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Preface 

The study of artificial intelligence (AI) is indeed a strange pursuit. 
Unlike most other disciplines, few AI researchers even agree on a 
mutually acceptable definition of their chosen field of study. Some see 
AI as a sub field of computer science, others see AI as a computationally 
oriented branch of psychology or linguistics, while still others see it as a 
bag of tricks to be applied to an entire spectrum of diverse domains. 

This lack of unified purpose among the AI community makes this a 
very exciting time for AI research: new and diverse projects are 
springing up literally every day. As one might imagine, however, this 
diversity also leads to genuine difficulties in assessing the significance 
and validity of AI research. These difficulties are an indication that AI 
has not yet matured as a science: it is still at the point where people are 
attempting to lay down (hopefully sound) foundations. 

Ritchie and Hanna [1] posit the following categorization as an aid 
in assessing the validity of an AI research endeavor: 

(1) The project could introduce, in outline, a novel (or partly novel) 
idea or set of ideas. 

(2) The project could elaborate the details of some approach. Starting 
with the kind of idea in (1), the research could criticize it or fill in 
further details 

(3) The project could be an AI experiment, where a theory as in (1) 
and (2) is applied to some domain. Such experiments are usually 
computer programs that implement a particular theory. 

As Ritchie and Hanna acknowledge, most AI work falls into categories 
(2) and (3). Such is the case here as well: credit for (1) should go to [2-
6]. 

This book describes an AI experiment: a multiyear effort 
investigating the application of a novel machine-learning technique in a 
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particular domain. Experience with the design and implementation of a 
computer program embodying these machine-learning ideas helps us in 
developing a more complete theory. What steps can be taken to insure 
that this work is a contribution to forward progress in the greater 
scheme of AI rather than a forgotten side trip? 

Ritchie and Hanna go on to note: 

It is one of the peculiarities of AI that, although replication of practical 
results is a cornerstone of traditional science, it is rare to see published 
accounts of repetitions of AI work. It is not clear how to interpret this 
phenomenon: it may be that few people have ever successfully re
implemented a large AI program, or it may be that those who do 
manage to repeat a published project do not regard this as publishable 
material. It may also be the case that an unsuccessful attempt at re
implementation would not be widely notified, since this might appear 
as an admission of incompetence. These circumstances impede the es
tablishment of scientific standards within AI. 

Here then lies the key: one way to insure that this experiment was not 
in vain is to prepare this document with a view towards the rational 
reconstruction of the program. 

To this end, we now make the following promises (largely inspired 
by [7] and [8]): 

(1) To describe the theory behind the success of the system in a 
straightforward manner. 

(2) To describe this system in as code-free a fashion as possible, 
preferring to revert to pseudo-code descriptions of important 
algorithms rather than reprinting the implementation!. 

(3) To give annotated examples of the system in operation which give 
helpful insights into the operation of particular parts of the code. 

(4) To avoid McDermott's third sin of AI research: 

Only in a cautious footnote does he say, "the program was never 
actually finished," or, "only a preliminary version of the program 
was actually written." 

All of the examples in this document are the product of a single 
version of the system, and are reproduced without embellishment.2 

lOur aim is to encourage rational reconstruction, not blind porting of com
puter code. 

2 McDermott calls this sin .,.,. Only a Preliminary Version of the Program 
was Actually Implemented. The other sins discussed in [8] are wishful mnemon
ics and unnatural language. This is not meant to be an exhaustive list by any 
means. 
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Any judgement of the merits or success of this project must be 
based on the assumption that the technique here described 
(explanation-based learning) is a worthwhile addition to the machine
learning repertory. If one believes this to be the case, the validity of the 
work done and reported herein depends on meeting the following 
criteria: 

(1) The description of the technique is thorough enough to give the 
reader a clear understanding of how it works. 

(2) The experiment itself clearly establishes the relation between 
theory and practice (the implementation). 

(3) The description of the program is thorough enough to permit the 
rational reconstruction and, therefore, the independent verification 
of this experiment. 

If all of these criteria are met, then this research has accomplished its 
primary goal: to further elaborate and validate (by means of a prototype 
computer implementation in a nontrivial domain) a novel method of 
automatic knowledge acquisition. 
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Chapter 1 

Introduction 

This book describes an experiment involving the application of a 
recently developed machine-learning technique, explanation -based 
learning, to the robot retraining problem. Explanation-based learning 
permits a system to acquire generalized problem-solving knowledge on 
the basis of a single observed problem-solving example. The description 
of the design and implementation of this experimental computer 
program serves as a vehicle for discussing issues related to this 
particular type of learning. This work clarifies and extends the corpus of 
knowledge so that explanation-based learning can be successfully 
applied to real-world problems. 

The ability to generalize from examples in order to produce new, 
operational knowledge makes for a very powerful system. Since the very 
early days of artificial intelligence (AI) research, many AI researchers 
felt that the development of learning machines was their eventual goal: 

Our ultimate objective is to make programs that learn from their ex· 
perience as effectively as humans do [9]. 

In fact, some AI researchers believe that the ability to learn lies at the 
very heart of intelligence: 

It should also be clear that an AI program that cannot build itself up 
gradually, without requiring all its knowledge stuffed in at the begin
ning, is not really intelligent [10]. 

Machine learning is precisely that subfield of AI which aims to 
understand this process. 

1.1. Machine Learning 

Why do we study machine learning? Any answer must rest on one 
of the most basic methodological assumptions of AI, the knowledge 
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representation hypothesis: 

Any mechanically embodied intelligent process will be comprised of 
structural ingredients that (a) we as external observers naturally take 
to represent a propositional account of the knowledge that the overall 
process exhibits, and (b) independent of such external semantical attri
bution, play a formal but causal and essential role in engendering the 
behavior that manifests that knowledge [11]. 

Paraphrasing more simply: 

any intelligent system will require knowledge about its domain that is 
explicitly and recognizably encoded. 

Apart from any controversy about what scheme should be used to 
encode this domain knowledge,3 there are real questions about how to 
maintain consistency across the knowledge base. These systems have 
tremendous potential for the adverse interaction of inconsistent 
knowledge: 

Perhaps you know how knowledge is organized in your brain; I don't 
know how it's organized in mine. As a consequence, I think it would be 
exceedingly difficult for me to create new, debugged code that would be 
compatible with what is already stored there [12]. 

But consistency is only one of our concerns: if past experience with 
microworlds is any indication, AI systems that are to operate in 
restricted real-world environments will require staggering amounts of 
domain knowledge. And as the restrictions are relaxed, the amount of 
knowledge manipulated by such systems will grow still larger. This 
raises some concern over the pragmatic aspect of building these large 
quantities of domain-specific knowledge into a system: 

Perhaps the deepest legitimate reason for doing machine learning 
research is that, in the long run for big knowledge-based systems, 
learning will turn out to be more efficient than programming, however 
inefficient such learning is [12]. 

1.2. Robotics 

The robot domain has long been a favorite for AI research. This is 
due to the fact that it represents a real world domain, albeit with an 
important restriction: industrial robots exist in a controlled 
environment. Even with this restriction, the robot domain has been too 
complex for most AI projects, forcing so many simplifying assumptions 
that the experimental domain bears little resemblance to any real-world 
application. 

3 This is still the open question of knowledge representation research. 
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1.2.1. Why Can't Robbie Learn? 

Robots have the potential to revolutionize the manufacturing 
process. Unfortunately, the robot has yet to live up to expectations. 
While it is indeed a general-purpose device, it is far from the flexible 
automation tool it was first touted to be. This lack of flexibility is 
manifest in the difficulties encountered when preparing a robot to 
perform some novel task: we call this the robot retraining problem. 

There are two general strategies in use today to address the robot 
retraining problem: teach-by-guiding systems, and robot programming 
systems. A good description of these systems with examples can be 
found in [13]. 

1.2.2. Teach-By-Guiding Systems 

Teach-by-guiding systems are trained by leading the robot through 
the task it is to perform. Important points are-marked during teaching 
and then replayed by the robot over and over again. These systems are 
also referred to as tape-recorder mode robot systems. 

The greatest advantage of teach-by-guiding systems is that they 
are extremely easy to implement. In addition, in practical use it is only 
necessary to have a task expert do the teaching; it is fairly easy to train 
a task expert (such as a job foreman) how to use the teaching pendant 
on a commercially available robot. Their greatest disadvantage is the 
lack of any control constructs. For example, in the simpler systems, 
there is no way to repeat a given subsequence at different locations in 
the workspace. The absence of control structures that provide 
conditional branching precludes the use of iteration, and also makes any 
complex interaction with sensors difficult. 

Extended guiding systems (also referred to as hybrid systems since 
they incorporate a mix of guiding and programming) attempt to resolve 
these difficulties by adding simple control structures and prepackaged 
sensor strategies to guiding systems. They fall short of full 
programming systems in that not all control strategies are supported, 
and only direct testing of sensor input values is permitted for 
conditional execution. 

1.2.3. Robot Programming Systems 

Robot programming systems provide a language for the 
construction of robot programs to guide the manipulator in the same 
way that computer programming languages are used to instruct a 
computer. These systems can be further divided into two general 
categories: robot-level programming systems and task-level programming 
systems. 
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Robot-level programming systems require that the user specify 
robot motion and sensor interaction. AML [14] is a good example of 
today's robot-level programming languages. The emphasis in AML is on 
developing a good, easily-customized user interface. The quality of the 
user interface is important, since the user must enter every detail of the 
robot's actions and sensory interaction. 

Current research in robot programming is aimed at developing 
task-level programming systems where the user specifies higher-level 
constructs as they relate to the objects being manipulated in the 
workspace. The system then synthesizes the robot-level program that 
carries out the task given the current state of the world. This synthesis 
process, done by the task planner, is critically sensitive to the particular 
knowledge about the world that is built into the system. This 
knowledge must include not only information about the objects being 
manipulated, but also specific control strategies, including when and 
how to use sensors. In short, a task-level system relies on the user to 
specify an object-relative description of the steps in the assembly 
sequence, from which it then generates a robot-level program embodying 
the desired assembly sequence. Research in task-level systems is still 
fairly preliminary; no applications exist as yet outside the research 
laboratories. 

1.2.4. Myopia on the Road to Intelligent Robots 

Robot programming is not, however, a panacea. In conjunction 
with research on more advanced sensory devices (e.g., machine vision, 
tactile sensors), the robotics community has placed a great deal of 
emphasis on the construction of better programming languages and user 
interfaces. But robot-level programming languages must rely on the 
skill and foresight of human programmers for their apparent abilities to 
adapt to new situations. Even task-level systems rely on the human 
programmer to define the general strategy and ordering with which to 
attack the problem. 

To define intelligence as 
the ability to use information to modify system behavior in prepro
grammed ways [14] (emphasis added) 

is, at best, myopic. We do not ascribe the elusive trait intelligence to 
FORTRAN programs that invert large matrices, so why should we 
consider the end product of any robot programming tool (regardless of 
how sophisticated its user interface may be) to be intelligent? 

In the final analysis, robot planning systems must inevitably (if 
only due to the sheer quantity of domain knowledge they require) face 
the knowledge acquisition bottleneck. At that point, the marriage 



Introduction 5 

between machine learning and robotics becomes a matter of absolute 
practical necessity. 

1.3. About the Book 

Described in this book is the computer program that resulted from 
an experimental application of explanation-based learning to a 
restricted robot manufacturing domain. The program is called ARMS, 
for Acquiring Robotic Manufacturing Schemata [15]. We feel that this 
experiment is an important contribution to artificial intelligence 
research for the following reasons: 

(1) From the machine-learning perspective, it is an ambitious 
implementation of explanation-based learning. Unlike many other 
vehicles for machine-learning research, the ARMS system operates 
in a nontrivial domain conveying the flavor of a real robot 
assembly application. As such, ARMS has addressed the crucial 
open issues in explanation-based learning as no paper-and-pencil 
simulation can. 

(2) From the robotics perspective, it represents an important first step 
towards a learning-apprentice system for manufacturing. It posits 
a theoretically more satisfactory solution to the robot retraining 
problem, and offers an eventual alternative to the limitations of 
robot programming. 

1.3.1. Organization 

We begin with an example from a robot assembly domain. This 
particular example serves as a framework for the discussion in the rest 
of the book. It is first introduced in Chapter 2, where discussion of the 
example is limited to a very intuitive level. The goal is to establish in 
the mind of the reader a concrete idea of what the system is capable of 
doing. 

In Chapter 3 we present an overview of the theory of explanation
based learning. We begin by examining previous research in machine 
learning and then introduce the explanation-based learning paradigm. 

Described in Chapter 4 is the domain of application for our 
explanation-based learning experiment, giving a full description of the 
robot domain manipulated by ARMS. 

The discussion of Chapter 5 covers those knowledge representation 
issues relevant to ARMS, as well as a general description of the ARMS 
learning and problem-solving mechanisms. 

The ARMS implementation is described in full detail in Chapter 6. 
This description is intended to permit the reconstruction of the ARMS 
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system from scratch, and is, therefore, necessarily very technical in 
nature. As discussed in the preface, reconstruction is an important 
mechanism for independent verification of the validity of this research. 

In Chapter 7 we revisit the example of Chapter 2. In it, we provide 
a more detailed description of the behavior of the ARMS system when 
presented with the same example. 

In Chapter 8 we analyze the important issues addressed by this 
research. In it we outline the relation of ARMS to other systems, as well 
as directions for future research. 

The appendices contain additional information related to this 
experiment. In Appendices A and B we provide helpful background 
information intended to help the reader unfamiliar with certain areas. 
In Appendices C and 0 we present two other examples from the same 
robot assembly domain as the example of Chapters 2 and 7. These 
examples are significantly different and serve to illustrate various issues 
and problems addressed by ARMS. The discussion of Appendix E 
presents empirical evidence of ARMS performance and how it supports 
the conclusions of the rest of the work. In Appendix F we provide a 
quick reference to the domain knowledge built into the ARMS system. 

There are various approaches to reading this document. In every 
case, Chapter 2 should be read carefully. Those primarily interested in 
explanation-based learning issues should pay special attention to 
Chapters 3 and 5. The casual reader is encouraged to skip Chapter 6, as 
its technical nature limits its readibility. Those contemplating a 
reconstruction effort should, of course, study Chapter 6. Chapters 7 and 
8 should be perused by all readers. 

1.3.2. On the Use of the $ Symbol 

The alert reader will no doubt notice the use of the special symbol 
"$" as the first character of certain words throughout the book. This 
symbol is used to indicate that the item is a data structure. Often the 
characters following the "$" contain sufficient information for the reader 
to infer what the data structure represents. For more information about 
the proper use of this special symbol, see Section 6.1. 



Chapter 2 

Scenario 

In this chapter we examine a transcript of the ARMS system in 
operation. The emphasis here is in providing an intuitive feel for the 
operation of the system; later, we will revisit the same example and 
provide more detail. 

The system, acting as an apprentice, learns how to assemble simple 
mechanisms by observing an external problem-solving agent. In this 
example, we will see a human expert guiding the robot arm step by step 
through a solution to an assembly problem which the system was not 
able to solve. As the system observes the expert's solution, it constructs 
an internal explanation of why the expert's solution successfully solves 
the problem. A generalized version of the explanation is added to the 
system's knowledge base, where it is later used by the system to 
automatically generate solutions (sequences of robot arm commands) for 
similar tasks. 

2.1. Preliminaries 

Before we begin the transcript, there is some essential background 
information we must supply about the robot arm and the assembly 
being constructed. The domain consists of a simple disembodied two
fingered robot gripper moving about a set of pieces sitting on a 
workspace surface. The pieces are assembled into a mechanism that 
demonstrates a well-defined mechanical behavior. 

2.1.1. The Widget 

Consider the simple widget4 mechanism illustrated in Figure 2.1.5 

4 We use the term widget throughout this book to describe the type of 
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It consists of three pieces: a peg, a washer, and a block. The three pieces 
in this particular set will be represented by the data structures $Peg1, 
$Washer1, and $BoredBlock1, respectively. 

The widget is assembled by aligning $Washer1 over the hole in 
$BoredBlock1 and then inserting the shaft of $Peg1 through both of the 
other pieces. Once assembled, $Washer1 spins freely about the shaft of 
$Peg1, but is restricted in any sliding motion along this shaft by 
collisions with the underside of the head of $Peg1 on one side and the 
upper surface of $BoredBlock1 on the other. 

This kind of mechanical behavior can be described as a revolute 
joint between $Washer1 and $BoredBlockl. A revolute joint has a one 
and only one degree of freedom (a revolute degree of freedom) between its 
two pieces. 

\, 

Exploded View of Widget Assem bly 

Figure 2.1 

peg/washerlblock assembly shown in Figure 2.1. 

5 Figure 2.1, like all of the other figures in this document, is rep rod uced 
directly from system output. It consists of a perspective projection of the current 
state of the workspace. Each piece is represented as a wireframe without the 
benefit of a hidden line removal algorithm. 
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2.1.2. Moving the Robot Arm 

The system manipulates an abstract, idealized, model of a robot 
arm. We are not concerned with the geometry of the arm itself, but 
only with the position and orientation of the end-effector that in this 
case is a two-fingered gripper. Thus the state of the arm can be 
completely specified by giving the Cartesian location of the gripper hot
spot (the point directly between the tips of the two fingers) along with 
the orientation of the hand. In addition, one must specify whether the 
fingers are opened or closed. 

This idealized arm is capable of executing five robot arm 
commands: 

(1) Open: Open the gripper fingers. 

(2) Close: Close the gripper fingers. 

(3) Translate (unitVector, delta): Move the gripper in a straight line. 

(4) Rotate (unitVector, theta): Rotate the gripper about an axis. 

(5) MoveTo (newPosition): Move the gripper to a new position along 
some free path. 

All input to the robot arm is given as a sequence of instances of 
these commands with all their parameters (e.g., unitVector, theta, etc.) 
bound. These instances are also represented with data structures such 
as $Translate and $Rotate. 

2.2. Specifying the Problem 

Now we are ready to give the system a problem to solve. An 
ARMS problem specification consists of two parts: an initial state 
description and a functional goal specification. 

2.2.1. Describing the Initial State 

Figure 2.2 shows an initial placement of the widget pieces on the 
workspace surface. $BoredBlockl is on the right, with its socket also 
facing towards the right. $Washerl is in the foreground, with $Pegl 
stacked on top of it. In addition, there is a fourth piece (hereafter 
$Blockl) in the left rear part of the workspace which, as we shall soon 
see, does not belong to the finished widget. The disembodied robot arm 
gripper is shown in its home position as a two-fingered palm with the 
two (closed) fingers pointed downwards. 

This particular placement is one of an infinite number of legal 
initial piece placements possible for these four pieces. The physical 
specifications of the pieces, along with their positions relative to the 
workspace frame of reference, constitute the initial state specification for 
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Initial State for Widget Assembly Problem 

The disembodied robot arm gripper is located in the center of the picture with its fingers 
closed and pointing downwards. $BoredBlockl is off to the right, with its socket also point. 
ing to the right. $Blockl is in the left rear of the picture. $Pegl is stacked on top of 
$Washerl in the foreground, just left of center. 

Figure 2.2 

the system. 

2.2.2. Specifying the Goal State 

At this point we specify a goal state for the system to achieve. The 
goal state is specified by a shorthand description of the data structure 
representing the desired function of the completed widget assembly: 

$RevoluteJoint($Washerl, $BoredBlockl) 

rather than by a physical description (e.g., the mating conditions of the 
assembled pieces). This functional goal specification is a much more 
natural way to specify a mechanism, since the designer need not be 
overly concerned with details of the mechanism's physical appearance. 

The shorthand notation used for specifying a mechanism's function 
describes the behavior of one piece ($Washerl in this case) with respect 
to another ($BoredBlockl). The type of behavior is implicit in the 
predicate $RevoluteJoint; in this case it describes a simple rotation of 
$Washerl with respect to $BoredBlockl about an axis. This rotation is 
the only motion of $Washerl with respect to $BoredBlockl permitted by 
the mechanism. 
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2.3. Attempting to Solve tbe Problem 

Given this complete problem specification, the system attempts to 
generate a solution to the problem. A solution consists of a sequence of 
robot arm commands which, when executed beginning from the initial 
state, produce a mechanical assembly with the desired functional 
property. In this case, the system fails to solve the problem for two 
reasons: 

(1) the system does not know of any mechanical assemblies that have 
the desired functional property, and 

(2) the system has no idea what sequence of operations to use to put 
the pieces together. 

2.4. Observing the Expert's Plan 

Once the system has failed to generate a solution, control is 
transferred to the expert so that the system may be shown a valid 
solution. On the factory floor, the solution sequence would presumably 
be given by a factory foreman through some sort of teach-pendant 
device. 

We now follow along as the expert leads the system through an 
assembly episode that results in the successful assembly of the widget 
from the starting position of Figure 2.2. There are a total of 30 robot 
arm commands in this sequence. Figures 2.3 through 2.15 show some of 
the intermediate workspace configurations during execution of the 
observed command sequence. 

There are three especially interesting quirks in the expert's plan: 

(1) While removing $Peg1 from of the top of $Washer1 (Figures 2.6 
through 2.8), the expert chooses to move the arm using four 
$Translate commands (along Z, X, Y, and negative Z axes, 
respectively) where a single $MoveTo would do as well. Due to the 
implementations of these primitives on most industrial arms, the 
computational expense of a $MoveTo is always much less than a 
$Translate. 

(2) $Peg1 is transferred to the top of $Block1 (Figure 2.8) rather than 
simply placing it directly on the workspace surface. This would 
condemn a normal teach-by-guiding robot arm to reliance on the 
presence of this redundant piece. 

(3) Before grasping $Washerl, the expert directs the arm to execute a 
$Rotate command (Figure 2.10), twisting the gripper 90 degrees 
around the vertical axis. This twist is redundant, since by the 
symmetry of $Washerl it makes no difference what two points on 
its exterior surface are grasped by the robot gripper so long as they 
are diametrically opposed. 
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$MoveTo, $Open 

The gripper is positioned over $BoredBlockl with a $MoveTo command. The gripper 
fingers are then opened to their maximum aperture with an $Open command" 

Figure 2.3 
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$Translate, $Close, $MoveTo 

The gripper is lowered over $BoredBlockl using a $Translate command" The subsequent 
$Close command closes the gripper fingers until they make contact with two opposing 
faces of $BoredBlockL A $MoveTo command is then used to reposition $BoredBlockl. 

Figure 2.4 
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$Open, $Translate, $MoveTo 

The $Open command is used to drop $BoredBlockl at its new position. The gripper is 
backed away from $BoredBlockl with a $Translate command, and then approaches $Pegl 
from above with a $MoveTo. 

Figure 2.5 
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$Translate, $Close, $Translate 

The gripper is lowered over the shaft of $Pegl. The fingers are closed, grasping $Pegl by 
diametrically opposing spots on the cylindrical shaft. $Pegl is then raised straight up from 
$Washer! with a $Translate. 

Figure 2.6 
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$Translate 

$Pegl is moved to the left along a straight line with a $Translate command. 

Figure 2.7 
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$Translate, $Translate 

$Pegl is moved away from the viewer along a straight line with a $Translate command, 
and then lowered straight down onto $Blockl with another $Translate command. 

Figure 2.8 
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$Open, $Translate, $MoveTo 

$Pegl is dropped on top of $Blockl with an $Open command. The gripper then backs up 
away from $Pegl with a $Translate and approaches $Washerl from above with a 
$MoveTo. 

Figure 2.9 
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$Rotate 

The gripper is rotated by ninety degrees about a vertical axis. 

Figure 2.10 
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$Translate, $Close 

The gripper is lowered, using a $Translate, so as to surround $Washerl. The fingers are 
closed with a $Close command, grasping $Washerl by diametrically opposing spots on 
$Washerl's exterior cylindrical surface. 

Figure 2.11 
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$MoveTo, $Open, $Translate 

A $MoveTo command is used to move $Washer to a new position on top of $BoredBlockl. 
The $Open command drops $Washerl, and a $Translate is used to back up away from 
$Washerl. 

Figure 2.12 
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$MoveTo 

The $MoveTo command repositions the gripper facing the side of $Pegl's head. 

Figure 2.13 
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$Translate, $Close, $MoveTo 

A $Translate moves the gripper to the left along a straight line until it surrounds the 
head of $Pegl. The $Close command grasps $Pegl, and a $MoveTo is used to reposition 
$Pegl over $Washerl. 

Figure 2.14 
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$Translate 

The $Translate command moves $Pegl down along a vertical axis until it is inserted 
through $Washerl into $BoredBlockl. 

Figure 2.15 

Notice that these three shortcomings in the expert's plan do not 
affect its eventual outcome: the widget is still assembled successfully. 
They do, however, affect the plan's efficiency: 

(1) The expert gave several inefficient $Translate commands where 
one, more efficient, $MoveTo would have sufficed. The relative 
efficiency of the various robot arm commands is proportional to the 
number of times the kinematic equations governing the arm's links 
must be solved. A $MoveTo is almost always more efficient than a 
$Translate or a $Rotate, at the expense of not guaranteeing the 
intermediate positions the arm will assume. 

(2) The plan should not depend on the presence of $Block 1, since 
$Block1 is not a part of the widget. In some cases, it may be 
necessary to use an extra piece in intermediate stages of an 
assembly (e.g., as a prop), but this not the case here. 

(3) The expert's use of the $Rotate command is unnecessary, as it does 
not contribute to achieving the requisite $RevoluteJoint. 

2.5. Generalizing the Solution 

The system adds a generalized version of the expert's solution to 
its knowledge base. The generalization process relies on the initial state 
description, the functional goal description, the observed sequence of 
robot arm commands, and the final state determined by executing the 
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robot arm commands supplied by the expert. It also relies on the 
system's domain-specific knowledge to tie all of these elements together. 

2.6. Solving the Same Problem After Learning 

We again pose the original functional goal specification with the 
same initial state as Figure 2.2. This time, the system is able to 
generate a robot arm command sequence that successfully assembles the 
widget. The system's solution consists of 24 robot arm commands: 6 less 
than the observed sequence provided by the expert. The new solution 
does not rely on the presence of $Block1, nor does it insert redundant 
commands like the $Rotate of Figure 2.10. In addition, the sequence 
formulated by the system uses the most efficient robot arm commands 
possible, preferring to clear $Peg1 using a single $MoveTo rather than a 
set of four $Translates. Note, however, that the system recognizes the 
importance of the $Translate of Figure 2.15 to the success of the plan, 
and does not replace it with a more efficient but, in this case ineffective, 
$MoveTo.6 

Now consider the initial piece placement of Figure 2.16. Note that 
$Block1 does not appear in this initial configuration. In addition, note 
that the starting positions for $Peg1, $Washer1 and $BoredBlock1 have 
been changed. 

The system is again given: 

$RevoluteJoint($Washerl, $BoredBlockl) 

as a functional goal specification. By applying the generalized plan just 
acquired, the system is able to generate an assembly sequence of just 12 
robot arm commands to assemble the widget from this initial state (see 
Figures 2.16 through 2.21). 

6 We are assuming that $MoveTo requires fewer kinematic solutions and, 
therefore, is always more efficient than a $Translate or $Rotate. Recall that, 
unlike $Translate or $Rotate, $MoveTo does not guarantee a parllcular arm tra
jectory but simply a final gripper position and orientation. When inserting $Pegl 
into $Washerl and $BoredBlockl, the trajectory followed by the gripper is cru
cial. 
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The robot gripper is located in the center of the picture with fingers closed. $BoredBlockl 
is to the right, $Peg! is to the left, and $Washerl is in the foreground just left of center. 

Figure 2.16 
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$MoveTo, $Open 

The gripper is moved to a position above $Washerl with a $MoveTo. The $Open command 
opens the gripper fingers to their maximum aperture. 

Figure 2.17 
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$Translate, $Close $MoveTo 

The gripper is moved downward in a straight line with a $Translate in order to surround 
$Washerl. The $Close command grasps $Washerl by diametrically opposed points on its 
exterior cylindrical surface. The $MoveTo moves $Washerl to its new position atop 
$BoredBlockl. 

Figure 2.18 
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$Open, $Translate, $MoveTo 

The $Open command drops $Washerl on $BoredBlockl. The $Translate backs the gripper 
away from $Washerl, and the $MoveTo repositions the gripper facing the head of $Pegl. 

Figure 2.19 
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$Translate, $Close, $MoveTo 

The gripper surrounds the head of $Pegl with a $Translate. The $Close command grasps 
$Pegl, while $MoveTo positions $Pegl above $Washerl. 

Figure 2.20 
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$Translate 

The $Translate command moves $Pegl along a vertical axis until it is inserted through 
$Washerl into $BoredBlockl. 

Figure 2.21 
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In Figure 2.22, we note the addition of a new piece, $Block2, to 
$Peg1, $Washer1 and $BoredBlockl. $Block2 and $Peg1 are both sitting 
on top of $Washerl. Notice also that, like the situation in Figure 2.16, 
the starting positions of $Peg1, $Washer1, and $BoredBlock1 have been 
changed from the situation of Figure 2.2. 

Again we give the system: 

$RevoluteJoint($Washerl, $BoredBlockll 

as a functional goal specification. The system generates a command 
sequence of 30 steps to assemble the widget from this, initially more 
complex, starting state (see Figures 2.22 through 2.31). 
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Second Alternate Initial State for Widget Assembly Problem 

The robot gripper is located in the center of the picture with fingers closed. $BoredBlockl 
is to the left. $Washerl is to the right, with $Block2 and $Pegl stacked on top of it. 

Figure 2.22 
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$MoveTo, $Open, $Translate, $Close 

The $MoveTo positions the gripper facing $BoredBlockl. The $Translate surrounds 
$BoredBlockl, while the $Close grasps it_ 

u 

Figure 2.23 
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$MoveTo, $Open, $Translate, $MoveTo, $Translate, $Close, $MoveTo 

The $MoveTo and $Open deposit $BoredBlockl on its back with its socket pointing up_ 
The $Translate backs away from $BoredBlockl, while the following $MoveTo, $Translate 
and $Close achieve a grasping of $Block2_ The last $MoveTo places $Block2 in a free spot 
at the back of the workspace_ 

Figure 2.24 
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$Open, $Translate, $MoveTo 

The $Open command drops $Block2 in the background, while the subsequent $MoveTo 
leaves the gripper facing the shaft of $Pegl. 

Figure 2.25 
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$Translate, $Close, $MoveTo 

The $Translate and $Close achieve grasp $Pegl by diametrically opposed points on its 
shaft. The $MoveTo positions $Pegl at a free spot at the back of the workspace. 

Figure 2.26 
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$Open, $Translate, $MoveTo 

The $Open and $Translate drop $Pegl and back the gripper away from it. The $MoveTo 
leaves the gripper facing $Washerl from above. 

Figure 2.27 
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$Translate, $Close, $MoveTo 

The gripper approaches $Washerl with a $Translate, and then the $Close grasps it. The 
$MoveTo places $Washerl on top of $BoredBlockl with their holes aligned. 

Figure 2.28 
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$Open, $Translate, $MoveTo 

The $Open and $Translate drop $Washerl and back away from it. The $MoveTo ap
proaches the head of $Pegl from the front. 

Figure 2.29 

J. I 1 - ,:</"-

'==l 

-' o 
$Translate, $Close, $MoveTo 

$Translate and $Close grasp $Pegl, while the $MoveTo positions it aligned above $Wash
erl. 

Figure 2.30 
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The final $Translate inserts $Pegl through $Washerl into $BoredBlockl. 

Figure 2.31 

2.7. Solving Similar Problems After Learning 

In every case so far, the goal description has been only partially 
specified: to actually realize the widget requires a third piece, $Peg1. 
The system must decide what other piece(s) are involved in the 
construction of the assembly. This is accomplished by matching 
constraints attached to the newly acquired plan to the extra pieces in 
the workspace, constraints derived automatically by the system during 
generalization. These constraints are based on the function the 
unspecified piece(s) plays in the mechanical assembly. 

In the next example, a physically different widget is constructed 
displaying the same functionality as our original widget. Consider the 
initial state of Figure 2.32. The workspace contains three new pieces as 
well as $Peg1 and $Block1 from the previous example. 

(1) $Washer2 is a small, flat, square washer with a large round hole. 
It is lying on $Blockl at the far right of the workspace. 

(2) $Peg3 consists of a cylindrical shaft with a slightly larger 
cylindrical head. It is also lying, shaft pointing upwards, on top of 
$Blockl, just to the left of $Washer2. Note that the shaft of $Peg3 
is fatter and shorter than the shaft of $Pegl. 

(3) $BoredCylinderl is much like $BoredBlockl, except that the hole 
is bored into a large cylinder instead of a large block. 



Scenario 29 

The system is given 

$RevoluteJoint($Washer2, $BoredCylinderl) 

as the functional goal specification. By applying the generalized plan 
just acquired, the system is able to plan the assembly sequence for this 
never-before-seen new widget. Also note that the goal specification is 
once again incomplete, as it is missing any reference to any peg, much 
less $Peg3. The selection of $Peg3, over the other unused pieces in the 
workspace ($B1ockI or the training example's $Pegl), is based on 
constraints derived from the function of the original widget. These 
functional constraints are translated into necessary physical 
characteristics that constrain the peg choice. The I8-sequence plan 
generated by the system is illustrated in Figures 2.32 through 2.38. 

J .: . ---. 

... ----------------- ........ 

~--------------

Third Alternate Initial State for Widget Assembly Problem 

The robot gripper is located in the center of the picture with fingers closed. $Bored
Cylinderl is to the left, with $Pegl stacked on top of it. $Peg3 and $Washer2 are stacked 
(from left to right) on top of $Blockl on the right side of the workspace. 

Figure 2.32 
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$MoveTo, $Open, $Translate, $Close 

The $MoveTo and $Open leave the gripper facing the shaft of $Pegl with fingers opened. 
The $Translate and $Close cause the gripper to grasp $Peg! by diametrically opposed 
spots on the shaft. 

-.. ----------------~~. 
.. _--------------

Figure 2.33 

$MoveTo 
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The $MoveTo positions $Peg! at the left rear of the workspace. 

Figure 2.34 
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The $Open and $Translate drop $Pegl, while the subsequent $MoveTo positions the 
gripper facing $Washer2, 

Figure 2.35 

-.-.-._-

\"'" L-________________ ~ .--------------. 

------------

$Translate, $Close, $MoveTo, $Open, $Translate, $MoveTo 

$Translate and $Close accomplish the grasping of $Washer2, The $MoveTo positions 
$Washer2 on top of $BoredCylinderl. $Open and $Translate drop $Washer2 and back 
away from it, while the last $MoveTo leaves the gripper facing the head of $Peg3, 

Figure 2.36 
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...... ,......-------+-._ ...... :::.,. 

\ .... 

~---------~ 

,Translate, ,Close, 'MoveTo 

The $Translate and $Close grasp $Peg3 by diametrically opposing points on its cylindrical 
head. The 'MoveTo positions $Peg3 above $Washer2. 

Figure 2.37 
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,Translate 

The fiDal $Translate accomplishes the insertion of $Peg3 through $Washer2 into $Bored
CyliDderl. 

Figure 2.38 
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The important points to note are 

(1) The generalized plan is insensitive to initial piece placements. 

(2) The system can generate plans for complex initial piece 
placements, such as in Figure 2.22. 

(3) The plans generated by the system ignore extra pieces in the 
workspace, even if the training example contains such useless 
dependencies (see initial state of Figure 2.16). 

(4) The system generates plans that contain only necessary steps, even 
if the training example contains useless extra steps. 

(5) The system is cognizant of the operational efficiency of the plan: it 
attempts to generate an efficient assembly sequence, often 
improving on the observed plan. 

(6) The system can generate assembly plans for assemblies which are 
functionally similar, yet physically different, as demonstrated by 
the widget of Figure 2.32. 

(7) The system generates constraints that can be used to guide the 
completion of missing information in the goal specification. These 
constraints on physical characteristics of the pieces involved in the 
assembly are derived from functional considerations. 



Chapter 3 

Explanation-Based Learning 

The mechanism by which the ARMS system increases its planning 
ability belongs to that category of machine learning known as 
explanation-based learning (hereafter EBL) [2-6]. Explanation-based 
learning is a fairly recent addition to the machine-learning toolbox; 
relatively few systems have been implemented, and most are small 
prototypes. 

In this chapter we examine previous research in machine learning, 
introduce the EBL paradigm, and prepare a framework for discussion of 
the ARMS system. 

3.1. Similarity-Based Learning 

Initially, machine-learning research focused primarily on 
similarity-based learning (SBL) systems, i.e., systems which rely on 
inductive inference for generalization [16]. Systems using these 
techniques are particularly well suited to classification tasks, where the 
goal is to determine whether or not an example belongs to a given 
solution class. Classification tasks can be contrasted with problem
solving tasks, or those tasks characterized by the application of a series 
of operators to cause changes in the state of the system's domain. 

3.1.1. Applying SBL to Classification Tasks 

A good example of a classification task is medical diagnosis [17]. 
The system generates a rule to be used for classifying future examples 
on the basis of a training set of correctly classified examples. Each 
example is described using a feature set of attribute/value pairs. Given 
a large and varied enough training set (e.g., case records and correct 
diagnoses), performance of such correlational learning systems in 
classifying new cases can actually exceed that of rules derived manually 
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in collaboration with a human expert [18]. It was precisely this kind of 
system that provided the impetus for machine-learning research in its 
early years. 

There are, however, a number of assumptions implicit in SBL: 

(1) The training set must be a representative sample of the underlying 
process that will generate future examples presented for 
classification. By preselecting members of the training set from a 
larger set based on some difference metric and by increasing the 
size of the training set itself the accuracy of the rule increases. 

(2) The training set must be correct. Most SBL systems do not tolerate 
noise or inconsistent training sets. 

(3) The feature set must be large enough to discriminate between 
positive and negative instances of the concept. 

(4) Correlational evidence is sufficient for the inductive step, and 
explicit causal relations are not generally considered. In some 
cases the quality of the generated rule may rely on the presence of 
negative training instances along with positive training instances. 

As noted above, the performance and accuracy of the induced rule 
increases with the sizes of the training set and the feature set. 
Unfortunately, these increases have an adverse effect on the time 
necessary to induce a rule that adequately classifies the examples. For 
the more naive algorithms, this measure increases as the product of the 
feature set size and a combinatorial function ofthe training set size [19]. 

By adding heuristics to the induction algorithm (at the expense of 
the global optimality of solutions), the complexity can be reduced, 
although this makes any complexity analysis difficult. Empirical 
evidence, at least, lends credence to the claim that the addition of 
heuristics allows the complexity to approach linear growth with the 
product of the feature set and training set sizes [20]. 

It is possible to reduce an SBL system's dependence on having a 
training set that has been classified completely correctly. Most current 
SBL systems encompass some sort of probabilistic mechanism to reduce 
this sensitivity to noise in the training set [21]. 

One of the problems with classical SBL techniques is the inductive 
leap problem described above. Consider, for example, attempting to 
induce a rule that describes a classification of "terrorist" on the basis of 
accounts of terrorist acts. Further assume that, in every case, the 
terrorist carried a gun and wore blue jeans. Since the correlational 
evidence for these two features is identical, a naive system would have 
no reason to prefer one discriminating feature over the other. 
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There are two ways out: one is to include a constraining instance in 
the training set (e.g., terrorist with gun but without blue jeans), or else 
rely on what the system knows about the domain (terrorism) that makes 
guns relevant and blue jeans less so. This reliance on domain 
knowledge is crucial for guiding the inductive step. Naturally, in some 
domains no adequate domain theory exists to explain why things work 
the way they do: in these cases reliance on correlational evidence is the 
only current solution.7 This example illustrates the utility of domain 
knowledge in creating proper classifications: the importance of domain 
knowledge increases when considering non static tasks such as those 
presented in problem-solving domains. 

