance in
the training set (e.g., terrorist with gun but without blue jeans), or else
rely on what the system knows about the domain (terrorism) that makes
guns relevant and blue jeans less so. This reliance on domain
knowledge is crucial for guiding the inductive step. Naturally, in some
domains no adequate domain theory exists to explain why things work
the way they do: in these cases reliance on correlational evidence is the
only current solution.7 This example illustrates the utility of domain
knowledge in creating proper classifications: the importance of domain
knowledge increases when considering non static tasks such as those
presented in problem-solving domains.

3.1.2. Applying SBL to Problem-Solving Tasks

Up to now we have considered SBL in the context of classification
tasks: how can SBL techniques be applied to problem-solving tasks?

The common approach to problem-solving tasks is to apply a weak
method: a domain-independent method that searches for a path from a
given initial state to a given goal state. Consider the problem space as a
tree rooted at the initial state, where each node is a world state and
each link is a possible operator applied to that world state. A weak
method is a way to traverse the tree from the root to the goal leaf in the
tree. Most search strategies (e.g., breadth-first, depth-first) are weak
methods.

The combinatorial explosion refers to the growth in the size of the
search tree that is linear with the number of possible operator
combinations, and therefore exponential with the number of operators in
the system. This characteristic precludes the use of weak methods for
any but the smallest of search spaces.

How can SBL be used to improve the performance of a weak
method problem solver? By modifying a weak method to use a domain
dependent evaluation strategy, the path taken down the tree can be
directed along the paths most likely (as determined by our evaluation
function) to lead to the goal. This reduces the need for backtracking and
therefore increases the efficiency of the search. Best-first search is an
example of such a heuristic method that retains full backtracking
capability. Beam search provides only limited backtracking capabilities,
and in the trivial case (hill climbing) removes backtracking capability
altogether. Building good domain heuristics is not an easy task;
however, by using SBL to induce the heuristics for operator applications,

7 There has been some work in extending and/or correcting naive domain
theories (22].

38 Machine Learning of Robot Assembly Plans

it is possible to improve the performance of the weak method.

Indeed, this is exactly the approach taken by [23,24] in the domain
of symbolic integration. The system examines the tree produced by a
weak-method problem solver as it searches for a solution and induces
new application heuristics for the operators. If the heuristics learned are
perfect, e.g., if they lead directly to the goal without ever examining a
bad branch, the performance of the search is linear in the number of
operators that must be applied.

Approaching linear behavior requires the most effective heuristics
possible. The success of the system relies on examining a large number
of training instances. Negative instances correspond to the
unsuccessfully expanded nodes in the search tree. If the system is
examining a search tree produced by a weak-method problem solver (as
in [23,24]) this does not present a great problem: the weak-method
problem solver will undoubtedly examine some bad branches that can
then be used as negative instances. These serve the same purpose as
the constraining instances described before: they keep the system from
overgeneralizing or from making the wrong inductive leap.

All is not well, however. One of the problems with the SBL
approach to learning in problem-solving domains is that learning from
the search tree provided by a weak-method problem solver is needlessly
limiting. A much more natural source for learning input is the behavior
of an external, more expert, problem-solving agent. Unfortunately, this
means that the necessary constraining instances, that were previously
readily available from the weak-method problem solver, must now be
provided by the external agent. This has the following shortcomings:

(1) Provision of constraining instances is introspective: the external
agent often cannot give such introspective analysis correctly.

(2) Provision of constraining instances is invasive: the external agent
cannot go about his problem-solving tasks without being bothered
by the system. This obtrusiveness may be worse than bothersome:
it may actually degrade the performance of the problem-solving
agent.

There are other problems with this approach as well. Acquiring
application heuristics is not the only learning technique possible for
problem-solving tasks. It is simply the most straightforward when
dealing with SBL methods. In fact, this approach simply reduces the
problem-solving task to a classification task where the object is to
classify a particular operator by its applicability.

Another well-known technique, first introduced by the STRIPS
system [25], involves the acquisition of problem-solving macro operators,

Explanation -Based Learning 39

or MACROPs, that describe a sequence of operators as a single new
operator. This is equivalent to packaging a path through the search tree
as a single operator. This is an efficacious approach that removes some
of the complexity of the planner's search by giving it more powerful
operators to accomplish a goal in a single step. An SBL technique for
learning MACROPs has yet to be developed.

3.2. Learning-Apprentice Systems

At this point we summarize the desirable criteria for a system that
can improve its problem-solving behavior via observation:

(1) The system should not be limited by computational limits on a
weak-method problem solver. It should be able to learn by
analyzing the performance of a more powerful, external problem
solver.

(2) The system should be capable of acquiring useful knowledge in one
trial.

(3) The system should not require constraining instances.

(4) The system should rely on a domain theory, and not solely on
correlational evidence, to guide the inductive step.

(5) The system should be able to acquire not only application
conditions for existing operators, but new macro operators as well.

We term systems which meet these criteria learning-apprentice
systems. Mitchell et al posit the following definition for a learning
apprentice system [26]:

An interactive knowledge-based consultant that directly assimilates
new problem-solving knowledge by observing and analyzing the
problem-solving steps contributed by its users through their normal
use of the system.

While this is an adequate definition, it does not make any statement
about the invasiveness of the system. We prefer to use the following
definition:

A learning apprentice is a system, usually embedded in the software
tools used by a human expert, that gradually increases its own
problem-solving abilities by unobtrusively monitoring and analyzing
the performance of the expert.

3.3. Explanation-Based Learning

Explanation-based systems are being applied to both classification
tasks [23,27] and problem-solving tasks [28-32]. When applied to the
latter, they fulfill the requirements outlined above for a learning

40 Machine Learning of Robot Assembly Plans

apprentice. Explanation-based learning systems are capable of
acquiring knowledge from a single example. Using a domain theory, a
successful problem solution is analyzed in order to explain how the goal
is accomplished. This analysis, or explanation, is then generalized and
used in future problem-solving activity.

The advantages of explanation-based learning are obvious:

(1) EBL requires only a single example.

(2) EBL can learn from a less than optimal successful solution: no
expert teacher is required, just an adequate problem solution.

(3) EBL need not be invasive.

(4) EBL generalizations are correct if the domain theory is complete
and correct.

(5) EBL does not suffer from the inductive leap problem of SBL, which
results from overreliance on correlational evidence.

Thus given a successful problem-solving episode and a complete
and correct domain theory, EBL produces a correct generalization which
covers the problem-solving behavior embodied in the example.
Naturally, should the domain theory not be complete or correct, the
quality of the generalizations produced by the system will suffer.

Consider, for example, a domain theory based on the Bohr model of
the atom.8 The Bohr atom is an adequate model that accounts for many
atomic properties, such as the binding together of various atoms. It is
not a correct model, but rather a naive model: as such, it would produce
adequate explanations (and hence generalizations) for those phenomena
which do not rely on the quantum mechanical properties of the atom.
Much work in AI is devoted to the development of such naive process
models [34,35].

Some domains are less amenable to EBL than others. The medical
diagnosis system described briefly above is a good example of a system
in just such a domain. Our domain theory for, say, diseases of the blood
is very limited: a real understanding of the causality involved in the
various diseases and their chemical treatment is currently beyond
medical science. In such domains, it is more reasonable to revert to SBL
techniques that do not require a causal domain theory.

3.4. A Prototypical EBL System

The Prototypical Explanation-Based Learning System (hereafter
referred to as PEBLS) as shown in Figure 3.1 consists of two elements

8 This example borrowed from [33].

Explanation -Based Learning 41

that do not operate concurrently: a performance element and a learning
element. Both access domain knowledge contained in the schema
library.

A schema [36-39] is a chunked knowledge structure that
represents the system's generalized knowledge about a particular
concept or topic. Schemata are used to represent, among other things,
the operators that may be applied to the system's domain.9 Each
operator effects changes in the current state of the world. The current
world state is described by a collection of state schemata that are partial
descriptions of the world state, each representing a particular relation
that holds in the current context. The relations expressed are often
between descriptors, that represent a static concept (such as a physical
object).

Recall that an explanation-based learning system observes
examples of problem-solving behavior. This problem-solving behavior
may be that of the system's own performance element or that of an
outside expert. If the system observes its own behavior (usually from a

Goal spJJlication

I G"n~~:==~I'~
Causal Model - Under stander - Schema iLibrary - Planner

Input Operations

Learning
Element

Output Operations

Performance
Element

Prototypical Explanation-Based Learning System (PEBLS)

Figure 3.1

9 Also sometimes termed actions or el'ents in the planning literature.

42 Machine Learning of Robot Assembly Plans

weak-method problem solver), it can be termed a closed-loop learning
system. If, on the other hand, the system learns by observing another
problem-solving agent's performance we call it an open-loop learning
system.

3.4.1. The Performance Element

The performance element applies known schemata towards the
solution of a given problem. The problem is specified as a goal state to
achieve, as well as the initial state from which to achieve it. The
performance element provides a benchmark for learning. to

The performance element consists of a single module, the planner.
Using known schemata, the planner supplies a sequence of operators to
achieve the specified goal starting from the initial world state. The
planner is a heuristic problem solver, often of the kind referred to as a
schema planner.

Operator schemata in the schema library are indexed by the
goal(s) they achieve. By dividing the task up into subgoals, and
recursively applying operator schemata from the schema library, the
planner eventually bottoms out at the primitive operator level.

In some systems, the planner also serves another function. Instead
of observing human problem-solving behavior, the learning element
observes solutions generated by the performance element using more
traditional weak methods (i.e., search). This allows the system to
function as a closed loop: it provides its own observed problem-solving
episodes, often generated at great computational expense, from which it
learns new schemata. These new schemata then permit the system to
solve similar problems at a far smaller computational expense. Note
that for closed-loop systems, the entire structure generated by the
performance element is handed over to the learning element: there is no
need to reconstruct a causal model on the basis of the primitive operator
sequence when the entire trace produced by the problem solver is
available for use as a causal model.

3.4.2. The Learning Element

The learning element consists of two modules: the understanderll
and the generalizer. Input to the learning element consists of an initial
state, a goal state, and an observed sequence of operators that transform

10 The performance element is by no means the only benchmark for learn
ing. It is quite possible to construct an explanation-based learning system with
no performance element: learning in such a system would be demonstrated by its
improved explanation-construction ability.

Explanation-Based Learning 43

the former into the latter.

3.4.2.1. The Understander

The understander is the module that observes examples of
problem-solving behavior. Its task is to construct a causal model of the
observed input, from which a causally complete explanation of how the
observed sequence accomplishes the goal state is derived.

The construction of the causal model involves the application of
domain knowledge from the schema library. To do this, the
understander must decide if a given schema from the schema library is
applicable in the current context. The applicability of a given schema is
determined by checking that schema's application conditions.

The reader should note that as the number of schemata in the
schema library increases, the selection of relevant schemata and the
checking of their application conditions holds the potential for
combinatorial explosion. This is often referred to as the schema (or
frame) selection problem. Avoiding this combinatorial pitfall is the
subject of much work in AI [37,40-42]. The strategy chosen to address
the selection problem in the understander is termed the schema
activation procedure.

Once a particular schema is deemed applicable, an instance of the
schema is added to the causal model under construction. During this
instantiation process a copy of the abstract schema from the schema
library has its slots filled and is then connected, using appropriate links,
with the rest of the causal model.

3.4.2.2. The Generalizer

The generalizer takes as its input the causal model constructed by
the understander and produces a new schema. Before learning can take
place, an explanation must be derived from the newly constructed causal
model. Since an explanation is defined with respect to the goal that it
accomplishes, some goal must be chosen with which to derive the

II Apologies to McDermott:

We should avoid, for example, labeling any part of our programs an "under·
stander." It is the job of the text accompanying the program to examine careful·
Iy how much understanding is present, how it got there, and what its limits are
[8].

In this case, the alternate terms justification analyzer or causal model builder,
while perhaps more acceptable from McDermott's point of view, conflict with our
goal of descriptive simplicity. We choose to stick to the simpler, more intuitive
terminology even at the risk of fooling ourselves.

44 Machine Learning of Robot Assembly Plans

explanation. In the PEBLS system of Figure 3.1, the goal is initially
specified by the expert. In some domains it may be practical to specify a
set of general goals so that no explicit goal specification need take place:
the generalizer simply looks for instances of this goal set that are valid
during the course of the observed episode and uses these instances as
goals.

Given a goal and a causal model, the first step is to verify that the
observed episode achieves the specified goal. It is the verification process
that requires application of the domain theory. The crucial step of the
verification process is the determination of which parts of the causal
model contribute to the realization of the specified goal.

Once the goal has been verified, the generalizer must determine if
it is worthwhile learning from the episode in question; i.e., whether it
meets the learning criteria.

If the learning criteria are met, the generalizer may proceed to
extract an explanation from the causal model, using relevance cues
determined during the verification process. The generalizer can now
proceed to build the new schema. Note that if the generalizer has more
than one goal, these can be treated orthogonally, and thus several
explanations may be derived from a single causal model. In these cases,
more than one explanation may imply more than one new schema. This
may be practical for those domains where .the expert does not explicitly
specify the goal.

Given the explanation, the generalizer now builds a new schema.
There are three different strategies available for the generalizer:

(1) Generalization describes the process that takes an explanation
derived from a particular instance of problem-solving behavior and
yields a new schema that is a more abstract version of the
explanation. The assumption is that the new more abstract schema
will be applicable to situations other than the original observed
situation. The actual process used differs substantially from system
to system, but it is important that the explanation somehow be
used to guide the construction of the new schema.

(2) Specialization describes the process where a more constrained
version of a known schema is constructed and added to the schema
library. It is important that the explanation be used to impose
constraints on the more general schema to produce a useful
addition to the library. A useful addition is usually one that can be
applied with less effort by the performance element than the
originally known schema, thus producing a gain in efficiency. Note,
however, that the new schema is still subsumed by the more
general, pre-existing, schema.

Explanation-Based Learning 45

(3) Refinement refers to the process where a known schema is modified
and replaced in the schema library. Such modification is based on
the explanation constructed by the understander using the original
schema. Note that, unlike specialization, the new schema is not
subsumed by the original schema.

The generalizer must build more than just the new schema: each
schema must also have a set of application conditions for use by the
u~derstander, as well as indexing pointers for use by the planner.
Construction of a new schema requires establishing these sets of
conditions, while refinement considers modifying an existing schema's
application conditions.

If the newly generated schema meets the retention criteria, then it
is integrated with extant schemata in the schema library. The new
schema is now available for use by the performance element as well as
by the understanding element when constructing other explanations.
Continued use of the system would result in monotonic growth of the
schema library. To keep the library at a manageable size, replacement
criteria might be used in order to determine which existing schema is
replaced by the new entry.

3.5. Issues for EBL Systems

There are several questions that can be asked about explanation
based systems that can help us to distinguish between the various
approaches embodied in each different implementation, They are

(1) Does the system build the explanation? The explanation could be
built by the understander, or, if it is a closed-loop system, the
explanation can be a by-product of the performance element's
search behavior. Alternatively, some systems require that the
explanation be built by the teacher and input in its entirety.
ARMS costructs its own explanations using a novel non predictive
understanding process (see Section 5.3.1).

(2) How does the system do explanation-based learning? Does the
system use generalization, specialization, and/or refinement? The
ARMS system uses some form of specialization (see Section
5.3.2.l.2) as well as generalization (see Section 5.3.2.3).

(3) What are the learning criteria? Are all problem-solving inputs
eventually passed to the generalizer? The ARMS learning criterion
states that any example not initially analyzable by the system is
worth learning from (see Section 5.3.2.1).

46 Machine Lea.rning of Robot Assembly Plans

(4) Does the system acquire new schemata? How does this learning
process rely on the explanation? ARMS acquires new schemata by
generalizing the explanation (see Sections 5.3.2.2. and 5.3.2.3).

(5) What are the retention criteria? Is every new schema produced by
the generalizer retained? ARMS retains everything it learns (see
Section 5.3.2.4).

(6) Does the system learn application conditions? Does the system
refine the application conditions of existing schemata? ARMS
learns application conditions (Section 5.3.2.5) but does not perform
any form of schema refinement.

(7) Does the system perform unguided search in learning? The use of
unguided search in learning is not the same as doing search in the
performance element. If the system is a closed-loop system, the
performance element may very well do search in generating new
problem-solving episodes. This is an orthogonal issue and should
not be confused with the use of search in the learning process.
ARMS is an open-loop system that does not perform any unguided
search in learning.

(8) Does the system make the closed-world assumption? The closed
world assumption holds that if the proposition P cannot be proven
to hold true then the NOT(P) must be true. The ARMS
implementation does not rely on the closed-world assumption (see
Section 8.1.1).

(9) Does the system make the STRIPS assumption? The STRIPS
assumption holds that all operators change none of the program's
beliefs except those explicitly listed in the operator description.
The ARMS implementation does not rely on the STRIPS
assumption (see Section 8.1.1).

Chapter 4

The Arms W or ld

The ARMS system is an open-loop, explanation-based learning
system with an architecture very much like that of the PEBLS system.
It has two main components: a learning element and a performance
element. Both of these components manipulate, through a symbolic
representation stored in the database, some problem-solving domain (see
Figure 4.1). In Chapter 5, we discuss the symbolic representation and
the learning and performance elements; but first, in this chapter, we
describe the problem-solving domain.

Ideally, this domain should consist of real-world pieces in a real
world workspace being moved around by a real-world robot arm. As one
might expect, this approach entails solving a great number of equally
real engineering problems, that, albeit interesting in their own right,
are not terribly relevant to AI or machine learning.12

In order to sidestep these engineering problems, a program was
written to simulate a robot arm moving through a simulated workspace.
In this fashion, many of the hard engineering problems (arm control,
kinematics, sensors, path planning, tolerances, etc.) are avoided,

12 The current ARMS implementation was used to drive a MicroBot
Teachmover(tm) five degree of freedom robot arm with moderate success. One
immediate problem was due to the low accuracy and repeatability of this inex
pensive hobbyist robot arm: a problem exacerbated by the workspace state un
certainty problem discussed in Chapter 8. This difficulty notwithstanding, the
experience was, over all, encouraging. Many problems were due to the missing
sixth degree of freedom: the ARMS primitive robot arm command set assumes
the real robot arm has at least six degrees of freedom. [43] presents a detailed
discussion of this real-world experiment, the problems encountered, and a local
planning system devised to map the ARMS primitive robot arm command set
onto the five degrees of freedom arm.

48 Machine Learning of Robot Assembly Plans

___ G_O_al.,spr~
....---- Generalizer 1

Causal Model - Understander - Schema Library - Planner

L~g-d III
~----- HistDry

III
Emulator Output Operations

III
Input Operations

L-L_e_a __ r_n_i_n_g _____________ M~Odl·e~le_r ____ p_e __ r_f_o~r=mm~a=n~c~e~ L Elemment . _ Element

The ARMS Architecture

Figure 4.1

allowing us to concentrate on machine-learning issues. Using this
approach, the translation from the simulated world into the internal
representation is not subject to sensor problems, in effect creating the
perfect sensory system with complete knowledge of the real (emulated)
world.

We begin our discussion with a description of the idealized
simulated world. We then describe the structure of the simulation
program and its logical subdivision into a modeler, an emulator, and a
history mechanism.

4.1. Characterizing the Robot World

We can characterize the idealized robot world by describing its
physical components and a domain theory. The three physical
components of the idealized world are

(1) a collection of pieces, some of which are used in the assembly;

(2) a workspace that provides a surface on which the pieces may rest;
and

The Arms World 49

(3) a robot arm, capable of moving about the workspace and
manipulating the pieces.

4.1.1. The Pieces

A piece is a rigid solid object that has no moving parts. A piece is
always supported by another piece, the workspace, or (when being held)
by the robot arm. In our idealized world, each piece has one and only
one supporter, although a piece or the workspace may support more
than one other piece.

Different pieces can be combined to form assemblies by inserting
parts of one piece into holes on another. Depending on the relative sizes
and shapes of the inserted portions, these assemblies exhibit different
mechanical behaviors. This behavior is described by the domain theory
described below in Section 4.1.4.

4.1.2. The Workspace

The workspace is little more than a table top on which the pieces
may rest. It may support any number of pieces, which in turn may
support yet other pieces stacked on top of them.

4.1.3. The Robot Arm

The robot arm is a positioning device that can place its end effector
at any location and orientation within its workspace envelope. The end
effector in the ARMS domain consists of a palm and two fingers
configured as a gripper. The position of the gripper is measured at the
point (called the hot spot) that lies directly between the two fingers (see
Figure 4.2).

As mentioned briefly in Chapter 2, the robot arm responds to the
following five primitive robot arm commands:

(1) Open: Open the gripper fingers to their maximum aperture.

(2) Close: Close the gripper fingers as far as possible, stopping when
they meet or when any intervening piece obstructs further
movement.

(3) Translate (unitVector, delta): Move the gripper from its present
position in a straight line along the given axis by delta units while
maintaining the orientation of the gripper (see Figure 4.3).

(4) Rotate (unitVector, theta): Rotate the gripper about the given axis
by theta degrees while maintaining the current location of the
gripper (see Figure 4.4).

50 Machine Learning of Robot Assembly Plans

Palm

\

+
'HotSpot I

Finger

ARMS Gripper

Figure 4.2

Translate (unitVector, delta)

Figure 4.3

The Arms World 51

~ ----- -,
---J

Rotate (unitVector, delta)

Figure 4.4

(5) MoveTo (newPosition): Move the gripper from its current position
to new Position along any collision-free path. Note that newPosition
specifies both the location and orientation of the gripper hot spot
(see Figure 4.5).

While this command set is not that of any particular industrial
robot arm, it is fairly representative. Note that nearly any arm
possessing the minimum requisite degrees of freedom (six plus gripper)
can be made to implement these five commands, at least within some
restricted workspace envelope.

The implementations of the gripper commands Open and Close on
a real robot arm are quite straightforward, since neither one of these
commands requires changing the position of the arm in space. The other

n

f~ -1:.-:::;:
--J

MoveTo (newPosition)

Figure 4.5

52 Machine Learning of Robot Assembly Plans

three commands, however, entail repositioning the gripper, and
therefore, their implementations require computing an arm trajectory.

Computing a trajectory for a robot arm implies

(1) finding a path through space for the gripper, the arm linkages, and
any object being held by the gripper such that collisions are
avoided, and

(2) calculating the motor control voltages necessary to move the
gripper along this path.

For a given robot arm geometry, the kinematics of this control
problem are well understood [44]. Solving the kinematic formulae for a
given trajectory is fairly straightforward, albeit computationally
intensive.

If there are no obstacles to avoid, a MoveTo requires a single
kinematic solution. Each motor is then servoed to its final position,
resulting in an uneven path as measured at the end effector. This type
of movement is termed joint interpolated motion in the robotics
literature.

To produce smooth motion, such as that required by a Translate or
Rotate, intermediate kinematic solutions must be computed. Each
motor is servoed to successive intermediate positions. Note that the cost
of computing the kinematic solution grows with the number of
intermediate solutions calculated.

Given this analysis, we conclude that Translate and Rotate are
generally more expensive commands since they may require many
intermediate positions. A MoveTo, barring collisions, requires only a
single kinematic solution. Since Translates and Rotates also require a
minimum of one kinematic solution, it is reasonable to assume that a
MoveTo is always more efficient than a Translate or a Rotate.

Finding a collision-free trajectory is still, however, a difficult
problem. Much effort has been devoted to this problem by the robotics
community [45,46]: ARMS assumes that a collision-free path can be
found, but does not do so.

Finally, we note that this model makes no provision for the use of
tactile or force feedback from the robot arm. All sensory information
required by the database in order to construct and maintain its symbolic
representation of the world comes via our perfect sensory capability, and
not via the robot arm itself.

The Arms World 53

4.1.4. The Robot World Domain Theory

The domain theory is a naive kinematic theory that attempts to
account for relative piece motions. It describes the aggregate behavior of
individual pieces when they are put together into assemblies. It is
loosely based on [47].

We define a link to be a rigid solid body, with an arbitrary number
of Cartesian coordinate systems, or hooks, affixed to the solid to serve as
reference points. A joint relates two links by specifying a hook from
each link together with a parameterized transform giving the legal
relative positions between hooks.

The number of independent variables in the transform indicates
the number of degrees of freedom in the joint. A degree of freedom
describes one type of allowed motion. It may be either prismatic or
revolute, and must give both upper and lower limits for the motion it
allows. Two unrelated (and therefore unconstrained) pieces have six
degrees of freedom between them: three revolute and three prismatic.
The prismatic degrees of freedom are all orthogonal, as are the revolute
ones. Two rigidly constrained bodies have zero degrees of freedom
between them.

We can construct a taxonomy of joints based on the degrees of
freedom they allow. Some of the common joint types are

RigidJoint - zero degrees of freedom.
PrismaticJoint - one prismatic degree of freedom.
RevoluteJoint - one revolute degree of freedom.
CylindricalJoint - one revolute and one prismatic degree of freedom.
UniversalJoint - two revolute degrees of freedom.
SphericalJoint - three revolute degrees of freedom.
NullJoint - all six degrees of freedom.

It is important to realize that there are only a finite number of
combinations of degrees of freedom possible, and, therefore, only a finite
number of joint types. However, there may be many different ways to
physically implement a particular joint.

Each degree of freedom has a range that indicates the values the
corresponding variable may assume. The range is bounded on both sides
by one of two types of bounds:

(1) A hard bound corresponds to a physical limit imposed by the
mechanism. Such a bound occurs when two surfaces collide. For
example, imagine a square tab sliding back and forth in a slot: a
hard bound on either end limits its travel.

(2) A soft bound corresponds to a limit that may be physically
exceeded by the mechanism, but if exceeded will cause the joint to

54 Machine Learning of Robot Assembly Plans

fail. A soft bound would occur when the tab mentioned above is
pulled straight out from the slot.

An open kinematic chain is a transitive relation between two pieces
not directly related in a single joint. Such a chain may span two or more
simple joints to form a composite joint. For example, consider the
widget of Chapter 2. The widget can be characterized as a revolute joint
between the washer and the block. Closer examination, however,
reveals that this revolute joint is a combination of two subjoints: a
cylindrical joint between the washer and the peg, and a rigid joint
between the peg and the block.

4.2. Simulating the Robot World

The computer program that simulates the ARMS world can be
divided, for the purpose of this discussion, into three convenient
elements.

(1) The solid modeler is used to represent the state of the world at any
given time.

(2) The emulator takes a world snapshot and a robot arm command
and computes a new, updated, snapshot of the world illustrating
the effects of the executed arm command.

(3) The history mechanism maintains and indexes each of the
workspace snapshots, permitting complete access to each world
state over time.

4.2.1. The Solid Modeler

In this section we describe the solid modeler and how it is used to
represent the world state at a given time. The modeler provides a
means for representing static snapshots of the ARMS domain. Each of
the three physical components of the idealized robot world (pieces, robot
arm, and workspace) is represented in a solid modeling paradigm. The
modeler supports certain static relations between these components,
such as determining what each piece is resting on. In addition, the
modeler provides for graphic display of the current state of the domain.

The ARMS modeler is a simplified hybrid modeler: a cross between
a constructive solid geometry (CSG) and a boundary representation
(BRep).13 The system supports two primitives, the block and the right
cylinder. Instances of these primitives, of varying dimensions, are put
together with CSG combination operators to produce pieces. Only two

13 For a review of constructive solid geometries and a description of the
terms used in describing the ARMS modeler, see Appendix A.

The Arms World 55

combination operators are supported:

(1) The disjoint-union operator joins two primitives surface-to-surface.
This is a restricted form of the general union operator where the
primitive pieces must abut with no volume overlap (see Figure
4.6). One can think of this operator as adding a solid primitive
onto another, abutting, solid primitive.

(2) The contained-difference operator removes one primitive from
another. The primitive being removed must share at least one
surface with the larger primitive, and its volume must be totally
contained in the larger primitive (see Figure 4.7). This is also a
restricted form of the general difference operator. One can think of
this operator as removing a nonsolid primitive from a different
(solid) primitive with a shared surface.

+ c=J- II

Disjoint Union Operator

Figure 4.6

D [

Contained Difference Operator

Figure 4.7

56 Machine Learning of Robot Assembly Plans

Restricting the modeler to these two operators simplifies the eSG
to BRep conversion. As the eSG combination operators are used to
specify pieces, the pieces' BRep surface set is constructed by simple
manipulations of its constituent primitives' surface sets. For the block,
these are the six rectangular planar surfaces. For the cylinder, there
are two round planar surfaces and a single exterior cylindrical surface.
We thus replace the potentially expensive eSG to BRep conversion
algorithm with a simple filter function that operates on the union of
surface sets of the constituent primitives (see Section 6.4.1.4).

Once the pieces are created, they are added to a new static model
of the ARMS domain. This static model, called a workspace model,
contains pointers to modelers' representations of every piece in the
workspace, the model of the robot arm, and the representation of the
table top (a planar surface).

Each piece has assigned to it an initial position and orientation in
the workspace. In addition, the modeler computes what the piece is
resting on, using a simple piece support algorithm.

The algorithm for determining piece support is somewhat naive.
Basically, support is determined by dropping a plumb line from the
center of mass of a piece. The surface on the piece intersected by this
plumb line which is furthest from the center of mass is the support
surface. Support is provided by the supporting surface in contact with
the support surface that also intersects the plumb line.

The solid modeler also provides support for simple graphic display
of the workspace. The ARMS graphic package provides wireframe 3D
perspective projections of the workspace contents. No hidden-line or
hidden-surface removal is provided. All of the workspace figures in this
book are produced by this graphics package.

Once a set of wireframes has been produced for a particular scene,
a perspective projection of the line segments from the wireframes is
created. This projection relies on a projection transform that depends
only on the position and angle of the viewer. We can simplify this
transformation by relying on the following simplifying assumptions:

(1) The camera (viewer position and angle) and the workspace are
assumed to occupy distinct halfspaces.

(2) The plane separating the two halfspaces is the projection plane;
e.g., analogous to the screen in a movie theater (Figure 4.8).

The first assumption eliminates the need for a clipping algorithm.
This reduces the computational costs of projecting the image onto the
projection plane. The disadvantage is that the camera cannot be moved
behind or over the workspace to get a different view of the action.

The Arms World 57

Workspace Camera Halfspace

Projection Plane

Projection Halfspaces

Figure 4.8

The second assumption simplifies the mathematics and increases
the efficiency of the graphics package by reducing the number of matrix
calculations. On the other hand, the disadvantage is that as the camera
moves away from a centered position, the image becomes more and more
distorted. Just as in a movie theater, it is best to sit in the center seats,
and not on either side.

4.2.2. The Emulator

Given the workspace snapshot W t at time t, and a robot arm
command, the emulator constructs the next workspace snapshot W t + 1.
Note that the emulator's task definition presupposes a notion of time:
ARMS employs a simple temporal model that assigns a single unit of
time, or a tick, to every robot arm command. Given this task
description, we can divide the emulator's job into two subtasks:
computing the effects of the robot arm command on the robot arm, and
computing any side effects of the arm's motion on the pieces in the
workspace.

4.2.2.1. Moving the Robot Arm

In Section 4.1.4, we described the command set for the idealized
ARMS robot arm. For each of the commands, we implement a procedure
that computes the new position and orientation of the arm from its
current state and the command parameters. In order to simplify the

58 Machine Learning of Robot Assembly Plans

implementation, we make the following assumptions:

(1) The primitive commands are not decomposable in time: we assume
the arm instantaneously executes each command.

(2) No collision detection or avoidance is performed by the modeler,
except in the case of the Close command that checks for contact
with pieces.

The first assumption does not cause any problems with Open,
Close, or MoveTo, since intermediate positions assumed by the arm in
the course of executing these commands are never relevant. In the case
of Translate and Rotate, however, intermediate positions assumed by
the robot arm may be crucial to the semantics of the command. The
second assumption implies that any collision avoidance, however
limited, must be implemented at the schema level.

4.2.2.2. Modeling RobotlPiece Interactions

The only robot/piece interaction supported by the emulator occurs
when the robot arm is used to grasp and move a piece. We make the
following simplifying assumptions:

(1) The arm can manipulate only one piece at a time.

(2) A piece cannot be manipulated if it is providing support for any
other piece in the workspace.

(3) Contact between the gripper and a piece is assumed to be perfect:
the piece is never allowed to slip while being held between the
fingers.

(4) The gripper contacts are modeled as two points, one on the end of
each finger. For a finger to be in contact with the surface of a
piece, it is sufficient for the contact point to be on the surface.

(5) A piece can only be grasped by opposing surfaces that belong to the
same CSG primitive. As an illustration, consider the illegal
grasping strategy shown in Figure 4.9. Note that the two contact
surfaces belong to two different CSG primitives.

(6) When a piece is dropped by the robot arm, it must receive support
from either another piece or the workspace itself.

The first two assumptions together prohibit the robot from moving,
for example, a stack of blocks. This assumption could conceivably be
relaxed a bit in order to allow the robot arm to manipulate, under
certain constraints, all of the pieces that belong to the same mechanism
at once. This would allow the arm to move the entire widget assembly of
Chapter 2 as a unit.

The Arms World 59

Example of Illegal Grasping Strategy

Figure 4.9

The purpose of the third assumption, and of the first two as well, is
to keep any uncertainty in piece position from creeping into the system.
Such uncertainty might occur when moving an unstable stack of blocks.
Another possible source of uncertainty is for a piece to slip while being
carried by the gripper.

The last three assumptions are the least restrictive, and are
imposed only to simplify implementation of the solid modeler.

As with collision avoidance, any other type of robot/piece
interactions must be implemented at the schema level. For example,
neither the modeler nor the emulator enforce collision avoidance
between the arm and a piece in the workspace, but the schema level
representation provides some minimal collision avoidance behavior
when approaching a piece for grasping.

4.2.3. The History Mechanism

The history mechanism manages the workspace snapshots
produced by the emulator. A naive implementation would be to make a
new copy of the workspace snapshot at each time tick. Although simple
to implement, this kind of strategy is extremely costly in terms of
storage. In fact, the cost of a new copy grows with the number of pieces
in the workspace.

A more storage-efficient history mechanism can be implemented
once one notices that most of the information contained in the snapshot
is invariant from one time tick to the next: e.g., piece sizes/shapes do not
change, only a single piece is manipulated at a time, and once a piece
has been put somewhere, it is likely to stay there for a while. Thus each
successive snapshot records only the changes made from the preceding
snapshot.

60 Machine Learning of Robot Assembly Plans

By using this more efficient mechanism, we see that the cost for
each new snapshot remains independent of the size of the workspace.
The tradeoff is in accessing information. Since each snapshot forms a
new layer over the previous snapshot, accessing information that has
not changed since the beginning of the episode will take time
proportional to the number of layers traversed. In practice, this behavior
can be improved somewhat by relying on domain-specific traits.

In summary, when properly implemented, this history mechanism
is totally transparent: the rest of the system accesses what appear to be
distinct snapshots of each world state. There is, of course, some slight
increase in the access time for certain information that increases
linearly with the number of snapshots. The storage requirements are
vastly reduced when compared to the naive approach. For
implementation details, see Section 6.4.3.

Chapter 5

Learning And Problem Solving

From a machine-learning perspective, the most interesting aspects
of the ARMS system are in the learning and performance elements.
Recall that ARMS is an open-loop, explanation-based learning system
(see Figure 5.1), with learning and performance elements accessing a
symbolic representation of the world stored in the database.

We begin this chapter with a discussion of the symbolic
representation manipulated by the learning and performance elements,
as well as the database mechanism that maintains it. Next, we discuss
the performance element and how it applies extant schemata to achieve
a given goal specification. Finally, we examine the learning element
and how it acquires new schemata by observing an expert's solution to a
given problem.

5.1. Knowledge Representation

In this section we describe the ARMS schema system.l4 Recall that
the ARMS learning and performance elements do not directly access the
real world, but rather shuttle all queries for world information through
a database system. The database system contains data structures, called
schemata, that represent relations and events in the world. We begin
with a description of schema structure, and then discuss the database
system.

14 Appendix B contains a review of some of the more common terminology
used in describing schema-based knowledge representation systems. Appendix F
contains a capsule summary of the schemata initially built into the ARMS sys
tem.

62 Machine Learning of Robot Assembly Plans

Goal SPI JrlCStion

J !~
Generalizer L I

Causal Model - Understander - Schem rary- Planner

LD'It""d
t------ Hiltary ill

Input Operations Eml:llator Output Operations

Mo-r~I~I' Learning Performance
Element Element

~----------------------------~ -----------------~~~~~

The ARMS Architecture

Figure 5.1

5.1.1. The Schema System

We divide ARMS schemata into two main categories: state
schemata that are used to describe relations in the world, and operator
schemata that describe operations that can be applied to the world. The
relations expressed by state schemata as well as the operations
represented by operator schemata often refer to physical objects in the
ARMS world. These physical objects are represented by descriptors, that
are elements of the solid modeling system (see Section 4.2.1).

Implicit in the division of operator vs. state schemata is a naive
temporal model. This model assumes that state schema instances may
be valid over a period of time, while those operator schema instances
corresponding to the primitive robot arm commands are considered to be
instantaneous. This is an adequate temporal model given that there is
only one active agent in the ARMS domain (the robot arm).

5.1.1.1. State Schemata

A state schema is a partial description of the domain. It permits
the system to assert that one particular relation is valid at a given time.

Learning And Problem Solving 63

For example, given the initial state of the training example (see Figure
2.2), it is possible to assert a state schema which corresponds to n$Peg1
is stacked on top of $Washerl.n

Every state schema has two time slots: a start time that gives an
integer representing the first clock tick where this particular instance is
valid, and an end time that gives an integer representing the last clock
tick where this particular instance is valid.