3.1.2. Applying SBL to Problem-Solving Tasks 

Up to now we have considered SBL in the context of classification 
tasks: how can SBL techniques be applied to problem-solving tasks? 

The common approach to problem-solving tasks is to apply a weak 
method: a domain-independent method that searches for a path from a 
given initial state to a given goal state. Consider the problem space as a 
tree rooted at the initial state, where each node is a world state and 
each link is a possible operator applied to that world state. A weak 
method is a way to traverse the tree from the root to the goal leaf in the 
tree. Most search strategies (e.g., breadth-first, depth-first) are weak 
methods. 

The combinatorial explosion refers to the growth in the size of the 
search tree that is linear with the number of possible operator 
combinations, and therefore exponential with the number of operators in 
the system. This characteristic precludes the use of weak methods for 
any but the smallest of search spaces. 

How can SBL be used to improve the performance of a weak 
method problem solver? By modifying a weak method to use a domain
dependent evaluation strategy, the path taken down the tree can be 
directed along the paths most likely (as determined by our evaluation 
function) to lead to the goal. This reduces the need for backtracking and 
therefore increases the efficiency of the search. Best-first search is an 
example of such a heuristic method that retains full backtracking 
capability. Beam search provides only limited backtracking capabilities, 
and in the trivial case (hill climbing) removes backtracking capability 
altogether. Building good domain heuristics is not an easy task; 
however, by using SBL to induce the heuristics for operator applications, 

7 There has been some work in extending and/or correcting naive domain 
theories (22]. 
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it is possible to improve the performance of the weak method. 

Indeed, this is exactly the approach taken by [23,24] in the domain 
of symbolic integration. The system examines the tree produced by a 
weak-method problem solver as it searches for a solution and induces 
new application heuristics for the operators. If the heuristics learned are 
perfect, e.g., if they lead directly to the goal without ever examining a 
bad branch, the performance of the search is linear in the number of 
operators that must be applied. 

Approaching linear behavior requires the most effective heuristics 
possible. The success of the system relies on examining a large number 
of training instances. Negative instances correspond to the 
unsuccessfully expanded nodes in the search tree. If the system is 
examining a search tree produced by a weak-method problem solver (as 
in [23,24]) this does not present a great problem: the weak-method 
problem solver will undoubtedly examine some bad branches that can 
then be used as negative instances. These serve the same purpose as 
the constraining instances described before: they keep the system from 
overgeneralizing or from making the wrong inductive leap. 

All is not well, however. One of the problems with the SBL 
approach to learning in problem-solving domains is that learning from 
the search tree provided by a weak-method problem solver is needlessly 
limiting. A much more natural source for learning input is the behavior 
of an external, more expert, problem-solving agent. Unfortunately, this 
means that the necessary constraining instances, that were previously 
readily available from the weak-method problem solver, must now be 
provided by the external agent. This has the following shortcomings: 

(1) Provision of constraining instances is introspective: the external 
agent often cannot give such introspective analysis correctly. 

(2) Provision of constraining instances is invasive: the external agent 
cannot go about his problem-solving tasks without being bothered 
by the system. This obtrusiveness may be worse than bothersome: 
it may actually degrade the performance of the problem-solving 
agent. 

There are other problems with this approach as well. Acquiring 
application heuristics is not the only learning technique possible for 
problem-solving tasks. It is simply the most straightforward when 
dealing with SBL methods. In fact, this approach simply reduces the 
problem-solving task to a classification task where the object is to 
classify a particular operator by its applicability. 

Another well-known technique, first introduced by the STRIPS 
system [25], involves the acquisition of problem-solving macro operators, 
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or MACROPs, that describe a sequence of operators as a single new 
operator. This is equivalent to packaging a path through the search tree 
as a single operator. This is an efficacious approach that removes some 
of the complexity of the planner's search by giving it more powerful 
operators to accomplish a goal in a single step. An SBL technique for 
learning MACROPs has yet to be developed. 

3.2. Learning-Apprentice Systems 

At this point we summarize the desirable criteria for a system that 
can improve its problem-solving behavior via observation: 

(1) The system should not be limited by computational limits on a 
weak-method problem solver. It should be able to learn by 
analyzing the performance of a more powerful, external problem 
solver. 

(2) The system should be capable of acquiring useful knowledge in one 
trial. 

(3) The system should not require constraining instances. 

(4) The system should rely on a domain theory, and not solely on 
correlational evidence, to guide the inductive step. 

(5) The system should be able to acquire not only application 
conditions for existing operators, but new macro operators as well. 

We term systems which meet these criteria learning-apprentice 
systems. Mitchell et al posit the following definition for a learning
apprentice system [26]: 

An interactive knowledge-based consultant that directly assimilates 
new problem-solving knowledge by observing and analyzing the 
problem-solving steps contributed by its users through their normal 
use of the system. 

While this is an adequate definition, it does not make any statement 
about the invasiveness of the system. We prefer to use the following 
definition: 

A learning apprentice is a system, usually embedded in the software 
tools used by a human expert, that gradually increases its own 
problem-solving abilities by unobtrusively monitoring and analyzing 
the performance of the expert. 

3.3. Explanation-Based Learning 

Explanation-based systems are being applied to both classification 
tasks [23,27] and problem-solving tasks [28-32]. When applied to the 
latter, they fulfill the requirements outlined above for a learning 
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apprentice. Explanation-based learning systems are capable of 
acquiring knowledge from a single example. Using a domain theory, a 
successful problem solution is analyzed in order to explain how the goal 
is accomplished. This analysis, or explanation, is then generalized and 
used in future problem-solving activity. 

The advantages of explanation-based learning are obvious: 

(1) EBL requires only a single example. 

(2) EBL can learn from a less than optimal successful solution: no 
expert teacher is required, just an adequate problem solution. 

(3) EBL need not be invasive. 

(4) EBL generalizations are correct if the domain theory is complete 
and correct. 

(5) EBL does not suffer from the inductive leap problem of SBL, which 
results from overreliance on correlational evidence. 

Thus given a successful problem-solving episode and a complete 
and correct domain theory, EBL produces a correct generalization which 
covers the problem-solving behavior embodied in the example. 
Naturally, should the domain theory not be complete or correct, the 
quality of the generalizations produced by the system will suffer. 

Consider, for example, a domain theory based on the Bohr model of 
the atom.8 The Bohr atom is an adequate model that accounts for many 
atomic properties, such as the binding together of various atoms. It is 
not a correct model, but rather a naive model: as such, it would produce 
adequate explanations (and hence generalizations) for those phenomena 
which do not rely on the quantum mechanical properties of the atom. 
Much work in AI is devoted to the development of such naive process 
models [34,35]. 

Some domains are less amenable to EBL than others. The medical 
diagnosis system described briefly above is a good example of a system 
in just such a domain. Our domain theory for, say, diseases of the blood 
is very limited: a real understanding of the causality involved in the 
various diseases and their chemical treatment is currently beyond 
medical science. In such domains, it is more reasonable to revert to SBL 
techniques that do not require a causal domain theory. 

3.4. A Prototypical EBL System 

The Prototypical Explanation-Based Learning System (hereafter 
referred to as PEBLS) as shown in Figure 3.1 consists of two elements 

8 This example borrowed from [33]. 
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that do not operate concurrently: a performance element and a learning 
element. Both access domain knowledge contained in the schema 
library. 

A schema [36-39] is a chunked knowledge structure that 
represents the system's generalized knowledge about a particular 
concept or topic. Schemata are used to represent, among other things, 
the operators that may be applied to the system's domain.9 Each 
operator effects changes in the current state of the world. The current 
world state is described by a collection of state schemata that are partial 
descriptions of the world state, each representing a particular relation 
that holds in the current context. The relations expressed are often 
between descriptors, that represent a static concept (such as a physical 
object). 

Recall that an explanation-based learning system observes 
examples of problem-solving behavior. This problem-solving behavior 
may be that of the system's own performance element or that of an 
outside expert. If the system observes its own behavior (usually from a 

Goal spJJlication 

I G"n~~:==~I'~ 
Causal Model - Under stander - Schema iLibrary - Planner 

Input Operations 

Learning 
Element 

Output Operations 

Performance 
Element 

Prototypical Explanation-Based Learning System (PEBLS) 

Figure 3.1 

9 Also sometimes termed actions or el'ents in the planning literature. 
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weak-method problem solver), it can be termed a closed-loop learning 
system. If, on the other hand, the system learns by observing another 
problem-solving agent's performance we call it an open-loop learning 
system. 

3.4.1. The Performance Element 

The performance element applies known schemata towards the 
solution of a given problem. The problem is specified as a goal state to 
achieve, as well as the initial state from which to achieve it. The 
performance element provides a benchmark for learning. to 

The performance element consists of a single module, the planner. 
Using known schemata, the planner supplies a sequence of operators to 
achieve the specified goal starting from the initial world state. The 
planner is a heuristic problem solver, often of the kind referred to as a 
schema planner. 

Operator schemata in the schema library are indexed by the 
goal(s) they achieve. By dividing the task up into subgoals, and 
recursively applying operator schemata from the schema library, the 
planner eventually bottoms out at the primitive operator level. 

In some systems, the planner also serves another function. Instead 
of observing human problem-solving behavior, the learning element 
observes solutions generated by the performance element using more 
traditional weak methods (i.e., search). This allows the system to 
function as a closed loop: it provides its own observed problem-solving 
episodes, often generated at great computational expense, from which it 
learns new schemata. These new schemata then permit the system to 
solve similar problems at a far smaller computational expense. Note 
that for closed-loop systems, the entire structure generated by the 
performance element is handed over to the learning element: there is no 
need to reconstruct a causal model on the basis of the primitive operator 
sequence when the entire trace produced by the problem solver is 
available for use as a causal model. 

3.4.2. The Learning Element 

The learning element consists of two modules: the understanderll 
and the generalizer. Input to the learning element consists of an initial 
state, a goal state, and an observed sequence of operators that transform 

10 The performance element is by no means the only benchmark for learn
ing. It is quite possible to construct an explanation-based learning system with 
no performance element: learning in such a system would be demonstrated by its 
improved explanation-construction ability. 
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the former into the latter. 

3.4.2.1. The Understander 

The understander is the module that observes examples of 
problem-solving behavior. Its task is to construct a causal model of the 
observed input, from which a causally complete explanation of how the 
observed sequence accomplishes the goal state is derived. 

The construction of the causal model involves the application of 
domain knowledge from the schema library. To do this, the 
understander must decide if a given schema from the schema library is 
applicable in the current context. The applicability of a given schema is 
determined by checking that schema's application conditions. 

The reader should note that as the number of schemata in the 
schema library increases, the selection of relevant schemata and the 
checking of their application conditions holds the potential for 
combinatorial explosion. This is often referred to as the schema (or 
frame) selection problem. Avoiding this combinatorial pitfall is the 
subject of much work in AI [37,40-42]. The strategy chosen to address 
the selection problem in the understander is termed the schema 
activation procedure. 

Once a particular schema is deemed applicable, an instance of the 
schema is added to the causal model under construction. During this 
instantiation process a copy of the abstract schema from the schema 
library has its slots filled and is then connected, using appropriate links, 
with the rest of the causal model. 

3.4.2.2. The Generalizer 

The generalizer takes as its input the causal model constructed by 
the understander and produces a new schema. Before learning can take 
place, an explanation must be derived from the newly constructed causal 
model. Since an explanation is defined with respect to the goal that it 
accomplishes, some goal must be chosen with which to derive the 

II Apologies to McDermott: 

We should avoid, for example, labeling any part of our programs an "under· 
stander." It is the job of the text accompanying the program to examine careful· 
Iy how much understanding is present, how it got there, and what its limits are 
[8]. 

In this case, the alternate terms justification analyzer or causal model builder, 
while perhaps more acceptable from McDermott's point of view, conflict with our 
goal of descriptive simplicity. We choose to stick to the simpler, more intuitive 
terminology even at the risk of fooling ourselves. 
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explanation. In the PEBLS system of Figure 3.1, the goal is initially 
specified by the expert. In some domains it may be practical to specify a 
set of general goals so that no explicit goal specification need take place: 
the generalizer simply looks for instances of this goal set that are valid 
during the course of the observed episode and uses these instances as 
goals. 

Given a goal and a causal model, the first step is to verify that the 
observed episode achieves the specified goal. It is the verification process 
that requires application of the domain theory. The crucial step of the 
verification process is the determination of which parts of the causal 
model contribute to the realization of the specified goal. 

Once the goal has been verified, the generalizer must determine if 
it is worthwhile learning from the episode in question; i.e., whether it 
meets the learning criteria. 

If the learning criteria are met, the generalizer may proceed to 
extract an explanation from the causal model, using relevance cues 
determined during the verification process. The generalizer can now 
proceed to build the new schema. Note that if the generalizer has more 
than one goal, these can be treated orthogonally, and thus several 
explanations may be derived from a single causal model. In these cases, 
more than one explanation may imply more than one new schema. This 
may be practical for those domains where .the expert does not explicitly 
specify the goal. 

Given the explanation, the generalizer now builds a new schema. 
There are three different strategies available for the generalizer: 

(1) Generalization describes the process that takes an explanation 
derived from a particular instance of problem-solving behavior and 
yields a new schema that is a more abstract version of the 
explanation. The assumption is that the new more abstract schema 
will be applicable to situations other than the original observed 
situation. The actual process used differs substantially from system 
to system, but it is important that the explanation somehow be 
used to guide the construction of the new schema. 

(2) Specialization describes the process where a more constrained 
version of a known schema is constructed and added to the schema 
library. It is important that the explanation be used to impose 
constraints on the more general schema to produce a useful 
addition to the library. A useful addition is usually one that can be 
applied with less effort by the performance element than the 
originally known schema, thus producing a gain in efficiency. Note, 
however, that the new schema is still subsumed by the more 
general, pre-existing, schema. 
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(3) Refinement refers to the process where a known schema is modified 
and replaced in the schema library. Such modification is based on 
the explanation constructed by the understander using the original 
schema. Note that, unlike specialization, the new schema is not 
subsumed by the original schema. 

The generalizer must build more than just the new schema: each 
schema must also have a set of application conditions for use by the 
u~derstander, as well as indexing pointers for use by the planner. 
Construction of a new schema requires establishing these sets of 
conditions, while refinement considers modifying an existing schema's 
application conditions. 

If the newly generated schema meets the retention criteria, then it 
is integrated with extant schemata in the schema library. The new 
schema is now available for use by the performance element as well as 
by the understanding element when constructing other explanations. 
Continued use of the system would result in monotonic growth of the 
schema library. To keep the library at a manageable size, replacement 
criteria might be used in order to determine which existing schema is 
replaced by the new entry. 

3.5. Issues for EBL Systems 

There are several questions that can be asked about explanation
based systems that can help us to distinguish between the various 
approaches embodied in each different implementation, They are 

(1) Does the system build the explanation? The explanation could be 
built by the understander, or, if it is a closed-loop system, the 
explanation can be a by-product of the performance element's 
search behavior. Alternatively, some systems require that the 
explanation be built by the teacher and input in its entirety. 
ARMS costructs its own explanations using a novel non predictive 
understanding process (see Section 5.3.1). 

(2) How does the system do explanation-based learning? Does the 
system use generalization, specialization, and/or refinement? The 
ARMS system uses some form of specialization (see Section 
5.3.2.l.2) as well as generalization (see Section 5.3.2.3). 

(3) What are the learning criteria? Are all problem-solving inputs 
eventually passed to the generalizer? The ARMS learning criterion 
states that any example not initially analyzable by the system is 
worth learning from (see Section 5.3.2.1). 
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(4) Does the system acquire new schemata? How does this learning 
process rely on the explanation? ARMS acquires new schemata by 
generalizing the explanation (see Sections 5.3.2.2. and 5.3.2.3). 

(5) What are the retention criteria? Is every new schema produced by 
the generalizer retained? ARMS retains everything it learns (see 
Section 5.3.2.4). 

(6) Does the system learn application conditions? Does the system 
refine the application conditions of existing schemata? ARMS 
learns application conditions (Section 5.3.2.5) but does not perform 
any form of schema refinement. 

(7) Does the system perform unguided search in learning? The use of 
unguided search in learning is not the same as doing search in the 
performance element. If the system is a closed-loop system, the 
performance element may very well do search in generating new 
problem-solving episodes. This is an orthogonal issue and should 
not be confused with the use of search in the learning process. 
ARMS is an open-loop system that does not perform any unguided 
search in learning. 

(8) Does the system make the closed-world assumption? The closed
world assumption holds that if the proposition P cannot be proven 
to hold true then the NOT(P) must be true. The ARMS 
implementation does not rely on the closed-world assumption (see 
Section 8.1.1). 

(9) Does the system make the STRIPS assumption? The STRIPS 
assumption holds that all operators change none of the program's 
beliefs except those explicitly listed in the operator description. 
The ARMS implementation does not rely on the STRIPS 
assumption (see Section 8.1.1). 



Chapter 4 

The Arms W or ld 

The ARMS system is an open-loop, explanation-based learning 
system with an architecture very much like that of the PEBLS system. 
It has two main components: a learning element and a performance 
element. Both of these components manipulate, through a symbolic 
representation stored in the database, some problem-solving domain (see 
Figure 4.1). In Chapter 5, we discuss the symbolic representation and 
the learning and performance elements; but first, in this chapter, we 
describe the problem-solving domain. 

Ideally, this domain should consist of real-world pieces in a real
world workspace being moved around by a real-world robot arm. As one 
might expect, this approach entails solving a great number of equally 
real engineering problems, that, albeit interesting in their own right, 
are not terribly relevant to AI or machine learning.12 

In order to sidestep these engineering problems, a program was 
written to simulate a robot arm moving through a simulated workspace. 
In this fashion, many of the hard engineering problems (arm control, 
kinematics, sensors, path planning, tolerances, etc.) are avoided, 

12 The current ARMS implementation was used to drive a MicroBot 
Teachmover(tm) five degree of freedom robot arm with moderate success. One 
immediate problem was due to the low accuracy and repeatability of this inex
pensive hobbyist robot arm: a problem exacerbated by the workspace state un
certainty problem discussed in Chapter 8. This difficulty notwithstanding, the 
experience was, over all, encouraging. Many problems were due to the missing 
sixth degree of freedom: the ARMS primitive robot arm command set assumes 
the real robot arm has at least six degrees of freedom. [43] presents a detailed 
discussion of this real-world experiment, the problems encountered, and a local 
planning system devised to map the ARMS primitive robot arm command set 
onto the five degrees of freedom arm. 
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allowing us to concentrate on machine-learning issues. Using this 
approach, the translation from the simulated world into the internal 
representation is not subject to sensor problems, in effect creating the 
perfect sensory system with complete knowledge of the real (emulated) 
world. 

We begin our discussion with a description of the idealized 
simulated world. We then describe the structure of the simulation 
program and its logical subdivision into a modeler, an emulator, and a 
history mechanism. 

4.1. Characterizing the Robot World 

We can characterize the idealized robot world by describing its 
physical components and a domain theory. The three physical 
components of the idealized world are 

(1) a collection of pieces, some of which are used in the assembly; 

(2) a workspace that provides a surface on which the pieces may rest; 
and 
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(3) a robot arm, capable of moving about the workspace and 
manipulating the pieces. 

4.1.1. The Pieces 

A piece is a rigid solid object that has no moving parts. A piece is 
always supported by another piece, the workspace, or (when being held) 
by the robot arm. In our idealized world, each piece has one and only 
one supporter, although a piece or the workspace may support more 
than one other piece. 

Different pieces can be combined to form assemblies by inserting 
parts of one piece into holes on another. Depending on the relative sizes 
and shapes of the inserted portions, these assemblies exhibit different 
mechanical behaviors. This behavior is described by the domain theory 
described below in Section 4.1.4. 

4.1.2. The Workspace 

The workspace is little more than a table top on which the pieces 
may rest. It may support any number of pieces, which in turn may 
support yet other pieces stacked on top of them. 

4.1.3. The Robot Arm 

The robot arm is a positioning device that can place its end effector 
at any location and orientation within its workspace envelope. The end 
effector in the ARMS domain consists of a palm and two fingers 
configured as a gripper. The position of the gripper is measured at the 
point (called the hot spot) that lies directly between the two fingers (see 
Figure 4.2). 

As mentioned briefly in Chapter 2, the robot arm responds to the 
following five primitive robot arm commands: 

(1) Open: Open the gripper fingers to their maximum aperture. 

(2) Close: Close the gripper fingers as far as possible, stopping when 
they meet or when any intervening piece obstructs further 
movement. 

(3) Translate (unitVector, delta): Move the gripper from its present 
position in a straight line along the given axis by delta units while 
maintaining the orientation of the gripper (see Figure 4.3). 

(4) Rotate (unitVector, theta): Rotate the gripper about the given axis 
by theta degrees while maintaining the current location of the 
gripper (see Figure 4.4). 
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(5) MoveTo (newPosition): Move the gripper from its current position 
to new Position along any collision-free path. Note that newPosition 
specifies both the location and orientation of the gripper hot spot 
(see Figure 4.5). 

While this command set is not that of any particular industrial 
robot arm, it is fairly representative. Note that nearly any arm 
possessing the minimum requisite degrees of freedom (six plus gripper) 
can be made to implement these five commands, at least within some 
restricted workspace envelope. 

The implementations of the gripper commands Open and Close on 
a real robot arm are quite straightforward, since neither one of these 
commands requires changing the position of the arm in space. The other 

n 
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Figure 4.5 
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three commands, however, entail repositioning the gripper, and 
therefore, their implementations require computing an arm trajectory. 

Computing a trajectory for a robot arm implies 

(1) finding a path through space for the gripper, the arm linkages, and 
any object being held by the gripper such that collisions are 
avoided, and 

(2) calculating the motor control voltages necessary to move the 
gripper along this path. 

For a given robot arm geometry, the kinematics of this control 
problem are well understood [44]. Solving the kinematic formulae for a 
given trajectory is fairly straightforward, albeit computationally 
intensive. 

If there are no obstacles to avoid, a MoveTo requires a single 
kinematic solution. Each motor is then servoed to its final position, 
resulting in an uneven path as measured at the end effector. This type 
of movement is termed joint interpolated motion in the robotics 
literature. 

To produce smooth motion, such as that required by a Translate or 
Rotate, intermediate kinematic solutions must be computed. Each 
motor is servoed to successive intermediate positions. Note that the cost 
of computing the kinematic solution grows with the number of 
intermediate solutions calculated. 

Given this analysis, we conclude that Translate and Rotate are 
generally more expensive commands since they may require many 
intermediate positions. A MoveTo, barring collisions, requires only a 
single kinematic solution. Since Translates and Rotates also require a 
minimum of one kinematic solution, it is reasonable to assume that a 
MoveTo is always more efficient than a Translate or a Rotate. 

Finding a collision-free trajectory is still, however, a difficult 
problem. Much effort has been devoted to this problem by the robotics 
community [45,46]: ARMS assumes that a collision-free path can be 
found, but does not do so. 

Finally, we note that this model makes no provision for the use of 
tactile or force feedback from the robot arm. All sensory information 
required by the database in order to construct and maintain its symbolic 
representation of the world comes via our perfect sensory capability, and 
not via the robot arm itself. 
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4.1.4. The Robot World Domain Theory 

The domain theory is a naive kinematic theory that attempts to 
account for relative piece motions. It describes the aggregate behavior of 
individual pieces when they are put together into assemblies. It is 
loosely based on [47]. 

We define a link to be a rigid solid body, with an arbitrary number 
of Cartesian coordinate systems, or hooks, affixed to the solid to serve as 
reference points. A joint relates two links by specifying a hook from 
each link together with a parameterized transform giving the legal 
relative positions between hooks. 

The number of independent variables in the transform indicates 
the number of degrees of freedom in the joint. A degree of freedom 
describes one type of allowed motion. It may be either prismatic or 
revolute, and must give both upper and lower limits for the motion it 
allows. Two unrelated (and therefore unconstrained) pieces have six 
degrees of freedom between them: three revolute and three prismatic. 
The prismatic degrees of freedom are all orthogonal, as are the revolute 
ones. Two rigidly constrained bodies have zero degrees of freedom 
between them. 

We can construct a taxonomy of joints based on the degrees of 
freedom they allow. Some of the common joint types are 

RigidJoint - zero degrees of freedom. 
PrismaticJoint - one prismatic degree of freedom. 
RevoluteJoint - one revolute degree of freedom. 
CylindricalJoint - one revolute and one prismatic degree of freedom. 
UniversalJoint - two revolute degrees of freedom. 
SphericalJoint - three revolute degrees of freedom. 
NullJoint - all six degrees of freedom. 

It is important to realize that there are only a finite number of 
combinations of degrees of freedom possible, and, therefore, only a finite 
number of joint types. However, there may be many different ways to 
physically implement a particular joint. 

Each degree of freedom has a range that indicates the values the 
corresponding variable may assume. The range is bounded on both sides 
by one of two types of bounds: 

(1) A hard bound corresponds to a physical limit imposed by the 
mechanism. Such a bound occurs when two surfaces collide. For 
example, imagine a square tab sliding back and forth in a slot: a 
hard bound on either end limits its travel. 

(2) A soft bound corresponds to a limit that may be physically 
exceeded by the mechanism, but if exceeded will cause the joint to 
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fail. A soft bound would occur when the tab mentioned above is 
pulled straight out from the slot. 

An open kinematic chain is a transitive relation between two pieces 
not directly related in a single joint. Such a chain may span two or more 
simple joints to form a composite joint. For example, consider the 
widget of Chapter 2. The widget can be characterized as a revolute joint 
between the washer and the block. Closer examination, however, 
reveals that this revolute joint is a combination of two subjoints: a 
cylindrical joint between the washer and the peg, and a rigid joint 
between the peg and the block. 

4.2. Simulating the Robot World 

The computer program that simulates the ARMS world can be 
divided, for the purpose of this discussion, into three convenient 
elements. 

(1) The solid modeler is used to represent the state of the world at any 
given time. 

(2) The emulator takes a world snapshot and a robot arm command 
and computes a new, updated, snapshot of the world illustrating 
the effects of the executed arm command. 

(3) The history mechanism maintains and indexes each of the 
workspace snapshots, permitting complete access to each world 
state over time. 

4.2.1. The Solid Modeler 

In this section we describe the solid modeler and how it is used to 
represent the world state at a given time. The modeler provides a 
means for representing static snapshots of the ARMS domain. Each of 
the three physical components of the idealized robot world (pieces, robot 
arm, and workspace) is represented in a solid modeling paradigm. The 
modeler supports certain static relations between these components, 
such as determining what each piece is resting on. In addition, the 
modeler provides for graphic display of the current state of the domain. 

The ARMS modeler is a simplified hybrid modeler: a cross between 
a constructive solid geometry (CSG) and a boundary representation 
(BRep).13 The system supports two primitives, the block and the right 
cylinder. Instances of these primitives, of varying dimensions, are put 
together with CSG combination operators to produce pieces. Only two 

13 For a review of constructive solid geometries and a description of the 
terms used in describing the ARMS modeler, see Appendix A. 
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combination operators are supported: 

(1) The disjoint-union operator joins two primitives surface-to-surface. 
This is a restricted form of the general union operator where the 
primitive pieces must abut with no volume overlap (see Figure 
4.6). One can think of this operator as adding a solid primitive 
onto another, abutting, solid primitive. 

(2) The contained-difference operator removes one primitive from 
another. The primitive being removed must share at least one 
surface with the larger primitive, and its volume must be totally 
contained in the larger primitive (see Figure 4.7). This is also a 
restricted form of the general difference operator. One can think of 
this operator as removing a nonsolid primitive from a different 
(solid) primitive with a shared surface. 

+ c=J- II 

Disjoint Union Operator 

Figure 4.6 
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Contained Difference Operator 

Figure 4.7 
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Restricting the modeler to these two operators simplifies the eSG 
to BRep conversion. As the eSG combination operators are used to 
specify pieces, the pieces' BRep surface set is constructed by simple 
manipulations of its constituent primitives' surface sets. For the block, 
these are the six rectangular planar surfaces. For the cylinder, there 
are two round planar surfaces and a single exterior cylindrical surface. 
We thus replace the potentially expensive eSG to BRep conversion 
algorithm with a simple filter function that operates on the union of 
surface sets of the constituent primitives (see Section 6.4.1.4). 

Once the pieces are created, they are added to a new static model 
of the ARMS domain. This static model, called a workspace model, 
contains pointers to modelers' representations of every piece in the 
workspace, the model of the robot arm, and the representation of the 
table top (a planar surface). 

Each piece has assigned to it an initial position and orientation in 
the workspace. In addition, the modeler computes what the piece is 
resting on, using a simple piece support algorithm. 

The algorithm for determining piece support is somewhat naive. 
Basically, support is determined by dropping a plumb line from the 
center of mass of a piece. The surface on the piece intersected by this 
plumb line which is furthest from the center of mass is the support 
surface. Support is provided by the supporting surface in contact with 
the support surface that also intersects the plumb line. 

The solid modeler also provides support for simple graphic display 
of the workspace. The ARMS graphic package provides wireframe 3D 
perspective projections of the workspace contents. No hidden-line or 
hidden-surface removal is provided. All of the workspace figures in this 
book are produced by this graphics package. 

Once a set of wireframes has been produced for a particular scene, 
a perspective projection of the line segments from the wireframes is 
created. This projection relies on a projection transform that depends 
only on the position and angle of the viewer. We can simplify this 
transformation by relying on the following simplifying assumptions: 

(1) The camera (viewer position and angle) and the workspace are 
assumed to occupy distinct halfspaces. 

(2) The plane separating the two halfspaces is the projection plane; 
e.g., analogous to the screen in a movie theater (Figure 4.8). 

The first assumption eliminates the need for a clipping algorithm. 
This reduces the computational costs of projecting the image onto the 
projection plane. The disadvantage is that the camera cannot be moved 
behind or over the workspace to get a different view of the action. 
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The second assumption simplifies the mathematics and increases 
the efficiency of the graphics package by reducing the number of matrix 
calculations. On the other hand, the disadvantage is that as the camera 
moves away from a centered position, the image becomes more and more 
distorted. Just as in a movie theater, it is best to sit in the center seats, 
and not on either side. 

4.2.2. The Emulator 

Given the workspace snapshot W t at time t, and a robot arm 
command, the emulator constructs the next workspace snapshot W t + 1. 
Note that the emulator's task definition presupposes a notion of time: 
ARMS employs a simple temporal model that assigns a single unit of 
time, or a tick, to every robot arm command. Given this task 
description, we can divide the emulator's job into two subtasks: 
computing the effects of the robot arm command on the robot arm, and 
computing any side effects of the arm's motion on the pieces in the 
workspace. 

4.2.2.1. Moving the Robot Arm 

In Section 4.1.4, we described the command set for the idealized 
ARMS robot arm. For each of the commands, we implement a procedure 
that computes the new position and orientation of the arm from its 
current state and the command parameters. In order to simplify the 
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implementation, we make the following assumptions: 

(1) The primitive commands are not decomposable in time: we assume 
the arm instantaneously executes each command. 

(2) No collision detection or avoidance is performed by the modeler, 
except in the case of the Close command that checks for contact 
with pieces. 

The first assumption does not cause any problems with Open, 
Close, or MoveTo, since intermediate positions assumed by the arm in 
the course of executing these commands are never relevant. In the case 
of Translate and Rotate, however, intermediate positions assumed by 
the robot arm may be crucial to the semantics of the command. The 
second assumption implies that any collision avoidance, however 
limited, must be implemented at the schema level. 

4.2.2.2. Modeling RobotlPiece Interactions 

The only robot/piece interaction supported by the emulator occurs 
when the robot arm is used to grasp and move a piece. We make the 
following simplifying assumptions: 

(1) The arm can manipulate only one piece at a time. 

(2) A piece cannot be manipulated if it is providing support for any 
other piece in the workspace. 

(3) Contact between the gripper and a piece is assumed to be perfect: 
the piece is never allowed to slip while being held between the 
fingers. 

(4) The gripper contacts are modeled as two points, one on the end of 
each finger. For a finger to be in contact with the surface of a 
piece, it is sufficient for the contact point to be on the surface. 

(5) A piece can only be grasped by opposing surfaces that belong to the 
same CSG primitive. As an illustration, consider the illegal 
grasping strategy shown in Figure 4.9. Note that the two contact 
surfaces belong to two different CSG primitives. 

(6) When a piece is dropped by the robot arm, it must receive support 
from either another piece or the workspace itself. 

The first two assumptions together prohibit the robot from moving, 
for example, a stack of blocks. This assumption could conceivably be 
relaxed a bit in order to allow the robot arm to manipulate, under 
certain constraints, all of the pieces that belong to the same mechanism 
at once. This would allow the arm to move the entire widget assembly of 
Chapter 2 as a unit. 
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Example of Illegal Grasping Strategy 

Figure 4.9 

The purpose of the third assumption, and of the first two as well, is 
to keep any uncertainty in piece position from creeping into the system. 
Such uncertainty might occur when moving an unstable stack of blocks. 
Another possible source of uncertainty is for a piece to slip while being 
carried by the gripper. 

The last three assumptions are the least restrictive, and are 
imposed only to simplify implementation of the solid modeler. 

As with collision avoidance, any other type of robot/piece 
interactions must be implemented at the schema level. For example, 
neither the modeler nor the emulator enforce collision avoidance 
between the arm and a piece in the workspace, but the schema level 
representation provides some minimal collision avoidance behavior 
when approaching a piece for grasping. 

4.2.3. The History Mechanism 

The history mechanism manages the workspace snapshots 
produced by the emulator. A naive implementation would be to make a 
new copy of the workspace snapshot at each time tick. Although simple 
to implement, this kind of strategy is extremely costly in terms of 
storage. In fact, the cost of a new copy grows with the number of pieces 
in the workspace. 

A more storage-efficient history mechanism can be implemented 
once one notices that most of the information contained in the snapshot 
is invariant from one time tick to the next: e.g., piece sizes/shapes do not 
change, only a single piece is manipulated at a time, and once a piece 
has been put somewhere, it is likely to stay there for a while. Thus each 
successive snapshot records only the changes made from the preceding 
snapshot. 
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By using this more efficient mechanism, we see that the cost for 
each new snapshot remains independent of the size of the workspace. 
The tradeoff is in accessing information. Since each snapshot forms a 
new layer over the previous snapshot, accessing information that has 
not changed since the beginning of the episode will take time 
proportional to the number of layers traversed. In practice, this behavior 
can be improved somewhat by relying on domain-specific traits. 

In summary, when properly implemented, this history mechanism 
is totally transparent: the rest of the system accesses what appear to be 
distinct snapshots of each world state. There is, of course, some slight 
increase in the access time for certain information that increases 
linearly with the number of snapshots. The storage requirements are 
vastly reduced when compared to the naive approach. For 
implementation details, see Section 6.4.3. 



Chapter 5 

Learning And Problem Solving 

From a machine-learning perspective, the most interesting aspects 
of the ARMS system are in the learning and performance elements. 
Recall that ARMS is an open-loop, explanation-based learning system 
(see Figure 5.1), with learning and performance elements accessing a 
symbolic representation of the world stored in the database. 

We begin this chapter with a discussion of the symbolic 
representation manipulated by the learning and performance elements, 
as well as the database mechanism that maintains it. Next, we discuss 
the performance element and how it applies extant schemata to achieve 
a given goal specification. Finally, we examine the learning element 
and how it acquires new schemata by observing an expert's solution to a 
given problem. 

5.1. Knowledge Representation 

In this section we describe the ARMS schema system.l4 Recall that 
the ARMS learning and performance elements do not directly access the 
real world, but rather shuttle all queries for world information through 
a database system. The database system contains data structures, called 
schemata, that represent relations and events in the world. We begin 
with a description of schema structure, and then discuss the database 
system. 

14 Appendix B contains a review of some of the more common terminology 
used in describing schema-based knowledge representation systems. Appendix F 
contains a capsule summary of the schemata initially built into the ARMS sys
tem. 
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5.1.1. The Schema System 

We divide ARMS schemata into two main categories: state 
schemata that are used to describe relations in the world, and operator 
schemata that describe operations that can be applied to the world. The 
relations expressed by state schemata as well as the operations 
represented by operator schemata often refer to physical objects in the 
ARMS world. These physical objects are represented by descriptors, that 
are elements of the solid modeling system (see Section 4.2.1). 

Implicit in the division of operator vs. state schemata is a naive 
temporal model. This model assumes that state schema instances may 
be valid over a period of time, while those operator schema instances 
corresponding to the primitive robot arm commands are considered to be 
instantaneous. This is an adequate temporal model given that there is 
only one active agent in the ARMS domain (the robot arm). 

5.1.1.1. State Schemata 

A state schema is a partial description of the domain. It permits 
the system to assert that one particular relation is valid at a given time. 
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For example, given the initial state of the training example (see Figure 
2.2), it is possible to assert a state schema which corresponds to n$Peg1 
is stacked on top of $Washerl.n 

Every state schema has two time slots: a start time that gives an 
integer representing the first clock tick where this particular instance is 
valid, and an end time that gives an integer representing the last clock 
tick where this particular instance is valid. 

The validity of a particular state schema at a given time must be 
determined independently by examining the domain. There are, 
however, a couple of special slots on each state schema that can help 
confirm the validity of a particular state schema instance. 

(1) A state schema may contain a set of schema templates on a 
substantiator slot. These state schema templates indicate other 
state schemata that must be valid for this state to also be valid. 
Validity of all of these state schemata is a necessary, but not 
sufficient, condition for validity of the original state schema. This 
can be useful if the expense associated in validating the 
substantiator is less than that associated with validating the given 
state schema itself. 

(2) A state schema may contain a set of schema templates on a 
contradictions slot. These state schema templates indicate other 
state schemata that, if valid, invalidate the current state. As 
before, not being able to validate any of the contradictions is a 
necessary, but not sufficient, condition for validity of the original 
state schema. Again, this can be useful if the expense associated in 
attempting to validate the contradiction is less than that 
associated with validating the given state schema. 

(3) A state schema may contain a set of constraint schema templates 
(described below) on a constraints slot. These constraint schema 
templates serve to limit what fillers the slots of the state schema 
may assume. 

There are two special subclasses of state schemata: constraint 
schemata and joint schemata. 

5.l.l.l.l. Constraint Schemata 

A constraint schema is a special type of state schema used to 
represent a temporally fixed relationship in the world. Because of this 
time invariance, constraint schemata may be treated in a slightly more 
efficient fashion by the state database. 

A constraint schema contains the special slots Type, Path1, Path2, 
and Constant. The Type slot represents some relation that, if true when 
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evaluated with the other arguments of the schema, determines the 
validity of the entire schema. The relation may be either unary or 
binary. Path! and Path2 represent pointers (or paths of pointers) to 
particular slots in the state schema to whom this particular constraint 
belongs. Constant contains a pointer to a constant. In the case of a 
unary Type, Path! provides the argument. For a binary Type, Path2 or 
Constant provides the second argument: hence they must never co-occur. 

For example, given a schema $A with slot X, we can constrain X to 
have a numeric filler with value less than 5 for all instances $Ai of $A. 
We do this by listing the following constraint schema templates on the 
Constraints slot of $A: 

($ConstraintSchema (Type NUMBERP) 
(Path! :X» 

($ConstraintSchema (Type LESSP) 
(Path! :X) 
(Constant 5» 

5.1.1.1.2. Joint Schemata 

A joint schema is a special type of state schema used to implement 
the ARMS domain theory (see Section 4.1.5). It represents the motion 
allowed between two pieces in the workspace. In our implementation, 
joints are defined between primitives belonging to two different pieces. 
They can be characterized by their constituent degrees of freedom. 