The validity of a particular state schema at a given time must be
determined independently by examining the domain. There are,
however, a couple of special slots on each state schema that can help
confirm the validity of a particular state schema instance.

(1) A state schema may contain a set of schema templates on a
substantiator slot. These state schema templates indicate other
state schemata that must be valid for this state to also be valid.
Validity of all of these state schemata is a necessary, but not
sufficient, condition for validity of the original state schema. This
can be useful if the expense associated in validating the
substantiator is less than that associated with validating the given
state schema itself.

(2) A state schema may contain a set of schema templates on a
contradictions slot. These state schema templates indicate other
state schemata that, if valid, invalidate the current state. As
before, not being able to validate any of the contradictions is a
necessary, but not sufficient, condition for validity of the original
state schema. Again, this can be useful if the expense associated in
attempting to validate the contradiction is less than that
associated with validating the given state schema.

(3) A state schema may contain a set of constraint schema templates
(described below) on a constraints slot. These constraint schema
templates serve to limit what fillers the slots of the state schema
may assume.

There are two special subclasses of state schemata: constraint
schemata and joint schemata.

5.l.l.l.l. Constraint Schemata

A constraint schema is a special type of state schema used to
represent a temporally fixed relationship in the world. Because of this
time invariance, constraint schemata may be treated in a slightly more
efficient fashion by the state database.

A constraint schema contains the special slots Type, Path1, Path2,
and Constant. The Type slot represents some relation that, if true when

64 Machine Learning of Robot Assembly Plans

evaluated with the other arguments of the schema, determines the
validity of the entire schema. The relation may be either unary or
binary. Path! and Path2 represent pointers (or paths of pointers) to
particular slots in the state schema to whom this particular constraint
belongs. Constant contains a pointer to a constant. In the case of a
unary Type, Path! provides the argument. For a binary Type, Path2 or
Constant provides the second argument: hence they must never co-occur.

For example, given a schema $A with slot X, we can constrain X to
have a numeric filler with value less than 5 for all instances $Ai of $A.
We do this by listing the following constraint schema templates on the
Constraints slot of $A:

($ConstraintSchema (Type NUMBERP)
(Path! :X»

($ConstraintSchema (Type LESSP)
(Path! :X)
(Constant 5»

5.1.1.1.2. Joint Schemata

A joint schema is a special type of state schema used to implement
the ARMS domain theory (see Section 4.1.5). It represents the motion
allowed between two pieces in the workspace. In our implementation,
joints are defined between primitives belonging to two different pieces.
They can be characterized by their constituent degrees of freedom.

We divide joint schemata into two distinct types:

(1) Abstract joint schemata contain knowledge that describes the
mechanical behavior of a joint in terms of its degrees of freedom.
These schemata are pre-encoded into the system. While ARMS
does not contain a full set of these schemata, given that only a
finite number of degrees of freedom exist between two pieces, only
a finite number of abstract joint schemata need be built in.

(2) Physical joint schemata contain information about the physical
implementation of the desired abstract joint behavior. Some of
these schemata are also pre-encoded in the ARMS system, but
others (e.g., $RevoluteJointA) are acquired automatically by the
system during the goal verification step (see Section 5.3.2.1.2).

For example, consider the widget described in Chapter 2. We
encode knowledge about the expected function of the joint in the
abstract joint schema $RevoluteJoint. This knowledge indicates that the
joint will permit one revolute degree of freedom between the two base
pieces of the assembly. But this tells us nothing about how the

Learning And Problem Solving 65

assembly is put together.

In fact, in the widget example, the physical realization of
$RevoluteJoint required achieving first a $CylindricalJoint (two degrees
of freedom, one revolute and one prismatic, between the peg and the
washer) and then constraining the prismatic degree of freedom with a
$RigidJoint between the peg and the block. An analysis of the assembly
indicates the existence of an open kinematic chain between the block
and the washer (via the peg) which contains only the remaining
revolute degree of freedom.

Knowledge about how the joint is realized is stored in the physical
joint schema $RevoluteJointA. This schema tells us one way of
implementing the functional behavior described in the abstract joint
schema $RevoluteJoint. Note that $RevoluteJoint relates only the two
base pieces, while $RevoluteJ ointA must mention the third piece
involved in the assembly.

The abstract joint schema indexes those physical joint schemata
that represent their known consistent physical implementations. Hence,
$RevoluteJoint points to all known physical implementations of its
function, including, of course, $RevoluteJointA. From a given
instantiation of an abstract joint schema, we can derive a set of
instantiations for possible physical implementations of the abstract
joint. Constraints attached to physical joint schemata are used to
represent the physical features as well as physical interdependencies of
various pieces used in the assembly.

There are three specific assumptions about the ARMS domain that
simplify the implementation of the domain theory:

(1) Joints arise from interactions between CSG primitives rather than
CSG surfaces. This limits the number of joint types that must be
built into the system, and places greater reliance on composite
joints for representing complex mechanisms.

(2) Degrees of freedom are always considered independently of one
another, hence, the value of each joint variable is an independent
variable. This means that a screw joint, which has dependent
prismatic and revolute degrees of freedom, cannot be represented
in this implementation.

(3) Similarly, boundary conditions for each degree of freedom are also
calculated independently. This means that, for example, the
maximum travel of a sliding piece cannot depend on the value of
another joint variable.

A more complete domain theory would recognize that some degrees
of freedom are interdependent; that their boundary conditions may

66 Machine Learning of Robot Assembly Plans

depend on the current value of a different degree of freedom. In
addition, a more complete domain theory should permit modeling of
joints based on surface interactions. In such a theory, any surface
contact (such as stacking one block on another) would result in some
limitation of interpiece movement.

5.1.1.2. Operator Schemata

An operator schema represents an operation or a set of operations
on the world that result in changes to the state description. Five of the
operator schemata in ARMS represent the primitive operator schemata.
The rest of the operator schemata correspond to composites of other
operator schemata.

In general, every operator schema contains (at least) the following
slots:

(1) A set of goals that are state schema templates for schemata
achieved by executing the operation(s) represented by this schema.
The set need not be exhaustive; thus, an operator may have
unknown side effects.

(2) A set of preconditions that are state schema templates for
schemata that must be valid to execute the operation(s)
represented by this operator schema.

(3) A set of subgoals, that are state schema templates. The state
schemata indicated by the subgoals are represented as schema
templates in a causally ordered structure, the subgoal poset.
Templates at the same list level are causally dependent and must
always occur temporally in the given order. Templates at
embedded levels are causally independent and can occur in any
temporal ordering. For example, the subgoal poset:

[($A (X Y»)($B (X Y)(W Z» [($C (X Y))($D (Z W»ll

indicates that an instance of $A must be achieved before an
instance of $B, which must in turn be achieved before instances of
$C and $0, although the last two may be achieved in either order.

(4) A single operator schema template called the body that represents
a (different) operation. When executed in the context established
by achieving the subgoals in a world where all of the preconditions
are valid, the body will achieve the goals of this operator schema.

(5) A set of operator schema templates called suggestions that are
usually templates for each schema having this schema as its body.
Under certain conditions, new schemata produced by the
generalizer may not adhere to this convention (see Section 5.3.2.5).

Learning And Problem Solving 67

Instances of primitive operator schemata also have a time slot that
gives the clock tick at which this particular schema instance was
applied to the world. Note that primitive operator schemata have no
body (they are directly executable), no sub goals (they cannot be broken
down any further), and no preconditions (every arm command is always
executable).

Using this description, it is possible to layer instances of operator
schemata into some sort of graph, that bottoms out at the level of
primitive operators. Building this structure bottom-up is precisely how
causal models (from which explanations are extracted) are constructed.
The corresponding top-down expansion of such structures forms the
basis for the performance element.

5.1.2. The Database Mechanism

The symbolic representation used by ARMS relies on state
schemata to represent physical relations that are true at the modeler
and emulator levels. The database mechanism is used to hold the state
schemata that describe past and current world states. Every request by
the performance or learning elements for information about the world
state must be routed through this mechanism.

What form do these requests take? In its simplest form, a request
consists of an instantiated (all parameters bound) state schema that the
database must compare against the current world model to return a
verdict: either the relation described by this state schema holds or it
does not.

But not all requests are this straightforward: a request may be
only partially specified. This is the case when certain slots of the schema
are not yet bound. In this case, the database must return a list of all
valid (fully instantiated) state schemata which match this partially
instantiated request. These state schemata should be unique, in the
sense that for every relation that holds true at some time in the system,
there is only one, unique, state schema which represents it.

Finally, the database must be able to represent relations as they
change with time. Requests from the understander may not always
pertain to the current world state: the under stander may need to know
if a certain relation was true at some previous time. From the
database's point of view, the emulator level appears to retain a set of
copies of the world model at each time tick. The database must therefore
use the same state schema to represent a relation that persists across
several snapshots.

In the sections that follow, we describe some of the aspects of the
database mechanism.

68 Machine Learning of Robot Assembly Plans

5.1.2.1. State Schema Validation

Every state schema built into the ARMS system has a procedure,
called a validation procedure, that can be used to ascertain the validity
of an instance of the state at a given tick. This procedure usually
entails some form of geometric reasoning. The exact procedure used to
validate a given state varies for each state type. For example, if the
state schema request were "is $Pegl stacked on $Blockl at time t?" it is
sufficient to go to the world snapshot15 for time t and check the relative
positions of $Pegl and $Blockl, surfaces in contact, and so on.

The validation procedure is responsible for fleshing out the slots of
partially instantiated requests. In the case of multiple consistent
instantiations, the schema is split into multiple copies, or clones, that
differ in the previously unfilled slots. For example, if the request were
"is something stacked on $Blockl at time t?" and there were two pieces
stacked on $Blockl, the validation procedure would return two distinct
state schemata, one for each valid stacked relation.

Many of the validation procedures are computationally expensive.
Much of the expense is due to filling out the unfilled slots. For this
reason, there is a simpler procedure for extending the validity of a state
schema valid at time t to time t+ 1 or t-1. This simpler procedure, called
a confirmation procedure, attempts to extend the validity of a previously
validated state schema. For example, in the stacking example given
above, it is sufficient to ascertain that neither piece has changed
position.

5.1.2.2. Caching Valid State Schema Instances

Considering the computational expense involved in validating a
state schema, we would like to avoid validating the same relation more
than once. It is common for a same relation to occur as a precondition or
subgoal of many different operators. For example, the same grasped
relation may serve as a precondition for several operator schemata.

For this reason, it makes good sense to cache those state schemata
found to be valid. Since there must be a unique state schema for a
given relation, future requests must first be compared to these known
valid schemata. If a valid schema which matches the request can be
found in the cache, no validation need be performed. At worst, there
may be some work involved in extending the temporal scope of the
cached state to match the request. Note that any caching strategy

15 Recall from our discussion of Section 4.2.3 we will consider the history
mechanism to be transparent: hence we will refer to "world snapshots at time til
instead of "history mechanism layer at time t."

Learning And Problem Solving 69

entails some sort of matching mechanism that can determine if two
state schema instances represent the same thing.

Special attention must be paid to the temporal extension process: a
given request at two different ticks must return the same state schema
if and only if the validity of the state is not compromised at any
intermediate tick. If this is not the case, then two separate state
schemata should be returned. For example, if $Pegl is stacked on top of
$ Blockl , then removed and later replaced, there should be two different
stacked states representing these two separate stacking events.

One must be careful not to confuse the caching mechanism with
the history mechanism of Section 4.2.3. The history mechanism permits
temporal layering of the numerically emulated world, where each layer
differs from the previous layer in precisely those items changed by the
arm command for that tick. The caching mechanism uniquely identifies
and manages many symbolic partial representations of the world. Aside
from obvious differences between the numerically emulated world and
its symbolic representation, note that each partial symbolic
representation, or state schema, may persist through time, therefore
spanning multiple history snapshots.

5.1.2.3. Database Parallelism

Even though state schemata are checked against the emulator's
world snapshots only as a result of a request, the amount of time spent
by the database in satisfying these requests accounts for a large portion
of the computational resources expended by the ARMS system.I6

We note that validating these requests is, in a sense, a read-only
operation. No changes are made to a world snapshot as a result of a
validation or confirmation procedure. This fact makes this kind of
database mechanism an ideal example of those algorithms best suited to
large-grain-size parallel machines [48,49].

Assuming that each processor can be given access to the world
snapshots, each validation procedure could be run independently of the
others. While ARMS runs on a serial machine, its object-oriented
implementation (described in Chapter 6) makes explicit the inherently
asynchronous aspect of the validation and confirmation operations.

16 In fact, preliminary empirical evidence provided in Appendix E indicates
that the database mechanism accounts for over 90% of the CPU time require
ments for both learning and problem-solving episodes.

70 Machine Learning of Robot Assembly Plans

5.2. The Performance Element

In this section, we examine how schemata (both hand-encoded and
acquired) are used by the system in the course of problem solving. A
problem-solving episode is given by an initial state and a goal
specification. The performance element yields a solution to the problem
solving episode in the form of an output sequence of primitive operators
(robot arm commands) that transforms the initial state into a final state
consistent with the goal specification.

The ARMS performance element consists of a schema planner, akin
to the skeletal planner of [50]. It is a very simple design that begins by
selecting an abstract plan to achieve the specified goal state, and then
continues by recursively expanding the plan until the process bottoms
out with a robot arm command sequence. The planning process is
basically a depth-first search through the plan space defined by the
schemata stored in the schema library.

We divide the planning process into two distinct phases: a design
phase and a planning phase, which we describe in the following sections.

5.2.1. The Design Phase

The goal specification is given to the ARMS system as an abstract
joint schema template. This serves as a functional description of the
desired assembly. The object of the design phase is to produce, from this
functional description, a physical description of the desired assembly.
This is often called the design problem. It is in some sense the inverse of
the verification problem of the learning element (see Section 5.3.2.1).

The goal specification is given as a partially instantiated abstract
joint schema. The first step in the design phase is to flesh out the
abstract joint goal schema by filling out the unfilled slots in accordance
with the constraints on the schema. Constraints that pertain to
interdependencies of the degrees of freedom are attached to the abstract
joint schema. This is the abstract joint schema realization procedure.
Note that the realization procedure may result in several possible
instantiations of this abstract joint schema. All of the instantiations
found are retained for possible backtracking. We continue the design
phase with only one of the instantiated abstract joint schemata.

The abstract joint schema indexes those physical joint schemata
which represent physical implementations consistent with this abstract
joint. Thus from a given instantiation of an abstract joint schema, we
can derive a set of instantiated physical joint schemata. These physical
joint schemata are usually only partially instantiated as well: they too
must have their unfilled slots fleshed out in accordance with the
constraints they bear. Constraints attached to physical joint schemata

Learning And Problem Solving 71

are used to represent the physical features as well as interdependencies
of various pieces used in the assembly.

As before, the realization process performed on a physical joint
schema may result in multiple instantiations. These are also retained
for possible backtracking. The planning phase receives only one of the
instantiated physical joint schemata at a time, and, if there is a plan
failure, an attempt is made to plan for the next physical joint schema.

If there is no known realizable implementation of the abstract joint
goal schema, the planner quits and does not expend further effort
attempting to search design space for a valid implementation. This is
the case in the example of Chapter 2: the system had no previous
knowledge of how to physically realize a revolute joint.

5.2.2. The Planning Phase

Given one of the fully instantiated physical joint schemata
produced in the design phase, the planning phase attempts to produce a
sequence of primitive robot arm commands that achieves it. The
physical joint schemata resulting from the design phase can be thought
of as a set of alternate goals, each of which is consistent with the goal
specification supplied by the expert. If the system can achieve anyone of
these, the goal specification will be met.

Recall that all operator schemata in the schema library are
indexed by the goals they achieve. Since physical joint schemata are
state schemata, they too have pointers to operators that can achieve
them. If the operator is a newly acquired schema, then the pointer will
have just been added by the learning element. Finding an operator
schema to achieve a given state schema is called the plan step.

In addition, it is possible that any given state schema may have
multiple operator schemata that can serve as valid plans. Thus, from
the given physical joint schema we can determine a set of operator
schemata.

We instantiate the first element of the operator set and attempt to
execute it. If the first operator is not executable, and no changes have
been caused by its unsuccessful execution, we then attempt to execute
the next instantiated operator. This process continues until one of the
operators executes successfully, no operators remain, or some change is
made to the world during an unsuccessful execution attempt.

Note that the plan step provides for only a limited form of
backtracking. This is not a full depth-first search through the plan
space, since backtracking may be aborted by an unsuccessful execution
attempt.

72 Machine Learning of Robot Assembly Plans

The execution step for a given operator $X proceeds as follows:

(1) For every goal $Gi of $X, query the state database to determine
the validity of $Gi. If every $Gi is valid, terminate execution
successfully, returning $X. This is the case when the goals are all
already established; thus, there is no need to execute the plan.

(2) For every precondition $Pj of $X, query the state database to
ascertain its validity at the current time. If any precondition is not
currently valid, abort execution and return failure. Note that the
preconditions may not have had all of their slots bound; therefore,
this step may, by mapping values back via the template from the
preconditions, create multiple consistent copies of $X. These are
retained for possible backtracking.

(3) For every subgoal $Sk of $X, query the state database to ascertain
its validity at the current time. If a subgoal is not currently valid,
attempt to recursively plan for the sub goal. If any subgoal is not
valid and is not plannable, abort execution and return failure. As
before, each of the subgoals must be realized, and any unfilled slots
may result in multiple consistent copies of $Sk. Alternative
instantiations may again cause, through mappings back across the
template, multiple copies of $X to be retained for backtracking.

(4) Instantiate the body $B of $X and execute it recursively. Success
or failure of this execution step is determined by the success or
failure of the execution step of $Bl.

Note that if, at any time, an operator schema cannot be executed
(due, for example, to unmet preconditions) or a state schema has no
associated plans, the schema planner attempts to backtrack, and, failing
that, simply quits. It does not waste effort attempting to sequentially
combine operator schemata, an effort whose nature we know to be
hopelessly combinatorial.

In summary, we divide the planning phase into repeated
applications of two distinct steps:

(1) A plan step, that takes an instantiated state schema and generates
a set of operator schemata, each corresponding to a plan for
achieving the given state. The execution step is invoked on each of
the resulting operator schemata in turn, until one of the execution
steps terminates successfully. If none of the generated operator
schemata is executed successfully, return failure.

(2) An execution step, that takes an operator schema, ascertains its
preconditions are met, and then plans for each of its sub goals. If
each subgoal is either currently valid or achieved by planning
recursively, the execution step returns as its value the result of

Learning And Problem Solving 73

attempting to execute the body of the operator recursively. Note
that the execution step may clone copies of the operator schema for
addition to the backtracking list of the plan step.

5.3. The Learning Element

A learning episode consists of an initial state, a goal specification
(in terms of abstract joint schemata), and an input sequence of primitive
operators (robot arm commands). The operator sequence, when executed
by the robot arm in the context of the initial state, produces the final
state.

As with PEBLS, the ARMS learning element consists of two
modules: an understander and a generalizer. The purpose of the
understander is to construct a causal model of the observed problem
solving behavior. The causal model is then analyzed by the generalizer,
and new schemata are constructed. ARMS performs two types of
explanation-based learning: specialization in the construction of new
physical joint schemata, and generalization in the construction of new
(macro) operator schemata. Both types of learning require a causal
analysis of an explanation which relies on the domain theory.

5.3.1. The Understander

The understander takes as its inputs the initial state and the input
sequence. It produces as its output a causal model of the external
agent's problem-solving behavior. The causal model is then passed to the
generalizer for analysis and possible learning.

5.3.1.1. Specifying the Initial State

The initial state is specified by the expert at the modeler level. A
new workspace is created, and the expert specifies the pieces in it by
giving their eSG descriptions and initial positions. The solid modeler
checks the initial placement and determines what is supporting each
piece in the workspace. A robot arm is then added to the new
workspace. The initial placement of the arm is in the nest or home
position, with fingers closed.

Note that the initial state is specified at the modeler level only.
The initial state becomes the first snapshot at the emulator level, while
the database is initially empty.

5.3.1.2. Emulating the Input Sequence

The operator sequence is given as a list of fully instantiated
primitive operator schemata. In a real system, assuming the teach
pendant implements the same command set as the ARMS primitive

74 Machine Learning of Robot Assembly Plans

operator set, such an operator sequence may be read directly from the
robot arm teach pendant. Thus the user interface of an ARMS
implementation using a real robot arm would be identical to the user
interface of robot teach-by-guiding systems currently in industrial use.17

The system reads in each element of the input sequence. As each
operator is read in, it is passed on to the emulator level. The emulator
constructs a new snapshot of the latest workspace that reflects the new
state of the ARMS world after executing the input primitive. Each
snapshot at the emulator level is a storage-efficient copy of the
workspace at the modeler level. No changes are made at the schema
level.

5.3.1.3. Building the Causal Model

The understander can best be described as a bottom-up inferential
process that describes, using higher level operators, the context in which
the lower level input operators are occurring. In this sense, it is very
similar to those natural-language story-understanding systems which
attempt to describe the context of an input story [51-54]. The
understander operates entirely at the schema level; all interaction with
the emulator and modeler levels is handled through the database.

The selection of a context with which to account for the input
sequence has the potential for combinatorial explosion. This problem is
usually termed the frame- or schema-selection problem [42]. What is
needed is a method that restricts the amount of work done, a way to
guide the selection process. Such methods are called schema-activation
methods. While various methods have been proposed by natural
language researchers [38,52,54,55], there are some key quirks of the
robotics domain that can be used to advantage in devising an activation
strategy.

5.3.1.3.1. Predictive Understanding

For the most part, natural-language story-understanding takes
place in a predictive framework. This is necessary, since the inputs to a
story system are rift with gaps that must be filled by inference chains.
For example, consider the input

John bought a gun;
John forced Mary into the car;

17 Any sequence produced in this manner would probably contain many ex
tra input primitives. These noisy inputs would arise naturally from the expert's
successive approximation of the proper position. The ARMS system is insensitive
to this kind of noise.

Learning And Problem Solving

is probably best understood in context with a set of intervening states:

John bought a gun;
John loaded the gun with ammunition;
John pointed the gun at Mary;
Mary knew that John was pointing a gun at her;
John told Mary to get into the car;
Mary decided to get into the car to avoid being shot;

75

and so on. The understander must by necessity be to some degree
predictive, or the intervening inference chain cannot be constructed.

5.3.1.3.2. Nonpredictive Understanding

Unlike natural-language understanding systems, learning
apprentice systems face a reduced version of the input-gap problem.
The learning apprentice has access to every action taken by the external
problem-solving agent: unless the operators are poorly understood, there
are never any gaps in the input sequence. In addition, the learning
apprentice need only worry about a single external problem-solving
agent, thus removing any problems resulting from interactions between
agents.

This learning apprentice is no exception: there are never any input
gaps in the ARMS input sequence. Each step in the assembly sequence
entered by the assembly expert on the teach pendant is echoed to the
system. Hence, there is no need for the understander to be predictive.

Nonpredictive understanding means that schemata activate only
after they are temporally completed in the observed input. This implies
that the activation conditions for any higher level schema can be
expressed in terms of whether the schema's goal was accomplished or
not. This also implies that if any schema is checked for activation and
its activation conditions are not met, it is not necessary to retain the
schema for future checking: no schema is ever allowed to remain primed
without being activated, and each primed schema is checked for
activation only once.

5.3.1.3.3. The Schema-Activation Mechanism

The schema activation algorithm used by ARMS works as follows
(see Figure 5.2):

(1) The next observed input is read and an instantiated version of the
corresponding primitive operator schemata $Ii is added to the
causal model. The time value t is incremented by one tick. Each of
the operator templates on its suggestion list is instantiated and
pushed on the suggested schema list. Note that when instantiating
templates, many of the bindings of the input operator schema may

76 Machine Learning of Robot Assembly Plans

start
l. .-----:11 More Inputs? N End

~v

I Read Next Sli I
T=T+1

I SList = [... Sli Suggdst?] J
L...-___ V,,' : SList empty? I,

IN
l SXj = (pop SList) I

1
l Flush $Xi I

I All SGk of SXj valid at T? !t-N __ --01

lv
I AU SGk of SXj valid at T -1? ~~v __ ---ot

IN
I AU $51 of $Xj valid between IN

T-N+1 and T-1? I~---+I

Iv
I All $Pm of SXj valid at T -N? I'r-N.:.----J

lV
l $Xi Activated I

1
l Append [... $Xi SUggest?] to SList Jt---------'

Activation Algorithm Flowchart

Figure 5.2

be transferred across the template equivalence list. Some bindings,
however, may not yet be known and will have to be filled in later.

(2) If the suggested schema list is empty and there are more inputs to
be read, go back to Step 1. If there are no more inputs to be read,
terminate. Otherwise, since the suggested schema list is not empty,
continue with Step 3.

(3) Pop the next operator schema $Xj off of the suggested schema list.
Issue a request to the database for a state schema corresponding to

Learning And Problem Solving 77

each goal $Gk on the goal list of $Xj. If there is some $Gk that is
not valid at time t, discard $Xj and go to Step 2. Since the
database always returns fully instantiated state schemata, make
sure to transfer bindings from $Gk back across the template
equivalence list to $Xj. In this fashion we gradually accumulate all
the slots for $Xj, which may have only been partially instantiated
when suggested.

(4) Check each $Gk for validity at time t-1. If every $Gk is valid,
discard $Xj and go to Step 2.

(5) Starting at time t-l, unpack the subgoal poset of $Xj backwards,
issuing requests to the database for each subgoal $Sl. Care must be
taken to allow for legal permutations of subgoal ordering. Again,
make sure to transfer bindings from each $Sl back across the
template equivalence list to $Xj. If at some point some $Sl cannot
be validated, discard $X and go to Step 2.

(6) Assuming the earliest subgoal $Sl of $JV was valid at time t-n + 1,
issue requests for each precondition $Pm to the database at time t
n. Transfer bindings from each $Pm back across the template
equivalence list to $Xj. If there is some $Pm which is not valid,
discard $Xj and go to Step 2.

(7) The instantiated composite operator schema $Xj has now activated
with a scope n time ticks. Instantiate all the operator schema
templates on the suggestion list of $Xj, being careful to carry any
bindings from $Xj across to the new suggestions. Append these
new suggestions to the suggested schema list and go back to
Step 2.

Note that the activation algorithm keeps on $Xj the pointers to
each instantiated $Gk, $Sl and $Pm. This constitutes part of the causal
model from which the explanation will be extracted. An example of a
causal model is shown in Figure 5.3.

5.3.2. The Generalizer

The generalizer takes as its input the goal specification given by
the expert and the causal model produced by the understander. If the
episode meets the learning criteria, the generalizer will produce a new
composite operator schema that can be used both in understanding and
planning. In addition, in some cases a new physical joint schema will be
produced as a side effect of the generalization process.

The procedure followed by the generalizer is outlined in Figure 5.4.

78 Machine Learning of Robot Assembly Plans

1Q!!!!!!!!f-=Q!>!~lL-------------------':::::~iilli~i-=~ns,..ooss

Portion of Causal Model

This figure represents a part of the causal model built (for a particular instance of $Pick
Up) using the non-predicitive ARMS schema activation algorithm. The unboxed nodes
correspond to state schemata, the nodes in the dashed boxes are constraint schemata, and
the boxed nodes correspond to operator schemata. The boxed nodes on the left edge of the
figure represent the primitive operator schemata of the observed input sequence (with
time increasing down the page).

Figure 5.3

5.3.2.1. The Verification Process

The first task the generalizer faces is to ascertain whether the
observed episode really meets the goal specification given by the expert.
This verification process entails applying the ARMS domain theory in
order to justify how the goal specification is embodied in the physical
structure assembled during the observed episode.

Recall the goal specification is given as an abstract schema joint
template. This is easily transformed into an instantiated abstract joint
schema which may, however, not have all of its slots filled. The abstract
joint schema represents a mathematical characterization of the final
assembly in terms of its degrees of freedom. The goal of the verification
process is to find a valid physical joint schema instance which
corresponds to the abstract joint schema instance partially specified by
the expert.

There are four possible cases to consider:

(1) Goal recognized during observation: The instantiated abstract joint
schema matches a physical joint schema instance already in the
database. If this occurs, it indicates that a schema for

Learning And Problem Solving 79

Causal Model Goal Specification

1 !

I Case 1
Verifier I

Case 2 Case 3 Case 4

AJart Def.! New LAbart
Physical

Joint Schema

.1

Extract Top-level
SubGoaI Set

I Op/Gen Rag? : Op
Refine

SubGoai Set
lGen

J Determine Preconditions

I Promote Preconditions (RePeat)

I Derive Body I
from SubGoaIs

I Promote Slots I

Create New Type Using
SubGoals, Preconditions,

Body, and Slots

!
End

Generalization Flowchart

Figure 5.4

understanding how the goal was achieved already exists. This case
does not meet the learning criteria, causing the generalizer to
terminate.

(2) Known physical joint schema verified: The instantiated abstract
joint schema is used to index a physical joint schema which can be
successfully instantiated and validated. In this situation, the
verification process completes successfully, using existing joint

80 Machine Learning of Robot Assembly Plans

schema know ledge.

(3) New physical joint schema constructed and verified: There is no
known physical joint schema that can be used to justify the
instantiated abstract joint schema. In this situation, the current
joint schema knowledge is too weak to account for the mechanism's
behavior. By using the ARMS domain theory to analyze the other
joints in the database, a new physical joint schema is acquired that
explains the operation of the realized mechanism.

(4) Assembly cannot be analyzed: The goal is not verifiable using
current joint schemata. It is possible that this same example might
be verifiable after acquiring other schemata. It is also possible that
the mechanism really does not meet the goal specification. This
case does not meet the learning criteria, causing the generalizer to
terminate.

On the basis of this case analysis, we can summarize the ARMS
learning criteria as follows:

If an episode achieves a verifiable goal, and the physical joint schema
which corresponds to the goal specification has not been recognized by
the understander, then the episode meets the learning criteria.

Of the four cases described above, only the second and third cases
are relevant to this discussion of the generalization process. We
describe these cases in more detail in the next two sections.

5.3.2.1.1. Known Physical Joint Schema

From an episode in this category we can expect to learn, in the
form of an operator schema, a new assembly technique for a known
physical joint schema. This technique must be different from extant
operators or it would have been recognized during the understanding
process. We can summarize this case of the verification as follows:

(1) From the abstract joint schema instance index the collection of
physical joint schemata which describe known ways to physically
realize the desired mechanical behavior. For example, while the
abstract joint schema $RigidJoint describes the mechanical
behavior of a zero degree of freedom joint between two pieces, the
physical joint schema $RigidJointA describes how this can be
constructed by inserting one piece into the other.

(2) Remove from this first set those instances which do not meet the
constraints attached to the physical joint schemata. For the widget
assembly, attached to $RigidJointA are constraints describing the
relations that must hold between the two pieces of the joint. These
are the constraints that ensure, for example, that the shaft radius

Learning And Problem Solving 81

of the inserted piece must match the hole radius in the other piece.

(3) Issue a request to the database for every remaining physical joint
schema instance. The database attempts to validate each request,
and, if successful, returns fully instantiated joint schemata.

As soon as a physical joint schema is validated, the verification
process is complete, and no other validation requests are issued. Note
that as a side effect of the validation process, the instantiated physical
joint schema returned contains pointers to its substantiator set.

5.3.2.1.2. New Physical Joint Schema

If no known physical joint schema can be validated, the system
attempts to explain how the mechanism works using domain knowledge
about how joints and degrees of freedom combine. If successful, this step
results in the addition to the schema library of a new physical joint
schema indexed by the abstract joint schema used in the goal
specification. This kind of learning is an example of explanation-based
specialization. The verification process in this situation goes as follows:

(1) From the physical joint schemata recognized during the
observation phase, attempt to construct one or more kinematic
chains relating the two pieces of the goal specification. A kinematic
chain is a transitive relation on joint schemata.

(2) Reduce the number of kinematic chains to one by removing those
chains which contain physical joint schemata that subsume
members of other chains. For example, if one chain contains joint
$J i and another chain contains joints $J k and $J l which constitute
the substantiator set of $J i, remove the chain containing $J i. In
this fashion, the remaining chain will contain the lowest possible
level of joint schema. If more than one such chain exists,
terminate the verification process unsuccessfully. IS

(3) Collect all of the constituent degrees of freedom from the lone
remaining kinematic chain.

(4) Match this degree of freedom set with the expected degree of
freedom set determined from the abstract joint schema
corresponding to the goal specification. If no match can be found,
terminate the verification process unsuccessfully.

(5) Attempt to cancel each of the unmatched degrees of freedom from
the kinematic chain by limiting their ranges. A degree of freedom

18 Recall from Section 4.1.4 that the domain theory only accounts for open
kinematic chains. Multiple chains at this point imply the presence of a closed
kinematic chain.

82 Machine Learning of Robot Assembly Plans

ceases to be relevant as soon as its range of motion falls below a
built-in tolerance. Reduction of the range can only take place if the
degree of freedom previously contained a soft bound. By
recalculating the soft bound, taking all of the pieces of the chain
into account, interactions between chain elements may transform a
soft bound into a hard bound with a limited range. If this step
fails, terminate the verification process unsuccessfully.

(6) Establish a new physical joint schema with members of the chain
as substantiators. In addition, add constraints to the new joint
schema that describe how degrees of freedom from the
substantiators are canceled, or otherwise relate to the new physical
joint schema.

As an example, consider the widget of Chapter 2. The goal
specification is given as an instance of $RevoluteJoint, an abstract joint
schema. As is the case in Chapter 2, assume that no known physical
joint schema exists which properly characterizes this revolute joint.
Thus, no verification is possible by following the procedure outlined in
the previous section.

At the end of the understanding process, however, there are two
recognized physical joint schema instances: an instance of $RigidJointA
and an instance of $CylindricaIJointA. These two joints form an open
kinematic chain between $BoredBlockl and $Washerl. A naive
kinematic analysis of the degrees of freedom contained by the open
kinematic chain shows that the revolute degree of freedom from
$CylindricalJointA matches the required revolute degree of freedom for
$RevoluteJoint. The prismatic degree of freedom from
$CylindricalJointA is so constrained by $RigidJointA as to cease to be
viable.

Given this kinematic analysis, we establish a new physical joint
schema $RevoluteJointA that describes a method for implementing the
joint behavior characterized by $RevoluteJoint. $RevoluteJointA in
effect says that to make a $RevoluteJoint, make a $CylindricalJointA
and restrict its degree of freedom using a $RigidJointA.
$CylindricalJointA and $RigidJointA become the substantiator set for
the new schema $RevoluteJointA.

The new schema is added to the schema library, and those
constraints relating the pieces involved in the joint which were relevant
to the kinematic analysis are included in the new schema. Note that
while $RevoluteJoint relates two pieces (e.g., $BoredBlockl and
$Washerl), $RevoluteJointA relates an additional piece (e.g., $Pegl) to
this piece set. Therefore $RevoluteJointA is applicable to any set of
three pieces having the requisite interpiece constraints.

Learning And Problem Solvmg 83

Note that if $RigidJointA and $CylindricalJointA could not be
recognized during understanding, this analysis could not take place, and
this episode would fall into the fourth verification category described
above. In the ARMS system, the recognition of $RigidJointA and
$CylindricalJointA depends on other acquired composite operator
schemata. Therefore, at some later time (once the system has a chance
to acquire these other operators), this episode would be ripe for learning.

We note two important points:

(1) The ARMS system is capable of using acquired schemata in
understanding, and therefore in learning other, more complex,
schemata.

(2) What cannot be understood now may well be understood later after
the system has a chance to acquire more schemata. The ARMS
system is very much characterized by learning one small step at a
time, but without limiting the eventual extent of learned behavior.

5.3.2.2. Extracting the Explanation

As a result of the verification process, a valid physical joint schema
is related to the abstract joint schema representing the goal
specification. As part of the validation procedure, this physical joint
schema contains a set of pointers to substantiators in the causal model.
These substantiators constitute the top-level subgoal set.

We begin by ordering the top-level subgoal set on the basis of a
causal dependency analysis. This causal analysis determines if there are
any ordering dependencies between substantiator joints by examining
the joint bounds. In the widget example described above, this analysis
require that $CylindricalJointA occur before $RigidJ ointA, since
$RigidJointA is used to impose constraints on a degree of freedom
belonging to $CylindricalJ ointA.

To extract the explanation from the causal model, it is sufficient to
follow the pointers established during the understanding process from
the top-level subgoal set all the way back to the primitive operator
inputs. The relevant pointers are those connecting operators to their
subgoals and bodies, and connecting states to their achieving operators.
Note that an explanation should also contain pointers to all of the
constraint schemata supporting states in the explanation.

5.3.2.3. Building a New Operator Schema

Given the (ordered) top-level subgoal set, and therefore access to
the explanation, a new composite operator schema is created so that this
goal may be achieved and/or recognized in future episodes. This is an

84 Machine Learning of Robot Assembly Plans

example of explanation-based generalization.

The difficulty lies in determining exactly at what level of
abstraction the new schema should be created. This question reflects the
generalityloperationality tradeoff, an important issue for explanation
based learning research. As with all tradeoffs, there appears to be no
good single solution. It is likely that application-specific traits will
determine the most opportune level of representation.

The ARMS system is capable of producing either a very general
composite operator schema, or a more operational version of the
composite operator schema. This aspect of the generalizer's behavior is
governed by the generalityloperationality tradeoff flag that can be set by
the expert.

If the generality/operationality flag is set, ARMS produces the
most general schema it can by using the top-level sub goal set as the
explanation for this episode. No attempt is made to analyze the
interdependencies present in the lower levels of this explanation.

If the flag is reset, the generalizer inserts an extra step at this
point that expresses the new schema at a level where no shared
substructures exist. In other words, beginning from the top-level sub goal
set, descend the explanation structure to a level where no shared
substructures exist between schemata at that level (see Figures 5.5 and
5.6). The state schemata at this level become the subgoal set of the new
composite operator schema.