We divide joint schemata into two distinct types: 

(1) Abstract joint schemata contain knowledge that describes the 
mechanical behavior of a joint in terms of its degrees of freedom. 
These schemata are pre-encoded into the system. While ARMS 
does not contain a full set of these schemata, given that only a 
finite number of degrees of freedom exist between two pieces, only 
a finite number of abstract joint schemata need be built in. 

(2) Physical joint schemata contain information about the physical 
implementation of the desired abstract joint behavior. Some of 
these schemata are also pre-encoded in the ARMS system, but 
others (e.g., $RevoluteJointA) are acquired automatically by the 
system during the goal verification step (see Section 5.3.2.1.2). 

For example, consider the widget described in Chapter 2. We 
encode knowledge about the expected function of the joint in the 
abstract joint schema $RevoluteJoint. This knowledge indicates that the 
joint will permit one revolute degree of freedom between the two base 
pieces of the assembly. But this tells us nothing about how the 
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assembly is put together. 

In fact, in the widget example, the physical realization of 
$RevoluteJoint required achieving first a $CylindricalJoint (two degrees 
of freedom, one revolute and one prismatic, between the peg and the 
washer) and then constraining the prismatic degree of freedom with a 
$RigidJoint between the peg and the block. An analysis of the assembly 
indicates the existence of an open kinematic chain between the block 
and the washer (via the peg) which contains only the remaining 
revolute degree of freedom. 

Knowledge about how the joint is realized is stored in the physical 
joint schema $RevoluteJointA. This schema tells us one way of 
implementing the functional behavior described in the abstract joint 
schema $RevoluteJoint. Note that $RevoluteJoint relates only the two 
base pieces, while $RevoluteJ ointA must mention the third piece 
involved in the assembly. 

The abstract joint schema indexes those physical joint schemata 
that represent their known consistent physical implementations. Hence, 
$RevoluteJoint points to all known physical implementations of its 
function, including, of course, $RevoluteJointA. From a given 
instantiation of an abstract joint schema, we can derive a set of 
instantiations for possible physical implementations of the abstract 
joint. Constraints attached to physical joint schemata are used to 
represent the physical features as well as physical interdependencies of 
various pieces used in the assembly. 

There are three specific assumptions about the ARMS domain that 
simplify the implementation of the domain theory: 

(1) Joints arise from interactions between CSG primitives rather than 
CSG surfaces. This limits the number of joint types that must be 
built into the system, and places greater reliance on composite 
joints for representing complex mechanisms. 

(2) Degrees of freedom are always considered independently of one 
another, hence, the value of each joint variable is an independent 
variable. This means that a screw joint, which has dependent 
prismatic and revolute degrees of freedom, cannot be represented 
in this implementation. 

(3) Similarly, boundary conditions for each degree of freedom are also 
calculated independently. This means that, for example, the 
maximum travel of a sliding piece cannot depend on the value of 
another joint variable. 

A more complete domain theory would recognize that some degrees 
of freedom are interdependent; that their boundary conditions may 
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depend on the current value of a different degree of freedom. In 
addition, a more complete domain theory should permit modeling of 
joints based on surface interactions. In such a theory, any surface 
contact (such as stacking one block on another) would result in some 
limitation of interpiece movement. 

5.1.1.2. Operator Schemata 

An operator schema represents an operation or a set of operations 
on the world that result in changes to the state description. Five of the 
operator schemata in ARMS represent the primitive operator schemata. 
The rest of the operator schemata correspond to composites of other 
operator schemata. 

In general, every operator schema contains (at least) the following 
slots: 

(1) A set of goals that are state schema templates for schemata 
achieved by executing the operation(s) represented by this schema. 
The set need not be exhaustive; thus, an operator may have 
unknown side effects. 

(2) A set of preconditions that are state schema templates for 
schemata that must be valid to execute the operation(s) 
represented by this operator schema. 

(3) A set of subgoals, that are state schema templates. The state 
schemata indicated by the subgoals are represented as schema 
templates in a causally ordered structure, the subgoal poset. 
Templates at the same list level are causally dependent and must 
always occur temporally in the given order. Templates at 
embedded levels are causally independent and can occur in any 
temporal ordering. For example, the subgoal poset: 

[($A (X Y»)($B (X Y)(W Z» [($C (X Y))($D (Z W»ll 

indicates that an instance of $A must be achieved before an 
instance of $B, which must in turn be achieved before instances of 
$C and $0, although the last two may be achieved in either order. 

(4) A single operator schema template called the body that represents 
a (different) operation. When executed in the context established 
by achieving the subgoals in a world where all of the preconditions 
are valid, the body will achieve the goals of this operator schema. 

(5) A set of operator schema templates called suggestions that are 
usually templates for each schema having this schema as its body. 
Under certain conditions, new schemata produced by the 
generalizer may not adhere to this convention (see Section 5.3.2.5). 
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Instances of primitive operator schemata also have a time slot that 
gives the clock tick at which this particular schema instance was 
applied to the world. Note that primitive operator schemata have no 
body (they are directly executable), no sub goals (they cannot be broken 
down any further), and no preconditions (every arm command is always 
executable). 

Using this description, it is possible to layer instances of operator 
schemata into some sort of graph, that bottoms out at the level of 
primitive operators. Building this structure bottom-up is precisely how 
causal models (from which explanations are extracted) are constructed. 
The corresponding top-down expansion of such structures forms the 
basis for the performance element. 

5.1.2. The Database Mechanism 

The symbolic representation used by ARMS relies on state 
schemata to represent physical relations that are true at the modeler 
and emulator levels. The database mechanism is used to hold the state 
schemata that describe past and current world states. Every request by 
the performance or learning elements for information about the world 
state must be routed through this mechanism. 

What form do these requests take? In its simplest form, a request 
consists of an instantiated (all parameters bound) state schema that the 
database must compare against the current world model to return a 
verdict: either the relation described by this state schema holds or it 
does not. 

But not all requests are this straightforward: a request may be 
only partially specified. This is the case when certain slots of the schema 
are not yet bound. In this case, the database must return a list of all 
valid (fully instantiated) state schemata which match this partially 
instantiated request. These state schemata should be unique, in the 
sense that for every relation that holds true at some time in the system, 
there is only one, unique, state schema which represents it. 

Finally, the database must be able to represent relations as they 
change with time. Requests from the understander may not always 
pertain to the current world state: the under stander may need to know 
if a certain relation was true at some previous time. From the 
database's point of view, the emulator level appears to retain a set of 
copies of the world model at each time tick. The database must therefore 
use the same state schema to represent a relation that persists across 
several snapshots. 

In the sections that follow, we describe some of the aspects of the 
database mechanism. 
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5.1.2.1. State Schema Validation 

Every state schema built into the ARMS system has a procedure, 
called a validation procedure, that can be used to ascertain the validity 
of an instance of the state at a given tick. This procedure usually 
entails some form of geometric reasoning. The exact procedure used to 
validate a given state varies for each state type. For example, if the 
state schema request were "is $Pegl stacked on $Blockl at time t?" it is 
sufficient to go to the world snapshot15 for time t and check the relative 
positions of $Pegl and $Blockl, surfaces in contact, and so on. 

The validation procedure is responsible for fleshing out the slots of 
partially instantiated requests. In the case of multiple consistent 
instantiations, the schema is split into multiple copies, or clones, that 
differ in the previously unfilled slots. For example, if the request were 
"is something stacked on $Blockl at time t?" and there were two pieces 
stacked on $Blockl, the validation procedure would return two distinct 
state schemata, one for each valid stacked relation. 

Many of the validation procedures are computationally expensive. 
Much of the expense is due to filling out the unfilled slots. For this 
reason, there is a simpler procedure for extending the validity of a state 
schema valid at time t to time t+ 1 or t-1. This simpler procedure, called 
a confirmation procedure, attempts to extend the validity of a previously 
validated state schema. For example, in the stacking example given 
above, it is sufficient to ascertain that neither piece has changed 
position. 

5.1.2.2. Caching Valid State Schema Instances 

Considering the computational expense involved in validating a 
state schema, we would like to avoid validating the same relation more 
than once. It is common for a same relation to occur as a precondition or 
subgoal of many different operators. For example, the same grasped 
relation may serve as a precondition for several operator schemata. 

For this reason, it makes good sense to cache those state schemata 
found to be valid. Since there must be a unique state schema for a 
given relation, future requests must first be compared to these known 
valid schemata. If a valid schema which matches the request can be 
found in the cache, no validation need be performed. At worst, there 
may be some work involved in extending the temporal scope of the 
cached state to match the request. Note that any caching strategy 

15 Recall from our discussion of Section 4.2.3 we will consider the history 
mechanism to be transparent: hence we will refer to "world snapshots at time til 
instead of "history mechanism layer at time t." 
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entails some sort of matching mechanism that can determine if two 
state schema instances represent the same thing. 

Special attention must be paid to the temporal extension process: a 
given request at two different ticks must return the same state schema 
if and only if the validity of the state is not compromised at any 
intermediate tick. If this is not the case, then two separate state 
schemata should be returned. For example, if $Pegl is stacked on top of 
$ Blockl , then removed and later replaced, there should be two different 
stacked states representing these two separate stacking events. 

One must be careful not to confuse the caching mechanism with 
the history mechanism of Section 4.2.3. The history mechanism permits 
temporal layering of the numerically emulated world, where each layer 
differs from the previous layer in precisely those items changed by the 
arm command for that tick. The caching mechanism uniquely identifies 
and manages many symbolic partial representations of the world. Aside 
from obvious differences between the numerically emulated world and 
its symbolic representation, note that each partial symbolic 
representation, or state schema, may persist through time, therefore 
spanning multiple history snapshots. 

5.1.2.3. Database Parallelism 

Even though state schemata are checked against the emulator's 
world snapshots only as a result of a request, the amount of time spent 
by the database in satisfying these requests accounts for a large portion 
of the computational resources expended by the ARMS system.I6 

We note that validating these requests is, in a sense, a read-only 
operation. No changes are made to a world snapshot as a result of a 
validation or confirmation procedure. This fact makes this kind of 
database mechanism an ideal example of those algorithms best suited to 
large-grain-size parallel machines [48,49]. 

Assuming that each processor can be given access to the world 
snapshots, each validation procedure could be run independently of the 
others. While ARMS runs on a serial machine, its object-oriented 
implementation (described in Chapter 6) makes explicit the inherently 
asynchronous aspect of the validation and confirmation operations. 

16 In fact, preliminary empirical evidence provided in Appendix E indicates 
that the database mechanism accounts for over 90% of the CPU time require
ments for both learning and problem-solving episodes. 
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5.2. The Performance Element 

In this section, we examine how schemata (both hand-encoded and 
acquired) are used by the system in the course of problem solving. A 
problem-solving episode is given by an initial state and a goal 
specification. The performance element yields a solution to the problem
solving episode in the form of an output sequence of primitive operators 
(robot arm commands) that transforms the initial state into a final state 
consistent with the goal specification. 

The ARMS performance element consists of a schema planner, akin 
to the skeletal planner of [50]. It is a very simple design that begins by 
selecting an abstract plan to achieve the specified goal state, and then 
continues by recursively expanding the plan until the process bottoms 
out with a robot arm command sequence. The planning process is 
basically a depth-first search through the plan space defined by the 
schemata stored in the schema library. 

We divide the planning process into two distinct phases: a design 
phase and a planning phase, which we describe in the following sections. 

5.2.1. The Design Phase 

The goal specification is given to the ARMS system as an abstract 
joint schema template. This serves as a functional description of the 
desired assembly. The object of the design phase is to produce, from this 
functional description, a physical description of the desired assembly. 
This is often called the design problem. It is in some sense the inverse of 
the verification problem of the learning element (see Section 5.3.2.1). 

The goal specification is given as a partially instantiated abstract 
joint schema. The first step in the design phase is to flesh out the 
abstract joint goal schema by filling out the unfilled slots in accordance 
with the constraints on the schema. Constraints that pertain to 
interdependencies of the degrees of freedom are attached to the abstract 
joint schema. This is the abstract joint schema realization procedure. 
Note that the realization procedure may result in several possible 
instantiations of this abstract joint schema. All of the instantiations 
found are retained for possible backtracking. We continue the design 
phase with only one of the instantiated abstract joint schemata. 

The abstract joint schema indexes those physical joint schemata 
which represent physical implementations consistent with this abstract 
joint. Thus from a given instantiation of an abstract joint schema, we 
can derive a set of instantiated physical joint schemata. These physical 
joint schemata are usually only partially instantiated as well: they too 
must have their unfilled slots fleshed out in accordance with the 
constraints they bear. Constraints attached to physical joint schemata 
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are used to represent the physical features as well as interdependencies 
of various pieces used in the assembly. 

As before, the realization process performed on a physical joint 
schema may result in multiple instantiations. These are also retained 
for possible backtracking. The planning phase receives only one of the 
instantiated physical joint schemata at a time, and, if there is a plan 
failure, an attempt is made to plan for the next physical joint schema. 

If there is no known realizable implementation of the abstract joint 
goal schema, the planner quits and does not expend further effort 
attempting to search design space for a valid implementation. This is 
the case in the example of Chapter 2: the system had no previous 
knowledge of how to physically realize a revolute joint. 

5.2.2. The Planning Phase 

Given one of the fully instantiated physical joint schemata 
produced in the design phase, the planning phase attempts to produce a 
sequence of primitive robot arm commands that achieves it. The 
physical joint schemata resulting from the design phase can be thought 
of as a set of alternate goals, each of which is consistent with the goal 
specification supplied by the expert. If the system can achieve anyone of 
these, the goal specification will be met. 

Recall that all operator schemata in the schema library are 
indexed by the goals they achieve. Since physical joint schemata are 
state schemata, they too have pointers to operators that can achieve 
them. If the operator is a newly acquired schema, then the pointer will 
have just been added by the learning element. Finding an operator 
schema to achieve a given state schema is called the plan step. 

In addition, it is possible that any given state schema may have 
multiple operator schemata that can serve as valid plans. Thus, from 
the given physical joint schema we can determine a set of operator 
schemata. 

We instantiate the first element of the operator set and attempt to 
execute it. If the first operator is not executable, and no changes have 
been caused by its unsuccessful execution, we then attempt to execute 
the next instantiated operator. This process continues until one of the 
operators executes successfully, no operators remain, or some change is 
made to the world during an unsuccessful execution attempt. 

Note that the plan step provides for only a limited form of 
backtracking. This is not a full depth-first search through the plan 
space, since backtracking may be aborted by an unsuccessful execution 
attempt. 
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The execution step for a given operator $X proceeds as follows: 

(1) For every goal $Gi of $X, query the state database to determine 
the validity of $Gi. If every $Gi is valid, terminate execution 
successfully, returning $X. This is the case when the goals are all 
already established; thus, there is no need to execute the plan. 

(2) For every precondition $Pj of $X, query the state database to 
ascertain its validity at the current time. If any precondition is not 
currently valid, abort execution and return failure. Note that the 
preconditions may not have had all of their slots bound; therefore, 
this step may, by mapping values back via the template from the 
preconditions, create multiple consistent copies of $X. These are 
retained for possible backtracking. 

(3) For every subgoal $Sk of $X, query the state database to ascertain 
its validity at the current time. If a subgoal is not currently valid, 
attempt to recursively plan for the sub goal. If any subgoal is not 
valid and is not plannable, abort execution and return failure. As 
before, each of the subgoals must be realized, and any unfilled slots 
may result in multiple consistent copies of $Sk. Alternative 
instantiations may again cause, through mappings back across the 
template, multiple copies of $X to be retained for backtracking. 

(4) Instantiate the body $B of $X and execute it recursively. Success 
or failure of this execution step is determined by the success or 
failure of the execution step of $Bl. 

Note that if, at any time, an operator schema cannot be executed 
(due, for example, to unmet preconditions) or a state schema has no 
associated plans, the schema planner attempts to backtrack, and, failing 
that, simply quits. It does not waste effort attempting to sequentially 
combine operator schemata, an effort whose nature we know to be 
hopelessly combinatorial. 

In summary, we divide the planning phase into repeated 
applications of two distinct steps: 

(1) A plan step, that takes an instantiated state schema and generates 
a set of operator schemata, each corresponding to a plan for 
achieving the given state. The execution step is invoked on each of 
the resulting operator schemata in turn, until one of the execution 
steps terminates successfully. If none of the generated operator 
schemata is executed successfully, return failure. 

(2) An execution step, that takes an operator schema, ascertains its 
preconditions are met, and then plans for each of its sub goals. If 
each subgoal is either currently valid or achieved by planning 
recursively, the execution step returns as its value the result of 
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attempting to execute the body of the operator recursively. Note 
that the execution step may clone copies of the operator schema for 
addition to the backtracking list of the plan step. 

5.3. The Learning Element 

A learning episode consists of an initial state, a goal specification 
(in terms of abstract joint schemata), and an input sequence of primitive 
operators (robot arm commands). The operator sequence, when executed 
by the robot arm in the context of the initial state, produces the final 
state. 

As with PEBLS, the ARMS learning element consists of two 
modules: an understander and a generalizer. The purpose of the 
understander is to construct a causal model of the observed problem
solving behavior. The causal model is then analyzed by the generalizer, 
and new schemata are constructed. ARMS performs two types of 
explanation-based learning: specialization in the construction of new 
physical joint schemata, and generalization in the construction of new 
(macro) operator schemata. Both types of learning require a causal 
analysis of an explanation which relies on the domain theory. 

5.3.1. The Understander 

The understander takes as its inputs the initial state and the input 
sequence. It produces as its output a causal model of the external 
agent's problem-solving behavior. The causal model is then passed to the 
generalizer for analysis and possible learning. 

5.3.1.1. Specifying the Initial State 

The initial state is specified by the expert at the modeler level. A 
new workspace is created, and the expert specifies the pieces in it by 
giving their eSG descriptions and initial positions. The solid modeler 
checks the initial placement and determines what is supporting each 
piece in the workspace. A robot arm is then added to the new 
workspace. The initial placement of the arm is in the nest or home 
position, with fingers closed. 

Note that the initial state is specified at the modeler level only. 
The initial state becomes the first snapshot at the emulator level, while 
the database is initially empty. 

5.3.1.2. Emulating the Input Sequence 

The operator sequence is given as a list of fully instantiated 
primitive operator schemata. In a real system, assuming the teach 
pendant implements the same command set as the ARMS primitive 



74 Machine Learning of Robot Assembly Plans 

operator set, such an operator sequence may be read directly from the 
robot arm teach pendant. Thus the user interface of an ARMS 
implementation using a real robot arm would be identical to the user 
interface of robot teach-by-guiding systems currently in industrial use.17 

The system reads in each element of the input sequence. As each 
operator is read in, it is passed on to the emulator level. The emulator 
constructs a new snapshot of the latest workspace that reflects the new 
state of the ARMS world after executing the input primitive. Each 
snapshot at the emulator level is a storage-efficient copy of the 
workspace at the modeler level. No changes are made at the schema 
level. 

5.3.1.3. Building the Causal Model 

The understander can best be described as a bottom-up inferential 
process that describes, using higher level operators, the context in which 
the lower level input operators are occurring. In this sense, it is very 
similar to those natural-language story-understanding systems which 
attempt to describe the context of an input story [51-54]. The 
understander operates entirely at the schema level; all interaction with 
the emulator and modeler levels is handled through the database. 

The selection of a context with which to account for the input 
sequence has the potential for combinatorial explosion. This problem is 
usually termed the frame- or schema-selection problem [42]. What is 
needed is a method that restricts the amount of work done, a way to 
guide the selection process. Such methods are called schema-activation 
methods. While various methods have been proposed by natural
language researchers [38,52,54,55], there are some key quirks of the 
robotics domain that can be used to advantage in devising an activation 
strategy. 

5.3.1.3.1. Predictive Understanding 

For the most part, natural-language story-understanding takes 
place in a predictive framework. This is necessary, since the inputs to a 
story system are rift with gaps that must be filled by inference chains. 
For example, consider the input 

John bought a gun; 
John forced Mary into the car; 

17 Any sequence produced in this manner would probably contain many ex
tra input primitives. These noisy inputs would arise naturally from the expert's 
successive approximation of the proper position. The ARMS system is insensitive 
to this kind of noise. 
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is probably best understood in context with a set of intervening states: 

John bought a gun; 
John loaded the gun with ammunition; 
John pointed the gun at Mary; 
Mary knew that John was pointing a gun at her; 
John told Mary to get into the car; 
Mary decided to get into the car to avoid being shot; 
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and so on. The understander must by necessity be to some degree 
predictive, or the intervening inference chain cannot be constructed. 

5.3.1.3.2. Nonpredictive Understanding 

Unlike natural-language understanding systems, learning
apprentice systems face a reduced version of the input-gap problem. 
The learning apprentice has access to every action taken by the external 
problem-solving agent: unless the operators are poorly understood, there 
are never any gaps in the input sequence. In addition, the learning 
apprentice need only worry about a single external problem-solving 
agent, thus removing any problems resulting from interactions between 
agents. 

This learning apprentice is no exception: there are never any input 
gaps in the ARMS input sequence. Each step in the assembly sequence 
entered by the assembly expert on the teach pendant is echoed to the 
system. Hence, there is no need for the understander to be predictive. 

Nonpredictive understanding means that schemata activate only 
after they are temporally completed in the observed input. This implies 
that the activation conditions for any higher level schema can be 
expressed in terms of whether the schema's goal was accomplished or 
not. This also implies that if any schema is checked for activation and 
its activation conditions are not met, it is not necessary to retain the 
schema for future checking: no schema is ever allowed to remain primed 
without being activated, and each primed schema is checked for 
activation only once. 

5.3.1.3.3. The Schema-Activation Mechanism 

The schema activation algorithm used by ARMS works as follows 
(see Figure 5.2): 

(1) The next observed input is read and an instantiated version of the 
corresponding primitive operator schemata $Ii is added to the 
causal model. The time value t is incremented by one tick. Each of 
the operator templates on its suggestion list is instantiated and 
pushed on the suggested schema list. Note that when instantiating 
templates, many of the bindings of the input operator schema may 
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Figure 5.2 

be transferred across the template equivalence list. Some bindings, 
however, may not yet be known and will have to be filled in later. 

(2) If the suggested schema list is empty and there are more inputs to 
be read, go back to Step 1. If there are no more inputs to be read, 
terminate. Otherwise, since the suggested schema list is not empty, 
continue with Step 3. 

(3) Pop the next operator schema $Xj off of the suggested schema list. 
Issue a request to the database for a state schema corresponding to 
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each goal $Gk on the goal list of $Xj. If there is some $Gk that is 
not valid at time t, discard $Xj and go to Step 2. Since the 
database always returns fully instantiated state schemata, make 
sure to transfer bindings from $Gk back across the template 
equivalence list to $Xj. In this fashion we gradually accumulate all 
the slots for $Xj, which may have only been partially instantiated 
when suggested. 

(4) Check each $Gk for validity at time t-1. If every $Gk is valid, 
discard $Xj and go to Step 2. 

(5) Starting at time t-l, unpack the subgoal poset of $Xj backwards, 
issuing requests to the database for each subgoal $Sl. Care must be 
taken to allow for legal permutations of subgoal ordering. Again, 
make sure to transfer bindings from each $Sl back across the 
template equivalence list to $Xj. If at some point some $Sl cannot 
be validated, discard $X and go to Step 2. 

(6) Assuming the earliest subgoal $Sl of $JV was valid at time t-n + 1, 
issue requests for each precondition $Pm to the database at time t
n. Transfer bindings from each $Pm back across the template 
equivalence list to $Xj. If there is some $Pm which is not valid, 
discard $Xj and go to Step 2. 

(7) The instantiated composite operator schema $Xj has now activated 
with a scope n time ticks. Instantiate all the operator schema 
templates on the suggestion list of $Xj, being careful to carry any 
bindings from $Xj across to the new suggestions. Append these 
new suggestions to the suggested schema list and go back to 
Step 2. 

Note that the activation algorithm keeps on $Xj the pointers to 
each instantiated $Gk, $Sl and $Pm. This constitutes part of the causal 
model from which the explanation will be extracted. An example of a 
causal model is shown in Figure 5.3. 

5.3.2. The Generalizer 

The generalizer takes as its input the goal specification given by 
the expert and the causal model produced by the understander. If the 
episode meets the learning criteria, the generalizer will produce a new 
composite operator schema that can be used both in understanding and 
planning. In addition, in some cases a new physical joint schema will be 
produced as a side effect of the generalization process. 

The procedure followed by the generalizer is outlined in Figure 5.4. 
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Figure 5.3 

5.3.2.1. The Verification Process 

The first task the generalizer faces is to ascertain whether the 
observed episode really meets the goal specification given by the expert. 
This verification process entails applying the ARMS domain theory in 
order to justify how the goal specification is embodied in the physical 
structure assembled during the observed episode. 

Recall the goal specification is given as an abstract schema joint 
template. This is easily transformed into an instantiated abstract joint 
schema which may, however, not have all of its slots filled. The abstract 
joint schema represents a mathematical characterization of the final 
assembly in terms of its degrees of freedom. The goal of the verification 
process is to find a valid physical joint schema instance which 
corresponds to the abstract joint schema instance partially specified by 
the expert. 

There are four possible cases to consider: 

(1) Goal recognized during observation: The instantiated abstract joint 
schema matches a physical joint schema instance already in the 
database. If this occurs, it indicates that a schema for 
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Figure 5.4 

understanding how the goal was achieved already exists. This case 
does not meet the learning criteria, causing the generalizer to 
terminate. 

(2) Known physical joint schema verified: The instantiated abstract 
joint schema is used to index a physical joint schema which can be 
successfully instantiated and validated. In this situation, the 
verification process completes successfully, using existing joint 
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schema know ledge. 

(3) New physical joint schema constructed and verified: There is no 
known physical joint schema that can be used to justify the 
instantiated abstract joint schema. In this situation, the current 
joint schema knowledge is too weak to account for the mechanism's 
behavior. By using the ARMS domain theory to analyze the other 
joints in the database, a new physical joint schema is acquired that 
explains the operation of the realized mechanism. 

(4) Assembly cannot be analyzed: The goal is not verifiable using 
current joint schemata. It is possible that this same example might 
be verifiable after acquiring other schemata. It is also possible that 
the mechanism really does not meet the goal specification. This 
case does not meet the learning criteria, causing the generalizer to 
terminate. 

On the basis of this case analysis, we can summarize the ARMS 
learning criteria as follows: 

If an episode achieves a verifiable goal, and the physical joint schema 
which corresponds to the goal specification has not been recognized by 
the understander, then the episode meets the learning criteria. 

Of the four cases described above, only the second and third cases 
are relevant to this discussion of the generalization process. We 
describe these cases in more detail in the next two sections. 

5.3.2.1.1. Known Physical Joint Schema 

From an episode in this category we can expect to learn, in the 
form of an operator schema, a new assembly technique for a known 
physical joint schema. This technique must be different from extant 
operators or it would have been recognized during the understanding 
process. We can summarize this case of the verification as follows: 

(1) From the abstract joint schema instance index the collection of 
physical joint schemata which describe known ways to physically 
realize the desired mechanical behavior. For example, while the 
abstract joint schema $RigidJoint describes the mechanical 
behavior of a zero degree of freedom joint between two pieces, the 
physical joint schema $RigidJointA describes how this can be 
constructed by inserting one piece into the other. 

(2) Remove from this first set those instances which do not meet the 
constraints attached to the physical joint schemata. For the widget 
assembly, attached to $RigidJointA are constraints describing the 
relations that must hold between the two pieces of the joint. These 
are the constraints that ensure, for example, that the shaft radius 
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of the inserted piece must match the hole radius in the other piece. 

(3) Issue a request to the database for every remaining physical joint 
schema instance. The database attempts to validate each request, 
and, if successful, returns fully instantiated joint schemata. 

As soon as a physical joint schema is validated, the verification 
process is complete, and no other validation requests are issued. Note 
that as a side effect of the validation process, the instantiated physical 
joint schema returned contains pointers to its substantiator set. 

5.3.2.1.2. New Physical Joint Schema 

If no known physical joint schema can be validated, the system 
attempts to explain how the mechanism works using domain knowledge 
about how joints and degrees of freedom combine. If successful, this step 
results in the addition to the schema library of a new physical joint 
schema indexed by the abstract joint schema used in the goal 
specification. This kind of learning is an example of explanation-based 
specialization. The verification process in this situation goes as follows: 

(1) From the physical joint schemata recognized during the 
observation phase, attempt to construct one or more kinematic 
chains relating the two pieces of the goal specification. A kinematic 
chain is a transitive relation on joint schemata. 

(2) Reduce the number of kinematic chains to one by removing those 
chains which contain physical joint schemata that subsume 
members of other chains. For example, if one chain contains joint 
$J i and another chain contains joints $J k and $J l which constitute 
the substantiator set of $J i, remove the chain containing $J i. In 
this fashion, the remaining chain will contain the lowest possible 
level of joint schema. If more than one such chain exists, 
terminate the verification process unsuccessfully. IS 

(3) Collect all of the constituent degrees of freedom from the lone 
remaining kinematic chain. 

(4) Match this degree of freedom set with the expected degree of 
freedom set determined from the abstract joint schema 
corresponding to the goal specification. If no match can be found, 
terminate the verification process unsuccessfully. 

(5) Attempt to cancel each of the unmatched degrees of freedom from 
the kinematic chain by limiting their ranges. A degree of freedom 

18 Recall from Section 4.1.4 that the domain theory only accounts for open 
kinematic chains. Multiple chains at this point imply the presence of a closed 
kinematic chain. 
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ceases to be relevant as soon as its range of motion falls below a 
built-in tolerance. Reduction of the range can only take place if the 
degree of freedom previously contained a soft bound. By 
recalculating the soft bound, taking all of the pieces of the chain 
into account, interactions between chain elements may transform a 
soft bound into a hard bound with a limited range. If this step 
fails, terminate the verification process unsuccessfully. 

(6) Establish a new physical joint schema with members of the chain 
as substantiators. In addition, add constraints to the new joint 
schema that describe how degrees of freedom from the 
substantiators are canceled, or otherwise relate to the new physical 
joint schema. 

As an example, consider the widget of Chapter 2. The goal 
specification is given as an instance of $RevoluteJoint, an abstract joint 
schema. As is the case in Chapter 2, assume that no known physical 
joint schema exists which properly characterizes this revolute joint. 
Thus, no verification is possible by following the procedure outlined in 
the previous section. 

At the end of the understanding process, however, there are two 
recognized physical joint schema instances: an instance of $RigidJointA 
and an instance of $CylindricaIJointA. These two joints form an open 
kinematic chain between $BoredBlockl and $Washerl. A naive 
kinematic analysis of the degrees of freedom contained by the open 
kinematic chain shows that the revolute degree of freedom from 
$CylindricalJointA matches the required revolute degree of freedom for 
$RevoluteJoint. The prismatic degree of freedom from 
$CylindricalJointA is so constrained by $RigidJointA as to cease to be 
viable. 

Given this kinematic analysis, we establish a new physical joint 
schema $RevoluteJointA that describes a method for implementing the 
joint behavior characterized by $RevoluteJoint. $RevoluteJointA in 
effect says that to make a $RevoluteJoint, make a $CylindricalJointA 
and restrict its degree of freedom using a $RigidJointA. 
$CylindricalJointA and $RigidJointA become the substantiator set for 
the new schema $RevoluteJointA. 

The new schema is added to the schema library, and those 
constraints relating the pieces involved in the joint which were relevant 
to the kinematic analysis are included in the new schema. Note that 
while $RevoluteJoint relates two pieces (e.g., $BoredBlockl and 
$Washerl), $RevoluteJointA relates an additional piece (e.g., $Pegl) to 
this piece set. Therefore $RevoluteJointA is applicable to any set of 
three pieces having the requisite interpiece constraints. 
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Note that if $RigidJointA and $CylindricalJointA could not be 
recognized during understanding, this analysis could not take place, and 
this episode would fall into the fourth verification category described 
above. In the ARMS system, the recognition of $RigidJointA and 
$CylindricalJointA depends on other acquired composite operator 
schemata. Therefore, at some later time (once the system has a chance 
to acquire these other operators), this episode would be ripe for learning. 

We note two important points: 

(1) The ARMS system is capable of using acquired schemata in 
understanding, and therefore in learning other, more complex, 
schemata. 

(2) What cannot be understood now may well be understood later after 
the system has a chance to acquire more schemata. The ARMS 
system is very much characterized by learning one small step at a 
time, but without limiting the eventual extent of learned behavior. 

5.3.2.2. Extracting the Explanation 

As a result of the verification process, a valid physical joint schema 
is related to the abstract joint schema representing the goal 
specification. As part of the validation procedure, this physical joint 
schema contains a set of pointers to substantiators in the causal model. 
These substantiators constitute the top-level subgoal set. 

We begin by ordering the top-level subgoal set on the basis of a 
causal dependency analysis. This causal analysis determines if there are 
any ordering dependencies between substantiator joints by examining 
the joint bounds. In the widget example described above, this analysis 
require that $CylindricalJointA occur before $RigidJ ointA, since 
$RigidJointA is used to impose constraints on a degree of freedom 
belonging to $CylindricalJ ointA. 

To extract the explanation from the causal model, it is sufficient to 
follow the pointers established during the understanding process from 
the top-level subgoal set all the way back to the primitive operator 
inputs. The relevant pointers are those connecting operators to their 
subgoals and bodies, and connecting states to their achieving operators. 
Note that an explanation should also contain pointers to all of the 
constraint schemata supporting states in the explanation. 

5.3.2.3. Building a New Operator Schema 

Given the (ordered) top-level subgoal set, and therefore access to 
the explanation, a new composite operator schema is created so that this 
goal may be achieved and/or recognized in future episodes. This is an 
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example of explanation-based generalization. 

The difficulty lies in determining exactly at what level of 
abstraction the new schema should be created. This question reflects the 
generalityloperationality tradeoff, an important issue for explanation
based learning research. As with all tradeoffs, there appears to be no 
good single solution. It is likely that application-specific traits will 
determine the most opportune level of representation. 

The ARMS system is capable of producing either a very general 
composite operator schema, or a more operational version of the 
composite operator schema. This aspect of the generalizer's behavior is 
governed by the generalityloperationality tradeoff flag that can be set by 
the expert. 

If the generality/operationality flag is set, ARMS produces the 
most general schema it can by using the top-level sub goal set as the 
explanation for this episode. No attempt is made to analyze the 
interdependencies present in the lower levels of this explanation. 

If the flag is reset, the generalizer inserts an extra step at this 
point that expresses the new schema at a level where no shared 
substructures exist. In other words, beginning from the top-level sub goal 
set, descend the explanation structure to a level where no shared 
substructures exist between schemata at that level (see Figures 5.5 and 
5.6). The state schemata at this level become the subgoal set of the new 
composite operator schema. 

At the top level of the widget example, there are many shared 
substructures: consider, for example, the schema which represents 
grasping $Pegl. $Pegl is manipulated in a manner that serves both 
$CylindricalJointA and $RigidJointA. Therefore, the grasping state is a 
shared substructure of the top-level subgoals. If we descend the 
explanation structure to the level of grasping $Pegl, there are no longer 
any shared substructures. 

Note that this descent into the explanation which produces a new 
subgoal set is order-preserving: the new subgoal set will not violate the 
results of the causal dependency analysis performed at the joint schema 
level. 
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• • 

Level with Shared Substructures in Explanation 

The two elements of the top-level subgoal set in this illustrative example are shown as 
black nodes. Their respective explanation substructures are outline as triangular subtrees. 
Shared substructure is represented by the overlapping sections of the subtrees. When pro
ducing the more general new schema, the generalizer uses the black nodes of the top-level 
subgoal set as the subgoal set model for the new schema. 

Figure 5.5 

a o 

• • • • • 
Level with No Shared Substructures in Explanation 

The two elements of the top-level subgoal set are represented as white nodes at the root 
position of two overlapping explanation subtrees. When producing the more operational 
new schema, the generalizer descends into the explanation structure until it can produce a 
subgoal set (represented here as black nodes) with no shared substructure. This set then 
becomes the subgoal set model for the new schema. 

Figure 5.6 
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Having in this fashion collected a set of subgoals (exactly which set 
depends on the setting of the generality/operationality flag), we now 
collect the preconditions of the new schema. The preconditions of the 
subgoal set are combined into a single set. This becomes the 
precondition set for the new schema. 

We note that the distinction between what is a subgoal and what 
is a precondition can best be summarized by the behavior of the 
performance element. In short, the performance element will attempt to 
achieve the subgoals but will expend no effort in bringing about the 
validity of the preconditions. In order to make our new schema more 
powerful, we now attempt to promote members of the precondition set 
into subgoals according to the following precondition promotion criteria: 

H a precondition was achieved in the observed episode, it is prepended 
to the ordered list of subgoals. In addition, if a precondition was fortui
tously true at the beginning of the observed episode, but a plan exists 
for achieving it, then it is also prepended to the subgoal set. 

Note that prepending preconditions to the subgoal set is order
preserving. 

In addition, the promoted preconditions, if explicitly achieved in 
the observed episode, may well have preconditions of their own. If this is 
the case, these new preconditions are prepended to the precondition set, 
and the entire promotion process is repeated. Precondition promotion 
terminates when no more promotions are possible. 

At this point we have determined the precondition and subgoal 
sets of the new composite operator schema. The last subgoal is removed 
from the subgoal set, and its achieving operator in the observed example 
becomes the body of the new schema. The last remaining step is to 
generate templates for each of these fully instantiated schemata so that 
they can be attached to the new data structure about to be added to the 
schema library. 

The generation of schema templates raises one more issue: the 
augmentation of the slot set in the physical joint schema for the new 
operator schema. We term this process the slot promotion process. The 
ARMS system creates a slot in the new operator schema for every slot in 
the physical joint schema it achieves. In addition, if any precondition or 
subgoal filler matches a filler in another precondition or subgoal, a slot 
is added to the new operator schema to carry this equivalence. 

5.3.2.4. Meeting the Retention Criteria 

At this point, the generalizer is ready to add the newly created 
schema to the schema library. The retention criteria evaluate whether a 
newly acquired schema is worth keeping or not. For the ARMS system, 
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the retention criterion is always met: e.g., if the generalizer gets this 
far, the new schema is always worth keeping. 

5.3.2.5. Integrating Newly Acquired Schemata 

The new composite operator schema must be added to the schema 
library in such a way that it can be used both in understanding and in 
planning. If integrated properly, the system should not be able to tell 
the difference from a built-in operator schema and a newly acquired 
operator schema. 

To be useful in understanding, the new operator schema must be 
the object of some existing schema's suggestion pointer. A suggestion 
pointer, in the form of a schema template, is therefore created on the 
achieving operator for the last element in the top-level subgoal set. For 
the general case of the generality/operationality tradeoff flag, this 
corresponds to the body of the new composite operator schema. In the 
more operational case, -the suggestion pointer resides on an operator 
schema that is not explicitly mentioned in the new composite operator 
schema. 

To be useful in planning, the new operator schema must be the 
object of some existing state schema's plan pointer. The ARMS 
knowledge representation strategy dictates that the goal of any operator 
contain a plan pointer to that operator. A template is created to 
reference the new schema from its goal (a physical joint schema) and 
added to the goal's plan list. Note that the physical joint schema may 
have been pre-existent, or may also have just been added to the schema 
library during the verification process. 

5.3.2.6. Meeting the Replacement Criteria 

If the generalizer keeps adding new schemata to the schema 
library, the cost of the schema-activation mechanism will continue to 
grow monotonically. The replacement criteria govern the replacement of 
existing schemata with new schemata in the schema library. By using 
replacement criteria to manage the growth of the schema library, it 
should be possible to keep the schema-activation complexity within 
reasonable bounds. The ARMS system does not, however, implement 
any replacement criteria. 



Chapter 6 

The Arms Implementation 

We now describe the implementation of the ARMS system. Unlike 
Chapters 4 and 5, the organization of this chapter does not follow the 
functional divisions implicit in the ARMS architecture. Here our 
description follows the divisions implicit in the ARMS implementation. 
This chapter is in essence a guidebook to the implementation of the 
system, and is intended serve as an aid in any eventual reconstruction 
effort. As one might expect in an object-oriented implementation, the 
functional units of Chapters 4 and 5 are distributed throughout the 
system: for this reason the casual reader is encouraged to skip directly 
to Chapter 7. 

We begin with a brief word about the implementation language 
and a description of two special tools used throughout the system. Next, 
we discuss the world modeler implementation, the graphics subsystem 
implementation, and the implementation of the schema system. 
Finally, we describe top-level access to the ARMS implementation. 

6.1. A Note About the Implementation Language 

The ARMS system runs on a Xerox ll09 DandeTiger lisp machine. 
It is implemented using LOOPS [56], an object-oriented programming 
language embedded in INTERLISP-D [57]. LOOPS provides object
oriented, rule-oriented, and access-oriented extensions to INTERLISP-D. 
The choice of implementation languages is not tremendously relevant, 
since, in addition to LISP, only the object-oriented aspect of LOOPS was 
used extensively in the development of the system. 

For the purpose of our discussion, we avoid explicit references to 
LOOPS or INTERLISP-D. Instead, we define a generic terminology and 
syntax which describe only that subset of the language that is necessary 
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for implementing the system.19 

Our implementation language is basically a frame language [58-
62]. It consists of a set of frames arranged in a semantic hierarchy. The 
structure and behavior of a particular frame depend on the position it 
occupies in the hierarchy. The hierarchy affects a frame by means of the 
inheritance mechanism. 

The ARMS program consists of a set of frames, called types, 
arranged in the hierarchy. Each type is an abstract definition of a 
collection of similar frames. A type is always denoted with a "$" 
followed by a type name (e.g., $Type). Each type has a list of super types 
(or simply supers) that describe the position of the type in the hierarchy. 

The types serve as templates for the creation of tokens. Each token 
represents a particular, unique object. A token is always denoted with a 
"$" followed by a name and a numeric identifier. The name is often, but 
not always, the same name as the token's type: thus, $Type1 denotes a 
token of type $Type. There are, however, cases where a more mnemonic 
name is used. For example, $Peg1, $Washer1, $Blockl and 
$BoredBlock1 all denote tokens of type $Piece. 

A token always belongs to one and only one type. The structure 
and behavior of a token are determined by its type, and, through 
inheritance, by the supers of its type. Not all types, however, can be 
instantiated as tokens. Certain types, called abstract types, serve only as 
place holders in the inheritance hierarchy. Abstract types permit tokens 
of their subtypes to inherit their structure and/or behavior. 

Each type may define token slots, type slots, and/or procedures. 
These features are inherited by tokens belonging to this type or its 
subtypes. Inheritance is resolved by tracing a token's ancestry upwards 
through the inheritance hierarchy described by the supers of its type. 
The preference order for inheritance is left-to-right along the supers list 
~o the lowest shared type (see Figure 6.1). 

A token slot, usually simply termed a slot, contains a pointer. 
Every token of this particular type, or any subtype of this type, has 
access to a copy of this slot. We will denote a token slot by prefacing its 
name with a ":" (e.g., :TokenSlot). A token slot may have some default 
initial value associated with it. 

A type slot also contains a pointer. Every token of this particular 
type, or any subtype of this type, shares access to this same slot. A type 
slot is denoted by prefacing its name with "::" (e.g., ::TypeSlot). A type 

19 The reader familiar with LOOPS will notice many similarities between 
our syntax and that of LOOPS. 
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Types 

Inheritance Order 

Figure 6.1 

slot also has some initial value, although the notion of default is less 
significant here than in the token slot case. 

A procedure, written in LISP, can also be attached to a type. This 
procedural attachment defines how a particular token behaves upon 
receipt of a request. The association between a request and the 
procedure it invokes is made when attaching the procedure to the type. 
Like for slots, a particular token's response to a given request is 
determined by the inheritance hierarchy. We denote a procedure name, 
which is always the same as the request that invokes it, by prefacing it 
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with the type is attached to and a ".", e.g., $Type.Request. When it is 
clear by the context which type the procedure is attached to, the name is 
shortened to simply the procedure name, e.g., Request. 

Requests are sent to tokens: the only exception is the special 
request New that can be sent directly to a type. The New procedure 
returns as its value a new token of the type receiving the request. The 
New procedure takes a single argument, which is the name to be given 
to the new token. If no name is provided, a unique name is created 
automatically by appending a number to the end of the type name. In 
addition, before returning a value, the New procedure automatically 
sends a NewToken request to every new token. Thus it is possible to 
write a NewToken procedure to automatically perform some 
ini tializa tion function. 

We adopt the convention that any procedure always returns as its 
value a pointer to the token that fielded the request, and hence has no 
intrinsic information value. There are two exceptions: 

(1) A procedure fielding a request ending with the character "?" may 
return some other value. 

(2) The procedure fielding the New request, when sent to a type, 
returns a pointer to the newly created token of the type, and not to 
the type that received the request. 

Note that the special symbol self is always bound during execution 
of a procedure to the token receiving the request. 

Finally, we note that there is another mechanism for procedural 
attachment: it is possible to tag a slot (either a token slot or a type slot) 
with two procedures: an if-accessed procedure and a if-changed 
procedure. The if-accessed procedure is invoked every time the value of 
the slot is read, while the if-changed procedure is invoked when the 
value of the slot is written. 

The reader will have no doubt noticed the similarity in the 
language terminology defined above and common schema terminology 
(see Appendix B). Fortunately, the terms are often interchangeable 
since, as we will see in the section describing schema implementation, 
the implementation of a schema slot is, in fact, a token slot. 

6.2. Optimization Tools 

There are two extremely important mechanisms, implemented as 
types, that are used to increase the performance of the ARMS system. 
Normally, one would discuss these programming tricks as a footnote to a 
straightforward description of a naive version of the system. However, 
since this chapter is aimed at facilitating reconstruction efforts, and 
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since the use of these tools pervades the rest of the implementation, we 
choose to discuss them first. 

The first tool, $MatchMixin (see Table 6.1), is used by the schema 
database mechanism (described in Sections 5.1.2. and 6.6.3.) in order to 
match different instances of state schemata. The ability to determine 
when two schemata refer to the same thing is important when 
implementing the database mechanism's schema cache. 

The second tool, $LazyCopy (see Table 6.2), is used by the history 
mechanism (described in Sections 4.2.3. and 6.6.3.) in order to maintain 
layered copies of the solid modeler. 

Both of these tools key on the classic space vs. time programming 
tradeoff; note, however, that they sit on the opposite sides of the issue. 
The state schema database cache saves time in a computationally
intensive process by caching data structures, and, therefore, increasing 
storage requirements. The history mechanism saves space in a storage
intensive process by compressing the data structures, with concomitant 
increase in access time. 

6.2.1. $MatchMixin 

The matching mechanism permits comparison of two tokens, 
returning self if the two tokens represent the same thing. In order to 
match, two tokens must be of the same type, and a selected subset of 
their slots must match recursively. 

The matcher is implemented as an abstract type called 
$MatchMixin. $MatchMixin is used as one of a set of supers for other 
types. By placing a type beneath $MatchMixin in the inheritance 
hierarchy, we endow tokens of the new type with the ability to be 
matched against other tokens. The matching mechanism relies on a 
type slot ::MatchSlots that indicates which slots in the token are 
significant for the matcher. 

$MatchMixin has a single procedure, Matches?, that takes two 
arguments: the first being another token and the second being a schema 

Table 6.1 
$MatchMixin 

TypeS/ols II ::MatchSlots I 
Procedures II Matches? I returns self or NIL 
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template. If only the first argument is given, then self is returned when 
it matches the first argument directly. If a second argument is given, 
then Matches? returns self if a new token created from the second 
argument (a template) using the first argument as requester would 
match self. 

In the absence of a second argument, the Matches? procedure first 
compares the type of each token. If the types are identical, then 
Matches? recursively compares fillers for each slot on ::MatchSlots from 
self with the corresponding fillers from the first argument. If all of 
these also match, then Matches? returns self; otherwise, it returns NIL. 

If a second argument is present, then the header of the second 
argument is compared against the type of self. If these are the same, 
then Matches? recursively compares, for every slot on ::MatchSlots, the 
filler from self with the corresponding filler from the first argument as 
given in the binding equivalences of the second argument. As before, 
Matches? returns either self or NIL. 

Note that this second case could be handled naively by simply 
creating a new token from the first and second arguments and then 
resorting to the first procedure. This would result in many extra tokens 
being generated and subsequently discarded. As implemented, this 
procedure will never create a new token and, therefore, saves storage. 

Since some of the slot fillers are nontokens (e.g., they may be lists 
of tokens, atoms, numbers, etc.), special care must be taken with the 
recursive matching step. The recursive step is implemented with a 
separate function Match, that takes two arguments and returns the first 
if it matches the second. Implementation of the Match function is 
straightforward, the only possible difficulty being insuring that lists 
match any permutation of themselves. 

6.2.2. $LazyCopy 

The lazy copy mechanism permits storage-efficient copying of 
tokens belonging to types below $LazyCopy in the inheritance 
hierarchy. The general idea is to produce a new token, of type 
$LazyCopy, that behaves just like the original token except for certain 
preselected token slots. Those token slots are duplicated, so that the new 
copy may have a different value than the origina1. Any reference to an 
unduplicated slot is referred back to the original token, while any 
reference to one of the duplicated slots is handled locally by the copy. 

To make this process efficient, slot duplication is a lazy process, in 
the sense that duplication takes place only when that particular slot 
filler is accessed. In other words, when accessing a duplicated slot, if no 
filler is found locally, the filler is found in the original and duplicated at 
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the copy at access time. Naturally, if one is writing a new filler at a 
copy no access to the original is needed: one simply creates the duplicate 
slot on the copy and assigns it the new filler. 20 

The process is permitted to continue, whereby a copy can be made 
of a copy and so forth. When a chain of copies is produced, only the very 
first token is not of type $LazyCopy; this is termed the base instance. 
Each successive copy is a token of type $LazyCopy. 

There are four potential problems when implementing $LazyCopy: 

(1) When referring to an unselected token slot in a copy belonging to a 
chain of copies, we should bypass all of the layers and go directly 
to the base instance. Note that this means access to selected slots 
may cascade through many layers before finding the most recent 
filler, while duplicating the slot/filler on each copy traversed. 

(2) Procedural requests fielded by a token of type $LazyCopy must be 
handled by the procedure attached to the type of the base instance. 
The procedure must, however, be invoked in the context of the 
$LazyCopy's slot fillers, rather than those of the base instance. 

(3) Coreferential pointers must remain coreferential. For example, if 
$A, $B, and $C are all subtypes of $LazyCopy and tokens $Ai and 
$Bj both refer to $Ck as a filler, any copies of $Ai and $Bj must 
refer to a unique copy of $Ck. 

Table 6.2 
$LazyCopy 

Supers $MatchMixin 
TypeSlots ::LazySlots used by copy process 

::MatchSlots only :Base used for matching 
Slots :Base points to base token 

:CopyOf points to copied token 
:CopyMap points to token equivalence mappings 

for this generation 
Procedures Copy make next generation copy of self 

Match? for matching mechanism 

20 Subsequent releases of the LOOPS language define a class $VirtualCopy 
that is very similar to our $LazyCopy type. The only difference appears to be in 
the lazy duplication: $VirtualCopy creates the duplicate slots at copy time. 
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(4) Behavior of a $LazyCopy token under the match operation 
described in Section 6.2.1 must be reasonable. 

We handle the first two problems in the same fashion: any access 
to a token of type $LazyCopy, whether for filler information or 
procedure execution, is intercepted at the $LazyCopy and forwarded, 
along with the local slot fillers, to the base instance. 

In order to address the third problem, the procedure for creating a 
lazy copy must insure that, for each generation, there is a single unique 
token for every token of the previous generation. The mechanism that 
enforces this uniqueness consists ofa :CopyMap slot that points to a 
mapping of tokens from the previous generation to their counterparts in 
this generation. This mapping is an association list that is shared by 
every token in a particular generation: it is maintained using LISP 
destructive list operations, such that additions to the mapping are 
immediately accessible to all tokens in a given generation. 

The fourth issue is easily dealt with: in order to match a lazy copy 
against a token it is sufficient to make $LazyCopy a subtype of 
$MatchMixin and to force its ::MatchSlots type slot to contain only 
:Base. There are then two different cases to consider: 

(1) If two tokens are both of type $LazyCopy, then they must have the 
same :Base filler for a match. 

(2) If only one of the tokens is of type $LazyCopy then the other token 
must be the same as the filler of the $LazyCopy token's :Base slot. 

This is implemented as a Matches? procedure attached to 
$LazyCopy. By placing $LazyCopy below $MatchMixin in the hierarchy, 
we insure that this procedure is invoked (rather than 
$MatchMixin.Matches?) if a token of type $LazyCopy fields the 
Matches? request. In addition, a small change is made to 
$MatchMixin.Matches so that Matches? requests with a token of type 
$LazyCopy as the second argument are forwarded to this new procedure 
with their arguments reversed. 

6.3. Implementing the Solid Modeler 

The modeler consists of code for the representation and 
manipulation of objects in three-space, implemented over several 
different types. The semantic hierarchy for this part of the ARMS 
system is shown in Figure 6.2. 

Before discussing the modeler, we take a moment to review the 
homogeneous coordinate system used to represent points in three space 
in order to establish some basic terms. 
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6.3.1. Homogeneous Coordinates 

The ARMS system uses homogeneous coordinates to represent 
points in three-space. The homogeneous coordinate system represents a 
problem in n-space as a problem in (n + I)-space. Manipulations of the 
problem are all done in (n+ I)-space, and the solution is projected back 
into n-space. Our discussion of this technique is limited to a short 
intuitive description. For a thorough review of the mathematics 
involved, see [63]. 

Assume that there is some base right-handed Cartesian coordinate 
system from which everything is measured. Call this origin the world 
coordinate system (or WCS). Now assume you are trying to describe the 
position of an object with respect to the WCS. We represent the object 
being positioned by its own right-handed coordinate system. 

We can now describe the location of the object using a triple of 
values (x, y, z) to indicate the location of the origin of the object 
coordinate system. But this does not tell us anything about the 
orientation of the coordinate system: is it lying on its side? Is it upside 
down? By establishing some reference state for the orientation of the 
object coordinate system (such as the orientation of the WCS), we can 
give angles of rotation about the three Cartesian axes, or (yaw, pitch, 
roll), that describe the orientation of the coordinate system with respect 
to the reference state. Note that the order these rotations are applied in 
is significant: we choose to apply them always in left-to-right order 
about the X, Y, and Z axes, respectively. 
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Therefore, the position of an object, which can be expressed in 
terms of its location and orientation, can be completely given with six 
values: (x, y, z, yaw, pitch, roll). These six values are the degrees of 
freedom of the object with respect to the frame of reference. But this is 
not a particularly convenient representation to manipulate: we therefore 
turn to a homogeneous coordinate representation for ease of 
manipulation. Using homogeneous coordinates, expressing a position in 
terms of another position that was in turn given with respect to the 
origin, is simply a matter of matrix multiplication. 

The ARMS implementation of homogeneous coordinates uses only 
two data structures: the point (a 1x4 matrix) and the position (a 4x4 
matrix). A point or position is normally expressed in terms of the WCS 
unless otherwise noted (e.g., point with respect to WCS and position 
with respect to WCS become simply point and position, respectively). To 
represent a vector, ARMS uses a point data structure to represent the 
tip of the vector in some frame of reference. 

Functions are provided to create points and positions, access and 
change their individual elements, and calculate dot products, Cartesian 
distance and vector distance between pairs of points and/or positions. 
Positions can be inverted, translated to the origin, and they may also 
have their normals (a unit vector along the Z axis) extracted. Finally, 
vectors (which are indistinguishable from points in structure) may be 
normalized, e.g., rescaled into unit length vectors. 

In addition, a set of comparison functions on two positions is 
provided. These functions use a global tolerance value to avoid 
problems with computer arithmetic roundoff error. The comparison 
functions provided can be used to test whether 

(1) the two positions are equal; 

(2) the Z axes of the two positions are colinear; 

(3) the Z axes of the two positions are parallel; 

(4) the Z axes of the two positions are orthogonal; 

(5) the two positions are colinear and their x axes are parallel 
(aligned); 

(6) or the XY planes of the two positions are coplanar. 

6.3.2. $W orkSpace 

A token of type $WorkSpace (see Table 6.3) represents a snapshot 
of the ARMS world at a given time. We define the world coordinate 
system (WCS) as the coordinate frame of reference of the workspace 
surface. This is the origin with respect to which all other points in the 
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world are defined. 

The slots on $WorkSpace correspond directly with the physical 
components of the ARMS robot world discussed in Section 4.1.1.2.: 

(1) The :Contents slot contains a list of the pieces in the workspace, 
where each piece is represented by a token of type $Piece. 

(2) The:Arm slot points to a token of type $Arm which represents the 
robot arm. 

(3) The :Surface slot points to a token of type $PlanarSurface which 
represents the table top. 

(4) The :View slot points to a token of type $View that manages the 
graphic display of the workspace. If :View is NIL, no graphic 
display is supported. 

The procedures attached to the $WorkSpace type manipulate the 
world representation: 

(1) The AddPiece procedure adds a piece to the contents of the 
workspace, establishes support for the piece, and updates the 
graphics system if there is one. Note that AddPiece also tags the 
piece's :Position slot with an if-changed procedure if and only if 
there is a graphics system associated with this workspace. The if
changed procedure updates the picture of the piece on the screen 
whenever its position is changed. 

(2) The DeletePiece procedure is used to remove a piece from the 
workspace, again causing the appropriate changes to occur in an 

Table 6.3 
$WorkSpace 

Supers $LazyCopy 
TypeSlots ::LazySlots :Contents, :Arm, :View 
Slots :Contents list of $Piece tokens 

:Surface $PlanarSurface token 
:Arm $Arm token 
:View pointer to graphic display 

Procedures AddPiece add token to :Contents 
DeletePiece remove token from :Contents 
Input emulator: forwards command to :Arm 
NewToken initialization procedure 
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associated view. 

(3) The Input procedure is used by the ARMS emulator. It takes a 
primitive arm command as its argument and forwards the 
command to the filler of the :Arm slot (a token of type $Arm). The 
arm emulates the command, causing some changes to occur in self 
to reflect the changes wrought by the arm command. 

(4) The NewTok en procedure is an initialization procedure invoked 
automatically when a new token of type $W orkSpace is created. It 
creates a new token of type $PlanarSurface and places this token 
on the :Surface slot. It also initializes the graphic system if there is 
to be a view for this workspace. 

$WorkSpace is a subtype of $LazyCopy, supporting storage-efficient 
copies of a snapshot via the lazy copy mechanism described in Section 
6.2.2. Since the position of pieces as well as the arm may change with 
time, the ::LazySlots type slot lists both :Contents and :Arm are marked 
as lazy slots for the lazy copy mechanism. Since the workspace surface is 
never changed or moved, it need not be included on ::LazySlots. The 
:View slot is included, since each world snapshot implies a different 
view of the workspace. 

6.3.3. $PositionedObject 

$PositionedObject (see Table 6.4) is the simplest type in the entire 
ARMS system. It contains the lone slot :Position that gives the position 
of any subtoken in terms of some coordinate frame of reference (usually 
the WCS). $PositionedObject is an abstract type; thus, no explicit tokens 
of this type are ever instantiated. 

6.3.4. $Piece 

Tokens of type $Piece (see Table 6.5) are used to represent the 
pieces manipulated by the robot arm. $Pegl, $Washerl, $BoredBlockl 
and all the others mentioned in Chapter 2 are tokens of type $Piece. 
$Piece is a subtype of $PositionedObject, and therefore inherits a 
:Position slot. The :Position filler indicates where the piece represented 

Table 6.4 
$PositionedObject 

Slots 1\ :Position I matrix representing 3D position 
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by this token is located with respect to the WCS. 

The slots on $Piece describe the physical structure of the piece 
represented by a given token: 

Table 6.5 
$Piece 

Supers $PositionedObject 
$LazyCopy 

TypeSlots ::LazySlots :Support, :SupportingSurface, 
:Position, :Segment 

Slots :Primitives list of $Primitive tokens 
that define self 

:Surfaces list of $Surface tokens 
belonging to self 

:Holes list of $Hole tokens belonging to self 
:Support $Piece token or $WorkSpace token 

on which self rests 
:SupportSurface member of :Surfaces in contact 

with :Support 
:Mass mass calculated from :Primitives 
:CenterOfMass point wrt :Position 
:DisplayOps 3D wireframe specification 
:Segment pointer to 2D projection 

of wireframe 
Procedures NewToken computes :Surfaces, :Holes, 

:Mass, :CenterOfMass 
Support? computes :Support, :SupportSurface 
Inside? T if given point is inside self 

at current position 
Intersect? T if given line intersects self 

at current position 
On? T if given point is on self 

at current position 
Render projects self on view 
GraspPosi tion? planner: returns consistent 

grasping strategy for self 
Collisions? used to find interpiece collisions 
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(1) The :Primitives slot contains a list of tokens describing the CSG 
primitives which define this piece. The :Position slots on these 
tokens represent the position of the primitives with respect to the 
position ofthe piece. 

(2) The :Surfaces slot contains a list of tokens describing the surfaces 
(BRep) of the piece derived from the CSG primitives used to define 
the piece. The :Position slots of these tokens represent the 
positions of the surfaces with respect to the position of the piece. 

(3) The :Holes slot contains a list of tokens describing the holes in 
piece resulting from the application of the contained difference 
CSG operator to the piece's constituent primitives. The :Position 
slots of these tokens represent the positions of the holes with 
respect to the position of the piece. 

(4) The :Support slot points to either another token of type $Piece 
representing the piece underneath the current piece, or to the 
token of type $PlanarSurface representing the table top of the 
current workspace. This slot indicates what is providing the 
current piece with support. 

(5) The :SupportSurface slot points to the member of :Surfaces in 
contact with the :Support filler. 

(6) The :Mass slot contains the mass of the piece as computed from the 
mass of its constituent primitives. 

(7) The :CenterOfMass slot contains a matrix describing the center of 
mass with respect to the piece's frame of reference. This point is 
computed from the masses of the constituent primitives of the piece 
and is used to determine what is supporting the piece. 

(8) The :DisplayOps slot contains a list of 3D graphics commands 
which represent the wireframe outline of the piece. This is 
computed from the wireframes of the constituent primitives. 

(9) The :Segment slot contains a pointer to a token of type $Segment 
used by the graphics package to represent the 2D rendering of the 
3D graphics commands in :DisplayOps. 

The procedures attached to $Piece are used predominantly to 
support geometric operations on the piece. 

(1) The NewToken procedure is invoked when a new piece is created. 
It is this procedure that calculates the surfaces, holes, mass, and 
center of mass of a piece from its constituent primitives. 
Calculation of mass and center of mass are straightforward: recall 
that primitives which are removed using the CSG contained 
difference operator have a different effect on the center of mass 
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than those primitives added using the eSG disjoint union operator. 

The collection of surfaces and holes works as follows: 

For each primitive in :Primitives: 
Collect their Surfaces on surfaceList. 

For every surface in surface List: 
If surface's primitive is solid: 

If surface is covered by another surface 
on different solid primitive of :Primitives: 

then discard it, 
else retain it on selfs :Surfaces. 

Else if surface's primitive is not solid: 
If surface is covered by another surface 

on a different solid primitive of :Primitives: 
then change surface into a hole and add to selrs :Holes, 
else invert its normal and retain it on selrs :Surfaces. 

There are procedures attached to the various surface types that are 
used to determine if one surface covers another surface. 

NewToken is also responsible for initializing the graphics package. 
The :DisplayOps slot contains a set of 3D display operations which 
result in a wireframe representation of the piece. The :Segment 
slot points to a token of type $Segment (see Section 6.4.2). 

(2) The Render procedure is used to project the 3D wireframe in the 
:DisplayOps into a 2D representation stored in the $Segment 
token, taking into account the current position of the piece and all 
of the viewing parameters of the current view (see Section 6.4.1). 
The interface to the graphics package is provided via the use of an 
if-changed procedure tagged onto the :Position slot of each token of 
type $Piece. When the piece is moved, its :Position slot value 
changes, and the if-changed procedure forces updating of the view. 
The :Position slot for a given $Piece token is tagged by the 
$WorkSpace.AddPiece procedure. 

(3) The Support? procedure returns the support and supporting surface 
for self in a given workspace. This procedure, although extremely 
naive, is a compromise that works rather well due to the restricted 
nature of the piece tokens allowed by the modeler. The algorithm 
works as follows (see Figure 6.3): 
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Drop a line down from the :CenterOtMass wrt WCS. 
Find the most distant intersection of this plumb line with self. 
Identify the surface of this intersection as the :SupportSurface. 
If there is contact between the :SupportSurface and workspace: 

then :Support is the workspace surface. 
Else if there is contact between :SupportSurface and another piece: 

then :Support is the other piece. 
else :Support is NIL. 

There are procedures attached to the various surface types which 
are used to calculate line/surface intersections as well as 
point/surface contact. 

(4) The Inside?, Intersect? and On? procedures are used to compute 
various geometric operations on the piece involving points and line 
segments. In general, they forward the same request onto the 
constituent parts of the piece, whether the relevant parts are 
surfaces, holes, or primitives. 

(5) The GraspPosition? procedure is used by the planner to return a 
legal grasping position for the piece at its current location. It takes 
many arguments, including a list of surfaces and primitives which 
must not be in contact with the gripper fingers or occluded by the 
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Illustration of $Piece Support? Algorithm 

Figure 6.3 
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gripper palm. The GraspPosition? procedure returns an arm 
position which will allow the gripper to grasp the piece by opposing 
surfaces on one of selfs primitives, without violating the requested 
free surface and primitive criteria. 

(6) The Collisions? procedure is used to find collisions between self and 
other pieces in the workspace when self is projected along a given 
axis. This is used in finding bounds on the joints during the goal 
verification process. 

The type $Piece is a subtype of $LazyCopy. Since the position of a 
piece changes with time, :Position is one of the ::LazySlots for tokens of 
type $Piece. Other lazy slots include :Support and :SupportSurface, 
which also change with time, and :Segment. By making :Segment a lazy 
slot, we retain the ability to display a view of the workspace at any time 
tick without further computation. 

6.3.5. $Primitive 

Tokens of types $Block and $Cylinder appear on the :Primitives 
slot of tokens of type $Piece. They are the basic building blocks of the 
CSG modeler. $Block and $Cylinder are subtypes of the abstract type 
$Primitive (see Table 6.6). They inherit :Piece, :Density, and :Solid? 
slots from $Primitive, and a :Position slot from $PositionedObject. 

The value of :Position represents the position of the primitive with 
respect to the piece frame of reference (represented by the :Position slot 
attached to the piece). It is easy to calculate the position of a particular 
primitive by multiplying the position of the primitive by the position of 
the piece. Note that the value of this :Position slot, unlike the :Position 
slot of a token of type $Piece, never changes once the piece is defined! 

Table 6.6 
$Primitive 

Supers $PositionedObject 
Slots :Piece $Piece token to 

which self belongs 
:Solid? indicates CSG 

combination operator 
:Density used to compute mass 

Procedures GenerateHolesAndSurfaces initializes piece :Surfaces 
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Hence :Position is not a lazy slot when it belongs to tokens of subtypes 
of type $Primitive.21 

The :Piece slot contains a pointer to the token of type $Piece to 
which this $Primitive token belongs. The :Solid? slot is T for solid CSG 
primitives, and NIL for nonsolid CSG primitives. The :Density slot is 
used in the calculation of mass for a given piece: each primitive is 
allowed to have a different value for its density, thereby changing the 
stability requirements for the piece. 

6.3.6. $Block, $Cylinder 

The $Block and $Cylinder types (see Tables 6.7 and 6.8) are very 
similar: the procedures attached to them have the same protocols and 
calling procedures, but differ internally due to the differing structure of 
the types themselves. 

$Block contains :Width, :Height, and :Length slots, while 
$Cylinder contains :Radius and :Height slots. These slots taken together 
give the dimensions of the particular instance of the primitive. From 
these, values for the :Center and :Volume slots are computed. :Center 
gives the Cartesian position of the center of mass of this primitive (with 
respect to the position of the primitive), and is used in computing the 

Table 6.7 
$Block 

Supers $Primitive 
Slots :Width X dimension 

: Length Y dimension 
:Height Z dimension 

Procedures Surfaces? returns list of surfaces 
DisplayOps? generates wireframe specification 
Insertable? is self insertable in argument? 
Inserted? is self inserted in other primitive? 
Aligned? is self aligned with other primitive? 
Inside? is position inside self? 

21 In fact, $Primitive does not contain $LazyCopy on its supers list. No 
slots belonging to $Primitive or any of its subtypes ever change once the piece 
has been defined. 
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Table 6.8 
$Cylinder 

Supers $Primitive 
Slots :Radius XY dimension 

:Height Z dimension 
Procedures Surfaces? returns list of surfaces 

DisplayOps? generates wireframe specification 
Insertable? is self insertable in argument? 
Inserted? is self inserted in other primitive? 
Aligned? is self aligned with other primitive? 
Inside? is position inside self? 

center of mass of the piece. Both of these slots contain examples of 
tagged procedural attachment: their values are computed from the 
dimension slots using an if-accessed procedure. 

The Surfaces? procedure returns a list of new $Surface tokens 
representing the surfaces for the given $Primitive token. Note that the 
$Surface tokens are created in such a manner as to reflect the 
dimensions of the primitive, and whether or not the primitive is solid. 
This procedure is invoked by $Piece.NewToken, and is only used at 
piece creation time. 

The Inside? procedure takes a point and returns T if that point is 
inside the primitive, else it returns NIL. The Inserted? procedure is 
similar, except it compares the primitive with another primitive of the 
same type and returns T if one encloses the other: the enclosing 
primitive must not, of course, be solid. The Aligned? procedure 
compares the primitive with another primitive of the same type and 
returns T if the primitives are aligned on the same coordinate axes. 

The Insertable? procedure compares self with another primitive or 
a hole and returns T unless there is no possible insertion of self in the 
argument. This is predominantly used as a test predicate for constraint 
schemata. 

The DisplayOps? procedure is used to generate the proper 3D 
display operations which specify the wireframe of the primitive. The 
wireframe is computed using the dimensions of the given primitive. The 
DisplayOps? procedure is also invoked by $Piece.NewToken as part of 
the piece initialization process. 
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6.3.7. $Surface 

The abstract type $Surface (see Table 6.9) exists in order to endow 
its subtypes, which represent the faces and holes of a piece, with :Piece, 
:Primitive, and :OpposingSurfaces slots. Note that these subtypes also 
inherit :Position slots, since $Surface is itself a subtype of 
$PositionedObject. 

The :Piece and :Primitive slots point to the piece and primitive this 
surface token belongs to. Just as in the case of the $Primitive tokens, 
the :Position slot represents the position of the surface with respect to 
the position of the piece it belongs to. The :OpposingSurfaces slot 
contains a list of other tokens that represent other surfaces belonging to 
the same piece as self whose normals point in the opposing direction. 
This information is used by the $Piece.GraspPosition? procedure, and is 
initialized by the $Piece.NewToken procedure. 

Given the restricted nature of the CSG primitives and combination 
operators, only two types of surfaces can ever arise in the ARMS solid 
modeler. These are represented by the types $PlanarSurface and 
$CylindricaISurface, which are subtypes of $Surface. 

6.3.8. $PlanarSurface, $CylindricalSurface 

Tokens of types $PlanarSurface and $CylindricalSurface (see 
Tables 6.10 and 6.11) appear on the :Surfaces slot of tokens of type 
$Piece. They represent the faces of the piece, and therefore constitute 
the BRep representation. 

The :Type slot contains a keyword that indicates the type of planar 
surface (rectangular or round) or cylindrical surface (exterior or interior) 
that is represented by a given token. $B1ock primitives give rise to 
rectangular $PlanarSurface tokens, while $Cylinder primitives result in 
round $PlanarSurface and both types of $CylindricalSurface tokens. 
The dimensions of each token are determined by the $Piece.NewToken 

Table 6.9 
$Surface 

Supers $PositionedObject 
Slots :Piece $Piece token to which self belongs 

:Primitive $Primitive token to which self belongs 
:OpposingSurfaces list of opposing surfaces on same piece 
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Table 6.10 
$PlanarSurface 

Supers $Surface 
Slots :Type one of Round or Rectangular 

:XDim X dimension for Rectangular, 
radius for Round 

:YDim Y dimension for Rectangular, 
null for Round 

Procedures CoLinear? is self colinear with other surface? 
CoPlanar? is self coplanar with other surface? 
Covers? does self cover other surface? 
Intersect? does line intersect self? 
On? is point on self? 
Oppose? does self oppose other surface? 
Overlap? does self contact other surface? 
Parallel? is self parallel with other surface? 

Table 6.11 
$CylindricalSurface 

Supers $Surface 
Slots :Type one of Exterior or Interior 

:Radius radius of tubular surface 
:ZDim height of tubular surface 

Procedures CoLinear? is self colinear with other surface? 
CoPlanar? is self coplanar with other surface? 
Covers? does self cover other surface? 
Intersect? does line intersect self? 
On? is point on self? 
Oppose? does self oppose other surface? 
Overlap? does self contact other surface? 
Parallel? is self parallel with other surface? 

procedure in accordance with the dimensions of the primitives making 
up the piece. 
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The brunt of the geometric operations supported by the modeling 
system are implemented as procedures attached to these two types. 

(1) The CoLinear? procedure returns T if the given surface is colinear 
with self. 

(2) The CoPlanar? procedure returns T if the given surface is coplanar 
with self and has an opposing normal. 

(3) The Oppose? procedure is much like CoPlanar?, except any 
distance is allowed between the two parallel surfaces. 

(4) The Parallel? procedure returns T if the normal of the given 
surface is parallel with the normal of self. 

(5) The Covers? procedure returns T if the given surface is coplanar 
with self and its extent is covered by self. 

(6) The Overlap? procedure is much like Covers?, except the two 
surfaces must have opposing normals, and there need not be a 
covering: simple contact will suffice. 

(7) The Intersect? procedure returns the point where self intersects a 
given line segment, if any. 

(8) The On? procedure returns T if a given point is on self. 

6.3.9. $Hole 

Tokens of type $Hole (see Table 6.12) are used to represent 
openings in the pieces themselves: they result from the use of the CSG 
contained difference combination operator. 

When a planar surface on a primitive that is the object of a 
contained difference operator is covered by another planar surface on 
the same piece, it is replaced with a token of type $Hole. The only holes 
allowed result from planar surfaces, and so, as one might expect, $Hole 
is a subtype of $PlanarSurface (thus permitting inheritance from that 
type). The only slot added by the $Hole type lists any other holes in the 

Table 6.12 
$Hole 

Supers $PlanarSurface 
Slots :OpposingHoles exit hole, if any 
Procedures Swallows? checks against surface 
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piece which resulted from the same contained difference operation and 
have an opposing normal: this implies that the primitive removed with 
the contained difference goes all the way through the piece. 

The Swallows? procedure is the only procedure attached to $Hole. 
$Hole.Swallows? checks the hole against another surface and an axis, 
returning T only if the hole, when projected along the axis, covers the 
surface. 

6.3.10. $Arm 

A token of type $Arm (see Table 6.13) represents the idealized 
robot arm that manipulates the pieces in the workspace. It is a subtype 
of $PositionedObject, and therefore possesses a :Position slot that holds 
the current gripper position as measured at the hot spot. 

The slots of $Arm are used to describe the size, shape, and 
configuration of the gripper. 

(1) The :Palm slot contains a token of type $Block representing the 
part of the gripper between the two fingers. The :Position slot of 
this token represents the position of the palm with respect to the 
gripper hot spot. 

(2) The :Fingers slot contains a list of two tokens of type $Block 
describing the two identical gripper fingers. The :Position slots of 
these tokens represent the positions of the fingers with respect to 
the hot spot. 

(3) The :Contacts slot contains a list of two points, given with respect 
to the hot spot, which are located on the tips of the two fingers. 
These contact points can be thought of as the two rubber pads 
found on the inner surfaces of the finger tips of many commercially 
available robot arm grippers. 

(4) The :Spread slot contains a number indicating the current aperture 
between the two fingers, as measured at the contact points. 

(5) The :MaxSpread slot contains a number giving the upper bound on 
the possible values of the :Spread slot. 

(6) The :FingerLength slot contains a number giving the maximum 
clearance between the palm and the finger tips. 

(7) The :PalmClearance slot contains a number giving the clearance 
between the palm of the gripper and any piece currently being 
held. 

(8) The :HeldPosition slot contains the position of any piece currently 
being held, given with respect to the gripper hot spot. 
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Table 6.13 
$Arm 

Supers $PositionedObject 
$LazyCopy 

TypeSlots ::LazySlots :Contacts, :Spread, :PieceHeld, 
:HeldPosition, :Position, 
:WorkSpace, :Segment 

Slots :Palm token of type $Block 
:Fingers list of two tokens of type $Block 
:Contacts list of two points wrt :Position 

at finger tips 
:Spread current aperture between fingers 
:MaxSpread maximum finger aperture 
:FingerLength distance from hot spot to palm 
:PalmClearance margin between palm and 

any piece held 
:PieceHeld token of type $Piece being 

held by gripper, if any 
:HeldPosition position wrt :Position of :PieceHeld 
:WorkSpace token of type $WorkSpace 

containing self 
:Segment for 3D graphics 
:DisplayOps for 3D graphics 

Procedures Close emulator: close fingers 
Open emulator: open fingers 
MoveTo emulator: change position 
Translate emulator: change position 

along axis by de Ita 
Rotate emulator: change position 

about axis by theta 
Render projects self on view at position 
NewToken initializes :Contacts, :Spread 

(9) The :WorkSpace slot contains a pointer to the workspace snapshot 
associated with this token. 

(10) The :DisplayOps slot contains a list of 3D graphics commands 
which represent the wireframe outline of the gripper. This is 
computed from the wireframes of the constituent primitives. Note 
that unlike the :DisplayOps slot on a piece, the gripper's display 
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operations will change as the gripper changes finger configuration. 

(11) The :Segment slot contains a pointer to a token of type $Segment 
used by the graphics package to represent the 2D rendering of the 
3D graphics commands in :DisplayOps. 

With a single exception, the procedures attached to $Arm are all 
used to implement the emulator. The emulator takes a primitive arm 
command and a workspace snapshot (usually a token of type $LazyCopy) 
and updates the workspace to reflect the effects of the execution of the 
primitive arm command input. Most of the changes made are to the 
slots on the $Arm token corresponding to the workspace, although some 
changes may result from modeling arm/piece interactions. 

The emulator forwards a request corresponding to the arm input 
command to the :Arm filler from its workspace snapshot. Each arm 
primitive has a corresponding procedure attached to $Arm that modifies 
the workspace snapshot (and thus also the related arm) accordingly. 

(1) The Close procedure closes the gripper fingers as far as possible 
within the current workspace snapshot given by :WorkSpace. Close 
may affect the fillers of the :Contacts and :Spread slots directly. In 
addition, Close will usually change the :Position slots of the tokens 
on the :Fingers slot. Close checks for pieces between the fingers 
when closing the gripper, and, if there is a piece, computes new 
fillers for :PieceHeld, :HeldPosition, and :PalmClearance. A piece, 
when grasped by the gripper, has its :Support and :SupportSurface 
slots set to NIL. 