At the top level of the widget example, there are many shared
substructures: consider, for example, the schema which represents
grasping $Pegl. $Pegl is manipulated in a manner that serves both
$CylindricalJointA and $RigidJointA. Therefore, the grasping state is a
shared substructure of the top-level subgoals. If we descend the
explanation structure to the level of grasping $Pegl, there are no longer
any shared substructures.

Note that this descent into the explanation which produces a new
subgoal set is order-preserving: the new subgoal set will not violate the
results of the causal dependency analysis performed at the joint schema
level.

Learning And Problem Solving 85

• •

Level with Shared Substructures in Explanation

The two elements of the top-level subgoal set in this illustrative example are shown as
black nodes. Their respective explanation substructures are outline as triangular subtrees.
Shared substructure is represented by the overlapping sections of the subtrees. When pro
ducing the more general new schema, the generalizer uses the black nodes of the top-level
subgoal set as the subgoal set model for the new schema.

Figure 5.5

a o

• • • • •
Level with No Shared Substructures in Explanation

The two elements of the top-level subgoal set are represented as white nodes at the root
position of two overlapping explanation subtrees. When producing the more operational
new schema, the generalizer descends into the explanation structure until it can produce a
subgoal set (represented here as black nodes) with no shared substructure. This set then
becomes the subgoal set model for the new schema.

Figure 5.6

86 Machine Learning of Robot Assembly Plans

Having in this fashion collected a set of subgoals (exactly which set
depends on the setting of the generality/operationality flag), we now
collect the preconditions of the new schema. The preconditions of the
subgoal set are combined into a single set. This becomes the
precondition set for the new schema.

We note that the distinction between what is a subgoal and what
is a precondition can best be summarized by the behavior of the
performance element. In short, the performance element will attempt to
achieve the subgoals but will expend no effort in bringing about the
validity of the preconditions. In order to make our new schema more
powerful, we now attempt to promote members of the precondition set
into subgoals according to the following precondition promotion criteria:

H a precondition was achieved in the observed episode, it is prepended
to the ordered list of subgoals. In addition, if a precondition was fortui
tously true at the beginning of the observed episode, but a plan exists
for achieving it, then it is also prepended to the subgoal set.

Note that prepending preconditions to the subgoal set is order
preserving.

In addition, the promoted preconditions, if explicitly achieved in
the observed episode, may well have preconditions of their own. If this is
the case, these new preconditions are prepended to the precondition set,
and the entire promotion process is repeated. Precondition promotion
terminates when no more promotions are possible.

At this point we have determined the precondition and subgoal
sets of the new composite operator schema. The last subgoal is removed
from the subgoal set, and its achieving operator in the observed example
becomes the body of the new schema. The last remaining step is to
generate templates for each of these fully instantiated schemata so that
they can be attached to the new data structure about to be added to the
schema library.

The generation of schema templates raises one more issue: the
augmentation of the slot set in the physical joint schema for the new
operator schema. We term this process the slot promotion process. The
ARMS system creates a slot in the new operator schema for every slot in
the physical joint schema it achieves. In addition, if any precondition or
subgoal filler matches a filler in another precondition or subgoal, a slot
is added to the new operator schema to carry this equivalence.

5.3.2.4. Meeting the Retention Criteria

At this point, the generalizer is ready to add the newly created
schema to the schema library. The retention criteria evaluate whether a
newly acquired schema is worth keeping or not. For the ARMS system,

Learning And Problem Solving 87

the retention criterion is always met: e.g., if the generalizer gets this
far, the new schema is always worth keeping.

5.3.2.5. Integrating Newly Acquired Schemata

The new composite operator schema must be added to the schema
library in such a way that it can be used both in understanding and in
planning. If integrated properly, the system should not be able to tell
the difference from a built-in operator schema and a newly acquired
operator schema.

To be useful in understanding, the new operator schema must be
the object of some existing schema's suggestion pointer. A suggestion
pointer, in the form of a schema template, is therefore created on the
achieving operator for the last element in the top-level subgoal set. For
the general case of the generality/operationality tradeoff flag, this
corresponds to the body of the new composite operator schema. In the
more operational case, -the suggestion pointer resides on an operator
schema that is not explicitly mentioned in the new composite operator
schema.

To be useful in planning, the new operator schema must be the
object of some existing state schema's plan pointer. The ARMS
knowledge representation strategy dictates that the goal of any operator
contain a plan pointer to that operator. A template is created to
reference the new schema from its goal (a physical joint schema) and
added to the goal's plan list. Note that the physical joint schema may
have been pre-existent, or may also have just been added to the schema
library during the verification process.

5.3.2.6. Meeting the Replacement Criteria

If the generalizer keeps adding new schemata to the schema
library, the cost of the schema-activation mechanism will continue to
grow monotonically. The replacement criteria govern the replacement of
existing schemata with new schemata in the schema library. By using
replacement criteria to manage the growth of the schema library, it
should be possible to keep the schema-activation complexity within
reasonable bounds. The ARMS system does not, however, implement
any replacement criteria.

Chapter 6

The Arms Implementation

We now describe the implementation of the ARMS system. Unlike
Chapters 4 and 5, the organization of this chapter does not follow the
functional divisions implicit in the ARMS architecture. Here our
description follows the divisions implicit in the ARMS implementation.
This chapter is in essence a guidebook to the implementation of the
system, and is intended serve as an aid in any eventual reconstruction
effort. As one might expect in an object-oriented implementation, the
functional units of Chapters 4 and 5 are distributed throughout the
system: for this reason the casual reader is encouraged to skip directly
to Chapter 7.

We begin with a brief word about the implementation language
and a description of two special tools used throughout the system. Next,
we discuss the world modeler implementation, the graphics subsystem
implementation, and the implementation of the schema system.
Finally, we describe top-level access to the ARMS implementation.

6.1. A Note About the Implementation Language

The ARMS system runs on a Xerox ll09 DandeTiger lisp machine.
It is implemented using LOOPS [56], an object-oriented programming
language embedded in INTERLISP-D [57]. LOOPS provides object
oriented, rule-oriented, and access-oriented extensions to INTERLISP-D.
The choice of implementation languages is not tremendously relevant,
since, in addition to LISP, only the object-oriented aspect of LOOPS was
used extensively in the development of the system.

For the purpose of our discussion, we avoid explicit references to
LOOPS or INTERLISP-D. Instead, we define a generic terminology and
syntax which describe only that subset of the language that is necessary

90 Machine Learning of Robot Assembly Plans

for implementing the system.19

Our implementation language is basically a frame language [58-
62]. It consists of a set of frames arranged in a semantic hierarchy. The
structure and behavior of a particular frame depend on the position it
occupies in the hierarchy. The hierarchy affects a frame by means of the
inheritance mechanism.

The ARMS program consists of a set of frames, called types,
arranged in the hierarchy. Each type is an abstract definition of a
collection of similar frames. A type is always denoted with a "$"
followed by a type name (e.g., $Type). Each type has a list of super types
(or simply supers) that describe the position of the type in the hierarchy.

The types serve as templates for the creation of tokens. Each token
represents a particular, unique object. A token is always denoted with a
"$" followed by a name and a numeric identifier. The name is often, but
not always, the same name as the token's type: thus, $Type1 denotes a
token of type $Type. There are, however, cases where a more mnemonic
name is used. For example, $Peg1, $Washer1, $Blockl and
$BoredBlock1 all denote tokens of type $Piece.

A token always belongs to one and only one type. The structure
and behavior of a token are determined by its type, and, through
inheritance, by the supers of its type. Not all types, however, can be
instantiated as tokens. Certain types, called abstract types, serve only as
place holders in the inheritance hierarchy. Abstract types permit tokens
of their subtypes to inherit their structure and/or behavior.

Each type may define token slots, type slots, and/or procedures.
These features are inherited by tokens belonging to this type or its
subtypes. Inheritance is resolved by tracing a token's ancestry upwards
through the inheritance hierarchy described by the supers of its type.
The preference order for inheritance is left-to-right along the supers list
~o the lowest shared type (see Figure 6.1).

A token slot, usually simply termed a slot, contains a pointer.
Every token of this particular type, or any subtype of this type, has
access to a copy of this slot. We will denote a token slot by prefacing its
name with a ":" (e.g., :TokenSlot). A token slot may have some default
initial value associated with it.

A type slot also contains a pointer. Every token of this particular
type, or any subtype of this type, shares access to this same slot. A type
slot is denoted by prefacing its name with "::" (e.g., ::TypeSlot). A type

19 The reader familiar with LOOPS will notice many similarities between
our syntax and that of LOOPS.

The Arms Implementation 91

Types

Inheritance Order

Figure 6.1

slot also has some initial value, although the notion of default is less
significant here than in the token slot case.

A procedure, written in LISP, can also be attached to a type. This
procedural attachment defines how a particular token behaves upon
receipt of a request. The association between a request and the
procedure it invokes is made when attaching the procedure to the type.
Like for slots, a particular token's response to a given request is
determined by the inheritance hierarchy. We denote a procedure name,
which is always the same as the request that invokes it, by prefacing it

92 Machine Learning of Robot Assembly Plans

with the type is attached to and a ".", e.g., $Type.Request. When it is
clear by the context which type the procedure is attached to, the name is
shortened to simply the procedure name, e.g., Request.

Requests are sent to tokens: the only exception is the special
request New that can be sent directly to a type. The New procedure
returns as its value a new token of the type receiving the request. The
New procedure takes a single argument, which is the name to be given
to the new token. If no name is provided, a unique name is created
automatically by appending a number to the end of the type name. In
addition, before returning a value, the New procedure automatically
sends a NewToken request to every new token. Thus it is possible to
write a NewToken procedure to automatically perform some
ini tializa tion function.

We adopt the convention that any procedure always returns as its
value a pointer to the token that fielded the request, and hence has no
intrinsic information value. There are two exceptions:

(1) A procedure fielding a request ending with the character "?" may
return some other value.

(2) The procedure fielding the New request, when sent to a type,
returns a pointer to the newly created token of the type, and not to
the type that received the request.

Note that the special symbol self is always bound during execution
of a procedure to the token receiving the request.

Finally, we note that there is another mechanism for procedural
attachment: it is possible to tag a slot (either a token slot or a type slot)
with two procedures: an if-accessed procedure and a if-changed
procedure. The if-accessed procedure is invoked every time the value of
the slot is read, while the if-changed procedure is invoked when the
value of the slot is written.

The reader will have no doubt noticed the similarity in the
language terminology defined above and common schema terminology
(see Appendix B). Fortunately, the terms are often interchangeable
since, as we will see in the section describing schema implementation,
the implementation of a schema slot is, in fact, a token slot.

6.2. Optimization Tools

There are two extremely important mechanisms, implemented as
types, that are used to increase the performance of the ARMS system.
Normally, one would discuss these programming tricks as a footnote to a
straightforward description of a naive version of the system. However,
since this chapter is aimed at facilitating reconstruction efforts, and

The Arms Implementation 93

since the use of these tools pervades the rest of the implementation, we
choose to discuss them first.

The first tool, $MatchMixin (see Table 6.1), is used by the schema
database mechanism (described in Sections 5.1.2. and 6.6.3.) in order to
match different instances of state schemata. The ability to determine
when two schemata refer to the same thing is important when
implementing the database mechanism's schema cache.

The second tool, $LazyCopy (see Table 6.2), is used by the history
mechanism (described in Sections 4.2.3. and 6.6.3.) in order to maintain
layered copies of the solid modeler.

Both of these tools key on the classic space vs. time programming
tradeoff; note, however, that they sit on the opposite sides of the issue.
The state schema database cache saves time in a computationally
intensive process by caching data structures, and, therefore, increasing
storage requirements. The history mechanism saves space in a storage
intensive process by compressing the data structures, with concomitant
increase in access time.

6.2.1. $MatchMixin

The matching mechanism permits comparison of two tokens,
returning self if the two tokens represent the same thing. In order to
match, two tokens must be of the same type, and a selected subset of
their slots must match recursively.

The matcher is implemented as an abstract type called
$MatchMixin. $MatchMixin is used as one of a set of supers for other
types. By placing a type beneath $MatchMixin in the inheritance
hierarchy, we endow tokens of the new type with the ability to be
matched against other tokens. The matching mechanism relies on a
type slot ::MatchSlots that indicates which slots in the token are
significant for the matcher.

$MatchMixin has a single procedure, Matches?, that takes two
arguments: the first being another token and the second being a schema

Table 6.1
$MatchMixin

TypeS/ols II ::MatchSlots I
Procedures II Matches? I returns self or NIL

94 Machine Learning of Robot Assembly Plans

template. If only the first argument is given, then self is returned when
it matches the first argument directly. If a second argument is given,
then Matches? returns self if a new token created from the second
argument (a template) using the first argument as requester would
match self.

In the absence of a second argument, the Matches? procedure first
compares the type of each token. If the types are identical, then
Matches? recursively compares fillers for each slot on ::MatchSlots from
self with the corresponding fillers from the first argument. If all of
these also match, then Matches? returns self; otherwise, it returns NIL.

If a second argument is present, then the header of the second
argument is compared against the type of self. If these are the same,
then Matches? recursively compares, for every slot on ::MatchSlots, the
filler from self with the corresponding filler from the first argument as
given in the binding equivalences of the second argument. As before,
Matches? returns either self or NIL.

Note that this second case could be handled naively by simply
creating a new token from the first and second arguments and then
resorting to the first procedure. This would result in many extra tokens
being generated and subsequently discarded. As implemented, this
procedure will never create a new token and, therefore, saves storage.

Since some of the slot fillers are nontokens (e.g., they may be lists
of tokens, atoms, numbers, etc.), special care must be taken with the
recursive matching step. The recursive step is implemented with a
separate function Match, that takes two arguments and returns the first
if it matches the second. Implementation of the Match function is
straightforward, the only possible difficulty being insuring that lists
match any permutation of themselves.

6.2.2. $LazyCopy

The lazy copy mechanism permits storage-efficient copying of
tokens belonging to types below $LazyCopy in the inheritance
hierarchy. The general idea is to produce a new token, of type
$LazyCopy, that behaves just like the original token except for certain
preselected token slots. Those token slots are duplicated, so that the new
copy may have a different value than the origina1. Any reference to an
unduplicated slot is referred back to the original token, while any
reference to one of the duplicated slots is handled locally by the copy.

To make this process efficient, slot duplication is a lazy process, in
the sense that duplication takes place only when that particular slot
filler is accessed. In other words, when accessing a duplicated slot, if no
filler is found locally, the filler is found in the original and duplicated at

The Arms Implementation 95

the copy at access time. Naturally, if one is writing a new filler at a
copy no access to the original is needed: one simply creates the duplicate
slot on the copy and assigns it the new filler. 20

The process is permitted to continue, whereby a copy can be made
of a copy and so forth. When a chain of copies is produced, only the very
first token is not of type $LazyCopy; this is termed the base instance.
Each successive copy is a token of type $LazyCopy.

There are four potential problems when implementing $LazyCopy:

(1) When referring to an unselected token slot in a copy belonging to a
chain of copies, we should bypass all of the layers and go directly
to the base instance. Note that this means access to selected slots
may cascade through many layers before finding the most recent
filler, while duplicating the slot/filler on each copy traversed.

(2) Procedural requests fielded by a token of type $LazyCopy must be
handled by the procedure attached to the type of the base instance.
The procedure must, however, be invoked in the context of the
$LazyCopy's slot fillers, rather than those of the base instance.

(3) Coreferential pointers must remain coreferential. For example, if
$A, $B, and $C are all subtypes of $LazyCopy and tokens $Ai and
$Bj both refer to $Ck as a filler, any copies of $Ai and $Bj must
refer to a unique copy of $Ck.

Table 6.2
$LazyCopy

Supers $MatchMixin
TypeSlots ::LazySlots used by copy process

::MatchSlots only :Base used for matching
Slots :Base points to base token

:CopyOf points to copied token
:CopyMap points to token equivalence mappings

for this generation
Procedures Copy make next generation copy of self

Match? for matching mechanism

20 Subsequent releases of the LOOPS language define a class $VirtualCopy
that is very similar to our $LazyCopy type. The only difference appears to be in
the lazy duplication: $VirtualCopy creates the duplicate slots at copy time.

96 Machine Learning of Robot Assembly Plans

(4) Behavior of a $LazyCopy token under the match operation
described in Section 6.2.1 must be reasonable.

We handle the first two problems in the same fashion: any access
to a token of type $LazyCopy, whether for filler information or
procedure execution, is intercepted at the $LazyCopy and forwarded,
along with the local slot fillers, to the base instance.

In order to address the third problem, the procedure for creating a
lazy copy must insure that, for each generation, there is a single unique
token for every token of the previous generation. The mechanism that
enforces this uniqueness consists ofa :CopyMap slot that points to a
mapping of tokens from the previous generation to their counterparts in
this generation. This mapping is an association list that is shared by
every token in a particular generation: it is maintained using LISP
destructive list operations, such that additions to the mapping are
immediately accessible to all tokens in a given generation.

The fourth issue is easily dealt with: in order to match a lazy copy
against a token it is sufficient to make $LazyCopy a subtype of
$MatchMixin and to force its ::MatchSlots type slot to contain only
:Base. There are then two different cases to consider:

(1) If two tokens are both of type $LazyCopy, then they must have the
same :Base filler for a match.

(2) If only one of the tokens is of type $LazyCopy then the other token
must be the same as the filler of the $LazyCopy token's :Base slot.

This is implemented as a Matches? procedure attached to
$LazyCopy. By placing $LazyCopy below $MatchMixin in the hierarchy,
we insure that this procedure is invoked (rather than
$MatchMixin.Matches?) if a token of type $LazyCopy fields the
Matches? request. In addition, a small change is made to
$MatchMixin.Matches so that Matches? requests with a token of type
$LazyCopy as the second argument are forwarded to this new procedure
with their arguments reversed.

6.3. Implementing the Solid Modeler

The modeler consists of code for the representation and
manipulation of objects in three-space, implemented over several
different types. The semantic hierarchy for this part of the ARMS
system is shown in Figure 6.2.

Before discussing the modeler, we take a moment to review the
homogeneous coordinate system used to represent points in three space
in order to establish some basic terms.

The Arms Implementation

MatchMixin

LazyCopy

.....
. :-:.

PositionedObject
.~:-~,,*.,-.... ---.-.-

.. -::-.
. -.-:.- .

. ---.

.... ----:::.·······surface
.. -- .. -.-
.. -'-"'-'

.•. --

97

Primitive

WorkSpace Arm Piece PIa.na.rSurfa.ce Cylindrica.ISurfa.ce Cylinder Block

Hole

Solid Modeler Semantic Hierarchy

Figure 6.2

6.3.1. Homogeneous Coordinates

The ARMS system uses homogeneous coordinates to represent
points in three-space. The homogeneous coordinate system represents a
problem in n-space as a problem in (n + I)-space. Manipulations of the
problem are all done in (n+ I)-space, and the solution is projected back
into n-space. Our discussion of this technique is limited to a short
intuitive description. For a thorough review of the mathematics
involved, see [63].

Assume that there is some base right-handed Cartesian coordinate
system from which everything is measured. Call this origin the world
coordinate system (or WCS). Now assume you are trying to describe the
position of an object with respect to the WCS. We represent the object
being positioned by its own right-handed coordinate system.

We can now describe the location of the object using a triple of
values (x, y, z) to indicate the location of the origin of the object
coordinate system. But this does not tell us anything about the
orientation of the coordinate system: is it lying on its side? Is it upside
down? By establishing some reference state for the orientation of the
object coordinate system (such as the orientation of the WCS), we can
give angles of rotation about the three Cartesian axes, or (yaw, pitch,
roll), that describe the orientation of the coordinate system with respect
to the reference state. Note that the order these rotations are applied in
is significant: we choose to apply them always in left-to-right order
about the X, Y, and Z axes, respectively.

98 Machine Learning of Robot Assembly Plans

Therefore, the position of an object, which can be expressed in
terms of its location and orientation, can be completely given with six
values: (x, y, z, yaw, pitch, roll). These six values are the degrees of
freedom of the object with respect to the frame of reference. But this is
not a particularly convenient representation to manipulate: we therefore
turn to a homogeneous coordinate representation for ease of
manipulation. Using homogeneous coordinates, expressing a position in
terms of another position that was in turn given with respect to the
origin, is simply a matter of matrix multiplication.

The ARMS implementation of homogeneous coordinates uses only
two data structures: the point (a 1x4 matrix) and the position (a 4x4
matrix). A point or position is normally expressed in terms of the WCS
unless otherwise noted (e.g., point with respect to WCS and position
with respect to WCS become simply point and position, respectively). To
represent a vector, ARMS uses a point data structure to represent the
tip of the vector in some frame of reference.

Functions are provided to create points and positions, access and
change their individual elements, and calculate dot products, Cartesian
distance and vector distance between pairs of points and/or positions.
Positions can be inverted, translated to the origin, and they may also
have their normals (a unit vector along the Z axis) extracted. Finally,
vectors (which are indistinguishable from points in structure) may be
normalized, e.g., rescaled into unit length vectors.

In addition, a set of comparison functions on two positions is
provided. These functions use a global tolerance value to avoid
problems with computer arithmetic roundoff error. The comparison
functions provided can be used to test whether

(1) the two positions are equal;

(2) the Z axes of the two positions are colinear;

(3) the Z axes of the two positions are parallel;

(4) the Z axes of the two positions are orthogonal;

(5) the two positions are colinear and their x axes are parallel
(aligned);

(6) or the XY planes of the two positions are coplanar.

6.3.2. $W orkSpace

A token of type $WorkSpace (see Table 6.3) represents a snapshot
of the ARMS world at a given time. We define the world coordinate
system (WCS) as the coordinate frame of reference of the workspace
surface. This is the origin with respect to which all other points in the

The Arms Implementation 99

world are defined.

The slots on $WorkSpace correspond directly with the physical
components of the ARMS robot world discussed in Section 4.1.1.2.:

(1) The :Contents slot contains a list of the pieces in the workspace,
where each piece is represented by a token of type $Piece.

(2) The:Arm slot points to a token of type $Arm which represents the
robot arm.

(3) The :Surface slot points to a token of type $PlanarSurface which
represents the table top.

(4) The :View slot points to a token of type $View that manages the
graphic display of the workspace. If :View is NIL, no graphic
display is supported.

The procedures attached to the $WorkSpace type manipulate the
world representation:

(1) The AddPiece procedure adds a piece to the contents of the
workspace, establishes support for the piece, and updates the
graphics system if there is one. Note that AddPiece also tags the
piece's :Position slot with an if-changed procedure if and only if
there is a graphics system associated with this workspace. The if
changed procedure updates the picture of the piece on the screen
whenever its position is changed.

(2) The DeletePiece procedure is used to remove a piece from the
workspace, again causing the appropriate changes to occur in an

Table 6.3
$WorkSpace

Supers $LazyCopy
TypeSlots ::LazySlots :Contents, :Arm, :View
Slots :Contents list of $Piece tokens

:Surface $PlanarSurface token
:Arm $Arm token
:View pointer to graphic display

Procedures AddPiece add token to :Contents
DeletePiece remove token from :Contents
Input emulator: forwards command to :Arm
NewToken initialization procedure

100 Machine Learning of Robot Assembly Plans

associated view.

(3) The Input procedure is used by the ARMS emulator. It takes a
primitive arm command as its argument and forwards the
command to the filler of the :Arm slot (a token of type $Arm). The
arm emulates the command, causing some changes to occur in self
to reflect the changes wrought by the arm command.

(4) The NewTok en procedure is an initialization procedure invoked
automatically when a new token of type $W orkSpace is created. It
creates a new token of type $PlanarSurface and places this token
on the :Surface slot. It also initializes the graphic system if there is
to be a view for this workspace.

$WorkSpace is a subtype of $LazyCopy, supporting storage-efficient
copies of a snapshot via the lazy copy mechanism described in Section
6.2.2. Since the position of pieces as well as the arm may change with
time, the ::LazySlots type slot lists both :Contents and :Arm are marked
as lazy slots for the lazy copy mechanism. Since the workspace surface is
never changed or moved, it need not be included on ::LazySlots. The
:View slot is included, since each world snapshot implies a different
view of the workspace.

6.3.3. $PositionedObject

$PositionedObject (see Table 6.4) is the simplest type in the entire
ARMS system. It contains the lone slot :Position that gives the position
of any subtoken in terms of some coordinate frame of reference (usually
the WCS). $PositionedObject is an abstract type; thus, no explicit tokens
of this type are ever instantiated.

6.3.4. $Piece

Tokens of type $Piece (see Table 6.5) are used to represent the
pieces manipulated by the robot arm. $Pegl, $Washerl, $BoredBlockl
and all the others mentioned in Chapter 2 are tokens of type $Piece.
$Piece is a subtype of $PositionedObject, and therefore inherits a
:Position slot. The :Position filler indicates where the piece represented

Table 6.4
$PositionedObject

Slots 1\ :Position I matrix representing 3D position

The Arms Implementation 101

by this token is located with respect to the WCS.

The slots on $Piece describe the physical structure of the piece
represented by a given token:

Table 6.5
$Piece

Supers $PositionedObject
$LazyCopy

TypeSlots ::LazySlots :Support, :SupportingSurface,
:Position, :Segment

Slots :Primitives list of $Primitive tokens
that define self

:Surfaces list of $Surface tokens
belonging to self

:Holes list of $Hole tokens belonging to self
:Support $Piece token or $WorkSpace token

on which self rests
:SupportSurface member of :Surfaces in contact

with :Support
:Mass mass calculated from :Primitives
:CenterOfMass point wrt :Position
:DisplayOps 3D wireframe specification
:Segment pointer to 2D projection

of wireframe
Procedures NewToken computes :Surfaces, :Holes,

:Mass, :CenterOfMass
Support? computes :Support, :SupportSurface
Inside? T if given point is inside self

at current position
Intersect? T if given line intersects self

at current position
On? T if given point is on self

at current position
Render projects self on view
GraspPosi tion? planner: returns consistent

grasping strategy for self
Collisions? used to find interpiece collisions

102 Machine Learning of Robot Assembly Plans

(1) The :Primitives slot contains a list of tokens describing the CSG
primitives which define this piece. The :Position slots on these
tokens represent the position of the primitives with respect to the
position ofthe piece.

(2) The :Surfaces slot contains a list of tokens describing the surfaces
(BRep) of the piece derived from the CSG primitives used to define
the piece. The :Position slots of these tokens represent the
positions of the surfaces with respect to the position of the piece.

(3) The :Holes slot contains a list of tokens describing the holes in
piece resulting from the application of the contained difference
CSG operator to the piece's constituent primitives. The :Position
slots of these tokens represent the positions of the holes with
respect to the position of the piece.

(4) The :Support slot points to either another token of type $Piece
representing the piece underneath the current piece, or to the
token of type $PlanarSurface representing the table top of the
current workspace. This slot indicates what is providing the
current piece with support.

(5) The :SupportSurface slot points to the member of :Surfaces in
contact with the :Support filler.

(6) The :Mass slot contains the mass of the piece as computed from the
mass of its constituent primitives.

(7) The :CenterOfMass slot contains a matrix describing the center of
mass with respect to the piece's frame of reference. This point is
computed from the masses of the constituent primitives of the piece
and is used to determine what is supporting the piece.

(8) The :DisplayOps slot contains a list of 3D graphics commands
which represent the wireframe outline of the piece. This is
computed from the wireframes of the constituent primitives.

(9) The :Segment slot contains a pointer to a token of type $Segment
used by the graphics package to represent the 2D rendering of the
3D graphics commands in :DisplayOps.

The procedures attached to $Piece are used predominantly to
support geometric operations on the piece.

(1) The NewToken procedure is invoked when a new piece is created.
It is this procedure that calculates the surfaces, holes, mass, and
center of mass of a piece from its constituent primitives.
Calculation of mass and center of mass are straightforward: recall
that primitives which are removed using the CSG contained
difference operator have a different effect on the center of mass

The Arms Implementation 103

than those primitives added using the eSG disjoint union operator.

The collection of surfaces and holes works as follows:

For each primitive in :Primitives:
Collect their Surfaces on surfaceList.

For every surface in surface List:
If surface's primitive is solid:

If surface is covered by another surface
on different solid primitive of :Primitives:

then discard it,
else retain it on selfs :Surfaces.

Else if surface's primitive is not solid:
If surface is covered by another surface

on a different solid primitive of :Primitives:
then change surface into a hole and add to selrs :Holes,
else invert its normal and retain it on selrs :Surfaces.

There are procedures attached to the various surface types that are
used to determine if one surface covers another surface.

NewToken is also responsible for initializing the graphics package.
The :DisplayOps slot contains a set of 3D display operations which
result in a wireframe representation of the piece. The :Segment
slot points to a token of type $Segment (see Section 6.4.2).

(2) The Render procedure is used to project the 3D wireframe in the
:DisplayOps into a 2D representation stored in the $Segment
token, taking into account the current position of the piece and all
of the viewing parameters of the current view (see Section 6.4.1).
The interface to the graphics package is provided via the use of an
if-changed procedure tagged onto the :Position slot of each token of
type $Piece. When the piece is moved, its :Position slot value
changes, and the if-changed procedure forces updating of the view.
The :Position slot for a given $Piece token is tagged by the
$WorkSpace.AddPiece procedure.

(3) The Support? procedure returns the support and supporting surface
for self in a given workspace. This procedure, although extremely
naive, is a compromise that works rather well due to the restricted
nature of the piece tokens allowed by the modeler. The algorithm
works as follows (see Figure 6.3):

104 Machine Learning of Robot Assembly Plans

Drop a line down from the :CenterOtMass wrt WCS.
Find the most distant intersection of this plumb line with self.
Identify the surface of this intersection as the :SupportSurface.
If there is contact between the :SupportSurface and workspace:

then :Support is the workspace surface.
Else if there is contact between :SupportSurface and another piece:

then :Support is the other piece.
else :Support is NIL.

There are procedures attached to the various surface types which
are used to calculate line/surface intersections as well as
point/surface contact.

(4) The Inside?, Intersect? and On? procedures are used to compute
various geometric operations on the piece involving points and line
segments. In general, they forward the same request onto the
constituent parts of the piece, whether the relevant parts are
surfaces, holes, or primitives.

(5) The GraspPosition? procedure is used by the planner to return a
legal grasping position for the piece at its current location. It takes
many arguments, including a list of surfaces and primitives which
must not be in contact with the gripper fingers or occluded by the

I I
I r--- _ ~~ I

-'I

\.. :SupportSurface

" I "

$Block1 = :Support

Illustration of $Piece Support? Algorithm

Figure 6.3

The Arms Implementation 105

gripper palm. The GraspPosition? procedure returns an arm
position which will allow the gripper to grasp the piece by opposing
surfaces on one of selfs primitives, without violating the requested
free surface and primitive criteria.

(6) The Collisions? procedure is used to find collisions between self and
other pieces in the workspace when self is projected along a given
axis. This is used in finding bounds on the joints during the goal
verification process.

The type $Piece is a subtype of $LazyCopy. Since the position of a
piece changes with time, :Position is one of the ::LazySlots for tokens of
type $Piece. Other lazy slots include :Support and :SupportSurface,
which also change with time, and :Segment. By making :Segment a lazy
slot, we retain the ability to display a view of the workspace at any time
tick without further computation.

6.3.5. $Primitive

Tokens of types $Block and $Cylinder appear on the :Primitives
slot of tokens of type $Piece. They are the basic building blocks of the
CSG modeler. $Block and $Cylinder are subtypes of the abstract type
$Primitive (see Table 6.6). They inherit :Piece, :Density, and :Solid?
slots from $Primitive, and a :Position slot from $PositionedObject.

The value of :Position represents the position of the primitive with
respect to the piece frame of reference (represented by the :Position slot
attached to the piece). It is easy to calculate the position of a particular
primitive by multiplying the position of the primitive by the position of
the piece. Note that the value of this :Position slot, unlike the :Position
slot of a token of type $Piece, never changes once the piece is defined!

Table 6.6
$Primitive

Supers $PositionedObject
Slots :Piece $Piece token to

which self belongs
:Solid? indicates CSG

combination operator
:Density used to compute mass

Procedures GenerateHolesAndSurfaces initializes piece :Surfaces

106 Machine Learning of Robot Assembly Plans

Hence :Position is not a lazy slot when it belongs to tokens of subtypes
of type $Primitive.21

The :Piece slot contains a pointer to the token of type $Piece to
which this $Primitive token belongs. The :Solid? slot is T for solid CSG
primitives, and NIL for nonsolid CSG primitives. The :Density slot is
used in the calculation of mass for a given piece: each primitive is
allowed to have a different value for its density, thereby changing the
stability requirements for the piece.

6.3.6. $Block, $Cylinder

The $Block and $Cylinder types (see Tables 6.7 and 6.8) are very
similar: the procedures attached to them have the same protocols and
calling procedures, but differ internally due to the differing structure of
the types themselves.

$Block contains :Width, :Height, and :Length slots, while
$Cylinder contains :Radius and :Height slots. These slots taken together
give the dimensions of the particular instance of the primitive. From
these, values for the :Center and :Volume slots are computed. :Center
gives the Cartesian position of the center of mass of this primitive (with
respect to the position of the primitive), and is used in computing the

Table 6.7
$Block

Supers $Primitive
Slots :Width X dimension

: Length Y dimension
:Height Z dimension

Procedures Surfaces? returns list of surfaces
DisplayOps? generates wireframe specification
Insertable? is self insertable in argument?
Inserted? is self inserted in other primitive?
Aligned? is self aligned with other primitive?
Inside? is position inside self?

21 In fact, $Primitive does not contain $LazyCopy on its supers list. No
slots belonging to $Primitive or any of its subtypes ever change once the piece
has been defined.

The Arms Implementation 107

Table 6.8
$Cylinder

Supers $Primitive
Slots :Radius XY dimension

:Height Z dimension
Procedures Surfaces? returns list of surfaces

DisplayOps? generates wireframe specification
Insertable? is self insertable in argument?
Inserted? is self inserted in other primitive?
Aligned? is self aligned with other primitive?
Inside? is position inside self?

center of mass of the piece. Both of these slots contain examples of
tagged procedural attachment: their values are computed from the
dimension slots using an if-accessed procedure.

The Surfaces? procedure returns a list of new $Surface tokens
representing the surfaces for the given $Primitive token. Note that the
$Surface tokens are created in such a manner as to reflect the
dimensions of the primitive, and whether or not the primitive is solid.
This procedure is invoked by $Piece.NewToken, and is only used at
piece creation time.

The Inside? procedure takes a point and returns T if that point is
inside the primitive, else it returns NIL. The Inserted? procedure is
similar, except it compares the primitive with another primitive of the
same type and returns T if one encloses the other: the enclosing
primitive must not, of course, be solid. The Aligned? procedure
compares the primitive with another primitive of the same type and
returns T if the primitives are aligned on the same coordinate axes.

The Insertable? procedure compares self with another primitive or
a hole and returns T unless there is no possible insertion of self in the
argument. This is predominantly used as a test predicate for constraint
schemata.

The DisplayOps? procedure is used to generate the proper 3D
display operations which specify the wireframe of the primitive. The
wireframe is computed using the dimensions of the given primitive. The
DisplayOps? procedure is also invoked by $Piece.NewToken as part of
the piece initialization process.

108 Machine Learning of Robot Assembly Plans

6.3.7. $Surface

The abstract type $Surface (see Table 6.9) exists in order to endow
its subtypes, which represent the faces and holes of a piece, with :Piece,
:Primitive, and :OpposingSurfaces slots. Note that these subtypes also
inherit :Position slots, since $Surface is itself a subtype of
$PositionedObject.

The :Piece and :Primitive slots point to the piece and primitive this
surface token belongs to. Just as in the case of the $Primitive tokens,
the :Position slot represents the position of the surface with respect to
the position of the piece it belongs to. The :OpposingSurfaces slot
contains a list of other tokens that represent other surfaces belonging to
the same piece as self whose normals point in the opposing direction.
This information is used by the $Piece.GraspPosition? procedure, and is
initialized by the $Piece.NewToken procedure.

Given the restricted nature of the CSG primitives and combination
operators, only two types of surfaces can ever arise in the ARMS solid
modeler. These are represented by the types $PlanarSurface and
$CylindricaISurface, which are subtypes of $Surface.

6.3.8. $PlanarSurface, $CylindricalSurface

Tokens of types $PlanarSurface and $CylindricalSurface (see
Tables 6.10 and 6.11) appear on the :Surfaces slot of tokens of type
$Piece. They represent the faces of the piece, and therefore constitute
the BRep representation.

The :Type slot contains a keyword that indicates the type of planar
surface (rectangular or round) or cylindrical surface (exterior or interior)
that is represented by a given token. $B1ock primitives give rise to
rectangular $PlanarSurface tokens, while $Cylinder primitives result in
round $PlanarSurface and both types of $CylindricalSurface tokens.
The dimensions of each token are determined by the $Piece.NewToken

Table 6.9
$Surface

Supers $PositionedObject
Slots :Piece $Piece token to which self belongs

:Primitive $Primitive token to which self belongs
:OpposingSurfaces list of opposing surfaces on same piece

The Arms Implementation 109

Table 6.10
$PlanarSurface

Supers $Surface
Slots :Type one of Round or Rectangular

:XDim X dimension for Rectangular,
radius for Round

:YDim Y dimension for Rectangular,
null for Round

Procedures CoLinear? is self colinear with other surface?
CoPlanar? is self coplanar with other surface?
Covers? does self cover other surface?
Intersect? does line intersect self?
On? is point on self?
Oppose? does self oppose other surface?
Overlap? does self contact other surface?
Parallel? is self parallel with other surface?