(2) The Open procedure opens the gripper fingers as far as possible (as 
given by :MaxSpread), making changes similar to those made by 
the Close procedure. If :PieceHeld is non-NIL, opening the gripper 
fingers results in dropping the piece. A dropped piece has its 
:Support and :SupportSurface fillers recomputed. 

(3) The Translate procedure computes a new filler for :Position 
reflecting a translation of a given number of units along a given 
axis from the current value of :Position. 

(4) The Rotate procedure computes a new filler for :Position reflecting 
a rotation of a given number of units along a given axis from the 
current value of :Position. 

(5) The MoveTo procedure resets the :Position filler to a given new 
position. 

(6) The NewTok en procedure is not used by the emulator, but rather 
is invoked automatically for every new token of this type to 
initialize certain slot fillers. NewToken is also responsible for 
setting up the graphics display of the $Arm token (much like 
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$Piece.NewToken). 

(7) The Render procedure is used to project the 3D wireframe in the 
:DisplayOps into a 2D representation stored in the $Segment 
token, taking into account the current position of the piece and all 
of the viewing parameters of the current view (see Section 6.4.1). 

There are two if-changed procedures attached to slots on tokens of 
type $Arm. These procedures are used to model arm/piece interactions. 

(1) Changing the robot arm's position must modify the position of any 
piece currently held by the arm. This is handled by an if-changed 
procedure attached to the arm's :Position slot. When the :Position 
is changed and the :PieceHeld filler is non-NIL, a new :Position 
value for the :PieceHeld filler is computed using the arm's new 
:Position and the :HeldPosition filler on $Arm. 

(2) Changing the robot arm's finger spread also invokes an if-changed 
procedure attached to the :Spread slot of $Arm. If the value of 
spread is changed (by a Close or Open request) the following 
procedure is invoked: 

If old :Spread is equal to :MaxSpread 
then if :Position is Inside? any piece in :Contents of :WorkSpace 

then set :Spread, :Contacts, :PieceHeld and :HeldPosition 
else set :Spread to 0 and :PieceHeld to NIL 

else if :PieceHeld is not NIL 
then drop :PieceHeld and establish its support 
in :WorkSpace and set :PieceHeld to NIL. 

6.4. Implementing the Graphics Subsystem 

The graphics system implementation consists of two types, $View 
and $Segment, interfaced to the modeler via an if-changed procedure 
attached to the :Position slot of each $Piece token. The graphics package 
is not meant in any way to represent the state of the art in computer 
graphics. Its description is included only for completeness. The reader is 
referred to [63] for a more thorough discussion of computer graphics. 

6.4.1. $View 

A view maps a three-dimensional wireframe representation of the 
workspace collected from the :DisplayOps slots of the pieces contained in 
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Table 6.14 
$View 

Supers LazyCopy 
TypeS lots ::LazySlots :Segments, :WorkSpace 
Slots :WorkSpace pointer to workspace being viewed 

:Window pointer to window on screen 
:Segments list of segments for this view 
:DrawOp one of PAINT, INVERT, ERASE 
:EraseOp one of PAINT, INVERT, ERASE 
:ViewPoint observer position 
:ViewWidth width of view in window 
:ViewHeight height of view in window 
: ViewingTransform projection transform 

Procedures AddPiece add piece to view 
NewToken initialize view 
Redraw recompute all segments 
Refresh replot the view 
SetView calculate projection transformation 

the workspace (as well as the robot arm) onto a two-dimensional window 
on the workspace screen. It is a subtype of $LazyCopy, since we want 
the view to track the changes made over time by the history 
mechanism. 

The type $View (see Table 6.14) contains slots which are mostly 
used to contain the view's viewing parameters. 

(1) The :WorkSpace slot points to the workspace snapshot represented 
by this view. 

(2) The :Window slot points to the INTERLISP-D window used for 
display of the workspace. 

(3) The :Segments slot contains a list of tokens of type $Segment, one 
for each piece to be rendered. In addition, one segment token is 
used to represent the robot arm. 

(4) The :DrawOp slot contains the INTERLISP-D display operation to 
be used for drawing pieces in the window. This is initially set to 
PAINT. 

(5) The :EraseOp slot contains the INTERLISP-D display operation to 
be used for erasing pieces in the window. This is initially set to 
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ERASE. 

(6) The :ViewPoint slot contains a matrix specifying the position of the 
viewer (or camera). Recall from our discussion of Section 4.2.1.1 
that the viewpoint and the workspace must occupy distinct 
halfspaces. 

(7) The :ViewWidth slot contains an integer describing how much of 
the workspace's width is mapped onto the window. 

(8) The :ViewHeight slot contains an integer describing how much of 
the workspace's height is mapped onto the window. 

(9) The :ViewingTransform slot contains the homogeneous coordinate 
matrix used to transform a point in three-space into a point in 
two-space. The :ViewingTransform is computed as a function of 
:ViewPoint, :ViewWidth, and :ViewHeight and need not be 
recomputed unless one of these fillers is changed. 

The procedures attached to $View manipulate these slots. 

(1) The AddPiece procedure adds a piece to the view. It creates a token 
of type $Segment to represent the piece, and adds it to the 
:Segments slot. It the displays the piece on the view by issuing an 
Update request to the segment token. In addition, :Position slot on 
the piece is tagged with an if-changed procedure so that any future 
changes made to the piece's position also issue an Update request 
to that piece's segment (for the robot arm, a similar if-changed 
procedure is also attached to the :FingerSpread slot). 

(2) The NewToken procedure initializes the view by first creating a 
window on the workstation screen, and then invoking the SetView 
procedure to set up the viewing parameters. 

(3) The Redraw procedure erases the window and issues an Update 
request to every segment in the :Segments filler. This causes the 
projection of each piece (as well as the robot arm) to be recomputed 
and redisplayed. 

(4) The Refresh procedure erases the window and issues a Draw 
request to every segment in the :Segments filler. This causes the 
view to be redisplayed using the current piece projections. 

(5) The SetView procedure is invoked to compute the 
:ViewingTransform filler from :ViewPoint, :ViewWidth, and 
:ViewHeight. The :ViewingTransform, when postmultiplied with a 
matrix representing a point in the workspace halfspace, results in 
a point on the plane separating the workspace halfspace and the 
viewer halfspace. The resulting point is the two-dimensional 
representation of the three-dimensional point as seen by the 
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camera located at the :ViewPoint. 

6.4.2. $Segment 

A segment contains the drawing commands, given as INTERLISP
D operations specific to the screen operations on the workstation, used to 
render a piece on a given view. Each segment corresponds to one and 
only one piece. When the piece is moved, it is necessary to recompute 
the drawing commands that render the piece on the view. 

The slots on $Segment (see Table 6.15) are straightforward: 

(1) The :Piece slot points to the piece rendered by this segment. The 
filler of :Piece is a token of type $Piece or a $LazyCopy of such a 
token. 

(2) The :View slot points to the view on which to render the piece. 

(3) The :DrawVersion slot contains a list of INTERLISP-D operations 
which, when executed, draw the wireframe of :Piece in :View. 

(4) The :EraseVersion slot contains a list of INTERLISP-D operations 
which, when executed, erase the wireframe of :Piece in :View. The 
value of this slot is derived from :DrawVersion by a simple 
substitution of the draw operation for an erase operation in the 
INTERLISP-D statements. 

The procedures attached to $Segment are also quite 
straightforward: 

(1) The Draw procedure executes the INTERLISP-D operations listed 
on the :DrawVersion slot. 

Table 6.15 
$Segment 

Supers LazyCopy 
TypeSlots ::LazySlots :Piece, :View 
Slots :Piece pointer to piece represented by segment 

:View pointer to current view 
:Dra wVersion line drawing operations 
:Erase Version line erasing operations 

Procedures Draw execute :DrawVersion 
Erase execute :EraseVersion 
Update recompute, erase, and redraw 
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(2) The Erase procedure executes the INTERLISP-D operations listed 
on the :Erase Version slot. 

(3) The Update procedure computes a new filler for :DrawVersion by 
issuing a Render request to the filler of :Piece. It then erases the 
existing view of the piece by issuing an Erase request, followed by 
redrawing the new version of the piece by issuing a Draw request. 
Finally, Update derives a new filler for :EraseVersion from the 
current filler of :DrawVersion. Update in effect provides a way of 
buffering the erase and draw operations so that the time spent 
computing the new view of a piece is not noticeable to the person 
viewing it. Note that Update relies on the current value of the 
:ViewingTransform slot of the view. 

6.5. Implementing the Schema System 

In this section, we describe the implementation of the ARMS 
schema system described in Section 5.1. Appendix F contains capsule 
summaries of all of the schemata initially built into the ARMS schema 
library. 

6.5.1. $Schema 

Our implementation represents schemata as tokens of various 
types. All of the schemata in the system are subtypes of the abstract 
type $Schema (see Table 6.16). $Schema implements some of the more 
general manipulation facilities for schemata. It is never directly 
instantiated, but permits other schema types below it in the hierarchy 
to inherit its slots and procedures. It has the following procedures: 

Table 6.16 
$Schema 

Slots :Episode pointer to database 
:PrintName character string label 

Procedures Fillers? returns list of fillers 
Template? returns a template 
CloneBySlot? returns a list of clones 
ReconcileRequest? reconciles self with target 
CloneAndReconcile? reconciles clones with targets 
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(1) The Filler? procedure returns a list of all of the fillers for this 
particular token. 

(2) The Template? procedure takes a single argument, the requester 
(another token), and returns a template that describes self in terms 
of the requester. The header of the template is simply the type of 
self. Template? scans the slots of both tokens and looks for 
matches between the bindings to return (along with the header) as 
the new template. 

(3) The CloneBySlot? procedure takes a slot name and a list of new 
fillers and returns a list of clones differing only in the filler of the 
named slot. Two schema tokens are clones if they are of the same 
type and differ only by one filler. For n fillers, it creates n-1 new 
clones: the remaining value is assigned as the filler for slot in self. 

(4) The ReconcileRequest? procedure takes a template and target 
schema token as arguments. The target schema represents the 
template as evaluated with respect to self. ReconcileRequest maps 
fillers back from the target schema token across the template to 
self. 

(5) The CloneAndReconcile? procedure takes a template and a list of 
target schema tokens as arguments. It is an extension of the 
ReconcileRequest procedure that handles multiple target schemata. 
It returns a list of clones of self which have been reconciled across 
the template with the list of target schemata. 

6.5.2. $StateSchema 

A $StateSchema (see Table 6.17) describes a relation in the 
physical world. Each state has a set of type slots that relates a 
particular token instantiation to other states and operators. 

(1) The ::Contradictions type slot contains a list of state schema 
templates describing other states which, if valid, negate the 
validity of self. 

(2) The ::Substantiators type slot contains a list of state schema 
templates describing other states which, if valid, support the 
validity of self. 

(3) The ::Constraints type slot contains a list of constraint schema 
templates describing constraints which, if valid, support the 
validity of self. 

(4) The ::Plans type slot contains a list of operator schema templates 
describing operators that could be used to achieve self. 
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Table 6.17 
$State8chema 

Supers $Schema 
$MatchMixin 

TypeSlots ::MatchSlots 
::Contradictions schema templates 
::Substantiators schema templates 
::Plans schema templates 
::AntiPlans schema templates 
::Constraints schema templates 

Slots :StartTime first known valid time 
:EndTime last known valid time 
:Constraints schema tokens 
:Substantiators schema tokens 
:Enables schema tokens 
: Supports schema tokens 
:ExplainedBy schema tokens 

Procedures Valid? database: determines selfs validity 
Confirm? database: extends selfs validity 
Establish? database: establishes unique self 
Contradict? database: checks for contradictions 
Cons tr ain ts? database: checks for constraints 
Substantiate? database: checks for supporters 
ExtendLeft? database: extends validity 

back in time 
ExtendRight? database: extends validity 

forward in time 
Plan? planner: plans to achieve self 
AntiPlan? planner: plans to override self 
Realize? planner: completes slots of self 
RealizeConstrain ts? planner: completes slots of self 
Collect? generalizer: returns subtree below 

(5) The ::AntiPlans type slot contains a list of operator schema 
templates describing operators that could be used to override the 
validity of self. 

Each of these type slots is initialized to NIL on $StateSchema. 
Each individual subtype of $StateSchema will have its own filler for 
these type slots. 
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In addition to these type slots, each schema contains a minimal set 
of token slots which, when bound, describe the particular instance of the 
state represented by a given token. 

(1) The :StartTime slot contains a number indicating the earliest 
known time tick where self is valid. It is set by the state schema 
database. 

(2) The :EndTime slot contains the latest known time tick where self 
is valid. It is set by the state schema database. 

(3) The :Enables slot is used by both the understander and planner to 
represent operator schema tokens requiring self as a precondition. 
These tokens correspond to the template on the ::Enables type slot. 

(4) The :Supports slot is used by both the understander and planner to 
represent operator schema tokens pointing to self as a subgoal. 
These tokens correspond to the template on the ::Supports type 
slot. 

(5) The :ExplainedBy slot is used by both the under stander and 
planner to represent operator schema tokens pointing to self as a 
goal. These tokens correspond to the template on the ::ExplainedBy 
type slot. 

(6) In addition to these generic state schema token slots, each subtype 
of $StateSchema contains a set of token slots particular to the 
semantics of the state. For example, to represent the relation: 

$Pegl rests on top of $Washerl 

(as was the case in the observed example of Chapter 2) we use a 
token $Stackedl of type $Stacked with appropriate slots bound to 
both descriptors $Pegl and $Washerl. When $Pegl is later stacked 
on top of $Blockl, we instantiate another token of type $Stacked, 
but with different bindings for the slots. 

The $StateSchema type has the following procedures attached to it: 

(1) The Establish? procedure is the heart of the database mechanism. 
Establish? takes a state schema token and adds it to the database 
if the token is valid and unique. Validity is determined using the 
Valid?, Contradict?, Substantiate? and Constraints? procedures. 
Uniqueness is enforced by examining possible matches in the 
database and returning a pointer to either the state schema token 
given as an argument or the matching extant token found in the 
database. 

(2) The Valid? procedure is unique to every subtype of $StateSchema. 
It performs the geometric reasoning necessary to determine 
whether self is valid at the given time. Valid? is responsible for 
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filling in the unbound slots peculiar to a given state schema during 
the understanding process. 

(3) The Confirm? procedure is also unique to every subtype of 
$StateSchema. It performs the geometric reasoning necessary to 
determine whether self persists unchanged over adjacent time 
ticks. Confirm? usually requires much less computation than 
Valid?: it may, for example, simply check that the pieces involved 
in the relation represented by self remain unmoved. 

(4) The Constraints? procedure queries the database for every 
template on ::Constraints. If every template is valid, the 
corresponding tokens are placed on the :Constraints slot and the 
procedure returns self. Otherwise, the procedure returns NIL. 
Constraints? is inherited from $StateSchema. 

(5) The Contradict? procedure queries the database for every template 
on ::Contradictions. If none of the templates are valid, the 
procedure returns self. Otherwise, the procedure returns NIL. 
Contradict? is inherited from $StateSchema. 

(6) The Substantiate? procedure queries the database for every 
template on ::Substantiators. If every template is valid, the 
corresponding tokens are placed on the :Substantiators slot and the 
procedure returns self. Otherwise, the procedure returns NIL. 
Substantiate? is inherited from $StateSchema. 

(7) The Collect? procedure is used by the generalizer to explore the 
causal model. If one considers the causal model to be a tree rooted 
at the goal state, the Collect? procedure returns subtrees of the 
causal model as rooted at self. Collect? takes an argument 
specifying the format of the subtree returned. Collect? traverses 
links established by the :Substantiators, :Enables, :ExplainedBy, 
and :Supports slots. 

(8) The Plan? procedure is used by the planner. It refers to the ::Plans 
type slot for possible ways of achieving self as a goal. The 
templates on ::Plans indicate operator schemata that achieve this 
state as a goal. Plan? is inherited from $StateSchema. 

(9) The AntiPlan? procedure is also used by the planner. It refers to 
the ::AntiPlans type slot for possible ways of overriding self as a 
goal. The templates on ::AntiPlans indicate operator schElmata 
that have at least one of the contradictions of this state as a goal, 
thus overriding the validity of the state. AntiPlan? is inherited 
from $StateSchema. 

(10) The RealizeConstraints? procedure is used by the planner to flesh 
out the unbound slots in self during planning. RealizeConstraints? 
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uses the constraint schema templates on ::Constraints, along with 
the known slot fillers, in order to derive fillers for some of the 
unbound slots. 

(11) The Realize? procedure is also used by the planner to complete the 
fillers on incompletely specified state tokens. Realize? is unique to 
every state schema; it is therefore responsible for fleshing out the 
slots peculiar to self during the planning process in much the same 
way Valid? is used during the understanding process. 

(12) The ExtendLeft? procedure attempts to extend the validity of the 
state token back in time from the current value of :StartTime. It 
invokes the Confirm? procedure with decreasing values of time 
until it fails or reaches time O. ExtendLeft? updates the value of 
:StartTime. 

(13) The ExtendRight? procedure attempts to extend the validity of the 
state token forward in time from the current value of :EndTime. It 
invokes the Confirm? procedure with increasing values of time 
until it fails or reaches the current time. ExtendRight? updates the 
value of :EndTime. 

6.5.2.1. $ConstraintSchema 

The definition of $ConstraintSchema (see Table 6.18) parallels that 
of $StateSchema. A constraint has a fixed slot set as described in 
Section 5.1.1.1.1. 

(1) The :Type slot indicates what relation must be satisfied between 
the other slots in order for this constraint to be valid. This is either 
a unary or a binary relation, such as LESSP (integer less than) or 
EQP (integer equals). 

(2) The :Path1 slot is used to describe the first argument to the 
relation given as the filler of :Type. A path corresponds to a slot 
name or a sequence of slot names to be followed as pointers from 
the requesting schema. 

(3) The :Path2 slot is used (if present) to describe the second argument 
to the relation given as the filler of :Type. 

(4) The :Constant slot is a pointer that is to be used (if present) as the 
second argument to the relation given as the filler of :Type. If 
:Path2 is not given, :Constant must be given. If :Path2 is given, 
:Constant may be left unfilled. If both :Path2 and :Constant are 
given, then :Path2 is used to determine the second argument, and 
the result from the evaluation of the relation given in :Type is 
checked for equality with the filler of :Constant. 
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Table 6.18 
$ConstraintSchema 

Supers $Schema 
$MatchMixin 

TypeS lots ::MatchSlots 
Slots :Enables list of state schema tokens 

:Type binary relation or request 
:Pathl path to argument 1 
:Path2 path to argument 2 (optional) 
:Constant value for argument 2 (optional) 
:Templates list of template indexed by requester 

Procedures Valid? database: determines validity of self 
Establish? database: establishes unique self 
Template? returns a template for requester 

Recall also that a constraint schema does not change with time. 
Therefore the Establish? and Valid? procedures, which are used by the 
database mechanism, are slightly different from those for $StateSchema. 

Note the absence of a Confirm? procedure, since once a constraint 
is deemed valid there is no need to confirm it for differing time values. 

The Template? procedure is also slightly different from the 
$Schema.Template? procedure. Since a constraint often evaluates to 
something like: 

5 is greater than 2, 

it is important to retain the original form of the constraint template 
with respect to the requesting schema. In other words, if schema $Ai 
requests a constraint template 

($C (Type LESSP)(Pathl :Width)(Constant 5» 

an entry of the form 
($Ai . ($C (Type LESSP)(Pathl :Width)(Constant 5))) 

is retained on the :Template slot. This entry permits the reconstruction 
of the particular constraint template corresponding to this constraint 
schema token. Note that different constraint templates may end up 
pointing to the same constraint schema token, since, of course, 5 is 
always greater than 2. The Template? procedure simply accesses 
:Template using the requesting schema as an index and returns the 
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corresponding entry. 

6.5.2.2. $JointSchema 

The abstract type $JointSchema (see Table 6.19) and its subtypes 
implement the ARMS domain theory. Recall from our discussion of 
Sections 4.1.5 and 5.1.1.1.2 that a joint relates two primitives (and 
hence two pieces) by describing a family of legal transformations 
between them. These transformations are given as sets of degrees of 
freedom between the joint's end piece/primitive pairs. 

Two totally unrelated pieces in free space have six degrees of 
freedom between them. Three of the degrees of freedom are orthogonal 
prismatic degrees of freedom. These permit the repositioning of one 
piece with respect to the other by sliding it along the X, Y, and/or Z 
axes of some coordinate frame of reference. The other three degrees of 
freedom (remember there are a total of six for unrelated pieces) are 
revolute degrees of freedom. These permit the reorientation of one piece 
with respect to the other by twisting it around the X, Y, and/or Z axes of 
the coordinate frame of reference. 

The immediate subtypes of $JointSchema comprise the abstract 
joint schemata, while their subtypes in turn comprise the physical joint 
schemata. Abstract joint schemata describe the mechanical behavior of 
the joint, while physical joint schemata describe the physical realization 
of the joint. 

The implementation of $JointSchema roughly parallels that of 
$StateSchema, with a few additions and slight modifications. 
$JointSchema contains a set of type slots which, in addition to the type 
slots inherited from $StateSchema, relate a particular token 
instantiation to other states and operators. 

(1) The ::InstantiationType type slot is used to mark a particular 
instantiation as a simple or compound joint. A simple joint relates 
its piece/primitive pairs directly, while a compound joint relates its 
piece/primitive pairs via a chain of subjoints. ::InstantiationType is 
NIL for a simple joint, while for on a compound joint it contains a 
list of slot names where the interim pieces and primitives are 
stored. 

(2) The ::lnstantiationSubstantiators type slot contains a set of state 
schema templates which, when instantiated and valid, imply this 
joint is also valid. ::InstantiationSubstantiators are only used for 
physical joint schemata. 

(3) The ::InstantiationConstraints type slot contains a set of constraint 
schema templates describing the interpiece physical constraints 
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Table 6.19 
$JointSchema 

Supers $StateSchema 
$MatchMixin 

TypeSlots ::Ma tchSlots 
::InstantiationType simple or compound joint 
::InstantiationConstraints interpiece constraints 
::InstantiationSubstantiators substantiators for physical 

joint schemata 
::DOFs degree of freedom 

templates 
::DOFConstraints interDOF constraints 

Slots :Pieces list of pieces in joint 
:Transform current relation between 

end pieces 
:InstantiationConstraints constraint schema tokens 
:DOFSlots slot names for degree 

of freedom tokens 
:DOFConstraints constraint schema tokens 

Procedures BuildN ewJ oin tSchema verifier: adds new 
physical joint schema 

Confirm? database: confirms validity 
DOFRealize? planner: completes slots 
DOFValid? database: check validity of 

degrees of freedom 
KnownJointlnstantiation? database: known physical 

joint schema 
NewJointlnstantiation? database: find kinematic 

chain equivalent 
Plan? planner: achieves self 
Realize? planner: completes slots 
Realizelnstan tia tions? planner: completes slots 
Valid? database: determines 

validity of self 
VerifyConstraints? database: checks 

constraints 
VerifySubstantiators? database: checks 

substantiators 
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that must be true for the joint to be valid. 
::InstantiationConstraints are only used for physical joint 
schemata. 

(4) The ::DOFs type slot contains a list of degree of freedom templates 
that describe the degrees of freedom which characterize this 
particular joint instantiation. 

(5) The ::DOFConstraints type slot contains a list of constraint schema 
templates that must be true for this joint to be valid. These 
constraint schema templates relate to the degrees of freedom which 
characterize this joint. 

Each of these type slots is initialized to NIL on $JointSchema. 
Each individual subtype of $JointSchema will have its own fillers for 
these type slots. 

(1) The :Pieces slot contains a list of pieces related by this joint. At the 
very least, :Pieces will contains pointers to the two end pieces of 
the joint. For compound joints, any interim pieces will also be 
included on :Pieces. 

(2) The :Transform slot contains a matrix indicating the current 
position of the second joint end piece from the first joint end 
piece/primitive pair's frame of reference. 

(3) The :InstantiationConstraints slot contains pointers to the 
instantiated versions of the constraint templates found on the 
::InstantiationConstraints type slot. 

(4) The :DOFSlots slot lists the slot names on self where pointers to 
the degree of freedom tokens characterizing self can be found. 

(5) The :DOFConstraints slot contains pointers to the instantiated 
versions of the constraint templates found on the ::DOFConstraints 
type slot. 

(6) In addition to these generic joint schema token slots, each 
immediate subtype of $JointSchema contains a set of token slots 
identifying the pieces and primitives involved in the joint. At the 
very least, these slots include :Piecel, :Piece2, :Primitivel, and 
:Primitive2 that describe the end piece/primitive pairs for the joint. 
Any interim piece/primitive pairs in the chain will appear as slots 
of the form :InterimPiecei and :InterimPrimitivej. 

The procedures attached to $JointSchema are inherited by all joint 
schemata, both physical joint schemata and abstract joint schemata. 
None of the subtypes of $JointSchema have any procedures attached to 
them at all. 
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(1) The BuildNewJointSchema procedure takes a kinematic chain that 
corresponds to an abstract joint specification and creates a new 
subtype of the existing abstract joint schema. The new type is a 
physical joint schema describing how the abstract joint schema was 
achieved in the observed example. BuildNewJointSchema creates 
additional slots on the new type corresponding to any interim 
pieces and primitive in the kinematic chain. 

(2) The Confirm? procedure confirms the continued existence of the 
joint. If the relative positions of the pieces involved have not 
changed, the joint is easily confirmed. Otherwise, the substantiator 
set must be reestablished for the joint to be confirmed. 

(3) The DOFRealize? procedure creates the appropriate tokens of type 
$DegreeOfFreedom and returns self or a list of clones of self. 
DOFRealize? is analogous to $StateSchema.RealizeConstraints? in 
that it also applies the constraint templates on ::DOFConstraints 
as a filter on the returned set of clones. 

(4) The DOFValid? procedure establishes the appropriate tokens of 
type $DegreeOfFreedom for self and establishes their boundary 
conditions by issuing a FindBounds? request to each degree of 
freedom. In addition, DOFValid? checks for compliance to the 
constraint templates of ::DOFConstraints. 

(5) The KnownJointInstantiation? procedure is applied only to 
abstract joint schemata. It attempts to find a physical joint schema 
related to self that is valid at the current time. Physical joint 
schemata which implement self are found by examining subtypes 
of the type of self. KnownJointInstantiation? returns the first 
valid physical joint schema token that is an instantiation of a 
subtype of the type of self. 

(6) The NewJointInstantiation? procedure is applied only to abstract 
joint schemata when no known physical joint schema 
corresponding to self is found to be valid. It looks for an open 
kinematic chain relating the end piece/primitive pairs of self via 
some transitive chain of currently valid physical joint schemata. 

(7) The Plan? procedure is used by the planner. When applied to a 
physical joint schema, it follows the same procedure as 
$StateSchema.Plan? When applied to an abstract joint schema, it 
issues a Plan? request to every possible realization of self as 
returned by a Realize? request. 

(8) The Realize? procedure is also used by the planner to complete the 
fillers on an incompletely specified joint schema token. Once the 
end piece/primitive pairs and any interim piece/primitive pairs are 
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fleshed out, Realize? issues a DOFRealize request to every degree 
of freedom if self is a physical joint schema. If self is an abstract 
joint schema, then Realize? issues a RealizeInstantiations? 
request. Realize? returns self, a list of clones of self, or NIL. 

(9) The RealizeInstantiations? procedure returns all possible physical 
instantiations of the receiving abstract joint schema. It creates 
tokens corresponding to each subtype of the type of self, and issues 
a Realize? request to each resulting token. RealizeInstantiations? 
returns self, a list of clones of self, or NIL. 

(10) The Valid? procedure ascertains the validity of both physical joint 
schemata and abstract joint schemata. When issued to a physical 
joint schema, Valid? returns self, a list of clones of self, or NIL. 
When issued to an abstract joint schemata, Valid? returns a token 
or list of tokens of the corresponding physical joint schemata or 
NIL. Valid? fleshes out all of the unfilled token slots on self. For 
physical joint schemata, it then issues VerifyConstraint? and 
VerifySubstantiator? requests, returning a value only if both 
complete successfully. If self is an abstract joint schema, Valid? 
first issues a KnownJointInstantiation? request, and, failing there, 
issues a NewJointInstantiation? request. Valid? returns a value 
only if one of these two requests returns a value. 

(11) The VerifyConstraints? procedure checks the constraint templates 
on ::InstantiationConstraints for validity. It is only applied to 
physical joint schemata. Valid constraint schema tokens are placed 
on the token slot :InstantiationConstraints. This procedure returns 
self or NIL. 

(12) The VerifySubstantiators? procedure checks the state schema 
templates on ::InstantiationSubstantiators for validity. It is only 
applied to physical joint schemata. Valid substantiator state 
schema tokens are placed on the :Substantiators token slot. In 
addition, VerifySubstantiators? issues a DOFValid? request to self. 
This procedure returns self or NIL. 

6.5.2.2.1. $DegreeOfFreedom 

The abstract type $DegreeOfFreedom (see Table 6.20) is used to 
represent a single degree of freedom of a given joint. Its function is to 
model the degree of freedom and its boundary conditions, determining 
the range of motion permitted by this particular physical instantiation. 

$DegreeOfFreedom has the following token slots defined: 

(1) The :Joint slot points to the joint schema this degree of freedom 
belongs to. 
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Table 6.20 
$DegreeOfFreedom 

Slots :Joint pointer to joint token 
:Piece1 joint end piece 
:Piece2 joint end piece 
:Primitive1 joint end primitive 
:Primitive2 joint end primitive 
: Orientation major axis measured wrt :Primitive1 
:UpperBound upper joint limit 
:UpperBoundType upper joint limit 
:UpperStop upper joint limit 
: LowerBound lower joint limit 
:LowerBoundType lower joint limit 
: LowerStop lower joint limit 
:Range range of travel between limits 

(2) The :Piece1, :Piece2, :Primitive1, and :Primitive2 slots contain 
pointers to the end piece/primitive pairs of this joint. 

(3) The :Orientation slot gives a matrix indicating the orientation of 
the degree of freedom major axis in the frame of reference of 
:Primiti ve 1. 

(4) The :UpperBound slot contains a matrix indicating the position of 
:Piece2 in the frame of reference of :Piece1 at the joint's upper 
limit of travel. 

(5) The :UpperBoundType contains NIL if this is a soft bound (see 
Section 4.1); otherwise, it contains a pointer to a token 
representing the surface that imposes the hard bound. 

(6) The :UpperStop slot contains a pointer to the other surface 
involved in the collision imposing the hard bound, or NIL if this is 
a soft bound. 

(7) The :LowerBound, :LowerBoundType, and :LowerStop slots contain 
analogous information related to the joint's lower limit of travel. 

(8) The :Range slot contains an integer indicating the range of travel 
available to the joint between its upper and lower limits of travel. 

$DegreeOfFreedom has no procedures attached directly to it. 
Rather, there are procedures attached to the two subtypes of 
$DegreeOfFreedom that are used to represent the two distinct types of 
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degrees of freedom described previously. 

6.5.2.2.1.1. $PrismaticDOF, $RevoluteDOF 

The types $PrismaticDOF and $RevoluteDOF (see Tables 6.21 and 
6.22) are used to represent the two distinct types of degrees of freedom. 
They have no type or token slots, but only parallel sets of procedures 
attached to them. 

(1) The Cancel? procedure compares the :Range of self against a 
system-wide tolerance. If the range is reduced below the tolerance, 
the degree of freedom is no longer considered viable, and Cancel? 
returns T. 

(2) The FindBounds? procedure establishes lower and upper bounds 
(either soft or hard) for a degree of freedom. It also sets the :Range 
filler to reflect the range of travel available to the degree of 
freedom. FindBounds? works by looking for possible collisions 
between end pieces while moving one of them along the axis of the 
degree of freedom. FindBounds? also takes an optional pieceList 
argument that specifies other pieces to consider as possible 
collision agents. This allows establishing bounds on degrees of 
freedom within a kinematic chain, rather than simply on degrees 

Table 6.21 
$PrismaticDOF 

Supers $ DegreeOfFreedom 
Procedures Cancel? compares :Range to tolerance 

FindBounds? establishes bounds 
Matches? matches degrees of freedom 

Table 6.22 
$RevoluteDOF 

Supers $DegreeOfFreedom 
Procedures Cancel? compares :Range to tolerance 

FindBounds? establishes bounds 
Matches? matches degrees of freedom 
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of freedom from a simple joint. 

(3) The Matches? procedure mimics the $MatchMixin.Matches? 
procedure in its calling protocols. Note, however, that 
$DegreeOfFreedom is not a subtype of $MatchMixin: the local 
Matches? procedure is tailor-made for comparing degrees of 
freedom. 

6.5.2.2.2. $Cy lindricalJ oint 

The type $CylindricalJoint (see Table 6.23) is fairly representative 
of the immediate subtypes of $JointSchema. As such, it was chosen as 
an example of an abstract joint schema. In general, an abstract joint 
schema will contain certain type slot values that make it differ from 
other abstract joint schemata. In this case, the relevant type slots are 
::DOFs and ::Constraints, but other abstract joint schemata may 
specialize a different slot set. 

Recall that a cylindrical joint has two degrees of freedom, a 
prismatic degree of freedom and a revolute degree of freedom, aligned on 
the same major axis. The type $CylindricalJoint has two type slots that 
override the corresponding type slot default values given III 

$JointSchema. 

(1) The ::DOFs type slot contains two templates: one for a 
$PrismaticDOF and one for a $RevoluteDOF. The two degrees of 
freedom share a single :Orientation. 

(2) The ::Constraints type slot contains constraint schema templates 
indicating that the two end pieces must be different, and that the 
two end primitives must belong to their respective end pieces. 

Table 6.23 
$CylindricalJoint 

Supers $JointSchema 
TypeSlots ::DOFs degree of freedom templates 

::Constraints constraint schema templates 
Slots :Piecel joint end piece 

:Piece2 joint end piece 
:Primitivel joint end primitive 
:Primitive2 joint end primitive 
:Orientation major joint axis wrt :Primitivel 
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In addition, $CylindricalJoint contains the following token slots: 

(1) The :Piece1, :Piece2, :Primitive1, and :Primitive2 slots contain 
pointers to the end piece/primitive pairs of this joint. 

(2) The :Orientation slot gives a matrix indicating the orientation of 
both degrees of freedom in this joint based on the frame of 
reference of :Primitive1. 

6.5.2.2.3. $RigidJointA 

The type $RigidJointA (see Table 6.24) is fairly representative of 
the physical joint schemata built into the system. Recall that physical 
joint schemata may be acquired by the system in the course of a 
learning episode (see Section 5.3.2.1.2). As with abstract joint schemata, 
physical joint schemata in general contain a specialized set of type and 
token slots that are available only in their general form on 
$JointSchema. For $RigidJointA, the specialized type slots are the 
::InstantiationSubstantiators and ::InstantiationConstraints. 

Recall that a rigid joint has no degrees of freedom between its end 
piece/primitive pairs. The type $RigidJointA has two type slots that 
override the corresponding type slot default values given in 
$J ointSchema. 

(1) The ::InstantiationSubstantiators slot contains a single state 
schema template describing an $Inserted state schema. 

(2) The ::InstantiationConstraints slot contains constraint schema 
templates which force :Primitive1 to be a CSG solid, while 
:Primitive2 must not be a CSG solid. In addition, a constraint is 
placed on the relative sizes of :Primitive1 and :Primitive2 so that 
insertion achieves a rigid fit. 

Table 6.24 
$RigidJointA 

Supers $RigidJ oint 
TypeSlots ::InstantiationSubstantiators substantiators for 

physical joint schemata 
:: Instantia tion Cons train ts interpiece physical 

constraints 
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6.5.3. $OperatorSchema 

All of the operator schemata in ARMS are subtypes of the type 
$OperatorSchema (see Table 6.25). An operator schema describes how 
some action or set of actions taken by the robot arm affect the world 
state. Each operator schema has a set of type slots that describe how a 
particular token instantiation is related to other states and operators. 

(1) The ::Goals type slot contains a list of state schema templates 
describing states that result from the application of self. 

(2) The ::Preconditions type slot contains a list of state schema 
templates describing state that must be valid in for self to be 
applied. 

(3) The ::SubGoals type slot contains a list of state schema templates 
(possibly mixed with sublists of state schema templates) describing 
a partial ordering of states that characterize the application of self. 

(4) The ::Body type slot contains a single operator schema template 
describing an operator which, when applied in the context 

Table 6.25 
$OperatorSchema 

Supers $Schema 
TypeSlots ::Goals list of goal templates 

::Preconditions list of precondition templates 
::SubGoals list of subgoal templates 
::Body body template 
: :Suggestions list of action schema templates 

Slots :Goals list of goal instances 
:Preconditions list of precondition instances 
:SubGoals list of sub goal instances 
:Body body instance 
:Suggests list of action schema instances 

Procedures Activate? understander: checks operator 
for activation 

Suggest? understander: returns likely 
suggestions of self 

Execute? planner: executes self as a plan 
Collect? generalizer: returns subtree 

below self 
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established by the preconditions and subgoals of self, causes the 
goal states to become valid. 

(5) The ::Suggests type slot contains a list of state schema templates 
describing states that should be considered for activation when self 
becomes active. Usually these suggested states contain self as their 
body. 

Each of these type slots is initialized to NIL on $OperatorSchema. 
Each individual subtype of $OperatorSchema will have its own filler for 
these type slots. 

In addition to these type slots, each schema contains a minimal set 
of token slots which, when bound, describe the particular instance of the 
state represented by a given token. 

(1) The :Goals slot us used by both the understander and planner to 
represent state schema tokens resulting from the application of 
self. These tokens correspond to the templates on the ::Goals type 
slot. 

(2) The :Preconditions slot is used by both the understander and 
planner to represent state schema tokens that must be valid for 
the application of self. These tokens correspond to the templates 
on the ::Preconditions type slot. 

(3) The :SubGoals slot us used by both the understander and planner 
to represent a partial ordering of state schema tokens 
characterizing the application of self. These tokens correspond to 
the templates on the ::SubGoals type slot. 

(4) The :Body slot us used by both the understander and planner to 
represent an operator schema token which, when applied in the 
context established by the preconditions and subgoals of self, 
results in the validity of the goals. This token corresponds to the 
template on the ::Body type slot. 

(5) The :Suggests slot us used by both the understander and planner 
to represent state schema tokens that are suggested upon 
activating self. These tokens correspond to the templates on the 
::Suggests type slot. 

(6) In addition to these generic state schema token slots, each subtype 
of $OperatorSchema contains a set of token slots particular to the 
semantics of the operator. These slots generally correspond to the 
union of slots on the goal states of self. 

Unlike the $StateSchema.Realize or $StateSchema.Valid? 
procedures, none of the procedures attached to $OperatorSchema are 
overridden by procedures tailor-made to suit a particular operator. The 
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procedures attached to $OperatorSchema are applicable to all operator 
schema tokens (with the possible exception of the primitive operators: 
see next section). 

(1) The Activate? procedure determines whether the suggested schema 
represented by self is activated in the current context. Activate? 
implements the non-predictive understanding process of Section 
5.3.1.3.2. Activate? returns NIL if the schema fails to meet the 
activation conditions. If the activation conditions are met, 
Activate? returns self or a list of clones of self, depending on 
whether self was fully instantiated. If the schema was only 
partially instantiated, the list of clones represents all active fully
instantiated versions of self. 