Table 6.11
$CylindricalSurface

Supers $Surface
Slots :Type one of Exterior or Interior

:Radius radius of tubular surface
:ZDim height of tubular surface

Procedures CoLinear? is self colinear with other surface?
CoPlanar? is self coplanar with other surface?
Covers? does self cover other surface?
Intersect? does line intersect self?
On? is point on self?
Oppose? does self oppose other surface?
Overlap? does self contact other surface?
Parallel? is self parallel with other surface?

procedure in accordance with the dimensions of the primitives making
up the piece.

110 Machine Learning of Robot Assembly Plans

The brunt of the geometric operations supported by the modeling
system are implemented as procedures attached to these two types.

(1) The CoLinear? procedure returns T if the given surface is colinear
with self.

(2) The CoPlanar? procedure returns T if the given surface is coplanar
with self and has an opposing normal.

(3) The Oppose? procedure is much like CoPlanar?, except any
distance is allowed between the two parallel surfaces.

(4) The Parallel? procedure returns T if the normal of the given
surface is parallel with the normal of self.

(5) The Covers? procedure returns T if the given surface is coplanar
with self and its extent is covered by self.

(6) The Overlap? procedure is much like Covers?, except the two
surfaces must have opposing normals, and there need not be a
covering: simple contact will suffice.

(7) The Intersect? procedure returns the point where self intersects a
given line segment, if any.

(8) The On? procedure returns T if a given point is on self.

6.3.9. $Hole

Tokens of type $Hole (see Table 6.12) are used to represent
openings in the pieces themselves: they result from the use of the CSG
contained difference combination operator.

When a planar surface on a primitive that is the object of a
contained difference operator is covered by another planar surface on
the same piece, it is replaced with a token of type $Hole. The only holes
allowed result from planar surfaces, and so, as one might expect, $Hole
is a subtype of $PlanarSurface (thus permitting inheritance from that
type). The only slot added by the $Hole type lists any other holes in the

Table 6.12
$Hole

Supers $PlanarSurface
Slots :OpposingHoles exit hole, if any
Procedures Swallows? checks against surface

The Arms Implementation 111

piece which resulted from the same contained difference operation and
have an opposing normal: this implies that the primitive removed with
the contained difference goes all the way through the piece.

The Swallows? procedure is the only procedure attached to $Hole.
$Hole.Swallows? checks the hole against another surface and an axis,
returning T only if the hole, when projected along the axis, covers the
surface.

6.3.10. $Arm

A token of type $Arm (see Table 6.13) represents the idealized
robot arm that manipulates the pieces in the workspace. It is a subtype
of $PositionedObject, and therefore possesses a :Position slot that holds
the current gripper position as measured at the hot spot.

The slots of $Arm are used to describe the size, shape, and
configuration of the gripper.

(1) The :Palm slot contains a token of type $Block representing the
part of the gripper between the two fingers. The :Position slot of
this token represents the position of the palm with respect to the
gripper hot spot.

(2) The :Fingers slot contains a list of two tokens of type $Block
describing the two identical gripper fingers. The :Position slots of
these tokens represent the positions of the fingers with respect to
the hot spot.

(3) The :Contacts slot contains a list of two points, given with respect
to the hot spot, which are located on the tips of the two fingers.
These contact points can be thought of as the two rubber pads
found on the inner surfaces of the finger tips of many commercially
available robot arm grippers.

(4) The :Spread slot contains a number indicating the current aperture
between the two fingers, as measured at the contact points.

(5) The :MaxSpread slot contains a number giving the upper bound on
the possible values of the :Spread slot.

(6) The :FingerLength slot contains a number giving the maximum
clearance between the palm and the finger tips.

(7) The :PalmClearance slot contains a number giving the clearance
between the palm of the gripper and any piece currently being
held.

(8) The :HeldPosition slot contains the position of any piece currently
being held, given with respect to the gripper hot spot.

112 Machine Learning of Robot Assembly Plans

Table 6.13
$Arm

Supers $PositionedObject
$LazyCopy

TypeSlots ::LazySlots :Contacts, :Spread, :PieceHeld,
:HeldPosition, :Position,
:WorkSpace, :Segment

Slots :Palm token of type $Block
:Fingers list of two tokens of type $Block
:Contacts list of two points wrt :Position

at finger tips
:Spread current aperture between fingers
:MaxSpread maximum finger aperture
:FingerLength distance from hot spot to palm
:PalmClearance margin between palm and

any piece held
:PieceHeld token of type $Piece being

held by gripper, if any
:HeldPosition position wrt :Position of :PieceHeld
:WorkSpace token of type $WorkSpace

containing self
:Segment for 3D graphics
:DisplayOps for 3D graphics

Procedures Close emulator: close fingers
Open emulator: open fingers
MoveTo emulator: change position
Translate emulator: change position

along axis by de Ita
Rotate emulator: change position

about axis by theta
Render projects self on view at position
NewToken initializes :Contacts, :Spread

(9) The :WorkSpace slot contains a pointer to the workspace snapshot
associated with this token.

(10) The :DisplayOps slot contains a list of 3D graphics commands
which represent the wireframe outline of the gripper. This is
computed from the wireframes of the constituent primitives. Note
that unlike the :DisplayOps slot on a piece, the gripper's display

The Arms Implementation 113

operations will change as the gripper changes finger configuration.

(11) The :Segment slot contains a pointer to a token of type $Segment
used by the graphics package to represent the 2D rendering of the
3D graphics commands in :DisplayOps.

With a single exception, the procedures attached to $Arm are all
used to implement the emulator. The emulator takes a primitive arm
command and a workspace snapshot (usually a token of type $LazyCopy)
and updates the workspace to reflect the effects of the execution of the
primitive arm command input. Most of the changes made are to the
slots on the $Arm token corresponding to the workspace, although some
changes may result from modeling arm/piece interactions.

The emulator forwards a request corresponding to the arm input
command to the :Arm filler from its workspace snapshot. Each arm
primitive has a corresponding procedure attached to $Arm that modifies
the workspace snapshot (and thus also the related arm) accordingly.

(1) The Close procedure closes the gripper fingers as far as possible
within the current workspace snapshot given by :WorkSpace. Close
may affect the fillers of the :Contacts and :Spread slots directly. In
addition, Close will usually change the :Position slots of the tokens
on the :Fingers slot. Close checks for pieces between the fingers
when closing the gripper, and, if there is a piece, computes new
fillers for :PieceHeld, :HeldPosition, and :PalmClearance. A piece,
when grasped by the gripper, has its :Support and :SupportSurface
slots set to NIL.

(2) The Open procedure opens the gripper fingers as far as possible (as
given by :MaxSpread), making changes similar to those made by
the Close procedure. If :PieceHeld is non-NIL, opening the gripper
fingers results in dropping the piece. A dropped piece has its
:Support and :SupportSurface fillers recomputed.

(3) The Translate procedure computes a new filler for :Position
reflecting a translation of a given number of units along a given
axis from the current value of :Position.

(4) The Rotate procedure computes a new filler for :Position reflecting
a rotation of a given number of units along a given axis from the
current value of :Position.

(5) The MoveTo procedure resets the :Position filler to a given new
position.

(6) The NewTok en procedure is not used by the emulator, but rather
is invoked automatically for every new token of this type to
initialize certain slot fillers. NewToken is also responsible for
setting up the graphics display of the $Arm token (much like

114 Machine Learning of Robot Assembly Plans

$Piece.NewToken).

(7) The Render procedure is used to project the 3D wireframe in the
:DisplayOps into a 2D representation stored in the $Segment
token, taking into account the current position of the piece and all
of the viewing parameters of the current view (see Section 6.4.1).

There are two if-changed procedures attached to slots on tokens of
type $Arm. These procedures are used to model arm/piece interactions.

(1) Changing the robot arm's position must modify the position of any
piece currently held by the arm. This is handled by an if-changed
procedure attached to the arm's :Position slot. When the :Position
is changed and the :PieceHeld filler is non-NIL, a new :Position
value for the :PieceHeld filler is computed using the arm's new
:Position and the :HeldPosition filler on $Arm.

(2) Changing the robot arm's finger spread also invokes an if-changed
procedure attached to the :Spread slot of $Arm. If the value of
spread is changed (by a Close or Open request) the following
procedure is invoked:

If old :Spread is equal to :MaxSpread
then if :Position is Inside? any piece in :Contents of :WorkSpace

then set :Spread, :Contacts, :PieceHeld and :HeldPosition
else set :Spread to 0 and :PieceHeld to NIL

else if :PieceHeld is not NIL
then drop :PieceHeld and establish its support
in :WorkSpace and set :PieceHeld to NIL.

6.4. Implementing the Graphics Subsystem

The graphics system implementation consists of two types, $View
and $Segment, interfaced to the modeler via an if-changed procedure
attached to the :Position slot of each $Piece token. The graphics package
is not meant in any way to represent the state of the art in computer
graphics. Its description is included only for completeness. The reader is
referred to [63] for a more thorough discussion of computer graphics.

6.4.1. $View

A view maps a three-dimensional wireframe representation of the
workspace collected from the :DisplayOps slots of the pieces contained in

The Arms Implementation 115

Table 6.14
$View

Supers LazyCopy
TypeS lots ::LazySlots :Segments, :WorkSpace
Slots :WorkSpace pointer to workspace being viewed

:Window pointer to window on screen
:Segments list of segments for this view
:DrawOp one of PAINT, INVERT, ERASE
:EraseOp one of PAINT, INVERT, ERASE
:ViewPoint observer position
:ViewWidth width of view in window
:ViewHeight height of view in window
: ViewingTransform projection transform

Procedures AddPiece add piece to view
NewToken initialize view
Redraw recompute all segments
Refresh replot the view
SetView calculate projection transformation

the workspace (as well as the robot arm) onto a two-dimensional window
on the workspace screen. It is a subtype of $LazyCopy, since we want
the view to track the changes made over time by the history
mechanism.

The type $View (see Table 6.14) contains slots which are mostly
used to contain the view's viewing parameters.

(1) The :WorkSpace slot points to the workspace snapshot represented
by this view.

(2) The :Window slot points to the INTERLISP-D window used for
display of the workspace.

(3) The :Segments slot contains a list of tokens of type $Segment, one
for each piece to be rendered. In addition, one segment token is
used to represent the robot arm.

(4) The :DrawOp slot contains the INTERLISP-D display operation to
be used for drawing pieces in the window. This is initially set to
PAINT.

(5) The :EraseOp slot contains the INTERLISP-D display operation to
be used for erasing pieces in the window. This is initially set to

116 Machine Learning of Robot Assembly Plans

ERASE.

(6) The :ViewPoint slot contains a matrix specifying the position of the
viewer (or camera). Recall from our discussion of Section 4.2.1.1
that the viewpoint and the workspace must occupy distinct
halfspaces.

(7) The :ViewWidth slot contains an integer describing how much of
the workspace's width is mapped onto the window.

(8) The :ViewHeight slot contains an integer describing how much of
the workspace's height is mapped onto the window.

(9) The :ViewingTransform slot contains the homogeneous coordinate
matrix used to transform a point in three-space into a point in
two-space. The :ViewingTransform is computed as a function of
:ViewPoint, :ViewWidth, and :ViewHeight and need not be
recomputed unless one of these fillers is changed.

The procedures attached to $View manipulate these slots.

(1) The AddPiece procedure adds a piece to the view. It creates a token
of type $Segment to represent the piece, and adds it to the
:Segments slot. It the displays the piece on the view by issuing an
Update request to the segment token. In addition, :Position slot on
the piece is tagged with an if-changed procedure so that any future
changes made to the piece's position also issue an Update request
to that piece's segment (for the robot arm, a similar if-changed
procedure is also attached to the :FingerSpread slot).

(2) The NewToken procedure initializes the view by first creating a
window on the workstation screen, and then invoking the SetView
procedure to set up the viewing parameters.

(3) The Redraw procedure erases the window and issues an Update
request to every segment in the :Segments filler. This causes the
projection of each piece (as well as the robot arm) to be recomputed
and redisplayed.

(4) The Refresh procedure erases the window and issues a Draw
request to every segment in the :Segments filler. This causes the
view to be redisplayed using the current piece projections.

(5) The SetView procedure is invoked to compute the
:ViewingTransform filler from :ViewPoint, :ViewWidth, and
:ViewHeight. The :ViewingTransform, when postmultiplied with a
matrix representing a point in the workspace halfspace, results in
a point on the plane separating the workspace halfspace and the
viewer halfspace. The resulting point is the two-dimensional
representation of the three-dimensional point as seen by the

The Arms Implementation 117

camera located at the :ViewPoint.

6.4.2. $Segment

A segment contains the drawing commands, given as INTERLISP
D operations specific to the screen operations on the workstation, used to
render a piece on a given view. Each segment corresponds to one and
only one piece. When the piece is moved, it is necessary to recompute
the drawing commands that render the piece on the view.

The slots on $Segment (see Table 6.15) are straightforward:

(1) The :Piece slot points to the piece rendered by this segment. The
filler of :Piece is a token of type $Piece or a $LazyCopy of such a
token.

(2) The :View slot points to the view on which to render the piece.

(3) The :DrawVersion slot contains a list of INTERLISP-D operations
which, when executed, draw the wireframe of :Piece in :View.

(4) The :EraseVersion slot contains a list of INTERLISP-D operations
which, when executed, erase the wireframe of :Piece in :View. The
value of this slot is derived from :DrawVersion by a simple
substitution of the draw operation for an erase operation in the
INTERLISP-D statements.

The procedures attached to $Segment are also quite
straightforward:

(1) The Draw procedure executes the INTERLISP-D operations listed
on the :DrawVersion slot.

Table 6.15
$Segment

Supers LazyCopy
TypeSlots ::LazySlots :Piece, :View
Slots :Piece pointer to piece represented by segment

:View pointer to current view
:Dra wVersion line drawing operations
:Erase Version line erasing operations

Procedures Draw execute :DrawVersion
Erase execute :EraseVersion
Update recompute, erase, and redraw

118 Machine Learning of Robot Assembly Plans

(2) The Erase procedure executes the INTERLISP-D operations listed
on the :Erase Version slot.

(3) The Update procedure computes a new filler for :DrawVersion by
issuing a Render request to the filler of :Piece. It then erases the
existing view of the piece by issuing an Erase request, followed by
redrawing the new version of the piece by issuing a Draw request.
Finally, Update derives a new filler for :EraseVersion from the
current filler of :DrawVersion. Update in effect provides a way of
buffering the erase and draw operations so that the time spent
computing the new view of a piece is not noticeable to the person
viewing it. Note that Update relies on the current value of the
:ViewingTransform slot of the view.

6.5. Implementing the Schema System

In this section, we describe the implementation of the ARMS
schema system described in Section 5.1. Appendix F contains capsule
summaries of all of the schemata initially built into the ARMS schema
library.

6.5.1. $Schema

Our implementation represents schemata as tokens of various
types. All of the schemata in the system are subtypes of the abstract
type $Schema (see Table 6.16). $Schema implements some of the more
general manipulation facilities for schemata. It is never directly
instantiated, but permits other schema types below it in the hierarchy
to inherit its slots and procedures. It has the following procedures:

Table 6.16
$Schema

Slots :Episode pointer to database
:PrintName character string label

Procedures Fillers? returns list of fillers
Template? returns a template
CloneBySlot? returns a list of clones
ReconcileRequest? reconciles self with target
CloneAndReconcile? reconciles clones with targets

The Arms Implementation 119

(1) The Filler? procedure returns a list of all of the fillers for this
particular token.

(2) The Template? procedure takes a single argument, the requester
(another token), and returns a template that describes self in terms
of the requester. The header of the template is simply the type of
self. Template? scans the slots of both tokens and looks for
matches between the bindings to return (along with the header) as
the new template.

(3) The CloneBySlot? procedure takes a slot name and a list of new
fillers and returns a list of clones differing only in the filler of the
named slot. Two schema tokens are clones if they are of the same
type and differ only by one filler. For n fillers, it creates n-1 new
clones: the remaining value is assigned as the filler for slot in self.

(4) The ReconcileRequest? procedure takes a template and target
schema token as arguments. The target schema represents the
template as evaluated with respect to self. ReconcileRequest maps
fillers back from the target schema token across the template to
self.

(5) The CloneAndReconcile? procedure takes a template and a list of
target schema tokens as arguments. It is an extension of the
ReconcileRequest procedure that handles multiple target schemata.
It returns a list of clones of self which have been reconciled across
the template with the list of target schemata.

6.5.2. $StateSchema

A $StateSchema (see Table 6.17) describes a relation in the
physical world. Each state has a set of type slots that relates a
particular token instantiation to other states and operators.

(1) The ::Contradictions type slot contains a list of state schema
templates describing other states which, if valid, negate the
validity of self.

(2) The ::Substantiators type slot contains a list of state schema
templates describing other states which, if valid, support the
validity of self.

(3) The ::Constraints type slot contains a list of constraint schema
templates describing constraints which, if valid, support the
validity of self.

(4) The ::Plans type slot contains a list of operator schema templates
describing operators that could be used to achieve self.

120 Machine Learning of Robot Assembly Plans

Table 6.17
$State8chema

Supers $Schema
$MatchMixin

TypeSlots ::MatchSlots
::Contradictions schema templates
::Substantiators schema templates
::Plans schema templates
::AntiPlans schema templates
::Constraints schema templates

Slots :StartTime first known valid time
:EndTime last known valid time
:Constraints schema tokens
:Substantiators schema tokens
:Enables schema tokens
: Supports schema tokens
:ExplainedBy schema tokens

Procedures Valid? database: determines selfs validity
Confirm? database: extends selfs validity
Establish? database: establishes unique self
Contradict? database: checks for contradictions
Cons tr ain ts? database: checks for constraints
Substantiate? database: checks for supporters
ExtendLeft? database: extends validity

back in time
ExtendRight? database: extends validity

forward in time
Plan? planner: plans to achieve self
AntiPlan? planner: plans to override self
Realize? planner: completes slots of self
RealizeConstrain ts? planner: completes slots of self
Collect? generalizer: returns subtree below

(5) The ::AntiPlans type slot contains a list of operator schema
templates describing operators that could be used to override the
validity of self.

Each of these type slots is initialized to NIL on $StateSchema.
Each individual subtype of $StateSchema will have its own filler for
these type slots.

The Arms Implementation 121

In addition to these type slots, each schema contains a minimal set
of token slots which, when bound, describe the particular instance of the
state represented by a given token.

(1) The :StartTime slot contains a number indicating the earliest
known time tick where self is valid. It is set by the state schema
database.

(2) The :EndTime slot contains the latest known time tick where self
is valid. It is set by the state schema database.

(3) The :Enables slot is used by both the understander and planner to
represent operator schema tokens requiring self as a precondition.
These tokens correspond to the template on the ::Enables type slot.

(4) The :Supports slot is used by both the understander and planner to
represent operator schema tokens pointing to self as a subgoal.
These tokens correspond to the template on the ::Supports type
slot.

(5) The :ExplainedBy slot is used by both the under stander and
planner to represent operator schema tokens pointing to self as a
goal. These tokens correspond to the template on the ::ExplainedBy
type slot.

(6) In addition to these generic state schema token slots, each subtype
of $StateSchema contains a set of token slots particular to the
semantics of the state. For example, to represent the relation:

$Pegl rests on top of $Washerl

(as was the case in the observed example of Chapter 2) we use a
token $Stackedl of type $Stacked with appropriate slots bound to
both descriptors $Pegl and $Washerl. When $Pegl is later stacked
on top of $Blockl, we instantiate another token of type $Stacked,
but with different bindings for the slots.

The $StateSchema type has the following procedures attached to it:

(1) The Establish? procedure is the heart of the database mechanism.
Establish? takes a state schema token and adds it to the database
if the token is valid and unique. Validity is determined using the
Valid?, Contradict?, Substantiate? and Constraints? procedures.
Uniqueness is enforced by examining possible matches in the
database and returning a pointer to either the state schema token
given as an argument or the matching extant token found in the
database.

(2) The Valid? procedure is unique to every subtype of $StateSchema.
It performs the geometric reasoning necessary to determine
whether self is valid at the given time. Valid? is responsible for

122 Machine Learning of Robot Assembly Plans

filling in the unbound slots peculiar to a given state schema during
the understanding process.

(3) The Confirm? procedure is also unique to every subtype of
$StateSchema. It performs the geometric reasoning necessary to
determine whether self persists unchanged over adjacent time
ticks. Confirm? usually requires much less computation than
Valid?: it may, for example, simply check that the pieces involved
in the relation represented by self remain unmoved.

(4) The Constraints? procedure queries the database for every
template on ::Constraints. If every template is valid, the
corresponding tokens are placed on the :Constraints slot and the
procedure returns self. Otherwise, the procedure returns NIL.
Constraints? is inherited from $StateSchema.

(5) The Contradict? procedure queries the database for every template
on ::Contradictions. If none of the templates are valid, the
procedure returns self. Otherwise, the procedure returns NIL.
Contradict? is inherited from $StateSchema.

(6) The Substantiate? procedure queries the database for every
template on ::Substantiators. If every template is valid, the
corresponding tokens are placed on the :Substantiators slot and the
procedure returns self. Otherwise, the procedure returns NIL.
Substantiate? is inherited from $StateSchema.

(7) The Collect? procedure is used by the generalizer to explore the
causal model. If one considers the causal model to be a tree rooted
at the goal state, the Collect? procedure returns subtrees of the
causal model as rooted at self. Collect? takes an argument
specifying the format of the subtree returned. Collect? traverses
links established by the :Substantiators, :Enables, :ExplainedBy,
and :Supports slots.

(8) The Plan? procedure is used by the planner. It refers to the ::Plans
type slot for possible ways of achieving self as a goal. The
templates on ::Plans indicate operator schemata that achieve this
state as a goal. Plan? is inherited from $StateSchema.

(9) The AntiPlan? procedure is also used by the planner. It refers to
the ::AntiPlans type slot for possible ways of overriding self as a
goal. The templates on ::AntiPlans indicate operator schElmata
that have at least one of the contradictions of this state as a goal,
thus overriding the validity of the state. AntiPlan? is inherited
from $StateSchema.

(10) The RealizeConstraints? procedure is used by the planner to flesh
out the unbound slots in self during planning. RealizeConstraints?

The Arms Implementation 123

uses the constraint schema templates on ::Constraints, along with
the known slot fillers, in order to derive fillers for some of the
unbound slots.

(11) The Realize? procedure is also used by the planner to complete the
fillers on incompletely specified state tokens. Realize? is unique to
every state schema; it is therefore responsible for fleshing out the
slots peculiar to self during the planning process in much the same
way Valid? is used during the understanding process.

(12) The ExtendLeft? procedure attempts to extend the validity of the
state token back in time from the current value of :StartTime. It
invokes the Confirm? procedure with decreasing values of time
until it fails or reaches time O. ExtendLeft? updates the value of
:StartTime.

(13) The ExtendRight? procedure attempts to extend the validity of the
state token forward in time from the current value of :EndTime. It
invokes the Confirm? procedure with increasing values of time
until it fails or reaches the current time. ExtendRight? updates the
value of :EndTime.

6.5.2.1. $ConstraintSchema

The definition of $ConstraintSchema (see Table 6.18) parallels that
of $StateSchema. A constraint has a fixed slot set as described in
Section 5.1.1.1.1.

(1) The :Type slot indicates what relation must be satisfied between
the other slots in order for this constraint to be valid. This is either
a unary or a binary relation, such as LESSP (integer less than) or
EQP (integer equals).

(2) The :Path1 slot is used to describe the first argument to the
relation given as the filler of :Type. A path corresponds to a slot
name or a sequence of slot names to be followed as pointers from
the requesting schema.

(3) The :Path2 slot is used (if present) to describe the second argument
to the relation given as the filler of :Type.

(4) The :Constant slot is a pointer that is to be used (if present) as the
second argument to the relation given as the filler of :Type. If
:Path2 is not given, :Constant must be given. If :Path2 is given,
:Constant may be left unfilled. If both :Path2 and :Constant are
given, then :Path2 is used to determine the second argument, and
the result from the evaluation of the relation given in :Type is
checked for equality with the filler of :Constant.

124 Machine Learning of Robot Assembly Plans

Table 6.18
$ConstraintSchema

Supers $Schema
$MatchMixin

TypeS lots ::MatchSlots
Slots :Enables list of state schema tokens

:Type binary relation or request
:Pathl path to argument 1
:Path2 path to argument 2 (optional)
:Constant value for argument 2 (optional)
:Templates list of template indexed by requester

Procedures Valid? database: determines validity of self
Establish? database: establishes unique self
Template? returns a template for requester

Recall also that a constraint schema does not change with time.
Therefore the Establish? and Valid? procedures, which are used by the
database mechanism, are slightly different from those for $StateSchema.

Note the absence of a Confirm? procedure, since once a constraint
is deemed valid there is no need to confirm it for differing time values.

The Template? procedure is also slightly different from the
$Schema.Template? procedure. Since a constraint often evaluates to
something like:

5 is greater than 2,

it is important to retain the original form of the constraint template
with respect to the requesting schema. In other words, if schema $Ai
requests a constraint template

($C (Type LESSP)(Pathl :Width)(Constant 5»

an entry of the form
($Ai . ($C (Type LESSP)(Pathl :Width)(Constant 5)))

is retained on the :Template slot. This entry permits the reconstruction
of the particular constraint template corresponding to this constraint
schema token. Note that different constraint templates may end up
pointing to the same constraint schema token, since, of course, 5 is
always greater than 2. The Template? procedure simply accesses
:Template using the requesting schema as an index and returns the

The Arms Implementation 125

corresponding entry.

6.5.2.2. $JointSchema

The abstract type $JointSchema (see Table 6.19) and its subtypes
implement the ARMS domain theory. Recall from our discussion of
Sections 4.1.5 and 5.1.1.1.2 that a joint relates two primitives (and
hence two pieces) by describing a family of legal transformations
between them. These transformations are given as sets of degrees of
freedom between the joint's end piece/primitive pairs.

Two totally unrelated pieces in free space have six degrees of
freedom between them. Three of the degrees of freedom are orthogonal
prismatic degrees of freedom. These permit the repositioning of one
piece with respect to the other by sliding it along the X, Y, and/or Z
axes of some coordinate frame of reference. The other three degrees of
freedom (remember there are a total of six for unrelated pieces) are
revolute degrees of freedom. These permit the reorientation of one piece
with respect to the other by twisting it around the X, Y, and/or Z axes of
the coordinate frame of reference.

The immediate subtypes of $JointSchema comprise the abstract
joint schemata, while their subtypes in turn comprise the physical joint
schemata. Abstract joint schemata describe the mechanical behavior of
the joint, while physical joint schemata describe the physical realization
of the joint.

The implementation of $JointSchema roughly parallels that of
$StateSchema, with a few additions and slight modifications.
$JointSchema contains a set of type slots which, in addition to the type
slots inherited from $StateSchema, relate a particular token
instantiation to other states and operators.

(1) The ::InstantiationType type slot is used to mark a particular
instantiation as a simple or compound joint. A simple joint relates
its piece/primitive pairs directly, while a compound joint relates its
piece/primitive pairs via a chain of subjoints. ::InstantiationType is
NIL for a simple joint, while for on a compound joint it contains a
list of slot names where the interim pieces and primitives are
stored.

(2) The ::lnstantiationSubstantiators type slot contains a set of state
schema templates which, when instantiated and valid, imply this
joint is also valid. ::InstantiationSubstantiators are only used for
physical joint schemata.

(3) The ::InstantiationConstraints type slot contains a set of constraint
schema templates describing the interpiece physical constraints

126 Machine Learning of Robot Assembly Plans

Table 6.19
$JointSchema

Supers $StateSchema
$MatchMixin

TypeSlots ::Ma tchSlots
::InstantiationType simple or compound joint
::InstantiationConstraints interpiece constraints
::InstantiationSubstantiators substantiators for physical

joint schemata
::DOFs degree of freedom

templates
::DOFConstraints interDOF constraints

Slots :Pieces list of pieces in joint
:Transform current relation between

end pieces
:InstantiationConstraints constraint schema tokens
:DOFSlots slot names for degree

of freedom tokens
:DOFConstraints constraint schema tokens

Procedures BuildN ewJ oin tSchema verifier: adds new
physical joint schema

Confirm? database: confirms validity
DOFRealize? planner: completes slots
DOFValid? database: check validity of

degrees of freedom
KnownJointlnstantiation? database: known physical

joint schema
NewJointlnstantiation? database: find kinematic

chain equivalent
Plan? planner: achieves self
Realize? planner: completes slots
Realizelnstan tia tions? planner: completes slots
Valid? database: determines

validity of self
VerifyConstraints? database: checks

constraints
VerifySubstantiators? database: checks

substantiators

The Arms Implementation 127

that must be true for the joint to be valid.
::InstantiationConstraints are only used for physical joint
schemata.

(4) The ::DOFs type slot contains a list of degree of freedom templates
that describe the degrees of freedom which characterize this
particular joint instantiation.

(5) The ::DOFConstraints type slot contains a list of constraint schema
templates that must be true for this joint to be valid. These
constraint schema templates relate to the degrees of freedom which
characterize this joint.

Each of these type slots is initialized to NIL on $JointSchema.
Each individual subtype of $JointSchema will have its own fillers for
these type slots.

(1) The :Pieces slot contains a list of pieces related by this joint. At the
very least, :Pieces will contains pointers to the two end pieces of
the joint. For compound joints, any interim pieces will also be
included on :Pieces.

(2) The :Transform slot contains a matrix indicating the current
position of the second joint end piece from the first joint end
piece/primitive pair's frame of reference.

(3) The :InstantiationConstraints slot contains pointers to the
instantiated versions of the constraint templates found on the
::InstantiationConstraints type slot.

(4) The :DOFSlots slot lists the slot names on self where pointers to
the degree of freedom tokens characterizing self can be found.

(5) The :DOFConstraints slot contains pointers to the instantiated
versions of the constraint templates found on the ::DOFConstraints
type slot.

(6) In addition to these generic joint schema token slots, each
immediate subtype of $JointSchema contains a set of token slots
identifying the pieces and primitives involved in the joint. At the
very least, these slots include :Piecel, :Piece2, :Primitivel, and
:Primitive2 that describe the end piece/primitive pairs for the joint.
Any interim piece/primitive pairs in the chain will appear as slots
of the form :InterimPiecei and :InterimPrimitivej.

The procedures attached to $JointSchema are inherited by all joint
schemata, both physical joint schemata and abstract joint schemata.
None of the subtypes of $JointSchema have any procedures attached to
them at all.

128 Machine Learning of Robot Assembly Plans

(1) The BuildNewJointSchema procedure takes a kinematic chain that
corresponds to an abstract joint specification and creates a new
subtype of the existing abstract joint schema. The new type is a
physical joint schema describing how the abstract joint schema was
achieved in the observed example. BuildNewJointSchema creates
additional slots on the new type corresponding to any interim
pieces and primitive in the kinematic chain.

(2) The Confirm? procedure confirms the continued existence of the
joint. If the relative positions of the pieces involved have not
changed, the joint is easily confirmed. Otherwise, the substantiator
set must be reestablished for the joint to be confirmed.

(3) The DOFRealize? procedure creates the appropriate tokens of type
$DegreeOfFreedom and returns self or a list of clones of self.
DOFRealize? is analogous to $StateSchema.RealizeConstraints? in
that it also applies the constraint templates on ::DOFConstraints
as a filter on the returned set of clones.

(4) The DOFValid? procedure establishes the appropriate tokens of
type $DegreeOfFreedom for self and establishes their boundary
conditions by issuing a FindBounds? request to each degree of
freedom. In addition, DOFValid? checks for compliance to the
constraint templates of ::DOFConstraints.

(5) The KnownJointInstantiation? procedure is applied only to
abstract joint schemata. It attempts to find a physical joint schema
related to self that is valid at the current time. Physical joint
schemata which implement self are found by examining subtypes
of the type of self. KnownJointInstantiation? returns the first
valid physical joint schema token that is an instantiation of a
subtype of the type of self.

(6) The NewJointInstantiation? procedure is applied only to abstract
joint schemata when no known physical joint schema
corresponding to self is found to be valid. It looks for an open
kinematic chain relating the end piece/primitive pairs of self via
some transitive chain of currently valid physical joint schemata.

(7) The Plan? procedure is used by the planner. When applied to a
physical joint schema, it follows the same procedure as
$StateSchema.Plan? When applied to an abstract joint schema, it
issues a Plan? request to every possible realization of self as
returned by a Realize? request.

(8) The Realize? procedure is also used by the planner to complete the
fillers on an incompletely specified joint schema token. Once the
end piece/primitive pairs and any interim piece/primitive pairs are

The Arms Implementation 129

fleshed out, Realize? issues a DOFRealize request to every degree
of freedom if self is a physical joint schema. If self is an abstract
joint schema, then Realize? issues a RealizeInstantiations?
request. Realize? returns self, a list of clones of self, or NIL.

(9) The RealizeInstantiations? procedure returns all possible physical
instantiations of the receiving abstract joint schema. It creates
tokens corresponding to each subtype of the type of self, and issues
a Realize? request to each resulting token. RealizeInstantiations?
returns self, a list of clones of self, or NIL.

(10) The Valid? procedure ascertains the validity of both physical joint
schemata and abstract joint schemata. When issued to a physical
joint schema, Valid? returns self, a list of clones of self, or NIL.
When issued to an abstract joint schemata, Valid? returns a token
or list of tokens of the corresponding physical joint schemata or
NIL. Valid? fleshes out all of the unfilled token slots on self. For
physical joint schemata, it then issues VerifyConstraint? and
VerifySubstantiator? requests, returning a value only if both
complete successfully. If self is an abstract joint schema, Valid?
first issues a KnownJointInstantiation? request, and, failing there,
issues a NewJointInstantiation? request. Valid? returns a value
only if one of these two requests returns a value.

(11) The VerifyConstraints? procedure checks the constraint templates
on ::InstantiationConstraints for validity. It is only applied to
physical joint schemata. Valid constraint schema tokens are placed
on the token slot :InstantiationConstraints. This procedure returns
self or NIL.

(12) The VerifySubstantiators? procedure checks the state schema
templates on ::InstantiationSubstantiators for validity. It is only
applied to physical joint schemata. Valid substantiator state
schema tokens are placed on the :Substantiators token slot. In
addition, VerifySubstantiators? issues a DOFValid? request to self.
This procedure returns self or NIL.

6.5.2.2.1. $DegreeOfFreedom

The abstract type $DegreeOfFreedom (see Table 6.20) is used to
represent a single degree of freedom of a given joint. Its function is to
model the degree of freedom and its boundary conditions, determining
the range of motion permitted by this particular physical instantiation.

$DegreeOfFreedom has the following token slots defined:

(1) The :Joint slot points to the joint schema this degree of freedom
belongs to.

130 Machine Learning of Robot Assembly Plans

Table 6.20
$DegreeOfFreedom

Slots :Joint pointer to joint token
:Piece1 joint end piece
:Piece2 joint end piece
:Primitive1 joint end primitive
:Primitive2 joint end primitive
: Orientation major axis measured wrt :Primitive1
:UpperBound upper joint limit
:UpperBoundType upper joint limit
:UpperStop upper joint limit
: LowerBound lower joint limit
:LowerBoundType lower joint limit
: LowerStop lower joint limit
:Range range of travel between limits

(2) The :Piece1, :Piece2, :Primitive1, and :Primitive2 slots contain
pointers to the end piece/primitive pairs of this joint.

(3) The :Orientation slot gives a matrix indicating the orientation of
the degree of freedom major axis in the frame of reference of
:Primiti ve 1.

(4) The :UpperBound slot contains a matrix indicating the position of
:Piece2 in the frame of reference of :Piece1 at the joint's upper
limit of travel.

(5) The :UpperBoundType contains NIL if this is a soft bound (see
Section 4.1); otherwise, it contains a pointer to a token
representing the surface that imposes the hard bound.

(6) The :UpperStop slot contains a pointer to the other surface
involved in the collision imposing the hard bound, or NIL if this is
a soft bound.

(7) The :LowerBound, :LowerBoundType, and :LowerStop slots contain
analogous information related to the joint's lower limit of travel.

(8) The :Range slot contains an integer indicating the range of travel
available to the joint between its upper and lower limits of travel.

$DegreeOfFreedom has no procedures attached directly to it.
Rather, there are procedures attached to the two subtypes of
$DegreeOfFreedom that are used to represent the two distinct types of

The Arms Implementation 131

degrees of freedom described previously.

6.5.2.2.1.1. $PrismaticDOF, $RevoluteDOF

The types $PrismaticDOF and $RevoluteDOF (see Tables 6.21 and
6.22) are used to represent the two distinct types of degrees of freedom.
They have no type or token slots, but only parallel sets of procedures
attached to them.

(1) The Cancel? procedure compares the :Range of self against a
system-wide tolerance. If the range is reduced below the tolerance,
the degree of freedom is no longer considered viable, and Cancel?
returns T.

(2) The FindBounds? procedure establishes lower and upper bounds
(either soft or hard) for a degree of freedom. It also sets the :Range
filler to reflect the range of travel available to the degree of
freedom. FindBounds? works by looking for possible collisions
between end pieces while moving one of them along the axis of the
degree of freedom. FindBounds? also takes an optional pieceList
argument that specifies other pieces to consider as possible
collision agents. This allows establishing bounds on degrees of
freedom within a kinematic chain, rather than simply on degrees

Table 6.21
$PrismaticDOF

Supers $ DegreeOfFreedom
Procedures Cancel? compares :Range to tolerance

FindBounds? establishes bounds
Matches? matches degrees of freedom

Table 6.22
$RevoluteDOF

Supers $DegreeOfFreedom
Procedures Cancel? compares :Range to tolerance

FindBounds? establishes bounds
Matches? matches degrees of freedom

132 Machine Learning of Robot Assembly Plans

of freedom from a simple joint.