(2) The Suggest? procedure is used by the understander. Suggest? 
returns the list of operator schemata suggested by the activation of 
self. Suggest? instantiates the schema templates on the ::Suggests 
type slot of self and checks for validity of their goal states. Only 
suggestions whose goal states are valid at the current time are 
returned as the result of Suggest? 

(3) The Execute? procedure is used by the planner. Execute? 
implements the execution step described in Section 5.2.2. Execute? 
returns self (or a clone of self) if the goals of self (or its clone) are 
successfully achieved (or are already valid). 

(4) The Collect? procedure is used by the generalizer to explore the 
causal model. If one considers the causal model to be a tree rooted 
at the goal state, the Collect? procedure returns subtrees of the 
causal model as rooted at self. Collect? takes an argument 
specifying the format of the subtree returned. Collect? traverses 
links established by the :Preconditions, :SubGoals, :Body, and 
:Goals slots. 

6.5.3.1. $PrimitiveSchema 

Primitive operator schemata are all subtypes of the abstract type 
$PrimitiveSchema (see Table 6.26). $PrimitiveSchema is in turn a 
subtype of $OperatorSchema. It contains the following additional slots: 

(1) The :Time slot contains a value giving the time tick this operator 
was executed. 

(2) The :Position slot contains a matrix giving the end position of the 
gripper, after command execution, for this primitive. 
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Table 6.26 
$PrimitiveSchema 

Supers $OperatorSchema 
Slots :Time time of execution 

:Position end gripper position 
Procedures Execute? executes the primitive 

The only procedure attached to $PrimitiveSchema is the Execute? 
procedure, which takes care of some of the bookkeeping involved in 
executing a primitive arm command. It is similar to the 
$OperatorSchema.Execute? procedure, but without the recursive 
execution of other operators. 

Finally, we note that each of the five primitive arm commands is 
implemented as a subtype of $PrimitiveSchema. The individual 
primitive operator schemata also have individualized Execute? 
procedures that interface the schema system with the history 
mechanism by issuing an Input request to the current episode (see 
Section 6.6.2). Each individual Execute? procedure (e.g., 
$Open.Execute?, $MoveTo.Execute?) shares the bookkeeping facility of 
$PrimitiveSchema.Execute? . 

6.6. Implementing the Top Level 

This section describes the type $Episode (see Table 6.27), tokens of 
which are used to represent each learning or problem-solving episode. 
The performance element, the learning element, the emulator, the 
history mechanism, and the schema system database mechanisms are 
all implemented as procedures attached to this type. 

We divide our discussion of the type $Episode along functional 
lines. We first discuss those slots and procedures that cannot be 
strongly identified with a single function of this type. We then proceed 
to describe the implementation of the history mechanism, the database, 
the planner, the understander, the verifier, and the generalizer. 

6.6.1. General Description of $Episode 

For every example, whether it be a learning or problem-solving 
example, a new token of type $Episode is created. For the scenario of 
Chapter 2 there would be multiple tokens: one corresponding to each 
learning or problem-solving episode. Every episode, regardless of 
whether a learning or problem-solving one, has a goal associated with it. 
Finally, each episode has a certain set of slots and procedures that 
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Table 6.27a 
$Episode 

Slots :PlanMode learning/planning episode 
: Goal goal template specification 
:GoalSchema pointer to goal token 
:AssemblySequence series of robot 

arm command tokens 
:ActiveSchemas active operator schemas 
: V erboseMode diagnostic messages on/off 
:StatsFlag statistics gathering on/off 
:OpGenFlag generality/opera tionali ty 

tradeoff flag 
:Browser pointer to causal 

model display 
:RS232Mode output to real arm on/off 
:CurrentTime history mechanism: time in 

clock ticks 
:WorkSpace history mechanism: pointer 

to current snapshot 
:Trace history mechanism: previous 

snapshots 
:OpenStates database 
:RightOpenStates database 
:LeftOpenStates database 
:ClosedStates. database 
: V alidConstraints database: valid constraint 

schemata 
:JointSchemas database: valid joint schemata 
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Table 6.27b 
$Episode 

Procedures 
AddBrowser adds causal model browser 
AddView adds graphic display 
AnalyzeDependencies generalizer: finds shared 

substructures 
AnalyzeJ oints generalizer: orders by DOF 

dependencies 
BreakDownStates generalizer: eliminates shared 

substructures 
BuildN ewSchema generalizer: builds new 

operator schema 
CloseLeft database: firms :StartTime on 

state schema token 
CloseRight database: firms :EndTime on 

state schema token 
DeterminePrecondi tions generalizer: finds preconditions 
FindChains? verifier: invoked by joint 

schema validation 
Generalize generalizer: entry point 
Input history: entry point 
NewToken initializes browser and graphics 
Observe understander: entry point 
Plan planner: entry point 
PromotePrecondi tions generalizer: promotes to subgoals 
PromoteS lots generalizer: collects new slots 
Revert history: resets to earlier time 
Valid? database: entry point 
Verify? verifier: entry point 
WorkSpace? history: returns 

pointer to snapshot 

provide user interface and debugging functions. 

The relevant slots of $Episode are 

(1) The :PlanMode slot identifies which type of episode the particular 
token represents. If T, it represents a problem-solving episode. If 
NIL, it represents a learning episode. 

(2) The :Goal slot contains a schema template describing the expert
specified goal state. This is usually an abstract joint schema 
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template. 

(3) The :GoalSchema slot contains a fully instantiated physical joint 
schema corresponding to the abstract joint schema template of the 
:Goal slot. 

(4) The :AssemblySequence slot contains a list of primitive operator 
schemata representing the robot arm command sequence observed 
or planned to this point. 

(5) The :ActiveSchema slot contains a list of operator schemata 
activate by the schema activation mechanism in a learning 
episode, or realized by the planning process in a problem-solving 
episode. 

(6) The :VerboseMode Bag slot turns diagnostic messages from the 
database mechanism on or oft'. 

(7) The :StatsFlag slot turns on statistics gathering for performance 
evaluation (see Appendix E). 

(8) The :GenOpFlag slot contains the value of the 
generality/operationality trade-oft' Bag described in Section 5.3.2.3. 

(9) The :Browser slot turns the dynamic causal model display browser 
on or oft'. In addition, it is possible to set :Browser so that the 
model is displayed only at the end of the observed episode. 

(10) The :RS232Mode Bag slot turns on echoing of primitive arm 
commands to the real robot arm via the RS232 serial port. 

There are times when it is expeditious to run the system without 
either a graphic view or a browser, since these tend to slow the system 
down quite a bit. Therefore, there are two related debugging 
procedures: 

(1) The AddView procedure turns on the graphic output if the current 
episode does not already have a view on the world. It takes a 
single argument representing the time tick identifying the desired 
view. This permits the expert to run the system without paying 
the overhead associated with maintaining the view, yet still be 
able to inspect a view of the world on demand. 

(2) The AddBrowser procedure turns on the dynamic causal model 
display browser if the current episode does not already have one. 
Like AddView, this permits the expert to inspect the state of the 
causal model at any time tick on demand. 

The NewToken procedure is executed whenever a new token of 
type $Episode is created. It performs various initialization functions 
required by the graphics and browser subsystems. 



The Arms Implementation 141 

6.6.2. Implementing the History Mechanism 

The job of the history mechanism is to maintain the workspace 
snapshots that trace the history of this episode. The general idea is to 
use the $LazyCopy mechanism to support a kind of layered copying 
where each layer corresponds to a time tick. The history mechanism 
provides indexing facilities (by tick) and also manages the emulator, 
which is used to compute new snapshots upon receipt of an arm 
command. The history mechanism is implemented as a collection of 
slots and procedures on $Episode. 

The slots of $Episode used to implement the history mechanism 
are 

(1) The :CurrentTime slot records the time corresponding to the 
current snapshot. 

(2) The :WorkSpace slot always points to a token of type $WorkSpace 
or $LazyCopy (Section 6.3.2) that represents the state at time 
:CurrentTime. 

(3) The :Trace slot contains the previous layers of the emulator, 
represented as previous generations of $LazyCopy and $W orkSpace 
tokens. 

These slots are manipulated by a set of procedures, also attached to 
the type $Episode. 

(1) The Input procedure pushes the current :WorkSpace on :Trace, 
increments the value of :CurrentTime by 1, and creates a new 
workspace lazy copy by issuing a Copy request to the last snapshot. 
The new workspace snapshot becomes the new filler for 
:WorkSpace, and is passed to the emulator for updating. 

(2) The WorkSpace? procedure takes an integer as its only argument 
and returns a pointer to the snapshot corresponding to that time 
tick. If no argument is given, a pointer to the current filler of 
:WorkSpace is returned. 

(3) The Revert procedure allows unwinding of the system state to a 
previous time by flushing the later layers of the emulator. This is 
especially useful when debugging, since it permits re-executing a 
particular arm command that may occur late in a sequence. 
Revert simply resets the :WorkSpace slot to the snapshot 
corresponding to the desired time, and removes any later snapshots 
from :Trace. 
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6.6.3. Implementing the State Schema Database 

The state schema database is responsible for creating and 
maintaining the state schema representation of the world. It must be 
able to create new schema tokens, determine their validity and temporal 
scope, and satisfy requests for information about both new and existing 
state schema tokens. It is implemented using a collection of slots and 
procedures on the type $Episode. 

The database is accessed via the procedure $Episode.Valid? This 
procedure takes the following arguments: 

(1) A state schema template or token which is the object of the 
request; 

(2) A pointer to the schema token making the request; 

(3) A time value indicating at what tick to check for validity; 

(4) A flag indicating whether the requester expects the database to 
return all matches or only the first one found. 

$Episode.Valid? returns a token, a list of tokens, or NIL, indicating no 
valid token was found to match the request. The basic procedure is 

If the request is a template, create a token using the pointer to requester. 
If the request is a constraint then 

If the request matches an entry in : ValidConstraints then 
Insure request is listed on :Templates of match and return match. 

Else evaluate constraint. 
If evaluated constraint is true then 

Add evaluated constraint to :ValidConshaints and return it. 
Else if it is not true return NIL. 

Else if the request is not a constraint then 
If the request can be found in the cache then 

Return the match. 
Else attempt to establish the new state. 

If request can be established then 
Add established request to cache and return it. 

Else return NIL. 

Attempts to establish a new token are handled by sending the 
token an Establish? request. This request is fielded by either 
$ConstraintSchema.Establish? or $StateSchema.Establish?, depending 
on the type of the token. 
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The four slots :OpenStates, :LeftOpenStates, :RightOpenStates, and 
:ClosedStates contain lists of state schema tokens used to implement the 
database cache mechanism. We describe the caching mechanism by first 
considering the implementation of a simpler caching strategy and then 
extending it to the more complex ARMS caching strategy. 

Recall that each state token contains :StartTime and :EndTime 
fillers that describe the temporal scope of the state. A naive caching 
strategy can be implemented using two slots :OpenStates and 
:ClosedStates as follows: 

(1) Whenever a new state schema token $Si is validated at time t, 
determine the earliest tick at which $Si is valid by attempting to 
confirm $Si at each time tick counting down from t. This can be 
accomplished by issuing an ExtendLeft? request to $Si and setting 
:StartTime to the value returned. :EndTime is set to t. 

(2) The new token $Si is placed on the :OpenStates list, signifying 
that while its :StartTime is known, its :EndTime is not definite. 

(3) At every new time tick, attempt to extend the :EndTime of every 
token on the :OpenStates list by issuing an ExtendRight? request 
to each token. If a token cannot be extended, transfer it from the 
:OpenStates list to the :ClosedStates list. Tokens on :ClosedStates 
have their temporal scopes firmly delineated by their :StartTime 
and :EndTime slots. 

While this is an adequate (and easy to implement) caching 
strategy, it wastes precious computational resources in attempting to 
extend the scope of every new state schema token back to the first time 
tick, as well as in extending the scope forward at each new time tick. A 
simple extension consists of invoking the forward extension process only 
on demand: e.g., when a database request at time t matches a state 
schema token on :OpenStates with an :EndTime of [-no This kind of on
demand extension can result in a significant savings of computational 
resources, since many tokens, once established, are never accessed 
again. 

Extending the temporal scope of every new state schema token as 
far back as possible is also a waste of resources. In addition, the cost 
associated with this extension grows with the length of the assembly 
sequence. We can extend the notion of on-demand extension to include 
extending the :StartTime of a token backwards. To do this, we split the 
:OpenStates and :ClosedStates lists into the four lists :ClosedStates, 
:OpenStates, :RightOpenStates, and :LeftOpenStates. 

(1) The :ClosedStates slot contains tokens whose temporal scope (as 
described by the :StartTime and :EndTime slots) is known to be 



144 Machine Learning of Robot Assembly Plans 

nonextendible. 

(2) The :OpenStates slot contains tokens whose temporal scope (as 
described by the :StartTime and :EndTime slots) is possibly 
extendible both backward and forward in time. 

(3) The :LeftOpenStates slot contains tokens whose temporal scope (as 
described by the :StartTime and :EndTime slots) is possibly 
extendible only backward in time. 

(4) The :RightOpenStates slot contains tokens whose temporal scope 
(as described by the :StartTime and :EndTime slots) is possibly 
extendible only forward in time. 

Every new state schema token $Si established at time t is placed 
initially on :OpenStates with both :StartTime and :EndTime slots set to 
time t. If the token matches a future database query, its temporal scope 
may be extended on demand, causing migration of the token from 
:OpenStates to either :LeftOpenStates or :RightOpenStates and, 
eventually, :ClosedStates. This migration is handled by the following 
two procedures attached to $Episode: 

(1) The CloseLeft procedure fixes the current left endpoint of its 
argument (a state schema token) as firm. Depending on the current 
placement of the state schema token, this procedure causes 
migration of the token to either :RightOpenStates or :ClosedStates. 

(2) The CloseRight procedure fixes the current right endpoint of its 
argument (a state schema token) as firm. Depending on the current 
placement of the state schema token, this procedure causes 
migration of the token to either :LeftOpenStates or :ClosedStates. 

6.6.4. Implementing the Planner 

The planner is invoked by creating a new token of type $Episode, 
initializing it, and issuing a Plan request. Initialization consists of 
setting :CurrentTime to 0, setting the expert's goal specification (an 
abstract joint schema template) on the :Ooal slot, and placing a token of 
type $WorkSpace representing the initial problem-solving world on the 
: WorkSpace slot. :PlanMode is set to T. 

The Plan procedure takes the expert's goal specification, an 
abstract joint schema template on the :Ooal slot, instantiates it, and 
places it on the :GoalSchema slot. It then issues a Plan request to the 
instantiated abstract joint schema. The bulk of the computation is 
supported by the individual state and operator schemata Plan, Realize, 
and Execute procedures. 
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6.6.5. Implementing the Understander 

The understander is invoked by creating a new token of type 
$Epi80de, initializing it, and issuing a Observe request. Initialization 
consists of setting :CurrentTime to 0, setting the user's goal specification 
(an abstract joint schema template) on the :Goal slot, and placing a 
token of type $WorkSpace representing the initial problem-solving world 
on the :WorkSpace slot. :PlanMode is set to NIL. 

The Observe procedure takes as its lone argument a list of 
primitive robot arm commands. The commands are specified as a 
command name (e.g., Open, MoveTo, etc.) and whatever arguments fully 
describe the command (see Section 4.1.4). The Observe procedure 
proceeds as follows: 

(1) Read the next command input and create a primitive operator 
schema token $Pi to represent the input. 

(2) Issue an Execute? request to $Pi (recall that the Execute? 
procedure attached to each primitive operator type in turn issues 
an Input command to the episode's history mechanism). 

(3) Issue a Suggest? request to $Pi and initialize the suggested schema 
list to the result. 

(4) If the suggested schema list is empty, go to Step 1. 

(5) Pop the first suggested schema $Sj ofT the suggested schema list 
and issue it an Activate? request. 

(6) If the Activate? request returned NIL, go to Step 4. 

(7) Place each clone of $Sk returned from the Activate? request on 
:ActiveSchemas. Send each clone a Suggest? request and append 
the results to the suggested schema list. Go to Step 4. 

When there are no longer any primitive arm command inputs left 
to be processed, the Observe procedure issues a Verify? request, 
invoking the verifier. If the verifier terminates successfully (e.g., a non
NIL value results from the Verify? request), then before terminating, 
the Observe procedure issues a Generalize request, invoking the 
generalizer. 

6.6.6. Implementing the Verifier 

The verifier is invoked when the Observe procedure issues a 
Verify? request. The Verify? procedure is in itself quite straightforward. 
It begins by checking if there is a physical joint schema token in the 
database that matches the expert's goal specification (the filler of the 
:Goal slot). If there is, then the goal was recognized during 
understanding (Case 1 of Section 5.3.2.1). This situation fails to meet 
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the ARMS learning criteria, and, therefore, the verifier terminates 
returning NIL. 

If no matching abstract joint schema is found in the database, 
Verify? issues a Valid? request to the database mechanism using the 
expert's goal specification (from :Goal) as the object of the request. 
Verify? sets the value of this Valid? request on the :GoalSchema slot 
and then returns it as its own value: hence, if the database mechanism 
returns NIL, Verify? will also return NIL (corresponding to Case 4 of 
Section 5.3.2.1). 

The joint schema validation mechanism attempts to validate the 
request, perhaps creating a new physical joint schema in the process. 
This corresponds to Cases 2 and 3 of Section 5.3.2.1. If successful, it 
returns a physical joint schema token that corresponds to the expert's 
partially specified abstract joint schema. 

Note that the joint schema validation procedure may, in the course 
of attempting to establish a new physical joint schema, issue a 
FindChains? request to the current episode. The FindChains? procedure 
takes as its arguments two piece/primitive sets, and returns all 
transitive physical joint schema relationships currently in the database 
which can be used to relate the two arguments. 

6.6.7. Implementing the Generalizer 

The generalizer is implemented as a collection of procedures 
attached to the type $Episode. 

(1) The AnalyzeDependencies procedure takes as its argument an 
ordered set of state schema tokens recognized by the under stander 
and determines what shared substructures exist in the subtrees 
rooted at each state. It returns a new ordered set of states that 
has no shared substructures. Shared substructure is found by 
listing all of the substates in the subtrees rooted at each element of 
the input and finding their set intersections. AnalyzeDependencies 
relies on BreakDownStates to derive the shared-substructure free 
state set. 

(2) The AnalyzeJoints procedure takes an unordered set of physical 
joint schema tokens recognized by the understander and imposes 
an ordering based on an analysis of their degrees of freedom. 
AnalyzeJoints insures that any physical joint schema which 
restricts another physical joint schema's degree of freedom occurs 
before the affected joint schema. If schemata that are not joint 
schemata are included on the input list, they are passed through 
undisturbed. 
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(3) The BreakDownStates procedure takes a tree of state and operator 
schema tokens (the explanation) and a set of shared state schema 
tokens as its arguments. BreakDownStates recursively descends 
the tree until it is free of shared states. As the recursion unwinds, 
BreakDownStates retains the set of state schema tokens that 
describes the original tree at the highest possible level of 
description free from elements of the shared state set. 

(4) The BuildNewSchema procedure constructs a new subtype of 
$OperatorSchema describing the newly acquired assembly 
technique and integrates it into the system (see Section 5.3.2.3). It 
takes two sets of state schema tokens (the precondition and the 
subgoal sets) as well as an operator schema token (the body) as 
arguments. BuildNewSchema constructs schema templates from its 
arguments (by issuing Template? requests to the individual 
tokens) and uses the templates to characterize the new operator 
schema. 

(5) The DeterminePreconditions procedure takes a set of state schema 
tokens recognized by the understander and returns a set of state 
schema tokens which are unexplained yet included in the 
explanation subtrees rooted at elements of the argument set. This 
constitutes the initial precondition set for the new schema. 

(6) The PromotePreconditions procedure takes a set of precondition 
state schema tokens (such as that produced by a 
DeterminePreconditions request) and attempts to promote these 
into subgoals of the new schema currently under construction. 
PromotePreconditions is invoked from BuildNewSchema and 
implements the precondition promotion procedure of Section 
5.3.2.3. 

(7) The PromoteSlots procedure takes two sets of state schema tokens 
(a subgoal set and a precondition set), a goal schema token, and an 
operator schema token (the body) representing the newly 
constructed schema. It returns a set of new slots that must be 
added to the newly constructed schema in order to permit transfer 
of bindings among its arguments. PromoteSlots is invoked from 
BuildNewSchema and implements the slot promotion process of 
Section 5.3.2.3. 

(8) The Generalize procedure is the top-level entry point to the 
generalizer. It relies on the verifier placing a validated physical 
joint schema token on the :GoalSchema slot that corresponds with 
the expert's goal specification as stored on the :Goal slot. 
The top-level subgoal set is computed by issuing an AnalyzeJoints 
request using the substantiator set of the :GoalSchema filler as the 
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argument. Then, depending on the value of the :GenOpFlag filler, 
an AnalyzeDependencies request is issued that transforms the top
level subgoal set into a new subgoal set without any shared 
substructures. If the more general new operator schema is desired, 
the AnalyzeDependencies request is not issued. 
A precondition set for the new schema is computed by issuing a 
DeterminePreconditions request with the current subgoal set as its 
argument. Precondition promotion is attempted by issuing a 
PromotePreconditions request. The promotion precondition process 
may cause modification to both the subgoal set and the 
precondition set. 
The body of the new schema is set to the achieving operator of the 
last subgoal in the subgoal set. The last element is then removed 
from the subgoal set. 
At this point, Generalize has determined the structure of the new 
operator schema, and issues a BuildNewSchema request with the 
subgoal set, the body, and the precondition set as arguments. 
BuildNewSchema constructs the new operator schema type, adds it 
to the hierarchy, and constructs the appropriate ::Plans and 
::Suggests links on other members of the schema library (see 
Section 5.3.2.5). 



Chapter 7 

Scenario Revisited 

In this chapter we re-examine the same transcript of the ARMS 
system discussed in Chapter 2. Recall the problem was to construct a 
widget from the initial state shown in Figure 7.1. $BoredBlockl is on 
the right, with its socket also facing towards the right. $Washerl is in 
the foreground, with $Pegl stacked on top of it. In addition, $Blockl is 
in the left rear part of the workspace. 

The gripper is shown in its nest position as a two-fingered palm 
with the two (closed) fingers pointed downwards. The goal state is 
specified as a partially instantiated abstract joint schema: 

$RevoluteJoint [ Piece 1 =$Washerl, Piece2 = $BoredBlockl ]. 

A token $RevoluteJointOl22 that represents this abstract joint schema 
is instantiated. 

7.1. Attempting to Solve the Problem 

The performance element now takes over and attempts to produce 
a sequence of primitive operator schemata which, when executed, will 
produce a final state consistent with the goal specification. The first 
step of this process is the design phase of Section 5.2.1. 

Recall the design phase attempts to produce a fully instantiated 
physical joint schema from the partially instantiated abstract joint 
schema derived from the goal specification. From the abstract joint 
schema $RevoluteJointOl22 we index those physical joint schemata that 
represent physical realizations of this mechanical behavior. 

While the system possesses the abstract joint schema type 
$RevoluteJoint, it has no physical joint schemata that correspond to it. 
Therefore, the design phase terminates unsuccessfully, causing the 
performance element to abort. 
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Initial State for Widget Assembly Problem 

The disembodied robot arm gripper is located in the center of the picture with its fingers 
closed and pointing downwards. $BoredBlockl is off to the right, with its socket also point
ing to the right. $Blockl is in the left rear of the picture. $Pegl is stacked on top of 
SWasherl in the foreground, just left of center. 

Figure 7.1 

7.2. Observing the Expert's Plan 

When the performance element gives up, control passes to the 
learning element, and the expert is asked to lead the robot arm through 
a solution. The expert's input is a list of 30 fully instantiated primitive 
operator schemata. As each input is read in, the emulator simulates the 
changing workspace by executing each arm command. Meanwhile, the 
understander constructs the causal model using the schema·activation 
mechanism described in Section 5.3.1.3.3. 

Note that the solution presented by the expert contains several 
less-than-optimal subsequences. In particular, 

(1) Clearing $Peg1 off of the top of $Washerl uses a sequence of four 
$Translate commands along the world coordinate system axes. 
There is no justification for using the four, more expensive, 
$Translate commands over a single $MoveTo. 

(2) $Peg1 is stacked on top of $Block1 when it is removed from 
$Washerl. An optimal solution would not rely on the presence of 
the extraneous piece $Block1. 

(3) There is an extra $Rotate command before grasping $Washer1 
which does not contribute to the success of the expert's plan. 
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Note that these subsequences do not affect the effectiveness of the 
solution. One would hope, however, that any operator schema acquired 
by the system that can be used to solve this problem would produce a 
better solution; i.e., one that doesn't rely on these quirks of the expert's 
plan. 

7.3. Verifying the Solution 

When the last input is read and the causal model is complete, the 
generalizer takes over. The first task of the generalizer is to ascertain 
that the final state actually fits the goal specification given by the 
expert. 

In Section 5.3.2.1., we discussed the verification process and the 
four possible cases it must handle. The situation in this example is that 
of Case 3, i.e., there is no physical joint schema that can be used to 
justify the validity of the abstract joint schema given as the goal 
specification. 

It is up to the verification process to construct some justification, 
on the basis of its naive kinematic domain theory, of how this assembly 
fulfills the function specified by the goal specification. The first step in 
this analysis is to look for a kinematic chain linking the two end pieces 
specified by the abstract joint $RevoluteJoint0122, the goal specification. 

During the course of the understanding process, the system was 
able to recognize two physical joint schemata, $RigidJointA0301 and 
$CylindricaIJointA0311. Recognition of these two joints was 
accomplished by the activation of two schemata $NewSchemaA0298 and 
$NewSchemaB0308. Both of these operator schemata are instantiations 
of operator schemata acquired by ARMS in the course of previous 
learning episodes. 

These two recognized joints provide a chain between $Washerl and 
$BoredBlockl via $Peg1. In this case, this is the only extant kinematic 
chain between the desired end pieces. 

The verifier now collects copies of all the degrees of freedom in the 
chain, recomputing all of their soft bounds by taking into account the 
presence of the other pieces in the chain. In this example, there are two 
degrees of freedom present: a prismatic degree of freedom and a revolute 
degree of freedom. Both are contributed by $CylindricaIJointA0311. 

The revolute degree of freedom from $CylindricaIJointA0311 has 
no bounds, and no changes on the bounds are made by considering the 
other pieces in the kinematic chain. On the other hand, the prismatic 
degree of freedom contributed by $CylindricaIJointA0311 suffers some 
modification when incorporated into the kinematic chain. 
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This prismatic degree of freedom currently has a hard bound 
imposed by a collision between the underside of $Pegl's head and the 
top surface of $Washerl. The other bound is a soft bound limited only by 
the length of the shaft of $Pegl. When the entire kinematic chain is 
considered, a collision between the underside of $Washerl and the top 
surface of $BoredBlockl causes the soft bound to become a hard bound. 
The range of motion remaining on the prismatic degree of freedom is so 
small as to fall below a system-wide tolerance value which indicates 
when a degree of freedom ceases to be significant. 

The collected degrees of freedom of the kinematic chain are then 
mapped onto the expected degrees of freedom of the abstract joint 
schema $RevoluteJointOl22. In this case, the revolute degree of freedom 
corresponds to the single expected degree of freedom of 
$RevoluteJointOl22. The prismatic degree of freedom is canceled by the 
newly imposed bounds. 

The verification process now constructs a new physical joint 
schema $RevoluteJointA, indexed by $RevoluteJoint, that represents 
this particular physical realization of joint function. The substantiator 
set for $RevoluteJointA contains $CylindricalJointA and $RigidJointA. 
Slots are created on $RevoluteJointA to permit mapping of fillers across 
the substantiator set, and constraints are added that reflect only those 
physical interrelations (e.g., shape and dimension relations) between the 
fillers that were crucial to the cancellation of the prismatic degree of 
freedom. An instance of the new schema, $RevoluteJointA0354, is 
created to represent the achieved goal state. Finally, new slots (e.g., 
InterimPiecel) representing internal chain pieces are added to the new 
physical joint schema. The verification process terminates successfully. 

7.4. Generalizing the Solution 

The top-level subgoal set of this episode consists of the 
substantiators of $RevoluteJointA0354, $CylindricaIJointA0311 and 
$RigidJointA0301. From this subgoal set, the generalizer constructs a 
new operator schema to achieve the goal $RevoluteJointA, the newly 
added abstract schema corresponding to the current goal 
$RevoluteJointA0354. 

The first step is to analyze any dependencies between these top
level subgoals in order to produce a partial ordering on the subgoal set. 
In this case, the analysis is simple since one of the two joints 
($RigidJointA030l) imposes constraints on the degrees of freedom of the 
other joint ($CylindricaIJointA0311). Hence, $CylindricaIJointA0311 
must be achieved before $RigidJointA030l. 
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At this point, the ARMS generalizer is capable of producing two 
different new operator schemata, depending on the value assigned to the 
current episode's generality/operationality trade-off flag (Section 5.3.2.3). 
This parameter reflects the level of representation chosen for the new 
schema: a more general new schema carries a higher price in planning, 
while a more operational new schema is applicable in fewer situations. 

7.4.1. A More General New Schema 

If we chose to produce the most general schema possible, the 
generalizer need not descend below this top-level subgoal set. In 
essence, the top-level subgoal set becomes the explanation for the 
observed episode. 

Preconditions are collected from the top-level subgoal set members. 
The body of the new schema becomes the abstraction of 
$RigiciJointA0301's achieving operator $NewSchemaA0298. The 
remaining subgoal becomes the only element of the new schema's 
subgoal set. 

Slots are added to permit mapping fillers between the subgoal, 
body, and preconditions of the new schema. New slots are used to 
represent surfaces of InterimPiecel and various important dimensions 
(e.g., length of the shaft, depth of the hole). 

The new schema acquired is the most general representation of 
how this joint was achieved (see Figure 7.2). It essentially states 

To achieve an instance of $RevoluteJointA, achieve an instance of 
$CylindricalJointA between Piecel of the joint and and another piece, 
InterimPiecel. Constrain the prismatic degree of freedom of the in
stance of $CylindricalJointA by achieving an instance of $RigidJointA 
between InterimPiecel and Piece2 of the joint. 

7.4.2. A More Operational New Schema 

Examining this new schema reveals that much effort is being 
duplicated in any eventual expansion of the new schema undertaken by 
the performance element. For example, achieving $RigidJointA and 
$CylindricalJointA both require grasping InterimPiecel ($Pegl in this 
example). There should be no need to duplicate planning effort for this 
grasping operation. 

This is the crucial insight that enables the production of a more 
operational new schema. If we descend the causal model until there are 
no more shared substructures and create a new schema at that level of 
representation (as opposed to the top level), we will have produced a 
more operational schema. This new schema is more operational since 
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«Supers OperatorSchema) 
(TypeSlots 
(Ooals «$RevoluteJointA (Piecel Piecel) 

(Piece2 Piece2) 
(Primitivel Primitivel) 
(Primitive2 Primitive2) 
(Orientation Orientation) 
(DOFl DOFl) 
(lnterimPiecel InterimPiecel) 
(lnterimPrimitivel InterimPrimitivel) 
(DOF2 DOF2)))) 

(SubOoals «$CylindricaIJointA (Piecel InterimPiecel) 
(Piece2 Piece2) 
(Prim itive 1 Interim Primitive I) 
(Primitive2 Primitive2) 
(Orientation Orientation) 
(DOFl DOFl) 
(DOF2 DOF2»))) 

<Body ($NewSchemaA (Piecel InterimPiecell 
(Piece2 Piecel) 
(Primitivel InterimPrimitivel) 
(Primitive2 Primitivel»))) 

(TokenSlots 
(Piecel NIL 
(Piece2 NIL 
(Primitive I NIL 
(Primitive2 NIL 
(Orientation NIL 
(DOFl NIL 
(lnterimPiecel NIL 
<InterimPrimitivel NIL 
(DOn NIL 

doc (* From goalSchema» 
doc (* From goalSchema)) 
doc (* From goaISchema» 
doc (* From goalSchema)) 
doc (* From goalSchema)) 
doc (* From goal Schema)) 
doc (* From goalSchema)) 
doc (* From goalSchema)) 
doc (* From goaISchema)))) 

More General Version of $NewSchemaC 

Figure 7.2 

there will not be any wasted planning effort during schema expansion 
and application. 

The shared substructure analysis continues as described in Section 
5.3.2.3. until the top-level sub goal set has been transformed into a new 
subgoal set with no interdependencies present between its members. 
The analysis is order-preserving: hence, the top-level subgoal set 
ordering imposed by the joint dependency analysis has carried through 
to the ordering of this new subgoal set as well. 

Preconditions are collected from the members of the new subgoal 
set. The last element of the set is used to determine the body of the new 
schema. The remaining subgoals become the subgoals of the new 
schema. 
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The precondition promotion cycle is used to promote certain 
preconditions into the new subgoal set (see Section 5.3.2.3). In this 
example, all of the preconditions are promoted to the subgoal set. In 
addition, new slots are created (via the slot promotion process of Section 
5.3.2.3) to permit the mapping of fillers among the elements of the new 
schema. 

The schema produced, $NewSchemaC, is shown in Figure 7.3. It 
essentially states 

In order to achieve an instance of $RevoluteJointA, given the promoted 
precondition $Placed that describes the position of InterimPiecel, begin 
by achieving an instance of $BracedHoles for Piecel and Piece2 of the 
joint. $Grasp InterimPiecel from its $Placed position, carfully avoiding 
obstructing any surfaces of InterimPrimitivel, and achieve a $Mul
tiAligned between InterimPrimitivel and the previously braced holes. 
Finally, translate InterimPiecel by a distance computed from the com
bined hole depth and the alignment offset. 

How is this new schema less general than the schema produced in 
Section 7.4.1.? Suppose that the system is now shown a new strategy for 
constructing $RigidJoints and $CylindricalJ oints. This new strategy 
would construct a $RigidJointA by first placing $Pegl on its back with 
its shaft pointing up and then forcing $BoredBlockl over it. The new 
schemata embodying this strategy would be indexed from the 
appropriate physical joint schemata, $RigidJointA and 
$CylindricalJointA: therefore, the more general new schema from 
Section 7.4.1. would immediately have access to this new strategy, while 
the more operational new schema would not.22 

7.5. Solving the Same Problem After Learning 

We now present the system with the same problem after schema 
acquisition, and give as a goal the partially specified abstract joint 
schema: 

$RevoluteJoint [Piecel=$Washerl, Piece2=$BoredBlockll. 

The design phase is responsible for fleshing out the abstract joint 
schema given as a goal specification and producing a corresponding 
physical joint schema. 

A single token $RevoluteJointA0966 is returned by the design 
process. The new physical joint schema $RevoluteJointA was indexed 
from $RevoluteJ oint. The $RevoluteJ ointA0966 schema contains 
pointers to all three pieces in the assembly rather than only the two 

22 For an empirical performance comparison, see Appendix E. 
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«Supers OperatorSchema) 
(TypeSlot8 
(Goal8 «'RevoluteJointA (Piecel Piecel) 

(Piece2 Piece2) 
(Primitivel Primitivel) 
(Primitive2 Primitive2) 
(Orientation Orientation) 
(DOFl DOFl) 
(InterimPiecel InterimPiecel) 
(lnterimPrimitivel InterimPrimitivel) 
(DOF2 DOF2)))) 

(Sub Goals «(,Placed (Piece InterimPiecel) 
(SupportSurrace NewSlot2))) 

('BracedHoles (Piecel Piece2) 
(Primitivel Primitive2) 
(Holel NewSlot3) 
(Piece2 Piecel) 
(Primitive2 Primitive 1) 
(Hole2 NewSlot4) 
(Depth NewSlot5)) 

(,Grasped (Piece InterimPiecel) 
(OldSupportSurrace NewSlot2) 
(FreePrimitives InterimPrimitivel)) 

($MuItiAligned (Piecel InterimPiecel) 
(PrimitivelInterimPrimitivel) 
(Piece2 Piece2) 
(Primitive2 Primitive2) 
(Hole2 NewSlot3) 
(Piece3 Piecel) 
(Primitive3 Primitivel) 
(Hole3 NewSlot4) 
(Depth NewSlot5) 
(Delta NewSlotl»))) 

(Body ($FuIlMove (Piece InterimPiecel) 
(Delta NewSlotl)))) 

(TokenSlots 
(Piece 1 NIL doc (0 From goalSchema)) 
(Piece2 NIL doc (0 From goalSchema)) 
(Primitive 1 NIL doc (0 From goalSchema» 
(Primitive2 NIL doc (0 From goalSchema)) 
(Orientation NIL doc (0 From goalSchema)) 
(DOFl NIL doc (0 From goalScbema)) 
(Interim Pie eel NIL doc (0 From goal Schema)) 
(InterimPrimitivel NIL doc (0 From goaISchema» 
(DOF2 NIL doc (0 From goalSchema» 
(NewSlotl NIL doc (0 Promoted slot)) 
(NewSlot2 NIL doc (0 Promoted slot)) 
(NewSlot3 NIL doc (0 Promoted slot)) 
(NewSlot4 NIL doc (0 Promoted slot)) 
(NewSlot5 NIL doc (0 Promoted slot)) 

More Operational Version of $NewSchemaC 

Figure 7.3 

mentioned in the goal specification. 
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Selection of the third piece to fill the InterimPiecel slot is made in 
accordance with the constraints on the $RevoluteJointA schema. Recall 
these constraints were imposed on the basis of interpiece relations which 
were crucially true in the joint analysis. In this case, such constraints 
mandate, among other things, that the shaft size of InterimPiece1 match 
the diameter of the hole in $BoredBlock1 and be slightly smaller than 
the diameter of the hole in $Washerl. 

Since there are only two pieces ($Blockl and $Peg1) in the initial 
state not already included in the goal specification, both are tested for 
conformance with the constraint set. $Peg1 is the only piece that can be 
used to fill the role ofInterimPiecel. 

Upon successful termination of the design phase, the planner 
proceeds to expand the plan embodied in $NewSchemaC. It indexes 
$NewSchemaC from the goal state $RevoluteJointA0966 produced by 
the design process. A new instance $NewSchemaC0971 is created and 
recursive applications of the plan and execution steps (described in 
Section 5.2.2) are performed. 

The operator sequence produced by the more operational version 
of $NewSchemaC had 24 steps, which roughly correspond to 

(1) Brace $BoredBlock1 such that its hole is pointing upwards. 

(2) Clear $Peg1 off of $Washer1, placing it directly on the workspace 
surface in some free spot. 

(3) Grasp $Washerl and stack it on top of $BoredBlock1 with holes 
aligned. 

(4) Grasp $Peg1 in such a way so as not to occlude the shaft, and align 
it with the holes in $Washerl and $BoredBlockl. 

(5) Translate $Peg1 along the negative z-axis a distance corresponding 
to the alignment offset plus the minimum of either the $Peg1 shaft 
length or the combined $Washer1/$BoredBlock1 hole depth. 

Note that, unlike the observed plan, the resulting operator 
sequence does not rely on the presence of $Blockl. In addition, 
extraneous commands in the observed plan that do not figure in the 
explanation from which $NewSchemaC was derived do not occur in the 
system's plan. 

7.6. Solving Similar Problems After Learning 

$NewSchemaC can be applied in other problem situations to 
produce a successful assembly sequence. As long as the goal specification 
can be realized as an instance of $RevoluteJointA, $NewSchemaC may 
well be applicable. 
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In Appendix E, the performance of the ARMS system when 
planning $RevoluteJointA-type assemblies from various initial states 
and using various piece sets is examined. For the initial states of 
Figures 7.4 and 7.5, the goal specification remains the same: 

$RevoluteJoint [ Piecel = $Washerl, Piece2 = $BoredBlockl ]. 

For the initial state of Figure 7.4, the performance element produces a 
12 step assembly sequence, while for that of Figure 7.5 30 steps were 
generated. 

A more interesting example is shown in Figure 7.6. In this case, 
the goal specification was given as: 

$RevoluteJoint [Piecel=$Washer3, Piece2=$BoredCylinderl]. 

Note that the desired assembly has quite a different physical aspect 
than that of the widget in the learning episode. Functionally, however, 
the structure demonstrates exactly the same joint behavior. 

The design phase properly selects $Peg2 over $Peg1 to fill the role 
of InterimPiecel. This selection is based on the interpiece constraints 
associated with $RevoluteJointA. The planning phase produces an 
assembly sequence of 18 steps that achieves the goal specification. 

.-.- bt= --. .. 
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First Alternate Initial State for Widget Assembly Problem 

The robot gripper is located in the center of the picture with fingers closed. $BoredBlockl 
is to the right, $Pegl is to the left, and $Washerl is in the foreground just left of center. 

Figure 7.4 
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Second Alternate Initial State for Widget Assembly Problem 

The robot gripper is located in the center of the picture with fingers closed. $BoredBlockl 
is to the left. $Washerl is to the right, with $Block2 and $Pegl stacked on top of it. 

---._---

.. ---------------
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Figure 7.5 
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Third Alternate Initial State for Widget Assembly Problem 

...... 

The robot gripper is located in the center of the picture with fingers closed. $Bored
Cylinderl is to the left, with $Pegl stacked on top of it. $Peg3 and $Washer2 are stacked 
(from left to right) on top of $Blockl on the right side of the workspace. 

Figure 7.6 
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7.7. Observing Similar Problems After Learning 

Once either version of $NewSchemaC is integrated into the schema 
library via the establishment of ::Suggestions and ::Plans pointers, it 
can be recognized bottom-up during the course of future observation 
processes. This has two important implications: 

(1) More complicated joints using an instance of $RevoluteJointA as a 
part of their structure can now be examined and are available for 
learning. An analogous situation arises in this episode based on 
the fact that both $CylindricaIJointA0311 and $RigidJointA301 
are recognized using previously acquired instances of 
$NewSchemaB and $NewSchemaA, respectively. Note that such 
joints might still have been analyzable on the basis of 
$CylindricalJoint and $RigidJoint, but the presence of 
$NewSchemaC reduces the computational burden which would 
have been placed on the verifier. 

(2) Another observation episode with a functionally similar goal when 
achieved in the same physical manner and with generally the 
same plan will no longer meet the learning criteria. Such an 
episode would lead to the bottom-up assertion of an instance 
$RevoluteJointA via an instance of $NewSchemaC. Recognizing 
the goal schema during the understanding phase conforms to Case 
1 of the four verification cases (see Section 5.3.2.1). Case 1 does 
not meet the learning criteria. 



Chapter 8 

Summary And Future Work 

The ARMS system was intended as an experiment in the 
application of explanation-based learning techniques to a real-world 
domain. As with any experiment, ARMS has raised many new issues 
that must yet be resolved. In this chapter we conclude our examination 
of the ARMS system with a discussion of its relation to other work, its 
extensibility, and directions for future research. 

8.1. Relation to Other Work 

Work in explanation-based learning is still relatively young, 
although it is possible to trace its roots back to STRIPS [25] and other 
systems of that era [64]. Current research in explanation-based systems 
exists at various stages of implementation. Among them are the 
GENESIS system [32], LP [27], LEX2 [23], MA [28], LEAP [65], 
Physics-10l [30], EGGS [66], CHEF [67], and the SOAR mapping of 
EBL [68]. Some work aimed at integrating EBL and SBL is also just 
beginning to appear (OCCAM [69], UNIMEM [70]). 

In this section, we summarize five of these systems which, to 
varying degrees, can be related to the ARMS system. The first of the 
five, STRIPS, is perhaps the earliest and best known explanation-based 
system in existence. Due in part to this chronological attribute, it tends 
to be used as a standard for comparison with other EBL systems. The 
other four systems (MA, LEAP, ODYSSEUS, and PRODIGY) are all 
classified as explanation-based learning-apprentice systems and, as such, 
are probably the ARMS system's closest relatives. 

8.1.1. STRIPS 

The STRIPS system [25] is a problem-solving system that controls 
a robot moving about rooms connected by doors. The robot is capable of 
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moving boxes about the rooms, opening doors as it goes. The problem 
solver incorporates a learning component that acquires generalized 
plans from previous problem solutions. 

There are several major differences between STRIPS and ARMS. 
First of all, STRIPS is a closed-loop system that relies on its own weak
method problem solver as a source of examples for learning. Secondly, 
the plans acquired by STRIPS do not abstract temporal orderings, nor do 
they abstract the operators themselves. Every operator in the originally 
observed plan occurs in the generalized plan in precisely the same order. 
Generalization occurs only in what is allowed to fill the operator 
arguments. 

While STRIPS was used to drive a real-world robot, this was due 
more to an engineering tour-de-force rather than any close relation 
between STRIPS and a real-world domain. The STRIPS domain is in 
fact little more than veneer applied to a theorem prover in order to 
facilitate communication of proof descriptions between humans. As 
such, there are two specific assumptions made in the STRIPS domain 
that severly restrict its applicability to real-world problems: 

(1) The STRIPS assumption [71] holds that any operator applied by 
the system changes the state of the world in a well-defined fashion: 
all effects are explicitly listed in the definition of the operator 
itself. This corresponds to the system having complete knowledge 
of the effects of its operators. This is an attractive assumption to 
make since it permits a system builder to reduce the system's 
planner to a theorem proving engine. It is not necessarily a 
reasonable assumption, since it requires the effects of every 
operator to be fully known a priori. 

(2) The closed-world hypothesis [72] holds that failing to prove the 
proposition P is sufficient reason to conclude NOT(P). This 
corresponds to the system having complete and perfect knowledge 
about the current state of the world. Another way of looking at 
the closed-world hypothesis is to consider two distinct dichotomies 
of facts about the world. The first dichotomy is the division 
between those facts which are true and those which are not true. 
The second dichotomy divides facts about the world into those 
which are known (or derivable from known facts) and those which 
are not known (or derivable). The closed-world assumption forces 
these two divisions to coincide: under this assumption, unknown 
facts which cannot be derived from known facts are assumed to be 
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untrue.23 

The current ARMS system does not make the STRIPS assumption: 
the effects of its operators are not known a priori. Certain operator 
effects in the world are never noticed by the database mechanism, that 
fills only specific requests from the learning and performance elements. 

When we consider the modeler to be a part of the ARMS system, 
any property of a world snapshot that cannot be validated by querying 
the modeler is considered not to be true. However, no generalization or 
any other sort of action is ever taken by ARMS on the basis of a failure 
to validate a relation. In this sense, ARMS does not make the closed
world assumption. 

8.1.2. MA 

MA (later changed to LA) [28] is a learning apprentice in the 
domain of mathematical natural deduction. This is an obvious target 
domain for learning-apprentice research due to the simplicity and 
completeness of the domain theory. MA constructs its own explanation 
as it observes the theorem proving behavior of its user. The MA 
theorem proving domain is a simple domain where making the STRIPS 
assumption is quite reasonable. While never really used as an 
apprentice system, MA served as a useful experimental tool in 
formalizing EBL techniques. Unlike ARMS, MA was never fully 
implemented. 

An interesting side project stemming from MA is described in [29]. 
By reimplementing the Logic Theorist system [73] and augmenting it 
with EBL, empirical evidence of the effectiveness of EBL was provided. 

8.1.3. LEAP 

The LEAP system [65] is a learning apprentice in the domain of 
VLSI circuit design. The system is implemented on top of the VEXED 
[74] circuit-design editor, that is intended to provide a large user base 
for eventual acquisition of circuit-design capability. LEAP ignores the 
geometric aspects of VLSI layout. 

23 There are other, slightly different, statements of this hypothesis. The 
statement adopted here opens the possibility that attempting to prove P may 
never terminate. It is possible to weaken the notion of proof slightly by imposing 
resource limits to insure termination. A different version of the hypothesis 
holds that failure to find P directly in the database is sufficient to conclude 
NOT(P): no deduction is permitted or attempted. This is a far more restrictive 
statement, since it assumes every true assertion about the world must be direct
ly stated in the database. 
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The circuit-design domain is a particularly appealing domain due 
to the existence of a good, albeit still naive, domain theory based on 
Boolean algebra. Note, however, that even a domain theory based on 
Boolean algebra is incomplete. For example, LEAP adopts a timing 
model that is only an approximation of the behavior of an actual circuit. 

LEAP is highly interactive, and, as such, will often ask the user to 
provide help in constructing its analysis of the example. This would 
seem to be possibly obtrusive; an option carefully avoided in the ARMS 
implementation. As of this writing, the implementation of LEAP is 
incomplete. 

8.1.4. ODYSSEUS 

The ODYSSEUS learning-apprentice project [75J supplies an 
acquisition module for HERACLES. HERACLES is a domain
independent shell derived from the NEOMYCIN medical expert system 
[76]. As of this writing, ODYSSEUS is still being implemented. 

ODYSSEUS uses a difference-based strategy to initiate learning. 
When the expert's behavior differs from that expected by the system, a 
dialogue subsystem queries the expert in order to construct an 
explanation for the difference. The system is interesting in that it is 
intended to operate in challenging domains (e.g., medical diagnosis) that 
lack a good domain theory. 

The major difference between ARMS and ODYSSEUS lies in its 
explanation construction process. ODYSSEUS operates without a sound 
domain theory, and therefore falls back on more intrusive user
interaction in order to construct its explanation. This seems to be a case 
where an alternate explanation construction method is adopted due to 
the dictates of the domain. 

8.1.5. PRODIGY 

PRODIGY [77J is a learning-apprentice system operating in a 
pseudorobot domain. The PRODIGY world is modeled on that of BUILD 
[78], that provides for moving and stacking various sized blocks. 
PRODIGY uses EBL to compress the search space and improve the 
efficiency of problem solving. Like LEAP and ODYSSEUS (but unlike 
ARMS), PRODIGY is highly interactive. In fact, one of its goals is to 
support the study of human-computer interaction. If PRODIGY cannot 
build an explanation for a given example, it asks the teacher to provide 
one. As of this writing, PRODIGY is still under development. 

By using simple STRIPS-like operators, the PRODIGY domain 
theory shares many of the advantages of the MA domain theory; a 
theorem prover provides the PRODIGY problem-solving engine. As such, 
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PRODIGY is fairly far removed from any possible real-world domain. 

8.2. Extensibility of ARMS 

An important consideration in describing a project such as ARMS 
is the system's extensibility. ARMS is meant to serve as a prototype, 
i.e., a working initial approximation of a real-world system. But the 
significance of a prototype is directly related to the insignificance of its 
limiting assumptions. 

We divide extensibility problems into two different categories: 

(1) Representation problems arise from the inherent difficulties 
involved in representing a continuous real-world domain in a 
discrete, symbolic fashion. This type of problem plagues any 
system that must reason about the physical world. 

(2) Learning problems are those problems arising in the course of the 
acquisition, management, and application of problem-solving 
knowledge. This type of problem is more specific to machine 
learning, as opposed to AI in general. 

In this section, we examine the representation problems expected 
in an extension of the ARMS system. In the next section we outline the 
learning problems as areas for future research in machine learning. 

8.2.1. The Solid Modeler Problem 

The first representation problem has to do with the 
representational power of the solid modeling system. A real-world 
application of ARMS must retain the modeler, if for no other reason 
than to serve as a tool in the application of the domain theory. Clearly, 
the current ARMS modeler is much too simplistic, given its small 
number of CSG primitives (two) and its restricted combination 
operators. 

Many modeling systems exist that are, at least representation ally 
speaking, far more powerful than the ARMS modeler [79-81]. These 
modelers allow for piece-to-piece variance, and permit the representation 
of a far more diverse set of pieces than the ARMS modeler. 
Incorporation of one of these modelers as part of the ARMS system 
would go a long way towards relieving the current representational 
constraints. 

The major difficulty foreseen in using an extant solid modeler 
arises from the fact that these modelers were, for the most part, created 
to support computer graphics or CAD/CAM design. They place a heavy 
emphasis on rendering objects for visual display, rather than modeling 
objects as they interact in a physical sense. Some nontrivial extensions 
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to support the modeling of physical object interactions would be 
necessary. 

As an example of the type of capability that could be provided, 
recall that the current implementation stipulates a piece must have no 
pieces stacked on it before it is manipulated. A new improved 
implementation might permit moving a stack of pieces all at once. Even 
if the clear-top limitation were retained, it might be possible to 
manipulate entire assemblies at once, provided the new positions of 
related pieces can be determined through an analysis of the degrees of 
freedom that relate them. Note that this kind of reasoning will probably 
require the system to deal with some degree of uncertainty, at least in 
piece positioning after assembly manipulation. 

8.2.2. Reasoning with Uncertainty 

ARMS supports a single arm operating in a controlled domain. 
Some of the more interesting problems in robotics must consider 
cooperation between several robot arms, or between a robot arm and a 
human worker. The expected problems in a cooperative situation arise 
from the introduction of uncertainty in the world. 

In the current system, it is safe to assume that the only changes 
occurring in the world are effected by a single agent, the robot arm. 
Consistency between the world and the internal representation can be 
guaranteed, since no independent changes are permitted in the world. 

There are three ways of dealing with the introduction of 
uncertainty in the system: 

(1) The strong approach advocates extending the simulation 
capabilities of the system to support the modeling of the effects of 
other agents, human intervention, and gravity. Such simulation 
tools would by necessity be domain-specific, presenting a 
tremendous programming challenge. In addition, the approach 
would impose strict limits on actions performed by outside agents. 
Since these actions must also be simulated internally, they must 
belong to the class of actions known a priori. 

(2) The weak approach advocates the construction of powerful sensory 
systems that can provide enough information to keep the internal 
representation consistent with the real world. This approach 
represents in reality a spectrum of different approaches, ranging 
from no internal simulation coupled with perfect sensors to using 
naive process simulation coupled with verification-type sensors. 
This approach faces hard engineering problems in the construction 
of the sensory systems, and, in addition, must deal with the 
problem of credit assignment. By relying more on sensory systems 
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and less on internal simulation, the system must determine which 
agent effected which changes in the world. 

(3) The fault-tolerant approach provides for reasoning without 
complete knowledge, using various methods for the retraction of 
mistaken assumptions and recovery from ambiguous situations. 
While this approach promises to result in the most robust system, 
much work remains to be done in this active research area [82-86]. 

8.2.3. The Operator/State Problem 

The third representation problem arises from forcing the real world 
to conform to an operator/state representational paradigm. The ARMS 
system provides no facility for acquiring new state descriptors. In other 
words, certain relations (e.g., stacking, aligning) are built into the 
system and cannot be augmented. 24 

No system can claim to solve all problems. The acquisition of state 
descriptors is a task best left, perhaps, to similarity-based methods. In 
particular, constructive induction [87] can be used to transform a base 
feature set directly derived from physical aspects of the problem into 
more operational higher-level feature sets. 

8.2.4. The Temporal Reasoning Problem 

The temporal model used by the current implementation of ARMS 
is quite simplistic. No attempt is made to describe temporal interactions 
between events instigated by different agents, uncertainty in temporal 
information, or even that operators occur over time rather than 
instantaneously. Temporal modeling remains an important unresolved 
issue for ARMS, as well as for AI in general [88-90]. 

In a sense, the temporal reasoning problem is all about trying to 
find a simple, yet workable, method of representing the common-sense 
world. The most naive approach (e.g., instantaneous operations 
resulting in states that persist) may be sufficient for some simple 
domains. By assuming that only one action may occur at a time and 
that states persist unchanged through time, it is quite possible to model, 
for example, a game of chess. 

A domain that permits multiple agents to act concurrently and 
asynchronously is far more difficult to model. When one also considers 
that real-world states do not often persist unchanged (consider a barrel 

24 An exception is the acquisition of new physical joint schemata, which are 
subtypes of existing abstract joint schemata. Physical joint schemata are, in 
fact, special types of state schemata. See Section 5.3.2.1.2. 
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full of water with a tiny hole at the bottom) it is clear that a more 
complex temporal reasoning system is required. 

8.3. Future Research Directions 

In this section, we discuss nine machine-learning issues arlsmg 
from our experience with ARMS. Progress on these issues is necessary 
for the future development of explanation-based systems, and, in 
particular, learning-apprentice systems. 

8.3.1. Frame Selection Problem 

The crucial step in any application of EBL techniques is the 
construction of the explanation. The ARMS system constructs this 
explanation unobtrusively through the use of an understanding element. 
The use of an understanding element makes the system vulnerable to 
the combinatorial explosion inherent in the schema-selection problem. 

The ARMS system posits a nonpredictive framework for schema 
selection as a potentially less explosive alternative to the predictive 
methods of natural language systems. This technique takes a wait-and
see approach to the schema-selection problem, relying on the assumption 
that most of the contexts hypothesized by a predictive under stander 
would eventually be discarded. 

Future work should build on this nonpredictive framework. In 
particular, what domain traits permit a system to take advantage of the 
efficiency aspects of nonpredictive understanding? Do other schema
selection methodologies take similar advantage of these domain traits? 
Is there some taxonomy of schema-selection methods which can be used 
to guide selection of a mechanism for use in a particular 
implementation? 

8.3.2. Other Explanation Construction Methods 

The unobtrusive character of the ARMS learning-apprentice 
system follows from the bottom-up schema-activation causal model 
construction philosophy embodied in the ARMS understanding element. 
But schema activation is not the only method for constructing 
explanations: the use of analogy, explanation modification, and 
reminding may also be practical solutions to the explanation 
construction problem. Certainly some attention should be directed 
towards using alternative explanation construction methods when 
schema activation fails to provide an adequate explanation. 
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B.3.3. When and What to Learn 

A learning apprentice in regular use by an expert will be 
presented with an overwhelming number of learning opportunities. 
Clearly, not all of these observed episodes are worth learning from. 
This issue affects the efficiency of both the schema-activation 
mechanism (and thus future learning episodes) and the planning 
subsystem (and thus the system's problem-solving performance). 
Learning criteria can be used to select those episodes that should 
produce new schemata. 

Current learning-apprentice systems (ARMS is no exception) 
generally avoid this problem by learning whenever an observed episode 
presents a new situation. In other words, if the understander can 
construet the explanation without relying on the domain theory to 
analyze the causal model, then the episode is not interesting from a 
learning perspective. This is a safe learning criterion, in the sense that 
there is no risk of missing a learnable schema. Unfortunately, this 
criterion is not practical in everyday applications, due to the resulting 
large volume of new schemata. 

In addition to learning criteria, it is possible to install retention 
criteria to further reduce the number of new schemata retained. 
Retention criteria are used after generalization to determine whether a 
new schema is worth saving. ARMS, like other extant learning 
apprentices, retains every schema it produces. 

Two of the unresolved questions that are raised by this 
implementation arise from these two criteria. While use of learning and 
retention criteria seems to be indicated, a careful examination of what 
these criteria should look like is clearly indicated. The use of particular 
learning or retention criteria implies an obvious efficiency vs. 
effectiveness trade-off. What other effects are likely to result from the 
application of different criteria? 

8.3.4. When and What to Forget 

Learning and retention criteria represent a first approximation to 
the problem of managing the changing knowledge base of a learning 
apprentice. These criteria are monotonic in the sense that they can only 
provide for additions to the knowledge base. 

A critical issue for real-world, learning-apprentice systems is 
whether old entries in the knowledge base can be replaced in time by 
new, presumably more useful, entries. Just as with computer page
replacement algorithms, a finite resource (such as memory) is managed 
in order to improve the effectiveness of the system. 
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Such replacement criteria can also be expected to have efficiency 
vs. effectiveness effects on a learning-apprentice system. What should 
these criteria look like? Should correlational considerations enter into 
the replacement criteria? Is a schema's usefulness measurable in some 
fashion other than a simple usage count? Can a schema's usefulness be 
predicted on the basis of its structure or similarity to other schemata in 
the library? Perhaps an indication of expected usefulness can be derived 
from the domain theory. All of these issues are yet to be investigated, 
much less resolved. 

8.3.5. Refining Existing Knowledge 

Forgetting schemata is a viable means to limit the growth of the 
schema library in order to avoid adverse performance effects. Another 
approach might be to modify or extend existing schemata in order to 
increase their applicability. 

Suppose a system is presented with a new problem-solving episode 
that is almost, but not quite, explained by an existing schema. Should 
the system modify the existing schema to cover the new example, or 
generate an entirely new schema? This is an important issue when one 
considers that a new schema may compete or otherwise interact with 
extant schemata in an unpredictable manner. 

Perhaps the easiest form of schema refinement would involve 
restricting application conditions when presented with a planning 
failure. In other words, when a schema that should be applicable fails to 
achieve its goal, its application conditions could be modified to avoid 
repeated failure. 

Must schema refinement be failure-driven? A uniquely failure
driven refinement strategy would seem to indicate that only new 
restrictions on existing schemata can be introduced by this process. 
Perhaps given a measure of almost explained it is possible to refine 
existing schemata to cover more rather than fewer instances. 

8.3.6. Learning Control Knowledge 

An interesting issue arising from work in many areas of machine 
learning, including learning-apprentice systems, is the acquisition of 
control knowledge. Consider the case of a VLSI learning apprentice 
observing the highly regular layout of an eight-bit shift register. The 
system should acquire a schema that covers not only the eight-bit case, 
but the arbitrary n-bit case. 

There has been some preliminary work on learning iterative 
control structures [91,92]. Generally this work has been applied only to 
toy examples in micro-world domains. 
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The use of iterative control structures also affects the size of the 
knowledge base; a system with separate schemata for four-bit, eight-bit, 
and sixteen-bit shift registers will not perform as well as a system with 
a single n-bit shift register schema. 

8.3.7. Extending Imperfect Domain Theories 

The application of EBL techniques relies on the use of a domain 
theory. As in the ARMS implementation, these domain theories are 
often naive theories of how the world works. The question of what 
happens to the system when the domain theory breaks down needs to be 
addressed if learning apprentice systems are to be operated in such 
naive domain theory situations. 

In [4], Mitchell et al. present three different cases of the imperfect 
domain theory problem: 

(1) The incomplete theory problem occurs when the domain theory is 
not complete enough to explain the observed input. In this case, 
Mitchell et al. suggest constructing the most plausible explanation 
and continuing with the learning process. 

(2) The intractable theory problem occurs when constructing an 
explanation is too computationally expensive using the current 
domain theory. Humans generally construct less detailed, 
approximative theories for use in this situation. 

(3) The inconsistent theory problem occurs when the domain theory 
permits construction of contradictory explanations for an observed 
input. Of the three theory problems, this is the only one that has 
attracted research attention so far [22,93]. 

One would hope the system's learning performance would degrade 
gracefully as the domain theory breaks down. An even better 
alternative would be for the system to extend its domain theory 
automatically. Possible strategies include devising experiments to make 
inconsistent theories unambiguous, creating more abstract theories to 
deal with intractable theories, and extending incomplete theories 
through incorporation of SBL techniques. 

8.3.8. Execution Monitoring and Plan Revision 

A popular area of research in both robot planning [94-96] and 
planning in general [97,98] has been the construction and study of 
systems that monitor the performance of the planner and attempt to 
recover from plan failures. This is normally an expensive proposition, 
since any replanning implies, at least for robot-planning systems, more 
search. Learning-apprentice systems tend to do very little search in 
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planning. If the system cannot plan within some computational 
resource limit, it simply gives up and defers to the human expert. 

This is not meant to imply, however, that there is no place for 
execution monitoring and plan revision. While computationally 
expensive, this capability may be just the ticket for dealing with some 
aspect of uncertainty. Imagine a scenario where it is simply too 
expensive to ascertain. the validity of all of the application conditions for 
a given operator schema. If the operator is relevant and is probably 
applicable, it may be easier to attempt to apply the operator and 
subsequently recover from any failures due to incomplete world 
information. 

8.3.9. Dealing with Multiple Plans 

Often the planning system will have more than one schema 
available for achieving the same goal state. In this case, normally one 
plan is to be preferred over the other alternatives, usually on the basis 
of predicted execution expense or some other metric. 

We note that one way of getting multiple plans for the same goal 
is to generalize more than once from the same example, using different 
values for the generality/operationality Hag. With the ARMS system, 
this would produce two different new schemata from the same example. 
Of the two new schemata acquired, application of the more operational 
one should always be preferred over application of the more general one. 

If no ordering is known for a given set of plans, it should be 
possible for the system to acquire an ordering by examining the 
performance of its planner. Learning such orderings seems well suited 
for the application of similarity-based learning techniques. Note that 
this kind of learning would occur incrementally under the auspices of 
the performance element, rather than the learning element. 

8.4. Conclusions 

The construction of smart machines may well be mankind's next 
evolutionary step. Proponents of AI maintain that the advent of truly 
intelligent machines is imminent, while critics scoff at silicon dreamers. 
Books are written, positions are taken, and AI-bashing (or AI-booster) 
reputations are made. 

The AI pragmatist is more than a little perplexed at the brouhaha 
surrounding the field. The pragmatist adopts an if it quacks like a duck 
it must be a duck definition of AI. To the pragmatist, progress towards 
any eventual man-made intelligent entity consists of a series of plodding 
efforts, each making its own contribution, however tiny, to our collective 
understanding of what makes a machine smart. Each effort quacks just 
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a bit louder than the last. 

The ARMS project is only a first step. As any first step, it may 
appear to be small and tentative. But it serves a very important 
purpose: it serves to demonstrate the feasibility of explanation-based, 
learning-apprentice systems operating in realistic problem-solving 
domains. The development of learning-apprentice systems has the 
potential of providing AI with its next success. There are hundreds of 
possible applications: CAD/CAM design, VLSI layout, investment 
banking strategies, automatic flight control, and robot programming, 
just to name a few. 

And so the pragmatist slogs on in the AI trenches, content with 
slow, but steady, progress on that inexorable march towards usable and 
helpful smart computer programs aimed at improving man's lot in life. 



Appendix A 

Solid Modeling Systems 

Work in other areas of computer science, especially computer 
graphics, provides us with a rich heritage in solid modeling [99,100]. 
These systems deal with far more demanding domains, where pieces 
may have curved surfaces and complex shapes in general. Most were 
designed for CAD/CAM use, and therefore place a heavy emphasis on 
the representation of the solid for eventual rendering on a computer 
graphics terminal. Solid modeling systems have found use in several 
applications, such as static interference analysis, finite-element 
meshing, automatic verification of machine tool numerical control 
programs, and robot task simulation. 

Previous work in solid modeling can be roughly partitioned into 
two different representational camps: boundary representations (BRep), 
as typified by EUCLID and ROMULUS [81,101,102]; and constructive 
solid geometries (CSG), as exemplified by PADL or GMSOLID 
[79,80,103]. The difference lies in the internal representation used for 
the solid. 25 

BRep systems represent the solid as a set of faces specified by 
surface equations and bounding edges. These representations prove 
particularly popular due to the importance of computer graphics in most 
applications. From BReps it is relatively easy to construct displays with 
faces shaded and hidden lines removed. On the other hand, BReps are 
memory-intensive, and there is no easy way to guarantee that the 
BReps constructed actually correspond to physically valid solids. 

25 Other representational strategies, such as sweep methods, cell decomposI
tions, and octree methods are also used but are less common for this particular 
type of application. For a review of these and other representational schemes see 
[104]. 
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eSG systems represent the solid as various set operations on 
primitive solids. Generally the primitive set includes blocks, cylinders, 
spheres, etc. The set operations usually include the Boolean operations 
union, difference and intersection. By specifying a set of instances of the 
primitives, their dimensions and relative positions, and an ordered set of 
operations on this primitive set, one can construct arbitrarily complex 
solids. Such representations are not only concise, but also automatically 
insure the physical validity of the constructed solid. 

Unfortunately, eSG representations are not well suited for many 
applications: for example, in computer graphics, the image rendered on 
the screen depicts the surfaces and not the volume of the object. To 
circumvent this problem, hybrid modeling systems rely on a mix of both 
representational strategies, usually by automatically converting eSG 
representations to BReps for graphic output. Such conversion 
algorithms are well known [105-107], although they are usually 
computationally expensive on standard hardware. 



Appendix B 

Schema Semantics 

A schema is a chunked knowledge structure that represents the 
system's generalized knowledge about a particular concept or topic. 
While many systems have relied on such a chunked representation for 
the knowledge they manipulate, no consensus has emerged with regard 
to the structure of these chunks. In this appendix, we outline the 
schema terminology used in describing the ARMS schema system. 

A schema represents abstract knowledge, e.g., it describes a 
concept that may have many different instantiations. A schema instance 
represents a particular, fully specified, instance of a concept. The 
process of creating a schema instance from a given schema is called the 
instantiation process. During this process, all ambiguity which is 
implicit in the schema is resolved in the schema instance. In short, a 
schema gives a framework for a (possibly very large) set of schema 
instances. 

A schema consists of a name and a set of slots. The value of a slot 
is called its filler. When a schema is defined, every slot filler is given a 
default value which mayor may not be overridden during the 
instantiation process. A slot filler may represent another schema, 
another schema instance, a list of schemata or schema instances, a 
descriptor, a number, or any other data structure. We adopt the 
notational convention that the name of a schema is always prefaced 
with the special "$" character (e.g., $Schema) and the name of a schema 
instance always ends with a number (e.g., $Schema122). 

A schema template is a device by which one abstract schema can 
refer to a second abstract schema. A template consists of a header and a 
binding equivalence list. The header indicates the name of the second 
schema. The binding equivalence list gives a partial mapping from the 
first schema's slot fillers to the second schema's slot fillers. For example, 
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consider a schema $A with a slot X. Suppose that $A must establish a 
one-to-one mapping between all of its instances with instances of the 
schema $B. Further suppose that this relationship should specify that 
the filler of slot Y in each instance of $B should be equal to the filler of 
slot X in the corresponding instance of $A. By using the schema 
template: 

($B (Y X» 

to refer to schema $B from within schema $A, it is possible for future 
instances $Ai of $A to identify (possibly as yet non-existent) instances 
$Bj of $B. This particular template indicates that, given an instance 
$Al of $A, the object of the relation is an instance of the schema $B 
whose Y slot has the same filler as the X slot of $Al. Thus, the 
template serves as a way to describe a mapping between instances of 
two different schemata. 



Appendix C 

A Simpler Example 

In this appendix, we will describe another example which is quite 
a bit simpler than the $RevoluteJoint of Chapters 2 and 7. This episode 
is, despite its simplicity, interesting because the schema it acquires is 
used in the understanding phase of the $RevoluteJoint example. This 
demonstrates that a schema acquired by the system is useful not only 
for planning, but also for understanding more complicated tasks. In fact, 
without the schema acquired here, the widget assembly discussed in 
Chapter 2 would not have been understood; thus, no learning could have 
taken place.26 

The example consists of inserting a peg into a hole where the shaft 
of the peg and the hole have the same diameter. This yields a tight 
friction fit that results in a rigid connection, or rigid joint, between the 
two pieces. 

There are two factors contributing to the simplicity of this 
example: 

(1) A $RigidJoint is inherently simple, since it has no degrees of 
freedom. 

(2) The verification step is trivial, since the physical implementation 
joint schema for this example, $RigidJointA, is already present in 
the system (Case 2 of Section 5.3.2.1). 

26 This example yields an operator schema for achieving $RigidJointA, In a 
similar fashion, yet another example yields an operator schema for achieving 
$CylindricalJointA. The system relies on both of these schemata in order to 
understand, and therefore learn from, the widget example of Chapter 2. 
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C.l. Describing the Initial State 

The initial state is shown in Figure C.l. $BoredBlockl is to the 
right, with its hole already pointing upwards. $Pegl is off to the left, 
and the arm (fingers closed) is in its nest position. The goal 
specification is given as a partially instantiated abstract joint schema: 

$RigidJoint [ Piecel =$Pegl, Piece2 =$BoredBlockll. 

There are no other pieces in the workspace. 

C.2. Attempting to Solve the Problem 

The performance element undertakes the design phase in order to 
produce a fully instantiated physical joint schema from the partially 
instantiated abstract joint schema derived from the goal specification. 
From the abstract joint schema we index those physical joint schemata 
that represent physical realizations of the mechanical behavior given by 
the abstract joint schema. 

From the abstract joint schema $RigidJoint, the system indexes 
two alternative physical realizations, given by $RigidJointA and 
$RigidJointB. In fact, $RigidJointA and $RigidJointB differ from each 
other only in which piece is identified as Piecel and which piece is 
identified as Piece2. The realization procedure returns two tokens, one of 

, r-=-

==-

I .... 

Initial State 

The robot arm gripper is located in the center of the picture with its fingers closed and 
pointing downwards. $Pegl is to the left and $BoredBlockl is to the right. 

Figure C.1 



A Simpler Example 181 

each type, with fillers from $RigidJoint mapped over to fill slots on the 
two tokens. 

The realization process is now applied to the physical joint schema 
tokens produced above. Constraints attached to $RigidJointB cause 
realization of that token to fail. Realization of the $RigidJointA token 
terminates successfully, returning a single fully instantiated token 
$RigidJointA0012. 

The substantiator set of $RigidJointA0012 contains the single state 
schema representing an inserted state. However, $RigidJointA (ergo also 
$RigidJointA0012) has no entries on its ::Plans type slot. Hence while 
the design phase terminates successfully, and a fully instantiated 
physical joint schema is produced, the system cannot generate a plan for 
achieving the physically realized goal. The planning phase terminates 
unsuccessfully, and the performance element aborts. 

C.3. Observing the Expert's Plan 

Having failed to generate a solution to the problem, control passes 
to the learning element which asks the expert to direct the robot arm 
through a solution of the problem. As the expert guides the arm, the 
causal model of the expert's problem-solving behavior is constructed 
using the schema-activation mechanism of Section 5.3.1.3.3. 

C.4. Verifying the Solution 

When the expert is finished, and the causal model is complete, the 
generalizer must verify that the goal was achieved. This particular 
example is an easy (Case 2) verification problem, since the abstract joint 
schema $RigidJoint indexes two known physical joint schemata 
$RigidJointA and $RigidJ ointB. 

The verifier begins issuing requests to the database for valid 
instances of each known physical joint schema (e.g., $RigidJointA and 
$RigidJointB) corresponding to $RigidJoint. These requests are 
partially instantiated, since some fillers map over from the partially 
specified abstract joint schema given as the goal specification. As soon 
as the database returns a valid instance ($RigidJointA0012 in this case), 
the verification process terminates successfully. 

C.5. Generalizing the Solution 

An explanation is extracted from the causal model by following 
pointers from the substantiators of $RigidJointA0012. The 
substantia tors constitute the top-level subgoal set. In this example, the 
only substantiator is $Inserted0423, representing the insertion of $Pegl 
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into $BoredBlock1.27 

The precondition promotion set prepends the state $Braced0217 to 
the top-level subgoal set. $Braced0217 is an explicitly achieved 
precondition of $Insert0422, the operator schema responsible for the 
achievement of $Inserted0423. 

The slot promotion process adds two new slots to the new schema. 
One slot represents the hole through which the insertion occurs, while 
the other slot represents the depth of that hole. These slots are added in 
order to permit mapping their values back and forth among the subgoals 
and body of the new schema. 

The body of the new schema is determined by taking the last 
subgoal of the subgoal set (e.g., $Inserted0423) and making a template 
from the operator that was observed achieving it. In this example, the 
new schema's body is produced from $Insert0422. This leaves the 
template of $Braced0217 as the only remaining subgoal. 

The new operator schema, $NewSchemaA, acquired in this 
example is shown in Figure C.2. It basically states: 

In order to achieve that physical incarnation of $RigidJoint known as 
$RigidJointA, it is sufficient to achieve an instance of $BracedHole for 
Piecel of the joint and then execute an $Insert of Piece2 into Piecel. 

Pointers are established to the new schema from $Insert (a ::Suggestions 
pointer) and from $RigidJointA (a ::Plans pointer). 

C.6. Solving the Same Problem After Learning 

If we present the system with the same problem after schema 
acquisition, the design phase will terminate successfully as before. A 
single token $RigidJointA0639 (analogous to our earlier 
$RigidJointA0012) is returned. This time, however, the plan phase is 
allowed to continue, as the ::Plans type slot of $RigidJointA contains a 
pointer to $NewSchemaA. 

An instance $NewSchemaA0711 of $NewSchemaA is created, and 
the planner checks for conformity of the preconditions of the new 
schema. Since $NewSchemaA has no preconditions, the planner begins 
to plan for achieving the subgoals of $NewSchemaA0711. 

27 The cardinality of the substantiator set at this point makes the 
generality/ope rationality question moot: the generalizer will produce the same 
schema regardless of the mode it is operating in. Recall that the more operation
al schema relies on the examination of shared substructure between the ele
ments of the top-level subgoal set (Section 5.3.2.3). Clearly, if there is only one 
member of the set there can be no shared substructure. 
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«Supers OperatorSchema) 
(TypeSlots 
(Goals «$RigidJointA (Piecel Piecel) 

(Piece2 Piece2) 
(Primitivel Primitivel) 
(Primitive2 Primitive2»))) 

(SubGoals «($BracedHole (Piece Piece2) 
(Primitive Primitive2) 
(Hole NewSlotl) 
(Depth NewSlot2»)))) 

(Body ($Insert (Piece 1 Piecel) 
(Primitivel Primitivel) 
(Piece2 Piece2) 
(Primitive2 Primitive2) 
(Hole NewSlotl) 
(Depth NewSlot2»))) 

(TokenSlots 
(Piecel NIL 
(Piece2 NIL 
(Primitive 1 NIL 
(Primitive2 NIL 
(NewSlotl NIL 
(NewSlot2 NIL 

doc (. From goalSchema)) 
doc (. From goalSchema)) 
doc (. From goalSchema» 
doc (. From goalSchema» 
doc (. Promoted slot)) 
doc (. Promoted slot)))) 

$NewSchemaA 

Figure C.2 

183 

The subgoal $Braced0750 is achieved successfully by a recursive 
application of the plan step. The body of $NewSchemaA0711 is now 
instantiated, and an application of the execution step to $Insert0938 
completes the example. 

C.7. Solving Similar Problems After Learning 

The procedure outlined in the previous section works equally well 
for other initial starting positions of the same pieces. In addition, it is 
capable of planning and executing solutions for other examples that 
achieve instances of $RigidJointA using different pieces. 

Two other functionally similar examples (initial states shown in 
Figures C.3 and C.4) were given to the ARMS system. Both of these 
problems can be solved by applying instances of $NewSchemaA. 



184 Machine Learning of Robot Assembly Plans 

Alternate Rigid Joint Problem 

t~::'==:::--l 
I~~~-J-...-------. ----------

The robot arm gripper is located in the center of the picture with its fingers closed and 
pointing downwards. $Peg2 is to the right, and $BoredBlock2 is on its side to the left. 

Figure C.3 

'-----------~./ 

Alternate Rigid Joint Problem 

The robot arm gripper is located in the center of the picture with its fingers closed and 
pointing downwards. $BoredBlockl is inverted with $Block2 and $Pegl stacked on top. 

Figure C.4 
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C.8. Observing Similar Problems After Learning 

As a final note, consider what would happen if another observation 
episode realizes an instance of $RigidJointA in the same manner. Once 
$NewSchemaA is added to the schema library and properly integrated 
via ::Plans and ::Suggestions pointers, it can also be used in 
understanding future examples. 