(3) The Matches? procedure mimics the $MatchMixin.Matches?
procedure in its calling protocols. Note, however, that
$DegreeOfFreedom is not a subtype of $MatchMixin: the local
Matches? procedure is tailor-made for comparing degrees of
freedom.

6.5.2.2.2. $Cy lindricalJ oint

The type $CylindricalJoint (see Table 6.23) is fairly representative
of the immediate subtypes of $JointSchema. As such, it was chosen as
an example of an abstract joint schema. In general, an abstract joint
schema will contain certain type slot values that make it differ from
other abstract joint schemata. In this case, the relevant type slots are
::DOFs and ::Constraints, but other abstract joint schemata may
specialize a different slot set.

Recall that a cylindrical joint has two degrees of freedom, a
prismatic degree of freedom and a revolute degree of freedom, aligned on
the same major axis. The type $CylindricalJoint has two type slots that
override the corresponding type slot default values given III

$JointSchema.

(1) The ::DOFs type slot contains two templates: one for a
$PrismaticDOF and one for a $RevoluteDOF. The two degrees of
freedom share a single :Orientation.

(2) The ::Constraints type slot contains constraint schema templates
indicating that the two end pieces must be different, and that the
two end primitives must belong to their respective end pieces.

Table 6.23
$CylindricalJoint

Supers $JointSchema
TypeSlots ::DOFs degree of freedom templates

::Constraints constraint schema templates
Slots :Piecel joint end piece

:Piece2 joint end piece
:Primitivel joint end primitive
:Primitive2 joint end primitive
:Orientation major joint axis wrt :Primitivel

The Arms ImpLementation 133

In addition, $CylindricalJoint contains the following token slots:

(1) The :Piece1, :Piece2, :Primitive1, and :Primitive2 slots contain
pointers to the end piece/primitive pairs of this joint.

(2) The :Orientation slot gives a matrix indicating the orientation of
both degrees of freedom in this joint based on the frame of
reference of :Primitive1.

6.5.2.2.3. $RigidJointA

The type $RigidJointA (see Table 6.24) is fairly representative of
the physical joint schemata built into the system. Recall that physical
joint schemata may be acquired by the system in the course of a
learning episode (see Section 5.3.2.1.2). As with abstract joint schemata,
physical joint schemata in general contain a specialized set of type and
token slots that are available only in their general form on
$JointSchema. For $RigidJointA, the specialized type slots are the
::InstantiationSubstantiators and ::InstantiationConstraints.

Recall that a rigid joint has no degrees of freedom between its end
piece/primitive pairs. The type $RigidJointA has two type slots that
override the corresponding type slot default values given in
$J ointSchema.

(1) The ::InstantiationSubstantiators slot contains a single state
schema template describing an $Inserted state schema.

(2) The ::InstantiationConstraints slot contains constraint schema
templates which force :Primitive1 to be a CSG solid, while
:Primitive2 must not be a CSG solid. In addition, a constraint is
placed on the relative sizes of :Primitive1 and :Primitive2 so that
insertion achieves a rigid fit.

Table 6.24
$RigidJointA

Supers $RigidJ oint
TypeSlots ::InstantiationSubstantiators substantiators for

physical joint schemata
:: Instantia tion Cons train ts interpiece physical

constraints

134 Machine Learning of Robot Assembly Plans

6.5.3. $OperatorSchema

All of the operator schemata in ARMS are subtypes of the type
$OperatorSchema (see Table 6.25). An operator schema describes how
some action or set of actions taken by the robot arm affect the world
state. Each operator schema has a set of type slots that describe how a
particular token instantiation is related to other states and operators.

(1) The ::Goals type slot contains a list of state schema templates
describing states that result from the application of self.

(2) The ::Preconditions type slot contains a list of state schema
templates describing state that must be valid in for self to be
applied.

(3) The ::SubGoals type slot contains a list of state schema templates
(possibly mixed with sublists of state schema templates) describing
a partial ordering of states that characterize the application of self.

(4) The ::Body type slot contains a single operator schema template
describing an operator which, when applied in the context

Table 6.25
$OperatorSchema

Supers $Schema
TypeSlots ::Goals list of goal templates

::Preconditions list of precondition templates
::SubGoals list of subgoal templates
::Body body template
: :Suggestions list of action schema templates

Slots :Goals list of goal instances
:Preconditions list of precondition instances
:SubGoals list of sub goal instances
:Body body instance
:Suggests list of action schema instances

Procedures Activate? understander: checks operator
for activation

Suggest? understander: returns likely
suggestions of self

Execute? planner: executes self as a plan
Collect? generalizer: returns subtree

below self

The Arms Implementation 135

established by the preconditions and subgoals of self, causes the
goal states to become valid.

(5) The ::Suggests type slot contains a list of state schema templates
describing states that should be considered for activation when self
becomes active. Usually these suggested states contain self as their
body.

Each of these type slots is initialized to NIL on $OperatorSchema.
Each individual subtype of $OperatorSchema will have its own filler for
these type slots.

In addition to these type slots, each schema contains a minimal set
of token slots which, when bound, describe the particular instance of the
state represented by a given token.

(1) The :Goals slot us used by both the understander and planner to
represent state schema tokens resulting from the application of
self. These tokens correspond to the templates on the ::Goals type
slot.

(2) The :Preconditions slot is used by both the understander and
planner to represent state schema tokens that must be valid for
the application of self. These tokens correspond to the templates
on the ::Preconditions type slot.

(3) The :SubGoals slot us used by both the understander and planner
to represent a partial ordering of state schema tokens
characterizing the application of self. These tokens correspond to
the templates on the ::SubGoals type slot.

(4) The :Body slot us used by both the understander and planner to
represent an operator schema token which, when applied in the
context established by the preconditions and subgoals of self,
results in the validity of the goals. This token corresponds to the
template on the ::Body type slot.

(5) The :Suggests slot us used by both the understander and planner
to represent state schema tokens that are suggested upon
activating self. These tokens correspond to the templates on the
::Suggests type slot.

(6) In addition to these generic state schema token slots, each subtype
of $OperatorSchema contains a set of token slots particular to the
semantics of the operator. These slots generally correspond to the
union of slots on the goal states of self.

Unlike the $StateSchema.Realize or $StateSchema.Valid?
procedures, none of the procedures attached to $OperatorSchema are
overridden by procedures tailor-made to suit a particular operator. The

136 Machine Learning of Robot Assembly Plans

procedures attached to $OperatorSchema are applicable to all operator
schema tokens (with the possible exception of the primitive operators:
see next section).

(1) The Activate? procedure determines whether the suggested schema
represented by self is activated in the current context. Activate?
implements the non-predictive understanding process of Section
5.3.1.3.2. Activate? returns NIL if the schema fails to meet the
activation conditions. If the activation conditions are met,
Activate? returns self or a list of clones of self, depending on
whether self was fully instantiated. If the schema was only
partially instantiated, the list of clones represents all active fully
instantiated versions of self.

(2) The Suggest? procedure is used by the understander. Suggest?
returns the list of operator schemata suggested by the activation of
self. Suggest? instantiates the schema templates on the ::Suggests
type slot of self and checks for validity of their goal states. Only
suggestions whose goal states are valid at the current time are
returned as the result of Suggest?

(3) The Execute? procedure is used by the planner. Execute?
implements the execution step described in Section 5.2.2. Execute?
returns self (or a clone of self) if the goals of self (or its clone) are
successfully achieved (or are already valid).

(4) The Collect? procedure is used by the generalizer to explore the
causal model. If one considers the causal model to be a tree rooted
at the goal state, the Collect? procedure returns subtrees of the
causal model as rooted at self. Collect? takes an argument
specifying the format of the subtree returned. Collect? traverses
links established by the :Preconditions, :SubGoals, :Body, and
:Goals slots.

6.5.3.1. $PrimitiveSchema

Primitive operator schemata are all subtypes of the abstract type
$PrimitiveSchema (see Table 6.26). $PrimitiveSchema is in turn a
subtype of $OperatorSchema. It contains the following additional slots:

(1) The :Time slot contains a value giving the time tick this operator
was executed.

(2) The :Position slot contains a matrix giving the end position of the
gripper, after command execution, for this primitive.

The Arms Implementation 137

Table 6.26
$PrimitiveSchema

Supers $OperatorSchema
Slots :Time time of execution

:Position end gripper position
Procedures Execute? executes the primitive

The only procedure attached to $PrimitiveSchema is the Execute?
procedure, which takes care of some of the bookkeeping involved in
executing a primitive arm command. It is similar to the
$OperatorSchema.Execute? procedure, but without the recursive
execution of other operators.

Finally, we note that each of the five primitive arm commands is
implemented as a subtype of $PrimitiveSchema. The individual
primitive operator schemata also have individualized Execute?
procedures that interface the schema system with the history
mechanism by issuing an Input request to the current episode (see
Section 6.6.2). Each individual Execute? procedure (e.g.,
$Open.Execute?, $MoveTo.Execute?) shares the bookkeeping facility of
$PrimitiveSchema.Execute? .

6.6. Implementing the Top Level

This section describes the type $Episode (see Table 6.27), tokens of
which are used to represent each learning or problem-solving episode.
The performance element, the learning element, the emulator, the
history mechanism, and the schema system database mechanisms are
all implemented as procedures attached to this type.

We divide our discussion of the type $Episode along functional
lines. We first discuss those slots and procedures that cannot be
strongly identified with a single function of this type. We then proceed
to describe the implementation of the history mechanism, the database,
the planner, the understander, the verifier, and the generalizer.

6.6.1. General Description of $Episode

For every example, whether it be a learning or problem-solving
example, a new token of type $Episode is created. For the scenario of
Chapter 2 there would be multiple tokens: one corresponding to each
learning or problem-solving episode. Every episode, regardless of
whether a learning or problem-solving one, has a goal associated with it.
Finally, each episode has a certain set of slots and procedures that

138 Machine Learning of Robot Assembly Plans

Table 6.27a
$Episode

Slots :PlanMode learning/planning episode
: Goal goal template specification
:GoalSchema pointer to goal token
:AssemblySequence series of robot

arm command tokens
:ActiveSchemas active operator schemas
: V erboseMode diagnostic messages on/off
:StatsFlag statistics gathering on/off
:OpGenFlag generality/opera tionali ty

tradeoff flag
:Browser pointer to causal

model display
:RS232Mode output to real arm on/off
:CurrentTime history mechanism: time in

clock ticks
:WorkSpace history mechanism: pointer

to current snapshot
:Trace history mechanism: previous

snapshots
:OpenStates database
:RightOpenStates database
:LeftOpenStates database
:ClosedStates. database
: V alidConstraints database: valid constraint

schemata
:JointSchemas database: valid joint schemata

The Arms Implementation 139

Table 6.27b
$Episode

Procedures
AddBrowser adds causal model browser
AddView adds graphic display
AnalyzeDependencies generalizer: finds shared

substructures
AnalyzeJ oints generalizer: orders by DOF

dependencies
BreakDownStates generalizer: eliminates shared

substructures
BuildN ewSchema generalizer: builds new

operator schema
CloseLeft database: firms :StartTime on

state schema token
CloseRight database: firms :EndTime on

state schema token
DeterminePrecondi tions generalizer: finds preconditions
FindChains? verifier: invoked by joint

schema validation
Generalize generalizer: entry point
Input history: entry point
NewToken initializes browser and graphics
Observe understander: entry point
Plan planner: entry point
PromotePrecondi tions generalizer: promotes to subgoals
PromoteS lots generalizer: collects new slots
Revert history: resets to earlier time
Valid? database: entry point
Verify? verifier: entry point
WorkSpace? history: returns

pointer to snapshot

provide user interface and debugging functions.

The relevant slots of $Episode are

(1) The :PlanMode slot identifies which type of episode the particular
token represents. If T, it represents a problem-solving episode. If
NIL, it represents a learning episode.

(2) The :Goal slot contains a schema template describing the expert
specified goal state. This is usually an abstract joint schema

140 Machine Learning of Robot Assembly Plans

template.

(3) The :GoalSchema slot contains a fully instantiated physical joint
schema corresponding to the abstract joint schema template of the
:Goal slot.

(4) The :AssemblySequence slot contains a list of primitive operator
schemata representing the robot arm command sequence observed
or planned to this point.

(5) The :ActiveSchema slot contains a list of operator schemata
activate by the schema activation mechanism in a learning
episode, or realized by the planning process in a problem-solving
episode.

(6) The :VerboseMode Bag slot turns diagnostic messages from the
database mechanism on or oft'.

(7) The :StatsFlag slot turns on statistics gathering for performance
evaluation (see Appendix E).

(8) The :GenOpFlag slot contains the value of the
generality/operationality trade-oft' Bag described in Section 5.3.2.3.

(9) The :Browser slot turns the dynamic causal model display browser
on or oft'. In addition, it is possible to set :Browser so that the
model is displayed only at the end of the observed episode.

(10) The :RS232Mode Bag slot turns on echoing of primitive arm
commands to the real robot arm via the RS232 serial port.

There are times when it is expeditious to run the system without
either a graphic view or a browser, since these tend to slow the system
down quite a bit. Therefore, there are two related debugging
procedures:

(1) The AddView procedure turns on the graphic output if the current
episode does not already have a view on the world. It takes a
single argument representing the time tick identifying the desired
view. This permits the expert to run the system without paying
the overhead associated with maintaining the view, yet still be
able to inspect a view of the world on demand.

(2) The AddBrowser procedure turns on the dynamic causal model
display browser if the current episode does not already have one.
Like AddView, this permits the expert to inspect the state of the
causal model at any time tick on demand.

The NewToken procedure is executed whenever a new token of
type $Episode is created. It performs various initialization functions
required by the graphics and browser subsystems.

The Arms Implementation 141

6.6.2. Implementing the History Mechanism

The job of the history mechanism is to maintain the workspace
snapshots that trace the history of this episode. The general idea is to
use the $LazyCopy mechanism to support a kind of layered copying
where each layer corresponds to a time tick. The history mechanism
provides indexing facilities (by tick) and also manages the emulator,
which is used to compute new snapshots upon receipt of an arm
command. The history mechanism is implemented as a collection of
slots and procedures on $Episode.

The slots of $Episode used to implement the history mechanism
are

(1) The :CurrentTime slot records the time corresponding to the
current snapshot.

(2) The :WorkSpace slot always points to a token of type $WorkSpace
or $LazyCopy (Section 6.3.2) that represents the state at time
:CurrentTime.

(3) The :Trace slot contains the previous layers of the emulator,
represented as previous generations of $LazyCopy and $W orkSpace
tokens.

These slots are manipulated by a set of procedures, also attached to
the type $Episode.

(1) The Input procedure pushes the current :WorkSpace on :Trace,
increments the value of :CurrentTime by 1, and creates a new
workspace lazy copy by issuing a Copy request to the last snapshot.
The new workspace snapshot becomes the new filler for
:WorkSpace, and is passed to the emulator for updating.

(2) The WorkSpace? procedure takes an integer as its only argument
and returns a pointer to the snapshot corresponding to that time
tick. If no argument is given, a pointer to the current filler of
:WorkSpace is returned.

(3) The Revert procedure allows unwinding of the system state to a
previous time by flushing the later layers of the emulator. This is
especially useful when debugging, since it permits re-executing a
particular arm command that may occur late in a sequence.
Revert simply resets the :WorkSpace slot to the snapshot
corresponding to the desired time, and removes any later snapshots
from :Trace.

142 Machine Learning of Robot Assembly Plans

6.6.3. Implementing the State Schema Database

The state schema database is responsible for creating and
maintaining the state schema representation of the world. It must be
able to create new schema tokens, determine their validity and temporal
scope, and satisfy requests for information about both new and existing
state schema tokens. It is implemented using a collection of slots and
procedures on the type $Episode.

The database is accessed via the procedure $Episode.Valid? This
procedure takes the following arguments:

(1) A state schema template or token which is the object of the
request;

(2) A pointer to the schema token making the request;

(3) A time value indicating at what tick to check for validity;

(4) A flag indicating whether the requester expects the database to
return all matches or only the first one found.

$Episode.Valid? returns a token, a list of tokens, or NIL, indicating no
valid token was found to match the request. The basic procedure is

If the request is a template, create a token using the pointer to requester.
If the request is a constraint then

If the request matches an entry in : ValidConstraints then
Insure request is listed on :Templates of match and return match.

Else evaluate constraint.
If evaluated constraint is true then

Add evaluated constraint to :ValidConshaints and return it.
Else if it is not true return NIL.

Else if the request is not a constraint then
If the request can be found in the cache then

Return the match.
Else attempt to establish the new state.

If request can be established then
Add established request to cache and return it.

Else return NIL.

Attempts to establish a new token are handled by sending the
token an Establish? request. This request is fielded by either
$ConstraintSchema.Establish? or $StateSchema.Establish?, depending
on the type of the token.

The Arms Implementation 143

The four slots :OpenStates, :LeftOpenStates, :RightOpenStates, and
:ClosedStates contain lists of state schema tokens used to implement the
database cache mechanism. We describe the caching mechanism by first
considering the implementation of a simpler caching strategy and then
extending it to the more complex ARMS caching strategy.

Recall that each state token contains :StartTime and :EndTime
fillers that describe the temporal scope of the state. A naive caching
strategy can be implemented using two slots :OpenStates and
:ClosedStates as follows:

(1) Whenever a new state schema token $Si is validated at time t,
determine the earliest tick at which $Si is valid by attempting to
confirm $Si at each time tick counting down from t. This can be
accomplished by issuing an ExtendLeft? request to $Si and setting
:StartTime to the value returned. :EndTime is set to t.

(2) The new token $Si is placed on the :OpenStates list, signifying
that while its :StartTime is known, its :EndTime is not definite.

(3) At every new time tick, attempt to extend the :EndTime of every
token on the :OpenStates list by issuing an ExtendRight? request
to each token. If a token cannot be extended, transfer it from the
:OpenStates list to the :ClosedStates list. Tokens on :ClosedStates
have their temporal scopes firmly delineated by their :StartTime
and :EndTime slots.

While this is an adequate (and easy to implement) caching
strategy, it wastes precious computational resources in attempting to
extend the scope of every new state schema token back to the first time
tick, as well as in extending the scope forward at each new time tick. A
simple extension consists of invoking the forward extension process only
on demand: e.g., when a database request at time t matches a state
schema token on :OpenStates with an :EndTime of [-no This kind of on
demand extension can result in a significant savings of computational
resources, since many tokens, once established, are never accessed
again.

Extending the temporal scope of every new state schema token as
far back as possible is also a waste of resources. In addition, the cost
associated with this extension grows with the length of the assembly
sequence. We can extend the notion of on-demand extension to include
extending the :StartTime of a token backwards. To do this, we split the
:OpenStates and :ClosedStates lists into the four lists :ClosedStates,
:OpenStates, :RightOpenStates, and :LeftOpenStates.

(1) The :ClosedStates slot contains tokens whose temporal scope (as
described by the :StartTime and :EndTime slots) is known to be

144 Machine Learning of Robot Assembly Plans

nonextendible.

(2) The :OpenStates slot contains tokens whose temporal scope (as
described by the :StartTime and :EndTime slots) is possibly
extendible both backward and forward in time.

(3) The :LeftOpenStates slot contains tokens whose temporal scope (as
described by the :StartTime and :EndTime slots) is possibly
extendible only backward in time.

(4) The :RightOpenStates slot contains tokens whose temporal scope
(as described by the :StartTime and :EndTime slots) is possibly
extendible only forward in time.

Every new state schema token $Si established at time t is placed
initially on :OpenStates with both :StartTime and :EndTime slots set to
time t. If the token matches a future database query, its temporal scope
may be extended on demand, causing migration of the token from
:OpenStates to either :LeftOpenStates or :RightOpenStates and,
eventually, :ClosedStates. This migration is handled by the following
two procedures attached to $Episode:

(1) The CloseLeft procedure fixes the current left endpoint of its
argument (a state schema token) as firm. Depending on the current
placement of the state schema token, this procedure causes
migration of the token to either :RightOpenStates or :ClosedStates.

(2) The CloseRight procedure fixes the current right endpoint of its
argument (a state schema token) as firm. Depending on the current
placement of the state schema token, this procedure causes
migration of the token to either :LeftOpenStates or :ClosedStates.

6.6.4. Implementing the Planner

The planner is invoked by creating a new token of type $Episode,
initializing it, and issuing a Plan request. Initialization consists of
setting :CurrentTime to 0, setting the expert's goal specification (an
abstract joint schema template) on the :Ooal slot, and placing a token of
type $WorkSpace representing the initial problem-solving world on the
: WorkSpace slot. :PlanMode is set to T.

The Plan procedure takes the expert's goal specification, an
abstract joint schema template on the :Ooal slot, instantiates it, and
places it on the :GoalSchema slot. It then issues a Plan request to the
instantiated abstract joint schema. The bulk of the computation is
supported by the individual state and operator schemata Plan, Realize,
and Execute procedures.

The Arms Implementation 145

6.6.5. Implementing the Understander

The understander is invoked by creating a new token of type
$Epi80de, initializing it, and issuing a Observe request. Initialization
consists of setting :CurrentTime to 0, setting the user's goal specification
(an abstract joint schema template) on the :Goal slot, and placing a
token of type $WorkSpace representing the initial problem-solving world
on the :WorkSpace slot. :PlanMode is set to NIL.

The Observe procedure takes as its lone argument a list of
primitive robot arm commands. The commands are specified as a
command name (e.g., Open, MoveTo, etc.) and whatever arguments fully
describe the command (see Section 4.1.4). The Observe procedure
proceeds as follows:

(1) Read the next command input and create a primitive operator
schema token $Pi to represent the input.

(2) Issue an Execute? request to $Pi (recall that the Execute?
procedure attached to each primitive operator type in turn issues
an Input command to the episode's history mechanism).

(3) Issue a Suggest? request to $Pi and initialize the suggested schema
list to the result.

(4) If the suggested schema list is empty, go to Step 1.

(5) Pop the first suggested schema $Sj ofT the suggested schema list
and issue it an Activate? request.

(6) If the Activate? request returned NIL, go to Step 4.

(7) Place each clone of $Sk returned from the Activate? request on
:ActiveSchemas. Send each clone a Suggest? request and append
the results to the suggested schema list. Go to Step 4.

When there are no longer any primitive arm command inputs left
to be processed, the Observe procedure issues a Verify? request,
invoking the verifier. If the verifier terminates successfully (e.g., a non
NIL value results from the Verify? request), then before terminating,
the Observe procedure issues a Generalize request, invoking the
generalizer.

6.6.6. Implementing the Verifier

The verifier is invoked when the Observe procedure issues a
Verify? request. The Verify? procedure is in itself quite straightforward.
It begins by checking if there is a physical joint schema token in the
database that matches the expert's goal specification (the filler of the
:Goal slot). If there is, then the goal was recognized during
understanding (Case 1 of Section 5.3.2.1). This situation fails to meet

146 Machine Learning of Robot Assembly Plans

the ARMS learning criteria, and, therefore, the verifier terminates
returning NIL.

If no matching abstract joint schema is found in the database,
Verify? issues a Valid? request to the database mechanism using the
expert's goal specification (from :Goal) as the object of the request.
Verify? sets the value of this Valid? request on the :GoalSchema slot
and then returns it as its own value: hence, if the database mechanism
returns NIL, Verify? will also return NIL (corresponding to Case 4 of
Section 5.3.2.1).

The joint schema validation mechanism attempts to validate the
request, perhaps creating a new physical joint schema in the process.
This corresponds to Cases 2 and 3 of Section 5.3.2.1. If successful, it
returns a physical joint schema token that corresponds to the expert's
partially specified abstract joint schema.

Note that the joint schema validation procedure may, in the course
of attempting to establish a new physical joint schema, issue a
FindChains? request to the current episode. The FindChains? procedure
takes as its arguments two piece/primitive sets, and returns all
transitive physical joint schema relationships currently in the database
which can be used to relate the two arguments.

6.6.7. Implementing the Generalizer

The generalizer is implemented as a collection of procedures
attached to the type $Episode.

(1) The AnalyzeDependencies procedure takes as its argument an
ordered set of state schema tokens recognized by the under stander
and determines what shared substructures exist in the subtrees
rooted at each state. It returns a new ordered set of states that
has no shared substructures. Shared substructure is found by
listing all of the substates in the subtrees rooted at each element of
the input and finding their set intersections. AnalyzeDependencies
relies on BreakDownStates to derive the shared-substructure free
state set.

(2) The AnalyzeJoints procedure takes an unordered set of physical
joint schema tokens recognized by the understander and imposes
an ordering based on an analysis of their degrees of freedom.
AnalyzeJoints insures that any physical joint schema which
restricts another physical joint schema's degree of freedom occurs
before the affected joint schema. If schemata that are not joint
schemata are included on the input list, they are passed through
undisturbed.

The Arms Implementation 147

(3) The BreakDownStates procedure takes a tree of state and operator
schema tokens (the explanation) and a set of shared state schema
tokens as its arguments. BreakDownStates recursively descends
the tree until it is free of shared states. As the recursion unwinds,
BreakDownStates retains the set of state schema tokens that
describes the original tree at the highest possible level of
description free from elements of the shared state set.

(4) The BuildNewSchema procedure constructs a new subtype of
$OperatorSchema describing the newly acquired assembly
technique and integrates it into the system (see Section 5.3.2.3). It
takes two sets of state schema tokens (the precondition and the
subgoal sets) as well as an operator schema token (the body) as
arguments. BuildNewSchema constructs schema templates from its
arguments (by issuing Template? requests to the individual
tokens) and uses the templates to characterize the new operator
schema.

(5) The DeterminePreconditions procedure takes a set of state schema
tokens recognized by the understander and returns a set of state
schema tokens which are unexplained yet included in the
explanation subtrees rooted at elements of the argument set. This
constitutes the initial precondition set for the new schema.

(6) The PromotePreconditions procedure takes a set of precondition
state schema tokens (such as that produced by a
DeterminePreconditions request) and attempts to promote these
into subgoals of the new schema currently under construction.
PromotePreconditions is invoked from BuildNewSchema and
implements the precondition promotion procedure of Section
5.3.2.3.

(7) The PromoteSlots procedure takes two sets of state schema tokens
(a subgoal set and a precondition set), a goal schema token, and an
operator schema token (the body) representing the newly
constructed schema. It returns a set of new slots that must be
added to the newly constructed schema in order to permit transfer
of bindings among its arguments. PromoteSlots is invoked from
BuildNewSchema and implements the slot promotion process of
Section 5.3.2.3.

(8) The Generalize procedure is the top-level entry point to the
generalizer. It relies on the verifier placing a validated physical
joint schema token on the :GoalSchema slot that corresponds with
the expert's goal specification as stored on the :Goal slot.
The top-level subgoal set is computed by issuing an AnalyzeJoints
request using the substantiator set of the :GoalSchema filler as the

148 Machine Learning of Robot Assembly Plans

argument. Then, depending on the value of the :GenOpFlag filler,
an AnalyzeDependencies request is issued that transforms the top
level subgoal set into a new subgoal set without any shared
substructures. If the more general new operator schema is desired,
the AnalyzeDependencies request is not issued.
A precondition set for the new schema is computed by issuing a
DeterminePreconditions request with the current subgoal set as its
argument. Precondition promotion is attempted by issuing a
PromotePreconditions request. The promotion precondition process
may cause modification to both the subgoal set and the
precondition set.
The body of the new schema is set to the achieving operator of the
last subgoal in the subgoal set. The last element is then removed
from the subgoal set.
At this point, Generalize has determined the structure of the new
operator schema, and issues a BuildNewSchema request with the
subgoal set, the body, and the precondition set as arguments.
BuildNewSchema constructs the new operator schema type, adds it
to the hierarchy, and constructs the appropriate ::Plans and
::Suggests links on other members of the schema library (see
Section 5.3.2.5).

Chapter 7

Scenario Revisited

In this chapter we re-examine the same transcript of the ARMS
system discussed in Chapter 2. Recall the problem was to construct a
widget from the initial state shown in Figure 7.1. $BoredBlockl is on
the right, with its socket also facing towards the right. $Washerl is in
the foreground, with $Pegl stacked on top of it. In addition, $Blockl is
in the left rear part of the workspace.

The gripper is shown in its nest position as a two-fingered palm
with the two (closed) fingers pointed downwards. The goal state is
specified as a partially instantiated abstract joint schema:

$RevoluteJoint [Piece 1 =$Washerl, Piece2 = $BoredBlockl].

A token $RevoluteJointOl22 that represents this abstract joint schema
is instantiated.

7.1. Attempting to Solve the Problem

The performance element now takes over and attempts to produce
a sequence of primitive operator schemata which, when executed, will
produce a final state consistent with the goal specification. The first
step of this process is the design phase of Section 5.2.1.

Recall the design phase attempts to produce a fully instantiated
physical joint schema from the partially instantiated abstract joint
schema derived from the goal specification. From the abstract joint
schema $RevoluteJointOl22 we index those physical joint schemata that
represent physical realizations of this mechanical behavior.

While the system possesses the abstract joint schema type
$RevoluteJoint, it has no physical joint schemata that correspond to it.
Therefore, the design phase terminates unsuccessfully, causing the
performance element to abort.

150 Machine Learning of Robot Assembly Plans

I II .--- .-- ,.::.. --- I .-' \

. ------
:::-~ ---.

----- ..-.,

Initial State for Widget Assembly Problem

The disembodied robot arm gripper is located in the center of the picture with its fingers
closed and pointing downwards. $BoredBlockl is off to the right, with its socket also point
ing to the right. $Blockl is in the left rear of the picture. $Pegl is stacked on top of
SWasherl in the foreground, just left of center.

Figure 7.1

7.2. Observing the Expert's Plan

When the performance element gives up, control passes to the
learning element, and the expert is asked to lead the robot arm through
a solution. The expert's input is a list of 30 fully instantiated primitive
operator schemata. As each input is read in, the emulator simulates the
changing workspace by executing each arm command. Meanwhile, the
understander constructs the causal model using the schema·activation
mechanism described in Section 5.3.1.3.3.

Note that the solution presented by the expert contains several
less-than-optimal subsequences. In particular,

(1) Clearing $Peg1 off of the top of $Washerl uses a sequence of four
$Translate commands along the world coordinate system axes.
There is no justification for using the four, more expensive,
$Translate commands over a single $MoveTo.

(2) $Peg1 is stacked on top of $Block1 when it is removed from
$Washerl. An optimal solution would not rely on the presence of
the extraneous piece $Block1.

(3) There is an extra $Rotate command before grasping $Washer1
which does not contribute to the success of the expert's plan.

Scenario Revisited 151

Note that these subsequences do not affect the effectiveness of the
solution. One would hope, however, that any operator schema acquired
by the system that can be used to solve this problem would produce a
better solution; i.e., one that doesn't rely on these quirks of the expert's
plan.

7.3. Verifying the Solution

When the last input is read and the causal model is complete, the
generalizer takes over. The first task of the generalizer is to ascertain
that the final state actually fits the goal specification given by the
expert.

In Section 5.3.2.1., we discussed the verification process and the
four possible cases it must handle. The situation in this example is that
of Case 3, i.e., there is no physical joint schema that can be used to
justify the validity of the abstract joint schema given as the goal
specification.

It is up to the verification process to construct some justification,
on the basis of its naive kinematic domain theory, of how this assembly
fulfills the function specified by the goal specification. The first step in
this analysis is to look for a kinematic chain linking the two end pieces
specified by the abstract joint $RevoluteJoint0122, the goal specification.

During the course of the understanding process, the system was
able to recognize two physical joint schemata, $RigidJointA0301 and
$CylindricaIJointA0311. Recognition of these two joints was
accomplished by the activation of two schemata $NewSchemaA0298 and
$NewSchemaB0308. Both of these operator schemata are instantiations
of operator schemata acquired by ARMS in the course of previous
learning episodes.

These two recognized joints provide a chain between $Washerl and
$BoredBlockl via $Peg1. In this case, this is the only extant kinematic
chain between the desired end pieces.

The verifier now collects copies of all the degrees of freedom in the
chain, recomputing all of their soft bounds by taking into account the
presence of the other pieces in the chain. In this example, there are two
degrees of freedom present: a prismatic degree of freedom and a revolute
degree of freedom. Both are contributed by $CylindricaIJointA0311.

The revolute degree of freedom from $CylindricaIJointA0311 has
no bounds, and no changes on the bounds are made by considering the
other pieces in the kinematic chain. On the other hand, the prismatic
degree of freedom contributed by $CylindricaIJointA0311 suffers some
modification when incorporated into the kinematic chain.

152 Machine Learning of Robot Assembly Plans

This prismatic degree of freedom currently has a hard bound
imposed by a collision between the underside of $Pegl's head and the
top surface of $Washerl. The other bound is a soft bound limited only by
the length of the shaft of $Pegl. When the entire kinematic chain is
considered, a collision between the underside of $Washerl and the top
surface of $BoredBlockl causes the soft bound to become a hard bound.
The range of motion remaining on the prismatic degree of freedom is so
small as to fall below a system-wide tolerance value which indicates
when a degree of freedom ceases to be significant.

The collected degrees of freedom of the kinematic chain are then
mapped onto the expected degrees of freedom of the abstract joint
schema $RevoluteJointOl22. In this case, the revolute degree of freedom
corresponds to the single expected degree of freedom of
$RevoluteJointOl22. The prismatic degree of freedom is canceled by the
newly imposed bounds.

The verification process now constructs a new physical joint
schema $RevoluteJointA, indexed by $RevoluteJoint, that represents
this particular physical realization of joint function. The substantiator
set for $RevoluteJointA contains $CylindricalJointA and $RigidJointA.
Slots are created on $RevoluteJointA to permit mapping of fillers across
the substantiator set, and constraints are added that reflect only those
physical interrelations (e.g., shape and dimension relations) between the
fillers that were crucial to the cancellation of the prismatic degree of
freedom. An instance of the new schema, $RevoluteJointA0354, is
created to represent the achieved goal state. Finally, new slots (e.g.,
InterimPiecel) representing internal chain pieces are added to the new
physical joint schema. The verification process terminates successfully.

7.4. Generalizing the Solution

The top-level subgoal set of this episode consists of the
substantiators of $RevoluteJointA0354, $CylindricaIJointA0311 and
$RigidJointA0301. From this subgoal set, the generalizer constructs a
new operator schema to achieve the goal $RevoluteJointA, the newly
added abstract schema corresponding to the current goal
$RevoluteJointA0354.

The first step is to analyze any dependencies between these top
level subgoals in order to produce a partial ordering on the subgoal set.
In this case, the analysis is simple since one of the two joints
($RigidJointA030l) imposes constraints on the degrees of freedom of the
other joint ($CylindricaIJointA0311). Hence, $CylindricaIJointA0311
must be achieved before $RigidJointA030l.

Scenario Revisited 153

At this point, the ARMS generalizer is capable of producing two
different new operator schemata, depending on the value assigned to the
current episode's generality/operationality trade-off flag (Section 5.3.2.3).
This parameter reflects the level of representation chosen for the new
schema: a more general new schema carries a higher price in planning,
while a more operational new schema is applicable in fewer situations.

7.4.1. A More General New Schema

If we chose to produce the most general schema possible, the
generalizer need not descend below this top-level subgoal set. In
essence, the top-level subgoal set becomes the explanation for the
observed episode.

Preconditions are collected from the top-level subgoal set members.
The body of the new schema becomes the abstraction of
$RigiciJointA0301's achieving operator $NewSchemaA0298. The
remaining subgoal becomes the only element of the new schema's
subgoal set.

Slots are added to permit mapping fillers between the subgoal,
body, and preconditions of the new schema. New slots are used to
represent surfaces of InterimPiecel and various important dimensions
(e.g., length of the shaft, depth of the hole).

The new schema acquired is the most general representation of
how this joint was achieved (see Figure 7.2). It essentially states

To achieve an instance of $RevoluteJointA, achieve an instance of
$CylindricalJointA between Piecel of the joint and and another piece,
InterimPiecel. Constrain the prismatic degree of freedom of the in
stance of $CylindricalJointA by achieving an instance of $RigidJointA
between InterimPiecel and Piece2 of the joint.

7.4.2. A More Operational New Schema

Examining this new schema reveals that much effort is being
duplicated in any eventual expansion of the new schema undertaken by
the performance element. For example, achieving $RigidJointA and
$CylindricalJointA both require grasping InterimPiecel ($Pegl in this
example). There should be no need to duplicate planning effort for this
grasping operation.

This is the crucial insight that enables the production of a more
operational new schema. If we descend the causal model until there are
no more shared substructures and create a new schema at that level of
representation (as opposed to the top level), we will have produced a
more operational schema. This new schema is more operational since

154 Machine Learning of Robot Assembly Plans

«Supers OperatorSchema)
(TypeSlots
(Ooals «$RevoluteJointA (Piecel Piecel)

(Piece2 Piece2)
(Primitivel Primitivel)
(Primitive2 Primitive2)
(Orientation Orientation)
(DOFl DOFl)
(lnterimPiecel InterimPiecel)
(lnterimPrimitivel InterimPrimitivel)
(DOF2 DOF2))))

(SubOoals «$CylindricaIJointA (Piecel InterimPiecel)
(Piece2 Piece2)
(Prim itive 1 Interim Primitive I)
(Primitive2 Primitive2)
(Orientation Orientation)
(DOFl DOFl)
(DOF2 DOF2»)))

<Body ($NewSchemaA (Piecel InterimPiecell
(Piece2 Piecel)
(Primitivel InterimPrimitivel)
(Primitive2 Primitivel»)))

(TokenSlots
(Piecel NIL
(Piece2 NIL
(Primitive I NIL
(Primitive2 NIL
(Orientation NIL
(DOFl NIL
(lnterimPiecel NIL
<InterimPrimitivel NIL
(DOn NIL

doc (* From goalSchema»
doc (* From goalSchema))
doc (* From goaISchema»
doc (* From goalSchema))
doc (* From goalSchema))
doc (* From goal Schema))
doc (* From goalSchema))
doc (* From goalSchema))
doc (* From goaISchema))))

More General Version of $NewSchemaC

Figure 7.2

there will not be any wasted planning effort during schema expansion
and application.