The verification process would now find the instantiated version of 
the physical joint schema $RigidJointA already extant in the database. 
This situation corresponds to Case 1 of Section 5.3.2.1, which fails to 
meet the learning criteria. The learning element would terminate, and 
no new schema would be added to the schema library. 



Appendix D 

A More Complex Example 

In this appendix, we examine another session with ARMS. This 
example constructs a more complicated assembly called a 
$SlidingRevoluteJoint. The system will again be acquiring a new 
physical joint schema, $SlidingRevoluteJ ointA, to describe this 
particular physical instantiation of the functionality described by 
$SlidingRevoluteJoint. 

A $SlidingRevoluteJoint has two degrees of freedom, one prismatic 
and one revolute, which are orthogonal to each another. It is similar to 
a $CylindricalJoint, except that a $CylindricaIJoint's degrees of freedom 
are along the same axes. 

The general strategy for achieving this mechanical behavior is to 
construct a $TriplePrismaticJoint (three prismatic degrees of freedom) 
and a $RevoluteJoint (one revolute degree of freedom). The 
$TriplePrismaticJoint must somehow lose two of its prismatic degrees of 
freedom, leaving only a single prismatic degree of freedom to the 
$SlidingRevoluteJoint. 

The physical realization of this mechanism consists of an elongated 
collar ($Box1) sliding along a tab protruding from a large frame piece 
($Frame1). The collar, when inserted over the tab, constitute an 
instance of $TriplePrismaticJointB. The frame also has a cylindrical 
hole at the top, upon which we build an instance of $RevoluteJointA 
(using $Washer3 and $Peg4 along with $Frame1). The complexity of 
this example is due to the following reasons: 

(1) The particular physical instantiation presented requires four pieces 
to construct the mechanism. 

(2) The assembly of the mechanism results in the recognition of four 
physical joint schemata: a $RevoluteJointA (including its subjoints 
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$CylindricalJointA and $RigidJointA) via $NewSchemaC of 
Chapter 2, and a $TriplePrismaticJointB via $NewSchemaD 
(acquired separately). 

(3) Like the $RevoluteJoint example of Chapter 2, this example 
collects its constituent degrees of freedom from its constituent 
subjoints. Unlike the $RevoluteJoint, however, the degrees of 
freedom are assembled from more than one subjoint, requiring 
constraints between degrees of freedom to span subjoint 
boundaries. 

(4) The construction of the $SlidingRevoluteJoint occurs incrementally 
over time: unlike the example of Chapter 2 there is no single 
motion that achieves the mechanism specified. 

(5) Finally, this example addresses the difficult problem of interacting 
degrees of freedom. Since the constituent degrees of freedom are 
not all from the same subjoint, the analysis of the mechanism must 
address the dynamic nature of the constituent subjoints. While the 
solution adopted is, in fact, quite naive and is not advanced as a 
general solution, it is a first step towards extending the ARMS 
domain theory to handle dynamic joint interactions. 

D.l. Describing the Initial State 

The initial state is shown in Figure D.l. $Framel is in the center 
of the picture, with $Boxl off to the left, $Peg4 to the right, and 
$Washer3 in the foreground. The goal specification is again given as a 
partially instantiated abstract joint schema: 

$SHdingRevoluteJoint [Piecel=$Washer3, Piece2=$Boxl]. 

There are no other pieces in the workspace. 

D.2. Attempting to Solve the Problem 

The performance element undertakes the design phase in order to 
produce a fully instantiated physical joint schema from the partially 
instantiated abstract joint schema derived from the goal specification. 
From the abstract joint schema we index those physical joint schemata 
which represent physical realizations of the mechanical behavior given 
by the abstract joint schema. 

From the abstract joint schema $SlidingRevoluteJoint, however, 
the system can index no physical joint schemata. As in the example 
from Chapter 2, failure is immediate and the performance element 
aborts. 
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Initial State 

The robot arm gripper is located in the center of the picture with its fingers closed and 
pointing downwards. $Framel is in the center of the workspace, with $Peg" in the right 
foreground. $Washer3 is to the left, with $Box! in the left background. 

Figure D.l 

D.3. Observing the Expert's Plan 

Having failed to generate a solution to the problem, control passes 
to the learning element which asks the expert to direct the robot arm 
through a solution of the problem. As the expert guides the arm, the 
causal model of the expert's problem-solving behavior is constructed 
using the schema-activation mechanism of Section 5.3.1.3.3. 

The expert's plan contains a total of 24 primitive arm commands, 
divided roughly as follows: 

(1) $Box1 is grasped and positioned above $Frame1 aligned with the 
tab. When grasping $Box1, the expert inserts a redundant $Rotate 
command in order to grasp the piece with a narrower grip (see 
Figures D.2 and D.3). 

(2) $Box1 is lowered over $Framel, effecting the insertion of the tab 
through the holes in $Box1. We term this process exsertion, in 
order to distinguish it from insertion: here the evacuated piece is 
manipulated, while in a normal insertion the solid piece is 
manipulated. At this point, $TriplePrismaticJointB0076 is 
recognized via activation of an instance $NewSchemaD0073 of the 
previously learned $NewSchemaD (see Figure D.4). 
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(3) $Washer3 is grasped and positioned on top of $Frame1, just as in 
the $RevoluteJoint example of Chapter 2. When aligning 
$Washer3, there is an extra $Rotate command which places 
$Washer3 at an angle with respect to $Boxl and $Frame1 (see 
Figures 0.4 and 0.5). 

(4) $Peg4 is positioned over $Washer3 and inserted through $Washer3 
into $Framel. Approaching $Peg4 uses a $MoveTo and $Rotate 
where a $MoveTo would suffice. In addition, the alignment step 
also uses a $MoveTo and $Rotate where a single $MoveTo would 
suffice. At this point, the under stander establishes an instance 
$RevoluteJointA0099 of $RevoluteJointA via activation of an 
instance $NewSchemaC0092 of $NewSchemaC, acquired previously 
as in Chapter 8 (see Figures 0.6 through 0.10). 

rff1nl .... :::~. . ... ::~ .... 
l1tj# 

$MoveTo, $Open 

The gripper is positioned over $Boxl with a $MoveTo command. The gripper fingers are 
then opened to their maximum aperture with an $Open command. 

Figure D.2 
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$Rotate, $Translate, $Close, $MoveTo 

The gripper is twisted 90 degrees about the vertical axis with a $Rotate, and then lowered 
about $Boxl with a $Translate. The $Close command achieves a grasping of $Boxl, and 
the $MoveTo positions $Boxl over $Framel. 

Figure D.3 
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$Translate, $Open, $Translate, $MoveTo, $Translate 

The $Translate command lowers $Boxl over $Framel where it is dropped by the $Open 
command. At this point $TriplePrismaticJointB is first recognized. The $Translate backs 
the gripper away from the assembly, and the $MoveTo puts the gripper directly above 
$Washer3. The subsequent $Translate leaves the gripper surrounding $Washer3. 

Figure D.4 

=---:-~--= 

$Close, $MoveTo, $Rotate, $Translate, $Open 

The $Close command achieves a grasping of $Washer3, while the $MoveTo positions it 
over the assembly under construction. A $Rotate twists $Washer3 90 degrees about the 
vertical axis before the $Translate lowers it onto $Framel. The $Open drops $Washer. 

Figure D.5 
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$Transiate, $MoveTo 

The $Translate backs the gripper up away from $Washer3, and the subsequent $MoveTo 
leaves the gripper near $Peg4. 

Figure D.6 

$Rotate, $Translate, $Close 

The $Rotate command brings the gripper down so it faces $Peg4, while the $Translate sur
rounds $Peg4 with the gripper fingers. The $Close command grasps $Peg4. 

Figure D.7 
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$MoveTo 

The $MoveTo positions $Peg4 over the $Framell$Boxll$Washer3 assembly. 

Figure D.S 

$Rotate 

The $Rotate swings $Peg4 down so that it is aligned with the hole in $Washer3. 

Figure D.9 
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$Translate 

The $Translate achieves an instance of $RevoluteJointA (acquired from the example of 
Chapter 2) between $Washera-and $Framel via $Peg4. 

Figure D.10 

D.4. Verifying the Solution 

Verification of the solution is an example of Case 3 verification 
described in Section 5.3.2.1. The verifier produces a new physical joint 
schema, $SlidingRevolutejointA, which describes this physical 
instantiation of the mechanism. 

The verifier begins by searching for an open kinematic chain 
linking the two end pieces specified in the abstract joint schema 
$SlidingRevoluteJoint (the goal specification). The known joint 
schemata recognized by the system during the understanding phase are 

$TriplePrismaticJointB0076 ($Boxl, $Framel) 
$RevoluteJointA0099 ($Washer3, $Framel) 

$CylindricalJointA0096 ($Washer3, $Peg4) 
$RigidJointA0094 ($Peg4, $Framel) 

At first it appears that there are two kinematic chains linking $Boxl 
and $Washer3. On closer examination, however, it is clear that since 
$CylindricalJointA0096 and $RigidJointA0094 taken together constitute 
$RevoluteJointA0099, there is really only a single kinematic chain. 

The verifier collects copies of the degrees of freedom along the 
chain and attempts to recompute any soft bounds on these degrees of 
freedom. One of the prismatic degrees of freedom from 
$TriplePrismaticJointB0076 is already below the system-wide degree of 
freedom tolerance due to the dimensional constraints between $Boxl 
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and $Framel. 

The prismatic degree of freedom from $TriplePrismaticJointB0076 
(along the $Boxl insertion axis) is now constrained by a collision with 
$Washer3. Note, however, that $Washer3 also possesses a prismatic 
degree of freedom, parallel to the one in question, obtained from 
$CylindricalJointA0096. This second prismatic degree of freedom is in 
turn newly limited by a collision between $Washer3 and $Peg4. The 
cumulative motion allowed these two parallel prismatic degrees of 
freedom is below the system-wide tolerance for active degrees of 
freedom, thus they both cancel. 

The remammg prismatic degree of freedom from 
$TriplePrismaticJointB0076 retains unchanged its two hard bounds 
resulting from collisions with $Frame1 at each end of $Boxl's travel. 
Together with the revolute degree of freedom from 
$CylindricalJointA0096, that also remains unchanged, these constitute 
the degree of freedom set for the $SlidingRevoluteJoint. 

The new schema $SHdingRevoluteJointA is constructed, indexed by 
$SlidingRevoluteJoint, to represent this particular physical realization 
of joint function. Slots are created on $SlidingRevoluteJointA to permit 
mapping of fillers across the substantiator set, and constraints are added 
which reflect only those physical interrelations (e.g., shape and 
dimension relations) between the fillers that were crucial to the 
cancellation of the prismatic degree of freedom. An instance of the new 
schema, $SHdingRevoluteJointAOlll, is created to represent the 
achieved goal state, and the verification process terminates successfully. 

D.S. Generalizing the Solution 

The top-level subgoal set of this episode consists of the 
substantiators of $SlidingRevoluteJointAOlll, i.e., 
$TriplePrismaticJointB0076, $CylindricalJointA0096 and 
$RigidJointA0094. From this subgoal set, the generalizer constructs a 
new operator schema to achieve the goal $SlidingRevoluteJointA, the 
newly added abstract schema corresponding to the current goal 
$SlidingRevoluteJointAOlll. 

The first step is to analyze any dependencies between these top
level subgoals in order to produce a partial ordering on the subgoal set. 
It is clear that $RigidJointA0094 imposes constraints on 
$CylindricalJointA0096, which in turn constraints 
$TriplePrismaticJointB. Hence, $TriplePrismaticJointB must be 
achieved before $CylindricalJointA0096, which in turn must be achieved 
before $RigidJointA0094. 
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At this point, the ARMS generalizer is capable of producing two 
different new operator schemata, depending on the value assigned to the 
current episode's generality/operationality trade-off flag (Section 5.3.2.3). 
This parameter reflects the level of representation chosen for the new 
schema: a more general new schema carries a higher price in planning, 
while a more operational new schema is applicable in fewer situations. 

D.S.l. A More General New Schema 

If we chose to produce the most general schema possible, the 
generalizer does not descend below the top-level subgoal set. In essence, 
the top-level sub goal set becomes the explanation for the observed 
episode. 

Preconditions are collected from the top-level subgoal set members. 
The body of the new schema becomes the abstraction of 
$RigidJointA0094's achieving operator $NewSchemaA0093. The 
remaining subgoals becomes the new schema's subgoal set. 

Slots are added to permit mapping fillers between the subgoal, 
body, and preconditions of the new schema. New slots are used to 
represent surfaces of InterimPiecel, InterimPiece2, and various 
important dimensions (e.g., length of the shaft, depth of the hole). 

The new schema acquired is the most general representation of 
how this joint was achieved (see Figures D.11a and D.11b). It essentially 
states: 

To achieve an instance $SlidingRevoluteJointA, achieve an instance of 
$TriplePrismaticJointB between Piece! of the joint and another piece, 
InterimPiecel. Next achieve a $CylindricalJointA between Piece2 of 
the joint and another piece, InterimPiece2. Finally, achieve an instance 
of $RigidJointA between InterimPiecel and InterimPiece2 using the 
$NewSchemaA operator. 

D.S.2. A More Operational New Schema 

By resetting the generality/operationality trade-off flag, we can 
examine the more operational new schema produced by generalizer for 
this example. Recall from Section 5.3.2.3 that the more operational new 
schema is produced by descending the explanation to the point where 
the subgoal set can be expressed with no shared substructure. 

Preconditions are collected from the members of the new subgoal 
set. The last element of the set is used to determine the body of the new 
schema. The remaining subgoals become the subgoals of the new 
schema. 
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«Supen OperatorSchema) 
(TypeSlots 
(Goals «$SlidingRevoluteJointA (Piecel Piecell 

(Piece2 Piece2) 
(Primitive 1 Primitivell 
(Primitive2 Primitive2) 
(Orientation 1 Orientationll 
(Orientation2 Orientation2) 
(DOFIDOFI) 
(oOF2DOF2) 
UnterimPiecel InterimPiecell 
UnterimPiece2 InterimPiece2) 
UnterimPrimitivel InterimPrimitivell 
UnterimPrimitive2 InterimPrimitive2) 
(lnterimPrimitive3 InterimPrimitive3) 
(oOF3DOF3) 
(Orientation3 Orientation3) 
(oOF4DOF4) 
(Orientation4 Orientation4) 
(DOF5 DOF5)))) 

(SubGoals «$TriplePriamaticJointB (Piecel Piecell 
(Piece2 InterimPiecel) 
(Primitivel Primitivel) 
(Primitive2 Interim Primitive 1) 
(oOFIDOF4) 
(Oon DOF2) 
(OOF3DOF3) 
(Orientation 1 Orientation3) 
(Orientation2 Orientation2) 
(Orientation3 Orientation1)) 

($CylindricaIJointA(PiecelInterimPiece2) 
(Piece2 Piece2) 
(Primitivel InierimPrimitive2) 
(Primitive2 Primitive2) 
(Orientation Orientationll 
(OOFIDOFl) 
(oOF2 DOF3)))) 

(Body ($NewSchemaA (Piecel InterimPiece2) 
(Piece2 InterimPiecel) 
(Primitivel InterimPrimitive2) 
(Primitive2 InterimPrimitive3»))) 

More General Version of $NewSchemaE 

Due to pagination constraints, $NewSchemaE is split into two figures. Reproduced here 
are the schema's TypeSlots. The remainder of the schema can be found in Figure D.llb. 

Figure D.Ha 
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(TokenS lots 
(Piecel NIL 
(Piece2 NIL 
(Primitive I NIL 
(Primitive2 NIL 
(Orientationl NIL 
(Orientation2 NIL 
(DOFI NIL 
(DOF2 NIL 
(Interim Piece I NIL 
(lnterimPiece2 NIL 
UnterimPrimitivel NIL 
UnterimPrimitive2 NIL 
UnterimPrimitive3 NIL 
(DOF3 NIL 
<orientation3 NIL 
(DOF4 NIL 
(Orientation4 NIL 
(DOF5 NIL 

doc (* From goaIScbema)) 
doc (* From goaIScbema)) 
doc (* From goaIScbema)) 
doc (* From goaIScbema)) 
doc (* From goaIScbema)) 
doc (* From goaIScbema)) 
doc (* From goalScbema)) 
doc (* From goaIScbema)) 
doc (* From goalScbema)) 
doc (* From goalScbema)) 
doc (* From goalScbema)) 
doc (* From goalScbema)) 
doc (* From goaIScbema)) 
doc (* From goaIScbema)) 
doc (* From goaIScbema)) 
doc (* From goaIScbema)) 
doc (* From goaIScbema)) 
doc (* From goaIScbema)) 

More General Version of $NewSchemaE. Continued 
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Due to pagination constraints, $NewSchemaE is split into two figures. Reproduced here 
are the schema's TokenSlots. The remainder of the schema can be found in Figure D.11a. 

Figure D.llh 

The precondition promotion cycle is used to promote certain 
preconditions into the new subgoal set (see Section 5.3.2.3.). In this 
example, all of the preconditions are promoted to the sub goal set. In 
addition, new slots are created (via the slot promotion process of Section 
5.3.2.3) to permit the mapping of filler among the elements of the new 
schema. 

The new schema acquired is the more operational representation of 
how this joint was achieved (see Figures D.12a and D.12b). It essentially 
states: 

To achieve an instance of $SlidingRevoluteJointA, given the promoted 
precondition $Placed that describes the position of InterimPiecel, begin 
by achieving an instance of $Braced for InterimPiecel. Next achieve an 
$ExsertedThru of Piecel on InterimPiecel, followed by a $BracedHoles 
of InterimPiecel and Piece2. Finally, achieve a $Grasped of Interim
Piece2 and position it to achieve a $MultiAligned with InterimPiecel 
and Piece2. Translate InterimPiece2 by a distance computed from the 
combined hole depth and the alignment offset. 

Recall that the constraints on the physical characteristics of the 
pieces involved in this mechanism which are crucial to the success of 
this plan reside on the new physical joint schema 
$SlidingRevoluteJointA. 
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«Supers OperatorSchema) 
(TypeSlot& 
(Goal& «$SlidingRevoluteJointA (Piecel Piecel) 

(Piece2 Piece2) 
(Primitivel Primitivel) 
(Primitive2 Primitive2) 
(Orientation I Orientationl) 
(Orientation2 Orientation2) 
(DOFIDOFl) 
(DOF2DOF2) 
(interimPiecel InterimPiecell 
(InterimPiece2 InterimPiece2) 
(lnterimPrimitivel InterlmPrimitivell 
(lnterimPrimitive2 InterimPrimitive2) 
(InterimPrimitive3 InterimPrimitive3) 
(DOF3DOF3) 
(Orientation3 Orientation3) 
(DOF4DOF4) 
(Orientation4 Orientatlon4) 
(DOF5 DOF5»))) 

(SubGoals «($Placed(Piece InterimPiece2) 
(SupportSurface NewSlot2))) 

($Braced (Piece InterimPiecell 
(Primitive InterimPrimilivel) 
(Depth NewSlot3) 
(SupportSurface NewSlot4)) 

(SExsertedThru <Piecel Piecel) 
(Primitive I Primitive 1) 
(Piece2 InterimPiecell 
(Primitive2 InterimPrimitivel) 
(Depth NewSlot3)) 

($BracedHoles (Piecel Piece2) 
(Primitivel Primitive2) 
(Holel NewSlot5) 
(Piece2 InterimPiecel) 
(Primitive2 InterimPrimitive3) 
(Hole2 NewSlot6) 
(SupportSurface2 NewSlot4) 
(Depth NewSlot7)) 
(Piece InterimPiece2) 
(OIdSupportSurface NewSlot2) 
(FreePrimitives InterimPrimitive2) 

($MuItiAligned (Piecel InterimPiece2) 
(Primitive 1 InterimPrimitive2) 
(Piece2 Piece2) 
(Primitive2 Primitive2) 
(Hole2 NewSlot5) 
(Piece3 InterimPiecel) 
(Primitive3 InterimPrimitive3) 
<Hole3 NewSlot6) 
(Depth NewSlot7) 
(Delta NewSlotl))) 

(Body ($FuIlMove (Piece InterimPiece2) 
(Delta NewSlotl))))) 

More Operational Version of $NewSchemaE 

Due to pagination constraints, $NewSchemaE is split into two figures. Reproduced here 
are the schema's TypeSlots. The remainder of the schema can be found in Figure D.12h. 

Figure D.12a 
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(TokenSlots 
(Piecel NIL doc (* From goalScbema)) 
(Piece2 NIL doc (* From goalScbema)) 
(Primitive 1 NIL doc (* From goalScbema)) 
(Primitive2 NIL doc (* From goalScbema)) 
(Orientationl NIL doc (* From goalScbema)) 
(Orientation2 NIL doc (* From goaIScbema)) 
(DOFl NIL doc (* From goalScbema)) 
(DOF2 NIL doc (* From goalScbema)) 
(lnterimPiecel NIL doc (* From goalScbema)) 
(lnterimPiece2 NIL doc (* From goalScbema)) 
(InterimPrimitivel NIL doc (* From goalSchema)) 
(lnterimPrimitive2 NIL doc (* From goalScbema)) 
(lnterimPrimitive3 NIL doc (* From goalScbema)) 
(DOF3 NIL doc (* From goalScbema)) 
(Orientation3 NIL doc (* From goalScbema)) 
(DOF4 NIL doc (* From goalScbema)) 
(Orientation4 NIL doc (* From goaIScbema)) 
(DOF5 NIL doc (* From goalScbema)) 
(NewSlotl NIL doc (* Promoted slot)) 
(NewSlol2 NIL doc (* Promoted slot)) 
(NewSlot3 NIL doc (* Promoted slot)) 
(NewSlot4 NIL doc (* Promoted slot)) 
(NewSlot5 NIL doc (* Promoted slot)) 
(NewSlot6 NIL doc (* Promoted slot)) 
(NewSlot7 NIL doc (* Promoted slol)))) 

More Operational Version of $NewSchemaE, Continued 

Due to pagination constraints, $NewSchemaE is split into two figures. Reproduced here 
are the schema's TokenSlots. The remainder of the schema can be found in Figure D.12a. 

Figure D.12b 

D.6. Solving the Same Problem After Learning 

When presented with the same initial state after learning, the 
system produces a sequence of 19 primitive operator schemata which 
achieve the goal. The operator sequence is the same regardless of which 
version of $NewSchemaE is in use. 

D.7. Solving Similar Problems After Learning 

The system is capable of solving other versions of functionally 
similar problems. See Figure D.13 for another initial state solved by the 
system using either version of $NewSchemaE. 
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El 
n 

Alternate Initial State 

The robot arm gripper is located in the center of the picture with its fingers closed and 
pointing downwards. $Framel is just to the left of center, and $Washer3 is in the center 
foreground. $Boxl is on its side at the right edge of the workspace, with $Peg4 stacked on 
top of it. 

Figure D.13 



Appendix E 

Performance Considerations 

In this appendix, we present some empirical results collected over 
several learning and problem-solving episodes [108]. These figures are 
intended to give a general idea of the computational resource 
expenditures for the sample problems in the book. For simplicity's sake, 
all are variants of the widget assembly of Chapter 2. 

The nine examples in this appendix were collected in the order 
presented on a Xerox 1109 Lisp Machine running the Koto release of 
INTERLISP-D and the Buttress version of LOOPS. The 1109 has 3.5 
megabytes of main memory, a 43 megabyte hard disk drive, and a 
hardware floating point coprocessor. There are several factors atTecting 
these results that merit consideration: 

(1) These results were obtained by enabling the statistics-gathering 
package via the $Episode::StatsFlag slot. This package greatly 
atTects the performance of the system by (roughly) a factor of eight 
slowdown. Thus an episode using an hour of CPU time would 
actually require about seven and a half minutes without collecting 
sta tistics. 

(2) All examples are run in the same 8 megabyte virtual address 
space. Therefore, there may be some performance degradation in 
the later examples due to fragmentation of the virtual address 
space. These etTects are probably minimal. 

(3) All examples are run with the graphics package 
($WorkSpace:View) turned otT, the causal model browser package 
($Episode::Browser) turned otT, and without output to a real arm 
($Episode::RS232Mode). Each of these packages, when turned on, 
have some pejorative etTect on the performance of the system. 
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(4) These examples do not take advantage of the matrix operation 
microcode that is now available on the 1109. Matrix operations are 
implemented in INTERLISP-D and rely on a simple list-of-lists 
matrix representation. This simple representation was shown to be 
superior to representations based on nonlist datatypes, probably 
due to the high relative speed of the microcoded CDR instruction 
(used to extract elements from the matrix) on the 1108. 

E.1. Learning Episode 1 

This episode (Table E.1) corresponds to the learning episode of 
Chapter 2 (see Figure E.1 for starting state). The system is shown an 
assembly sequence of 32 primitive arm commands, and asked to 
generate a new operator schema. The generality/operationality tradeoff 
is set to generate the more operational new schema. A new physical 
joint schema is also generated during the verification process. 

Table E.1 
Learning Episode 1 

Length of observed sequence 32 
Causal model size (tokens) 283 
Explanation size (tokens) 242 
Number of database queries 2662 
Number of tokens created 8932 
Number of requests issued 520883 
Number of slot reads 402525 
Number of slot writes 16980 
Total CPU time (seconds) 7648.0 
Emulator/history time (seconds) 713.2 
Database time (seconds) 7416.8 
Verifier (Case 3) time (seconds) 41.8 
Generalizer time (seconds) 53.6 

Note that the schema database uses approximately 96% of the 
CPU time over the length of the episode. 

E.2. Problem-Solving Episode 1 

This episode (Table E.2) presents the same initial state of Figure 
E.1 to the system for problem solving. The performance element applies 
the more operational new schema acquired in the learning episode 
described above. The assembly sequence generated has only 24 ticks, 
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Initial State for Widget Assembly Problem 

The disembodied robot arm gripper is located in the center of the picture with its fingers 
closed and pointing downwards. $BoredBlockl is off to the right, with its socket also point
ing to the right. $Blockl is in the left rear of the picture. $Pegl is stacked on top of 
$Washerl in the foreground, just left of center. 

Figure E.1 

rather than 32 as in the observed sequence. This reflects the absence of 
redundant commands in the sequence generated by the performance 
element. 

The size of the planner's search tree reflects the number of nodes 
expanded during planning. The subtree size refers to the number of 
nodes actually in the plan, at all levels. The difference between these 
two numbers reflects the number of useless nodes expanded. As before, 
the database consumes well over 90% of the CPU resources. 

E.3. Problem-Solving Episode 2 

This problem-solving episode (Table E.3) presents the initial state 
shown in Figure E.2. It is a much simpler initial configuration than that 
of problem-solving episode 1. The planner generates a 12-element 
primitive arm command sequence which accomplishes the goal. 
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Table E.2 
Problem-Solving Episode 1 

Length of observed sequence 24 
Causal model size (tokens) 225 
Explanation size (tokens) 142 
Number of database queries 2015 
Number of tokens created 5418 
Number of requests issued 254906 
Number of slot reads 219565 
Number of slot writes 9778 
Total CPU time (seconds) 4759.7 
Emulator/history time (seconds) 58.5 
Database time (seconds) 4471.6 

As an expected side-effect of the lazy copy history mechanism, note 
that the average time to satisfy a database request increases with the 
number of layers (time ticks) in the history mechanism. In the first 
learning episode (32 ticks), this value was almost 3 milliseconds per 
request, while in this episode (12 ticks) the value is closer to l.5 
milliseconds per request. 

Table E.3 
Problem-Solving Episode 2 

Length of planned sequence 12 
Planner search tree size (tokens) 146 
Planner subtree size (tokens) 95 
Number of database queries 1003 
Number of tokens created 1554 
Number of requests issued 84754 
Number of slot reads 92593 
Number of slot writes 2987 
Total CPU time (seconds) 1724.5 
Emulator/history time (seconds) 27.1 
Database time 1560.7 
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First Alternate Initial State for Widget Assembly Problem 

The robot gripper is located in the center of the picture with fingers closed. $BoredBlockl 
is to the right, $Pegl is to the left, and $Washerl is in the foreground just left of center. 

Figure E.2 

EA. Problem·Solving Episode 3 

This problem-solving episode (Table E.4) presents a slightly more 
complicated initial configuration requiring that two items be cleared off 
of $Washerl during the course of the example. This is clearly reflected 
in the increased size of the planner subtree, which indicates the number 
of valid nodes expanded in planning. The initial state for this episode is 
shown in Figure E.3. 

E.5. Problem-Solving Episode 4 

This is the last problem-solving episode (Table E.5) of Chapter 2. It 
demonstrates the power of the system in planning the assembly of 
physically different yet functionally similar mechanisms. The initial 
state is show in Figure E.4. 
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Table E.4 
Problem-Solving Episode 3 

Length of planned sequence 30 
Planner search tree size (tokens) 261 
Planner subtree size (tokens) 162 
Number of database queries 2436 
Number of tokens created 6759 
Number of requests issued 330975 
Number of slot reads 267724 
Number of slot writes 12033 
Total CPU time (seconds) 6352.5 
Emulator/history time (seconds) 73.5 
Database time (seconds) 6006.6 
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Second Alternate Initial State for Widget Assem bly Problem 

The robot gripper is located in the center of the picture with fingers closed. $BoredBlockl 
is to the left. $Washerl is to the right, with $Block2 and $Pegl stacked on top of it. 

Figure E.3 
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Table E.5 
Problem·Solving Episode 4 

Length of planned sequence 18 
Planner search tree size (tokens) 204 
Planner subtree size (tokens) 133 
Number of database queries 1753 
Number of tokens created 3128 
Number of requests issued 174732 
Number of slot reads 184900 
Number of slot writes 5433 
Total CPU time (seconds) 3533.3 
Emulator/history time (seconds) 47.3 
Database time (seconds) 3274.2 
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Third Alternate Initial State for Widget Assembly Problem 

The robot gripper is located in the center of the picture with fingers closed. $Bored
Cylinderl is to the left, with $Pegl stacked on lop of it. $Peg3 and $Washer2 are slacked 
(from left to right) on top of $Blockl on the right side of the workspace. 

Figure E.4 
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E.G. Learning Episode 2 

Clearly, it is possible to learn from a simpler initial configuration 
than that of Chapter 2. What kind of impact does the complexity of the 
observed situation have on the acquired operator schema and its 
subsequent performance? To address this question, we present another 
learning episode (Table E.6) with a much shorter solution (12 inputs as 
compared to the 24 of the original example). The acquired operator 
schema is identical, and thus its effectiveness is also identical to the 
originally acquired schema. 

Note that the schema acquired in the first learning episode was 
removed from the system before running this example. However, the 
physical joint schema acquired in the first episode was retained: hence 
the verifier now recognizes the goal as a known physical joint schema 
(Case 2). 

Table E.G 
Learning Episode 2 

Length of observed sequence 12 
Causal model size (tokens) 159 
Explanation size (tokens) 144 
Number of database queries 1129 
Number of tokens created 2090 
Number of requests issued 110913 
Number of slot reads 103892 
Number of slot writes 4581 
Total CPU time (seconds) 2039.1 
Emulator/history time (seconds) 23.9 
Database time 1914.2 
Verifier (Case 2) time (seconds) 29.8 
Generalizer time 40.9 

E.7. Learning Episode 3 

Perhaps the most interesting aspect of these results are their 
bearing on the generality/operationality tradeoff discussed in Section 
5.3.2.3. To investigate this in empirical terms, we present another 
observation episode (Table E.7), identical to the simpler initial 
configuration of the previous example (see Figure E.1). This time the 
system generates the more general new operator schema. 
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The new schema acquired in the previous episode was, of course, 
removed from the system before presenting this example. As before, 
however, the physical joint schema acquired in the first episode was 
retained, allowing the verifier to operate under Case 2. 

As expected, the results shown here are almost identical to the 
results of the previous, identical, episode. The only difference is in the 
time spent on generalization. The extra analysis required to produce the 
more operational new schema is clearly evident in the greater CPU time 
figure in the operational case. This is consistent with expected behavior. 

Table E.7 
Learning Episode 3 

Length of observed sequence 12 
Causal model size (tokens) 159 
Explanation size (tokesn) 144 
Number of database queries 1117 
Number of tokens created 2072 
Number of requests issued 109639 
Number of slot reads 102380 
Number of slot writes 4573 
Total CPU time (seconds) 2047.8 
Emulator/history time (seconds) 24.6 
Database time (seconds) 1935.0 
Verifier (Case 2) time (seconds) 3l.7 
Generalizer time (seconds) 26.4 

E.8. Problem-Solving Episode 5 

This example is identical to problem-solving episode (Table E.8) 2 
(see Figure E.2), except that the new schema being applied is the more 
general version. We therefore expect this example to be less efficient, 
since the planner must work harder when applying a more general 
schema. 

The expected behavior is evident in the total CPU time figure (42 
minutes as compared to 29 minutes in the other case). In addition, the 
planner subtree is a bit larger: but since the additional nodes tend to be 
at the highest level of abstraction, the increase in CPU time tends to be 
more than linear in the increased subtree size. 
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E.9. Problem-Solving Episode 6 

Episode 6 (Table E.9) is identical to problem-solving episode 4 (see 
Figure E.4). Since it represents the most complicated of the four 
examples from Chapter 2, it was chosen to complement the simple 
example of problem-solving episode 5. 

These results are consistent with expected behavior. 

Table E.8 
Problem-Solving Episode 5 

Length of planned sequence 12 
Planner search tree size (tokens) 151 
Planner subtree size (tokens) 138 
Number of database queries 1340 
Number of tokens created 2044 
Number of requests issued 118962 
Number of slot reads 139695 
Number of slot writes 3661 
Total CPU time (seconds) 2498.8 
Emulator/history time (seconds) 25.8 
Database time (seconds) 2219.3 

Table E.9 
Problem-Solving Episode 6 

Length of planned sequence 18 
Planner search tree size (tokens) 215 
Planner subtree size (tokesn) 194 
Number of database queries 2357 
Number of tokens created 3952 
Number of requests issued 256358 
Number of slot reads 287017 
Number of slot writes 3427 
Total CPU time (seconds) 5257.7 
Emulator/history time (seconds) 45.4 
Database time (seconds) 4861.8 
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Built-In Schemata 

In this appendix, we present a capsule summary of each schema 
initially built into the ARMS schema library. 

F.1. State Schemata 

$Aligned 
A planar surface on a piece is parallel to and facing a hole 
on another piece which is the object of a $BracedHole. 

$AlignedHole 
Similar to $Aligned, but refers to a hole aligned with a 
surface which is the object of a $Braced. 

$AlignedHoles 

$At 

Similar to $Aligned, but refers to a second hole aligned 
with the object of the $BracedHole. 

Describes the position of the robot gripper. 
$Braced 

Establishes that a planar surface on a given piece is 
parallel with the workspace surface, i.e., pointing up. 

$BracedHole 
Same as $Braced, but describes a hole on the piece. 

$BracedHoles 
Similar to $BracedHole, but describes two holes from two 
different pieces which are aligned and both pointing up. 
The upper piece's hole must go all the way through to the 
lower piece's hole. 

$Cleared 
Establishes that a given piece has no other piece on top of 
it. 
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$Closed 
States the gripper is closed. 

$Downturned 
Establishes that a planar surface on a given piece is 
parallel with the workspace surface, but (as opposed to 
$Braced) is pointing down. 

$DownturnedHole 
Similar to $Downturned, but describes a hole. 

$Empty 
The gripper is empty. 

$Exserted 
A negative primitive from one piece is used to surround a 
primitive from another piece. The dual of $Inserted. 

$ExsertedThru 
Similar to $Exserted, but the insertion goes all the way 
through the piece. 

$Facing 
The gripper is poiting towards a surface of a piece. This is 
usually preperatory to approaching the piece and grasping 
it. 

$Grasped 
The gripper is holding a piece. 

$Inserted 
A primitive from one piece is inserted into a negative 
primitive from another piece. 

$InsertedThru 
Similar to $Inserted, but the insertion goes all the way 
through the piece. 

$MultiAligned 
A primitive from one piece is aligned with two holes 
described by a $BracedHoles. 

$Opened 
The gripper is opened. 

$Placed 
Describes the position of a piece not held by the gripper. 

$Positioned 
Describes the position of a piece while held by the gripper. 

$Stacked 
Describes a support relation between two pieces. 

$Surrounds 
Describes the state where the gripper, fingers opened, 
surrounds a piece. 

$UnHindered 
Describes the state where there is nothing between the 
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opened fingers of the gripper. 

F.1.1. Joint Schemata 

$CylindricalJoint 
Abstract joint schema with a revolute and a prismatic 
degree of freedom on the same axis. 

$Cy lindricalJ ointA 
Physical joint schema achieved by inserting a cylindrical 
primitive into a slightly larger hole. 

$CylindricalJointB 
Same as $CylindricaIJointA, but with arguments reversed. 

$RevoluteJoint 
Abstract joint schema with a single revolute degree of 
freedom. 

$RigidJoint 
Abstract joint schema with no degrees of freedom. 

$RigidJointA 
Physical joint schema achieved by inserting a primitive 
into a hole of the same dimension. 

$RigidJointB 
Same as $RigidJointA, but with arguments reversed. 

$SlidingRevoluteJ oint 
Abstract joint schema with a revolute and a prismatic 
degree of freedom on orthogonal axes. 

$TriplePrismaticJoint 
Abstract joint schema with three prismatic degrees of 
freedom. 

$Triple PrismaticJ ointA 
Physical joint schema achieved by inserting a square 
primitive into a square socket. 

$TriplePrismaticJ ointB 
Same as $TriplePrismaticJointA, but with arguments 
reversed. 

F.1.2. Degree of Freedom Schemata 

$PrismaticDOF 
Describes a prismatic degree of freedom. See section 
6.5.2.2.1.1. 

$RevoluteDOF 
Describes a revolute degree of freedom. See section 
6.5.2.2.1.1. 
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F.1.3. Constraint Schemata 

$Constrain tSchema 
All constraints are tokens of this type. See section 6.5.2.1. 

F.2. Operator Schemata 

$Align 
Operator schema for achieving $Aligned. 

$AlignHole 
Operator schema for achieving $AlignedHole. 

$AlignHoles 
Operator schema for achieving $AlignedHoles. 

$Approach 
Operator schema for achieving $Surrounds. 

$Brace 
Operator schema for achieving $Braced. 

$BraceHole 
Operator schema for achieving $BracedHole. 

$BraceHoles 
Operator schema for achieving $BracedHoles. 

$Disengage 
Operator schema for achieving $UnHindered. 

$Downturn 
Operator schema for achieving $Downturned. 

$DownturnHole 
Operator schema for achieving $DownturnedHole. 

$Drop 
Operator schema for achieving $Empty. 

$EmptyMove 
Operator schema for achieving $At. 

$Exsert 
Operator schema for achieving $Exserted. 

$ExsertThru 
Operator schema for achieving $ExsertedThru. 

$Face 
Operator schema for achieving $Facing. 

$FullMove 
Operator schema for achieving $Positioned. 

$Insert 
Operator schema for achieving $Inserted. 

$InsertThru 
Operator schema for achieving $InsertedThru. 
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$MultiAlign 
Operator schema for achieving $MultiAligned. 

$Pickup 
Operator schema for achieving $Grasped. 

$Place 
Operator schema for achieving $Placed. 

$Stack 
Operator schema for achieving $Stacked. 

$UnStack 
Operator schema for defeating $Stacked. 

F.2.1. Primitive Operator Schemata 

$Close 
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Operator schema executed by robot arm to achieve $Closed. 
$MoveTo 

Operator schema executed by robot arm to achieve $At. 
$Open 

Operator schema executed by robot arm to achieve 
$Opened. 

$Rotate 
Operator schema executed by robot arm to achieve $At. 

$Translate 
Operator schema executed by robot arm to achieve $At. 
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