The shared substructure analysis continues as described in Section
5.3.2.3. until the top-level sub goal set has been transformed into a new
subgoal set with no interdependencies present between its members.
The analysis is order-preserving: hence, the top-level subgoal set
ordering imposed by the joint dependency analysis has carried through
to the ordering of this new subgoal set as well.

Preconditions are collected from the members of the new subgoal
set. The last element of the set is used to determine the body of the new
schema. The remaining subgoals become the subgoals of the new
schema.

Scenario Revisited 155

The precondition promotion cycle is used to promote certain
preconditions into the new subgoal set (see Section 5.3.2.3). In this
example, all of the preconditions are promoted to the subgoal set. In
addition, new slots are created (via the slot promotion process of Section
5.3.2.3) to permit the mapping of fillers among the elements of the new
schema.

The schema produced, $NewSchemaC, is shown in Figure 7.3. It
essentially states

In order to achieve an instance of $RevoluteJointA, given the promoted
precondition $Placed that describes the position of InterimPiecel, begin
by achieving an instance of $BracedHoles for Piecel and Piece2 of the
joint. $Grasp InterimPiecel from its $Placed position, carfully avoiding
obstructing any surfaces of InterimPrimitivel, and achieve a $Mul
tiAligned between InterimPrimitivel and the previously braced holes.
Finally, translate InterimPiecel by a distance computed from the com
bined hole depth and the alignment offset.

How is this new schema less general than the schema produced in
Section 7.4.1.? Suppose that the system is now shown a new strategy for
constructing $RigidJoints and $CylindricalJ oints. This new strategy
would construct a $RigidJointA by first placing $Pegl on its back with
its shaft pointing up and then forcing $BoredBlockl over it. The new
schemata embodying this strategy would be indexed from the
appropriate physical joint schemata, $RigidJointA and
$CylindricalJointA: therefore, the more general new schema from
Section 7.4.1. would immediately have access to this new strategy, while
the more operational new schema would not.22

7.5. Solving the Same Problem After Learning

We now present the system with the same problem after schema
acquisition, and give as a goal the partially specified abstract joint
schema:

$RevoluteJoint [Piecel=$Washerl, Piece2=$BoredBlockll.

The design phase is responsible for fleshing out the abstract joint
schema given as a goal specification and producing a corresponding
physical joint schema.

A single token $RevoluteJointA0966 is returned by the design
process. The new physical joint schema $RevoluteJointA was indexed
from $RevoluteJ oint. The $RevoluteJ ointA0966 schema contains
pointers to all three pieces in the assembly rather than only the two

22 For an empirical performance comparison, see Appendix E.

156 Machine Learning of Robot Assembly Plans

«Supers OperatorSchema)
(TypeSlot8
(Goal8 «'RevoluteJointA (Piecel Piecel)

(Piece2 Piece2)
(Primitivel Primitivel)
(Primitive2 Primitive2)
(Orientation Orientation)
(DOFl DOFl)
(InterimPiecel InterimPiecel)
(lnterimPrimitivel InterimPrimitivel)
(DOF2 DOF2))))

(Sub Goals «(,Placed (Piece InterimPiecel)
(SupportSurrace NewSlot2)))

('BracedHoles (Piecel Piece2)
(Primitivel Primitive2)
(Holel NewSlot3)
(Piece2 Piecel)
(Primitive2 Primitive 1)
(Hole2 NewSlot4)
(Depth NewSlot5))

(,Grasped (Piece InterimPiecel)
(OldSupportSurrace NewSlot2)
(FreePrimitives InterimPrimitivel))

($MuItiAligned (Piecel InterimPiecel)
(PrimitivelInterimPrimitivel)
(Piece2 Piece2)
(Primitive2 Primitive2)
(Hole2 NewSlot3)
(Piece3 Piecel)
(Primitive3 Primitivel)
(Hole3 NewSlot4)
(Depth NewSlot5)
(Delta NewSlotl»)))

(Body ($FuIlMove (Piece InterimPiecel)
(Delta NewSlotl))))

(TokenSlots
(Piece 1 NIL doc (0 From goalSchema))
(Piece2 NIL doc (0 From goalSchema))
(Primitive 1 NIL doc (0 From goalSchema»
(Primitive2 NIL doc (0 From goalSchema))
(Orientation NIL doc (0 From goalSchema))
(DOFl NIL doc (0 From goalScbema))
(Interim Pie eel NIL doc (0 From goal Schema))
(InterimPrimitivel NIL doc (0 From goaISchema»
(DOF2 NIL doc (0 From goalSchema»
(NewSlotl NIL doc (0 Promoted slot))
(NewSlot2 NIL doc (0 Promoted slot))
(NewSlot3 NIL doc (0 Promoted slot))
(NewSlot4 NIL doc (0 Promoted slot))
(NewSlot5 NIL doc (0 Promoted slot))

More Operational Version of $NewSchemaC

Figure 7.3

mentioned in the goal specification.

Scenario Revisited 157

Selection of the third piece to fill the InterimPiecel slot is made in
accordance with the constraints on the $RevoluteJointA schema. Recall
these constraints were imposed on the basis of interpiece relations which
were crucially true in the joint analysis. In this case, such constraints
mandate, among other things, that the shaft size of InterimPiece1 match
the diameter of the hole in $BoredBlock1 and be slightly smaller than
the diameter of the hole in $Washerl.

Since there are only two pieces ($Blockl and $Peg1) in the initial
state not already included in the goal specification, both are tested for
conformance with the constraint set. $Peg1 is the only piece that can be
used to fill the role ofInterimPiecel.

Upon successful termination of the design phase, the planner
proceeds to expand the plan embodied in $NewSchemaC. It indexes
$NewSchemaC from the goal state $RevoluteJointA0966 produced by
the design process. A new instance $NewSchemaC0971 is created and
recursive applications of the plan and execution steps (described in
Section 5.2.2) are performed.

The operator sequence produced by the more operational version
of $NewSchemaC had 24 steps, which roughly correspond to

(1) Brace $BoredBlock1 such that its hole is pointing upwards.

(2) Clear $Peg1 off of $Washer1, placing it directly on the workspace
surface in some free spot.

(3) Grasp $Washerl and stack it on top of $BoredBlock1 with holes
aligned.

(4) Grasp $Peg1 in such a way so as not to occlude the shaft, and align
it with the holes in $Washerl and $BoredBlockl.

(5) Translate $Peg1 along the negative z-axis a distance corresponding
to the alignment offset plus the minimum of either the $Peg1 shaft
length or the combined $Washer1/$BoredBlock1 hole depth.

Note that, unlike the observed plan, the resulting operator
sequence does not rely on the presence of $Blockl. In addition,
extraneous commands in the observed plan that do not figure in the
explanation from which $NewSchemaC was derived do not occur in the
system's plan.

7.6. Solving Similar Problems After Learning

$NewSchemaC can be applied in other problem situations to
produce a successful assembly sequence. As long as the goal specification
can be realized as an instance of $RevoluteJointA, $NewSchemaC may
well be applicable.

158 Machine Learning of Robot Assembly Plans

In Appendix E, the performance of the ARMS system when
planning $RevoluteJointA-type assemblies from various initial states
and using various piece sets is examined. For the initial states of
Figures 7.4 and 7.5, the goal specification remains the same:

$RevoluteJoint [Piecel = $Washerl, Piece2 = $BoredBlockl].

For the initial state of Figure 7.4, the performance element produces a
12 step assembly sequence, while for that of Figure 7.5 30 steps were
generated.

A more interesting example is shown in Figure 7.6. In this case,
the goal specification was given as:

$RevoluteJoint [Piecel=$Washer3, Piece2=$BoredCylinderl].

Note that the desired assembly has quite a different physical aspect
than that of the widget in the learning episode. Functionally, however,
the structure demonstrates exactly the same joint behavior.

The design phase properly selects $Peg2 over $Peg1 to fill the role
of InterimPiecel. This selection is based on the interpiece constraints
associated with $RevoluteJointA. The planning phase produces an
assembly sequence of 18 steps that achieves the goal specification.

.-.- bt= --. ..
t= -- -:J
L •• ____ ---~. _---..•.

==-

First Alternate Initial State for Widget Assembly Problem

The robot gripper is located in the center of the picture with fingers closed. $BoredBlockl
is to the right, $Pegl is to the left, and $Washerl is in the foreground just left of center.

Figure 7.4

Scenario Revisited 159

-

=
Jl .--- .'~,

..... 1 . '

------ ----... ----.-~
----..' -------

Second Alternate Initial State for Widget Assembly Problem

The robot gripper is located in the center of the picture with fingers closed. $BoredBlockl
is to the left. $Washerl is to the right, with $Block2 and $Pegl stacked on top of it.

---._---

.. ---------------
.. _-------------_.-

Figure 7.5

1'1:;;

Third Alternate Initial State for Widget Assembly Problem

......

The robot gripper is located in the center of the picture with fingers closed. $Bored
Cylinderl is to the left, with $Pegl stacked on top of it. $Peg3 and $Washer2 are stacked
(from left to right) on top of $Blockl on the right side of the workspace.

Figure 7.6

160 Machine Learning of Robot Assembly Plans

7.7. Observing Similar Problems After Learning

Once either version of $NewSchemaC is integrated into the schema
library via the establishment of ::Suggestions and ::Plans pointers, it
can be recognized bottom-up during the course of future observation
processes. This has two important implications:

(1) More complicated joints using an instance of $RevoluteJointA as a
part of their structure can now be examined and are available for
learning. An analogous situation arises in this episode based on
the fact that both $CylindricaIJointA0311 and $RigidJointA301
are recognized using previously acquired instances of
$NewSchemaB and $NewSchemaA, respectively. Note that such
joints might still have been analyzable on the basis of
$CylindricalJoint and $RigidJoint, but the presence of
$NewSchemaC reduces the computational burden which would
have been placed on the verifier.

(2) Another observation episode with a functionally similar goal when
achieved in the same physical manner and with generally the
same plan will no longer meet the learning criteria. Such an
episode would lead to the bottom-up assertion of an instance
$RevoluteJointA via an instance of $NewSchemaC. Recognizing
the goal schema during the understanding phase conforms to Case
1 of the four verification cases (see Section 5.3.2.1). Case 1 does
not meet the learning criteria.

Chapter 8

Summary And Future Work

The ARMS system was intended as an experiment in the
application of explanation-based learning techniques to a real-world
domain. As with any experiment, ARMS has raised many new issues
that must yet be resolved. In this chapter we conclude our examination
of the ARMS system with a discussion of its relation to other work, its
extensibility, and directions for future research.

8.1. Relation to Other Work

Work in explanation-based learning is still relatively young,
although it is possible to trace its roots back to STRIPS [25] and other
systems of that era [64]. Current research in explanation-based systems
exists at various stages of implementation. Among them are the
GENESIS system [32], LP [27], LEX2 [23], MA [28], LEAP [65],
Physics-10l [30], EGGS [66], CHEF [67], and the SOAR mapping of
EBL [68]. Some work aimed at integrating EBL and SBL is also just
beginning to appear (OCCAM [69], UNIMEM [70]).

In this section, we summarize five of these systems which, to
varying degrees, can be related to the ARMS system. The first of the
five, STRIPS, is perhaps the earliest and best known explanation-based
system in existence. Due in part to this chronological attribute, it tends
to be used as a standard for comparison with other EBL systems. The
other four systems (MA, LEAP, ODYSSEUS, and PRODIGY) are all
classified as explanation-based learning-apprentice systems and, as such,
are probably the ARMS system's closest relatives.

8.1.1. STRIPS

The STRIPS system [25] is a problem-solving system that controls
a robot moving about rooms connected by doors. The robot is capable of

162 Machine Learning of Robot Assembly Plans

moving boxes about the rooms, opening doors as it goes. The problem
solver incorporates a learning component that acquires generalized
plans from previous problem solutions.

There are several major differences between STRIPS and ARMS.
First of all, STRIPS is a closed-loop system that relies on its own weak
method problem solver as a source of examples for learning. Secondly,
the plans acquired by STRIPS do not abstract temporal orderings, nor do
they abstract the operators themselves. Every operator in the originally
observed plan occurs in the generalized plan in precisely the same order.
Generalization occurs only in what is allowed to fill the operator
arguments.

While STRIPS was used to drive a real-world robot, this was due
more to an engineering tour-de-force rather than any close relation
between STRIPS and a real-world domain. The STRIPS domain is in
fact little more than veneer applied to a theorem prover in order to
facilitate communication of proof descriptions between humans. As
such, there are two specific assumptions made in the STRIPS domain
that severly restrict its applicability to real-world problems:

(1) The STRIPS assumption [71] holds that any operator applied by
the system changes the state of the world in a well-defined fashion:
all effects are explicitly listed in the definition of the operator
itself. This corresponds to the system having complete knowledge
of the effects of its operators. This is an attractive assumption to
make since it permits a system builder to reduce the system's
planner to a theorem proving engine. It is not necessarily a
reasonable assumption, since it requires the effects of every
operator to be fully known a priori.

(2) The closed-world hypothesis [72] holds that failing to prove the
proposition P is sufficient reason to conclude NOT(P). This
corresponds to the system having complete and perfect knowledge
about the current state of the world. Another way of looking at
the closed-world hypothesis is to consider two distinct dichotomies
of facts about the world. The first dichotomy is the division
between those facts which are true and those which are not true.
The second dichotomy divides facts about the world into those
which are known (or derivable from known facts) and those which
are not known (or derivable). The closed-world assumption forces
these two divisions to coincide: under this assumption, unknown
facts which cannot be derived from known facts are assumed to be

Summary And Future Work 163

untrue.23

The current ARMS system does not make the STRIPS assumption:
the effects of its operators are not known a priori. Certain operator
effects in the world are never noticed by the database mechanism, that
fills only specific requests from the learning and performance elements.

When we consider the modeler to be a part of the ARMS system,
any property of a world snapshot that cannot be validated by querying
the modeler is considered not to be true. However, no generalization or
any other sort of action is ever taken by ARMS on the basis of a failure
to validate a relation. In this sense, ARMS does not make the closed
world assumption.

8.1.2. MA

MA (later changed to LA) [28] is a learning apprentice in the
domain of mathematical natural deduction. This is an obvious target
domain for learning-apprentice research due to the simplicity and
completeness of the domain theory. MA constructs its own explanation
as it observes the theorem proving behavior of its user. The MA
theorem proving domain is a simple domain where making the STRIPS
assumption is quite reasonable. While never really used as an
apprentice system, MA served as a useful experimental tool in
formalizing EBL techniques. Unlike ARMS, MA was never fully
implemented.

An interesting side project stemming from MA is described in [29].
By reimplementing the Logic Theorist system [73] and augmenting it
with EBL, empirical evidence of the effectiveness of EBL was provided.

8.1.3. LEAP

The LEAP system [65] is a learning apprentice in the domain of
VLSI circuit design. The system is implemented on top of the VEXED
[74] circuit-design editor, that is intended to provide a large user base
for eventual acquisition of circuit-design capability. LEAP ignores the
geometric aspects of VLSI layout.

23 There are other, slightly different, statements of this hypothesis. The
statement adopted here opens the possibility that attempting to prove P may
never terminate. It is possible to weaken the notion of proof slightly by imposing
resource limits to insure termination. A different version of the hypothesis
holds that failure to find P directly in the database is sufficient to conclude
NOT(P): no deduction is permitted or attempted. This is a far more restrictive
statement, since it assumes every true assertion about the world must be direct
ly stated in the database.

164 Machine Learning of Robot Assembly Plans

The circuit-design domain is a particularly appealing domain due
to the existence of a good, albeit still naive, domain theory based on
Boolean algebra. Note, however, that even a domain theory based on
Boolean algebra is incomplete. For example, LEAP adopts a timing
model that is only an approximation of the behavior of an actual circuit.

LEAP is highly interactive, and, as such, will often ask the user to
provide help in constructing its analysis of the example. This would
seem to be possibly obtrusive; an option carefully avoided in the ARMS
implementation. As of this writing, the implementation of LEAP is
incomplete.

8.1.4. ODYSSEUS

The ODYSSEUS learning-apprentice project [75J supplies an
acquisition module for HERACLES. HERACLES is a domain
independent shell derived from the NEOMYCIN medical expert system
[76]. As of this writing, ODYSSEUS is still being implemented.

ODYSSEUS uses a difference-based strategy to initiate learning.
When the expert's behavior differs from that expected by the system, a
dialogue subsystem queries the expert in order to construct an
explanation for the difference. The system is interesting in that it is
intended to operate in challenging domains (e.g., medical diagnosis) that
lack a good domain theory.

The major difference between ARMS and ODYSSEUS lies in its
explanation construction process. ODYSSEUS operates without a sound
domain theory, and therefore falls back on more intrusive user
interaction in order to construct its explanation. This seems to be a case
where an alternate explanation construction method is adopted due to
the dictates of the domain.

8.1.5. PRODIGY

PRODIGY [77J is a learning-apprentice system operating in a
pseudorobot domain. The PRODIGY world is modeled on that of BUILD
[78], that provides for moving and stacking various sized blocks.
PRODIGY uses EBL to compress the search space and improve the
efficiency of problem solving. Like LEAP and ODYSSEUS (but unlike
ARMS), PRODIGY is highly interactive. In fact, one of its goals is to
support the study of human-computer interaction. If PRODIGY cannot
build an explanation for a given example, it asks the teacher to provide
one. As of this writing, PRODIGY is still under development.

By using simple STRIPS-like operators, the PRODIGY domain
theory shares many of the advantages of the MA domain theory; a
theorem prover provides the PRODIGY problem-solving engine. As such,

Summary And Future Work 165

PRODIGY is fairly far removed from any possible real-world domain.

8.2. Extensibility of ARMS

An important consideration in describing a project such as ARMS
is the system's extensibility. ARMS is meant to serve as a prototype,
i.e., a working initial approximation of a real-world system. But the
significance of a prototype is directly related to the insignificance of its
limiting assumptions.

We divide extensibility problems into two different categories:

(1) Representation problems arise from the inherent difficulties
involved in representing a continuous real-world domain in a
discrete, symbolic fashion. This type of problem plagues any
system that must reason about the physical world.

(2) Learning problems are those problems arising in the course of the
acquisition, management, and application of problem-solving
knowledge. This type of problem is more specific to machine
learning, as opposed to AI in general.

In this section, we examine the representation problems expected
in an extension of the ARMS system. In the next section we outline the
learning problems as areas for future research in machine learning.

8.2.1. The Solid Modeler Problem

The first representation problem has to do with the
representational power of the solid modeling system. A real-world
application of ARMS must retain the modeler, if for no other reason
than to serve as a tool in the application of the domain theory. Clearly,
the current ARMS modeler is much too simplistic, given its small
number of CSG primitives (two) and its restricted combination
operators.

Many modeling systems exist that are, at least representation ally
speaking, far more powerful than the ARMS modeler [79-81]. These
modelers allow for piece-to-piece variance, and permit the representation
of a far more diverse set of pieces than the ARMS modeler.
Incorporation of one of these modelers as part of the ARMS system
would go a long way towards relieving the current representational
constraints.

The major difficulty foreseen in using an extant solid modeler
arises from the fact that these modelers were, for the most part, created
to support computer graphics or CAD/CAM design. They place a heavy
emphasis on rendering objects for visual display, rather than modeling
objects as they interact in a physical sense. Some nontrivial extensions

166 Machine Learning of Robot Assembly Plans

to support the modeling of physical object interactions would be
necessary.

As an example of the type of capability that could be provided,
recall that the current implementation stipulates a piece must have no
pieces stacked on it before it is manipulated. A new improved
implementation might permit moving a stack of pieces all at once. Even
if the clear-top limitation were retained, it might be possible to
manipulate entire assemblies at once, provided the new positions of
related pieces can be determined through an analysis of the degrees of
freedom that relate them. Note that this kind of reasoning will probably
require the system to deal with some degree of uncertainty, at least in
piece positioning after assembly manipulation.

8.2.2. Reasoning with Uncertainty

ARMS supports a single arm operating in a controlled domain.
Some of the more interesting problems in robotics must consider
cooperation between several robot arms, or between a robot arm and a
human worker. The expected problems in a cooperative situation arise
from the introduction of uncertainty in the world.

In the current system, it is safe to assume that the only changes
occurring in the world are effected by a single agent, the robot arm.
Consistency between the world and the internal representation can be
guaranteed, since no independent changes are permitted in the world.

There are three ways of dealing with the introduction of
uncertainty in the system:

(1) The strong approach advocates extending the simulation
capabilities of the system to support the modeling of the effects of
other agents, human intervention, and gravity. Such simulation
tools would by necessity be domain-specific, presenting a
tremendous programming challenge. In addition, the approach
would impose strict limits on actions performed by outside agents.
Since these actions must also be simulated internally, they must
belong to the class of actions known a priori.

(2) The weak approach advocates the construction of powerful sensory
systems that can provide enough information to keep the internal
representation consistent with the real world. This approach
represents in reality a spectrum of different approaches, ranging
from no internal simulation coupled with perfect sensors to using
naive process simulation coupled with verification-type sensors.
This approach faces hard engineering problems in the construction
of the sensory systems, and, in addition, must deal with the
problem of credit assignment. By relying more on sensory systems

Summary And Future Work 167

and less on internal simulation, the system must determine which
agent effected which changes in the world.

(3) The fault-tolerant approach provides for reasoning without
complete knowledge, using various methods for the retraction of
mistaken assumptions and recovery from ambiguous situations.
While this approach promises to result in the most robust system,
much work remains to be done in this active research area [82-86].

8.2.3. The Operator/State Problem

The third representation problem arises from forcing the real world
to conform to an operator/state representational paradigm. The ARMS
system provides no facility for acquiring new state descriptors. In other
words, certain relations (e.g., stacking, aligning) are built into the
system and cannot be augmented. 24

No system can claim to solve all problems. The acquisition of state
descriptors is a task best left, perhaps, to similarity-based methods. In
particular, constructive induction [87] can be used to transform a base
feature set directly derived from physical aspects of the problem into
more operational higher-level feature sets.

8.2.4. The Temporal Reasoning Problem

The temporal model used by the current implementation of ARMS
is quite simplistic. No attempt is made to describe temporal interactions
between events instigated by different agents, uncertainty in temporal
information, or even that operators occur over time rather than
instantaneously. Temporal modeling remains an important unresolved
issue for ARMS, as well as for AI in general [88-90].

In a sense, the temporal reasoning problem is all about trying to
find a simple, yet workable, method of representing the common-sense
world. The most naive approach (e.g., instantaneous operations
resulting in states that persist) may be sufficient for some simple
domains. By assuming that only one action may occur at a time and
that states persist unchanged through time, it is quite possible to model,
for example, a game of chess.

A domain that permits multiple agents to act concurrently and
asynchronously is far more difficult to model. When one also considers
that real-world states do not often persist unchanged (consider a barrel

24 An exception is the acquisition of new physical joint schemata, which are
subtypes of existing abstract joint schemata. Physical joint schemata are, in
fact, special types of state schemata. See Section 5.3.2.1.2.

168 Machine Learning of Robot Assembly Plans

full of water with a tiny hole at the bottom) it is clear that a more
complex temporal reasoning system is required.

8.3. Future Research Directions

In this section, we discuss nine machine-learning issues arlsmg
from our experience with ARMS. Progress on these issues is necessary
for the future development of explanation-based systems, and, in
particular, learning-apprentice systems.

8.3.1. Frame Selection Problem

The crucial step in any application of EBL techniques is the
construction of the explanation. The ARMS system constructs this
explanation unobtrusively through the use of an understanding element.
The use of an understanding element makes the system vulnerable to
the combinatorial explosion inherent in the schema-selection problem.

The ARMS system posits a nonpredictive framework for schema
selection as a potentially less explosive alternative to the predictive
methods of natural language systems. This technique takes a wait-and
see approach to the schema-selection problem, relying on the assumption
that most of the contexts hypothesized by a predictive under stander
would eventually be discarded.

Future work should build on this nonpredictive framework. In
particular, what domain traits permit a system to take advantage of the
efficiency aspects of nonpredictive understanding? Do other schema
selection methodologies take similar advantage of these domain traits?
Is there some taxonomy of schema-selection methods which can be used
to guide selection of a mechanism for use in a particular
implementation?

8.3.2. Other Explanation Construction Methods

The unobtrusive character of the ARMS learning-apprentice
system follows from the bottom-up schema-activation causal model
construction philosophy embodied in the ARMS understanding element.
But schema activation is not the only method for constructing
explanations: the use of analogy, explanation modification, and
reminding may also be practical solutions to the explanation
construction problem. Certainly some attention should be directed
towards using alternative explanation construction methods when
schema activation fails to provide an adequate explanation.

Summary And Future Work 169

B.3.3. When and What to Learn

A learning apprentice in regular use by an expert will be
presented with an overwhelming number of learning opportunities.
Clearly, not all of these observed episodes are worth learning from.
This issue affects the efficiency of both the schema-activation
mechanism (and thus future learning episodes) and the planning
subsystem (and thus the system's problem-solving performance).
Learning criteria can be used to select those episodes that should
produce new schemata.

Current learning-apprentice systems (ARMS is no exception)
generally avoid this problem by learning whenever an observed episode
presents a new situation. In other words, if the understander can
construet the explanation without relying on the domain theory to
analyze the causal model, then the episode is not interesting from a
learning perspective. This is a safe learning criterion, in the sense that
there is no risk of missing a learnable schema. Unfortunately, this
criterion is not practical in everyday applications, due to the resulting
large volume of new schemata.

In addition to learning criteria, it is possible to install retention
criteria to further reduce the number of new schemata retained.
Retention criteria are used after generalization to determine whether a
new schema is worth saving. ARMS, like other extant learning
apprentices, retains every schema it produces.

Two of the unresolved questions that are raised by this
implementation arise from these two criteria. While use of learning and
retention criteria seems to be indicated, a careful examination of what
these criteria should look like is clearly indicated. The use of particular
learning or retention criteria implies an obvious efficiency vs.
effectiveness trade-off. What other effects are likely to result from the
application of different criteria?

8.3.4. When and What to Forget

Learning and retention criteria represent a first approximation to
the problem of managing the changing knowledge base of a learning
apprentice. These criteria are monotonic in the sense that they can only
provide for additions to the knowledge base.

A critical issue for real-world, learning-apprentice systems is
whether old entries in the knowledge base can be replaced in time by
new, presumably more useful, entries. Just as with computer page
replacement algorithms, a finite resource (such as memory) is managed
in order to improve the effectiveness of the system.

170 Machine Learning of Robot Assembly Plans

Such replacement criteria can also be expected to have efficiency
vs. effectiveness effects on a learning-apprentice system. What should
these criteria look like? Should correlational considerations enter into
the replacement criteria? Is a schema's usefulness measurable in some
fashion other than a simple usage count? Can a schema's usefulness be
predicted on the basis of its structure or similarity to other schemata in
the library? Perhaps an indication of expected usefulness can be derived
from the domain theory. All of these issues are yet to be investigated,
much less resolved.

8.3.5. Refining Existing Knowledge

Forgetting schemata is a viable means to limit the growth of the
schema library in order to avoid adverse performance effects. Another
approach might be to modify or extend existing schemata in order to
increase their applicability.

Suppose a system is presented with a new problem-solving episode
that is almost, but not quite, explained by an existing schema. Should
the system modify the existing schema to cover the new example, or
generate an entirely new schema? This is an important issue when one
considers that a new schema may compete or otherwise interact with
extant schemata in an unpredictable manner.

Perhaps the easiest form of schema refinement would involve
restricting application conditions when presented with a planning
failure. In other words, when a schema that should be applicable fails to
achieve its goal, its application conditions could be modified to avoid
repeated failure.

Must schema refinement be failure-driven? A uniquely failure
driven refinement strategy would seem to indicate that only new
restrictions on existing schemata can be introduced by this process.
Perhaps given a measure of almost explained it is possible to refine
existing schemata to cover more rather than fewer instances.

8.3.6. Learning Control Knowledge

An interesting issue arising from work in many areas of machine
learning, including learning-apprentice systems, is the acquisition of
control knowledge. Consider the case of a VLSI learning apprentice
observing the highly regular layout of an eight-bit shift register. The
system should acquire a schema that covers not only the eight-bit case,
but the arbitrary n-bit case.

There has been some preliminary work on learning iterative
control structures [91,92]. Generally this work has been applied only to
toy examples in micro-world domains.

Summary And Future Work 171

The use of iterative control structures also affects the size of the
knowledge base; a system with separate schemata for four-bit, eight-bit,
and sixteen-bit shift registers will not perform as well as a system with
a single n-bit shift register schema.

8.3.7. Extending Imperfect Domain Theories

The application of EBL techniques relies on the use of a domain
theory. As in the ARMS implementation, these domain theories are
often naive theories of how the world works. The question of what
happens to the system when the domain theory breaks down needs to be
addressed if learning apprentice systems are to be operated in such
naive domain theory situations.

In [4], Mitchell et al. present three different cases of the imperfect
domain theory problem:

(1) The incomplete theory problem occurs when the domain theory is
not complete enough to explain the observed input. In this case,
Mitchell et al. suggest constructing the most plausible explanation
and continuing with the learning process.

(2) The intractable theory problem occurs when constructing an
explanation is too computationally expensive using the current
domain theory. Humans generally construct less detailed,
approximative theories for use in this situation.

(3) The inconsistent theory problem occurs when the domain theory
permits construction of contradictory explanations for an observed
input. Of the three theory problems, this is the only one that has
attracted research attention so far [22,93].

One would hope the system's learning performance would degrade
gracefully as the domain theory breaks down. An even better
alternative would be for the system to extend its domain theory
automatically. Possible strategies include devising experiments to make
inconsistent theories unambiguous, creating more abstract theories to
deal with intractable theories, and extending incomplete theories
through incorporation of SBL techniques.

8.3.8. Execution Monitoring and Plan Revision

A popular area of research in both robot planning [94-96] and
planning in general [97,98] has been the construction and study of
systems that monitor the performance of the planner and attempt to
recover from plan failures. This is normally an expensive proposition,
since any replanning implies, at least for robot-planning systems, more
search. Learning-apprentice systems tend to do very little search in

172 Machine Learning of Robot Assembly Plans

planning. If the system cannot plan within some computational
resource limit, it simply gives up and defers to the human expert.

This is not meant to imply, however, that there is no place for
execution monitoring and plan revision. While computationally
expensive, this capability may be just the ticket for dealing with some
aspect of uncertainty. Imagine a scenario where it is simply too
expensive to ascertain. the validity of all of the application conditions for
a given operator schema. If the operator is relevant and is probably
applicable, it may be easier to attempt to apply the operator and
subsequently recover from any failures due to incomplete world
information.

8.3.9. Dealing with Multiple Plans

Often the planning system will have more than one schema
available for achieving the same goal state. In this case, normally one
plan is to be preferred over the other alternatives, usually on the basis
of predicted execution expense or some other metric.

We note that one way of getting multiple plans for the same goal
is to generalize more than once from the same example, using different
values for the generality/operationality Hag. With the ARMS system,
this would produce two different new schemata from the same example.
Of the two new schemata acquired, application of the more operational
one should always be preferred over application of the more general one.

If no ordering is known for a given set of plans, it should be
possible for the system to acquire an ordering by examining the
performance of its planner. Learning such orderings seems well suited
for the application of similarity-based learning techniques. Note that
this kind of learning would occur incrementally under the auspices of
the performance element, rather than the learning element.

8.4. Conclusions

The construction of smart machines may well be mankind's next
evolutionary step. Proponents of AI maintain that the advent of truly
intelligent machines is imminent, while critics scoff at silicon dreamers.
Books are written, positions are taken, and AI-bashing (or AI-booster)
reputations are made.

The AI pragmatist is more than a little perplexed at the brouhaha
surrounding the field. The pragmatist adopts an if it quacks like a duck
it must be a duck definition of AI. To the pragmatist, progress towards
any eventual man-made intelligent entity consists of a series of plodding
efforts, each making its own contribution, however tiny, to our collective
understanding of what makes a machine smart. Each effort quacks just

Summary And Future Work 173

a bit louder than the last.

The ARMS project is only a first step. As any first step, it may
appear to be small and tentative. But it serves a very important
purpose: it serves to demonstrate the feasibility of explanation-based,
learning-apprentice systems operating in realistic problem-solving
domains. The development of learning-apprentice systems has the
potential of providing AI with its next success. There are hundreds of
possible applications: CAD/CAM design, VLSI layout, investment
banking strategies, automatic flight control, and robot programming,
just to name a few.

And so the pragmatist slogs on in the AI trenches, content with
slow, but steady, progress on that inexorable march towards usable and
helpful smart computer programs aimed at improving man's lot in life.

Appendix A

Solid Modeling Systems

Work in other areas of computer science, especially computer
graphics, provides us with a rich heritage in solid modeling [99,100].
These systems deal with far more demanding domains, where pieces
may have curved surfaces and complex shapes in general. Most were
designed for CAD/CAM use, and therefore place a heavy emphasis on
the representation of the solid for eventual rendering on a computer
graphics terminal. Solid modeling systems have found use in several
applications, such as static interference analysis, finite-element
meshing, automatic verification of machine tool numerical control
programs, and robot task simulation.

Previous work in solid modeling can be roughly partitioned into
two different representational camps: boundary representations (BRep),
as typified by EUCLID and ROMULUS [81,101,102]; and constructive
solid geometries (CSG), as exemplified by PADL or GMSOLID
[79,80,103]. The difference lies in the internal representation used for
the solid. 25

BRep systems represent the solid as a set of faces specified by
surface equations and bounding edges. These representations prove
particularly popular due to the importance of computer graphics in most
applications. From BReps it is relatively easy to construct displays with
faces shaded and hidden lines removed. On the other hand, BReps are
memory-intensive, and there is no easy way to guarantee that the
BReps constructed actually correspond to physically valid solids.

25 Other representational strategies, such as sweep methods, cell decomposI
tions, and octree methods are also used but are less common for this particular
type of application. For a review of these and other representational schemes see
[104].

176 Machine Learning of Robot Assembly Plans

eSG systems represent the solid as various set operations on
primitive solids. Generally the primitive set includes blocks, cylinders,
spheres, etc. The set operations usually include the Boolean operations
union, difference and intersection. By specifying a set of instances of the
primitives, their dimensions and relative positions, and an ordered set of
operations on this primitive set, one can construct arbitrarily complex
solids. Such representations are not only concise, but also automatically
insure the physical validity of the constructed solid.

Unfortunately, eSG representations are not well suited for many
applications: for example, in computer graphics, the image rendered on
the screen depicts the surfaces and not the volume of the object. To
circumvent this problem, hybrid modeling systems rely on a mix of both
representational strategies, usually by automatically converting eSG
representations to BReps for graphic output. Such conversion
algorithms are well known [105-107], although they are usually
computationally expensive on standard hardware.

Appendix B

Schema Semantics

A schema is a chunked knowledge structure that represents the
system's generalized knowledge about a particular concept or topic.
While many systems have relied on such a chunked representation for
the knowledge they manipulate, no consensus has emerged with regard
to the structure of these chunks. In this appendix, we outline the
schema terminology used in describing the ARMS schema system.

A schema represents abstract knowledge, e.g., it describes a
concept that may have many different instantiations. A schema instance
represents a particular, fully specified, instance of a concept. The
process of creating a schema instance from a given schema is called the
instantiation process. During this process, all ambiguity which is
implicit in the schema is resolved in the schema instance. In short, a
schema gives a framework for a (possibly very large) set of schema
instances.

A schema consists of a name and a set of slots. The value of a slot
is called its filler. When a schema is defined, every slot filler is given a
default value which mayor may not be overridden during the
instantiation process. A slot filler may represent another schema,
another schema instance, a list of schemata or schema instances, a
descriptor, a number, or any other data structure. We adopt the
notational convention that the name of a schema is always prefaced
with the special "$" character (e.g., $Schema) and the name of a schema
instance always ends with a number (e.g., $Schema122).

A schema template is a device by which one abstract schema can
refer to a second abstract schema. A template consists of a header and a
binding equivalence list. The header indicates the name of the second
schema. The binding equivalence list gives a partial mapping from the
first schema's slot fillers to the second schema's slot fillers. For example,

178 Machine Learning of Robot Assembly Plans

consider a schema $A with a slot X. Suppose that $A must establish a
one-to-one mapping between all of its instances with instances of the
schema $B. Further suppose that this relationship should specify that
the filler of slot Y in each instance of $B should be equal to the filler of
slot X in the corresponding instance of $A. By using the schema
template:

($B (Y X»

to refer to schema $B from within schema $A, it is possible for future
instances $Ai of $A to identify (possibly as yet non-existent) instances
$Bj of $B. This particular template indicates that, given an instance
$Al of $A, the object of the relation is an instance of the schema $B
whose Y slot has the same filler as the X slot of $Al. Thus, the
template serves as a way to describe a mapping between instances of
two different schemata.

Appendix C

A Simpler Example

In this appendix, we will describe another example which is quite
a bit simpler than the $RevoluteJoint of Chapters 2 and 7. This episode
is, despite its simplicity, interesting because the schema it acquires is
used in the understanding phase of the $RevoluteJoint example. This
demonstrates that a schema acquired by the system is useful not only
for planning, but also for understanding more complicated tasks. In fact,
without the schema acquired here, the widget assembly discussed in
Chapter 2 would not have been understood; thus, no learning could have
taken place.26

The example consists of inserting a peg into a hole where the shaft
of the peg and the hole have the same diameter. This yields a tight
friction fit that results in a rigid connection, or rigid joint, between the
two pieces.

There are two factors contributing to the simplicity of this
example:

(1) A $RigidJoint is inherently simple, since it has no degrees of
freedom.

(2) The verification step is trivial, since the physical implementation
joint schema for this example, $RigidJointA, is already present in
the system (Case 2 of Section 5.3.2.1).

26 This example yields an operator schema for achieving $RigidJointA, In a
similar fashion, yet another example yields an operator schema for achieving
$CylindricalJointA. The system relies on both of these schemata in order to
understand, and therefore learn from, the widget example of Chapter 2.

180 Machine Learning of Robot Assembly Plans

C.l. Describing the Initial State

The initial state is shown in Figure C.l. $BoredBlockl is to the
right, with its hole already pointing upwards. $Pegl is off to the left,
and the arm (fingers closed) is in its nest position. The goal
specification is given as a partially instantiated abstract joint schema:

$RigidJoint [Piecel =$Pegl, Piece2 =$BoredBlockll.

There are no other pieces in the workspace.

C.2. Attempting to Solve the Problem

The performance element undertakes the design phase in order to
produce a fully instantiated physical joint schema from the partially
instantiated abstract joint schema derived from the goal specification.
From the abstract joint schema we index those physical joint schemata
that represent physical realizations of the mechanical behavior given by
the abstract joint schema.

From the abstract joint schema $RigidJoint, the system indexes
two alternative physical realizations, given by $RigidJointA and
$RigidJointB. In fact, $RigidJointA and $RigidJointB differ from each
other only in which piece is identified as Piecel and which piece is
identified as Piece2. The realization procedure returns two tokens, one of

, r-=-

==-

I

Initial State

The robot arm gripper is located in the center of the picture with its fingers closed and
pointing downwards. $Pegl is to the left and $BoredBlockl is to the right.

Figure C.1

A Simpler Example 181

each type, with fillers from $RigidJoint mapped over to fill slots on the
two tokens.

The realization process is now applied to the physical joint schema
tokens produced above. Constraints attached to $RigidJointB cause
realization of that token to fail. Realization of the $RigidJointA token
terminates successfully, returning a single fully instantiated token
$RigidJointA0012.

The substantiator set of $RigidJointA0012 contains the single state
schema representing an inserted state. However, $RigidJointA (ergo also
$RigidJointA0012) has no entries on its ::Plans type slot. Hence while
the design phase terminates successfully, and a fully instantiated
physical joint schema is produced, the system cannot generate a plan for
achieving the physically realized goal. The planning phase terminates
unsuccessfully, and the performance element aborts.

C.3. Observing the Expert's Plan

Having failed to generate a solution to the problem, control passes
to the learning element which asks the expert to direct the robot arm
through a solution of the problem. As the expert guides the arm, the
causal model of the expert's problem-solving behavior is constructed
using the schema-activation mechanism of Section 5.3.1.3.3.

C.4. Verifying the Solution

When the expert is finished, and the causal model is complete, the
generalizer must verify that the goal was achieved. This particular
example is an easy (Case 2) verification problem, since the abstract joint
schema $RigidJoint indexes two known physical joint schemata
$RigidJointA and $RigidJ ointB.

The verifier begins issuing requests to the database for valid
instances of each known physical joint schema (e.g., $RigidJointA and
$RigidJointB) corresponding to $RigidJoint. These requests are
partially instantiated, since some fillers map over from the partially
specified abstract joint schema given as the goal specification. As soon
as the database returns a valid instance ($RigidJointA0012 in this case),
the verification process terminates successfully.

C.5. Generalizing the Solution

An explanation is extracted from the causal model by following
pointers from the substantiators of $RigidJointA0012. The
substantia tors constitute the top-level subgoal set. In this example, the
only substantiator is $Inserted0423, representing the insertion of $Pegl

182 Machine Learning of Robot Assembly Plans

into $BoredBlock1.27

The precondition promotion set prepends the state $Braced0217 to
the top-level subgoal set. $Braced0217 is an explicitly achieved
precondition of $Insert0422, the operator schema responsible for the
achievement of $Inserted0423.

The slot promotion process adds two new slots to the new schema.
One slot represents the hole through which the insertion occurs, while
the other slot represents the depth of that hole. These slots are added in
order to permit mapping their values back and forth among the subgoals
and body of the new schema.

The body of the new schema is determined by taking the last
subgoal of the subgoal set (e.g., $Inserted0423) and making a template
from the operator that was observed achieving it. In this example, the
new schema's body is produced from $Insert0422. This leaves the
template of $Braced0217 as the only remaining subgoal.

The new operator schema, $NewSchemaA, acquired in this
example is shown in Figure C.2. It basically states:

In order to achieve that physical incarnation of $RigidJoint known as
$RigidJointA, it is sufficient to achieve an instance of $BracedHole for
Piecel of the joint and then execute an $Insert of Piece2 into Piecel.

Pointers are established to the new schema from $Insert (a ::Suggestions
pointer) and from $RigidJointA (a ::Plans pointer).

C.6. Solving the Same Problem After Learning

If we present the system with the same problem after schema
acquisition, the design phase will terminate successfully as before. A
single token $RigidJointA0639 (analogous to our earlier
$RigidJointA0012) is returned. This time, however, the plan phase is
allowed to continue, as the ::Plans type slot of $RigidJointA contains a
pointer to $NewSchemaA.

An instance $NewSchemaA0711 of $NewSchemaA is created, and
the planner checks for conformity of the preconditions of the new
schema. Since $NewSchemaA has no preconditions, the planner begins
to plan for achieving the subgoals of $NewSchemaA0711.

27 The cardinality of the substantiator set at this point makes the
generality/ope rationality question moot: the generalizer will produce the same
schema regardless of the mode it is operating in. Recall that the more operation
al schema relies on the examination of shared substructure between the ele
ments of the top-level subgoal set (Section 5.3.2.3). Clearly, if there is only one
member of the set there can be no shared substructure.

A Simpler Example

«Supers OperatorSchema)
(TypeSlots
(Goals «$RigidJointA (Piecel Piecel)

(Piece2 Piece2)
(Primitivel Primitivel)
(Primitive2 Primitive2»)))

(SubGoals «($BracedHole (Piece Piece2)
(Primitive Primitive2)
(Hole NewSlotl)
(Depth NewSlot2»))))

(Body ($Insert (Piece 1 Piecel)
(Primitivel Primitivel)
(Piece2 Piece2)
(Primitive2 Primitive2)
(Hole NewSlotl)
(Depth NewSlot2»)))

(TokenSlots
(Piecel NIL
(Piece2 NIL
(Primitive 1 NIL
(Primitive2 NIL
(NewSlotl NIL
(NewSlot2 NIL

doc (. From goalSchema))
doc (. From goalSchema))
doc (. From goalSchema»
doc (. From goalSchema»
doc (. Promoted slot))
doc (. Promoted slot))))

$NewSchemaA

Figure C.2

183

The subgoal $Braced0750 is achieved successfully by a recursive
application of the plan step. The body of $NewSchemaA0711 is now
instantiated, and an application of the execution step to $Insert0938
completes the example.

C.7. Solving Similar Problems After Learning

The procedure outlined in the previous section works equally well
for other initial starting positions of the same pieces. In addition, it is
capable of planning and executing solutions for other examples that
achieve instances of $RigidJointA using different pieces.

Two other functionally similar examples (initial states shown in
Figures C.3 and C.4) were given to the ARMS system. Both of these
problems can be solved by applying instances of $NewSchemaA.

184 Machine Learning of Robot Assembly Plans

Alternate Rigid Joint Problem

t~::'==:::--l
I~~~-J-...-------. ----------

The robot arm gripper is located in the center of the picture with its fingers closed and
pointing downwards. $Peg2 is to the right, and $BoredBlock2 is on its side to the left.

Figure C.3

'-----------~./

Alternate Rigid Joint Problem

The robot arm gripper is located in the center of the picture with its fingers closed and
pointing downwards. $BoredBlockl is inverted with $Block2 and $Pegl stacked on top.

Figure C.4

A Simpler Example 185

C.8. Observing Similar Problems After Learning

As a final note, consider what would happen if another observation
episode realizes an instance of $RigidJointA in the same manner. Once
$NewSchemaA is added to the schema library and properly integrated
via ::Plans and ::Suggestions pointers, it can also be used in
understanding future examples.

The verification process would now find the instantiated version of
the physical joint schema $RigidJointA already extant in the database.
This situation corresponds to Case 1 of Section 5.3.2.1, which fails to
meet the learning criteria. The learning element would terminate, and
no new schema would be added to the schema library.

Appendix D

A More Complex Example

In this appendix, we examine another session with ARMS. This
example constructs a more complicated assembly called a
$SlidingRevoluteJoint. The system will again be acquiring a new
physical joint schema, $SlidingRevoluteJ ointA, to describe this
particular physical instantiation of the functionality described by
$SlidingRevoluteJoint.

A $SlidingRevoluteJoint has two degrees of freedom, one prismatic
and one revolute, which are orthogonal to each another. It is similar to
a $CylindricalJoint, except that a $CylindricaIJoint's degrees of freedom
are along the same axes.

The general strategy for achieving this mechanical behavior is to
construct a $TriplePrismaticJoint (three prismatic degrees of freedom)
and a $RevoluteJoint (one revolute degree of freedom). The
$TriplePrismaticJoint must somehow lose two of its prismatic degrees of
freedom, leaving only a single prismatic degree of freedom to the
$SlidingRevoluteJoint.

The physical realization of this mechanism consists of an elongated
collar ($Box1) sliding along a tab protruding from a large frame piece
($Frame1). The collar, when inserted over the tab, constitute an
instance of $TriplePrismaticJointB. The frame also has a cylindrical
hole at the top, upon which we build an instance of $RevoluteJointA
(using $Washer3 and $Peg4 along with $Frame1). The complexity of
this example is due to the following reasons:

(1) The particular physical instantiation presented requires four pieces
to construct the mechanism.

(2) The assembly of the mechanism results in the recognition of four
physical joint schemata: a $RevoluteJointA (including its subjoints

188 Machine Learning of Robot Assembly Plans

$CylindricalJointA and $RigidJointA) via $NewSchemaC of
Chapter 2, and a $TriplePrismaticJointB via $NewSchemaD
(acquired separately).

(3) Like the $RevoluteJoint example of Chapter 2, this example
collects its constituent degrees of freedom from its constituent
subjoints. Unlike the $RevoluteJoint, however, the degrees of
freedom are assembled from more than one subjoint, requiring
constraints between degrees of freedom to span subjoint
boundaries.

(4) The construction of the $SlidingRevoluteJoint occurs incrementally
over time: unlike the example of Chapter 2 there is no single
motion that achieves the mechanism specified.

(5) Finally, this example addresses the difficult problem of interacting
degrees of freedom. Since the constituent degrees of freedom are
not all from the same subjoint, the analysis of the mechanism must
address the dynamic nature of the constituent subjoints. While the
solution adopted is, in fact, quite naive and is not advanced as a
general solution, it is a first step towards extending the ARMS
domain theory to handle dynamic joint interactions.

D.l. Describing the Initial State

The initial state is shown in Figure D.l. $Framel is in the center
of the picture, with $Boxl off to the left, $Peg4 to the right, and
$Washer3 in the foreground. The goal specification is again given as a
partially instantiated abstract joint schema:

$SHdingRevoluteJoint [Piecel=$Washer3, Piece2=$Boxl].

There are no other pieces in the workspace.

D.2. Attempting to Solve the Problem

The performance element undertakes the design phase in order to
produce a fully instantiated physical joint schema from the partially
instantiated abstract joint schema derived from the goal specification.
From the abstract joint schema we index those physical joint schemata
which represent physical realizations of the mechanical behavior given
by the abstract joint schema.

From the abstract joint schema $SlidingRevoluteJoint, however,
the system can index no physical joint schemata. As in the example
from Chapter 2, failure is immediate and the performance element
aborts.

A More Complex Example 189

Initial State

The robot arm gripper is located in the center of the picture with its fingers closed and
pointing downwards. $Framel is in the center of the workspace, with $Peg" in the right
foreground. $Washer3 is to the left, with $Box! in the left background.

Figure D.l

D.3. Observing the Expert's Plan

Having failed to generate a solution to the problem, control passes
to the learning element which asks the expert to direct the robot arm
through a solution of the problem. As the expert guides the arm, the
causal model of the expert's problem-solving behavior is constructed
using the schema-activation mechanism of Section 5.3.1.3.3.

The expert's plan contains a total of 24 primitive arm commands,
divided roughly as follows:

(1) $Box1 is grasped and positioned above $Frame1 aligned with the
tab. When grasping $Box1, the expert inserts a redundant $Rotate
command in order to grasp the piece with a narrower grip (see
Figures D.2 and D.3).

(2) $Box1 is lowered over $Framel, effecting the insertion of the tab
through the holes in $Box1. We term this process exsertion, in
order to distinguish it from insertion: here the evacuated piece is
manipulated, while in a normal insertion the solid piece is
manipulated. At this point, $TriplePrismaticJointB0076 is
recognized via activation of an instance $NewSchemaD0073 of the
previously learned $NewSchemaD (see Figure D.4).

190 Machine Learning of Robot Assembly Plans

(3) $Washer3 is grasped and positioned on top of $Frame1, just as in
the $RevoluteJoint example of Chapter 2. When aligning
$Washer3, there is an extra $Rotate command which places
$Washer3 at an angle with respect to $Boxl and $Frame1 (see
Figures 0.4 and 0.5).

(4) $Peg4 is positioned over $Washer3 and inserted through $Washer3
into $Framel. Approaching $Peg4 uses a $MoveTo and $Rotate
where a $MoveTo would suffice. In addition, the alignment step
also uses a $MoveTo and $Rotate where a single $MoveTo would
suffice. At this point, the under stander establishes an instance
$RevoluteJointA0099 of $RevoluteJointA via activation of an
instance $NewSchemaC0092 of $NewSchemaC, acquired previously
as in Chapter 8 (see Figures 0.6 through 0.10).

rff1nl :::~. ::~
l1tj#

$MoveTo, $Open

The gripper is positioned over $Boxl with a $MoveTo command. The gripper fingers are
then opened to their maximum aperture with an $Open command.

Figure D.2

A More Complex Example 191

$Rotate, $Translate, $Close, $MoveTo

The gripper is twisted 90 degrees about the vertical axis with a $Rotate, and then lowered
about $Boxl with a $Translate. The $Close command achieves a grasping of $Boxl, and
the $MoveTo positions $Boxl over $Framel.

Figure D.3

192 Machine Learning of Robot Assembly Plans

···:::····8 l.r-~==--L..-It------------_---J ~ - .'

...
l,,'

$Translate, $Open, $Translate, $MoveTo, $Translate

The $Translate command lowers $Boxl over $Framel where it is dropped by the $Open
command. At this point $TriplePrismaticJointB is first recognized. The $Translate backs
the gripper away from the assembly, and the $MoveTo puts the gripper directly above
$Washer3. The subsequent $Translate leaves the gripper surrounding $Washer3.

Figure D.4

=---:-~--=

$Close, $MoveTo, $Rotate, $Translate, $Open

The $Close command achieves a grasping of $Washer3, while the $MoveTo positions it
over the assembly under construction. A $Rotate twists $Washer3 90 degrees about the
vertical axis before the $Translate lowers it onto $Framel. The $Open drops $Washer.

Figure D.5

A More Complex Example 193

$Transiate, $MoveTo

The $Translate backs the gripper up away from $Washer3, and the subsequent $MoveTo
leaves the gripper near $Peg4.

Figure D.6

$Rotate, $Translate, $Close

The $Rotate command brings the gripper down so it faces $Peg4, while the $Translate sur
rounds $Peg4 with the gripper fingers. The $Close command grasps $Peg4.

Figure D.7

194 Machine Learning of Robot Assembly Plans

$MoveTo

The $MoveTo positions $Peg4 over the $Framell$Boxll$Washer3 assembly.

Figure D.S

$Rotate

The $Rotate swings $Peg4 down so that it is aligned with the hole in $Washer3.

Figure D.9

A More Complex Example 195

$Translate

The $Translate achieves an instance of $RevoluteJointA (acquired from the example of
Chapter 2) between $Washera-and $Framel via $Peg4.

Figure D.10

D.4. Verifying the Solution

Verification of the solution is an example of Case 3 verification
described in Section 5.3.2.1. The verifier produces a new physical joint
schema, $SlidingRevolutejointA, which describes this physical
instantiation of the mechanism.

The verifier begins by searching for an open kinematic chain
linking the two end pieces specified in the abstract joint schema
$SlidingRevoluteJoint (the goal specification). The known joint
schemata recognized by the system during the understanding phase are

$TriplePrismaticJointB0076 ($Boxl, $Framel)
$RevoluteJointA0099 ($Washer3, $Framel)

$CylindricalJointA0096 ($Washer3, $Peg4)
$RigidJointA0094 ($Peg4, $Framel)

At first it appears that there are two kinematic chains linking $Boxl
and $Washer3. On closer examination, however, it is clear that since
$CylindricalJointA0096 and $RigidJointA0094 taken together constitute
$RevoluteJointA0099, there is really only a single kinematic chain.

The verifier collects copies of the degrees of freedom along the
chain and attempts to recompute any soft bounds on these degrees of
freedom. One of the prismatic degrees of freedom from
$TriplePrismaticJointB0076 is already below the system-wide degree of
freedom tolerance due to the dimensional constraints between $Boxl

196 Machine Learning of Robot Assembly Plans

and $Framel.

The prismatic degree of freedom from $TriplePrismaticJointB0076
(along the $Boxl insertion axis) is now constrained by a collision with
$Washer3. Note, however, that $Washer3 also possesses a prismatic
degree of freedom, parallel to the one in question, obtained from
$CylindricalJointA0096. This second prismatic degree of freedom is in
turn newly limited by a collision between $Washer3 and $Peg4. The
cumulative motion allowed these two parallel prismatic degrees of
freedom is below the system-wide tolerance for active degrees of
freedom, thus they both cancel.

The remammg prismatic degree of freedom from
$TriplePrismaticJointB0076 retains unchanged its two hard bounds
resulting from collisions with $Frame1 at each end of $Boxl's travel.
Together with the revolute degree of freedom from
$CylindricalJointA0096, that also remains unchanged, these constitute
the degree of freedom set for the $SlidingRevoluteJoint.

The new schema $SHdingRevoluteJointA is constructed, indexed by
$SlidingRevoluteJoint, to represent this particular physical realization
of joint function. Slots are created on $SlidingRevoluteJointA to permit
mapping of fillers across the substantiator set, and constraints are added
which reflect only those physical interrelations (e.g., shape and
dimension relations) between the fillers that were crucial to the
cancellation of the prismatic degree of freedom. An instance of the new
schema, $SHdingRevoluteJointAOlll, is created to represent the
achieved goal state, and the verification process terminates successfully.

D.S. Generalizing the Solution

The top-level subgoal set of this episode consists of the
substantiators of $SlidingRevoluteJointAOlll, i.e.,
$TriplePrismaticJointB0076, $CylindricalJointA0096 and
$RigidJointA0094. From this subgoal set, the generalizer constructs a
new operator schema to achieve the goal $SlidingRevoluteJointA, the
newly added abstract schema corresponding to the current goal
$SlidingRevoluteJointAOlll.

The first step is to analyze any dependencies between these top
level subgoals in order to produce a partial ordering on the subgoal set.
It is clear that $RigidJointA0094 imposes constraints on
$CylindricalJointA0096, which in turn constraints
$TriplePrismaticJointB. Hence, $TriplePrismaticJointB must be
achieved before $CylindricalJointA0096, which in turn must be achieved
before $RigidJointA0094.

A More Complex Example 197

At this point, the ARMS generalizer is capable of producing two
different new operator schemata, depending on the value assigned to the
current episode's generality/operationality trade-off flag (Section 5.3.2.3).
This parameter reflects the level of representation chosen for the new
schema: a more general new schema carries a higher price in planning,
while a more operational new schema is applicable in fewer situations.

D.S.l. A More General New Schema

If we chose to produce the most general schema possible, the
generalizer does not descend below the top-level subgoal set. In essence,
the top-level sub goal set becomes the explanation for the observed
episode.

Preconditions are collected from the top-level subgoal set members.
The body of the new schema becomes the abstraction of
$RigidJointA0094's achieving operator $NewSchemaA0093. The
remaining subgoals becomes the new schema's subgoal set.

Slots are added to permit mapping fillers between the subgoal,
body, and preconditions of the new schema. New slots are used to
represent surfaces of InterimPiecel, InterimPiece2, and various
important dimensions (e.g., length of the shaft, depth of the hole).

The new schema acquired is the most general representation of
how this joint was achieved (see Figures D.11a and D.11b). It essentially
states:

To achieve an instance $SlidingRevoluteJointA, achieve an instance of
$TriplePrismaticJointB between Piece! of the joint and another piece,
InterimPiecel. Next achieve a $CylindricalJointA between Piece2 of
the joint and another piece, InterimPiece2. Finally, achieve an instance
of $RigidJointA between InterimPiecel and InterimPiece2 using the
$NewSchemaA operator.

D.S.2. A More Operational New Schema

By resetting the generality/operationality trade-off flag, we can
examine the more operational new schema produced by generalizer for
this example. Recall from Section 5.3.2.3 that the more operational new
schema is produced by descending the explanation to the point where
the subgoal set can be expressed with no shared substructure.

Preconditions are collected from the members of the new subgoal
set. The last element of the set is used to determine the body of the new
schema. The remaining subgoals become the subgoals of the new
schema.

198 Machine Learning of Robot Assembly Plans

«Supen OperatorSchema)
(TypeSlots
(Goals «$SlidingRevoluteJointA (Piecel Piecell

(Piece2 Piece2)
(Primitive 1 Primitivell
(Primitive2 Primitive2)
(Orientation 1 Orientationll
(Orientation2 Orientation2)
(DOFIDOFI)
(oOF2DOF2)
UnterimPiecel InterimPiecell
UnterimPiece2 InterimPiece2)
UnterimPrimitivel InterimPrimitivell
UnterimPrimitive2 InterimPrimitive2)
(lnterimPrimitive3 InterimPrimitive3)
(oOF3DOF3)
(Orientation3 Orientation3)
(oOF4DOF4)
(Orientation4 Orientation4)
(DOF5 DOF5))))

(SubGoals «$TriplePriamaticJointB (Piecel Piecell
(Piece2 InterimPiecel)
(Primitivel Primitivel)
(Primitive2 Interim Primitive 1)
(oOFIDOF4)
(Oon DOF2)
(OOF3DOF3)
(Orientation 1 Orientation3)
(Orientation2 Orientation2)
(Orientation3 Orientation1))

($CylindricaIJointA(PiecelInterimPiece2)
(Piece2 Piece2)
(Primitivel InierimPrimitive2)
(Primitive2 Primitive2)
(Orientation Orientationll
(OOFIDOFl)
(oOF2 DOF3))))

(Body ($NewSchemaA (Piecel InterimPiece2)
(Piece2 InterimPiecel)
(Primitivel InterimPrimitive2)
(Primitive2 InterimPrimitive3»)))

More General Version of $NewSchemaE

Due to pagination constraints, $NewSchemaE is split into two figures. Reproduced here
are the schema's TypeSlots. The remainder of the schema can be found in Figure D.llb.

Figure D.Ha

A More Complex Example

(TokenS lots
(Piecel NIL
(Piece2 NIL
(Primitive I NIL
(Primitive2 NIL
(Orientationl NIL
(Orientation2 NIL
(DOFI NIL
(DOF2 NIL
(Interim Piece I NIL
(lnterimPiece2 NIL
UnterimPrimitivel NIL
UnterimPrimitive2 NIL
UnterimPrimitive3 NIL
(DOF3 NIL
<orientation3 NIL
(DOF4 NIL
(Orientation4 NIL
(DOF5 NIL

doc (* From goaIScbema))
doc (* From goaIScbema))
doc (* From goaIScbema))
doc (* From goaIScbema))
doc (* From goaIScbema))
doc (* From goaIScbema))
doc (* From goalScbema))
doc (* From goaIScbema))
doc (* From goalScbema))
doc (* From goalScbema))
doc (* From goalScbema))
doc (* From goalScbema))
doc (* From goaIScbema))
doc (* From goaIScbema))
doc (* From goaIScbema))
doc (* From goaIScbema))
doc (* From goaIScbema))
doc (* From goaIScbema))

More General Version of $NewSchemaE. Continued

199

Due to pagination constraints, $NewSchemaE is split into two figures. Reproduced here
are the schema's TokenSlots. The remainder of the schema can be found in Figure D.11a.

Figure D.llh

The precondition promotion cycle is used to promote certain
preconditions into the new subgoal set (see Section 5.3.2.3.). In this
example, all of the preconditions are promoted to the sub goal set. In
addition, new slots are created (via the slot promotion process of Section
5.3.2.3) to permit the mapping of filler among the elements of the new
schema.

The new schema acquired is the more operational representation of
how this joint was achieved (see Figures D.12a and D.12b). It essentially
states:

To achieve an instance of $SlidingRevoluteJointA, given the promoted
precondition $Placed that describes the position of InterimPiecel, begin
by achieving an instance of $Braced for InterimPiecel. Next achieve an
$ExsertedThru of Piecel on InterimPiecel, followed by a $BracedHoles
of InterimPiecel and Piece2. Finally, achieve a $Grasped of Interim
Piece2 and position it to achieve a $MultiAligned with InterimPiecel
and Piece2. Translate InterimPiece2 by a distance computed from the
combined hole depth and the alignment offset.

Recall that the constraints on the physical characteristics of the
pieces involved in this mechanism which are crucial to the success of
this plan reside on the new physical joint schema
$SlidingRevoluteJointA.

200 Machine Learning of Robot Assembly Plans

«Supers OperatorSchema)
(TypeSlot&
(Goal& «$SlidingRevoluteJointA (Piecel Piecel)

(Piece2 Piece2)
(Primitivel Primitivel)
(Primitive2 Primitive2)
(Orientation I Orientationl)
(Orientation2 Orientation2)
(DOFIDOFl)
(DOF2DOF2)
(interimPiecel InterimPiecell
(InterimPiece2 InterimPiece2)
(lnterimPrimitivel InterlmPrimitivell
(lnterimPrimitive2 InterimPrimitive2)
(InterimPrimitive3 InterimPrimitive3)
(DOF3DOF3)
(Orientation3 Orientation3)
(DOF4DOF4)
(Orientation4 Orientatlon4)
(DOF5 DOF5»)))

(SubGoals «($Placed(Piece InterimPiece2)
(SupportSurface NewSlot2)))

($Braced (Piece InterimPiecell
(Primitive InterimPrimilivel)
(Depth NewSlot3)
(SupportSurface NewSlot4))

(SExsertedThru <Piecel Piecel)
(Primitive I Primitive 1)
(Piece2 InterimPiecell
(Primitive2 InterimPrimitivel)
(Depth NewSlot3))

($BracedHoles (Piecel Piece2)
(Primitivel Primitive2)
(Holel NewSlot5)
(Piece2 InterimPiecel)
(Primitive2 InterimPrimitive3)
(Hole2 NewSlot6)
(SupportSurface2 NewSlot4)
(Depth NewSlot7))
(Piece InterimPiece2)
(OIdSupportSurface NewSlot2)
(FreePrimitives InterimPrimitive2)

($MuItiAligned (Piecel InterimPiece2)
(Primitive 1 InterimPrimitive2)
(Piece2 Piece2)
(Primitive2 Primitive2)
(Hole2 NewSlot5)
(Piece3 InterimPiecel)
(Primitive3 InterimPrimitive3)
<Hole3 NewSlot6)
(Depth NewSlot7)
(Delta NewSlotl)))

(Body ($FuIlMove (Piece InterimPiece2)
(Delta NewSlotl)))))

More Operational Version of $NewSchemaE

Due to pagination constraints, $NewSchemaE is split into two figures. Reproduced here
are the schema's TypeSlots. The remainder of the schema can be found in Figure D.12h.

Figure D.12a

A More Complex Example 201

(TokenSlots
(Piecel NIL doc (* From goalScbema))
(Piece2 NIL doc (* From goalScbema))
(Primitive 1 NIL doc (* From goalScbema))
(Primitive2 NIL doc (* From goalScbema))
(Orientationl NIL doc (* From goalScbema))
(Orientation2 NIL doc (* From goaIScbema))
(DOFl NIL doc (* From goalScbema))
(DOF2 NIL doc (* From goalScbema))
(lnterimPiecel NIL doc (* From goalScbema))
(lnterimPiece2 NIL doc (* From goalScbema))
(InterimPrimitivel NIL doc (* From goalSchema))
(lnterimPrimitive2 NIL doc (* From goalScbema))
(lnterimPrimitive3 NIL doc (* From goalScbema))
(DOF3 NIL doc (* From goalScbema))
(Orientation3 NIL doc (* From goalScbema))
(DOF4 NIL doc (* From goalScbema))
(Orientation4 NIL doc (* From goaIScbema))
(DOF5 NIL doc (* From goalScbema))
(NewSlotl NIL doc (* Promoted slot))
(NewSlol2 NIL doc (* Promoted slot))
(NewSlot3 NIL doc (* Promoted slot))
(NewSlot4 NIL doc (* Promoted slot))
(NewSlot5 NIL doc (* Promoted slot))
(NewSlot6 NIL doc (* Promoted slot))
(NewSlot7 NIL doc (* Promoted slol))))

More Operational Version of $NewSchemaE, Continued

Due to pagination constraints, $NewSchemaE is split into two figures. Reproduced here
are the schema's TokenSlots. The remainder of the schema can be found in Figure D.12a.

Figure D.12b

D.6. Solving the Same Problem After Learning

When presented with the same initial state after learning, the
system produces a sequence of 19 primitive operator schemata which
achieve the goal. The operator sequence is the same regardless of which
version of $NewSchemaE is in use.

D.7. Solving Similar Problems After Learning

The system is capable of solving other versions of functionally
similar problems. See Figure D.13 for another initial state solved by the
system using either version of $NewSchemaE.

202 Machine Learning of Robot Assembly Plans

El
n

Alternate Initial State

The robot arm gripper is located in the center of the picture with its fingers closed and
pointing downwards. $Framel is just to the left of center, and $Washer3 is in the center
foreground. $Boxl is on its side at the right edge of the workspace, with $Peg4 stacked on
top of it.

Figure D.13

Appendix E

Performance Considerations

In this appendix, we present some empirical results collected over
several learning and problem-solving episodes [108]. These figures are
intended to give a general idea of the computational resource
expenditures for the sample problems in the book. For simplicity's sake,
all are variants of the widget assembly of Chapter 2.

The nine examples in this appendix were collected in the order
presented on a Xerox 1109 Lisp Machine running the Koto release of
INTERLISP-D and the Buttress version of LOOPS. The 1109 has 3.5
megabytes of main memory, a 43 megabyte hard disk drive, and a
hardware floating point coprocessor. There are several factors atTecting
these results that merit consideration:

(1) These results were obtained by enabling the statistics-gathering
package via the $Episode::StatsFlag slot. This package greatly
atTects the performance of the system by (roughly) a factor of eight
slowdown. Thus an episode using an hour of CPU time would
actually require about seven and a half minutes without collecting
sta tistics.

(2) All examples are run in the same 8 megabyte virtual address
space. Therefore, there may be some performance degradation in
the later examples due to fragmentation of the virtual address
space. These etTects are probably minimal.

(3) All examples are run with the graphics package
($WorkSpace:View) turned otT, the causal model browser package
($Episode::Browser) turned otT, and without output to a real arm
($Episode::RS232Mode). Each of these packages, when turned on,
have some pejorative etTect on the performance of the system.

204 Machine Learning of Robot Assembly Plans

(4) These examples do not take advantage of the matrix operation
microcode that is now available on the 1109. Matrix operations are
implemented in INTERLISP-D and rely on a simple list-of-lists
matrix representation. This simple representation was shown to be
superior to representations based on nonlist datatypes, probably
due to the high relative speed of the microcoded CDR instruction
(used to extract elements from the matrix) on the 1108.

E.1. Learning Episode 1

This episode (Table E.1) corresponds to the learning episode of
Chapter 2 (see Figure E.1 for starting state). The system is shown an
assembly sequence of 32 primitive arm commands, and asked to
generate a new operator schema. The generality/operationality tradeoff
is set to generate the more operational new schema. A new physical
joint schema is also generated during the verification process.

Table E.1
Learning Episode 1

Length of observed sequence 32
Causal model size (tokens) 283
Explanation size (tokens) 242
Number of database queries 2662
Number of tokens created 8932
Number of requests issued 520883
Number of slot reads 402525
Number of slot writes 16980
Total CPU time (seconds) 7648.0
Emulator/history time (seconds) 713.2
Database time (seconds) 7416.8
Verifier (Case 3) time (seconds) 41.8
Generalizer time (seconds) 53.6

Note that the schema database uses approximately 96% of the
CPU time over the length of the episode.

E.2. Problem-Solving Episode 1

This episode (Table E.2) presents the same initial state of Figure
E.1 to the system for problem solving. The performance element applies
the more operational new schema acquired in the learning episode
described above. The assembly sequence generated has only 24 ticks,

Performance Considerations 205

-

r-'--::.------.. -+--------, .. -

I
_--oL

- __ I

.,_ .. --- ~~------4---+.-'-It--- \,

.0----
__ ---If---+-~- __ ._

Initial State for Widget Assembly Problem

The disembodied robot arm gripper is located in the center of the picture with its fingers
closed and pointing downwards. $BoredBlockl is off to the right, with its socket also point
ing to the right. $Blockl is in the left rear of the picture. $Pegl is stacked on top of
$Washerl in the foreground, just left of center.

Figure E.1

rather than 32 as in the observed sequence. This reflects the absence of
redundant commands in the sequence generated by the performance
element.

The size of the planner's search tree reflects the number of nodes
expanded during planning. The subtree size refers to the number of
nodes actually in the plan, at all levels. The difference between these
two numbers reflects the number of useless nodes expanded. As before,
the database consumes well over 90% of the CPU resources.

E.3. Problem-Solving Episode 2

This problem-solving episode (Table E.3) presents the initial state
shown in Figure E.2. It is a much simpler initial configuration than that
of problem-solving episode 1. The planner generates a 12-element
primitive arm command sequence which accomplishes the goal.

206 Machine Learning of Robot Assembly Plans

Table E.2
Problem-Solving Episode 1

Length of observed sequence 24
Causal model size (tokens) 225
Explanation size (tokens) 142
Number of database queries 2015
Number of tokens created 5418
Number of requests issued 254906
Number of slot reads 219565
Number of slot writes 9778
Total CPU time (seconds) 4759.7
Emulator/history time (seconds) 58.5
Database time (seconds) 4471.6

As an expected side-effect of the lazy copy history mechanism, note
that the average time to satisfy a database request increases with the
number of layers (time ticks) in the history mechanism. In the first
learning episode (32 ticks), this value was almost 3 milliseconds per
request, while in this episode (12 ticks) the value is closer to l.5
milliseconds per request.

Table E.3
Problem-Solving Episode 2

Length of planned sequence 12
Planner search tree size (tokens) 146
Planner subtree size (tokens) 95
Number of database queries 1003
Number of tokens created 1554
Number of requests issued 84754
Number of slot reads 92593
Number of slot writes 2987
Total CPU time (seconds) 1724.5
Emulator/history time (seconds) 27.1
Database time 1560.7

Performance Considerations 207

-
I ,-=-

l~ ~
I

First Alternate Initial State for Widget Assembly Problem

The robot gripper is located in the center of the picture with fingers closed. $BoredBlockl
is to the right, $Pegl is to the left, and $Washerl is in the foreground just left of center.

Figure E.2

EA. Problem·Solving Episode 3

This problem-solving episode (Table E.4) presents a slightly more
complicated initial configuration requiring that two items be cleared off
of $Washerl during the course of the example. This is clearly reflected
in the increased size of the planner subtree, which indicates the number
of valid nodes expanded in planning. The initial state for this episode is
shown in Figure E.3.

E.5. Problem-Solving Episode 4

This is the last problem-solving episode (Table E.5) of Chapter 2. It
demonstrates the power of the system in planning the assembly of
physically different yet functionally similar mechanisms. The initial
state is show in Figure E.4.

208 Machine Learning of Robot Assembly Plans

Table E.4
Problem-Solving Episode 3

Length of planned sequence 30
Planner search tree size (tokens) 261
Planner subtree size (tokens) 162
Number of database queries 2436
Number of tokens created 6759
Number of requests issued 330975
Number of slot reads 267724
Number of slot writes 12033
Total CPU time (seconds) 6352.5
Emulator/history time (seconds) 73.5
Database time (seconds) 6006.6

-

rf II
'L- 11

.' __ .).J ..

.. ~~~-----+----+----J .:.-::.
--------------------_.

Second Alternate Initial State for Widget Assem bly Problem

The robot gripper is located in the center of the picture with fingers closed. $BoredBlockl
is to the left. $Washerl is to the right, with $Block2 and $Pegl stacked on top of it.

Figure E.3

Performance Considerations 209

Table E.5
Problem·Solving Episode 4

Length of planned sequence 18
Planner search tree size (tokens) 204
Planner subtree size (tokens) 133
Number of database queries 1753
Number of tokens created 3128
Number of requests issued 174732
Number of slot reads 184900
Number of slot writes 5433
Total CPU time (seconds) 3533.3
Emulator/history time (seconds) 47.3
Database time (seconds) 3274.2

:J .:. "-.

' .
--------------- , L-________________ ~

.- ---------------_.

Third Alternate Initial State for Widget Assembly Problem

The robot gripper is located in the center of the picture with fingers closed. $Bored
Cylinderl is to the left, with $Pegl stacked on lop of it. $Peg3 and $Washer2 are slacked
(from left to right) on top of $Blockl on the right side of the workspace.

Figure E.4

210 Machine Learning of Robot Assembly Plans

E.G. Learning Episode 2

Clearly, it is possible to learn from a simpler initial configuration
than that of Chapter 2. What kind of impact does the complexity of the
observed situation have on the acquired operator schema and its
subsequent performance? To address this question, we present another
learning episode (Table E.6) with a much shorter solution (12 inputs as
compared to the 24 of the original example). The acquired operator
schema is identical, and thus its effectiveness is also identical to the
originally acquired schema.

Note that the schema acquired in the first learning episode was
removed from the system before running this example. However, the
physical joint schema acquired in the first episode was retained: hence
the verifier now recognizes the goal as a known physical joint schema
(Case 2).

Table E.G
Learning Episode 2

Length of observed sequence 12
Causal model size (tokens) 159
Explanation size (tokens) 144
Number of database queries 1129
Number of tokens created 2090
Number of requests issued 110913
Number of slot reads 103892
Number of slot writes 4581
Total CPU time (seconds) 2039.1
Emulator/history time (seconds) 23.9
Database time 1914.2
Verifier (Case 2) time (seconds) 29.8
Generalizer time 40.9

E.7. Learning Episode 3

Perhaps the most interesting aspect of these results are their
bearing on the generality/operationality tradeoff discussed in Section
5.3.2.3. To investigate this in empirical terms, we present another
observation episode (Table E.7), identical to the simpler initial
configuration of the previous example (see Figure E.1). This time the
system generates the more general new operator schema.

Performance Considerations 211

The new schema acquired in the previous episode was, of course,
removed from the system before presenting this example. As before,
however, the physical joint schema acquired in the first episode was
retained, allowing the verifier to operate under Case 2.

As expected, the results shown here are almost identical to the
results of the previous, identical, episode. The only difference is in the
time spent on generalization. The extra analysis required to produce the
more operational new schema is clearly evident in the greater CPU time
figure in the operational case. This is consistent with expected behavior.

Table E.7
Learning Episode 3

Length of observed sequence 12
Causal model size (tokens) 159
Explanation size (tokesn) 144
Number of database queries 1117
Number of tokens created 2072
Number of requests issued 109639
Number of slot reads 102380
Number of slot writes 4573
Total CPU time (seconds) 2047.8
Emulator/history time (seconds) 24.6
Database time (seconds) 1935.0
Verifier (Case 2) time (seconds) 3l.7
Generalizer time (seconds) 26.4

E.8. Problem-Solving Episode 5

This example is identical to problem-solving episode (Table E.8) 2
(see Figure E.2), except that the new schema being applied is the more
general version. We therefore expect this example to be less efficient,
since the planner must work harder when applying a more general
schema.

The expected behavior is evident in the total CPU time figure (42
minutes as compared to 29 minutes in the other case). In addition, the
planner subtree is a bit larger: but since the additional nodes tend to be
at the highest level of abstraction, the increase in CPU time tends to be
more than linear in the increased subtree size.

212 Machine Learning of Robot Assembly Plans

E.9. Problem-Solving Episode 6

Episode 6 (Table E.9) is identical to problem-solving episode 4 (see
Figure E.4). Since it represents the most complicated of the four
examples from Chapter 2, it was chosen to complement the simple
example of problem-solving episode 5.

These results are consistent with expected behavior.

Table E.8
Problem-Solving Episode 5

Length of planned sequence 12
Planner search tree size (tokens) 151
Planner subtree size (tokens) 138
Number of database queries 1340
Number of tokens created 2044
Number of requests issued 118962
Number of slot reads 139695
Number of slot writes 3661
Total CPU time (seconds) 2498.8
Emulator/history time (seconds) 25.8
Database time (seconds) 2219.3

Table E.9
Problem-Solving Episode 6

Length of planned sequence 18
Planner search tree size (tokens) 215
Planner subtree size (tokesn) 194
Number of database queries 2357
Number of tokens created 3952
Number of requests issued 256358
Number of slot reads 287017
Number of slot writes 3427
Total CPU time (seconds) 5257.7
Emulator/history time (seconds) 45.4
Database time (seconds) 4861.8

Appendix F

Built-In Schemata

In this appendix, we present a capsule summary of each schema
initially built into the ARMS schema library.

F.1. State Schemata

$Aligned
A planar surface on a piece is parallel to and facing a hole
on another piece which is the object of a $BracedHole.

$AlignedHole
Similar to $Aligned, but refers to a hole aligned with a
surface which is the object of a $Braced.

$AlignedHoles

$At

Similar to $Aligned, but refers to a second hole aligned
with the object of the $BracedHole.

Describes the position of the robot gripper.
$Braced

Establishes that a planar surface on a given piece is
parallel with the workspace surface, i.e., pointing up.

$BracedHole
Same as $Braced, but describes a hole on the piece.

$BracedHoles
Similar to $BracedHole, but describes two holes from two
different pieces which are aligned and both pointing up.
The upper piece's hole must go all the way through to the
lower piece's hole.

$Cleared
Establishes that a given piece has no other piece on top of
it.

214 Machine Learning of Robot Assembly Plans

$Closed
States the gripper is closed.

$Downturned
Establishes that a planar surface on a given piece is
parallel with the workspace surface, but (as opposed to
$Braced) is pointing down.

$DownturnedHole
Similar to $Downturned, but describes a hole.

$Empty
The gripper is empty.

$Exserted
A negative primitive from one piece is used to surround a
primitive from another piece. The dual of $Inserted.

$ExsertedThru
Similar to $Exserted, but the insertion goes all the way
through the piece.

$Facing
The gripper is poiting towards a surface of a piece. This is
usually preperatory to approaching the piece and grasping
it.

$Grasped
The gripper is holding a piece.

$Inserted
A primitive from one piece is inserted into a negative
primitive from another piece.

$InsertedThru
Similar to $Inserted, but the insertion goes all the way
through the piece.

$MultiAligned
A primitive from one piece is aligned with two holes
described by a $BracedHoles.

$Opened
The gripper is opened.

$Placed
Describes the position of a piece not held by the gripper.

$Positioned
Describes the position of a piece while held by the gripper.

$Stacked
Describes a support relation between two pieces.

$Surrounds
Describes the state where the gripper, fingers opened,
surrounds a piece.

$UnHindered
Describes the state where there is nothing between the

Built-In Schemata 215

opened fingers of the gripper.

F.1.1. Joint Schemata

$CylindricalJoint
Abstract joint schema with a revolute and a prismatic
degree of freedom on the same axis.

$Cy lindricalJ ointA
Physical joint schema achieved by inserting a cylindrical
primitive into a slightly larger hole.

$CylindricalJointB
Same as $CylindricaIJointA, but with arguments reversed.

$RevoluteJoint
Abstract joint schema with a single revolute degree of
freedom.

$RigidJoint
Abstract joint schema with no degrees of freedom.

$RigidJointA
Physical joint schema achieved by inserting a primitive
into a hole of the same dimension.

$RigidJointB
Same as $RigidJointA, but with arguments reversed.

$SlidingRevoluteJ oint
Abstract joint schema with a revolute and a prismatic
degree of freedom on orthogonal axes.

$TriplePrismaticJoint
Abstract joint schema with three prismatic degrees of
freedom.

$Triple PrismaticJ ointA
Physical joint schema achieved by inserting a square
primitive into a square socket.

$TriplePrismaticJ ointB
Same as $TriplePrismaticJointA, but with arguments
reversed.

F.1.2. Degree of Freedom Schemata

$PrismaticDOF
Describes a prismatic degree of freedom. See section
6.5.2.2.1.1.

$RevoluteDOF
Describes a revolute degree of freedom. See section
6.5.2.2.1.1.

216 Machine Learning of Robot Assembly Plans

F.1.3. Constraint Schemata

$Constrain tSchema
All constraints are tokens of this type. See section 6.5.2.1.

F.2. Operator Schemata

$Align
Operator schema for achieving $Aligned.

$AlignHole
Operator schema for achieving $AlignedHole.

$AlignHoles
Operator schema for achieving $AlignedHoles.

$Approach
Operator schema for achieving $Surrounds.

$Brace
Operator schema for achieving $Braced.

$BraceHole
Operator schema for achieving $BracedHole.

$BraceHoles
Operator schema for achieving $BracedHoles.

$Disengage
Operator schema for achieving $UnHindered.

$Downturn
Operator schema for achieving $Downturned.

$DownturnHole
Operator schema for achieving $DownturnedHole.

$Drop
Operator schema for achieving $Empty.

$EmptyMove
Operator schema for achieving $At.

$Exsert
Operator schema for achieving $Exserted.

$ExsertThru
Operator schema for achieving $ExsertedThru.

$Face
Operator schema for achieving $Facing.

$FullMove
Operator schema for achieving $Positioned.

$Insert
Operator schema for achieving $Inserted.

$InsertThru
Operator schema for achieving $InsertedThru.

Built-In Schemata

$MultiAlign
Operator schema for achieving $MultiAligned.

$Pickup
Operator schema for achieving $Grasped.

$Place
Operator schema for achieving $Placed.

$Stack
Operator schema for achieving $Stacked.

$UnStack
Operator schema for defeating $Stacked.

F.2.1. Primitive Operator Schemata

$Close

217

Operator schema executed by robot arm to achieve $Closed.
$MoveTo

Operator schema executed by robot arm to achieve $At.
$Open

Operator schema executed by robot arm to achieve
$Opened.

$Rotate
Operator schema executed by robot arm to achieve $At.

$Translate
Operator schema executed by robot arm to achieve $At.

References

1. G. D. Ritchie and F. K. Hanna, "AM: A Case Study in Artificial
Intelligence Methodology", Artificial Intelligence 23 (1984), 249-
268.

2. G. F. DeJong, "Generalizations Based on Explanations",
Proceedings of the Seventh International Joint Conference on
Artificial Intelligence, Vancouver, B.C., Canada, August 1981, 67-
69.

3. G. F. DeJong, "Acquiring Schemata through Understanding and
Generalizing Plans", Proceedings of the Eighth International Joint
Conference on Artificial Intelligence, Karlsruhe, West Germany,
August 1983, 462-464.

4. T. M. Mitchell, R. Keller and S. Kedar-Cabelli, "Explanation-Based
Generalization: A Unifying View", Machine Learning 1, 1 (January
1986), 47-80.

5. G. F. DeJong and R. J. Mooney, "Explanation-Based Learning: An
Alternative View", Machine Learning 1, 2 (April 1986).

6. G. F. DeJong, "Explanation Based Learning", in Machine
Learning: An Artificial Intelligence Approach, Vol. II, Morgan
Kaufmann, Los Altos, CA, 1986.

7. A. Bundy, "Some Suggested Criteria for Assessing Artificial
Intelligence Research" , Workshop on the Foundations of Artificial
Intelligence, Las Cruces, NM, February 1986, 46-48.

8. D. McDermott, "Artificial Intelligence Meets Natural Stupidity",
SIGART Newsletter 57 (April 1976), 4-9.

220 Machine Learning of Robot Assembly Plans

9. J. McCarthy, "Programs with Common Sense", Proceedings of the
Symposium on the Mechanization of Thought Processes, National
Physical Laboratory, Teddington, England, 1958, 77-84.

10. A. M. Segre and R. Schank, "The Current State of Artificial
Intelligence: One Man's Opinion", A rtificial I ntelligence Magazine
4, 1 (Winter/Spring 1983), 3-8, Kluwer Academic Publishers.

11. B. C. Smith, "Reflection and Semantics in a Procedural Language",
Ph.D. Thesis, Department of Computer Science, MIT, Cambridge,
MA,1982.

12. H. Simon, "Why Should Machines Learn?", in Machine Learning:
An Artificial Intelligence Approach, Tioga Publishing Company,
Palo Alto, CA, 1983, 24-37.

13. T. Lozano-Perez, "Robot Programming", Memo 698, Artificial
Intelligence Laboratory, Massachusetts Institute of Technology,
Cambridge, MA, December 1982.

14. R. H. Taylor, P. D. Summers and J. M. Meyer, "AML: A
Manufacturing Language", International Journal of Robotics
Research 1, 3 (Fall 1982), 19-41.

15. A. M. Segre, "Explanation-Based Learning of Generalized Robot
Assembly Plans", Ph.D. Thesis, Department of Electrical and
Computer Engineering, University of Illinois at Urbana
Champaign, Urbana, IL, January 1987.

16. R. S. Michalski, "A Theory and Methodology of Inductive
Learning", in MachIne Learning: An Artificial Intelligence
Approach, Tioga Publishing Company, Palo Alto, CA, 1983, 83-134.

17. E. Shortliffe, Computer Based Medical Consultations: MYCIN,
American Elsevier, NY, 1976.

18. R. S. Michalski and R. L. Chilausky, "Learning by Being Told and
Learning from Examples: An Experimental Comparison of the Two
Methods of Knowledge Acquisition in the Context of Developing an
Expert System for Soybean Disease Diagnosis", Policy Analysis
and Information Systems 4, 2 (June 1980), 125-160.

19. R. E. Stepp, Personal Communication, June 1986.

20. R. E. Stepp, "Conjunctive Conceptual Clustering: A Methodology
and Experimentation", Ph.D. Thesis, Department of Computer
Science, University of I1linois at Urbana-Champaign, Urbana, IL,
1984.

21. L. Rendell, "A General Framework for Induction and a Study of
Selective Induction", Machine Learning 1,2 (1986), 177-226.

References 221

22. S. A. Rajamoney, "Automated Design of Experiments for Refining
Theories", M. S. Thesis, Department of Computer Science, UI,
Urbana, IL, May 1986.

23. T. Mitchell, "Learning and Problem Solving", Proceedings of the
Eighth International Joint Conference on Artificial Intelligence,
Karlsruhe, West Germany, August 1983, 1139-1151.

24. T. M. Mitchell, "Version Spaces: An Approach to Concept
Learning", Technical Report STAN-CS-78-711, Stanford
University, Palo Alto, CA, 1978.

25. R. E. Fikes, P. E. Hart and N. J. Nilsson, "Learning and Executing
Generalized Robot Plans", Artificial Intelligence 3 (1972), 251-288.

26. T. Mitchell, S. Mahadevan and L. Steinberg, "A Learning
Apprentice System for VLSI Design", Proceedings of the 1985
International Machine Learning Workshop, Skytop, PA, June 1985,
123-125.

27. B. Silver, "Using Meta-level Inference to Constrain Search and to
Learn Strategies in Equation Solving", Ph.D. Thesis, Department
of Artificial Intelligence, University of Edinburgh, 1984.

28. P. V. Q'Rorke, "Generalization for Explanation-based Schema
Acquisition", Proceedings of the National Conference on Artificial
Intelligence, Austin, TX, August 1984, 260-263.

29. P. V. Q'Rorke, "LT Revisited: Experimental Results of Applying
Explanation-Based Learning to the Logic of Principia
Matematica", Proceedings of the 1987 International Machine
Learning Workshop, Irvine, CA, June 1987, 148-159.

30. J. W. Shavlik, "Learning about Momentum Conservation",
Proceedings of the Ninth International Joint Conference on
Artificial Intelligence, Los Angeles, CA, August 1985, 667-669.

31. J. W. Shavlik and G. F. DeJong, "Building a Computer Model of
Learning Classical Mechanics", Proceedings of the Seventh Annual
Conference of the Cognitive Science Society, Irvine, CA, August
1985, 351-355.

32. R. J. Mooney and G. F. DeJong, "Learning Schemata for Natural
Language Processing", Proceedings of the Ninth International Joint
Conference on Artificial Intelligence, Los Angeles, CA, August
1985,681-687.

33. D. Gentner, "Structure-Mapping: A Theoretical Framework for
Analogy", Cognitive Science 7, 2 (1983), 155-170.

222 Machine Learning of Robot Assembly Plans

34. K. D. Forbus, "Qualitative Process Theory", Technical Report 789,
Ph.D. Thesis, Artificial Intelligence Laboratory, Massachusetts
Institute of Technology, Cambridge, MA, August 1984.

35. P. J. Hayes, "The Naive Physics Manifesto", in Expert Systems in
the Micro-Electronic Age, Edinburgh University Press, Edinburgh,
Scotland, 1979, 242-270.

36. W. Chafe, "Some Thoughts on Schemata", Theoretical Issues in
Natural Language Processing 1, Cambridge, MA, 1975, 89-91.

37. M. L. Minsky, "A Framework for Representing Knowledge", in The
Psychology of Computer Vision, McGraw-Hill, New York, NY,
1975, 211-277.

38. E. Charniak, "On the Use of Framed Knowledge in Language
Comprehension", Artificial Intelligence 11, 3 (1978), 225-265.

39. R. C. Schank and R. P. Abelson, Scripts, Plans, Goals and
Understanding: An Inquiry into Human Knowledge Structures,
Lawrence Erlbaum and Associates, Hillsdale, NJ, 1977.

40. S. E. Fahlman, NETL: A System for Representing and Using
Real-World Knowledge,. MIT Press, Cambridge, MA, 1979.

41. G. F. DeJong, "Skimming Stories in Real Time: An Experiment in
Integrated Understanding", Technical Report 158, Ph.D. Thesis,
Department of Computer Science, Yale University, New Haven,
CT,1979.

42. E. Charniak, "With a Spoon in Hand this Must be the Eating
Frame", Theoretical Issues in Natural Language Processing 2,
Urbana, IL, 1978, 187-193.

43. B. Gustafson, "Development of Localized Planner for Artificial
Intelligence-Based Robot Task Planning System", M.S. Thesis,
University of Illinois at Urbana-Champaign, Urbana, IL, October
1986.

44. V. Hayward and R. Paul, "Introduction to RCCL: A Robot Control
'C' Library", Proceedings of the IEEE International Conference on
Robotics and Automation, Atlanta, GA, 1984,293-297.

45. S. M. Udupa, "Collision Detection and Avoidance in Computer
Controller Manipulators", Proceedings of the Fifth International
Joint Conference on Artificial Intelligence, Cambridge, MA, August
1977.

46. T. Lozano-Perez and M. Wesley, "An Algorithm for Planning
Collision-Free Paths Among Polyhedral Obstacles",
Communications of the Association for Computing Machinery 22, 10

References 223

(October 1979), 560-570.

47. R. Tilove, "Extending Solid Modeling Systems for Mechanism
Design and Kinematic Simulation", IEEE Computer Graphics and
Applications 3,3 (May 1983),9-19.

48. BBN, Butterfly Parallel Processor Overview, Version 1, Bolt,
Baranek and Newmann, Inc., Cambridge, MA, 1985.

49. C. Seitz, "The Cosmic Cube", Communications of the Association
for Computing Machinery 28, 1 (January 1985), 22-33.

50. P. E. Friedland, "Knowledge-based Experiment Design in
Molecular Genetics", Technical Report 79-771, Computer Science
Department, Stanford University, Palo Alto, CA, 1979.

51. E. Charniak, "MS. MALAPROP, A Language Comprehension
System", Proceedings of the Fifth International Joint Conference on
Artificial Intelligence, Cambridge, MA, August 1977.

52. G. F. DeJong, '''Prediction and Substantiation: A New Approach for
Natural Language Processing", Cognitive Science 3, 3 (1980), 251-
273.

53. R. W. Wilensky, "Understanding Goal-Based Stories", Technical
Report 140, Ph.D. Thesis, Department of Computer Science, Yale
University, New Haven, CT, September 1978.

54. R. E. Cullingford, "Script Application: Computer Understanding of
Newspaper Stories", Technical Report 116, Department of
Computer Science, Yale University, New Haven, CT, January
1978.

55. E. Charniak, "Context Recognition in Language Comprehension",
in Strategies for Natural Language Processing, Lawrence Erlbaum
and Associates, Hillsdale, NJ , 1982,435-454.

56. D. G. Bobrow and M. Stefik, LOOPS Reference Manual, Xerox
PARC, Palo Alto, CA, 1983.

57. W. Teitelman, Interlisp Reference Manual, Xerox PARC, Palo Alto,
CA,1983.

58. J. G. Schmolze and R. J. Brachman (ed.), "Proceedings of the 1981
KL-One Workshop", Technical Report 4842, Bolt, Baranek and
Newmann, Inc., Cambridge, MA, June 1982.

59. R. Brachman, R. E. Fikes and H. Levesque, "KRYPTON: A
Functional Approach to Knowledge Representation", in Readings
in Knowledge Representation, Morgan Kaufmann, Los Altos, CA,
1985, 411-430.

224 Machine Learning of Robot Assembly Plans

60. D. G. Bobrow and T. W. Winograd, "An Overview of KRL, A
Knowledge Representation Language", Cognitive Science 1 (1977),
3-46.

61. B. R. Roberts and I. P. Goldstein, "The FRL Manual", Memo 409,
Artificial Intelligence Laboratory, Massachusetts Institute of
Technology, Cambridge, MA, September 1977.

62. E. Charniak, M. Gavin and J. Hendler, "The FrailINasl Reference
Manual", Technical Report CS-83-06, Brown University
Department of Computer Science, Providence, RI, February 1983.

63. W. Newman and R. Sproull, Principles of Interactive Computer
Graphics, McGraw-Hill, New York, NY, 1973.

64. G. F. DeJong, R. J. Mooney, S. A. Rajamoney, A. M. Segre and J.
W. Shavlik, "A Review of Explanation-Based Learning", Technical
Report, Artificial Intelligence Research Group, Coordinated Science
Laboratory, University of Illinois at Urbana-Champaign, Urbana,
IL,1987.

65. T. M. Mitchell, S. Mahadevan and L. I. Steinberg, "LEAP: A
Learning Apprentice for VLSI Design", Proceedings of the Ninth
International Joint Conference on Artificial Intelligence, Los
Angeles, CA, August 1985, 573-580.

66. R. J. Mooney and S. W. Bennett, "A Domain Independent
Explanation-Based Generalizer", Proceedings of the National
Conference on Artificial Intelligence, Philadelphia, PA, August
1986, 551-555.

67. K. Hammond, "CHEF: A Model of Case-Based Planning",
Proceedings of the National Conference on Artificial Intelligence,
Philadelphia, PA, August 1986, 267-271.

68. P. Rosenbloom and J. Laird, "Mapping Explanation-Based
Generalization into Soar", Proceedings of the National Conference
on Artificial Intelligence, Philadelphia, PA, August 1986, 561-567.

69. M. Pazzani, M. Dyer and M. Flowers, "The Role of Prior Causal
Theories in Generalization", Proceedings of the National Conference
on Artificial Intelligence, Philadelphia, PA, August 1986, 545-550.

70. M. Lebowitz, "Complex Learning Environments: Hierarchies and
the Use of Explanation", in Machine Learning: A Guide To Current
Research, Kluwer Academic Publishers, Hingham, MA, 1986, 179-
182.

71. P. R. Cohen and E. A. Feigenbaum, The Handbook of Artificial
Intelligence, Volume III, William Kaufman, Inc., Los Altos, CA,
1982.

References 225

72. R. Reiter, "On Reasoning by Default", Theoretical Issues in Natural
Language Processing 2, Urbana, IL, July 1978, 210-218.

73. A. Newell, J. C. Shaw and H. A. Simon, "Empirical Explorations
with the Logic Theory Machine: A Case Study in Heuristics", in
Computers and Thought, McGraw-Hill, New York, NY, 1963.

74. T. M. Mitchell, L. Steinberg and J. Shulman, "A Knowledge-Based
Approach to Design", Technical Report LCSR-TR-65, Rutgers
University, New Brunswick, NJ , January 1985.

75. D. C. Wilkins, W. J. Clancey and B. G. Buchanan, "ODYSSEUS: A
Learning Apprentice", in Machine Learning: A Guide To Current
Research, Kluwer Academic Publishers, Hingham, MA, 1986, 369-
374.

76. W. Clancey and R. Letsinger, "NEOMYCIN: Reconfiguring a Rule
Based Expert System for Application to Teaching", in Proceedings
of the Seventh International Joint Conference on Artificial
Intelligence, Vancouver, B.C., Canada, August 1981, 829-836.

77. S. N. Minton, "Overview of the PRODIGY Learning Apprentice",
in Machine Learning: A Guide To Current Research, Kluwer
Academic Publishers, Hingham, MA, 1986, 199-202.

78. S. Fahlman, "A Planning System for Robot Construction Tasks",
Artificial Intelligence 5 (1974),1-49.

79. C. Brown, "PADL-2: A Technical Summary", IEEE Computer
Graphics and Applications 2, 2 (March 1982), 69-84.

80. J. Boyse and J. Gilchrist, "GMSOLID - Interactive Modeling for
Design and Analysis of Solids", Technical Report GMR-3882, GM
Research Laboratories, Warren, MI, November 1981.

81. P. Veenman, "ROMULUS - The Design of a Geometric Modeller",
Technical Report P-80-GM-01, CAM-I, Inc., Bournemouth, U.K.,
November 1979.

82. J. de Kleer, "An Assumption-based TMS", Artificial Intelligence 28,
2 (March 1986), 127-162.

83. J. de Kleer, "Problem Solving with the ATMS", Artificial
Intelligence 28,2 (March 1986), 197-224.

84. D. A. McAllester, "An Outlook on Truth Maintenance", Memo 551,
Artificial Intelligence Laboratory, Massachusetts Institute of
Technology, Cambridge, MA, August 1980.

85. D. A. McAllester, "Reasoning Utility Package User's Manual,
Version One", Memo 667, Artificial Intelligence Laboratory,
Massachusetts Institute of Technology, Cambridge, MA, April

226 Machine Learning of Robot Assembly Plans

1982.

86. J. Doyle, "Truth Maintenance Systems for Problem Solving",
Technical Report 419, Artificial Intelligence Laboratory,
Massachusetts Institute of Technology, Cambridge, MA, 1978.

87. R. Michalski, "Understanding the Nature of Learning: Issues and
Research Directions", in Machine Learning: An Artificial
Intelligence Approach, Vol. II, Morgan Kaufmann, Los Altos, CA,
1986,3-25.

88. J. F. Allen, "Maintaining Knowledge about Temporal Intervals",
Communications of the Association for Computing Machinery 26, 11
(November 1983), 832-843.

89. T. Dean, "Time Map Maintenance", Technical Report 289,
Department of Computer Science, Yale University, New Haven,
CT, October 1983.

90. D. McDermott, "A Temporal Logic for Reasoning About Processes
and Plans", Cognitive Science 6, 2 (1982), 101-155.

91. A. E. Prieditis, "Discovery of Algorithms from Weak Methods",
Proceedings of the International Meeting on Advances in Learning,
Les Arcs, Switzerland, 1986, 37-52.

92. P. W. Cheng and J. G. Carbonell, "The FERMI System: Inducing
Iterative Macro-operators from Experience", Proceedings of the
National Conference on Artificial Intelligence, Philadelphia, PA,
August 1986, 490-495.

93. R. J. Doyle, "Constructing and Refining Causal Explanations from
an Inconsistent Domain Theory", Proceedings of the National
Conference on Artificial Intelligence, Philadelphia, PA, August
1986, 538-544.

94. R. A. Brooks, "Symbolic Error Analysis and Robot Planning",
Memo 685, Artificial Intelligence Laboratory, Massachusetts
Institute of Technology, Cambridge, MA, September 1982.

95. T. Lozano-Perez, M. Mason and R. Taylor, "Automatic Synthesis of
Fine-Motion Strategies for Robots", International Journal of
Robotics Research 3, 1 (1984), 3-24.

96. M. Gini and G. Gini, "Towards Automatic Error Recovery in Robot
Programs", Proceedings of the Eighth International Joint
Conference on Artificial Intelligence, Karlsruhe, West Germany,
August 1983, 821-823.

97. D. Wilkins, "Domain-Independant Planning: Representation and
Plan Generation", Artificial Intelligence 22 (Apri11984), 269-301.

References 227

98. D. Wilkins, "Monitoring the Execution of Plans in SIPE",
Technical Report, SRI International, Menlo Park, CA, September
1984.

99. A. A. G. Requicha and H. B. Voelcker, "Solid Modeling: A
Historical Summary and Contemporary Assessment", IEEE
Computer Graphics and Applications 2,2 (March 1982), 9-24.

100. A. A. G. Requicha and H. B. Voelcker, "Solid Modeling: Current
Status and Research Directions", IEEE Computer Graphics and
Applications 3, 5 (October 1983), 25-37.

101. 1. Braid, "The Synthesis of Solids Bound by Many Faces",
Communications of the Association for Computing Machinery 18, 4
(April 1975), 209-216.

102. R. Hillyard, "The Build Group of Solid Modelers", IEEE Computer
Graphics and Applications 2,2 (March 1982), 43-52.

103. H. B. Voelcker, "The PADL-l.O/2 System for Defining and
Displaying Solid Objects", Computer Graphics 12, 3 (August 1978),
257-263.

104. A. A. G. Requicha, "Representations for Rigid Solids", Association
for Computing Machinery Computing Surveys 12, 4 (December
1980), 437-464.

105. W. Gordon, "An Operator Calculus for Surface and Volume
Modeling", IEEE Computer Graphics and Applications 3, 5
(October 1983), 18-22.

106. R. Sarraga, "Computation of Surface Areas in GMSOLID",
Technical Report GMR-4036, GM Research Laboratories, Warren,
MI, April 1982.

107. R. Sarraga and W. Waters, "Free-Form Surfaces in GMSOLID:
Goals and Issues", Technical Report GMR-4481, GM Research
Laboratories, Warren, MI, September 1983.

108. A. M. Segre, "On the Operationality/Generality Trade-Off in
Explanation-Based Learning", Proceedings of the Tenth
International Joint Conference on Artificial Intelligence, Milan,
Italy, August 1987,242-248.

Index

$6
$Arm 111-114
$Block 106-107
$Block1 10,29,149
$Block2 159,184
$BoredBlock1 8,149,180,184
$BoredBlock2 184
$BoredCylinder1 28
$Box1187
$ConstraintSchema 123-125
$Cylinder 106-107
$CylindricalJoint 132-133
$CylindricalJointA 151-152,195
$CylindricalSurface 108-110
$DegreeOfFreedom 129-131
$Episode 137-148$ 6,90
$Framel187
$Hole 110-111
$JointSchema 125-129
$LazyCopy 94-95
$MatchMixin 93-94
$NewSchemaA 182-183
$NewSchemaC 153-155,187
$NewSchemaD 188
$NewSchemaE 198-201
$OperatorSchema 134-136
$Peg1 8,149,180,184
$Peg2 158,184
$Peg3 28,159
$Peg4187
$Piece 100-105

$PlanarSurface 108-110
$PositionedObject 100
$Primitive 105-106
$PrimitiveSchema 136-137
$PrismaticDOF 131-132
$RevoluteDOF 131-132
$RevoluteJoint 10,28,149,158
$RevoluteJointA 152-153
$RigidJoint 180
$RigidJointA 133,151-152,

179-180,195
$RigidJointB 180
$Schema 118-119
$Segment 117-118
$SlidingRevoluteJoint 187
$SlidingRevoluteJ ointA 197
$StateSchema 119-123
$Surface 108
$TriplePrismaticJoint 187-187
$View 114-117
$Washer1 8,149
$Washer228
$Washer3 187
$WorkSpace 98-100
ARMS 5,47-48,61-62,89
Abstract joint schema 64
Abstract types 90
Activated 76
Activation condition 75
Aligned 98
Analogy 169

230 Machine Learning of Robot Assembly Plans

Application conditions 43,46
Arm (see Robot arm)
Artificial Intelligence (AI) i
Assessing AI research i-iii
Assumptions in ARMS

domain theory 65,171
Assumptions in EBL 165
Assumptions in SBL 35
BRep 54,175
Binding equivalence list 177
Block 54
Body slot 66
Bound, hard 53
Bound, soft 53
Boundary representations

(see BRep)
CHEF 161
CSG 54,175
Camera 55
Causal model 43,73-74
Cell decomposition 175
Classification tasks 35,37
Clock 67
Clone 68
Closed world assumption 46,162
Closed-loop learning 42,45,46
Colinear 98
Combination operators 54
Combinatorial explosion 37
Composite joint 54
Composite operator schemata 66
Confirmation procedure 68
Consistency of knowledge 2
Constraining instance for SBL 37
Constraint schemata 63-64
Constraints slot 63
Constructive induction 168
Constructive solid geometry

(see CSG)
Contained-difference operator 55
Contradictions slot 63
Coplanar 98
Cylinder, right 54
Cylindrical joint 53

Database parallelism 69
Database system 67-69
Degree of freedom 8,53
Descriptors 41
Design phase 70
Design problem 70
Disjoint-union operator 55
Domain know ledge 2
Domain theory 40,41,53-54,171
EGGS 161
Emulator 48,54,57-59
End time slot 63
Equal 98
Execution monitoring 171
Execution step 71,72
Explanation 7,43
Explanation construction 168-169
Explanation extraction 83
Explanation modification 169
Explanation-based learning iii,1,35,

39-40,45,47
Extended guiding 3
Extensibility 165
Fault-tolerant approach 167
Feature set for SBL 35
Final state 73
Fingers 49
Forgetting 169
Frame language 90
Frame selection

(see schema selection)
Frames 90
Functional descripion 9,33
GENESIS 161
Generality/operationality 84-86
Generalization in EBL 18-19,44,45,

73,84,153-155,181-182,196-204
Generalized plan 33
Generalizer 73,77-88
Generalizing 42
Goal slot 66
Goal specification 10,70-73
Goal state 10
Graphics 56

Index

Gripper 9,49,50
History mechanism 48,54,59-60
Homogeneous coordinate

system 96-98
Hook 53
Hot spot 9,49
Hybrid modeling systems 175
Hybrid systems 3
INTERLISP-D 89
If-accessed 92
If-changed 92
Incomplete domain theory 171-172
Incorrect domain theory 172
Inductive leap 36,40
Inheritance 90-91
Initial state 9,70,73,180,188
Input sequence 11-17,73,150-151,

189-195,189-195
Intelligence 1,4
Intractable domain theory 172
Introspection 37
Joint 53
Joint schemata 64-66
Kinematic chain 54,81
Kinematics 18,19,47,51
Knowledge represenation

hypothesis 2
Knowledge representation 61-70
LEAP 161,163
LEX 161
LOOPS 89
LP 161
Learning apprentice 5,7,39,161,

163-164,169,171,173
Learning criteria 44,45,76,170
Learning element 41,42-45,73-77
Link 53
Location 98
MA 161,163
MACROPS 37
Machine learning 1,5
Modeler 48,54-57,96-114,165-166
Multiple plans 172
Negative instances for SBL 37

Non predictive
understanding 45,75,169

Null joint 53
-OCCAM 161
ODYSSEUS 161,164
Observed sequence

(see Input sequence)
Obtrusiveness 38,39
Octree methods 175

231

Open-loop learning 42,46
Operator schemata 41,62,66-67,83
Operator/state problem 167
Orientation 98
Orthogonal 98
Output sequence 19-27,70,

155-159,182-184
PEBLS 40-45,73
PRODIGY 161,164-165
Palm 49
Parallel 98
Performance element 41-42,70-72
Physical description 9,33
Physical joint schema 64
Physics-101 161
Piece support 55
Pieces 54
Pitch 97,98
Plan revision 171
Plan step 71-72
Planning 19-27,28-33,42,

155-159,182-184,201
Planning efficiency 18,33
Planning phase 70,71
Point 98
Position 98
Precedural attachment 91
Precondition promotion

criteria 86
Preconditions slot 66
Predictive understanding 74-75
Primitive operator schemata 66
Primi ti ves 54
Prismatic joint 53
Problem-solving episode 70

232 Machine Learning of Robot Assembly Plans

Problem-solving tasks 35,37
Procedures 90-91
Programming 3,5
Projection plane 55
Projection transform 55
Promotion 86
Range

(for degree of freedom) 53
Rational reconstruction ii
Realization procedure 70
Refinement in EBL 44,45,171
Reminding 169
Replacement criteria 45,46,

87,170
Request 91
Resources 203
Retention criteria 45,46,86,170
Retraining 1,3,5
Revolute joint 53
Revolute joint 8
Rigid joint 53
Robot arm 9,49
Robot arm commands 9,49-50
Robotics 2-5,171-173
Roll 97,98
Rule for SBL 35
SOAR 161
STRIPS 161-163
STRIPS assumption 46,162
Schema 41,62-67,177
Schema activation 43,74,75
Schema instantiation 43,177
Schema library 41,87
Schema planner 42,70
Schema selection problem 43,74,168
Schema system 61-67
Scope 76
Self 90
Semantic hierarchy 90
Sensors 4
Similarity-based learning 35-39,

167,171,172
Sins of AI ii
Skeletal planner 70

Slot promotion 86
Slots 90,177
Solid modeling 54
Specialization in EBL 44,45,73,

81,151-152,195-196
Spehrical joint 53
Start time slot 63
State schemata 41,62-66
Statistics 203
Strong approach 167
Subgoals slot 66
Substantiators slot 63
Suggested schema list 75
Suggestions slot 66
Super types (see Supers)
Supers 90
Support procedure 103-105
Sweep methods 175
Tag 92
Tape recorder mode 3
Task planner 4
Teach pendant 11
Teach-by-guiding 3
Template 177
Temporal reasoning 167-168
Tick 57
Time slot 66
Token slots 90
Tokens 90
Top-level subgoal set 83
Training set for SBL 35
Transform 53
Type slots 90
Types 90
UNIMEM 161
Uncertainty 166-167
Understander 73
Understanding 42,45
Universl joint 53
Validation procedure 68
Verification 44,76-81,151-152,181,

195-196
Verification problem 70
wes 97-98

Index

Weak approach 167
Weak method 37,42
Widget 7
Workspace model 56
World coordinate system

(see WeS)
Yaw 97,98.fi

233

